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Preface

To construct computer programs - programming - can be an exciting task,
marked by creativity and professional know-how. To see a well-structured and
efficient program take shape in one's hands can actually give the programmer
the same sort of pleasure that an artist feels when he creates a new work, or that
a mathematician gets from developing an elegant proof. But programming can
also mean an endless searching for errors in badly composed and incomprehen
sible program code. The difference lies, of course, in the programmer's skill and
knowledge. No one is bom a clever programmer. Just as a craftsman can leam
his trade, so can a programmer leam by studying the work of others, by practis
ing and by acquiring different techniques.

This book will teach the craft of programming and is intended to be used
in introductory courses in programming. The reader needs no earlier experience
of programming, although the book can be used by those who have used another
language (such as Basic, Pascal or FORTRAN) and want an easy introduction
to Ada.

The main aim of the book is to teach the basics of constructing computer
programs. For that reason, concepts such as algorithms, data abstraction and
data representation, abstract data types, breaking programs into subprograms,
concealing inessential details, modular program development, generic program
units and object-oriented programming are discussed. In particular, a number
of examples are given where the technique of stepwise refinement is used to
construct algorithms.

Every craftsman can confirm the importance of having good tools. The
programmer's most important tool is the programming language he or she uses.
In this book the programming language Ada is used, because it is an excellent
programming tool. Even if it is the fundamental principles for the construction
of programs which are the most important thing in a first programming course,
it is known that the first language one meets has a lasting effect on one's think
ing. Therefore it is vital that the first language is a 'good' language. It should
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have support for the basic principles of programming and the language should
have a good structure. The previous editions of this book have now been in use
for some years, and Ada has been used as an introductory programming lan
guage at a number of universities and colleges all over the world. Experience
shows clearly that Ada is a language suitable for beginners. It contains all the
constructs necessary for putting programs together in a way that is both well
structured and comprehensible. It supports program construction based on algo
rithms, and its types offer the possibility of data abstraction and representation
of data objects. The concept of packages supports modular programming, and
the revised standard now proposed also provides support for object-oriented
programming.

Ada builds on experience from the normal conventional languages. The
basic constructs of Ada are very similar to those of the other common
languages, such as Pascal. Therefore, it is no great task for those who have learnt
Ada as their first language to rather quickly learn to write programs in other lan
guages.

Ada is a modern language with a broad field of use, appropriate for both
technical and administrative applications. Furthermore, Ada is a standardized
language (ANSI and ISO) with strong support internationally; most other
languages are found in different versions and dialects for different computers.
For Ada there is only one standard, Ada 95 (International Standard ISO/IEC
8652:1995(E), Information Technology - Programming Languages - Ada)
which replaces the original standard (Reference Manual for the Ada
Programming Language. ANSI/MIL-STD-1815A-1983) from 1983, called
Ada 83.

Ada is a language with a wide range of possibilities. Apart from the
'ordinary' constructs there are a number of constructs intended for more sophis
ticated programming. For example, it is possible to write programs at machine
level (programs that work directly with the computer's hardware), real-time
programs (programs with parallel execution) and distributed programs
(programs that are executed in several processors at the same time). One advan
tage of this is that you can grow with the language: when you want to progress
and study more advanced types of programming you can still use Ada, as the
concepts you need are to be found there. There is no need, as with other simpler
first languages, to study special dialects and additions, or go over to another
language completely.

Just because Ada has many possibilities, it does not mean that it is a
difficult language. There is no need to learn all the fine detail in order to be able
to use it: to start with you can stick with a restricted part of the language. If you,
for example, have no knowledge about constructing real-time programs there is
no risk of getting into that part of the language by accident.

This book deals with all those parts of Ada that are not to do with
machine-level programming, real-time programming and distributed program
ming. Chapter 1 gives an overview of how a computer is constructed, and how
compilation, linking and execution of programs take place. There is also a
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resume of the most common programming languages. Chapter 2 gives an intro
duction to software engineering and the place of programming in the process of
developing programs.

Additional information about the book, corrections and solutions to

exercises, for example, will be put into a world-wide-web page with the
address http://www.cs.chalmers.se/~skanshol/ada_eng/. If you want to reach me
to make conunents on the book, the easiest way is by electronic mail, to
skansholm@cs.chalmers.se.

It also contains a broad presentation of the most basic programming con
structs in Ada and a number of simple examples which demonstrate how they
are used in writing a program. The chapters that follow go into these various
constructs in greater detail. The basics of Ada, such as control statements, dif
ferent data types and subprograms, are covered in Chapters 3-7. In Chapters
8-14 more advanced constructs of the language are dealt with, including pack
ages, handling exceptional events, dynamic data structures, files, generic pro
gram units and object-oriented programming. At the end of each chapter there
are a number of exercises.

A textbook in programming must have two functions: it has to present its
material in a way that is easily understood when you read it for^the first time,
and it must act as a reference book when you are sitting writing a program and
need to check on constructs and examples. This latter function has been attended
to by gathering similar aspects into single chapters. This means that you might
meet a construct in part of a chapter that does not seem necessary to learn on the
first reading: you can look at it briefly and pass on to the next section.

The parts of the language that are unique to Ada 95 have been indicated
by a clear mark in the margin, to indicate that these are not applicable if you
have only an Ada 83 compiler:

▼ A section marked like this is only applicable to Ada 95.
▲

The first edition of this book dealt with Ada 83. The second edition was

published while the final work with the new standard was taking place, conse
quently that edition was based on a draft standard. In the second edition the new
constructs of Ada 95 were included. A new chapter dealing with object-oriented
programming was added, and descriptions of pointers to subprograms and of
child packages were included in Chapters 11 and 8 respectively. Apart from this,
minor pedagogical changes were made.

This edition, the third, is based on the final, approved version of the
standard. Some minor changes have been made to the book as a result of this.
The major difference, compared to the previous edition, is that two new sections
have been added: one describing how to give arguments to the main program,
and one dealing with generic child packages. Furthermore, Chapter 14, dealing
with object-oriented programming, has been revised. For instance, the idea of
iterators is demonstrated in a couple of new examples. Another new feature of
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this edition is that, on request, a table index with summaries has been added
in order to make it easier to find a certain table when you use the book as a
reference book.

All the programs written in Ada 83 have been tested using either Verdix
or Telesoft's Ada compiler under the Unix operating system, or with Meridian's
Ada compiler under MS-DOS. All the program examples written in Ada 95 have
been syntax checked using Gnat Ada 95 compiler. The compiler can be obtained
free of charge by using the file transfer program ftp and opening up a connec
tion to cs.nyu.edu and logging in as an anonymous user.

Finally, I wish to extend warm thanks to the colleagues and students at
the Department of Computer Science at Chalmers University of Technology
who have contributed useful points of view on the book's content and format.
Special thanks are due to Erland Holmstrom and Hans Lindstrom, who read the
proofs of the first edition, and Shirley Booth, who translated it into English.

Jan Skansholm

November 1995

v..
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An Introduction to

Computers and
Programming Languages

1.1 A computer's structure and 1.2 How the program gets into the
operation computer

1.3 Programming languages

Computers are found everywhere in modem society and, for better or
worse, we are becoming more and more dependent on them. Most large
administrative systems, such as those dealing with wages, bank accounts,
inventory control and sales, are now computerized. The computer is an
indispensable work tool for the engineer, who needs to make calculations of
many kinds. In fact, some calculations would be impossible without some help
from a computer. Computers have also come to play a greater and greater role
as components in engineering systems, as a result of developments in the field
of microelectronics, where it has become possible to manufacture powerful
electronic units in large quantities and at low cost. Computers can be found as
components in everything from kitchen stoves and sewing machines to space
shuttles and satellites. Furthermore, in recent years, developments in personal
computers have brought computers nearer to the man in the street.

This first chapter will give an introduction to the structure of the
computer, its most important components and their function. The role of
programs is explained, how they are translated and how the computer carries
them out. Finally, an overview is given of the most important programming
languages and their historic development.



2 An introduction to computers and programming languages

1.1 A computer's structure and operation

A computer can be described as a 'machine' that can store and process
information. A simplified representation of what apparently happens when a
computer program is run is shown in Figure 1.1.

This shows that a computer can be seen as a unit into which certain data
can be fed - the input. The computer manipulates these data and produces the
output. The input and output data can take different forms - electric signals,
light or sound. To start with, the computer may be thought of as communicating
with people, and then it is natural that the input and output should take the form
of written text. But computers are also used in many other situations where
communication is not primarily with people: in manufacturing processes, for
example, or as components of engineering systems such as aeroplanes and cars.
Here the input generally consists of signals from monitoring devices that feed
information to the computer about the current state of the system, for instance
temperature or speed. The output from the computer might be control signals to
relays or motors, perhaps to change the flow of fuel or initiate transfers in the
system.

One very important thing to understand from the diagram is that the
computer's behaviour is controlled by a program inside it. The computer can be
made to do other things by changing the program. It is this that distinguishes a
modem computer from an 'ordinary' machine which is only designed to do
certain preordained tasks. There are, however, computers that are intended to
perform only one particular task, in other words, to mn only one particular pro
gram. These are known as dedicated computers. One example is the computer
found in a computer or video game. However, this still does not contradict
the principle that a computer is always controlled by a program and that the
program is replaceable.

Program

Figure 1.1
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Computers compared with ordinary machines

A computer differs from an ordinary machine in that
its actions are controlled by a program.

Figure 1.2 shows the central parts of a computer in a little more detail.
The computer's 'brain' consists of a central processing unit (CPU). In the CPU
there is a control unit (CU) that controls and coordinates all the computer's
activities. Decisions are made in the control unit regarding the operations to be
executed and the order in which these should be undertaken. The control unit

also sends out control signals, which regulate all the other units of the computer.
In the CPU there is also an arithmetic logic unit (ALU) containing electronic
circuits that can carry out various operations on the data being manipulated,
such as addition, subtraction, multiplication and division.

Another very important unit in the computer is the primary memory,
which stores, among other things, the program that the computer is running or
executing at any given time. Various data and temporary storage spaces needed
for the executing program to function properly are also found in the primary
memory.

Execution

When a program is run in a computer, it is said to be
executed.

Arithmetic

logic unit

Control

unit

Primary
memory

iiiiliiliiiiilli
. Program i

Input
data

Output
data

Figure 1.2
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Primary memory can be thought of as a series of memory cells, some
times called words (although they have nothing to do with ordinary spoken
words). Each memory cell has a certain address, which specifies its position in
the memory. The number of memory cells in a computer can vary, depending
on type and model, but it is usually a question of millions of cells. Each
memory cell consists of a certain number of bits, usually 8, 16, 32 or 64. Each
bit contains a binary digit, i.e. zero or one.

A group of 8 bits is usually called a byte. The size of memory is usually
expressed in the unit kilobyte, shortened to Kb, which is 1024 (2'^) bytes.
Memory can also be expressed as a number of megabytes (Mb) (million bytes)
or gigabytes (Gb) (billions of bytes).

A program that is being executed, and is therefore in primary memory,
occupies a number of connected memory cells. A memory cell, or a group of
cells, contains one instruction from the program. Different instructions can be
represented by different combinations of bits in the memory cells. Thus a pro
gram consists of a series of instructions. An instruction tells the computer that
it should perform a particular task, for example, move the contents of a memory
cell from primary memory to the CPU, or add two numbers in the ALU. When
a program is executed, the control unit reads the instructions one by one from
primary memory and makes sure that they are carried out in the same order.

An instruction can thus be thought of as a particular combination of zeros
and ones. These combinations look different for different models of computer.
The program must be stored in primary memory in this form so that it can be
executed in the computer, and then it is said to be in the form of machine code.
Machine code is very 'unfriendly' in the sense that it is difficult to read and
write. In the early days of computers, when the principle of a stored program
was first applied, programs had to be written directly in machine code.
Fortunately, this area has developed and today the programmer does not gener
ally need to worry about the computer's machine code. As we will see,
programs are written in what are known as high-level languages (for example,
Ada and Pascal), which are much more 'friendly'. Special translator programs
are used to translate from high-level language to the machine code, so that the
program can be run in the computer.

In Figure 1.3 our computer system is extended with some very common
units. To be able to communicate with its environment a computer must have
one or more input and output units. The drawing shows the most common
input/output units used to communicate with people, namely a screen and a
keyboard. There are other units people use to communicate with the computer,
the most common being a mouse, which is used to point with, and output units
such as line printers and plotters.

We saw that the primary memory is used partly to store the program
being executed, but in general a computer must also be able to store programs
that are not being executed. The various data used as input to different programs
must also be stored. Such data, which will be saved more permanently, are
stored in secondary storage. Common types of secondary storage include the
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□
Input
data

Secondary
storage

Output
data

Other
external
devices

Figure 1.3

disk and magnetic tape (Figure 1.3 shows a disk). As a rule, secondary storage
has considerably greater capacity than primary memory.

The data in secondary storage is usually organized into files. A fi le is a
collection of data that belong together in some way; it might contain, for exam
ple, a program or the input data for a particular program. A fi le can be thought
of as an envelope into which related data can be put. Each fi le is given its own
name so that it can easily be referred to. It is possible to create new fi les, remove
files and make changes in fi les.

The units in a computer that do not belong to the central parts are usually
called external units or peripherals.

Important units of a computer

Central processing unit (CPU) controls the
computer and processes data.
In primary memory, the program being executed
and the data needed by that program are stored.
Peripheral units are used for reading and writing
data (input and output units) or for storing data
more permanently (secondary storage).

1.2 How the program gets into the computer

In a programming language such as Ada or Pascal, what form does a computer
program take? Because the program is written by an ordinary person, it has the
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form of normal written text. The program can even be written on ordinary paper.
In this section we shall see what happens when this original program text, or
source code, is translated into the machine's own machine code and loaded into

the computer.
The program is an ordinary text, so it can be written in at the keyboard.

Computers are generally delivered with a number of support programs, and one
that is almost always supplied is a text-editing program, or text editor. Figure
1.4 shows what happens when this program is run.

Using the text editor, any text can be fed into the computer or stored in a
file in secondary storage. A file containing text is usually called a text file. Using
the text editor, it is easy to revise, erase, change, shift or insert text. It is
normally possible to see a section of text on the screen, and then the parts of the
text that are to be revised can be selected using the keyboard, a light-pen or a
mouse. The details of how a text editor works and which commands it under

stands vary a lot from system to system. Note that the text editor pays no heed
to what the text is about, whether it is an Ada program or a chapter from a book.

In the next stage the program text is translated from ordinary text to
machine code, which is done, as indicated in Figure 1.5, with a special transla
tion program called a compiler. Each compiler is designed to handle a specific
programming language. Thus, to translate an Ada program you must have
access to and use an Ada compiler. A computer system usually has compilers
for several different languages.

Every programming language has special rules regarding the form of
different program constructions; this can be likened to the rules for sentence
structure in natural languages. It is said that each language has a certain syntax.
The compiler reads the program from the text file created earlier and checks
first that it obeys the rules of the language, i.e. that it is syntactically correct. If
the compiler discovers faults it displays an error message on the screen.
Sometimes the compiler attempts to correct errors if they are not too serious, but

Secondary
storage

Program
texteditor

Keyboard

Figure 1.4
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Program
text
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Figure 1.5

normally compilation stops when errors are found. The programmer then has to
go back a stage and use the text editor to revise the program and correct the
errors. A new attempt to compile the program can then be made. Sometimes this
process has to be repeated several times before the program is free of syntax
errors.

If no errors are found in this first stage, the compiler goes on to translate
the program from text to machine code. The machine code so produced is
generally called the object module and it is saved in a file in secondary storage.

Note that, because different models of computer have different machine
codes, a compiler designed for one computer will not work on another. Different
compilers are needed for different computers. This is no problem for the pro
grammer, because an Ada compiler always requires an Ada program as input,
irrespective of the computer bqing used. The text of an Ada program that is
developed for a particular computer can thus easily be transferred to another
computer and run there. Thus the programs are said to be portable. One of the
advantages of high-level languages is the possibility of writing portable
programs, which is not possible using machine code.

The compilation of a fairly simple program may give rise to an object
module that can be loaded directly into the primary memory and executed, but
normally a linking stage is needed before this. Figure 1.6 illustrates this stage.
A special link program must be run. When a large program is designed it is
usually divided into different parts that are written, developed and compiled
separately. The link program gathers together the different object modules from
these separate compilations into a single entity called the load module. This is
saved in a file in secondary storage. Even if the program has not been divided,
linking might still be necessary because the program needs access to existing
system routines, for example, routines for input and output or mathematical
routines.
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Secondary
storage

Load

module

Object
module

Linking
'program'

Figure 1.6

Only the final stage now remains - to get the load module into the
primary memory so that the program can be run. This brings us to the question:
how does the computer know which program it should run? For the answer to
this, study Figure 1.7.

In the earlier figures we have only shown one program at a time in the pri
mary memory - the program that is currently being run. In actual fact there is
always one more program permanently stored in the primary memory. That is
the operating system, abbreviated to OS. The operating system is the program
that is always running when no 'ordinary' program is being run. It operates
automatically when the ordinary program has finished or stopped for some

Secondary
storage

Operating
system

Program

lllJ
I Program

Input
data

Output
data

Figure 1.7
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reason. The computer is also designed to put the operating system directly into
operation when the computer starts.

The operating system usually communicates with the user via the screen,
keyboard and mouse. The user can write commands using the keyboard, or point
and click using the mouse. One command is the instruction to load and execute
a particular program. The operating system searches for the required module in
secondary storage and copies it into primary memory, as indicated in the dia
gram. Control is then passed to the loaded program, which is then executed until
it is finished, or until it is stopped.

The operating system performs many other tasks in a computer. For
example, it checks that the computer's contacts with the peripherals are work
ing and keeps track of all the files stored in secondary storage. The operating
system is often a very advanced program and computer manufacturers generally
provide one when a computer is delivered.

Now we have seen how a program is written, and how it is loaded and
run. This process can often be simplified so that the programmer does not need
to be aware of the separate stages, by using, for example, a program that com
bines the compiling and linking stages.

The stages of making a working program

The program text (source code) is created using
the text editor.

The compiler translates the program text into an
object module.

The linker puts several object modules together to
form an executable load module.

The operating system puts the load module into
primary memory and the program is executed.

There is another way of running programs written in a high-level
language, distinctly different from the one just described. Instead of a compiler,
a special program, called an interpreter, is used. This is shown in Figure 1.8.

The program text is created using the text editor, exactly as before. The
interpreter is then run with the program text in secondary storage as input data.
Just like the compiler, the interpreter reads the text and checks that the program
has no syntax errors. The difference is that the interpreter never translates the
program into machine code. Instead, it interprets the program step by step and
carries out the tasks of the program. From the user's point of view, it appears as
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Program
text
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Output
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Figure 1.8

if the program he or she has written is being executed. This often provides a
faster and easier way of test running small and simple programs. The disadvan
tage is that the program runs much more slowly. It is thus not a method to be
used in the everyday running of working programs.

In some systems even the text editor and the interpreter have been com
bined in one program; then, using just this one program, a user's program can
be both edited and run.

1.3 Programming languages

As mentioned earlier, the earliest computers had to be programmed in machine
code. Part of such a program might have looked like this:

0111000100001111

1001110110110001

1110000100111110

It is easy to understand that it was seen as a tremendous advance when assem
bler languages started to be used. Then the above fragment of program might
have been rewritten as:

LOAD A

ADD B

STORE 0

In the assembler language each line of the program corresponds to one instruc
tion in machine code. Thus the little program above has three instructions. For
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a program written in assembler language to be run in the computer, a translating
program is required - an assembler - that translates the program into machine
code. Such a translator does not have to be too complicated because the assem
bler language lies so close to the structure of the machine code.

In spite of the considerable advance provided by assembler languages,
they still have enormous disadvantages. One disadvantage is that each model of
computer has its own unique assembler language, naturally enough, because the
language is so close to the machine code. An assembler programmer is thus
forced to leam many different assembler languages, which can differ consider
ably in their details. Another disadvantage is that the assembler language is
extremely detailed. Each individual instruction must be given to the computer,
which means it is time-consuming to use an assembler language. Furthermore,
the error risk is high, so a program may contain many errors that may be
difficult to detect.

With the development of high-level languages in the 1950s, programming
changed radically. A program written in a high-level language is more adapted
to human modes of expression than to the computer's set of instructions.
Programs are expressed in 'half-English' and arithmetic calculations are written
in a way familiar in mathematics. The above fragment of program may now be
written as:

C := A + B

The programmer can concentrate on the problem to be solved rather than a mass
of detail about how the computer works. In principle, it is also possible to write
a program in a high-level language with the intention of running it on different
computers. There is no need to learn a new language for each computer.

The first high-level language was FORTRAN (FORmula TRANslator),
which was introduced in 1954. It was originally intended to simplify writing
programs that made calculations using arithmetic expressions. The language's
great weakness, however, is its poor structure, which means that FORTRAN
programs often become muddled and difficult to see as a whole. In addition, the
language has poor facilities for describing data and handling input and output.
FORTRAN had something of a facelift with the more recent versions,
FORTRAN 77 and FORTRAN 90.

In 1959 a new programming language, COBOL, was introduced,
designed for programming in the areas of finance and administration. A few
years later the language was standardized and it has become, and remains, one
of the most used languages. COBOL programs are very readable in that they
resemble ordinary English. The disadvantage of this is that programs in the
language are sometimes considered wordy and awkward. What was new about
COBOL, compared to FORTRAN, was its better ways of describing the data a
program had to handle.

A language that came to be very significant for subsequent developments
was ALGOL, which was presented in 1960. The big advantage of the language
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is that it has good structure. It is possible to write a program so that the way it
works is reflected in its appearance. Despite these advances, ALGOL never had
any great commercial success. A completely new version, ALGOL68, was
presented in 1968, but even that never achieved any real breakthrough.

A language that has been significant for later language developments was
SEMULA, the first version of which appeared in 1967, a direct extension of
ALGOL. The language is used primarily, as its names implies, to write simula
tion programs. SIMULA is significant for being the first programming language
that enabled object-oriented programs to be written. All of today's so-called
object-oriented languages are based on SIMULA.

The language Pascal was presented in 1971. The aim was for Pascal to
be a simple programming language, suitable for use in teaching, and it has
achieved wide usage in this field. The reason is that it has good program struc
ture, which makes it easier for beginners to acquire a good 'programming style'.
The language is based directly on ALGOL and ALGOL68, with some ideas
from SIMULA, although several constructs have been deliberately simplified.
An important feature of the language is that data can be described well and new
data types can be introduced by the programmer. Pascal is standardized, both as
an American standard (ANSI) and as an international standard (ISO). Even so,
variants of the language have appeared in which certain additions have been
made, for example UCSD Pascal and TurboPascal. The greatest weakness of the
language is that it lacks constructs for enabling larger programs to be built up in
a modular way. Further, it is limited in its handling of text, and in its input and
output facilities.

C is a language that has become very popular in spite of its age (it was
developed at the start of the 1970s). It is a language which can be said to be a
'high-level language at a low level'. It gives the programmer great freedom to
control the computer in detail, and has therefore come largely to replace the
assembler in the development of system programs. Most of today's operating
systems and other system programs, such as those for handling windows and
menus, are written in C. The language is relatively small, but it demands a lot
of the programmer since monitoring is lax and it is easy to make mistakes.

The most widely used of the object-oriented languages is C-I-+, the first
commercial version of which came out in 1985. C++ is a pure extension of C, a
number of constructs to facilitate the handling of what are called classes and
objects having been added. These constructs are largely taken from SIMULA.
C++ is not an easy language to learn as first you have to master ordinary C,
followed by the object-oriented constructs.

Remarkably fast developments in the field of electronics, in that more and
more powerful components can be produced more and more cheaply, led many
to believe that it would similarly be possible to construct ever larger and more
complex programs. In the event, this assumption was quite wrong. All too many
programs either failed to be ready on time, greatly exceeded their budget,
contained many errors or did not fulfil the customers' specifications. This
phenomenon became known as the software crisis. Among the reasons for this
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crisis was poor project management, and the fact that the programmer often
considered the program to be his or her own property. Many individual and
curious programming styles developed and it proved difficult to create error-free
programs. In order to remedy this, the concept of structured programming
was introduced, with the aim that a program should be written in such a way that
it is both easily understood and free from errors. Structured programming can
be said to be a set of rules and recommendations for how 'good' programs
should be written. Such programming needs the support of a suitable program
ming language, and it was this need for well-structured programs that was
behind the development of what became known as structured languages, such as
Pascal.

During the 1970s it became clear that even well-structured programs
were not enough for mastering the complexity involved in developing a large
program system. It was also recognized that it was necessary to support the divi
sion of the program into well-defined parts, or modules, that could be developed
and tested independently of one another, so that several people could work
together within one large programming project.

One way to divide a program into modules is to use so-called objects as
building blocks in the program. An object in the program can be thought of as
a representation of a real or conceptual thing in the program's environment. This
idea originated from the language SIMULA but was further elaborated in a pro
ject at Xerox, where a brand new language, Smalltalk, was constructed. The
first available version of Smalltalk was presented in 1980 and the concept of
object-oriented program development was introduced in connection to this pro
ject. Many of the special words which are used in the object-oriented programming
languages, messages and methods for instance, come from Smalltalk. In
Smalltalk the concept of object is particularly emphasized. There are no data
types in the language and all data in a program are just objects. The syntax of
Smalltalk is also somewhat particular; that is, the language looks very different
compared to other languages. A Smalltalk system is an integrated interactive
environment with a window-oriented user interface. A drawback of Smalltalk

that is often mentioned is that the interactive environment demands large
computer resources and that the programs produced usually execute slowly. The
latter is due to that fact that the program code is not compiled, but interpreted,
at execution.

The US Department of Defense was an important customer for systems
of programs, which were supplied by a large number of independent companies
and written in a large number of different languages. The cost of development
and maintenance increased steadily. In 1975, in response to the software crisis,
the Department of Defense published a list of requirements that should be met
by any programming language before its use would be accepted. It turned out
that none of the existing languages met these requirements and a competition
was announced for the design of a modem, general, programming language. The
winning entry was named Ada, and was accepted in 1983 as a standard in the
USA, later to become an ISO standard as well. Since all compilers must follow
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the standard, each compiler must go through a special validation test before it
can be called an Ada compiler.

Apart from being a well-structured language, Ada also supports the
modular development of programs. The concept of the package has been intro
duced and it is possible to build up libraries of packages which can be put
together to make large programs. One thing that distinguishes Ada from most
other programming languages is that it can be used to write parallel programs,
that is, programs that are to be executed simultaneously and interact with one
another. Such programs are encountered in applications for computer control of
technical systems.

After a few years of use it was decided to revise the standard. The work
was started in 1988 and the new standard was officially approved in 1995; hence
it is called Ada 95. One important innovation compared with the old standard
(called Ada 83) is that of object-oriented language constructs. Another impor
tant addition is that of child libraries, which further simplify the construction of
large programs. Furthermore, a number of minor aspects of the language have
been improved (international character sets, pointers to subprograms, etc.), and
a number of changes have taken place in the part of the language to do with
parallel programming. A number of annexes have also been brought into the
standard, which contain descriptions of the parts of the language which are
special and are not necessary in every implementation. These annexes and their
contents are: system programming (machine-level programming, such as
interrupt handling), real-time systems (control of the priority of different
processes, etc.), distributed systems (program execution on several processors
at the same time), information systems (decimal arithmetic, text handling,
etc.), security (discusses the special problems involved in writing programs that
must be secure), and numerical computation (mathematical functions, etc.).

Finally, there are a few programming languages which are based, in part
at least, on different principles from those we have discussed so far. LISP is a
language developed as early as 1958, intended to manipulate symbols of vari
ous kinds, such as characters and words. Programs are built up using lists of
symbols and have a very special appearance. LISP has been used extensively,
especially in the area generally known as artificial intelligence.

Research is going on all the time into developing new programming
languages which are based on new ideas, and the language PROLOG and the
so-called functional programming languages are examples of these.
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Programs

2.1 The process of developing 2.3 Top-down design
programs 2.4 Simple programming examples

2.2 Algorithms Exercises

We will start this chapter by discussing what is known as software engineering
and the place of programming in the process of developing programs. The two
important concepts of algorithms and stepwise refinement will be introduced.
Then a number of simple programs will be presented to give the reader a first
idea of what an Ada program looks like. We do not want to get caught up
in a mass of details at this stage, so this chapter will give only an outline
description of the different program constructions, and more detailed
descriptions will follow in later chapters.
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2.1 The process of developing programs

This book is all about programming or, in other words, how one builds or
constructs a program. However, developing a program is not only a question of
programming. It might be compared with what happens when a house is built -
it is not just a case of going ahead and laying the bricks. A good deal of careful
preparation is needed. First, you have to decide how the house will be used, then
the plans can be drawn, and after that all the calculations have to be made before
the actual building can commence. And even when the house is completely built
it cannot be left to itself: it needs to be maintained. The work of building a house
can thus be divided into a number of phases - from the decision about its future
usage to its maintenance. This is quite similar to what has to happen if you are
going to develop a computer program: the programming, corresponding to the
actual carpentry and bricklaying, is only one phase of the whole process.

This is where a useful distinction can be made between programming in
the small and programming in the large. Programming in the small means that
you work alone and produce a little program of a temporary nature. Programming
in the large means that you work with the development of a larger program and
that the work is often the joint effort of a group of programmers. Most
programming in educational settings is on the small scale, but on occasion it can
also be large-scale, for example in project-based courses and the sort of applied
project work incorporated in many educational programmes. In the case of com
mercial and industrial program development, it is almost always a question of
programming in the large.

When there is a program to be written, it happens all too often that some
one sits down and starts to write it at once - one could call this the direct-

programming method. In the case of professional programming, in the large, this
practice leads to greater costs and it is questionable whether a functioning and
usable program can ever be produced in this way. It is generally admitted that
such direct programming brought about the software crisis that was discussed in
the previous chapter. It is less serious to use the direct-programming approach
for programming in the small, but even then it is worthwhile to decide in advance
what the program should do and how it should do it.

The overall goal when developing a professional program is to produce a
high-quality program within given constraints of time and cost. A program
should match the demands of the user, be reliable, well documented and easy to
maintain. To achieve these ends the program has to be developed with a well-
structured approach; just as with building a house, this calls for engineer-like
work in accordance with a clear plan. The term software engineering is often
used to refer to such a well-structured approach.

In order to draw up a work plan you need a model for the way in which
program development proceeds, and there are several models to choose from.
The most widely used is what is known as the waterfall model, of which there
are several variants. The program development process is here divided up into
the following phases:
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• Requirements analysis and specification

• Design

•  Implementation

• Test and installation

• Operation and maintenance.

The reason for calling this the waterfall method is that each phase results in a
set of documents that run down to the next phase.

During the first phase, requirements analysis and specification, the goal
is to determine what has to be done. You have to try to understand the environ
ment in which the desired program will have to function. You should specify
what the program is required to do, what different functions it should be capa
ble of, and the principles for its communication with the user. Such questions as
the sort of computers it should be run on should also be addressed now. This
work should result in a written requirements specification, which clearly states
all these demands. The specification is the document which defines the program
that is to be constructed and it has to be accepted both by the customer and by
the program developer(s). The specifications might include a preliminary user
manual and it can also prescribe trial procedures, which state how the final
program will be tested.

In the second phase, that of design, the question being addressed is how
should the program meet the demands now specified? You could say that this is
producing a blueprint for the program. You decide what different parts should
go to make up the program, what each of these should do, how they should inter
face and how they should communicate with one another. This is done first in
outline and then in greater detail. The detailed design really means that you have
decided how the program is to be implemented. For example, it is now that
decisions are made about suitable algorithms (see the next section) and data
structures. The details of the interface with the user are worked out - what it

should look like, how commands will be given to the program, what the menus
should include, and so on. The documents which are produced during the design
phase are firstly a detailed system description, laying out the program's design,
and secondly a user manual, which gives directions for how the program should
be used.

It is only in the third phase, implementation, that any programming starts
to be done, when there is already a detailed system specification and user
manual to adhere to. This phase also sees the testing of the parts of the program,
one by one, as they are completed. The result of the implementation phase is,
naturally, the program code, but there might also be test protocols resulting
from the tests carried out on parts of the program.

In the fourth phase of development, test and installation, all the parts
of the program are now put together for a check that everything works. If
the program is to be installed at a particular site, that is also done now.
Testing is carried out according to the prescribed test procedures which were
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defined earlier. This phase results in a test protocol, and it is only after this has
been found acceptable that the program developer gets paid in full by the customer.

The final phase, operation and maintenance, is the longest phase in the
life of the product. Now the program is in full use, but errors that were missed
in earlier tests have to be put right and the program might have to be adjusted
to cope with new demands, for example to work in a more modem hardware
environment.

There is criticism of the waterfall model in that it is too static: if one should

happen upon a mistake made in an earlier phase it cannot be corrected. Of course,
the waterfall model is not in reality used so strictly: some degree of feedback is
allowed. There is, after all, no point in implementing something known to be
incorrect or unsuitable. For example, one might discover during the design phase
that some of the demands made in the first phase are impossible, or very expen
sive, to implement, and then it is only natural to relax the demands.

The specifications which are drawn up during the program development
process should be as clear as possible, so that there is no possibility of misun
derstanding. There are no generally recognized formal methods for writing spec
ifications. The most common method is to use graphic notation, ordinary text,
or a program description language. In the case of using normal text it is usual
to make it as formal as possible, by filling in sets of prespecified forms, for exam
ple. Program description languages (PDL) are simplified programming
languages which contain certain simple language constructs and which enable
one to include explanatory text. There are progam description languages which
are based on Ada.

2,2 Algorithms

When designing a program the problem has to be faced of deciding on suitable
methods of solving the different partial problems of the whole program. A
description of how a particular problem is solved - a computational method - is
called an algorithm. An algorithm consists of a number of elementary opera
tions and instructions about the order in which these operations should be
carried out. Certain demands can be made of an algorithm:

•  it should solve the given problem;

•  it should be unambiguous;

•  if the program has an end in view, such as computing a certain value, then
the algorithm should terminate after a finite number of steps.

Note: Not all algorithms have to terminate. For instance, the algorithm that
describes the control program for a nuclear power plant should certainly not
terminate.
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We come across algorithms every day. One example is a recipe: the prob
lem is to prepare a particular dish and the algorithm gives us the solution. Another
example is the assembly instructions we get when we buy furniture in kit form;
and then there are all the different kinds of instruction manuals. And knitters will

recognize that a knitting pattern is nothing other than an algorithm.
Algorithms can be expressed in many different ways. One common way

is in natural language. Pictures and symbols can also be used, as in a knitting
pattern; so can formal languages like mathematical notation. Flow charts have
also been popular. Here we are dealing with programming, so it is naturally of
interest to us that algorithms can be expressed in programming languages. The
programming language ALGOL, which lies at the roots of most of today's con
ventional programming languages, was designed specifically so that it could be
made to express algorithms, hence the name.

Algorithms

Description of how a particular problem should be
solved.

Let us look at an example. We shall describe an algorithm that shows how
the sum 1 + 2 + 3 + ... + can be evaluated, if is a given whole number > 0.
One way of describing the algorithm in natural language is:

(1) Set SUM equal to 0 and the counter K equal to 1.
(2) Repeat the following steps until K is greater than N:

(2.1) Calculate the sum of SUM and K and save the result in SUM.
(2.2) Increase the value of A" by 1.

(3) The result required is now the number in SUM.

Expressed as an Ada program, the algorithm looks like this:

GET (N);
SUM := 0;

K:=1;

while K <= N loop
SUM := SUM + K;

K:=K + 1;

end loop;

PUT (SUM);

These lines of program read in the number N from the terminal keyboard and
display the required result at the terminal.
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To describe general algorithms the description method must be able to
express the following three constructs:

(1) Sequence A sequence is a series of steps that are carried out
sequentially in the order in which they are written. Each step is
carried out only once. An example is the assembly instructions for book
shelves:

(1) Put the side pieces in position.
(2) Screw the back piece on to the sides.
(3) Put the shelves into the frame.

(2) Selection Selection means that one of two or more alternatives should

be chosen. Calculating the absolute value of a number T can be taken as
an example:

If T > 0 then the result is T, otherwise the result is -T.

(3) Iteration Part of the algorithm should be capable of repetition, either a
defined number of times or until a certain condition has been met. An

example of the latter repetition could be:

Whisk the egg whites vigorously, until they become fluffy.

The most important algorithmic constructs

• Sequence: series of steps.

• Selection: choice between alternative paths.

•  Iteration: repetition.

Another kind of construct that is commonly used in algorithms, and which
can sometimes replace iteration, is recursion. This construct seldom occurs in
'everyday' algorithms and may therefore feel a little strange. The principle is to
break down the original problem into smaller, but structurally similar, problems.
The smaller problems can then be solved by reapplying the same algorithm. The
previous example, calculating the sum of the first N positive integers, can be
solved with recursion in the following manner:

(1) If N = 0 set the result to 0.

(2) Otherwise:

(2.1) Compute the sum 1 + 2 + 3 + ... + (A^-1) using this algorithm.
(2.2) The required result is obtained by adding N to the result from

step (2.1).
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Problem solving with computers

(1) Specify the problem.

(2) Design an algorithm for solving the problem.

(3) Express the algorithm as a program in a pro
gramming language.

(4) Compile and run the program on the computer.

2.3 Top-down design

When a complicated problem has to be solved it is helpful to split it into smaller
subproblems and solve them separately. The subproblems can then be split into
further subproblems, and so on. This is a very important technique in algorithm
and program design and is known as top-down design, or stepwise refinement.
We shall use it extensively in the rest of the book. Let us look at a real-world
algorithm that describes how to wash a car. A first, rough algorithm may be
simply:

(1) Wash car.

This can quickly be expanded to:

(1.1) If you are feeling lazy:

(1.1.1) Wash it at a car wash.

(1.2) Otherwise:

(1.2.1) Wash it by hand.

Step (1.1.1) can be refined to:

(1.1.1.1) Drive to the nearest car wash.

(1.1.1.2) Buy a token.

(1.1.1.3) Wait in line.

(1.1.1.4) Have the car washed.

Step (1.1.1.4) can be refined further:

(1.1.1.4.1) Drive into the car wash.

(1.1.1.4.2) Check that all the doors and windows are closed.

(1.1.1.4.3) Get out of the car.
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(1.1.1.4.4) Put the token into the machine.

(1.1.1.4.5) Wait until the car wash is finished.

(1.1.1.4.6) Get into the car.

(1.1.1.4.7) Drive away.

In this way, different parts of an algorithm can be refined until a level is reached
where the solution is trivially simple.

Top-down design

• Divide a problem into subproblems.

• Solve the subproblems individually.

• Divide the subproblems into further subproblems.

• Continue in this way until all the subproblems are
easily solvable.

Let us look at another example where iteration is also involved. Imagine
the following situation. In your bookcase you have a cassette holder for ordinary
music cassettes. You keep your cassettes there, neatly arranged alphabetically
according to the name of the composer. (For simplicity, assume that you only
have classical music.) The holder is made of small slots, each large enough for
one cassette, so that they cannot move sideways. We assume that the cassettes
are kept in the left part of the holder, so there are no gaps or empty slots on the
left, but at least five empty ones on the right.

Now suppose you have bought five new cassettes that need to be put in
the holder in their correct positions, so that alphabetical order is maintained.
Assume also that the bookshelves are so full that there is nowhere to put the cas
settes, so you have to hold them in your hands while you shift them around. To
avoid the risk of dropping any, you cannot have more than one cassette in your
hand at a time. The five new cassettes are on the floor and you pick them up one
after the other and position them in the holder.

We can make up a crude algorithm:

(1) Sort the new cassettes into the holder.

The first refinement is:

(1.1) For each new cassette:

(1.1.1) Lift the cassette from the floor in your left hand.

(1.1.2) Sort it into its correct place.
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The way we have written points (1.1.1) and (1.1.2) inset on the line shows that
they have to be repeated several times (once per new cassette). Thus iteration
has been introduced into the algorithm. Point (1.1.1) needs no further refinement
so we can expand point (1.1.2):

(1.1.2.1) Locate the slot in the holder where the new cassette should be placed.

(1.1.2.2) Shift all the cassettes to the right of (and including) the located slot
one place to the right, so that the located one becomes empty.

(1.1.2.3) Put the new cassette into the empty slot.

Refining point (1.1.2.1) gives;

(1.1.2.1.1) Place your left index finger on the leftmost slot of the cassette
holder. (You can do this even though you have the new cassette in

that hand.)

(1.1.2.1.2) Repeat the following point until the located slot is empty or the
composer's name on the cassette in the located slot comes alpha
betically after the composer's name on the new cassette.

(1.1.2.1.2.1) Move the left index finger one place to the right.

(1.1.2.1.3) The left index finger has now located the slot where the new
cassette should be inserted.

Point (1.1.2.2) becomes:

(1.1.2.2.1) Place your right hand on the cassette on the extreme righthand side
and repeat the following steps until the slot pointed to by your left
index finger is empty:

(1.1.2.2.1.1) Move the cassette held in your right hand one place

to the right.

(1.1.2.2.1.2) Move your right hand to the nearest cassette on the

left.

If we now put all the expanded steps together, we get the following complete
algorithm:

For each of the newly bought cassettes:

Lift the cassette from the floor with your left hand.
Put your left index finger on the slot on the extreme left of the holder. (You can
do this even though you are holding the new cassette.)
Repeat the following step until the slot pointed to is either empty or contains a
cassette with a composer whose name comes alphabetically after the name of
the composer of the new cassette.

Move your left index finger one slot to the right.
Your left index finger has now located the slot where the new cassette should
be placed.
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Put your right hand on the rightmost cassette and repeat the following steps
until the located slot is empty.

Move the cassette held in your right hand one place to the right.
Move your right hand to the nearest cassette on the left.

Put the new cassette in the located slot.

The numbering has been removed to make it look neater. Note that the lines that
are inset are repeated a number of times.

We have just seen an example of what is known as a sort algorithm. This
is not the only algorithm that could be used for sorting the cassettes into posi
tion. You can think of several other ways of doing it. Sort algorithms often occur
in programming and many computers are used extensively for sorting different
kinds of data.

There are usually several alternative algorithms for solving a particular
problem. In general, it is sensible to design an algorithm that is as simple and
easily understood as possible, because there is a better chance that it will work
as it was intended.

2.4 Simple programming examples

We shall now look at some simple examples of programs and become familiar
with a number of the constructs of Ada. As mentioned previously, a more thor
ough treatment of the different constructs will be given in later chapters.
Therefore there is no need to pay attention to all the details at this first reading.

2.4.1 Simple output

The first program looks like this;

wlthTEXT_IO;

use TEXT-IO;

procedure HELLO is
begin
PUT ("Mellow! This Is your computer speaking.");

end HELLO;

When the program is run, it prints the text:

Hello! This is your computer speaking.

at the terminal. In the program, certain words are written in bold type. These
are called reserved words, words that have special meanings. When writing a
program, it is not necessary to emphasize different words in this way. It will
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only be done here so that the programs are clearer. If desired, everything can be
written with ordinary small or capital letters.

An Ada program consists of a procedure. The procedure in the program
above starts on the third line and has been given the name HELLO. The name is
repeated on the last line so that it is easy to see where the procedure ends.

In the program there is a printout of text (the line starting PUT). Ada
is designed for use in many different working environments, so it cannot
always be taken for granted that a program should write to a terminal as this
one does. If we want to read or write to a terminal, this must be stated, as

seen here in the first line. The line says that the program needs the help of a
package called TEXT_IO which is accessible on all Ada implementations. The
package contains several tools, including PUT, which enable us to read and
write text at a terminal. (A complete specification of the package is given in
Appendix A.)

When we want to use PUT in our program we must inform the compiler
that PUT is to be found in the package TEXT_IO. We can do this by writing
TEXT_IO.PUT in the program. This is a bit cumbersome to write, especially if
we want to use PUT many times. There is a more convenient way, as shown in
our example. On the second line we have written:

use TEXT.IG;

This causes the compiler automatically to search in the package TEXT_IO.
Therefore we can continue by writing only PUT instead of TEXT_IO.PUT.

In fact, PUT is a procedure just like HELLO. The line:

PUT ("Hello! This Is your computer speaking.";

means that our program calls PUT. This means that the procedure PUT will be
carried out, or executed. The text in brackets is a parameter to PUT. We can
say that this parameter is input data to PUT. This parameter is a text string, seen
from the quotation marks around it. The procedure PUT is designed so that it
expects a text string as input. When it is called it will write out the text between
the quotation marks, but not the quotation marks themselves.

Printing text

PUT ("the text to be printed");

2.4.2 Reading and writing numbers

The next example shows a program that both reads from and writes to a terminal.
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wIthTEXTJO, BASIC_NUM_IO;

use TEXTJO, BASIC_NUM_IO:

procedure SUM_AND_PROD is
NUMBER1, NUMBER2 : INTEGER;

begin

PUT_LINE ("Give two whole numbers!");
GET(NUMBERI);

GET (NUMBER2);
PUT ("The sum of the numbers is:");
PUT (NUMBER1+NUMBER2); NEW_LINE;
PUT ("The product of the numbers is:");
PUT (NUMBER1*NUMBER2); NEW_LINE;

end SUM_AND_PROD;

When the program is run the output looks like this:

Give two whole numbers!

4

12

The sum of the numbers is: 16

The product of the numbers is: 48

The second and third lines were written by the user and the rest by the program.
Another package has been introduced in this example, BASIC_NUM_IO.

This package contains all the facilities needed for reading and writing numbers
at the terminal. In Ada, as will be shown later, it is possible to work with many
different kinds of numbers, and there is a general mechanism for creating pack
ages of facilities for reading and writing them. The non-standard package
BAS!C_NUM_IO has been used here instead, to avoid complicating things unnec
essarily, even though it is not available on all implementations of Ada.
(Appendix B shows how to create this package using TEXT_IO.) The resources
in BASIC_NUM_10 are called in exactly the same way as those in Ada's
standardized, general packages. Therefore it will look exactly the same as if we
had used such packages.!

^ If you do not have access to a package like BASIC_NUM_IO you can start your program as
follows (see Chapter 5.5):

with TEXT_IO:

use TEXT_I0:

procedure program_name is

package INTEGERJNOUT is new INTEGERJO(INTEGER);
package FLOAT_INOUT is new FLOAT_IO(FLOAT):

use INTEGERJNOUT. FLOATJNOUT;

: the rest of the program
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To put it simply, an Ada program can be thought of as a cake recipe. First
comes the name of the cake, then the list of ingredients to be used. Finally there
is the part stating how the ingredients should be mixed. First in an Ada proce
dure comes the procedure specification, giving, among other things, the name of
the procedure. The procedure's name in the example above is SUM_AND_PROD.
This is followed by a part of the procedure where declarations can be made. In
our example, two objects are declared, the variables NUMBER1 and NUMBER2:

NUMBER1, NUMBER2 : INTEGER;

A variable can be thought of as a storage box into which values may be placed.
Each box, or store, can only contain values of a certain type. The word INTE
GER states that the variables NUMBER1 and NUMBER2 can contain only whole
numbers, called integers in mathematics. They are said to have type INTEGER.
This can be illustrated as in Figure 2.1. The contents of the stores are not yet
defined. Last in the procedure, between the words begin and end, is the part that
describes what it does when it is executed. This part contains a series of state
ments. Each statement is terminated by a semicolon. It is useful to write one
statement per line.

Program structure

with ... ;

use ... ;

procedure program name Is

declarations (including variables)

begin

statements

end program name;

NUMBER 1 NUMBER 2

Figure 2.1
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The first statement in the program:

PUT_LINE ("Give two whole numbers!");

makes the program begin by printing at the terminal:

Give two whole numbers!

when it is run. The procedure PUT_LINE in TEXT_IO has been used here. This
works in exactly the same way as PUT in the previous example, but with the
difference that a new line is automatically started after the text has been printed.

When the program comes to the statement:

GET(NUMBERI);

which contains a call to the procedure GET in BASIC_NUM_IO, it will stop and
wait until the user has entered a whole number at the terminal. Assume the user

types the number 4, as shown in the example output. Then the procedure GET
places the value 4 in the variable NUMBER1, as illustrated in Figure 2.2.

The next statement:

GET(NUMBER2);

works in the same way, but this time the number read is placed in the variable
NUMBER2. If we assume that the user has written 12, then the variable

NUMBER2 will contain the value 12.

Input of numbers

GET (variable name)]

NUMBER1

GET (NUMBER1): =>

Figure 2.2
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The following lines:

PUT ("The sum of the numbers is:");
PUT (NUMBER1+NUMBER2); NEW.LINE;

contain three statements which together produce a line of output at the terminal.
First comes a call to the procedure PUT in the package TEXT_IO. This call
causes the text:

The sum of the numbers is:

to be written out. Then comes a fresh call to the procedure PUT, but this time it
is not PUT in TEXT_IO that is called but the procedure with the same name in
the package BASIC_NUM_IO. This procedure expects a whole number as para
meter. The parameter is the expression:

NUMBER1+NUMBER2

The value of this expression is computed. In our example it has the value 4+12,
thus PUT gets the value 16 as parameter and writes out this value at the termi
nal. The compiler sees to it that the correct version of the procedure PUT is
chosen. When an integer is given as parameter, it is 'understood' that we mean
PUT in BASIC_NUM_IO, and when a text string is given as parameter it is
'understood' that we mean PUT in TEXT_IO to be used.

The procedure NEW_LINE, called in the last line, causes a new line
to be started in the output at the terminal. Why is PUT_LINE not used here
as well? The answer is that PUT_LINE only exists for text strings, not for
numbers.

Getting new lines in output

NEW_LINE;

or:

PUT_LINE ("the text that is to be written");

The new line is generated after the text is written.

The output:

The sum of the numbers is: 16

The product of the numbers is: 48
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may not look so neat. If we want the output to look as follows:

The sum of the numbers is: 16

The product of the numbers is: 48

then we can change the program:

PUT ("The sum of the numbers is:");
PUT (NUMBER1+NUMBER2, WIDTH => 7); NEW_LINE;

PUT ("The product of the numbers is:");
PUT (NUMBER1*NUMBER2, WIDTH => 3); NEW_LINE;

The parameter WIDTH tells PUT how many positions are to be used in the
output, the width of the output field. If the number to be written requires fewer
positions than stated (as in our example), PUT fills the field in with spaces to the
left of the number. When the width of the field is decided, one position should
be allowed for a possible minus sign if the number could be negative.

If the number requires more positions than stated, then it is not an error
but the number is output using as many positions as needed. If we had written
for example:

PUT ("The sum of the numbers Is:");

PUT (NUMBER1+NUMBER2, WIDTH => 1); NEW_LINE;

and the sum had been 16, then the output would have been:

The sum of the numbers Is: 16

If no WIDTH parameter is specified in PUT, then the number of positions needed
to write out the greatest whole number that can be stored in the computer is
assumed. This is the reason for the original appearance of the output in our
example.

Output of whole numbers

PUT (the value to be output);

or:

PUT (the value to be output, WIDTH => N);

where N specifies the width of the output field.
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2.4.3 Writing an invoice

Now we shall look at an example in which the technique of top-down design
will be used in designing and writing a program. Our program will be used in
general sales situations and we can imagine that it is intended for use as follows.
A customer buys a number of items of the same kind and should receive an
invoice stating their product code, the number of items bought, the price per
item excluding value added tax (VAT) and the total price for all the goods,
including VAT. The invoice should also state what part of the total cost is VAT.

Our task is to write a program to produce such an invoice. Input to the
program should be the product code (comprising six letters and numerals), the
number of items sold, and the item price, excluding VAT. We assume that the
VAT rate is a known percentage that is fixed.

First we write a very rough algorithm:

(1) Read input data.

(2) Make the computations.

(3) Print the invoice.

Step (1) can be split into substeps:

(1.1) Read in the product code.

(1.2) Read in the number of items sold.

(1.3) Read in the unit price (excluding VAT).

For simplicity we shall start with step (1.2) and expand it:

(1.2.1) Ask the operator to enter the number of items sold.

(1.2.2) Read what the operator has written.

Step (1.2.1) can be written in Ada as follows:

PUT_LINE ("Enter number of items sold");

Step (1.2.2) becomes in Ada:

GET (NUMBER.OFJTEMS);

Now we have introduced a variable NUMBER_OF_ITEMS which must be
declared:

NUMBER_OFJTEMS : INTEGER;

We can continue with step (1.3), 'Read in the unit price', and expand it:

(1.3.1) Ask the operator to enter the price per unit.

(1.3.2) Read what the operator has written.
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Step (1.3.1) is in Ada:

PUT_LINE ("Enter price per unit");

and step (1.3.2) becomes:

GET (ITEM_PRICE);

We have introduced a second variable, ITEM_PRICE. Obviously, this cannot be
an integer variable, that is, have type INTEGER. It is unlikely that the items cost
a whole number of monetary units, whether pounds sterling, US dollars or Swiss
francs. What we need is another kind of store that can contain real numbers. If

we imagine that the user writes 13.0 at the terminal we can picture the situation
after the GET call has been executed, as in Figure 2.3.

In Ada there is a standard type called FLOAT, and this can be used to
declare variables that have to hold real numbers, that is, numbers that are

not integers. We let the variable ITEM_PRICE have this type. The declaration is
then:

ITEM_PRICE : FLOAT;

In the package BASIC_NUM_IO there is a version of GET that can be used for
reading in variables of type FLOAT. There is also a version of PUT for output of
numbers of type FLOAT.

Now we can deal with step (1.1), 'Read in the product code'. We can start
by subdividing:

(1.1.1) Ask the operator to enter the product code.

(1.1.2) Read what the operator has written.

Step (1.1.1) is easy:

PUT_LINE ("Enter product code (6 characters)")

ITEM_PRICE

13.0

Figure 2.3
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Step (1.1.2) is then:

GET (PRODUCT.CODE);

How should the variable PRODUCT_CODE be declared? It is neither an integer
nor a real number, so neither INTEGER nor FLOAT, as used earlier, will do. In
fact the variable PRODUCT_CODE is a text string, exactly the same as the text
strings we have written in several places. It must be possible to store an arbi
trary code of six characters in the variable, so we need yet another kind of store.
If we assume that the user writes the code a1 bX67 at the terminal, after the call

to GET, we have the situation illustrated in Figure 2.4. Ada has a standard type
STRING that can be used. The declaration is:

PRODUCT_CODE : STRING(1..6);

The expression in brackets states that the text string will consist of six charac
ters, numbered from 1 to 6.

Now we can go on to step (2), 'Make the computations', which can be
subdivided directly:

(2.1) Calculate the total price (excluding VAT).
(2.2) Calculate the total VAT.
(2.3) Calculate the net price (including VAT).

For step (2.1) we can immediately write the Ada statement:

PRICE := ITEM_PRICE - FLOAT (NUMBER_OF_ITEMS):

This statement contains a few new things. The expression:

ITEM_PRICE* FLOAT (NUMBER_OFJTEMS)

means that the values of the variables ITEM_PRICE and NUMBER_OF_ITEMS

should be multiplied together. Ada does not permit different types to be mixed

PRODUCT.CODE
-T 1 1 1 1

!  1 ! b ! X ! 6 I

Figure 2.4



34 The construction of programs

in expressions of this kind. Since ITEM_PR1CE has type FLOAT and
NUMBER_OF_ITEMS has type INTEGER, they cannot be mixed without doing
something first. We want the final result of the expression to have type FLOAT,
and therefore we take the value of NUMBER_OF_ITEMS and convert it to a value

of type FLOAT. This is achieved with the construct:

FLOAT (NUMBER_OF_ITEMS)

We then get a temporary store containing a real number. If, for example, NUM-
BER_OF_ITEMS has value 100, then the temporary store will hold the value
100.0. This is shown in Figure 2.5. Note that the variable NUMBER_OF_ITEMS
and the value it holds are in no way changed by this.

Mixing types

It is not allowed to mix different types (for example
INTEGER and FLOAT) in expressions.

It might seem clumsy that all this is necessary, but one of the advan
tages of Ada, as will be shown later, is that different types are carefully watched
and kept apart. It is not possible to mix apples and pears by accident, so to
speak.

The effect of the expression:

ITEM_PRICE * FLOAT (NUMBER_OFJTEMS)

is that we get a new temporary store to hold the result of the multiplication.
Step (2.1) also introduced a new variable PRICE with the type FLOAT.

This variable should therefore be declared as:

PRICE : FLOAT;

NUMBER OF ITEMS

FLOAT(NUMBER_OF_ITEMS) =>

Figure 2.5

Temporary storage

100.0



Simple programming examples 35

We shall save the result of the calculation in this variable. This is achieved using
an assignment. The compound symbol := is called the assignment symbol and
is used to denote assignment. Assignment means that whatever is on the right-
hand side of the assignment symbol is placed in the variable on the left-hand
side. The variable must be of the same type as whatever is on the right of the
symbol. Note that any variables that may appear on the right-hand side are not
affected by the assignment. Their values are unchanged.

Assignment

variable_name := expression;

• The value of the right-hand side is evaluated first.

• This value is placed in the variable that appears on
the left-hand side.

• The previous value of the variable will be
destroyed.

• The expression on the right-hand side must be of
the same type as the variable on the left.

We can now continue with step (2.2), 'Calculate the total VAT'. We make
the assumption that the rate of VAT is a known and constant percentage. Clearly
it has to be of type FLOAT because it does not necessarily have to have an
integral value. It is possible to declare constants in Ada, using a declaration that
looks like a variable declaration. If we assume that the VAT rate is 15.0%, we
can declare a constant VAT_PERCENT:

VAT_PERCENT : constant := 15.0;

We can then use this to calculate the total VAT due:

VAT := PRICE * VAT_PERCENT / 100.0;

The statement simply means that the values of PRICE and VAT_PERCENT are
multiplied together and the result is then divided by 100. Note that 100 must be
written as a real number, 100.0. If we had written 100 it would have been inter
preted as an integer. The final result is saved in a new variable VAT which should
be declared:

VAT: FLOAT;
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Step (2.3), 'Calculate the net price (including VAT)' is now easy:

NET_PRICE := PRICE + VAT;

where the variable NET_PRICE has the following declaration:

NET_PRICE : FLOAT;

We finish with step (3), 'Print the invoice', which we can split into the follow
ing steps:

(3.1) Print a heading.

(3.2) Print the product's code.

(3.3) Print the number of items sold.

(3.4) Print the unit price.
(3.5) Print the net price (including VAT).

(3.6) Print the VAT.

We assume that the program will be run from a terminal with printer output. We
want the invoice to look like Figure 2.6.

We can deal with step (3.1), 'Write a heading'. For simplicity we will split
it into smaller steps:

(3.1.1) Start a new page.

(3.1.2) Set the output position so that the heading starts in column 20 of the
page.

(3.1.3) Print the word "INVOICE".

(3.1.4) Skip the next two lines.

INVOICE

Product code: A1BX67

Number of Items: 1 GO

Pice per Item: 13.00
Total price (incl. VAT): 1495.00
Of which VAT is: 195.00

Figure 2.6

We make use of the facilities offered by TEXT_IO. The four steps become the
four corresponding statements:
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NEW.PAGE;

SET_COL (20); PUT ("INVOICE"); NEW_LINE (2);

Two useful output facilities

NEW_PAGE;

The next output starts on a new page (useful when the
terminal output is to paper).

SET_COL(N);

The next output starts in position N on the current
line. (If output is already beyond position N, a new
line is started.)

The next step, 'Print the product's code', can be split further:

(3.2.1) Set the output position so that the text starts at column 10.
(3.2.2) Print the text "Product code:".
(3.2.3) Print the product code.

(3.2.4) Move on one line.

We have the corresponding Ada statements:

SET_COL (10);

PUT ("Product code: ");
PUT (PRODUCT_CODE); NEW.LINE;

Note the six extra spaces at the end of the text in the second statement.
These have been added to provide adequate space between the colon and the
code.

Similarly, the next step, 'Print the number of items sold', is:

SET_COL (10);

PUT ("Number of Items:");
PUT (NUMBER.OFJTEMS, WIDTH => 9); NEW_LINE;

Here the WIDTH parameter to PUT is used to get the right edge of
NUMBER_OF_ITEMS directly under the right edge of the product code on the
line above.
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The step 'Print the unit price' is:

SET_COL (10):
PUT ("Price per item:");
PUT (ITEM_PRICE, FORE => 7, AFT => 2, EXP => 0);
NEW_LINE;

The variable ITEM_PRICE contains a real number. There are two alternative
forms for writing out real numbers. The number 125.7, for example, can be
written either:

125.7

or:

1.257E+02

The latter is called exponent form and should be read as 1.257 times 10 to the
power 2. If we had had the simple statement:

PUT (ITEM_PRICE);

in the program, PUT would have written ITEM_PRICE in exponent form.
But we do not want this, so we make use of the possibility of assigning
further parameters to PUT when real numbers are to be output. Instead, we
write:

PUT (ITEM_PRICE, FORE => 7, AFT => 2, EXP => 0);

The parameters FORE and AFT state the number of positions required in the
output before and after the decimal point, respectively. Allowance should
be made for a possible minus sign among the positions before the decimal
point. If the number that is printed does not fill all the positions before the
decimal point (as in our example), PUT will place blanks there instead. The
parameter EXP gives the number of positions that we want the exponent
to be given. Since we have decided not to have an exponent at all, we set EXP
to 0.

If we were to give FORE a smaller value than the number of positions
actually needed, no error would result, but PUT would use as many positions
before the point as required. If, for example, the variable ITEI\/I_PRICE had the
value 13.00 and we had the statements:

PUT ("Price per Item:");
PUT (ITEM_PRICE, FORE => 1, AFT => 2, EXP => 0);



Simple programming examples 39

in the program, then the output would be:

Price per item: 13.00

Output of real numbers

PUT (real value);

or:

PUT (real value, FORE => N, AFT => M,
EXP => 0);

where N and M give the number of figures before and
after the decimal point, respectively.

Now we can go on to the next step, 'Print the net price'. This is analo
gous to the previous steps and so are the statements:

SET_COL (10);
PUT ("Total price (incl. VAT):");

PUT (NET.PRICE, FORE => 7, AFT => 2, EXP => 0);
NEW_LINE;

The last step, 'Print the VAT', is:

SET_COL (10);
PUT ("Of which VAT is:");
PUT (VAT. FORE => 6, AFT => 2, EXP => 0);

We finish this example by putting the whole program together. We have several
variables of type FLOAT, and their declarations can be put together as shown in
the program.

withTEXTJO, BASIC_NUM_IO;

use TEXT_IO. BASIC_NUM_10;

procedure WRITEINVOICE is
NUMBER_ofJTEMS : INTEGER;

ITEM_PRICE, PRICE, VAT..NET_PRICE : FLOAT;

VAT.PERCENT : constant := 15.0;

PRODUCT_CODE : STRING (1..6);

begin
PUTUNE("Enter: product code (6 characters)");
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GET(PRODUCT_CODE);

PUT_LINE ("Enter number of Items sold");
GET(NUMBER_OFJTEMS);
PUT_LINE("Enter price per unit");
GET(ITEM_PRICE);

PRICE =: ITEM.PRICE * FLOAT (NUMBER_OFJTEMS);
VAT := PRICE * VAT_PERCENT / 100.0;

NET_PRICE := PRICE + VAT;

NEW.PAGE;

SET_COL(20); PUT("INVOICE"); NEW_LINE(2);

SET_C0L(10); PUT("Product code: ");
PUT(PRODUCT_CODE); NEW_LINE;

SET_COL(10); PUT("Number of items:");
PUT(NUMBER_OFJTEMS, WIDTH => 9); NEW_LINE;

SET_COL(10); PUT("Price per item:");
PUT(ITEM_PRICE, FORE => 7, AFT => 2, EXP => 0);
NEW_LINE;

SET_COL(10); PUT("Total price (incl. VAT):");
PUT(NET_PRICE. FORE => 7. AFT => 2, EXP => 0);
NEW_LINE;

SET_COL(10); PUT("Of which VAT is:");
PUT(VAT, FORE => 6, AFT => 2. EXP => 0);
NEW_LINE;

end WRITEJNVOICE;

2.4.4 Drawing outsize letters

By displaying the character * appropriately at the terminal an outsize letter can
be written. A giant A, for example, can be written thus:

He

* *

* *

* *

•* H<

* *

Now we shall write a (slightly useless) program to draw the three letters
ADA, under each other, in this giant format. So the program should
produce the output shown in Figure 2.7.
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*

* *

*  *

*  *

*  *

*  *

♦  *

*  ♦

♦  *

*

* *

*  *

*  *

Figure 2.7

The ability to make comments will be made use of in this program. The
compound symbol ~ (double hyphen) introduces a comment and everything
written after it on a line will be interpreted as a comment, which means that the
compiler does not try to translate it.

Comments are used to make a program clearer to understand and to
provide support in writing a program.

Comments

— this is a comment

• Makes a program clearer.

• Simplifies program design and writing.

Using the top-down design technique we make a first sketch of the
program using comments:

procedure GIANT_ADA is
begin
" draw a giant A
~ draw a giant D
- draw a giant A

end GIANT_ADA:
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Drawing on our experience from earlier examples, we can refine the three
steps directly and come up with a first version of the program:

withTEXTJO;

use TEXT_IO:

procedure GIANT_ADA is
begin
" draw a giant A
NEW_LINE:

PUT_LINE("

PUT_LINE(" * *");
PUT_LINE{" * ""):

PUT_LINE("

PUT_LINE(" * *"):
PUT_LINE("* *");
NEW_LINE;

-- draw a giant D
NEW_LINE;

PUT_LINE{"
PUT_LINE(" * *"):
PUT_LINE(" * *"):
PUT_LINE(" * *");
PUT_LINE("" *");
PUT_LINE("
NEW_LINE;

-- draw a giant A
NEW_LINE;

PUT_LINE(" *");
PUT_LINE(" * *")■,
PUT_LINE(" * *");
PUT_LINE(" *******")',
PUT_LINE{" * *"):
PUT_LINE("* *");
NEW_LINE:

end GIANT.ADA;

Each giant letter starts and ends with an empty line so that the letters are not too
crowded. Since PUT and NEW_LINE are needed from the package TEXTJO, we
have organized access to this package, as before. The comments can remain in
the program because they make it clearer.

Note that the step 'draw a giant A' in our program has been repeated and
all the statements in it have been written out twice. This is clumsy and makes
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the program unnecessarily long - imagine what it would be like if we wanted to
write DADDA instead of ADA. To set this right we shall create a new proce
dure DRAW_GIANT_A:

procedure DRAW_GIANT_A Is
~ this procedure draws a giant A
begin

NEW_LINE;

PUT_LINE(" *")■,
PUT_LINE(" * *");
PUT_LINE(" * *");
PUT_LINE("
PUT_LINE("" *");
PUT_LINE("* *");
NEW_LINE;

end DRAW_GIANT_A:

We have placed an explanatory comment at the start of the procedure. For the
sake of symmetry we will write a corresponding procedure DRAW_GIANT_D,
in the same way:

procedure DRAW_GIANT_D Is
- this procedure draws a giant D
begin

NEW_LINE;
PUT_LINE("
PUT_LINE(" ^ *"):
PUT_LINE(" * *");
PUT_LINE(" * *"):
PUT_LINE{" • *"):
PUT_LINE("
NEW_LINE;

end DRAW_GIANT_D:

Now we can change our program so that the outsize letters are drawn by
making calls to the new procedures. The central part of the program then
becomes:

DRAW_GIANT_A;

DRAW_GIANT_D:

DRAW_GIANT_A:

Note that the calls to our procedures DRAW_GIANT_A and DRAW_GIANT_D
look exactly like calls to the built-in procedures in Ada's standard packages.
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Compare them with the call to, for example, the procedure NEW_LINE in the
package TEXT_IO.

It is worth noting that by choosing good names for our procedures we
have made the program so clear that the comments are superfluous. It is always
important to choose good names for everything in a program. You should not be
concerned about using long names, even if it seems a bit tedious while you are
actually writing the program - in the long run there is much to be gained. After
all, the program is only written once but it is read many times during develop
ment, debugging and maintenance.

Choosing names

Use clear names within your program.

Do not be afraid of using long names.

Now comes the question: where should our procedures be placed in the
program? We can picture our procedures as 'ingredients' in the program (recall
the earlier comparison with the cake recipe) in the same way as variables are
'ingredients'. So our procedures must be declared in the program, just like the
variables. In fact, the procedures texts are declarations and we can place them
in the declarative part of the program. We then get a new version of our
program:

With TEXT_IO;
use TEXT_IO:

procedure GIANT_ADA Is

procedure DRAW_GIANT_A Is
-- this procedure draws a giant A
begin

NEW_LINE:

PUT_LINE(" *"):
PUT_LiNE(" * *");
PUT_LINE(" * *");
PUT_LINE("
PUT_LINE(" * *")■,
PUT_LINE("* *"):
NEW_LINE:

end DRAW_GIANT_A:

procedure DRAW_GIANT_D Is
- this procedure draws a giant D
begin
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NEW_LINE:

PUT_L1NE(""
PUT_LINE(" *
PUT_LINE{" *
PUT_LINE{" *
PUT_LINE{" *
PUT_LINE("
NEW_LINE;

end DRAW_GIANT_D;

begin
DRAW_GIANT_A

DRAW_GIANT_D

DRAW_GIANT_A

end GIANT_ADA;

--execution begins here

The procedures DRAW_GIANT_A and DRAW_GIANT_D have been declared in
the procedure DRAW_GIANT_ADA. So that this is seen clearly, their text is writ
ten a little further to the right on the line. This method of organizing the appear
ance of a program by shifting parts of the text over is called indentation. It
is very important that you indent your programs properly, a skill that will be
developed by studying the various example programs as they are presented.

Indentation

A program is made much easier to read if the text
is indented in such a way that it reflects the struc
ture of the program.

A well-structured progreun is always indented.

Indenting should be used in all program writing.

When the program (the procedure DRAW_GIANT_ADA) is run, the three
statements between begin and end, namely:

DRAW_GIANT_A:

DRAW_GIANT_D;

DRAW_GIANT_A;

will be executed in order. The first line in the program:

DRAW_GIANT_A:
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for example, means that the statements in the procedure DRAW_GIANT_A are
executed. These statements cause a big A to be drawn at the terminal. When this
is done and we have reached the line:

end DRAW_GIANT_A:

we return to the end of the first line in the procedure DRAW_GIANT_ADA. The
first statement in that procedure has now been executed and execution can
continue with the next statement:

DRAW_GIANT_D:

This statement is also a call to a procedure and is executed in the same way.
What we have actually done is to divide our original program into a main

program and two subprograms. We have broken down the problem of writing
the outsize text ADA into two simpler problems: writing an outsize A and
writing an outsize D. What has been gained is an increase in the overall clarity
of the program and avoidance of the need to repeat identical sequences of state
ments. This technique of refining problems, breaking them down into sub-
problems and then using subprograms, is very important. There will be much
work with subprograms in the chapters to come.

Suppose we have been given the task of writing another similar program
that will print out the giant text DADDA at the terminal. We realize that we
should be able to make use of the procedures DRAW_GIANT_A and
DRAW_GIANT_D here as well. But these procedures exist only as internal
'ingredients' in the procedure DRAW_GIANT_ADA and are not available to
other programs (unless we write them again). Compare this with using the pro
cedure NEW_LINE - a useful procedure that finds uses in many different pro
grams. This is possible because it has been put into a package, TEXT_IO. As we
have seen, this package can be accessed so that NEW_LINE can be used without
the need to write it out and declare it in every program.

Let us now make the procedures DRAW_GIANT_A and DRAW_GIANT_D
generally accessible by placing them in a package. We will create a package
called GIANT_LETTER.

A package in Ada can be compared to a meal in a restaurant. The
guest sees brief descriptions on the menu. This is all the guest needs to
be able to decide whether he or she will order a dish. To prepare the dish,
however, a more detailed description is needed - a recipe - but this is needed
only by the cook. The guest is not normally interested in the recipe, and even if
he or she wanted to see it, it is possible that the restaurant would not agree to it.

Similarly, a package in Ada consists of two parts:

(1) A specification (menu) to inform the programs that want to use it what
resources are to be found in the package - for example, procedures - and
how they are used.
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(2) A body (recipes) where the resources are described in detail. The
programs that use the package do not see this part of the package. It can
be thought of as the contents of the package's 'black box' and concerns
only its designer.

Packages

Two parts;

(1) Specification: gives the user information about
the resources contained and how they are used.

(2) Package body: details the resources. Not visible
to the user.

We shall start by writing the specification of the new package,
GIANT_LETTER:

package GIANT_LETTER Is

procedure DRAW_G1ANT_A:
-- this procedure draws a giant A

procedure DRAW_GIANT_D:
-- this procedure draws a giant D

end GIANT.LETTER;

This specification informs the program that is going to use the package that the
package is called GIANT_LETTER and that it contains two procedures,
DRAW_GIANT_A and DRAW_GIANT_D (neither of which has parameters).
To make this clearer we have put in a comment for each procedure. This
specification can now be used by the program that will write the outsize text
DADDA:

with GIANT_LETTER:

procedure GIANT_DADDA is
begin

GIANT_LETTER.DRAW_GIANT_D

GIANT_LETTER.DRAW_GIANT_A

GIANT_LETTER.DRAW_GIANT_D

GIANT_LETTER.DRAW_GIANT_D

GIANT_LETTER.DRAW_GIANT_A

end GIANT_DADDA;
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As before, we can insert a use clause and get:

wIthGIANT_LETTER;

use G1ANT_LETTER;

procedure GIANT_DADDA is
begin

DRAW_GIANT_D:

DRAW_GIANT_A:

DRAW_GIANT_D;

DRAW_GIANT_A;

end GIANT_DADDA;

The first version is often preferred for packages other than Ada's standard pack
ages, because it states specifically which procedures are meant.

The first line means that the procedure DRAW_GIANT_DADDA gets
access to the package GIANT_LETTER. Note that since DRAW_GIANT_DADDA
does not use the facilities in TEXT_IO directly, TEXT_IO does not need to be
included in the first line.

Now we can rewrite DRAW_GIANT_ADA in a similar manner. The inter

nal procedures are no longer needed and so the procedure becomes very simple:

with GIANT_LETTER:

procedure GIANT_ADA Is
begin

GIANT_LETTER.DRAW_GIANT_A

GIANT_LETTER.DRAW_GIANT_D

GIANT_LETTER.DRAW_GIANT_A

end GiANT_ADA;

It only remains to write the body of the package GIANT_LETTER:

with TEXT.IO;

use TEXT_IO;

package body GIANT_LETTER is

procedure DRAW_GIANT_A is
begin

NEW_LINE:

PUT_LINE{" *"):
PUT_LINE(" * *");
PUT_LINE(" * *"):
PUT_LINE(" *******■');
PUT_LINE(" * *"):
PUT_LINE{"* *"):
NEW.LINE;

end DRAW_GIANT_A;
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procedure DRAW_GIANT_D is
begin

NEW_LINE:

PUT_LINE{"

PUT_LINE(" * *"):
PUT_LINE{" * *"):
PUT_LINE(" * *");
PUT_LINE(" * *"):
PUT_LINE(" *"****");

NEW_LINE;

end DRAW_GIANT_D:

end GIANT_LETTER;

Access to TEXT_IO is needed here because the procedures PUT and NEW_LINE
are used in the package body.

By creating a package we have thus made our routines generally accessi
ble as resources for other programs. It would be natural now to extend the
package with procedures for drawing large versions of all the letters, not only A
and D. The use of packages is one of the fundamental concepts in Ada.

Advantages of packages

The use of packages provides convenient access to
resources that the programmer (or another) has
written.

Programming becomes more efficient and the
quality of programs improves.

2.4.5 Comparing numbers

In foregoing example programs we have looked at sequential algorithms -
algorithms consisting of a number of stages executed one after the other. Now we
shall study a program where there is a choice between different possible actions:

withTEXT_IO, BASIC.NUMJO;

use TEXTJO, BASIC_NUM_IO;

procedure BIGGER_NUMBER is
FIRST_NUMBER. SECOND_NUMBER : INTEGER;

begin

PUT("Give the first whole number: ");
GET(FIRST_NUMBER);
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PUT("Glve the second whole number;");
GET{SECOND_NUMBER):

If FIRST_NUMBER > SECOND_NUMBER then

PUT("The first number is bigger.");
else

PUT("The second number is bigger.");

end if;

end BIGGER.NUMBER;

The program asks for two whole numbers. When the user has entered them from
the terminal, the program states which is the larger. An example of output from
the program is:

Give the first whole number: 12300

Give the second whole number: 13200

The second number is bigger.

One small detail in the output from the program that might puzzle us is
how the second and third lines manage to start on new lines, despite the fact that
neither PUT_LINE nor NEW_LINE has been used in the program? The answer is
simple. The two numbers, 12300 and 13200, are written by the user at the
terminal. When input is written to a program, a number is usually terminated by
pressing the terminal's RETURN (ENTER) key. This means that the output at the
terminal moves on a line. So the answer to the question is that in this case it is
the user who has made the output move on a line and not the program.

The more interesting part of the program is a construct that we have not
met before - the If statement, which starts with the word If and ends with end

If. The first line of the statement:

If FIRST_NUMBER > SECOND_NUMBER then

means that the values of the variables FIRST_NUMBER and SECOND_

NUMBER will be compared when the program is executed. If the expression:

FIRST_NUMBER > SECOND_NUMBER

is true, that is, FIRST_NUMBER is larger than SECOND_NUMBER, then the state
ments that appear after the word then will be executed. In this case, the statement:

PUT("The first number is bigger.");

will be executed. If, instead, the expression:

FIRST NUMBER > SECOND NUMBER
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is false, that is, the SECOND_NUMBER is greater than (or equal to) the
FIRST_NUMBER, then the statements following else will be executed, in this
case the statement:

PUT("The second number is bigger.");

Observe that either the statements following then or those following else are
carried out. Only one alternative is chosen when the If statement is executed.
The use of the if statement in Ada is one way to formulate algorithms where a
choice has to be made.

Note that several statements may appear after the words then and else.
For example, we can alter the program a little:

wIthTEXTJO, BASIC_NUM_IO;

use TEXTJO, BASIC_NUM_IO;

procedure BIGGER_NUMBER Is
FIRST_NUMBER, SECOND_NUMBER : INTEGER;

begin
PUT("Give the first whole number: ");
GET(FIRST_NUMBER);
PUT("Give the second whole number:");
GET(SECOND_NUMBER);

If FIRST_NUMBER > SECOND_NUMBER then

PUTC'The first number,");
PUT(FIRST_NUMBER, WIDTH => 1);
PUT (", is bigger.");

else

PUTC'The second number,");
PUT (SECOND_NUMBER, WIDTH => 1);
PUT(", is bigger.");

end If;

end BIGGER_NUMBER;

When this program is run, the following output is typical of what may appear at
the terminal:

Give the first whole number: 12300

Give the second whole number: 13200

The second number, 13200, is bigger.

The last line has been obtained using three statements in the program. In the
second of these the WIDTH parameter has deliberately been given a value that
is too small. This means that the procedure PUT chooses to allow exactly as
many positions as needed and we get the output of the bigger number exactly as
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we want it, without unnecessary blanks in front of it. The single blank results
from the blank after the comma in the text string that precedes the number.

We need to make one more change to the program. What would happen
if the user entered the same number twice? Since the expression

FIRST.NUMBER > SECOND.NUMBER

is then false, our original program would carry out the statements following else
and say:

The second number Is bigger.

This, of course, is wrong.
We can make use of another option of the If statement, and rewrite our

program thus:

wlthTEXTJO, BASIC.NUMJO;

use TEXT_IO, BASIC_NUM_IO;

procedure BIGGER_NUMBER Is

FIRST_NUMBER, SECOND_NUMBER : INTEGER;
begin

PUT("Glve the first whole number: ");
GET(FIRST_NUMBER);
PUT{"Glve the second whole number: ");
GET(SECOND_NUMBER):

If FIRST_NUMBER > SECOND.NUMBER then

PUT("The first number Is bigger.");

elsif SECOND_NUMBER > FIRST_NUMBER then

PUT("The second number Is bigger.");
else

PUT("The numbers are equal.");
end If;

end BIGGER.NUMBER;

Now the If statement has been augmented: there is a new part starting with the
word elslf. When the program is executed the following will occur. If the
expression after If, that is:

FIRST_NUMBER > SECOND_NUMBER

is true, then the statement:

PUT("The first number Is bigger.");

will be executed, as before. If the expression is not true then the expression that
comes after elslf:
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SECOND_NUMBER > FIRST_NUMBER

will be examined. If this second expression is true, then the statement:

PUT("The second number is bigger.");

will be carried out. If this is also false, as when the two numbers are the same,

then the statement that follows else will be carried out, namely:

PUT("The numbers are equal.");

Just as in the simpler type of If statement, only one alternative is chosen when
the statement is executed.

In fact, the If statement can be generalized even further; there can be as
many elseif alternatives as necessary.

Selection

• Can be made by using an if statement.

• Only one alternative can be chosen.

2.4.6 Calculating a selling price

We can look at another program that uses selection:

with TEXT.IO, BASIC_NUMJO;

use TEXT_IO, BAS1C_NUM_I0;

procedure CALCULATE_PRICE is
DISCOUNT_PERCENT: constant := 10.0;

DISC0UNT_L1MIT : constant := 1000.0;

NUMBER_OF_ITEMS : INTEGER;

ITEM_PRICE, PRICE, DISCOUNT : FLOAT;

begin
-- read input data
PUTC'Enter the number of items sold: ");
GET(NUMBER_OFJTEMS);
PUTC'Enter the cost per item:");
GET(ITEM_PRICE);

-- do calculations

PRICE := ITEM_PRICE FLOAT(NUMBER_OFJTEMS);
if PRICE > DISCOUNT_LIMIT then

DISCOUNT := PRICE * DISCOUNT_PERCENT/100.0;
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PRICE := PRICE - DISCOUNT;

end If;

" print result

PUT("Final price is");
PUT(PRICE, FORE => 1, AFT => 2, EXP => 0);

end CALCULATE_PRICE;

The program is designed for calculating a selling price. The input required is the
number of items sold and the price per item. The program calculates and dis
plays the total price to the customer. If the total price is above a certain amount,
in this case £1000, the customer gets a quantity discount of 10%. In this exam
ple, for the sake of simplicity, we shall ignore the problems of VAT and sales tax
- they can be assumed to be included in the price from the start. When the
program is executed the output may look like this:

Enter the number of items sold: 25

Enter the cost per item: 45.50
Final price Is 1023.75

There is an if statement in the program, but note that it has no else part. This
is quite legal. What happens is that the statements following then arc carried
out if the expression in the if statement is true. If the expression is false then
nothing is done. In our example, therefore, the two statements:

DISCOUNT := PRICE * DISCOUNT_PERCENT/100.0;

PRICE := PRICE - DISCOUNT;

are executed only if PRICE is greater than 1000.
Two constants, DiSCOUNT_PERCENT and DISCOUNT_LIMIT, have

been used. In the statements in the program these have then been used instead
of the corresponding numerical values. For example, instead of writing:

if PRICE > 1000.0 then

we have written:

if PRICE > DISCOUNT_LIMIT then

It is sensible to try to avoid numerical values in the statements of a program.
Suppose at a later date the discount is lowered to 8% and the minimum discount
sale is lowered to £900. Then the only things to be changed are the constant
declarations in the program. If the numerical values 10 and 1000 had been writ
ten, maybe in several places, it might have been difficult to find all the places
requiring change, and something could well have been changed by mistake.
Another important reason for using constant declarations is that the program
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gains clarity. The name DISCOUNT_PERCENT used in the program tells us
much more than the number 10.

Using constants

• Avoid numerical values in a program.

• Declare and use constants instead.

2.4.7 Producing tables

Now we have seen examples of programs that use sequences of statements and
selection. The third important algorithmic construct is iteration, or the repetition
of groups of statements. A couple of programs that use iteration are now pre
sented. The first will produce a table of integers and their squares. Output from
the program should look like that in Figure 2.8. It can be seen from this figure
that when the program is run the user has to enter the size of the table, that is,
how many numbers starting from 1 are to be squared. In the example the user
has written 12.

withTEXT_IO, BASIC.NUMJO;

use TEXT_IO, BASIC_NUM_IO:
procedure TABLE_OF_SQUARES is

TABLE_SIZE : INTEGER;

begin
PUT_LINE("Give the size of the table:");

Give the size of the table:

12

Number Square
1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 ICQ

11 121

12 144

Figure 2.8
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GET(TABLE_SIZE);
NEW_LINE;

PUT_LINE("Number Square"); NEW_LINE;
for NUMBER in 1..TABLE_SIZE loop

PUT(NUMBER, WIDTH => 4);
PUT(NUMBER * NUMBER, WIDTH => 10); NEW_LINE;

end loop;
end TABLE_OF_SQUARES;

There is an iteration statement in the program that starts with the word for. The
statements that appear between the words loop and end loop will be repeated a
certain number of times. Note that these lines have been indented. The line:

for NUMBER In 1..TABLE_SIZE loop

states the number of times the repetition should occur, in this case the number
of times given by TABLE_SIZE, which has been given the value 12 in our exam
ple. The variable NUMBER introduced on this line is the loop parameter: it
counts the number of iterations made. The first time through the loop, NUMBER
automatically gets the value 1; on the second loop it becomes 2, the third 3, and
so on, until it finally becomes 12. Note that the variable NUMBER should not be
declared explicitly. It is declared automatically because it appears after for. In
this case it is of type INTEGER. Each time through the loop the program will
write one line at the terminal.

Iteration a known number of times

When the number of times an iteration should occur is

known before it starts, a construct using for is used.

2.4.8 How long before Tm a millionaire?

In the final example in this chapter we will look at what may be unrealistic con
ditions of employment. Imagine you have been offered a very dangerous job,
filled with all sorts of risks. If you take the job, the chances of surviving long
are slight. The pay is a bit unusual. On the first day you will receive £0.01, £0.02
for the second day, £0.04 for the third, and so on. The pay is doubled daily.
Although you are anxious about your health and safety, you are still prepared to
consider taking a few risks if it means riches, so you decide to see what the offer
really means. The question you want an answer to is simply: how many days
must you work in order to become a millionaire? To get an answer you could
use this program:
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with TEXTJO, BASIC.NUMJO;

use TEXTJO, BASIC.NUMJO;

procedure RICH Is
NUMBER_OF_DAYS

DAYS_WAGE

TOTAL_EARNINGS

DESIRED_EARNINGS

begin

INTEGER := 1

FLOAT := 0.01

FLOAT := 0.01;

constant := 1000000.0;

while TOTAL_EARNINGS < DESIRED.EARNINGS loop
NUMBER_OF_DAYS := NUMBER_OF_DAYS + 1;
DAYS_WAGE := DAYS_WAGE * 2.0;

TOTAL_EARNINGS := TOTAL_EARNINGS+DAYS_WAGE;

end loop;

PUT("You will be a millionaire in ");
PUT(NUMBER_OF_DAYS, WIDTH => 1);
PUT_LINE(" days.");

end RICH;

Three variables are used in this program: NUMBER_OF_DAYS, DAYS_WAGE
and TOTAL_EARNINGS. In the declarations we have made use of the option to
initialize the variables. The declaration:

NUMBER_OF_DAYS : INTEGER := 1;

for example, means that the variable NUMBER_OF_DAYS automatically gets
the initial value 1 when the program is run. (If a variable is not initialized, as in
our previous examples, the variable's value is normally undefined when the pro
gram starts. This means that the variable contains 'garbage' and should not be
used until it has been given a proper value.)

The three variables in our program have been given initial values that
represent the situation after one day's work, namely that NUMBER_OF_DAYS
is 1, DAYS_WAGE is 0.01, and TOTAL_EARNINGS is also O.OI.
DESIRED_EARNINGS contains the amount you want to earn to be rich, in this
case £1,000,000.

The iteration statement in this program starts with while. The three
statements:

NUMBER_OF_DAYS := NUMBER_OF_DAYS + 1;

DAYS_WAGE := DAYS.WAGE * 2.0;

TOTAL_EARNINGS := TOTAL_EARNINGS + DAYS_WAGE;

will be repeated a certain number of times: actually once for every day worked
except the first day. We see that every day we increase the day counter
NUMBER_OF_DAYS by 1; work out DAYS_WAGE, the current day's wage
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(which is double the previous one) and add the latter quantity to the running
total, TOTAL_EARNINGS. After two days (after the first time through the loop)
NUMBER_OF_DAYS will thus be 2, DAYS_WAGE will be 0.02, and

TOTAL_EARNINGS will be 0.03. After three days (after the second loop) they
will be 3, 0.04, and 0.07, respectively.

How many iterations are needed? We do not know. Each iteration repre
sents one day worked, and it is precisely the number of days to be worked that
the program is intended to find out. To control the iteration therefore we do not
use the construct with for as in the previous example, but a version of the loop
statement where while is used. This works as follows. Each time a new iteration

begins, the expression after while is investigated first. If this expression is true
then one iteration of the three statements in the loop is carried out. If it is not
true, then the loop statement terminates; the loop is not repeated and the pro
gram continues with the statement after end loop. When the loop statement is
finished, the program will display the number of days you must work to become
a millionaire. The output will be:

You will be a mllllonaire in 27 days.

Iteration an undetermined number of times

When the number of times an iteration should be car

ried out is not known in advance, but a condition is

known for the iteration to terminate, a construct with

while is used.

The difference between using constructs with If and while should be
noted. The lines of program:

N := 0;

If N < 10 then

PUT(N. WIDTH => 1); NEW_LINE;
N :=N + 1;

end if;

assuming that the variable N has type INTEGER, would give the output:

0

when run. The statements between then and end if would therefore be executed

once only. This can be compared with the lines:
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N := 0;

while N < 10 loop
PUT{N, WIDTH => 1); NEW_LINE;
N :=N + 1:

end loop;

which would give the output:

Here, then, the corresponding statements are executed 10 times.

EXERCISES

2.1 Give an algorithm for evaluating the sum:
n

Ir-
i=\

2.2 Specify an algorithm, using any method, to calculate:

A^! = 1 2X3 X ... X N (N>0)

2.3 A table contains N different numbers. Design an algorithm that looks through the table
to find the smallest number. The algorithm should give the position of the smallest
number in the table as its result (an index between 1 and AO.

2.4 A table contains N different numbers. Design an algorithm that changes the table so that
the numbers are in order, from smallest to largest. Use a method that starts by putting
the smallest number in the first position, then puts the second smallest in the second posi
tion, and so on. (Hint: Use the algorithm developed in the previous question.)

2.5 Write an Ada program that will write your name and address at the terminal.
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2.6 Write a program that works out and displays the number of miles a car has been driven
over the past year. When the program is run it should request the current mileometer
reading and that of a year ago. The two mileages should be given as whole numbers of
miles.

2.7 Add to the program in Exercise 2.6 so that it will also calculate the car's average petrol
consumption in litres per mile. In addition to the two mileages, the program should read
in from the terminal the number of litres of petrol used during the year (stated as a real
number). The program should also read in the car's registration number so that it can
produce output in the following format:

Registration number: ABC123X
Total mileage: 9290
Total petrol consumption in litres: 1234.5
Consumption in litres per mile: 0.13

2.8 When a car is to be insured it is common to choose 'full cover' in the case of a new car

(less than 5 years old, say). If the car is older it is often thought that 'third party' insur
ance is adequate.

(a) Write a program that tells you whether to choose full or third-party insurance. The
program should receive as input data the current year and the car's year of
manufacture. One of the messages:

Choose full cover

Choose third party insurance

should be displayed, depending on whether the car is less than or more than 5
years old.

(b) A number of insurance companies offer special insurance policies for veteran cars,
that is, cars more than 25 years old. Add to the program so that it can also display
the message:

Choose a veteran car policy

if the car is at least 25 years old.

2.9 Write a program that produces a table for all the integers in the interval /ij to 1X2. For each
integer k, and k^ should be written. The two integers and tij should be read from
the terminal.

2.10 A bank gives interest at a rate of 9.25% on money deposited in a deposit account. Suppose
you put in £X at the start of a year. Write a program to calculate how many years
it will take before the balance in the deposit account exceeds £100,000 if no
deposits or withdrawals are made. The amount deposited, X, should be read in from the
terminal.



Exercises 61

2.11 (a) Write a program that draws two circles and two triangles at the terminal.

(b) Rewrite the program so that the circle and triangle are drawn using separate sub
programs.

(c) Construct a package containing the two subprograms that draw a circle and a
triangle.

(d) Show what the program from part (a) would look like if the package from part (c)
is used.
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3.1 Standard types 3.5 Variables and constants
3.2 Identifiers 3.6 Errors in programs
3.3 Literals Exercises

3.4 Expressions

This chapter presents some of the basic concepts behind Ada. The built-in
standard types, INTEGER, FLOAT, CHARACTER, STRING and BOOLEAN
are described. A brief discussion is also presented about how data is stored
in a computer using binary code.

The rules for stating different values and expressions are given, and
Ada's standard operators are described. Finally, the various errors that can
occur in the programming process are discussed.

63
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3.1 Standard types

The task of a computer program is to manipulate data objects of various kinds.
A data object in a program often represents something that occurs in the real
world. In Chapter 2, for example, we saw how a variable, ITEM_PRICE, could
represent a real selling price, and how another variable, PRODUCT_CODE,
could represent the product's actual code.

Different objects have different properties. For example, the value of
the variable ITEM_PRICE could be increased by 10%, but it would be
meaningless to talk about increasing PRODUCT_CODE by 10%. Conversely,
you can imagine changing all the upper-case letters in PRODUCT_CODE to
lower case, whereas trying to change a letter in a selling price would be
nonsense. In Ada, we say that objects that have different properties have
different types. Each object that is to be used in a program must be declared
before it is used and its type is stated in the declaration. For example, the
variables ITEM_PRICE and PRODUCT_CODE were declared in the following
way:

ITEM.PRICE : FLOAT;

PRODUCT_CODE : STRING{1 .. 6);

Data objects

A program manipulates data objects.

An object represents something that occurs in the
real world.

Objects with different properties have different
types.

A type is characterized by:

(1) the values that can be taken by objects belonging to the type; and

(2) the operations that can be performed on them.

For example, for the type FLOAT the possible values are, in principle, all the real
numbers, and the operations are the normal mathematical operations such as
addition and multiplication. (In reality, for each implementation of Ada the
values possible are limited by the way in which the computer stores numbers in
its memory.)
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Types

Are characterized by:

(1) the values that can be taken by objects of the
type; and

(2) the operations that can be carried out on objects
of the type.

Ada is a language that keeps careful check on the types of different
objects, that is, objects of a certain type can only take values that are acceptable
for that type. For example, it would be impossible to store a product code in the
variable ITEM_PRICE. One great advantage of keeping different types separate
in this way is that it leads to better and more reliable programs. If you try to mix
different types in a program, it is often a sign that there is an error in the logic
of the program design. The compiler detects forbidden confusion of types and
gives an error message; this can be helpful in finding certain logic faults.

In Ada, as we shall see later, there is enormous scope for the programmer
to construct types of varying complexity to represent real phenomena. For example,
a type can be created to describe a car in a car-hire company's file, or a line of
customers in a bank. In Ada there are some basic standard types that can be used
to describe objects or to build up more complex types; we shall study some
of these in this chapter. The standard types are defined in a special package
STANDARD, which is included in all implementations of Ada. All Ada pro
grams automatically have access to the STANDARD packages; thus with and
use clauses are not used to access it.

3.1.1 The numeric types INTEGER and FLOAT

In earlier programs we have seen the standard types INTEGER and FLOAT. The
type INTEGER can be used to describe objects that can take only integral values,
such as counters and numbers of things. The type FLOAT can be used for other
numerical values, for example, physical properties such as temperature and length.
The standard types INTEGER and FLOAT exist in all implementations of Ada.

INTEGER and FLOAT

INTEGER represents the mathematical concept
'integer', that is, only whole numbers are possible.

FLOAT represents the mathematical concept 'real
number'.
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To the question 'Would it be enough just to have the standard type
FLOAT, which could then be used for all numerical quantities?' the answer is
'Yes, in principle.' The reason why INTEGER is still included is that most com
puters handle integers more quickly and more simply than real numbers.
Moreover, integers can always be stored exactly in the computer, whereas real
numbers often can be stored only in an approximate form.

To help with understanding the properties of the types INTEGER and
FLOAT there follows a short description of the principles of storing numerical
values in a computer. It is not absolutely essential for the programmer to know
this in detail, so those who want to can leave this section for later reading.

The computer's memory comprises a number of memory cells, as men
tioned in Chapter 1. Each cell consists of a certain number of bits and each bit
can contain one binary digit (a zero or a one). This means that numbers are nat
urally stored in binary form in memory and we shall therefore start by looking
at the binary number system.

In our culture the decimal system dominates completely (presumably
because we have ten fingers). So if we write a number, such as 158.32, we
assume automatically that it is expressed in the decimal system where the base
is 10. This means that we interpret 158.32 as:

I X 102 + 5 X 10' + 8 X IQO + 3 X 10-1 + 2 X lO'^

Expressing this more generally, we can say that a decimal number:

a ci I ... aMn.dtd', ... d
n n-\ fc«|WQ.»*|W2 *••

(where the as denote the integral part and the ds the decimal part) really
means:

a„ X 10" + a„_, X 10"-' -f- ... -I- a, X 10' + flo X 10" + t/, X 10"' +
d^ X 10-2 + -\-d^X lO-""

Using base 2 instead of base 10, the binary number:

b„b„., ... b,b^.c,C:, ...

is interpreted as:

b„y.l" + b„,^ X 2"-' + ... + b^ X 2' + X 2" + c, X 2-' +
C2 X 2-2 + ... + c„, X 2-"

Here, the bs denote the integral part and the cs denote what is sometimes called
the bicimal part. For example, the binary number 10111.101 can be interpreted
as:

1 X 2"* + 0 X 22 + 1 X 22 -h 1 X 2' + 1 X 2» + 1 X 2"' + 0 X 2-2 -I-1 X 2-2
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or:

16 + 0 + 4 + 2 + 1 + 0.5 + 0 + 0.125 = 23.625

When an integer is stored in a computer a certain number of bits are used. The
actual number of bits varies from computer to computer, but it is commonly
either 16 or 32. If, for example, the integer 23 has to be stored in 16 bits, we get
the binary pattern:

0000000000010111

The bit on the extreme left usually gives the number's sign, zero and one indi
cating a positive and a negative number, respectively. The greatest positive
number that can be stored in 16 bits is therefore:

0111111111111111

This is actually 2'^ - 1 = 32 767. For storing negative numbers it is usual to
employ a form known as two's complement. In this, the number -1 is stored in
16 bits as:

1111111111111111

The number -2 is obtained by subtracting 1 from this, thus getting:

1111111111111110

The number -3 is:

1111111111111101

By continuing to subtract one at a time we see that the least number (that is, the
most negative number) that can be stored in 16 bits is:

1000000000000000

This has the value -2'^ = -32 768. In general, it can be stated that if integers are
stored in N bits, the least number that can be stored is -2^"', and the greatest is
2'^-'-l.

Variables of type INTEGER will be stored in this, or some similar, way in
the computer. The programmer does not need to know exactly how the storage
works; the compiler takes care of this.

There is a certain risk attached to using the type INTEGER. Because the
size of the numbers that can be stored depends on the design of the particular
computer being used, the type INTEGER will not have the same properties in all
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implementations of Ada. Suppose we develop a program in a computer that uses
32 bits for storing integers of the type INTEGER. Now suppose a variable of
type INTEGER at some point in the program takes the value 100000. This is fine
because there is room in 32 bits to store 100000. But if we want to transfer our

program to another computer that uses 16 bits to store integers we shall have a
problem. When it is run, the program will be terminated because there is not
enough space for the value 100000.

To determine the least and greatest numbers of the type INTEGER that
can be stored in the computer, another feature of Ada can be used - an attribute.
For each type there are a number of attributes that give information about par
ticular properties of the type. For INTEGER, for example, there are the two
attributes:

INTEGER'FIRST

INTEGER'LAST

These give, respectively, the least and greatest numbers (that is, the most nega
tive and the most positive numbers) of type INTEGER that can be stored. A test
program could be written to see which numbers can be stored in the computer
in use, including the statements:

PUT(" The least INTEGER Is: "); PUT(INTEGER'FIRST):
PUT(" The greatest INTEGER Is: "); PUT(INTEGER'I_AST):

Attributes for the type INTEGER

INTEGER'FIRST

gives the least possible integer that can be stored
(the most negative number).

INTEGER'LAST

gives the greatest possible integer that can be stored.

To be on the safe side and to ensure that programs are portable, that is,
that they can be used on any computer, do not use the type INTEGER, but
declare a new integer type where it is explicitly stated how big and how small
the numbers involved will be. How to do this will be dealt with later.

In addition to the standard type INTEGER, an Ada implementation may
also have the standard types SHORT_INTEGER and LONG_INTEGER.
SHORT_INTEGER is then used to store only small integers while LONG_INTE-
GER is used for integers that cannot be stored as INTEGER. The attributes
FIRST and LAST can also be used for these types.
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In science and engineering, to avoid using too many zeros in a number,
standard notation is often used for writing very large and very small numbers.
In standard notation the numbers 350 000 000 and 0.000 000 73, for example, are
written as:

0.35 X 10' 0.73 X 10"^

The same technique is used for storing real numbers in a computer, but the base
2 is used instead of 10. The decimal number 10.5 can first be translated into

binary form, giving the binary number 1010.1, and this can be written as:

Exponent

i

0.10101

100

x2

T
Mantissa

The first part, 0.10101, is usually called the mantissa and the second part, 100,
the exponent. Both the mantissa and exponent are written as binary numbers
(the exponent 100 meaning 4 in base 10).

When a real number is stored in a computer its mantissa and exponent
can each use a certain number of bits, the numbers varying from computer to
computer. In addition, one bit is used to store the sign of the number.

The principle of storing real numbers is demonstrated in the following
example, where we assume that the decimal number 10.5 is stored in a computer
that uses 32 bits to store real numbers; the first of the 32 bits holds the sign (0
for plus, 1 for minus), the next 8 bits are used for the exponent, and the remain
ing 23 bits are used to store the mantissa. The integral part of the mantissa does
not need to be stored because it is always 0. (Sometimes, the first digit in the
mantissa is not stored either because it is always possible to adjust the number
so that this digit is 1.)

s exponent mantissa
0 00000100 10101000000000000000000

It must be noted that the details of storing real numbers vary considerably from
computer to computer. This example merely shows the general principles.

Note that the exponent can also be negative, when a small number is
stored. For example, the number 0.06125 (= 1/16) would be stored as follows,
using the same format as the previous example:

0 11111 101 10000000000000000000000
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Here, the value of the exponent (-3) is expressed in the two's complement form.
This method of storing real numbers means that some numbers, such as

the example of 10.5 above, can be stored exactly, whereas others, such as 0.6,
cannot. If the number -0.6 is to be stored in the computer using the form out
lined above, the pattern of bits would look like:

1 00000000 10011001100110011001100

The bit pattern 1001 in the mantissa should be repeated infinitely many times,
but only 23 bits are available.

The number of significant decimal figures obtained depends on the num
ber of bits used to store the mantissa. (It takes, on average, 3.2 bits per decimal
figure.) The number of bits used for the exponent determines the largest and
smallest numbers (excluding zero) that can be stored. The number zero is usu
ally handled specially, and stored exactly using a particular pattern of bits.

The type FLOAT uses the foregoing technique to store real numbers. This
means that the number of significant figures is the same over the whole range of
possible numbers, and that the position of the decimal point 'floats'. It is said
the numbers are stored as floating point numbers and that FLOAT is a floating
point type. (Note there is also another technique for storing real numbers in
Ada, using a fixed decimal point. 'Fixed point types' are used in this latter situ
ation, but we shall not study these here.)

There are also a number of attributes for the type FLOAT that can be used
to determine the properties of the type in the computer being used. The most
common attributes are FLOAT'DIGITS, FLOAT'FIRST, and FLOAT'LAST. An
Ada implementation may also have the standard types SHORT_FLOAT and
LONG_FLOAT which are, respectively, less and more accurate than the type
FLOAT. The attributes described above can also be used for these types.

Attributes for the type FLOAT

FLOAT'DIGITS

gives the number of significant figures one has.

FLOAT'FIRST

gives the smallest positive number (apart from zero)
that can be stored.

FLOAT'LAST

gives the largest positive number that can be stored.

Storing real numbers is therefore complicated, but it is reassuring to
know that a programmer does not need to worry about the details of what is
happening. However, the programmer should be aware of the accuracy that the
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decimal numbers retain. Furthermore, the programmer should remember that
real numbers are not always stored in their exact form, that is, care must be
taken when determining whether two real numbers are equal. Even if they are
equal in principle, they can still differ by one bit in their mantissas and the com
puter will then see them as unequal. Such problems do not arise with numbers
of the type INTEGER because all numbers are stored exactly.

Comparing real numbers

Avoid comparisons such as:

X=Y or X = 2.37

The numbers may be 'equal' but they can still be
considered unequal by the computer.

3.1.2 The type CHARACTER

Most of the data handled by computers is probably not numerical at all, but text,
characters and symbols. In the programs studied earlier we saw how to read in
and print out a product code using the type STRING. We shall start by describ
ing a more basic standard type, namely the type CHARACTER. This type is used
for handling only single characters, such as letters, digits, special symbols (for
example, question mark, full stop or colon), or non-printing control characters.
Non-printing control characters can be used for communication tasks when the
computer needs to make a terminal do certain things, for example, begin a new
line, clear the screen or make a bell ring.

Let us write a short program to read a character from the terminal key
board and write it on the screen.

with TEXT_IO:

use TEXT_IO:

procedure CHARACTER_DEMO is
CHAR : CHARACTER;

begin
PUT_LINE("Type any character!");
GET(CHAR);
PUT(CHAR);

end CHARACTER_DEMO;

In the program we have declared a variable CHAR of type CHARACTER. The
package TEXT_IO contains versions of the procedures PUT and GET which can
be used to read and write values of type CHARACTER. The statement:



72 The basics of Ada

GET(CHAR):

results in the character that the user types at the keyboard occupying the vari
able CHAR. We can think of CHAR as a storage box, or store, for characters. If,
for instance, the user types a percentage sign, the situation after the GET state
ment has been executed could be illustrated by Figure 3.1. Observe that CHAR
can contain only one character; if the user types in several characters at the key
board only the first one will land in CHAR.

Values of characters are written enclosed by apostrophes. If, for example,
we want to put a plus sign in CHAR we can write the assignment statement:

CHAR := V;

If we want to put an apostrophe in CHAR instead, we would write:

CHAR :=

To store a character in a computer, a group of eight bits - a byte - is most
often used. In Ada 83 only seven of these bits are used; the eighth bit, called the
parity bit, is reserved for purposes of checking. The parity bit is usually the first
bit of a byte; the other seven can be combined in 128 different ways, which
means that there are 128 different character codes.

There is a generally accepted standard, called the ASCII standard, which
determines which characters can be coded with the seven available bits, and for
each pattern of seven bits there is one character designated in the standard. For
example, '9' and 'A' are represented by, respectively,

00100101

00111001

01000001

These patterns of bits can be interpreted as binary integers, called character
codes. The codes start with 0, which means that the character codes lie between

0 and 127; the characters '%', '9' and 'A' thus have character codes 37, 57 and

65, respectively.

CHAR

Figure 3.1
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The type CHARACTER in Ada 83 is made to follow the ASCII standard,
which means that a variable of this type can contain any of the 128 characters
defined in the standard. It also means that the different characters are repre
sented in the computer in precisely the pattern that the ASCII standard specifies.
In our example above, then, the variable CHAR will contain the bit-pattern
00100101 if the user types a percentage sign at the terminal.

The type CHARACTER is an enumeration type. It is actually defined
within the package STANDARD, where all the values that a variable of type
CHARACTER can take are enumerated; a list of all the ASCII codes and

characters is given in Appendix F.
In an enumeration type there is a relative ordering defined between the

possible values, determined by the order in which the values are given in the
definition. Of two values, the one listed first is considered to be the lesser value.

Values of type CHARACTER are ordered in just this way: first come 32 non
printing characters, and then 95 printable characters in the order given in
Appendix F. Note that the first printable character is a blank, which corresponds
to 'space' on the terminal keyboard.

Below we have amended our earlier program so that it reads in two char
acters and prints them out in order (as defined by the ASCII standard).

with TEXT.IO;

use TEXT_IO;

procedure CHARACTER_DEM02 Is
CHAR1, CHAR2 : CHARACTER;

begin

PUT_LINE("Type two characters!");
GET(CHARI);

GET(CHAR2);
if CHAR1 < CHAR2 then

PUT(CHARI);
PUT(CHAR2);

else

PUT(CHAR2);
PUT(CHARI);

end if;

end CHARACTER_DEM02;

We see that the two variables CHAR1 and CHAR2 can simply be compared by
using an if statement.

The printable characters can easily be given using apostrophes, as shown
earlier, but not so for the non-printing characters. Instead, they have been given
special symbolic names which are defined in a package ASCII, which is included
in the package STANDARD. For example, the character which tells the terminal
to move on a line (linefeed) can be placed in the variable CHAR as follows:

CHAR := ASCII.LF;
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The ASCII standard is an American standard which was developed on the
assumption that the language in use is English. 'The English alphabet has 26 let
ters derived from the Latin alphabet. This set of letters suffices for English,
Swahili and Hawaiian; all other living languages use either the Latin alphabet
plus other characters, or other, non-Latin alphabets, or syllabaries.'t The ASCII
standard, on the other hand, is spread throughout the world. The fact that the
ASCII standard has only the letters a-z has been a problem and a constant
source of irritation for all who work in the sphere of programming in countries
with languages other than English. The languages of western Europe, for exam
ple, are based on the Latin alphabet but have various diacritical marks (accents,
umlauts, circles and so on) on some of their letters. Sometimes such a mark
gives a special stress or pronunciation to a letter: the meaning of a word can
even be changed accordingly. For example, in Italian the word e means and, but
the word e means is. In other cases such a mark gives an entirely new letter. In
Swedish, for example, the letters a, a and 6 are quite different letters from a and
0 (for example, ko in Swedish means queue while ko means cow, and a, a and 6
come last in the Swedish alphabet, without reference to a and o).

The solution to the problem is naturally to allow for more characters in
the standard. If we drop the use of the first bit in each byte as a parity bit we can
make use of eight bits instead of seven, and can, as a consequence, represent 256
different characters instead of 128. Then the numbers from 128 to 255 can be

used to represent new letters, and even other characters. This has been done, for
example, in Macintosh and PC computers (but unfortunately, codes have been
assigned inconsistently).

In Ada 95 the type CHARACTER has been extended to use eight bits and
can thus represent 256 different characters. There is an international standard
(ISO 8859) specifying which characters are defined by which codes, and Ada 95
adheres to it. For the character codes from 0 to 127 ISO 8859 agrees with the
ASCII standard, so it is no different from Ada 83 for those who only use char
acters from the ASCII standard. The character codes between 128 and 255 are

used partly for non-printing control characters and partly for a set of printable
characters. The set of printable characters which are used in Ada 95 and which
are included in the ISO 8859 is called 1_AT1N_1. (Ada 95 does, however, allow

sets of characters other than LATIN_1 to be used.) Among the characters of
1_ATIN_1 are to be found the letters with diacritics which are used in the lan
guages of western Europe, for example a, a, e, ae, 6, u, n, and 9, in both lower-
and upper-case variants. (The only exceptions are the letter j3, German double
s, and the letter y, which are only defined as lower-case letters.) Apart from the
letters with diacritical marks, LAT1N_1 also contains various graphical charac
ters such as §, £, ±, and '/j. The printable characters of LAT1N_1 are given in
Appendix F. In Ada 95, the following, for example, are allowed:

* Rationale for Draft Proposal ANSI-standard, Programming Language C.



standard types 75

CHAR := 'e':

CHAR := 'i':

There are symbolic names for the non-printing control characters in just the
same way as there are in the ASCII standard. These are defined in the package
ADA.CHARACTERS.LATIN_1 (see Appendix F).

In order to handle languages which are not based on the Latin alphabet,
Ada 95 has yet another standard type, called WIDE_CHARACTER. This makes
use of 16 bits, which means that 65336 different characters can be represented,
and these are specified in another international standard (ISO 10646 BMP).
The printable characters can be referred to in the same way as for ordinary
CHARACTER, by using apostrophes. If the variable WCHAR is of type
WIDE_CHARACTER, then one could write, for example:

WCHAR := T

WCHAR := V

WCHAR := V

WCHAR :='T'

In practice, however, it can be difficult to refer to a printable character in this
way, because it might not be included on the keyboard in use, or a graphics char
acter might not be included in the set of characters available for the program
text. In such cases, the symbolic names of the characters might be available for
use, but they are dependent on the implementation; if there is no symbolic name,
then the attribute VAL can be used (see below).

There is a standard package ADA.WIDE_TEXT_IO, which includes the
procedures GET and PUT for reading and writing characters of type
WIDE_CHARACTER. This package contains the same procedures as TEXTJO
but the type CHARACTER is replaced by the type WIDE_CHARACTER.

A number of functions which can be used for testing and converting dif
ferent characters are defined in the package ADA.CHARACTERS.HANDLING
(see Appendix G).

If in a program you need to know which character code a particular char
acter has, you can use an attribute which exists for the type CHARACTER. For
example:

CHARACTER'POS('A')

gives the order number for A, which is 65. The parameter in the parentheses can
also be a variable. For example, one can write:

CHARACTER'POS(CHAR)

and get as a result the order number of the character which is stored in variable
CHAR. If you need to go in the other direction, there is another attribute to use.
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CHARACTERVAL(65)

will give the 65th character, namely A. Note that this attribute gives a result of
type CHARACTER.

The attributes PCS and VAL can also be used for the type WIDE_CHAR-
ACTER. The following expression gives the character code for the symbol«»:

WIDE_CHARACTER'POS('oo')

and if you want the character with character code 10517 you write:

WIDE_CHARACTER'VAL(10517)

Attributes for CHARACTER

CHARACTER'POS(C)

gives the character code of C (where 0 has type
CHARACTER).

CHARACTER'VAL(N)

gives the character that has character code N.

3.1.3 The text type STRING

The standard type CHARACTER can only be used to describe one character at a
time. For an object that contains several characters, the standard type STRING
must be used instead. We saw an example of this in the invoicing program of
Chapter 2. A declaration of a variable of type STRING, a text string variable,
might appear as follows:

NAME : STRING(1 .. 5);

The number of characters to be stored in the variable and how they are to be
numbered are stated in the brackets. In this case, NAME will hold five charac

ters, numbered from 1 to 5.

A text string variable can, just like other sorts of variable, be given a
value by assignment. If the statement:

NAME := "Tommy":

appears in the program, then after execution NAME will be as in Figure 3.2.
Note that the text string on the right-hand side of the statement must contain the



Standard types 77

NAME

T I o 1 m 1 m ! y

1  2 3 4 5

Figure 3.2

same number of characters as the variable on the left-hand side has space for; in
Figure 3.2 this is five. To write 'Thomas' or 'Tom' on the right, for example, is
not allowed, but 'padding out' with blanks and writing 'Tom ' is permitted.
Also note that double quotation marks are used to enclose text strings in a
program. In the example in Chapter 2, we saw that it is also possible to give a
value to a text string variable by reading it in from the terminal using the GET
procedure. The situation in Figure 3.2 could also be achieved if the program
contained the statements:

PUT_LINE("Glve a name with 5 letters!");
GET{NAME);

and if the user typed the name Tommy at the terminal keyboard.
When a text string variable is declared, the two quantities in the brackets

do not need to be constants. It is possible to use simple expressions that may
themselves contain variables. What is essential is that the expressions should
have integer values and that the first expression is greater than zero.

MY_WORD: STRING(2 .. 10*N);

ADDRESS :STRING(K.. K+10);

The type STRING is called a composite type. An object of type STRING is actu
ally composed of a number of objects of type CHARACTER. The variable
NAME, for example, consists of a collection of five CHARACTER objects, num
bered from 1 to 5. It is possible to access the individual parts of a variable of
type STRING. If, for example, the content of the variable NAME is to be changed
to Tammy, the statement:

NAME(2) := 'a';

can be written. The expression NAME(2) is an example of indexing. The 2 spec
ifies that it is the second element of the variable NAME that is meant. This

element has type CHARACTER, not type STRING. This is the reason for the
apostrophes around the letter a on the right-hand side of the statement: they are
used, as we saw earlier, for the type CHARACTER. Figure 3.3 shows the state
of NAME after this assignment statement has been executed.
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NAME

m ; m I y

1  2 3 4 5

Figure 3.3

In the following example, indexing is used to print out the last character
in the variable NAME:

PUT{ NAME{5)):

With indexing, the expression in brackets need not have a constant value.
The index for a text string can be any expression at all, provided it has type
INTEGER and its value lies within the declared range, as shown in the follow
ing examples:

NAME(2+3)
NAME(J+1)
NAME(2*K);

correct if 0 <= J <=4

correct if 1 <= K <= 2

Indexing in a variable of type STRING

S(integer expression)

where S has type STRING and the value of the integer
expression must lie within the index range for S.

The result of indexing is a single component of type
CHARACTER.

Using indexing it is thus possible to select a particular element of a text string.
It is also possible to choose a number of contiguous elements simultaneously,
by creating a slice - a part of a string. For example, the variable NAME can be
changed so that it contains the name Jimmy instead of Tammy:

NAME(1 .. 2) "Ji":

A slice has type STRING and therefore quotation marks are needed on
the right-hand side (even if the slice that is cut consists of a single element).
The following statement will print the second, third and fourth elements of
NAME:
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PUT{ NAME(2 .. 4));

As with indexing, more general expressions are allowed as index limits. When
a slice of a text string is taken, the two indexes must have type INTEGER and
they must lie within the index range of the text string. An exception is made of
the empty slice - a slice whose second index number is lower than the first. The
index is then allowed to fall outside the range of the text string's index. Here are
some examples of slices of the text string NAME:

NAME(2 .. 2+1):

NAME{J-3 .. J) "OK if J has, for example, the value 4
NAME(1 .. 0) - empty slice

NAME{3 .. K) " slice if 2 < K < 6, empty slice if K < 3, error if K > 5

Slices of text strings

S(N1 .. N2)

where S has type STRING. N1 and N2 are integer
expressions.

•  If N2 < N1 we get an empty slice.

• Otherwise, N1 and N2 must lie within the index

range of 8.

• The result has type STRING.

It is possible to join strings together in sequence - to catenate strings -
using an operator denoted by the symbol &. Here are a few examples:

NAME := "Tom" & "my";

NAME := "Ji" & NAME(3 .. 5);
PUT( NAME & " Johnson");
NAME := NAME(1 .. 4) & 'o';
SYMB := 'A'

PUT( SYMB & "-team");

-- result is "Tommy"
~ result is "Jimmy"
~ "Jimmy Johnson" is printed
- result is "JImmo"

~ SYMB has type CHARACTER
- "A-team" is printed

The last three lines show that it is also possible to add a CHARACTER on to a
text string (either at the beginning or at the end).
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Catenation of text strings

SI &S2

where 81 and 82 can be either variables of type
STRING or constant text strings.

It is also possible for one (or both) of 81 and 82 to
have type CHARACTER.

The result has type STRING.

The next example program shows how catenation and slices can be used.
The method used to write the date is different in different countries and can

sometimes be a little confusing. For example, the American way of writing 26th
March 1996 is 03/26/96, whereas in Britain it would be written 26/03/96. The

day and the month have swapped places. According to the ISO standard, the
same date should be written 1996-03-26. Let us look at a program that can read
in a date in the American format and translate it into the equivalent British and
ISO formats. When the program is run the conversation at the terminal would
appear as:

Give the date In the form mm/dd/yy
03126/96

The British form of the date is:

26/03/96

The 180 form of the date Is:

1996-03-26

Our first version of the program looks like this:

with TEXT JO;

use TEXTJO;

procedure TRAN8LATE-DATE Is
AMERICAN_DATE: 8TRING(1 .. 8);
BRITI8H_DATE : 8TRING(1 8) := " / /
I80_DATE : 8TR1NG(1 .. 10) := "19 - -

begin
PUT_LINE("Give the date In the form mm/dd/yy'");

GET(AMERICAN_DATE);
BRITI8H_DATE(1 .. 2)
BRITI8H_DATE(4 .. 5)
BRITI8H_DATE(7 .. 8)
PUT_LINE("The British form of the date Is:");
PUT_L1 NE(BRITI8H_DATE);

:= AMERICAN_DATE(4 .. 5);
:= AMERICAN_DATE(1 .. 2);
:= AMERICAN_DATE(7 .. 8);



Standard types 81

IS0-DATE(3 .. 4) := AMERICAN_DATE(7 .. 8);
IS0-DATE(6 .. 7) := AMERICAN_DATE(1 .. 2);
IS0-DATE(9 .. 10) := AMERICAN_DATE(4 .. 5);
PUT_LINE("The ISO form of the date Is:");
PUT_LINE(ISO_DATE);

end TRANSLATE_DATE;

In the program, the variables BRITI5H_DATE and ISO_DATE have been initial
ized at the same time as being declared. The spaces for the year, month and day
numbers have been filled with blanks that are changed later in the program.

We can write a more compact version of the program by constructing the
text string for printing directly in the output statement. We then need only one
variable, DATE:

wIthTEXTJO;

use TEXTJO;

procedure TRANSLATE_DATE Is
DATE : STRING(1 .. 8);

begin

PUT_LINE{"Glve the date in the form mm/dd/yy");
GET(DATE);
PUT_LINE("The British form of the date is:");
PUT_LINE(DATE(4 .. 5) & "/" & DATE(1 .. 2) & & DATE(7 .. 8));

PUT_LINE("The ISO form of the date is:");
PUT_LINE("19" & DATE(7.. 8) & & DATE{1 .. 2) & &

DATE(4 .. 5));
end TRANSLATE_DATE

Text strings can easily be compared with one another:

If NAME = "Clare" then

PUTC'Hi Clare");
end If;

The text 'Hi Clare' will be printed out only if the variable NAME contains the
text string 'Clare'. It is also possible to compare alphabetically, and compare
strings of different lengths:

NAME < "Diana"

"Betty" < "Peter" - True
"Jill" > "Jack" - True

"Liz" > "Elizabeth" ~ True

"Adam" < "Eve" - True

"Victor" /= "Victoria" - True (/= "not equal to")
"Victor" < "Victoria" -- True

"Rose" < "rose" ~ True
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When making comparisons the normal alphabetical order applies, but note that
it does not hold for the additional letters of Ada 95, such as a, a, a, a, a, and a.
Another thing to be aware of is that, for purposes of comparison, lower- and
upper-case letters are not identical; somewhat paradoxically, the upper-case
letters have lower values than the lower-case letters (see Appendix F).

Comparing text strings

There are normal comparing operations.

Text strings of different lengths can be compared.

Ordinary alphabetical order is used, except for the
additional letters with diacritical marks.

Upper- and lower-case letters are considered to be
different.

This section concludes with a useful method for reading text of variable
length from the terminal. We have seen that it is possible to read text into a vari
able of type STRING, using GET. For example, in the date program above we
had the line:

GET(DATE);

The disadvantage of GET, however, is that the text typed at the keyboard must
contain exactly the same number of characters as there are places in the variable.
Since the variable DATE has eight places, in this example, the user must type in
eight characters at the terminal. This poses no problem when reading in a date
because we know that it always has exactly eight characters; in many other
cases, however, it is not possible to decide in advance just how many characters
to expect.

As an example, we can look at a program that reads in two lines from the
terminal. Each line ends when the user presses the end-of-line key, the RETURN
key in most systems. Assume that each line contains a name, and the program's
job is to sort them into alphabetical order.

with TEXT_IO:

use TEXTJO;

procedure DEMONSTRATE_LINE Is
LINE1. LINE2 STRING(1 .. 100);
LI, L2 : INTEGER;

begin
PUT_LINE("Enter first name");
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GET_LINE{LINE1. L1):
PUT_LINE("Enter second name");

GET_LINE{LINE2, L2);

if LINE1(1 .. L1) < LINE2(1 .. L2) then
PUT_LINE( LINE1(1 .. L1));
PUT_LINE( LINE2(1 .. L2)

else

PUT_LINE( LINE2(1 .. L2)
PUT_LINE( LINE1(1 .. L1));

end If;

end DEMONSTRATE.LINE;

In the program we have declared two text string variables, LINE1 and LINE2,
where the two lines will be placed. We assume that no line will be more than
100 characters long and, therefore, we let both variables have room for 100
characters. The integer variables L1 and L2 will be used to keep track of how
many characters the user writes in the two respective lines.

For the actual reading we use a procedure GET_LINE from the package
TEXT_IO. The first line is read with:

GET_LINE(LINE1, L1);

What happens here is that the characters the user writes at the terminal for the
first line are read in and placed in the variable LINE1, from left to right, starting
at position 1. The variable L1 will get as its value the number of characters read
in the first line. To return to an earlier example, if the user writes Tommy' for
the first line, the text Tommy' will appear in elements 1-5 of LINE1 and L1 will
automatically get the value 5. The remaining elements of LINE1 (elements 6-
100) are not defined.

The second line is read in in the same way:

GET_LINE(LINE2, L2);

If the user should write 'Catherine' for the second line, the text 'Catherine'

would appear in elements 1-9 of the variable LINE2 and the variable L2 would
have the value 9.

The two names can now be compared easily. We cut two slices that con
tain only the two names and write:

If LINE1(1 .. L1) LINE2(1 .. L2) then

If the user writes 'Tommy' and 'Catherine' for the two lines, the text strings
'Tommy' and 'Catherine' will thus be compared with one another. (The remain
ing elements of LINE1 and LINE2 are of no significance.)
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The name is then written out using PUT_LINE, and here we also cut out
the slice that contains the name read in.

Reading in text of variable length

(1) Declare a variable S of type STRING that is long
enough to hold a text of the maximum length.

(2) Declare an integer variable N.

(3) Read a line at the terminal using:

GET_LINE{S,N);

(The user ends a line by pressing the end-of-line
key.)

The variable N will contain the number of char

acters in the line read, and the characters them

selves will be in elements 1-N of 8.

In Ada 95 there are a number of predefined utility routines to handle text strings
- fixed length strings as well as unbounded strings. These utility routines are
defined in the standard package ADA.STRINGS and its child packages MAPS,
FIXED, BOUNDED and UNBOUNDED. There is also a standard type
WIDE_STRING which works in the same way as type STRING, except for the
difference that the individual characters in a string of type WIDE_STRING are
of type WIDE_CHARACTER rather than of type CHARACTER. This type is
used for describing texts written in characters other than those to be found in the
set l_ATIN_1. The standard package ADA.WIDE_TEXT_IO contains procedures
for reading and writing characters of type WIDE_STRING.

3.1.4 The logical type BOOLEAN

In Ada, the comparison:

NUMBER_OFJTEMS > 0

is considered as much an expression as:

NUMBER_OFJTEMS + 1

The second expression has type INTEGER, but what type does the first one have?
If you make the claim:

NUMBER OF ITEMS > 0
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it can be either true or false. In other words, we can say that the expression can
take the value true or the value false. It is quite normal to think of values as
numerical, for example, 14 or 68.24. When we discussed the types CHARAC
TER and STRING, we saw that characters could also be seen as values, but of
another kind. Now we have met a third sort of value, logical values, known as
Boolean values after the mathematician Boole. In Ada there is a standard type
BOOLEAN that can be used for handling such values. For example, variables of
the type BOOLEAN can be declared:

ACTIVE : BOOLEAN;

The variable ACTIVE can only contain the values TRUE or FALSE. We can
make an assignment:

ACTIVE := TRUE;

and then we have the situation depicted in Figure 3.4.

In the same way as other variables, we have thought of ACTIVE as a
storage box, but now a store that can only contain the values FALSE or
TRUE. If we want to, we can assign the result of a comparison to a BOOLEAN
variable:

ACTIVE := NAME = "Tommy";

This may look a little strange to start with, but note the difference between :=
and =. The assignment symbol := means that what is on its right, that is, the
logical expression:

NAME = "Tommy"

should be evaluated first and then the result should be placed in the vari
able ACTIVE. In the expression on the right-hand side the operator = appears;
this is an operator concerned with comparing and has nothing to do with
assignment.

ACTIVE

Figure 3.4
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The type BOOLEAN

The only values allowed are FALSE and TRUE.

Expressions of type BOOLEAN are called Boolean
expressions.

If in a program we want to test the value of a BOOLEAN variable, we
could do so as follows:

If ACTIVE = TRUE then

PUTC'ln action!"):
end If;

Since ACTIVE already contains a value of type BOOLEAN, it is more elegant to
write simply:

If ACTIVE then

PUTC'ln action!");

end If;

BOOLEAN is actually an enumeration type, like the type CHARACTER. It is also
defined in the STANDARD package where the two possible values, FALSE
and TRUE, have been listed (such that FALSE < TRUE, but this is not normally
significant).

3.2 Identifiers

The concept of an Identifier is found in most programming languages, and Ada
is no exception. An identifier can be used as a name for different components
in a program, such as a procedure or variable. Identifiers are also used to denote
reserved words. GIANT_ADA, PUT, begin, and If are all examples of identi
fiers. There are strict rules governing the appearance of identifiers. In Ada, the
rules are as follows:

• An identifier consists of a series of one or more characters. The number

of characters permitted in an identifier is, in principle, limitless (at least
200, according to the standard) and all characters are significant.

• The first character must be a letter (a letter being, in Ada 83, one of the
characters a-z).
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• The remaining characters may be a letter or the underline symbol _, or
one of the numerals 0, 1, 8, 9. The underline symbol is significant,
which means that, for example, NR_1 and NR1 are interpreted as two dif
ferent identifiers. More than one underline symbol in sequence is not
allowed, nor is an underline symbol at the end of an identifier. Blank
characters (spaces) are not allowed in an identifier, so that, for example,
NUMBER NR1 is interpreted as two identifiers.

•  Lower-case letters are also permitted. They are interpreted in the same
way as the corresponding upper-case letter, so that, for example, PUT,
puT and put are taken to be the same.

Here are some examples of identifiers:

TOMMY Smallest_Number x P_1

NUMBER_NR1 PageNumber x1

In Ada 95, all the characters which are interpreted as letters in the ISO standard
(for example, a, a, a, a, ae, e, e, i, i, 6, 6, 6 and ii) are permitted in identifiers,
whereas in Ada 83 and all other common programming languages, only the let
ters a-z are permitted. Thus the following identifiers are valid in Ada 95 but not
in Ada 83:

CITTA Noel Straps ano

Gargon 0L pate smorgasbord

Here are some examples of invalid identifiers:

1X ~ first character may not be a numeral

max% " the character % Is not permitted

_post " the first character may not be _

ID-NUMBER " the minus sign may not be used

ID Number - interpreted as two identifiers

km/hr - / symbol not allowed

There are a number of so-called reserved words which have special
meanings, and it is therefore not permitted to use these words as names in a
program. For example, you may not declare a variable with the name END. To
show the reserved words clearly, they are always given in our examples in bold
print. (When writing programs, there is no need to mark the reserved words in
any special way.) A list of all reserved words in Ada is given in Figure 3.5;
abstract, aliased, protected, requeue, tagged and until were introduced in
Ada 95.
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abort abs abstract accept

access aliased all and

array at begin body
case constant declare delay
delta digits do else

elsif end entry exception
exit for function generic
goto If In Is

limited loop mod new

not null of or

others out package pragma

private procedure protected raise

range record rem renames

requeue return reverse select

separate subtype tagged task

terminate then type until

use when while with

xor

Figure 3.5

3.3 Literals

Sometimes actual values are needed in a program, such as 12, 34.5 or 'Hello'.
In programming, actual values such as these are called literals. Numeric literals
are used to give numeric values and can be either integer literals or real literals.
It is most common to give numeric literals as decimal numbers, as in the
following examples:

13 0 4598 -- Integer literals

1E7 15e5 1EO -- integer literals

13.0 0.0 0.379 --real llterals

1.0e7 43.2E-12 3.2E+8 -real llterals

The exponent form is interpreted as the number before the 'e' multiplied by 10
to the power of the integer after the 'e'. (Both upper- and lower-case e can be
used.) 1.234e2 is therefore interpreted as 123.4, while 1.4E-3 is 0.0014. The
integer after e can be preceded by a plus or a minus sign.

Zeros can be written at the start if desired, for example 0028 or 002.35.
There must be at least one figure before the decimal point in a real number, for
example .34 is illegal and should be written 0.34. Spaces are not allowed in a
literal, so that 1.4e -3 is not allowed, but underline symbols may be inserted for
grouping digits. For example, 1_245_000 would be interpreted as 1 245000,
and 1.356 491 is taken as 1.356491.
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These format rules for numeric literals also apply when numbers are read
into a program using the procedure GET. This means that the user must follow
the same rules at the terminal. Note that if an integer is to be read in, the rules
for integers apply; if a real number is to be read in then the rules for real num
bers apply. For example, if the variable TEMPERATURE has the type FLOAT
and the statements:

PUT_LINE("Enter the temperature!");
GET(TEMPERATURE);

are in the program, then the user must type a real literal at the terminal. This
could be 12.0 or 1.2e1, for example. If the user only types 12, then this is an
error because 12 is an integer literal, not a real literal. In Ada, the user will be
given a DATA_ERROR. If the statements:

PUT_LINE("Glve the number of items!");
GET{NUMBER_OFJTEMS):

appear in a program and the variable NUMBER_OF_ITEMS is declared as an
INTEGER, then the user must type an integer literal at the terminal, for exam
ple, 123, 25_000 or 1 e3. The program will malfunction if the user types a real
literal such as 1.0e3 or 123.0.

We saw character literals when we discussed the character type CHAR
ACTER. A character literal consists of any of the printable characters enclosed
in apostrophes. Some examples are:

■z' 'B' 7' '?' '(

The last of these shows how the apostrophe is given as a character literal.
We have also seen several examples of text string literals. These comprise

a number of printable characters (or possibly none) enclosed in quotation marks,
for example:

"This Is a text string literal"
II II

"abx'+%"

In Ada 95 the characters of a character literal or a text string literal do not have
to be ASCII characters. For example, the letters with diacritical marks in
LATIN_1 can be used:

'E' '6' 'a' T 'a' 'Q'
"k la carte" "piu forte" "Dido and /Eneas"
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The types of character and text string literals are determined by the context, or
in other words, how they are used in the program. In the majority of cases, char
acter literals are of the type CHARACTER and text string literals are of type
STRING, but they might well be of other types. For example, a character literal
might be of type WIDE_CHARACTER, and a text string literal could be of type
WIDE_STRING, as is the case in this example:

WTEXT : WIDE_STRING := "The letter'?' is strange";

WTEXT(13) := 'E';

(In this example there is no need to specify an index range in the declaration of
WTEXT since the length of the text is given when it is initiated.)

The citation marks in a text string literal are not part of the text itself - they are
only delimiters. If you want to have a quotation mark in a text string, you can
get it by writing two quotation marks, as in this example:

"Americans call a ""lift"" an ""elevator""."

This example is interpreted as a single text string literal and not as five.
A text string literal must appear on a single line in a program. If it is too

long for one line, then the catenation operator can be used:

"This is a text string literal that is so long that" &
"we shall have to write it on two lines."

When the user has to type in a value for a variable of type CHARACTER or
STRING from the terminal, then the apostrophes or quotation marks should not
be typed. Suppose the variable NAME is declared as a STRING(1 .. 5) and the
following two statements are in a program:

PUT_LINE("Enter a name with 5 letters!");
GET(NAME);

If the user now types the word Tommy (without quotation marks), the variable
NAME will take the value Tommy'.

The final type of literal we have met is the literal of type BOOLEAN.
Since there are only two values in the type BOOLEAN, there are only two literals:

FALSE TRUE

It is also possible to read in values to BOOLEAN variables, and then these liter
als are used. We shall return to this in a later chapter.
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Literals

• Constant values, such as numeric values.

• Exist for all types.

3.4 Expressions

Expressions can be constructed in a program to calculate new values from literals
and the names of objects. NUMBER_OF_ITEMS * 2 is an example of an expres
sion. Note that every expression is of a particular type which is determined by how
it is constructed and the components included in it. The expression NUMBER_
OFJTEMS * 2 has type INTEGER if NUMBER_OF_ITEMS has type INTEGER.

The simplest form of expression comprises only one literal or the name
of an object:

3.14

ID_NUMBER

VAT_PERCENT

TRUE

"Hello!"

More complicated expressions can be built using operators. The symbol *,
for example, denotes the multiplication operator in the expression NUM-
BER_OF_ITEMS * 2. A set of basic operators is defined in Ada. (It is also pos
sible for the programmer to define new operators, as will be discussed in Section
6.9.) Some operators exist only for certain types, for example, multiplication is
defined for two integers but not for two text strings.

Expressions

• Simplest form: literal or name of an object.

• More complicated expressions are constructed
using operators and simpler expressions.

3.4.1 Numeric expressions

Expressions that calculate with ordinary numbers are called numeric or
arithmetic expressions. In arithmetic expressions the normal operations of
mathematics can be used: addition, subtraction, multiplication and division. In
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addition, there are operators to find the remainder after integer division; to find
the absolute value of a number; and to carry out exponentiation.

Ada is careful to separate the different types. As we have seen, different
types may not be mixed in an arithmetic expression at will. We shall see later
that it is possible for the programmer to define new numeric types other than the
standard types INTEGER and FLOAT. Therefore, when the term 'integer type' is
used in future it will refer not only to the type INTEGER but also to all other
integer types: for example, SHORT_INTEGER and integer types defined by the
programmer. In the same way, the term 'floating number type' refers not only to
FLOAT, but also to SHORT_FLOAT and all other defined types that are related
to the type FLOAT. 'Numeric type' means any integer type or float type at all.

Numeric expressions

Expressions constructed of ordinary mathe
matical numbers.

Different types, for example, INTEGER and
FLOAT, may not be mixed at will in an expression.

We begin with a discussion of the types of numeric literals. Bach expres
sion has a particular resulting type depending on how it is put together. As we
saw above, a numeric literal is the simplest form of expression, but what is its
type? What are the types of the expressions 28 and 25.84? If 28 has the type
INTEGER and the variable SMALL_NUMBER has the type SHORTJNTEGER,
then the assignment:

SMALL.NUMBER := 28;

would not be permitted, because the two sides have different types. This would
be impracticable. Clearly an integer literal does not have the type INTEGER.
This problem, and all similar problems, have been solved in Ada by introducing
an anonymous type called universaljnteger, and all integer literals are said to
be of this type. A value of the type universaljnteger, is converted automati
cally to a suitable integer type when it is used. In the assignment statement above,
therefore, the value 28 is converted automatically into type SHORT_INTEGER
in connection with the assignment. If instead we have the statement:

BIG_NUMBER := 28;

where BIG_NUMBER has type LONG_INTEGER, then 28 is converted automat
ically into type LONG_INTEGER. This means that an integer literal can always
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be regarded as having the 'right' integer type and there is no need to worry about
converting it to a ptirticuiar type.

In a similar way, there is also an anonymous real type called
universal_real and all real literals can be regarded as having this type and being
converted automatically into the 'right' float type.

Literals in numeric expressions

Integer literals may be used anywhere an integer
type is required.

Conversion to the right integer type occurs auto
matically.

Real literals may be used anywhere a real type is
required.

Conversion to the right real type occurs auto
matically.

Let us examine the different operations that can be performed in an arith
metic expression. Addition, subtraction, multiplication and division can be
performed with the operators +, —, * and /. For example:

NUMBER + 1 N0_1 + VALUE 3.8 + MEAN_TEMP

SALARY - 378.50 34.8 - 185.3 NUMBER - 8

5 * NUMBER NO_1 * NO_2 VALUE * 1.3E3

NUMBER/3 12/5 VALUE / 3.76

The quantities before and after the operator are called the operands. It is essential
that both operands have the same type. For example, if N0_1 has type INTEGER,
then so must VALUE; if VALUE had another type, such as SHORT_INTEGER or
FLOAT, the expression would be faulty. The whole expression has the same type
as the operands involved. If NUMBER has type INTEGER, the whole expression
NUMBER + 1 also has type INTEGER. The expression 34.8 - 185.3 has the type
universaLreal and the expression 12/5 the type universaljnteger.

There are also unary variants of the plus and minus operators. These
variants have an operand on the right but none on the left. The unary minus is
of use in constructs such as:

K:=-1; K*(-3) PUT(-K); K:=-K;

Division requires a little more explanation. If the operands are of floating
point type, there is no problem: ordinary division takes place and the result is of
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the same type as the operands. If, however, the operands are of integer type, the
result is also of integer type: so-called integer division takes place. This means
that we see how many times the right-hand operand 'goes into' the left-hand
operand. For example, the expression 12/5 gives the result 2 because there are
2 whole 5s in 12. The result is not 2.4. As a further example, the expression
(-7) / 4 gives the result -1, 12 / (-3) gives -4, and (-12) / (-5) gives 2.

The operator rem (remainder) can be used to find the remainder after integer
division. This needs two integer parameters of the same type. The expression:

12 rem 5

for example, gives the result 2, the remainder when 12 is divided by 5. There is
another operator mod (modulus operator) that works in almost the same way.
The expression:

12 mod 5

also gives the value 2. If one of the operands to rem or mod is less than zero,
then it is a little more complicated. The next few lines can be omitted by read
ers who are not interested in the details.

A mathematical definition is necessary. A and B below denote arbitrary
integers. Integer division and the operator rem are defined by:

A = (A/B)*B + (A rem B)

(-A)/B = "(A/B) = A/(-B;

where (A rem B) has the same sign as A and an absolute value less than the
absolute value of B.

For the operator mod:

A = B*N + (A mod B) for some integer N.

(A mod B) has the same sign as B and an absolute value less than B. Figure 3.6
illustrates the similarities and differences. If the second operand to one of the
operators /, rem or mod is 0, an error occurs in the program. In Ada, the user is
given a NUMERIC_ERROR.

There is an exponentiation operator denoted by **. Its first operand can
either be integer or floating point type. The second operand is the exponent and
must always be of integer type. If the first operand is of integer type, the result
will also be of integer type; if the first operand is a floating point type then so
will be the result. Here are a few examples:

NUMBER **2 2** NUMBER 5 ** 4

VALUERS MAX_TEMP" K 5.78** 7

VALUE **(-3) MAX_TEMP** 0
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A B A/B A rem B A mod B

10 5 2 0 0

12 5 2 2 2

14 5 2 4 4

10 -5 -2 0 0

12 -5 -2 2 -3

14 -5 -2 4 -1

-10 5 -2 0 0

-12 5 -2 -2 3

-14 5 -2 -4 1

-10 -5 2 0 0

-12 -5 2 -2 -2

-14 -5 2 -4 -4

Figure 3.6

The operation that takes place is ordinary exponentiation. The expression
N ** 5, for example, is interpreted as N * N * N * N * N. If the second operand
is 0, the result is always 1. If the first operand has floating point type, then a neg
ative exponent is also permitted. The expression X ** (-4), for example, is
interpreted as 1/(X * X * X * X).

The final standard numeric operator is abs. This operator has only one
operand and that can be of arbitrary numeric type. The operator calculates the
absolute value of the operand: in other words, the operand itself if it is positive
and the negated operand if it is negative. The result is of the same type as the
operand.

abs K abs MEAN_VALUE abs { -23.4)

More complicated expressions can be created by combining several operators.
For example, expressions such as the following are possible:

NUMBER *5 + 37

VALUE / FACTOR + 14.3 - CORR

NUMBER rem 8 - K

abs VALUE / 5.78 * FACTOR

TEMPERATURE ** 3 * PRESSURE + CORR

The result of one operation is a value that, in turn, is one operand in a new oper
ation. The question of ordering the different operations arises in a complicated
expression. In the expression:

2+4/2*3
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the result could be completely different, depending on the order of addition,
division and multiplication.

Each operator in Ada has a certain precedence. The evaluation of a
complicated expression occurs in such a way that the operator with the highest
precedence is the first to be executed, followed by the one with next highest
precedence, and so on, until finally the operator with lowest precedence is
executed. If several operators have the same precedence, they are executed from
left to right. Of the operators we have seen, abs and ** have the highest prece
dence; next are *, /, and mod; and then the unary operators + and -. The
ordinary + and - operators have the lowest precedence.

If we apply these evaluation rules to the expression above, we see that
the operators / and * have higher precedence than + and should therefore be
performed first. Since / and * have the same precedence they are carried out
from left to right, so that the division 4 / 2 is carried out first. The result of this
division, 2, then becomes the left operand to the operator *, which is now executed.
The result of the multiplication is 6 and this makes the right operand to the
operator +, which is carried out last. Thus, the result of the whole expression
is 8.

It is possible to control the order of execution of the various operators
using parentheses. The expression:

(2 + 4) / 2 * 3

has the value 9, for example, and:

(2 + 4) / (2 ̂ 3)

has the value 1.

Order of evaluation in expressions

Is determined by the precedence of the operators.

Can be controlled by the use of parentheses.

In the invoice example of Chapter 2, we saw that sometimes we are
forced to mix types. We wanted to multiply a FLOAT variable, ITEM_PRICE,
with an INTEGER, NUMBER_OFJTEMS. It is illegal to write ITEM_PRICE *
NUMBER_OF_ITEMS because the two operands are of different types. We must
use type conversion and write:

ITEM_PRICE * FLOAT(NUMBER_OFJTEMS)
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The value of the variable NUMBER_OF_ITEMS is converted to a value of type
FLOAT and this converted value becomes the right-hand operand to the
operator *. Conversion between all the numeric types is allowed, and is achieved
simply by writing the required type followed by a numeric expression in brack
ets. The numeric expression is then converted to the type requested. If a real
expression is converted to an integer expression, then rounding to the nearest
whole number occurs. Here are a few examples:

MEAN.VALUE := SUM / FLOAT(NUMBER_OF_MEASUREMENTS);

5 * SHORTJNTEGER(2.85) - Result is 15

X SH0RT_FL0AT(N1 + N2)

Type conversion

This can be used when different numeric types
must be mixed in an expression. It has the follow
ing form:

T (expression)

where T is the name of a numeric type and expres
sion has another numeric type.

The result is of type T.

Rounding occurs if T is an integer type and
expression has a real type.

The following program can be used for converting a weight in pounds
(lb) and ounces (oz) to the equivalent in kilograms (kg) (1 lb = 0.4536 kg and
there are 16 oz in 1 lb). Output from the program may look like:

Give weight in pounds and ounces
(integers, separated by spaces)
11 9

This is 5.245 kg.

The program is as follows:

with TEXTJO, BASIC_NUM_IO:

use TEXT.iO, BASiC_NUM_iO:

procedure WEiGHT.CONVERSION is
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constant ;= 16.0;

constant := 0.4536;

INTEGER;

FLOAT; -- expressed In kg

OZ_PER_LB

KG_PER_LB

NO_LBS. NO_OZ

WEIGHT

begin
PUT_LINE("Glve weight In pounds and ounces");
PUT_LINE{"(integers, separated by spaces)");
GET(NO_LBS);
GET(NO_OZ);
WEIGHT := (FLOAT(NO_LBS)+FLOAT(NO_OZ)/OZ_PER_LB)

* KG_PER_LB;

PUTC'This is");
PUT(WEIGHT, FORE => 1, AFT => 3, EXP => 0);
PUT_LINE(" kg.");

end WEIGHT_CONVERSION;

The variables NO_LBS and NO_OZ are declared as INTEGER, so that the user
can enter the data in a simple way and not have to type in real numbers. The
weight in kg will be a real number and therefore NO_LBS and NO_OZ must be
converted to the type FLOAT in the arithmetic expression.

The result of an expression that only contains operands of the type
universaljnteger (or universal_reaf) has the type universaljnteger (or univer-
saLreal), depending on the operands involved. The types universaljnteger and
unlversal_real may actually be mixed in multiplication. Also, an operand of type
universal_real may be divided by an operand of type universaljnteger. In both
cases the result is unlversal_real. Here are a few examples:

1+2 -- has type universaljnteger
1.2 + 5.3 - has type unlversal_real

2**8 -- has type universaljnteger
2.0 ** 8 -- has type unlversal_real
5 ** 2.8 -- has type unlversal_real
4/9 -- has type universaljnteger
3.74 / 9 - has type unlversal_real

On an ordinary calculator there are often several mathematical functions for
evaluating logarithms and trigonometric functions, for example. Which mathe
matical functions are accessible with Ada, and how do you use them?

In the Ada 95 standard, there is a standard package called ADA. NUMER-
ICS.GENERIC_ELEMENTARY_FUNCTIONS, which contains various useful

mathematical functions. (The package's specification is given in Appendix E.)
If you are using Ada 83 it is most likely that there is a similar package, but its
name has not been standardized in Ada 83.

If you need to use mathematical functions in a program you must ensure
that the program has access to the mathematical package, by placing at the start
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of the program a with clause specifying the name of the package. Because it
should be possible to use mathematical functions for all floating point types, the
package GENERIC_ELEMENTARY_FUNCTIONS in Ada 95 is not a complete
package in itself but rather a template for a package, known in Ada as a generic
package. Therefore, you do not have a use clause for the package in the
program, but first have to make a new 'complete' package with the help of the
template, by stating what type of floating point type you want to use. This is
demonstrated by the following program, which reads in the lengths of the
shorter sides of a right-angled triangle and writes out the length of the
hypotenuse. The floating point type FLOAT is used in the program, so a new
package is created for the type FLOAT, called MATH_FUNC:

with TEXTJO, BASIC_NUMJO,
ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS;

use TEXTJO, BASIC.NUMJO, ADA.NUMERICS;
procedure HYPOTENUSE is

A, B : FLOAT;

package MATH_FUNC is new
GENERIC_ELEMENTARY_FUNCTIONS (FLOAT);

use MATH_FUNG;

begin
PUT_L1NE ("Enter the lengths of the shorter sides");
GET(A);
GET(B);
PUT("The hypotenuse has length: ");
PUT( SQRT(A**2 + B**2), FORE => 1, AFT => 2, EXP => 0 );
NEW_LINE;

end HYPOTENUSE;

The expression:

SQRT(A ** 2 + B ** 2)

is evaluated in the program, and we make use of the mathematical function
SORT to calculate a square root. The expression in brackets is a parameter to
the function: it is evaluated first, and its value is then passed to the function as
input data. In Ada, a function call is considered to be an expression, and a
function call therefore has a particular value and type, which is the same as say
ing that the function returns output data of a particular value and type. The result
of the function SORT here has type FLOAT and its value depends, of course, on
the value of the parameter. If the parameter has value 25.0, for example, then
the result will be 5.0. We do not need to worry about how the square root is
actually calculated in SORT: only the people who write the package
GENERIC_ELEMENTARY_FUNCTIONS need be concerned about that.
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Standard mathematical functions

In Ada 83, these can be found in a special package
whose name is not standardized.

In Ada 95, these are found in the package ADA.
NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS.
Use with and use clauses in the following way:

with ADA.NUMERICS.GENERIC_ELEMENTARY_

FUNCTIONS:

useADA.NUMERICS;

procedure program_name Is

package name Is new

GENERIC_ELEMENTARY_FUNCTIONS

(FLOAT);

use name;

In the generic package GENERIC_ELEMENTARY_FUNOTIONS, as well
as the square root function there are also functions for exponentials, logarithms
and various trigonometric functions. The package also contains a further version
of the exponentiation operator **, a version which permits the second operand
to be a real number. It can also be mentioned here that in the numeric annex to
Ada 95 there are packages specified which enable calculations to be made with
complex numbers. For reasons of tradition, many programs involving calcula
tions are written in FORTRAN, and for that reason there are a large number of
mathematical functions already written in that language. The numeric annex to
Ada 95 contains various aids to assist in making use of these FORTRAN func
tions in an Ada program.

3.4.2 Boolean expressions

Section 3.1.4 showed how to assign values and declare variables of the type
BOOLEAN. It is also possible to build an expression whose value has the type
BOOLEAN, that is, the result of the expression can have the value either TRUE
or FALSE. We call such an expression a Boolean expression. In fact, we have
already met several examples of Boolean expressions, most often in If state
ments, such as:

If K > 5 then

PUT(K);

end If;
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The expression K > 5 can be either false or true: it can have the value either
FALSE or TRUE. Thus the expression has the type BOOLEAN. The operator >
has been used and the integer expressions K and 5 are its operands.

In Ada there is a set of relational operators that can be used for making
a comparison, for example in if statements. The two operands of a relational
operator must be of the same type. For example, the expressions TEMPERA
TURE < 5 and CHAR = 78 are wrong if we assume that TEMPERATURE has
type FLOAT and CHAR has type CHARACTER. The two operands may be
expressions, such as:

5»N>K**3 + N

3.45 * SIN(ALPHA) / FACTOR <= 0.35
NAME1 & NAME2 = "PeggySue"

Relational operators

= ~ equal to

/= ~ not equal to

< ~ less than

<= — less than or equal to

> ~ greater than

>= ~ greater than or equal to

Note that real numbers should be compared with caution because they are not
always stored in an exact form. Expressions such as:

X = Y

Z = 0.87

are dangerous and should be avoided. The variables X and Y may be 'virtually'
equal but the computer still interprets them as unequal if they are not stored in
exactly the same way. Z might be 'virtually' equal to 0.87 but the two operands
may still be seen as unequal by the computer. It is safer to use comparisons such as:

abs(X-Y) < 1.0e-9
abs(Z - 0.87) < 0.5-4

The small quantity that should be used on the right-hand side is a matter of
judgement: it depends on the order of magnitude of the operands on the left-
hand side. Comparing integers, however, is straightforward because they are
always stored in an exact form.
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The operators In and not In can be used to test whether a value lies in a
given interval:

K In 1 .. N

TEMPERATURE not In MIN_TEMP .. MAX_TEMP

CHAR in 'a' .. 'z'

5 In 3 .. 5 -true!

3.75 not In 1.5 .. 3.5 -true!

'H' In 'D'.. 'J' "true!

The second operand has to be an interval defined by its first and last values. The
left-hand operand and the limits of the interval should be of the same type. The
operators In and not In exist for all types.

A set of operators exists for which both the operands and the result are of
the type BOOLEAN. These operators are:

not

and

or

xor

and then

or else

The operator not is the simplest. It takes only one operand and performs logical
negation, that is, it changes TRUE to FALSE and vice versa.

not ACTIVE

not K > 74

not TRUE - gives the value FALSE

The remaining operators are called Boolean operators and all have two
operands. Figure 3.7 shows how they work.

A B A and B A or B A xor B

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

Figure 3.7
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The operators and and or have their natural logical meanings. The operator
xor is generally called 'exclusive or' and is not used very often. Here are two
examples:

ACTIVE or TEMPERATURE > 17.6

100< Kand K<500

Note the way of writing the second example. To write the expression:

100<K<500 "MISTAKE

is not allowed.

The operators and then and or else give exactly the same results as and
and or, respectively. The difference is in the way the operands are evaluated. In
expressions such as:

expression 1 and expresslon2

expression 1 or expression2

there is no way of telling whether expression 1 or expression2 is evaluated first.
Normally it makes no difference, but under certain circumstances it is essential
to determine the order of evaluation. In particular, it is sometimes necessary to
avoid the evaluation of expression2; this is when the operators and then and or
else are valuable. If we look at how the operator and works, we notice that it is
not necessary to evaluate the second operand if the first operand is FALSE. The
result of the and will be FALSE regardless of the value of the second operand.
In the same way, it is unnecessary to evaluate the second operand of an or oper
ator if the first operand is TRUE. The result will be TRUE anyway, regardless of
the value of the second operand.

The operator and then is defined so that the left operand is evaluated
first. If this is FALSE then the right operand is not evaluated, and the result of
the and then operator is FALSE. If the left operand is TRUE the right operand
is also evaluated. The result obtained is then the same as using the and operator.

For the operator or else, the left operator is also evaluated first. If this is
TRUE the right operand is not evaluated and the result of the or else operator is
TRUE. If the left operand is FALSE, the right operand is evaluated, and the same
result is obtained as if the or operator had been used.

For example, the program fragment below determines whether a variable
of type STRING(1 .. 10) contains any space characters. If it has no spaces, the
message:

No spaces

is printed. Otherwise, the message:

First space Is In position X
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is printed, where X is in the interval l-IO. We assume that the variable K has
type INTEGER. The section of program is:

K:=1:

while K <= 10 and then TEXT(K) /= '' loop

K := K + 1;

end loop;

If K = 11 then

PUTC'No spaces");

else

PUT("Flrst space is in position ");

PUT(K, WIDTH => 1);
end If;

In the Boolean expression:

K <= 10 and then TEXT(K) /= ''

it is essential that the operator and then is used rather than and. If TEXT does
not contain any spaces, then after 10 iterations of the loop the variable K takes
the value 11. If the and operator had been used, there would have been an
attempt to evaluate TEXT(II). This would be an illegal index because TEXT has
only 10 elements, and the program would stop with an error message. Using the
operator and then ensures that this cannot happen.

3.4.3 Operator precedence

We have now seen all the standard operators in Ada, namely: numeric operators,
operators that are used in Boolean expressions, and the operator & that is used
to catenate strings. Complex expressions containing several of these expressions
may be constructed:

N - J < 100 and K ** 2 < 50 or I = 10

SIN(X) > 0.0 or abs COS(Y) + DELTA < 0.5

TEMPERATURE > 25.3 or PRESSURE > 2.6 and not ACTIVE

NAME & "Smith" & "25 Elm Terrace" & "Newtown"

= PERSONAL_DATA

When complicated expressions such as these are constructed, it is important to
know the order in which component expressions will be evaluated.
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Operator precedence

• Operators on the same line have the same prece
dence.

• The top line has the highest precedence; the
bottom has the lowest.

** abs not

*  / mod rem

+  - (unary + and -)

&  + - (ordinary + and -)

II

TT

A

A
II

v >= in not In

and or xor and then or else

Earlier we saw that operators with the highest precedence were evaluated
first and those with equal precedence were evaluated from left to right. We have
also seen that control over the order of evaluation in a complicated expression
can be achieved by using brackets. For example, the Boolean operators and and
or have the same precedence, and it may sometimes be necessary to use brack
ets to evaluate an expression in the correct order, such as:

not (A and (B or C))

3.5 Variables and constants

In Ada, variables and constants are called objects. Objects have a name and
a value. In the case of variables, we illustrated this with our storage boxes,
or stores. Before a variable or constant can be used in a program it must be
declared.

Objects

• Variables and constants.

• Have a name and value.

• Must be declared.
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In our programs we have already seen several examples of how variables
and constants are declared. We have seen how such declarations are made in the

declaration section of a procedure; as we shall see later, they can also be made
in a similar way in functions and packages that we write ourselves. The simplest
form of variable declaration is:

NUMBER_OFJTEMS

TEMPERATURE

WEIGHT_PER_PERSON

ADDRESS

ACTIVE

SYMBOL

INTEGER;

FLOAT;

SHORT_FLOAT:

STRING{1 .. 30):

BOOLEAN:

CHARACTER:

First the variable's name is stated and then its type.f If there are several vari
ables of the same type they can be declared in a shortened form:

MEAN_TEMP, MAX_TEMP, MIN_TEMP : FLOAT;

This is equivalent to:

MEAN.TEMP

MAX_TEMP

MIN TEMP

FLOAT;

FLOAT;

FLOAT;

Variable declarations

variable_name: type;

or:

variable_name1, variable_name2,... : type',

(all the variables listed are given the same type).

* If we are to be absolutely strict, it is not the variable's type that is given but rather its subtype. In
Ada 95 all types are actually unnamed, only subtypes have names. INTEGER, for example, is a
subtype of a predefined anonymous integer type and INTEGER has exactly the same characteris
tics as this anonymous type. The split into types and subtypes is done so that the language's syn
tax can be described in a correct way. In everyday usage this split can be ignored without risk of
ambiguity, and one says quite simply that a variable has a particular type. To avoid unnecessary
complication, we will also use this simplified terminology.
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What value does a variable have when it is declared like this? Normally,
a variable's value is undefined. Certain compilers set numerical variables
to zero, but this cannot be relied on absolutely. In most cases the value of a vari
able is undefined until it is given a value in the program. In Ada it is possible to
initialize variables, giving them a starting value at the same time as they are
declared:

BALANCE

SYMB

NAME

PRESSURE

K, N, M

FLOAT := 0.0;

CHARACTER :=

STRING{1..5) := "David";

FLOAT := 1.5;

INTEGER := 0;

The last of these declarations is equivalent to:

K : INTEGER

N : INTEGER

M : INTEGER

= 0

= 0

= 0

The initial value can be a complicated expression but it must be of the same type
as the variable being initialized:

VOLUME FLOAT = 37.9;

COEFF FLOAT = SQRT(LOG(VOLUME));

MIN_TEMP FLOAT = 10.0;

MAX_TEMP FLOAT = 100.0;

MEAN_TEMP FLOAT = (MIN_TEMP + MAX_TEMP) / 2.0;

Note that the order of declarations is important. In the above example, the
variable VOLUME had to be declared before it could appear on the second
line.

Initializing variables

variable_name: type expression;

or:

variable_name1, varlable_name2,... : type \=
expression;

(all the variables listed are given the same initial value).
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In Ada 83, index limits must always be stated when a variable of type STRING
is being declared. In Ada 95 this is not necessary if the variable is initialized, for
example:

NAME : STRING := "David";

The compiler will allow the variable to be just long enough for the initializing
value to be held.

Constants can also be declared. As with variables, constants can be

regarded as storage boxes of a certain type that contain a certain value. The dif
ference is that the value received by the constant at the time of declaration can
not be changed later in the program. Constant declarations look like variable
declarations, but the word constant is added. In the declaration, the constant
must be given a value.

END.CHAR : constant CHARACTER :=

MAX_NO : constant INTEGER := 500;

START_TEMP : constant FLOAT := MIN_TEMP - 5.0;

For constants of type STRING, no index limits need be given in the
declaration:

HEADING : constant STRING := "Report for first quarter";

In addition to the sorts of constants discussed so far, there is a special form
of constant declaration in Ada called a number declaration. A number

declaration looks much like an ordinary constant declaration, but no type is
stated:

PI : constant := 3.1415926536;

TWO_PI : constant := 2 * PI;

MIN : constant := 5;

TW0_16 : constant :=2 ** 16;

Number declarations can only be made for numeric values. A constant takes
one of the types universaljnteger or universal_real, depending on the initializa
tion. The initializing value must be of one of these types, that is, it can only be
an expression containing numeric literals and other constants that have been
declared in number declarations. It can be an advantage to use this type of
constant instead of an ordinary constant when the object to be declared is a
mathematical constant that should be usable in association with several numeric

types.
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Constant declarations

constant_name: constant type := expression-,

or:

constant_name: constant:= numeric

expression;

(in the second case, the constant takes the type uni-
versaljnteger or universal_reaf).

3.6 Errors in programs

Writing a computer program is not a trivial task and it is normal to make a num
ber of mistakes. Even an experienced programmer falls into traps of various
kinds. It is therefore important when learning to program that we also learn how
to find and correct errors in the program. This can only be done by designing
and writing programs, running tests and correcting any errors found, which is
why practical work is necessary.

When writing a computer program, three kinds of error can occur:

(1) Compile-time error This is an error indicating that the rules of the
language have not been followed. This type of error is detected by the
compiler during compilation of the program. A printed listing of the pro
gram is usually provided in which the mistake is marked. Examples of
compile-time errors are misspelling a variable name, forgetting an end,
losing a semicolon, or pressing a wrong key when typing the program.

(2) Run-time error Such errors do not occur until the program is run. The
program may be syntactically correct - the language rules have been
obeyed - but it still contains mistakes that prevent it from continuing
normally when executed. Examples of such mistakes are trying to index
outside the limits in a STRING variable, and attempting to enter a value
of the wrong type from the terminal. A common error is 'overflow', when
a value is calculated that is too large for the intended variable. This can
happen, for example, if an attempt is made to divide by 0 or some other
extremely small number. Normally the program halts when an error
occurs and an error message is given. Errors can be trapped by the
programmer, however, and as we shall see in Chapter 10, this facility
allows the program to continue in execution.

(3) Errors of logic Such errors are caused simply by faulty thinking when
the program was written: a faulty algorithm has been used. It is difficult
to find this kind of error because it is possible to compile and run the
program without getting any error messages. An error in the logic of a
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program only shows when a test is run and the result obtained. If there is
no verified data available for testing the program, it can be hard to be
quite certain that the program is free from logic errors. Even if the
program works correctly for a particular set of input data, it can be faulty
for another set.

Di^erent kinds of error

• Compile-time error
Rules of the language have been broken.
Detected during compilation.

• Run-time error

Illegal values occur when the program is run, for
example, incorrect indexing. Detected during
execution.

• Errors of logic
Algorithm is incorrect. The program works out
wrong values. Detected (hopefully) during test
runs.

We shall demonstrate the different types of error by looking at an
example. The program that will be written is to evaluate N!, that is, the
product:

1 * 2 * 3 * 4 N

We start by writing the program with the help of the text editor:

with TEXTJO, BASIC.NUMJO;

use TEXTJO, BASIC_NUMJO;

procedure FACTORIAL Is
PRODUCT: INTEGER := 0;

N_VALUE : INTEGER;

begin
PUTC'Enter value of N:");
GET(N_VALU);
for I in 1 .. N_VALUE loop

PRODUCT := PRODUCT * I;

end loop;

PUTC'Result is:"); PUT_LINE(PRODUCT);
end FACTORIAL;
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The next step is to try to compile the program using the Ada compiler. We then
get the listing:

with TEXTJO, BASIC_NUM_IO:

use TEXTJO, BASIC_NUMJO;

procedure FACTORIAL Is
PRODUCT : INTEGER := 0;

N_VALUE : INTEGER;

begin
PUTC'Enter value of N:");

GET(N_VALU);
A

-- error: Identifier undefined

for I In 1 .. N_VALUE loop
A

- warning: high bound may not yet have a value
PRODUCT := PRODUCT * 1;

end loop;

PUTC'Result Is: "); PUT_LINE(PRODUCT);
A

- error: types of formal and actual parameter do not match
end FACTORIAL;

Here we see that the compiler has marked certain lines in the program and
written error messages. For each error, the compiler tries to point out the line
where the error occurs. The first faulty line is:

GET(N_VALU);

The message from the compiler points to the identifier N_VALU and says
that this identifier is undefined. We see that we have left off the last letter of the

identifier - it should be N_VALUE.

The next line marked is:

for I Inl .. N_VALUE loop

The compiler has not found any real error here, but just a line that may be incor
rect; it gives us a warning that we should watch out for this line. What may lead
to problems is that the upper limit in the expression:

1  .. N_VALUE

in other words N_VALUE, might not be given a value when the program is run
later on. This would mean a run-time error. The reason for this potential error is
that earlier in the program we wrote:
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c

GET(N_VALU);

If this had been correct, the variable N_VALUE would always be given a value
and we would not have had a warning from the compiler. Therefore we do not
need to change the line:

for l in 1 .. N_VALUE loop

It is correct and the warning is only the result of our earlier error.
The final line to be marked faulty is:

PUTC'Result is: "): PUT_LINE{PRODUCT):

Here the compiler is complaining that the parameter to the procedure PUT_LINE
does not have the type that it should have formally. The variable PRODUCT has
type INTEGER. If we look at the package TEXT_iO we see that the procedure
PUT_LINE is only specified in one place in the package and that it requires a
parameter of type STRING. We have mistakenly assumed that the procedure
PUT_LINE, just like PUT, also exists for the type INTEGER. The solution is to
use PUT and NEW_LINE instead:

PUTC'Result is: "); PUT(PRODUCT): NEW.LINE;

Now we use the text editor again to correct the mistakes in the program, and
we get:

with TEXT_IO, BASIC_NUM_IO:

use TEXT_IO. BASIC_NUM_IO;

procedure FACTORIAL Is
PRODUCT: INTEGER := 0;

N_VALUE : INTEGER;

begin
PUTC'Enter value of N:");

GET(N_VALUE);
for l in 1 .. N_VALUE loop

PRODUCT := PRODUCT * I;

end loop;
PUTC'Result is:"); PUT(PRODUCT); NEW_LINE;

end FACTORIAL;

This program compiles well; no error messages this time. We shall go on to run
some tests on it. The program prints the message:

Enter value of N:
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We shall try to calculate 4!, which we know should be 24; therefore we type a 4
at the terminal. The program answers, to our surprise:

Result is: 0

We run another test, this time giving another value of N as input. Whatever
value of N we give, we find that we always get the answer 0. Of course, this is
wrong. There is an error of logic in the program.

Now we must look carefully at the program to find out where the fault
lies. In the program we have a counter 1 which counts from 1 to the value of
N, and at each count PRODUCT is multiplied by I. At the first count we
multiply by 1, at the second by 2, and so on. This seems right, but what was
the value of PRODUCT at the start? The declaration shows that at the start

PRODUCT had the value 0. That is the mistake! When any number is multiplied
by 0 the result is 0. Of course, the variable PRODUCT should be initialized
to 1. The text editor enables us to correct this so that PRODUCT is initialized

properly:

PRODUCT: INTEGER :=1;

We compile the program again. (This must be done; it is not enough to make
corrections only in the text.) A fresh test run shows that we now get the result
24 if we enter the number 4. The program appears to be working correctly. If,
for example, we enter 12, we get the result 479001600. We can try with 13, but
then we get the following strange output:

Enter value of N: 13

** EXCEPTION "numeric_error" RAISED, line 10.

We have got an execution error. A numeric error has occurred on line 10. On this
line we have the statement:

PRODUCT := PRODUCT * I;

The result of the expression on the right-hand side has become so great that it is
bigger than the greatest whole number that can be stored in a variable of type
INTEGER in our system. The program cannot continue in the normal way and
so it stops running.

If we want our program to calculate N! for values of N greater than 12
we must change the program. The best way is to change PRODUCT to a
variable of type FLOAT. Such a variable can hold considerably larger numbers
than an integer variable. We now use the text editor to make the necessary
changes:
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with TEXT.IO, BASIC_NUMJO:

use TEXTJO, BASIC.NUMJO;
procedure FACTORIAL Is

PRODUCT: FLOAT := 1.0;

N_VALUE : INTEGER;

begin
PUT("Enter value of N:");
GET(N_VALUE);

for I In 1 .. N_VALUE loop
PRODUCT := PRODUCT * FLOAT{l);

end loop;
PUTC'Result Is:"); PUT(PRODUCT); NEW.LINE;

end FACTORIAL;

In addition to changing the declaration of PRODUCT we must also make a
change so that I is converted to a floating number on each multiplication:

PRODUCT := PRODUCT * FLOAT(I);

We may not mix INTEGER and FLOAT in a multiplication. After a further com
pilation we can run a test of the corrected program. If we now try to calculate
13! we get:

Enter value of N: 13

Result Is: 6.22702080E+09

Looking for errors in a program and correcting them has come to be known,
lightheartedly, as 'debugging' the program. In some systems there are excellent
aids for debugging. For example, it may be possible to test run a program step
by step, or stop at particular points in the program, study the values of the
various variables and change them. Such debugging aids are very valuable when
errors have to be found in more complicated programs.

If there is no access to such debugging aids, the values of the variables
can still be studied at given points in the program by inserting temporary test
printouts, and using them to find possible errors.

In general, if a program is well-written from the start, is well-structured
and has suitable names for variables, types, subprograms and packages, and if it
uses clear and well-thought-out algorithms, it will contain fewer errors and be
easier to debug than a less well-written program. Well-written programs, there
fore, are also more reliable and require less maintenance than programs that are
poorly conceived from the start. Therefore, with program design, the rule is to
think first and write later.
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Testing programs

Use debuggers or insert temporary test printing
routines in the program.

Well-written and well-structured programs are
easier to rid of errors.

EXERCISES

3.1 Which of the following are allowed as identifiers in Ada? Which are allowed as the
names of variables, types and constants?

MY_CAR CAR_3 "Tommy"

NUMBER1 numben ADAM&EVE

IN %VAT Number_5

3_DIGIT car-number Identifier

3.2 State for each of the following whether it is an integer literal, a real literal, a text string
literal, a character literal or a literal of type BOOLEAN.

167 167.0 'x'

"true" 16.4e3 16e5

7  7' "7"

false 1_000 0.000_005

What type do the integer and real literals really have?

3.3 Assume the following declarations have been made;

I  : INTEGER := 2;

J : INTEGER := 3;

X : FLOAT := 4.0;

Y : FLOAT := 5.0;

Evaluate the following expressions and state the type for each value.

(a) 1 + J (b) 1 + 5 (c) 2 + 3

(d) X-1.5 (e) 2.0 * 2.5 (f) Y/X

(g) J/l (h) 14 rem 4 (i) J mod 1

0) X** 1 (k) Y** (-1) (1) 1 ** J

(m) 1 + J *2 (n) X*Y **2 (0) abs X-Y

(P) X / Y * 2.0 (q) 2.0 * FLOAT(J)
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3.4 Make a suitable variable declaration to describe the following:

•  the number of goals scored in a football match

• winning time in the 110 m hurdles

•  an identity number

•  a shoe size

•  the size of fine for a parking offence

•  the information relating to whether a person has a driving licence

•  an address

•  a type of vitamin (A, B, C, D or E)

3.5 Write a program to calculate the volume and area of a sphere. The radius of the sphere
is to be given as input. The following formulae are given:

V = A = 4nr^

3.6 In Europe, a car's fuel consumption is usually given in litres per kilometre. Write a
program to read in petrol consumption in this format and translate it into the form more
common in Britain, miles per gallon. The following conversion factors apply:

1 mile = 1.609 km 1 gallon = 3.785 litres

3.7 A car-hire firm takes £30 per day plus a fee of £0.55 per mile for a particular car. In
addition there is the cost of the fuel. Assume the car does, on average, 26 miles per
gallon and that the price of fuel is £1.75 per gallon.

Write a program to calculate the total cost of hiring the car. The input should be the
distance driven and the number of days' hire.

3.8 A running competition consists of two separate races. The winner of the competition is
the one with the shortest total time for the two races. Write a program to calculate the
total time for a competitor. The input should be the times for the two separate races.
These times are given in hours, minutes and seconds in the format hh mm ss and the
result is given in the same format.

3.9 Write a program to calculate how much change should be received after making a
purchase, and in which notes and coins the change should be given. Input to the program
should be the price to be paid and the amount given in payment. For the sake of
simplicity, assume that no transactions involve coins smaller than lOp or notes greater
than £20. For example, if a person bought goods for £62.10 and paid with four £20
notes, the program should print out that the change should be one £10 note, one £5 note,
two £1 coins, one 50p coin, and four lOp coins.

3.10 The distance between two points (x,, y,) and (x,, y,) in a coordinate system is given by
the formula:



Exercises 117

■s= V(jc, -Xjf + (y^ -y2)^

Write a program to read in the coordinates of two points and write out the distance
between them.

3.11 For radioactive decomposition, the amount of radioactive material, «, remaining after a
certain time, /, can be calculated using the formula:

n = tin e0

where is the amount of radioactive material at time r = 0. A, is a constant for the mate
rial. This is usually given as a half-life (the time taken for half the radioactive material
to decompose). If the half-life is denoted by T, it is easy to calculate that:

0.693

T

The half-life for the isotope '''C is 5730 years. Write a program to print out what
percentage of this isotope is left after S years. S is the input to the program.

3.12 Write a program which reads in an angle (given in degrees) and prints out the values
of its sine and cosine. The functions SIN and COS in the generic package ADA.NUMER-
ICS.GENERIC_ELEMENTARY_FUNCTIONS expect a parameter expressed in radians.
The conversion between degrees and radians uses the formula:

radians = degrees *
360

3.13 Evaluate the following Boolean expressions:

(a) TRUEand10>8
(b) 5.0>= 10.3or'a'>'b'
(c) 3 not In 1 .. 7
(d) I /= 0 and then 14 /1 > 3 - assume I = 3
(e) 3 > 3 or else "hello" /= "HELLO"

3.14 Evaluate the following expressions:

(a) CHARACTER'POSC-')
(b) CHARACTER'VAL(32)

3.15 Assume the CHARACTER variable C contains one of the lower-case letters 'a' to 'z'.
Write a statement that changes C to hold the corresponding upper-case letter instead.

3.16 Assume the CHARACTER variable T has a value in the interval '0' to '9'. Write a state
ment to convert Fs value to an integer in the interval 0 to 9 and assign the integer to the
variable I of type INTEGER.
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3.17 In Sweden, every resident has a personal identification number made up of a six-figure
date of birth followed by a four-figure code. The last but one figure is odd for a male and
even for a female.

Write a program to read in a Swedish identification number and determine if the
person concerned is male or female.
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Chapter 3
 dealt with the basic building blocks of Ada. It showed h
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w
 to use

the standard types in expressions and in declarations of data objects. This
chapter concentrates on the part of an A
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a
 program that describes what the

program does, in other words, the part of the program that describes
algorithms.

T
h
e
 chapter deals with the most c
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control the behaviour of a program. It shows h
o
w
 to put statements together

into a program sequence and h
o
w
 alternative paths through a program can be

achieved in various ways. Programming iterative sequences, that is, making
certain parts of a program execute repeatedly, is also covered.
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is used in this kind of program; Section 4.8 deals with iteration in the context
of interactive programs.
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4.1 Sequential program structure

In simple terms, an Ada program or subprogram consists of a specification part,
a declarative part and a statement part.

Program and subprogram structure

subprogram_speclflcation is
declarative part

begin
statementi;

statement2:

statementN;

end subprogram_name:

The specification of a subprogram contains its name and a description of possi
ble parameters to the subprogram. We shall come back to this in Chapter 6. In
the declarative part, variables, constants and other parameters can be declared.
It is possible also to make other declarations, for example, declarations of inter
nal subprograms, as seen in one of the example programs in Chapter 2. In
Chapter 5 we shall see that programmers can also declare their own types in the
declarative part of the program.

Here we shall concentrate on the part of the program between begin and
end. This part of the program should contain a sequence of one or more state
ments. When the program is executed, these statements are executed one at a
time, from top to bottom. Each statement is executed once.

Every statement ends with a semicolon. The rules of the language do not
specify that statements should be written on special lines or that they should
start in particular positions on the line. To write well-structured programs, how
ever, it is important to apply certain rules. Each statement should start on a fresh
line. (Exceptions can be made if a number of statements together produce out
put at a terminal; in this case these statements can be written on the same line.)
The statements should be indented on the line; statements which belong to
the same sequence (such as statementi, statement2, ... , statementN above)
should be indented by the same amount.

There are two kinds of statement, simple statements and compound
statements. The most common simple statements are assignment statements
and procedure calls; we have already seen examples of these. Here is another
example showing a sequence of simple statements. The sequence reads in two
real numbers and calculates their mean.
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PUT_LINE("Enter two real numbers");
GET(XI);
GET(X2);
MEAN_VALUE := (XI + X2) / 2.0;

PUTC'The mean is: ");
PUT(MEAN_VALUE);

The statement:

MEAN_VALUE := (X1 + X2) / 2.0;

is an assignment statement and the others are procedure calls. Procedure calls
will be discussed more fully in Chapter 6.

There is a very simple statement which is written as follows:

null;

This is called a null statement. When this statement is executed nothing at all
happens. This statement exists because the syntax sometimes demands that a
statement should be found at a particular place in a program. If there is nothing
to do at this place, a null statement can be used.

The most common compound statements are If and loop statements. A
compound statement can contain several statements. Using these, statements
can be structured hierarchically.

4>2 Assignment statements

An assignment statement consists of two parts. On the left-hand side (the term
on the left of the assignment symbol, :=) there can be the name of a variable,
while to the right there should be an expression. The expression and the variable
must be of the same type. When an assignment statement is executed the expres
sion on the right is evaluated and that value is given to the variable on the left,
replacing its previous value. There may be only one variable on the left-hand
side. If the same value is to be given to several variables, several assignment
statements must be written. Here are a few examples:

K:=i + 15;

XI := 23.8;

ALARM := TEMP > 200.0;

HEAD := "INVOICE";

- ALARM has type BOOLEAN
- HEAD has type STRING(1 .. 7)
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If the variable is of type STRING, as in the last example, both sides must have
the same number of components. However, the components do not need to be
numbered in the same way. A slice may also appear in the left-hand side. In the
following examples, we start by assuming that 8 has type STRING(1 ..15) and
that T has type STRING(26 .. 40);

S := T; ~ same number of components
S{7 .. 11) := "HELLO";
T(31 .. 33) := 8(4 .. 6);

The left- and right-hand sides may even overlap, as shown in the following
example:

8(1 .. 3) := "Ada";
8(3 .. 5) := 8(1 .. 3); ~ 8(1 .. 5) becomes "AdAda"

4.3 Selection: the if statement

The most common way of achieving selection in a program, that is, a choice
between two or more different paths in a program, is to use an If statement. An
If statement starts with the reserved word If and terminates with the reserved

words end If. An If statement comprises a then part followed by a number
(possibly zero) of elsif parts, ending possibly with an else part.

The If statement, the simplest form

If Boolean expression then

sequence_of_statements
end If;

The sequences of statements within the then, elsif and else parts of an If
statement should be inset a little on the line, to show clearly where the If state
ment begins and ends, and which parts belong to it.

When the statement is executed, the Boolean expressions that follow the
words If and elsif are evaluated in order from the top down. If any of these
Boolean expressions are true, the sequence of statements in the corresponding
part of the If statement is executed, and control then passes to the first statement
after the words end If.
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The if statement, complete form

if Boolean expression then
sequence_of_statements

elsif Boolean expression then
sequence_of_statements

elsif Boolean expression then
sequence_of_statements

else

sequence_of_statements

end if;

The Boolean expressions following the first true expression will not be
evaluated. If all the Boolean expressions are false, but there is an else part, then
the sequence of statements contained therein will be executed. If all the Boolean
expressions are false and there is no else part, then the if statement terminates
without any of the sequences of statements being executed. Observe that, at
most, one sequence in an if statement is executed. Some examples of if state
ments are:

if K > 5 or J < 4 then

K := K +J;

J:=J + 1:

end if;

~ ACTIVE, CLOSED, and PASSIVE have type BOOLEAN
if ACTIVE and not CLOSED then

PUT_LINE{"System is in operation");
else

PUT_LINE("System is down");
PASSIVE := TRUE;

end if;

if TEMPERATURE < 15.0 then

PUT.LINEC'Emergencyi");

RAD_SET := RAD_SET + 5.0;

elsif TEMPERATURE < 18.0 then

PUT_LINE{"Too cold.");
RAD_SET := RAD_SET + 1.0;

elsif TEMPERATURE < 21.0 then

PUT_LINE("OK.");
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else

PUT_LINE("Too hot.");

RAD_SET := RAD.SET - 1.0;

end If;

Any statements are allowed in a sequence of statements, even compound
statements as in:

if TEMPERATURE < 15.0 then

PUT_LINE("Emergency!");
RAD_SET := RAD_SET + 5.0;

elsif TEMPERATURE < 18.0 then

If NIGHT then

PUT_LINE{"OK.");

else

PUT_LINE("Too cold.");
RAD_SET := RAD_SET + 1.0;

end If;

end If;

Here, the elsif part consists of a single statement - a new If statement. When one
If statement is contained within another, they are usually said to be nested. Note
that it is particularly important to indent the text clearly in the case of nested
statements. It is essential to see the structure underlying the statements.

We can now look at a couple of variants of a program that reads in three
(different) integers from the terminal and writes them out in order of increasing
size. The first version is:

with TEXTJO, BASIC_NUMJO;

use TEXTJO. BASIC_NUMJO;

procedure S0RT_3 Is

A, B, C : INTEGER;

begin
PUT_LINE("Enter three different Integers");

GET(A); GET(B); GET(C);
If A < B then

If B < C then

PUT(A); PUT(B); PUT(G);

elsif A < C then

PUT(A); PUT(C); PUT(B);
else

PUT(C); PUT(A); PUT(B);
end If;

else

If A < C then
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PUT(B): PUT(A); PUT{C):

elsif B < C then

PUT(B); PUT(C): PUT(A):
else

end If;

end S0RT_3;

In this version of the program there are two levels of if statement. We obtain a
somewhat simpler program structure if we employ more complex Boolean
expressions.

with TEXTJO, BASIC_NUMJO;

use TEXT.IO, BASIC_NUMJO;

procedure S0RT_3 Is
A, B, C : INTEGER;

begin
PUT_LINE("Enter three different integers");
GET{A); GET(B); GET{C);
if A < B and B < C then

PUT(A); PUT(B); PUT(C);
elsif A < C and C < B then

PUT(A); PUT(C); PUT(B);
elsif C < A and A < B then

PUT{C); PUT(A); PUT{B);
elsif B < A and A < 0 then

PUT(B); PUT(A); PUT(C);

elsif B < C and C < A then

PUT(B); PUT(C); PUT(A);
else

PUT(C); PUT(B); PUT(A);
end if;

end S0RT_3;

4,4 Selection: the case statement

We have seen how the if statement can be used to make a selection. In Ada there

is also a case statement that can be used if a choice has to be made between

several different paths in a program. If there are several alternatives, a case
statement is often preferable to an if statement because it gives a clearer
program.

A case statement starts with the reserved word case and ends with the

reserved words end case. After the word case appears an expression whose
value determines the choice of one of several alternatives.
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Case statement

case selector is

when llst_of_alternatives =>

sequence_of_statements
when list_of_alternatives =>

sequence_of_statements

when list_of_alternatives =>

sequ0nce_of_statements

end case;

where selector is a discrete expression (integer type or
enumeration type) and list_of_altematives is a list
with one or more static (constant) expressions.

The selector should be a discrete expression. In Ada, the notion discrete type
covers integer types and enumeration types. A discrete expression is an expres
sion whose value is of a discrete type, that is, the expression is either an
integer type (for example, INTEGER) or some enumeration type (for example,
CHARACTER). Examples of discrete expressions are:

NUMBER_OFJTEMS N + 8 I 3 CHAR

Note that the selector may not be a real type.
A list of alternatives following the word when in a case statement is a

list of one or several possible discrete values that the selector can assume. (Since
the selector is a discrete expression, it is possible to name all possible values.)
When the case statement is executed, the selector is evaluated. If the value

found appears among the values enumerated in a particular list of alternatives,
then the sequence of statements following the list is executed. Note that only
one sequence of statements is executed.

In the following example the simplest form of list of alternatives is used,
that has only one possible value. The variable MONTH_NUMBER is assumed to
have the type INTEGER.

case MONTH_NUMBER is

when 1 =>

PUTC'January"):
when 2 =>

PUTC'February");
when 3 =>
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PUTC'March"):

when 4 =>

PUT{"April"):
when 5 =>

PUTC'May"):
when 6 =>

PUTC'June"):

when 7 =>

PUTC'July");
when 8 =>

PUTC'August"):
when 9 =>

PUTC'September");
when 10 =>

PUTC'October");

when 11 =>

PUTC'November");
when 12 =>

PUTC'December"):
when others =>

PUT("Error In month number");
end case;

This case statement writes out the name of a month. The particular name
written depends on the value of a variable, MONTH_NUMBER. If it has value
1, 'January' is written, if 2 then 'February' is written, and so on. If
MONTH_NUMBER has a value that lies outside the interval 1-12, then the
message 'Error in month number' is written.

The values in a list of alternatives must be static expressions - expres
sions made only of constant parts. Often the values in a list of alternatives are
simply constant values (literals), as in this example.

If any possible values are omitted from the lists of alternatives, there must
be a special others altemative. (In our example, INTEGER can take values other
than 1-12, of course.) The others altemative must come last in the case state
ment, so that when the case statement is executed, the others altemative is

reached only if the selector has a value other than those already enumerated in
the earlier altematives.

The example is now changed a little to show how it appears when several
possible altematives are enumerated in one list of altematives:

case MONTH_NUMBER is

when 1 12 1 12 =>

PUTC'Winter");
when 3 141 5 =>

PUTC'Spring");
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when 6171 8 =>

PUTC'Summer");
when 9 110111 =>

PUTC'Autumn"):
when others =>

PUTC'Error in month number");
end case;

This case statement writes the season of the year according to the value of the
variable MONTH_NUMBER. If MONTH_NUMBER has one of the values 1,2 or
12, the text 'Winter' is written; if it has one of the values 3, 4 or 5, 'Spring' is
written; if it is 6,7 or 8, 'Summer' is written; and if MONTH_NUMBER is 9, 10
or 11, then 'Autumn' is written. As before, the others alternative has to appear,
to trap illegal month numbers. The different alternatives in the list of altema-
tives are enumerated with a vertical line (1) or an exclamation mark (I) between
them. To avoid enumerating all alternatives in a list, the interval containing them
may be stated. We can rewrite our last example to take advantage of this option;

case MONTH_NUMBER Is

when 1 .. 2112 =>

PUTC'WInter");

when 3 .. 5 =>

PUTC'SprIng");
when 6 .. 8 =>

PUTC'Summer");
when 9 .. 11 =>

PUTC'Autumn");

when others =>

PUTC'Error in month number");
end case;

Alternative list in a case statement

Examples of different forms:

when 5 =>

when 518 123 =>

when ICQ .. 125 =>

when 50 160 I 70 .. 75 I 80 .. 85 =>

when others =>

Reference must be made to all possible values.

If there is an others alternative, it must come last.
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The selector can also be an expression of an enumeration type. The
following example is a section of program designed to read in a character C of
type CHARACTER from the terminal and determine whether it is a letter, a
figure or some other symbol. We assume that we have already declared three
integer variables, LETTER_COUNT, FIGURE_COUNT and OTHERS_COUNT.
If the character is a letter, the variable LETTER_COUNT is increased by one and
the text 'Letter' is displayed at the terminal; similar actions are taken if the
character is a figure or one of the remaining symbols.

GET(C);
case C is

when 'a' .. 'z' 1 'A' .. 'Z' =>

LETTER_COUNT := LETTER_COUNT + 1;

PUT_LINE("Letter");

when '0' .. '9' =>

FIGURE_COUNT := FIGURE_COUNT + 1;

PUT_LINE("Figure"); .
when others =>

OTHERS_COUNT := OTHERS_COUNT + 1;

PUT_LINE("Other");

end case;

We shall show one further example of the use of a case statement, in a
program that simulates a simple calculator. When the program is run it expects
the user to type at the terminal a simple arithmetic expression, such as:

63*35

The program calculates the value of the expression and displays it at the termi
nal. To simplify matters, we shall allow the user to write the expression only in
the form:

NoM

where the operands N and M are whole numbers and o is one of the operators +,
* or /. We shall not allow spaces between the operands and the operator. Here

is the program:

with TEXT.IO, BASIC_NUM_IO;

use TEXTJO, BASIC.NUMJO;

procedure CALCULATOR Is
0PERAND_1, 0PERAND_2 : INTEGER;

OPERATOR : CHARACTER;

begin
PUT_LINE("Wrlte a simple arithmetic expression"):
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GET{0PERAND_1);

GET{OPERATOR):
GET(OPERAND_2):
case OPERATOR Is

when'+' =>

PUT(0PERAND_1 + 0PERAND_2, WIDTH => 1);
when =>

PUT(0PERAND_1 - 0PERAND_2, WIDTH => 1);

when =>

PUT(OPERAND_1 * 0PERAND_2, WIDTH => 1);

when 7' =>

If 0PERAND_2 /= 0 then

PUT(0PERAND_1 /0PERAND_2, WIDTH => 1);

else

PUT("Division by zero not allowed"):

end If;

when others =>

PUTC'Faulty operator");
end case;

end CALCULATOR;

In the program, checks are made for division by zero and attempts to use an
undefined operator. An appropriate error message is sent to the user in either
case. The following display shows the output from four separate runs of the program:

Write a simple arithmetic expression
63*35

2205

Write a simple arithmetic expression
17/6

2

Write a simple arithmetic expression
17/0

Division by zero not allowed

Write a simple arithmetic expression
3%67

Faulty operator

4.5 Iteration; the loop statement

To perform iteration in Ada, that is, to execute one or several statements a num
ber of times, a loop statement is used. There are three variants of this:
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(1) a simple loop statement for writing part of a program that is to be
executed an infinite number of times;

(2) a loop statement with for for writing part of a program that is to be
executed a fixed number of times;

(3) a loop statement with while for writing part of a program that is to be
executed until a certain condition is met.

4.5.1 Simple loop statement

We shall start with the simple loop statement.

Simple loop statement

loop
sequence_of_statements

end loop;

Between the reserved words loop and end loop there is a sequence of state
ments that is executed endlessly, repeated time after time. (The loop statement
can be stopped using the operating system to stop it 'by force'. This can usually
be done by pressing a break key or a delete key at the terminal.) For example:

loop
PUT_LINE("HELPI I can't stop");

end loop;

Figure 4.1 shows the output from the loop statement. The program has to be
stopped 'by force'.

In the next program, the intention is really that the program should
run without interruption. It is part of a simple supervision program ensuring
that a temperature is kept within certain permitted values. We assume
that TAKE_TEMPERATURE, INCREASE_TEMPERATURE and DECREASE.
TEMPERATURE are procedures that we have already written and that
MIN.TEMPERATURE and MAX.TEMPERATURE are two constants.

loop
TAKE_TEMPERATURE(TEMPERATURE);
If TEMPERATURE < MIN.TEMPERATURE then

INCREASE.TEMPERATURE;

elslf TEMPERATURE > MAX.TEMPERATURE then

DECREASE.TEMPERATURE;

end if;

end loop;
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HELP! 1 can't stop
HELP! 1 can't stop
HELP!! can't stop
HELP!! can't stop
HELP!! can't stop
HELP! 1 can't stop
HELP! 1 can't stop
HELP!! can't stop
HELP!! can't stop
HELP! 1 can't stop
HELP! 1 can't stop

etc.

Figure 4.1

4.5.2 The loop statement with for

Here is an example of the second variant of the loop statement, where the
repetition occurs a specified number of times. The statements in the example
write out the 12 times table, from 1 x 12 to 12 x 12.

for l in 1 .. 12 loop

PUT(I * 12): NEW_LINE;
end loop;

Loop statement with for

for loop.parameter In start_value.. end_value loop
sequence_of_statements
end loop;

• start_value and end_value should be discrete

expressions (integer type or enumeration type).

•  loop_parameter is an identifier that is declared
automatically (treated as a constant in the
sequence of statements). Its type depends on
start value and end value.
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There must be start and end values for the iteration after the word In (1

and 12 in the foregoing example). These should be discrete expressions, that is,
expressions of an integer type or an enumeration type. Note that floating point
types are not allowed. The start and end values must be of the same type, except
that one may be of integer type and the other of type universaljnteger (for
example, a constant numeric value).

The loop parameter can be seen as a constant that is declared automati
cally because it occurs in a for construct. Thus it should not be declared in
the program's declarative part with the other declarations. (In the foregoing
example the loop parameter is called I.)

The type of the loop parameter depends on the type of start_value and
end_value. (The rules are a little complicated, so it may not be necessary to go
into these in detail at first reading.)

If start_value and end_value are of the same type, then the loop para
meter also takes that type, as long as they are not both constant values, in which
case the loop parameter is of type INTEGER. If start_value is of an integer type
and end_value is a constant value, then the loop parameter is of the same type
as start_value and if start_value is a constant value but end_value is of an

integer type, then the loop parameter is of the same type as end_value. (In Ada
83, these rules unfortunately led to constructions of the form

for I In -1 .. 10 loop

being incorrect. Instead one had to write

for I In INTEGER range -1 ..10 loop

In Ada 95, this is not a problem.)
We will show some examples where N is assumed to be of type INTEGER

and S is of type SHORTJNTEGER.

for I In 1 .. 10 loop ~ I is INTEGER
for J In 1 .. N loop ~ J is INTEGER
for K In S .. 15 loop - K is SHORTJNTEGER
for L In 8 + 10 .. 2 * 3 loop ~ L is SHORT_INTEGER
for T In 'A'.. 'C loop - T is CHARACTER
for B In FALSE .. TRUE loop -- B is BOOLEAN

It should be mentioned here that it is possible to control the type of the loop
parameter by explicitly stating it. If, for instance, the loop parameter in the first
example above should be of type SHORT_INTEGER, then it could be written
instead:

for I In SHORTJNTEGER range 1 .. 10 loop
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If the loop parameter is intended to run through all possible values for a certain
type, the range expression can be omitted and only the name of the type stated.
In the following example the loop parameter will run through all possible values
of the type CHARACTER:

for C in CHARACTER loop

When the loop statement is executed, the start_value and end_value are evalu
ated first. If start_value is greater than end_value the loop statement terminates
immediately: the sequence of statements is not executed. If start_value is
less than or equal to end_vafue, the loop parameter is initialized to start_vafue.
The sequence of statements is then executed once. The loop parameter may
be used as a constant within the sequence of statements in the normal way,
in expressions for example. To attempt to change the value of the loop
parameter by assignment or in any other way is not allowed - it is, after all, a
constant.

When the sequence of statements has been executed once, the value of
the loop parameter is automatically changed. If it has an integer type it is
increased by one; if it has an enumeration type it takes the next value in the
series. Then the loop parameter is compared with end_value. (Note that
end_value is not evaluated again: the program 'remembers' the value that it
found the first time through the loop statement.) If the loop parameter is less
than or equal to end_value, the sequence is executed once again, otherwise the
loop statement terminates. This process is repeated until the loop statement ter
minates. The number of times the sequence of statements is repeated depends,
therefore, on the start_value and end_value.

It should be noted that the loop parameter is only defined within the loop
statement: it cannot be used either before or after the loop statement.

Consider a few more examples. The first is part of a program that reads
in an integer N and then displays N * N lines at the terminal with a plus sign on
every line. If, for example, the user gives the number 4 at the terminal, 16 lines
will be displayed with a plus sign on every line.

GET(N);

for LINE_NUMBER In 1 .. N » N loop
PUT_LINE(V');

end loop;

The next example involves a loop parameter that is not an integer type
but an enumeration type. In the loop statement, the alphabet is written out in
small letters.

for CHAR in 'a' .. 'z' loop
PUT(CHAR);

end loop;



Iteration: the loop statement 135

Here start_value and encl_value have the enumeration type CHARACTER and
the loop parameter CHAR also takes this type. The first time through, CHAR has
value 'a', the second time 'b', the third time 'c', and so on, until the final time

it has the value 'z'. (This is because the lower-case letters 'a' to 'z' are next to
each other in the ASCII code, as we saw earlier.) The display appears:

abcdefghljklmnopqrstuvwxyz

The repetition can be made to go backwards, that is, the loop parameter can
count down instead of up, if the word reverse Is added. For example, the state
ment:

for NUMBER In reverse 1 .. 5 loop
PUT(NUMBER);

end loop;

gives the output:

5  4 3 2 1

Reverse

In a loop statement with for, the loop parameter can
run through its values backwards if the word reverse
is added.

Note that a loop parameter of integer type will always increase (or
decrease) by one, each time it goes through the loop. If another step length is
required, it can be achieved as shown in the next example. First two integers,
FIRST_NUMBER and 1_AST_NUMBER are read from the terminal. Then every
tenth number in the interval between FIRST_NUMBER and LAST_NUMBER is

displayed at the terminal.

GET(FIRST_NUMBER);
GET(I_AST_NUMBER);
for I In 0 .. (LAST_NUMBER - FIRST_NUMBER) /10 loop

PUT(FIRST_NUMBER + 1*10);
end loop;

If the user types in 200 and 250, for example, the output is:

200 210 220 230 240 250
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4.5.3 The loop statement with while

The third variant of the loop statement can be used when the number of times
the repetition will be made is not known in advance. What is known, however, is
that it will be obeyed provided a certain condition is true. When the condition
becomes false, the repetition stops.

Loop statement with while

while Boolean expression loop
sequence_of_statements

end loop;

The statement is executed as follows. First the Boolean expression
following the word while is evaluated. If this expression is false nothing more
is done: the loop statement has been executed. If, however, the Boolean expres
sion is true, the sequence of statements within the loop statement is executed
once. After that, the Boolean expression is evaluated anew. If it is false, the loop
statement terminates; if it is true it is executed once more, and so on.

Thus, execution continues until the Boolean expression finally becomes
false. If the expression never becomes false, the sequence of statements will be
executed endlessly, or until the program is terminated 'by force'. It is very
common for an error to be made during programming such that the Boolean
expression never becomes false: the program is said to have gone into a loop,
meaning an endless loop. It is therefore important to ensure that the values used
in the Boolean expression that follow while are changed by the statements
between loop and end loop.

Here are a couple of simple examples. The lines of program:

J := 0;

while J < 6 loop

PUT(J);
J := J + 2;

end loop;

give the output:

0  2 4

Before the first time through, J has the value 0 and the Boolean expression J < 6
is therefore true. This means that the two statements between the words loop
and end loop will be executed once: the number 0 is written and J's value is
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increased to 2. The expression J < 6 is evaluated a second time and this time it
is also true. The sequence of statements is executed again. The number 2 is
written, and J is increased to 4. The expression J < 6 is still true and so the state
ments are executed a third time. The number 4 is written and J is increased to

6. When the Boolean expression J < 6 is evaluated this time it is false, which
means that the loop statement terminates. Execution continues with the next
statement after the loop statement. Note that the variable J in this example is an
ordinary integer variable that is declared in the normal way. It should not be
confused with a loop parameter that is used in a loop statement with for. Such
a loop parameter may not be used outside the loop statement.

In the next example, it is presumed that the variable X has type FLOAT.
The lines of program:

X := 10.0;

while X > 1.0 loop

PUT(X, FORE => 6, AFT => 2, EXP => 0);
X:=X/2.0:

end loop;

when executed, give the output:

10.00 5.00 2.50 1.25

After the loop statement has been executed the variable X has value 0.625.
We shall now look at a more complicated example. We shall write a

program to calculate the sum of the mathematical series:

1  1 . I 1 . 1 1

1X1 2X2 3X3 4X4 5X5 6X6

The series has an infinite number of terms, so it is impossible to take account of
them all in the program. The signs of the terms alternate between plus and minus
and the absolute value of the terms decreases with each new term. The sum of

the series therefore approaches a certain limit: the series is said to be conver
gent. We take the decision to ignore terms that are insignificantly small with
respect to the final result. If the result is to be written with 5 decimal figures,
terms with absolute value less than 0.000001 can be ignored without any effect.

We make up an algorithm:

(1) Initialize the sum to 0 and the first term to 1.

(2) If the absolute value of the next term >= 0.000001, carry out the following two
steps:

(2.1) Add the next term to the sum.

(2.2) Evaluate a new next term.

(3) Write out the sum.
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We can refine step (1):

SUM := 0.0;

NEXT.TERM := 1.0;

Here we have introduced two variables, SUM and NEXT_TERM. They are both
real types since the sum and its terms are real numbers. The second variable is
called NEXT_TERM, even if it gives the value of the first term at this stage,
because it can then be used in the rest of the program when calculating the
values of the remaining terms. (And anyway, before starting, the first term is the
same as the next term.) We can initialize the variables directly, at the same time
as declaring them:

SUM : FLOAT := 0.0;

NEXT_TERM : FLOAT := 1.0;

Then the assignment statements above are not needed.
Step (2) becomes a loop statement:

while abs(NEXT_TERM) >= EPSILON loop
- (2.1) Add the next term to the sum
-- (2.2) Evaluate a new next term

end loop;

We have introduced a constant EPSILON here to avoid having a constant value
within the program. EPSILON is declared as follows:

EPSILON : constant := 10.0 ** (-DEC_FIGS - 1);

We have initialized EPSILON in terms of another constant DEC_FIGS which is
declared:

DEG_FIGS : constant := 5;

This is practical. If another time we want to have another number of figures after
the decimal point we only need to change the constant DEC_FIGS. EPSILON
does not need changing.

Step (2.1) becomes quite simply:

SUM := SUM + NEXT_TERM;

Step (2.2), 'Evaluate a new next term', requires some thought. A particular term
in the series, let us call it the kth term, should have the form:

1.0/FLOAT(K-K)
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To work out its value, therefore, we need a counter K to keep track of the
number of the term. It is best to make this counter an integer initialized to 1 and
then increase it by 1 each time a new term is calculated. Thus we have the
declaration:

K: INTEGER :=1;

and the statement:

K:=K+ 1;

which will be executed first in step (2.2).
Having alternate terms that are positive and negative presents a compli

cation. It can be resolved by introducing a variable SIGN which takes altemate
values + and If the calculated terms are multiplied by SIGN, they will become
alternately positive and negative. For simplicity, we shall let SIGN be a real
variable. Since term number 1 should be positive, we initialize SIGN to +1,
using the declaration:

SIGN : FLOAT := 1.0;

By including the statement:

SIGN := - SIGN;

in step (2.2), we make SIGN altemate between +1 and -1 each time a new term
is calculated. The actual calculation of the next term is then:

NEXT_TERM := SIGN / FLOAT (K * K);

NEXT_TERM has type FLOAT, so the right-hand side must also have this type
for the assignment to be made. SIGN has type FLOAT, but because K has type
INTEGER the expression K * K also has type INTEGER. This expression must
therefore be converted to type FLOAT before the division can be performed.
Note that if we had declared SIGN to be an integer, then the expression
SIGN / (K * K) would have been allowed. However, that would have meant
integer division, the result of which would always have been an integer and that
would be incorrect. NEXT_TERM should not be an integer.

If we put the three statements in step (2.2) together we get:

K := K+ 1;

SIGN := - SIGN;

NEXT_TERM := SIGN / FLOAT (K * K);

Step (3), 'Write out the sum', becomes:
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PUT{"The sum of the series Is:");
PUT(SUM, FORE => 1, AFT => DEC_FIGS, EXP => 0);

Now we can assemble all the steps into a complete program:

with TEXT_IO, BASiC_NUM_IO;

use TEXTJO, BASIC.NUMJO;

procedure SUM_SERIES is
SUM : FLOAT := 0.0;

NEXT.TERM, SIGN : FLOAT := 1.0;

K  : INTEGER :=1:

DEC_FIGS : constant := 5;

EPSILON : constant := 10.0 ** {EC_FIGS - 1);
begin

while abs(NEXT_TERM) >= EPSILON loop
-- Add the next term to the sum

SUM := SUM + NEXT_TERM;

- Evaluate a new next term

K:= K+ 1;

SIGN :=-SIGN:

NEXT_TERM := SIGN / FLOAT(K * K);
end loop;
PUT("The sum of the series Is: ");
PUT(SUM, FORE => 1, AFT => DEC_FIGS, EXP => 0);

end SUM_SERIES;

When the program is run, the output:

The sum of the series is: 0.82247

is obtained.

4.6 Exit statement

There is a special exit statement that can be used in conjunction with the loop
statement. There are two variants, the first of which is simply:

exit;

This statement must lie within a loop statement. When it is executed the
iteration is terminated and control passes out of the loop statement to the first
statement after end loop.

The second variant of the exit statement is conditional:

exit when Boolean_expression\
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On execution, the Boolean expression is evaluated first. If this is true, then a
jump out of the loop statement takes place, just as in the simple exit described
above. If the Boolean statement is not true, execution continues with the next

statement within the loop statement: no jump takes place.
For example:

loop

PUTC'Enter data");
GET{X):
exit when X < 0.0;

-- Do calculations

Display result

end loop;
-- This is where you come if a number < 0 is entered.

Exit statement

Two forms:

(1) exit;

(2) exit when Boolean_expression;

Care must be taken when exit statements are used because they can
easily lead to a program that is unclear and difficult to understand. Normally, a
loop statement with while can be used instead, with the advantage that the
condition for termination is stated at the start. If an exit statement is used, this
condition is hidden within the loop statement and it can be difficult to see it.
However, it is sometimes practical to use the exit statement in connection with
interactive data input, as in the foregoing example, and as we shall see later.

4.7 Nested loop statements

Since the sequence of statements within a loop statement can be built up of
arbitrary statements, there may well be one loop statement within another. Such
program constructs are common.
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Let us look at a simple example. We shall write a few lines of program to
print N rows of plus signs at the terminal. On the first row there will be one +,
two +s on the second, and so on. The number N will be read as input from the
terminal. If, for example, the number 5 is entered, these lines of program will
produce the following output:

+

++

+++

++++

+++++

Using the top-down method we get:

(1) Read in number N.

(2) Repeat the following step for each number K from 1 to N.
(2.1) Print a row of K plus signs.

Step (1) is simple:

PUT_L1NE("Enter the number of rows to be printed."):
GET(N);

Step (2) is:

for K in 1 .. N loop

~ (2.1) Print a row of K plus signs,
end loop;

Finally we have step (2.1):

for J In 1 .. K loop
PUT('+');

end loop;

NEW_L1NE;

If we put them all together we get:

PUT_LlNE("Enter the number of rows to be printed");
GET(N);
for K in 1 .. N loop

for J In 1 .. K loop
PUT('+');

end loop;
NEW_L1NE;

end loop;
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If we want the following output instead:

+++++

++++

+++

++

+

we only need to add the word reverse to the outer loop statement:

for K in reverse 1 .. N loop

As a further example, let us write a program that reads in 10 lines and counts
the number of lower-case letters they contain. The 10 lines can be of different
length but we shall assume that no line is longer than 100 characters. We can use
the algorithm:

(1) Set N_SMALL_LETTERS to 0.

(2) Repeat the following for each of the ten lines.

(2.1) Read in the current line.

(2.2) Repeat the following for each character in the line.

(2.2.1) If the current character is between 'a' and 'z', increase the

value of N_SMALL_LETTERS by one.

(3) Print N_SMALL_LETTERS.

This algorithm can be translated into the Ada program:

with TEXT_IO. BASIC_NUM_IO:

use TEXT_IO, BASIC_NUM_IO:

procedure COUNT_SMALL_LETTERS Is
CURRENT_LINE : STRING(1 .. 100);

LENGTH : INTEGER;

N_SMALL_LETTERS : INTEGER := 0;

begin
PUT_LINE("Write 10 lines");
for LINE_NUMBER Inl .. 10 loop
GET_LINE(CURRENT_LINE, LENGTH);
for CHAR_NUMBER In 1 .. LENGTH loop

If CURRENT_LINE(CHAR_NUMBER) In 'a' .. 'z' then
N_SMALL_LETTERS := N_SMALL_LETTERS + 1;

end If;

end loop;

end loop;
PUT("There are");
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PUT(N_SMALL_LETTERS, WIDTH => 1);
PUT(" small letters");

end COUNT_SMALL_LETTERS;

Here the procedure GET_LINE is used to read in the current line.

4.8 Interactive input

Programs that communicate with a user at a terminal while being executed are
called interactive programs. Such programs ask the user for input data and
compute the output data, which is then displayed to the user at the terminal.
Interactive programs are very common so we shall make a special study of how
such programs can be written.

All the examples shown so far have been interactive programs. We have
seen that it is important that there is a message telling the user what data he or
she should write before each input of data. A program halts when it comes to an
input statement and will not continue until the user has entered data. If there is
no message before the input statement, the user will not notice that the program
is waiting for input.

Interactive programs

Programs that communicate with the user at the
terminal.

Input from the terminal to the program should be
preceded by a request for the user to input data.

A computation of any sort has the following general form:

• Read input data.

•  Perform computations.

• Write out the result.

Frequently, a program should be able to carry out a computation several times
in a row without having to be restarted each time. The program should then act
according to the following model:

• Repeat the following three steps time after time until the user wants to
stop.
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• Read input data.
• Carry out computations.
• Write out result.

This clearly involves iteration. We shall now look at some different ways of
producing this type of program.

As an example, we shall use a program that was shown in Section 3.4.1
to calculate the length of the hypotenuse in a right-angled triangle. The input
data required are the lengths of the two shorter sides. The program in
Section 3.4.1 does only one calculation. We shall now modify the program so
that it can be used to carry out several calculations in a row, as in the foregoing
model.

In the first version, we make it easy for ourselves as programmers.
We simply ask the user to state how many calculations are required at the
beginning of the program. Thus we use a loop statement with for and get the
program:

- VERSION 1

with TEXT_IO, BASIC_NUM_IO,

ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS:
use TEXTJO, BASIC_NUM_IO, ADA.NUMERICS;

procedure HYPOTENUSE Is
A, B : FLOAT;

N_GALCULATIONS : INTEGER;
package M_FUNC is new GENERIC_ELEMENTARY_FUNCTIONS(FLOAT);
use M_FUNC;

begin
PUT_LINE ("How many calculations do you want to make?");
GET(N_CALCULATIONS);
for l ln 1 .. N_CALCULATIONS loop

PUT_LINE ("Enter lengths of the two shorter sides:");
GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT(SQRT(A**2 + B**2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

end loop;

end HYPOTENUSE;

Of course, this is inconvenient for the user, who often wants to try out different
input data and see how the results vary. In this case the number of times the cal
culation should be repeated is generally not known in advance.

What the user wants is to be able to terminate the program at any time.
This can be achieved by the program asking the user if further calculations are
to be made each time a calculation is completed:
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-- VERSION 2

with TEXTJO, BASIC_NUM_IO,

ADA.NUMERICS.GENERIG_ELEMENTARY_FUNCTIONS;

use TEXTJO, BASIC_NUMJO, ADA.NUMERICS;

procedure HYPOTENUSE Is
A, B : FLOAT;

ANSWER : CHARACTER := 'y';
package M_FUNC Is new GENERIC_ELEMENTARY_FUNCTIONS(FLOAT);
use M_FUNC;

begin

while ANSWER = 'y' loop
PUT_LINE ("Enter lengths of the two shorter sides:");
GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT(SQRT(A**2 + B**2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

PUT_LINE("Are there more calculations?");
PUT_LINE("Enter y or n");
GET(ANSWER);

end loop;
end HYPOTENUSE;

In this version we have introduced a character variable, ANSWER. The user is

asked if the program should continue, and then the first character entered in
reply (a 'y' or an 'n') is read to the variable ANSWER. We have assumed that
the user will want to carry out the calculation at least once, and have initialized
ANSWER to 'y'. This makes the expression after while always true the first time
through.

The disadvantage of this second version is that the user must arswer a
question after each calculation. There is a common trick that can be used to
avoid this: a particular value of input can be taken to mean that the program
should terminate. This should be a value that would not normally occur. It is not
always possible to find such a value. Consider, for example, a program that
reads in and adds together an arbitrary number of real numbers. There is no
particular real number that may not appear in such a sum and therefore the
method cannot be used.

In our hypotenuse example, the input data are the lengths of the shorter
sides, which must be greater than 0. We can therefore use a value <= 0 to denote
that the program should terminate. If we use a loop statement with while we get
the following program:

-- VERSION 3

with TEXT_IO, BASIC.NUMJO,

ADA.NUMERICS.GENERICELEMENTARYFUNCTIONS;
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use TEXTJO, BASIC_NUMJO, ADA.NUMERICS;
procedure HYPOTENUSE Is
A, B : FLOAT;

package M_FUNC Is new GENERIC_ELEMENTARy_FUNCTIONS(FLOAT);
use M_FUNC;

begin
PUT_LINE ("Enter lengths of the two shorter sides:"");
PUT_LINE ("Terminate by giving a negative length.");
GET(A); GET(B);

while A > 0.0 and B > 0.0 loop
PUT("The hypotenuse has length: ");
PUT( SQRT(A**2 + B*»2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

PUT_LINE; ("Enter lengths of the two shorter sides:");
PUT_LINE ("Terminate by giving a negative length.");
GET(A); GET(B);

end loop;

end HYPOTENUSE;

In this method, the calculation must come first in the loop and the input last,
because on the final go through, the negative values are read into variables A and
B. If we had the input first, as before, the program would try to carry out the
calculation using the negative values, which, of course, it should not do. We
must put the first input outside the loop statement. This is a bit clumsy because
the same statements have to be written in two places in the program.

To make the program less clumsy we can use an exit statement. Then the
input does not need to be written in several places and the loop statement becomes:

-- VERSION 4

loop
PUT_LINE ("Enter lengths of the two shorter sides:");
PUT_LINE ("Terminate by giving a negative length.");
GET(A); GET(B);
exit when A <= 0.0 or B <= 0.0;

PUT("The hypotenuse has length: ");
PUT( SQRT(A**2 + B**2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

end loop;

Here the statements appear in an order that might be closer to the natural way
of thinking.

In the two final versions of the hypotenuse program we shall use a
function in the TEXT_IO package that we have not seen before, called
END_OF_FILE. When the function END_OF_FILE is called in a program, a
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value of type BOOLEAN is returned, in other words a value that is either TRUE
or FALSE. The value TRUE is obtained if the user states that he or she does not

intend to give more data to the program, and the value FALSE is obtained if the
user continues to input data in the normal way.

How does the user state that he does not intend to input more data? If, for
example, the program requests:

Enter the lengths of the shorter sides

and the user wants the program to continue, he writes in data in the normal way,
for example:

25.7 11.3

If, on the other hand, there is no further input data, a special combination of keys
should be pressed at the terminal. The combination varies from system to sys
tem, but it is common to use the key that says CTRL on it together with another
key. (The D key or the Z key is used in some common systems.) In future, we
shall assume that the CTRL key and the D key should be pressed simultaneously.

If we use a loop statement with while, the statements in the program
appear:

- VERSION 5

PUT_LINE("Enter lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");
while not END_OF_FILE loop

GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT( SQRT(A**2 + B**2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

PUT_LINE ("Enter lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");

end loop;

As we already know, there should be an expression of type BOOLEAN after the
word while. The program can be written as it is because a call to the function
END_OF_FILE gives just such a BOOLEAN value as result. As in version 3 of
the program, we have been forced to change the order of the reading and calcu
lation within the loop. On the final go through, after the user has pressed the
CTRL and D keys, no calculation should be made. Note that the call to
END_OF_FILE should occur after the user has been asked to give the input data
and before the program tries to read in what the user has written.

In the last version we use an exit statement and avoid turning round the
order of the statements in the loop and repeating statements before the first loop
statement. This gives the most compact solution:
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-- VERSION 6

loop
PUT_LINE ("Enter the lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");
exit when END_OF_FILE;

GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT( SQRT(A**2 + B-2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

end loop;

The question arises: 'Which of these methods is best?' This depends
partly on the application. If it is known that a definite number of input data will
be read (for example, that the results from a fixed number of measurements will
be input), the first method with a for statement might be preferable.

The second version, in which the user is asked if further calculations are

to be made, is a bit clumsy, and the user may find it tedious to answer the ques
tion over and over. This version may be useful if written for an inexperienced
user who needs accurate and easily understood instructions.

Version 3 has the advantage that the condition for continuing with the
calculations is seen at the very beginning of the loop statement. The disadvan
tages are clearly that certain lines of program must be repeated and that the
statements come in an unnatural order. In this respect, version 4 with its exit
statement is preferable. This version avoids repeating part of the program and
the statements come in a natural order. It can be disadvantageous that the
program contains a jump out of a loop. It is usually said that no jumps should
occur in a well-structured program. Even so, the jump brought about by this exit
statement can be said to be well-controlled and, therefore, does not offend the

principles of structured programming.
In certain computer systems it may be standard to terminate the input data

to certain types of program using END_OF_FILE. Also, if there is no natural
'end value' for input, END_OF_FILE is useful. Then versions 5 or 6 could be
used. If these two versions are compared, version 6 might be preferred, for the
same reasons as version 4 was preferred to version 3.

EXERCISES

4.1 In an examination it is possible to get a maximum of 60 points. To pass requires
28 points and to get honours requires at least 48 points. Write a program that reads in
the marks obtained by a student and writes out one of the comments: fa/7, pass or
honours.
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(a) Use an If statement.

(b) Use a case statement.

4.2 The sides of a triangle can be denoted a, b and c. If the lengths of sides a and b, and the
size of the angle 7 between them are known then the length of the third side c can be
calculated using the formula:

c = + b^ - lab cos y

Write a program that reads in the lengths of two sides of a triangle and the angle between
them (in radians) and determines if the triangle is equilateral (all sides equal length),
isosceles (two sides equal), or scalene (no sides equal). The program should print one of
the comments: equilateral. Isosceles or scalene. Remember to be careful when compar
ing real numbers.

4.3 In Sweden, everyone has a personal identification number of 10 digits. The first six
denote the person's date of birth in the format yymmdd, and the last four are a code
(described in Exercise 4.9).

Write a program that reads in the day's date in international ISO format, namely
I9yy-mm-dd, including the dashes. The program then reads in a person's 10-digit
identification number (no dashes) and prints the message:

Congratulationsl

if it is his or her birthday.

4.4 A Swedish postal code consists of five digits; the first two denote the district to which
the code belongs. If these digits lie in the range 20-62 inclusive, or are 65 or 66, then
the code belongs somewhere in the southern part of Sweden (Gotaland). If the digits are
greater than or equal to 80, the code refers to somewhere in northern Sweden (Norrland),
and all others denote central areas (Svealand).

Write a program that reads in an address consisting of two lines: street (number and
street name) and town (postal code and town name). Each line can be up to 20 charac
ters long and will be padded with spaces when read in. The program should output one
of the messages:

To southern Sweden

To central Sweden

To northern Sweden

depending on the postal code in the first five characters in the second line of the address.

4.5 Write a program that draws up a neat table of values for the following function:

Jix) - 3-r^ - 5jc- + 2a: - 20

(a) Make the program write out values ofy(x) for all integers in the interval -10 to +10.
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(b) Make the program write out values of fix) for all j:-values in the interval -2 to +2
in steps of 0.1, that is, for the values -2.0, -1.9, -1.8, ... , 1.9, 2.0.

4.6 A borough has made the following prognosis for the changes in population over the next
few years:

• At the start of 1994 there were 26000 inhabitants.

• The rates of births and deaths are estimated at 0.7% and 0.6% of the population,
respectively.

•  The number of people moving in and out of the borough annually is estimated at
300 and 325, respectively.

Write a program to calculate the borough's estimated number of inhabitants at the begin
ning of a particular year. The year in question is to be read in as input.

4.7 Write a program that will print out all the printable ASCII characters and their corre
sponding ASCII codes.

4.8 A Caesar cipher is a very simple coding method in which each letter in the message to
be coded is replaced by the letter a fixed number of places further on in the alphabet. If,
for example, a displacement of two places is chosen, then A is replaced by C, B by D,
C by E,... , X by Z, Y by A, and Z by B. The message:

SEND MORE MONEY

is thus coded to:

UGPF OQTG OQPGA

(a) Write a program that reads in a message (maximum 80 characters), codes the
message and prints it out. Use a displacement of three for coding. Assume that only
uppercase letters are used. If any character other than an uppercase letter appears
in the message, do not replace it.

(b) Write a program that will read in a secret message, coded with a displacement of
three, and translate the message back to a readable form.

(c) Write a program that will read in a secret coded message where the displacement
used is unknown. The program should write out all possible solutions, so that the
original message can be found among them.

4.9 Referring again to the Swedish 10-digit identification number (see Exercise 4.3) write a
program to check that a given number is correct. If it is incorrect, the text:

Incorrect Identification number

should be output.
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(a) Make the program check that all characters are numerals.

(b) Make the program also check that the control figure (the final digit) is correct. The
control figure is calculated as follows:

(1) Add digits in positions 2, 4, 6 and 8.

(2) Multiply the digits in positions 1, 3, 5, 7 and 9 in the identification number by
2 and add the digits in the result.

(3) Add the results of steps 1 and 2.

(4) The control figure can now be determined because the sum of the control
figure and the sum from step (3) should be exactly divisible by 10.

4.10 A palindrome is a text that reads the same forwards as backwards. For example, 'Ada'
and 'Able was I ere I saw Elba'. Write a program that reads in a word (no more than 20
characters) and decides whether the word is a palindrome.

4.11 Write a program to write out a multiplication table as in the following example:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

The upper limit of the table should be read in as input.

4.12 Write a program to compute the least integer k such that:

i=\

The number n should be read in from the terminal.

4.13 If there is no accessible package with mathematical functions, Maclaurin series can be
used to calculate the values of certain conunon functions. For example, the function
'sin' can be evaluated with the following series:

sin X = X- — + + — • • •

3! 5! 7! 9!

Write a program that reads in a value of x and writes out sin x using this series. The result
should be written correct to four decimal places. Neglect any terms in the series that are
less than 10~^.

4.14 Write a program that reads in a certain number of real numbers and writes out at the
terminal:
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• The largest number.

• The smallest number.

•  Their mean value.

Formulate the reading in of input data in a suitable way for the following cases:

(a) The number of numbers to be read in is always known (for example, 100).

(b) The number of numbers is arbitrary but it is known that all the numbers are greater
than zero.

(c) The number of numbers is arbitrary and any real number can occur.

4.15 Write a program that calculates the value of the sum:

1=1 1

for different values of n. The program should be designed so that it repeatedly writes out
the text:

Enter the value of n

and calculates and writes out the value of //„. There should be some suitable way of
indicating that no further calculations are to be made.

4.16 Write a program that reads a line from the terminal comprising a number of words
separated by one or more spaces (80 characters maximum). The program should write
out the line of text such that only one space comes between each pair of words.
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In earlier chapters use has been made of Ada's predefined types as declared
in the package STANDARD. This chapter will show how it is possible to
declare new types. The concepts of abstraction and representation will
be discussed, that is, how types can be introduced in order to describe and
represent phenomena from the real world. The ways of declaring new numeric
types will also be reviewed. The use of enumeration types to describe the kind
of real phenomena that cannot be expressed as numerical quantities will be
studied further. In Section 5.5 a number of useful attributes for scalar types
are presented.

So far a non-standard package, BASIC_NUM_IO, has been used to
access the tools for input and output of values of the types INTEGER and
FLOAT. In Ada there is a general mechanism for creating new input/output
packages for all numeric types and enumeration types, even those declared
by the programmer. In Section 5.6 the use of this mechanism is explained.

The use of so-called subtypes in Ada will also be described, showing
how these can be used to describe objects that belong to a subgroup of a
larger, more general, group. Sections 5.8 and 5.9 deal with types that consist
of several components of the same sort and which can be used to represent
tables, texts and other data.

155
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5.1 Data abstraction

In Chapter 3 we discussed the concept that the task of a computer program is to
manipulate data, and that data objects in a program often represent some
phenomenon in the real world. When we talk about phenomena in the real
world, we nearly always use a technique known as abstraction. Abstraction
means creating a concept of something so that it can be talked about and
described. The word 'truck', for example, is an abstraction for a vehicle that can
be used for transporting things. We can talk about a truck and say that it has
certain properties, such as capacity, length, running cost and so on.

The abstraction can be made at different levels. For a maintenance

mechanic it is natural to think of a truck as consisting of many components, such
as a gear box, brake system and so on. To go down another level, it can be said
that the gear box is made up of many parts, axles, gear wheels, etc. This level
is appropriate for the design or repair of a gear box. The level of abstraction
chosen, therefore, depends on the context in which the phenomenon is to be
studied.

The advantage of deliberately choosing an abstraction is that it allows
inessential details to be ignored in favour of those properties important for the
study in hand. The driver of a truck is not interested in how the different gear
wheels inside the gear box are moving. He or she only needs to know how to
use the gear lever.

Abstraction

A 'model' or 'concept' of a real-world phenom
enon is created.

Abstraction is made at such a level that inessential

details can be ignored.

Because the data objects in a program should represent a phenomenon in
the real world, we must also be able to use abstractions when we create differ

ent data objects. This is possible in Ada. Using types and packages that we
declare ourselves, we can build up complicated types with particular properties.
It can actually be said that we have already met abstraction of data. A variable
of the built-in type INTEGER, for example, is a representation of a mathemati
cal whole number. If we prefer, we do not need to study the underlying level of
abstraction that describes how an INTEGER is represented in binary form with
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ones and zeros. We only need to know which operations can be performed on
an object of the type INTEGER.

There are several advantages to be gained by setting up new types that
specifically represent the properties of a phenomenon. The program becomes
clearer because it is more closely linked with reality. The program also becomes
safer: the compiler checks that we are not illegally mixing different types
and that we are not giving variables illegal values. The program becomes less
complex because we can choose a suitable level of abstraction and ignore
unnecessary details.

There is a distinction in Ada between scalar types and composite types.
(There are also types called 'access types' and 'private types', but we shall not
consider these yet.) Scalar types are used to describe things that can be
expressed in a single value, for example, a temperature, a printable character, or
the score in a test. Earlier we illustrated scalar data objects as storage boxes
containing only a single value. The numeric types (integer and real types) and
enumeration t3^es are among the scalar types.

The composite types are used to build up more complex descriptions of
data objects. Descriptions can be built up that contain several component
elements of the same sort, for example, text strings or tables, or descriptions that
contain component elements of diff^erent kinds, for example, the description of
a person in a hospital register.

Scalar types

The object can be expressed as one single value (for
example, a number or a character).

Composite types

The objects are composed of several individual values
(for example, a text).

The declarations of types should be placed alongside other declarations
in an Ada program. It is the ways of defining different types that will be
discussed in the rest of this chapter.
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l^pe declaration

type typename is type definition-,

where type definition depends on the type being
declared.

A type declaration is placed among the other
declarations in the program.

No objects of the type are created by the type
declaration: they are created when an object decla
ration is given.

The name of a type can be used in the same way as the names of Ada's
standard types. This includes being able to declare objects (variables and
constants) using the name. If we have the following type declaration, without
worrying how the declaration itself continues:

type TEMPERATURE Is ... ;

then the following object declarations can be made:

MEAN_TEMPERATURE : TEMPERATURE;

LIMITING_TEMPERATURE : constant TEMPERATURE := 100.0;

Note that no objects are created when the type is declared. The type (or the idea
of) TEMPERATURE is only introduced so that it can be used later. It is only
when an object declaration is made that an object is created. Type declarations
and object declarations may appear in arbitrary order in the declaration
section of a program, but a type must be declared before it is used in another
declaration.t

When both types and objects are declared in a program it can be a
problem to find suitable names. It is all too easy to decide on names in a
program that make it difficult to tell types and objects apart, making the program
both confusing and hard to understand. It can, therefore, be useful to devise a
principle for allocating names. One common principle for differentiating
between the names of types and other quantities is to let all type names end in
TYPE, for example, TEMPERATURE_TYPE and PERSON_TYPE.

* It has been pointed out before that in Ada 95 all types are without name. TEMPERATURE is actu
ally a subtype. The type declaration above is in fact two things: first, an anonymous type is declared
and second, a subtype, TEMPERATURE, of this anonymous type is declared. The subtype will
have exactly the same characteristics as the anonymous type.
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5.2 Integer types

When an integer type is declared, the least and greatest possible integer values
that objects of the type can take are stated. A few examples to illustrate this are:

type LINE_NUMBER Is range 1 .. 72;

type SCORE Is range 0 .. 100;

type NEGATIVEJNTEGER Is range -100_000 .. -1;

Declaration of integer types

type typename Is range min__value.. max_value;

where min_value and max_value are static (constant)

integer expressions.

Condition: min value <= max value

Here LINE_NUMBER, for example, describes a type whose possible values
are whole numbers in the interval 1-72. The permissible limits depend on how
integers are stored in the particular Ada implementation. If limits are requested
that the Ada implementation cannot cope with, the compiler will give an error
message. In the majority of implementations, it would probably not be permit
ted to declare the following type, for instance:

type GIANT_INTEGER Is range 0 .. 100_000_000_000_000_000;

In every Ada implementation, as we know, there is a predefined type
INTEGER which is declared in the package STANDARD. The declaration of
INTEGER can be considered as:

type INTEGER Is range leastJnteger.. greatestjnteger;

where the limits leastjnteger and greatestjnteger can be different for different
implementations of Ada.

The standard type INTEGER

The least possible and greatest possible values can
be different in different implementations of Ada.

To include all desired values, the programmer
should declare a new specific integer type.
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The two limits in a declaration of an integer type do not necessarily have
to be simple literals as above. Static expressions, that is, expressions consisting
of constant components, are also allowed:

MAX_LINE : constant := 72;

MAX_COL : constant := 17;

type ELEMENT_NUMBER is range 1 .. (MAX_LINE * MAX_COL);

Facts from the real world can be represented using specifically declared integer
types. For example, a variable MY_SCORE can be created by making the object
declaration:

MY_SCORE : SCORE;

The variable is thus an object that can only take integral values between 0 and
100. It represents a genuine score in, for example, a test. If an attempt is made
to assign a value to MY_SCORE that lies outside the limits 0 and 100, there is a
run-time error and an error message is output. This gives valuable assistance in
tracing errors of logic in a program. If MY_SCORE were simply declared as an
INTEGER, this help would not be available: all the integers included in the type
INTEGER would then be allowed. The type INTEGER can be considered as
representing the concept of whole numbers in a general mathematical sense, that
is, having no connection with any particular real object, but this is too vague a
model for a real test score.

All the operations that can be performed on objects of type INTEGER (for
example, assignment, addition, comparison) can also be performed with other
integer types, but mixing different types is not allowed. Assume, for example,
we have the following object declarations:

CURRENT_LINE, NEXT_LINE : LINE_NUMBER;

MY_SCORE: SCORE;

K : INTEGER;

Then the following assignments are not permitted:

CURRENT_LINE := MY.SCGRE; ~ Error!

K := NEXT_LINE: - Error!

MY_SCORE := K; - Error!

Nor is it permitted to mix types in expressions:

CURRENT_LINE + K - Error!

MY SCORE * K - Error!
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However, the following are allowed:

CURRENT_LINE := NEXT_LINE;

CURRENT_LINE := LINE_NUMBER(K)

MY_SCORE * SCORE(K)

Same type
Type conversion
Type conversion

In the second example we have used explicit type conversion and converted the
value of K, which is of type INTEGER, into a value of type LINE_NUMBER. In
the expression in the third example, K's value has been turned into the type
SCORE. Type conversion is allowed between all numeric types.

If we have the following declarations:

type PAGE_NUMBER is range 1 .. 500;

type INDEX is range 1 .. 500;

PAGE : PAGE_NUMBER;

I  : INDEX;

then PAGE_NUMBER and INDEX are different types in spite of being declared
in the same way. Therefore the variables PAGE and I have different types and
may not be mixed.

Operations on integer types

The normal operations that exist for INTEGER (for
example, +, -) also exist for other integer types.

Different integer types may not be mixed.

Explicit type conversion is permitted.

As discussed earlier, integer literals have the type universaljnteger and are
automatically converted into the 'right' integer type. Therefore, the following,
for example, are allowed:

CURRENT_LINE := 1;

MY_SGORE + 5

K*27

5.3 Real types

In Ada there are two categories of real types, namely floating point types and
fixed point types, as mentioned in Section 3.1.1. Only floating point types
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will be treated here. Floating point types are used to represent real values with
a certain precision, that is, with an accuracy of a certain number of digits after
the decimal point. As we saw earlier, an Ada implementation uses a binary
representation to store floating point numbers internally. Therefore only certain
real numbers can be stored exactly. The rest are stored in an approximate form.

Declaration of floating point types

type typename Is digits number_of_sig_figs;

where number__of_sig_figs expresses the accuracy as
the number of significant figures following the deci
mal point, and is a static (constant) expression.

When a floating point type is declared, the accuracy required is simply
stated in terms of the number of figures following the decimal point. The com
piler then chooses a suitable form of binary representation, namely, how many
bits should be used to store the mantissa and the exponent. The number of
digits accuracy varies from implementation to implementation. If the number
of digits accuracy requested is greater than can be stored in the implementation
in use, the compiler will give an error message. (It should be noted that when
the compiler accepts a declaration of a floating point type, it also guarantees
that a minimum number of bits will be used to store the exponent, which determines
the range of numbers that can be stored. The greater the accuracy requested, the
greater the number of bits devoted to storing the exponent.) Some examples are:

type TEMPERATURE Is digits 4;

type PRECIS10N_MEASUREMENT Is digits 15;

Following the word digits there must be a static integer expression. An integer
literal is most often used, as in these examples.

We have already met the standard type FLOAT, which can be thought of
as being declared in the following manner in the package STANDARD:

type FLOAT Is digits figure_dependent_onJmplementation;

Thus the number of digits' accuracy obtained when the type FLOAT is used can
vary from implementation to implementation. It can, therefore, be dangerous to
use this type when writing a program that is intended to be portable (usable on
all Ada implementations), because it is not possible to be sure of the accuracy
of the results computed by the program. It is thus recommended that the
programmer declares his or her own floating point types so that he or she can
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state the desired precision. If it is not possible to obtain that precision, the com
piler will detect it as an error, output an error message and the program will not
be compiled. Thus the programmer can be assured of getting the desired accu
racy if a program can be compiled without error.

The standard type FLOAT

The number of digits accuracy can be different in
different implementations of Ada.

To be sure of obtaining a certain number of digits
accuracy, the programmer should declare a spe
cific floating point type.

It is possible to state the bounds within which the numbers belonging to
the type may lie:

type PERCENTAGE Is digits 4 range 0.0 .. 100.0;

type ERROR_PROBABILITY Is digits 6 range 0.0 .. 1.0;

This ensures a check that, while the program is running, variables of the partic
ular type never assume values that lie outside its limits. It also offers assistance
with tracking down possible errors in the program's logic. The limits that appear
after the word range must be static real expressions.

In the same way as for integer types, all the operations that exist for the
type FLOAT also exist for programmer-declared floating point types, but again,
mixing different floating point types in an expression is not allowed. If this is
necessary, type conversion can be used. Real literals present no problem
because they have the type universal_real and automatically take the 'right'
type. If, for example, we have the declarations:

MAX_PERCENT : PERCENTAGE;

MAX_PROB : ERROR_PROBABILITY;

the following assignment is incorrect:

MAX_PROB := MAX_PERCENT / 100.0; -- Error!

because the expression on the right of the assignment has type PERCENTAGE
and that on the left has type ERROR_PROBABILITY. However, the following is
correct:

MAX_PROB := ERROR_PROBABILITY(MAX_PERCENT / 100.0);
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Operations on floating point types

The normal operations that exist for FLOAT (for
example, +, -) also exist for other floating point
types.

Different floating point types may not be mixed.

Explicit type conversion is allowed.

5.4 Enumeration types

There are many phenomena in the real world that are described in words rather
than numbers, for example, the days of the week. The second day of the week
is usually called Tuesday rather than day number 2. In the same way, the suits
in a pack of cards are not numbered but have names: hearts, clubs, diamonds and
spades. To describe the state of something it is also common to use different
terms rather than numbers, such as the state of an elevator being 'going up',
'going down' or 'stationary'. If phenomena like these are to be represented in a
program, numeric types will not suffice. Instead, there is the opportunity to use
enumeration types. When an enumeration type is declared, the possible values
are simply enumerated or listed.

Let us look at the three examples already mentioned: the days of the
week, the suits in a pack of cards and the state of an elevator. We can make the
following type declarations:

type DAY_OF_THE_WEEK is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY,

SUNDAY):

type SUIT Is (CLUBS, DIAMONDS, HEARTS, SPADES);

type ELEVATOR_STATUS_TYPE Is (GOING_UP, GOING.DOWN,
STATIONARY);

We can then declare variables of these types:

TODAY, TOMORROW : DAY_OF_THE_WEEK;

CURRENT_TRUMP_SUIT, SUIT_PLAYED : SUIT;

ELEVATOR_1 .STATUS : ELEVATOR_STATUS_TYPE;

The variable CURRENT_TRUMP_SUIT can then take any of the values CLUBS,
DIAMONDS, HEARTS or SPADES, but no other value. Although values are
usually considered numeric, CLUBS must also be thought of as a value of
type SUIT in the same way as 257 is a value of type INTEGER. Here are a few
examples of permitted statements:
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SUIT_PI_AYED := DIAMONDS;

CURRENT_TRUMP_SUIT := SUIT_PLAYED;

if ELEVAT0R_1 .STATUS = STATIONARY then

PUT_LINE("Elevator Is free");

end If;

It is also possible to initialize variables of enumeration types when they
are declared, as in:

ELEVAT0R_1 .STATUS : ELEVATOR_STATUS_TYPE := STATIONARY;

Of course, to mix types is not allowed. The following are incorrect:

CURRENT_TRUMP_SUIT := FRIDAY; -- Error!

TODAY := 2; -- Error!

If CURRENT_TRUMP_SUIT = TOMORROW then -- Error!

The values that are listed when an enumeration type is declared can, as in
the example above, be identifiers like TUESDAY, but it is also possible to use
character literals, as in the following example:

type HEX.DIGITS Is ('0', '1', '2', '3', '4', '5'. '6', 7'.
'8', '9'. 'A', 'B', 'C, 'D', 'E'. 'F');

Identifiers and character literals can be mixed in the same type declaration
if necessary. This has been done in the declaration of the enumeration type
CHARACTER in the package STANDARD.

Declaration of enumeration types

• type typename is {value_1, value_2,... value_N);
where value_1, value_2, etc. are either identifiers

or character literals (can be mixed in the same dec
laration).

• The values in the type are ordered in such a way
that value_ 1 < value_2 < value_3, etc.

The values in an enumeration type are ordered so that the value
listed first is least and the one that is listed last is greatest. The following logic
expressions, therefore, have the value TRUE:
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TUESDAY < SUNDAY

CLUBS <= HEARTS

STATIONARY > GOING_UP

This can be used in constructs such as:

if TODAY >= SATURDAY then

PUT_LINE("Free day");

end If;

If ELEVAT0R_1 .STATUS In GOING.UP .. GOING.DOWN then

PUT_LINE("Elevator in motion");
end If;

It is common to use the case statement in conjunction with enumeration
types, often leading to readable programs as in the following example:

case TODAY Is

when MONDAY .. THURSDAY =>

PUTC'Only work");
when FRIDAY =>

PUT("Out on the town tonight");
when SATURDAY. SUNDAY =>

PUTC'Free day");

end case;

No others alternative is needed here because all the possible values are listed.
It is also very useful to use enumeration types to control the iteration in

a loop statement with for. The total number of hours worked in a week is cal
culated in the following program. When the program is run, the operator gives
for each day of the week how many hours have been worked.

with TEXT.IO, BASIC.NUMJO;

use TEXTJO, BASIC.NUMJO;

procedure COMPUTE_HOURS_WORKED Is
type DAY_OF_THE_WEEK Is (MONDAY, TUESDAY,

WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY, SUNDAY);
TOTAL.HOURS : INTEGER := 0;

NUMBER_OF_HOURS : INTEGER;

begin
PUT_LINE("Enter hours worked on each day of the week");
for DAY In MONDAY .. SUNDAY loop
GET(NUMBER_OF_HOURS);
TOTAL.HOURS := TOTAL.HOURS + NUMBER_OF_HOURS;
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end loop;
PUT("The total number of hours worked is: ");
PUT(TOTAL_HOURS, WIDTH => 1);

end COMPUTE_HOURS_WORKED;

The loop parameter here automatically takes the type DAY_OF_THE_WEEK.
The first time through the loop, DAY will have the value MONDAY, the second
time it will have TUESDAY, and so on, until, on the final time through, DAY has
the value SUNDAY.

In general, using enumeration types increases the clarity of programs.
Therefore one should try to use enumeration types and avoid 'coding' informa
tion in programs, such as representing a Wednesday by the number 3.

Using enumeration types

• Makes programs clear.

• Avoids 'coding' information with numbers.

• Combines well with case statements.

5.5 Attributes for scalar types

When we discussed the standard types INTEGER, FLOAT and CHARACTER in
Chapter 3 we introduced the notion of an attribute. In this section we will
describe the most common attributes for scalar types, in other words for integer
types, real types and enumeration types. Attributes have the following form:
there is always a prefix first, which is the name of the type in question; that is
followed by a single apostrophe; then comes the name of the attribute.
Attributes can be divided into two categories. The first of these consists of
attributes which give information about the current type, for example, INTE-
GER'FIRST and FLOAT'DIGITS. The second category consists of attributes
which are a sort of function, and they always have a parameter following the
attribute name. An example is CHARACTER'POS(C), where the variable C is
here a parameter to the attribute.

We will start with attributes of the first category. The most common are
the following (where the identifier T specifies a type):

T'FIRST States the least possible value for objects of type T.

T'LAST States the greatest possible value for objects of type T.

T'DIGITS States the number of decimal figures accuracy for floating
point type T.



168 Types

T'WIDTH Gives an integer which states how long a text string must be in
order that all values of type T can be printed in it. In Ada 83
the attribute WIDTH is found only for integer types and enu
meration types. This attribute is often used in conjunction with
the attribute IMAGE (see below).

We can look at some examples. If we assume that an enumeration type
DAY_OF_THE_WEEK has been declared, as in the previous section, then the
expressions DAY_OF_THE_WEEK'FIRST and DAY_OF_THE_WEEK'LAST
have values MONDAY and SUNDAY, respectively. If we want to know the
number of possible values which exist for the type SHORT_INTEGER we can
use the expression:

SHORTJNTEGER'LAST - SHORTJNTEGER'FIRST + 1

Assume that the following declaration is in force:

type TEMPERATURE is digits 4;
TEMP_1 : TEMPERATURE;

If we want to find out the largest number that can be stored as type TEMPERA
TURE we can make use of the attribute TEMPERATURE'LAST. As an example
of using the attribute DIGITS, we can look at a statement that writes out the
value in the variable TEMP_1 with as many digits accuracy as is suitable:

PUT(TEMP_1, EXP => 0, FORE => 1, AFT => TEMPERATURE'DIGITS);

The attribute WIDTH can be used in connection with declarations of text string
variables. If, for example, we want to declare a variable NUMBER_STRING
which is sufficiently long to allow all integers of type SHORT_INTEGER to be
'written' in it, we can write the following:

NUMBER.STRING : STRING(1 .. SHORTJNTEGER'WIDTH);

In the second category of attributes, those which are functions, the
following are most common. As before, T is the type in question, and now one
or more parameters are found in brackets.

TPOS{value) Gives the order (enumeration number) of value. The
parameter value must be of type T. This attribute
does not exist for real types.

V\/AL{numbei) Gives the value of type T which has order number.
The parameter number must be an integer. This
attribute does not exist for real types.
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TVRED{value_n)

VSUCC{value_n)

T'IMAGE(ua/ue)

TVALUE(fexO

rMIN(x,y)

T'MAX(x,y)

Gives value_n-1 (the predecessor) of type T. The
parameter value_n must be of type T. In Ada 83 this
type does not exist for real types.

Gives value_n+1 (the successor) of type T. The
parameter value_n must be of type T. In Ada 83 this
type does not exist for real types.

The parameter value must be of type T. It returns as
result a text string in which is 'written' the value of
the parameter. Integers are written without leading
zeros but with a leading sign which can be a blank
or a minus sign. No trailing blanks are given. Values
of enumeration types are 'written' in upper-case
letters with neither leading nor trailing blanks. This
attribute does not exist for real types in Ada 83.

This is the inverse of IMAGE. The parameter text
must be of type STRING and contain text which can
be interpreted as a literal of type T. Leading and
trailing blanks are allowed. It returns as result a
value of type T.

Both parameters must be of type T. It returns as
result the lesser of x and y. This attribute exists only
in Ada 95.

Both parameters must be of type T. It returns as
result the greater of x and y. This attribute exists
only in Ada 95.

We can look at some examples of these attributes. The expression
DAY_OF_THE_WEEK'POS(TUESDAY) returns the value 1 since enumeration
types are numbered from 0. CHARACTER'VAL(119) gives the character which
has order number 119 in the ASCII code, namely the character 'w'.

The attributes PRED and SUCC can be used to obtain, respectively, the
predecessor and successor of a value of an enumeration type, thus:

DAY_OF_THE_WEEK'PRED(FRIDAY) -- returns value THURSDAY
TOMORROW := DAY_OF_THE_WEEK'SUCC(TODAY);

The last of these examples indicates that the content of the brackets does not
need to be a constant value. For an enumeration type, the first value has no
predecessor and the last value has no successor; if an attempt is made to get
either such value the result will be an execution error when the program is run.

The following example shows how the attribute IMAGE might be used.
Suppose we have a procedure DRAW_STRING which can write text at a speci
fied point on a graphics screen. The procedure will have three parameters, the
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first two giving the jc and y coordinates of the point on the screen where the text
will start and the third, of type STRING, being the text to be written out. Assume
now that we have calculated a value of type INTEGER and that its value is in
variable N. If we want to write on the screen, "The final result is: xxx", where xxx

means the value in variable N, we make the following call:

DRAW_STRING(X, Y, "The final result is:" & INTEGER'IMAGE(N));

The attributes PRED and SUCC are defined in Ada 95 for floating point types
as well. For example, in Ada 95 the expression FLOAT'SUCC(O.O) returns the
smallest number greater than zero which can be represented.

A number of further attributes are defined for floating point types, some
of which are given below. For all those shown here, T is a floating point type
and the parameters and result are of type T.

T'ROUNDING(x) Returns the rounded value of x.

TTRUNCATION(x) Gives the value of x with the decimal figures
dropped.

TFLOOR(x) Gives the largest integer which is not larger than x.

T'CEILING(x) Gives the smallest integer which is not smaller
than X.

5,6 The tools for input and output

In our programs we have used the resources in the standardized package
TEXT_IO to access read and write values of the types STRING and CHARAC
TER. To read and write values of the types INTEGER and FLOAT we have so far
used a 'home-made' package, BASIC_NUM_IO that is not standardized. We
have used it to simplify input and output in the early stages of learning Ada. If
we have numeric types other than INTEGER and FLOAT, the package
BASIC_NUM_IO will not do. We shall, therefore, look at how to use a general,
standardized method to create the resources needed for reading and writing any
sort of numeric type. We shall also look at how to read and write values of
enumeration types.

Contained in TEXT_IO, as well as the procedures for reading and writing
text, there are some templates that can be used to create new input/output pack
ages. One template is called INTEGER_IO, and with its help new packages con
taining procedures for reading and writing integer types can be created. The way
this is used in a program is illustrated by the following example, where a
package is created enabling values of the type INTEGER to be read and written
without using BASIC_NUM_IO.
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withTEXT_IO:

use TEXT_IO;

procedure IN0UT_DEM0_1 is
package INTEGER.INOUT Is new INTEGERJO(INTEGER):
use INTEGERJNOUT;

N : INTEGER;

begin
GET(N);
PUT{N);
NEW_LINE;

end IN0UT_DEM0_1;

The first with statement gives access to the package TEXT_IO and all its
resources. The first use statement makes it easy to refer to the contents of the
package TEXT_IO. For example, we can write NEW_LINE, avoiding writing the
longer form TEXT_IO.NEW_LINE as we would have to if the use statement
were not there.

Within the procedure we use the template INTEGERJO (which is in the
package TEXT_IO) to create a new package that we name INTEGER_INOUT.
Since we want our package to contain the resources to enable values of the type
INTEGER to be read and written, we write this type name in brackets after the
template's name. (The template INTEGER_IO has all that is needed for a com
plete package to be created; the only thing missing is the name of the type and
we must therefore state this.)

The second use statement makes it easy for us to refer to the routines in
the new package INTEGER_INOUT. For example, we can write PUT instead of
INTEGER INOUT.PUT.

Input and output of integer types

The following must be placed among the pro
gram's declarations:

package package_name is new INTEGER_IO(T);
use package_name\

where T is the name of an integer type.

The procedures PUT and GET can then be used.
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If we also want to be able to read and write values of the integer type
LINE_NUMBER, we can create another package of routines:

with TEXT.IO;

use TEXT_IO;

procedure IN0UT_DEM0_2 Is
type LINE_NUMBER Is range 1 .. 72;

package LINE_NOJNOUT is new INTEGERJO(LINE_NUMBER):
package INTEGER_INOUT Is new INTEGERJO(INTEGER):
use INTEGERJNOUT, LINE_NOJNOUT;

N  : INTEGER:

LINE : LINE_NUMBER;

begin
GET(N);

PUT(N);
NEW_LINE;

GET(LINE);

PUT(LINE);
end IN0UT_DEM0_2;

The new package is called LINE_NO_INOUT and is created in the same way as
the package INTEGER_INOUT. Both of these packages thus contain exactly the
same resources for their respective types. The procedures GET and PUT will be
found in two versions, one for the type INTEGER and one for the type
LINE_NUMBER.

The template FLOAT_IO in the package TEXT_IO can be used in the same
way to create new packages for input and output of floating point values. If we
want to be able to read and write values of type FLOAT without using the pack
age BASIC_NUM_IO, we can write in our program:

package FLOAT_INOUT is new FLOAT_IO(FLOAT);
use FLOAT_INOUT;

Then we get direct access to procedures, including PUT and GET, in versions
which can handle values of the type FLOAT.

Input and output packages for other floating point types can be created in
an analogous way. If we want to be able to read and write values of the type
TEMPERATURE directly, we can add the following lines to a program:

type TEMPERATURE is digits 4;
package TEMPERATUREJNOUT is new FLOATJO(TEMPERATURE);
use TEMPERATURE_iNOUT;
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Input and output of floating point types

• The following must be placed among the pro
gram's declarations:

package package_name is new FLOAT_IO(T);
use package_name\

where T is the name of a floating point type.

• The procedures PUT and GET can then be used.

As shown previously, it is good to use enumeration types because they
make a program clearer to understand. But to be really useful, there has to be a
simple way of reading and writing their values. In TEXT_IO there is a template
ENUMERATION_IO that can be used to achieve this. The following program
illustrates how a package of resources for reading and writing values of the type
SUIT is created.

with TEXT_IO;

use TEXT_IO;

procedure IN0UT_DEM0_3 is
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
package SUITJNOUT is new ENUMERATIONJO(SUIT);
use SUITJNOUT;

TRUMP : SUIT;

begin
GET(TRUMP);

PUT(TRUMP);
end INOUT_DEMO_3;

The template ENUMERATION_IO is used to create a new package SUIT_INOUT.
Writing SUIT in brackets states that the new package will contain resources
tailored for the type SUIT. In the package there are new versions of the proce
dures PUT and GET that can be used as in the program above. The statement:

GET(TRUMP);

makes the program halt and wait for the operator to write a value of the type
SUIT at the terminal. The operator can then type one of the words CLUBS,
DIAMONDS, HEARTS or SPADES. (Both upper- and lower-case letters are
acceptable.) Anything else is wrong and gives a run-time error.
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The statement:

PUT(TRUMP);

means that one of the words CLUBS, DIAMONDS, HEARTS or SPADES will be

displayed at the terminal, depending on the value of the variable TRUMP.
It is possible for the programmer to control whether the output is in

upper- or lower-case letters. If lower-case letters are wanted, the statement:

SUITJNOUT.DEFAULT_SETTING := LOWER.CASE;

can be inserted near the start of the program. If upper-case letters are wanted,
then the statement:

SUITJNOUTDEFAULT_SETTING := UPPER.CASE;

should be inserted instead. If no such statement is made, output will be in upper
case letters.

Input and output of enumeration types

The following must be placed among the pro
gram's declarations:

package package_name is new
ENUMERATIONJO(T):

use package_name\

where T is the name of an enumeration type.

The procedures GET and PUT can then be used to
write and read values of type T.

The standard type BOOLEAN is an enumeration type and thus values of
type BOOLEAN can be read in and written if a new package is declared:

package BOOLEANJNOUT Is new ENUMERATIONJO(BOOLEAN):
use BOOLEAN.INOUT;

This makes it possible to use PUT and GET as in the following examples:

GET(ACTIVE); - ACTIVE is a variable of type BOOLEAN

PUT(ACTIVE):

PUT(A > B);
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In the first example, the operator must type one of the words TRUE or FALSE at
the terminal, while in the other two examples either TRUE or FALSE is
displayed at the terminal.

This section ends by studying a program that reads in a date in the form:

28 OCTOBER 1996

and computes the number of the day in the year, the day number. The program
will take leap years into account. A year is a leap year if it is exactly divisible
by four but not by 100, or if it is exactly divisible by 400.

We introduce three types of our own into the program. We let the numbers
of the days hav type DAY_NUMBER_TYPE. years have type YEAR_TYPE, and
the months have the type MONTH_TYPE. We will confine our interest to the
years between 2000 BC and 2100 AD. To be able to read and write values of
these types, we shall create new input and output packages using the templates
in TEXT_10. The program looks like this:

wlthTEXT_IO:

use TEXT_IO:

procedure C0MPUT_DAY_NUI\/1BER Is

type YEAR_TYPE Is range -2000 .. 2100;
type MONTH_TYPE is (JANUARY, FEBRUARY. MARCH,

APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER,
NOVEMBER, DECEMBER);

type DAY_NUMBER_TYPE Is range 1 .. 366;
package YEAR_INOUT Is new INTEGERJO(YEAR_TYPE);
package MONTHJNOUT Is new ENUMERATIONJO(MONTH_TYPE);
package DAY_NUMBER_INOUT Is new

INTEGERJO(DAY_NUMBER_TYPE);
use YEARJNOUT, MONTHJNOUT, DAY_NUMBERJNOUT;

YEAR : YEAR_TYPE;

MONTH : MONTH_TYPE;

DAY, DAY_NO ; DAY_NUMBER_TYPE;

begin
PUT_LINE("Enter date In form: day month year,");
GET(DAY); GET(MONTH); GET(YEAR);

case MONTH Is

when JANUARY => DAY_NO

when FEBRUARY => DAY_NO

when MARCH => DAY_NO

when APRIL => DAY_NO

when MAY => DAY_NO

when JUNE => DAY NO

when JULY => DAY NO := 182 + DAY

= DAY;

= 31 +DAY

= 59 +DAY

= 90 +DAY

= 121 + DAY

= 151 + DAY
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when AUGUST => DAY.NO = 212+ DAY

when SEPTEMBER => DAY.NO = 242+ DAY

when OCTOBER => DAY..NO = 273+ DAY

when NOVEMBER => DAY.NO = 303+ DAY

when DECEMBER => DAY..NO = 334+ DAY

end case;

If (YEAR mod 4 = 0 and YEAR mod 100 /=0)
or YEAR mod 400 = 0 then

-- leap year

if MONTH >= MARCH then

DAY_NO := DAY_N0 + 1;

end if;

end if;

PUT("The day's number In the year Is ");
PUT(DAY_NO, WIDTH => 1);

end COMPUTE_DAY_NUMBER;

The program should contain a check that DAY is not greater than the number
of days in MONTH, but to simplify the program we shall ignore this
potential problem. However, there is no risk of the program accepting incorrect
years or months. If incorrect data is typed in for these, a run-time error will
result.

Ada's input/output mechanism may at first appear a little complicated.
This is only because it is so general and works for all possible numeric types and
enumeration types. There can be much to write in a program if you are working
with several types. Sometimes it is tempting to avoid declaring your own types
and adhere to the standard types INTEGER and FLOAT. Then access is only
needed to the input/output packages for these two types. In spite of this, an
attempt should still be made to use Ada's facilities for working with different
types. It increases the clarity and reliability of the program. Ada's facilities are
better equipped to represent the phenomena required, and these are automati
cally checked so that variables contain only permitted values. Furthermore, the
program is made more easily transferable from one implementation of Ada to
another.

Using your own types

• Clearer and more reliable programs.

• Better representation of reality.

• Automatic checks on values.

• Easier to transfer programs.
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5.7 Subtypes

When a real-world phenomenon is described, it is sometimes useful to introduce
a concept that denotes a subset of a more general concept. For example, 'work
day' denotes a subset of the concept 'days of the week', and 'positive integers'
is a subset of the concept 'integers'. In Ada, such subsets of concepts can be
represented by using subtypes. Declarations of subtypes appear much like the
ordinary type declarations and are placed in the same part of the program. A
declaration of a subtype begins with the reserved word subtype.

For example, suppose we have already declared the enumeration type
DAY_OF_THE_WEEK:

type DAY_OF_THE_WEEK Is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY,

SATURDAY, SUNDAY);

Now we can declare a subtype of DAY_OF_THE_WEEK that we shall call
WORKDAY:

subtype WORKDAY Is DAY_OF_THE_WEEK range MONDAY .. FRIDAY;

In the declaration of the subtype we state that the base type is
DAY_OF_THE_WEEKt and that the permitted values for the new subtype
should lie in the interval MONDAY to FRIDAY.

Now it is possible to declare objects of either the type DAY_OF_THE_WEEK or
the subtype WORKDAY:

TODAY : DAY_OF_THE_WEEK;

NEXT_WORKDAY : WORKDAY;

The declaration of a subtype does not mean that a new type has been created. It
simply means that a name has been introduced for a subset of a base type. In our
example we can express it thus: the variables TODAY and NEXT_WORKDAY
belong to the same type, namely DAY_OF_THE_WEEK, but NEXT_WORKDAY
is specified further in that it belongs to the subtype WORKDAY. This means that
the following assignment is permitted:

TODAY := NEXT_WORKDAY;

^ As we have mentioned before, types in Ada 95 are actually nameless. In fact,
DAY_OF_THE_WEEK is itself a subtype, with an anonymous base type. This means that the base
type of WORKDAY is not DAY_OF_THE_WEEK but its anonymous base type.



178 Types

Both variables are simply of the same type. The assignment may also be turned
round:

NEXT.WORKDAY := TODAY;

However, this assignment could lead to a run-time error when the program is
executed; this would happen if TODAY contained some value outside the inter
val MONDAY .. FRIDAY (that is, either of the values SATURDAY or SUNDAY).

The good thing about using subtypes, then, is that they provide extra
support in finding errors in the logic of a program. Furthermore, they allow a
better representation of the facts, which again increases the clarity of a program.

The limits stated in a declaration do not need to be static. Arbitrary
expressions may be used:

START : INTEGER :=... ;

N  : INTEGER ;

type NUMBER_TYPE is range 1 .. 1000;

subtype CERTAIN_NUMBERS Is NUMBER_TYPE
range START .. START + N - 1;

Here we assume that the variables START and N are initialized to some values.

If the values are such that one of the limits lies outside the interval 1-1000, or

if the second limit is lower than the first, we shall get a run-time error.
In the package STANDARD two subtypes of the type INTEGER are

declared:

subtype NATURAL Is INTEGER range 0 .. INTEGER'LAST;

subtype POSITIVE Is INTEGER range 1 .. INTEGER'LAST;

These represent the mathematical concepts of 'natural numbers' and 'positive
integers' and it is appropriate to use them instead of INTEGER for work with
general integral values that are known to be > 0 or > 1, respectively.

If we have the following object declarations:

NATURAL;

POSITIVE;

INTEGER;

then the following statements are allowed because all the variables actually have
the same type, INTEGER:

P  := N + P;

I  := P - N;
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Types other than enumeration and integer types may have subtypes. For exam
ple, subtypes of floating point types can be constructed:

type MEASUREMENT is digits 10;

subtype PRESSURE is MEASUREMENT range 0.0 .. 3.0;

If a numeric object has to be described, then either a completely new type
can be declared, as we did earlier, or a subtype of a numeric type already in
existence, such as FLOAT or INTEGER, can be used. When is one better than the
other? The choice of method should be guided by the actual objects to be
represented. To represent things that have nothing to do with one another, use
completely new types and not subtypes. Then, of course, it is possible to check
that they are not mixed by mistake in the program. Otherwise, subtypes can be
used. This can be particularly practical when carrying out many computations
with closely related objects, because then it is not necessary to make explicit
type conversions throughout the computations.

Declaring subtypes

subtype U is T range min_value.. max_value\

where U is the name of the subtype and T is the
name of a type. T can be a numeric type or an
enumeration type. The smallest and greatest pos
sible values for objects of subtype U are given by
min_value and max_value.

U becomes a subtype of T. No new type is created.

Objects of subtype U will have type T.

Using subtypes

When closely related objects are in use and many
computations are to be made using them.

Good representation of reality.

Provide help with tracing errors of logic.

For real objects that are not closely related, com
pletely new types should be used in preference to
subtypes.
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Let us look at a program where it is natural to use subtypes. The program
asks the user to choose two of the colours red, yellow and blue, and then it
writes out the name of the colour obtained by mixing them. A type COLOUR is
introduced that describes all possible colours and mixtures. We then let the three
primary colours make up a subtype of COLOUR, called PRIMARY_COLOUR.

with TEXT_IO:

use TEXT.IO;

procedure MIX_COLOURS Is

type COLOUR Is (RED, YELLOW, BLUE,

ORANGE, GREEN, PURPLE);
subtype PRIMARY_COLOUR Is COLOUR range RED .. BLUE;
package COLOURJNOUT Is new ENUMERATION_IO(COLOUR);
use COLOURJNOUT;

C0L0UR1,C0L0UR2 : PRIMARY_COLOUR;
COLOUR_MI : COLOUR;

begin
PUT_LINE("Welcome to the colour mixing program!");
PUT_LINE("The primary colours are RED, YELLOW and BLUE");
PUT_LINE{"The colour mixes are ORANGE, GREEN and PURPLE");
PUT_LINE("Terminate the run with CTRL-D.");

loop

NEW_LINE; -- extra blank line

PUT_LINE("Enter two of the primary colours");
exit when END_OF_FILE;

GET(COLOURI); GET(C0L0UR2);

If (C0L0UR1 = RED and COLOUR2 = YELLOW) or
(COLOUR2 = RED and COLOUR1 = YELLOW) then
COLOUR_MIX := ORANGE;

elsif (COLOUR1 = YELLOW and C0L0UR2 = BLUE) or
(C0L0UR2 = YELLOW and COLOUR1 = BLUE) then

COLOUR_MIX := GREEN;
elsif (C0L0UR1 = RED and C0L0UR2 = BLUE) or

(C0L0UR2 = RED and COLOUR1 = BLUE) then
COLOUR.MIX := PURPLE;

else - same colours

COLOUR_MIX := COLOUR1;
end If;

PUT("The colour mixture will be ");
PUT(COLOUR_MIX); NEW_LINE;
end loop;
end MIX_COLOURS;
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The two input colours are of the subtype PRIMARY_COLOUR, thus automati
cally checking that no values other than the permitted ones, RED, YELLOW and
BLUE, are input. We can use the same input/output package, COLOUR_INOUT,
for reading and writing all the colours, both primary colours and mixtures,
because they all belong to the same type, COLOUR.

The program is designed so that it repeatedly reads in the primary colours
and displays the name of the mixture, until the user wants to stop. The termina
tion variant with END_OF_FILE and an exit statement is used in the program,
as described in Section 4.8. Below is shown the output from the program:

Welcome to the colour mixing program!
The primary colours are RED, YELLOW and BLUE
The colour mixes are ORANGE, GREEN and PURPLE
Terminate the run with CTRL-D.

Enter two of the primary colours
yellow blue
The colour mix will be GREEN

Enter two of the primary colours

blue red

The colour mix will be PURPLE

Enter two of the primary colours
yellow yellow

The colour mix will be YELLOW

Enter two of the primary colours

Now the user types CTRL-D at the terminal

5.8 Array types

The scalar types we have declared so far have been simple types where each
object of the type assumes only one single value. Now we shall study array
types. In an array type, an object consists of a numbered collection of similar
components. It can also be said that an object of an array type is a kind of table
in which each element has a particular number associated with it.

5.8.1 Constrained array types

We shall start by looking at constrained array types. When a constrained array
type is declared, both the numbering of the components and the types of the
individual components must be specified. Let us look at an example:

type SERIES_OF_MEASUREMENTS is array (1 .. 10) of FLOAT;
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The idea is that the type SERIES_OF_MEASUREMENTS should represent a
series of 10 measurements of some sort, in which each single measurement is
represented by a real number. The reserved word array states that the declara
tion involves an array type. After this word, the numbering of the components
is specified. In this example, they will be numbered using the integers 1-10,
inclusive. Finally, the type of the individual components is given, here FLOAT
because each measurement consists of a real number. We can declare variables

of this new type:

SER1ES_A, SERIES_B : SERIES_OF_MEASUREMENTS:

Figure 5.1 illustrates the variable SER1ES_A. The variable can be likened to 10
'compartments', each holding a value of the type FLOAT. The first compartment
is numbered 1, the second is 2 and so on. The contents of the compartments are
not yet defined: the value of a variable is normally undefined after declaration
unless deliberately initialized. (It is possible to initialize array variables at the
same time as they are declared in exactly the same way as simple variables. We
will return to this soon.)

To enable access to a particular component of an array, indexing is used;
we have already seen this in operation in connection with the type STRING. For
example, to give the second component of the variable SERIES_A the value 1.5,
we can write;

SER1ES_A(2) := 1.5;

Then we get the SER1ES_A shown in Figure 5.2. A component that is selected
by indexing can be used in the same way as a normal scalar variable, as in the
expression:

SERIES_B(1) := 2.0 * SER1ES_A(7);

When the type SER1ES_0F_MEASUREMENTS was declared, the interval:

(1 .. 10)

was specified as the way in which the individual components should be num
bered. What this really means is that the component numbers should have type
INTEGER and lie in the interval 1-10. When an individual component is

10

Figure 5.1
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7 1.5 7 7 7

10

Figure 5.2

selected by indexing, the index expression in the brackets can be a normal
expression. It does not need to be a constant value as in the example above.
However, the expression must have the same type as the numbers of the
components of the array and its value must lie in the specified interval. Thus for
the variables SERIES_A and SERIES_B, index expressions must have the type
INTEGER and be in the interval 1-10.

We shall look at a simple example of a program that uses an array.
The program will read from the terminal 10 real numbers that make up a series
of measurements. Then it will calculate the mean value of the measurements

and display it. Finally, the program will write out all the measurements that
are larger than the calculated mean. We shall use the type SER1ES_0F_
MEASUREMENTS, but in the declaration we have used a constant
SER1ES_LENGTH instead of writing the literal 10. This constant is also used
in the program itself, so the program can be changed easily if the size of the
series should change. It is a good rule to use constants in this way. The program
is:

with TEXT_10, BAS1C_NUM_10;

use TEXT.IO, BASIC.NUMJO;

procedure INVESTIGATE.MEASUREMENTS is
SER1ES_LENGTH : constant := 10;

type SER1ES_0F_MEASUREMENTS is array
(1 .. SER1ES_LENGTH) of FLOAT;

SERIES

SUM

MEAN

SER1ES_0F_MEASUREMENTS;

FLOAT := 0.0;

FLOAT;

begin
PUT_LlNE("Enter the measurements");

for I in 1 .. SER1ES_LENGTH ioop
GET(SER1ES(1));
SUM := SUM + SERlES(l);

end loop;

MEAN := SUM / FLOAT(SERlES_LENGTH);
PUTC'The mean Is "); PUT{MEAN); NEW.LINE;

PUT_LlNE("Measurements greater than the mean:");
for 1 In 1 .. SERIES.LENGTH loop
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If SERIES(I) > MEAN then
PUT("Measurement no.");
PUT(I, WIDTH => 2):
PUT(" is"):

PUT(SERIES{I)): NEW.LINE;
end If;

end loop;

end INVESTIGATE_MEASUREMENTS;

It is very common to use loop statements with for when arrays are
involved. In the first loop statement we make the loop parameter run from 1 to
10, that is, through all the components of the array SERIES. Each time, one
measurement is read and stored in one of the components of the array SERIES.
The statement:

GET(SERIES(I));

causes one measurement to be stored in the component numbered I. Thus, the
first time round a value is read to component 1, the second time to component
2, and so on.

While measurements are being read in, the program also calculates the
sum of all the components. The mean is obtained by dividing this sum by the
length of the series. The constant SERIES_LENGTH has type universaljnteger
and must therefore be converted to type FLOAT in the calculation.

The second loop statement runs, again, through all the components in the
array SERIES. Each component now holds the result of one measurement. If a
measurement is larger than the mean, the number of the measurement and the
measurement itself are displayed at the terminal. Figure 5.3 shows the output for
one run of this program.

There is much freedom in specifying how the individual components
should be indexed when an array type is declared. They do not have to be num
bered with integers starting from 1, as we did when we declared the type

Enter the measurements

4.3 6.5 3.8 3.9 5.2 5.0 3.9 4.4 6.1 5.5

The mean is 4.86000000E+00

Measurements greater than the mean:
Measurement no. 2 is 6.5000000E+00

Measurement no. 5 is 5.2000000E+00

Measurement no. 6 is 5.0000000E+00

Measurement no. 9 is 6.100000GE+00

Measurement no. 10 is 5.50000000E+00

Figure 5.3
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SERIES_OF_MEASUREMENTS. For example, we can choose to start the
numbering with -100:

type LIST is array (-100 .. 100) of INTEGER;

Here we have declared a list type in which each component is a whole number
of type INTEGER. The list is indexed with integers -100 to 100, so that the first
component is numbered -100, the second -99, and so on.

In fact, values of any discrete type (integer type or enumeration type) can
be used for indexing. Here are a few examples where enumeration types are
used:

type WORKING_HOURS Is array (MONDAY .. FRIDAY) of FLOAT;

type COLOUR_NUMBER Is array (RED .. PURPLE) of INTEGER;

type NO_OF_DAYS Is array (JANUARY .. DECEMBER) of
INTEGER;

We have assumed that the types DAY_OF_THE_WEEK, COLOUR and
MONTH_TYPE have been declared as earlier in the chapter. If we declare the
variables:

MY_WORKING_HOURS : WORKING.HOURS;

NO_OF_DAYS_1 :NO_OF_DAYS;

then the first components of the variable MY_WORKING_HOURS has the index
'number' MONDAY, and the first component in the variable N0_0F_DAYS_1
has the index 'number' JANUARY. To illustrate this, we can represent the
variable MY_WORKING_HOURS as in Figure 5.4.

In the program, if a particular component is to be chosen by using index
ing, then the enumeration values are used as 'numbers':

MY_W0RK1NG_H0URS(WEDNESDAY) := 8.5;

GET(MY_WORKING_HOURS(FRIDAY));

NO_OF_DAYS_1 (MARCH) := 31;

If NO_OF_DAYS_1 (FEBRUARY) = 29 then
PUTC'Leap year");

end If;

7 7 7 7 7

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Figure 5.4
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Indexing in arrays

A(N)

where N is an expression of the same type as the index
type of A.

N's value must lie within the index constraints of A.

The type of the index expressions and the constraints on their values
depend on the index specification in the declaration. To make the type of the
index obvious, it is recommended that the following alternative form of array
declaration is used:

type SERIES_OF_MEASUREMENTS is array
(INTEGER range 1 ..10) of FLOAT;

type WORKING_HOURS Is array
(DAY_OF_THE_WEEK range MONDAY .. FRIDAY)
of FLOAT;

type LETTER.COUNT Is array (CHARACTER range 'a'.. 'z')
of INTEGER;

type COLOUR_NUMBER Is array (COLOUR range RED .. PURPLE)
of INTEGER;

In this alternative, the type of the index is stated in the brackets as well as the
interval to be used. In the third example we have used CHARACTER as index
type, CHARACTER being an enumeration type which can therefore also be
used. The first element in an object of type LETTER_COUNTS is 'numbered'
'a' and the last element is 'numbered' 'z'.

The range expression in the brackets may be left out, meaning that all the
values of the given type should be used as index values. The declaration of
COLOUR_NUMBER and NO_OF_DAYS can thus be written as follows:

type COLOUR.NUMBER Is array (COLOUR) of INTEGER;

type NO_OF_DAYS Is array (MONTH_TYPE) of INTEGER;

It is often appropriate to introduce a new type or subtype for the index
using a special declaration. This often makes the program clearer and, in addi
tion, it is then possible to declare variables of the index type. These variables
can then be used for indexing purposes. For example:

type LINE_NUMBER

type LINE_TABLE

Is range 1 .. 72;

Is array (LINE_NUMBER) of INTEGER;
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subtype LC_LETTER is CHARACTER range 'a'.. 'z';

type LC_LETTER_COUNT Is array (LC.LETTER) of INTEGER;

Ordinary expressions may be used for stating the index constraints in a
declaration of an array type: it is not necessary to use constant values as in the
examples so far. An expression that specifies a constraint on an index may thus
contain variables whose values are unknown until the program is run. The size
of the array, therefore, does not need to be known when the program is
compiled; this applies irrespective of the form chosen for stating the constraints:

type TABLE Is array (N .. 2 * N) of FLOAT;

type VECTOR Is array (INTEGER range 1 .. N) of FLOAT;

subtype LIST_INDEX Is INTEGER range 100 .. 100 + N;

type LIST Is array (LISTJNDEX) of CHARACTER;

N is assumed to be an integer variable. If the first index expression takes a value
which is greater than the second, the declaration is of an array with no compo
nents. If such an object is declared, it is called an empty array.

Declaring constrained array types

type T Is array {index_definition)
of component_type\

where T is the name of the constrained array type
and component_type is any (constrained) type.

Indexjdefinition can have any of the following
forms:

{firstjndex.. lastjndex)
{indexjype range firstjndex
{Indexjype)

lastjndex)

Firstjndex and lastjndex are expressions (not
necessarily constants) of an integer type or an enu
meration type.

indexjype should be an integer type or an enu
meration type, or a subtype of such a type.

5.8.2 Array aggregates

It has been shown that values can be assigned to the individual components of
an array by indexing. If values are to be given to several components in one
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array, there is a more convenient method than assigning values component by
component, and that is by making use of array aggregates. Then the values of
all components are given at once. A few examples will explain what this means.
The following statement means that the first, second and third components of
array SERIES_A (declared earlier) are assigned the value 1.0, the fourth is
assigned the value 0.5 and the rest of the elements in the array (that is, compo
nents 5-10) are assigned the value 0.0:

SERIES_A := (1.0, 1.0, 1.0, 0.5, 0.0,
0.0,0.0,0.0,0.0,0.0):

When there is a large array where several components are to be given the same
value the reserved word others can be used. The statement above can be written:

SERIES_A := (1.0,1.0, 1.0, 0.5, others => 0.0);

It is very common to set all the components of an array to zero. Then we write:

SERIES.B := (others => 0.0);

Using aggregates, array variables can be initialized when they are declared. The
variable DAYS_IN_MONTH can, for example, be declared in the following way:

DAYSJN_MONTH : NO_OF_DAYS := (31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31);

There is an alternative form of aggregate that has some similarities with the
case statement. One example is:

SERIES.A := SERIES_OF_MEASUREMENTS'(1 .. 3 => 1.0,

4 => 0.5,

others => 0.0);

Before the apostrophe the type of the aggregate is given. In some cases when
the reserved word others is used it is difficult for the compiler to decide the
length of the aggregate. In those cases a qualified expression including the type
name must be given, as in this example. Another example of the alternative
form of an aggregate is:

DAYS_IN_MONTH : NO_OF_DAYS :=

NO_OF_DAYS'(APRIL | JUNE | SEPTEMBER | NOVEMBER => 30,
FEBRUARY => 28, others => 31);

In an aggregate there must be exactly one value for each component. This
is most easily arranged using an others alternative. If others is used it must
come last.
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Array aggregates

A list where the values of all the components of an
array are stated at the same time.

Can be used, for example, in assignments and
comparisons.

Alternative forms:

{value_1, value_2, , vaiue_N)
{indexj=> valuej, indexJ=> valueJ, ...)
{indexjk \ index_m => value, ...)
{index_a.. Index_b=> value, ...)
{... others => value)

Value can be a general expression.

In the following example program, all the components of an array are set
to zero when the array is declared. The program's task is to read a text from the
terminal and count how many times each of the lower-case letters 'a' to 'z'
occurs in the text. To keep count of the different letters, an array COUNT is used
whose components have the standardized subtype NATURAL, that is, they are
integers > 0. In the array COUNT there is a component for each of the lower
case letters 'a' to 'z', and so the components of the array are 'numbered' with the
lower-case letters. COUNT has type COUNT_TABLE in the declaration of which
the subtype LC_LETTER has been used as index type. LC_LETTER is a subtype
of CHARACTER in which the only permitted values are the letters 'a' to 'z'.

In the program, one character at a time is read from the terminal to the
variable CHAR. This continues until the user says that the text is finished by
typing CTRL-D. If the character read is one of the lower-case letters, the corre
sponding component in the array COUNT is increased by one. The program ends
by printing the contents of the array COUNT.

with TEXT_IO, BASIC_NUM_IO:

use TEXT_IO, BASIC_NUM_IO:

procedure LC_LETTER_FREQUENCY is
subtype LC_LETTER is CHARACTER range 'a'.. 'z';
type COUNT_TABLE is array (LC_LETTER) of NATURAL;

COUNT : COUNT_TABLE := (others => 0);
CHAR ;CHARACTER;

begin
PUT_LINE("Enter the text; terminate with CTRL-D");

while not END_OF_FILE loop
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GET(CHAR):
if CHAR In 'a' .. 'z' then

COUNT(CHAR) := COUNT(CHAR) + 1;
end If;

end loop;

~ Write how many times each letter has occurred

NEW.LINE;

PUT_LINE("Letter Frequency");
NEW_LINE;

for T In 'a' .. 'z' loop
SET_C0L{4); PUT(T); PUT(COUNT{T), WIDTH =>11);
NEW_LINE;

end loop;

end LC_LETTER_FREQUENCY;

The statement:

COUNT(CHAR) := COUNT(CHAR) + 1;

means that if the variable CHAR contains, for example, the letter 'g', the
component with index 'number' 'g' is increased by one. Figure 5.5 illustrates
the output from a run of the program.

5.8.3 Unconstrained array types

The array types we have studied so far have all been constrained array types.
They are so called because the index constraints (and hence the number of
components) are specified in the type declaration. If we declare objects of such
a constrained array type, they will all have the same index constraints and
number of components. In certain situations it is undesirable to specify the
constraints on the index numbers. If, for instance, a part of a program is to be
written that will sort the elements of a list into order of magnitude, or one that
will carry out mathematical operations on vectors, then it is desirable that it
should work for all lists or vectors, irrespective of the number of elements in the
list or the number of components in the vectors. To cope with such a situation
Ada offers the possibility of declaring unconstrained array types. When an
unconstrained array type is declared, the index type is specified but there is no
need to state limits for the index. Instead, the symbol <> is used:

type VECTOR Is array (INTEGER range < >) of FLOAT;

type INDEX_TYPE Is range 1 .. 100;

type NUMBER_LIST Is array (INDEX_TYPE range < >) of INTEGER;

type CHAR_COUNT Is array (CHARACTER range < >) of INTEGER;
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Enter the text; terminate with CTRL-D

ada is a registered trademark of the us government
ada joint program office

Letter Frequency

a 8

b 0

c 1

d 4

e a

f 3

9 3

h 1

i 4

j 1

k 1

1 0

m 3

n 3

0 5

P 1

q 0

r 7

s 3

t 5

u 1

V 1

w 0

X 0

y 0

z 0

Figure 5.5

When an object of an unconstrained array type is declared, then the index
constraints must be stated:

VECT0R_1

VECT0R_2

MY_LIST

YOUR_LIST

UC_LETTER_COUNT

DIGIT COUNT

VECTOR{-10 .. 10);

VECT0R{1 .. N); -- N Is a variable

NUMBER_LIST(I ..2*1) -- expressions OK

NUMBER_LIST(90 .. ICQ);

CHAR_COUNT('A'.. 'Z');

CHAR_COUNT('0'.. '9');
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▼

▲

In these examples, the variables VECT0R_1 and VECT0R_2 have the same
type but different index constraints.

In Ada 95 the index constraints may be left out if the object is initialized. In that
case the index constraints are fixed by the initial value.

It is also possible to declare subtypes of an unconstrained array type.
Then the index constraints are stated in the subtype declaration:

subtype LITTLE_VECTOR is VECT0R{1 .. 3);

POINT: LITTLE.VECTGR;

Unconstrained array types

type T is array {index_type range < >)
of component_type;

where index_type is an integer type or an enumeration
type.

The index constraints must be stated when an object
of type T, or a subtype of T, is declared.

With unconstrained array types, as with constrained array types, it is
possible to give the value of an entire array at once, by assignment or at initial
ization, using aggregates:

VECT0R_1 := (0.0, 0.0, 0.0, others => 1.0);

VECT0R_2 := (others => 0.0);

In fact, we have already used an unconstrained array type on several occasions
- the standard type STRING that is defined in the package STANDARD:

type STRING Is array (POSITIVE range < >) of CHARACTER;

The declarations of variables of type STRING that we have used, for example:

PRODUCT.CODE : STRING(1 .. 6);

are thus nothing more than declarations of variables of an unconstrained array
type. For the type STRING there is, as we have seen, a special short way of
writing an aggregate, namely by enclosing the values of the components in
quotation marks:

PRODUCT_CODE := "xWy98k";
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5.8.4 Assignment and comparison

When assigning values to an array, instead of an aggregate on the right-hand
side, it is possible to have another array of the same type and with the same
number of components as that on the left-hand side. (Two arrays that belong to
the same constrained array type always fulfil these demands.) We can, for exam
ple, make the assignments:

SER1ES_A := SERIES_B; ~ constrained array types, always OK

VECT0R_1 := VECT0R_2: ~ OK if same number of components

Array assignments

A1 := A2:

where A1 and A2 have the same type and an equal
number of components.

It is not necessary for the components to have the
same numbering.

It is also possible to compare two entire arrays if they have the same type.
(They may even have different numbers of components if they belong to the
same unconstrained array type.)

If SERIES_A = SERIES_B then

while SERIES_A /= SERIES_B then

Aggregates can also be used in comparisons:

If SERIES_A = SERIES_OF_MEASUREMENTS'(others => 0.0) then

For making comparisons, the operators = and /= are defined for all array types.
Two arrays are equal if they have the same number of components and all their
corresponding components are equal. Otherwise, they are unequal. The bounds
of the array do not have to be the same. If, for example, A has an index range
1  .. 5 and B an index range 0 .. 4, then A(1) and B(0) are corresponding compo
nents, as well as A(2) and B(1), etc. For array types where the individual
components are of a discrete type (that is, integer type or enumeration type) the
comparison operators <, >, <= and >= are also defined. It is thus possible to
write:

If MY LIST > YOUR LIST then
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In such a case the comparison occurs in the same way as it does for alphabeti
cal order: if the first element in MY_LIST is greater than the first element of
YOUR_LiST (element number 90) then MY_LIST is considered to be bigger and
the Boolean expression above is true. If, however, the first element of MY_LIST
is less than the first element of YOUR_LIST, then YOUR_LIST is the bigger and
the expression is false. If the two first elements are equal, then the comparison
continues to the two second elements. If the arrays have the same number of
elements and all corresponding elements turn out to be equal, then the two
arrays are equal and the Boolean expression above is false. If the arrays have
different numbers of components and all the elements in the shorter array are the
same as the corresponding elements in the longer array, then the shorter one is
determined to be the lesser of the two.

Comparing arrays

The operators = and /= exist for all arrays which
have the same type (even if the numbers of com
ponents are not the same).

The operators <, <=, > and >= also exist if the com
ponents are of an integer type or an enumeration
type. Comparison is made on the same principles
as sorting into alphabetical order.

In assignments and comparisons, slices can be used, in the same way as
they were earlier for the type STRING.

VECT0R_1 := VECTOR_2(N - 20..N): ~ N is a variable

VECT0R_1 (0 .. 5) := VECT0R_2(1 .. 6);
If VECTOR_1(-10 .. N - 11) = VECT0R_2 then

Slices of arrays

A(N1 .. N2)

where A is an array type. N1 and N2 are expressions
whose type is the same as the index type for A.

If N2 < N1, the result is an empty slice.

Otherwise N1 and N2 must lie within the index

constraints for A.

The result has the same type as A.
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5.8.5 Attributes

We have seen that when an curay is declared there are many possible ways of
indexing it. The index constraints do not even need to be known at compilation
time, but they can be determined by expressions that are only evaluated when
the program is run. It is sometimes impossible to use constant values in a pro
gram to refer to different values of an index, for example, to state the first and
last index numbers for an array. Then some of the attributes that are defined for
array types can be used. The most useful are FIRST, LAST, RANGE and
LENGTH.

FIRST and LAST are used to find the first and last index numbers in an

array. VECTOR_1'FIRST, for example, gives the first index value for the array
VECTOR_1. FIRST and LAST can be used, for instance, to make a loop run
through all the index values for an array:

for I in VECTOR_1'FIRST .. VECT0R_1'LAST loop

end loop;

It is more elegant, maybe, to make use of the RANGE attribute instead, giving
the index interval for the array. Using RANGE we can rewrite the above loop
statement:

for I In VEGTORJ'RANGE loop

end loop;

Here the loop parameter will run through all the index values for the array
VECT0R_1.

The attribute LENGTH is used to find the number of components in an
array:

PUT("Number of components in the vector: ");

PUT(VECTOR_1 'LENGTH);

In front of the apostrophe can appear either a name of an array object (variable
or constant) or a type name, but not the name of an unconstrained array type.
Here are a few further examples:

NO_OF_DAYS'LAST - gives the value DECEMBER

NO_OF_DAYS_1 'FIRST ~ gives the value JANUARY

NO_OF_DAYS_1 'LENGTH - gives the value 12

NO_OF_DAYS'RANGE ~ gives JANUARY .. DECEMBER
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Attributes for array types

T'FIRST - gives first index value for array type T

T'LAST - gives last index value for array type T

T'LENGTH - gives number of components in array
type T

T'RANGE - gives the index interval for array type T

where T is the name of a constrained array type.

Instead of a type name, the name of an object of an
array type can be used:

A'FIRST - gives first index value for array A

A'LAST - gives last index value for array A

A'LENGTH - gives number of components in array A

A'RANGE - gives the index interval for array A

It is a good habit to try to use these attributes instead of stating index
limits as constant values in programs, for example, in loop statements.
Programs then become much more general and can more easily be changed if
the constraints on an array are changed.

5.8.6 Catenating arrays

Just as for text strings, the operator & can be used for catenating arrays. If the
type VECTOR has been declared, as earlier, to be:

type VECTOR is array (INTEGER range < >) of FLOAT;

and we have the variables:

V2 : VECT0R(1 .. 2);
V3 : VECTOR(101 .. 103);
V5 : VECTOR(0 .. 4);

then we can join V2 and V3 together:

V5 := V2 & V3;

It is also possible to join a component onto an array as in the following examples:

V3 := 27.0 & V2;

V3 := V2 & 8.0;
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5.9 Searching and sorting

To be able to search for a piece of information in tables or lists is a very
common requirement of a computer program. Arrays are naturally used in such
programs. As an example of searching we shall study a program that produces
the selling price of an article from a catalogue. As input, the user types in the
article number at the terminal when the program is run. Assume that there are
only seven different articles with the numbers and selling prices shown in
Figure 5.6. The program should work like this: if the user types, for example,
article number 123 at the terminal, then the program should write out the price
£9.15. If the user gives an article number that is not in the table, the program
should print out the message "Price details missing". We use two constant arrays
in the program, ART_NUMBER_TABLE and ART_PRICE_TABLE, both with
seven components. In ART_NUMBER_TABLE the seven article numbers are
stored, one number to each component. The first component, ART_
NUMBER_TABLE(1), thus holds the number 56, ART_NUMBER_TABLE(2)
holds 81, and so on (see Figure 5.7).

If we want to make it easy we can let the components of array ART_
NUMBER_TABLE have type INTEGER. If, however, we want to write a program
that more closely represents reality, we should declare an integer type of our
own, ARTICLE_NUMBER, and let the components have this type. We can
assume that the article numbers lie between 1 and 999.

In the array ART_PRICE_TABLE are stored, in the same way, 3.50 in the
first component, ART_PRICE_TABLE(1), 1.75 in the second, ART_PRICE_
TABLE(2), and so on. We shall declare a floating point type ARTICLE_PRICE
and let the components of ART_PRICE_TABLE have this type, assuming that no
prices are higher than £99.99.

Both arrays are initialized when they are declared. Note that the arrays
are declared as constants. A constant has been introduced into the program,
called TAB_SIZE, with the value 7, which is made use of both in the declarations

of the array types and in the program itself. It is a good idea to use a constant in
this way because the size of the tables can then easily be changed.

Article

number Price

56 3.50

81 1.75

123 9.15

379 20.00

505 0.50

811 31.45

944 5.95

Figure 5.6
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56 81 123 379 505 811 944

1 2 3 4 5 6 7

Figure 5.7

There are several methods available for searching in arrays, and these
methods have varying degrees of efficiency. In this program the simplest form
of searching, linear searching, is employed. This involves going through the
array ART_NUMBER_TABLE from the beginning until the component contain
ing the required article number is found, or until the whole array has been
searched unsuccessfully. To indicate whether the article number has been found,
a variable FOUND of type BOOLEAN is used. This is given the initial value
FALSE. Another variable 1, initialized to 1, is used to run through all possible
values of the index of the array ART_NUMBER_TABLE. The first version of the
program looks like this:

with TEXT_10;

use TEXT.IO:

procedure LOOK_UP_PRICE Is
type ARTICLE_NUMBER Is range 1 .. 999;
type ARTICLE_PRICE Is digits 4 range 0.00 .. 99.99;

package ART_NO_INOUT Is new INTEGERllO(ARTICLE_NUMBER);
package ART_PRICE_INOUT Is new FL0AT_10(ARTICLE_PRICE);
use ART_NO_INOUT, ART_PRlCE_INOUT;

TAB_SIZE : constant := 7;

type ART_NO_TAB_TYPE Is array(1 .. TAB_S1ZE)
ARTICLE.NUMBER;

type ART_PRICE_TAB_TYPE Is array(1 .. TAB_S1ZE)
of ARTICLE_PRICE;

ART_NUMBER_TABLE : constant ART_NO_TAB_TYPE :=

(56. 81, 123, 379, 505, 811, 944);
ART_PRICE_TABLE : constant ART_PRICE_TAB_TYPE :=

(3.50, 1.75, 9.15, 20.00,
0.50, 31.45, 5.95);

I  : INTEGER := 1;

FOUND : BOOLEAN := FALSE;

WANTED_ART_NO : ARTICLE_NUMBER;

begin

PUT_LINE("Enter the article number");
GET(WANTED_ART_NO);
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while I < TAB_SIZE and not FOUND loop
If ART_NUMBER_TABLE{I) = WANTED_ART_NO then
FOUND := TRUE;

else

I  :=l + 1;

end If;

end loop;

If FOUND then

PUTC'lts price is");

PUT(ART_PRICE_TABLE(I), EXP => 0, FORE => 1. AFT => 2);
else

PUTC'Price details missing");
end If;

end LOOK_UP_PRICE;

First we shall comment on the declarations of the constant arrays ART_
NUMBER_TABLE and ART_PRICE_TABLE. These have been given the types
ART_NO_TAB_TYPE and ART_PRICE_TAB_TYPE. When an array is to be
declared, it sometimes seems clumsy to have to declare its type explicitly before
the array itself can be declared, especially if the array type is not used elsewhere
in the program. A shorter way is to declare the array's type directly in the object
declaration instead. In our program, the declarations of ART_NUMBER_TABLE
and ART_PRICE_TABLE could look like this:

ART_NUMBER_TABLE : constant array(1 .. TAB_SIZE)
of ARTICLE_NUMBER

:= (56, 81. 123, 379, 505, 811, 944);
ART_PRICE_TABLE : constant array(1 .. TAB_SIZE)

of ARTICLE_PRICE

:= (3.50, 1.75, 9.15, 20.00, 0.50, 31.45, 5.95);

and the declarations of the types ART_NO_TAB_TYPE and ART_PRICE_
TAB_TYPE could be omitted.

We have created our own input/output packages in the program for the
types ARTICLE_NUMBER and ARTICLE_PRICE. The search itself takes place
in the loop statement. Each time through, one component of the array
ART_NUMBER_TABLE is looked at, and if it is the same as the required article
number the variable FOUND is set to TRUE. Otherwise, I is increased by 1 so
that the next component will be examined the next time through. This is
repeated until I has become greater than the size of the table, or until the required
article number is found.

When the loop ends, if the required article number has been found in
ART_NUMBER_TABLE the variable FOUND has the value TRUE and the

variable I contains the number of the relevant component. The corresponding
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component in the array ART_PRICE_TABLE contains the price of the required
article and this is printed in the if statement's then part. If, however, FOUND has
the value FALSE, the message "Price details missing" is printed.

If we make the Boolean expressions after while a little more compli
cated we can manage without the variable FOUND and we can simplify
what is written in the loop statement. The last part of the program could be
written:

while I <= TAB_SIZE

and then ART_NUMBER_TABLE(I) /= WANTED_ART_NO loop
I  := I + 1;

end loop;

if I <= TAB_SIZE then

PUTC'The price is");
PUT(ART_PRICE_TABLE(I), EXP => 0, FORE => 1, AFT => 2);

else

PUT("Price details missing");
end if;

The condition for the search to continue another time is that I is not too large
and that the component that I points to does not contain the required article
number. That is, the loop statement is terminated if I is greater than TAB_SIZE
or if the required article number has been found. Note that the and then opera
tor must be used here instead of and. Otherwise there would be an error on the

last time through the loop if the required article number is not found in the array,
because the program would attempt to evaluate ART_NUMBER_TABLE{8),
which does not exist. (Compare this with the argument presented in
Section 3.4.2.)

The variable I can be used in the if statement to determine whether

the article number sought has been found. If I has a value that is less than
or equal to TAB_SIZE then the loop statement must have terminated because
the Boolean expression after and then was false, that is, because the
article number has been found in the table, and I points to the component
holding it.

If we look at the table of article numbers we see that it is organized in
numerical order. This can be exploited to make the program more efficient. If
we look for an article number that is not in the table, for example, 250, we can
stop looking when we reach a number greater than it, 379 in this case. We then
know that all the remaining entries in the table are greater than 250 and hence
250 is not in the table. We can change the program thus:

while I <= TAB_SIZE

and then ART_NUMBER_TABLE(I) < WANTED_ART_NO loop

I  :=l + 1;

end loop;
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if I <= TAB_size

and then ART_NUMBER_TABLE(I) = WANTED_ART_NO then
PUT("The price is");

PUT{ART_PRICE_TABLE(I), EXP => 0, FORE => 1, AFT => 2);
else

PUT("Price details missing"):
end if;

In the loop statement we have changed only the second Boolean expression, so
that the search is only continued if the article number we are looking at is less
than the one required. Thus the loop terminates as soon as we find a component
that is greater than or equal to the one we are looking for. A test is made in the
if statement to see if the required article number has been found in the table. If
it has, I must be less than or equal to TAB_SIZE and, in addition, the loop state
ment must have stopped because the article number pointed to is the same as the
one required. Note that we must have the and then operator here as well, so that
there is no error if I has the value 8.

Because ART_NUMBER_TABLE was sorted into order, we were able
to make the search more efficient. For work with sorted arrays, there are, in
fact, much more efficient methods of searching than the linear method used in
this example. (No one looking for a name in a telephone directory starts
from the beginning and works through until he or she finds the name required!)
So it is worthwhile having arrays sorted if they have to be searched.
Therefore, in addition to searching arrays, it is important to be able to sort
them if so required. There are many common algorithms to describe ways of
sorting. We have already met one in Section 2.2 when we put cassettes into a
cassette holder. We shall now study another algorithm for sorting arrays of
integers.

We shall write a program which first reads in a maximum of 100 integers
and puts them into an array. Input ends by the user typing CTRL-D at the
terminal. Then the program sorts the array into numerical order so that the
smallest integer comes first and the largest comes last. Finally, the program
prints out the numbers in the array. To do the sort we shall use an algorithm
based on the following principle: the smallest number is found first and swapped
into the array's first 'compartment', then the next smallest element is found and
swapped into the second 'compartment', and so on. The sort algorithm can be
described as follows:

(1) Set a: to I.

(2) While K is less than the number of elements in the array:
(2.1) Search for the smallest element in that part of the array that starts at

the ̂ Tth position and ends with the last element in the array.
(2.2) Swap the smallest element (from step (2.1)) and the element in

position K.

(2.3) Increase by 1.
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Step (2.1) can be expanded to:

(2.1.1) SetMtoK.

(2.1.2) Let / run from AT + 1 to the number of the last element in the array:

(2.1.2.1) If the /th element is less than the Mth element, then set M

to I.

(2.1.3) The smallest element is now the Mth element.

Step (2.2) can be expanded to:

(2.2.1) Move the Kth element to a temporary store.
(2.2.2) Move the Mth element to position K.
(2.2.3) Move the element in the temporary store to position M.

Using this we can now put the program together and also include reading in the
numbers to the array and printing out the array.

with TEXTJO, BASIC_NUMJO;

use TEXT_IO. BASIC_NUM_IO;

procedure SORT is
MAX_NO_OF_ELTS : constant := 100;

subtype INDEX is INTEGER range
1  .. MAX_NO_OF_ELTS;

type INTEGER_ARRAY is array (INDEX) of INTEGER;

A

NO_OF_ELTS

M

TEMP

INTEGER_ARRAY;

NATURAL := 0;

INDEX;

INTEGER;

begin
-- Read numbers into the array
PUT_LINE("Enter at most 100 whole numbers");
PUT_LINE("Termlnate by typing CTRL-D");

while not END_OF_FILE and
NO_OF_ELTS < MAX_NO_OF_ELTS loop

NO_OF_ELTS := NO_OF_ELTS + 1;

GET(A(NO_OF_ELTS));
end loop;

-- Sort array

for K in 1 .. NO_OF_ELTS loop
-- Find the smallest element between

- the (K + 1 )th and the last, inclusive
M := K;

for I in K + 1 .. NO_OF_ELTS loop
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if A(l) < A(M) then
M := I;

end If;

end loop;

~ Swap Kth and Mth elements
TEMP := A(K);

A(K) := A(M);
A(M) := TEMP;

end loop;

- Write out the sorted array
NEW_LINE;

for K In 1 .. NO_OF_ELTS loop
PUT(A(K));

end loop;

end SORT;

The output from a run of the program is as follows:

Enter at most 100 whole numbers

Terminate by typing CTRL-D
16 -8 34 0-500

-500 -8 0 16 34

EXERCISES

5.1 Write type declarations for the following:

(a) A measurement of numbers of traffic accidents.

(b) The average hourly pay of an industrial worker.

(c) A bank's rate of interest, expressed as a percentage.

(d) A type of bank account. (Assume that there are current account, savings account,
capital account, checking account and house account.)

(e) A table of information about the rates of interest on these different bank accounts.

(f) The countries of the European Union (EU).

(g) A table of the average hourly wage of industrial workers in the countries of the EU.

5.2 A department store has five different departments numbered 1-5. Write a program that
reads in the takings of each department for the past week. The output from the program
should be a table that shows the percentage share of the total sales that each department
is responsible for.

What changes would have to be made to the program if the departments, instead of
being numbered, had the names women, men, children, sport and perfume!
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5.3 Write a program to read in a maximum of 1000 integers from the terminal and print them
out in the same order, but any given integer should only be printed once. If it has already
been printed it should not be printed again.

For example, if the following numbers are read from the terminal:

45 77 -22 3 45 0 21 -1 3

the program should output the following:

45 77 -22 3 0 21 -1

5.4 Assume that the enumeration type DAY_OF_THE_WEEK is declared as earlier in the
chapter. Declare a table TOMORROW that can be used to find out which day comes after
a particular given day. For example, TOMORROW(TUESDAY) should have the value
WEDNESDAY, and the value of TOMORROW(SUNDAY) should be MONDAY.

5.5 The Swedish administrative counties are denoted for many purposes by the set of letter
codes: AB, C, D, E, F, G, H, /, K, L, M, N, O, P, R, S, T, U, W, X, Y, Z, AC and BD.
Statistics for all traffic accidents that occurred in each county in a particular year have
been examined. Additional information is available on how many cars are registered in
each county. Write a program to read in the information about the accidents and the
numbers of registered cars, county by county. The program should print out which
county had the greatest number of accidents, which county had the most registered
cars and which county had the highest accident frequency in terms of accidents per
registered car.

5.6 The Roman numerals are indicated by the letters I, V, X, L, C, D and M, standing for 1,
5, 10, 50, 100, 500 and 1000, respectively.

(a) Declare a table that can be used for translating a Roman numeral into an ordinary
number (for example, L to 50). Use an enumeration type to describe the Roman
numerals.

(b) Write a program to read in a Roman number and translate it into an integer. The
Roman number is to be read as input to the program. Terminate input by using the
character combination for END_OF_FILE. For simplicity, it can be assumed that
when a Roman number is input at least one space is left between the numerals.
The user can write, for instance, M X M V / at the terminal. The program
should then print out: 1996.

In a Roman number, if the Roman numeral P stands immediately to the left
of another Roman numeral Q and if P denotes a smaller number than Q, then the value

of P is subtracted from the total number (for example, LIX means 59), otherwise P is
added to the total number (for example, LXI means 61).

5.7 A number can be shown to be a prime number if it is not exactly divisible by any smaller
prime number. Use this fact to write a program that computes the first 50 prime numbers
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and puts them into a table. (When you want to determine whether a certain number k is
a prime, you can thus find out if k is exactly divisible by one of those already saved in
the table.) The program should end when the table of 50 prime numbers has been
printed.

5.8 A travel agency at a tourist resort organizes bus tours. There is one tour on each day of
the week, and each tour has 40 places. Customers are able to reserve places on a tour no
more than one week in advance.

Write a program for the agency to look after the reservation of places. The pro
gram should repeatedly read in the name of a day and one of the following commands:
book, cancel or new.

When the command book is given the program should see if there is a place free
for the given day. If there is, the program should 'remember' that one more place has
been reserved for that day. Otherwise the program should print the message No places
left.

If the command cancel is given, the program should cancel one reservation for
the given day and 'remember' that there is one more place free. If no places were
reserved for that day, an error message should be printed.

The command new is given when there is one week until a tour should take place.
Then, the program should note that there are 40 free places.

5.9 Write a program to read in a maximum of 100 integers and place them in an array, sorted
into ascending numerical order. The program should be designed so that one number at
a time is read in and placed in the array. Before each new number is read, the numbers
read in so far should be sorted.

5.10 Statistics of the rainfall for a certain location have been collected over the past 20
years. Write a program that reads in the information for the 20 years and presents the
results in the form of a histogram. Assume the annual rainfall lies in the interval
0-3000 mm.

(a) Present the result as a horizontal histogram in the format:

0  1 2 3 (X 1000 mm)
rainfall

Year

1  ***************

2  ***********************

3
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(b) Present the result as a vertical histogram in the format:

Rainfall (mm)

3000

2000

1000

Year

5.11 Write a program that first reads in an integer k from the terminal. Then the program
should read in a maximum of 500 integers from the terminal and place them in an array.
The numbers in the array should then be rearranged to form two groups in the array. The
left-hand group should contain all the numbers < k and the right-hand group all the
numbers > k. (The number of numbers in each group and where the boundary between
the two groups lies depends on the numbers read into the array and the value of k.)

For example, if k is 20 and the array consists of the numbers:

23 16 27 3 11 34 25 20 8

then one permissible rearrangement of the array is:

8  16 20 3 11 34 25 27 23

Several other arrangements would be allowed. Note that it is not necessary to sort the
array (even if it is a possible way of solving the problem).
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6.1 Functions

6.2 Procedures

6.3 Parameter association

6.4 Top-down design with subprograms
6.5 The scope of a declaration
6.6 Overload subprograms

6.7 Named parameter association
6.8 Recursive subprograms
6.9 Functions as operators
6.10 Interfaces to oAer languages
6.11 Arguments to the main program

Exercises

It has been shown that a program consists of two parts: a declarative part
where the data objects used in the program are described, and a statement
section where the actions that the program will perform are described. The
statement section describes the algorithm that the program will carry out.
Algorithms have been expressed using the statements available in Ada
(assignment statements, If statements, loop statements, etc.). In constructing
an algorithm, it is often useful to express certain steps on a 'higher level' than
is possible with Ada's basic statements. Steps at such a higher level include,
for example, 'calculate the logarithm of X\ 'sort the table 7", 'print a heading
at the terminal' and 'calculate the mean of the measurements'. As we have

seen, higher-level steps in an algorithm occur naturally when the technique of
top-down design is applied to a programming problem. The advantage of
using this higher level is that inessential details can be ignored while the
algorithm is made the focus of attention.

In Ada it is possible to define subprograms that are made up of several
basic Ada statements. Calls to subprograms can be used as higher-level
algorithmic steps when an algorithm is under construction.

207
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The use of subprograms is a very important technique when mastering
the complexity of program design. A program should normally be assembled
from several subprograms, each of which describes a particular calculation or
stage of the program. In a large program there might even be subprograms
written in different programming languages. Subprograms can be thought of
as building blocks that are used to construct a whole program. It is because of
the support given by subprograms that the top-down design method can be
used.

In Ada there are two kinds of subprogram: functions and procedures.
A function is used to describe the computation of a particular value (for
example, the calculation of the mean of a series of measurements) and a
procedure is used to describe an action that the program has to perform but that
does not result in a direct value (for example, printing a heading at the terminal).

Examples have already been given of the use of both functions and
procedures that have come in ready-written packages, mostly in connection
with input and output. This chapter will deal with how to design subprograms
and how to use them.

6.1 Functions

A function can be regarded as a 'black box' into which one or more values can
be placed. Out of the box comes a result, whose value depends on the input val
ues. We have used functions before. In the example for calculating the
hypotenuse we used the supplied function SORT which, as its name suggests,
calculates the square root of a number. The SORT black box is illustrated in
Figure 6.1. When a supplied function is used, there is no need to worry about its
internal looks: it is sufficient to know how it should be used.

Now we shall look at how to write new functions. As the first simple
example we shall study a function MEAN_VAHJE that calculates the mean of
two floating point numbers. From the point of view of the programmer who will
use it, the function will look like Figure 6.2.

In Ada, the function MEAN_VALUE appears as:

function MEAN_VALUE (X1, X2 : FLOAT) return FLOAT Is
begin

return (X1 + X2) / 2.0;
end MEAN_VALUE;

SORT

X Va-

■iilliSiiliiiii

Figure 6.1
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X mean value

ofjcandy

y  >

Figure 6.2

This is called a function body.

Function body

function function_name (parameterjist)
return result_type is

declarative part

begin
statement_1;

statement_2;

statement_N;

end function_nam&.

After the function's name, the data that has to be entered to the function

is specified by writing a list of the function's formal parameters. Two values of
type FLOAT will be entered to the function MEAN_VALUE, so we have written
in brackets:

X1,X2: FLOAT

We have given the function two formal parameters, called X1 and X2, both with
type FLOAT. This is very similar to the declaration of two variables. When the
function is called, X1 and X2 will contain the two values that are entered to the
function.

Formal parameters to functions

• Contain the values to be entered to the function.

• Exist only within the function.

• Are treated as constants in the function.
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After the reserved word return, the type of the result that will be returned
by the function is specified. We have stated that the value returned by the function
MEAN_VALUE will have type FLOAT.

Thus the first line of the function, usually called the function's specification,
tells the programmer how to use it.

Function specification

First part of the function body.

Contains the function name, its formal parameters
and the type of its result.

The rest of the function body describes what is inside the 'black box', and the
user of the function does not normally need to bother with this. This part of
the function looks like the programs we have seen already: first comes a declar
ative part and then a sequence of statements. The body of our 'box' is only one
statement:

return (X1 + X2) / 2.0;

This is a new sort of statement that we have not met before, a return statement,

in which an expression follows the word return. This expression should have
the same type as specified after the word return in the function specification. In
the function MEAN_VALUE, therefore, the expression must have the type
FLOAT. When the return statement is executed, the expression will be evaluated.
Then execution of the function terminates and the result of the function will be

the value of the expression. That is, when the return statement is executed, the
computations in the 'box' terminate and what comes out of the 'box' is the value
of the expression in the return statement. There can be several return statements
in a function, but it is most common to have only one and for that to be the last
statement in the function.

Return statement

return expression-,

The type of the expression should be the same as the
type of the function's result.

A function is only a description of how a particular computation works, telling
us what we can put into the 'box' and what we will get out as a result. To invoke
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a computation, we have to put something into the 'box'; we must call the func
tion. In the example that follows, we have put our function MEAN_VALUE into
a complete program that reads in two numbers from the terminal, calculates
their mean and displays it at the terminal:

with TEXT_IO, BASIC_NUM_IO;

use TEXTJO, BASIC_NUM_IO;

procedure EVALUATE.MEAN Is
NUMBER1, NUMBER2. MEAN : FLOAT;

function MEAN.VALUE (XI, X2 : FLOAT) return FLOAT Is
begin

return (X1 + X2) / 2.0;

end MEAN_VALUE;

begin
PUT_LINE("Enter two real numbers");
GET(NUMBERI); GET{NUMBER2);
MEAN := MEAN_VALUE(NUMBER1. NUMBER2):
PUTC'The mean is:"); PUT(MEAN);

end EVALUATE_MEAN;

Note that the function body has been placed in the program's declaration sec
tion. In Ada 83, subprogram bodies should be placed after any declarations of
types, subtypes, variables and constants.

In Ada 95 the various declarations can be placed in any order. For example, the T
declarations of subprograms can be put before the declarations of variables if
appropriate. ▲

Order of declaration

In Ada 83, a simple rule of thumb:

Put subprogram bodies last in the
declarations.

Put all other declarations first (in arbitrary
order).

In Ada 95, all the declarations can be placed in
arbitrary order.

When the program is executed, the first statement in the program's statement
part is carried out as usual, in this case the first input statement. Suppose the user
types the values 2.0 and 2.5 at the terminal. After the program has read these
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2.0

2.5

MEAN-VALUE

■iiiililiiiiiil

IIP

MEAN : = MEAN_VALUE{NUMBER1 ,NUMBER2);

2.25

Figure 6.3

values into the variables NUMBER 1 and NUMBER2, there follows, on the third
line of the statement part, a call to the function MEAN_VALUE. What happens
is illustrated in Figure 6.3.

The expression:

MEAN_VALUE(NUMBER1, NUMBER2)

is the actual function call. First there is the name of the function being called,
and then, in brackets, there is a list of the actual parameters to the function.
When the call is executed, the values of the actual parameters are calculated
first. (In this case, no calculation is necessary because the values are already in
the variables NUMBER1 and NUMBER2.) The values of the actual parameters
are then passed to the function. Thus, here the values 2.0 and 2.5 are entered to
the function MEAN_VALUE. Figure 6.4 illustrates the function.

The two formal parameters X1 and X2 can be thought of as 'temporary
storage boxes' that are created in connection with the call to MEAN_VALUE and
which only exist while the function call is in operation. When the function is
called, the values of the first and second actual parameters are stored in X1 and

MEAN-VALUE

2.0

2.25

2.5
2.5

2.0

X2

(X1 + X2)/2.0
t  I

Figure 6.4
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X2, respectively. Thus here, X1 takes the value 2.0 and X2 takes the value 2.5.
Note that neither NUMBER1 nor NUMBER2 is affected by this: their values are
only copied into X1 and X2, respectively.

When the actual parameters have been copied, execution of the program
EVALUATE_MEAN stops temporarily while the statements in the function
MEAN_VALUE are executed. In this case the only statement, the return state
ment, is executed. The expression:

(X1 + X2) / 2.0

means that the values in X1 and X2 are added and the result is divided by 2. Thus
we get the result 2.25, the same result we would have got if we had calculated
the mean of NUMBER1 and NUMBER2 directly. The value calculated in the
return statement becomes the value which leaves the function. The function

call:

MEAN_VALUE(NUMBER1, NUMBER2)

will thus take the value 2.25.

When execution of the statements in the function MEAN_VALUE is fin

ished, the call to the function MEAN_VALUE terminates and normal execution
of the program EVALUATE_MEAN is resumed. The value of the function call is
assigned to the variable MEAN, thus here MEAN takes the value 2.25. Note that
when the function call terminates, the 'storage boxes' X1 and X2 no longer exist.
They are only temporary, for the duration of the call to MEAN_VALUE.

Within a function, the formal parameters are considered to be constants
that are initialized at the time of the call. They can be used as ordinary constants
within the statement section of the function. In the function MEAN_VALUE, for

example, they are used in an expression. Just as the value of a constant may not
be changed, it is not permitted for a function to try and change the value of a
formal parameter.

A call to a function is considered to be an expression. The type of the
expression is the same as the type given after the word return in the function
specification. Thus a call to the function MEAN_VALUE is considered as an
expression of type FLOAT. This means that a function call can be used in the
same way as other expressions in a program. In the program EVALUATE.
MEAN, for example, a call to MEAN.VALUE was placed on the right-hand side
of an assignment. We could also use a function call in a bigger expression,
such as:

MEAN_VALUE(NUMBER1, NUMBER2) / NUMBER1 * 100.0
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Since a function call is an expression, it can also be used as a parameter to the
output statement PUT. If we make use of this, we can manage without the variable
MEAN in our program:

begin
PUT_LINE("Enter two real numbers");
GET(NUMBERI); GET(NUMBER2);
PUTC'The mean Is:"); PUT( MEAN_VALUE(NUMBER1, NUMBER2));

end EVALUATE_MEAN;

In this version, the execution of the last statement is such that the function

MEAN_VALUE is called first. It returns a value of type FLOAT and the procedure
PUT is then called with this value as parameter.

The actual parameters to a function can be expressions: they do not
have to be simple variables of the kind used so far. What is essential is that an
actual parameter has the same type as the corresponding formal parameter in
the function specification. For example, the following function call would be
permissible:

MEAN_VALUE{NUMBER1 * NUMBER2, NUMBER1 + 10.0)

The first actual parameter is the expression:

NUMBER1 * NUMBER2

and the second is the expression:

NUMBER1 + 10.0

When a function call is executed, first the values of the actual parameters are
evaluated. If we assume the same values for NUMBER1 and NUMBER2 as

before, 2.0 and 2.5, respectively, then the first actual parameter has the value 5.0
and the second has the value 12.0.

A common misunderstanding regarding functions is that the values
that are entered to and returned by a function should be read from or written
to the terminal. Note that a function does not need to have anything at all to
do with terminal input and output. The values that enter the function come
from the calling program and are entered via the formal parameters (thus
the values are not read from the terminal), and the result of the function is

returned to the calling program using the return statement (it is not written at the
terminal).
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Function calls

functlon_name(a7, a2,... an)

a7, a2,... an are actual parameters

• They may be expressions.

• Their types must agree with those of the corre
sponding formal parameters.

• A function call is considered to be an expression.

The following occur:

(1) The values of a7, a2, ... an are computed.

(2) The value of a 7 is copied to the first formal para
meter, that of a2 to the second, and so on.

(3) The statements in the function are executed.

(4) The function terminates on execution of a return
statement.

(5) The value of the function call is the value in the
return statement.

(6) Execution continues after the function call.

Let us look at another example. This time we shall write a function MAX
that finds the larger of two integers. Two values of type INTEGER are entered
to the function, and the function returns one value, also of type INTEGER. Here
is the function:

function MAX {X, Y : INTEGER) return INTEGER Is
begin

if X > Y then

return X;

else

return Y;

end if;

end MAX;

The function's statement part consists of a single if statement, but we have used
two return statements. If the formal parameter X contains the bigger of the two
values, that is returned as the resulting value; otherwise the result is the other
formal parameter, Y.

The following program is an example of the use of the function MAX:

with TEXTJO, BASIC_NUMJO;

use TEXTJO, BASIC.NUMJO;
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procedure MAX_DEMO is

A, B, C, M : INTEGER;

function MAX {X, Y : INTEGER) return INTEGER Is
begin
If X > Y then

return X;

else

return Y;

end If;

end MAX;

begin
loop

PUT_LINE{"Enter three whole numbers");
exit when END_OF_FILE;

GET(A); GET{B); GET(C);
M := MAX(A. B);
M := MAX(M, C);
PUT("The biggest of them Is");
PUT(M); NEW_LINE;

end loop;
end MAX.DEMO;

Note that the function MAX is called in two places in the program. It is quite
permissible to call the same function from several places in one program and
use different parameters for different calls. Note also that, when the program is
executed, the function will be repeated many times because the calls are both in
a loop statement. In the statement:

M := MAX(A, B);

the values of the variables A and B are used as actual parameters in the function
call. When the call is executed, 'temporary stores' X and Y will be created and
the values of A and B will be copied into them. If, say, A has the value 6 and B
the value 2, then X and Y will contain the values 6 and 2, respectively. This
means that the then part of the If statement will be carried out. The statement:

return X;

is thus carried out and this means that the value of X is given as the result of the
function. In our case, it means that the function call has the value 6 and this

value is assigned to the variable M.
In the next statement:

M := MAX(M, C);
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the values of M and C are used as actual parameters. New 'temporary stores' X
and Y are created: the previous ones no longer exist. If C has the value 9, then
the values 6 and 9 will be copied to X and Y. This time, the else part of the if
statement will be executed, and the function returns the value of C, 9, as its
result. This becomes the right-hand side of the assignment statement, and the
value 9 is assigned to the variable M. (Thus the value of M changes from 6 to 9.)
Now M contains the biggest of the three numbers.

We can manage without the variable M if we write a more complicated
expression as parameter to the last PUT statement:

loop
PUT_LINE("Enter three whole numbers");
exit when END_OF_FILE;

GET(A); GET(B); GET(C);
PUT("The biggest of them is");
PUT(MAX( MAX(A,B). C)); NEW_LiNE;

end loop;

The statement:

PUT( MAX( MAX(A,B), C));

means that the procedure PUT is called with the expression:

MAX( MAX(A,B). C)

as parameter. This expression consists of a call of the function MAX with the two
actual parameters MAX(A,B) and C. The first of these is in turn a call of the func
tion MAX with the actual parameters A and B. When the statement is executed,
the expressions are evaluated from the innermost level, that is, the expressions
A and B are evaluated first (which is easy since they are simple variables). Then
the expression MAX(A,B) is evaluated (which will take the larger of the two val
ues of A and B) and the expression C. When that is done, the expression:

MAX( MAX(A,B), C)

is evaluated, which thus gives the largest of the three values as a result. This
value is passed to the procedure PUT and will be printed.

A function can have parameters of different types, as demonstrated by the
following example which deals with the calculation of interest. Assume that ££>
is placed in a bank with an annual interest rate of r%. The capital that accrues
if the money remains invested for n years can be calculated from the formula
/?(! +0.01r)".

A function for calculating the capital can take the following form:
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function COMPOUND_INTEREST(B, R : NAT_FLOAT; N : NATURAL)
return NAT_FLOAT is

begin

return B * (1.0 + 0.01 • R) ** N;
end COMPOUNDJNTEREST;

The function has three formal parameters B, R and N. The first two are of
subtype NAT_FLOAT, which we declare thus:

subtype NAT_FLOAT is FLOAT range 0.0 .. FLOAT'LAST;

The values belonging to this subtype are thus non-negative and of type FLOAT.
By making B and R take the subtype NAT_FLOAT we are guaranteeing that they
are always greater than or equal to zero. In like manner we let the third para
meter N be of subtype NATURAL, which guarantees that N never goes negative.
If the function is called in a program and one of the parameters happens to be
negative, then an execution error occurs.

In the function specification we see how to specify the formal parameters
when they are of different types and subtypes: the various parameters are spec
ified, separated by semicolons. If there are several formal parameters of the
same type or subtype then they can be written in the shorter way, as in the exam
ple above: the parameters are listed, separated by commas, but the type name
need only be written once. Thus the rules for writing formal parameters are like
the rules that apply for writing several variable declarations one after another in
a program.

Specifying formal parameters

Rules similar to variable declaration.

For example:

(XI. X2. ... Xn : typeV, Y1, Y2,... Yn : type2)

The functions we have studied so far have all had parameters and have returned
values of numeric types. Such functions are very common. However, a function
can have parameters and return results of any type. We shall look at some
functions that have parameters and results of types other than numeric. The
first example shows a function LETTER that determines whether a particular
character (of type CHARACTER) is a letter. The character for investigation is a
parameter to the function and as a result the function returns a BOOLEAN value.
The result of the function can be either FALSE or TRUE. The function can be

written:
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function LETTER (CHAR : CHARACTER) return BOOLEAN is
begin

case CHAR is

when 'a' .. 'z'! 'A' .. 'Z' =>

return TRUE;

when others =>

return FALSE;

end case;

end LETTER;

In the function specification we can see that the formal parameter CHAR has
type CHARACTER and that the result type is BOOLEAN. The statement part of
the program consists of only one case statement. If CHAR contains a lower- or
upper-case letter the statement:

return TRUE;

will be executed. Otherwise the statement:

return FALSE;

will be executed.

The function can be called as in the following example, assuming the
variable C has type CHARACTER:

GET{C);
if LETTER(C) then

PUT_LINE("letter");

else

PUT_LINE("not a letter");

end if;

In an if statement, an expression of type BOOLEAN should appear immediately
after the reserved word if, and the call of the function LETTER is just such an
expression.

We can make the function LETTER a little more elegant if we write
an expression of type BOOLEAN directly after return instead of using a case
statement:

function LETTER(CHAR : CHARACTER) return BOOLEAN is
begin

return CHAR in 'a'.. 'z' or CHAR in 'A'.. 'Z';

end LETTER;

The way of calling the function is not affected by this, since we have not
changed the function specification.
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Result type

A function may return results of any type.

The next example is a function that calculates the sum of the components
of a vector. A vector can be regarded as a list of numbers, such as:

(2.0, 1.5,-1.0)

In an Ada program we can represent a vector by an array. A vector with three
components can be described by the type:

type THREE_VECTOR is array (1 .. 3) of FLOAT;

We can now write a function SUM that has a parameter of type THREE_
VECTOR and which returns a result of type FLOAT:

function SUM(V : THREE_VECTOR) return FLOAT Is
S: FLOAT := 0.0;

begin
for l ln 1 .. 3 loop

S := S + V(l);

end loop;
return S;

end SUM;

Within the function the formal parameter can be treated as an ordinary constant
array. For example, we can pick out the individual components of V by indexing.

There is something else new in this function. We use a variable S to cal
culate the sum, and this variable is declared in a declarative part of the function.
A variable that is declared within a subprogram like this is usually called a local
variable because it can only be used locally, within the subprogram. A local
variable can be regarded in exactly the same way as a formal parameter, that is,
as a 'temporary store', which is created when the function is called and only
exists while the call is in operation. After a function has finished execution, the
local variables no longer exist. A local variable is something that exists only
within the 'black box' of the function. It is one of the things that a programmer
who is going to use the function need never know about.

Local variables

• Are declared within a subprogram.

• Exist only within the subprogram.
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Let us see how a call to SUM may appear. If we assume that a program
has the following variable declaration:

A : THREE.VECTOR := (2.0, 1.5, -1.0);

then our new function could be called, for example, like this:

PUT( SUM(A));

The value 2.5 would be written out.

The function SUM as we have written it so far has one great weakness. It can
only be used for calculating the sum of the components of a three-dimensional
vector in which the components are numbered from 1 to 3. If on another occa
sion we want to calculate the sum of the components of, say, a four-dimensional
vector, this function cannot be used. We shall now see how, with a few small
changes, the function can be made so general that it can be used for vectors of
arbitrary length and index constraints. To do this we shall use an unconstrained
array type. We declare a type VECTOR:

type VECTOR is array (INTEGER range < >) of FLOAT;

We shall now give the function's formal parameters this type instead of the type
THREE_VECTOR. This means that the number of components in V is not pre
determined. The number of components can change from call to call and is
determined by the number of components in the actual parameter.

One more detail of the function must be changed. We can no longer let
the loop parameter go from 1 to 3 in the loop statement. The number of times
through the loop and the indexing now depend on the number of components in
V and the index constraints on V. The solution to this problem is to use the
attribute V'RANGE, which gives the interval between V's first and last index.
With these amendments, the general version of the function SUM is as follows:

function SUM(V : VECTOR) return FLOAT Is
S : FLOAT := 0.0;

begin
for I In V'RANGE loop
S := 8 + V(l);

end loop;
return 8;

end SUM;

Let us look at how to call this general function. If we have a variable decla
ration:

A : VECTOR(1 .. 3) := (2.0, 1.5, -1.0);
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then the function can be called as before, using:

PUT( SUM(A)):

and we get 2.5 written out. On this call, the formal parameter V takes length 3
and index limits 1 and 3. However, if we also have the following declarations in
the same program:

X : VECTOR(0 .. 3) := (1.0, 2.0, 6.5, -4.0);

Y : VECTOR{5 .. 6) := (3.5, 2.5);

we can also have the statements:

PUT( SUM{X)); -- returns the result 5.5
PUT{ SUM(Y)); - returns the result 6.0

On the first call the formal parameter V will take the length 4 and have index
limits of 0 and 3. On the second call V's length will be 2 and it will have index
limits 5 and 6.

An array aggregate or a slice is also allowed as an actual parameter. For
example, we can make the calls:

SUM( (1.4, 0.3)) - returns the result 1.7
SUM( X(1 .. 2)) -- returns the result 8.5

Writing subprograms that are as general as possible is a worthwhile habit: they
can be used in several contexts, and the risk of having to change them when
circumstances change is reduced. The use of unconstrained array types, as in
this example, is therefore highly recommended.

Subprograms and unconstrained array types

It is advantageous to make subprograms general by
using unconstrained array types for formal parameters
and the result.

The next example will show that a function in Ada can return a value of
a composite type as its result. We shall write a function ADD that calculates the
sum of two vectors, which is a new vector with the same number of components
as the original vectors. The first component of the new vector is the sum of the
two first components of the original vectors, the second is the sum of the second
components, and so on. For example, the sum of the two vectors:
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(1.0, 2.5,4.3)
(3.1,-1.0, 0.0)

is the vector:

(4.1, 1.5, 4.3)

One condition is that the two vectors to be added have the same number of

components. First we shall write a version of the function with the limitation
that it can only add two vectors of dimension 3. Both the formal parameters of
the function and the result have type THREE_VECTOR. This first version looks
like this:

function ADD(V1, V2 : THREE.VECTOR) return THREE_VECTOR Is

TEMP : THREE.VECTGR;

begin

for l ln 1 .. 3 loop
TEMP(I) := V1(l) +V2(l);

end loop;

return TEMP;

end ADD;

In the function we have used a local array variable TEMP which also has type
THREE_VECTOR. The three components of TEMP are calculated in the loop
statement, one component per loop. The statement:

return TEMP;

means that we return the value of TEMP as result, TEMP having the type
THREE_VECTOR.

If we have the declarations:

A : THREE_VECTOR := (1.0, 2.5, 4.3);
B : THREE_VECTOR := (3.1,-1.0, 0.0);

C : THREE_VECTOR;

in a program, then the following statement is allowed:

C := ADD(A,B);

The value of the right-hand side of the statement will be (4.1, 1.5, 4.3) and it
will have type THREE_VECTOR. The array variable C will thus be assigned the
value (4.1, 1.5,4.3).

Of course, the function ADD should be formulated generally instead, so
that it can deal with vectors of arbitrary length, and only a few minor changes
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are needed. Instead of the type THREE_VECTOR we can let the parameters and
result of the function have unconstrained array type VECTOR, as declared
earlier. The declaration of the local array variable TEMP must be changed, to
have the same number of components as the parameters V1 and V2. (We assume
that V1 and V2 have the same lengths.) We can achieve this using the attribute
V1'RANGE in the declaration of TEMP;

TEMP : VECT0R(V1'RANGE);

In the brackets is an interval with the same limits as the index limits for V1. If,
for example, VI is indexed from 1 to 4, then TEMP will also be indexed from 1
to 4. In the loop statement we have used V1'RANGE in the same way as in the
function SUM, to let the loop parameter I run through the required index values.
With these amendments, the following general version of ADD is obtained:

function ADD(V1, V2 : VECTOR) return VECTOR Is
TEMP : VECT0R(V1'RANGE);

begin

for I In V1'RANGE loop

TEMP(I) := V1(l) +V2(l);
end loop;
return TEMP;

end ADD;

If we have the following declarations in a program:

X : VECT0R(1 .. 4)
Y : VECT0R(1 .. 4)
Z : VECTOR(0 .. 1)

= (1.0,1.0, 1.0, 1.0);
= (2.5,3.5,4.5,5.5);
= (0.5,0.5);

then the following calls, as examples, are allowed:

ADD(X, Y) -- gives (3.5, 4.5, 5.5, 6.5)
ADD(Z, Z) --gives (1.0, 1.0)
ADD( (2.7, 3.8), (1.0, 2.0)) ~ gives (3.7, 5.8)

To be able to add two vectors they must have the same length, but it is not
necessary for them to be indexed in the same way. For example, it should be
possible to add a vector indexed from 0 to 3 to another vector indexed from 1 to
4. This version of ADD cannot manage it. It demands that both vectors are
indexed in the same way. If we were to call it with vectors with different index
ing we would get a run-time error. (This is because when V2(l) is executed in the
loop statement, the loop parameter I will sometimes lie outside the range of V2's
index values.)
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It is possible to make further amendments to the function so that it can
cope with vectors with different index limits. (But the lengths of the vectors
must always be the same.) When the local variable TEMP is declared, it can be
initialized so that its components will contain the same values as those of V2.
(This is always possible since TEMP and V2 have the same number of com
ponents.) In the loop statement we can then add V1 's components to TEMP's
components. Since VI and TEMP have the same index limits we shall not
meet problems with indexing. With this final amendment the function ADD
becomes:

function ADD(V1, V2 : VECTOR) return VECTOR is
TEMP : VECT0R(V1'RANGE) := V2;

begin
for I in V1'RANGE loop

TEMP(I) := TEMP(I) +V1(l):
end loop;
return TEMP;

end ADD;

There are also functions without parameters. We have already seen an example
of these - the function END_OF_FILE in the package TEXT_IO. When such a
function is called it is enough to write simply the name of the function without
brackets afterwards. One example of the use of the function END_OF_FILE is:

exit when END_OF_FILE;

Thus a call to a function without parameters looks exactly as if the function were
a normal variable.

To write a function without parameters, we leave out the brackets and the
list of formal parameters in the function specification:

function MY RANDOM NO return FLOAT is

end MY_RANDOM_NO;

How should we name functions that we write ourselves? It is best to try to
make the function name specific, in the same way as ordinary variables. If the
function performs some mathematical operation and the parameters can be
regarded as operands to the operation, then an appropriate name will describe
the operation, for example, EXPONENTIATE and ADD. Functions that return a
BOOLEAN result can be given names in the style of a question, for example,
END_OF_FILE, END_OFJNPUT and PERMITTED_VALUE. In these cases it
helps to imagine a question mark following the function name.
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6.2 Procedures

The other subprogram is the procedure. A procedure differs from a function in
that it does not retum a result when it is called. When a procedure is called, its
sequence of statements is put into action.

A procedure has exactly the same form as a function. The only differ
ences are that the reserved word procedure is used instead of function, and that
no result type is given in the procedure specification, its first line.

Since a procedure does not retum any value as a result, there need not
be a return statement in the procedure. A procedure normally terminates when
execution reaches the final end.

For example, let us write a procedure HEAD_NEW_PAGE that can be
used when a new page of output is to be started with a page number written at
the top. The page number should be written in the middle of the top line as
follows:

-34-

We shall assume that the terminal produces printed output and a line of output
has at most 80 characters. We shall make use of the existing procedures
NEW_PAGE and SET.COL in the package TEXT_IO. NEW_PAGE ensures that

Procedure specification

• The first part of the procedure body.

• Contains the name of the procedure and its formal
parameters.

Procedure body

procedure procedure_name iparameterjist) is

declarative part

begin
statement_1;

statement_2:

statement_N:

end procedure_name\
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a new page is fed and SET_COL allows a particular position on the current line
of output to be chosen for printing. The procedure is as follows:

procedure HEAD_NEW_PAGE {PAGE_NUM : INTEGER) Is
begin

NEW_PAGE:

SET_COL(38);

PUT("- "); PUT(PAGE_NUM, WIDTH => 1); PUT{"
end HEAD_NEW_PAGE;

Procedures, like functions, can take parameters: HEAD_NEW_PAGE has the
formal parameter PAGE_NUM with type INTEGER.

We shall now examine this procedure when it is used in a program that
writes the page number at the top of three pages, numbers 34, 50 and 51.

with TEXTJO, BASIC_NUMJO;

use TEXTJO, BASIC.NUMJG;

procedure PAGE_DEMO Is
N :.1NTEGER := 50;

procedure HEAD_NEW_PAGE (PAGE_NUM : INTEGER) Is
begin

NEW_PAGE:

SET_COL(38);
PUT("- "); PUT{PAGE_NUM, W1DTH=>1): PUT(" -");

end HEAD_NEW_PAGE;

begin
HEAD_NEW_PAGE(34);

HEAD_NEW_PAGE(N):
HEAD_NEW_PAGE(N+1);

end PAGE.DEMG;

We notice that a procedure body, like a function body, should be located in the
declarative part of the program.

The program PAGE_DEMG has three calls to the procedure
HEAD_NEW_PAGE. a procedure call works in much the same way as a func
tion call. A 'temporary store' PAGE_NUM is created in the procedure and the
value of the actual parameter is copied to it. In this example, the first call copies
the value 34 to PAGE_NUM. Then the execution of PAGE_DEMG is halted
while the statements in HEAD_NEW_PAGE are carried out. When their execution
is complete, the execution of PAGE_DEMG is resumed and the next statement
after the procedure call is executed.

Note that the procedure does not return any value to the calling program.
This is what distinguishes a procedure from a function. A procedure call is
considered to be an entire statement in the calling program, whereas a function
call, as shown in the foregoing section, is considered to be an expression. A call
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to a procedure is written as in the example above. It is terminated with a semi
colon. A function call, however, is written in the same places in a program as
ordinary expressions, and the calling program must deal with the result. The
following subprogram calls are therefore in error:

PUT( HEAD_NEW_PAGE(N));

N := HEAD_NEW_PAGE(45):

SQRT(X):

END_OF_FILE:

ERROR! HEAD_NEW_PAGE is a

procedure
ERROR! HEAD_NEW_PAGE is a

procedure

ERROR! SORT is a function

ERROR! END_OF_FILE is a function

Procedure call

procedure_name{a1, a2, ... an);

a1, a2, ... an are actual parameters.

Their types must agree with those of the corre
sponding formal parameters.

A procedure call is considered to be a statement.

As the next example, we shall write a procedure PRINT_CENTRED that
will print any piece of text in the centre of the line. A procedure, exactly like a
function, can have parameters of any types at all. The procedure we shall write
now will have a parameter of type STRING that gives the text to be output;

procedure PRINT_CENTRED (TEXT : STRING) is
LINE.LENGTH : constant := 80;

begin

SET_COL((LINE_LENGTH - TEXT'LENGTH) / 2);
PUT{TEXT):

end PRINT_CENTRED:

For simplicity, we have assumed that the output has room for only 80 characters.
To avoid having numbers in the statements, we have declared a local constant
LINE_LENGTH in the procedure. The type STRING is an unconstrained array
type and, therefore, the procedure's parameter can be text of arbitrary length.
To refer to the length of the text within the procedure, we use the attribute
TEXT'LENGTH. If the text is 80 characters long or longer, we shall get a run
time error when the program is executed.
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We shall look at a program that uses PRINT_CENTRED to print out the

Hello

Ada

is my
name!

The program looks like this:

with TEXT_IO;

use TEXT_IO:

procedure PRINT.GREETING is
procedure PRINT_CENTRED (TEXT : STRING) is

LINE_LENGTH : constant := 80;

begin
SET_COL(LINE_LENGTH - TEXTLENGTH) / 2);
PUT(TEXT):

end PRINT_CENTRED;

begin
NEW_LINE:

PRINT_CENTRED("Hello"); NEW_LINE:
PRINT_CENTRED{"Ada"): NEW.LINE;
PRINT_CENTRED("is my"); NEW.LINE;
PRINT_CENTRED("namel"): NEW_LINE;

end PRINT_GREETING:

6.3 Parameter association

The two procedures we have studied so far in this chapter have both been used
for special printing. They, too, can be thought of as 'black boxes'; we put values
into them but they return no result value to the calling program.

However, procedures can be used in a much more general way.
Transferring parameters between the calling program and the procedure can
actually be carried out in more ways than we have seen so far. This is best
explained from a simple example. We shall write a procedure NONSENSE that
does nothing of any use, but illustrates how parameter association works.

procedure NONSENSE (A : in INTEGER;
B : in out INTEGER;

C : out INTEGER) is

begin
B := B + A;

0 := 0;

end NONSENSE;
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The procedure NONSENSE has three formal parameters. A, B and C,
written on separate lines only for the sake of clarity. What is new is that the
reserved words In and out appear in the parameter specifications.

In Ada, a parameter can be either a parameter of mode in, a parameter
of mode in out or a parameter of mode out. In the procedure NONSENSE,
these are exemplified by A, B and 0, respectively. We can say that A is used to
put values into the NONSENSE 'box', B is used both to put values in and get
them out, and C is used only to get values out of the NONSENSE 'box'.

The parameters we have seen in our earlier examples, of both functions
and procedures, have all been in parameters. If neither in nor out are used in a
parameter specification, the parameter is automatically an in parameter: that is,
the specification in is assumed.

We shall put NONSENSE into a program that calls the procedure:

with TEXT.IO, BASIC.NUMJO;

use TEXT.IO, BASIC.NUMJO;

procedure PARA_DEMO is
X, Y, Z: INTEGER:

procedure NONSENSE (A : in INTEGER;
B: in out INTEGER;

0: out INTEGER) is

begin
B := B + A;

C := 0;

end NONSENSE;

begin
X := 1; Y := 5; Z := 10;

PUT(X); PUT(Y); PUT(Z); NEW_LINE;
NONSENSE(X, Y, Z);
PUT(X); PUT(Y); PUT(Z); NEW_LINE;

end PARA_DEMO;

To see what happens we shall study a couple of diagrams. The variables X, Y
and Z in the main program can be illustrated, as usual, by three storage boxes in
the program PARA_DEMO. At the start of the call:

NONSENSE(X, Y, Z);

three temporary storage boxes. A, B and 0, are created in the procedure NON
SENSE. They only exist while the call is in progress. At the start of the call the
situation is as in Figure 6.5. The formal parameter A is an in parameter. The formal
parameters we saw in our earlier examples were also in parameters, so the result
with A is exactly what we are used to. First the value of the corresponding actual
parameter is calculated. This is already done here: X already has the value 1.



Parameter association 231

This value is then copied to the formal variable A which thus also gets the value
1. The copying does not affect the variable X at all.

The formal parameter B is an in out parameter. As with an In parameter,
the value of the actual parameter corresponding to an In out parameter is copied
to the formal parameter at the start of the call. In our example, the value 5 which
is in the variable Y is copied to B.

The third formal parameter is an out parameter. There is no copying for
an out parameter when the procedure is called. The value in the temporary store
C will thus be undefined at the start of the call, as shown in Figure 6.5.

When the temporary stores have been created and those associated with
in or in out parameters have been initialized, execution continues with the pro
cedure's sequence of statements. First, the statement:

B := B + A;

is executed. This statement means, as usual, that the value in store B is changed
to 5 + I, that is, 6. The next statement:

C := 0;

means, of course, that the store called C is given the value 0.
Within the procedure NONSENSE the In parameter A is considered to be

a constant. Therefore no attempt may be made to change its value. If we were
to try, for example, to add the statement:

A := 0; - ERROR!

we would get a compile-time error.
An In out parameter is considered to be a normal variable within the pro

cedure. Therefore, we can change the value of B and put it into expressions in
the normal way.

NONSENSE

Figure 6.5
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The value of an out parameter is undefined at the start of procedure
execution. Therefore in Ada 83 it is not possible to refer to the value of an out
parameter within a procedure. For example, the parameter C is not allowed to
appear in the right-hand side of an assignment statement or in an expression.
The following statements would result in compilation errors:

B := C: " ERROR in Ada 83!

B := B + C: - ERROR in Ada 83!

The only thing you can do with out parameters is give them values, which is
often done with assignment statements, as in NONSENSE.

It is also true of Ada 95 that the value of an out parameter is undefined when
the procedure starts execution. However, Ada 95 does allow reference to the value
of an out parameter. This change has been implemented for the practical reason
of avoiding the need to declare an extra local variable when the value of the out
parameter is derived in stages. The following is allowed in Ada 95, for example:

C:= 0;

C:=C + 1:

When the two statements in the procedure NONSENSE have been executed the
procedure call terminates. The result is shown in Figure 6.6. The parameter A is
an in parameter and its value cannot have changed in the procedure. Thus it
must still contain the same value as when the procedure was called. No copying of
the value of an in parameter occurs when a procedure terminates. The variable
X can thus never be changed by the procedure call.

For an in out parameter, the value it has at the end of the procedure call
is copied back to the actual parameter. In this case, the value 6 will be copied to
the variable Y. Thus Y's value is changed by the procedure call.

For an out parameter, its value is also copied to the corresponding actual
parameter at the end of the call. The variable Z will thus have been changed by
the procedure call and get the value 0.

When the program PARA_DEMO is run, it will give the output:

1  5 10

1  6 0

We have seen before that an expression can be used as an actual parameter to
a call. This is only allowed when the corresponding formal parameter is an
In parameter. If the corresponding formal parameter is an In out parameter or
an out parameter the actual parameter must be a variable. Otherwise, it
would be impossible to copy the value of the formal parameter to the actual
parameter at the end of the call - a value cannot be copied to an expression.
The calls:
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NONSENSE

Figure 6.6

NONSENSE(X, 2 * Y, Z); -- ERROR! The second parameter is an
- in out parameter

NONSENSE(X, Y, Z + 1); -- ERROR! The third parameter is an
-- out parameter

are thus in error. However, the following is allowed:

NONSENSE(X * 3, Y, Z); -- CORRECT! The first parameter is an
- In parameter

We can now summarize the rules for the different types of parameter. If we look
at them first from the point of view of the calling program, we can say:

In The actual parameter can be a variable or an expression and it must
have a legal value at the time of the call. If the actual parameter is a
variable, its value may never be changed during the call to the sub
program. It will always have the same value after the call as before it.

In out The actual parameter must be a variable and the variable must have
a legal value at the time of the call. The value of the variable can
change during the procedure call, so that it has a different value at the
end.

out The actual parameter must be a variable. Its value at the time of the
call is of no interest, because the procedure ignores it. At the end of
the procedure call, the actual parameter will have taken a value other
than it had before.

If we look at them from the point of view of the called subprogram, the
different parameters have the following consequences:
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in When execution of the subprogram starts, the formal parameter has a
value. Within the subprogram the formal parameter is treated like a
constant: it can be used but its value cannot be changed.

in out When execution of the procedure starts, the formal parameter has a
value. Within the procedure the parameter can be used as an ordinary
variable: its value can be both used and changed.

out When execution of the procedure starts, the value of the formal para
meter is undefined. In Ada 83 the value of the formal parameter may
not be used within the procedure: for example, the formal parameter
may not be used in expressions. (In Ada 95, on the other hand, one
can also make use of the value of a formal out parameter.) In the pro
cedure the formal parameter must be given a value in the procedure,
through assignment, for example. The value that the formal parameter
is given will also be given to the corresponding actual parameter in
the program which called the procedure.

The figures shown earlier in the text illustrate how parameters are copied in
a purely logical way. If there are parameters of compound types, large arrays for
example, it might be inefficient to copy values to and fro. The Ada implementa
tion being used might implement parameter association in a more efficient way.
However, pay no attention to this and try not to make use of the fact. A program
should always be written so that parameter association occurs as described here.

The three modes of parameter can be used freely in procedures. In functions,
however, only in parameters may be used. The reason for this limitation is that
functions should be clear of side-effects. A side-effect means a subprogram
which, during execution, affects a variable that is not local to the subprogram
but which occurs in another part of the program. When a function is called
the values of actual parameters should not be changed. For example, when the
function SORT is called to calculate the square root of a variable W:

SQRT(W)

it would be very strange if the value of W could be changed by the call. Thanks to
the fact that functions only have in parameters, there is no risk of this happening:
the actual parameters to a function can never be changed by calling the function.

The procedures in the previous section had in parameters. As a simple
example of In out parameters we shall look at a procedure that can be used to
swap the values of two variables:

procedure SWAP (NUMBER1, NUMBER2 : In out INTEGER) Is
TEMP : INTEGER:

begin
TEMP

NUMBER1

NUMBER2

end SWAP;

= NUMBER1;

= NUMBER2;

= TEMP;
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Formal parameters to procedures

• Handle communication between the procedure
and other subprograms.

• Exist only within the procedure.

• Are three different types:

- In parameters. Have values at the time of call.
Treated as constants. May not be changed
within the procedure.

- in out parameters. Have values at the time of
call. Can be both used and changed within the
procedure.

- out parameters. Values undefined at time of
call. In Ada 83 they may not be used in the pro
cedure. Must be given values.

If we assume that in some program there are two variables P and Q with type
INTEGER and values 1 and 2, respectively, then the call:

SWAP{P, Q);

from the program will result in the variables P and Q swapping values, thus
taking values 2 and 1, respectively. It is essential that the formal parameters to
SWAP are In out parameters: In parameters would not have worked, because
they may not be changed. Nor would it have been possible to specify out para
meters, because then it would not have been possible to use the values of P and
Q in the procedure.

When a subprogram has to be written to compute a certain value dependent
on certain input values it is, as we have seen, natural to write it as a function
rather than as a procedure. If, for example, we want a subprogram that will
search for the smallest element in an array of floating point numbers and return
it as the result, we will make the subprogram a function. Sometimes we want
more than one result from a subprogram and then a function cannot be used. In
our example, if we wanted to know both the smallest element in the array and
where in the array it occurred, we would have to write a procedure in which the
required results were out parameters.

Let us look at such a procedure, for finding details of the smallest element
in an array of floating point numbers. Input to the procedure is the array itself,
which we will give as an In parameter, because the array should not be altered.
We have two out parameters, the smallest element and its index in the array. We
shall formulate the procedure to be general and useful for all arrays of floating
point numbers, irrespective of the index constraints. We use the same declara
tion of the type VECTOR as before:
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type VECTOR is array (INTEGER range < >) of FLOAT;

The procedure looks like this:

procedure FIND_SMALLEST (V : In VECTOR;

SMALLEST_VALUE : out FLOAT;
SMALLEST.PLACE : out INTEGER) Is

SMALLEST_SO_FAR : FLOAT := V(V'FIRST);
PLACE : INTEGER := VFIRST;

begin

for I In VFIRST + 1 .. VLAST loop
If V(l) < SMALLEST_SO_FAR then

SMALLEST_SO_FAR := V(l);
PLACE := I;

end If;

end loop;
SMALLEST_VALUE := SMALLEST_SO_FAR;
SMALLEST_PLACE := PLACE;

end FIND.SMALLEST;

The algorithm we are using is based on looking right through the array, from
start to end, and always remembering the least element found so far and its
index. At the start we remember the first number and the first index. We use the

local variable SMALLEST_SO_FAR to hold the smallest element found so

far, and the local variable PLACE to remember its index. When we find in the

course of the search an element smaller than the smallest found so far, we have
found a new smallest number and we change the variables SMALLEST_SO_FAR
and PLACE accordingly. When the whole array has been searched
SMALLEST_SO_FAR contains the smallest element of the array and PLACE
contains its index. The procedure finishes by assigning these values to the pro
cedure's out parameters.

When a subprogram is designed to carry out some particular calculation,
it is often the case that the calculation can only be achieved for certain input
data: some input data will not work. Then the subprogram should take the form
of a procedure, with the calculated value as an out parameter, and a further out
parameter should be introduced with type BOOLEAN. This is given the value
TRUE in the subprogram if the calculation can be carried out in the normal way,
and FALSE if not. The calling program can then, using this parameter, know
whether the calculation has been carried out or not.

For example, let us write a procedure COMPUT_ROOTS that computes
the two real roots of a second-order equation of the form:

+ px + q = 0

the roots of which are given by the formula:



Parameter association 237

The expression under the square root sign, the discriminant, must be greater
than or equal to zero if the equation has real roots. Our procedure can thus only
calculate the roots if that is the case.

procedure COMPUTE_ROOTS (P, Q : In FLOAT;
R00T1,R00T2 : out FLOAT;

REAL_ROOTS : out BOOLEAN) Is

D : FLOAT;

begin
D := P ** 2 / 4.0 - Q;

If D < 0.0 then

REAL_ROOTS := FALSE;

else

REAL_ROOTS := TRUE;

R00T1 := / 2.0 + SQRT{D);
ROOT2 := / 2.0 - SQRT(D);

end If;

end C0MPUTE_R00TS;

The procedure takes the two coefficients P and Q as In parameters, and it has
three out parameters, the two calculated roots and a parameter REAL_ROOTS
of type BOOLEAN. In the procedure, the parameter REAL_ROOTS is given the
value TRUE if the equation has real roots, and otherwise is FALSE. If we assume
that the variables A, B, R1 and R2 have type FLOAT and the variable OK has
type BOOLEAN, the procedure can be called as follows:

PUT_LINE("Enter coefficients P and Q");

GET(A); GET(B);
COMPUTE_ROOTS(A, B, R1, R2, OK);
If OK then

PUTC'The equation has roots ");
PUT(R1); PUT(" and "); PUT(R2);

else

PUTC'The equation has no real roots");
end If;

If OK has the value FALSE after the call, the values of variables R1 and R2 are

undefined (they presumably contain rubbish).
What is the best way of naming a procedure? Since a procedure is a

program unit that describes how something is done, it is generally appropriate
to give them names that specify that something. Suitable names may be, for
example, COMPUTE.ROOTS, WRITE_HEADING and CHECK.STATE.
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6.4 Top-down design with subprograms

In this section we shall see how subprograms come into use when the technique
of top-down design is used. We will also discuss how different subprograms can
be placed in text files and compiled separately.

6.4.1 Example: Binomial coefficients

As a first example we will design and write a program to calculate and print the
binomial coefficients. These are defined for non-negative integers, n and k, as
follows:

n\ n

kj k\x{n -k)\

where n\ is the factorial of n and is given by:

1  if rt = 0

1 X 2 X 3 X ... X /z ifn > 0
n\ =

In future this binomial coefficient will be written in the form {n\k).

We can specify that the program should work as follows. Input to the pro
gram should be a value of n and the first step is to read this from the terminal.
The program should then calculate all the binomial coefficients for this value of
«, that is {n\k) for all values of k between 0 and n. Finally, the calculated bino
mial coefficients should be printed as a table. If, for example, the value of n is
4, then the program should print the table in Figure 6.7. The program should
be written so that it can be repeated an arbitrary number of times with different
values of n.

A first, rough sketch of the program is:

(1) Repeat the following an arbitrary number of times:
(1.1) Read the input (terminate calculations if no more input given).

(1.2) Print the table of values.

We shall try to translate this directly into Ada, making use of calls to subpro
grams. Step (1.1) can be carried out using a procedure READ_INPUT that can
have two out parameters, the value of n read and a Boolean parameter that says
whether data has been input. We will not worry about how to indicate that input
is finished when the program is run. To write step (1.1), therefore, we must
assume that the procedure READJNPUT exists, or will exist. Then step (1.1)
can be written:

READJNPUT(N_VALUE, INPUT.COMPLETE);

exit when INPUT.COMPLETE;
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k (4:k)

0 1

1 4

2 6

3 4

4 1

Figure 6.7

We have introduced two variables that are used as actual parameters in the
procedure call. These variables must, of course, be declared in our program.
Since the values of n must be whole numbers that are greater than or equal to 0,
NATURAL is a suitable subtype for N_VALUE. The variable INPUT_COMPLETE
is of type BOOLEAN.

In step (1.2) we can introduce another procedure, PRINT_TABLE, that
takes the value of n as an in parameter. This step can be written as:

PRINT_TABLE(N_VALUE):

Now we can put the algorithm steps into a program where we can include the
necessary variable declarations. The specifications of the two procedures we are
going to use can also be included, but their details are unimportant for the
moment. The program has the following structure:

procedure COMPUTE_BINOMIAL_GOEFFICIENTS Is
N_VALUE : NATURAL;

INPUT_COMPLETE : BOOLEAN;

procedure READ_INPUT (N_INPUT : out NATURAL;
ENDJNPUT : out BOOLEAN) Is

end READJNPUT;

procedure PRINT_TABLE (N : In NATURAL) Is

end PRINT_TABLE;

begin
loop

READJNPUT(N_VALUE, INPUT_COMPLETE);
exit when INPUT_COMPLETE;

PRINT_TABLE(N_VALUE);
end loop;

end COMPUTE_BINOMIAL_COEFFICIENTS;
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Now we have finished at the top level of the algorithm. By using the top-down
technique combined with calls to subprograms, the program has the correct
structure right from the start, without any worry about the technical details of
reading the input, or about how the calculations or table output should be done.
The procedure at the highest level, here the procedure COMPUTE_BINO-
MIAL_COEFFICIENTS, is usually called the main program. It is enough for the
main program to have only a few statements, mostly subprogram calls, which
outline its main structure. Except for very trivial programs, where no sub
programs are used, no calculations should be made in the main program. Even
in the earlier programs, it would have been better to introduce subprograms and
avoid doing everything in the main program.

In the foregoing program we have indicated where to place the body of
the subprograms READ_INPUT and PRINT_TABLE, and before the program can
be compiled, these procedures must be completed.

TTie next stage of program development is to write the procedures
READ_INPUT and PRINT_TABLE. We shall take them one at a time. It does not

matter which we take first: their internal appearance should have nothing to do
with the order in which they are written. We can start with READ_INPUT
because that should be simpler.

The procedure specification for READ_INPUT is already given:

procedure READJNPUT (NJNPUT : out NATURAL;
ENDJNPUT : out BOOLEAN)

The procedure has to read an integer greater than or equal to 0 from the termi
nal. This integer will be returned from the procedure as the out parameter
N_INPUT. In the usual case, when a number is read from the terminal, the sec

ond out parameter END_INPUT has the value FALSE, but when the operator
states that the input is finished it will be given the value TRUE. Now we have to
decide how the operator should indicate that the input is over. There are two nat
ural alternatives. One is to make use of the END_OF_FILE, that is, to let the

operator note the end of input by writing a special combination of characters,
the combination depending on the system, for example, CTRL-D. The other
possibility is to let the operator enter a negative number to mark the end of
input, because binomial coefficients are not defined for negative values of n.
Here we choose the first alternative, END_OF_FILE. The algorithm can be very
simple:

(1) Request user to type in data.
(2) If the user indicates END_OF_FILE, then set END_INFUT to TRUE.

Otherwise, set the out parameter NJNPUT to the number read and set

ENDJNPUT to FALSE.

If we translate this algorithm to Ada and put it together with the procedure's
specification, the whole procedure will be as follows:
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procedure READJNPUT (NJNPUT : out NATURAL;
ENDJNPUT : out BOOLEAN) is

begin
PUT_LINE("Enter N. Terminate with CTRL-D");
if END_OF_FILE then

ENDJNPUT := TRUE;

else

END.INPUT := FALSE;

GET(NJNPUT);
end if;

end READJNPUT;

Now the procedure READ_INPUT is ready and can be put into the program text
written earlier.

The next step is to write the procedure PRINT_TABLE. The procedure
specification is already written. The procedure takes the current value of n as in
parameter, and its task is to write out the table in Figure 6.7, with the binomial
coefficients (nik) for all values of k between 0 and n. We start, as usual, with a
rough algorithm:

(1) Write table heading.
(2) For each value of k in the interval 0 to n:

(2.1) Write a line of the table.

Step (2.1) can be refined to:

(2.1.1) Write the value of k.

(2.1.2) Calculate {n:k).

(2.1.3) Write the calculated value.

Should any of these steps be formulated as a subprogram call? The decision as
to whether to do this is always a matter for judgement, but here it is obvious that
step (2.1.2), 'Calculate (n:ky, should be written as a subprogram; the reason is
that it is a well-defined calculation. From two input values, n and k, a result is
obtained, (nik). It is always appropriate to carry out a well-defined calculation
of this sort in a subprogram, and the subprogram should be a function. Thus we
can assume that we have a function BIN_COEFF that is specified as follows:

function BIN_COEFF (P, Q : NATURAL) return POSITIVE is

end BIN.COEFF;

The function takes two in parameters, P and Q, and returns the binary coefficient
(P'-g)-
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We choose to translate the other steps in the algorithm directly into Ada
without using subprograms. Step(l), 'Write table heading' could well be
performed in a subprogram but, because the step is not complicated, we have
chosen not to do that.

We can translate our algorithm to Ada:

- print table heading
PUT(" k"):
PUT(" ("): PUT(N, WIDTH => 1); PUT_LINE{":k)"):
NEW_LINE;

for K in 0 .. N loop
-- print a line of the table
PUT(K, WIDTH => 3): PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;

end loop;

The statements contain a good deal of technical detail to make the output look
as we want it to. Step (2.1.2), the calculation of (n:k), is translated as a call to
BIN_COEFF. By placing this call inside the call to PUT, we avoid introducing
extra variables for saving the calculated values.

If suitable names are chosen for subprograms and an algorithm has steps
that are carried out by calls to subprograms, it is often clear what the steps and
the algorithm are doing; thus extra comments are not always necessary. If, how
ever, a subprogram is not used to perform a step in the program, it is sensible to
add some comments to explain what is happening.

Now we can put together the entire procedure PRINT_TABLE:

procedure PRINT_TABLE (N : In NATURAL) Is
function BIN_COEFF (P, Q : NATURAL) return POSITIVE Is

end BIN_COEFF;

begin
- print table heading
PUT(" k");
PUT(" (");PUT(N, WIDTH => 1); PUT_LINE(":k)");
NEW_LINE;

for K In 0 .. N loop
- print a line of the table
PUT(K. WIDTH => 3); PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;

end loop;
NEW_LINE'

end PRINT_TABLE;
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We have placed the specification of the function BIN_COEFF in the right place
in the procedure, but we do not yet need to worry about the inside of the func
tion. Note that we can have several levels of subprogram defined within one
another. Here we have three levels because the procedure PRiNT_TABLE is
defined inside COMPUTE_BiNOMiAL_COEFFICIENTS.

Now we can go on and construct the function BIN_COEFF that will take
the numbers p and q as in parameters and return the value (p:q) as its result.
Direct from the definition of the binomial coefficients we can write the following
very simple algorithm:

(1) Calculate and retum as result p\/(q\ *(p-q)l)

We see that three different factorials are calculated, so it makes sense to intro

duce a special function FACTORIAL to calculate the factorial of a given number.
Then we can write the function BIN_COEFF as follows:

function BIN_COEFF (P, Q : NATURAL) return POSITIVE is
function FACTORIAL (NUMBER : NATURAL) return POSITIVE is

end FACTORIAL:

begin
return FACTORIAL(P) / ( FACTORIAL(Q) * FACTORIAL(P - Q));

end BIN_COEFF;

The function FACTORIAL is at the fourth level inside BIN_COEFF. The only
remaining step is to write the function FACTORIAL. We have already discussed
(Section 3.6) how a factorial can be calculated. Using this we get:

function FACTORIAL (NUMBER : NATURAL) return POSITIVE is
RESULT: POSITIVE :=1;

begin
for J in 2 .. NUMBER loop

RESULT := RESULT * J;

end loop;
return RESULT;

end FACTORIAL;

For the sake of clarity, we have given the result the type POSITIVE, but we
know that we can have problems with the calculation if the value of n is not
relatively small, because there may be insufficient room in an integer type. The
solution to the problem, as we saw earlier, would be to let the result have the
type FLOAT instead.

Now all the subprograms of the program have been written and we can
assemble them together as a complete program:
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with TEXTJO, BASIC_NUMJO;

use TEXT_IO. BASIC_NUM_IO:

procedure COMPUTE_BINOMIAL_COEFFICIENTS Is
N_VALUE : NATURAL;

INPUT_COMPLETE : BOOLEAN;

procedure READJNPUT (NJNPUT : out NATURAL;
ENDJNPUT : out BOOLEAN) Is

begin

PUT_LINE{"Enter N. Terminate with CTRL-D");
if END_OF_FILE then

ENDJNPUT := TRUE;

else

ENDJNPUT := FALSE;

GET(NJNPUT);

end If;

end READJNPUT;

procedure PRINT_TABLE (N : In NATURAL) Is

function BIN_COEFF (P, Q : NATURAL) return POSITIVE Is

function FACTORIAL (NUMBER : NATURAL) return
POSITIVE Is RESULT : POSITIVE := 1;

begin

for J in 2 .. NUMBER loop
RESULT := RESULT * J;

end loop;

return RESULT;

end FACTORIAL;

begin
return FACTORIAL(P) / ( FACTORIAL(Q) * FACTORIAL

(P-Q)):
end BIN_COEFF;

begin
-- print table heading
PUT(" k");
PUT(" ("); PUT(N, WIDTH => 1);
PUT_LINE(":k)");

NEW_LINE;

for K In 0 .. N loop

~ print a line of the table
PUT(K, WIDTH => 3);
PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;

end loop;
NEW.LINE;

end PRINT_TABLE;
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begin

loop
READJNPUT(N_VALUE, INPUT_COMPLETE);
exit when INPUT.COMPLETE;

PRINT_TABLE(N_VALUE);

end loop;
end COMPUTE_BINOMIAL_COEFFIClENTS;

When we assemble the program we must make sure that we also have access to
the packages TEXT_IO and BASIC_NUM_IO, because these are used in
READJNPUT and PRINT.TABLE.

This exercise has shown that using the technique of top-down design with
subprograms allows one step to be in focus at a time. In the procedure
PRINT_TABLE, for example, we could concentrate on how the table should be
printed and not worry about how the input should be read or how the binomial
coefficients should be calculated.

Division into subprograms

A program should always be divided into several
subprograms.

A well-defined calculation or operation (that is, a
'high-level step' of an algorithm) is carried out in
a subprogram.

A subprogram should be no longer than can be
easily understood. If it becomes too long it should
be divided into further subprograms.

6.4.2 Separate compilation

When a largish program is to be written it can be of advantage to divide the pro
gram text up and compile the parts separately. Then, no program text need be
too big and it is easier to keep a grasp of the program as a whole. It also becomes
possible to compile a program before all the subprograms are ready, and thus
check that it is free from compilation errors. It is even possible to run tests on a
program and check that its main features work correctly by including very simple
test versions of the separate parts; these can subsequently be replaced by complete
versions when the program as a whole is running well. The option of writing the
various parts of a program separately is of great advantage when several pro
grammers are jointly developing a large program. They no longer need to work
on one and the same program text, but the work can be divided up so that they can
work independently of one another and develop separate parts of the program.
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In Ada there are two main methods for compiling different parts of a
program separately. One makes use of subunits and the other of library units.
The technique of working with subunits is used naturally in connection with top-
down design, so we will study it first. In the program for binomial coefficients
we placed subprograms within other subprograms. For example, READ_INPUT
and PRINT_TABLE were placed within COMPUTE_BINOMIAL_COEFFICIENTS.
The program was not complete until these subprograms had been written. When
the technique of subunits is used, you tell the Ada compiler that you are going
to write and compile the body of a subprogram by itself later, and you do this by
writing the word separate after the subprogram specification instead of writing the
body of the subprogram. The program COMPUTE_BINOMIAL_ COEFFICIENTS,
for example, could be written as follows:

procedure COMPUTE_BINOMIAL_COEFFICIENTS is

N_VALUE : NATURAL;

INPUT_COMPLETE: BOOLEAN;

procedure READJNPUT (N_INPUT : out NATURAL;

END.INPUT : out BOOLEAN)
Is separate;

procedure PRINT_TABLE (N : In NATURAL) Is separate;
begin

loop

READ_INPUT(N_VALUE, INPUT.COMPLETE);
exit when INPUT_COMPLETE;

PRINT_TABLE(N_VALUE);
end loop;

end COMPUTE_BINOMIAL_COEFFICIENTS:

The declarations of READ_INPUT and PRINT_TABLE are known as procedure
stubs. This program is now complete and can be compiled. Of course, it cannot
be run and tested until READ_INPUT and PRINT_TABLE have been written and

compiled separately. Note that the packages TEXT_IO and BASIC_NUM_IO do not
need to be present: they are not used in the procedure C0MPUTE_B1N0MIAL_
COEFFICIENTS itself.

The subprograms that have been omitted can be compiled separately and
are then called subunits. When a subunit is going to be compiled separately the
name of the subprogram into which it is to be inserted has to be stated, so a sub-
unit is not an independent item but belongs to some other part of a program. The
word separate has to be written in front of the subunit and the name of the sub
program into which it is to be inserted is written in brackets. The procedure
READJNPUT will thus appear as follows:

with TEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUMJO;

separate (COMPUTE_BINOMIAL_COEFFICIENTS)
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procedure READJNPUT (NJNPUT : out NATURAL
END_INPUT : out BOOLEAN) is separate;

begin
PUT_LINE("Enter N. Terminate with CTRL-D");
if END_OF_FILE then

ENDJNPUT := TRUE;

else

ENDJNPUT := FALSE;

GET(NJNPUT);

end if;

end READJNPUT:

Since READ_INPUT is to be inserted into the procedure COMPUTE_BINOMIAL_
COEFFICIENTS, COMPUTE_BINOMIAL_COEFFICIENTS is written in brackets

after the word separate. The packages TEXT_IO and BASIC_NUM_IO also
have to be included since they are used by the procedure READ_INPUT.

When a program is being developed, just as with any other construction
work, it is an advantage if it can be built of ready-made standard parts. As we
have seen, the method of top-down design, or stepwise refinement as it is more
fittingly known in this context, leads to a problem being broken down into
smaller and smaller parts, each of which becomes a subprogram. Subprograms
thus become components of the construction. The problem with this sort of
successive refinement is that the subprograms you arrive at are often much too
specialized to be used in other contexts. In practice, therefore, this method is not
applied too strictly. There is often an element of 'bottom-up' design as well. For
example, if there are existing subprograms that do a particular job, then you
might try to design your program to make use of them. In the example which
writes out the binomial coefficients, for instance, it is quite likely that a function
to calculate the coefficients already exists.

Separate compilation using subunits

Where the subprogram body would normally be placed
(in another subprogram A, for instance) is written:

function name{parameters) return result_type

is separate;
or

procedure name{parameters) is separate;

When the body of the subprogram is later compiled
separately, where it would normally be placed must be
specified. If the body would normally be in another
subprogram A, the following would be written:

separate (A)
subprogramjDody
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Now we will look at the second method for separate compilation, using
library units. First we have to ensure that there is a function BIN_COEFF
which is ready to be used. We do this by putting the following program text into
a file of its own and compiling it:

function BIN_COEFF{P, Q : NATURAL) return POSITIVE is
function FACTORIAL(NUMBER : NATURAL) return POSITIVE is

RESULT: POSITIVE :=1:

begin

for J in 2 .. NUMBER loop
RESULT := RESULT * J;

end loop;

return RESULT;

end FACTORIAL;

begin
return FACTORIAL(P)/FACTORIAL(Q) * FACTORIAL{P);

end BIN_GOEFF;

We have now compiled BIN_COEFF as a free-standing library unit, which is
quite independent of the program COMPUTE_BINARY_COEFFICIENTS; the
word separate is not used.

The next stage is to compile the program COMPUTE_BINARY_
COEFFICIENTS, making use of a with clause to allow access to the function
BIN_COEFF:

with TEXTJO, BASIC_NUMJO, BIN.COEFF;

use TEXTJO. BASIC_NUMJO;

procedure COMPUTE_BINARY_COEFFICIENTS is
N_VALUE : NATURAL;

INPUT_COMPLETE : BOOLEAN;

procedure READJNPUT {NJNPUT : out NATURAL;
ENDJNPUT : out BOOLEAN) is

begin

end READJNPUT;

procedure PRINT_TABLE(N : in NATURAL) is
begin
~ print table heading
PUT(" k");

PUT(" ("); PUT(N, WIDTH => 1);
PUT_LINE(":K)");
PUT_LINE("===============");
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for K in 0 ..N loop
~ print in a line of the table
PUT(K, WIDTH => 3):
PUT(BIN_COEFF{N,K), WIDTH => 10);
NEW.LINE;

end loop;
NEW_LiNE;

end PRINT_TABLE;

begin

end COMPUTE_BINARY_COEFFICiENTS;

Note two things. First, BIN_COEFF is not stated in the use clause, since use
clauses are only used for packages. Secondly, there is no declaration of
BIN_COEFF anywhere in the program: it is entirely free-standing.

In general, ready-written subprograms are to be found in packages, and
not alone as BIN_COEFF is in the example we have been looking at. In fact, we
have already seen several examples of the technique of using library units in
connection with packages, such as using standard procedures from the package
TEXT_IO and standard functions from the generic package GENERIC.
ELEMENTARY.FUNCTiONS. Constructing packages and more about using
them will be the subject of Chapter 8.

Separate compilation using library units

Two different ways to make a subprogram S callable
from a program P:

(1) First, place S in a separate file and compile it.

with S;

procedure P Is

(2) First, place S in a package PAK and compile the
package. (See Chapter 8.)

with PAK;

use PAK;

procedure P Is
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6.4.3 Example: Sorting

Let us now look at another program using the technique of top-down design
with subprograms. We shall write a new version of the sort program in
Section 5.9. The program's job was to read a number of integers from the terminal
and then print them out in numerical order. A rough algorithm is:

(1) Read in the numbers.

(2) Sort the numbers.

(3) Print the sorted numbers.

This can easily be translated to Ada if we assume that we have three sub
programs, READ, SORT and WRITE. READ can be a procedure with two out
parameters: an integer array of the numbers read and an integer which gives the
number of numbers read and placed in the array. If we assume that we have the
declarations:

MAX_NO_ELTS : constant := 100;

subtype INDEX is INTEGER range 1 .. MAX_NO_ELTS:
type INTEGER_ARRAY Is array (INDEX range < >) of INTEGER;

then the specification of the procedure READ can be written:

procedure READ (S : out INTEGER_ARRAY;
SIZE : out NATURAL)

Now step (1) in the algorithm is:

READ (A, N_ELTS);

Here we have used two variables, A and N_ELTS, as the actual parameters to
READ. They are declared as follows:

A  : INTEGER_ARRAY(1 .. MAX_NO_ELTS);
N_ELTS : NATURAL;

The variable A is an integer array. The number of places in the array is determined
by the constant MAX_NO_ELTS, which has the value 100 in this example. When
the procedure READ is called it fills the array A with the numbers that are
entered from the terminal. If the user enters fewer numbers than there is room

for, then the whole array is not filled. The number of places used is given by the
parameter N_ELTS. We assume that the procedure checks that there are no more
numbers than the array has room for.

Step (2) in the algorithm is now simple. We start by writing a specification
for a subprogram SORT:
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procedure SORT (8 : in out INTEGER.ARRAY)

The procedure thus has only one parameter, an in out parameter, which is an
integer array. When the procedure is called the array is sorted so that the elements
are in ascending numerical order. Using it, step (2) can be written:

SORT (A(1 .. N_ELTS)):

As parameter, we have not given the entire array. A, but only the part of it that
is being used.

Step (3) is also simple. First we specify a procedure WRITE:

procedure WRITE(S : In INTEGER_ARRAY)

The procedure takes the array to be written as an in parameter. Step (3) is:

WRITE{A(1 .. N_ELTS)):

Here, too, we only give the part of the array that is in use.
Now the three steps of the program can be assembled, with the resulting

structure:

procedure SORT_EXAMPLE is
MAX_NO_ELTS : constant := 100;

subtype INDEX is INTEGER range 1 .. MAX_NO_ELTS:
type INTEGER_ARRAY is array (INDEX range < >) of INTEGER;
A  : INTEGER_ARRAY(1 .. MAX_NO_ELTS);
N_ELTS : NATURAL;

procedure READ (S : out INTEGER_ARRAY;
SIZE : out NATURAL) is

end READ;

procedure SORT (S : in out INTEGER_ARRAY) is

end SORT;

procedure WRITE(S : in INTEGER_ARRAY) is

end WRITE;

begin
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READ (A. N_ELTS);
SORT (A(1 .. N_ELTS)):
WRITE{A(1 .. N_ELTS)):

end SORT_EXAMPLE;

Now the three subprograms have to be written. We shall start with WRITE,
which is the simplest and uses the algorithm:

(1) Write heading.

(2) For all the numbers in the array S:

(2.1) Write out the number.

This is easily translated to Ada:

procedure WRITE(S : in 1NTEGER_ARRAY) is
begin

NEWLINE;

PUT_LINE{"The numbers are:");

for K in S'RANGE ioop
PUT( S(K));

end ioop;
NEW.LINE;

end WRITE;

Here we have used the attribute S'RANGE to state the index range for S.
The algorithm for what should be done in the procedure READ is:

(1) Set the number of elements read to zero and ARRAY_FULL to FALSE.

(2) Request the user to enter the array.

(3) Repeat the following until the user states that nothing more will be
entered, or until ARRAY_FULL is TRUE.

(3.1) If the array is full, output an error message and set

ARRAY_FULL to TRUE. Otherwise, read a number into the next

vacant place and increase the number of elements read by 1.

(4) Give the number of elements read as result.

We choose to use the END_OF_FILE technique for the user to notify the end of
input. The algorithm can be translated to Ada:

procedure READ (S : out INTEGER_ARRAY;
SIZE : out NATURAL) is

N_ELTS_READ : NATURAL := 0;

ARRAY_FULL : BOOLEAN := FALSE;

begin
PUT_LINE("Enter the Integers to be sorted.");
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PUT_LINE("Terminate input with CTRL-D"):
while not END_OF_FILE and not ARRAY_FULL loop

If N_ELTS_READ = S'LENGTH then

PUT_LINE("Too many!");
ARRAY_FULL := TRUE;

else

N_ELTS_READ := N_ELTS_READ + 1;

GET( S{N_ELTS_READ));
end If;

end loop;
SIZE := N_ELTS_READ;

end READ;

We use a local variable N_ELTS_READ to count the numbers read in. If the
entire array is full and another number is input at the terminal, the procedure
gives the error message:

Too many!

We have already given the algorithm for the procedure SORT in
Section 5.9:

(1) Set/sTto I.

(2) While K is less than the number of elements in the array:
(2.1) Search for the smallest element in that part of the array that

starts at the ATth position and ends with the last element in the

array.

(2.2) Swap the smallest element (from step (2.1)) and the element in

position K.

(2.3) Increase by 1.

To achieve step (2.1) we specify a function SMALLEST as follows:

function SMALLEST (T : INTEGER_ARRAY) return INDEX

The function takes an integer array as an In parameter. As result it returns the
index of the smallest number in the array. Step (2.1) can now be written:

SMALLEST_POSN := SMALLEST(S(K .. S'LAST));

We have introduced the variable SMALLEST_POSN with type INDEX in which
we save the result of the call. S is, as we can see in the specification of SORT,
the array to be sorted. As parameter to the function SMALLEST we give the part
of the array that starts at index K. SMALLEST will thus give the index of the
smallest element of that part of the array as result.
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Step (2.2) can be carried out using a procedure SWAP, which we specify
as follows:

procedure SWAP (I, J : in INDEX;
T  : In out INTEGER_ARRAY)

When this procedure is called, elements number I and J in array T will swap
places.

The remaining steps in the algorithm can be achieved with a for construct.
The procedure SORT can then be written:

procedure SORT (8 : in out INTEGER_ARRAY) is
SMALLEST_POSN : INDEX;

function SMALLEST (T : INTEGER.ARRAY) return INDEX is

-- gives the index number for the smallest element in T

end SMALLEST;

procedure SWAP (I, J : in INDEX;
T  : in out INTEGER_ARRAY) is

-- swap the Ith and Jth elements in array T

end SWAP;

begin
for K in S'RANGE loop

SMALLEST_POSN := SMALLEST(S(K .. S'LAST));
SWAP(K, SMALLEST_POSN, S);

end loop;
end SORT;

Now it remains to write the subprograms SMALLEST and SWAP. Algorithms
for these were given in Section 5.9. The algorithm for SMALLEST can, with
some amendment, be written:

(1) Set M to the first index in T.

(2) Let I run from the second to the last index in T.

(2.1) If element number I is less than element number M then set M

to I.

(3) The smallest element is now element number M. Give M as result.

Translation to Ada gives:
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function SMALLEST (T : INTEGER_ARRAY) return INDEX Is

~ gives the index number for the smallest element in T
M : INDEX := T'FIRST;

begin
for I In T'FIRST + 1 .. T'LAST loop

If T(l) < T{M) then
M := 1;

end If;

end loop;
return M;

end SMALLEST;

The algorithm for the final procedure, SWAP, was also given in Section 5.9.

(1) Move the /th element to a temporary store.
(2) Move the Jth element to position I.

(3) Move the element in the temporary store to position J.

The procedure is in Ada:

procedure SWAP (I, J : In INDEX;
T  : In out INTEGER_ARRAY) Is

~ swap the Ith and Jth elements in array T
TEMP : INTEGER;

begin
TEMP

T(l)
T(J)

end SWAP;

= T(I);
= T(J);
= TEMP;

All the different parts can now be assembled to make a complete program, when
we also ensure that the packages TEXT_IO and BASIC_NUM_IO are accessible:

with TEXTJO, BASIC_NUMJO;

use TEXTJO, BASIC_NUM_IO;

procedure SORT_EXAMPLE Is

MAX_NO_ELTS : constant := 100;
subtype INDEX Is INTEGER range 1 .. MAX_NO_ELTS;
type INTEGER_ARRAY Is array (INDEX range < >) of INTEGER;

A  : INTEGER_ARRAY(1 .. MAX_NO_ELTS);
N_ELTS : NATURAL;

procedure READ (S : out INTEGER_ARRAY;

SIZE : out NATURAL) Is
N_ELTS_READ : NATURAL := 0;

ARRAY_FULL : BOOLEAN := FALSE;
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begin

PUT_LINE("Enter the integers to be sorted.");

PUT_LINE("Terminate input with CTRL-D");
while not END_OF_FILE and not ARRAY_FULL loop

if N_ELTS_READ = S'LENGTH then

PUT_LINE("Too many!");
ARRAY_FULL := TRUE;

else

N_ELTS_READ := N_ELTS_READ + 1;

GET( S(N_ELTS_READ));
end if;

end loop;

SIZE ;= N_ELTS_READ;

end READ;

procedure SORT (S : in out INTEGER_ARRAY) is
SMALLEST.POSN : INDEX;

function SMALLEST (T : INTEGER_ARRAY) return INDEX is

-- gives the index number for the smallest element in T
M : INDEX := T'FIRST;

begin
for I in T'FIRST + 1 .. T'LAST loop

if T(l) < T(M) then
M := I;

end if;

end loop;
return M;

end SMALLEST;

procedure SWAP (I, J : in INDEX;
T  : in out INTEGER_ARRAY) is

-- swap the Ith and Jth elements in array T
TEMP : INTEGER;

begin
TEMP :=T(I);

T(l) :=T(J);
T(J) := TEMP;

end SWAP;

begin
for K in S'RANGE loop

SMALLEST.POSN ;= SMALLEST(S(K .. S'LAST));

SWAP(K, SMALLEST_POSN, S);
end loop;

end SORT;

procedure WRITE(S : in INTEGER.ARRAY) is
begin



The scope of a declaration 257

NEW_LINE:

PUT_LINE("The numbers are:");
for K in S'RANGE loop

PUT( S(K));

end loop;
NEW_LINE;

end WRITE;

begin
READ (A, N_ELTS);
SORT (A(1 .. N_ELTS)):
WRITE (A(1 .. N_ELTS));

end SORT_EXAMPLE;

Clearly, this program is longer (with regard to the number of lines) than the
program we wrote in Section 5.9. However, it is not always the case that a short
program is a 'good' program. The clarity of a program is determined by its
structure. In general a program that is developed from the top down with sub
programs has a better structure: it does not matter that it is a few lines longer
than it would be without subprograms.

6»5 The scope of a declaration

It has been shown that a local variable in a subprogram can be considered as a
temporary store that exists only while the subprogram is called. That is, the dec
laration of the local variable has only a certain scope, which extends over the
subprogram in which it is declared. It is not only the declarations of variables
that have a particular scope; all sorts of declarations, such as those of types, con
stants and subprograms, have an associated scope so that what has been declared
is only known and only used in a certain part of the program: it is said that they
are only visible in that part of the program. There are well-specified rules in Ada
for declaration scope; these are analogous to the corresponding rules in other
closely related languages such as Pascal.

To explain the rules we use the outline nonsense program:

procedure P1 is
type T is ... ;

A : constant INTEGER := 100;

B : INTEGER := 2 * A;

procedure P2 (X: INTEGER) is
A : FLOAT;

procedure P3 (C : T) is
X : FLOAT;

begin
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end P3:

begin

end P2;

procedure P4 (I: INTEGER) Is
Q:T:

begin

P2( -- call of P2

end P4:

begin

end P1;

In the program there are procedures P1, P2, P3 and P4. P1 is the main program
and is the outermost procedure. The declarations of P2 and P4 are within P1 and
the declaration of P3 is within P2.

The main rule is that the scope of a declaration extends from the place
where it is made to the end of the subprogram it is in. This means, in our example,
that the variable Q and the formal parameter I are only known in the procedure
P4. If attempts are made to use Q or I outside P4 a compile-time error will result.
The fact that a declaration's scope begins where the declaration is made means
that reference may not be made to something that is declared later in the program,
even if it is declared in the same subprogram. In the example, it is important
that A's declaration comes before that of B because A is used in the declaration

of B.

The scope of a declaration

A declaration applies from the place where it is made
to the end of the subprogram in which it is made.

The next rule states that something declared in a subprogram P is also
visible in all subprograms declared within P. The type T in our example is thus
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visible not only in P1 but also in P2 (and therefore also in P3) and in P4,
because P2 and P4 are declared within P1. Another example is that P2 is visible
in P4 and can be called there, because both P2 and P4 are declared in P1, and
P2 is declared before P4.

Global declarations

A declaration that applies in a subprogram P also
applies in all the subprograms to P.

The two rules can also be expressed thus: from the outside it is impossible
to 'see into' a subprogram and get at the declarations that are made there; it is
possible, however, to 'see out from the inside' of a subprogram and get at
declarations made outside it.

These rules mean that in a subprogram it is possible to access variables
that are declared in an enclosing subprogram. For example, the variable B in P1
is accessible from P4. The variable B is a global variable to P4. When pro
gramming, it is often very tempting to use global variables in a subprogram and
change them, thereby avoiding the use of parameters to the subprogram. The use
of global variables is, however, contrary to the ideals of good programming
style, because using them leads to programs being confused and difficult to
understand. Then the risk of errors in the program increases and, at the same
time, it becomes more difficult to find the errors in a program. From the calling
program it is impossible to see that variables might be changed within a
subprogram. Unexpected and elusive side effects can result. The rule is there
fore: never use global variables. (As with all rules, there have to be exceptions.
If subprograms are written in a package, under certain circumstances global
variables can be used without offending the rules of good programming style.)

In Ada 95, as we have already seen, declarations can be placed in arbitrary
order: the declarations of variables do not have to be placed before declarations
of subprograms. This can be used to eliminate the risk associated with global
variables. If, for example, variable B is declared after the declaration of P4 in
the example, then none of the procedures P2, P3 or P4 can mistakenly get at B.

Global variables

In a well-structured program, never, or virtually
never, use global variables.

It is forbidden to declare several items with the same name in a particular
subprogram (except for subprograms and enumeration literals). However, the
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same names may be used in declarations that are in different subprograms. In
the foregoing example, the name A appeared in both P1 and P2 and the name X
in both P2 and P3. If the same name is used in two declarations in different sub

programs the two declared quantities have nothing to do with one another: they
only have the same name. The name A, in our example, is used to denote an
integer constant in procedure P1 but a floating point variable in P2.

Even if the scope of a declaration extends to the end of the subprogram
in which it is declared, the declared quantity can be 'covered' in an enclosed
subprogram, if this subprogram contains a declaration where the same name is
used. In P2 (and P3), for example, the constant A in P1 cannot be accessed. If
the name A is written in P2 or P3 it is the variable A that is declared in P2 that

matters. In the same way, P2's formal parameter X cannot be reached within P3
because there it is 'covered' by the floating point variable X.

Using the same names

• Quantities that are declared in the same sub
program must have different names (with the
exception of subprograms and enumeration literals).

• Quantities that are declared in different sub
programs may have the same name.

The rules mean that if global variables are avoided then each subprogram can
be considered as a separate 'building block' in the total program. Contact
between each 'building block' and its surroundings (that is, the other subpro
grams) occurs through the subprogram's specification. Within the subprogram,
any name can be used for declared quantities: it makes no difference whether
the name appears in another subprogram. Subprograms can thus be developed
independently of one another.

For example, in the program we wrote to compute the binomial coeffi
cients, we could have used the names N and K for the formal parameters to the
function BIN_COEFF; this might have been more natural than calling the para
meters P and Q. This would not have been affected by the fact that the names N
and K were also used in the procedure PRINT_TABLE. N and K within
BIN COEFF would be considered different from N and K in PRINT TABLE.

6.6 Overloaded subprograms

To declare several quantities with the same name in a subprogram is normally
forbidden, but in Ada, to declare several subprograms with the same name in the
same subprogram is allowed, and they are known as overloaded subprograms.
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To explain when this is allowed, we first need some definitions. (In Ada 95 a
different terminology is used, but the meaning of the rules is the same.)

•  By base type of a subtype we mean the type from which this subtype is
derived. (For example, the base type of NATURAL is INTEGER.) The
base type of an ordinary type that is not a subtype is the type itself. (For
example, the base type of INTEGER is INTEGER.)

•  If two subprograms have the same number of parameters, and if the
corresponding parameters have the same base types, we say that the two
subprograms have the same parameter type profile.

• Two subprograms have the same profile (parameter and result type profile)
if they are both procedures with the same parameter type profile, or if they
are both functions with the same parameter type profile and, in addition,
their results have the same base type.

If we write the following subprogram specifications, for example:

procedure A (P1 : In FLOAT; P2 : In out INTEGER)
procedure B (X: In out FLOAT; Y: out INTEGER)
function 0 (U : POSITIVE) return CHARACTER
function D (V : INTEGER) return CHARACTER

then A has the same profile as B, and C has the same profile as D. Note that the
two formal parameters do not need the same names for the two subprograms to
have the same profiles. Nor does it matter whether the corresponding parameters
are of the same kind in the sense of In, In out or out.

Several subprograms may have the same name in a subprogram (or a
package) if these subprograms have different profiles:

type VECTOR Is array (INTEGER range <> ) of FLOAT;

function MEAN (X1, X2 : FLOAT) return FLOAT Is
begin

return (X1 + X2) / 2.0;
end MEAN;

function MEAN (V : VECTOR) return FLOAT Is
SUM : FLOAT := 0.0;

begin

for I In V'RANGE loop
SUM := SUM + V(l);

end loop;

return SUM / FLOAT(V'LENGTH);

end MEAN;

Here we have two different functions with the same name: the two functions are

overloaded. The functions have different profiles, in that the first takes two para
meters of type FLOAT and the second takes one parameter of type VECTOR. If
we assume the variables MV, X, Y and W are declared as follows:
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MV

X

Y

W

FLOAT;

FLOAT := 6.5;

FLOAT := 4.5;

VECTOR (1 .. 3) := {0.5. 3.0, 1.0);

then we can call the function MEAN:

MV

MV

MV

MV

= MEAN(X, Y);

= MEAN(0.0, 1.0);
= MEAN(W);
= MEAN( (1.1, 1.3)

MV takes the value 5.5

MV takes the value 0.5

MV takes the value 1.5

MV takes the value 1.2

In the first call there are two actual parameters, X and Y, which both have type
FLOAT. These actual parameters match with the formal parameters for the first
function MEAN, but not with the formal parameter of the second. The compiler
'understands' that we intend to call the first of the subroutines MEAN. The

second call also matches with the first function but not with the second. The last

two calls, however, do not match with the first function. They suit the second
instead, and that will be called.

Overloaded subprograms

Two subprograms that are in the same subprogram
may have the same name (the name may be over
loaded) if they have different profiles, that is, different
base types for parameters, and for the result in the
case of functions.

The reason why overloaded subprograms must have different profiles is
that the compiler must be able to choose which subprogram is Intended for use
every time a call is made. Only one subprogram can be suitable, otherwise the
program would be ambiguous. (If none of the subprograms with the same name
fit the bill, then the program is in error and an error message will be given during
compilation.)

We have already called overloaded subprograms many times. In the
package TEXT_IO and BASIC_NUM_IO there are several procedures with the
name PUT, for example. There are several procedures PUT with different
profiles: output of text does not use the same procedure as output of a floating
point number, to give one example. In the following statements four different
procedures are being called:

PUTC'Hello'."); ~ The parameter has type STRING
PUT('a'); " The parameter has type CHARACTER
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PUT(I); -- The parameter has type INTEGER
PUT(X): -- The parameter has type FLOAT

Because the compiler has always chosen the correct PUT procedure we have not
needed to worry that there are several versions. In the same way, TEXT_IO and
BASIC_NUM_IO have several subprograms called GET.

The use of overloaded subprograms is thus a convenient way of carrying
out similar operations on objects with different types. It is still possible to use
the same name for the operation rather than inventing different names for the
subprograms for each type.

6.7 Named parameter association

The normal procedure for calling a subprogram is to list all the actual parame
ters, separated by commas. The first actual parameter is associated with the first
formal parameter, the second actual parameter is associated with the second
formal parameter and so on. Let us now write a procedure MULTIPLE_WRITE
that has the task of writing out a particular character a number of times at the
terminal, each time on a new line. As parameters, MULTIPLE_WRITE will have
the character to be printed and an integer that specifies the number of times it
should be written:

procedure MULTIPLE.WRITE (CHAR: CHARACTER;
N  : INTEGER) is

begin
for I in 1 .. N loop

PUT(CHAR); NEW_LINE;
end loop;

end MULTIPLE.WRITE;

If we want to write the character 'x' three times, we would use the procedure
call:

MULTIPLE_WRITE('x', 3);

Then the first actual parameter 'x' will be associated with the formal parameter
CHAR and the second actual parameter, 3, will be associated with the second
formal peu'ameter N. This can be called positional parameter association
because the position of an actual parameter in a procedure call determines the
formal parameter with which it is associated.
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Positional parameter association

• The call appears thus:

subprogram_name{a1, a2, ... an)

• The actual parameters are listed in the call.

• Normally, all the actual parameters are listed.

• The first actual parameter is associated with the
first formal parameter, the second actual parameter
with the second formal parameter, etc.

In Ada there is another method of associating the actual parameters with
the formal parameters in a subprogram call. It is possible to state the name of
a formal parameter the actual parameter is to be associated to. We call this
named parameter association. How it works is shown in the following call to
MULTIPLE_WRITE:

MULTIPLE_WRITE(CHAR => V. N => 3);

The term:

CHAR => 'X'

means that the actual parameter 'x' should be associated with the formal
parameter CHAR. Similarly,

N=>3

means that the actual parameter 3 should be associated with the formal parame
ter N. One thing gained by writing a call in this way is that it is clearer (if the
formal parameters have good names). Someone reading the program later does
not need to know exactly the formal parameters used or the order in which they
appear, before being able to understand the significance of the call.

When named parameter association is used the parameters do not need to
be listed in any special order. The previous call could have been written:

MULT1PLE_WRITE(N => 3, CHAR => 'x');

and this would have been equally correct.
In addition, positional and named parameter association can be mixed.

Our call could also be written, for example:

MULTIPLE_WRITECx', N => 3);
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Named parameter association

The call appears thus:

subprogram_name(name => a1, name => a2, ... );

The parameters may be listed in any order.

When the two parameter associations are mixed in a call, the positional
associations must be written first in their correct order. Named parameters can
then be written in arbitrary order. When one named parameter association has
been used in a call, all the remaining parameters in the call must also be named.
For example, it is wrong to write:

MULTIPLE_WRITE{CHAR => 'x', 3); -- ERROR!

One question that arises is whether all the parameters must be listed in a call and
what happens if they are not. First, we can state that in the case of out and In
out parameters they must all be listed in a call. At the end of the call copying to
the actual parameters, which must be variables, will occur and this cannot happen
if actual parameters are missing.

In the case of In parameters, however, it is possible in Ada to omit actual
In parameters. The condition allowing this to be possible is that a value is given
in the subprogram that can be used if no actual parameter is given. To show
how this works we can make a simple amendment to the procedure
MULTIPLE_WRITE:

procedure MULTIPLE_WRITE (CHAR : CHARACTER;
N  : INTEGER := 2) Is

begin
for l ln 1 .. N loop

PUT(CHAR); NEW_LINE;
end loop;
end MULTIPLE_WRITE;

Here we have given the formal parameter N a value which is to be used if there
is no actual parameter in a call. Such a value, used if no explicit value is stated,
is called a default value. Thus the formal parameter N has a default value of 2.

Now the actual parameter that is to be associated with the formal para
meter N may be omitted. We can write, for example:

MULTIPLE_WRITE(CHAR => '+');

This call means that two plus signs will be written. The call could also be
written:
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MULTIPLE_WRITE(V):

and again two plus signs will be written.
Of course, an actual parameter can still be associated explicitly with N if

necessary. The call:

MULTIPLE_WRITE(CHAR => N => 10);

will write out 10 plus signs and the default value, the formal parameter N, is of
no significance.

Parameters with default values

An In parameter to a subprogram may be given
a default value when the formal parameter is
specified:

{...: parameter_name: in type ;= default_value;...)

Parameters with default values may be omitted
from calls. Then the formal parameter is given the
default value.

In out parameters and out parameters may not
have default values.

An In parameter may not be omitted from a call if there is no default
value for the corresponding formal parameter. For example, it is wrong to write:

MULTIPLE_WRITE(N => 5); -- ERROR!

When we have called the procedures PUT in the packages TEXT_IO and
BASIC_NUM_IO we have made frequent use of named parameter association.
We have also made use of the fact that certain In parameters to PUT have default
values. For example, we have written calls such as:

PUT(I, WIDTH => 5):

where we have used positional parameter association for the first formal para
meter and named parameter association for the formal parameter WIDTH. This
call could also have been written:

PUT{ITEM => I, WIDTH => 5);

because the first formal parameter to all the PUT procedures is called ITEM.
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When we have written a simple call, such as:

PUT(I):

we have made use of the fact that there is a default value of WIDTH in PUT.

In the same way, the formal parameters EXP, FORE and AFT also have default
values in the version of PUT that is used to write out floating point numbers.
When we make a call such as:

PUT(X);

these default values will be used.

6.8 Recursive subprograms

It has been shown that one subprogram can call another. Furthermore, a subpro
gram can call itself, and such a subprogram is called a recursive subprogram.

It is appropriate to use recursive subprograms to solve certain types of
problem. The problems for which recursion is most useful are those which are
defined from the start in a recursive way: this occurs often in mathematical cal
culations. The most common example of a recursive subprogram - an example
that occurs in almost all books about programming - is a function to calculate
the factorial of a number n. This is a problem we have studied a couple of times
already. We then used iteration to solve the problem but now we shall see how
recursion can be used instead. The factorial of a number n, written n\, can be

defined by:

j  r 1 if n = 0
^  |^1X2x3X...X/2 ifrt>0

Another way of writing the definition is:

1  if/i =0

^ /2(/i-l)! if«>0

There is one case where the value is given (that is, 0! = 1) and one case where
induction is used to express the solution in terms of values already defined.

This second definition leads naturally to the following Ada function:

function FACTORIAL (N : NATURAL) return POSITIVE Is
begin

If N = 0 then

return 1;
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else

return N * FACTORIAL{N - 1);
end if;

end FACTORIAL;

The parameter N with subtype NATURAL ensures that the case N < 0 can never
occur. If the function is called with an actual parameter that is less than 0, a run
time error will result at the call.

We see that on the sixth line the function calls itself. To see what happens
when the function is called, assume we have a program with the statement:

M := FACTORIAL(3);

where the variable M has type POSITIVE. Figure 6.8 shows the situation at the
start of the call. As before, the formal parameter N can be thought of as a
temporary store and the value 3 is copied to it.

Because N is not 0, the second of the two return statements will be

executed. Here a new call to the function FACTORIAL occurs and the actual

parameter takes the value 2, as illustrated in Figure 6.9. We get a new instance
of the function FACTORIAL and in it a new temporary store is created, also
called N. When the new instance of FACTORIAL is called, the value 2 is copied
to the new store. Note that we now have two different stores N with different

values. When the new instance of FACTORIAL is called, execution of the first
instance is temporarily suspended waiting for the new instance to finish execution
and return a result. It works like an entirely normal function call.

When the second instance of FACTORIAL is executed it will again be the
else part of the if statement that is executed, because N in the second instance of
FACTORIAL has the value 2. This results in a third call to FACTORIAL. A further

instance of the function is generated and it creates a third temporary store called
N, this time the value 1 being placed in it. When the call occurs, execution in the
second instance is temporarily suspended in the normal way, until execution of
the third instance is finished and has given a result value. Figure 6.10 illustrates
the situation.

M: = FAGT0RIAL{3);

FACTORIAL

N

Figure 6.8
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M:=FACTORIAL(3):

N*FACT0RIAL(N-1)

Figure 6.9

Now the third instance of FACTORIAL will be executed. Again, the second
of the return statements will be executed because N here has the value 1. Thus
we get a fourth call to FACTORIAL, a fourth instance of the function is made and
a fourth temporary store with the name N is created. When the call to the fourth
instance of the function occurs the value 0 will be copied into this N. Execution
of the third instance will, as with the two earlier instances of FACTORIAL, be
temporarily suspended.

Execution now continues in the fourth instance of the function FACTORIAL,

as illustrated in Figure 6.11. Since the formal parameter N has the value 0, this

M:=FACT0RIAL(3):

N*FACT0RIAL{N-1)

N*FACT0RIAL(N-1)

Figure 6.10
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I

M:=FACT0RIAL(3):

N

N*FACT0RIAL(N-1)

N

—fT| 1

'  N*FACT0RIAL(N-1)

N

— I , N*FACT0RIAL(N-1)

Figure 6.11

time the first return statement will be executed. As a result the function

will give the value 1. This value is returned to the third instance of the function
FACTORIAL.

In the third instance of FACTORIAL the function call;

FACTORIAL(N-I)

now has the value 1. Execution of the third instance can continue and the

multiplication:

N * FACTORIAL(N-I)

is performed. The result is 1 because N has the value 1 in this instance. Thus the
result given by the third instance of FACTORIAL will have the value 1. This
value is returned to the calling subprogram, that is, to the second instance of
FACTORIAL, as shown in Figure 6.12. Now execution of the second instance
can be completed. The function call:

FACTORIAL(N-I)



N

{n

Recursive subprograms 271

1

M := FACT0RIAL(3):

N*FACT0RIAL(N-1)

N

—fT|
1

N*FACT0RIAL(N-1)

Figure 6.12

gets the value 1 and the expression:

N * FACTORIAL(N-I)

takes the value 2 since N has the value 2 in the second instance. Thus the

second instance of FACTORIAL returns the value 2 to the first instance (see

Figure 6.13).

M:=FACT0RIAL{3):

N*FACT0RIAL(N-1)

Figure 6.13
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Finally, the first instance of FACTORIAL can be resumed. The function
call:

FACTORIAL(N-I)

gets the value 6 since N has the value 3. Thus the first instance of the function
FACTORIAL will give the calling program the value 6 as its result. This means
that the variable M in our original statement:

M := FACT0RIAL(3);

takes the value 6, as shown in Figure 6.14.
In this way we are able to visualize what happens in a call to a recursive

subprogram. The important thing to note is that several instances of the subpro
gram will exist and that each instance will have its own temporary stores for its
formal parameters and any local variables.

We shall now consider a function FIBONACCI that calculates so-called

Fibonacci numbers. These are a series of numbers that were originally used in a
model to describe the growth of a population of rabbits. The first numbers in the
series are 1, 1, 2, 3, 5, 8, 13, 21, 34,.... They are defined as follows:

fn =
1

/«-2 +/«- 1

if n = 1 or rt = 2

if « > 2

Recursive subprograms

A subprogram that directly or indirectly calls
itself.

During execution there are as many instances of
the subprogram as the number of calls made.

Each instance has its own unique stores for formal
parameters and local variables.

M:=FACTORIAL(3);

Figure 6.14
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It is easy to write a recursive function for calculating the Nth Fibonacci number
based on this definition. The number N is given to the function as a parameter:

function FIBONACCI (N : POSITIVE) return POSITIVE Is
begin

if N = 1 or N = 2 then

return 1;

else

return FIB0NACCI{N-2) + FIB0NACCI{N-1);
end if;

end FIBONACCI;

We see that this function contains two recursive calls. If it would help, we could
make drawings as before to show what is happening, but even for small values
of N there are many instances of the function FIBONACCI and there would be
much to draw. This function does not evaluate a Fibonacci number in the most

efficient way but it illustrates nicely the fact that a problem specified recursively
from the start can easily be solved using a recursive subprogram. Writing the
function FIBONACCI is largely a question of rewriting the definition.

Even certain problems that are not initially defined in a recursive way can
be solved easily with recursion. But first, the problem has to be reformulated
recursively. It can best be demonstrated by the problem of calculating the sum
of the components of a vector of floating point numbers. We have already solved
this problem using iteration in Section 6.1, where we wrote a function SUM, but
here we shall show how the problem can be solved using recursion.

The sum of the components of a vector V with N components can b
defined in the following way:

sum = < vector has no components (that is, N = 0)[ V(l) + the sum of the components of the vector V(2 ...'

This definition provides a direct basis for writing the function:

function SUM(V : VECTOR) return FLOAT is
begin

if V'LENGTH = 0 then

return 0.0;
else

return V(V'FIRST) + SUM( V(V'FIRST + 1
end if;

end SUM;

In the second return statement a recursive call
p^ameter to this call is the vector formed from f
of V.
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end if;

end BACKWARDS;

The same number of instances of this procedure will exist as there are charac
ters in the text, plus one. The first instance of the procedure reads in the text's
first character and saves it in the local variable CHAR. Its execution will then be

suspended temporarily while it makes its recursive call. Execution will not be
resumed until all the other instances of the procedure have finished being
executed.

When execution reaches the last instance of the procedure BACKWARDS,
the whole text has been read in. This last instance will observe that there is no

more text to read (END_OF_FILE is TRUE) and will therefore do nothing but
return immediately to the last but one instance of the procedure. The last but one
instance of the procedure has read the final character of the text and writes it out.
Thus the last character read in is written out first.

Eventually, control is returned to the first instance of the procedure
BACKWARDS, which will write out the character that it saved. This means that
the first character in the text will always be written out last.

In the examples we have looked at, recursion has always occurred
because a subprogram called itself. It is also possible to have indirect recur
sion. A subprogram A can call another subprogram B which, in turn, calls
A. Then A and B are said to be mutually recursive. (It is even possible for
recursion to occur through several stages, for example, A calls B which calls C
which calls A.)

We can illustrate mutual recursion with the example of two subprograms
that determine whether a positive number is odd or even. This problem can, of
course, easily be solved in Ada by writing the Boolean expression:

N mod 2 = 1

which has the value TRUE if the integer variable N is odd. To demonstrate
mutual recursion, however, we shall assume that we do not have access to the

operators /, rem or mod. The solution to the problem is then obtained with the
algorithm:

(1) If N is equal to 0 then N is not odd.
(2) Otherwise, N is odd if A - 1 is even.

If we assume access to a function EVEN that determines whether a number is

even or not, we can make a direct translation into Ada:

function ODD (NUMBER : NATURAL) return BOOLEAN is
begin

if NUMBER = 0 then

return FALSE;



276 Subprograms

else

return EVEN(NUMBER - 1);

end if;

end ODD;

The function EVEN is, in structure, like the function ODD and can easily be
written:

function EVEN (NUMBER : NATURAL) return BOOLEAN Is
begin

If NUMBER = 0 then

return TRUE;

else

return ODD(NUMBER -1);
end If;

end EVEN;

As we see, this function uses the function ODD. The question remains: 'How
should the two functions be placed in relation to one another?' If the function
ODD is placed before the function EVEN it is possible to call ODD from EVEN.
But then, it is not possible to call EVEN from ODD because ODD has not yet
been declared when the call is made. If the functions are written in the other

order, the same problem arises but the opposite way round.
The solution lies in first writing a separate subprogram specification

for one of the functions. If we start by declaring a separate subprogram specifi
cation for ODD our declarations will look like this:

function ODD (NUMBER : NATURAL) return BOOLEAN;

function EVEN (NUMBER : NATURAL) return BOOLEAN Is
begin

If NUMBER = 0 then

return TRUE;

else

return ODD(NUMBER -1);

end If;

end EVEN;

function ODD (NUMBER : NATURAL) return BOOLEAN Is
begin

If NUMBER = 0 then

return FALSE;

else

return EVEN(NUMBER - 1);

end If;

end ODD;
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On the first line the specification for ODD is given. In Ada, this permits the body
of a subprogram to be left until later. The complete declaration must be made
later, and note that the specification must then be repeated. Since ODD is spec
ified on the first line it is now known by EVEN and can be called from within
EVEN.

Separate subprogram specification

procedure name(parameters);

or:

function name(parameters) return resultjype;

May appear anywhere among the declarations.

The complete subprogram body (including the
specification) must be written later.

Separate subprogram specifications are always allowed, not only for
recursive subprograms. Their specifications can be put anywhere among the
declarations.

6.9 Functions as operators

In Ada, as we have seen, there are many built-in operators. The operator + exists
for both integer and floating point types, for example, and the operator = is
defined for all types met so far. When we declare our own, more complicated,
types we may also like to define operators for them. Let us take, as example, the
type VECTOR which we have already used:

type VECTOR Is array (INTEGER range < >) of FLOAT;

We can declare variables of type VECTOR:

X, Y, Z : VECTOR(1 .. 5);

In Section 6.1 we wrote a function ADD that could be used to add two vectors.

The following statement, for example, adds the vectors X and Y and the result is
assigned to the vector Z:

Z := ADD(X, Y);

The meaning is quite clear, but how much more elegant it would be to write:
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Z := X + Y;

This is not immediately possible because the operator + is not defined for the
type VECTOR, but it is possible in Ada to define operators for any type. This is
achieved using functions that, instead of having ordinary identifiers as names,
are given operator names.

For example, we shall alter the function ADD so that it is called "+" instead:

function "+" (V1, V2 : VECTOR) return VECTOR Is
TEMP : VECT0R(V1'RANGE) := V2;

begin

for I In V1'RANGE loop
TEMP(I) :=TEMP(I) +V1 (1);

end loop;
return TEMP;

end"+";

The function "+" is now called in the same way as if it were an operator. Instead
of writing, as before:

ADD(X, Y)

we can now write:

X +Y

Note that the two parameters are written before and after the function's name.
Here are some examples of different ways in which the function "+" can be
called:

Z := X + Y;

Z := X + Y + Z; -- the function is called twice

X :=X + (1.0, 2.0, 3.0, 0.0, 1.5);

Y := (1.3, 3.5, 6.7, 0.8, -3.4) + (0.3, 5.6, 1.2, 0.0, 4.5);

The third and fourth examples show that the parameters can also be array
aggregates. The compiler 'understands' that we do not mean the 'ordinary' plus
operator but the one we declared ourselves because the operands have type
VECTOR. We can say that we have overloaded operators in exactly the same
sense as the overloaded subprograms we discussed earlier. If we write the
expression:

I + J

where I and J are integer types the compiler would choose the 'ordinary' plus
operator, in spite of the fact that we have defined another. As many operators as
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necessary may be declared with the same name, provided their profiies are
different (see Section 6.6).

There are only certain operator names that can be used as declared oper
ators, and they are the normal operator names we studied in Chapter 3, namely:

and or xor

= < <= > >=

+ - & ~ normal + and ■

+ - ~ unary + and -
*

/ mod rem

Hi* abs not

The operators that normally have two operands, for example *, and and the
ordinary + operator, must also have two operands if new versions are declared;
that is, the operator functions must have two parameters. The operators abs, not
and the unary versions of + and - should have one operand.

Note that the operator /= is missing from the set of operators shown
above. In Ada 83 it is actually not permitted to declare this operator explicitly
because it is declared automatically if an equality operator, =, is declared. Since
the equality operator exists automatically for all normal types, it may not
normally be declared in Ada 83: it is only allowed for limited private types that
are used in conjunction with packages (see Section 8.8).

In Ada 95 an explicit declaration of an equality operator, =, is permitted for all
types, not only for private types. If such an equality operator is explicitly
declared and its result type is BOOLEAN, then a corresponding inequality oper
ator, /=, is automatically defined. If, on the other hand, an equality operator has
been explicitly declared but its result is not of type BOOLEAN, then no inequal
ity operator is automatically defined, but it is permitted to declare one explicitly.

6.10 Interface to other languages

From an Ada program it is possible to call a subprogram written in another pro
gramming language. Furthermore, in Ada 95 it is possible to construct functions
and procedures that can be called from a program written in a foreign language.

First we shall demonstrate how a subprogram written in another language
can be called from an Ada program. To accomplish this we use a so-called
pragma. An example will show the details. Suppose that we want to call the
function EXP, which is written in the programming language FORTRAN. Then
we would give the following declaration in the Ada 83 program:

function EXP (X:FLOAT) return FLOAT;
pragma IMPORT(FORTRAN, EXP);
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The function EXP can now be called in the normal way. For instance we can
make the call EXP(Y).

An extra parameter can be given to the IMPORT pragma. This parameter
is a text string containing a so-called external name. The external name is the
name of the foreign subprogram in its own language. If, for example, we want to
call a function PC, written in the C language, and the true name of the function
is fun, then we can write:

function PC (hlNTEGER) return INTEGER;

pragma IMPORT{C, PC, "fun");

If no external name is given, the name is assumed to be the same as the name in
the Ada program.

In Ada 83 the pragma INTERPACE should be used instead of IMPORT.
The pragma IMPORT can also be used to get access to a variable declared

in a module written in a foreign language. If, for example, we want to use a
global variable ERRNO, declared in a C module, we could give the declaration:

ERRNO: INTEGER;

pragma IMPORT(G, ERRNO, "errno");

In Ada 95 there is also a pragma EXPORT, which can be used to make Ada sub
programs accessible from programs written in other languages. If we want to
write a procedure ADA_PROC, for example, which should be callable from a C
program, we can declare it as follows:

procedure ADA_PROC(l:INTEGER);
pragma EXPORT(C, ADA_PROC, "ada_proc");

When mixing different languages we must be very careful and make sure
that the types of the parameters match. In Ada 95 there is a standard package
INTERPACES. This package has child packages which include type declarations
that simplify the interface to various foreign languages. The package INTER-
PACES.C is perhaps of special interest. It contains declarations of all standard
types in C and functions that convert between these types and Ada's types.
There are also the packages INTERPACES.C.STRINGS, with type declarations
and utility functions allowing an Ada program to handle text strings in C for
mat, and INTERPACES.C.POINTERS, which makes it possible to handle point
ers in the same way as in C. To be safe, the examples presented here should have
used the type int, which is declared in the package INTERPACE.C, instead of the
type INTEGER.
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6.11 Arguments to the main program

When we start a program from a terminal or a command window, we normally
type the name of the program. Some operating systems, MS-DOS and UNIX for
instance, also allow parameters, or arguments as they are usually called, to be
given to the program. These arguments are typed after the program name. The
command

> demo -X /r filel

for instance, means that the program with the name demo shall be run and that
the program shall be given the three arguments -x, /r and filel.

In Ada 95 there is a standard package ADA.COMMAND_LINE which
makes it possible to get access to the arguments in the main program. Three
functions are declared in this package. The function COMMAND_NAME returns
the program name (a STRING), ARGUMENT_COUNT returns the number of
arguments, and ARGUMENT, which shall have an argument number as parameter,
returns the corresponding argument (a STRING). As an example, the following
program prints its name and its arguments:

with TEXTJO, ADA.COMMAND.LINE;

use TEXTJO, ADA.CGMMAND.LINE;

procedure DEMO is

begin
PUT_LINE("Program name:" & COMMAND.NAME);
for I in 1..ARGUMENT_C0UNT loop

PUT_LINE(ARGUMENT(I));
end loop;

end DEMO;

EXERCISES

6.1 Write a function to evaluate the sign of an integer in the following way. The function
should return as its result the value 1 if the integer is greater than 0, the value 0 if the
integer is equal to 0, and the value -1 if the integer is less than 0.

6.2 Write a function that receives a character in the interval 'A'..'Z' as parameter. As its
result the function should give the corresponding lower-case letter.

6.3 Write a function that uses the following Maclaurin series to calculate the value of e-^.

^  . X x^e- - 1 + j j + 21 + 31 + 4! "*" •••

Exclude terms that are less than 10"^ from the sum.
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6.4 (a) Euclid's algorithm for evaluating the greatest common divisor of two positive
integers m and n can be described as follows:

(1) Divide w by n and denote the remainder by r.

(2) If r = 0 the evaluation is finished and the result is in n.

(3) Otherwise, set the value of m to that of n and the value of n to that of r,
and return to step 1.

Use this algorithm to write a function GCD that evaluates the greatest common
divisor of two positive integers.

(b) Write a program that reads in an arbitrary number of pairs of positive integers
and writes out the greatest common divisor for each pair. Use the function
GCD.

6.5 To calculate the square root of a number x we can use Newton's method as follows.
Start by guessing a number g>0. When we guess g, we know that there must be a num
ber h such that g X h=x. (The number h can thus be written as h = x/g.) If we are very
lucky and made a good guess, g and h are approximately equal and we have found the
solution. In general, however, guesses are not that good. A new better guess is the mean
of g and h:

X

new guess =

Now we can replace g by the new guess and calculate a new value of h. By taking the
mean of the new values of g and h we can get a still better guess, and so on.

Use this method to write a function that evaluates the square root of x. Use x/2 for
the first guess and let the guesses continue until the difference between two consecutive
guesses is less than 10"^.

6.6 The amplitude of a vector (V), vi, ... , v„) can be calculated using the formula:

1 = vn+ v5 + v5 + ... + v;

Write a function that can be used to calculate the amplitude of a vector whose components
are real numbers.

(a) Assume the vector has four components.

(b) Write the function so that it can calculate the amplitude of a vector with an arbitrary
number of components.

6.7 Two vectors (uj, U2, ... , u„) and (vi, V2, ... , v„) are said to be orthogonal if the sum:
n

2 U/V/
/=l

is equal to zero. Write a function that determines whether two integer vectors are orthogo
nal. The function may assume that the vectors have the same number of components, but
the actual number should be arbitrary and they need not be numbered in the same way.
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6.8 (a) Write a function that checks that a given text string contains an identifier according
to Ada's definition (see Section 3.2). The function should give one of the results
TRUE or FALSE.

(b) Use the function to write a program that reads in a line with a number of words
from the terminal and writes out how many of the words are allowed identifiers.
The words in the line are separated by one or more spaces.

6.9 Write a function that takes two text strings, T1 and T2, as parameters. The function
should determine whether T1 is a substring of T2. If this is true, the function should
return as a result the index of the start of the substring in T2. If T1 is not a substring of
T2 the function should return the value 0.

Hint: If T1 has the value 'ada' and T2 has the value Time enough to be a gadabout when
you have finished studying', the function would give the value 22 as its result, assuming
that T2 is indexed from 1.

6.10 In an array of integers, 'rotation to the right' can be defined as an operation that moves
each element one place to the right and the last element into the first position. Write a
subprogram that rotates an array an arbitrary number of places to the right. The subpro
gram should have two parameters, the array to be rotated and an integer that gives the
number of places to be rotated.

6.11 A list can be defined as a series of objects all of which are of the same type. A list can
have an arbitrary number of objects and can also be a null list, an empty list. Examples
of integer lists are:

(-1,-8,0,326) (15) 0

The last example is of an empty list. A list can be represented in Ada by an uncon
strained array type.

(a) Construct a subprogram that writes out an integer list in the same format as the
examples above, that is, enclosed in brackets and with the objects separated by
commas. There should be no spaces in the output. The list to be written is given
as a parameter to the subprogram.

(b) The head of a list can be defined as the first object in the list, and its tail is the
list that is formed if the head is removed. The list (17, -3,8), for example, has
head 17 and tail (-3,8). Note that the head is a single object and not a list. The
head and tail are not defined for an empty list. A list with only one object has the
empty list as tail.

Write two functions HEAD and TAIL that return the head and tail of a list,

respectively. Both functions should have a list of integers as parameter. If the
parameter is the empty li.st both functions should give a suitable error message.

(c) Write a function SECOND that gets a list of integers as its parameter and as its
result returns the second object in the list. Make use of the functions HEAD and
TAIL from part (b).

6.12 When wage statistics are presented, a median value is often quoted. The median is the
'central' value of a collection of values; the number of values less than the median is the
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same as the number of values that are greater. One way to evaluate the median is to sort
all the values into numerical order and then select the value in the middle. If there is an

even number of values, the median is the mean of the two central values.

Write a program to read in a maximum of 1000 monthly wages and calculate and
print their median value.

6.13 A numerically controlled drilling machine drills a large number of holes in a piece to be
machined. A large part of the machine's time is spent moving from one hole to another.
It is, therefore, desirable to minimize the moving time by making the machine drill holes
in an appropriate order. It is practically impossible to find the optimal solution to the
problem, even for a small number of holes, but here it is enough to find an 'acceptably'
good method rather than the optimal one. One such method is that each time a hole has
been drilled the next hole for drilling is the one that is nearest (and still needs to be
drilled).

Write a program that reads in the coordinates of the holes to be drilled and then
writes them out in the 'acceptable' order, according to the algorithm outlined above. The
positions of the holes can be given as points in a two-dimensional coordinate system and
can be stored in two arrays, one for each of the x and y coordinates.

Thus the program should start with an arbitrary point and then choose the next point
by determining the one that lies closest and has not yet been dealt with, etc. The coor
dinates of the points should be written out in the order they are to be drilled. The dis
tance between two points (jci, yi) and (xi, yi) is given by:

^ = V(-^l -■^2)- + (>'l ->'2)^
Assume that the coordinates of the points do not exceed a 'reasonable' size, say 100.
Hint: to avoid moving to a hole that has already been drilled, replace the x and y coor
dinates for each hole visited by a large number, for example, 10'^, so that such a point
is so far away from the rest that it will not be chosen again.

6.14 A trade union makes the following offer for a long-term wage agreement:
•  The first year (year number I) each employee will receive a monthly wage of

£790.

•  In the following years (years number 2, 3, 4 and so on) there will be an increase
of 4% over the previous year's wage, and an additional general rise of £30 per
month.

Write a recursive function that will calculate the monthly wage for a particular year
according to the scheme presented here. The only input parameter is to be the year
number.

6.15 One way of finding the greatest common divisor of two positive integers is to use the
definition:

r m if m = n
gcd(/n,n) = < gcd(m - n, n) if m > n

\_ gcd(w2, n - m) otherwise
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Write a recursive function GCD that evaluates the greatest common divisor of two positive
integers based on this definition.

6.16 The binomial coefficients can be defined in the following way:

1=1
n

0

n

n

n\ In - \ \ In - \

= 1

itru-iri k I

Write a recursive function to evaluate the binomial coefficient | j
Assume that0<j< i.

6.17 An efficient way of sorting the elements of an array goes under the name of quicksort.
The method can be described by the following recursive algorithm:

(1) If the array has no elements or only one element, then it is sorted. Otherwise,
perform the following steps:

(2) Choose an arbitrary element in the array and call it k.

(3) Move the elements around in the array so that two groups are formed. The element
k should be placed between the two groups. All the elements that are < A: should
be placed in the group to the left of k and all the rest in the group to the right.

(4) Sort the part of the array to the left of k using this algorithm.

(5) Sort the part of the array to the right of k using this algorithm.

Use the algorithm to write a procedure that sorts an array of integers. (Compare with
Exercise 5.11.)

6.18 Suppose you need to calculate the value of expressions of the form where both p and
q are real numbers. (If q were an integer there would be no problem because the opera
tor ** could be used from the standard definition of Ada.) If you are running under Ada
95 then it is simple, since in the generic package ADA.GENER1C_ELEMENTARY_
FUNCTIONS there is an operator, **, which permits the second operand to be a real
number.

Let us assume, however, that there is no available operator ** to use, but that there is
access to a mathematics package containing the basic functions EXP and LN. The task
is to use them to construct an operator ** of your own, where both operands are of type
FLOAT.

Hint: The normal mathematical formula for calculating logarithms involves: p^' =
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7.1 Multidimensional array types 7.4 Arrays of records
7.2 Arrays of arrays 7.5 Records with variants
7.3 Record types Exercises

In Chapter 5 we saw how Ada's simple types could be used to describe simple
data objects - objects that can be represented by a single value, such as a
temperature measurement. We also saw that array types can be used to
describe a series of simple objects, such as text and lists. This chapter
describes two opportunities offered by Ada which enable more complicated
data structures to be described. First array types with several dimensions will
be used to describe tables and arrays of numbers; then record types will be
used to represent objects comprising several different components.

287
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7.1 Multidimensional array types

In the array types studied so far there has been an index that could be used to
select particular components from an array. When the array type has been
declared the type of the index has also been stated: either integer or enumera
tion types are allowed. In this section we shall see how array type declarations
can be generalized so that an array type can have several indexes.

7.1.1 Constrained array types

Data is often presented in the form of a table. One example is the distance tables
found in road atlases, such as the one in Figure 7.1. The types studied so far are
not adequate for describing a data structure of this kind. Using an array type, it
is possible to describe a row or a column of such a table, but not the whole table.

It is possible to describe this sort of data structure in Ada with a multi
dimensional array type. To illustrate this we shall make a type declaration to
describe the table in Figure 7.1. The distance between two cities is expressed as
a whole number of kilometres, which can never be negative, so one possibility
is to use the type NATURAL to describe a distance. Because this type represents
natural numbers in the abstract sense, however, it is rather too general; it is
better to declare a new integer type DISTANCE_TYPE:

type DISTANCE_TYPE is range 0 .. 40077; - expressed in km

(The upper limit for possible distances has been chosen as the equatorial
circumference.)

The rows and columns of the distance table are named by cities, so we
declare an enumeration type CITY that 'numbers' them:

type CITY Is (AMSTERDAM, BERLIN, LONDON, MADRID,
PARIS, ROME, STOCKHOLM):

Amster Berlin London Madrid Paris Rome Stock

dam holm

Amsterdam 0 648 494 1752 495 1735 1417

Berlin 648 0 1101 2349 1092 1588 1032

London 494 1101 0 1661 404 1870 1807

Madrid 1752 2349 1661 0 1257 2001 3138

Paris 495 1092 404 1257 0 1466 1881

Rome 1735 1588 1870 2001 1466 0 2620

Stockholm 1417 1032 1807 3138 1881 2620 0

Figure 7.1
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Now the declaration of a type DISTANCE_TABLE can be made:

type DISTANCE_TABLE Is array (CITY, CITY) of DISTANCE.TYPE;

This is a two-dimensional array type. It differs from the one-dimensional array
types seen earlier in that two index types have to be stated. The term:

(CITY, CITY)

states that the array will have two indexes, both of type CITY.

Multidimensional array types

type A is array {indexl, index2, ... indexN)
of element_type\

Indexl, Index2, ... are intervals of the form

fIrsLvalue.. Iast_value, or the names of discrete

types.

Element_type is any (constrained) type.

Now a variable of type DISTANCE_TABLE can be declared:

DISTANCE : DISTANCE.TABLE;

This variable comprises a table, as above, with seven rows and seven columns.
Both columns and rows are 'numbered' with the enumeration type CITY. Each
element in the table is an integer of type DISTANCE_TYPE. If we make the
definitions as above, the contents of the variable DISTANCE are still undefined.

Assignment can be used to give a particular value to each element, by indexing,
exactly as in a one-dimensional array. For example, to insert the distance from
Berlin to Rome in the table, we could write:

DISTANCE(BERLIN, ROME) := 1588;

If we want to write out this distance we can use the statement:

PUT( (DISTANCE(BERLIN, ROME));

Thus indexing for multidimensional arrays works in exactly the same way as for
one-dimensional arrays, the only difference being that more than one index must
be given.
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Indexing in multidimensional arrays

A{value1, value2, , valueN)

where value 1 has index_type1, etc.

In a one-dimensional array it is possible to cut a slice, for example:

NAME(2 .. 5)

This is not possible in multidimensional arrays. Thus constructs such as:

DISTANCE(BERLIN .. ROME, AMSTERDAM) - ERROR!
DISTANCE(PARIS, LONDON .. STOCKHOLM) ~ ERROR!

are wrong.

It may be practical to give values to the whole distance table at once, and
to do this a two-dimensional array aggregate can be used. If the table is to be
initialized at the same time as it is declared, we can write:

DISTANCE : DISTANCE_TABLE :=

(( 0, 648, 494, 1752, 495, 1735, 1417),
( 648, 0, 1101, 2349, 1092, 1588, 1032),
{ 494,1101, 0, 1661, 404,1870, 1807),
(1752, 2349, 1661, 0, 1257, 2001, 3138),
( 495, 1092, 404, 1257, 0, 1466, 1881),
(1735, 1588, 1870, 2001, 1466, 0, 2620),
(1417, 1032, 1807, 3138, 1881, 2620, 0));

In the two-dimensional aggregate each row has been stated as an ordinary one-
dimensional aggregate. The expression:

( 494,1101, 0,1661, 404,1870,1807)

for example, states the value of 'London's' row in the table. The rules for writ
ing aggregates are the same as those we studied earlier. If, for example, we want
to set the whole table to zero we can write one of the following alternatives:

DISTANCE := ( (0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0),
(0, 0. 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0),
(0,0,0,0,0,0,0)):
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DISTANCE := ( AMSTERDAM => (0, 0, 0, 0, 0, 0, 0),
BERLIN => (0, 0, 0, 0, 0, 0, 0),

LONDON => (0, 0, 0, 0, 0, 0, 0).
MADRID => (0, 0, 0, 0, 0, 0, 0),
PARIS => (0, 0, 0, 0, 0, 0, 0),
ROME => (0, 0, 0, 0, 0, 0, 0),
STOCKHOLM => (0, 0, 0, 0, 0, 0, 0));

DISTANCE := ({others => 0),
(others => 0),
(others => 0),

(others => 0),
(others => 0),
(others => 0),

(others => 0));

DISTANCE := (others => (others => 0));

As with one-dimensional arrays, sometimes the compiler must be given help in
the form of a qualified expression giving the type of the aggregate:

DISTANCE := DISTANCE_TABLE'

(MADRID => (1752, 2349, 1661, 0, 1257, 2001, 3138),
others => (0, 0, 0, 0, 0, 0, 0));

It is very common for nested loop statements to be used in connection with
multidimensional arrays. The following lines of program show how a distance
table can be printed at the terminal:

~ write out the table

for FROM In AMSTERDAM .. STOCKHOLM loop

~ write a line of the table

for TO in AMSTERDAM .. STOCKHOLM loop
" write a distance in the current line

PUT(DISTANCE(FROM, TO), WIDTH => 6);
end loop;
NEW_LINE;

end loop;

The outer loop statement is run through once per row of table. On the first loop
the iteration counter FROM has the value AMSTERDAM, on the second it is

BERLIN, etc. Each time round, the outer loop statement writes out a line at the
terminal, the line being terminated by NEW_LINE. The inner loop statement is
executed once for each time through the outer loop. Each execution of the inner
loop statement involves seven iterations, the iteration counter TO having the
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value AMSTERDAM the first time round, BERLIN the second, and so on. This

means that the call to PUT will occur for each possible combination of FROM
and TO, that is, 49 times.

When a multidimensional array type is declared, in the same way as for
one-dimensional arrays, any discrete type, integer or enumeration type can be
used as the index types. The same rules apply. It is probably most common to
number the rows and columns in a two-dimensional array type with figures. For
example, we shall look at the simple game of noughts and crosses, played on a
3X3 board. One player has crosses and the other has noughts. They take it in
turn to place a piece on the board and the player who gets three of his pieces in
a line - a row, a column or a diagonal - is the winner. The game continues until
one player wins or the board is full. During the game a square on the board can
either be empty or contain a cross or a nought. A square can thus be described
by the type declaration:

type SQUARE Is (EMPTY, X, 0);

and the board can be described by the two-dimensional array type:

type GAMES_BOARD Is array (1 .. 3,1 .. 3) of SQUARE;

If we wanted to, we could introduce special index types and write instead:

subtype ROW_NUMBER Is INTEGER range 1 .. 3;
subtype COL_NUMBER Is INTEGER range 1 .. 3;
type GAMES_BOARD Is array (ROW_NUMBER, COL_NUMBER) of

SQUARE;

Now variables of type GAMES_BOARD can be declared, such as:

P : GAMES_BOARD := ( others => ( others => EMPTY));

Here P has been initialized so that all the squares are empty when the game
starts. Individual elements of P can be selected by indexing. If, for example, we
want to put a cross in the centre square we can write:

P(2.2) := X;

We shall study a function that determines whether the games board is full:

function FULL(BOARD : GAMES_BOARD) return BOOLEAN Is
begin
~ find out If board has any empty squares
for R In 1 .. 3 loop
~ find out If row R has any empty squares
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If BOARD{R,C) = EMPTY then
return FALSE;

end if;

end loop;

end loop;
-- no empty square has been found
return TRUE;

end FULL;

The function gets a board as parameter and returns a BOOLEAN value as its
result. If the board is full, that is, all the squares contain either a cross or a
nought, the function returns the value TRUE, but otherwise it returns FALSE.

The function contains two nested loop statements. The outer one goes
through all the rows and the inner one, which is performed once for each row,
goes through all the columns. If a square is reached that has the value EMPTY
the statement:

return FALSE;

is executed, which means that execution of the function ceases and the value
FALSE is returned. Thus if an empty square is found, the remaining squares are
not looked at. If none of the squares are empty then, eventually, the function's
last statement:

return TRUE;

is executed and the function returns the value TRUE.

In a multidimensional array type the index types do not need to be the
same, as they have been in the examples seen so far. In the next example we
assume that we have measured the temperature of the air every hour for a whole
week. We shall write a program that reads in the temperature measurements
made and then calculates and writes out the mean hourly temperatures for the
week.

We start by declaring an enumeration type DAY:

type DAY Is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY. FRIDAY, SATURDAY, SUNDAY);

We can also declare an integer type HOUR to describe the 24 hours of the day:

type HOUR is range 0 .. 23;

If the temperature measurements have been made with an accuracy of one
decimal figure, the following type can be used to describe them:

type TEMP Is digits 3 range -99.9 .. 99.9;
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Now we can construct a two-dimensional array type that describes a whole
week's measurements:

type MEASUREMENT_TABLE is array {DAY, HOUR) of TEMP;

The two indexes here are of different types. If we declare a variable of type
MEASUREMENT_TABLE:

MEASUREMENTS : MEASUREMENT.TABLE;

then we can, for example, give the Thursday 7 pm measurement the value 11.3
by writing the statement:

MEASUREMENTS(THURSDAY, 19) := 11.3;

Now we write a procedure that reads values into a measurement table.
The user has to be requested to input 24 hourly measurements for each day. The
procedure will have a measurement table as an out parameter. When execution
of the procedure is complete this table should be filled with the week's
measurements.

procedure READ_MEASUREMENTS
(TAB : out MEASUREMENT_TABLE) Is

begin

" Read values into table

for D in DAY loop
PUT("Enter the temperatures for");
PUT(D); NEW.LINE;

- Read values into a line of the table

for H in HOUR loop
GET( TAB(D, H));

end loop;

end loop;

end READ_MEASUREMENTS;

The elements of the table are run through and filled in row by row. First the
elements in the Monday row get their values in order (for 00.00, 01.00, and so
on). Then the elements of the Tuesday row get theirs, then the Wednesday row,
and so on. At this point, we assume that packages have been created in the main
program to handle reading and writing the types DAY and TEMP.

Note the construct:

for H in HOUR loop
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This ensures that the loop parameter H has the type HOUR and that it will run
through all the values of the type HOUR, namely 0-23. It would have been
wrong to write:

for H in 0 .. 23 loop — ERROR!

because then H would have had type INTEGER and it would not have been pos
sible to use H as index in the array TAB. If we did not want to run through all
the hours but only certain ones, for example, 0-11 am, we would have to state
the type and write:

for H In HOUR range 0 .. 11 loop

The next procedure we shall write receives a completed measurement table as In
parameter. Its job is to calculate and write out the mean of all the week's measure
ments for each hour of the day. The output should look like that in Figure 7.2.

We use the algorithm:

(1) Write the heading.

(2) Carry out the following for each hour:
(2.1) Calculate the mean for the current hour.

(2.2) Write out the calculated mean.

Step (2.1) can be expanded to:

(2.1.1) Add all the measurements made during the week for the current hour.

(2.1.2) Divide the sum obtained by the number of measurements, that is, by 7.

A further refinement can be made for step (2.1.1):

(2.1.1.1) SetMVtoO.

(2.1.1.2) Run through all the days of the week and add the temperatures

measured to MV.

hr mean temp

0 5.2

1 5.0

2 5.0

3 4.9

22 5.7

23 5.3

Figure 7.2
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The algorithm can now be translated to Ada, giving the procedure:

procedure WRITE_MEAN (M_TAB : MEASUREMENT_TABLE) is
MEAN : TEMP;

begin

-- Write heading
PUT_LINE("hr mean temp"):

NEW_LINE;

for H in HOUR loop

- Add all the measurements for this hour

MEAN := 0.0;

for D in DAY ioop
MEAN := MEAN + M_TAB(D, H);

end loop;

-- Divide by the number of measurements
MEAN := MEAN / 7.0;

" Print the calculated mean value

PUT(H, WIDTH => 2);
PUT{MEAN, EXP => 0, FORE => 7, AFT => 1);
NEW_LINE;

end loop;
end WRITE_MEAN;

In this procedure there is an outer loop statement which runs through all the
hours. Each time round, this loop statement calculates the mean value of
the week's measurements at a particular hour of the day. This means that the
elements of the table are run through column by column. Compare this with the
procedure READ_MEASUREMENTS, where the elements were run through row
by row.

Running through a table row by row

for ROW In first_row_no .. last_row_no loop
for COL In first_col_no.. last_col_no loop

... A(ROW, COL)...
end loop;

end loop;
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Running through a table column by column

for COL in first_col_no.. last_col_no loop

for ROW in first_row_no.. last_row_no loop

... A(ROW, COL) ...
end loop;

end loop;

Now we can put these two procedures into a main program where we
have also included the necessary type declarations and declared the packages for
reading and writing the types DAY, HOUR and TEMP. When the program is run
it will first call the procedure READ_MEASUREMENTS to get the week's
temperature measurements. Then the procedure WRITE_MEAN is called, to
calculate and write out the hourly means of the temperatures.

with TEXT_IO;

use TEXTJO;

procedure MEASUREMENTS.EXAMPLE is

type DAY is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

type HOUR is range 0 .. 23;
type TEMP is digits 3 range -99.9 .. 99.9;

type MEASUREMENT_TABLE Is array (DAY, HOUR) of TEMP;
package DAYJNOUT is new ENUMERATIONJO(DAY);

package HOURJNOUT is new INTEGER_IO(HOUR);
package TEMPJNOUT is new FLOAT_IO(TEMP);
use DAY_INOUT, HOURJNOUT, TEMP.INOUT;

MEASUREMENTS : MEASUREMENT.TABLE;

procedure READ_MEASUREMENTS
(TAB : out MEASUREMENT_TABLE) is

begin

-- Read values into table

for D in DAY loop
PUT("Enter the temperatures for");
PUT(D); NEW_LINE;

~ Read values into a line of the table

for H in HOUR loop
GET( TAB(D, H));

end loop;

end loop;

end READ_MEASUREMENTS;
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procedure WRITE_MEAN (M_TAB : MEASUREMENT_TABLE) is
MEAN : TEMP;

begin

~ Write heading
PUT_LINE("hr mean temp");
NEW_LINE;

for H in HOUR ioop

-- Add all the measurements for this hour

MEAN := 0.0;

for D in DAY loop

MEAN := MEAN + M_TAB{D, H);
end loop;

~ Divide by the number of measurements
MEAN := MEAN / 7.0;

- Print the calculated mean value

PUT(H, WIDTH => 2);
PUT{MEAN, EXP => 0, FORE => 7, AFT => 1);
NEW_LINE;

end ioop;
end WRITE.MEAN;

begin
READ_MEASUREMENTS(MEASUREMENTS);
WRITE_MEAN(MEASUREMENTS);

end MEASUREMENTS.EXAMPLE;

The examples we have seen so far (distance tables, games boards,
tables of measurements) have all been arrays with two dimensions. Even if two-
dimensional arrays are the most common among multidimensional arrays, in
Ada there are no limits as to the number of dimensions allowed. For example,
we can look at the sales of various goods in a supermarket with 10 check-outs.
The goods in the store are divided into five categories: food, confectionery,
household goods, tobacco and miscellaneous goods. There are statistics
concerning the sales for a whole year. For each month the value of the goods
sold at each check-out have been collected, classified according to the five
categories above. A suitable type for describing the sales statistics is:

type STATISTICS is array (MONTH, CHECK.OUT, GOODS) of FLOAT;

where the types MONTH, CHECK_OUT and GOODS are declared as follows:

type MONTH is (JANUARY, FEBRUARY, MARCH, APRIL,
MAY, JUNE, JULY, AUGUST,
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SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);
type CHECK_OUT is range 1 .. 10;
type GOODS is (FOOD, CONFECTIONERY, HOUSEHOLD.GOODS,

TOBACCO, MISCELlJ\NEOUS);

Suppose we want to know which check-out had the best total sales during the
year. We write a function BEST_CHECK_OUT to look into it. As in parameter
to the function we shall give the current year's sales statistics, that is, a multi
dimensional array of type STATISTICS. As its result the function will return a
check-out number, of type CHECK_OUT.

function BEST_CHECK_OUT (SALES : STATISTICS)
return CHECK.OUT is

CURRENT_BIGGEST : FLOAT := 0.0;

CURRENT_BEST : CHECK_OUT :=1;

SUM : FLOAT;

begin
~ look for the best check-out

for C in CHECK.OUT loop

~ calculate the total sales at check-out C

SUM := 0.0;

for M in MONTH loop

for G in GOODS loop
SUM := SUM + SALES(M, C, G);

end loop;

end loop;

if SUM > CURRENT_BIGGEST then

- check_out C is the best so far

CURRENT_BIGGEST := SUM;

CURRENT_BEST := C;

end if;

end loop;

return CURRENT_BEST;

end BEST_CHECK_OUT;

In the function there are three nested loop statements. The outermost runs
through all the check-outs. For each check-out the total sales of all kinds of
goods during the year is calculated and placed in the local variable SUM. In
order to do this, it must sum over all the months and all the categories of goods.
Then it looks at whether the current check-out has a better sales result than the

best of those already investigated. If so, the variables CURRENT_BIGGEST and
CURRENT_BEST are updated. When all the check-outs have been examined,
CURRENT_BEST contains the number of the check-out with the largest total
sales. This number is returned by the function as its result.
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7.1.2 Matrices and unconstrained arrays

In mathematics a set of numbers arranged in M rows and N columns is called an
M X N matrix. As an example, here is a 3 x 4 matrix:

11 45 -5 0

4 10 26 32

-I 0 2 16

It is possible to define mathematical operations. For example, addition of two
matrices, A and B, can be defined if they have the same numbers of rows and
columns. Their sum is then a new matrix in which each element is the sum of

the corresponding elements in A and B. Here is an example:

3 5  1 \ / 1 1 1 1  \ /I 4 6 2

2 2  -1 + 0 4 5 0  = 1  6 7 -1

8 3  0 1 \ 0 2 1 0 \ 4 10 4 0

A matrix is naturally represented in Ada by a two-dimensional array of either
integers or real numbers. The indexes are integers and row and column
numbering usually starts from 1. For example, a 3 x 4 matrix of integers can be
described by this type:

type MATRIX34 Is array (1 .. 3,1 .. 4) of INTEGER;

Here is a function that adds two 3x4 matrices and gives a new 3x4 matrix as
its result.

function ADD (A. B : MATR1X34) return MATRIX34 Is

C : MATRIX34;

begin
~ Calculate elements of matrix 0

for I In 1 ..3 loop

~ Calculate elements of row I of matrix C

for J In 1 ..4 loop

- Calculate element in column J of row I

C(I.J) := A(I,J) + B(I,J);
end loop;

end loop;
return C;

end ADD;

The function runs through the two matrices, element by element, adding pairs
from corresponding positions and placing the result in the local variable C,
another 3x4 matrix. Then C is returned from the function as its result.
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We saw earlier that unconstrained array types may be used to write
general subprograms that work for all sizes of array. This is also possible in the
case of multidimensional arrays. We can declare a type MATRIX that denotes
matrices with arbitrary numbers of rows and columns:

type MATRIX is array (POSITIVE range < >,
POSITIVE range < >) of INTEGER;

The constructs:

POSITIVE range < >

state that both index types should be of the subtype POSITIVE and that their
exact limits can vary. As for a one-dimensional array, the index constraints must
be stated when a variable of the type is declared:

P35, 035 : MATRIX(1 .. 3, 1 .. 5);
X24, Y24 : MATRIX(1 .. 2, 1 .. 4);

Here P35 and 035 are 3 x 5 matrices and X24 and Y24 are 2 x 4 matrices.

Unconstructed multidimensional array types

type A Is array (T1 range < >, T2 range <>, ...)
of element_type;

T1, T2, etc. are discrete types.

Index constraints must be given when an object is
declared but unconstrained types may be used in
declaring formal parameters to subprograms.

Element_type can be any (constrained) type.

Now we can write a general version of the function ADD that will work
for all matrices, irrespective of the numbers of rows and columns. However, the
elements must be of the same type and the two matrices must have the same
numbers of rows and columns.

function ADD(A, B : MATRIX) return MATRIX Is
C : MATRIX(A'RANGE(1), A'RANGE(2));

begin

~ Calculate elements of matrix C

for I In A'RANGE(1) loop
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- Calculate elements in row I

for J in A'RANGE(2) loop

-- Calculate element in column J of row I

C(I.J) := A(I,J) + B(I,J):
end loop;

end loop;
return C;

end ADD;

A generalized form of the RANGE attribute, valid for multidimensional arrays,
has been used here.

A'RANGE(1)

gives the interval for the first index of A, and

A'RANGE(2)

gives the interval for its second index. The declaration:

C : MATRIX(A'RANGE(1), A'RANGE(2));

thus means that C gets the same numbers of rows and columns as A. For
example, if we call the function with:

ADD(X24. Y24)

then A'RANGE(1) is the equivalent of:

1  .. 2

and A'RANGE(2) is the equivalent of:

1  .. 4

If X24 has the value:

1 3 0 7

2 4 6 1

and Y24 has the value:

1 1 2 0

1 0 1 1

then the function will return:
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2 4 2 7

3  4 7 2

as the result of being called.
We could also call ADD in the following way:

ADD(P35, Q35)

Then it would return the 3 x 5 matrix which is the sum of P35 and Q35.

The attributes FIRST, LAST, LENGTH and RANGE exist in generalized
forms for multidimensional arrays, as is seen from these examples:

X24'FIRST(1) gives the value 1

X24'FIRST(2) gives the value 1

X24'LAST(1) gives the value 2

X24'LAST(2) gives the value 4

X24'LENGTH(1) gives the value 2

X24'LENGTH(2) gives the value 4

X24'RANGE{2) gives the range 1 .. 4

Attributes for multidimensional arrays

• FIRST(N) gives the first index value
number N.

for index

• LAST(N) gives the last index value
number N.

for index

• LENGTH(N) gives the number of index
index number N.

values for

• RANGE(N) gives the index interval
number N.

for index

7.2 Arrays of arrays

When one-dimensional arrays were used earlier we saw that they had compo
nents of scalar types, that is, simple objects such as INTEGER or FLOAT. In Ada,
however, there is nothing to stop the components being compound types. For
example, the components of an array could actually be of array type.
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For example, we shall study an alternative way of representing matrices.
Instead of considering a matrix as a two-dimensional arrangement of numbers
we can see it as a number of rows, each consisting of a number of simple
elements. A 4 x 5 matrix can then be described thus:

type ROWS is array (1 .. 5) of INTEGER;
type MATRIX45 Is array (1 ..4) of ROWS;

Now variables of type MATRIX4S can be declared, such as:

X : MATRIX4S;

X is a one-dimensional array where each component is in turn a one-
dimensional array. To get at individual components in the array, indexing can be
used, as normal. The expression:

X(2)

for example, means that element number 2 in X, that is, the second row, is
selected. Since a row is in itself an array, it can also be indexed. To select the
third component of the second row we write:

X(2) (3)

Note that this has a different form from that used to describe a matrix using two-
dimensional arrays.

One disadvantage of using arrays of arrays rather than two-dimensional
arrays is that unconstrained types may not be used for the rows. When an array
is declared its component types must be constrained. Thus it is not permitted to
make the declarations:

type ROW is array (POSITIVE range < >) of INTEGER;

type MATRIX is array (POSITIVE range < >) of ROW; -- ERROR!

ROW is an unconstrained type and is not allowed to be a component type in the
declaration of MATRIX. However, there is nothing against MATRIX being an
unconstrained array type. If we amend the row type to be a constrained type,
with five components for example, the following declarations are allowed:

type ROWS is array (1 .. 5) of INTEGER;

type MATRIX is array (POSITIVE range < >) of ROWS;

The number of rows in the matrix can thus be indeterminate when an array of
arrays is used, but the number of columns must be specified.
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Arrays of arrays

type ROW is array {index2) of element_type\

type A is array (indexl) of ROW;

Indexl and index2 are intervals of the form

first_value Iast_value or the name of a discrete

type.

Indexl (but not index2) can also be an uncon

strained expression of the form:

discrete_type_name range < >

Indexing in arrays of arrays

A{value1) {value2)

where value 1 is of index_type1 and value2 is of
index_type2.

One advantage of using an array of arrays instead of a two-dimensional array is
that it is possible to cut slices, since we have two one-dimensional array types.
If the variable X of type MATRIX45 has the value:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

then the expression X(2 .. 4) means rows 2-4, that is:

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Indexing can be used in this part matrix, or further slices can be cut. The
rows retain their original numbering, so the first row has number 2. The expres
sion X(2 .. 4) (2) therefore means the first row of the part matrix, which is to say
the row

6  7 8 9 10
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and the expression X(2 .. 4) (3 .. 4) means rows 3-4 of the part matrix, or:

11 12 13 14 15

16 17 18 19 20

We can also cut slices from rows. The expression X(4) means the fourth row:

16 17 18 19 20

and X(4) (2 .. 4) is then the part row:

17 18 19

Slices in an array of arrays

It is permitted to cut out slices.

A(j.. k) means row j to row k in A.

A(n) {p.. g) means elements p to p in row n of A.

Whether or not to use a two-dimensional array or an array of arrays to describe
a two-dimensional data structure is a matter of judgement. In many cases it is
most natural to use a two-dimensional array. Then there is the advantage of
being able to use unconstrained arrays. Sometimes it is necessary to be able to
cut slices and then an array of arrays should be used, since slices are not
permitted in two-dimensional arrays.

As an example of a case when it is appropriate to use an array of arrays
we shall study a very simple membership list for a club of some sort. We shall
assume that each member has a particular membership number. A register is
kept of all the members, an entry consisting of the membership number and the
member's surname. There is no fixed upper limit for the number of members the
club can have. Each time a new person joins, he or she is allocated the next
available membership number and the number and name are entered at the end
of the list. This means that the members are not listed in alphabetical order but
according to the length of time they have held membership.

A member's name can be described by the type:

MAXLENGTH : constant := 20;

subtype NAME Is STRING(1 .. MAXLENGTH);

Thus we store only the first 20 letters of a member's name, and if the name is
shorter than that we pad it with blanks.
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The membership list can now be described by an unconstrained array
type, with room for an arbitrary number of members:

type REGISTER_TYPE is array (POSITIVE range < >) of NAME;

Since the type NAME is an array type (an array of 20 characters of type
CHARACTER) the type REGISTER_TYPE is an array of arrays.

Now we can declare a variable of the type REGISTER_TYPE:

MEMBERS : REGISTER_TYPE (1 .. 5);

If we want to initialize the variable, we can use a two-dimensional array
aggregate:

MEMBERS : REGISTER_TYPE := ("Ponsonby
"Tomlinson

"Donaldson

"Ellis

"Hall

Note that an expression of the form:

"Ellis

is a special aggregate that is used for the array type STRING.
We shall look at a function whose job is to see whether a certain person

is in the membership list. The function will have two in parameters. The first
is the name of the person sought. We shall let this parameter have the
unconstrained type STRING. The second parameter is the membership register
itself. If the person in question is a member of the club then the function
will return the membership number as its result; otherwise it will return the
value 0.

function FIND_NUMBER (REQUIRED_NAME : STRING;
REGISTER : REGISTER_TYPE)

return NATURAL is

LENGTH : NATURAL;

TEMP_NAME : NAME := (others => ''):

begin

- Set LENGTH to the lesser of the

~ required name length and MAXLENGTH
if REQUIRED_NAME'LENGTH <= MAXLENGTH then

LENGTH := REQUIRED_NAME'LENGTH;

else
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LENGTH := MAXLENGTH;

end if;

TEMP.NAME (1 .. LENGTH) :=
REQUIRED_NAME (1 .. LENGTH);

" Look for the name in the register
for N in REGISTER'RANGE ioop

if REGISTER{N) = TEMP_NAME then
~ The name is present in the register
return N;

end if;

end ioop;
-- The name is not present

return 0;

end FIND_NUMBER;

If the name sought contains more than 20 chciracters the local variable LENGTH
is set to 20; otherwise it is set to the actual length of the name. Then the
number of characters specified by LENGTH are copied from REQUIRED_NAME
to the local variable TEMP_NAME, Since TEMP_NAME is initialized to a blank

character string it will contain the required name either shortened to 20 charac
ters or padded with blanks. In the loop statement the membership register is run
through. Each entry in the register is examined for the name required. If it is
found the function terminates and the value N - the membership number - is
returned as its result. If the whole list is examined without finding the name, the
value 0 is returned as result.

The following are examples of ways of calling the function:

FIND_NUMBER("Tomlinson", MEMBERS) ~ gives the value 2
FIND_NUMBER("Hair', MEMBERS) - gives the value 5
FIND_NUMBER("Ponsonby", MEMBERS) ~ gives the value 1

7.3 Record types

We have seen that by using array types we can describe complicated data objects
with many components. One limitation of array types is that all the components
of an array must be of the same kind. Therefore array types cannot be used to
describe compound data objects where the components of an object are of
different types. Instead, we use record types.

As an example we shall study the description of a car in a hypothetical
register of cars. A car can be characterized by many things, such as its registra
tion number, make, year of manufacture, weight and engine capacity. If we have
the type declarations:
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type YEAR.TYPE is range 1900 .. 2000;
type WEIGHT_TYPE is range 100 .. 10000; - measured in kg
type POWER_TYPE is digits 4; -- measured In kW

the information can be put together using the record type declaration:

type CAR_TYPE is
record

REG_NUMBER

MAKE

MODEL_YEAR

WEIGHT

POWER

end record;

STRING{1 .. 7);
STRING{1 .. 20);
YEAR.TYPE;

WEIGHT_TYPE;

POWER_TYPE;

A definition of a record type starts with the reserved word record and ends
with end record. Between these words are declarations of the record type's
components.

Declaration of a record type

type T is
record

component_name_1: type_1\

component_name_2: type_2;

component_name_N: type_N\
end record;

If there are several components with the same type, it
is possible to write instead:

component_nameJ, ... component_nameJ: typejj;

Now we can declare variables of type CAR_TYPE:

MY_CAR : CAR_TYPE;

The variable MY_CAR comprises five different components, as shown in
Figure 7.3. (The contents of the different fields are still undefined.)

When we worked with arrays we used indexing to get at the individual
components in an array. Each component in the array had a unique number (of
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MY CAR

REG_

NUMBER

MAKE MODEL. WEIGHT POWER

YEAR

Figure 7.3

integer or enumeration type) that could be specified as an index. In a record the
components have no numbers, but they do have explicit names. To access a
particular component of a record, selection is used. A stop is written after the
name of the record, followed by the name of the component. If, for example, we
want to give the component WEIGHT in the variable MY_CAR the value 920, we
can write the assignment;

MY_CAR.WEIGHT := 920;

The following are some more examples of selection:

MY.CAR.POWER := MY_CAR.POWER + 10.0;

If MY_CAR. POWER > 100.0 then

PUT_LINE("Tuned");
end If;

PUT(MY_CAR.MAKE);

A component that is selected in this way can be used in the same way as normal
simple variables, in expressions for example.

Selection in record variables

record_ variable_name. component_name

The declarations of the components in a record type have exactly the
same form as variable declarations, but it is important to note that no object is
created in connection with the declaration of a record type. As before, a type
declaration is only a description of what the objects will look like if some are
created later. Objects are only created when there is an object declaration, such
as the declaration of the variable MY_CAR.

Selection is thus used for accessing the individual components of a
record, but the whole record can also be handled at once. We could declare

another variable of type CAR_TYPE:
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YOUR_CAR : CAR_TYPE;

Now we can make assignments and comparisons, as for example:

YOUR_CAR := MY_CAR:

if YOUR_CAR = MY_CAR then

Only the comparison operators = and /= are defined. Thus it is not possible to
see whether one record is 'greater than' or 'less than' another.

Assignment of records

R1 := R2:

where R1 is a record variable and R2 is a variable or

a constant of the same type as R1.

Comparing records

R1 = R2 or R1 /= R2

where R1 and R2 are objects of the same record type.

In the case of arrays, we could use array aggregates to give values to all
the components at once. There is a corresponding construct for records, also
called an aggregate. If, for example, we want to initialize the variable MY_CAR
at the same time as declaring it, we write:

MY_CAR : CAR_TYPE := ("C123XYZ", "Ford Escort 1.8
1994, 840, 30.0):

We can also use record aggregates in assignments and comparisons, such as:

YOUR.CAR := ("ABD_544", "Volvo 850 GLT
1994, 1400, 70.0);

if YOUR_CAR = ("12BN123", "Volvo 850 GLT
1994, 1400, 70.0) then

In these record aggregates we have simply listed the values of the individual
components in their proper order. We have used positional association between
the values and the components. Named association can also be used by stating
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the name of the component and its corresponding value. In that case it is not
necessary to give the values of the components in the same order as they appear
in the record. For example, we can write:

YOUR.CAR := {REG_NUMBER => "ABD_544",
MODEL_YEAR => 1994,

MAKE => "Volvo 850 GLT

POWER => 70.0,

WEIGHT => 1400):

Record aggregates

A specification where the values of all the compo
nents of a record can be stated at once.

Alternative forms:

{value_for_comp_1, value_for_comp_2, ...)

or:

{component_name => corresponding_value,

component_name => corresponding_value,

component_name => corresponding_value)

The values in a record aggregate can be arbitrary
expressions which must have the same types as the
corresponding components.

The individual components of a record can have any type. If we declare
a new record type PERSON:

type PERSON is
record

NAME : STRING(1 .. 20);
ID_NUMBER : STRING(1 .. 10);

end record;

then we can extend the record type CAR_TYPE with a further component,
OWNER:
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type CAR_TYPE is
record

REG_NUMBER

MAKE

MODEL_YEAR

WEIGHT

POWER

OWNER

end record;

STRING(1 .. 7);

STRING(1 .. 20);
YEAR_TYPE;

WEIGHT.TYPE;

POWER_TYPE;

PERSON;

If the owner's identification number has to be found for printing, it can be
achieved in two stages:

PUT{MY_CAR.OWNER.ID_NUMBER);

Using record types it is possible to build up several levels of data descrip
tion. The type PERSON could well have another component, ADDRESS, which
in turn could have a record type, and so on. In this way it is possible to make the
kind of data abstraction discussed in Chapter 5. A record type can describe a
phenomenon in the real world, as for example, the phenomenon of a 'car'. In
studying the concept of a 'car', there is naturally no interest in the detailed
description of the 'owner'. Then it becomes natural to introduce a new
record type to describe a 'person', and this new record type can then be studied
separately if needed.

Since record types can be used to describe phenomena they are
commonly used as parameters and results of subprograms. Let us study, as an
example, the phenomenon of a 'point' in a two-dimensional coordinate system.
A particular point in the system can be defined by an x and a y coordinate. The
concept of a point can then be described by the record type:

type POINT Is
record

X, Y: FLOAT;

end record;

The formula:

d = V - ̂2)- + (y, - y,)"

gives the distance d between two points U,, y,) and (jtj, yj)' this can
be used to construct a function DISTANCE. The function will take two

points as In parameters and give the distance between them, a real quantity, as
result.
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function DISTANCE (P1, P2 : POINT) return FLOAT Is

begin
return SQRT((P1 .X - P2.X) - 2 + (PI .Y - P2.Y) ** 2);

end DISTANCE;

If we declare the variables A and B thus:

A : POINT := (1.0, 2.0);

B  : POINT := (-3.0,-1.0);

then the statement:

PUT( DISTANCE(A, B));

will print out the resulting value 5.0.
We can also have record aggregates as parameters to the function. The call:

DISTANCE( (6.0, 8.0), (0.0, 0.0))

for example, will give the result 10.0.
A function can return a result of a record type. A function that finds the

mid-point of a line joining two points PI and P2 could look like this:

function MIDPOINT (PI, P2 : POINT) return POINT is

begin
return ((PI .X + P2.X) / 2.0, (PI .Y + P2.Y) / 2.0);

end MIDPOINT;

If we declare a new variable C:

C : POINT;

and execute the statement:

C := MIDPOINT(A, B);

then C will get the value (-1.0, 0.5), assuming that A and B still have their ear
lier values.

The call:

MIDPOINT( (1.0, 1.0), (2.0, 2.0) )

returns the point (1.5, 1.5) as result.
As discussed earlier, the value of a variable is undefined at the time

of declaration unless it is explicitly initialized. Record types have a special
feature that does not exist for other types. At the time of type declaration.
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initial values for the components of the record type can be stated. If this is
done, all the variables of that record type that are later declared will automati
cally be initialized to these values, unless the variable declaration itself gives
specific initial values. To illustrate this, let us amend the declaration of the type
POINT:

type POINT Is
record

X, Y : FLOAT := 0.0;

end record;

If we now declare a variable START_POINT:

START_P01NT: POINT;

Then this will have the value (0.0, 0.0) after the declaration. If we had not had

the initialization expression in the type declaration, the variable START_POINT
would have been undefined.

An ordinary initialization when the variable is declared would override
the automatic initialization. After the declaration:

END_POINT : POINT := (10.0, 5.0);

the variable END_P01NT will, in the usual way, have the value (10.0, 5.0). It is
not necessary to give all the components of a record type the same automatic
initialization values, nor do all the components have to have them. As an
example, we can rewrite the declaration of CAR_TYPE:

type CAR_TYPE is
record

REG_NUMBER

MAKE

MODEL_YEAR

WEIGHT

POWER

end record;

STRING(1 .. 7) := " ";

STRING(1 .. 20);
YEAR_TYPE := CURRENT_YEAR;

WEIGHT.TYPE;

POWER_TYPE;

where CURRENT_YEAR is a constant:

CURRENT_YEAR : constant := 1994;

If we now declare a variable NEW_CAR:

NEW_CAR : CAR_TYPE;
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then the component MODEL_YEAR in NEW_CAR will have the value 1994 and
REG_NUMBER will have the value " The other components are
undefined.

Ordinary scalar variables cannot be automatically initialized on declara
tion, except by using the trick of enclosing the scalar type in a record type. For
example, assume we have a type SCORE_TYPE:

type SCORE-TYPE is range 0.. 100;

If we declare a variable 8:

S : SCORE-TYPE;

then S's value is undefined. If, however, we introduce the type SCORE_
RECORD_TYPE instead:

type SCORERECORDTYPE is
record

SR SCORE-TYPE := 0;

end record;

and make the variable declaration:

S : SCORE_RECORD_TYPE;

then S will automatically be initialized to the value 0 on declaration. A
disadvantage of this is, of course, that every time S is referred to, S.SR must be
written instead of S.

Automatic initialization of components of
records

• When a record type is declared, initial values can
be given for individual components.

• When a variable of the type is later declared, such
components will automatically be initialized to
these values.

• An initializing value can be a general expression
and should have the same type as the record
component.
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7.4 Arrays of records

It is very common in real life to have a number of objects with the same
properties. One example is a telephone directory with many subscribers, each
entry specifying a telephone number, name, title and address. Another example
is the result list from a sporting event. For each competitor, his or her number,
name, club and result are given. The natural data structure to use in Ada to
describe such a real thing is an array of records. The result list from the
sporting event could be described using the type RESULT_L1ST below:

type NUMBER is range 1 .. 1000;

type TIME Is digits 7 range 0.0 .. 600.0;
type COMPETITOR is

record

1D_NUMBER

NAME

CLUB

RUN.TIME

end record;

type RESULT_LIST is array (1 .. 500) of COMPETITOR;

NUMBER;

STRING(1 .. 10);

STR1NG(1 .. 20);
TIME;

We have assumed that there are at most 500 competitors but that they can have
identifying numbers in the range 1-1000, so that not all available numbers are
used. We have also assumed that the competition is one where all results are
given as times, for example, swimming or cross-country skiing. The times are
given in minutes and it is assumed that none are more than 10 hours.

Of course, it is also possible to have an unconstrained array of records,
where the number of records is not decided in advance. As an example of this
we can take the telephone directory:

type TELEPHONE_NUMBER is range 0 .. 9999999;
type SUBSCRIBER Is
record

NAME : STRING(1 .. 20);
TITLE : STRINGO .. 15);

ADDRESS : STR1NG(1 .. 20);
NUMBER : TELEPHONE_NUMBER;

end record;

type TELEPHONE_CATALOGUE is array (INTEGER range < >)
of SUBSCRIBER;

The number of subscribers must then be stated when a variable is declared, such
as:

NEWTOWN_CATALOGUE : TELEPHONE_CATALOGUE(1 .. 50000);
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In the rest of this section we shall assume that we have a car hire firm and

a list of all its cars. To describe such a list we can use the type CAR_TYPE that
we declared earlier:

type CAR_TYPE is
record

REG_NUMBER

MAKE

MODEL_YEAR

WEIGHT

POWER

CLIENT

end record;

STRING(1 .. 7);
STRING(1 .. 20);
YEAR_TYPE;

WEIGHT_TYPE;

POWER.TYPE;

PERSON;

We have added a component CLIENT, which states who is currently hiring the
car in question. The type PERSON is declared as follows:

type PERSON is
record

NAME

CLIENT_NUMBER

ADDRESS

end record;

STRING(1 .. 20);
STRING{1 .. 10);

STRING(1 .. 30);

Then we can declare a type CAR_LIST:

type CAR_LIST is array (POSITIVE range < >) of CAR_TYPE;

If we assume that the firm has at most 100 cars we can declare a variable

CARS_OWNED:

CARS_OWNED : CAR_LIST(1 .. 100);

Data about the firm's cars can now be entered in the array. For example,
to give values to car number 23 we can use indexing and write the assignment
statement:

CARS_OWNED(23) := ("D135ADG", "Opel Vectra 2.0 IGLS
1993, 1320, 70.0,

("Frederick Smith ", "100121PRIV",

"13, High St, Granton "));

Note that the right-hand side contains one record aggregate within another, since
the component CLIENT in type CAR_TYPE is itself of a record type.
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If we want to write out the name of the customer who hired car number

23 we can use indexing and selection:

PUT(CARS_OWNED(23).CLIENT.NAME):

Assume that values have been assigned to all the components in the array
of descriptions of the firm's cars. The following lines of program read in a
registration number from the terminal and investigate whether there is a car with
that registration number. If there is such a car, the name and address of the client
who has hired the car will be written out. If the car is not hired out, the message
"The car is not hired out" is written.

PUT_LINE("Enter registration number.");
GET(REG_NR);

P := SEARCH(CARS_OWNED, REG_NR);

if P = 0 then

PUT_LINE("No car with this registration number.");
elsif CARS_OWNED{P).CLIENT.NAME = (others =>'') then
PUT_LINE("The car is not hired out");

else

PUT_LINE("The car is hired out to:");
PUT_LINE(CARS_OWNED(P).CLIENT.NAME);
PUT_LINE(CARS_OWNED(P).CLIENT.ADDRESS);

end If;

We assume that the variable REG_NR has type STRING(1 .. 7) and that the
variable P has the type INTEGER. In these lines we have called a function
SEARCH which searches the array for the record containing a particular regis
tration number. As a result, the function returns the index of the record in the

array. If it finds no such record, the function returns the value 0. The function
SEARCH has two in parameters - the array to be searched and the registration
number of interest.

Now we have to write the function SEARCH. The simplest way is to use
a linear search, as discussed in connection with arrays in Chapter 5. We simply
search through the whole array, until either the array is finished or the record we
are looking for is found. The function SEARCH is:

~ LINEAR SEARCH

function SEARCH (C : CAR_LIST; REQ_REG_NR : STRING)
return NATURAL Is

I : POSITIVE := C'FIRST;

begin
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-- search until the array is finished or
— the required registration number is found
while I <= C'LAST and then

C{I).REG_NUMBER /= REQ_REG_NR loop
I  := I + 1:

end loop;

if I <= C'LAST then

-- Required registration number has been found
return I;

eise

~ Required registration number not found
return 0;

end if;

end SEARCH;

This method of finding something in an array is not particularly efficient. In the
worst case, we must search through the whole array. If the array were sorted we
would be able to find a more efficient method, so we shall start by sorting the
array according to registration number.

We studied one simple sort method in Section 5.9. Here we shall demon
strate another common and simple (but not particularly efficient) method that is
usually called bubble sort, which is based on ordering neighbouring pairs. In
this method the array is run through time and again. As soon as two neighbour
ing components of the array are found that are not in correct order, they are
swapped. In this way the 'lighter' components (those with smaller values) 'rise
up' to the 'surface', while the 'heavier' ones 'sink' to the 'bottom', hence the name.

We can devise a rough algorithm for the bubble sort;

(1) Repeat the following until the array is sorted, that is, until the array has been
run right through without any swap taking place:
(l.I) Run through the array and investigate each pair of consecutive

components. If the components in a pair are in the wrong order, swap
them.

We can refine step (1.1) of the algorithm:

(1.1.1) Set SWAP_HAS_OCCURRED to FALSE.

(No swap has yet occurred in this run through the array.)

(1.1.2) Let I run from the first to the last but one index in the array.
(1.1.2.1) If component I is greater than component 1+1:

(1.1.2.1.1) Swap components I and 1+1.

(1.1.2.1.2) Set SWAP_HAS_OCCURRED to TRUE.

By making a number of adjustments to this algorithm it can be made more
efficient; for example, it is not necessary to run through the whole array each



Arrays of records 321

time, since the largest unsorted element ends up in the right place each time.
Here we shall not worry about this.

Everything is now ready to translate the algorithm to Ada, and we can
write a procedure SORT, whose only parameter is the array to be sorted. The
parameter must be an In out parameter because the procedure must be able to
both read and change components in the array. The array CARS_OWNED can
then be sorted by making the call:

SORT(CARS_OWNED):

We consider component 1 to be bigger than component J if component I contains
a 'bigger' registration number than component J, that is, if I's registration
number comes after J's in alphabetical/numerical order.

So that the first run through takes place, we initialize SWAP_HAS_
OCCURRED to TRUE. The procedure is as follows:

- BUBBLE SORT

procedure SORT(C : In out CAR_LIST) Is
SWAP_HAS_OCCURRED : BOOLEAN := TRUE;

TEMP : CAR_TYPE: -- used during swap
begin
while SWAP_HAS_OCCURRED loop
-- run through array anew

SWAP_HAS_OCCURRED := FALSE;

for I In C'FIRST .. C'LAST - 1 loop
If C{I).REG_NUMBER > C(I+1).REG_NUMBER then
~ in wrong order - swap places

TEMP := 0(1);

C(l) :=C(I+1);

C(l+1) := TEMP;
SWAP_HAS_OCCURRED := TRUE;

end If;

end loop;

end loop;

end SORT;

This section closes by giving a more efficient version of the function
SEARCH to find the record in the array that contains a particular registration
number. In the new version of SEARCH we shall make use of the fact that the

array is sorted to speed up the search. We use the following concept, assuming
the array to be sorted into ascending order, from left to right.

First we look at the component in the middle of the array. If this compo
nent holds the required registration number then we are lucky and need look no
further. If the middle component has a registration number that is greater than
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the one we want, we know that the required registration number is in the left half
of the array, because the array is sorted. Likewise, if the middle component con
tains a registration number that is less than the one we want, we know that
it must be in the right half of the array. When we have looked at the middle
component, therefore, we have either found the required component or we know
which half we should continue to search.

When we continue the search we can consider the half-array as a new
array, smaller than the original. Now we have exactly the same problem as when
we started, only this time the new array is smaller. We can thus use the same
idea as before, namely, look at the middle component of the new array. If the
required component is not the middle component we can determine whether we
should continue the search in the left or the right half of the array. We can then
apply the same technique once more on the even smaller array left to look in.

This process is continued with decreasingly small arrays until we find the
component we are looking for or until the curay we are searching is empty. In
the latter case the required component is not in the array at all.

What we have discussed here is a recursive search method that is usually
known as a binary search, that is, the size of the array to be searched is halved
at every stage. We can formulate the algorithm, assuming the array ordered from
left to right in ascending order:

(1) Evaluate the index of the middle component.

(2) If the array is empty (length is zero) then the required component is not in

the array.

(3) If the middle component is the one we want, the algorithm terminates with

the index of the middle component as result.

(4) If the middle component is greater than the one we are looking for, we
continue our search in the left half of the array, that is, the array that includes

the first component up to and including the component to the left of the
middle component.

Use this algorithm to continue the search.

(5) Otherwise the middle component is smaller than the one we are looking for.

Then continue the search in the right half of the array, that is, the array that

includes the component to the right of middle, up to and including the last
component.

Use this algorithm to continue the search.

This search technique is much more efficient than the simple linear search that
we looked at before. If, for example, we have an array with 100 elements, the
binary search algorithm needs to look at a maximum of seven elements to deter
mine whether a particular element is in the array. If a linear search were used
instead, in the worst case we would have to look at all 100 elements. In an array
of 1000 elements, binary searching would require in the worst case 10 elements
to be investigated while linear searching would, in the worst case, require 1000
elements to be investigated.
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The algorithm can be translated directly into a recursive Ada function.
Steps (4) and (5) in the algorithm are made up of recursive calls of the function
itself, with a subarray as parameter.

-- BINARY SEARCH

function SEARCH (C: CAR_LIST: REQ_REG_NR : STRiNG)
return NATURAL Is

MIDDLE : INTEGER := (C'FIRST + C'LAST) / 2;
begin

If C'LENGTH = 0 then

-- required registration number does not exist
return 0;

elsif C(MIDDLE).REG_NUMBER = REQ_REG_NR then
~ we have found the required reg number
return MIDDLE;

elsif C(M1DDLE).REG_NUMBER > REQ_REG_NR then
-- search the left half of the array

return SEARCH (C{FiRST .. MIDDLE - 1), REQ_REG_NR);
else

-- search the right half of the array
return SEARCH (C{MIDDLE + 1 .. C'LAST), REQ_REG_NR);

end If;

end SEARCH;

7.5 Records with variants

It sometimes happens that you want to describe data where all the data objects
have certain common properties, but where there are also variants. One
example could be when you want to describe a group of people who belong to
different categories (for example, teachers, students, administrative staff, etc.).
All these people share the property of having a name and address, but different
types of information might be of interest for the different categories. For a
teacher we might want to know about the conditions of their employment, while
for a student it is the courses they have passed which are of interest. To describe
data of this kind in Ada we can use what are called records with variants.

To take a concrete example, let us return to the car hire firm from the
previous section. Assume that the firm hires out other kinds of vehicles as well
as cars, such as vans and buses. We start by declaring an enumeration type for
the different kinds of vehicle:

type VEHICLE_TYPE Is (PRIVATE.CAR, VAN, BUS, UNKNOWN);
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Instead of using the type CAR_TYPE that we declared earlier, we will introduce
a type which we will call VEHICLE;

type VEHICLE(KIND : VEHICLE_TYPE := UNKNOWN) Is
record

REG_NUMBER : STRING(1 .. 7);
CHARGE_PER_DAY : POSITIVE:

case KIND Is

when PRIVATE_CAR =>

NUMBER_OF_SEATS : POSITIVE;

MODEL : CAR_MODEL;

when VAN =>

MAX_LOAD : POSITIVE;

when BUS =>

NUMBER_OF_PASSENGERS: POSITIVE;
AIR.CONDITIONING : BOOLEAN;

when UNKNOWN =>

null;

end case;

end record;

The enumeration type CAR_MODEL which is used in the record declaration
might be declared as follows:

type CAR_MODEL Is (SALOON, HATCH, ESTATE, CONVERTIBLE);

In the first row of the declaration of VEHICLE there is a special component
called KIND. A component like this is called a discriminant, which is in a sense
a parameter to a type. When a record with variants is declared, a discriminant is
used to state which variant of the record is being dealt with. A discriminant
has a name, a type and, possibly, as in this example, a default value. Here the
discriminant is called KIND, is of type VEHICLE_TYPE and has default value
UNKNOWN.

The part of the declaration that immediately follows the word record is
called the record's fixed part, and there you declare the components that are
common to all variants. In our example, there is a registration number and a
daily hire charge for all the types of vehicle. These are given as the components
REG_NUMBER and CHARGE_PER_DAY.

The part of the declaration that starts with the word case is called the
variant part, and the components which are different for different variants are
stated there. There must be an entry for each possible variant in the variant part.
If a particular variant has no special components at all, then the word null is
used to declare that. In our example, the variant part gives information that is
special for the different types of vehicle, for example the number of passengers
a bus can have, and the maximum load allowed for a van.
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When there is a data object of a record type with variants, there is only
sufficient memory to store information for a single variant at a time. For
example, if you have a data object of type VEHICLE, and the vehicle in question
is a private car, then it has components KIND, REG_NUMBER, CHARGE_
PER_DAY, NUMBER_OF_SEATS, and MODEL. If the vehicle were a van

instead, then there would be components KIND, REG_NLIMBER, CHARGE_
PER_DAY and MAX_LOAD. Using records with variants is thus a way to save
memory, since there is no need to have space for all of a record with variants'
components at once.

Now we can look at how to declare variables of a record type with vari
ants. When such a variable is declared you can choose to let it be constrained
or unconstrained. When a constrained variable is declared, its variant is stated

as a parameter on declaration. The following are examples of constrained variables:

MY_CAR : VEHICLE(PRIVATE_CAR):
C0ACH_1 : VEHICLE{BUS):

The special thing about constrained variables is that they will always be of the
same variant as they were declared to be. For example, the variable MY_CAR
can never contain data other than about a private car.

An unconstrained variable, in contrast, can change variant during execu
tion. If no specific variant is stated on declaration, then the variable will be
unconstrained, as the variables F1 and F2 in the following declaration:

F1, F2 : VEHICLE;

When a variable is declared and is unconstrained, to start with it will have the

variant given by the discriminant's default value: thus F1 and F2 will be of vari
ant UNKNOWN. An important condition for being able to declare unconstrained
variables is that the record type has a default value - otherwise a compilation
error will occur. On the other hand, if only constrained variables are going to be
declared, the discriminant does not require a default value. These rules ensure
that it is impossible to declare a variable which is of an undetermined variant.

There are rules that specify how the components of a variable may be
read and changed. These are to ensure that a variable is of a well-specified
variant at all times, and that the information in the variant part of a variable will
be in agreement with the current variant. The components of the fixed part of a
variable must exist for all variants, and they may be read and changed in any
way whatever. For example, we can write:

MY_CAR.CHARGE_PER_DAY := 30;

F1 .REG_NUMBER :="A789XYZ";

The rule for the components in the variant part of a variable is that they exist
only for the current variant. The following, for example, is allowed:
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COACH_1.AIR_CONDITIONING ;= TRUE;
PUT(MY_CAR.NUMBER_OF_SEATS);

The following, however, are not allowed because the variants do not agree:

PUT(C0ACH_1 .MAX_LOAD): -- ERROR. C0ACH_1 is not a VAN
F1 .MODEL := CONVERTIBLE; -- ERROR. F1 is not a PRIVATE_CAR

The rule for a discriminant itself is that it can always be read. For example, the
following can be written:

If F1.KIND = BUS then

The discriminant of a constrained variable may never be changed. For an uncon
strained variable the discriminant may be changed, but only if the whole record
is given a completely new value at one time. For example, we can write:

F1

F2

F1

= (PRIVATE_CAR, "F123ACB", 30, 5, HATCH);
= F1;

= C0ACH_1;

It is naturally permitted to declare arrays in which the components are records
with variants, such as the following declaration:

type VEHICLE_TABLE is array (POSITIVE range < >) of VEHICLE;
COMPANY_VEHICLES : VEHICLE_TABLE(1 .. 100);

The elements of the array will be unconstrained, and the following statement,
for example, would be permitted:

COMPANY_VEHICLES(8) := (VAN, "333XYZC", 75, 5000);

The following program extract could be used to print information from the array
COMPANY_VEHICLES:

for I In COMPANY_VEHICLES'RANGE loop
PRINTJNFO(COMPANY_VEHICLES(l));

end loop;

Here we have called a procedure called PRINT_INFO which could be:

procedure PRINTJNFO (V : VEHICLE) Is
begin

If V.KIND /= UNKNOWN then
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PUT_LINE(V.REG_NUMBER):
PUT(V.KIND); NEW_LINE;
PUT(V.CHARGE_PER_DAY, WIDTH => 1);
PUT_LINE(" £yday"):

case V.KIND is

when PRIVATE_CAR =>

PUT(V.NUMBER_OF_SEATS, WIDTH => 1);
PUT_LINE(" seats"):
PUT(V.MODEL); NEW.LINE;

when VAN =>

PUT(V.MAX_LOAD, WIDTH => 1);
PUT_LINE(" kg maximum load");

when BUS =>

PUT(V.NUMBER_OF_PASSENGERS, WIDTH => 1);
PUT_LINE(" passengers");

If V.AIR_CONDITIONING then

PUT_LINE("Wlth alr-condltlonlng");
end If;

when others => null;

end case;

end If;

end PRINTJNFO;

This procedure prints the contents of the elements of the array, when their
variant is not of kind UNKNOWN. It is typical, as in this example, to use a case
statement in connection with records of variants.

EXERCISES

7.1 A table can be drawn to show how different countries border one another. Part of such

a table could be:

Belgium France Italy
Belgium _ yes no
France yes - yes
Italy no yes -

(a) Make a suitable type declaration in Ada to represent such a table, including some
arbitrary countries. Declare the table and initialize it appropriately.

(b) Write a function NUMBER_OF_NEIGHBOURS that takes a country and a table
similar to the above as parameters. The function should return the number of coun
tries that border the given country. For an appropriate table, a call
NUMBER_OF_NEIGHBOURS{SWEDEN, TABLE), for example, should return the
value 2, since its only neighbours joined by land are Norway and Finland.
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7.2 A chess board has 64 squares. The columns are usually denoted by the letters a, b, c, d,
e, f, g and h, and the rows by the numbers 1-8. The different pieces are king, queen,
bishop, knight, rook and pawn, and black pieces and white pieces are used. Write a type
declaration that describes the appearance of an arrangement of pieces on the chess
board.

7.3 Write a function to determine whether an n x « matrix is symmetric. In a symmetric
matrix A, a-,j = for all / and j.

lA A magic square is an arrangement of numbers with n rows and n columns. The sums of
the values in each row, column and diagonal are the same. The following square is a
magic square, for example:

16 9 2 7

6 3 12 13

11 14 5 4

1 8 15 10

(a) Write a function that takes such an arrangement as parameter and determines
whether it is a magic square. The number of rows and columns is arbitrary.

(b) Another condition for an arrangement of numbers with n rows and columns to be a
true magic square is that it contains all the integers 1,2, ... n-. Amend the func
tion so that it also checks for this condition.

7.5 (a) Write a function that takes an n x n matrix of integers as parameter. As a result, the
function should return the same matrix turned through a quarter-turn anticlockwise.
For example, if the function is given the matrix:

as parameter it should return the matrix:

(b) Use the function in a program to read in a 4 x 4 matrix from the terminal. The
matrix is read in row by row. The program should write out the matrix turned first
through a quarter-turn anticlockwise and then through a half-turn anticlockwise. In
the output, each row of the resulting matrices should be written out as a row at the
terminal.

7.6 Matrix multipiication can be defined for two matrices A and B with dimensions mxn
and nxp, respectively. (Note that the number of columns in A must be the same as the
number of rows in B.) The result of the matrix multiplication is a new matrix with
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dimension mxp. If we call the resulting matrix C, a particular element c,y in C is
calculated as the sum:

ft

k=\

For example:

2 0 2\ / 7 10 6 4

4 3  1 ==  25 36 21 15
/ \17 28 9 19

Use this to construct a function that gets two matrices as parameters. In the result, the
function should give the matrix that results from multiplying them together.

7.7 (a) Write two functions ROW and COL that can be used to select a particular row or
column from a matrix. Both should take a matrix as parameter. In addition, ROW
should get a row number as parameter and the function COL should get a column
number. If matrix M is, for example:

then the call R0W(M,2) should return the vector (3, 0, 2, 5) and the call C0L(M,4)
should return the vector (9, 5, 2).

(b) The scalar product u-v of two vectors u = (UpUj, ... , u„) and v = (V|,V2, ... , v„)
can be defined as the sum:

n

The scalar product of the vectors (1, 2, 3) and (3, 4, 5), for example, is 26.
A condition for forming the scalar product is that the two vectors have the
same number of elements. Write a function that forms the scalar product of two
vectors.

(c) Multiplication of two matrices A and B with dimensions mxn and nxp can now
be defined as an operation which gives a new matrix C with dimensions mxp. A
particular element c,^ of C has as its value the scalar product of row i from A and
column j from B. Using this definition, write a function that multiplies two matri
ces, making use of the functions written in parts (a) and (b) of this question.
Compare this function with that of the previous question.

7.8 The Morse code for the alphabet is shown in the following table, where dots and dashes
are used to represent short and long signals, respectively.
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A  - H  ... 0 -- U

B 1 P V

C J -  Q — w

D  • K R X

E  . L S  ... Y

F  • M — T  - Z

G -- N -•

(a) Write a program that reads in a message and codes it into Morse code.

(b) Write a program that reads in a message in Morse code, decodes it and writes out
the decoded message. In the Morse message letters are separated by one space and
words are separated by two spaces.

7.9 Declare a record type that is appropriate for describing a card in an ordinary pack of cards.

7.10 To define a point in a two-dimensional coordinate system it is most common to use the form
(A:,y), called rectangular coordinates. An alternative way of defining it is to use polar
coordinates (r,©). r is the distance of the point from the origin and 0 is the angle be
tween the straight line joining the point to the origin and the j:-axis. Transformation from
polar coordinates to ordinary rectangular coordinates can be effected with the formulae:

x = r cos 0

>• = r sin 0

Write a function that takes a point described in polar coordinates as input parameter and
returns it expressed in rectangular coordinates.

7.11 A rational number can be written as a fraction in which both numerator and denominator

are integers.

(a) Make an appropriate type declaration to describe a rational number.

(b) Write a function that takes two rational numbers as parameters and returns a new
rational number that is the sum of the two parameters.

(c) Add to the function above so that it always returns a rational number where the
numerator and the denominator have no common factor. (Compare with
Exercises 6.4 and 6.15.)

7.12 A company has a warehouse where it stores several kinds of articles. There are a
number of articles of each kind and a computer program is required to keep track of
them all. For each kind of article the following are important:

•  The article identification (a code of four characters).

•  Article description (a text with at most 30 characters).

•  The number of this article in store.

•  The selling price.
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Write a program that first reads in this information from the terminal for all the kinds of
article and saves it using a suitable data structure. Assume that there are no more than
1000 kinds of article in the warehouse. Input can terminate when, for example, the
article identification "0000" is given. The program will then repeatedly read commands
from the terminal and perform the tasks required. The different commands are, where
xxxx stands for an article identification code:

INFO xxxx Write out all current information about article xxxx.

SOLD xxxx N Register that N items of article xxxx have been removed from
the store.

BOUGHT xxxx N Register that N items of article xxxx have been put into the
store.

7.13 There are a number of chemical elements - for example, carbon, hydrogen, mercury and
gold - and for each element there is a symbol comprising one or two letters, in these
cases C, H, Hg and Au, respectively. The first letter is always upper case and the sec
ond, if there is one, is lower case. Each element has a certain atomic weight.

(a) Declare and initialize a table that contains the symbols for a number of elements
and the corresponding atomic weights. Information can be found in any chemistry
textbook, but here are some examples:

H 1.0079 0 15.999 F 18.9984

He 4.0026 Na 22.9898 Au 196.9665

Be 9.0122 S 32.06 Hg 200.5

C 12.011 C1 35.453 Ra 226.0254

(b) A common problem is to calculate a molecular weight. Write a program that reads
in a chemical formula and, using the table formulated in part (a), calculates and
writes out the corresponding molecular weight. Examples of chemical formulae are:

NaCl H,0 H2SO4

The subscript n after an element symbol means that there are n atoms of the corre
sponding element in the molecule. If no figure is given, it means that there is only
one atom of that element. As input to the program a chemical formula can be given
in the following format:

NaCI H20 H2S04

7.14 Using a record type with variants, declare a type FIGURE which describes geometric
figures in some suitable way. The figures to be described are circles, rectangles and
triangles, and each kind of figure should have its own variant in a record type. For each
figure, the position of the centre has to be stated, giving where on the screen it should
be drawn, and this can be given as two Cartesian coordinates. Then write a function
AREA which calculates the area of a figure of type FIGURE.
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8.1 Package specification 8.6 Packages of types and constants
8.2 The Ada programming 8.7 Packages with memory

environment 8.8 Abstract data types
8.3 Using packages 8.9 Child packages
8.4 Package bodies 8.10 Standard packages in Ada 95
8.5 Different categories of package Exercises

It has been shown that it is possible to solve problems by breaking them down
into smaller subproblems which are then solved one by one. This process can
be repeated for each subproblem until all the subproblems are so simple that
they can easily be solved. Chapter 6 showed that subprograms helped us to
apply this strategy - a call to a subprogram described the solution to a more
complicated subproblem, and subprograms could then be written separately,
one by one. The advantage of subprograms is that they hide inessential
details that the programmer does not need to know, and allows him or her to
concentrate on one problem at a time. A subprogram is thus a construction
that can be used to bring together a number of statements into a logical unit
with a defined interface with the other parts of the program.

In Ada there is another construction for bringing together related parts
of a program into a logical unit, and this is called a package. Subprograms,
types and objects that logically belong together in some way can be brought
together in a package. When a package is constructed, its interface with the
rest of the program or, in other words, the part of the package that will be
visible to the program, has to be specified. Details that are inessential to the
user of the package can then be concealed within the package. A package
can be developed and compiled alone.

333
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When a complicated product such as a car is being built, it is necessary
to make the different parts separately in order to prevent the work from
becoming too complex. Eventually, the separate parts are assembled into
a complete product. To fit the parts together successfully, a specification
of how the parts fit must have been carefully made during the design phase.

Ada is a language that is designed not only to handle small problems,
but also to be used in large programming projects where large complicated
programs or systems of programs are developed, and where many people are
involved. As with building a car, it is necessary that all the parts are written
separately and put together later. Ada's package facility allows a program to
be built up in the form of several separate modules, each of which forms a
logical unit. With the help of a package specification it can be stated how a
package should be put together with the other parts of the program. Working
with large unmanageable programs is thus avoided: one subproblem can
be tackled at a time. Most of the common programming languages, such as
Pascal and BASIC, lack these features for building up programs in the form
of separate packages.

It is also possible to build up a library of general packages that may
be used in several contexts within different programs. These could include
a package of different mathematical functions or a package of tools for
presenting results in a graphic form. These packages may have been written
by the individual programmer, or be standard packages in an implementation
of Ada, or have been obtained from some other source.

In Ada 95 there are so-called child packages. These can be used to
extend existing packages without recompilation, or to divide a large complex
system into subsystems.

8.1 Package specification

Each package has a specification. This can be regarded as the package's
'shop-window', which says what the package has to offer the potential user. The
specification specifies the package's interface with the other parts of programs.
A package specification is introduced with the word package followed by the
name of the package. Within the specification, declarations of types, objects and
subprogram specifications may appear, but the bodies of subprograms may not
be given in a package specification.

Let us look at an example. Suppose we want to work with ordinary two-
dimensional geometric figures such as rectangles, circles and triangles. It may
then be appropriate to construct a package containing the tools for performing
various calculations on these figures. We can call the package PLANIMETRY
and write a specification for it. In the specification we shall declare types
LENGTH and AREA which describe, obviously, lengths and areas associated
with the geometric figures. In addition we declare functions that calculate the
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Package specification

package package_name is
declarations

end package_name\

Subprograms can have their specifications but not
their bodies among the declarations.

areas of rectangles, circles and triangles. The specification of the package
PLANIMETRY is then:

package PLANIMETRY Is
type LENGTH is digits 5 range 0.0 .. 1.0E10:
type AREA is digits 5 range 0.0 .. 1.0E20;

function AREA_RECTANGLE (L, H : LENGTH) return AREA;
function AREA_CIRCLE (R : LENGTH) return AREA;
function CiRCUMF_CIRCLE (R : LENGTH) return LENGTH;
function AREA_TRIANGLE (B, H : LENGTH) return AREA;

end PLANIMETRY;

This is the 'shop-window' for the package PLANIMETRY. Note that we have not
yet said anything about what it will look like within the package, that is, what
the function bodies will be. We shall state this later by writing a package body.

8.2 The Ada programming environment

Before we go on to see how a package can be used and what a package body
looks like, a few words must be said about the programming environment in
Ada. When a program or a part of a program is compiled a compiler is used. The
compiler reads the program text and gives as a result the program translated into
machine code. Compilers of all kinds work in this way, not only the Ada compiler.

An Ada compiler differs from most other language compilers, however,
in that it not only produces machine code but also keeps track of all the compi
lation that is performed. The compiler maintains what is called the Ada library.
When a compilation is complete, the Ada compiler puts a description of the
program (or part of a program) that has been compiled into the Ada library.

This means that it is possible to refer to what has been compiled earlier
in a program. The compiler goes into the Ada library and searches for informa
tion about the relevant item, making it feasible to build up large complicated
programs gradually.
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An Ada environment thus contains not only an Ada compiler but also an
Ada library. There are also utility programs for creating new Ada libraries and
for removing information from a library.

The Ada programming environment

Ada library with information about all the compi
lations performed.

Ada compiler that translates to machine code and
places information into the Ada library.

Utility programs for handling Ada libraries, for
example, creating new libraries and removing
information from a library.

For compilation, a compilation unit is fed into the compiler (or a
sequence of several compilation units may be fed in at one time). A compilation
unit contains a program component which is to be compiled, and this might be
a procedure (as we have seen in many examples) but it can also be a program
component other than a procedure, such as a package specification or a package
body. Thus the specifications and bodies of packages may be compiled separately.

As we saw in Chapter 6, when we studied top-down design with sub
programs, Ada distinguishes between what are known as library units
and subunits. A library unit is a free-standing program component whereas a
subunit is logically included in another surrounding component. (A subunit is
always introduced with the word separate.)

In a compilation unit you can refer to program components that have
been compiled earlier (but only library units and not subunits). This is achieved
by placing a with clause first in the compilation unit.

With clause

with namel, name2... nameN\

Placed first in a compilation unit. States that the
current compilation unit requires access to program
components called name7, name2... nameN.

If we are compiling a procedure P, for example, we can have the clause:

with Q, R;
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as the first line, where Q and R are the names of other program components that
we refer to and which therefore need to be accessible in P. The Ada compiler
then searches the Ada library for information about Q and R. If the compiler
cannot find Q and R in the library there is an error and compilation terminates.
This means that Q and R should have been compiled earlier.

The specification of a package must be compiled before the body.
However, it is not necessary to compile the body of a package before compiling
a procedure that uses that package. Naturally, however, all parts of the program
must be compiled before the program can be executed.

Compilation order for packages

Compile the package specification first.

Then compile, in any order, the package body and
the compilation units that refer to the package in
question.

If the body of a package is recompiled there is no need to recompile the
procedures that use the package. If, on the other hand, the specification of a
package is recompiled then both the package body and the program components
which use the package must be recompiled. Information is stored in the Ada
library stating when each program component was compiled; the Ada compiler
can thus monitor that the different parts of a program were compiled in the
correct order.

8.3 Using packages

A package whose specification has been compiled can be used in programs, or
parts of programs, that are compiled later. If, for example, we write a program
COMPUTE_AREAS and we want to use the procedures contained in the
package PLANIMETRY, we write at the start of the program:

with PLANIMETRY;

The compiler will search for the package PLANIMETRY in the Ada library and
we can use the package in our program. We can use everything that is declared
in the package's specification, but what exists within the package body is not
known to the procedure COMPUTE_AREAS.

One way to refer to the items declared in the specification of PLANI
METRY is to use selection, or dot notation. For example, we can declare a
variable of type AREA:
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A : PLANIMETRY.AREA:

Here PLANIMETRY.AREA refers to the type AREA in the package PLANI
METRY. Similarly, we can declare a variable R:

R : PLANIMETRY.LENGTH;

If we now want to read in the radius of a circle in our program and calculate its
area, we can write the lines:

PUT_LINE("Enter the radius of the circle");
GET(R);

A := PLANIMETRYAREA_CIRCLE{R);

The expression on the right of the last line means that we call the function
AREA_CIRCLE in the package PLANIMETRY. The variable A will then be
assigned the value of the area of the circle requested.

Selection

P.N

where P is the name of a package and N is the name
of something that is declared in the specification of
the package.

This notation, where the name of the package is followed by a dot, is
clear. Each time something from a package is used it is obvious which package
is being referred to. In one program several different packages may be in use
and one name in the declarations of one package may also occur in another
package, but under a different name. If selection is used this causes no problems
since the intended package is always explicitly stated.

If the contents of a package are used in many places in a program it is
clumsy to state the package name every time. In most programs so far, we have
used the package TEXT_IO. It would have been inconvenient to write
TEXT_IO.PUT every time we wanted to write something out at the terminal. It
is more convenient to refer to the items declared in a package specification if a
use clause is introduced. If we put into our program:

use PLANIMETRY;

for example, the declarations of A and R can simply be written:
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A: AREA;

R : LENGTH;

We no longer need to state the name of the package. The call to the function
AREA_CIRCLE can be written:

A := AREA_CIRCLE(R);

A use clause can either be placed directly after the with clause at the start of the
compilation unit, or anywhere among the declarations in a subprogram. If
the use clause is put at the start of the compilation unit, it is valid for the whole
compilation unit. Thus it is possible to access the contents of the package every
where, without using selection. If the use clause is placed among the declara
tions in a subprogram, it is only valid in that subprogram.

Use clause

use PI, P2, ... , PA/;

where PI, P2 PN are names of packages.

Can be placed after with clause or among the decla
rations in a subprogram.

The disadvantage of a use clause is that the program can become less
clear; names of quantities can occur that are declared in the packages being
used. Since these packages have been compiled separately, it is not possible to
see from the program how the quantities are declared. Nor is it possible to see
the package from which they come. If, for example, we had also used a package
SOLID_GEOMETRY and had put the following use clause in our program:

use SOLID_GEOMETRY, PLANIMETRY;

then in the declaration:

A: AREA;

we would not be able to see if AREA exists in the package SOLID_GEOMETRY
or in the package PLANIMETRY.

It is recommended that use clauses are employed with caution and are
not habitually placed first in compilation units. (This is acceptable in the case of
TEXT_IO because it is used so commonly and we know that it contains the
procedures GET and PUT.) An alternative to using selection, which can be a
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little clumsy, is to have a local use clause for each package and place it within
the subprogram where the contents of the package are actually used.

8.4 Package bodies

Now we shall look at how to construct a package body - the part of the package
that is concealed from the user. Details that the user does not need to know are

placed in the package body, for example, the subprogram bodies and internal data.
A package body is introduced with the reserved words package body.

The rest of the package body has the same structure as a subprogram body. First
comes a declarative part and then a sequence of statements. This latter section
can be omitted, and this is most common.

Package bodies

package body package_name is
declarations

[begin
statements]

end package_name\

All kinds of declaration are allowed in the package
body.

The quantities that are declared in the body are not
accessible from outside the package.

The section within square brackets [ ] can be
omitted.

If there is a statement section, the statements are

only executed once, when the program using the
package starts.

For example, we shall look at how the body of our package PLANI
METRY may appear:

package body PLANIMETRY Is

PI : constant := 3.1415926536;

function AREA_RECTANGLE(L, H : LENGTH) return AREA Is
begin

return AREA{L) * AREA(H);
end AREA_REGTANGLE;
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function AREA_CIRCLE (R : LENGTH) return AREA Is

begin
return PI * AREA(R) ** 2;

end AREA.CIRCLE;

function CIRCUMF_CIRCLE (R : LENGTH) return LENGTH Is
begin

return 2.0 * PI * R;

end CIRCUMF_CIRCLE:

function AREA_TRIANGLE (B, H : LENGTH) return AREA Is
begin
return AREA(B) * AREA(H) / 2.0;

end AREA_TRIANGLE:

end PLANIMETRY:

Within the package body are the complete function bodies for the functions that
were declared in the package specification. There is also a constant PI and this
is known only within the package body. Thus in a program that uses the pack
age it is not permitted to write:

PLANIMETRY.PI ~ ERROR! PI Is only known

-- in the package body

It is only the items from the package specification that are known outside.
In the functions that calculate areas we have used type conversion so that

the results of the functions have type AREA. The expression:

B*H

would have type LENGTH since both operands have that type. The expression:

AREA(B) * AREA{H)

however, has the type AREA.
The body of the package PLANIMETRY has no statement section. A

section of statements in a package body is used when something has to be
initialized within the package body before the package can be used. The
constant PI needs to be initialized in the body of PLANIMETRY but we manage
with a simple initialization in its declaration and, therefore, no statement part
is needed. We shall look at an example of a package with a statement section
later.

A package body must be compiled after its specification has been
compiled. In the specification we talk about what the package will be able to do
and in the body we state how to do what we have promised. It is possible to
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compile the specification and body separately on separate occasions or, if the
texts are to remain together, to compile them as two compilation units but fed to
the compiler together. In the latter case the specification should come before the
body. It is recommended that the two parts should be compiled separately; since
the package body contains whole subprograms it is likely that they will have to
be amended and the body recompiled many times during program development.
It is then advantageous not to have to recompile the package specification at the
same time, since if the specification is recompiled all the programs using the
package must also be recompiled.

8.5 DiflFerent categories of package

Packages can be used for different purposes in an Ada program. To clarify this
idea it may be useful to try to classify the different kinds of package.
Generalizing a little, it can be said that there are four different categories of
package:

(1) Packages with a collection of types and constants, for example, a pack
age of mathematical constants.

(2) Packages with a group of subprograms that logically belong together, for
example, a package of standard mathematical functions.

(3) Packages with 'memory' that can be used to represent complicated
objects in different states.

(4) Packages which construct abstract data types.

(In Ada 95 there are child packages, as will be described in Section 8.9, which
make packages even more useful. For example, large subsystems can be built up
consisting of several packages.)

We have already seen examples of packages from category (2): our pack
age PLANIMETRY for example. Subprograms in the package belong together
logically because they all perform calculations on geometrical figures. Packages
with mathematic functions also belong to category (2).

8.6 Packages of types and constants

As an example of a package of category (1) we shall study a package
ATOMIC CONSTANTS which contains various constants:
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package ATOMIC_CONSTANTS Is
ELECTRON_CHARGE : constant := 1.602E-19; --coul

ELECTRON_MASS : constant := 0.9108E-30: -- kg
NEUTRON_MASS : constant := 1674.7E-30; -- kg
PROTON_MASS : constant := 1672.4E-30: -- kg

end ATOMIC_CONSTANTS:

There are no subprograms in the package, only constants. If the with clause:

with ATOMIC.CONSTANTS;

is placed first in a program, then the package can be accessed and the mass of
the proton, for example, can be accessed by writing:

ATOMIC_CONSTANTS.PROTON_MASS

Of course, a use clause can also be inserted in the program:

use ATOMIC_CONSTANTS:

Then the mass of the proton can simply be referred to by:

PROTON_MASS

In Ada 83, packages belonging to category (1) are somewhat special, in
that they do not need to have a body. Since such a package contains only
constants and types there is no special substance to the package that needs
further description.

In Ada 95 packages in this category are not allowed to have a body.

8*7 Packages with memory

Now we shall study packages that belong to category (3). This kind of package
can be used to build up a de.scription of a complex real object - an object that
can be in different states. For example, when a program is written to control an
engineering system, for example an aeroplane, a program design method can be
used based on representing each physical component of the system by an
Ada package, a package of category (3). For example, it should be possible to
represent a fuel valve by an Ada package.

The special thing about packages of category (3) is that they can be in
different states. Each time the package is used, its state changes. Therefore the
package must be able to 'remember' its state between uses.

T

▲
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The standard package TEXT_IO can be said to belong to category (3). It
represents the real object - the 'terminal'. The package must remember how
long a line of output can be and how many lines there can be on a page of out
put. When printing output, between calls to PUT, PUT_LINE and NEW_LINE the
package must 'remember' which page is being printed, which line it is on and
how much of the output has already been printed.

As another example of a package of category (3) we shall construct
a package that can be used to generate random numbers. It will represent a
random number generator. In some programs, such as games programs and
simulation programs, access to a source of random numbers is necessary.

To obtain random numbers from a computer, the concept used is based
on generating a series of numbers that appear to be random. Let us call this
series:

^0 ^1 ^2 •••

It is most common to use the formula:

M„^.i = Ku„ mod M

to generate a particular term in the series, where mod means the modulo
operator (see Section 3.4.1). If the nth term is known, the (n + l)th can be
evaluated using the formula. Term number 0 is given a particular start value and
thereafter the formula can be applied repeatedly to generate an arbitrary number
of terms of the series. The numbers in the series will all lie in the interval 0 to

M-\.

For the numbers to appear random, K and M must be chosen in a special
way, as must the start value of term number 0. (For example, if we gave K the
value 3, M the value 10 and the start value 5, then all terms in the series would

be 5 - not particularly random.) There are theories that provide suitable values
of K and M and the start value. Such suitable values for K and M can be, for
example:

K = 5^ M=:2'3

Then the start value for the series should be an odd number in the range 1 to
M-\.

We shall use the formula above, with the suggested values for K and M,
to construct a package for generating random numbers. We want the package to
contain a function NEXT_NUMBER that will return a random number when

called, and each time it should be a new random number. It is useful if the

random numbers obtained lie in a particular fixed interval: the interval 0-1 is
generally chosen. Thus the random numbers will be real numbers. To be able to
generate different series of random numbers the user must be able to specify
what start value will be used; if the same start value is always used the same
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series of random numbers will always be generated. We can solve this by using
a procedure INITIALIZE with an In parameter that is the start value - known as
the seed - to the random number generator.

Now we are in a position to write a specification of the package
RANDOM:

package RANDOM is

M : constant := 2 ** 13;

subtype NUMBER Is FLOAT range O.O.. 1.0;
subtype SEED Is INTEGER range 1 .. M -1;

procedure INITIALIZE (START_VALUE : In SEED);
- initialize random number generator
- START_VALUE should be an odd integer

function NEXT.NUMBER return NUMBER;

- gives a random number that is greater
-- than or equal to 0 and less than 1

end RANDOM;

In addition to the subprograms NEXT_NUMBER and INITIALIZE we have
declared two subtypes, NUMBER and SEED. The subtype NUMBER describes a
floating point number in the interval 0-1, a number of the kind that the function
NEXT_NUMBER returns as its result. The subtype SEED describes how a start
value, the seed, may look. The parameter to the procedure INITIALIZE will be of
this subtype. The next step is to construct the body of the package. In the body
we must state what the bodies of the subprograms NEXT_NUMBER and
INITIALIZE should look like. Let us start with the function NEXT_NUMBER. To

evaluate the next number in the series we use the statement:

U := U * K mod M;

where K and M are constants with values 5' and 2'\ respectively. U is a variable
that we initialize at the start to the first number in the series, the seed. Each time

the above statement is executed, U will take the next value in the series. U will
take integer values in the interval 1 to 2'^ - 1. However, for the result of the
function NEXT_NUMBER we want a floating point number in the interval 0-1,
which can easily be achieved by dividing U by M:

return FLOAT(U) / FLOAT(M);

(Observe that we must convert U and M to floating point numbers. Had we not
done so the result would always have been 0.)

The package body is:
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package body RANDOM is

U : NATURAL:

K : constant := 5 ** 5;

procedure INITIALIZE (START_VALUE : In SEED) Is
begin

U := START_VALUE;

end INITIALIZE;

function NEXT_NUMBER return NUMBER Is

begin
U := U * K mod M;

return FLOAT{U) / FLOAT (M);
end NEXT_NUMBER;

end RANDOM;

The important thing to note here is the positioning of the declaration of the
variable U. U may not be declared as a local variable in the function NEXT_
NUMBER for two reasons:

(1) U must be accessible to the procedure INITIALIZE, whose job is to give U
a starting value. If the declaration had been placed in NEXT_NUMBER, U
would not have been known outside NEXT_NUMBER.

(2) U must 'remember' its value between calls to NEXT_NUMBER. If U had

been declared as a local variable inside NEXT_NUMBER it would not

have existed between calls. As a consequence, U's value would have been
undefined at each new call to NEXT_NUMBER.

The solution to the problem is to place the declaration of U directly in the
package body, as above, outside INITIALIZE and NEXT_NUMBER. It is then
accessible to both subprograms and, moreover, it will not be spoiled between
calls.

Thus U is a global variable to INITIALIZE and NEXT_NUMBER. In
normal cases global variables must not be used, but this is one of the few excep
tions, mentioned earlier, where it is allowed. In packages of category (3), global
variables are used in the package body to give the package a 'memory'. In the
other categories of package, which lack this 'memory', such global variables are
not to be used.

Now we shall look at the use of RANDOM in a program. We shall write
a short program to test whether the random number generator is 'good'. The
program will start with the user entering a start value for the random number
generator, which will then be used to generate 100 random numbers. These
numbers will be written out. Finally the program calculates the mean of the 100
numbers and writes it out. If the mean is not close to 0.5 then either the random

number generator is not good or we have chosen an unsuitable start value. (To
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Packages with ̂ memory'

By using global variables in the package body, a
package can be created that has 'memory' so that
it can exist in different states.

The state can be changed by calls to subprograms
in the package.

This is one of the few occasions where it is

'allowed' to use global variables.

determine whether a random number generator is 'good' in a more correct
statistical sense requires more extensive tests. The random number obtained
should have an appropriate standard deviation and the periodicity of the series
of random numbers, that is, how long it takes before the same sequence of
random numbers is repeated, should be adequately large.)

with TEXTJO, BASIC_NUMJO, RANDOM;

use TEXTJO, BASIC_NUM_IO;

procedure TEST_RANDOM Is

S : RANDOM.SEED;

X : RANDOM.NUMBER;

SUM : FLOAT := 0.0;

begin

-- Initialize random number generator
PUT_LINE("Enter seed for random number generator");
PUT("An odd integer in the interval");

PUT{RANDOM.SEED'FIRST, WIDTH => 1); PUT(" to ");
PUT(RANDOM.SEED'LAST, WIDTH => 1); NEW_LINE;
GET(S);

RANDOM.INITIALIZE(S);

-- Generate 100 random numbers

for I in 1 .. 100 loop
X ;= RANDOM.NEXT_NUMBER;

PUT(X); NEW_LINE;
SUM := SUM + X;

end loop;

-- evaluate and print mean of the random numbers
PUTC'Mean: "); PUT(SUM / 100.0); NEW_LINE;

end TEST.RANDOM;

In the program, we have made the random number generator in the pack
age RANDOM accessible by including RANDOM in the with clause in the first
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line of the program. We have no use clause for the package RANDOM but use
selection with the dot notation for clarity.

The variables S and X are given, respectively, the types SEED and
NUMBER, which are declared in the specification of RANDOM. In the message
that requests a seed from the user, we have used RANDOM.SEED'FIRST and
RANDOM.SEED'LAST instead of the numbers 1 and 8191 (2'^ -1). In this way
the program is made more general and would not need to be changed if the value
of the constant M, and hence the subtype SEED, were changed in the random
number generator. The start value is given to the random number generator by
making the procedure call:

RANDOM.INITIALIZE(S):

The 100 random numbers are generated by 100 calls to the function
NEXT_NUMBER:

X := RANDOM.NEXT_NUMBER:

After each call the variable U in the body of RANDOM will change in
value, but we do not need to worry about how things are working within the
package because this program is only using the facilities. (In fact, we do not
even know that there is a variable U.)

We see that if the random number generator were initialized auto
matically our program would be much simpler. We would not need to enter the
seed, the variable S would not be necessary and we would not need to know
about the subtype SEED.

with TEXT_IO, BASIC_NUMJO, RANDOM;

use TEXTJO, BASIC_NUM_IO;

procedure TEST_RANDOM Is

X : RANDOM.NUMBER;

SUM : FLOAT := 0.0;

begin

~ Generate 100 random numbers

for I in 1 .. 100 loop

X := RANDOM.NEXT_NUMBER;

PUT(X); NEW_LINE;
SUM := SUM + X;

end loop;

~ evaluate and print mean of the random numbers
PUTC'Mean:"); PUT(SUM /100.0); NEW.LINE;

end TEST_RANDOM;
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Furthermore, we could simplify the specification of the package
RANDOM since neither the subtype SEED nor the procedure INITIALIZE would
be needed. Instead the specification of RANDOM would be:

package RANDOM is

subtype NUMBER Is FLOAT range 0.0 .. 1.0;

function NEXT_NUMBER return NUMBER;

~ gives a random number that Is greater
-- than or equal to 0 and less than 1

end RANDOM;

How can we get the random number generator to be initialized automatically?
One simple way, of course, is that when the variable U is declared in the body
of the package RANDOM it is given a suitable initial value. However, this has
one big disadvantage. Since U would then always be initialized to the same
number, the random number package would generate the same sequence of
random numbers each time it was used. This would mean that every time we ran
a program that made use of the package RANDOM the program would behave
in the same way. The program would not be particularly random.

We shall therefore make use of the possibility offered by having a
sequence of statements in the package. Statements can be placed there to read a
start value from the terminal. The body of the package RANDOM now looks like
this:

with TEXT_IO, BASIC_NUMJO;

use TEXTJO, BASIC_NUM_IO;

package body RANDOM Is

U : NATURAL;

K : constant := 5 ** 5;

M : constant := 2 ** 13;

function NEXT_NUMBER return NUMBER Is

begin
U := U * K mod M;

return FLOAT(U) / FLOAT(M);

end NEXT_NUMBER;

begin
PUT_LINE("Enter seed for random number generator");
PUT_LINE("An odd number in the Interval 1 to ");
PUT(M - 1, WIDTH => 1); NEW_LINE;

GET(U);
end RANDOM;
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Observe that the package now needs access to the packages TEXT_IO and
BASIC_NUM_IO. Therefore the with and use clauses for these are placed first.
The main difference from the earlier version is that INITIALIZE is no longer
there. Instead, there are statements in the package that read in a start value of the
variable U. The question is 'When will these statements be executed?' A pack
age body looks more or less like that of a subprogram. The statements in the
body of a subprogram are, as we know, executed each time the subprogram is
called. A package body is never called: all that can be called are those sub
programs in the package that are declared in the package specification.
Therefore a package body must work in a different way from a subprogram
body. In fact, the statements in a package body are executed only once and this
occurs when the program using the package is started. We can picture it in
connection with the program's with clause.

This means that if we run the program TEST_RANDOM, the first thing
that occurs is that the statements in the statement part of RANDOM will be
executed. The program thus begins by writing out at the terminal:

Enter seed for random number generator

An odd number In the interval 1 to 8191

The user then writes the value at the terminal and this is entered to the variable

U in the body of RANDOM. Thereafter execution in RANDOM'S body terminates
and the statements in the procedure TEST_RANDOM will be executed in the
normal way.

It should be pointed out that in Ada 95 there is a standard package
ADA.NUMERICS.FLOAT_RANDOM, which contains a function, RANDOM,

giving random numbers in the interval 0-1. There is also a generic standard
package ADA.NUMERICS.DISCRETE_RANDOM which can generate random
numbers of discrete types.

8.8 Abstract data types

Earlier, we talked about a data type being characterized by the values that its
objects can assume and by the operations that can be carried out on them. The
allowed values for a particular type are decided when the type declaration is
made, and there are also some standard types, such as CHARACTER and
INTEGER, for which the allowed values are specified. As for possible opera
tions, we have seen that for the simple types there are a number of standard
operations, such as addition and multiplication. For more complicated types that
we construct ourselves, such as array types and record types of various kinds,
only comparison operators are normally automatically defined, but we can
create new operators for such types by writing subprograms. For example, we
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have already made functions that add vectors and matrices. It is thus possible,
using type declarations and subprograms, to build up whole new types where the
permitted values are defined by type declarations and the possible operations are
defined by subprograms. Such a type, built up by the programmer, is called an
abstract data type.

When an abstract data type is constructed, the type declarations and the
subprograms that can operate on objects of the type belong together logically;
together they define the abstract data type. It is therefore appropriate to combine
them into a unit in the program. A package can be constructed containing every
thing that describes the abstract data type.

In mathematics we often work with sets. As a first example we can
construct an abstract data type which describes sets of characters. We want to be
able to perform the usual operations on sets, namely: insert an element into a set,
remove an element from a set, see if a set contains a particular element,
construct the intersection and the union of two sets, and determine if one set is

a subset of another set.

Let us start by seeing how a set can be represented in Ada. We will be
looking only at sets of characters (that is, having type CHARACTER), and if we
consider a particular set, then it is true of each character that either it belongs to
the set or it does not belong to the set. Thus we can represent a set by an array
of components of type BOOLEAN, with one component for every character,
using an array indexed with type CHARACTER. If we call the type SET we can
make the declaration:

type SET is array (CHARACTER) of BOOLEAH;

If we declare a variable S of type SET:

S : SET;

the component for a specific character in S will state if that character is a
member of S or not. The empty set (the set with no elements) is represented by
an array in which all elements have the value FALSE.

Now we can specify a package SET_PACKAGE which describes the
abstract data type for sets of characters:

package SET_PACKAGE Is
type SET Is private;

function EMPTY_SET return SET;

- returns the empty set

function "+" (C : CHARACTER; S : SET) return SET;
function "+" (S : SET; C : CHARACTER) return SET;
- inserts C into the set S
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function (C : CHARACTER; S : SET) return SET;
function (S : SET; C : CHARACTER) return SET;
~ removes C from set S

function MEMBER (C : CHARACTER; S : SET) return BOOLEAN;
~ determines if C is a member of S

function "+" (S1, S2 : SET) return SET;
-- returns the union of sets S1 and S2

function (S1, S2 : SET) return SET;

-- returns the Intersection of sets S1 and S2

function "<=" (S1, S2 : SET) return BOOLEAN;

-- determines If S1 Is a subset (Improper) of S2

procedure PUT (M : In SET);
~ prints all characters which are members of set S
private

type SET is array (CHARACTER) of BOOLEAN;
end SET_PACKAGE;

In addition to the operations we have already mentioned we have specified a
function which will give us an empty set and a procedure which will enable us
to print out the characters which are members of a given set. Most of the
operations have been specified as operators. Note that several of them are over
loaded (see Section 6.6); there are three different"+" operators, the first two of
which are used for inserting an element into a set, while the third is used for
building the union of two sets.

There is a construct in this specification that has not been seen before.
The type declaration:

type SET Is private;

makes SET into what is known as a private type. This means that a user of
the package knows that SET is a type, but will not know how the type is
implemented in the package. The user can declare variables and parameters of
a private type, and is able to write, for example:

S1.S2:SET;

It is not allowed, however, for the user to specify operations that need knowl
edge of the exact structure of the private type. For example, it is not permitted
to write:

S1('X') :=TRUE; -- ERROR!
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since that needs the knowledge that S1 is an array. The idea of abstract data
types is that the package's user should only use the operations that are specified
in the package specification. If the user were allowed to poke around in the vari
ables of the abstract data type it would no longer be sure to work as intended. In
the body of the package, on the other hand, the private type is completely known
and may be used in any way.

Apart from the operations given in the package specification, there are
just two more operations a user can apply, namely assignment and comparison
for equality or inequality. A user can write, for example:

S1 := S2:

S1 := EMPTY.SET;

if S1 = S2 then

Using private types

Variables may be declared of a private type, or
parameters to a subprogram may be of a private
type.

Outside the body of the package, only the opera
tions defined in the package specification may
be used, and the operations of assignment and
comparison for equality or inequality.

Within the body of a package the package's pri
vate types may be used freely.

In the specification of SET_PACKAGE we wrote at the end what is called
the private part:

private
type SET is array (CHARACTER) of BOOLEAN;

In a private part, the private types that have been specified in the package are
described. The private part of the package is not visible to the user's program
(even though the user can, of course, read what is written there). The reason for
having the private part in the package specification is that the compiler must
know what the private type looks like when the user's program is compiled.
(When a variable of a private type is declared, space has to be saved for it in the
computer's memory, for instance.)

It should be added that it would have been possible to avoid using a
private type: we could have put the complete declaration of SET into the specifi
cation of the package and not had a private part. The disadvantage of that would
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Declaration of private data types

package P is
type T Is private;

private
type T Is normal type specification]

end P;

be that the user would have got to know how the type SET was implemented,
and would have been able to manipulate the data type directly, without employ
ing the operations given in the package specification.

Let us look at constructing the body of the package SET_PACKAGE.
First, we observe that an empty set can be described by an array in which all
components have the value FALSE, and which can be expressed using the aggregate:

(others => FALSE)

To insert an element into a set S we just need simple assignment. The statement:

S('*') :=TRUE;

for example, inserts the character into the set S. An element can be removed
from a set in a similar way; to remove the character '8' from a set S we write:

S('8') := FALSE;

It is easy to determine if a particular character is a member of a set S. If, for
example, the expression

S('A')

has value TRUE, it means that the character 'A' is a member of S; if it has value

FALSE, then 'A' is not a member of S.

In constructing the union and intersections of two sets we can make use
of the fact that the logical operators and and or are more general than we have
hitherto seen. These operators do not only apply for simple scalar operands of
type BOOLEAN, but both operands can also be arrays with the same number of
components of type BOOLEAN. The result of an operation is a new array with
the same number of components, also of type BOOLEAN, as the original arrays.
A couple of examples will demonstrate this best. If we have declarations:
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type LOGIC_ARRAY is array (1 .. 4) of BOOLEAN;
LA : LOGIC_ARRAY := {TRUE, FALSE, TRUE, FALSE);
LB : LOGIC_ARRAY := (TRUE, TRUE, FALSE. FALSE);
LC, LD : LOGIC_ARRAY;

then we can write the statements:

LC := LA and LB; -- LC will be (TRUE, FALSE, FALSE, FALSE)
LD := LA or LB; -- LD will be (TRUE, TRUE, TRUE, FALSE)

It is worth noting that the logical operators not and xor are also defined for
arrays with components of type BOOLEAN.

Now back to our sets of characters. The union of two sets S1 and S2 is

the set comprising all the elements to be found either in S1 or in S2. The inter
section of S1 and S2 is the set comprising all the elements to be found in both
S1 and S2. If S1 and S2 have type SET, it is simple to construct their union and
intersection:

S1 or S2 --gives a set which is the union of S1 and S2
S1 and S2 -gives a set which is the intersection of S1 and S2

To determine whether a set S1 is a subset of another set S2 we can construct the
intersection of the two sets. If the intersection is equal to S1 it means that S1
contains only elements which are also in S2, and therefore S1 is a subset (an
improper subset) of S2.

Now we are ready to write the body of SET_PACKAGE:

with TEXTJO;

package_body SET_PACKAGE Is

function EMPTY_SET return SET Is

begin
return (others => FALSE);

end EMPTY_SET;

function "+" (0 : CHARACTER; S SET) return SET Is
R : SET:=S;

begin
R(C) := TRUE; return R;

end "+";

function "+" (S : SET; C : CHARACTER) return SET is
begin
return C + S;

end"+";
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function (C : CHARACTER: S : SET) return SET Is
R : SET := S;

begin
R(C) := FALSE; return R;

end

function (S : SET; C : CHARACTER) return SET Is
begin

return C - S;

end

function MEMBER (C : CHARACTER; S : SET) return BOOLEAN Is
begin

return S(C);
end MEMBER;

function "+" (S1, S2 : SET) return SET Is
begin

return S1 or S2;

end"+";

function (S1, S2 : SET) return SET Is
begin

return S1 and S2;

end

function "<=" (S1, S2 : SET) return BOOLEAN Is
begin
return S1 * S2 = S1;

end "<=";

procedure PUT (S : In SET) Is
begin
for C In CHARACTER loop

If S{C) then

TEXT_IO.PUT(C);
end If;

end loop;
end PUT;

end SET_PACKAGE;

Now we can look at how to use the abstract data type SET in a program.
Let us suppose the following clauses are at the start of the program:

with SET_PACKAGE, TEXT_IO;

use SET.PACKAGE, TEXT.IO;

We can declare the sets LETTERS and OPS:
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LETTERS, OPS : SET ;= EMPTY.SET;

We have called the function EMPTY_SET from the package SET_PACKAGE to
initialize these variables, and suitable values can be given to them by using the
following statements:

for CHAR in 'a'.. 'z' loop

LETTERS := LETTERS + CHAR;

end loop;
for CHAR In 'A .. 'Z' loop
LETTERS := LETTERS + CHAR;

end loop;

OPS := OPS + '+'; OPS := OPS +

OPS := OPS + OPS := OPS + '/';

We are now able to read a character from the terminal and determine whether it

is a letter or an operator symbol:

GET(T);

If MEMBER(T, LETTERS) then
-- the character was a letter

elsif MEMBER(T, OPS) then
-- the character was an operator symbol

else

-- some other character

end If;

Finally, we will look at a program that reads two lines of text from the terminal
and prints all the characters that appear in either the first or the second line, and
all the characters that appear in both lines.

Input takes place using the procedure GET_LINE and the two lines that
are read are placed in variables LINE1 and LINE2. We declare two sets,
IN_LINE1 and IN_LINE2, where we will store all the characters from the respec
tive lines. The program constructs the union and the intersection of the sets
IN_LINE1 and IN_LINE2 and prints out the resulting sets using the procedure
PUT from the package SET_PACKAGE:

with TEXTJO, BASIC_NUM_IO, SET_PACKAGE;

use TEXT_IO, BASIC_NUM_IO. SET.PACKAGE;

procedure COMPARE_LINES Is
LINE1, LINE2

LENGTH 1. LENGTH2

IN_LINE1, IN_LINE2

begin
- read in the two lines

STRING(1 .. 200);

NATURAL;

SET := EMPTY_SET;
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PUT_LINE {"Write two lines of text");
GET_LINE(LINE1, LENGTH1);
GET_LINE(LINE2, LENGTH2);
-- Construct a set of all characters in line 1

for I In 1 .. LENGTH1 loop
IN_LINE1 := LINE1(I) + IN_LINE1;

end loop;

~ Construct a set of all characters in line 2

for I In 1 .. LENGTH2 loop
IN_LINE2 := LINE2(I) + IN_LINE2;

end loop;

PUT("The following characters appear");
PUT(IN_LINE1 + IN_LINE2); NEW.LINE;
PUT("The following characters appear in both the lines");
PUT(IN_LINE1 * IN_LINE2); NEW_LINE;

end COMPARE_LINES;

In most situations it is natural to allow a package to contain only one abstract
data type and its operations, as in our example. However, it is possible to place
several declarations in one and the same package. For example, several abstract
data types which belong together in some way can be put into a single package,
and a package can even contain other sorts of declaration. If a use clause for a
package is used in a program, then, as we have seen, everything in the package
becomes visible in the program without having to use point notation. This is
sometimes undesirable: you sometimes want to retain point notation for clarity.
In Ada 95 it is possible to make only a certain abstract data type and its opera
tions visible. If, for example, there is a package MY_PACKAGE, which contains,
among other things, definitions of an abstract data type ABS_TYPE, then the fol
lowing clauses can be given:

with MY_PACKAGE;

use type MY_PACKAGE.ABS_TYPE;

Then only the type ABS_TYPE and its operations will be directly visible in the
program; if anything else defined in MY_PACKAGE is to be used then it has to
be referred to using point notation.

For the next example of an abstract data type we will study a queue, or more
precisely a queue of characters. You should be able to insert characters into a
queue and remove them in the order they were inserted. We will also want to
determine whether a queue is empty. Thus the operations we will want for the
abstract data type QUEUE are PUTJN, TAKE.OUT and EMPTY.

To implement a queue we will use a character array inside the package,
that is, an array of type STRING. The simplest way to implement a queue is by
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BUF

1  2 3

NUMBER FIRST

MAX_NUMBER

LAST

Figure 8.1

using an array and putting the first element of the queue in the first position in
the array, the second element in the second position and so on. It is rather
inefficient, however, because you have to shift all the elements one place to the
left each time an element is removed. For this reason we will employ an
alternative technique, usually known as the circular buffer. We will use an
array BUF where the elements of the queue are stored. Apart from this array we
will have three integers, NUMBER, FIRST and LAST, to store the current
number of elements in the queue, and the indexes of the elements of the array
holding the first and the last elements in the queue, respectively. Figure 8.1
illustrates this.

Thus the implementation of a queue consists of four components, an
array and three integers, and we can put them in a record:

type QUEUE Is
record

BUF

NUMBER

FIRST

LAST

end record;

STRING(1

NATURAL

POSITIVE

POSITIVE

MAX_NUMBER);

= 0;

= 1;

= MAX.NUMBER;

We have also given initial values to the components in this record declaration,
so that a variable of type QUEUE will always be initialized on declaration.

Now we are able to specify a package, OUEUE_PACKAGE, which
describes the abstract data type QUEUE:

package QUEUE_PACKAGE is
type QUEUE Is limited private;
procedure PUTJN (Q : In out QUEUE; C : In CHARACTER);
procedure TAKE.OUT (Q : In out QUEUE; C : In CHARACTER);
function EMPTY (Q In QUEUE) return BOOLEAN;

private
MAX_NUMBER : constant := 1000;

type QUEUE Is
record
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BUF

NUMBER

FIRST

LAST

end record;

STRING{1

NATURAL

POSITIVE

POSITIVE

MAX_NUMBER);

= 0;

= 1;
= MAX_NUMBER;

end QUEUE_PACKAGE;

The exact declaration of the type has been placed in the private part of the
package. Observe that further declarations can be put in the package's private
part if required. The type QUEUE is private, as was the type SET in the previ
ous example. There is, however, a small but important difference. As the word
limited implies, its presence in the declaration makes the type QUEUE into a
limited private type. From the SET example, we saw that in a normal private
type the only operations the user can do are assignment and comparison, and
limited private types differ from these in that not even assignment and compar
ison are allowed. (Of course, for both kinds of private type the user is allowed
to use the operations which are defined in the package specification.)

Limited private types

type T is limited private;

For such a type, neither assignment nor comparison
is permitted outside the body of the package.

Assume that the user has declared two variables Q1 and Q2 of type
QUEUE. The statements

Q1 := Q2;

if Q1 = Q2 then

ERRQRI limited private type
ERROR! limited private type

are not allowed. The reason we have chosen to make the type QUEUE limited
private is that, if comparison were allowed, it would give incorrect results. That
two queues are equal means, logically, that they are of the same length and
contain the same elements. Two queues which are logically equal can, however,
be stored differently in the abstract data type QUEUE. To demonstrate this,
assume that Q1 and Q2 have the same lengths and contain identical elements but
are shifted with respect to one another so that the first elements do not lie in the
same positions in the arrays. If Q1 and Q2 were compared, they would be found
to be different, in spite of their logical equality.

When you construct an abstract data type you can give your own equal
ity operator (see Section 6.9). In QUEUE_PACKAGE, for example, the opera
tion = can be added:
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function "=" (Q1, Q2 : QUEUE) return BOOLEAN:

But note that you may not declare your own inequality operator /=; this is
declared automatically as a result of declaring the operator =.

Let us look at the body of the QUEUE package.

with TEXT_IO;

use TEXT_IO;

package body OUEUE_PACKAGE Is
procedure PUT_IN(0 : In out QUEUE; C : In CHARACTER) Is
begin

If Q.NUMBER < MAX.NUMBER then

Q.LAST := Q.LAST mod MAX_NUMBER + 1;

Q.BUF(Q.LAST) := C;
Q.NUMBER := Q.NUMBER + 1;

else

PUT_LINE("The queue is full!");
end If;

end PUTJN;

procedure TAKE_0UT(Q : In out QUEUE; C : out CHARACTER);
begin

If Q.NUMBER > 0 then

C := Q.BUF(Q.FIRST);
Q.FIRST := Q.FIRST mod MAX_NUMBER + 1;

Q.NUMBER := Q.NUMBER - 1;

else

PUT_LINE("The queue is empty!");
end If;

end TAKE_0UT;

function EMPTY(Q : In QUEUE) return BOOLEAN;
begin

return Q.NUMBER = 0;

end EMPTY;

end QUEUE_PACKAGE;

The function EMPTY is simplest: a queue is empty if the number of elements in
it is zero. The procedures PUT_IN and TAKE_0UT take a bit more thought. Both
procedures have an error check so that a message is returned if you try to add
an element to a full queue or remove an element from an empty queue. When
an element is to be added to a queue, the statement:

Q.LAST := Q.LAST mod MAX_NUMBER + 1;

is executed in the procedure PUT_IN. If Q.LAST has a value which is less than
MAX_NUMBER, then this statement simply means that Q.LAST is increased by
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1, and if Q.LAST has the value MAX_NUMBER, then Q.LAST will take the value
1. Note that the initial value of Q.LAST is MAX_NUMBER, so that the first time

an element is put into the queue, Q.LAST will take the value 1. There is a
corresponding statement in the procedure TAKE_OUT which ensures that
Q.FIRST also lies within the permitted interval.

There follows an example of a program which uses the abstract data type
QUEUE, first to read in 100 characters from the keyboard and then to write them
out in the same order:

withTEXT_IQ, QUEUE_PACKAGE:

use TEXT.IO, QUEUE.PACKAGE;

procedure QUEUE.EXAMPLE Is
CHAR_QUEUE : QUEUE;

CH : CHARACTER;

begin

for l ln 1 .. 100 loop
GET(CH);
PUTJN(CHAR_QUEUE. CH);

end loop;
NEW_L1NE(2);
for I In 1 .. 100 loop

TAKE_QUT(CHARQUEUE, CH);

PUT(CH);

end loop;

end QUEUE.EXAMPLE;

Now we have constructed two abstract data types, SET and QUEUE, and
we should look at an interesting difference of principle between them. If we
consider the operations that exist for the data type SET we see that, apart from
the printing operation PUT, there are only functions and no procedures. There
are no operations which can change an existing set. We can look at the example
of adding the character 'a' to a set S by writing the statement:

S := S + 'a';

The function "+" does not change S; what it does is to work out a new set S and
return the new set as the result. (The fact that S changes anyway is a result of
the assignment operation in the user's program.) We can call this a functional
approach to abstract data types. All operations get values of the abstract data
type as arguments and produce as results new values of the abstract data type.
There are no operators that can change a variable of the abstract data type. This
is analogous to the view of ordinary mathematics. If, for example, a and b are
two numbers, then the expression a + b means that a new number is computed
and that the value of the new number is equal to the sum of a's value and b's
value; a and b do not change.
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This functional approach is elegant and well suited to data types of a
mathematical nature. On the other hand, it is not always so efficient. If we look
again at the statement:

S := S + 'a':

we can see that two copies must be made of the whole array we are using in
order to implement the type SET. The first copy is made when the function "+"
is called, when it gets a copy of the value of S as argument, and the second copy
is made when the variable 8 is assigned to the result. (A clever compiler, how
ever, can avoid making the first of these copies by sending a reference to 8 as
parameter to"+".)

Instead of copying the values of abstract data types in and out of func
tions it is often more natural to employ an alternative approach, which we can
call an object-oriented approach. Now variables of a particular abstract data
type are considered as objects - things - which have certain properties and at
any instant have a particular internal state. The operations for an abstract data
type are allowed to affect an object so that its internal state changes. This
approach leads to more efficient programs.

Our abstract data type QUEUE is implemented with an object-oriented
approach. When we want to add an element to a queue 0 we make the call:

PUTJN(Q, 'a');

What happens is that the procedure PUT_IN gets a reference to the object Q as
argument. Then the procedure makes a change directly in 0 so that its internal
state changes. We no longer need to make copies of the whole queue.

As a final example of abstract data types we will discuss the type TIME,
which is defined as a package called CALENDAR. It is included in the Ada
standard and is to be found in all installations of Ada. The package looks like
this:

package CALENDAR is
type TIME Is private;
subtype YEAR_NUMBER Is INTEGER range 1901 .. 2099;
subtype MONTH_NUMBER Is INTEGER range 1 .. 12;
subtype DAY_NUMBER Is INTEGER range 1 .. 31;
subtype DAY_DURATION Is DURATION range 0.0 .. 86_400.00;

function CLOCK return TIME;

function YEAR (DATE : TIME) return YEAR_NUMBER;
function MONTH (DATE : TIME) return MONTH_NUMBER;
function DAY (DATE : TIME) return DAY_NUMBER;
function 8EC0NDS (DATE : TIME) return DAY_DURATION;
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procedure SPLIT (DATE : in TIME;
YEAR : out YEAR_NUMBER;

MONTH : out MGNTH.NUMBER;
DAY : out DAY_NUMBER:

SECONDS : out DAY_DURATION);

function TIME_OF (YEAR
MONTH

DAY

YEAR.NUMBER;

MONTH_NUMBER:

DAY_NUMBER:

function "+"(LEFT : TIME; RIGHT : DURATION) return TIME;
function "+"(LEFT : DURATION; RIGHT : TIME) return TIME;
function "-"(LEFT : TIME; RIGHT : DURATION) return TIME;
function (LEFT : TIME; RIGHT : TIME) return

DURATION;

function "<" (LEFT, RIGHT : TIME) return BOOLEAN
function "<="(LEFT, RIGHT : TIME) return BOOLEAN
function ">" (LEFT, RIGHT : TIME) return BOOLEAN
function ">="(LEFT, RIGHT : TIME) return BOOLEAN

TIME_ERROR : exception;
- can be raised by TIME_OF,"+" and

private
- Implementation-dependent

end CALENDAR;

TIME is an abstract data type which gives the current moment in time, consist
ing of both the date and the time of day. You can get the current moment of time,
both date and time, by calling the function CLOCK:

NOW : TIME := CLOCK;

If you want only a particular part of it you can use any of the functions YEAR,
MONTH, DAY or SECONDS, as in:

PUTC'Thls year Is "); PUT(YEAR(NOW));

The function SECONDS gives the number of seconds that have passed since
midnight. The type DURATION is a standard type, defined in the package STAN
DARD: it is a fixed-point type and is used in the CALENDAR package to give
intervals of time, expressed in whole seconds. The time is measured with an
accuracy of at least 20 milliseconds.

Alternatively, the function SPLIT can be used to pick out all of the parts
of the time and date at once. It is also possible to construct a new date and time
using the function TlME_OF:
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NEXT.YEAR : TIME := TIME_OF{YEAR(NOW) + 1, 1, 1);

The operator"+" can be used for adding a time interval to the date and time, and
the operator can be used either to remove an interval of time from a date
and time or to calculate the length of an interval. There are also operators for
comparing dates and times.

The following program writes out the current date and time. The date is
printed in the form 19YY-MM-DD and the time in the form HH:MM:SS.

with TEXT_IO, BASIC_NUMJO, CALENDAR;

use TEXTJO, BASIC_NUM_IO, CALENDAR;

procedure TIME_EX is
NOW : TIME := CLOCK;

begin

PUT{YEAR(NOW), WIDTH => 4); PUT('_');
PUT(MONTH{NOW), WIDTH => 2); PUT('-');
PUT(DAY(NOW), WIDTH => 2); NEW.LINE;
PUT(INTEGER(SECONDS(NOW)) / 3600, WIDTH => 2); PUT(':');
PUT(INTEGER(SECONDS(NOW)) rem 3600 / 60,WIDTH => 2); PUT(':');
PUT{INTEGER(SECONDS(NOW)) rem 60 , WIDTH => 2)

NEW_LINE;

end TIME_EX;

8,9 Child packages

In Ada 95, a hierarchical library structure has been adopted that makes it possi
ble to define packages and subprograms which are children to packages defined
earlier. Here we will discuss how to create child libraries, starting with an exam
ple. Suppose we want to use the abstract data type QUEUE_PACKAGE from the
previous section, but it turns out that we also need an operation LENGTH which
gives the number of elements in a queue. There is no such operation defined in
the package QUEUE_PACKAGE, and one possible solution would be to change
the package and add the necessary operation. There is one big disadvantage to
this, however. Imagine that the package QUEUE_PACKAGE has been in exis
tence for some time and that both we and others have used it in many other com
pilation units. If we change QUEUE_PACKAGE then all these compilation units
would suddenly become invalid and all of them would need to be recompiled,
despite the fact that none of them uses the operation LENGTH. Even worse, it
could happen that a compilation unit that was correct before could become
incorrect, maybe because of a name clash with the new operation.

In Ada 95 there is a better solution to this problem: we create a child
package with the name QUEUE_PACKAGE.EXTRA:
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package QUEUE_PACKAGE.EXTRA is
function LENGTH(Q : QUEUE) return NATURAL;

end QUEUE_PACKAGE.EXTRA;

It can be seen that this package is a child of QUEUE_PACKAGE from the point
in its name. The first part of the package name is the name of the parent pack
age and the second part, after the point, is the name of the child. It should
be noted that both the parent package and the child package must be so-
called library units, that is, they must appear on the outermost level of the
program.

One special aspect of a child package is that both in its private part (if
there is one) and in its body there is access to the declarations that were made
in the private part of the parent package. This means that when we write the
body of OUEUE_PACKAGE.EXTRA we know the exact implementation of
queues and can make use of it:

package body QUEUE_PACKAGE.EXTRA Is
function LENGTH(Q : QUEUE) return NATURAL Is
begin

return Q.NUMBER;

end;

end QUEUE_PACKAGE.EXTRA;

We would not have been allowed to do this if the new package had been a
normal package which referred to QUEUE_PACKAGE with a with clause. In
that case, it would not have been known that the type QUEUE was a record type
with a component NUMBER.

To use the new child library we can now write:

with QUEUE_PACKAGE.EXTRA;

procedure QUEUE_USER Is
Q: QUEUE_PACKAGE.QUEUE;

begin

If QUEUE_PACKAGE.EXTRA.LENGTH(K) > 100 then

end QUEUE_USER;

The with clause ensures that both packages QUEUE_PACKAGE and QUEUE_
PACKAGE.EXTRA are accessible. If we had only written

with QUEUE_PACKAGE;

then only the package QUEUE_PACKAGE would have been accessible and the
user's program would have had not the least knowledge of the existence of the
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child package. This means that all the compilation units that include only
QUEUE_PACKAGE in their with clause remain completely unaffected by our
definition of a child package, and they do not need recompilation. The rules for
with clauses are formulated in this way so that it is always possible to see
directly from the with clause of a compilation unit which library units are
required.

If you want to use use clauses to make the declarations in the package's
specification directly visible, this too is possible. We can write:

with QUEUE.PACKAGE.EXTRA;

use QUEUE.PACKAGE; use EXTRA;

procedure QUEUE_USER Is
Q : QUEUE;

begin

if LENGTH(K) > 100 then

end QUEUE_USER;

Note that if we had written instead:

with QUEUE.PACKAGE.EXTRA;

use QUEUE.PACKAGE.EXTRA;

then the declarations in QUEUE_PACKAGE.EXTRA would have been directly
visible, but not the declarations of the parent library, QUEUE_PACKAGE.

When you are using a child library, you can think logically of its
declaration being placed right at the end of the specification of the parent library,
after the private part. This means that if we had written:

with QUEUE_PACKAGE.EXTRA;

use QUEUE.PACKAGE;

then the delcarations in QUEUE_PACKAGE would naturally have been directly
visible. The package name EXTRA would itself have also been visible, but
nothing which was declared within the package QUEUE_PACKAGE.EXTRA, in
its specification, would have been directly visible.

A child package can, in its turn, have children. For example, it is
possible to construct a new package, QUEUE_PACKAGE.EXTRA.MORE:

package QUEUE_PACKAGE.EXTRA.MORE is
function FIRST (Q : QUEUE) return CHARACTER;
function LAST (Q : QUEUE) return CHARACTER;

end QUEUE_PACKAGE.EXTRA.MORE;
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This package specifies two functions which enable the user to see which
elements are first and last in the queue. If you want to use this package in your
program, you use the clauses:

with QUEUE_PACKAGE.EXTRA.MORE:

use QUEUE_PACKAGE; use EXTRA; use MORE;

It is also possible to create several child packages with the same parent. For
example, we can define another child package to QUEUE_PACKAGE:

package QUEUE_PACKAGE.EXTRA2 Is
procedure PUT(Q : QUEUE);

end QUEUE_PACKAGE.EXTRA2;

This package contains a procedure which prints out the contents of a queue. The
two child packages EXTRA and EXTRA2 are totally independent of one another
and do not even know of one another's existence. However, a package can refer
to a relative in a with clause, on condition that the relative's specification has
been compiled in advance. (There are certain limitations for a so-called private
child; see below.) If, for example, we had wanted to make use of EXTRA in
either the specification or the body of EXTRA2, we could have included the
clause:

with QUEUE_PACKAGE.EXTRA;

In Ada 95, in fact, all packages (which are library units) are child packages. If
you define an ordinary package, one whose name does not include a parent
name, then it is actually considered to be a child package of the STANDARD
package. In this way, packages form a tree structure, with STANDARD as the
tree's root.

In the example with QUEUE_PACKAGE we have seen that child libraries
can be used to construct new operations for abstract data types. In Chapter 14,
which takes up object-oriented programming, we will show how child packages
can be used in conjunction with expandable types (called tagged types) to
build up abstract data types with yet further properties.

The second large area of use for child packages is in the construction of
subsystems. When a large program is to be written, consisting of many sepa
rately compiled packages and subprograms, it is necessary to be able to divide
the program up into a number of clearly delimited subsystems. Each subsystem
should have clearly defined tasks, and there should be clear interfaces between
the various subsystems. Each subsystem consists internally of a number of pack
ages that belong together. The packages within a particular subsystem need to
know about one another and to be able to refer to one another using with
clauses. Each subsystem, on the other hand, needs to be encapsulated so that the
packages used internally to the subsystem are not visible outside the subsystem.
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You want only one (or a small number) of the packages of a subsystem to make
up the interface and be outwardly visible.

This can be achieved by using what are called private child units,
and we can look at an outline example. Suppose that we want to construct a
subsystem for graphic presentation. First we declare a package: GRAPHICS.
PACKAGE, which will be parent to all the packages in the subsystem:

package GRAPHICS.PACKAGE Is

private

-- Common internal declarations for the subsystem

end GRAPHICS.PACKAGE;

In the private part there can be declarations of types and so on which are
conunon to all the packages of the subsystem. By subsystem is meant all the
packages which have a common ancestor, as well as the parent itself. In our
example, the subsystem consists of GRAPHICS.PACKAGE and all the packages
that have GRAPHICS.PACKAGE as parent or ancestor.

We can construct a special child library called INTERFACE, which
contains the subsystem's interface with other subsystems:

package GRAPHICS.PACKAGE.INTERFACE Is

end GRAPHICS.PACKAGE.INTERFACE;

(It is not essential to have a special package for the interface: it could equally be
placed directly in the package GRAPHICS.PACKAGE.)

The actual implementation of subsystems is accomplished with the help
of a number of internal help packages, which we can call INTERN_1,
INTERN_2, etc. These packages are specified as follows:

private package GRAPHICS_PACKAGE.INTERN_1 Is

end GRAPHICS_PACKAGE.INTERN_1:

Note that the declaration of package INTERN_1 starts with the word private:
INTERN_1 is a private child library of GRAPHICS.PACKAGE. The declara
tions that are made in the private part of the parent package are always visible
to the (whole) specification and body of a private child library.

A private child library can never be made visible outside the subsystem
by using a with clause. Nor is a private child library visible in the specification
of a non-private package which is included in the subsystem. In this example,
this means that the packages INTERN_1, INTERN_2, etc. can be made visible
in the bodies (but not in the specifications) of GRAPHICS.PACKAGE and
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GRAPHICS_PACKAGE.INTERFACE. The body of the latter, for instance, could
have the following outline:

with GRAPHICS_PACKAGE.INTERN_1,
GRAPHICS_PACKAGE.INTERN_2, ;

package body GRAPHICS_PAGKAGE.INTERFACE Is

end GRAPHICS_PACKAGE.INTERFACE:

The only packages belonging to the graphics system which are outwardly
visible are GRAPHICS_PACKAGE and GRAPHICS_PACKAGE.INTERFACE. A
user program which makes use of the graphics system could have the following
form:

with GRAPHICS.PACKAGE.INTERFACE;

use GRAPHICS_PACKAGE.INTERFACE:

procedure USER Is

end USER;

It is possible to rename a child package, by compiling a line such as the
following:

package GRAPHICS renames GRAPHICS_PACKAGE.INTERFACE:

The package GRAPHICS will, from the user's perspective, be seen as an
ordinary package; the user will not be aware that GRAPHICS is in fact a child
package. Thus one can write:

with GRAPHICS;

use GRAPHICS;

procedure USER Is

end USER;

Only the package GRAPHICS (that is, GRAPHICS_PACKAGE.INTER-
FACE) will be accessible: the parent package GRAPHICS_PACKAGE remains
unknown to the user.

8.10 Standard packages in Ada 95

In Ada 95 child libraries have been used to organize all the different standard
packages. (There are approximately 65 such packages.) Three different parent
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packages have been defined: ADA, INTERFACES and SYSTEM. All other stan
dard library units are children of these three packages. As was pointed out in the
previous section, all library units without a parent are considered to be children
of the package STANDARD. Therefore, the three parent libraries are all in their
turn children of STANDARD. The library units form a tree with the following
structure:

STANDARD

ADA INTERFACES SYSTEM

(For a complete definition of all library units we refer to the reference manual.)
Most library units, the packages TEXT_IO, CALENDAR and NUMERICS, for
instance, are to be found in the subtree under ADA.

In Ada 83 there are no child packages and no tree structure. All packages
have simple names. We write, for example:

with TEXT_IO:

In Ada 95 we should in fact write:

with ADA.TEXT_10:

since TEXT_10 is a child package of ADA. However, Ada 95 is meant to be
upward compatible with Ada 83. This means that a legal Ada 83 program should
also be a legal Ada 95 program. Therefore, in Ada 95 declarations are added to
rename the library units that were defined in Ada 83. One example of such a
renaming declaration is:

package TEXT_IO renames ADA.TEXT_IO:

The following library units have also been renamed so that they can be referred
to with a simple name: CALENDAR, SEOUENTIAL.IO, DIRECTJO,
10_EXCEPTI0NS, UNCHECKED_C0NVERS10N, UNCHECKED_DEALLO-

CATION and MACHlNE_CODE.

EXERCISES

8.1 Write a package that contains the temperature constants:

boiling point of oxygen (at 1 atm) = -182.97 °C
boiling point of sulphur (at 1 atm) = 444.60 °C
melting point of silver (at 1 atm) = 960.5 °C
melting point of gold (at 1 atm) = 1063 °C
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8.2 Write a package SOLID_GEOMETRY that contains aids for calculating the volumes and
areas of a number of common shapes:

V = nr^h volume of a cylinder with radius r and
height h

A = 2Kr(r-\-h) surface area of a cylinder with radius r
and height h

V = —nT^h volume of a circular cone with base

^  radius r and height k

A = Kr(r + Vr + h') surface area of a circular cone with base
radius r and height h

4
V =— nr volume of a sphere with radius r

3

A = 471/^ surface area of a sphere with radius r

8.3 Write a package that contains the ordinary trigonometric functions sin, cos, tan and cot.
The following Maclaurin series are given:

j-3 v-5 v-7
sin{x) =x - — + + •••

3! 5! 7!

cosW =1 + + ...
2! 4! 6!

8.4 Write a package that deals cards randomly from an ordinary pack of cards. In the
package there should be a function DEAL that returns a card when called. The package
must keep track internally of what cards are dealt out, so that each card in the pack is
dealt only once. There should be a procedure SHUFFLE that can be called each time the
pack has to be shuffled and a new deal started. Use the package RANDOM from
Section 8.7.

Use the package to write a program that lets the user play a hand of 21 with the
computer. The game involves the user receiving one card at a time and then deciding
whether or not to take another. The aim is to try to get the total value of the cards as close
as possible to 21, without going above. An ace can count as either 1 or 14. If the user
gets more than 21, he or she goes 'bust' and the computer has won. If the user sticks at
less than 21 the computer can also draw one card at a time and decide whether or not to
continue after each card. (One strategy the computer can adopt is to continue for as long
as its cards total less than 16.) If the computer goes bust, the user wins. Otherwise the
winner is the one with the higher total. If the user and the computer stick at the same
totals, then the computer wins. After each hand the computer writes out the winner and
asks the user if he or she would like another game.

8.5 Section 2.3 described a method of writing outsize letters on an ordinary terminal. Write
a package that can be used to write such giant letters. It should be possible to write
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several giant letters on a horizontal line at the terminal. The package should thus keep
track internally of each line of letters. The following procedures should be present in the
package:

WRITE(C) Put the character C in the first vacant place in the line of giant
letters. If the current line is full it should be written out and C

placed at the start of a new line.

WRITE_L1NE Write out the current line of giant letters.

8.6 Modern personal computers have built-in tools for producing graphics on the screen, but
simple pictures can be drawn even on old-fashioned terminals and printers. In these
cases, a picture is built up in the form of a matrix in which each element is a character.
The number of rows in the matrix is the number of rows on the screen (or an arbitrary
number for a printer) and the number of columns can be the maximum length of a row.
Initially, all the elements of the matrix can be blank characters and then the picture can
be built up by filling in certain elements in a suitable way. When the picture is ready, the
entire matrix is printed out either on the screen or at the printer.

Write a graphics package that can be used to draw simple pictures in the way
described. The following procedures should be present in the package:

1N1T(R,C) Set the number of rows in the picture to R and the number of
columns to C. Put blank characters in the whole matrix and set

the current position to row 1, column 1.

MOVE(P) Move the current position to point P without drawing.

LINE(P) Draw a line from the current position to point P. The new current
position is then P.

CHAR(C) Put character C at the current position.

RECT(H,B) Draw a rectangle with height H and breadth B with its lower left-
hand corner at the current position. The current position does not
change.

DRAW The picture is drawn out at the terminal.

8.7 When a program writes out several pages on a printer it is often desirable to have a title,
for example, a chapter name, at the top of each page. A page number may also be
required at the bottom of every page. In the package TEXT_10 there are facilities for
keeping track of the current page number, but this can also be achieved by writing a
package of your own.

Write a package that prints a title at the top of every page and a page number at the
bottom. The title and page number should be centred. After the title line and before the
page number line there should be two extra blank lines. In the packages should be the
procedures:

INIT(L,P) Set the line length to L characters and the page length to P lines.
The current title is set to blank characters and the current page
number is set to 1.
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TITLE(TEXT) The current title is set to TEXT.

PAGE_NR(N) The current page number is set to N.

NU_LINE If the end of the page has not been reached, NEW_LINE is called.
If the end has been reached, the page number is printed at the
bottom of the page, a new page is started and the title is printed
at the top.

When the package is used in a program the procedures NEW_LINE or PUT_LINE in
TEXT_IO should not be called. Instead, the procedure NU_L1NE should be called.

8.8 Rational numbers can be written as fractions where both numerator and denominator are

integers. Write a package that provides facilities for working with the abstract data type
rational number. The aim is to create a rational number from two integers, and to extract
both the numerator and the denominator from the rational number. In the package there
should be functions for adding, subtracting, multiplying and dividing rational numbers,
and procedures for reading in and writing out rational numbers.

The package should ensure that the rational numbers given as a result are in their
simplest forms: the numerator and denominator should have no common factor.
Furthermore, there should never be a negative denominator.

8.9 Section 8.8 showed how the abstract data type set of characters could be built up using
a package SET_PACKAGE. Write a package that can be used to build up the abstract
data type set of integers instead.

The number of possible numbers in a set of integers is so great that for practical
reasons it is not possible to use the technique used in SET_PACKAGE. To represent a set
of integers it is possible, for example, to use an integer array in which the integers from
the set are placed.
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9.1 Output at the terminal 9.3 Text files
9.2 Input from the terminal Exercises

Large parts of most programs generally consist of statements concerning
reading and writing data; to write programs that communicate well with the
user, it is therefore important to be aware of the facilities that help with this.
In Ada, these facilities are found as subprograms in the standard package
TEXT_IO and some of them have been used extensively in previous chapters.
A summary of these subprograms will be given in this chapter, to provide
a more complete picture of the possibilities available. First, reading and
writing via Ae terminal will be treated in greater detail. Then, text files will
be introduced as a generalization of input and output, enabling a program to
read from and write to other external units and store data permanently in the
computer's secondary storage.

375
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9.1 Output at the terminal

We shall start by looking at the facilities for producing output at the terminal. A
terminal consists of two separate units: the keyboard, which is an input device,
and the screen or printer, which is an output device. All output to a terminal that
occurs in a program affects only its output device; all input via a terminal affects
only its input device, the keyboard.

When a key is pressed at the keyboard the character is sent to the program
and read, but a terminal is usually coupled to the screen in such a way that the
character is also output there. For example, if the character A is typed at the
terminal keyboard, then A is usually displayed on the screen. It is important to
realize that the character A is not output from the program. It is called an echo
of what has been typed at the keyboard. What is seen on the screen thus
becomes a mixture of what is written out by the program and the echoes of what
the user writes at the keyboard.

9.1.1 Page and line structure

The output that occurs at the terminal consists, logically, of a number of pages,
irrespective of whether it is displayed on a screen or printed on paper. Each page
of output comprises a certain number of lines and each line comprises a certain
number of characters. Each page ends with a page terminator and each line
with a line terminator. Neither of these markers is seen in the output itself.
They most often consist of unprintable control characters that are sent from the
computer to the terminal. When the terminal receives a page terminator, it reacts
by shifting the output on to a new page, and when it receives a line terminator
it moves the output to a new line. The exact appearance of the different mark
ers depends on the individual computer system, but the Ada programmer need
not be concerned with this. Page and line terminators are sent to the terminal by
subprograms in TEXT_IO.

A call to the procedure NEW_PAGE causes a page terminator to be sent
to the terminal. There are no parameters to the procedure and it is called simply
by writing:

NEW_PAGE;

One way to send a line terminator to the terminal, and thus get a new line in the
output, is to use the procedure NEW_LINE, and this is specified in the package
TEXTJO as follows:

procedure NEW.LINE (SPACING : in POSITIVE_COUNT := 1);

The procedure has one parameter called SPACING which has type
POSITIVE_COUNT. POSITIVE_COUNT is a subtype of the integer type
COUNT. In TEXT 10 there are the declarations:



Output at the terminal 377

type COUNT is range 0 .. implementation-dependentjnteger,
subtype POSIT!VE_COUNT Is COUNT range 1 .. COUNT'LAST;

COUNT is thus an integer type with permitted values in the interval 0 to an
integer that depends on the implementation and which is often large.
POSITIVE_COUNT comprises all the integers in COUNT except 0.

The parameter SPACING specifies the number of line terminators to be
sent to the terminal, that is, the number of lines that the output should move
forward. For example, to move the output on three lines, the call:

NEW_LINE(3):

is used.

If the parameter given is not an integer literal but a variable or an
expression, then it must be of the subtype POSITIVE_COUNT. For example, it
is possible to declare the variable LINE_STEP:

LINE.STEP : POSITIVE.COUNT;

and use this in the call:

NEW_LINE(LINE_STEP):

Another possibility is to make a specific type conversion:

NEW_LINE( POSITIVE_COUNT{N)); -- where N has the type INTEGER

NEW_LINE can also be called with no parameter. In this case, the para
meter SPACING automatically takes the value 1 (as seen from the specification
above) and the output is moved on one line.

Page and line changes

NEW_PAGE;

gives a new page in the output.

NEW_LINE(N):

moves the output N lines on.

NEW_LINE:

moves the output on one line.
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Another way of sending a line terminator to the terminal and ensuring
that a line change occurs, is to use the procedure PUT_LINE when text is
written.

The third way of causing a line change is by stating the length of line
required and thereafter letting the Ada system start a new line automatically
when one line is full. The required line length can be stated by calling the
procedure SET_LINE_LENGTH, which has the specification:

procedure SET_LINE_LENGTH (TO : in COUNT);

The call:

SET_LINE_LENGTH(60);

for example, means that the maximum line length will be 60 characters. The
package TEXT_IO always keeps track of how far the current line of output has
got along the line. Before each output occurs, TEXTJO checks whether it will
fit into the space remaining on the line. If there is not room for the output, then
a new line is automatically generated before the output is sent. We shall show
how this can be utilized in writing out a table:

SET_LINE_LENGTH(30);

for l in 1 .. 20 loop
PUT(I - 2, WIDTH => 5);

end loop;

These lines of program cause the squares of the numbers from 1 to 20 to be
written in a table with six numbers on each row and five positions for each
number. The output is as follows:

1  4 9 16 25 36

49 64 81 100 121 144

169 196 225 256 289 324

361 400

We see that the parameter to SET_LINE_LENGTH has type COUNT, not
POSITIVE_COUNT. This means that the value 0 is also allowed as a line length.
This is a special case that can be interpreted as 'there is no maximum line
length'. That is, there is no limit to the length of the lines of output. (Of course,
no terminal can cope with this. Some terminals 'stick' at the right-hand side if
a line is too long, while others feed a new line automatically. But, from the
program's point of view, lines can be indefinitely long.) If nothing is specified
in the program, then the line length is assumed to be 0, that is, there is no limit
to the length of a line.
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If it is necessary to determine the current line length in a program, the
function LINE_LENGTH can be called. It returns the current line length as its
result.

function LINE_LENGTH return COUNT;

In an analogous way, a maximum page length can also be set by calling
the procedure SET_PAGE_LENGTH.

procedure SET_PAGE_LENGTH (TO : In COUNT);

The call:

SET_PAGE_LENGTH(48);

for example, sets the maximum size of page to 48 lines. The package TEXT_IO
keeps track of the current line position on the page and if output of more than
48 lines is attempted there is an automatic change to a new page of output.

For page lengths, the special value 0 also means there is no limit to the
number of lines on a page. If no other value is given in a program then the value
0 is assumed. The function PAGE_LENGTH:

function PAGE_LENGTH return COUNT;

can be called to determine what size of page is currently specified.

Maximum size of line and page

SET_PAGE_LENGTH(N);

set maximum page length to N lines.

SET_LINE_LENGTH(M);

set maximum line length to M columns.

Special case: If N (or M) is 0, then a boundless maxi
mum page (or line) length is assumed.

PAGE_LENGTH

function call that returns the current maximum page
length.

LINE_LENGTH

function call that returns the current maximum line

length.
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There are functions that can be used to find out how far the output has
progressed. The function PAGE gives the current page number as its result
(numbering starts at 1). The function LINE gives the number of the line to which
output is currently being sent and the function COL gives the column number
for the next output position on the current line. These functions have the
specifications:

function COL return POSITIVE_COUNT;

function LINE return POSITIVE_COUNT:

function PAGE return POSITIVE_COUNT:

It is also possible for the programmer to specify the output position in
terms of line and column. The procedure SET_COL can be used to move the
output position to a certain column on the line.

procedure SET_COL (TO : In POSITIVE.COUNT);

To move the output position to column C, where C is assumed to have the
subtype POSITIVE_COUNT, we can write:

SET_COL(C);

If the current column number before the call is less than C, then spaces are
output until the current column number becomes C. If the current column
number before the call is C, then the call of SET_COL has no effect. If the

current column number before the call is greater than 0 then a new line is started
first and then space characters are output until the current column number
becomes 0.

Similarly, the procedure SET_LINE can be used to move the output
forward to a particular line on the page:

procedure SET.LINE (TO : In POSITIVE_COUNT):

To move the output forward to line L, where L has subtype POSITIVE_COUNT,
the call:

SET_LINE(L):

can be made. If the current line before the call is less than L then repeated calls
to the procedure NEW_LINE will be made automatically until the current line
number is L. If the current line number is the same as L, then nothing happens.
If the current line number is greater than L then first a new page is started and
then the output is moved forward to line L using calls to NEW_LINE.
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We shall write a procedure NEW_LINE_PLUS that can be called instead
of NEW_LINE if automatic page numbering is required. NEW_LINE_PLUS
should work as follows. If there is no page size specified (that is, the maximum
number of lines has value 0 so that the number of lines on a page is unbounded),
then a new line will occur as usual. Each call of NEW_LINE_PLUS will

then simply result in a call to NEW_LINE and no page number will be output.
If the size of page is specified, by an earlier call to SET_PAGE_LENGTH, then
the last line but one on each page will be left blank and the page number will be
output on the last line. If a line length is specified the page number will be
output in the centre of the line, otherwise it will be written on the left of the
last line.

To determine whether the page size is specified, a call to the function
PAGE_LENGTH can be made and the result tested for 0. For extra clarity, the
value UNBOUNDED can be tested instead, this being a constant of type COUNT,
declared in TEXT_IO, with the value 0.

The page number has to be written as part of the procedure NEW_LINE_
PLUS, so a package has to be created with the resources for writing integers of
type COUNT, here called COUNT_INOUT:

procedure NEW_LINE_PLUS is

package COUNTJNOUT Is new INTEGERJO(COUNT):
use COUNTJNOUT:

begin
if LINE < PAGE_LENGTH - 2 or

PAGE_LENGTH = UNBOUNDED then

NEW_LINE; -- make a normal new line

else

-- end of page
- the next to bottom line should be blank

NEW_LINE(2);

if LINE_LENGTH /= UNBOUNDED then

-- position in middle of the bottom line
SETC0L(LINELENGTH/2);

end if;

~ page number on the bottom line
PUT(PAGE, WIDTH => 1);
NEW_LINE; -- automatically gives new page

end if;

end NEW_LINE_PLUS;
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Current page, line and column numbers

PAGE

function call that gives the current page number.

LINE

function call that gives the current line number.

COL

function call that gives the current column.

SET_LINE(L);

move output on to line L. Change of page occurs if
necessary.

SET_COL{C):

moves the output on to column number 0. Change of
line occurs if necessary.

9.1.2 Output of characters and text

The procedure PUT, of which there are several versions, is used to write out
values of various kinds at the terminal. Among these versions is one for the
output of characters and one for the output of text:

procedure PUT (ITEM : In CHARACTER):

procedure PUT (ITEM : In STRING);

Both these versions of PUT have the required output as their only parameter
(with the name ITEM). The type STRING is an unconstrained array type and
therefore texts of different lengths can be written out. For the type STRING there
is a further procedure, PUT_LINE:

procedure PUT_LINE (ITEM : In STRING);

This works in exactly the same way as PUT, with the difference that a new line
is started after the output.

Output of characters and text

PUT(C);

PUT(S);

PUT_LINE(S); ~ gives new line afterXhe output

where C has type CHARACTER and S has type
STRING.
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9.1.3 Output of integers

The versions of PUT for writing characters and text are always present in the
package TEXT_IO. As we saw in Section 5.6, it is not always so simple in the
case of numeric and enumeration types. Since it is possible to work with many
different integer, floating point and enumeration types, it is not possible for
TEXT_IO to contain a version of PUT for every type imaginable. Instead, it has
templates for packages for input and output of integer types, floating point types
and enumeration types. Such package templates are called generic packages,
and they are used, as demonstrated in Section 5.6, to generate individual pack
ages. To be able to read and write integers, for example, the following (or
similar) must be placed among the declarations in a program (if there is no
access to the package BASIC_NUM_IO or the equivalent):

package 1NTEGER_IN0UT Is new INTEGERJO(INTEGER):
use INTEGER.INOUT;

INTEGER_IO is the name of the generic package in TEXT_IO that contains the
facilities for input and output of integers. In 1NTEGER_I0 there is the procedure
PUT for integers:

procedure PUT (ITEM : In NUM;
WIDTH : In FIELD := DEFAULT.WIDTH;

BASE : In NUMBER_BASE := DEFAULT_BASE);

The first parameter ITEM is the integer that has to be output. This parameter has
type NUM, which is not a true type but only a template to be filled in when an
individual package is generated. NUM can be thought of as being replaced by
the type given when the package is generated. In the package
1NTEGER_IN0UT, for example, NUM is replaced by INTEGER.

We see that the two other parameters, WIDTH and BASE, are initialized
to certain values in the specification. We do not need to include them, therefore,
when the procedure is called.

The parameter WIDTH states the number of output positions, or width of
the field, that should be used for the output. WIDTH has type FIELD, which is a
subtype of INTEGER, comprising the integers greater than or equal to 0. If more
output positions than needed are specified in a call to PUT, the positions to
the left of the number are filled in with blanks. If, however, the number of

output positions specified is insufficient for the required output, the output
will contain as many positions as needed anyway, even though the value of
WIDTH is exceeded. Negative integers are written out with a minus sign in front
and this should be borne in mind when the output positions are being counted.
The initialization value for WIDTH, DEFAULT_WIDTH, is equal to the number
of digits in the largest permitted integer plus one (to allow for a possible minus
sign).
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Output of integers

PUT(i):

or:

PUT(I. WIDTH => W);

where I is an expression of an integer type and W
states the number of positions to be allowed for the
output, including a possible minus sign. Padding takes
place with blanks to the left of the number if W is
larger than is needed.

If W is too small, the exact number of required posi
tions are allowed.

The final parameter, BASE, has not yet been discussed. Integers are
normally written out in ordinary decimal form, but using the parameter BASE it
is possible to state that the output is required in some other form, for example,
in binary form (base 2) or hexadecimal form (base 16). BASE has the type
NUMBER BASE:

subtype NUMBER_BASE is INTEGER range 2 .. 16;

Bases in the interval 2-16 may be specified. BASE is initialized to
DEFAULT_BASE, which has the value 10, that is, corresponding to decimal
numbers. We can write out an integer in binary form:

PUT(I, BASE => 2):

If we assume that I has the value 27, the output will have the following rather
strange appearance:

2#11011#

The first 2 states that the base 2 is in force, and that what is written between the

two #-signs is the number 27 in binary form. If we have the call:

PUT(I, BASE => 8):

instead, we get the output:

8#33#
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The number 33 is 27 in octal form (3 times 8, plus 3). The call:

PUT(I, BASE => 16):

would give the output:

16#1B#

The number IB is 27 written in hexadecimal form (1 times 16, plus 11). The
letters A, B, C, D, E and F are used in the hexadecimal number system to denote
the values 10-15 in the decimal system.

9.1.4 Output of floating point numbers

For floating point numbers, as for integers, an individual package must be
created for input and output, this time using the generic package FLOAT_IO
in TEXT_IO. To create an input and output package for the type FLOAT, for
example, write:

package FLOAT_INOUT is new FLOAT_IO(FLOAT);
use FLOAT_INOUT;

In FLOAT lO there is a version of PUT:

procedure PUT (ITEM : in NUM;
FORE : In FIELD

AFT : in FIELD

EXP : in FIELD

= DEFAULT_FORE;

= DEFAULT.AR

= DEFAULT_EXP);

The first parameter, ITEM, is the floating point value that is to be output. This
parameter has the type NUM, which is not a true type but a template for a type.
NUM takes on the type that is specified when the package is generated. In the
case of the package FLOAT_INOUT generated above, we can thus think of
FLOAT replacing NUM. The three other parameters state how the output should
be presented. All have the type FIELD, a subtype of INTEGER in which the
allowed integer values are greater than or equal to 0.

The parameter FORE states how many character positions should be in
front of the decimal point in the output. The default value, DEFAULT_FORE, is
2. AFT states how many figures should appear to the right of the decimal point.
The default value, DEFAULT_AFT, is equal to the number of figures of accuracy
in the current floating point type, less one because it is assumed that one of
the figures is output as an integer digit. The parameter EXP states how many
character positions are to be used in output of the number's exponent. The
default value, DEFAULT_EXP, is 3.
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If EXP is given the value 0 in the call then the output will be in the form:

iiiii.ddddd

where the is denote positions for the integral part and the ds denote the figures
in the decimal part. The number of figures before and after the point are deter
mined by FORE and AFT, respectively. If the number of places is greater
than needed, the space is padded out with blanks in front of the number. If
the number of places is fewer than needed, it is written out in full anyway,
with as many figures in the integral part as necessary. One position should be
allowed for a possible minus sign in the integral part in case the number is
negative.

If EXP is given a value greater than 0, the output is in the form:

li.dddddEnn

where the is and the ds, as before, denote figures in the integral part and the
decimal part, respectively, and here the ns denote the exponent. This form of
output is called exponent form and examples are:

-5.73E+1 4.5E2 O.OE+0

which denote the numbers -57.3, 0.045 and 0.0, respectively. A number output
in exponent form always has one figure before the decimal point, preceded by a
minus sign if the number is negative. If FORE has a greater value than needed,
the space is filled with blanks before the number. The number of figures after
the decimal point is determined, as before, by AFT. The number of positions in
the exponent part (including a plus or minus sign) is determined by EXP. If EXP
is larger than needed, the space is padded out with zeros.

The number is rounded up to the given number of decimal figures,
irrespective of the form chosen for output.

Let us study a few examples of output. We assume that P and 0 are float
ing point variables with values -123.4 and 0.00567, respectively:

PUT(P); -- gives: -1.23400000E+02

PUT(Q): - gives: 5.67000000E3

PUT(P, AFT => 2); - gives: -1.23E+02

PUT(Q, FORE => 5. AFT => 1); ~ gives: 5.7E3

PUT(P. EXP => 4): - gives: -1.23400000E+002

PUT(Q, EXP => 0); -- gives: 0.00567000
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Output of floating point numbers

PUT(X):

Gives the exponent form in standard format.

PUT(X, FORE => N, AFT => M, EXP => 0);

Gives the ordinary form vi^ithout exponent, N posi
tions in front of the decimal point and M positions
after it.

PUT(X, FORE => N, AFT => M, EXP => K);

Gives the exponent form with K figures in the expo
nent, N positions in front of the decimal point and M
positions after it.

Padding occurs with spaces if FORE is greater than
necessary. If FORE is too small, as many positions as
necessary are used.

9.1.5 Output of values of enumeration type

As shown in Section 5.5, it is possible to write out the values of an enumeration
type if an input/output package is generated using the generic package
ENUMERAT10N_10 in TEXT_10. If we have the enumeration type:

type SIGNAL Is (ON, OFF, NORMAL, ALARM);

we can create a package S1GNAL_1N0UT:

package S1GNAL_1N0UT Is new ENUMERAT10N_10(SIGNAL);

ENUMERATIONJO includes a procedure PUT:

procedure PUT (ITEM
WIDTH

SET

in ENUM;

in FIELD := DEFAULT-WIDTH;

in TYPE-SET := DEFAULTSETTING);

The parameter ITEM is the value of the enumeration type that should be output.
The type ENUM is not a true type but a template; when a new package is
generated, ENUM is replaced with the specified enumeration type. In the pack
age SIGNAL_INOUT for example, we can consider ENUM being replaced by
SIGNAL. Since the two other parameters have default values they do not have
to be present in a call to PUT. If we have the declaration:
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S ; SIGNAL;

we can write, for example:

PUT(S);

Then one of the words ON, OFF, NORMAL or ALARM will be written out at the

terminal.

Exactly as for integers, the second parameter, WIDTH, states how many
positions are to be used for the output. The initial value, DEFAULT_WIDTH, has
the value 0 and this is therefore the value assumed if no parameter WIDTH is
included in the call to PUT. If WIDTH is greater than the value necessary to out
put the current word, the field is padded out with spaces to the right of the word;
if WIDTH is too small then the word is written out in full anyway.

Output of the values of enumeration types

PUT(E);

The value of E is output, no trailing spaces.

PUT(E, WIDTH => N);

The value of E is output with N positions. If N is too
big, the field is padded with spaces to the right of E's
value. If N is too small, N is ignored and the whole
word is written out anyway.

The third parameter, SET, can be used to control the use of upper- or
lower-case letters in the output. SET is initialized to DEFAULT_SETTING,
which is a variable of the type TYPE_SET:

type TYPE_SET Is (LOWER.CASE, UPPER_CASE);

The default value of SET is UPPER_CASE, and this value is assumed if

nothing else is specified; all output will thus be in upper-case letters. If some
output must be in lower case, then we must write:

PUT(S, SET => LOWER_CASE); - gives the output: alarm

assuming that S still has the value ALARM. If all output is to be in lower-case
letters, it is more convenient to change the default value thus:

SIGNALJNOUT.DEFAULT_SETTING := LOWER.CASE;
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9.2 Input from the terminal

In the package TEXT_IO are facilities for reading data written at the terminal,
that is, at the terminal keyboard.

9.2.1 Page and line structure

Imagine all the characters written at the terminal forming a single long stream
of characters that can be read by the program. Each key stroke generates one
character in the stream. For example, if we write:

Tommy 123

at the keyboard then the sequence of characters illustrated in Figure 9.1 is
created and the program that is running can then read it. The blank square
denotes a blank character, that is, a space character.

Viewed logically, input from the keyboard, that is, the stream of charac
ters, consists of a number of pages. Each page comprises a number of lines and
each line, in turn, comprises a number of characters. The person writing at the
keyboard states where the ends of lines and pages should occur by typing
special characters. To indicate where a line should end, for example, it is nor
mal to strike the RETURN key. It is not very common to specify pages in input
from the keyboard. In normal cases, therefore, the input can be considered as
comprising a single long page.

When an end-of-line character is typed, a line terminator is generated in
the stream of characters, and if an end-of-page character is typed, then a page
terminator is generated. If, for example, we type in the following lines:

line 1

xyz

000

from the keyboard, then the sequence of characters illustrated in Figure 9.2 will
be generated, where the black squares denote line terminators.

A line or page terminator may consist of one or more characters. The Ada
programmer need not be concerned about their exact appearance - it is a detail
that depends on the computer in use. When the data is read into a program from
the character stream, any terminators present will automatically be skipped, so
they can never be read into a program, either deliberately or by accident.

T 0 m m y 1 2 3

Figure 9.1
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1 i n e y z  0 0 0

Figure 9.2

Pages and lines

Data written at the keyboard forms a long stream
of characters that logically consists of a number of
pages. Each page comprises a number of lines and
each line comprises a number of characters.

The end of each line is marked in the stream by a
line terminator and the end of each page by a page
terminator.

The end of a line is usually caused by striking the
RETURN key.

How long is a stream of characters generated by pressing the keys at the
terminal? The answer is that it can be of any length. It is always possible to
generate new characters in the series by typing them. Sometimes, however, it is
useful to be able to indicate that a series of characters is finished, that nothing
more is going to be added. This can be achieved by typing a special combina
tion of characters, the exact form depending on the computer being used. We
saw earlier that it is usual to use the CTRL key with another key to mark the end
of input data. When the end of input of data is indicated, it can be considered,
logically, that a special file terminator is placed at the end of the generated
series of characters. If, for example, we write the lines:

123

456

78

at the keyboard and then type the combination CTRL-D (which we shall assume
is used to mark the end of input data) then the series of characters can be
depicted as in Figure 9.3. The file terminator is the square at the end. Note that
at the end there is both a line terminator and a file terminator. Normally, when
data input is finished, the RETURN key has to be pressed so that the data that
has been written at the keyboard will be transferred to the computer. This
generates a line terminator in the stream of characters. It is therefore natural that
the end of data input is marked when a new line has been started (the RETURN
key has just been pressed).
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1  2 4  5 6

Figure 9.3

It must be noted that even if the stream of characters can be considered

logically as terminated by a file terminator, this does not mean that such a
marker has to be physically present in the series of characters.

End of input

Can be regarded as though a file terminator is at
the end of the stream of characters.

Caused by typing a special combination of charac
ters at the keyboard, for example, CTRL-D. It can
normally be typed only at the start of a new line,
directly after pressing the RETURN key.

In the program, data is read in from the character stream by calls to the
procedure GET. Each reading involves a small move along the stream: we can
say that each reading consumes a number of characters from the stream.
Reading always starts from the start of the stream. Let us assume that we have
the variables I, J, K and L of type INTEGER in a program, and also the input
statements:

GET(I):
GET(J);
GET(K);

GET(L):

As before, we assume that we typed in the lines:

123

456

78

The first call:

GET(I):
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3 H 4 6 ■ 7

Figure 9.4

will mean that the characters '1' and '2' are consumed and that the variable I

takes the value 12. Figure 9.4 illustrates this. The arrow shows how far we have
come along the character stream and points to the next character waiting to be
read.

The next call:

GET(J);

means that the characters '' and '3' are consumed and that J takes the value 3.

Blank characters are always skipped automatically when numeric data or data
of an enumeration type is read. The situation now is shown in Figure 9.5.

Blank characters in input

Blank characters, that is, spaces, are always
automatically skipped when data of numeric or
enumeration type is read.

Blank characters are not skipped when data of the
type STRING and CHARACTER is read.

The arrow has moved on so that it points to the first line terminator, that is, the
first line is now finished. The call:

GET(K):

t
7  8

Figure 9.5
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means that the line terminator and the characters '4', '5' and '6' are consumed.

Line and page terminators are always automatically skipped. The next character
waiting in line is the line terminator for the second line (see Figure 9.6).

Line and page terminators in input

Line terminators and page terminators are always
automatically skipped when data is read. This is true
even for data of the type STRING and CHARACTER.

In TEXT_IO there is a function END_OF_LINE that can be used to find

out whether the current input line is finished:

function END_OF_LINE return BOOLEAN;

The function returns the value TRUE if the next character waiting to be input,
that is, the character the arrow is pointing to, is a line terminator or a file termi
nator. If, for example, we call END_OF_LINE after the call:

GET(K);

the result will be TRUE.

The final call of GET in our example:

GET(L);

consumes the line terminator for the second line and the characters '7' and '8'.

The variable L will take the value 78. The arrow has moved on to the final line

terminator, as shown in Figure 9.7. A call to END_OF_LINE would now return
the value TRUE.

In TEXT_IO there is another function, END_OF_FILE, that can be used to

determine whether the input series of characters is finished:

function END_OF_FILE return BOOLEAN;

Figure 9.6
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Figure 9.7

This function gives the result TRUE if a file terminator is next in line to be read,
or if a combination of line, page and file terminators is next. A call to
END_OF_FILE after the final GET above would thus give the result TRUE.

In TEXTJO there is also a function END_OF_PAGE, which shows
whether a page is complete;

function END_OF_PAGE return BOOLEAN;

When called, this gives the value TRUE if the next character in line to be input
is a combination of a page and line terminator, or if it is a file terminator. This
function is not used much in the case of input from the keyboard.

Tests for end of line, page and file

END_OF_LINE

gives the value TRUE if the next character waiting to
be read is a line terminator or a file terminator.

END_OF_PAGE

gives the value TRUE if the next character waiting to
be read is a combination of a line terminator and a

page terminator, or a file terminator.

END_OF_FILE

gives the value TRUE if the next character in line to
be read is a file terminator or a combination of line,

page and file terminators.

The procedure SKIP_LINE can be used to skip over whole lines in the
input data:

procedure SKIP_LINE(SPACING : In POSITIVE_GOUNT := 1);

The parameter SPACING states the number of lines to be skipped and it can be
omitted from a call. If it is ab.sent, one line is skipped. If the call:
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SKIP_LINE:

or:

SKIP_LINE(1);

is made, the program skips over all the characters in the stream from the next in
line until it finds a line terminator. This is also skipped and if it is followed by
a page terminator, this is also skipped. The result is that after the call the next
character to be read in will be the first character of the next line. If SK1P_L1NE

is called with a parameter N greater than one then this process will be carried
out N times.

For example, if we write the numbers:

12 3

456

at the terminal and the program contains the calls:

GET(l);
GET(J):

then the value 12 is read into 1 and the value 3 into J, as before. If we insert a

call to SKIP.LINE:

GET(l):
SKIP.LINE;

GET(J):

then the value 456 would be read into J instead, because everything after the
character '2' on the first line would be skipped.

There is a function SK1P_PAGE that works in a similar way, but skipping
pages rather than lines. However, only one page at a time can be skipped.

Skipping to a new line or page

SK1P_L1NE:

SK1P_L1NE(N):

skips over everything up to the first character on the
next line. If N > 1, it is repeated N times.

SKIP.PAGE;

skips over everything up to the first character of the
next page.
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Let us study a program that reads data from the keyboard and writes out
the average number of characters in the lines read in. To be able to calculate the
average number of characters per line the program must count the total number
of lines and characters read. For this, two variables are used, LINE_COUNT and
CHAR_COUNT, both initialized to 0. In this program we are not interested in the
kind of input: we shall just count the number of lines and the number of char
acters. Therefore it is simplest to read one character at a time to a variable CHAR
of type CHARACTER. We can use the following algorithm:

(1) Set LINE_COUNT and CHAR_COUNT to 0.

(2) Repeat the following until there are no lines left (that is, the input ends):
(2.1) Increase LINE.COUNT by 1.

(2.2) Read the current line and add the number of characters in it to
CHAR_COUNT.

(2.3) Skip to the start of the next line.

Step (2.2) can be expanded to:

(2.2) Repeat the following until there are no more characters in the
current line:

(2.2.1) Read the next character.
(2.2.2) Increase CHAR_COUNT by 1.

If we translate this to Ada we get:

with TEXT_.10, BASIC.NUMJO;

use TEXTJO, BAS1C_NUM_I0:

procedure F1ND_L1NE_LENGTH is
LINE.COUNT, CHAR.COUNT : INTEGER := 0;

CHAR : CHARACTER:

begin
PUT_LlNE("Enter input. Terminate with CTRL-D");

while not END_0F_F1LE loop
LlNE_COUNT := L1NE_C0UNT + 1;

while not END_OF_LlNE loop

GET(CHAR);
CHAR_COUNT := CHAR_COUNT + 1;

end loop;
SK1P_L1NE;

end loop;

PUT("The average line length is");
PUT( FLOAT(CHAR_COUNT) / FL0AT(L1NE_C0UNT),

EXP => 0, FORE => 3, AFT => 2 );

end FIND LINE_LENGTH;
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Note that the call to SKIP_LINE is necessary because, when the last character on
the first line has been read, a line terminator is waiting to be read. If we had not
skipped over this, the second loop round the outer loop statement would have
started with a line terminator waiting to be read. This would have meant that the
inner loop statement would not have been executed at all because the call to
END_OF_LINE would have been TRUE at once. Thus no character would have

been read from the terminal. Input would have stuck fast at the first line termi
nator and the program would have gone into an endless loop.

As in the case of output, the package TEXT_IO keeps track of the current
page, line and column number in the input. Calls to GET, SKIP_LINE and
SKIP_PAGE change these numbers automatically. The functions COL, LINE and
PAGE, which could be used in connection with output, can also be used to deter
mine the current position in input. If we call the function COL in a program, we
get, as seen earlier, the current column in output as a result. To state that
we mean the current column, line or page in input rather than output we must
therefore use different versions of the functions COL, LINE and PAGE:

function COL (FILE : In FILE.TYPE) return POSITIVE.COUNT;

function LINE (FILE : In FILE_TYPE) return POSITIVE.COUNT;

function PAGE (FILE : In FILE_TYPE) return POSITIVE_COUNT:

These have a single In parameter, FILE, of type FILE_TYPE. To determine the
current column in the input we can make the call:

COL(CURRENTJNPUT):

and to find the current line number we can write:

LINE(CURRENTJNPUT):

(CURRENT_INPUT is in turn a function call that returns the current input
stream. We shall not go into further details here.)

It is also possible to call the procedures SET_COL and SET_LINE to
move on to a particular position in the input. Again, we must use special forms
of the subprograms to indicate that we mean input and not output. The altema-
tive forms of SET_COL and SET_PAGE have the specifications:

procedure SET.COL (FILE : In FILE.TYPE;

TO : In POSITIVE_COUNT):

procedure SET_LINE (FILE : In FILE_TYPE;
TO : In POSITIVE_COUNT);

For example, we can move on to column N with the call:

SET_COL(CURRENTJNPUT, N);
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Now all the characters and terminators in the input are skipped over until the
next character waiting to be read is from column N of a line.

The call:

SET_LINE(CURRENTJNPUT, M);

has the same effect as calling SKIP_LINE repeatedly until the current line
number is M.

9.2.2 Input of characters and text

To read characters of type CHARACTER, the version of GET that is used is
defined as follows in TEXT_IO:

procedure GET (ITEM : out CHARACTER);

The only parameter is an out parameter of type CHARACTER. If the call:

GET(C);

is made, where C is of type CHARACTER, the next character waiting to be read
will end up in C. If there is a line or page terminator next, it will be skipped. If
there is a space character next in line for reading it is not skipped, but C will
have the value '' after the call.

Sometimes we want to know the next character waiting to be read, but
we do not yet want to consume the character from the input stream. Then the
procedure LOOK_AHEAD can be used:

procedure LOOK_AHEAD (ITEM : out CHARACTER;
END_OF_LINE : out BOOLEAN);

On return the out parameter END_OF_LINE is given the value TRUE if the next
character of the input stream is a line terminator, page terminator or a file
terminator. In that case the contents of ITEM are undefined. If the next charac

ter is not a terminator, END_OF_FILE gets the value FALSE and ITEM contains
the character waiting to be read. The input stream itself is not affected by a call
to LOOK_AHEAD.

Normally, when data is typed on the keyboard, the characters typed are
not placed in the input stream until the RETURN key is pressed. (This makes it
possible to correct typing errors.) However, sometimes an immediate reaction is
wanted from the program as soon as a key is pressed; this is the case in text
editors and game programs, for instance. In this type of program the procedure
GETJMMEDIATE can be used instead of GET. GET_IMMEDIATE exists in two
variants:
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procedure GETJMMEDIATE (ITEM
procedure GET_IMMEDIATE (ITEM

AVAILABLE

out CHARACTER);
out CHARACTER;

out BOOLEAN);

Both variants read one character directly from the keyboard. The character read
could be any kind of character, printable or non-printable, such as esc and If. The
difference between the two variants is that the first one waits until a character is

available (a key is pressed) but the second one returns immediately if no
character is available. In that case the out parameter AVAILABLE is set to FALSE
and the value of ITEM is undefined.

To read whole texts into variables of type STRING, another version of
GET can be used:

procedure GET (ITEM : out STRING);

If the call:

GET(S);

is made, where S has the type STRING, the length of S is first determined, that
is, how many characters can be held in S. Many calls are then made repeatedly
to the first version of GET above. The characters input are placed one by one in
S, starting on the left. If S has length 0 then nothing happens.

To read a whole line at once to a variable of type STRING there is a spe
cial procedure, GET_LINE, which is sometimes convenient.

procedure GET_LINE(ITEM : out STRING;
LAST : out NATURAL);

We assume that S has type STRING and that the variable N has the type
NATURAL. We then make ̂ e call:

GET_LINE(S,N);

When the call is made one character after another is read from the input stream
and placed in S from left to right. Reading normally ends when a line termina
tor is met in the input stream. A call to SKIP_LINE is then made automatically;
after the call to GET_LINE, the next character waiting to be read is the first
character of the next line. Reading can also end if S is too short and there is
no room for the current line. If S is longer than the number of characters read,
then the positions in S to which nothing has been read will be undefined after
the call.

After the call, the out parameter LAST (N in our call above), will contain
the index number of the last character read in. If the indexing of S starts at 1 this
simply means that, after the call, N contains the number of characters read. If no
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characters have been read, LAST will contain a number that is less than S's first

index number.

Using GET_LINE we can write another version of the program FIND_
LINE_LENGTH:

with TEXTJO, BASIC.NUMJO;

use TEXT.IO, BASIC_NUM_IO:

procedure FIND_LINE_LENGTH is
LINE_COUNT, CHAR_COUNT : INTEGER := 0;

NR_0F_CHARS_IN_LINE : NATURAL;

LINE : STRING (1 300);
begin
PUT_LINE("Enter Input. Terminate with CTRL-D");

while not END_OF_FILE loop
LINE_COUNT := LINE_COUNT + 1;

GET_LINE(LINE, NR_OF_CHARS_IN_LINE);
CHAR_COUNT := GHAR_COUNT

+ NR_OF_CHARS_IN_LINE;

end loop;

PUT("The average line length Is");
PUT( FLOAT(CHAR_COUNT) / FLOAT(LINE_COUNT),

EXP => 0, FORE => 3, AFT => 2 );

end FIND_LINE_LENGTH;

We assume that no line is longer than 300 characters. Note that a call to
SKIP_LINE occurs automatically through the call to GET_LINE.

9.2.3 Input of integers

To read in integers, a special input/output package must be created using the
generic package INTEGER_IO in TEXT_IO, exactly as for output. If, for exam
ple, we have declared a type:

type WHOLE_NUMBER is range -1000 .. 1000;

and want to read values into variables of this type, we must create our own
package:

package WHOLE_NUMBER_INOUT is new
INTEGER_IO(WHOLE_NUMBER);

use WHOLE_NUMBER_INOUT;

The following version of GET is found in INTEGER_IO:
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procedure GET (ITEM : out NUM;

WIDTH : in FIELD := 0);

The first parameter is an out parameter corresponding to the integer variable to
which input should occur. The type NUM is, as before, a template for a true type
that is replaced by the type specified when a package is created. In the package
WHOLE_NUMBER_INOUT, for example, we see that NUM stands for
WHOLE_NUMBER. The second parameter is not generally used. A call to GET
therefore generally resembles:

GET(W);

where W has the type WHOLE_NUMBER. When the call is made, any line
terminators, page terminators and blanks are skipped. Then the procedure GET
expects a whole number. In the input this is given as a number of characters, for
example, the integer 475 is represented by the three characters '4', '7' and '5'
in series.

The exact appearance of an integer to be read is specified strictly. In fact,
the rules are the same as those for integer literals discussed in Section 3.3. Input
continues for as long as the characters read in can be interpreted as part of an
integer. If an incorrect integer is written when data is input to a program, the
program usually stops and an error message is given. In Chapter 10 we shall see
how to capture this kind of error in a program.

The second parameter, WIDTH, can be used if data is to be read that has
been written in a special way, with a particular number of positions in the input.
If the parameter WIDTH is given a value N in a call to GET, not equal to 0, then
N characters will be read from the keyboard and translated into an integer. This
demands that these N characters form a valid integer. Blanks in front of the
integer are also counted among the N characters. If we have the call:

GET(W, WIDTH => 4);

in a program and the following is written at the keyboard:

-157890

then the variable W will have the value -157 after the call, since only four
characters are read by GET. The next character waiting in line to be read after
the call is '8'.

9.2.4 Input of floating point numbers

To read values into variables of floating point type the generic package
FL0AT_10 in TEXT_IO must be used to create an input/output package for the
particular floating point type in question. If, for example, we have made the type
declaration:
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type TEMPERATURE is digits 4;

we can create an input/output package for TEMPERATURE:

package TEMPERATUREJNOUT is new FLOAT_IO(TEMPERATURE):

In FLOAT_IO there is a version of GET:

procedure GET {ITEM : out NUM;
WIDTH : in FIELD := 0);

As in the case of input of integers, the second parameter is not generally used.
The first parameter corresponds to the floating point variable that is to receive
a value. If, for example, we wish to put a value in the variable T of type
TEMPERATURE we write the statement:

GET(T):

Input works in the same way as for integers, except that the format rules
for input of a real number differ from those for an integer. A real number for
input may look the same as a real literal in a program (see Section 3.3). Data can
therefore be input either in the ordinary form, with figures before and after a
decimal point, or in exponent form. Furthermore, in Ada 95 we may input data
without a decimal point. When the procedure GET is called it can consume all
the characters in the input stream that can be part of the real number. Leading
blanks and line and page terminators are skipped. The character in line to be
input after a call to GET is the first character that cannot be part of a real num
ber. If the keyboard input does not follow the rules then the program is normally
stopped and an error message is given. However, this kind of error can be
captured (see Chapter 10).

The WIDTH parameter works in the same way as the corresponding para
meter when an integer is read. If a value of N that is not equal to 0 is given in a
call, then exactly N characters are read from the keyboard and converted into a
real number.

9.2.5 Input of values of enumeration type

To read the values of an enumeration type it is first necessary to create an
input/output package using the generic package ENUMERATIONJO in
TEXT_IO. A package for the type:

type COMMAND is (START, FINISH, WRITE, DECREASE, INCREASE):

can be created by writing, for example:
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package COMMAND_INOUT is new ENUMERATION_IO(COMMAND):
use COMMAND_INOUT;

In ENUMERATIONJO there is a version of GET:

procedure GET (ITEM : out ENUM);

The only parameter here is an out parameter corresponding to the variable of an
enumeration type to which a value will be read. If we assume that C has the type
COMMAND we can now make the call:

GET(C);

When this call is made any line terminators, page terminators and blanks are
skipped. Then the word that is typed at the terminal is read. The only words that
may be written are the words that a variable of the enumeration type in question
can take. In our example, the user must thus write one of the words START,
STOP, WRITE, DECREASE or INCREASE. It does not matter whether upper-
or lower-case letters are used. If something is written that is not a permitted
value of the enumeration type, the program is stopped and an error message is
given, unless the error is captured (see Chapter 10).

9,3 Text files

All the programs we have studied so far have read from or written to the
terminal. However, it is often necessary for a program to work with other exter
nal devices connected to the computer. For example, output might be required
on a line printer or a special high-quality printer instead of the terminal. Another
problem is that the variables used in a program only exist while the program is
being executed. If the data is to be saved permanently, so that it survives when
program execution has finished, it must be stored in the computer's secondary
storage, most often on disk. It is therefore important to be able to read and write
data to and from secondary storage.

In computer jargon, a sequence of data elements, which can be of arbi
trary length, is called a file. If the elements in the sequence are characters (type
CHARACTER), it is called a text file. Programs can be written in Ada to read
and write all kinds of files, but in this chapter we shall consider only text files.

Two types of text file can be distinguished:

(1) text files that correspond to the input or output devices of the computer,
such as a line-printer; and

(2) text files that are stored in secondary storage.
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In an Ada program both files are treated in the same way. They are understood
logically, by a program, as a series of characters that are either to be read or to
be written. Each text file exists physically in the computer system and has a
special name. The format of the name depends entirely on the computer system
in use. If the text file corresponds to a line-printer it may have a name such as
LPR or /dev/printer. A text file that is stored in secondary memory may have a
name such as /u/smith/datafile or courseregister.text. The rules for the format of
such names do not need to agree (and generally do not agree) with the rules for
identifiers in Ada.

In an Ada program all work is performed on logical text files. In the
package TEXT_IO there is a type FILE_TYPE that can be used to declare such
logical text files. If we have the usual lines:

with TEXT_IO;

use TEXTJO;

at the start of a program then we can declare a logical text file (a file variable),
for example:

INFILE : FILE_TYPE:

Thus INFILE has type FILE_TYPE. In the package TEXT_IO, FILE_TYPE is
declared as a limited private type. Therefore, the programmer does not get to
know what a file variable like INFILE 'really' looks like. The only thing that can
be done with such a variable is to give it as a parameter to certain subprograms
in TEXT_IO. This means that it is not possible, for example, to compare two file
variables or to assign one file variable to another.

Henceforth we shall distinguish between a logical file in a program (a file
variable) and a physical file in the computer system, by calling the former
simply a file and the latter an external file.

Before reading or writing a file can begin in a program, it must be
connected with an external file. This is accomplished by calling one of the
procedures CREATE or OPEN in TEXTJO:

procedure CREATE (FILE
MODE

NAME

FORM

procedure OPEN (FILE
MODE

NAME

FORM

n out FILE_TYPE;

n FILE_MODE := OUT_FILE:

n STRING :=

n STRING :="");
n out FILE.TYPE;

n FILE_MODE:

n STRING:

n STRING := "");

CREATE is used when a new external file is to be created and OPEN is used

when work is to be performed on an existing external file.
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The parameter FILE to both procedures should be a file declared as above.
The parameter MODE states whether the file is to be written to or read from. In
the case of text files it is not possible to both read and write a file at the same
time. The type FILE_MODE has the declaration:

type FILE_MODE is (IN_FILE, GUT.FILE);

In Ada 95 FILE_MODE is declared as follows:

type FILE_MODE Is (IN.FILE, OUT_FILE, APPEND_FILE):

The last of these alternatives is chosen if you wish to add new text at the end of
an existing file.

The parameter NAME is a text string that should contain the name of the
external file. This parameter can be omitted from a call to CREATE. An empty
string is then assumed for the name, and the external file created is considered
to be a temporary file that will disappear when program execution finishes.

The parameter FORM is not used often. Its appearance depends on the
computer system in use. (It can be used, for example, to give a password to
protected external files.)

If we have the declaration:

NEW_FILE : FILE.TYPE;

we can create an external file, my.file for example, and connect it with the file
NEW.FILE using the call:

CREATE(NEW_FILE, NAME => "my.file");

Now it is possible to write to the file NEW_FILE.
To link the file IN FILE, declared earlier, to the external file

/u/smlth/datafile so that it can be read, we can write:

OPEN(INFILE, IN_FILE, 7u/smith/dataflle"):

If an existing file is opened for writing, then any earlier contents are over
written and destroyed.

Assume the line-printer in a certain system has the name LPR. If we
declare a file:

L_PRINTER : FILE.TYPE;

we can link it to the line-printer by writing:



406 Input and output

OPEN(L_PRINTER, MODE => OUT.FILE, NAME => "LPR");

If a file is linked to an external file by a call to CREATE or OPEN, it is said to
be open. When an attempt is made to open a file, errors can occur. For example,
the file may already be open, or no external file may exist with the name speci
fied in the call to OPEN. Possible ways of handling this kind of error are
described in Chapter 10.

The function IS_OPEN can be used to test whether a particular file is
open:

function IS_OPEN (FILE : In FILE.TYPE) return BOOLEAN;

To determine whether the file NEW_F1LE is open, for example, we can write:

if lS_OPEN{NEW_FILE) then

Opening a file

• First declare a logical file:

F : FILE.TYPE;

where F is the name of the logical file.

• Then connect this file with a physical (external)
file in one of the following ways. (S is a text string
containing the name of the physical file.)

CREATE(F, NAME => S);

A new external file is created. The file is to be

written.

OPEN(F, MODE => IN_F1LE, NAME => S);

An existing external file is opened. The file is to be
read.

OPEN(F, MODE => OUT_FlLE, NAME => S);

An existing external file is opened. The file is to be
written. The earlier contents are destroyed.

The only place in a program where the names of external files are found is in
calls to CREATE and OPEN. Everywhere else, logical files are used.

An open file can either be read from or written to, and all the sub
programs previously discussed in connection with reading from and writing to
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the terminal, such as GET, PUT, NEW_LINE, END_OF_FILE, are available. The

only difference is that a file has to be given as the first parameter in any call that
is not destined for the terminal. For example, to read a character from the file
IN FILE to a variable C:

GET(INFILE, C);

can be written, and to write an integer I to the file NEW_FILE PUT can be called
thus:

PUT(NEW_FILE, 1);

Text files, in common with input and output to the terminal, can be
regarded as logically having line, page and file terminators embedded in the text,
as mentioned earlier. To start a new line in the file NEW_FILE we can make the call:

NEW_LINE(NEW_FILE):

and to test whether a line in the file INFILE is finished, the function

END_OF_LINE can be called:

If END_OF_LINE (INFILE) then

Reading and writing text files

A text file has line and page structure. The same
subprograms can be used as for reading from and
writing to the terminal, for example, PUT, GET,
NEW_LINE.

The difference is that in all calls the name of the

logical file has to be stated as the first parameter.
For example:

GET(F,N); -- read an integer from the file F

When reading or writing a file is finished, the file has to be closed by
calling the procedure CLOSE. To close the file NEW_FILE, for example, the call
is made:

CLOSE(NEW_FILE):

If the file has been used for writing, CLOSE takes care that the current line and
page are terminated. This is achieved by automatically calling NEW_PAGE
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before the file is terminated. If we forget to close a file in a program, the result
is not well-defined; it varies from system to system. It is probably most common
for the system to close the file automatically, but to have control over the files
used. The programmer should get into the habit of always closing his or her files
after use.

Closing files

CLOSE{F);

where F is a logical file.

Files should always be closed after use.

We shall study a program that creates a copy of the external file old.file.
The copy will take the name copy. In the program the corresponding logical files
are INF and OUTF. One line at a time is read from INF using the procedure
GET_LINE and is written to OUTF using PUT_LINE.

with TEXTJO;

use TEXT_IO;

procedure COPY_FILE Is
INF, OUTF

LINE

LINE LENGTH

FILE_TYPE;

STRING (1 .. 200);
NATURAL;

begin

~ open the files
OPEN(INF, MODE => IN_FILE, NAME => "old.file");
CREATE(OUTF, NAME => "copy");

~ copy INF to OUTF
while not END_OF_FILE(INF) loop
GET_LINE(INF, LINE, LINE_LENGTH);
PUT_LINE(OUTF, LINE(1 .. LINE.LENGTH);

end loop;

- close the files

CLOSE(INF);
CLOSE(OUTF);

end COPY_FILE;

The file OUTF will have exactly the same line structure as the file INF,
that is, both files have the same number of lines and a particular line in OUTF is
as long as the corresponding line in INF.
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Note that INF may not be copied to OUTF using an assignment statement:

OUTF := INF - ERROR! Assignment is forbidden

In the program we have assumed that no line of INF is longer than 200
characters. If the maximum line length in INF is not known, then the copying
program should be reformulated so that it can cope with copying a text file with
lines of unlimited length. We can solve this problem by reading one character at
a time instead of one line at a time, by changing the loop statement in the
program:

while not END_OF_FILE(INF) loop
while not END_OF_LINE(INF) loop
GET(INF, C):

PUT(OUTF, C):

end loop;
SKIP_LINE(INF);
NEW_LINE(OUTF);

end loop;

Here we read one character at a time, assuming the variable C has type
CHARACTER, until the current line is finished. When a line in INF is finished

we skip the line terminator with a call to SKIP_LINE. Each time a line in INF
finishes we have to ensure that the corresponding line of OUTF also finishes.
This we do by calling NEW_LINE to write a line terminator.

In the copying program we have assumed that the names of the external
files are known when the program is written. We have said that the external file
to be copied will have the name old.fHe and the copy will have the name copy.
It would be better if the program were a little more general so that it could cope
with copying any external file, and the copy could be given any name requested.
One way of achieving this is to read in the names of the external files before
reading them. Then the names can be given as parameters to the procedures
OPEN and CREATE. To make this change in the program, first we insert the
declarations:

FILE_NAME : STRING (1 .. 30);
NAME_LENGTH : NATURAL;

Then we amend the part of the program that opens the files:

-- open INF

PUT_LINE("Enter name of file to be copied");

GET_LINE(FILE_NAME. NAME.LENGTH);
OPENflNF, MODE => IN_FILE.

NAME => FILE_NAME(1 .. NAME_LENGTH));
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-- open OUTF

PUT_LINE("Ent0r the name of the copy");
GET_LINE(FILE_NAME, NAME_LENGTH);
CREATE(OUTF, NAME => FILE_NAME(1 .. NAME.LENGTH));

The statement:

GET_LINE(FILE_NAME, NAME.LENGTH);

indicates, as usual, reading from the terminal. A text string is read in and placed
to the left of the variable FILE_NAME. Note that we have cut out the slice of

FILE_NAME containing only the name when OPEN and CLOSE are called. If
we gave the whole variable FILE_NAME as parameter we could have got
'rubbish' at the end of the file name, and this might have led to trouble for the
operating system.

Instead of reading the file name in the program, the file name can be given
as a parameter to the main program (see Section 6.11). Many standard programs
in UNIX and MS-DOS work this way.

We shall now write another program that copies input from the terminal
and stores it as a text file. This program can be used for writing information that
is to be stored permanently in a text file. Here is the central portion of the
program:

- open OUTF
PUT_LINE("Enter the name of the new file");
GET_LINE(FILE_NAME, NAME_LENGTH);
CREATE(OUTF, NAME => FILE_NAME(1 .. NAME.LENGTH));

~ copy from the terminal to OUTF
PUT_LlNE("Enter material to be stored in the file");
while not END_0F_F1LE loop
GET_LINE(L1NE, LINE.LENGTH);
PUT_LINE(OUTF. LINE(1 .. LINE_LENGTH));

end loop;

~ close OUTF

CLOSE(OUTF);

This differs from the previous program in that the file INF has disappeared and
the parameter INF has been removed from the calls to END_OF_FlLE and
GET_LINE in the loop statement. Input is now from the terminal instead.

Files are often used to save values from calculations or measurements so

that they can be analysed or processed further at some later date. In the next
example we shall study a program that carries out 1000 computations of some
sort and saves the results in a text file DATAFILE. The nature of the computations
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is of no interest here, so we assume that they take place in the function
CALCULATION, whose internal workings we can ignore.

In the program real numbers will be written to DATAFILE. We assume,
therefore, that we have created a package FLOAT_INOUT containing facilities
for writing numbers of type FLOAT. (The home-made package BASIC_NUM_IO
is of no use here because it only includes facilities for writing to the terminal.)
The program has the following statements:

- open DATAFILE

PUT_LINE{"Enter the name of the new file");
GET_LINE(FILE_NAME, NAME_LENGTH):
CREATE(DATAFILE,

NAME => FILE_NAME(1 .. NAME_LENGTH)):
SET_LINE_LENGTH(DATAFILE, 100);

- do 1000 calculations, save results in DATAFILE

for I in 1 .. 1000 loop
VALUE := CALCULATION; - VALUE has type FLOAT;
PUT(DATAFILE, VALUE);

end loop;

~ close DATAFILE

CLOSE(DATAFILE);

The call in the program:

PUT(DATAFILE, VALUE);

means that the value of the variable VALUE is written to the file DATAFILE.

Output to DATAFILE will be in standard exponent form. If we want to have out
put in some other format, for example, with one figure before the decimal point
and three after, and one blank between each number written, we can introduce
the parameters EXP, FORE and AFT:

PUT(DATAFILE, VALUE, EXP => 0, FORE => 2, AFT => 3);

In the program we have specified the maximum line length in DATAFILE to be
100 characters by making the call:

SET_LINE_LENGTH(DATAFILE, ICQ);

The procedure PUT automatically starts a new line each time there is Insufficient
space to write the next item on the current line. If we had not specified a maxi
mum line length, all the numbers would have gone on one, in principle, endless
line.
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In the next example we shall see part of a program that reads a text file
containing a number of real numbers. (This program could, for example, read a
text file written by the program above.) The program calculates and writes out
the mean value of the numbers in the file. We assume that we have created a

package in this program that provides the facilities for reading and writing val
ues of type FLOAT. Furthermore, we assume the declarations:

VALUE

VALUE_COUNT

SUM

FLOAT;

NATURAL := 0;

FLOAT :=0.0;

The reading of the data file and calculations can then be accomplished using the
statements:

while not END_OF_FILE(DATAFILE) loop
GET(DATAFILE, VALUE);
SUM := SUM + VALUE;

VALUE_COUNT := VALUE_COUNT + 1;

end loop;

PUTC'Mean value is: ");
PUT(SUM / FLOAT(VALUE_COUNT));

Text files can be used to build up registers of data, or databases, of various
kinds. To illustrate this, we shall study a telephone list:

Acklin Gisela

01-345-7654

Booth Roy
021-65-4321

Cooper Sally
096-12-3214

Thus for each person there are two lines: one line for the name and one for
the telephone number. We shall now work on a program that can be used to look
up a person's telephone number. The program will read in a name from the
terminal and then look for it in the text file telephone.list. If the name is
present, the program will write out the corresponding telephone number.
Otherwise it will give a message saying that the person in question is not on the
list. We use the simplest imaginable algorithm: the program starts at the begin
ning of the list and reads one name at a time until either it finds the name in
question, or it comes to the end of the list. To indicate that we have found the
person we use the BOOLEAN variable FOUND, which has the value FALSE at
the start.
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Telephone lists are usually sorted alphabetically. If we assume that this is
so, the search could be made more efficient by stopping when we find a person
whose name comes after the sought name. If, for example, we were looking for
the name Williams and found the name Wood, we would know that Williams is
not present because it should come before Wood. However, here we shall do
without this refinement. The program is:

with TEXT.IO;

use TEXT.IO;

procedure FIND_TEL_NO Is
CATALOGUE

REO.PERS, CURR_PERS
TEL_NO

REQ_L, CURR_L, TEL_NO_L

FOUND

FILE.TYPE;

STRING{1 .. 50):
STRING{1 .. 15);
NATURAL;

BOOLEAN := FALSE;

begin

- read in the name of the required person
PUT_LINE("What name do you require?");
GET_LINE(REQ_PERS. REQ_L);

-- search for the required person in catalogue
OPEN(CATALOGUE, MODE => IN.FILE,

NAME => "telephone.list");

while not FOUND and not END_OF_FILE(CATALOGUE) loop
-- read name and telephone number

GET_LINE(CATALOGUE, CURR_PERS, CURR_L);
GET_LINE(CATALOGUE, TEL.NO, TEL_NO_L);

if CURR_PERS(1 .. CURR_L) = REQ_PERS(1 .. REQ_L) then
PUT_LINE("Telephone number:" & TEL_N0(1 .. TEL_NO_L));
FOUND := TRUE;

end if;

end loop;
CLOSE(CATALOGUE);

if not FOUND then

PUT_LINE("This name is not in the catalogue");
end if;

end FIND_TEL_NO;

We have seen that a text file can be either read or written, but it is not
possible to alternate between the two modes. Reading or writing always occurs
sequentially from the start of the file: it is not possible to go back to some
position in the middle of reading or writing unless certain measures are taken.
The only way to go back in a text file is to go back to the start of the file. The
procedure RESET is used to do this:
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procedure RESET (FILE
MODE

procedure RESET (FILE

in out FILE.TYPE;

in FILE_MODE):
in out FILE.TYPE):

There are two versions of this procedure. In the first, apart from stating the name
of the file, it is possible to state whether reading or writing is required. Thus
when the file is reset it is also possible to reset the mode of the file, so that a file
that was previously being written can now be read, and vice versa. In the sec
ond version, the file only returns to the start and the mode is not changed.
Reading or writing is continued, as before.

If we have created a new file in a program, NEW_FILE, and written to it,
we can go back to the start and read from it by writing:

RESET(NEW_FILE, IN.FILE);

If we were reading a file, DATAFILE, earlier and want to go back to the start and
read it again, we can make the call:

RESET(DATAFILE):

To go back in a text file

RESET(F, IN.FILE):

go back to the start of F and read it from the begin
ning.

RESET(F, OUT.FILE);

go back to the start of F and write over it.

RESET(F):

go back to the start of F. If it is open for reading, read
ing takes place from the start again. If it is open for
writing, it is written over.

As an example of an application where files must be reset, we can study
a program that can be used to change a number in the telephone list outlined
earlier. The program will read in from the terminal the name of a subscriber
in the list and his or her new number. The program will then amend the
file telephone.list so that the new number is inserted. Since reading from
and writing to a text file at the same time is not allowed, the work must be
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accomplished in two stages. In the first, telephone.list is read and a copy is
written in a temporary new text file. If the given person is found during this
copying process the new telephone number is put into the copy. Both files are
then reset and the temporary text file is copied to the file telephone.list.

with TEXTJO;

use TEXT.IO;

procedure CHANGE_TEL_NO is
FILE.TYPE;

STR1NG(1 .. 50):
STRING(1 .. 15);

CATALOGUE, TEMPFILE

REQ_PERS, CURR_PERS

NEW_NO, TEL_NO

REQ_L, CURR_L,

NEW_NO_L, TEL_NO_L : NATURAL

FOUND : BOOLEAN := FALSE;

begin
~ read in the required person's
-- name and new telephone number

PUT_LINE("Whose telephone number has changed?");
GET_LINE(REQ_PERS, REQ_L);
PUT_LINE("Give the new telephone number");
GET_LINE(NEW_NO, NEW_NO_L);

-- open the telephone list for reading
OPEN(CATALOGUE. MODE => IN_FILE,

NAME => "telephone.list");
-- open a temporary file for writing
CREATEfTEMPFILE);

-- copy the telephone list to TEMPFILE
-- and change the required telephone number

while not END_OF_FILE(CATALOGUE) loop

-- read name and tel number

GET_LINE{CATALOGUE, CURR_PERS, CURR_L);
GET_LINE(CATALOGUE, TEL_NO, TEL_NO_L);

-- write name and tel number in TEMPFILE

PUT_LINE(TEMPFILE, CURR_PERS(1 .. CURR_L));
if CURR_PERS(1 .. GURR_L) = REQ_PERS{1 .. REQ_L) then
PUT_LINE(TEMPFILE, NEW_NO(1 .. NEW_NO_L));
FOUND := TRUE;

else

PUT_LINE(TEMPFILE, TEL_N0(1 .. TEL_NO_L));
end if;

end loop;



416 Input and output

If FOUND then

~ return to the start of the files

RESET{TEMPFILE, IN_FILE);
RESET(CATALOGUE, OUT.FILE);

-- copy TEMPFILE to the catalogue
while not END_OF_FILE(TEMPFILE) loop

GET_LINE(TEMPFILE, CURR_PERS, CURR_L);
PUT_LINE(CATALOGUE, CURR_PERS(1 .. CURR_L));
GET_LINE(TEMPFILE, TEL_NO, TEL_NO_L);
PUT_LINE(CATALOGUE, TEL_N0(1 .. TEL_NO_L)):

end loop;
else

PUT_LINE("This name is not in the catalogue");
end if;

-- close the files

CLOSE(CATALOGUE);
CLOSE(TEMPFILE);

end CHANGE_TEL_NO;

The file TEMPFILE will only be temporary because no external filename is
given when it is created. If the given person is not in the directory, nothing will
be changed, so we do not bother to copy TEMPFILE to CATALOGUE.

A file variable, like other variables, can be given as a parameter to
subprograms. Let us write a procedure, QUICK_OPEN, which reads in an exter
nal filename from the terminal and opens the corresponding file in the program.
The procedure will have two parameters: the logical file to be opened and a
parameter of type FILE_MODE which states whether the file should be opened
for reading or writing. If the file is to be read, QUICK_OPEN assumes that the
file exists and calls OPEN. If the file is to be written, QUICK_OPEN assumes

that it is dealing with a new file and calls CREATE. The procedure is easy to
write using what we have seen before:

procedure QUICK.OPEN (THE_FILE: In out FILE.TYPE;
THE_MODE : In FILE_MODE) Is

FILE_NAME : STRING(1 .. 30);
NAME.LENGTH : NATURAL;

begin
PUT_LINE("Give name of file to be opened");
GET_LINE(FILE_NAME, NAME_LENGTH);
If THE.MODE = IN_FILE then

OPEN(THE_FILE,
MODE => IN_FILE,

NAME => FILE_NAME(1 .. NAME.LENGTH));
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else

CREATE(THE_FILE.
NAME => FILE_NAME(1 .. NAME_LENGTH)):

end if;

end QUICK.OPEN;

Note that the parameter THE_FILE should be an In out parameter, because the
procedures OPEN and CREATE must be able to both read and change it. If we
now have the two files IN FILE and OUTFILE in our main program they can
easily be opened with the call:

QUIGK_OPEN(INFILE, IN_FILE);

QUICK_OPEN(OUTFILE, OUT_FILE);

In a computer system there are several important programs that work
with text files. The text editor, for example, is dedicated to the task of allowing
text files to be edited. Another example is a compiler. The program fed into the
compiler is stored as a text file and thus the compiler reads this text file.

We have seen that the subprograms in TEXT_IO used to read from and
write to the terminal work in the same way as those used for reading and
writing text files. If one of these subprograms has no file parameter, it is
assumed to refer to the terminal. In fact, the terminal is considered as two text

files that are usually called standard input and standard output. These files are
opened automatically when a program is run and are linked to the keyboard and
screen, respectively. The following functions in TEXT_IO can be used to access
these files, returning the logical files as their result:

function STANDARDJNPUT return FILE.TYPE;

function STANDARD_OUTPUT return FILE.TYPE;

The package TEXT_IO always takes care of the current input and output files.
When a program starts, the current input file is set to standard input, that is, the
keyboard, and the current output file is set to standard output, that is, the screen.
If a call is made to one of the input or output subprograms in TEXT_IO (for
example, GET or PUT) without specifying a file as the first parameter, it is
assumed that the current input file or output file is intended, depending on
whether the subprogram refers to reading or writing. This means that reading
and writing usually occur via the terminal. However, it is possible to change the
current input and output files by calling the procedures:

procedure SETJNPUT (FILE : in FILE_TYPE);

procedure SET.OUTPUT (FILE : In FILE_TYPE);

For example, if we want the file MY_FILE to be the current input file and the file
NEW_FILE to be the current output file, we make the calls:
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SETJNPUT(MY_FILE):
SET_OUTPUT{NEW_FILE);

Now if we make the call:

GET(C):

reading will occur from the file MY_F1LE instead of from the terminal. In the
same way the call:

PUT_LlNE("message");

means that the line will be written to the file NEW_F1LE instead of to the terminal.

To determine which files are the current input and output files, the functions:

function CURRENTJNPUT return F1LE_TYPE;

function CURRENT_OUTPUT return FILE.TYPE;

can be used.

In Ada 95 there is a third standard file, called standard error. The output
to this file is normally shown on the screen. It is a good habit always to write
error messages to standard error, since this file is not affected if standard
output is redirected. Error messages will always be visible. The following
subprograms are available for standard error.

function STANDARD_ERROR return FILE.TYPE;

function CURRENT_ERROR return FILE.TYPE;

procedure SET.ERROR (FILE : in FILE.TYPE);

We shall finish by mentioning some further subprograms in TEXT_10 that
can be of use when handling text files.

An open file is linked to a particular external file and it is open for either
reading or writing. This information can be found by calling the functions
NAME and MODE. For example, the call:

NAME(MY_F1LE)

returns a text string containing the name of the external file that MY_F1LE is
linked to, and the call:

M0DE(MY_F1LE)

returns the result either 1N_FILE or OUT_FILE, depending on whether MY_F1LE
is open for reading or writing. These functions have the specifications:
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function NAME (FILE : In FILE.TYPE) return STRING;

function MODE (FILE : In FILE_TYPE) return FILE.MODE;

If we want to remove an external file we can use the procedure DELETE:

procedure DELETE (FILE : In FILE_MODE);

For example, the call:

DELETE(MY_FILE);

means that the external file that is linked to MY_FILE is simply erased.

EXERCISES

9.1 Write a program to display the values of log(A:) for all values of x between 1.0 and 9.9
inclusive, in steps of 0.1 (that is, 1.0, 1.1, 1.2, ... 9.9). The values should be displayed
in tabular form at the terminal. Set 10 values to a line, separated by three blank spaces.
Each number should be accurate to five decimal places.

9.2 Write a program to read text from the terminal and save it in a new text file with the
name my.text.file. The new file should have the same line structure as the text file read
from the terminal. In addition, all lower-case letters should be translated into upper case
in my. text. file.

9.3 A secret message is stored in the text file secret, file. This has not been stored as straight
forward text but in the form of a code message so that it cannot be read easily without
authorization. Each letter in the original message has been coded to another using this
table:

code letter: guwyrmqpsaeicbnoz l fhdkjxtv
original text: abcdefgh i j kimnopqrstuvwxyz

If the file contains, for example, the lines:

Inybrt jgshsbq
jrybrfygt rsqph oc

the uncoded message is:

rodney waiting
Wednesday eight pm

Write a program to read the file with the secret message and write it out in plain
language. The program should begin by reading in the code (the first line in the table
above) from the terminal.
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9.4 Write a program to read an existing text file and write out its contents at the terminal.
No empty lines (containing only a line terminator) or lines full of blanks should be
written out. Otherwise the output should have the same structure as the text file. The
program should be applicable to any text file; the text file's name should thus be read
from the terminal.

9.5 Write a program to read in two existing text files (FILE1 and FILE2) and form a new one
(FILES). The new file should contain the contents of the first followed by those of the
second. The names of the external files corresponding to FILE1, FILE2 and FILES should
be read in from the terminal.

9.6 Assume a text file contains the text of a program written in an invented programming
language XYZ. Assume further that in a program written in XYZ only the following
characters may appear; the lower-case letters 'a' to 'z'; the digits '0' to '9'; the left and
right parentheses '(' and ')', and the space character.

Write a program to read in a text file containing a program in XYZ and write it out
at the terminal. In this output any lines in the program containing illegal characters
should be marked. This is achieved by writing an extra line in the output under the
erroneous line, with an exclamation mark below each erroneous character.

If, for example, the file contains the text:

read x read y

Let z X plu? y
write z;

then the output at the terminal should appear as follows:

read x read y
Let z X plu? y
!  !

write z;
!

9.7 Assume you have equipment for making automatic observations of the weather and that
it performs particular measurements and stores the results on magnetic tape. From time
to time you have to take the magnetic tape to read it into the computer and analyse the
observations statistically.

Assume that the equipment stores data on magnetic tape in the form of a text file.
Each line of the file contains the results of one complete observation. It is introduced by
text in the format yymmddhhmm, which gives the date in the form year, month, day, and
the time in hours and minutes, of the current observation. On the rest of the line there

follows the measured values of the temperature, atmospheric pressure, humidity of the
atmosphere, wind speed and wind direction. All these values are given as real numbers.

Write a program to read in a text file of weather observations from the computer's
magnetic tape unit, and output the highest and lowest temperatures measured. The
output should have the form:
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Highest temperature: xx.xx deg. Measured xx-xx-19xx, at xxixx
Lowest temperature: xx.xx deg. Measured xx-xx-19xx, at xx:xx

Assume that the computer's magnetic tape unit has the external name tapeO.

9.8 A text member.list has been used to set up a membership register for a club. There are
three lines of text in the file for each member: one line for the name, one for the address

and one for the telephone number. The file is sorted so that the members appear in
alphabetical order.

Write a program to insert a new member in the register. The program should read
from the terminal the name, address and telephone number of the new member and then
insert this information in the correct place in the file, so that the members remain in
correct alphabetical order. {Hint: Use a temporary file.)

9.9 Write a very simple text editor. The program should read in the text file, of arbitrary
external name, line by line and let the user make simple changes in the stored text. Each
time a line is read from the text file it should be written at the terminal and then the

program should read an editing command at the terminal. The following commands can
be given:

REMOVE The current line should be removed. Start editing the next line.

INSERT Read a line in from the terminal and insert it in the file before the

current line.

SWAP xy All occurrences of character x on the current line should be
replaced by character y.

NEXT Editing the current line is finished. Start editing the next line.

After each line is completely edited it should be written to a temporary file; when all the
lines are ready the program should then end by copying the temporary file back to the
original text file.

9.10 Write a program that reads a text from a text file and writes it out in edited form at the
terminal. The program should start by reading in the name of the text file from the
terminal. It should also read in the desired page and line size. Assume that the input text
file contains a number of words separated by one or more spaces or by a line termina
tor. In the output there should be one space between words. The line structure in the
output should not be the same as that of the input file. Each line of the output should
contain as many words as possible in the given line length, so that the lines are roughly
the same length.
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10.1 Predefined exceptions 10.4 Errors arising during input and
10.2 Declaring exceptions output
10.3 Handling exceptions Exercises

When a program is executed, unexpected situations sometimes occur. Such
a situation is called an exception. The exception may be the result of an
error of some kind, for example, dividing by zero, using an index to an array
outside the allowed constraints, or giving faulty input data to a program
or subprogram. An exception is not necessarily the result of an error in the
program. It may be something that only happens very rarely when the program
is run.

When a program is being written, the algorithm should be as clear
and easy to understand as possible. If checks were inserted at each stage of the
algorithm, however, for every imaginable error and other abnormal event, the
algorithm would become very clumsy and hard to follow. In Ada, therefore,
there is a mechanism to handle exceptional events without it showing in the
program's ordinary algorithm.

423
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10.1 Predefined exceptions

If an error occurs when a program is executed, it normally leads to the program
termination and an error message, such as:

** MAIN PROGRAM ABANDONED -- EXCEPTION "constraint_error"

RAISED

What this message is saying is that an exceptional event has occurred, in this
case a 'constraint error'.

In Ada the following types of exceptions are defined:

CONSTRAINT_ERROR Occurs when, for example, an attempt is made
to assign a variable an invalid value, or to index
an array outside the permitted values.

NUMERIC_ERROR Occurs when a numeric operation cannot return
a correct result. For example, the result might
be greater than can be represented. A common
situation is that an attempt is made to divide by
0. In Ada 95 there is no NUMERIC_ERROR,

but even numeric errors generate the exception
CONSTRAINT_ERROR.

PROGRAM_ERROR Occurs in unusual circumstances, when part of
the program called is not accessible, or when
the final end in a function is reached, that is,

the function has not returned a result. There are

also other errors that cause this exception.

STORAGE_ERROR Occurs if the accessible memory expires, for
example, there is a recursive subprogram with
a faulty terminating condition so that too many
instances of the subprogram are generated.

TASKING_ERROR Can occur in connection with parallel programs.
This will not be discussed here.

These five exceptions are defined in the package STANDARD; thus they are
automatically defined in all implementations of Ada.

When an exception occurs, the normal execution of the program ceases
immediately. If no special precautions have been taken in the program, it
will terminate abnormally with an error message stating the type of exception
causing the termination.

These predefined exceptions are raised when some error occurs while a
program is being executed. We also have the opportunity to define an exception
by including in the program a special raise statement. For example, we can
bring about an exception PROGRAM_ERROR with the statement:
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raise PROGRAM.ERROR;

When this statement is executed the program will behave as though an error has
occurred in the program. The program terminates at once with an error message,
unless the exception is treated in some way.

Raise statement

raise E;

where E is the name of an exception.

Normal execution terminates at once and the excep
tion E occurs.

It is not really of much interest to raise exceptions of one of the
predefined types. It is more useful, however, to raise other exceptions, as we
shall demonstrate in the following sections.

10.2 Declaring exceptions

In an Ada program it is possible to work with exceptions other than the
predefined ones listed in Section 10.1. It is possible to define our own excep
tions. An exception TIME_UP, for example, could be declared as follows:

TIME_UP : exception;

This is a declaration and is placed with the other declarations - declarations of
variables, for example. In form, it looks like a variable declaration, but
TIME.UP is not a variable. It cannot have a value. All the declaration says is that
in the program there is an exception, TIME_UP, that may happen. We can make
as many declarations as we like of our own exceptions in a program. We can list
several in one declaration, for example:

TABLE_EMPTY, TABLE_FULL: exception;

The normal rules hold for the scope of the declaration. For example, the name
of an exception is not known outside the subprogram in which it is declared.
(However, when an exception occurs its effects can spread outside the sub
program in which it was declared.)
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Declaring exceptions

E1, E2, : exception;

where E1, E2, ... are the names given to the
exceptions.

The declarations are placed among the other
declarations.

To cause an exception to occur we can use a raise statement:

raise TIME_UP;

The same pattern of events occurs as with predefined exceptions. Unless we
do something special, normal execution of the program ceases with an error
message, in this case:

** MAIN PROGRAM ABANDONED -- EXCEPTION "time_up" RAISED

Such an error message can be much more informative than a message contain
ing one of the predefined exceptions. A predefined exception could be caused
by many different errors in a program, whereas a declared exception can only
occur if a raise statement has been executed.

10,3 Handling exceptions

So far we have said that an exception interrupts a program so that it stops with
an error message. It is, however, possible to trap exceptions in a program and
take some appropriate action. If we have a program that controls an industrial
process of some sort, it is not acceptable for the program to cease abruptly if an
exception occurs. The program must deal with what has happened by writing a
warning message to the operator or closing down a critical process, for exam
ple. It is also unacceptable for a program to cease because, for example, an oper
ator has written input data in the wrong format or has entered an integer when
the program was expecting a real number.

There are three levels of ambition in dealing with exceptions:

(1) Take control of the exception, and try and take suitable action to enable
the program to continue.

(2) Trap, identify and pass the exception on to another part of the program.

(3) Ignore the exception: the program will stop when the exception occurs.
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The basic principle should be that the exception is controlled in the part of
the program (or outside it if necessary) where its effect can most sensibly be
handled. The third level is the one we have seen so far. The exceptions we have
seen have been of the predefined sort and have most often occurred because of
an error in the logic of our programs. To try to trap such exceptions in the
program is not really worthwhile. The correct course of action is to handle what
happens from outside the program, that is, correct the program so that the logic
error disappears. If the Ada system gives an error message that is too scant when
an error of logic occurs (that is, we cannot see where the error occurred), and if
we do not have access to a debugging program, then it may be better to trap the
logic error in the program ourselves. (A more meaningful error message is then
possible.)

As an example of the first level of ambition, we shall study a function
that calculates the tangent of an angle. We assume that we have access to a
mathematical package containing the functions SIN and COS, but not TAN. It is
simple to construct the function TAN:

function TAN (X : FLOAT) return FLOAT is
begin

return SIN(X) / COS(X);

end TAN;

The problem with this function, however, is that for certain values of X (PI/2, for
example), COS(X) has the value 0 and the value of TAN(X) is infinite. (Note that
the parameter to TAN must be in radians and not in degrees.) If we call our func
tion TAN with the value PI/2 then an attempt is made to divide by 0 and
NUMERIC_ERROR occurs. This means that execution terminates with an

error message. (In Ada 95 it is not NLIMERIC_ERROR that occurs but
CONSTRAINT_ERROR.)

We shall now amend the function TAN so that it traps the error and yields
a 'sensible' result other than program termination. What constitutes a sensible
result is open to discussion. Since we cannot store an infinitely large number we
shall let it be represented by the largest possible value that a variable of type
FLOAT can assume. Naturally, this is not mathematically correct. If this is
unacceptable, we can do it in another way that will be discussed later.

So far we have said that a subprogram consists of a subprogram specifi
cation followed by a declarative part and a sequence of statements. In fact, there
can be a further section at one end of the subprogram - a section that deals with
exceptions. Let us look at TAN if we add such a section:

function TAN(X : FLOAT) return FLOAT is
begin
return SIN(X) / COS(X):

exception
when NUMERIC ERROR =>
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If (SIN(X) >= 0.0 and COS(X) >= 0.0) or
(SIN(X) < 0.0 and COS(X) < 0.0) then
return FLOAT'LAST;

else

return FLOAT'LAST;

end If;

end TAN;

The part we have added starts with the reserved word exception. (This should
not be confused with a declaration of an explicit exception.) The remainder of
the added part is similar to the structure of a case statement. The line:

when NUMERIC_ERROR =>

means that the statements following this line should be executed if an exception
of the kind NUMERIC_ERROR is raised. This is called a handler for the excep
tion NUMERIC_ERROR. (In Ada 95, this line should be

when CONSTRAINT_ERROR =>)

When we execute our function TAN, NUMERIC_ERROR will occur if we

try to divide by zero in the statement:

return SIN(X) / COS(X);

This statement is then aborted and the program will instead jump to the state
ments in the handler for NUMERIC_ERROR. This means that the If statement

will be obeyed, and there a test will be made for the result being either plus
or minus infinity. (If you think about it, you will see that the complicated
logical expression following the If can be replaced by the rather simpler
SIN(X) * COS(X) >= 0.0.) FLOAT'LAST is, as we have seen earlier, the largest
possible number that can be stored in the type FLOAT. Depending on which part
of the If statement is executed, the result of the function can be either

FLOAT'LAST or LOAT'LAST.

By trapping the exception NUMERIC_ERROR program termination has
been avoided. Control returns to the program that called TAN and execution con
tinues as normal.

It is important to note that control did not return to the statement that was
interrupted in the normal statement section of the function. This is not only
because we have return statements in the exception handler for
NUMERIC_ERROR - it is generally true. After the statements in the statement
section of the exception handler have been executed the end is reached in the
part of the program containing the handler. There is never a Jump back to the
part of the program that was interrupted.
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There can be handlers for several exceptions at the end of a subprogram,
both predefined and declared. We can, for example, have:

exception

when TIME_UP =>

PUT_LINE("Time to make a move");

when CONSTRAINT_ERROR =>

PUT_LINE("Error in index value");

when TABLE_FULL I TABLE_EMPTY =>

PUT_LINE("Table error");

when others =>

PUT_LINE("Something wrong in package PLAY");

We see that it is possible to have common handlers for two or more kinds of
exception. In our example, TABLE_FULL and TABLE_EMPTY have a common
handler. Thus the message "Table error" is output when exceptions of the kind
TABLE_FULL or TABLE_EMPTY occur. We also see that there can be an others

alternative to handle all other kinds of exception that are not already listed. An
others alternative must appear at the end if it appears at all.

If an exception of kind E occurs and the current subprogram has no
handler for exceptions of this kind (including no others alternative), then the
exception E will be 'passed on' to the subprogram that called the current sub
program. Thus an exception of kind E will occur in the calling subprogram. If
this also has no handler for exception E then the exception will be passed on
further, and so on. If an exception occurs in the main program and this too has
no handler for E, the program will finally be terminated by the Ada system with
an error message.

It should be noted that if an exception occurs in the declarative part of a
subprogram, that is, before the statements following begin have started to be
executed, the exception is passed directly to the calling subprogram. Thus such
an exception cannot be trapped in the subprogram where the exception occurs.

In Ada 95 what is called a choice parameter can be placed in a handler for a
given exception, when you want more information about the current exception.
It could look like this, for example:

exception
when EXCEPTION_EVENT: others =>

PUT_LINE(EXCEPTION_NAME(EXCEPTION_EVENT));
PUT_LINE(EXCEPTION_MESSAGE(EXCEPTION_EVENT));
PUT_LINE(EXCEPTIONJNFORMATION(EXCEPTION_EVENT));

In this example, EXCEPTION_EVENT is a choice parameter. A choice parame
ter is considered as a constant of the predefined private type EXCEPTION_
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OCCURRENCE. In the package ADA.EXCEPTIONS there are three predefined
functions: EXCEPTION.NAME, EXCEPTION_MESSAGE and EXCEPTION.
INFORMATION, which can be called to give various information about the
current exception (dependent on the installation). The three functions each have
one parameter of the type EXCEPTION.OCCURRENCE and return a text result
of type STRING, which can be printed as in the example given above. There
is also a procedure RERAISE.OCCURRENCE which can be used to reraise a
certain exception.

Subprograms with exception handlers

subprogram_specification
declarations

begin
statements

exception
one or more exception handlers

end subprogram_name\

When an exception occurs control passes to the
handler for the particular exception. When the
statements in this have been executed the sub

program terminates and return occurs.

Control never returns to the place where the inter
rupt occurred.

If there is no handler, the subprogram terminates
and the exception is passed back to the calling sub
program.

Exception handlers

Different forms:

when E =>

statements:

when E1\E2 \ ... 1

A
II

g

statements;

when others =>

statements;

where E, E1, E2, ... are the names of exceptions.

If there is an others alternative it must be last.
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Let us return to the example of the function TAN. If it is not acceptable
that it returns the result FLOAT'LAST in the place of infinity, we can tackle it
another way. If we find that program execution breaks down as a result of try
ing to compute infinity, we can instead trap the error in TAN and return a suit
able error message so that the programmer can more easily trace the source of
the error in the program that calls TAN, Thus we settle for the second of our
levels of ambition.

function TAN(X : FLOAT) return FLOAT is
begin
return SIN(X) / COS(X):

exception
when NUMERIC.ERROR =>

PUT_LINE("The value of tangent is too big");
raise;

end TAN;

In the handler for NUMERIC_ERROR, instead of trying to work out some
reasonable result we have inserted an error message. On the next line we find
the statement:

raise;

Any statements can go into an exception handler, even the raise statement. The
special form of raise statement we have used here, where no exception name is
given, is only allowed within a handler. This raise statement means that the
exception that caused the handler to take control has occurred again, and thus
the exception is passed on to the calling program.

Thus in our example the NLIMERIC_ERROR exception will be passed on
to the calling program. If there is no handler in this program (or the program that
called it, and so on) execution of the program will terminate with an error
message "numerlc_error". Because we have added the error message:

The value of tangent is too big

to the function TAN, the logic fault will now be easier to find in the program.
It is not necessarily an error of logic that makes us attempt to calculate

the tangent of an angle that gives an incalculable result. Let us study, for exam
ple, the following lines of program which read in the values of angles from the
terminal and then calculate and write out the tangents of these angles:

loop

PUT("Give a real number, or end with CTRL-D:");
exit when END_OF_FILE;

GET(NUMBER);
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RES := TAN{NUMBER):
PUTC'Tangent is:"); PUT(RES): NEW.LINE;

end loop;

We assume that both variables NUMBER and RES have the type FLOAT. There
is no direct error in the logic of these lines, but they still do not work if we give
a value such as Pl/2 as input.

Thanks to the error message in TAN a good error message is sent to
the operator. Now we can rewrite these lines so that the exception
NUMERIC_ERROR is trapped. This then means that the program is not inter
rupted but can continue by asking for the next value. Our modified form of the
loop is:

loop
begin
PUT("Give a real number, or end with CTRL-D:");

exit when END_OF_FILE;

GET(NUMBER);

RES := TAN(NUMBER);
PUTC'Tangent is: "); PUT(RES); NEW_LINE;

exception
when NUMER1C_ERR0R =>

PUT_LINE("No tangent can be evaluated");

end;

end loop;

Note the addition of the words begin and end around the contents of the loop
statement. These words are the start and end of a new statement in Ada that we

have not yet met - a block statement.
The reason for introducing a block statement here is that an exception

handler may be placed at the end of one. When an exception occurs within the
block statement, control passes to the appropriate handler (if there is one). When
the statements within the handler have been executed, execution of the whole

block statement stops and the program continues with the next statement after
the block statement.

If the exception NUMERIC_ERROR occurs, then the text:

No tangent can be evaluated

is written and execution continues thereafter with a new iteration of the loop
statement. Thus the whole program is not terminated. If we had not introduced
the block statement but had placed the handler for NUMERIC_ERROR at the end
of the program instead, the whole program would have terminated because the
exception NUMERIC_ERROR had occurred. Using the block statement thus
enables us to remain in the program and continue as normal.
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It should be noted that the handler can only take care of exceptions that
occur within the block statement. If NUMERIC_ERROR occurs elsewhere in the

program, control will not pass to this handler.
A block statement is a compound statement that has a structure reminis

cent of that of a subprogram. A block statement is considered an ordinary
statement and can be placed anywhere an ordinary statement can. It is executed
when it is reached in the normal execution sequence of the program (thus it is
not called like a subprogram). In a block statement, as in a subprogram, there can
be a statement section and a section that contains exception handlers. At its most
general, however, the block statement can also contain a declarative part before
the statements. In this case the block statement starts with the word declare.

Block statement

[declare
declarations]

begin

statements

[exception

one or more exception handlers]
end;

[... ] can be omitted.

Declarations made are only known inside the block
statement.

When an exception occurs, execution of the whole
block terminates and the next statement is carried

out.

Let us look at some examples of block statements:

begin

PUT_LINE("This is program XYZ");
PUT_LINE("Welcome");

end;

deciare -- exchange I and J
TEMP : INTEGER;

begin
TEMP : = l;

I  : = J;

J  : = TEMP;

end;
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declare

I, J : INTEGER:

begin
GET{I);
GET(J);
PUT{I ** J);

exception
when CONSTRAINT_ERROR =>

PUT_LINE{"Exponent error");

end;

If we return once more to the example of the function TAN, it may be dis
advantageous to pass on the exception NUMERIC_ERROR, because it can occur
for so many different reasons; it can be difficult for the calling program to iden
tify the error and realize that it occurred in TAN. Moreover, it is not always
desirable to have an error message from TAN: the writer of the calling program
may prefer to formulate his or her own error messages.

The solution to this dilemma is to declare an exception TAN_ERROR in
TAN and to pass this on. But we cannot declare TAN_ERROR in the function
TAN, because then it would not be known outside and it would not be possible
to write a handler for it in the calling program. Nor is it good to declare
TAN_ERROR in the calling program - TAN_ERROR belongs with the function
TAN and should therefore be declared in conjunction with it.

If we assume that TAN is included as a function in a mathematical pack
age there is a natural way of solving this problem. We declare TAN_ERROR in
the specification of this package. Then TAN_ERROR is known by the program
that called TAN but its declaration is still together with TAN. Thus we can have
a package MATHEMATICS:

package MATHEMATICS Is
function SIN (X : FLOAT) return FLOAT;
function COS (X : FLOAT) return FLOAT;
function TAN {X : FLOAT) return FLOAT;

TAN_ERROR : exception;

end MATHEMATICS;

The body of the package looks like this:

package body MATHEMATICS is

function SIN (X : FLOAT) return FLOAT is

end SIN;
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function COS (X : FLOAT) return FLOAT Is

end COS;

function TAN (X : FLOAT) return FLOAT Is
begin
return SIN (X) / COS (X);

exception
when NUMERIC_ERROR =>

raise TAN.ERROR;

end TAN;

end MATHEMATICS;

Now we can write a program that uses the package MATHEMATICS and that
makes use of the exception TAN_ERROR:

with TEXTJO, BASIC_NUMJO, MATHEMATICS;
use TEXTJO, BASIC_NUM_IO, MATHEMATICS;

procedure COMPUTE_TAN Is
NUMBER, RES : FLOAT;

begin
loop
begin
PUT("Give a real number, or end with CTRL-D:");
exit when END_OF_FILE;

GET(NUMBER);

RES := TAN{NUMBER);
PUTC'Tangent is:"); PUT(RES); NEW.LINE;

exception

when TAN_ERROR =>

PUT_LINE("The tangent is too big");
end;

end loop;
end COMPUTE_TAN;

If the value PI/2 is given as input to this program, the message:

The tangent is too big

will be output.
It is very common for a package specification to contain declarations of

the exceptions that can occur in the package. Trapping problems within the
package and passing on well-specified exceptions to the user gives the user the
opportunity to take appropriate action. Errors most often arise during execution
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of a package because the user has called a subprogram wrongly. Thus, in
constructing packages, we generally handle exceptions at the second of our
three levels of ambition.

As a further example of packages that use this technique we shall study a
package that deals with vectors. Earlier, we wrote functions that can add two
vectors. Here we shall build up a small package that offers facilities for adding
two vectors and for forming the scalar product of two vectors. As shown in
Section 6.1, a vector can be represented by the type:

type VECTOR is array (INTEGER range < >) of FLOAT;

If two vectors are added the result is a new vector in which each component is
the sum of their corresponding components. In calculating the scalar product of
two vectors, the products of corresponding pairs of components are formed and
added together. Thus the result is not a new vector but a single number. One
condition governing whether it is possible to add two vectors or form their
scalar product is that they both have to have the same number of components.

The specification of a package VECTOR_PACKAGE can be written:

package VECTOR_PACKAGE is

type VECTOR is array (INTEGER range < >) of FLOAT;

function ADD (V1, V2 : VECTOR) return VECTOR;
-- add vectors V1 and V2

function SCALAR_PROD (V1. V2 : VECTOR) return FLOAT;

~ compute scalar product of vectors V1 and V2

LENGTH_ERROR : exception;

-- Occurs if the two parameters to the functions
-- have different lengths

end VECTOR.PACKAGE;

In the specification we have declared an exception LENGTH_ERROR that
occurs if the two parameters to ADD or SCALAR_PROD have different numbers
of components. The body of VECTOR_PACKAGE can now be assembled:

package body VECTOR_PACKAGE is

function ADD (VI, V2 : VECTOR) return VECTOR is
TEMP : VECT0R(V1'RANGE);

begin
if V1'LENGTH /= V2'LENGTH then

raise LENGTH.ERROR;

end if;

TEMP := V2;
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for I in V1'RANGE loop
TEMP{I) TEMP(I) + V1 (I):

end loop;
return TEMP;

end ADD;

function SCALAR_PROD (V1, V2 VECTOR) return FLOAT Is
SUM :FLOAT:=0.0;

TEMP : VECT0R(V1'RANGE);
begin

If V1'LENGTH /= V2'LENGTH then

raise LENGTH_ERROR:

end If;

TEMP := V2;

for I In V1'RANGE loop
SUM := SUM + V1(l) * TEMP(I);

end loop;
return SUM;

end SCALAR.PROD;

end VECTOR_PACKAGE;

We use one of the concepts raised in Section 6.1. To avoid the problems that
arise when two vectors have different index constraints we declare a local variable

TEMP that is indexed in the same way as V1. Then we make the assignment:

TEMP := V2;

and copy the whole of V2 to TEMP. This is only feasible if V2 and TEMP (that
is, V1) have the same number of components. Therefore, we first test that this is
the case. If V1 and V2 have different numbers of components then we raise the
exception LENGTH_ERROR:

raise LENGTH_ERROR;

10.4 Errors arising during input and output

In the package TEXT_IO the technique of generating exceptions is used if some
thing goes wrong. In the specification of TEXT_IO the exceptions STATUS_
ERROR, MODE_ERROR, NAME_ERROR, USE.ERROR, DEVICE_ERROR,
END_ERROR, DATA_ERROR and LAYOUT_ERROR are declared. The names

of these exceptions are thus visible to the user of TEXT_IO, who can use them
to trap errors that occur during input and output. The following summary
explains when the different exceptions can occur:
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STATUS ERROR

MODE ERROR

NAME ERROR

USE ERROR

DEVICE_ERROR

END_ERROR

DATA_ERROR

LAYOUT ERROR

Occurs if an attempt is made to read from or write to
a file that is not open, or if an attempt is made to
open a file that is already open.
Occurs if an attempt is made to read from a file that
is open for writing or to write to a file that is open for
reading.
Occurs if an attempt is made to open a file and an
incorrect external name is given. The name may be
in the wrong form or an external file with that name
may not be found.
Occurs if an attempt is made to open a file for illegal
use. This may be, for example, an attempt to open a
line-printer file for reading. Another example is if
CREATE is called with an external name that already
exists and the system will not allow the existing file
to be overwritten.

Occurs if there is a technical failure on an input or
output device.
Occurs if an attempt is made to read something from
a file and the next thing in line for reading is a file
terminator.

Occurs if a value of integer, floating point or
enumeration type is read in and the input data file
contains data in an incorrect form (that is, not
following the rules for the type in question).
Occurs, for example, if an attempt is made to state a
current line or column number for output that
exceeds the maximum limits.

We shall study a procedure READ_FLOAT that can be used to read a real
number from the terminal. If the user enters the real number wrongly, for
example as an integer, the program will not terminate but the user will be asked
to rewrite the number.

The procedure should be 'callable' in the same way as GET in a program.
To read a value to a floating point variable X the call:

READ_FLOAT(X):

should therefore be made. The procedure is:

procedure READ_FLOAT (NUMBER : out FLOAT) Is
READY : BOOLEAN := FALSE;

begin
while not READY loop
begin
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GET(NUMBER):
READY := TRUE;

exception

when DATA_ERROR =>

PUT_LINE("lncorrect number. Please repeat.");

SKIP.LINE;

end;

end loop;
end READ_FLOAT;

The procedure consists of a loop statement that tries to read a real number from
the terminal each time round. Within the loop statement there is a block state
ment. The loop statement continues until a real number has been successfully
read. The variable READY indicates whether the reading has been successful. At
the start READY has the value FALSE. When the call:

GET(NUMBER);

is executed, the exception DATA_ERROR occurs if the user writes something
wrong at the terminal. The normal execution in the block statement terminates
and control passes to the handler for DATA_ERROR. The statement:

READY := TRUE;

will thus not be executed before the call to GET has been successful, that is,
without a DATA_ERROR.

In the final example we show a procedure that can be used to open an
existing text file for reading. The procedure reads in the name of the external file
from the terminal and then tries to open it by calling the procedure OPEN in
TEXT_IO. If an error occurs during the opening it is trapped and an appropriate
error message is output:

procedure OWN_OPEN (THE_FILE : In out FILE_TYPE) Is
FILE_NAME : STRING {1 .. 30);
NAME_LENGTH : NATURAL;

begin

PUT_LINE{"Give the name of the file to be read");
GET_LINE(FILE_NAME, NAME_LENGTH);
OPEN(THE_FILE,

MODE => IN_FILE,

NAME => FILE_NAME(1 .. NAME.LENGTH));
exception
when STATUS_ERROR =>

PUT_LINE("The file Is already open");
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when NAME_ERROR =>

PUT_LINE("There is no file with that name");
when USE_ERROR =>

PUT_LINE("The file cannot be read");
when others =>

PUT_LINE("Unexpected error on opening file");
end OWN_OPEN;

If we assume that we have the declaration:

INFILE : FILE.TYPE;

in a program, then we can make the call:

OWN_OPEN(INFILE);

to try to open the file. It is possible to test if the opening went well by calling
the function IS_OPEN:

If IS_OPEN(INFILE) then

-- continue as normal

end If;

EXERCISES

10.1 Write a version of the function FACTORIAL that calculates N\ for an integer N >= 0. The
function should give a floating point number as its result and, if the result is so great that
it cannot be represented in the computer in use, the function should give as its result the
largest floating point number that can be represented.

10.2 The procedure COMPUTE_ROOTS in Chapter 6 computed the roots of a quadratic
equation. Rewrite this procedure so that it does not have the out parameter
REAL_ROOTS. If a quadratic equation has no real roots, the procedure should produce
the error message:

Error in COMPUTE_ROOTS. There are no real roots,

and pass the exception NUMERIC_ERROR to the calling program.

10.3 In Section 8.8 a package was constructed to describe the abstract data type queue. Add
to the package so that it generates the exceptions QUEUE_FULL if an attempt is made
to add more elements than the queue can hold, and QUEUE_EMPTY if an attempt is
made to remove an element from an empty queue.
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10.4 Write a procedure TRY_TO_GET that can be used instead of GET to read an integer from
the terminal. The procedure TRY_TO_GET should have two out parameters. The first
should be an integer parameter to hold the integer read. The second should be of type
BOOLEAN. This should be given the value TRUE if the reading is successful (that is, the
user writes an integer correctly) or otherwise the value FALSE.

10.5 Write a procedure that can be used to open a new text file. The procedure should read in
the name of the new file from the terminal. If the user writes something incorrect, that
is, no new file with that name can be opened, the procedure should produce an appro
priate error message and ask the user to give another file name. This should be repeated
until the new file has been opened successfully.
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For every ordinary object (variable or constant) we can assume that there
is a space in the primary memory of the computer where its value is stored.
It could be said that the object's name is the name of that space in memory,
or store. The space in the memory is created when the object is declared
and it exists during the execution of the program unit in which the object's
declaration appears. Such an object is described as static. It cannot be created
or destroyed during execution of the program unit.

In some applications, the number of objects needed is not known in
advance. Then dynamic data structures are required, which can grow and
shrink during program execution; it must therefore be possible to create new
objects during execution. An example of a dynamic data structure is a list
where elements can be added and removed dynamically.

This chapter reviews Ada's mechanism for creating dynamic objects.
The dynamic data structures - lists, queues, stacks and trees - will be
discussed.

In Ada 95 it is possible to create pointers to subprograms, which in
some cases is very useful. This is demonstrated in the last section of this
chapter.

443
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11.1 Pointers and dynamic objects

To create a dynamic object during execution an allocator is used. This, in its
simplest form, is an expression with the reserved word new followed by a type
name. To create a dynamic object of type INTEGER, for example, we can write:

new INTEGER

It is most common to work with dynamic objects of record types. If, for exam
ple, we have declared the type PERSON:

type PERSON is
record

NAME

HEIGHT

WEIGHT

end record;

STRING(1 .. 20);
INTEGER;

FLOAT;

then we can create a new object of the type PERSON using the allocator:

new PERSON

When an allocator is used, space is reserved in memory for a new object of the
type in question. Each time the allocator is executed a new object is created, or
designated.

In the two foregoing examples, the contents of the space in memory is
undefined. Therefore the values of the dynamic object are also undefined. It is
possible to add an initialization term to the allocator to give a newly created
object a value. To create a new object of type INTEGER and, at the same time,
give it an initial value 5, we can write:

new INTEGER'(5)

After the type name an apostrophe is written followed by the value in brackets.
The value in brackets does not need to be a constant, but it must be an expres
sion with the same type as the new object. If N is a variable of type INTEGER,
we can thus write:

new INTEGER'(2 * N)

If we want to create a new object of record or array type and initialize the object,
an aggregate should be written after the apostrophe. For example, a new
PERSON can be created and initialized with the allocator:

new PERSON'C'Booth Abigail 170, 55.0)



Pointers and dynamic objects 445

We know that each expression in Ada has a particular defined type. An alloca
tor is also considered to be an expression, so what type does such an expression
have? The result of an allocator is a reference or pointer, or, as generally called
in Ada, an access value. We say that this result is of access type; in Ada the
reserved word access is used to denote this pointer type. The result of the
expression:

new INTEGER

is thus a pointer to an object of type INTEGER. Similarly, the result of the
expression:

new PERSON

is a pointer to an object of type PERSON.

Allocators

newT

or:

new T{initial_value)

where T is an arbitrary type. It creates a new object of
type T. The result of the allocator is a pointer to an
object of type T.

As for other types, it is possible to declare variables of access types. In
the following example two access variables are declared. Pi and PP:

type INT_POINTER Is access INTEGER;
type PERS_POINTER is access PERSON;
PI : INT.POINTER;

PP: PERS_POINTER;

We can now use these variables to save the pointers to the created objects. For
example, we can have the statement:

PI := new INTEGER'(5):

The variable PI will now point to an object of type INTEGER. The situation is
illustrated in Figure 11.1.



446 Dynamic data structures

Figure 11.1

Similarly, we can write the statement:

PP := new PERSON'("Booth Abigail 170, 55.0);

and then we have the situation shown in Figure 11.2.
As with other variables, an access variable can be initialized at the

same time as it is declared. We could, for example, achieve the same result by
declaring PP in the following way:

PP : PERS_P01NTER := new PERSON'("Booth Abigail 170, 55.0);

If an access variable is not initialized with its declaration it automatically takes
the value null, which means that it is not pointing to anything.

Access variables

type POINTER is access T;
P : POINTER;

where T is any type.

The variable can be initialized at the same time as it is
declared:

type POINTER is access T;
P: POINTER := neviT{initiafization_expression);

An uninitialized access variable automatically takes
the value null.

PP

Booth Abigail

170

55.0

Figure 11.2
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Now PR can be used to get at the new object - it points to it; it provides
access to it. To change the new person's weight, for example, we can write:

PP.WEiGHT := 54.0;

and to write out the person's name we can make the call:

PUT(PP.NAME):

If the whole object that PP points to is required, the reserved word all can be
used. For example, to change the whole record that PP is pointing to we could
write:

PP.all := ("Booth Russeii 180, 75.0);

Figure 11.3 illustrates how it would then look.

To access an object

P.all

means the whole of an object that is pointed to.

•  If the object is a record type, individual compo
nents can be selected by writing:

P. componenLname

• The access variable P is not affected.

Several access variables may point at the same object. If we declare
another variable:

PP2 : PERS.POINTER;

PP

Booth Russell

180

75.0

Figure 11.3
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we can now write the statement:

PP2 := PP;

This means that the access value of PP is assigned to PP2 and, therefore, PP2
will point to the same object as PP. The situation is shown in Figure 11.4.

Assignment of access variables

P1 := P2:

P1 and P2 must be access variables of the same

type.

• The access value of P2 is assigned to P1.

• They point at the same object.

• The value of the object is not affected.

Let us declare yet another access variable:

PP3 : PERS_POINTER := new PERSON;

PP3 has been initialized so that it points at a new object of type PERSON. Thus
there are now two objects of type PERSON. Figure 11.5 illustrates the situation.
The contents of the record that PP3 is pointing to are still undefined. If we
want to copy to it the contents of the record that PP points to we can write the
statement:

PP3.all := PP.all;

Observe that the word all must appear on both sides. If it had not been present,
the access variable PP3 would have been changed to point to the same object
as PP.

PP

Booth Abigail
►

PP2 170

55.0

Figure 11.4
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PP

Booth Abigail
►

PP2 170

55.0

PP3

Figure 11.5

A particular access variable can only point to objects of a particular type.
For example, PP can only point at objects of the type PERSON, so it would be
wrong to try and write:

PP := new INTEGER; -- ERROR! Different types

A dynamic object ceases to exist when execution first leaves the part of
the program where the access type to the object was declared. The Ada system
can automatically reuse the space thus freed in memory. Objects of the type
PERSON in the foregoing example cannot, therefore, exist outside the part of
the program where the type PERS_POINTER is declared.

This way of declaring the length of time a dynamic object can exist
means that the problem of lingering pointers pointing to space in memory that
has actually been freed can never arise. (On the other hand, during execution, it
can happen that there are dynamic objects to which no pointers point.)
Sometimes, however, you might want to bypass the normal rules and more
closely control the demise of a dynamic object you have created; this can be
done using the (generic) standard procedure UNCHECKED_DEALLOCATION.
To use this you must have the with clause:

with UNCHECKED_DEALLOCATION;

at the start of the compilation unit. The way this works is shown in the
following example. Suppose we have declared the types PERSON and
PERS.POINTER as before. We can now state that we want to give back
the memory which has been allocated to the type PERSON by declaring a
procedure which we can call GIVE_BACK_PERSON:

procedure GIVE_BACK_PERSON Is new
UNCHECKED_DEALLOCATION(PERSON. PERS_POINTER);
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(As you see, we have to state both the type that is being deallocated and the
corresponding access type.) Now assume that we have executed the statement:

PP := new PERSON;

Then later in the program we can deallocate the memory that PP points to by
making the call:

GIVE_BACK_PERS0N (PP);

When you use this method of deallocating dynamically allocated memory you
also take the responsibility for ensuring that there will not be any pointers to
memory with undefined content.

Access may be declared to objects of any type. For example, even arrays
can be allocated dynamically. Suppose we have the unconstrained array type TAB:

type TAB is array (INTEGER range < >) of INTEGER;

We can declare an access type TAB_POINTER and two access variables of the
type:

type TAB_POINTER Is access TAB;
TP1, TP2 : TAB_POINTER;

It is now possible to allocate two arrays dynamically, with TP1 and TP2 point
ing to the allocated arrays:

TP1 :=newTAB(1 .. 10);

TP2 := newTAB'(7.19, 68);

Earlier, we saw that you must state index bounds when you declare variables
of an unconstrained array type; the same rule applies when you dynamically
allocate objects of an unconstrained array type. In the latter case you have to
state in the allocation expression how many components there are to be in the
allocated array, and that can be done either by stating the index bounds, as in the
first example above, or by giving an aggregate as initial value, as in the second
example. Thus, TP1 will point to an uninitialized array with 10 elements, and
TP2 will point to an initialized array with three elements.

A pointer to an array can be used in the same way as an ordinary array
name. (You do not need to use the word all to access what the pointer is point
ing at.) We could, for example, write:

TP! (5) 94;

for I in TP2'RANGE loop
PUT(TP2(I));

end loop;
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We should also say a few words about the dynamic allocation of records with
variants. These were first discussed in Section 7.5. The example we worked with
there used a type VEHICLE, which described the following types of vehicle:
PRIVATE_CAR, VAN, BUS, and UNKNOWN. Now we can declare an access

type VEHICLE_POINTER and three access variables of the type:

type VEHICLE_POINTER Is access VEHICLE;
VPI, VP2, VP3 : VEHICLE_POINTER;

When we declared ordinary variables which were records with variants, it was
allowed, under certain conditions, to have what were called unconstrained

variables, that is, variables whose variants could be changed. This is not per
mitted when an object which is a record with variants is dynamically allocated.
Such an object is always constrained or, more explicitly, its variant may never
be changed. The variant must therefore be known when allocation takes place.
This can be accomplished either by directly stating the name of the variant or by
having an initialization expression which contains the name of the variant:

VP1 := new VEHICLE(BUS);

VP2 := new VEHICLE'(PRIVATE_CAR, "A123ABC", 300, 5. HATCH);

Here, VP1 points to an uninitialized record of the variant BUS and VP2 to an
initialized record of variant PRIVATE_CAR. It would be acceptable to write:

VP3 := new VEHICLE;

in this case, since the variant in the type VEHICLE has a default value; VP3 will
here point to an uninitialized record of the UNKNOWN variant. Note, however,
that it is not possible to change the variant for this record.

A pointer to a record with variants is used in the same way as a pointer
to ordinary records. We can write, for instance,

VP1.A1R_C0ND1T10N1NG := TRUE;

PUT(VP2.NUMBER_0F_SEATS);

In Ada 83 an access variable can only point to objects which have arisen
as the result of an allocation expression being executed. Thus an access variable
can never be made to point at a variable which has been declared in the normal
way.

In Ada 95, on the other hand, you can have pointers to ordinary variables. For
this to be permitted, what are called general access types have to be declared
in a special way. For example, to declare a general access type which can point
to all objects of the type FLOAT, both those declared dynamically and those
declared with a variable declaration, you can write:
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type FLOAT_POINTER is access all FLOAT;

It is the word all that states that this is a general access type. A variable of a
general access type is declared in the normal way, for example:

FP ; FLOAT_POINTER;

In order to be able to point to a particular variable, the variable must be made
accessible, which is done by adding the reserved word aliased to its declaration.
For example, we could write:

F: aliased FLOAT;

Then, to get a pointer to point at a particular variable we use the attribute
ACCESS. The following statement, for example, makes FP point to F:

FP := F'ACCESS;

When the attribute ACCESS is used, the compiler checks that the variable and
the access types are not declared in such a way that pointers to a variable which
has ceased to exist can linger. (In this example, the variable F ceases to exist
when execution leaves the part of the program where F was declared. Then, in
order to avoid having pointers to F left, it is necessary that the type
FLOAT_POINTER is not loiown outside that part of the program.) If, for some
reason, such a check is not wanted, then the attribute UNCHECKED_ACCESS
can be used instead.

A general pointer may also point to an object which has been allocated
using new, as in ̂ e example:

FP := new FLOAT;

A general pointer like FP may not point to a constant object since it could then
be changed via the pointer. For example, if we have the statement:

PI: aliased constant FLOAT := 3.14;

then the following statement is forbidden:

FP := PrACCESS; -- ERROR! PI Is constant

There is a variant of the general access type which allows pointing to a constant
object; the word constant is used in the declaration:

type CONSTANT_FLOAT_POINTER Is access constant FLOAT;
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With such a constant general pointer, the value of a constant object may never
be changed, but the value may be read. Constant general pointers may point to
both constant and non-constant objects:

CFP : CONSTANT_FLOAT_POINTER;

CFP

CFP

CFP

= PI'ACCESS;

= F'ACCESS;

= new FLOAT;

General pointers are useful for constructing linked lists where the elements of
the lists can be either ordinary variables or dynamically allocated objects. (An
example of general pointers and linked lists is given later in this chapter.)
Another area where general pointers are useful is that of making tables of
texts, where the texts do not need to be of the same length, as in the following
example:

= "Cooling fan is out of order";

= "Ventilator will not close";

= "Emergency cooling on";

= "System stopped";

COOL_TEXT : aliased constant STRING

VENT_TEXT : aliased constant STRING

EMER_TEXT : aliased constant STRING

STOP_TEXT : aliased constant STRING

type TEXT_POINTER is access constant STRING;

ERR_MESS : constant array (POSITIVE range < >) of TEXT_POINTER :=

(COOL_TEXT'ACCESS, VENT_TEXT'ACCESS,

EMER_TEXT'ACCESS, STOP_TEXT'ACCESS);

PUT_LINE(ERR_MESS(l).all);

11.2 Linked lists

A linked list, or simply a list, is a dynamic data structure with applications in
many different areas of programming. A list of three integers is illustrated in
Figure 11.6. Each element in the list contains a value (in this example an
integer) and a pointer to the next element in the list. The first element of a list is
usually called its head and that element is pointed to by a special pointer (LIST
in the figure).

What is so good about lists is that they can have new elements added
relatively easily - anywhere in the list. (It is most common to put new elements
first or last.) It is not necessary to know while programming how many elements
there will be in the list.
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LIST

4 7 2►

Figure 11.6

11.2.1 Building up a list
It is possible to build up a list in a program using arrays, but the more natural
way is to make use of dynamic objects and pointers. Let us study the type
declarations that have to be made to describe a linked list. We want each ele
ment in the list to consist of two parts: a link to the next element in the list and
a value. An element in a list of integers can, for example, be described by the
record type:

type L1ST_ELEMENT is
record

NEXT : LINK;
VALUE : INTEGER;

end record;

The fi rst part of the list will be a link to the next element in the list, a pointer.
But the type LINK has to be declared. The declaration should be:

type LINK is access LIST_ELEMENT;

The question is simply: 'Where should it be placed among the declarations?' If
we put it after the declaration of the type LIST_ELEMENT it is not so good
because the type LINK is then undefined when the type LIST_ELEMENT is
declared. If we put the declaration of LINK before that of LIST_ELEMENT, then
LIST_ELEMENT will be undefined when LINK is declared.

The solution is to start with an incomplete type declaration, where it is
only stated that LIST_ELEMENT is a type:

type LIST_ELEMENT;

When an incomplete type declaration has been made, the type name may then
be used in other type declarations. Later (in the same part of the program) a full
type declaration must be made. Variables of the type may not be declared until
the full type declaration has been made.

Using the above, we can now describe our linked list with the
declarations:
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type LIST_ELEMENT:

type LINK Is access LIST.ELEMENT;
type LiST_ELEMENT Is
record

NEXT : LINK;

VALUE : INTEGER;

end record;

We shall now look at how a linked list is built up using these type
declarations. We start by declaring an access variable:

LIST: LINK;

This variable automatically takes the value null on declaration, which describes
the fact that the list is empty. We can create a new element and add it to the list:

LIST := new LIST_ELEMENT;

LIST will now point at the new list element and we can easily put an integer into
the list:

LIST.VALUE := 5;

The first part of the list element, the pointer to the next element in the list,
automatically gets the value null when the element of the list is created. It now
looks like Figure 11.7. It would be easier to achieve this by initializing the new
element as soon as it is created:

LIST := new LIST_ELEMENT'(null, 5);

Assume that we now want to create another element in the list containing
the value 3. This element should be placed first in the list. One way of achiev
ing this is to declare a new access variable:

NEW_LIST: LINK;

LIST

► null

4

Figure 11.7
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LIST

nullw-

3 5

Figure 11.8

and then use the following statements:

NEW.LIST

NEW_LIST.NEXT

NEW_LIST.VALUE

LIST

= new LIST_ELEMENT:

= LIST:

= 3;

= NEW_LIST;

The situation is illustrated in Figure 11.8.
A simpler way of adding the second element is to write:

LIST := new LIST_ELEMENT'(LIST. 3);

Perhaps the most elegant method of placing a new element into a list is to use
the procedure PUT_FIRST:

procedure PUT_FIRST (DATA : in INTEGER;
L  : In out LINK) Is

begin
L := new LIST_ELEMENT'(L, DATA);

end PUT_FIRST;

If we assume that the variable LIST has the value null at the start, then we can

build up the list in Figure 11.8 by making the calls:

PUT_FIRST(5, LIST);
PUT_FIRST(3, LIST);

Note that the parameter L in the procedure must be an In out parameter because
it has to be both read and updated. Using this procedure it is easy to build up a
list of arbitrary length by placing new elements first in the list.

11.2.2 Running through a list

If we want to run through all the elements in a list, this is easily achieved by
starting at the first element and continuing until the last element is reached. The
following program construct can be used to write out all the elements in a list of
integers:
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P := LIST;

while P /= null loop
PUT(P.VALUE);
P := P.NEXT;

end loop;

We have made use of another access variable P of type LINK. This construct
works whether the list is empty (LIST has the value null) or contains ele
ments. In the latter case, the pointer in the last element will have the value
null.

In the next example we shall work with a register in which each element
contains information about a certain person. The type declaration describes how
the register should appear:

type PERSON;
type PERSON_LINK Is access PERSON;
subtype NAME.TYPE Is STRING(1 .. 20);
type PERSON Is

record

NEXT : PERSON.LINK;
NAME : NAME_TYPE;
LENGTH : INTEGER;

WEIGHT : FLOAT;
end record;

We shall study a function that searches for a particular person in such a
list. If the person is in the list, the function returns the pointer to the corre
sponding element in the list, otherwise it will return the value null. The function
gets the required person's name as parameter and a pointer to the head of the list
to be searched.

function FIND_PERSON (REQ_NAME : NAME_TYPE;
L  : PERSON_LINK)

return PERSON_LINK Is
P : PERSON_LINK := L;

begin

while P /= null and then P.NAME /= REQ_NAME loop
P := P.NEXT;

end loop;

return P;

end FIND_PERSON;

In the function, the pointer P is made to run all through the list until it is finished
(P has the value null) or until the required person is found.
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Note that it is important to use and then in the Boolean expression in the
loop statement. If the list runs out then P has the value null. If the value of
P.NAME were evaluated then, a run-time error would result because P does not
point at anything. The use of and then ensures that this does not happen.

11.2.3 Putting elements into a list and removing them

We have seen from the above that we can easily put a new element first in a list.
To put a new element last in a list is a little more difficult because the whole list
has to be run through until the end is reached. The following procedure creates
a new element and puts it last in a list of integers. We assume that the types LINK
and LIST_ELEMENT are declared in the same way as before.

procedure PUT_LAST (DATA : In INTEGER;
L  : In out LINK) Is

P1. P2 : LINK;

begin
If L =: null then

~ Empty list, put In new element first
L := new LIST_ELEMENr(null, DATA);

else

P1 := L;

while P1 /= null loop

P2 := P1; -- let P2 be one step after P1
P1 := P1.NEXT;

end loop;

~ P2 now points at the last element
~ Insert new element after P2

P2.NEXT ;= new LIST_ELEMENT'(null, DATA);
end If;

end PUT_LAST;

The case of the empty list must be treated separately because in that case the
pointer L has to be changed. If the list is not empty the pointer P1 is made to run
through the whole list until P1 becomes null and the end of the list has been
reached. The pointer P2 trails one element behind P1. This means that when
P1 reaches the end of the list, P2 will be pointing at the last element in the
list. Therefore the new element has to be placed after the element that P2 is
pointing at. (In this example, it would have been enough to have only the trail
ing pointer P2; in that case the expression following while would be P2.NEXT
/= null.)

It is sometimes necessary to place a new element in a particular position
in a linked list. Suppose, for example, we have an element in a list and a pointer
P is pointing at it. Now suppose we want to put a new element with value 4 after
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this. The new element can then be created and placed in the list with a single
statement:

P.NEXT := new LIST_ELEMENT'(P.NEXT, 4);

Figure 11.9 illustrates this. The dashed line shows the situation before the
statement above is executed. If we wanted to insert a new element in front of a
particular element that is pointed to, it would be much more trouble. Then we
would need to run through the list from the beginning in order to get access to
the element in front of the one pointed to.

In certain cases it is simple to remove elements from a list. The first
element can be removed with the statement:

LIST := LIST.NEXT;

This is demonstrated in Figure 11.10.
It is also easy to remove the element coming after one to which there is a

pointer. For example, we can remove the element that lies after the one that P
points to:

P.NEXT := P.NEXT.NEXT;

It is a little more trouble to remove the last element, or the one before an

element to which there is a pointer. In these cases, as in the procedure
PUT_LAST, we would have to use the technique of two pointers, one lagging
one step behind the other.

In Ada 95 it is possible to handle lists efficiently with the help of general
pointers. The idea is based on using pointers to pointers. As an example of
this, we will look at a procedure which investigates whether a certain ele
ment exists in a list and, if so, removes it from the list. We start with type
declarations:

LIST

null

Figure 11.9
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LIST

—► null

3 4 5

Figure 11.10

type LIST_ELEMENT:
type LINK is access LIST_ELEMENT:
type LIST_ELEMENT Is

record
NEXT : aliased LINK;
VALUE : INTEGER;

end record;
type LINK_POINTER Is access all LINK;

We have now declared a general access type, LINK_POINTER, which describes
pointers to pointers. We have also used the word aliased in the declaration of
the component NEXT of an element of a list, which means that the component
NEXT can be pointed to. Now we can declare a variable LIST which is, as usual,
a pointer to the first node in the list:

LIST; aliased LINK;

We have used the word aliased again here, to state that the variable LIST can
be pointed to. Suppose that we have built up a list of four elements containing
integers 3, 6, 8 and 9, and that some time later we want to know if a particular
integer, say 8, exists in the list. If the number we are looking for is found then
it should be removed from the list, and to do that we can call the procedure
TAKE_OUT:

TAKE_OUT (8, LIST'ACCESS);

The first parameter in this procedure is the element which is to be looked for and
the second parameter is a pointer to the variable LIST. In other words, the
second parameter is a pointer to a pointer to the first node of the list. If, inside
the procedure TAKE_OUT, we copy the value of the second parameter to a local
variable LP, then the situation when the call is made can be illustrated as in
Figure 11.11. Note that LP points to the pointer LIST.

LP
u*-

LIST

—► —► null

3 6 8 9

Figure 11.11
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The procedure TAKE_OUT is as follows. Note that the parameter LISTP
is of type LINK_POINTER, that is, it is a pointer to a pointer:

procedure TAKE_OUT(DATA: In INTEGER; LISTP: in out LINK_POINTER)
is

LP: LINK_POINTER := LISTP;
begin

while LP.aii /= null and then LP.aii.VALUE /= DATA loop
LP := LP.ail.NEXT'ACCESS;

end loop;

if LP.aii I- null then

LRaii := LP.aii.NEXT;

end if;

end TAKE_OUT;

The expression after while tests, the first time through, whether what LP is
pointing to, that is, the pointer LIST, is null. This is not the case, therefore there
is at least one element in the list. So the test continues to see if the value in the
first element is the same as the one we are looking for. Since this is not so in our
example, the statement in the while loop will be executed once. Now the pointer
LP is changed so that it points to the component NEXT in the first element of the
list. Note that LP does not point at the whole of the first element in the list but
only to the actual pointer NEXT.

On the second time through, what LP is pointing to, that is, the pointer
NEXT in the first element of the list, is tested for equality with null. It is not null,
so the value in the second node is compared with the value we are looking for.
They are not the same, and so the expression in the while loop is executed once
more. Now the situation is as in Figure 11.12.

Since the pointer NEXT in the second element of the list is not null, the
value in the third element is examined, to see if it is the value we are looking
for. This time it is, and the while loop ends.

If the value we are looking for is not found in the list, then the while state
ment ends when what the pointer LP is pointing to is found to be null. The final
if statement checks whether the value being looked for was found in the list. If
so, the corresponding element of the list is removed by changing the pointer to
which LP is pointing, that is, the pointer NEXT in the element before the one to
be removed. If it turns out that it is the first element in the list that has to be
removed, then the pointer LIST is changed instead.

LP LIST

null

3 6 8 9

Figure 11.12



462 Dynamic data structures

This method of using pointers to pointers can be preferable to the method
of trailing pointers when elements are to be inserted in or removed from linked
lists. It is also a more efficient method than recursion, which is the subject of the
next section.

11.2.4 Linked lists and recursion

A list can be seen as a recursive data type, and it can be said that a list consists
of two components, a head and a tail. The head is the value in the first element
of the list and the tail is a list consisting of all the elements except the
first. Thus the tail is a list that is one element shorter than the original. This
perspective can be extremely useful in solving certain problems involving list
handling.

We saw above that it is possible to write out the contents of a list by going
through the elements of the list from start to finish using a loop statement. This
was easily done. It would have been much harder if we had wanted them writ
ten out in reverse order, with the last element written first, but this problem can
be solved elegantly using recursion. We shall study a procedure that writes out
a list of integers in reverse order:

procedure WRITE_REVERSE (LIST: In LINK) Is
begin

If LIST /= null then

WRITE_REVERSE (LIST.NEXT);
PUT(LIST.VALUE);

end If;

end WRITE_REVERSE;

This says that a list can be written out in reverse order if we first write out its
tail in reverse order and then write out its head. The list's head is accessed by
writing LIST.VALUE, and LIST.NEXT is a pointer to the list's tail. An empty list
has no elements and there is nothing to write for such a list.

We have already studied the problem of placing a new element at the end
of a list, but it can be solved much more simply using recursion. The following
algorithm is used:

If the list is empty then the new element is the list's only element and is thus
placed at the start of the list, otherwise the new element should be placed at the
end of the tail.

This algorithm is easily translated into this recursive procedure:

procedure PUT_LAST (DATA : In INTEGER;
LIST : In out LINK) Is
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begin
If LIST = null then

LIST := new LIST_ELEMENT'(null. DATA);
else

PUT_LAST(DATA, LIST.NEXT);
end If;

end PUT_LAST;

11.3 Doubly linked lists

One problem with the lists studied so far is that the whole list has to be run
through - using either iteration or recursion - if an element has to be inserted or
removed at the end of the list or in front of an element to which there is an access

value. If it is necessary to work with a list and these operations, it can therefore
be appropriate to construct a doubly linked list. In such a list, each element con
tains two access values apart from the data. One pointer points to the next
element in the list, and the other points to the previous element. Figure 11.13
illustrates this concept.

Such a list is often made circular, as in Figure 11.13, by making the
forward access value of the last element point to the first element and the first
element's backward access value point to the last element. To describe an
element in a doubly linked list of integers we can make the type declarations:

type LIST_ELEMENT;
type LINK Is access LIST_ELEMENT;

type LIST_ELEMENT Is

record

NEXT

PREVIOUS

VALUE

end record;

LINK;

LINK;

INTEGER;

LIST

—►

—

Data Data Data

Figure 11.13
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In work with linked lists, an empty list must be handled in a special way.
This makes the program a little longer and more complicated. To avoid this
problem it is useful to let every list have a special element at the start of the list,
but which does not belong to the list itself. This is particularly useful when
handling doubly linked lists. If, for example, we want to represent a list of
integers that contains two elements, 4 and 9, we can do this with the list in
Figure 11.14. Note that the first element, whose value is of no importance, does
not belong to the logical list. If this technique of a special first element is used
the empty list can be described as in Figure 11.15.

If we assume that the variable LIST has type LINK, then the structure in
Figure 11.15 can be built up with the statements:

LIST

LIST.NEXT

LIST.PREVIOUS

= new LIST.ELEMENT;

= LIST;

= LIST;

It is even simpler, of course, to use a record aggregate and write instead:

LIST := new LIST_ELEMENT;

LIST.all := (LIST, LIST. 0);

The advantage of a doubly linked list is that it is never necessary to run
through one in order to make changes. Let us look at the example of removing
an arbitrary element from a list. Assume we have a list of integers containing
the values 4,7 and 9, as shown in Figure 11.16. The access value P points at the
element to be removed. Now we can write a procedure REMOVE:

procedure REMOVE (P : in LINK) is
begin
P.PREVIOUS.NEXT := P.NEXT;

P.NEXT.PREVIOUS := P.PREVIOUS;

end REMOVE;

LIST

Figure 11.14
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LIST

Figure 11.15

and make the call:

REMOVE(P);

The result is that the element that P is pointing at - the 'target' element - will
be 'linked out' of the list. The statement:

P.PREVIOUS.NEXT := P.NEXT;

means that the forward access value in the element in front of the target will
point to the one after the target. Correspondingly, the statement;

P.NEXT.PREVIOUS := P.PREVIOUS;

means that the backward access value in the element after the target element will
point at the element in front of the target. (We do not need to worry about chang
ing the access values in the target element. To do a thorough job, these could be
set to null.)

For the next example we shall take a procedure that creates a new element
and puts it at the end of a doubly linked list:

LIST

Figure 11.16
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procedure PUT_LAST (DATA : in INTEGER;
L  : In LINK) Is

PNEW : LINK := new LIST_ELEMENT'(L, L.PREVIOUS, DATA);
begin
PNEW.PREVIOUS.NEXT ;= PNEW;

PNEW.NEXT.PREVIOUS ;= PNEW;

end PUT_LAST;

The declaration:

PNEW : LINK := new LIST_ELEMENT'(L. L.PREVIOUS, DATA);

causes a new element to be created and the access value PNEW to point at
it. The new element is initialized so that its forward access value points at
the list's start element (the element that L points at) and its backward access
value points at the element that was previously last in the list (pointed at by
LPREVIOUS).

The statement:

PNEW.PREVIOUS.NEXT := PNEW;

ensures that the forward access value in the element that was previously last in
the list will point at the new element, and the statement:

PNEW.NEXT.PREVIOUS := PNEW;

ensures that the backward access value in the start element points at the new
element.

A further example using doubly linked lists is this procedure, which puts
a new element first in a list. The new element should be placed after the start
element:

procedure PUT_FIRST (DATA : In INTEGER;
L  : In LINK) Is

PNEW : LINK := new LIST_ELEMENT'(L.NEXT, L, DATA);
begin
PNEW.PREVIOUS.NEXT := PNEW;

PNEW.NEXT.PREVIOUS := PNEW;

end PUT_FIRST;

Note that the use of a special start element in a list means that the access value
L does not need to be changed in any of the procedures shown in this section.
This has the advantage that we have not had to give special treatment to the
insertion or removal of an element first or last in the list.
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11.4 Stacks and queues

Two common data structures are stacks and queues. A queue, as we saw in
Section 8.8, is a structure that works on the well-known principle 'first in, first
out'. Data objects are placed at the end of the queue and taken from the front. A
stack is a data structure that uses the principle 'last in, first out'. A stack can be
likened to a pile of plates in a self-service cafeteria - a pile in a holder with a
spring that keeps the pile at a suitable level for the customers. When a plate is
placed on the pile it goes on top of those already there, and when you take a
plate from the pile you have to take the top one.

There are two operations for a stack, push and pop, which act on the
element on the top of the stack. The operation push places an element of data
on the top of the stack and pop removes the top element from the stack. Figure
11.17 illustrates this idea of the stack.

A stack can easily be constructed using a singly linked list. The first element
in the list is the top of the stack. A push operation means that a new element is
put first in the list, and the pop operation removes the first element from the list.
A stack can be considered as an abstract data type on which the operations push
and pop can be performed. To demonstrate this we will construct a package
which describes the abstract data type STACK, a stack on which objects of type
CHARACTER can be placed. The specification of this package looks like this:

package STACK_PACKAGE is
type STACK Is limited private;
procedure PUSH (S : in out STACK; T: in CHARACTER);
procedure POP (S : in out STACK; T: out CHARACTER);
function EMPTY (S : STACK) return BOOLEAN;

push pop

Figure 11.17
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private
type STACK_ELEMENT:
type STACK is access STACK_ELEMENT;

end STACK_PACKAGE:

The type is a limited private type. This means that the user of the package does
not know what a stack really looks like: it is not 'visible'. The only things a user
may do is declare objects of the type STACK and have parameters of type
STACK in calls to subprograms.

The idea is that the user should only work on a stack through calls to the
procedures PUSH and POP, as given in the package specification. Both of these
have a stack as first parameter. Since the stack is updated by calls to these
procedures, this first parameter is an in out parameter. PUSH has as out para
meter the character that is removed from the stack. In addition to PUSH and

POP, a function EMPTY is defined, and the user can call this to see if there are

any objects stored on the stack.
Finally, the package has a private part that is not visible to the user. First,

there is an incomplete type declaration (see Section 11.2.1) stating that STACK_
ELEMENT is a type. The private type STACK is then declared as access type to
an object of type STACK_ELEMENT. The complete declaration of STACK_
ELEMENT could have been placed last in the package specification but, since
this does not need to be known for a user program to be compiled, it is preferable
to place it in the body of the package instead. In this way there are as few details
as possible about the internal appearance of a stack in the package specification.

Now we can construct and compile programs that use the specification of
STACK_PACKAGE. We will show an example of a program that reads in text
from the terminal and writes it out in reverse order:

with TEXT_10, BASIG_NUMJO, STACK.PACKAGE;
use TEXTJO, BASIC_NUMJO, STACK_PAGKAGE;
procedure STAGK_DEMO Is
GHAR_STAGK : STAGK;

GHAR :GHARAGTER;
begin
PUT_LINE("Write in text. End with Gtrl-D");
~ Input text and put the characters on the stack
while not END_OF_FILE loop
GET(GHAR);
PUSH(GHAR_STAGK, GHAR);

end loop;

- Empty the stack and print the characters
while not EMPTy(GHAR_STAGK) loop
POP(GHAR_STAGK, GHAR);
PUT(GHAR);

end loop;
end STAGK.DEMO;
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In the program an object CHAR_STACK of type STACK is declared and the
characters from the text are placed on the stack as they are read, one by one.
When all the characters in the stack have been read in and put on the stack, they
are removed from the stack and written in what is now the reverse of their orig
inal order.

Before the user program which is using the package can be executed, the
body of the package must be compiled. In the body that detailed appearance of
the character stack must be given. The complete declaration of the type
STACK_ELEMENT is given here, as are the bodies of the subprograms PUSH,
POP and EMPTY:

package body STACK_PACKAGE Is
type STACK_ELEMENT Is

record

OH : CHARACTER:

NEXT : STACK;

end record;

procedure PUSH{S : In out STACK; C : in CHARACTER) Is
begin

S := new STACK_ELEMENT'(C, S);
end PUSH;

procedure POP(S : In out STACK; C : out CHARACTER) Is
begin
C := S.CH;

S := S.NEXT;

end POP;

function EMPTY(S : STACK) return BOOLEAN Is
begin
return S = null;

end EMPTY;

end STACK_PACKAGE;

We see that the stack is quite simply a linked list in which each element contains
a character, and that the type STACK is an access type for such a list. PUSH puts
a new element first in the list and POP takes out the first element from the list.

If the stack is empty there are no elements in the list and, in this case, the access
value to the first element of the list has the value null.

Now let us turn to an abstract data type for a queue. In Section 8.8
we constructed a queue using arrays; here we will see how a queue can be
constructed using pointers. As an example we will look at a queue where objects
that describe people can be placed, a person queue. The specification can look
like this:
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package QUEUE_PACKAGE is
type PERSON Is
record

NAME : STRING{1 .. 20);

ADDRESS : STRING(1 .. 30);
end record;

type PERSON_OUEUE Is limited private;

procedure INSERT (0 : In out PERSON_QUEUE; PE : In PERSON);
procedure REMOVE (0: in out PERSON_QUEUE; PE: out PERSON);
function EMPTY (0 : PERSON_QUEUE) return BOOLEAN;

QUEUE_EMPTY : exception;
private
type QUEUE_ELEMENT;
type LINK Is access QUEUE.ELEMENT;

type PERSON.QUEUE Is

record

FIRST : LINK;

LAST : LINK;

end record;

end QUEUE_PACKAGE;

The specification first describes what a person looks like - quite simply a record
consisting of a name and an address. Then PERSON_QLIEUE is declared to be
a limited private type. A user of this package may only handle a queue by call
ing the subprograms that are named in the specification. The procedures
INSERT and REMOVE can be used to insert and remove individuals, and the

function EMPTY determines whether there are people in the queue or not.
In the private part of the specification the type PERSON_QLIEUE is

described. We have chosen to represent a queue by a record containing two
access values, one pointing to the first element in the queue and the other point
ing to the last element. Each time a user declares a variable of type
PERSON_QUEUE the two access values will automatically be initialized to
null, thereby describing an empty queue. The compiler does not need to know
what an element of the queue looks like in order to compile a user's program,
so in the specification we only give an incomplete declaration of the type
QUELIE_ELEMENT. The complete declaration is given in the body of the
package.

The body of the package contains all the details of how a queue is
constructed. We have chosen to use a singly linked list, but apart from the usual
pointer to the first element of the list we also have a pointer to the last element
of the list. This means that we can avoid running through the whole list each
time we want to add an element to the end. We have put the pointers to the first
and last elements in the queue into a record; Figure 11.18 illustrates the queue.
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FIRST

LAST person_data person_data

null

person_data

Figure 11.18

The body of the package is as follows:

with UNCHECKED.DEALLOCATION;

package body QUEUE_PACKAGE Is
type QUEUE_ELEMENT Is
record

NEXT: LINK;

DATA: PERSON;

end record;

procedure RETURN_QUEUE_ELEMENT Is new
UNCHECKED_DEALLOCATION{QUEUE_ELEMENT, LINK);

procedure INSERT (Q : In out PERSON_QUEUE; PE : In PERSON) Is
PNEW : LINK := new QUEUE_ELEMENT'(null, PE);

begin

If Q.FIRST = null then

Q.FIRST := PNEW;

else

O.LASTNEXT := PNEW;

end If;

Q.LAST := PNEW;

end INSERT;

procedure REMOVE (Q : In out PERSON_QUEUE; PE : out PERSON) Is
TEMP : LINK := Q.FIRST;

begin
If Q.FIRST /= null then

PE := Q.FIRSTDATA;

Q.FIRST := Q.FIRST.NEXT;

If Q.FIRST = null then

Q.LAST := null; -- queue became empty

end If;

RETURN_QUEUE_ELEMENT(TEMP);

else

raise QUEUE_EMPTY;

end If;

end REMOVE;

queue is empty, put element first

change the former last



472 Dynamic data structures

function EMPTY (Q : PERSON_QUEUE) return BOOLEAN Is
begin

return Q.FIRST = null;

end EMPTY;

end QUEUE_PACKAGE;

In the procedure INSERT a new element is created and will be linked last in the
list, which is normally after the element to which Q.LAST points. However, the
special case must be considered of the list being empty prior to insertion, in
which case the new element is placed first in the list. In either case, the access
value Q.LAST points to the new element after insertion.

Correspondingly, in the procedure REMOVE, when the first element of
the queue is removed a check must be made to see if it leaves the list empty. In
that case, the access value Q.LAST is given the value null. The procedure
REMOVE also demonstrates how deallocation of memory is accomplished when
an element is removed. Note that an extra temporary access value, TEMP, is
needed to point to the element that is to be removed; this is because it is not pos
sible to refer to an element after it has been deallocated.

11.5 Trees

In Section 11.3 we saw that each element could have two pointers. There is
naturally no limit on the number of pointers in each element and these pointers
do not need to point in such a way as to define a linked list. Using pointers, it is
possible to build up data structures with elements that are connected arbitrarily.
In this section we shall study trees - common data structures in which the
elements are connected using pointers. A tree is illustrated in Figure 11.19.

Figure 11.19
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The elements of a tree are usually called nodes. The topmost node is
called the tree's root. (It is usual to draw and think of a tree in an upside-down
position compared with the real thing.) From the root there can be pointers to
other nodes in the tree but there can never be pointers to the root from any of
the tree's nodes. In general, there are only pointers 'downwards' from each node
in the tree. To each node there is only one path from the root. (For example, in
Figure 11.19 it is only possible to take path R-S-V-Y to get to the node Y.)
Thus, there may only be one pointer to any one node.

If a node A points to a node B in a tree, the node B is said to be the child
of A and A is said to be the parent of B. The root is the only node that is with
out a parent. The nodes that have no children, X, Y, W and U in our example,
are usually called leaves and the pointers in the tree are sometimes called arcs.

In the tree in Figure 11.19 the nodes have up to three children. We shall
limit ourselves, however, to trees in which a node can have at most two children.

Such trees are common in the construction of data structures and they are gen
erally called binary trees. An example of a binary tree is shown in Figure 11.20.

Trees

A root is a node that no other node in the tree

points to.

To any one node there is a unique path from the
root.

The nodes that do not have pointers to other nodes
are called leaves.

Figure 11.20
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A node in a binary tree can be described by a record type:

type NODE;

type LINK is access NODE;

type NODE Is record
DATA : INTEGER;

LEFT, RIGHT: LINK;

end record;

Each node consists of a data section describing the contents of the node and two
access values that point to the node's left and right children, respectively. In our
example the data part consists of an integer. If a node is lacking a child the cor
responding access value is null. In a leaf, both the access values are null. The
tree in Figure 11.20 can be built up as indicated in Figure 11.21. A special
pointer ROOT points at the root of the tree so that the whole tree can be
accessed. If we have an empty tree (a tree with no nodes) then ROOT has the
value null.

If we want to build up a tree according to Figure 11.22 we can use the
statements:

ROOT

ROOT.DATA

ROOT.LEFT

= new NODE;

= 10;

= new NODE;

ROOT

1

2 3

N

6

N

0
0

Figure 11.21



Trees 475

ROOT

I
10

N

20 30

Figure 11.22

ROOT.RIGHT

ROOT.LEFT.DATA

ROOT.RIGHT.DATA

= new NODE;

= 20;

= 30;

where we assume that ROOT has an access value of type LINK. Alternatively,
this can be achieved in a single statement:

ROOT := new NODE' (10, new NODE' (20,null,null),
new NODE' (30,null,null));

The nodes that lie to the left of the root can be considered as a new, smaller tree,

with the left child of the root as its root. This tree is said to be the left subtree

of the original tree. In the same way, the nodes to the right of the root form a
right subtree. Figure 11.23 illustrates this. (For example, the left subtree in
Figure 11.20 has node 2 as its root and comprises nodes 2 and 4. The right
subtree has node 3 as its root and comprises nodes 3, 5, 6, 7 and 8.)

With the help of subtrees, a tree can be regarded as a recursive data type
and the following definition can be given:

/• N

Left

subtree

Right
subtree

Figure 11.23
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A binary tree is either empty (has no nodes) or consists of a
root, a left subtree and a right subtree.

This concept is useful in the design of programs for handling trees. We shall
start by studying how to visit all the nodes of a given tree. We assume that we
have a pointer ROOT which points at the root of the tree. When we considered
linked lists it was natural to visit all the elements starting at the beginning and
running through to the end, but it is not that simple with a tree. It is possible to
think of several alternative ways of traversing a tree.

If we look at the tree in Figure 11.20, for example, we may think of vis
iting the nodes in the order, 1-2-3-4-5-6-7-8. However, to write a program for
this is rather difficult. It is much simpler and more common to apply the three
visiting orders - preorder, inorder and postorder - which are defined recur
sively. Let us start with the most common, inorder:

If the tree is not empty, then:

(1) Visit the tree's left subtree.

(2) Visit the tree's root.

(3) Visit the tree's right subtree.

We shall now try to apply this visiting order to the tree in Figure 11.20. First we
note that the tree is not empty and so the three stages of the algorithm should be
carried out. The first stage 'visit the tree's left subtree' means that the tree in
Figure 11.24 should be visited. Since this is also a tree, the visiting algorithm
(second instance) should be applied. The tree is not empty and so we carry out
stage (1), that is, the subtree in Figure 11.25 is visited.

We now apply a third instance of the algorithm. Since the tree is not
empty we carry out the first stage, 'visit the left subtree'; this means that we
have to apply a fourth instance of the algorithm. This time the tree to be visited
is empty because node 4 has an empty left subtree, and the fourth instance of the
algorithm thus does nothing. We return to the third instance of the algorithm and
carry out its second stage, 'visit the tree's root'. This means that node 4 is
visited. The third stage, 'visit the tree's right subtree', starts a fifth instance of
the algorithm, which does nothing because the right subtree is empty.

Figure 11.24
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©
Figure 11.25

Now all the stages of the third instance of the algorithm have been
carried out and we return to the second instance of the algorithm. We carry out
the second stage, 'visit the tree's root' for the tree in Figure 11.24. Thus node 2
gets a visit.

Since the tree in Figure 11.24 has an empty right subtree nothing happens
when a sixth instance of the algorithm is carried out, and we return eventually
to the first instance of the algorithm. We carry out the second stage, which
means that the root of the original tree, node 1, is visited.

Now we have visited nodes 4, 2 and 1, in that order, and continue by
applying the algorithm in the same way to the right subtree. We eventually find
that all the nodes in the tree are visited, in the order 4-2-1-5-3-7-6-8.

The following recursive procedure visits and writes out the contents of
the nodes of a binary tree according to the inorder principle. The procedure
needs a pointer to the root of the tree as parameter.

procedure IN_ORDER (P : LINK) Is
begin

If P /= null then

IN_ORDER(P.LEFT):
PUT(P.DATA);

IN_ORDER{P.RIGHT):
end If;

end IN.ORDER;

Definitions of the other visiting orders can be made in a similar way. The
only difference is that the three stages in the algorithm already studied are
rearranged. The algorithm for visiting all the nodes of a tree according to the
principle of preorder can be described as follows:

If the tree is not empty, then:

(1) Visit the tree's root.

(2) Visit the tree's left subtree.

(3) Visit the tree's right subtree.

If we visit the nodes in Figure 11.20, for example, we get the visiting order
1-2-4-3-5-6-7-8 according to this principle. The procedure:
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procedure PRE_ORDER (P : In LINK) Is
begin

If P /= null then

PUT(RDATA):
PRE_ORDER(P.LEFT);
PRE_ORDER(P.RIGHT):

end If;

end PRE_ORDER;

writes out the contents of the nodes according to the principle preorder.
The definition for the third visiting order, postorder, is:

If the tree is not empty, then:

(1) Visit the tree's left subtree.

(2) Visit the tree's right subtree.

(3) Visit the tree's root.

Applying this principle, the nodes in Figure 11.20 are visited in the order
4-2-5-7-8-6-3-1. The following procedure writes out the contents of the
nodes of a tree according to the postorder principle:

procedure POST_ORDER (P : In LINK) is
begin

If P /= null then

POST_ORDER(P.LEFT);
POST_ORDER(P.RIGHT);
PUT(P.DATA);

end If;

end POST_ORDER;

As we see, the algorithms for trees are naturally expressed using recursion. We
shall now study a function that evaluates the depth of a binary tree. The func
tion takes a pointer to the root of the tree as parameter. The depth of a tree can
be defined as the number of nodes on the longest path from the tree's root to a
leaf. An empty tree has depth 0 and a tree that consists of only a root has depth
1. We write the function:

function DEPTH (P : LINK) return NATURAL Is
L_DEPTH, R.DEPTH : NATURAL;

begin
If P = null then

return 0;

else
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L_DEPTH := DEPTH(P.LEFT);
R.DEPTH := DEPTH(P.RIGHT):

If L_DEPTH > R_DEPTH then

return L_DEPTH + 1;

else

return R_DEPTH + 1;

end If;

end If;

end DEPTH;

The simplest case is if the tree is empty. The function then returns the
value 0 as its result. If the tree is not empty, the depths of the left and right
subtrees are evaluated separately and saved in the variables L_DEPTH and
R_DEPTH. The function DEPTH is called recursively to evaluate these depths,
with access values to the respective subtrees as parameter. The function returns
the depth of the deepest subtree plus 1 (the root itself) as its result.

We can now study a special form of binary tree, a binary search tree.
The value of each node in such a tree is greater than the values of all the nodes
in its left subtree and less than or equal to the values of the nodes in its right sub
tree. The tree in Figure 11.26 is an example of a binary search tree.

A binary search tree has the property that, if the principle of inorder is
used to traverse the tree, the nodes will be visited in order of size. The nodes in
our example. Figure 11.26, will be visited in the order 1-3-4-5-6-7-7-8-9.

A binary search tree can be used when information has to be found
quickly. Let us study the example of a binary search tree in which each node
contains information about a person. Each node stores a person's name and
address. We have the type declarations:

subtype NAME_TYPE Is STRING(1 .. 20);
subtype ADDRESS_TYPE Is STRING(1 .. 30);

Figure 11.26



480 Dynamic data structures

type NODE;

type LINK is access NODE;

type NODE Is
record

NAME

ADDRESS

LEFT, RIGHT

end record;

NAME.TYPE;

ADDRESS_TYPE;

LINK;

We can use the following function to find the node in the tree which contains the
information about a particular person. The function has two In parameters, an
access value to the tree and the name of the required person. As its result, the
function returns an access value to the node in which the information about the

person is stored. If the required person is not found in the tree, the function
returns the value null.

function FIND (ROOT : In LINK;
REQ_NAME : In NAME_TYPE) return LINK Is

begin
If ROOT = null then

return null;

elsif ROOT.NAME = REQ_NAME then

return ROOT;

elsif REQ_NAME < ROOT.NAME then
return FIND(ROOT.LEFT, REQ.NAME);

else

return FIND(ROOT.RIGHT, REQ_NAME);
end If;

end FIND;

The search works as follows. First it checks to see whether the tree is empty and,
if so, the result null is returned because there are no entries in the tree. If the root

contains the required person then the task is easy: the result is simply the access
value of the root. In other cases it must look further into one of the subtrees. The

particular subtree depends on whether the required name comes alphabetically
before or after the name in the root. This further searching is achieved by call
ing the function FIND recursively with an access value to either the right or left
subtree as parameter.

To remove nodes in such a way that the tree remains a binary search tree
is somewhat complicated (see Exercise 11.18). However, to insert new nodes is
simple and we finish by showing a procedure for placing information about a
new person into a binary search tree as described above. As parameters, the pro
cedure takes an access value to the root of the tree and the new person's name
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and address. The procedure has to create a new node for the new person and
insert it in the correct place in the tree.

procedure INSERT (ROOT
NEW-NAME

NEW DRESS

in out LINK;

In NAMETYPE;

In ADDRESSTYPE) is

begin
If ROOT = null then

ROOT := new NODE'(NEW_NAME NEW_ADDRESS, null, null);
elsif NEW_NAME < ROOT. NAME then
INSERT(ROOT.LEFT, NEW_NAME, NEW_ADDRESS);

else

INSERT(ROOT.RIGHT, NEW.NAME, NEW_ADDRESS);
end if;

end INSERT;

If the tree is empty it is easy to insert the entry in the right place. The new node
is then the root of the tree and the access value ROOT is set to point at this node.
Note that the parameter ROOT must be an In out parameter because it must be
both read and updated. If the tree is not empty, a choice must be made as to
whether to insert the new node in the left or the right subtree, depending on
whether the person's name comes alphabetically before or after the name in the
root of the tree.

11.6 Pointers to subprograms

In Ada 95 access values are allowed which point to subprograms, that is, to func
tions and procedures. For example, we can declare the following access type:

type PROC_POINTER1 Is access procedure (I: INTEGER);

and we can declare a variable of this access type:

PI : PROC_POINTER1;

The variable PI can now point to procedures which have a parameter of type
INTEGER. If, for instance, we have a procedure WRITE:

procedure WRITE(I : INTEGER);

then we can use the attribute ACCESS to get P1 to point to WRITE:

PI := WRITE'ACCESS;



482 Dynamic data structures

If we now add the following statement, the procedure WRITE will be called via
P1:

P1(5):

If we want P1 to point to some other procedure, we simply assign it another
access value using the attribute ACCESS. Note that P1 may not point to all pro
cedures: it may only point to procedures which have the same parameter profile
as P1 's type. For example, P1 may not point to a procedure with no parameters;
to be able to point to such a procedure we need a new access type and a new
pointer variable:

type PROC_POINTER2 is access procedure;
P2 : PROC_POINTER2;

Now we can write, for example:

P2 : NEW.PAGE'ACCESS;

to have P2 point to the procedure NEW_PAGE. If we want to call the procedure
that P2 is pointing to then we must use the reserved word all, since the
procedure has no parameters:

P2.all;

Pointers to subprograms can be very useful. One common area of use concerns
numerical computations. Many standard numeric functions are so constructed
that they have a pointer to a mathematical function as one of their parameters.
A standard function which carries out numeric integration, for example, has a
parameter that states which mathematical function has to be integrated. As an
example of this usage we will write a function FIND_ZERO which computes a
zero of a mathematical function. The specification of FIND_ZERO is:

function FIND_ZERO (F : FUNCTION.POINTER;
A, B : FLOAT;

EPS : FLOAT := 1.0E-10) return FLOAT;

The first parameter is a pointer to the mathematical function we want to find the
zero of. The type FLINCTION_POINTER is declared as follows:

type FUNCTION_POINTER Is access function (X : FLOAT)
return FLOAT;

The two parameters A and B state the interval within which the zero should be
sought. Thus we are looking for a value x in the interval [A,B] such that/(a:) = 0.
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We assume that the function /is monotonous and that it has exactly one zero in
the given interval. (We will write the function FIND_ZERO so that it raises the
exception NO_ZERO if no zero is found for/in the interval.)

The parameter EPS states the greatest error which can be tolerated in the
result.

If < 0 <J{x2) then the following algorithm can be used to compute
the zero of/. The idea is to close in on the zero by moving the end-points x, and
X2 nearer and nearer to one another, subject to the condition/[x,) < 0 <f{x.^:

1. Repeat the following until the interval [X1, X2] becomes sufficiently small:
1.1 Let XM be the midpoint of the interval [X1, X2].
1.2 Compute the value of the function F(XM).

1.3 If F(XM) < 0 then the zero lies to the right of XM, so set XI to XM.
1.4 If F(XM) > 0 then the zero lies to the left of XM, so set X2 to XM.

1.5 If F(XM) = 0 then we have happened on the zero. Exit the algorithm
and return XM as the result.

2. Give the mean of XI and X2 as result.

We can now use the algorithm in the body of FIND_ZERO, which looks like this:

function FIND_ZERO (F : FUNCTION.POINTER;
A, B : FLOAT;

EPS : FLOAT := 1.0E-10) return FLOAT Is

X1, X2, XM, FM : FLOAT;

begin

If F(A) < 0.0 and F(B) > 0.0 then
X1 := A; X2 := B;

elsif F(A) > 0.0 and F(B) < 0.0 then

X1 := B; X2 := A; ~ reverse the Interval

elsif F(A) = 0.0 then
return A;

elsif F(B) = 0.0 then
return B;

else

raise NO_ZERO;

end If;

- Now F(X1) < 0 < F(X2)
while abs (X1 - X2) < EPS loop
XM := (X1 + X2) / 2.0; - compute midpoint

FM := F(XM);
If FM < 0.0 then

X1 := XM;

elsif FM > 0.0 then

X2 := XM;
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else

return XM; -- We have happened on the zero

end if;

end loop;

return (X1 + X2) / 2.0;
end FIND_ZERO;

In the first part of the function we ensure that the condition F{X1) < 0 < F(X2)
holds. If it turns out that F(A) < 0 and F{B) > 0 then we simply set X1 to A and
X2 to B. If it is the other way round, we exchange A and B. If one of the end-
points A or B is a zero then we can return the result at once. Finally, if both F(A)
and F(B) are greater than zero or both are less than zero, then the function can
be without a zero in the interval and an exception is generated.

Now we can use the function FIND_ZERO to compute zeros for different
functions. If, for example, we have two functions:

function F1 (X : FLOAT) return FLOAT is

begin
return X - 1.0;

end F1;

function F2 (X : FLOAT) return FLOAT is

begin
return 2.0 * X ** 3 - 3.0 * X ** 2 - 18.0 * X - 8.0;

end F2;

then the zero of the function F1 can be found using the statement:

XO := FIND_ZERO(FrACCESS, -10.0, 10.0);

and the zero of F2, which lies in the interval [-1, 1], can be found using the
statement:

XO := FIND_ZER0(F2'ACCESS, -1.0, 1.0);

In the next example we will study another common use of pointers to sub
programs. We will construct a simple, but general, command interpreter, a
program which reads commands the user types at the terminal. The interpreter
must check that a command the user gives is correct and then call another
program, which we can call a command program, to execute the actual com
mand. Each command has a unique command program; when it has completed
execution the current command has been obeyed and control is returned to the
command interpreter, which reads the next command.

Such command interpreters form an important part of operating systems;
in this example we will assume that the commands which the u.ser gives have
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the same format as those used in, for example, Unix or MS-DOS. A command
looks like this:

> command_name argument^ argument^... argument„

The symbol > which comes first on the line is a prompt from the command
interpreter to tell the user it is ready to receive a command. The interpreter takes
the first thing the user writes in as the name of the command that has to be
obeyed (such as copy or dir).

Following the command name are the arguments to the command
program, written with one or more spaces between. The two most common
kinds of argument are filenames and flags (or options). The number of argu
ments and their meaning depends on the actual command, and it is the command
program that has to take care of and check these. From the point of view of
the interpreter, the arguments are only pieces of text that might consist of any
characters at all.

In order for the command program to be able to access its parameters the
command interpreter must give them as parameters when it calls the command
program, and to do this we will use the same method used by the operating
system Unix. Each command program receives as parameter an array in which
each element is a pointer to an argument of the command line. We will construct
a package with the necessary type declarations:

package ARG_TYPES is
type STRING_POINTER is access STRING;
type ARG_ARRAY is array (NATURAL range < >) of STRING_POINTER;

end ARG_TYPES;

Each command program thus needs only one parameter, of type ARG_ARRAY.
As an example we can look at the command program ECHO, which writes out
its arguments when it is called:

with TEXTJO, ARG_TYPES;

use TEXT_IO, ARG_TYPES;

procedure ECHO(ARG : ARG_ARRAY) is
begin
for 1 in 1 .. ARG'LAST ioop

PUT(ARG(l).aii); PUT('');
end ioop;
NEW_LINE;

end ECHO;

The command interpreter's job is to see that the array ARG has the correct
content when ECHO is called. If the user has given the command:
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> echo one two three

for example, then ARG(1) should contain an access value pointing to the text
one, ARG(2) an access value pointing to the text two, and ARG(3) an access
value pointing to the text three. The array ARG should also have the correct
length in order for ECHO to know how many arguments have been given.

We will also, in line with Unix which we are using as a model here, let
the parameter array ARG have an element ARG{0), where the command inter
preter puts an access value to the word the user wrote first, that is, it points to
the command name. This is useful in case the command program needs to write
out the command name, in an error message for example.

We can look at another example of a command program. Suppose that the
user has given the command;

> print myjile

Then, we want the following command program to be called:

with TEXT_IO, ARG.TYPES;
use TEXT_IO, ARG_TYPES:

procedure PRINT {ARG : ARG_ARRAY) is
F : FILE_TYPE:

C : CHARACTER:

begin
if ARG'LAST /= 1 then

PUT_LINE(ARG(0).ail & wrong number of arguments");
else

OPEN(F, MODE => IN_FILE, NAME => ARG(1).aii);
while not END_OF_FILE(F) loop
while not END_OF_LINE(F) loop
GET(F. C); PUT(C);

end loop;
SKIP_LINE(F); NEW_LINE;

end loop;
CLOSE(F);

end if;

exception
when NAME_ERROR => PUT_LINE(ARG(0).ali &

failure to open file " & ARG(1).aii);

end PRINT;

We can see that the program checks that it gets exactly one argument (the access
value to the file name). If this is not the case the error message:

print: wrong number of arguments
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is written out. Note how the access value ARG(O) has been used in generating
this message.

In order for the command interpreter to know which command programs
there are, it has to be given a table with the names of commands that can be
accepted. In addition to the command name, the table also has to contain point
ers to the command programs which are going to execute the command. We can
put the command interpreter in a package with the following specification:

with ARG_TYPES:

use ARG.TYPES;

package COMMANDJNTERPRETER Is
type PROGRAM_POINTER Is access procedure (ARG : ARG_ARRAY):
type COMM_REC Is

record

NAME : STRING.POINTER;

PROGRAM : PROGRAM.POINTER;

end record;

type COMM_ARRAY Is array (POSITIVE range < >) of COMM_REC;
procedure START(COMM : COMM_ARRAY);

end COMMANDJNTERPRETER;

The command interpreter starts when the procedure START is called, with a
COMM_ARRAY as parameter. The call is from a main program, which might
have the following structure:

with COMMAND_INTERPRETER, BACKUP, COPY, ... ZAP;
procedure MAIN Is

COMM : constant COMMANDJNTERPRETER.COMM_ARRAY :=
((new STRING'C'backup"), BACKUP'ACCESS),
(new STRING'C'copy"), COPY 'ACCESS),
(new STRING'C'delete"), DELETE 'ACCESS),
(new STRING'C'echo"), ECHO 'ACCESS),
(new STRING'C'print"), PRINT 'ACCESS),

(new STRING'C'zap"), ZAP 'ACCESS));
begin

COMMANDJNTERPRETER.START(COMM);
end MAIN;

You will see how we have used the attribute ACCESS to create pointers to the
various command programs.

Finally, we can study the body of the command interpreter:

with TEXTJO, UNCHECKED.DEALLOCATION;
use TEXT_IO;
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package body COMMAND_INTERPRETER is
procedure DEALLOCATE is new
UNCHEGKED_DEALLOCATION{STRING, STRING.POINTER):

- Support procedure for binary search in command array
procedure SEARCH_PROGRAM (SOUGHT: STRING.POINTER;

COMM : COMM.ARRAY;

PROG : out PROGRAM_POINTER)
is

FIRST, LAST, MIDDLE : INTEGER
begin
FIRST := COMM'FIRST; LAST := COMM'LAST;

whiie FIRST <= LAST ioop
MIDDLE := (FIRST + LAST) / 2;
if SOUGHT.ail < COMM(MIDDLE).NAME.ail then
LAST:= MIDDLE-1;

eisif SOUGHTail > GOMM(MIDDLE).NAME.ail then
FIRST := MIDDLE+ 1;

eise

PROG := GOMM(MIDDLE).PROGRAM;
return;

end if;

end ioop;
PROG := nuii;

end SEARGH_PROGRAM;

procedure START(GOMM : GOMM_ARRAY) is
LINE : STRING(1 .. 1000);
LINE_LENGTH : NATURAL;

POS, START_POS : POSITIVE;
ARG : ARG_ARRAY(0 .. 100);
ARG_NO : INTEGER;

P : PROGRAM.POINTER;

begin
ioop

-- Read in a command line

PUT(">");
exit when END_OF_FILE;
GET_LINE(LINE, LINE_LENGTH);

- Pick out the arguments

POS :=1;

ARG_NO := -1;

whiie POS <= LINE_LENGTH ioop
- Ignore spaces
while POS <= LINE_LENGTH and then LINE(POS) = '' loop
POS := POS+ 1;

end ioop;
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exit when POS > LINE_LENGTH: -- space last

~ Pick out next argument

START_POS := POS;

POS := POS + 1:

while POS <= LINE_LENGTH and then LINE{POS) /= '' loop
POS := POS + 1:

end loop;

ARG_NO := ARG_N0 + 1;

ARG(ARG_NO) := new STRING'(LINE(START_POS .. POS - 1));
end loop;

If ARG_NO >= 0 then

- The line contains a command

-- Find and call the corresponding program
SEARCH_PROGRAM(ARG(0), COMM. P);
If P /= null then

P(ARG(0 .. ARG_NO));
else

PUT_LINE(ARG(0).all & Unrecognized command");
end If;

-- Deallocate memory for argument
for I In 0 .. ARG_NO loop
DEALLOCATE(ARG(l));

end loop;

end If;

end loop;

end START;

end COMMANDJNTERPRETER;

In the procedure START there is an outer loop statement which is performed
once per command. The iteration ceases when the user marks the end of file (for
example, by writing CTRL-D). When a whole command line has been read
there follows an inner while statement in which the arguments are picked out,
one for each iteration. First, all the spaces in front of an argument are ignored
and then the end of the argument in the line is sought. For each new argument
encountered, space is allocated for the argument text (using new) such that the
next access value in the array ARG points at the argument text.

When all the arguments on the line have been dealt with, ARG(O) points
at the command name the user has entered and a check is carried out to see

that there is a command of that name. This uses a support procedure
SEARCH_PROGRAM, which performs a binary search in the table COMM,
which contains all the command names and pointers to the corresponding
command programs. (Note that the table in the main program MAIN must be
sorted for the binary search to work.) SEARCH_PROGRAM returns in the out
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parameter the access value to the corresponding command program, which is
subsequently used to call the command program with the relevant part of the
array ARG as parameter. If the command is not found, then an error message is
given instead.

When the command program has been executed the memory which had
been allocated to the arguments is deallocated.

Thanks to our use of access values to the command programs, this
command interpreter is very general. It is very easy to add new commands,
simply by first writing a new command program and compiling it, and then by
adding a new line to the table COMM in the main program and recompiling that.
There is no need to recompile any other part of the program. The command
interpreter itself does not need to be changed or recompiled.

There is a third area of use for pointers to subprograms which should also
be mentioned here. Modem computer systems have what is known as a graphic
user interface, which refers to the windows and menus that are displayed on the
screen and communication of the user with the system via a mouse. A program
which is to run in this sort of environment must have a special structure. The
program starts by calling ready-made support functions within the windows
environment to specify which windows, menus and so on will be required. Then
a special wait function is called which waits until something happens, such as
the user moving the mouse or hitting a key or the mouse button.

Before this wait function is called, it has to be specified what should
happen when different events occur. This is done with the help of calls to the
windows system's support functions, which have to be given pointers to what
are called call-back functions as parameters. Call-back functions are functions
which you write yourself and which you want to call for different events. You
might, for example, write a call-back function which you want to call when the
user clicks on a particular mouse button on the screen. Thus you need to use
pointers to functions, which is possible in Ada 95, as we have seen. The support
functions of the windows system might be written in some language other than
Ada (most commonly in the program language C), but they can be linked into
an Ada program. (The pragma CONVENTION should be used for a call-back
function and also for the pointer type. See the reference manual for details.)

To write windows-oriented programs requires knowledge of the details of
the system in use, which lies outside the scope of this book.

EXERCISES

11.1 A queue of cars is to be described using a linked list. Write the part of a program that
creates a list describing a queue of three cars. For each car the registration number, make
and year should be stored.

11.2 Write a function to evaluate the length of a linked list.
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11.3 Assume you have a linked list in which the data part of each element contains an
integer. Write a function to determine whether the list is sorted.

11.4 A register of club members has been built up in the form of a linked list. Each member
is represented by an element in the list, in which the name, address and telephone
number are stored. The list is sorted alphabetically according to the member's name.

Write a procedure to insert a new member into the list, so that the list remains
sorted.

11.5 Write a function that receives an access value to a singly linked list L as parameter. As
its result the function should return the access value to a new list containing copies of
all the elements of L but in reverse order.

11.6 A polynomial such as:

fix) = 7.4jc^ + 3Ax^- 10.2jc + 14.9

can be represented as a linked list in which every element corresponds to a term in the
polynomial. The corresponding term's coefficient and degree is stored in each element.
The polynomial above, for example, can be represented by the list:

7.4 3.1 -10.2 14.9

5 2 1 0

We assume that there is at most one element for any given degree and that the elements
are sorted so that the highest degree comes first.

(a) Write a function that calculates the value of a polynomial for a given value of jc.
As parameters the function receives an access value to the list that represents the
polynomial and the given value of x.

(b) Write a function that creates a new list to represent the sum of two polynomials,
P,(Af) and PjW- parameters the function gets access values to the two lists
representing P, and Pj, and as its result it returns the access value to the new list
which represents the sum of the two polynomials. The lists representing P, and Pj
should not be altered by the function.

(c) The derivative of a polynomial:

P(x) = a,pc" + + ... + ajX + Oq

can be written as:

F{x) = na^'~^ + (n-\)a„_^x"~^ + ... + a.

The derivative of the polynomial above, for example, can be written as:

fix) = 37x^ + 6.2x - 10.2
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Write a function that creates a new list representing the derivative of a given poly
nomial P(x).

11.7 A sparse matrix is one in which most of the elements are zero. To save storage space,
such a matrix can be represented as a linked list. In the list there is one element for each
non-zero matrix element containing its line and column numbers and its value.

Write a function that receives a sparse matrix in the normal format (a two-
dimensional array) as a parameter. Assume that all the elements in the matrix are
integers. The function should create a list to represent the sparse matrix. The result of
the function should be the access value to the list.

11.8 A graph is a general data structure in which a number of nodes are connected to one
another in an arbitrary manner. A graph in which the nodes contain characters can, for
example, be written:

Directed graphs are those in which a particular direction is associated with each link
between two nodes. Arrows are usually drawn instead of lines:

One way of representing a directed graph is to use an access table, where each node of
the graph is represented by an entry in a table (a one-dimensional array). Each entry
stores the data part of the corresponding node (a character in the example above) and an
access value to a linked list. The linked list describes the single paths from the given
node to other nodes in the graph, and contains one element for each path. The directed
graph in the example above can, for example, be represented by:

1 A 2

2 B

3 C 2

4 D 3

5 E 4
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(a) Write a subprogram that inserts a path between two nodes in a directed graph as
represented above. The subprogram takes the access table and two node numbers
that state the two nodes that are connected.

(b) Write a subprogram that removes a connection between one node and another.

(c) An access table is not very convenient if the number of nodes in a graph must be
changed or if nodes must be easily added or removed. In these situations, an access
table can be replaced by a linked list in which each element contains the same
information as an element of the access table above. Rewrite the subprograms in (a)
and (b), representing a directed graph in this way instead.

11.9 Write a package that describes the abstract data type integer set. There should be
subprograms in the package to carry out all the usual operations on sets. Use a linked
list in the body of the package.

11.10 Write a procedure that swaps two neighbouring elements in a doubly linked list. The
procedure should take as parameter an access value to the first of the two elements to be
swapped.

11.11 An ordinary pack of cards can be represented using a doubly linked list in which every
element corresponds to a card and contains the card's suit and colour. Write a program
that builds up a list containing all 52 cards in a pack. The program should then deal the
pack out randomly to four players so that they each get 13 cards. For each player the
program should build up a linked list containing that player's cards. Finally, the program
should write out the cards of the four players.

Assume there is a package RANDOM_PACKAGE containing a function
RANDOM_NUMBER (with no parameters) which returns a floating point number a: such
that 0<a:< 1.

11.12 Rewrite the package QUEUE_PACKAGE in Section 11.4 so that a doubly linked list is
used to represent the queue.

11.13 Write a function to count the number of leaves in a binary tree.

11.14 Write a function that determines whether two binary trees are equal, that is, whether they
contain the same data and have the same structure.

11.15 A binary tree can be used to represent an arithmetic expression. The expression:

1213^,
8-4

can, for example, be represented by:
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The value of the binary tree can be defined as the value obtained when the correspond
ing expression is evaluated.

Make the type declarations necessary to describe an arithmetic expression in this
way and write a function that calculates the value of a given binary tree.

11.16 Two binary trees can be said to be reflections of one another if: (1) both are empty, or
(2) both are non-empty, their roots contain the same information, and the right subtree
of one is the reflection of the left subtree of the other, and vice versa. Write a function

that determines whether two trees are reflections of one another.

11.17 Write a program that reads in a text from a text file and computes how many times
different words appear in the text. Use a binary search tree to store the words read
together with a counter. Each time a new word has been read from the text file, search
to see whether it already appears in the search tree. If it does, increase the word's counter
by one. Otherwise, create a new node for the word and insert this node in the correct
place in the tree. The program should finish by writing out all the words that have
appeared, in alphabetical order, together with the number of times they appeared.

11.18 It is not very difficult to insert a new node into a binary search tree. To remove a node
is a little harder. The following algorithm can be applied:

Call the node to be removed P.

If P is a leaf, set the access value in P's parent that points to P, to null.

If P has a left child but no right child, let P's parent point at P's left child instead of
pointing at P.

If P has a right child but no left child, let P's parent point at P's right child instead of
pointing at P.

Otherwise, find the node Q in P's right subtree with the smallest value data part. Copy the
data part of Q to the node P and remove node Q.

Write a procedure that removes a given node from a binary search tree.
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11.19 The value of an integral ▼

b

/ = ̂\f{x)dx
a

can be approximated using what is known as the trapezium rule:

lf(a) f(b)I^h + h) +f(a + 2h) + ... +/f« + (« - \)h)+-^

The interval [a, h] has been divided into n equal subintervals of length h, that is:

n

Write a function INTEGRAL which computes the integral of an arbitrary function
whose argument and result have type FLOAT. A pointer to the function that is to be
integrated should be given as a parameter to INTEGRAL, as should the values of A and
B which define the interval of integration.

In INTEGRAL, calculations of the value of the integral are carried out repeatedly
until the difference between two successive values is sufficiently small. At each new
calculation, the value of n, the number of divisions, is doubled.

Use the function INTERVAL to calculate the value of the integral

5

Ix^dx
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12.1 Sequential files
12.2 Sorted files

12.3 Direct files

Exercises

A file is an arbitrarily long sequence of data objects where all the objects
have the same type (see Figure 12.1). A file can be stored in the computer's
secondary storage, for example on disk, and can therefore be used to store data
permanently. Earlier in the book, we discussed text files where the individual
objects in a file had the type CHARACTER. In this chapter we review more
general files where the data objects are allowed to be of any type. Such
general files, where the objects do not have type CHARACTER, are usually
called binary files. (The objects are actually represented in the same binary
form used internally in a program.)

In Ada there are two categories of files: sequential files, where objects
must be read and written in their correct order from start to finish; and direct
access files or direct files, where an arbitrary object can be accessed without
going through the file in a particular order.

object object object object object

Figure 12.1

497
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12.1 Sequential files

Text files belong to the category of sequential files. Earlier we saw that the
package TEXT_IO contains the facilities for handling text files; when we want
to work with sequential files other than text files we shall make use of another
standard package called SEQUENTIAL_IO (see Appendix C). To gain access to
this package the line:

with SEQUENTIALJO;

must appear at the start of the program. In a text file the objects are always of
type CHARACTER but in the case of other sequential files the objects can be of
any type. For this reason SEQUENT!AL_IO is not a 'ready-made' package like
TEXT_IO. It is a generic package (a template) that can be used to tailor
input/output packages for sequential files in which the objects have exactly the
required type.

Other than text files, the most common files to work with are those in
which the objects have a record type. Assume we want to collect information
about the weight and height of a number of people. We can store the data in
a file in which each object is a record containing the person's name, weight
and height. There is a record in the file for each person. We have the type
declaration:

type PERSON is
record

NAME

WEIGHT

HEIGHT

end record;

STRING(1 .. 20);
FLOAT;

INTEGER;

The file's structure is made clear in Figure 12.2.
To create a package containing the facilities for handling files in which

the objects have type PERSON, we write:

package PERSON_INOUT is new SEQUENTIAL_IO(PERSON);

Brown Dodd Smith

75.0 90.0 65.0

180 190 175

Walton

80.0

183

Figure 12.2
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The word PERSON in brackets states that the objects will be of type PERSON.
The new package will be called PERSON_INOUT. To refer to the package more
conveniently, we write:

use PERSONJNOUT;

As in the case of text files, logical files are worked with in a program and
file variables are declared to represent the logical files. In TEXT_IO, the type
FILE_TYPE could be used to declare logical text files and SEQUENTIALJO
also had a type called F1LE_TYPE. To declare a logical file in which the objects
have the type PERSON we can therefore use our new package
PERSONJNOUT and write:

PERSON_FILE : PERSONJNOUT.FILE.TYPE;

Note that we have used selector notation and written PERSON_INOUT.FILE_

TYPE even though we put in a use clause above. The reason is that most
programs also use the package TEXT_IO. If we only wrote FILE_TYPE the
compiler would not know if we meant the F1LE_TYPE specified in TEXT_IO or
the FILE_TYPE specified in PERSONJNOUT.

General files have physical names in the computer system. For example,
we can imagine that the file described earlier has the physical name person.data.
To link a logical file in the program with a physical file, the procedures OPEN
and CREATE, also found in the package SEQUENT1AL_I0, are used. These
work in exactly the same way for general files as for text files. For example,
we can create a new physical file person.data and connect it to the logical file
PERSON_FILE by making the call:

CREATE(PERSON_FILE, NAME => "person.data");

Here it is assumed that the file will be used for writing. If the file had already
existed, we could have opened it for reading:

OPEN(PERSON_FILE, MODE => IN_FILE, NAME => "person.data");

Reading and writing cannot proceed at the same time in sequential files: the
parameter MODE must be given one of the values IN_FILE or OUT_FILE. In
Ada 95, the MODE parameter can also be set to the value APPEND_FILE, which
means that you wish to write at the end of an existing file. There is the possi
bility to go back to the beginning of a file and use it in a new way using the
procedure RESET, which also exists for general sequential files. A file is closed
using the procedure CLOSE:

CLOSE(PERSON_FILE);



500 Files

Opening and closing files

CREATE is used for creating a new file.

OPEN is used for opening an existing file.

CLOSE is used for closing a file.

RESET is used for going back to the start of a file.

These procedures are specified in the same way as
the corresponding procedures for text files.

A file can be erased or deleted by calling the procedure DELETE. In
SEQUENTIALJO there are also the functions IS_OPEN, MODE, NAME and
FORM, which can be used to obtain information about a particular file. These
subprograms work in the same way as they do for text files.

There is one important difference between text files and general files. In
a general sequential file the individual objects may be of any type. Files do not
necessarily contain text, therefore it is not possible to talk about pages and lines
in a general file. The file only comprises a series of objects. It is only text files
that have page and line structure, thus everything to do with pages and lines is
irrelevant for a general sequential file. It is not possible, for example, to read
a line, test whether a line is finished, or write on a new page. The subprograms
in TEXT_IO that are concerned with lines and pages (for example,
GET_LINE, END_OF_LINE and NEW_PAGE) are not found in the package
SEQUENTIAL ID.

Line and page structure

• Only text files have line and page structure.

• There are no lines and pages in general sequential
files.

• There are no subprograms concerned with lines
and pages.

For reading and writing text files the procedures GET and PUT are used.
When numeric values are read and written, these procedures can make the
conversion between a sequence of characters and the internal form of represen
tation in the computer. For example, if a variable of type INTEGER is read from
a text file, a number of characters are read from the text file and converted into

a value of type INTEGER. In some cases, therefore, one reading from or writing
to a text file can mean that several characters are read or written.



Sequential files 501

Reading and writing are in some respects simpler for general sequential
files. GET and PUT are not used, but the two procedures READ and WRITE are
specified in SEQUENTIALJO:

procedure READ (FILE : In FILE_TYPE:
ITEM : out ELEMENT_TYPE):

procedure WRITE (FILE : In FILE.TYPE;
ITEM : In ELEMENT.TYPE);

Here the type ELEMENT_TYPE corresponds to the type of the records in the
file. In our package, PERSON_INOUT, ELEMENT_TYPE can be regarded as
having been replaced by PERSON.

Assume we have declared a record variable P:

P : PERSON;

and that we have opened the file PERSON_FILE to read from it. We can then
make the call:

READ(PERSON_FILE. P);

This means that a record in PERSON_FILE is read and copied to P.
Note that a call of READ reads an entire record from the file at once. This

demands that the types of the objects in the file and the variable being read to
are the same. Conversion of data never takes place. Unlike text files, it is not
possible to read an individual element of data: it is not possible to read only the
name from a record in the file, for example.

When a file is being read the system automatically keeps track of a
current index. This index states the record in the file that is next in line for

reading. When a file is opened (or reset) the current index is set to 1 (the first
record in the file). Each time READ is called, the current index increases by 1
after the reading has occurred.

If READ is called and the current index has a value greater than the
number of records in the file, then the end of the file has been reached and the

exception END_ERROR occurs. To avoid this situation, as for text files, the
function END_OF_FILE can be used to test whether the file has any records left
to be read.

When READ is called, the exceptions MODE_ERROR and DATA_ERROR
can also occur. MODE_ERROR means that an attempt has been made to
read from a file that is not open for reading. DATA_ERROR arises if the objects
in the file are not of the same type as the variable to which they are to be read.
(There is no requirement that an Ada compiler should check for this kind of
error.)
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Reading sequential files

READ(F, R):

where F is a logical file (file variable) and R is a
variable of the same type as the objects in F.

An entire object in the file is read and copied to P.

The objects are read sequentially from start to
finish.

Each call gives the next object that is waiting in
line.

Output works in the corresponding way. If PERSON_FILE were open for
writing instead, we could make the call:

WRITE(PERSON_FILE, P);

Writing sequential files

WRITE(F, R):

where F is a logical file (file variable) and R is a
variable of the same type as the objects in F.

A new object is written at the end of the file.

R's value is copied to the new object.

A new record is placed at the end of the file and the value of P will be copied
to this record. As with reading, one entire record at a time is copied when
writing to a file. It is not possible to write an individual element of data to the
file.

When writing, the exception MODE_ERROR can occur if the file given
to WRITE is not open for writing. USE_ERROR can occur if the space available
to the file in secondary storage is exceeded.

We can now look at a couple of examples. In the first, we have a program
that reads in information about the weight and height of a number of people
from the terminal and stores it in a new file. This new file will have the physi
cal name person.data.
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with TEXTJO, BASIC_NUM_IO, SEQUENTIAL.IO;

use TEXTJO, BASIC_NUM_IO:

procedure STORE_PERSONJNFO Is

type PERSON Is
record

NAME : STRING(1 .. 20);
WEIGHT : FLOAT;

HEIGHT : INTEGER;

end record;

package PERSON_INOUT Is new SEQUENTIAL_IO(PERSON);
use PERSONJNOUT;

PERSON_FILE : PERSONJNOUT.FILE_TYPE;

P : PERSON:

L: NATURAL;

begin
CREATE{PERSON_FILE, NAME => "person.data");

PUT_LINE("Terminat0 input with CTRL-D");
loop

PUTC'Name:");

exit when END_OF_FILE;

GET_LINE(P.NAME, L);

~ pad the name with blanks
P.NAME(L+1 .. P.NAME'LAST) := (others => '');
PUTC'Weight:"); GET(P.WEIGHT); SKIP.LINE;
PUTC'Height: "); GET(P.HEIGHT); SKIP.LINE;
WRITE(PERSON_FILE, P);

end loop;
CLOSE(PERSON_FILE);

end STORE_PERSONJNFO;

Note that the information for each person is read in the normal way, element by
element from the terminal. When the information is stored in PERSON_FILE,

however, it is written as an entire record at a time. In the new file the weight and
height information will be stored in the same binary form as used in the
program. They are not stored in the form of text as they would be in a text file,
that is, the file cannot be handled by the system programs that are written to
work on text files. It is not possible, for example, to edit the file using a text
editor, and if an attempt should be made to write out the contents of the file
using a program that lists text files, the result would be a mass of strange and
indecipherable characters at the terminal.

If we would like the program to be more general we can arrange to read
in the new file's name from the terminal before creating the file:
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PUT_LINE("Enter the name of the new file");
GET_LINE(FILE_NAME, L);
CREATE(PERSON_FILE, NAME =>FILE_NAME(1 .. L));

In the next example we show a program that reads the above file and
selects tall people (taller than 2 m). The information about tall people is stored
in a new file tall.data. The program uses the function END_0F_F1LE to see
when the register comes to an end.

with SEQUENTIAL_IO;

procedure CHOOSE_TALL Is
type PERSON is

record

NAME : STR1NG(1 .. 20);
WEIGHT : FLOAT;

HEIGHT : INTEGER;

end record;

package PERSON.INOUT is new SEQUENT1AL_I0(PERS0N);
use PERSONJNOUT;

PERSON.FILE, TALL_FILE : PERS0NJN0UT.F1LE_TYPE;

P: PERSON;

begin
OPEN(PERSON_FlLE, NAME=> "person.data",

MODE=> 1N_FILE);
CREATE(TALL_F1LE, NAME => "tall.data");
while not END_0F_FILE(PERS0N_F1LE) loop
READ(PERSON_FILE, P);
if P.HEIGHT > 200 then

WR1TE(TALL_FILE, P);

end if;

end loop;
CLOSE(PERSON_FILE);
CLOSE(TALL_FILE);

end CHOOSE_TALL;

12.2 Sorted files

It is very common for files to be sorted in some way, making it easier to obtain
required information from the file. We can imagine, for example, that when run
ning the program STORE_PERSONJNFO discussed in Section 12.1, the
entries could be in alphabetical order so that the file person.data is sorted from
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FILE1

FILE2

P1

□

P2

□

Figure 12.3

the start. The element of the record that defines the sort is called the key. If the
fi le person.data is sorted in this way, then the element NAME is the key.

To look at methods of handling sorted fi les, we shall st<irt by considering
a common problem - the merging of fi les. Assume we have two sorted fi les of
the same type, that is, the objects in the fi les have the same type. The task is to
merge them together so that a new sorted fi le, containing all the records from the
two fi les, is obtained.

We can study some diagrams that will help explain how this works.
Assume we have two sorted fi les, FILE1 and FILE2, and for simplicity, their
objects are integers. These two fi les should be merged into a new fi le that we
shall call NEW_FILE. We shall also assume that we have two variables P1 and
P2 to which we can read objects from FILE1 and FILE2, respectively. The ini
tial situation is illustrated in Figure 12.3. An arrow is used to denote the current
index in each fi le, that is, the next object waiting to be read. The variables P1
and P2 do not yet contain any fi le objects, as indicated by the dashes.

The first step is to read the first object from each fi le, as shown in
Figure 12.4. The fi rst objects from the two fi les are now in P1 and P2, and the
pointers that mark the current indexes have moved on one place.

Now we select which of P1 and P2 contains the smaller value: P2 in this
example. The contents of P2 are written to the new fi le NEW_FILE. This uses
up the contents of P2 and we read another element of FILE2 into it. Figure 12.5
illustrates the situation.

FILE1

FILE2

P1

0

P2

0

Figure 12.4
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FILE1

2 6

00

9

FILE2

PI

□

P2

m

NEW_FILE

0

Figure 12.5

Now the smaller of PI and P2 is chosen again and its contents are
written to NEW_FILE. This time P1 is chosen and an object containing the value
2 is written to NEW_FILE. A new object (with value 6) is read from FILE1 to
P1. Figure 12.6 shows the current position.

Next time P2 will be chosen and the value 3 written to NEW_FILE, as
shown in Figure 12.7. P2 now holds the smaller value (5), so this is written to
NEW_FILE. Since FILE2 is now finished we cannot read a new value to P2.
Instead we denote that there is nothing in P2, using a dash, as shown in
Figure 12.8.

The next time we try and choose the smaller of P1 and P2, we shall see
that there is nothing in P2; we shall simply choose P1 and write its contents to
NEW_FILE, as shown in Figure 12.9. This action will be repeated until FILE1 is
also finished, and we arrive at the situation in Figure 12.9.

We can start to formulate an algorithm to describe how this merge
process works:

FILE1

2 6

00

9

f
FILE2

P1

0

P2

0

NEW_FILE

0  2

Figure 12.6
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FILE1

FILE2

P1

0

P2

0

NEW FILE

0  2 3

Figure 12.7

FILE1

2 6

00

9

FILE2

0  3 5

t

P1

0

P2

0

NEW FILE

0 2 3 5

Figure 12.8

FILE1

t

FILE2

t

P1

□

P2

□

NEW FILE

0 2 3 5 6 8 9

Figure 12.9
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(1) Try to get a record from FILE and put it into P1.
(2) Try to get a record from FILE2 and put it into P2.

(3) Repeat the following until there is nothing left in either of FILE1 and
FILE2;

(3.1) Pick out one of PI and P2 and write it to NEW_FILE.

(3.2) Try to get a new record to replace whichever of PI or P2 was
chosen.

By the term 'try to get' we mean:

If the current file is finished, then indicate that there is nothing in the
variable that belongs to that file; otherwise, read a record from the file to
the corresponding variable.

We must also clarify step (3.1):

If there is something in both PI and P2, then choose the one that should
come first in a sorted file, otherwise, choose the one that contains some
thing.

Note that step (3) guarantees that we shall never reach step (3.1) with nothing in
either PI or P2.

Using this, we can write a program that merges two registers of the kind
described, person.data 1 and person.data2. We can assume that these files are
sorted and were created using the program STORE_PERSON_INFO from the
previous section.

In the program a special procedure FETCH has been written because 'try
to fetch' occurs in several places in the algorithm.

with SEQUENTIAL.IO;

procedure MERGE Is
type PERSON Is
record

NAME

WEIGHT

HEIGHT

end record;

STRING(1 .. 20);
FLOAT;

INTEGER;

package PERSONJNOUT Is new SEQUENTIALJO(PERSON);
use PERSON.INOUT;

FILE1, FILE2, NEW_FILE

PI, P2

FOUND1, F0UND2

PERSONJNOUT.FILE_TYPE;

PERSON;

BOOLEAN;
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procedure FETCH (F : in out PERSON_INOUT.FILE_TYPE:
P : out PERSON:

FOUND : out BOOLEAN) Is

begin
if END_OF_FILE(F) then
FOUND := FALSE;

else

READ(F. P);
FOUND := TRUE;

end if;

end FETCH;

begin

0PEN(FILE1, NAME => "person.datal",
MODE => IN_FILE);

0PEN(FILE2, NAME => "person.data2",
MODE => IN_FILE);

CREATE(NEW_FILE, NAME => "person.data.aii");

FETCH(FILE1, P1, F0UND1);
FETCH{FILE2, P2. F0UND2);

while FOUND1 or F0UND2 loop
if ((F0UND1 and F0UND2) and then P1.NAME < P2.NAME)

or not F0UND2 then

WRITE{NEW_FILE, P1);

FETCH(FILE1, P1, F0UND1);
else

WRITE(NEW_FILE, P2);
FETCH(FILE2, P2, F0UND2);

end if;

end loop;
CLOSE(FILEI);
CL0SE(FILE2);

CLOSE(NEW_FILE);
end MERGE;

We use two Boolean variables, FOUND1 and FOUND2, to indicate whether

there is anything in P1 and P2, respectively.
A little trick is sometimes used to simplify this sort of program. It is

easier to recognize the ends of the files if a special record is placed at the end of
each file that is to be merged, indicating that the file is finished. In this end
record the key is assigned such a large value that no keys with values greater
than or equal to it can occur. In our example we can give the name in the end
record the constant value END_NAME, which is declared as follows:
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END_NAME : constant STRING (1 .. 20) := (others =>
CHARACTER'LAST):

If we suppose that both FILE1 and FILE2 have such end records, the while
statement in the program MERGE can be simplified somewhat:

while P1.NAME < END_NAME or P2.NAME < END_NAME loop
if PI.NAME < P2.NAME then

WRITE(NEW_FILE. PI);
READ(FILE1, P1):

else

WRITE(NEW_FILE, P2):
READ(FILE2, P2);

end if;

end loop;

We do not need the procedure FETCH or the variables F0UND1 and F0UND2.
Since we always stop when the end record has been read there is no risk of the
files running out.

Even if no special end record is placed in the files, this concept can still
be used by 'imagining' an end record. The procedure FETCH must be retained,
but rewritten a little:

procedure FETCH (F : in out PERSONJNOUT.FILE_TYPE;
P : out PERSON) is

begin

if END_OF_FILE(F) then
P.NAME := END.NAME;

else

READ(F, P);

end if;

end FETCH;

When the end of the file is reached, like 'imagining' an end record has been
read, P.NAME is given the value END_NAME. The while statement is then written:

while P1.NAME < END_NAME or P2.NAME < END_NAME loop

if PI.NAME < P2.NAME then

WRITE(NEW_FILE. PI);
FETCH(FILE1. P1);

else

WRITE(NEW_FILE. P2);
FETCH(FILE2. P2);

end if;

end loop;
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11 23 14 37 9 80 59 40 20 36 67 15 75

Figure 12.10

We have seen ways of merging two files that are already sorted. The natural
question to ask now is, how do you sort a file?

One way is to put the records in the file in order from the start. We could
create a sorted file by, for example, feeding in the information to the program
STORE_PERSON_INFO with the names in alphabetical order, as mentioned
earlier.

One efficient way of sorting files that do not contain too many records is
to read in all the records to an array in a program, sort the array and then write
it back to the file. It is, however, common for files to hold many records and the
accessible primary storage is not always sufficient to allow the sorting to take
place in an array. Then some file sorting technique must be used, which sorts
without reading in all the records to the program at once. This is usually
described as external file sorting. This is an area of data processing where there
are several methods with different degrees of sophistication. To demonstrate the
concepts that can be applied, a relatively simple method will be shown here,
which is far from the most efficient.

As usual, diagrams best illustrate how things work. We assume that we
have to sort the file F in Figure 12.10. For simplicity, we assume that the records
contain nothing but an integer key. To carry out the sort we shall use two
temporary subsidiary files, Tl and T2. If we look at F, we see that it can be
divided into several sequences in each of which the records are sorted. F con
tains the sequences [11, 23], [14, 37], [9, 80], [59], [40], [20, 36, 67] and [15,
75]. If F had been totally sorted it would have consisted of only one sequence.

The first step in the sort algorithm is that we read F, record by record, and
copy alternate sequences to Tl and T2. To indicate the end of each sequence we
use a special end record that contains a key value larger than any real record can
take. We arrive at the situation shown in Figure 12.11. To enable T1 and T2 to
have the same number of sequences, we put an empty sequence at the end of T2.

The next step is to merge pairs of sequences, one from T1 and one from
T2, to file F. After this step F will appear as in Figure 12.12. F will thus have
half as many sequences as it originally had.

T1

11 23X 9 80X 40X 15 75X
T2

14 37X 59X 20 36 67XX

Figure 12.11
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11 14 23 37 9 59 80 20 36 40 67 15 75

Figure 12.12

Now we can continue in this manner, sharing the sequences between T1
and T2 and then merging pairs of sequences. This process is repeated until F has
only one sequence. Figure 12.13 shows the remaining stages in the process.

We shall present a program that carries out a sort according to this
method. The records in the file to be sorted consist of a data part (in this
example, a text string) as well as a key.

with TEXTJO, SEQUENTIALJO;

use TEXT_IO:

procedure SORT_FILE is
subtype KEY Is INTEGER;
subtype DATA Is STRING(1 .. 30);
type FILE_REGORD Is
record

K: KEY;

D : DATA;

end record;

MAX.KEY : constant KEY := INTEGER'LAST;

MIN_KEY ; constant KEY := INTEGER'FIRST;

T1

11 14 23 37X 20 36 40 67X
T2

9 59 80X 15 75X
F

9 11 14 23 37 59 80 15 20 36 40 67 75

T1

9 11 14 23 37 59 80X
T2

15 20 36 40 67 75X
F

9 11 14 15 20 23 36 37 40 59 67 75 80

Figure 12.13
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package RECJNOUT Is new SEQUENTIALJO(FILE_RECORD);
use REC.INOUT;

F,T1,T2

SORTED

NO OF MERGES

REC_INOUTFILE_TYPE:

BOOLEAN := FALSE;

NATURAL;

procedure FETCH (F : In out RECJNOUT.FILE_TYPE;
R : out FILE.RECORD) Is

begin

If END_OF_FILE(F) then

R.K := MAX_KEY;

else

READ(F, R);

end If;

end FETCH;

procedure SPLIT.UP (F, T1, T2 :
In out RECJNOUT.FILE_TYPE) Is

R : FILE_RECORD;

procedure COPY.SEQUENCE
(F, T: In out RECJNOUTFILE_TYPE;
R  : In out FILE_RECORD) Is

PREV_KEY : KEY := MIN_KEY;

FINAL_REC : FILE_RECORD;

begin

while R.K >= PREV.KEY and R.K < MAX_KEY loop
PREV_KEY := R.K;

WRITE(T, R);

FETCH(F, R);

end loop;
FINAL_REC.K := MAX.KEY;

WRITE(T, FINAL_REC); - end of sequence

end COPY_SEQUENCE;

begin
FETCH(F, R);

while R.K < MAX_KEY loop
COPY_SEQUENCE(F, T1, R);
COPY_SEQUENCE(F, T2, R);

end loop;
end SPLIT_UP;

procedure MERGE (FILE1, FILE2, FILES :
In out RECJNOUT.FILE_TYPE) Is

R1, R2 : FILE_RECORD;
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begin
FETCH(FILE1, R1):
FETCH(FILE2, R2):
while R1.K < MAX.KEY or R2.K < MAX_KEY loop

if R1.K< R2.Kthen

WRITE(FILE3. R1);
FETCH(FILE1, R1);

else

WRITE(FILE3, R2):
FETCH{FILE2, R2);

end if;

end loop;

end MERGE;

begin

OPEN{F, IN.FILE, "dataflle");
while not SORTED loop

-- split up the sequences in F into T1 and T2
RESET{F, IN_FILE);
CREATE(T1); CREATE(T2);
SPLIT_UP(F, T1, T2);

-- merge the sequences in T1 and T2 into F
RESET(T1, iN.FILE); RESET(T2. IN_FILE);
RESET{F, OUT_FILE);
NO_OF_MERGES := 0;

while not END_0F_FILE(T1) loop
MERGE(T1,T2, F);
NO_OF_MERGES := NO_OF_MERGES + 1;

end loop;
SORTED := NO_OF_MERGES = 1;

CL0SE(T1); CL0SE(T2);
end loop;

CLOSE(F);

end SORT.FILE;

We have used a procedure FETCH in the program which reads from F or from
one of the temporary files. When F is read, the end of the file is finally reached,
and then FETCH 'imagines' that it has read a special end record.

We conclude by mentioning some improvements that could make the
program more efficient. The number of times sorting has to be performed can be
reduced if the file F has longer sequences from the beginning. This can be
achieved by reading N records at a time from F into an array and sorting this
array, using some internal sorting method, before writing them to a temporary
file. The number N is chosen according to the amount of primary storage
available.
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Another improvement could be made by using more than two temporary
files, so that several sequences could be merged at once.

A further trick is not to put the sequence that results from a merge back
into F but into another set of the same number of temporary files. The sequences
are placed alternately into the new temporary files. In this way, merging can be
carried out 'to and fro' until only one sequence remains.

12.3 Direct files

It is not necessary to handle the records in a file sequentially in an Ada program.
If instead of using the package SEQUENTIAL_IO another standard package,
DIRECT_IO, is used (see Appendix D) it becomes possible to read and write
records in arbitrary order.

We have already mentioned that for every open file the Ada system keeps
a current index which points at the next record waiting to be read. Work with
direct files offers the possibility of controlling the index. In the package
DIRECT_IO there are the type declarations:

type COUNT Is range 0 .. implementation-dependent integer;
subtype POSITIVE_COUNT Is COUNT range 1 .. COUNT'LAST;

Current index has type POSITIVE_COUNT.
To set the current index to a particular value the procedure SET_INDEX

is used:

SETJNDEX(F, 100); - F has type DIRECTJO.FILE_TYPE
SET_INDEX(F, REC_NO); - REC_NO has type POSITIVE.COUNT

The value of current index can also be read by calling the function INDEX:

- read the first 100 records

while INDEX(F) <= 100 loop
READ(F, P);

end loop;

To determine how many records there are in a file (that is, the index number of
the last record) the function SIZE can be used:

If SIZE(F) > 100000 then
PUTC'BIG FILE");

end If;
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The following specifications are found in the package D1RECT_10;

procedure SETJNDEX (FILE
TO

function INDEX (FILE

function SIZE

:  In FILE.TYPE;

:  In POSITIVE_COUNT);
:  In FILE_TYPE)

return POSITIVE_COUNT;

(FILE: In FILE_TYPE

return COUNT;

Current index for direct files

SET_INDEX(F,I) sets the current index in the file F
to 1.

INDEX(F) gives the current index for the file F.

SIZE(F) gives the number of records in the file F.

When a record is to be read or written it is possible to state which record
is required. There are two versions of the subprograms READ and WRITE in the
package DIRECT_IO:

procedure READ

procedure READ

(FILE :  In FILE_TYPE;

ITEM : out ELEMENT_TYPE);
(FILE : In FILE_TYPE;
ITEM : out ELEMENT_TYPE;

FROM :  In POSITIVE_COUNT);
(FILE : In FILE_TYPE;
ITEM :  In ELEMENT_TYPE);
(FILE :  In FILE.TYPE;

ITEM :  In ELEMENT_TYPE;

TO :  In POSITIVE_COUNT);

procedure WRITE

procedure WRITE

The first of each pair is identical to the READ and WRITE found in SEQUEN-
TIAL_IO. The parameter F gives the file referred to and ITEM is the variable in
the program that will be read to or written from. Thus direct files can be treated
in exactly the same way as sequential files.

The second version of the two procedures has a third parameter FROM
and TO, in READ and WRITE, respectively. This third parameter specifies the
index in the file for the record that is to be read or written. Before reading or
writing starts, the current index is set to the value given. To read record number
100 of file F, for example, we can write:

READ(F, R, 100);
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Another example is:

WRITE(F. R, REC_NO); -- REC_NO has type POSIT!VE_CO'JNT

For all versions of READ and WRITE the current index is automatically
increased by 1 after reading or writing. For example after the call:

READ(F, R, 100):

the current index has value 101.

Reading and writing direct files

READ(F, R); read the next record in the file F to

the variable R.

READ(F, R. 1); read record number 1 in the file F to

the variable R.

WRITE{F, R); write R to the next record in the file

F.

WRITE(F, R, 1); write R to record number 1 in the

file F.

Before reading or writing a direct file can begin, the file must be opened
using CREATE or OPEN. The difference between direct and sequential files is
that a direct file can be opened for both reading and writing. The type
FILE_MODE has the declaration:

type FILE_MODE Is (IN_FILE. INOUT_FILE. OUT.FILE);

If it is specified that the file should be of type INOUT_FILE when the file is
opened, then the file can be both read and written. After the calls:

OPEN (F1, MODE => IN_FILE, NAME => "fllel")
OPEN (F2, MODE => INOUT_FILE, NAME => "flle2")
CREATE (F3, MODE => OUT.FILE, NAME => "fileS")

for example, F1 can be read only, F2 can be both read and written, and F3 can
be written only.

For the procedure CREATE, the MODE parameter may be omitted, and in
this case the file assumes the mode INOUT_FILE.
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CREATE (F4, NAME => "file4"); -- F4 can be read and written

As with sequential files, a direct file can be reset to the beginning and the file's
mode can be changed by calling RESET:

RESET (F3, INOUT_FILE); -- now F3 can be read and written

The remaining subprograms in SEQUENTIALJO, namely CLOSE, DELETE,
MODE, NAME, FORM, IS_OPEN and END_OF_FILE are also found in

DIRECT_IO and work in exactly the same way.
As an example of using direct files we can work with bank accounts. Let

us assume that a bank has a data file in which each record contains information

about a bank account. A record has to contain an account number, the account

balance and information about the account holder:

type ACCOUNT.RECORD is
record

NO

BALANCE

ACCOUNT.HOLDER

end record;

ACCOUNT_NO;

FLOAT;

PERSON;

The account file is sorted according to the account number, which can be
assumed to be an eight-digit number:

MIN_NO : constant := 10_000_000;

MAX_NO : constant := 99_999_999;

subtype ACCOUNT.NO Is INTEGER range MIN_NO .. MAX.NO;

Now we shall look at an imaginary program a bank clerk may run when
a client wants to make a deposit or withdrawal. The program will read in the
account number from the terminal and find the record with this number in the

accounts file. If the given account number is missing from the file, the program
will give an error message to the clerk.

If the account number is found in the file, the program should read in
from the terminal the amount that is to be deposited or withdrawn. A deposit is
given as a positive amount and a withdrawal as a negative amount. The record
for the account in question should be changed in the file so that the account's
balance is correct after the transaction. If the proposed withdrawal is greater
than the amount of money held in the account, the program should give an error
message and refuse the withdrawal.

We shall use the accounts file as a direct file in this program, and both
read from and write to it; that is, we let the file have the mode INOUT_FILE.

To find the required account in the accounts file we use a binary search.
The algorithm for a binary search was given in Section 7.4, where we wrote a
recursive function to find a particular record in an array. We shall use the same
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algorithm here but use iteration rather than recursion. The reason for this is
that files can sometimes be very large, since they are holding many records. If
recursion is used to make a binary search in a very large file, the primary store
may run out since too many instances of the recursive function are made.

We use two variables, FIRST and LAST, to define the part of the file
where we want to search. These variables are given the type COUNT, so that
they can point at records in the file. At the start, FIRST is set to 1 and LAST is
set to the index of the file's last record. Then the middle record is looked at. If

the required account number is less than the account number in the middle
record the search continues in the first half of the file by setting LAST to the
index for the record that is one before the middle record. If the required account
number is greater than the one in the middle record, the latter half is searched
and FIRST is set to the index of the middle record. Now a new middle record is

found, in the middle of the chosen half file. This process continues until the
required record is found or until the chosen half runs out of records (that is,
FIRST > LAST).

We get the program:

with TEXT.IO, BASIC_NUMJO. DIRECTJO;

use TEXTJO, BASIC_NUMJO;

procedure MAKE_TRANSACTION Is
type PERSON Is
record

NAME : STRING(1 .. 20);
ADDRESS : STRING(1 .. 30);

end record;

MIN_NO : constant := 10_000_000;

MAX_NO : constant := 99_999_999;

subtype ACCOUNT_NO Is INTEGER
range MIN_NO .. MAX_NO;

type ACCOUNT_RECORD Is
record

NO : ACCOUNT_NO;

BALANCE : FLOAT;

ACCOUNT_HOLDER : PERSON;

end record;

package ACCOUNT_INOUT Is new
DIRECT_IO(ACCOUNT_RECORD);

use ACCOUNTJNOUT;

AC_FILE

A

REQUIRED_NO

AMOUNT

FOUND

FIRST, LAST, REC_NO

ACCOUNT_INOUT.FILE_TYPE;

ACCOUNT_RECORD;

ACCOUNT_NO;

FLOAT;

BOOLEAN := FALSE;
ACCOUNTJNOUT.COUNT;
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begin
PUT("Enter account number:"); GET{REQUIRED_NO):
OPEN(AC_FILE, INOUT_FILE, "accounts");
~ find account record

FIRST := 1;

LAST := SIZE(AC_FILE);
while not FOUND and FIRST <= LAST loop
REC_NO := (FIRST + LAST) / 2;
READ(AC_FILE, A, REC_NO); -- read middle record
if REQUIRED_NO < A.NO then

LAST := REC_NO - 1; -- search in left half

eisif REQUIRED_NO > A.NO then

FIRST := REC_NO + 1; - search in right half
else

FOUND := TRUE;

end if;

end loop;

if FOUND then

PUT_LINE(A.ACCOUNT_HOLDER.NAME);
PUT_LINE(A.ACCOUNT_HOLDER.ADDRESS);
PUTC'Balance:");
PUT(A.BALANCE, EXP => 0. FORE => 8, AFT => 2);
NEW_LINE;

PUT("Enter amount:"); GET(AMOUNT);
if AMOUNT < 0.0 and A.BALANCE + AMOUNT < 0.0 then

PUT_LINE("withdrawal not possible!");

else

A.BALANCE := A.BALANCE + AMOUNT;

WRITE(AC_FILE, A, REC_NO);
PUTC'Balance after transaction: ");
PUT(A.BALANCE, EXP => 0, FORE => 8. AFT => 2);
NEW_LINE;

end if;

else

PUT_LINE("Account number not found!");
end if;

CLOSE(AC_FILE);
end MAKE.TRANSACTION;

In the program we create a package ACCOUNT_INOUT that provides us with
the facilities for directly accessing the accounts file. AC_FILE is the logical file
in the program that is linked to the physical accounts file. AC_FILE has the type
ACCOUNT_INOUT.FILE_TYPE. We have to use dot notation. If we had only
written FILE_TYPE the compiler would not have known whether we meant
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FILE_TYPE in TEXT.IO or FILE_TYPE in ACCOUNT_INOUT. For the same

reason, we must state the type for FIRST, LAST and REC_NO as
ACCOUNTJNOUTCOUNT and not only as COUNT, because there is also a
type COUNT declared in TEXT_IO.

EXERCISES

12.1 Information about a number of people has been collected into a file persondata in order
to carry out a statistical investigation. The following information is stored for each
individual: name, height, weight, shoe size, age and civil status (married, single or
widowed). To analyse the statistics, the sex of the individuals should also be known, but
this was forgotten when the file was created.

Write a program that reads the file persondata and creates two new files mandata
and womandata. The new files should store the records for all the men and women,
respectively. For each person in persondata the program should ask the operator if the
record read refers to a man or a woman.

12.2 In a scientific experiment many independent series of measurements have been made.
Each series comprises 25 real numbers. The measurements are to be stored in a file
where each object represents a series of measurements. Write a program that creates a
file of measurements. The program should read in the values of the measurements from
the terminal, and the values of the measurements from each series should be given
sequentially.

12.3 A company has a register of their customers in the form of a data file. There is one record
in the file for each customer, containing the customer's name and two lines of address
(for example, street address and town, plus postal code). Each of these three items is at
most 20 characters in length. To send out information to customers a program is required
that can print self-adhesive address labels with the customers' names and addresses. A
printing terminal is used loaded with special paper on which the labels are stuck
contiguously, three in a row. The total width of the paper is 72 characters and each label
is thus 24 characters wide. The height of each label is 5 lines.

Write a program that reads the file of customers and writes out their names
and addresses on self-adhesive labels. Use only the three centre lines of each label.
The program should work even if the number of customers is not an exact multiple of
three.

12.4 The members of a weightlifting club spur one another on to ever greater heights (or
weights) by displaying a monthly list of the best results for each member. A computer
is used to keep track of the results. There is a record for each member in a file liftresults,
holding membership number and information about the heaviest weight lifted in the
current month.

Write a program that a member can run after each training session. The program
should ask for the membership number and how many kilos he (or she) lifted during that
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session. If the result is better than earlier results the program should update the file
liftresults so that the new result is put into the file.

(a) Treat liftresults as a sequential file.

(b) Let liftresults be a direct file.

12.5 A company has set up a list of its employees' room and telephone numbers in a
computer file. There is a record for each employee and each record contains name, room
number and telephone number. The file is sorted alphabetically.

Write a program that can add records for new employees, change existing records
and remove records from the file. Name, room number and telephone number are
requested. If a name is given that is not found in the file, a new record should be added
in the correct place. If the given name is found, then its record should be removed if the
room number is said to be zero, otherwise it should be updated. This process is repeated
as often as necessary. The records in the file that are not mentioned from the terminal
should be left unchanged. It may be assumed that the names are given in alphabetical
order.

12.6 Write a program that merges four files into one. The records in the files are of the same
type and comprise a key (an integer in the interval 1—99999) and a data array of 100
characters.

12.7 Information about the situation in a football league has been stored in a file league.
There is one record in the file for each team in the league. A record contains the team's
name, number of points, number of goals scored and number of goals let in. The records
are in arbitrary order in the file.

Write a program that sorts the file league so that the team with most points comes
first and the one with fewest comes last. If two or more teams have the same number of
points they should be listed according to goal difference (number of goals scored -
number of goals let in). Teams with the same number of points and the same goal
difference should be listed alphabetically. (Hint: Do the sorting internally in the
program.)

12.8 Revise the program SORT_FILE from Section 12.2 so that it uses four temporary files
instead of two.

12.9 Write a program to sort a file that works on the same principle as the program
SORT_FILE but which merges 'to and fro' between four temporary files T1, T2, T3 and
T4. When the sequences from the files T1 and T2 are being merged the resulting
sequences are placed alternately into T3 and 14. Then T3 and T4 are merged and the
resulting sequences placed alternately into T1 and T2, and so on until only one sequence
remains.

12.10 A company has a data file storefile that is used to keep track of all the articles in its
warehouse. There is a record in the file for each type of article. For each article there
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is a record with a product code (a code of 10 characters), a description (a text of 30
characters), the number of articles in store and the price.

Write a program that can take the following commands from the terminal:

INFO artno The program displays the information stored for
the given article at the terminal.

BOUGHT artno n The program should save in the storefile the infor
mation that n new articles of type artno have been
bought for the warehouse stock.

SOLD artno n The program should place into the file storefile the
information that n articles of type artno have been
sold from the warehouse stock.

12.11 When large direct files have to be searched, the number of readings made from sec
ondary storage can be reduced if each data file has an index table. This table contains
one element for each record in the data file. An element holds the key of the corre
sponding record and its position (index) in the data file. The index table is sorted so that
the keys appear in order of size, but the data file does not need to be sorted.

If a record with a particular key has to be found in the data file, the index table is
searched first for the index of the record in the file. Then only a single input or output
action is necessary on the data file. The index table can be stored as a special file, sepa
rately from the data file itself. The program can start by reading in all the index table to
an array in the program so that the search can take place internally.

Write a program for the problem formulated in Exercise 12.10, but now use an
index table.
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13.1 Definitions and instances 13.3 Generic child packages
13.2 Generic parameters Exercises

When a program or part of a program is being written it is usually
advantageous to try to make it as general as possible. Then, if the conditions
for a program should change, fewer changes (or even none) will be required to
enable the program to work. Moreover, similar programming problems occur
in many different contexts. If a general solution has been designed for one
problem, it can often be used on later occasions.

Ada offers the programmer the possibility of writing general programs
using generic units. Such a program unit can be either a subprogram or a
package. A generic unit is not only one subprogram or one package, but is
a description of a whole family of similar units. Generic units can be regarded
as generalized bits of a puzzle that can be fitted together to develop a new
program. Ada libraries of generic units can be built up from different sources,
thereby simplifying future program development.

525
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13.1 Definitions and instances

We shall start with a very simple program. In Section 6.3 we constructed a
procedure SWAP that could be used for interchanging the values of two variables:

procedure SWAP (NUMBER1. NUMBER2 : in out INTEGER) Is

TEMP : INTEGER;

begin

= NUMBER1;

= NUMBER2;

= TEMP;

TEMP

NUMBER1

NUMBER2

end SWAP;

The procedure demands that the two parameters have the type INTEGER, so it
cannot be used for swapping the values of, say, two floating point variables. We
shall now rewrite SWAP so that it can be used for all types of parameter. It then
gets the new specification:

generic

type ELEMENT is private;

procedure SWAP (A, B : in out ELEMENT);

Between the reserved words generic and procedure is a list of the formal
generic parameters. In this case there is only one such parameter, the type
ELEMENT. (The reason for saying that the type is private will be explained in
Section 13.2.) The procedure must also have a body:

procedure SWAP (A, B : in out ELEMENT) is

TEMP : ELEMENT;

begin

TEMP := A; A := B; B := TEMP;

end SWAP;

This looks like a perfectly normal procedure, but it is not. It is a template that
defines a family of procedures. In the body of SWAP a generic parameter
ELEMENT is used. SWAP describes different procedures depending on the
'value' of ELEMENT. If ELEMENT has the 'value' FLOAT, for example, SWAP
describes a procedure that can be used to interchange the values of two variables
of type FLOAT. It is as though the word 'FLOAT' appeared in all the places
where ELEMENT actually appears.

Note that a generic procedure must have a separate specification.
The specification and the body may be two separate compilation units. The
specification must then be compiled before the body.
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Definition of a generic unit

First make a specification:
generic

declaration of generic parameters

subprogram declaration or package specification

Then give the body of the subprogram or package.

The specification and body may be two separate
compilation units.

If the procedure SWAP is to be used in a program, the program should
begin with:

with SWAP;

So far there is no 'real' procedure SWAP: there is only a template. To get a
procedure we have to use the template and generate or create a version of
SWAP. A particular version of a generic unit is called an instance of the generic
unit, and it is created by making a generic instantiation. When an instance of
a generic unit is created, the 'value' of the generic parameter has to be specified:
the actual generic parameters are stated. To instantiate a procedure that
can interchange two numbers of the type FLOAT, for example, we make the
declaration:

procedure SWAP_FLOAT is new SWAP(FLOAT);

Here FLOAT is the actual generic parameter. Now we have a true procedure that
can be called in the normal way. If the variables X and Y have the type FLOAT,
for example, we make the call:

SWAP_FLOAT(X, Y);

If we also want a procedure that can swap two character variables we can
instantiate a further instance of the procedure SWAP:

procedure SWAP_CHAR Is new SWAP(CHARACTER);

This produces a new procedure that can be called with:

SWAP_CHAR(C1, C2);

where C1 and 02 have the type CHARACTER.
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Instantiating generic units

Declaration is made using one of the forms:

procedure procedure_name is new
generic_procedure{ac\ua\ parameters);

function function_name is new

generic_function{acXua\ parameters);

package package_name is new
generic_package{act[ia\ parameters);

It is also possible to have generic packages. To demonstrate this we
will return to the character stack package of Section 11.4, which had the
specification:

package STACK.PACKAGE Is
type STACK Is limited private:
procedure PUSH (S : In out STACK; T : In CHARACTER);
procedure POP (S : In out STACK; T : out CHARACTER);
function EMPTY (S : STACK) return BOOLEAN;

private
type STACK_ELEMENT;
type STACK Is access STACK_ELEMENT;

end STACK_PACKAGE;

This package can only be used if you want to create stacks in which the elements
are of the type CHARACTER, but it can easily be made into a generic package.
We start by changing the specification:

generic
type ELEMENT Is private;

package STACK_PACKAGE Is
type STACK Is limited private;
procedure PUSH (S : In out STACK; T : In ELEMENT);
procedure POP (S : In out STACK; T : out ELEMENT);
function EMPTY (S : STACK) return BOOLEAN;

private

end STACK_PACKAGE;

We have introduced a generic parameter ELEMENT, which we have used
instead of the type CHARACTER. In the body of the package we now only need
to change CHARACTER to ELEMENT wherever it occurs.
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In a program which will use the generic package STACK_PACKAGE, you
first insert the clause;

with STACK_PACKAGE;

We assume that we have a type PERSON:

type PERSON is

record

NAME : STRING(1 .. 20);
ADDRESS : STRING(1 .. 30);

end record;

If we want two stacks, one where we can have elements of the type PERSON
and one for integers, we can create two instantiations and write:

package INT_PACKAGE Is new STACK_PACKAGE(INTEGER);
package PERSON_PACKAGE Is new STACK_PACKAGE(PERSON);
use INT_PACKAGE, PERSON.PACKAGE;

Then the two stacks can be declared:

ISTACK : INT_PACKAGE.STACK;

PSTACK : PERSON_PACKAGE.STACK;

(Point notation must be used here so that the compiler can know which of the
stacks is meant.) Now we can make the calls:

PUSH(PSTACK, P); -- P is of type PERSON
PUSH(ISTACK, I); - Ms of type INTEGER

Since the procedures PUSH in the two packages have different types, the
compiler can determine which of them should be used.

A generic unit can have any number of parameters. It is also possible to
have a generic unit without parameters. We can make use of this when several
identical packages with 'memory' have to be created. As an example, we can
look again at the package for generating random numbers in Section 8.7. In its
final form this had the specification:

package RANDOM Is
subtype NUMBER Is FLOAT range 0.0 .. 1.0;
function NEXT_NUMBER return NUMBER;
~ gives a random number greater than or
-- equal to 0 and less than 1

end RANDOM;
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By adding the word generic we can convert this into a generic package:

generic
package RANDOM is
subtype NUMBER is FLOAT range 0.0 .. 1.0;
function NEXT_NUMBER return NUMBER;

-- gives a random number greater than or
-- equal to 0 and less than 1

end RANDOM;

No changes are necessary in the body of the package. This generic package has
no parameters: there is nothing between the words generic and package. Now
we shall present a program that uses the generic random number generator to
produce two independent series of random numbers:

with TEXTJO, BASIC_NUMJO, RANDOM;

use TEXT.IO, BASIC_NUM_IO;
procedure RANDOM_DEMO is
package RAN DOM 1 is new RANDOM;
package RAND0M2 is new RANDOM;
X1 : RAND0M1 .NUMBER;

X2 : RAND0M2.NUMBER;

SUM1, SUM2 : FLOAT := 0.0;

begin
for I in 1 .. 100 loop
XI := RAND0M1.NEXT_NUMBER;

X2 := RAND0M2.NEXT_NUMBER;

SUM1 :=SUM1 +X1;

SUM2 := SUM2 + X2;

end loop;
PUTC'Mean 1:"); PUT(SUM1 /100.0); NEW_LINE;
PUTC'Mean 2:"); PUT(SUM2 /100.0); NEW_LINE;

end RANDOM_DEMO;

Two separate random number packages are created in the program, RAN DOM 1
and RANDOM2, each with its own set of internal variables and each working
independently of the other.

13.2 Generic parameters

When an instance of a generic program unit is created, it is as though the generic
formal parameters have been replaced by the corresponding actual parameters
and the generic unit has then been compiled. (For example, when the package
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PERSON_STACK was compiled, ELEMENT was replaced by PERSON.) The
mechanism for generic units is, however, more sophisticated than mere text
substitution.

A generic unit can, and should, be compiled before it is used. A kind
of partial compilation takes place. The compiler checks that the generic unit is
syntactically correct and translates it as far as is possible. When an instance is
later created, it is not a complete compilation that occurs - the compiler only
fills in the bits that are missing.

So that the compiler will know how a formal parameter will be used in a
generic unit, certain information has to be stated at the time of specification. When
we generated the generic package STACK, for example, we had to state that the
formal parameter ELEMENT would be a type and that the type would be private.

There are four different categories of generic parameter: value and
object parameters, type parameters, subprogram parameters and package
parameters. We will look at them one at a time.

13.2.1 Value parameters

Some generic parameters can look like ordinary subprogram parameters. They
can be of two kinds: in parameters, which are called value parameters, and In
out parameters, which are called object parameters. Since In out parameters
are not common and can lead to strange side-effects, we will ignore them here
and deal only with value parameters.

Let us look at an example. The stack package in the previous section
implemented a stack using linked lists. It is also possible to implement stacks
using arrays. We will rewrite the specification of the package:

generic
type ELEMENT Is private;
MAX_NUMBER : POSITIVE := 100;

package STACK_PACKAGE Is
type STACK Is limited private;
procedure PUSH (S : In out STACK; T : In ELEMENT);
procedure POP (S : In out STACK; T : out ELEMENT);
function EMPTY (S : STACK) return BOOLEAN;

private
type STACK Is
record

ELT_ARRAY : array(1 .. MAX_NUMBER) of ELEMENT;
TOP : NATURAL := 0;

end record;

end STACK_PACKAGE;

The first generic parameter is, as before, the type parameter which specifies the
type of the elements in the stack. The second parameter MAX_NUMBER is a
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value parameter which gives the maximum size of the stack. Note that it is
used in the declaration of the component ELT_ARRAY in the private part. It is
possible to give a value parameter a default value, as we have done here.

Now we can create different instantiations of STACK_PACKAGE:

package CHAR_PACKAGE Is new

STACK_PACKAGE(CHARACTER. 50);
package PERSON_PACKAGE is new

STACK_PACKAGE(PERSON, 25);

Variables of the type CHAR_PACKAGE.STACK will have space for at most 50
elements, and variables of the type PERSON_PACKAGE.STACK will have
space for 25 elements. Just as for calling a subprogram, named parameter asso
ciation is allowed so we could instead have written:

package CHAR_PACKAGE is new STACK_PACKAGE(SIZE => 50,
ELEMENT = > CHARACTER);

package PERSON_PACKAGE is new STACK_PACKAGE(ELEMENT
=> PERSON, SIZE => 25);

A value parameter that has a default value does not have to be given a value:

package INTEGER.PACKAGE is new STACK_PACKAGE(INTEGER);

Within the body of a generic program unit a generic value parameter is
treated like a constant. Thus, its value may not be changed.

Generic value parameters

parameter-name: type: = default-value

Default-value may be omitted.

13.2.2 Type parameters

The second category of generic parameters is that of type parameters. We have
already seen examples of this in the generic procedure SWAP, and in the generic
package STACK_PACKAGE. There, we wrote in the speckfication:

type ELEMENT is private;
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When a generic type parameter is specified the properties of the type are given,
for the reason that the compiler must know how the type is to be used in the
body of the generic program unit.

The type parameter ELEMENT has been declared to be private, which
means that the only operations on objects of type ELEMENT which may be used
in the body of the generic program unit are assignment and comparison.

It should be pointed out that this way of declaring type parameters must
not be confused with the private types we have discussed earlier in connection
with packages. A type being private in a package meant that the exact appear
ance of the type was only known inside the package. Outside the package
nothing was known about the type's appearance: the type belonged exclusively
to the package's private part. A private generic type parameter can be said to be
private Mn the opposite direction'. In the body of the generic program unit the
type's exact appearance is unknown: the only thing that is known is that only
assignment and comparison are allowed. It is outside the generic program unit,
in the program which creates an instantiation of the generic package, that it is
known exactly what the type looks like. If, for example, the package:

package CHAR_PACKAGE is new STACK.PACKAGE (CHARACTER);

is created, then it is known that in this package ELEMENT will be the same as
CHARACTER.

We will now construct a generic package as a further example of the use
of private generic type parameters, this time to enable lists to be built up of any
sort of element. The package should be so general that it is possible to insert and
remove elements anywhere in the list. In addition, it should be possible to move
both to the left and to the right within the list. This is the package's specification:

generic
type ELEMENT Is private;

package LIST_PACKAGE Is
type LIST Is limited private;
type DIRECTION Is (THE_START, THE_END, LEFT, RIGHT);
function EMPTY (L : LIST) return BOOLEAN;

procedure MOVE_POS (TO : DIRECTION; L : In out LIST);
function POS_MISSING (L : LIST) return BOOLEAN;
function VALUE (L : LIST) return ELEMENT;

procedure INSERT (E : In ELEMENT; WHERE : DIRECTION;
L : In out LIST);

procedure REMOVE (L : In out LIST);
LIST_POS_ERROR : exception;

private
type NODE;
type LINK Is access NODE;
type NODE Is
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record

NEXT. PREVIOUS : LINK;

DATA : ELEMENT;

end record;

type LIST is
record

FIRST, LAST, PCS : LINK;

end record;

end LIST_PACKAGE;

Again, we have named the generic type parameter ELEMENT. In the package
the type LIST is defined as well as a number of operations that can be performed
on lists. As usual, the implementation has been concealed in the package's
private part. A list is built up of a series of nodes, of type NODE. Apart from
data, each node contains pointers to the next and the previous node; thus this is
an ordinary doubly linked list. The difference between this and doubly linked
lists discussed earlier is to be seen in the type LIST. A list is described by three
pointers: one points to the first node in the list, one points to the last node and
the third points to a current node. This means that every list 'remembers' a
current position in the list. The idea is that the user of the list should be able to
move the current position in the list, thereby moving around in the list. To
set the current position you call the procedure MOVE_POS, the parameter TO
specifying the position to which the move should occur. You can say that it
should move to the start or the end of the list, or to the left or the right with
respect to the current position. If the list is empty, or if the current position has
not been set, or if the current position is moved outside the bounds of the list,
then there is no current position; the function POS_MISSING can be used to
investigate this. The function VALUE gives the value of the element in the
current position in the list. The procedure INSERT enables you to put a new
element into the list, the parameter WHERE stating if it should be first or last,
or to the left or the right of the current position. When a new element is placed
in the list, it automatically assumes the current position. The procedure
REMOVE takes away the element found in the current position. If there is in
fact no current position but a procedure or function is called that needs a
current position, such as REMOVE, then the exception LIST_POS_ERROR is
raised.

As an example of how this package might be used we will construct a list
of text strings which can be of different lengths. We will have pointers to the text
strings as the elements of the list, starting with the type declaration:

type STRING_POINTER is access STRING;

The next step is to create an instance of the package with the element type
STRING_POINTER, and to declare a list:
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package ST_PACKAGE is new LIST_PACKAGE(STRING_POINTER):
use ST.PACKAGE;

TEXT.LIST : LIST;

Now we can put text strings into the list, using for example the following
statements:

INSERT{new STRING'C'Hello"), THE_START, TEXT_LIST):
INSERT(new STRING'("Welcome"), THE_END, TEXT_LIST):
INSERT(NAME, LEFT, TEXT_LIST):

where we assume that NAME is of type STRING_POINTER.
To print the content of a list we can write:

MOVE_POS(THE_START, TEXT_LIST);

while not POS_MISSING(TEXT_LIST) loop
PUT_LINE(VALUE(TEXT_LIST).all):
MOVE_POS(RIGHT, TEXT.LIST);

end loop;

The penultimate element in the list can be removed by writing:

MOVE_POS(THE_END, TEXT.LIST);

MOVE_POS(LEFT, TEXT_LIST);

REMOVE(TEXT_UST);

Let us look at the body of the list package, where the doubly linked list is taken
care of. (The method of the extra empty node, demonstrated in Section 11.3, is
not used in this package. All the nodes are 'genuine' and are included in the list.)
For obvious reasons, this package body has a lot of pointer handlers, and looks
like this:

with UNCHECKED_DEALLOCATION;

package body LIST_PACKAGE is

function EMPTY(L : LIST) return BOOLEAN is
begin
return L.FIRST = NULL;

end EMPTY;

procedure MOVE_POS(TO : DIRECTION; L : in out LIST) is
begin

if TO in LEFT .. RIGHT and POS_MISSING(L) then
raise LIST_POS_ERROR;

end if;
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case TO is

when THE_START => LPOS

when THE_END => LPOS

when LEFT => L.POS

when RIGHT => L.POS

= LFIRST;

= L.LAST:

= L.POS.PREVIOUS:
= L.POS.NEXT;

end case;

end MOV.POS;

function POS_MISSiNG (L : LIST) return BOOLEAN Is
begin

return LPOS = null;

end POS_MISSING;

function VALUE(L : LIST) return ELEMENT Is
begin

If POS_MISSING(L) then
raise LIST_POS_ERROR;

end If;

return L.POS.DATA;

end VALUE;

procedure INSERT(E: In ELEMENT; WHERE : DIRECTION;
L: In out LIST) Is

P1, P2 : LINK;

begin
If WHERE In LEFT .. RIGHT and POS_MISSING(L) then
raise LIST_POS_ERROR;

end If;

case WHERE Is

= null; P2 := LFIRST;

= L.LAST; P2 := null;

= L.POS.PREVIOUS; P2 := LPOS;
= L.POS; P2 := L.POS.NEXT;

when THE_START => P1

when THE_END => P1

when LEFT => P1

when RIGHT => P1

end case;

-- insert new node between P1 and P2

L.POS := new N0DE'(P2, P1, E);
If P1 = null then

L.FIRST := L.POS; -- insert new node first in list

else

P1.NEXT := LPOS;

end If;

If P2 = null then

L.LAST := L.POS; -- insert new node last in the list

else

P2.PREVIOUS := L.POS;

end If;

end INSERT;
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procedure FREE is new UNCHECKED_DEALLOCATION(NODE, LINK);

procedure REMOVE{L : in out LIST) is
P : LINK := L.POS;

begin
if POS_MISSING(L) then
raise LIST_POS_ERROR;

end if;

if RPREVIOUS = null then

LFIRST := RNEXT; - remove the first node
else

P PREVIOUS.NEXT := RNEXT;

end if;

if RNEXT = null then

L.LAST := RPREVIOUS; -- remove the last node

L.POS := LLAST;

else

RNEXT.PREVIOUS := RPREVIOUS;

LPOS := RNEXT;

end if;

FREE(P);
end REMOVE;

end LIST_PACKAGE;

A generic type parameter can also be made a private limited type, which means
that not even the operations of assignment and comparison are allowed:

type T is limited private;

The next category of type parameter we will look at is that of discrete types:

type T is (< >); -- T is a discrete type

This means that T can be presumed to be a discrete type in the body of the
generic program unit, that is, an enumeration type or an integer type. As an
example we will return to the package SET_PACKAGE that we worked with in
Section 8.8, which described the abstract data type sets of characters. In that
example a set was implemented as an array of type BOOLEAN, the index
type being CHARACTER. It is now easy to write the set package as a generic
package so that it can be indexed by an arbitrary discrete type:

generic
type ELEMENT Is (< >);

package SET_PACKAGE is
type SET Is private;
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function "+" (E : ELEMENT; S : SET) return SET;

private
type SET Is array (ELEMENT) of BOOLEAN;

end SET.PACKAGE;

The body of the package and the specification in general resemble those
developed in Section 8.8, the difference being that the sets now have elements
of the type ELEMENT instead of the type CHARACTER.

Now we can use this generic package in a program to create different
kinds of sets. If we have the type declarations:

type DAY Is (MONDAY, TUESDAY. WEDNESDAY.
THURSDAY, FRIDAY. SATURDAY. SUNDAY);

type LiTTLENUMBER Is range 0.. 100;

then we can create two instances of the set package:

package DAY.PACKAGE Is new SET_PACKAGE(DAY);
package NUM_PACKAGE Is new SET_PACKAGE(LITTLE_NUMBER);

In both these declarations the actual generic parameter is a discrete type. It
would be illegal to try and create an instance of the set package and state a type
that is not discrete, such as FLOAT. If we insert the line:

use DAY_PACKAGE. NUM_PACKAGE;

then we can declare the sets:

DAY.SET : DAY_PACKAGE.SET

NUM_SET1 : NUM_PACKAGE.SET

NUM SET2 : NUM PACKAGE.SET

= EMPTY_SET;

= EMPTY_SET;

= EMPTY_SET;

We must use the selector notation to state which type of set we are referring to
because the compiler cannot determine it from the context. However, selector
notation is not needed in the initialization expression. There, the compiler
'understands' which of the functions EMPTY_SET should be used. The three sets

can be treated in the same way as before. We can, for example, have the statements:

DAY_SET := MONDAY + DAY_SET;

NUM_SET1 := NUM_SET2 - 23;

If NUM_SET1 <= NUM_SET2 then

A generic type parameter can also be specified to be a numeric type. A type
parameter that will be an integer type is stated by writing:
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type T is range <>; - T will be an integer type

and a type parameter that will be a floating point type is written:

type T Is digits <>; - T will be a floating point type

As an example of this we shall study a generic function that can be used to
evaluate the largest component in an array of floating point components:

generic

type FLOAT_NR is digits < >;
type TAB is array (INTEGER range < >) of FLOAT_NR:

function MAX (T : TAB) return FLOAT.NR;

Here is something new. There are two generic parameters, FLOAT_NR and TAB.
When a generic parameter is declared, generic parameters declared earlier can
be used. In the declaration of TAB we have stated that the elements should be of

type FLOAT_NR, that is, they can be of any floating point type. The function's
body is:

function MAX (T : TAB) return FLOAT_NR is
M : FLOAT_NR := LOAT.NR'LAST;

begin

for I in TRANGE loop
if T(l) > M then
M := T(l):

end if;

end loop;

return M;

end MAX;

Here we have made use of the fact that FLOAT_NR is a floating point type and
used the attribute LAST, which exists for all floating point types. We also know
that the parameter T is of an array type; we can therefore use the attribute
T'RANGE and index T.

In the specification of MAX we have assumed that the type TAB should
have an index of type INTEGER. This is an unnecessary limitation. If we want
the index type to be any discrete type, we can add a further generic parameter
and give the specification:

generic
type INDEX is (< >);
type FLOAT_NR is digits < >;

type TAB is array (INDEX range < >) of FLOAT_NR;
function MAX (T : TAB) return FLOAT_NR;
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Now we can create some instances of MAX. If we make the type declaration:

type VECTOR Is array (INTEGER range < >) of FLOAT;

we can create an instance of MAX that looks for the largest number in an array
of type VECTOR:

function MAX_NO is new MAX(INTEGER, FLOAT, VECTOR);

Thus we state three actual parameters. The function MAX_NO can now be called
in the usual way with a parameter of type VECTOR.

Another instance of MAX can be created if we have the type declarations:

type TEMP Is digits 5;
type DAY is (MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY,

SUNDAY);

type TEMP_MEASURES Is array (DAY range < >) of TEMP;

The declaration:

function MAX_TEMP Is new MAX(DAY, TEMP, TEMP_MEASURES);

then produces a function that can find the largest component in an array of the
type TEMP_MEASURES.

A generic type parameter can also be specified to be an access, or pointer,
type, by writing:

type T Is access 0; -- T is an access type

The type 0 can be any type at all, even a previously specified generic type para
meter.

In Ada 95 there are further forms of generic type parameters which are used in
connection with tagged types, and they will be discussed in the next chapter.

In Ada 95, it is permitted to specify what are called unknown discrimi
nants for all forms of type parameters, denoted by (< >) after the name of the
type. As an example, we can write:

type T (< >) Is private;

This means that the size of a variable of type T is unknown, and that variables
of type T cannot be declared within the body of the generic package without an
initial value specifying the size of the variable. If you now want to instantiate
the generic unit with type T replaced by type STRING, there is no risk of errors
caused by the length of variables of type STRING being unknown.
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Generic type parameters

The following forms are possible:

type T is private;
-- T is any type that allows assignment and com

parison

type T is limited private;
" T is any type
~ assignment and comparison need not exist

type T is (< >);
- T is a discrete type (enumeration or integer

type)

type T is range < >;
" T is an integer type

type T is digits < >;
- T is a floating point type

type T is array {index_type) of element_type-,
- T is an array type

type T is access any_type;
" T is an access type

type T is tagged private;
" T is any tagged type that allows assignment and
comparison

type T is tagged limited private;
~ T is any tagged type

type T is new TO with private;
" T is any type which is derived from type TO

The last three forms can also be specified as
abstract:

type T is abstract...;

13.2.3 Subprogram parameters

The third category of generic parameter is the subprogram parameter. As a first
example we shall study a problem to do with lists. Assume we have a list L:

L = (l„ I2, l3,..., l„)

Now assume we have a function / that we want to apply to every element in L.
Thus we want a list:
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The elements in the list may, for example, be integers and the function/may
be:

J{x) = -v-

In this case we want to have a list where each element is the square of the
corresponding element in the original list. Another example is that we have a list
where the elements are single characters. The function may then be a function
that translates any upper-case letters in the list into lower case.

We shall now give a specification for a generic function APPL, which will
be applicable to different kinds of lists and different functions/. As its result,
APPL gives a new list where the function /has been applied to every element.
We assume that a list is represented using an unconstrained array type, each ele
ment in the list being stored as a component of the array. The specification of
the generic function APPL then appears as follows:

generic
type ELEMENT Is private;
type LIST Is array (POSITIVE range < >) of ELEMENT;
with function F (E : ELEMENT) return ELEMENT;

function APPL (L : LIST) return LIST;

We have three generic parameters: ELEMENT, LIST and F. ELEMENT and LIST
are type parameters and F is a subprogram parameter. A declaration of a
subprogram parameter is introduced by the reserved word with. Afterwards a
subprogram declaration is written in the normal way, and in it may be used any
generic parameters that have been declared previously. In the declaration of F,
for example, we have used the type parameter ELEMENT.

The body of APPL is simply:

function APPL (L : LIST) return LIST Is
NEW_L: LIST(L'RANGE);

begin

for I in L'RANGE loop
NEW_L(I) := F(L(I));

end loop;

return NEW_L;

end APPL;

Now the generic function APPL can be used in a program. Let us assume we
have the type declaration:

type NUMBER_LIST Is array (POSITIVE range < >) of INTEGER;

and the functions:
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function SQUARE (X : INTEGER) return INTEGER Is
begin

return X ** 2;

end SQUARE;

function TRANSLATE (C : CHARACTER) return CHARACTER Is
DIFF: constant

:= CHARACTER'POS('a') - CHARACTER'PQS(A');

begin
If C In A'.. 'Z' then

return CHARACTER'VAL(CHARACTER'POS(C) + DIFF);
else

return C;

end If;

end TRANSLATE;

Then we are able to create two instances of APPL:

function QUAD Is new

APPL(INTEGER, NUMBER_LIST, SQUARE);
function LC Is new

APPL(CHARACTER, STRING, TRANSLATE);

Thus the function's name is given as an actual parameter. In QUAD the function
F will become SQUARE. Every call to F in the body of APPL will mean a
call to SQUARE. In LC, in the same way, F will be identified as the function
TRANSLATE.

If the variables L1 and L2 have the type NUMBER_LIST, we can now
write the statement:

L2 := QUAD(L1);

L2 will then hold the squares of all the numbers in L1. If S1 and S2 have the
type STRING, the corresponding statement can be written:

S2 := LC(S1);

Then S2 will contain all the characters in S1 but the upper-case letters will have
been translated into lower case.

Generic subprogram parameters can be given default values. If, for
example, we have a generic procedure parameter P (without parameters) and we
want to give it the default value PDEF, we write;

procedure P is PDEF;
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This means that the procedure PDEF will be used in the body of the generic unit
if no actual parameter is given for P.

It may not be of much use to give a special subprogram as default value.
The follovi'ing way of assigning a default value is more useful:

function "+" (E1, E2 : ELEMENT) return ELEMENT Is < >;

First, note that a subprogram parameter can have an operator name. Here we
have used the name "+". The symbol < > denotes that if no actual parameter is
given when an instance of the generic unit is created then the function "+" for
the type ELEMENT should automatically be used. If ELEMENT is given the type
INTEGER, for example, then "+" is, of course, defined for that type and this
normal"+" operator is to be used.

As a final example we shall write a generic procedure that can be used to
sort all kinds of arrays, with any component type and index type. We make the
specification:

generic
type INDEX Is (< >);
type ELEMENT Is private;
type ARRAY_TYPE Is array (INDEX range < >) of ELEMENT;
with function "<" (E1, E2 : ELEMENT) return BOOLEAN Is < >;

procedure SORT (A : In out ARRAY_TYPE);

We have four generic parameters: the index type, the component type, the
type of the array and a subprogram parameter "<" which is used to denote the
function that compares two components in an array.

In the body of SORT we use the sort algorithm described in Section 5.9.
The body is then:

procedure SORT (A : In out ARRAY-TYPE) Is
M : INDEX;

T : ELEMENT;

begin

for K In A'FIRST .. INDEX'PRED(A'LAST) loop
~ find smallest element between K and A'LAST

M :=K;

for I In INDEX'SUCC(K).. A'LAST loop
If A(l) < A(M) then
M := I;

end If;

end loop;

- swap elements in Kth and Mth positions
T := A(K); A(K) := A(M); A(M) := T;

end loop;

end SORT;
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Note that we have written:

INDEX'SUCC(K)

instead of:

K+ 1

The reason for this is that INDEX does not need to be an integer type and an
addition operator may not be defined.

The comparison operator "<" which is used in the expression:

F{l) < F(M)

is the function that is described in the subprogram parameter "<" in the specifi
cation.

We can show some examples of the use of SORT. Assume we have the
type declarations:

type NO_ARRAY is array (NATURAL range < >) of INTEGER;
type PERSON is
record

NAME : STRING(1 .. 20);

ADDRESS : STRING(1 .. 30);
end record;

type NAME_TAB is array (POSITIVE range < >) of PERSON;
type DAY is (MONDAY, TUESDAY. WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY, SUNDAY);

type TIME is digits 4;
type WEEK_TAB is array (DAY range < >) of TIME;

and that we have declared the variables N, P and W:

N

P

W

N0_ARRAY(1 .. 50);
NAME_TAB(1 .. 200);
WEEK_TAB(MONDAY .. FRIDAY);

Two people can be compared with the function:

function BEFORE (P1, P2 : PERSON) return BOOLEAN is
begin
return P1.NAME < P2.NAME;

end BEFORE;

Now we are ready to create three different instances of SORT:
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procedure NO_SORT is new SORT
(NATURAL, INTEGER, NO_ARRAY,

procedure PERS_SORT is new SORT
(POSITIVE, PERSON, NAME.TAB, BEFORE);

procedure TiME_SORT is new SORT
(DAY, TIME, WEEK.TAB);

In the declaration of NO_SORT we have given the subprogram parameter the
value Here "<" denotes the normal comparison operator for integers. Since
the subprogram parameter had the default value <> in the specification, we
could have left out the actual parameter, thus:

procedure NO_SORT is new SORT(NATURAL, INTEGER, NO_ARRAY);

Then the normal comparison operator for integers would be automatically
assumed. In the declaration of TIME_SORT we have used this simpler form.
There is no standard "<" for the type PERSON, so we have had to give the
function BEFORE as an actual parameter.

The three arrays N, P and W can now easily be sorted with the calls;

NO_SORT(N);
PERS_SORT(P);
TIME_SORT(W);

Generic subprogram parameters

with subprogram_declaration;

Default values can be given using one of the forms:

with subprogram_declaration is
subprogram_name]

with subprogram_declaration is < >;

13.2.4 Package parameters

We have now seen how we can use different kinds of generic parameters to give
generic units the correct properties. In some cases there can be a great many
generic parameters. In Ada 95 it is permitted to have generic packages as
generic parameters to another generic unit. When we construct a generic pack
age P2, for example, then we are allowed to have another generic package P1
as a parameter to P2, writing:
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generic

with package PARAM Is new P1 (< >);
package P2 Is

end P2:

As an example, we might want to construct a generic package VECTOR_
PACKAGE for handling different kinds of vectors, and it has to work for
various floating point types. Suppose that there is another generic package,
MATH_PACKAGE, containing a number of mathematical operations which
can be used when constructing VECTOR_PACKAGE. The specification of
MATH_PACKAGE is:

generic

type FLOAT_PT_TYPE Is digits < >;
package MATH_PACKAGE Is

end MATH_PACKAGE;

Thus different instances of the package can be created for different floating
point types. When it comes to writing VECTOR_PACKAGE, MATH_PACKAGE
can be used as a generic package parameter.

generic

with package MPACK Is new MATH_PACKAGE (< >);
package VECTOR_PACKAGE Is
type VECTOR Is array (POSITIVE range < >)

of MPACK.FLOAT_PT_TYPE

end VECTOR_PACKAGE;

Everything that is declared in the specification of MATH_PACKAGE is now
available in VECTOR_PACKAGE. (A use clause or point notation can be used.)
The generic parameters of MATH_PACKAGE are also available.

In order to instantiate VECTOR_PACKAGE you first have to have a
suitable instantiation of MATH_PACKAGE. If, for example, we want to work
with the type FLOAT we can write:

package MATH_FLOAT Is new MATH_PACKAGE(FLOAT);

Then an instance of the vector package can be created:

package VECTOR_FLOAT Is new VECTOR_PACKAGE(MATH_FLOAT):
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Generic package parameters

with package parameter_name is new
GEN_PACK(< >):

where GEN_PACK is a generic package.

13.3 Generic child packages

In Section 8.9 we discussed how to construct child packages. In this chapter
we have seen how generic units can be used to construct general and reusable
software. Now we are going to study how to combine these two powerful mech
anisms, and the best way to do this is to use an example. Our starting point is
the package QUEUE_PACKAGE, which was introduced in Section 8.8. This
package described the abstract data type QUEUE, for which the type of the
elements was CHARACTER. It is easy to change the package into a generic
package so that it can be used to construct different sorts of queues, with differ
ent element types. At the same time we introduce a generic value parameter
MAX_NUMBER which gives the maximal size of the queue. The generic
package is called GEN_QUEUE_PACKAGE.

The specification is as follows;

generic
type ELEMENT Is private;
MAX_NUMBER : POSITIVE := 100;

package GEN_QUEUE_PACKAGE is
type QUEUE is limited private;
procedure PUT_IN (Q : in out QUEUE; E : in ELEMENT);
procedure TAKE_OUT (Q : in out QUEUE; E : out ELEMENT);
function EMPTY (Q : in QUEUE) return BOOLEAN;

private
type ELEMENT_ARRAY is array (INTEGER range <>) of ELEMENT;
type QUEUE is
record

ELEMENT_ARRAY (1..MAX_NUMBER);BUF

NUMBER : NATURAL

FIRST : POSITIVE

LAST : POSITIVE

end record;

end GEN_QUEUE_PACKAGE;

= 0;

= 1;
= MAX_NUMBER;

As in Section 8.9 we add a child package containing the operation LENGTH.
The specification of the child package is:
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generic
package GEN_QUEUE_PACKAGE.GEN_EXTRA Is
function LENGTH{Q : QUEUE) return NATURAL;

end GEN_QUEUE_PACKAGE.GEN_EXTRA;

Note: A non-generic parent package may have either generic or non-generic
child packages, but a generic parent package (as we have here) is only allowed
to have generic child packages. The reserved word generic must therefore
appear first in the child package specification.

It is not necessary to show the bodies of the two packages here; they
look exactly the same as in Chapter 8. The only difference is that the type
CHARACTER should be replaced everywhere by the type ELEMENT.

To demonstrate how to create instances of the packages we now construct
a small program which reads integer numbers from the keyboard and puts them
in a queue. When all numbers have been read the program prints out the length
of the queue.

with TEXTJO, BASIC_NUM_IO, GEN_QUEUE_PACKAGE.GEN_EXTRA;
use TEXTJO, BASIC_NUM_IO;

procedure QUEUE_DEM01 is
package PAK1 is new GEN_QUEUE_PACKAGE(INTEGER);
package PAK2 is new PAK1 .GEN_EXTRA;
use PAK1, PAK2;

0 : QUEUE;

1  : INTEGER;

begin
while not END_OF_FILE loop
GET(I);
PUTJN{Q, I);

end loop;
PUT(LENGTH(Q));

end QUEUE_DEM01;

The program needs access to the two generic packages GEN_QUEUE_PACKAGE
and GEN_QUEUE_PACKAGE.GEN_EXTRA. Therefore GEN_QUEUE_ PACKAGE.

GEN_EXTRA is mentioned in the with clause. Within the procedure an instance
of GEN_QUEUE_PACKAGE must first be created. The element type is defined
as INTEGER. This instance is given the name PAK1. The following rules now
apply: if a generic child package has been declared for a generic parent package,
then there will be one corresponding generic child package for each instance of
the parent package. In our example this means that when we create the instance
PAK1 we will automatically get a generic child package named PAK1 .GEN_EXTRA.
We must create an instance of this child package. In the example this instance is
called PAK2. Observe that it is not possible to create instances of the generic
child package GEN_QUEUE_PACKAGE.GEN_EXTRA directly. An instance of
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the parent package must always be created first. Also observe that PAK2 is a
simple name without periods since child packages may not be declared inside
subprograms. Child packages must, as mentioned in Chapter 8, be library units;
that is, they must be declared in the outermost level in the program.

We shall now show a variant of the example, in which the instances are
created in the outermost level and therefore become library units. First we
create an instance of the generic parent package, which is given the name
INT_QUEUE_PACKAGE.

with GEN_QUEUE_PACKAGE;
package INT_QUEUE_PACKAGE is new
GEN_QUEUE_PACKAGE(INTEGER);

The next step is to create an instance of the generic child package. Since the
language rules say that there is a generic child package for each instance of the
parent package, there is a generic child package named INT_QUEUE_
PACKAGE.GEN_EXTRA and we are going to create an instance of that package.
(However, observe that GEN_QUEUE_PACKAGE.GEN_EXTRA should be
mentioned in the with clause.)

with GEN_QUEUE_PACKAGE.GEN_EXTRA;

package INT_QUEUE_PACKAGE.INT_EXTRA Is new
INT_QUEUE_PACKAGE.GEN_EXTRA;

We give the instance of the child package the name INT_QUEUE_
PACKAGE.INT_EXTRA. This name indicates that it is a child package. It is, as
we know, permissible to create child packages on this level.

The four lines above constitute two separate compilation units. When
these units have been compiled, two 'real' non-generic packages exist in the
Ada library. These packages can be referred to in the normal way in a with
clause. This is done in the second version of the demo program:

with TEXT_IO, BASIC_NUMJO, INT_QUEUE_PACKAGE.INT_EXTRA;
useTEXTJO, BASIG_NUMJO, INT_QUEUE_PACKAGE; use INT_EXTRA;
procedure QUEUE_DEM02 Is
Q : QUEUE;

I  ; INTEGER:

begin
while not END_OF_FILE loop

GET(I);
PUTJN(Q, I);

end loop;

PUT(LENGTH(Q));

end QUEUE_DEM02:
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Now we shall use child packages to demonstrate an important concept, the
iterator. Once more the generic package GEN_QUEUE_PACKAGE is our
starting point. If we study the specification of this package we notice that there
are operations to insert and take out elements from a queue, but we lack the
possibility of running through and looking at all elements in a queue without
taking out or inserting elements. Of course, the package can be extended with
operations to accomplish this (see the package LIST_PACKAGE in Section
13.2.2, for instance). However, another method, which has certain advantages,
is to use an iterator. An iterator is a separate variable which is linked to a data
collection, to a queue or to a tree, for instance. The iterator can then be used as
a tool to run through the data collection and visit all its elements. The data
collection is not used directly. One advantage with iterators is that it is possible
to link more than one iterator to a certain data collection at the same time.

For instance, you can run through a queue from the beginning to the end
at the same time as you run through it backwards from the end to the beginning.
To demonstrate iterators we declare the following child package of GEN_
QUEUE_PACKAGE:

generic

package GEN_QUEUE_PACKAGE.ITERAT0R1 Is

type QUEUEJTERATORI (Q : access QUEUE) is limited private;
function FINISHED (01: QUEUEJTERATORI) return BOOLEAN;

procedure NEXT (01: in out QUEUEJTERATORI);

function READ (01: QUEUEJTERATORI) return ELEMENT;

procedure CHANGE (01: QUEUEJTERATORI; E : ELEMENT);
procedure AGAIN (01: in out QUEUEJTERATORI);

ITERATOR_ERROR: exception;

private

type QUEUEJTERATORI (0 : access QUEUE) is

record

INDEX : POSITIVE := Q.FIRST;

NUMBER_VISITED : POSITIVE := 1;

end record;

end GEN_QUEUE_PACKAGE.ITERAT0R1;

Here a new type QUEUE_ITERATOR1 is declared. Now the idea is to declare a
separate iterator of type QUEUE_ITERATOR1 each time you want to run
through a queue. (A queue is a variable of type QUEUE declared in the package
GEN_QUEUE_PACKAGE.)

We can postpone the investigation of the package body until later and
instead start to demonstrate how everything is supposed to be used. To be able
to do this we must first create suitable instances of the generic packages. Let us
suppose that these instances are declared inside a procedure and that we want a
queue in which the elements are of type INTEGER.
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with GEN_QUEUE_PACKAGE.ITERAT0R1:

package INT_QUEUE_PAK is new GEN_QUEUE_PACKAGE(INTEGER):
package INTJT_PAK1 is new INT_QUEUE_PAK.ITERAT0R1;
use INT_QUEUE_PAK, INT_IT_PAK1:

We notice that the type QUEUEJTERATOR1 in its declaration has some sort of
parameter named Q. This is a so-called discriminant. Discriminants can be
treated as 'ordinary' components in a record, but they may also be used to
initialize record components or to specify index bounds. In Section 7.5 we also
saw how discriminants could be used to construct records with variants. In Ada

95 discriminants may be either of discrete type (integer type or enumeration
type) or, as we have here, of access type. When a variable is declared of a type
having discriminants the discriminants must be given values (unless the
discriminant has a default value, but that is not the case here).

Discriminants

type T(declaration of discriminants) Is ...;

Type parameters. May be of either discrete type or
access type. Treated as ordinary components, but
must not be changed. Can, for instance, be used to ini
tialize other components or to specify index bounds.

When an object of the type is declared the discrimi
nant must be given values:

OBJ : T(values for the discriminants);

To get a queue with an accompanying iterator we can make the variable
declarations:

THE_Q : aliased QUEUE;

IT: QUEUE_ITERAT0R1(THE_Q'ACCESS);

From the declaration of the type QUEUE_ITERAT0R1 we can see that the
discriminant should be a pointer to a QUEUE. Therefore we give a pointer to
THE_Q as a parameter when the variable IT is declared. Now the iterator IT has
been linked to the queue THE_Q and the component Q in IT points at THE_Q.

If we want to run through the queue we use the iterator IT. Here is an
example of a part of a program which runs through the queue THE_Q and sets
all elements less than zero in the queue to zero. (The variable N has the type
INTEGER.)
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while not FINISHED(IT) loop
N := READ(IT):

if N < 0 then

CHANGE(IT, 0):

end If;

NEXT(IT):
end loop;

The operation FINISHED is used to test whether all elements in the queue have
been visited. The operation NEXT moves the iterator to the next element in the
queue. We automatically start with the first element. There is one more opera
tion for the type QUEUE_ITERAT0R1, the operation AGAIN which can be used
when we want to restart from the beginning of the queue and run through it once
more.

Now we should study how the iterator has been implemented. In the
parent package GEN_QUEUE_PACKAGE the queue itself has been imple
mented using an array, a so-called circular buffer (see Section 8.8). An iterator
is a record. The component INDEX holds the index of the current element in the
array; INDEX is initialized to hold the index of the first element in the queue.
The component NUMBER_VISITED holds the number of elements the iterator
has visited so far. Since the iterator is initialized so that the first element is vis

ited automatically, one element has been visited and NUMBER_VISITED is
therefore initialized to 1. Each time the operation NEXT is called, the compo
nent NUMBER_VISITED is incremented by one, and the component INDE)< is
made to point at the next element in the queue. (When this is done we must be
aware of the fact that the buffer is circular and therefore sometimes we must

move to the beginning of the array.) The component NUMBER_VISITED is
used by the operation FINISHED to check if all elements in the queue have been
visited.

The package body looks as follows. Note how the iterator uses its
discriminant Q to get access to the queue to which it is linked. The help function
CHECK_FINISHED is called to check that we have not run too far in a queue.

package body GEN_QUEUE_PACKAGE.ITERATOR1 Is
function FINISHED (Ql : QUEUE_ITERAT0R1) return BOOLEAN Is
begin

return QI.NUMBER.VISITED > QI.Q.NUMBER;
end FINISHED;

procedure CHECK_FINISHED(QI : QUEUEJTERATORI) Is
begin

If FINISHED(QI) then
raise ITERATOR_ERROR;

end If;

end CHECK_FINISHED;
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procedure NEXT (Ql: in out QUEUEJTERATORI) is
begin
CHECK_FINISHED(QI);
QI.NUMBER.VISITED := QI.NUMBER_VISITED + 1;

QI.INDEX := QI.INDEX mod MAX_NUMBER + 1;

end NEXT;

function READ (Ql : QUEUEJTERATORI) return ELEMENT is
begin
CHECK_FINISHED(QI):
return QI.Q.BUF{QI.INDEX);

end READ;

procedure CHANGE (Ql: QUEUEJTERATORI; E : ELEMENT) is
begin
CHECK_FINISHED(QI);
QI.Q.BUF(QLINDEX) := E;

end CHANGE;

procedure AGAIN (Ql: in out QUEUE_ITERAT0R1) is
begin
QI.INDEX := QI.Q.FIRST;
QI.NUMBER_VISITED := 1;

end AGAIN;

end GEN_QUEUE_PACKAGE.ITERAT0R1;

Iterators are often used in modem software. Their details can vary, but still the
fundamental idea is the same: to use a separate variable to run through a data
collection. A common variant is to let the operation NEXT return a pointer to the
visited element (an empty pointer indicates that all elements have been visited),
then the two operators READ and CHANGE are not needed. This variant can
only be used when it is possible to access all elements in the queue via a pointer,
and this may not always be the case.

The exact implementation of an iterator is dependent on the implementa
tion of the data collection, of course. If, for instance, a queue is implemented as
a linked list instead of an array, then the iterator has to use a pointer instead of
an index to keep track of the current element.

Now we shall show an alternative iterator. We constmct a new child package:

generic
with procedure VISIT_ELEMENT (E : in out ELEMENT);

package GEN_QUEUE_PACKAGE.ITERATOR2 Is
type QUEUE_ITERAT0R2 (Q : access QUEUE) Is limited private;
procedure ITERATE (Ql: in out QUEUE_ITERAT0R2);

private
type QUEUEJTERATOR2 (Q : access QUEUE) Is null record;

end GEN_QUEUE_PACKAGE.ITERATOR2;
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The type QUEUE_ITERATOR2 is a private record type with a discriminant.
Since there are no components in a record of this type we write null record.
This has the same meaning as writing the longer

record

null;

end record;

The only operation that is defined for the type QUEUE_ITERAT0R2 is the
procedure ITERATE which runs through all elements in a queue. In order for
ITERATE to know what to do with every visited element, the package has a
generic subprogram parameter VISIT_ELEMENT, which is called by ITERATE
for each element. The body of the package becomes

package body GEN_QUEUE_PACKAGE.iTERAT0R2 Is

procedure ITERATE (Ql: In out QUEUE_ITERAT0R2) Is

INDEX : POSITIVE := QI.Q.FiRST;

begin

for i In 1.. QI.Q.NUMBER loop

VISIT_ELEMENT(QI.Q.BUF(INDEX));

INDEX := INDEX mod MAX_NUMBER + 1;

end loop;

end ITERATE;

end GEN_QUEUE_PACKAGE.ITERATOR2;

Suppose that, as happened before, we want to run through a queue and set all
elements that are less than zero to zero. We write a program with the following
structure:

with GEN_QUEUE_PACKAGE.ITERAT0R2;

procedure ITDEMO Is

procedure TO_ZERO (E : In out INTEGER) Is

begin

If E < 0 then

E := 0;

end If;

end TO.ZERO;

package INT_QUEUE_PAK Is new GEN_QUEUE_PACKAGE (INTEGER);

package INTJT_PAK2 Is new INT_QUEUE_PAK.ITEFIAT0R2 (TO_ZERO);

use INT_QUEUE_PAK, INT_IT_PAK2;

THE_Q : aliased QUEUE;

IT : QUEUE_ITERATOR2(THE_Q'ACCESS);
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begin
-- Construct the queue

ITERATE(IT): -- Set all elements < 0 to 0

end ITDEMO;

An iterator of type QUEUE_ITERAT0R2 is simpler to use and more elegant than
an iterator of type QUEUE_ITERAT0R1. The user never has to do the iteration,
since it is built into the operation ITERATE. However, there are times when an
iterator of type QUEUEJTERAT0R1 must be used. One such occasion is when
you do not want to run through all elements at the same time. Another case is
when the element visits give a common result. We could calculate the sum of all
elements in an integer queue, for instance. In this case, if you want to use the
second variant of iterator you must put the result in a global variable, and this
should normally be avoided.

EXERCISES

13.1 Write a generic procedure ORDER that has two parameters A and B of unspecified type.
After calling an instance of the procedure, A must be less than B. (Assume that A and B
are of types where the operator < is defined.) Create two instances of the procedure
ORDER, one to order two integers and the other to order two text strings.

13.2 Make a specification of the package RANDOM_PACKAGE so that the two constants K
and M that are used in the random number generation can be stated as generic value
parameters. (See Section 8.7.)

13.3 Rewrite the package QUEUE_PACKAGE from Section 11.4 so that it describes an
abstract data type QUEUE in which the elements are of arbitrary type. Create instances
of the package which describe the abstract data types floating point queue and
person_queue. Then declare two floating point queues and a person queue.

13.4 Write a generic function NEXT that can be used for arbitrary enumeration types. The
function should have an enumeration value as parameter and return the next value in the
type when called. If the function gets the last value as parameter it should return the first
value as its result. (If there is an instance of the function for the type
DAYS_OF_THE_WEEK, then a call with SUNDAY as parameter should return MONDAY
as result.)

13.5 Write a generic function FIND that can be used to find a certain element in an array of
arbitrary type. FIND should have an array and an element value as parameters and, as
result, should give the index value for the place in the array where the sought element is
to be found.
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13.6 Write a generic function that adds the elements in an array of arbitrary type. The
function should have as generic parameter a subprogram parameter which adds
two elements of the component type of the array. Give the subprogram parameter an
appropriate default value.

13.7 Write a generic package that handles a binary search tree where the elements are of arbi
trary type. The package should contain the subprograms INSERT, REMOVE and
FOUND which, respectively, inserts an element in the tree, removes an element from the
tree, and investigates whether a certain element is to be found in the tree. The package
should have '<' and '=' as generic parameters, where '<' determines if one element is
less than another and '=' determines whether two elements are equal.

13.8 Rewrite the generic procedure SORT from Section 13.2.3 so that instead of having
four generic parameters it has only one generic package parameter. This generic pack
age should contain all the declarations that are needed in SORT, and the body of the
package can be empty.
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'Object-oriented' is one of the latest in-words in the computer world. You
hear of object-oriented design, object-oriented programming, object-
oriented analysis and so on. What does 'object-oriented' mean? There is no
absolute definition. One way of trying to describe object-orientation is to say
that it is a new approach to program development, in which a program system
is built up according to the objects it involves rather than according to the
functions it should perform. Another way of looking at object-orientation is
from a more technical perspective and trying to describe the idea of 'object-
oriented programming'. In object-oriented programming, a program is built up
of a number of well-delimited units called objects. The whole program is built
up around the following two constructs:

• Encapsulation (information hiding). Everything that describes the
properties of an object - both data and operations - is collected to a
single place in the program. The details of a particular object are also
hidden so that other objects do not need to see the details and cannot
access them.

559
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•  Inheritance. It is possible to describe an object by referring to the
properties of another object and adding to them. One idea of object-
oriented programming is that objects constructed earlier should be
reusable, with the help of the mechanisms of inheritance, by modifying
and adapting them to current needs.

What, then is object-oriented design? As we discussed in Section 2,1,
the design phase in the development of a program is the phase immediately
prior to the implementation phase, the phase when programming takes place.
Object-oriented design can therefore be said to be the activity of planning an
object-oriented program - drawing the plans of a program which is planned
to be object-oriented. The most important thing is to decide what objects
are to be included in the program and how they should be related to one
another.

Before the design phase comes the analysis phase, when you try to
understand and establish what the program should do. Object-oriented analysis
can thus be said to be the activity of trying to understand the world around
the program, when you try to build up a model of this world. The model
has to be grounded in objects, or things, which are found in the world of
the program.

Of course, this is a little vague. The three activities of object-oriented
analysis, design and programming merge with one another and the boundaries
are not fixed. In this book we will only be discussing object-oriented
programming, the most concrete of the three activities, since it is based on
specific properties of programming languages.

We should mention here some important object-oriented languages. The
first object-oriented language was Simula, which was introduced at the end of
the 1960s (although the term 'object-oriented' was not then used). Another
language which has been most influential is Smalltalk, developed during the
1970s. Smalltalk is an 'extreme' object-oriented language, where everything
is in the form of objects and where, for example, there are no normal types.
Much of the terminology of the object-oriented languages has its origins in
Smalltalk. The object-oriented language which is currently most widely used
is C++, which was first released commercially in 1985. C++ is a direct
development of the language C with a large number of object-oriented
language constructs added.

In Ada 83 there is every opportunity to practise encapsulation, but
since the use of inheritance is impossible it has not been considered an object-
oriented language. Ada 95, however, is fully object-oriented. All the program
constructs needed to write object-oriented programs are to be found in Ada 95,
including inheritance.

One of the difficulties with object-oriented programming is that a
special terminology is used. For example, there is talk of objects, classes and
methods. Further, the terminology is to some extent different in the different
object-oriented languages. In this chapter we will try to come to terms with
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the concepts associated with object-orientation. We will discuss the basics of
object-oriented programming and what the different words mean. In particular,
we will describe the object-oriented constructs to be found in Ada 95.

14*1 Basic concepts

The main idea of object-oriented programming is to construct a number of
objects and bring them together into a program. It can be said that an object in
a program is a representation of a real or a conceptual thing in the program's
environment. Every object has a unique identity, and objects are accessed in a
program by means of names or access values (pointers). For example, an object
THE_LIFT can be constructed to represent a real lift, or an object STACK can
describe a data stack.

Each object has a set of attributes which describe its properties. There
are two categories of attribute. The first is the data attribute. (Different object-
oriented languages use different terms for a data attribute. In Ada 95, the term
component is used, in C++ it is called a data member, and in Smalltalk it is an
instance variable.) Each object has its own unique set of data attributes.
Normally, they are hidden within the object so that they are not accessible from
outside and can only be changed by the object itself. Data attributes are used to
keep track of the object's status, since each object has a definite status which
can be changed during execution.

As an example we can study the object THE_LIFT, whose status can be
described using two data attributes, DIRECTION and FLOOR. The attribute
DIRECTION can have one of the values STILL, UP or DOWN, while the attribute
FLOOR can contain an integer stating which floor the lift is currently at.

The second category of attribute for an object are the operations that can
be performed on it. (In Ada 95 such an operation is called a primitive opera
tion, in C++ the term member function is used, and in Smalltalk they are called
methods.) For the object THE_LIFT, for instance, there might be the operations
GO_TO, STOP and WHICH_FLOOR. GO_TO is used to get the lift to go to a
particular floor, STOP is used to stop the lift, and WHICH_FLOOR is used to
find out which floor the lift is currently at. Figure 14.1 illustrates the object
THE_LIFT; the data attributes are placed at the top and the operations at the bottom.

How is an object described in a program? This is where the idea of class
comes in. A class is a sort of template, or pattern, which describes a collection
of objects with a common construction and set of properties. Different classes
can describe different sets of objects. An object which belongs to a particular
class is said to be an instance of the class. There can be several of these.
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THE_LIFT

DIRECTION
FLOOR

GO_TO
STOP

WHICH_FLOOR

Figure 14.1

Many programmers involved in object-oriented programming understand
a class as a type (as it is in certain languages, such as C-i~i-). Declaring a class is
then the same thing as declaring a type and, using the same analogy, objects are
a sort of variable. An instance of a class C is simply a variable which has type
C. This analogy between classes and types, however, is not entirely satisfactory
in all languages (in Smalltalk, for instance, there are no types and a class,
strangely, is itself an object), but to think in this way makes the different con
cepts more readily understandable.

Objects

Represent real or devised objects. A sort of
variable.

Have two sorts of attribute: data attribute and

operations. In Ada 95 these are called components
and primitive operations, respectively.

Most object-oriented languages have a construct called class, which is a
sort of combination of a module and a type declaration where the different
attributes of the class are defined. Since a class can contain several data

attributes, a class can be seen as a kind of record type, and since the idea is that
an object belonging to a particular class can only be influenced by using the
operations defined within that class, a class can be said to be an abstract data
type, but one where an object-oriented approach is used (see discussion in
Section 8.8). In Ada 83 there are excellent language constructs for describing
abstract data types, so in Ada 95 the choice was made to build on these
constructs rather than introduce a completely new construct. Classes are there
fore described as abstract data types and objects are described as variables
belonging to these types. In Ada 95, the concept of class is not used as we have
described it here; instead we talk of types. There is actually a concept CLASS in
Ada 95, but it must be noted that it is used in a somewhat different way; we will
return to this later.
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Sometimes there are components which are common for all objects that
belong to a certain class. Such components are called class variables in
Smalltalk and static data members in C++. For the sake of simplicity we will
use the term class variables in this book. Class variables are particular, since they
exist only in one instance and this instance is shared by all objects that belong
to the class. One good example of a class variable is a variable which counts the
current number of objects of a certain class. Another example can be found in
the description of bank accounts. For each account there is a certain balance and
a certain account-holder. Of course there must be one instance of these data for

every single account, therefore they are normal components. The interest rate,
however, is a class variable. There is no reason to store the interest rate in every
bank account object.

An important mechanism in object-oriented programming is inheritance.
When a new class is to be declared, it can be based on an existing class and
attributes can be changed or added. The new class is said to inherit the proper
ties of the old class: it is known as a subclass of the old class. The old class is

said to be a superclass of the new class. Suppose that we have, as an example,
a class PERSON which describes individuals. This class might contain, among
other things, attributes NAME and ADDRESS. Suppose, further, that we want to
describe students at a university. What we can do is to create a new class,
STUDENT, which is a subclass of the class PERSON, which means that the new

class automatically gets all the attributes to be found in the class PERSON. Thus
we do not need to define the attributes NAME and ADDRESS. All we have to do

in the subclass STUDENT is to define the new attributes we want. For example,
we might want data attributes that state which courses a student has taken, and
an operation that prints out the various grades they have achieved.

Classes

Descriptions of groups of objects with the same
properties. A sort of type, an abstract data type.

A class C2 can inherit properties, i.e. attributes,
from another class C1. C2 is then a subclass of C1.

A class which is a subclass to another class can in its turn be parent to
further subclasses. A class can have several subclas.ses. This means that a class

hierarchy can be built up, with a tree-like structure. One of the ideas behind
inheritance is that when writing a program one can make use of ready-made
classes inherited from what is called a class library. This means that less new
code needs to be written and, further, the classes from the library are (it is to be
hoped) more thoroughly tested and freer from errors than newly written code.
(There are critics of this sort of programming, who claim that it forces the
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programmer to use a good deal of program that is not strictly necessary. This
makes programs bigger and more incomprehensible than if inheritance were
avoided in favour of using modules which contain only what is needed.)

We can finish this run-through of basic ideas with a discussion of
methods and messages. The operations which can be carried out on objects are
often called methods. In programming languages of a more conventional kind,
such as C++ and Ada, methods are nothing more than ordinary functions and
procedures. When an operation is carried out on an object, this is sometimes
referred to in object-oriented terminology as 'sending a message to an object'.
In a conventional language this simply means a call to a function or procedure
which has been defined for the object.

Methods

The (primitive) operations which can be carried
out on an object. Correspond to functions or
procedures.

Calling such an operation is referred to as 'sending
a message'.

In the object-oriented language it is common that calls to an operation are
written in a special way. Assume that we have the object THE_LIFT, as earlier,
and we want the lift to go to the third floor. We can write the call as follows:

THE_LIFT.G0_T0(3)

The parameter to the procedure which states which object we are dealing
with has a special status, and is placed first. This fits with the terminology: to
the object THE_LIFT send the message GO_TO with argument 3. This way of
writing operation calls is used in C++ and Smalltalk.

This call format, however, can lead to certain difficulties when you want
an operation that can operate on more than one object. Suppose that we want an
operation CLOSER, which has two lifts and a floor number as arguments and
returns as result the lift which is currently closer to the stated floor. To find out
which of the two lifts L1FT_1 and L1FT_2 is closer to floor N, we would write:

LIFT_1.CLOSER(LIFT_2. N)

It is not natural to 'send a message' to one of the two lifts that are to be
compared: both lifts have the same status and should be treated symmetrically.
It would be more natural to write:
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CL0SER(LIFT_1, LIFT_2, N)

and that is the format used in Ada 95. In Ada 95 ail parameters to functions
and procedures are used in the same way, and in Ada 95 we would call the
procedure GO_TO above by writing:

GO_TO(THE_LIFT, 3)

In C++ the problem of symmetric arguments has been solved by introducing yet
another construct, known as friend functions.

14.2 Objects

As was mentioned in the last section, objects are described in Ada 95 by using
abstract data types. In particular, abstract data types are used in which the type
is implemented as a record type. (When real-time programs, programs with
several processes which execute simultaneously, are written, what are known as
task types are also used to describe objects. We are not going to consider these
here, since real-time programming lies outside the scope of this book.) We have
already looked at examples in which objects are described, such as the examples
in Sections 8.8 and 11.4 where abstract data types were constructed to declare
objects of type QUEUE. We will look at another example here. The following
package describes persons:

package PERSON.PACKAGE is
type PERSON Is
record

NAME : STRING(1 .. 30);

NAME_L : NATURAL := 0;

end record;

function CALLED (P : PERSON) return STRING;
procedure CHANGE_NAME (P : In out PERSON; TO : STRING);

end PERSON_PACKAGE;

We can see that objects of the type PERSON have four attributes: NAME,
NAME_L, CALLED, and CHANGE_NAME. The first two are data attributes. We

represent a person by a name and at the same time keep track of how many
letters the name has (that is, how many places of the component NAME have
been filled in). The default value for the length of the name is zero, which
simply means that, initially, each new person to be declared has no name. The
last two attributes are operations which can be applied, respectively, to read a
person's name and change a person's name. Operations like this, which are
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declared immediately with the type, are called primitive operations in Ada 95.
In order for the operations to be considered primitive, both the type and the
operations must be declared in a package specification. Thus the type PERSON
has two primitive operations, CALLED and CHANGE_NAME.

As we pointed out in the introduction to this chapter, object-oriented
programming is based on two concepts: encapsulation and inheritance.
Encapsulation is necessary in order to be able to define the attributes that belong
to an object in a single place in a program. We have done this for the type
PERSON by putting everything in a package. But if we leave it as seen above,
this is not complete encapsulation. The implementation of the primitive opera
tions CALLED and CHANGE_NAME are certainly hidden from the user of the
package, but the user can get at and change the two data attributes without going
through the primitive operations. To prevent that, we must make PERSON a
private type:

package PERSON_PACKAGE is
type PERSON Is private;
function CALLED (P : PERSON) return STRING;
procedure CHANGE_NAME (P : in out PERSON; TO : STRING);

private
type PERSON is
record

NAME : STRING(1 .. 30);
NAME_L : NATURAL := 0;

end record;

end PERSON_PACKAGE;

To create new objects of the type PERSON, the user of the package can make
the variable declarations:

A, B : PERSON;

and messages can be sent to the objects by calling the primitive operations:

CHANGE_NAME(A, "Hannah");
PUT(CALLED(A));

The implementation of the operations are hidden, as usual, in the body of the
package:

package body PERSON_PACKAGE is
function CALLED(P : PERSON) return STRING is
begin
return P.NAME(1 .. P.NAME_L);

end CALLED;
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procedure CHANGE_NAME (P : in out PERSON; TO : STRING) Is
L : NATURAL := NATURAL'MIN(TO'LENGTH, P.NAME'LENGTH);

begin
P.NAME(1 .. L) := TO(TO'FIRST .. TO'FIRST + L - 1);

P.NAME_L := L;

end CHANGE.NAME;

end PERSON_PACKAGE;

The attribute MIN, which is only found in Ada 95, is used in the procedure
CHANGE_NAME. Apart from this, everything could have been written in Ada
83. In fact, it is perfectly possible to write object-oriented programs in Ada 83,
as long as the inheritance mechanism is not needed.

Objects in Ada

Described using record types which are encapsulated
in packages. Primitive operations are declared
together with the type in the package specification.

package P is
type T is private;
Primitive operations declared here

private
type T is

record

Components declared here
end record;

end P;

Now we shall demonstrate how to implement class variables, that is,
variables that are common to all objects that belong to a certain type. Let us study
the bank account example discussed in the previous section. The specification
of a package describing bank accounts could be

with PERSON_PACKAGE;

use PERSON_PACKAGE;

package BANK_PACKAGE is
type BANK_ACCOUNT is private;
function GET_BALANCE(B : BANK_ACCOUNT) return FLOAT;
procedure DEPOSIT (B : in out BANK_ACCOUNT; AMOUNT : FLOAT);

procedure CHANGEJNTEREST_RATE(NEW_INTEREST_RATE: FLOAT);
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private
INTEREST_RATE: FLOAT;

type BANK.ACCOUNT is
record

ACCOUNT.HOLDER : PERSON;

BALANCE : FLOAT;

end record;

end BANK_PACKAGE;

The abstract data type is BANK_ACCOUNT and it is implemented as a record
type. The components that must exist for each account are ACCOUNT_HOLDER
and BALANCE, and these are put into the record in the normal way. The vari
able INTEREST_RATE, which is a class variable, on the contrary is put outside
the record type. Therefore there will only be one single variable of this kind
in the package. (By placing this variable in the private part of the package
specification and not in the package body, we make the variable accessible
to child packages to BANK_PACKAGE, if any.) The operations GET_BALANCE
and DEPOSIT are primitive operations of the type BANK_ACCOUNT (they
both have a parameter of that type), but note that the procedure
CHANGE_INTEREST_RATE is not a primitive operation. It is not related to a
certain bank account and it does not have a bank account as a parameter. The
implementation of CHANGE_INTEREST_RATE can be found in the package
body:

procedure CHANGEJNTEREST_RATE(NEWJNTEREST_RATE :
FLOAT) is

begin
INTEREST_RATE := NEWJNTEREST_RATE;

end CHANGE_INTEREST_RATE;

An object can quite well be built of other objects, that is, it can have data
attributes that are other objects. If an object of type TA has a data attribute which
is of type TB, we say that 'a TA has a TB'. As an example of this we can look at
this example of a football team:

package TEAM_PACKAGE is
type FOOTBALL_TEAM is private;
procedure NEW_PLAYER (TEAM : in out FOOTBALL.TEAM;

PLAYER_NO : POSITIVE;
PLAYER_NAME : STRING);

procedure PRINT_TEAM(TEAM : FOOTBALL.TEAM);

private
type PERSON_TABLE is array (INTEGER range < >) of PERSON;
type FOOTBALL_TEAM is
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record

PLAYERS : PERS0N_TABLE(1 .. 11);

end record;

end TEAM_PACKAGE;

(In order to make the program extracts shorter, we will omit the with and use
clauses that are needed, both here and in the future.) If we now declare an object
of type FOOTBALL_TEAM:

MILAN : FOOTBALL_TEAM;

it will have 11 objects of the type PERSON. The players in the team can be read
in or changed:

PUTC'Player number? "); GET(NO); SKIP.LINE;
PUTC'Name? "); GET_LINE(A_NAME, L);

NEW_PLAYER(MILAN, NO, A_NAME(1 .. L);

and the whole team can be printed:

PRINT_TEAM(MILAN);

In the body of the package TEAM_PACKAGE, the primitive operations for the
type PERSON are used:

package body TEAM_PACKAGE Is

procedure NEW_PLAYER(TEAM : In out FOOTBALL_TEAM;

PLAYER_NO : POSITIVE;

PLAYER_NAME: STRING) Is

begin

CHANGE_NAME{TEAM.PLAYERS(PLAYER_NO), PLAYER_NAME);
end NEW_PLAYER;

procedure PRINT_TEAM(TEAM : FOOTBALL_TEAM);

begin

for I In TEAM.PLAYERS'RANGE loop

PUT(I, WIDTH => 2);

PUT_LINE(" " & CALLED(TEAM.PLAYERS(I))):

end loop;

end PRINT.TEAM;

end TEAM_PACKAGE;
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An object can thus have one or several other objects. Sometimes, an object A
must know about another object B without B being a part of A. Then we say that
object A needs a reference to object B. As an example of this we will add a
number of attributes to the type PERSON so that it describes two people being
married to one another:

package PERSON_PACKAGE Is
type PERSON Is limited private;
type PERSON_REF Is access all PERSON;

function CALLED (P : PERSON) return STRING;
procedure CHANGE_NAME (P : In out PERSON; TO : STRING);
function MARRIED_TO (P : PERSON) return PERSON_REF;

procedure MARRIAGE (R1, R2 : PERSON_REF);
procedure DIVORCE (PI, P2 : in out PERSON);

private

type PERSON Is
record

NAME

NAME_L

HUSB_OR_WIFE

end record;

end PERSON_PACKAGE;

STRING(1 .. 20);
NATURAL := 0;

PERSON_REF;

A new data attribute, HUSB_OR_WIFE, has been added which is a reference to
the person to whom the current person is married. The type PERSON_REF has
been declared as an access value to the type PERSON. If a person is not mar
ried, then HUSB_OR_WIFE has value null. Three new primitive operations have
been added. MARRIED_TO gives a reference to the person to whom the current
person is married; note that it retums a value of the type PERSON_REF and that
this value can be null if the person is unmarried. The two final operations are
symmetric (as discussed in the previous section). The operation MARRIAGE can
be called to bring about a mutual reference and DIVORCE is used to take one
away. MARRIAGE has parameters of type PERSON_REF because the two
people involved have to save references to one another, not copies.

In general, you should be careful about copying (or assigning) objects
that contain access values. If, for example, we have a person EVE1 with
the name 'Eve' who is married to, that is, has a reference to, another person
ADAM, and we also want another person EVE2 to have the name 'Eve', then
we should not make the assignment EVE2 := EVE1, for then EVE2 would
refer to the same ADAM that EVE1 refers to. To avoid this happening, we have
specified in the specification of the package that the type PERSON should
be limited, which partly means (as we saw in Chapter 8) that assignment is
forbidden.
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The body of the package looks like this:

package body PERSON_PACKAGE is
function CALLED (P : PERSON) return STRING is
...as before ...

procedure CHANGE_NAME (P : in out PERSON; TO : STRING) is
... as before...

function MARRIED_TO (P : PERSON) return PERSON_REF is
begin

return P.HUSB_OR_WlFE;

end MARRIED.TO;

procedure MARRIAGE (R1, R2 : PERSON_REF) is
begin
R1.HUSB_0R_WIFE := R2;

R2.HUSB_0R_WIFE := R1;

end MARRIAGE;

procedure DIVORCE {P1, P2 : in out PERSON) is
begin
P1.HUSB_0R_WIFE := null;

P2.HUSB_0R_WIFE := null;

end DIVORCE;

end PERSON_PACKAGE;

If we declare the variables:

ADAM, EVE : aliased PERSON;

then we can carry out the operations:

CHANGE_NAME(ADAM, "Adam");
CHANGE_NAME(EVE, "Eve");

MARRIAGE(ADAM'ACCESS, EVE'ACCESS);
PUT{CALLED(MARRIED_TO(ADAM).all));

The last statement produces the output 'Eve'. Of course, we could also have a
dynamically allocated object:

A, B : PERSON_REF;

A := new PERSON; CHANGE_NAME{A.all, "Romeo");
B := new PERSON; CHANGE_NAME(B.alI, "Juliet");
MARRIAGE(A, B);
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Relations between objects

An object 01 can have another object 02.
In that case 02 is a component of 01.

An object 01 can know about another object 02.
In that case 01 has a component which is a refer
ence to 02.

Before we start to talk about inheritance, we should examine yet another
example of objects. Suppose you have collected some simple statistics and want
to present the results in the form of a histogram. We can imagine that you have
collected the ages of a certain group of people and that the results have to be
split up into 10-year intervals. You want to show how many people there are in
the age ranges 0-9 years, 10-19 years and so on, up to 90-99 years. To do the
analysis we use an object of the type HISTOGRAM:

package HISTO_PACK is
type HISTOGRAM is private;
procedure INSERT (H : in out HISTOGRAM; VALUE : INTEGER);
procedure DRAW (H : HISTOGRAM);
procedure PRINT (H : HISTOGRAM);

private
type INTEGER.ARRAY is array (INTEGER range < >) of INTEGER;
type HISTOGRAM is
record

PLACE : INTEGER_ARRAY(1 .. 10) := (others => 0);
end record;

end HISTO_PACK;

A histogram has four attributes. The data attribute PLACE is an integer array
with the same number of elements as there are age intervals, where you can keep
track of the number of people in each age group. PLACE(I) contains, for exam
ple, the number of people between 0 and 9 years. The operation INSERT is
called once for each person examined, with that person's age as parameter. The
two operations DRAW and PRINT can be used to represent the results of the
analysis.

The problem with this declaration of the type HISTOGRAM is that it is
not flexible. You might well want to use a histogram for purposes other than to
present an age structure - it is not certain that you will always want to represent
values in the interval 0-100 in 10 subintervals! Therefore, we will generalize the
type HISTOGRAM so that it can be used more widely, by giving the type
discriminants. The package will now look like this:
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package HISTO_PACK is
type HISTOGRAM (XO : INTEGER; NX, DX : POSITIVE) Is private;
procedure INSERT (H : in out HISTOGRAM; X : INTEGER);
procedure DRAW (H : HISTOGRAM);
procedure PRINT (H : HISTOGRAM);
VALUE_ERROR : exception;

private

type INTEGER_ARRAY is array (INTEGER range < >) of INTEGER;
type HISTOGRAM(XO : INTEGER; NX, DX : POSITIVE) is
record

PLACE : INTEGER_ARRAY(1 .. NX) := (others => 0);
end record;

end HISTO_PAGK;

We have introduced three discriminants, XO, NX and DX. XO gives the lowest
permitted measure, NX gives the number of intervals in the histogram and DX
gives the width of each interval.

When you use a type with discriminants, if no default value is given then
the discriminants must be given values. (In object-oriented programming, no
default value should be given since it is not permitted in conjunction with
expandable types (see next section).) For example, to declare a histogram Hi
where the lowest possible measure is 50, the number of intervals is 20 and the
width of an interval is 5, we can write;

H1 : HISTOGRAM(50, 20,5);

We could also use dynamic allocation:

type HISTO_POINTER is access HISTOGRAM;

H2 : HISTO_POINTER;

PUT("Give lowest value, number of intervals. Interval width");
GET(VO); GET(N); GET(DV);
H2 := new HISTOGRAM(VO, N, bY);

PUT_LINE("Give measures");
while not END_OF_FILE loop
GET(V);
INSERT(H2.all, V);

end loop;
DRAW(H2.all);

The body of the histogram package looks like this (apart from the implementa
tion of the DRAW procedure, for reasons of space):
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package body HISTO_PACK Is
procedure INSERT (H : In out HISTOGRAM; X : INTEGER) Is

I  : POSITIVE;

begin
If X not In H.XO .. H.XO + H.DX * H.NX - 1 then

raise VALUE_ERROR;

end If;

I  := (X-H.XO)/H.DX + 1;
H.PLACE(I) := H.P1_ACE(I) + 1;

end INSERT;

procedure DRAW (H : HISTOGRAM) Is

procedure PRINT (H : HISTOGRAM) Is
begin

for I In H.PLACE'RANGE loop
PUT(H.XO + H.DX * (I - 1), WIDTH => 3); PUT('-');
PUT(H.XO + H.DX * I - 1, WIDTH => 3); PUT{':');
PUT(H.PLACE{I), WIDTH => 5);
NEW.LINE;

end loop;

end PRINT;

end HISTO_PACK;

As an example of a type where discriminants are used to initialize components,
we can declare a bank account:

type BANK_ACCOUNT (DEPOSIT : NATURAL) Is
record

ACCOUNT_HOLDER : PERSON;

BALANCE : NATURAL := DEPOSIT;

end record;

To declare an account in which £100 was initially deposited, we can write:

K : BANK_ACGOUNT(100);

The discriminant DEPOSIT is treated as a component in the record, but it may
not be changed. Its value is constant and is determined when the variable is
declared. The component BALANCE, on the other hand, may be changed.

14.3 Inheritance

The special thing about object-oriented programming is that it contains
constructs for inheritance. Using inheritance, you can create new types on the
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basis of existing types which you extend with further attributes. In the previous
section we saw how two different kinds of relationships could be set up between
objects: the relationships of having and knowing about (a FOOTBALL_TEAM
has players; a PERSON knows about their marriage partner). With inheritance,
it is possible to create yet a third set of relationships, namely tho.se of being. For
example, relations can be expressed such as 'an athlete is a person' or 'a book
is a document'.

In Ada 95, inheritance is accomplished with the help of expandable
types. The term used in the reference manual is tagged types, which highlights
the fact that each object of an expandable type automatically gets a hidden
component stating its exact type, and that is called the object's tag.

We can study a simple example for a start. This uses the type PERSON
from earlier sections, but we will make it expandable by adding the reserved
word tagged:

type PERSON is tagged

record

NAME : STRING(1 .. 30);

NAME_L : NATURAL :=0;

end record;

If we want to describe an athlete we can introduce the type ATHLETE:

type ATHLETE Is new PERSON with

record

CLUB : STRING(1 .. 15);

end record;

This new type is an extension of the type PERSON: we say that the type
ATHLETE is derived from the type PERSON. Another way we can put this is
that the type PERSON is the parent type to ATHLETE and that ATHLETE
is a child type of PERSON. A derived type inherits all the attributes, or
properties, of its parent. That means that the type ATHLETE has components
NAME and NAME_L plus the component CLUB. If we were to declare an
object of type PERSON, it would still have only the components NAME and
NAME_L.

The new components, or data attributes, you give to a derived type may
not have the same names as those of the parent type. For instance, it is not per
mitted to declare a new component called NAME in the type ATHLETE. It is,
however, permitted to use the same names for inherited primitive operations.
We will return to this shortly.

An expandable type can have many children. For example, we can derive
another type from the type PERSON:
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type EMPLOYEE is new PERSON with
record

SALARY : NATURAL;

end record;

An object of type EMPLOYEE will then have components NAME, NAME_L and
SALARY.

A derived type is, in its turn, expandable. In other words, we can derive
further types from a type which is itself a derived type. For example, we can
declare the type WEIGHT_LIFTER thus:

type WEIGHT_LIFTER Is new ATHLETE with
record

WEIGHT_CLASS : FLOAT;

RESULT : FLOAT;

end record;

If need be, you can derive a new type without adding new components to it; we
could, for instance, describe a special sort of employee:

type PROGRAMMER is new EMPLOYEE with null record;

You should note that derived types are not the same thing as subtypes, which
were discussed in Section 5.7. A derived type is a completely new type. If, for
example, you declare two variables, one of type PERSON and the other of type
EMPLOYEE, then these variables are of different types. To declare a subtype,
on the other hand, does not mean that a new type is declared: it simply makes
it possible to describe variables that belong to the basic type but which have
certain limitations.

In general, you will want the expandable types you declare to be private
and encapsulated in a package. Then, you will write declarations of the type
PERSON like this:

package PERSON_PACKAGE is
type PERSON is tagged private;
function CALLED (P : PERSON) return STRING;
procedure CHANGE_NAME {P : in out PERSON; TO : STRING);
procedure PRINTJNFO (P : PERSON);

private
type PERSON is tagged
record

NAME : STRING(1 .. 30);
NAME_L : NATURAL := 0;

end record;

end PERSON.PACKAGE;
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Note that the word tagged appears both in the first type declaration and in the
private part. For the sake of the demonstration we have added a new primitive
operation, PRINT_INFO. The package's body looks like this:

package body PERSON_PACKAGE Is
function CALLED (P : PERSON) return STRING Is

... as before...

procedure CHANGE_NAME (P : In out PERSON; TO : STRING) Is
... as before...

procedure PRINT_INFO (P : PERSON) Is
begin
PUT_LINE(P.NAME(1 .. NAME_L));

end PRINTJNFO;

end PERSON_PACKAGE;

Expandable (tagged) types

A type T1 can be made expandable using the word
tagged. It gets a label or tag, which is an extra,
hidden, component.

package P is
type T1 Is tagged private;
Primitive operations deciared here

private
typeTI Is tagged
record

Components declared here
end record;

end P;

Derived types can either be placed in the same package as their parent
types, or be given new packages of their own. In the latter case there are two
choices: you can either let the derived type know about the parent type's imple
mentation, or you can restrict it to knowing only about the visible parts of the
parent type's package. For example, if we want to place the type EMPLOYEE in
a package of its own and let it know about only the visible parts of the package
PERSON_PACKAGE, we should write:

package EMPLOYEE_PACKAGE Is
type EMPLOYEE Is new PERSON with private;
function EARNS (E : EMPLOYEE) return NATURAL;
procedure CHANGE_SALARY (E : In out EMPLOYEE; TO : NATURAL);
procedure PRINTJNFO (E : EMPLOYEE);
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private

type EMPLOYEE Is new PERSON with
record

SALARY : NATURAL;

end record;

end EMPLOYEE.PACKAGE;

Thus we have put the derived type into an ordinary package. If we want, instead,
to make the implementation of the type PERSON (that is, all that is in the
private part of the package PERSON_PACKAGE) known in the new package as
well, we make the new package a child package of PERSON_PACKAGE. Then
we would write:

package EMPLOYEE_PAGKAGE.EMPL Is
type EMPLOYEE Is new PERSON with private;
function EARNS (E : EMPLOYEE) return NATURAL;

procedure GHANGE_SALARY (E: in out EMPLOYEE; TO: NATURAL);
procedure PRINT_INFO (E : EMPLOYEE);

private

type EMPLOYEE Is new PERSON with
record

SALARY : NATURAL;

end record;

end EMPLOYEE_PAGKAGE.EMPL;

Now everything that is declared in the private part of the package
PERSON_PAGKAGE is known both in the private part and in the body of the
package PERSON_PAGKAGE.EMPL (see Section 8.9). In either case, you
should notice that EMPLOYEE has to be a private type because its parent type
is. Writing 'EMPLOYEE Is new PERSON' means, as before, that EMPLOYEE
is derived from PERSON and 'with private' means that the details of this are
hidden in the package's private part.

A derived type such as EMPLOYEE inherits not only its parent type's
components, but also its primitive operations. If we declare the two variables:

P : PERSON;

GOOK: EMPLOYEE;

we can then perform the following operations:

GHANGE_NAME(P, "Jane");
PUT(GALLED(P));
PRINTJNFO(P);
GHANGE_NAME(GOOK, "John");
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PUT(CALLED(COOK)):
CHANGE_SALARY(COOK, 2000);

X := EARNS(COOK);
PRINTJNFO(COOK):

The operations EARNS and CHANGE_SALARY do not exist for P.
The operation PRINT_INFO is a bit special. In this case we have written

a new version of the procedure in the package EMPLOYEE_PACKAGE which
replaces the inherited procedure. We say that the new version overrides the
old one. This means that when we make the call PRINT_INFO(COOK) the
version declared in the package EMPLOYEE_ PACKAGE will be called. In the
call PRINT_INFO(P), on the other hand, the version from the package
PERSON PACKAGE will be called.

Inheritance

A new type T2, a child type, can be derived from an
expandable (tagged) type T1 and inherit all its com
ponents and primitive operations.

type T2 Is new T1 with private;
Declarations of new primitive operations and
any redefinitions of inherited primitive operations

type T2 Is new T1 with
record

Declarations of further components

end record;

Let us look more closely at the body of the package EMPLOYEE_

PACKAGE.

package body EMPLOYEE-PACKAGE Is
function EARNS (E : EMPLOYEE) return NATURAL Is

begin
return E.SALARY;

end EARNS

procedure CHANGE-SALARY (E In out EMPLOYEE; TO : NATURAL) Is
begin
E.SALARY := TO;

end CHANGE_SALARY;
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procedure PRiNTJNFO (E : EMPLOYEE) is
begin
PRINTJNFO(PERSON(E)):
PUT("Salary:"):PUT(E.SALARy, WiDTH => 1); NEW_LiNE;

end PRINTJNFO:

end EMPLOYEE_PACKAGE

The statement PRINT_INFO(COOK); will give the printout:

John

Salary: 2000

It is worth noting that the new version of PRINT_INFO makes an internal call to
the version PRINT_INFO which is in the parent package, in the statement:

PRINTJNFO(PERSON(E));

You can tell that it is the version from the parent package that is called because
its parameter has the type PERSON. The expression PERSON{E) is actually
nothing but a type conversion from the type EMPLOYEE to the type PERSON.

It is always permitted to make a type conversion from a derived type to a
parent type (or grandparent, great-grandparent, and so on). If the variable PROG
is of type PROGRAMMER, for instance, it is possible to do the type conversion
PERSON(PROG). When you convert a derived type to its parent type, the com
ponents which do not exist for the parent type simply get 'chopped off.
Conversion in the other direction, from a parent type to a derived type, is not
immediately possible, since new components would be needed. If you wish to
make such a conversion, you have to do it by way of an aggregate where the val
ues of the new components are stated. For example, if you want to go from the
variable P of type PERSON and create a value of type EMPLOYEE, you write:

E := (P with SALARY => 1800);

This means that you have taken the values of P's components and added the new
component, SALARY in this case. (The rules for what you write after the word
with are the same as for ordinary record aggregates.) If you want to have a new
value of a derived type which does not have any new components, you simply
write null record after the word with. For example, we can create a value of the
type PROGRAMMER:

PROG := (E with null record);

As an alternative, we can write the name of an expandable type T before the
word with. In that case, if there are components in T that have no default value,
we must also specify the values for these components in the aggregate.
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Conversion between expandable types

Conversion from a child type T2 to a parent type T1 is
permitted:

T1 {object_of_type_T2)

Conversion from a parent type to a child type is
accomplished with a special aggregate, where the
values of the additional components are given:

{object_of_type_T1 with values of new
components)

or:

(T1 with values for components without default
value)

A derived type can also have discriminants. If the parent type has no
discriminants this is very simple, as we see in this example where we give the
derived type EMPLOYEE one discriminant:

type EMPLOYEE(STARTING_SALARy : NATURAL) Is new PERSON with
record

SALARY : NATURAL := START!NG.SALARY;

end record;

When an employee is declared, a starting salary must be stated:

E : EMPLOYEE(1800);

In the case of a parent type having discriminants but the derived type having
none, it is also simple. We can declare a new derived type such as this:

type TEMP.EMPLOYEE Is new EMPLOYEE with
record

START, FINISH : TIME;

end record;

In this case, the derived type inherits the discriminants of the parent type. When
we declare a temporary employee we must therefore give a value for the
discriminant STARTING SALARY:

TE : TEMP_EMPLOYEE(1600);
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If, on the other hand, both the parent type and the derived type have discrimi
nants, the rules that apply are a little special. We can, as an example, declare a
type PERMANENT_EMPLOYEE:

type PERMANENT.EMPLOYEE (FIRST_SALARY : POSITIVE;
NO ; POSITIVE) Is new

EMPLOYEE(FIRST_SALARY) with

record

DATE_OF_EMPLOYMENT: TIME;

end record;

First, in this case the derived type does not inherit the discriminants of the
parent type. A PERMANENT_EMPLOYEE has thus no discriminant called
STARTING_SAI_ARY. (On the other hand, it does inherit the component
SALARY.) The new type only gets the discriminants that are given in the new
declaration, in this example FIRST_SALARY and NO. Secondly, in the declara
tion of the derived type you must give values for the discriminants of the parent
type. Here, for instance, we have written new EMPLOYEE(FIRST_SALARY).
This means that the discriminant STARTING_ SALARY always has the same
value as the discriminant FIRST_SALARY in the derived type. (You may, if you
wish, see FIRST_SALARY as a redefinition of STARTING_SALARY.) It would

also have been possible to give a constant initial value to the discriminant of the
parent type, and not to link it to STARTING_SALARY, but in this example it
would have been unnatural.

When you declare a variable of type PERMANENT_EMPLOYEE you
must give values to the two discriminants FIRST_SALARY and NO. You can
write, for example;

PE : PERMANENT_EMPLOYEE(1600, 1234);

14.4 Polymorphism and dynamic binding

In the so-called typed programming languages, such as Ada, Pascal and C++,
types are used to monitor which operations can be carried out on the different
data. If, for example, the variable X has type FLOAT and the function

SIN(X)

is called, then the compiler checks that there is a function SIN that has a para
meter of type FLOAT. If such is found to be the case, the compiler generates
machine code which will cause the function to be called when the program is
run. Thus, which function is called is determined when the program is compiled.
The call is said to be bound to the function SIN. In Section 6.6, we saw that in
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Ada there can be overloaded subprograms, which means that several
subprograms can have the same name but take different types of parameters. For
example, if the call

PUT(X)

is made, the compiler can decide which procedure should be called by
comparing the type of X with the different types of parameter which different
PUT procedures take. Again, the call is bound to a particular procedure on
compilation.

In Chapter 13, which dealt with generic units, we saw that it is possible
to write program units that work for many different types. It was possible, for
example, to write a package, STACK_PACKAGE, which could be used to help
construct stacks of different kinds of element.

Overloading and generic program units are two forms of what is called
polymorphism (having many forms) in the context of programming. This
means that a program construct which has a certain appearance can mean
different things (for example, calls to different functions) depending on the
types of the operands involved. Binding means deciding exactly which form is
appropriate. For both overloading and generic units, binding occurs during
compilation, and this is known as static or early binding. Alternatively,
dynamic or late binding can occur, and this takes place during program execu
tion. (Dynamic binding is called dispatching in the reference manual to Ada
95.) In languages without typing, such as Smalltalk, only dynamic binding is
used, while in other object-oriented languages, such as Ada 95 and C++, both
static and dynamic binding are allowed. The polymorphism associated with sta
tic binding is usually called ad hoc polymorphism; if the term polymorphism
is used alone it usually means polymorphism related to dynamic binding.

In the typed object-oriented languages, dynamic binding occurs in
connection with inheritance. In order to discuss this further we will introduce

the notion of a type family, which comprises all the types that have a common
ancestor and the ancestor itself.f If T is a type, then T's type family consists of
T and all the types which are either directly or indirectly derived from T. T is
known as the root of the type family. The types PERSON, ATHLETE,
WEIGHT_LIFTER, EMPLOYEE, PERMANENT_EMPLOYEE,
TEMP_EMPLOYEE and PROGRAMMER, which we defined in the previous sec
tion, make up a type family with root PERSON. Note that a given type can
belong to several different type families. The types EMPLOYEE, PERMA-
NENT_EMPLOYEE, TEMP_EMPLOYEE and PROGRAMMER, for example,
comprise another type family with EMPLOYEE as root.

^ In the reference manual this is called derivation class. So as not to confuse the reader we will try
to avoid the word class since it is generally used in object-oriented terminology to denote a set of
objects and not a set of types.



584 Object-oriented programming

In Ada 95 there is a distinction made between, on the one hand, specific
types and, on the other, what are referred to as polymorphic types.t A specific
type is a normal one that is wholly determined at compilation. Polymorphic
types are found in connection with inheritance. Each type family has a
polymorphic type. If a type family has root T, then the type family's polymor
phic type is designated by T'CLASS (the word CLASS cannot be avoided here);
this means 'any of the specific types which comprise T's type family'. If we
have a parameter P, for example, whose type has been stated to be PERSON-
CLASS, then when the program is run P can have any of the specific types
in person's type family. P could, in this case, be ATHLETE or, equally,
PROGRAMMER.

New ideas

Polymorphism - a particular construct can be exe
cuted in different ways.

Family of types, for a given type T - the type T
itself and all the types which have T as parent,
grandparent, greatgrandparent, etc.

Specific type - common, completely known, type.

Polymorphic type - written T'CLASS. Any of the
types in T's family of types.

To demonstrate polymorphism and dynamic binding we will declare a
type family that describes different kinds of vehicle. This example is related
to the example in Section 7.5 which we discussed in connection with records
with variants. For simplicity, we will put all the types in the same package,
VEHICLE_PACKAGE, which has the following specification:

package VEHICLE_PACKAGE is
type VEHICLE Is tagged private;
procedure GIVEJNFO{V : VEHICLE):

type MOTOR_VEHICLE is new VEHICLE with private;
procedure GIVEJNFO(M : MOTOR_VEHICLE):

type PRIVATE_CAR is new MOTOR_VEHICLE with private;
procedure GIVEJNFO(P : PRIVATE.CAR);

' In the reference manual, these are called class-wide types, but for the same reason as before, we
will try to avoid using the word class.
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type VAN is new MOTOR_VEHICLE with private;
procedure GIVE_INFO(VN : VAN);

type BUS is new MOTOR_VEHICLE with private;
procedure GIVEJNFO(B : BUS);

type MINIBUS is new BUS with private;

private

type VEHICLE is tagged nuli record;

type MOTOR_VEHICLE is new VEHICLE with

record

REG.NUMBER : STRING(1 .. 7);
end record;

type PRIVATE_CAR is new MOTOR_VEHICLE with
record

NUMBER_OF_SEATS : POSITIVE;
end record;

type VAN is new MOTOR_VEHICLE with

record

MAX_LOAD : POSITIVE;

end record;

type BUS is new MOTOR_VEHICLE with
record

NUMBER_OF_PASSENGERS : POSITIVE;
AIR_CONDITIONING : BOOLEAN;

end record;

type MINIBUS is new BUS with nuii record;

end VEHICLE_PACKAGE;

The root type is VEHICLE. This has a single child type, MOTOR_VEHICLE. (We
have chosen to include this extra type so that in the future it will be possible to
describe vehicles without motors, such as bicycles.) The type MOTOR_
VEHICLE is in turn parent to three child types: PRIVATE_CAR, VAN and BUS.
All the types in the family, apart from MINIBUS, have their own versions of the
primitive operation GIVE_INFO. The type MINIBUS inherits the variant of
GIVE_INFO from BUS. (For the example to operate in a more realistic situation,
more primitive operations would be necessary, for example, to give values to the
various components. Such operations have not been given to save space in this
limited example.) In the body of the package implementations are given of the
different variants of GIVE INFO:
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package body \/EHICLE_PACKAGE is
procedure GIVE_INFO(V : VEHiCLE) Is
begin
PUT_LINE("A vehicle");

end GiVE_INFO;

procedure GIVE_INFO(M : MOTOR_VEHICLE) is
begin
PUT_LINE("A motor-vehicle");
PUT_UNE("Reg no:" & M.REG_NUMBER);

end GiVEJNFO;

procedure GIVE_INFO(P : PRIVATE_CAR) is
begin
GIVE_INFO(MOTOR_VEHICLE{P));
PUT_LINE{"A private car");
PUT(P.NUMBER_OF_SEATS, WIDTH => 1);
PUT_LINE(" seats");

end GIVEJNFO;

procedure GIVE_INFO(MOTOR_VEHICLE(VN : VAN) is
begin
GiVEJNFO(MOTOR_VEHICLE(VN));
PUT_LINE(("A van");
PUT{VN.MAX_LOAD, WIDTH => 1);
PUT_LINE(" kg max load");

end GIVE_INFO;

procedure GIVEJNFO(B : BUS) is
begin
GIVEJNFO(MOTOR_VEHICLE(B));
PUT_LINE("A bus");
PUT(B.NUMBER_OF_PASSENGERS. WIDTH => 1);
PUT_LINE(" passengers");
if B.AIR_CONDITIONING then
PUT_LINE{"With air conditioning");

end if;

end GIVE_INFO:

end VEHICLE_PACKAGE;

Suppose that we have declared the following variables:

PC : aliased PRIVATECAR;

VV : aliased VAN;

MB : aliased MINIBUS;

If we make the call:
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GIVEJNFO(PC); -- Static binding

we get a printout like this:

A motor-vehicle

Reg no: XYZ123K
A private car

5 seats

The variant of GET_INFO which was declared for type PRIVATE_CAR is called,
and that in its turn calls the variant of GET_INFO declared for the type
MOTOR_VEHICLE.

This example demonstrates static binding; the compiler knows which
variant of GIVE_INFO should be called because the type of PC is specifically stated.

To demonstrate dynamic binding we will first make the following decla
rations:

type VEHICLE_POINTER is access ail VEHIGLE'CLASS;
VP : VEHICLE_POINTER;

The type VEHICLE_POINTER describes pointers which may point to objects
of the polymorphic type VEHIGLE'CLASS. Note that we have declared
VEHIGLE_POINTER as a so-called general pointer type by including the
reserved word all in the declaration. This is not always necessary, but in most
cases it is appropriate to use general pointer types when we want to point at
polymorphic types. That is because some common type conversions between
different pointer types are only allowed for general pointer types.

Since the variable VP is of type VEHIGLE_POINTER it can point to either
a vehicle, a motor vehicle, a private car, a van, a bus or a minibus. If the call:

GIVE_INFO(VP.all); - dynamic binding

is made, then on compilation it is impossible to determine which procedure
GIVE_INFO should be called, and so the binding is dynamic. (Functions that can
be called via dynamic binding are sometimes called virtual functions.) If, for
example, prior to the above declaration we had written:

VP := VV'AGGESS;

then VP would point to a van and the output would be of the form:

A motor-vehicle

Reg no: M555ZZZ
A van

10000 kg max load
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If we had written instead:

VP := MB'ACCESS;

then VP would point to a minibus and the output might have been:

A motor-vehicle

Reg no: ADA999Z
A bus

14 passengers
Has air conditioning

Of course, it is not natural to go this long way round simply to print out
information about a van or a minibus. It is more realistic to use pointers to a
polymorphic type when you have many objects belonging to the same type
family. For example, to describe the vehicles owned by a car hire firm, you
could use an array of pointers:

type VEHICLE_ARRAY is array (INTEGER range < >) of
VEHICLE_POINTER;

VEHICLES_OWNED : VEHICLE_ARRAY(1 .. 50);

Now it is possible to add to the company's stock of vehicles:

VEHICLES_OWNED(l) := new PRIVATE_CAR;
VEHICLES_OWNED(J) := new MINIBUS;

Then the following lines can be used to print out information on all the firm's
cars:

for K In VEHICLES_OWNED'RANGE loop
GlVEJNFO(VEHICLES_OWNED(K).all); - dynamic binding

end loop;

Compare this construction with the procedure PRINT_INFO in Section 7.5.
Records with variants were used there, and it was necessary to have a case
statement with an entrant for every variant. This version with dynamic binding
is much simpler. Dynamic binding has yet another advantage over records
with variants, namely that it is much easier to add new variants when
needed. Suppose, for example, that this car hire firm extends its business
into hiring out bicycles. We can make a new package which contains a type
CYCLE:

package CYCLE_PACKAGE Is
type CYCLE Is new VEHICLE with private;
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procedure GIVE_INFO(C : CYCLE);
private
type CYCLE Is new VEHICLE with
record

NUMBER_OF_GEARS : POSITIVE;

end record;

end CYCLE_PACKAGE;

No changes need to be made in the existing package. If records with variants
are being used, on the other hand, an entry has to be added to the case statement
in the PRINT_INFO procedure, and everywhere else in the program with a
corresponding case statement.

Static and dynamic binding

Static binding - the subprogram to be called is
determined on compilation. Occurs if all parame
ters are of a specific type.

Dynamic binding - the subprogram to be called is
determined on execution. Occurs if a primitive
operation is called and one or more of its parame
ters are of polymorphic types.

How does dynamic binding work? It is all based on the hidden tag which
exists for each expandable, or tagged, type. Each individual type within
a family of types has a unique tag. When a program is being executed, the
tag for an object indicates what its type is and the call is thus directed to the
appropriate version of the primitive operation in question. (The exact way in
which this happens depends on the implementation in use. A sort of pointer is
often used to the primitive operations. With the right method, dynamic binding
can be very efficient, and execution is not noticeably slower than with static
binding.)

We have seen that it is possible to create and access objects of
polymorphic types via pointers; however, it is not always necessary to use
pointers. Parameters to procedures and functions may be of polymorphic type.
The following procedure, which has parameters of the polymorphic
type VEHICLE'CLASS can, for example, be used to print information for all the
types in the family based on VEHICLE:

procedure PUT(VC : VEHICLE'CLASS) Is
begin
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PUT_LINE("Information for a vehicle:");

GiVE_INFO(VC); ~ dynamic binding
end PUT;

All the following calls of PUT are correct:

PUT(PC);
PUT(VV);

PUT(MB);

Polymorphic types can even be used when variables are declared, but only
when a variable is initialized in such a way that its type is known when the
declaration is executed. The following example is allowed:

procedure P(VC : VEHICLE'CLASS) Is
TEMP : VEHICLE'CLASS := VC;

begin

end P;

Now TEMP gets the same type as VP when the call is made.
We have seen now how dynamic binding can be used when primitive

operations are called. We stated earlier that the functions and procedures which
are declared together with a tagged type T and which have parameters or results
of type T are primitive operations for T. But a primitive operation can also
have parameters, which are called access parameters, a kind of anonymous
access value, or pointer, to objects. A function or procedure which has an access
parameter to something of type T is actually considered to be a primitive
operation for T. The following example demonstrates this. Suppose that the
type PRIVATE_CAR has been declared as earlier and we add a new function
SMALL:

function SMALL(AB : access PRIVATE_CAR) return BOOLEAN Is

begin
return AB.NUMBER_OF_SEATS < 5;

end SMALL;

Here AB is an access parameter, so SMALL is a primitive operation for
PRIVATE_CAR. Note that if we had declared an access type

type CAR_POINTER Is access PRIVATE_CAR;

and given AB the type CAR_POINTER, then the function SMALL would not
have been a primitive operation. It is only so if the access parameter is of an
anonymous access type.
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Within the body of the function an access parameter is used like a normal
pointer. For example, we can write AB.all to access the whole object that it
points to, or we can, as in the example, access single components. Access para
meters have a special property in that they can never have the value null. If we
have, as an example, a variable PCAR of type CAR_POINTER and make the call
SMALL(PCAR), then on execution a check is automatically made that PCAR is
not null. If it is found to be null, an exception is raised. Therefore, there is never
any need to check whether an access parameter is null in the body of a function
or procedure.

Access parameters

procedure P(A : access T)...

A is an access parameter, a pointer to an object of type
T. A's type is anonymous. A can never be null.

P is then a primitive operation for the type T.

In the examples of primitive operations we have seen so far there has only
been one parameter, but it is possible to have primitive operations with more
than one parameter. Assume, for instance, that we want a primitive operation
BIGGER for the different kinds of motor vehicle, which compares two vehicles
of the same type and states which of them is bigger. For cars and buses, 'bigger'
means having more seats; for vans it means capable of taking a greater load. We
add the following lines in VEHICLE_PACKAGE:

function BIGGER (M1, M2: MOTOR_VEHICLE) return MOTOR_VEHICLE;
function BIGGER (P1, P2 : PRIVATE_CAR) return PRIVATE_CAR;
function BIGGER (VI. V2 ; VAN) return VAN;
function BIGGER (B1, B2 : BUS) return BUS;

We add the implementations of the function BIGGER for the four types
MOTOR_VEHICLE, PRIVATE_CAR, VAN, and BUS in the body of the package.
For the type PRIVATE_CAR, for example, it will look like this:

function BIGGER (P1, P2 : PRIVATE_CAR) return PRIVATE_CAR Is
begin

If P1.NUMBER_0F_SEATS > P2.NUMBER_0F_SEATS then
return PI;

else

return P2;

end If;

end BIGGER:
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The type MOTOR_VEHICLE causes some trouble because objects of this type
have only a registration number and no other components. For the moment let
us simply compare the registration numbers in the function BIGGER. Actually
this is no problem, since in the real world no objects exist that are 'just' motor
vehicles. A motor vehicles could always be further classified as a bus, a van
or some other specific kind of motor vehicle. (In the next section, which
discusses abstract types, we shall see how this problem is handled more
elegantly.)

If the variables VP1 and VP2 are pointer to objects of the polymor
phic type MOTOR_VEHiCLE'CI_ASS, then we may write the following
statement:

GIVE_INF0(BIGGER(VP1 .all, VP2.all));

We get dynamic binding for the call of the function BIGGER.
A function may also, as in this example, return a result of polymorphic

type. The actual type of the result of a call to BIGGER depends on which
variant of the function was called. If we compare two buses, the result is a bus;
if we compare two vans the result is a van. This means that dynamic binding
also occurs when the procedure GIVE_INFO is called.

There are two important rules concerning primitive operations with
more than one parameter. These two rules guarantee that it is always possible
to decide which operation is called when dynamic binding is used. There
should be no ambiguity. The first rule states that it is not allowed to declare
primitive operations where the parameters are of different tagged types. It is
forbidden to declare a primitive function which compares buses and vans, for
example:

function "<" (B : BUS; V : VAN) return BOOLEAN; — ILLEGAL

However if the operation is not primitive then it is allowed with parameters
of different tagged types (in this case there is no dynamic binding, and therefore
there can be no ambiguity). If the declaration of "<", for example, is placed out
side the specification of VEHICLE_PACKAGE, then it is allowed.

The second rule states that when a primitive operation with many
formal parameters of the same tagged type is called, then all the actual parame
ters must be polymorphic and of the same specific type. In the following
call, for instance, the pointers VP1 and VP2 must point at the same kind of
vehicle.

BIGGER(VP1.all, VP2.all)
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Primitive operations with many parameters

There must not be formal parameters of different
tagged types. All actual parameters at a call must be
polymorphic and of the same specific type.

We mentioned earlier that every object in a tagged type has a hidden
tag which gives its type. If you want to know what specific type a certain object
has, the tag can be examined using the operator in. If the variable VC has, as
before, the polymorphic type VEHICLE'CLASS, then you can test whether VC
contains an object of type MOTOR_VEHICLE or one of its child types by
writing:

if VC in MOTOR_VEHICLE'CI_ASS then

It is also possible to get at the tag more directly by using the attribute
TAG, which can be used for both variables and types. The expression VCTAG,
for example, gives the tag for the object VC, and VANTAG gives the tag that
objects of the type VAN get. (The type of this expression is TAG, which is
defined in the package ADA.TAGS.) You can test whether VC describes a van by
writing:

if VCTAG = VANTAG then

or, more simply:

if VC in VAN then

Finally, there are a few things to be noted about the rules that apply to
assignment and comparison for objects of polymorphic types. For assignment to
a variable of polymorphic type, the expression on the right of the assignment
sign must be of the same polymorphic type as the variable to the left, and
furthermore, they must have the same tags. Suppose, for example, that the two
variables VC1 and VC2 both have polymorphic type VEHICLE'CLASS. If we
make the assignment

VC1 := VC2:
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then a check is made on execution that the two objects are of the same specific
type, or in other words that they have the same tag. If such is not the case, the
exception CONSTRAINT_ERROR is generated.

If two objects are compared for equality they may have different tags, in
which case the result of the comparison is FALSE. The expression

VC1 = VC2

for example, is allowed, whatever tags the two variables have.
It is permitted to convert from a polymorphic type to a specific type; on

execution the expression to be converted is checked as being of the given
specific type or a child type of it. Again, CONSTRAINT_ERROR is raised if an
error is detected. For instance, we can write the expression BUS(VC), and a
check is performed to see whether VC is one of BUS or MINIBUS.

It is also possible to convert from one polymorphic type to another. If the
variable VC is of type VEHICLE'CLASS and the variable MO is of type
MOTOR_VEHICLE'CLASS, then the following conversions are allowed:

VEHICLE'CLASS(MC) - safe
MOTOR_VEHICLE'CLASS(VC) - might cause CONSTRAINT_ERROR

The first conversion is always safe, since the type family MOTOR_VEHICLE'-
CLASS is an subset of the type family VEHICLE'CLASS. In the second conver
sion an error occurs if the variable VC is of type VEHICLE.

For pointer types which point to tagged types and polymorphic types, the
same rules apply as for the types pointed to. If we declare the following pointer
types and variables:

type VEHICLE_POINTER Is access all VEHICLE'CLASS;
type MOTOR_VEHICLE_POINTER Is access all
MOTOR_VEHICLE'CLASS:

type MINIBUS_POINTER Is access all MINIBUS'CLASS;
VP : VEHICLE_POINTER;
MP : M0T0R_VEH1CLE_P0INTER;
BP : MINIBUS_POINTER:

then you are allowed to do conversions as follows, for example:

BP := MINIBUS_POINTER{VP); - might cause
CONSTRAINT_ERROR

VP := VEHICLE_POINTER(MP): ~ safe
MP := MOTOR_VEHICLE_POINTER(VP): - might cause

CONSTRAINT_ERROR
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Testing, assigning and converting polymorphic types

Assume that OBJ is of polymorphic type and that T is
a specific type.

If OBJ in T then

tests if OBJ is of type T.

If OBJ In T'CLASS then

tests if OBJ is of type T or of another type derived
from T.

If 0BJ1TAG = 0BJ2TAG then

tests if 0BJ1 and 0BJ2 are of the same specific type.

If 0BJ1 = 0BJ2 then

tests if 0BJ1 and 0BJ2 are of the same specific type
and contain the same value.

0BJ1 := 0BJ2:

permitted if OBJ1 and OBJ2 are of the same specific
type.

T(OBJ)

converts to type T. Permitted if OBJ is of type T or
another type derived from T.

For pointers to tagged types and polymorphic
types the same rules apply as for the types pointed to.
General pointer types must be used (declared with
all).

14.5 Abstract operations and types

The primitive operation GIVE_INFO for the type VEHICLE is apparently quite
meaningless since all that happens when it is used is that 'A vehicle' gets printed
out. The reason for defining it is that we must make sure that there is an opera
tion GIVEJNFO for each object belonging to any of the types in the VEHICLE
type family, that is, all objects of the type VEHICLE'CLASS. If, for instance,
we declare a new type TRAM as a child type to VEHICLE, but we forget to define
a new GIVE_INFO operation for it, then objects of type TRAM will inherit
the primitive operation GIVE_INFO from its parent type, the type VEHICLE.
A prerequisite for using the method of dynamic binding is that the operation
GIVEJNFO exists for all objects of type VEHICLE'CLASS, and its existence
for the parent type VEHICLE ensures this. For example, if we have the
declarations:
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type VEHICLE_POINTER is access all VEHICLE'CLASS;
VP : VEHICLE_POINTER;

as before, and make the call:

GIVEJNFO(VP.all):

then the operation GIVE_INFO must exist for all objects that VP can possibly
point to. However, there is actually no need to make up 'meaningless' primitive
operations for a parent type to ensure that all objects will have this operation.
Instead, what is known as abstract primitive operations (corresponding to
what are called pure virtual functions in C+-I-) can be defined. Such an opera
tion has no implementation, so it cannot be called. The abstract operation is
merely a sort of marker for a 'real' function or procedure. We will see what this
looks like by rewriting the procedure GIVE_INFO for the type VEHICLE as an
abstract procedure. In the visible part of the package VEHICLE_PACKAGE we
will declare the procedure GIVE_INFO like this:

procedure GIVE_INFO(V : VEHICLE) is abstract;

In the body of VEHICLE_PACKAGE, now, there must not be an implementation
of GIVE.INFO for the type VEHICLE.

Only abstract types (not to be confused with the concept of abstract
data types, as discussed in Chapter 8) are allowed to have abstract primitive
operations. An expandable type can be defined as abstract if the reserved word
abstract is given in the declaration:

type T Is abstract tagged
record

end record;

This also applies to the declaration of private types. The type VEHICLE, for
example, can be defined as abstract:

package VEHICLE_PACKAGE is
type VEHICLE Is abstract tagged private;

private
type VEHICLE Is abstract tagged null record;

end VEHICLE_PACKAGE;

Since it is not permitted to make calls to an abstract operation, it is not
permitted to declare objects of an abstract type. In our example, it would no
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longer be allowed to declare variables of the type VEHICLE. It is only allowed
to declare objects of those types which have all the abstract operations replaced
by 'real' operations which override the abstract operations. For example, you
can declare an object of the type CYCLE if this type, as before, has its own
version of the procedure GIVEJNFO:

procedure GIVE_INFO(C : CYCLE);

When a new type is declared which is a child type of an abstract type, the
new versions of the parent type's primitive operations do not have to be defined.
In this case, the new type must also be defined as abstract and no objects may
be declared for it. As an example of this, if we remove the definition of the pro
cedure GIVEJNFO for the type MOTOR_VEHICLE, then this type must also be
abstract and no objects of type MOTOR_VEHICLE may be declared. On the
other hand, it is still allowed to declare objects of the child types of
MOTOR_VEHICLE, since these have replaced the inherited abstract operation
GIVE_INFO with their own versions.

Using abstract primitive operations it is possible to create an abstract
parent type. It is not the idea to declare objects of this type, but the type
has the function of a pattern for how the various child types should appear.
The abstract parent type provides a description of the set of primitive
operations which must exist for all objects belonging to any of the types in its
family.

We will now give further examples of using abstract primitive operations.
In the previous section we constructed a primitive operation BIGGER which
compared two vehicles of the same type. One problem was to compare two
objects of the specific type MOTOR_VEHIGLE. Now, if we define the type
MOTOR_VEHICLE as abstract we can also define the operation BIGGER for
that type as abstract. If we make these changes, the visible part of the package
VEHICLE_PACKAGE looks like this:

package VEHICLE_PACKAGE Is
type VEHICLE is abstract tagged private;
procedure GIVE_INFO(V : VEHICLE) Is abstract;

type MOTOR_VEHICLE Is abstract new VEHICLE with private;
function BIGGER(M1, M2 : MOTOR_VEHICLE)

return MOTOR_VEHICLE Is abstract;

type PRIVATE_CAR Is new MOTOR_VEHICLE with private;
procedure GIVEJNFO(P : PRIVATE.CAR);
function BIGGER(P1, P2 : PRIVATE.CAR) return PRIVATE_CAR;

type VAN Is new MOTOR_VEHICLE with private;
procedure GIVE_INFO(VN : VAN);
function BIGGER(VN1, VN2 : VAN) return VAN;
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type BUS is new MOTOR_VEHiCLE with private;
procedure GIVE_INFO{B: BUS);
function BIGGER(B1, B2 : BUS) return BUS;

type MINIBUS is new BUS with private;

private

end VEHIGLE_PACKAGE;

The declaration of the abstract operation BiGGER for the type MOTOR_
VEHiCLE now ensures that objects belonging to the type family
MOTOR_VEHICLE'CLASS will indeed have a primitive function BIGGER.

Abstract operations and types

An expandable type can be declared as abstract:

type T is abstract... ;

No objects can be declared of an abstract type.

An abstract type can have abstract primitive opera
tions:

procedure P{X : T) is abstract;
function F(X : T) return ... is abstract;

Abstract primitive operations have no implementa
tion (body). Non-abstract child types must have their
own version of them.

We shall conclude this section with a slightly more advanced example
describing how to use abstract expandable types to construct iterators. This
example is an extension of the discussion in Section 13.3, where two different
techniques to construct queue iterators were shown. The starting point is the
generic package GEN_QUEUE_PACKAGE shown in Section 13.3. We declare a
child package:

generic
package GEN_QUEUE_PACKAGE.ITERATOR Is
type QUEUEJTERATOR(Q : access QUEUE) Is

abstract tagged limited private;
procedure ITERATE (01
procedure VISIT_ELEMENT (01

E

In out OUEUEJTERATOR'CLASS);
In out OUEUEJTERATOR;

In out ELEMENT) Is abstract;
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private
type QUEUE.ITERATOR (Q : access QUEUE) Is

abstract tagged limited null record;
end GEN_QUEUE_PACKAGE.ITERATOR;

package body GEN_aUEUE_PACKAGE.ITERATOR is
procedure ITERATE (01: in out QUEUEJTERATOR'CLASS) is
INDEX : POSITIVE := OI.O.FIRST;

begin
for I in 1.. OI.O.NUMBER loop

VISIT_ELEMENT(OI, OI.O.BUF(INDEX)): -- dynamic binding
INDEX := INDEX mod MAX_NUMBER + 1;

end loop;
end ITERATE:

end GEN_OUEUE_PACKAGE.ITERATOR;

The type OUEUE_ITERATOR has been declared as abstract. Hence the idea is
that the user of the package should define his own child types of OUEUE_
ITERATOR. Two operations are defined. The procedure ITERATE runs through
all elements in the current queue. For each element ITERATE calls the procedure
VISIT_ELEMENT. VISIT_ELEMENT is an abstract procedure and each child type
of OUEUE_ITERATOR must have its own implementation of this procedure.
Since the parameter to ITERATE is of polymorphic type, dynamic binding will
be used in the call to VISIT_ELEMENT. This means that different procedures
VISIT_ELEMENT are called for different child types of OUEUE_ITERATOR.

To demonstrate the use of this package we initially create an instance of
the parent package GEN_OUEUE_PACKAGE and a corresponding instance of
its child package GEN_OUEUE_PACKAGE.ITERATOR. The element type is set
to INTEGER, since we intend to work with queues containing integers. The two
instances are called INT_OUEUE_PACKAGE and INT_OUEUE_PACKAGE.IT

respectively:

with GEN_OUEUE_PACKAGE;

package INT_OUEUE_PACKAGE is new
GEN_OUEUE_PACKAGE(INTEGER);

with GEN_OUEUE_PACKAGE.ITERATOR;

package INT_OUEUE_PACKAGE.IT is new
INT_OUEUE_PACKAGE.ITERATOR;

Now we use the instance INT_OUEUE_PACKAGE.IT and define a package con
taining two iterator types, one iterator that sets all queue element < 0 to zero,
and one iterator that calculates the sum of all queue elements. Both
these iterator types are declared as child types of the abstract type OUEUE_
ITERATOR. Since the two iterator types should not be abstract, they must have
their own implementations of the operation VISIT_ELEMENT. For the iterator
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that calculates the sum we also declare a procedure that can be called when the
sum should be calculated.

with INT_QUEUE_PACKAGE.IT:

use INT_QUEUE_PACKAGE.IT;

package MY_ITERATORS is
type ZERO_ITERATOR is new QUEUEJTERATOR with private;
procedure VISIT_ELEMENT (Q1 : in out ZERO_ITERATOR;

E  : in out INTEGER);

type SUM_ITERATOR is new QUEUEJTERATOR with private;
procedure VISIT_ELEMENT (01 : in out SUM_ITERATOR;

E  : in out INTEGER);

procedure SUM_UP (01 : in out SUMJTERATOR;
RES : out INTEGER);

private

type ZEROJTERATOR is new QUEUEJTERATOR with null record;

type SUM_ITERATOR is new QUEUEJTERATOR with
record

SUM : INTEGER := 0;

end record;

end MY_ITERATORS;

package body MY_ITERATORS is
procedure VISIT.ELEMENT (Ql : in out ZEROJTERATOR;

E  : in out INTEGER) Is
begin

if E < 0 then

E:= 0;

end if;

end VISIT.ELEMENT;

procedure VISIT_ELEMENT (Ql : in out SUMJTERATOR;
E  : in out INTEGER) is

begin
QI.SUM := QI.SUM + E;

end VISIT.ELEMENT;

procedure SUM_UP (Ql : in out SUMJTERATOR;
RES : out INTEGER) is

begin
QI.SUM := 0;

ITERATE(QI);

RES := QI.SUM;

end SUM_UP;

end MY.ITERATORS;
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Now a program using these packages is shown:

with INT_QUEUE_PACKAGE.IT, MY_ITERATORS, TEXT_IO,

BASIC_NUMJO;

use INT_QUEUE_PACKAGE, INT_QUEUE_PACKAGE.IT,

MY.ITERATORS, TEXTJO, BASIC_NUM_IO:

procedure ITDEMO Is
aliased QUEUE;

SUMJTERATOR(THE_Q'ACCESS);
ZERO_ITERATOR(THE_Q'ACCESS);
INTEGER;

THE_Q

SI

Zl

N

begin

while not END_OF_FILE loop
GET(N);
PUTJN(THE_Q, N);

end loop;

SUM_UP(SI, N); PUT{N); NEW_LINE;
ITERATE(ZI);

SUM_UP{SI, N); PUT(N); NEW_LINE;

end ITDEMO;

The program first creates an integer queue and a number of integers are read
from the keyboard and put into the queue. After that the sum of all elements in
the queue are calculated and printed out. Then all elements in the queue that are
less than zero are set to zero, and finally the sum of all elements in the queue is
recalculated and printed out.

This technique for constructing iterators is very flexible, since new
iterators can easily be added. No knowledge of the implementation of the data
structure itself is required to add a new iterator.

14.6 Heterogeneous collections of objects

It often happens that you want to collect together a number of objects that
belong to the same family of types. Earlier, for example, we declared an array
VEHICLES_OWNED, the elements of which were pointers to the generic type
VEHICLE'CLASS. Since the objects thus accessed by the various pointers do not
need to have the same specific type (that is, do not need to have the same tag),
the array describes a collection of different objects. Such a collection is called a
heterogeneous collection, in contrast to a homogeneous collection in which all
the objects are of the same specific type.

A collection of objects does not need to be described by an array: they
can also be arranged in linked lists, in tree structures, in sets and so on. In the
object-oriented languages it is common to use container types (the more usual
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term is container classes) to construct collections of objects. Such container
types are commonly held ready-made in a type library (more often called a
class library) and can be used by the 'ordinary' programmer. A common
method is to let the objects of a particular family of types inherit properties from
an appropriate container type. Suppose, for example, that instead of an array we
want to have a linked list of different kinds of vehicle. Then we can start from

a package LIST_PACKAGE:

package LIST_PAK1 is
type LIST_ELEMENT Is tagged private;
type LINK Is access all LIST_ELEMENT'CLASS;
procedure INSERT ( ELEM : access LIST_ELEMENT;

LIST : In out LINK);

procedure REMOVE ( ELEM : access LIST_ELEMENT;
LIST : In out LINK);

function NEXT ( ELEM ; access LIST_ELEMENT) return LINK;

private
type LIST_ELEMENT Is tagged
record

FORWARD : LINK;

end record;

end LIST_PAK1;

The expandable type LIST_ELEMENT, which describes elements that can form
linked lists, is now defined. We can access the first element of a list using a
pointer of type LINK. The package has operations for inserting and removing ele
ments, and for running through a list. Note that these three operations are prim
itive operations of the type LIST_ELEMENT, since they all have access
parameters where the type pointed at is LIST_ELEMENT. The implementations
of the operations are constructed as easily as possible:

package body LIST_PAK1 is
procedure INSERT (ELEM : access LIST_ELEMENT;

LIST : In out LINK) Is

begin
If LIST = null then

ELEM.FORWARD := null;

LIST := ELEM;

else

INSERT(ELEM, LIST.FORWARD);
end If;

end INSERT;

procedure REMOVE ( ELEM : access LIST_ELEMENT;
LIST : In out LINK) is

begin
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If LIST /= null then

If LIST = ELEM then

LIST := ELEM.FORWARD;

else

REMOVE(ELEM, LIST.FORWARD):
end If;

end If;

end REMOVE;

function NEXT (ELEM : access LIST_ELEMENT) return LINK Is
begin

return ELEM.FORWARD;

end NEXT;

end LIST_PAK1;

If the type VEHICLE is now made a child type of the type LIST_ELEMENT,
then all objects of the type VEHIGLE'CLASS will be linkable, that is, they
can be elements in linked lists. All such objects will have the component
FORWARD and they will inherit the three primitive operations INSERT,
REMOVE and NEXT.

So let us redeclare the type VEHICLE:

type VEHICLE Is new LIST_ELEMENT with null record;

The type VEHICLE_POINTER and the variable VP are declared as before,
namely:

type VEHICLE_POINTER Is access all VEHICLE'CLASS;
VP : VEHICLE.POINTER;

To declare a linked list of vehicles we must first declare a pointer THE_LIST
which will point to the first element in the list. We also declare an extra pointer
P, which is to be used later when we run through the list:

THE.LIST, P : LINK;

Then we can insert elements in the list. If VP points to some sort of vehicle we
can put it first in the list with the statement:

INSERT(VP, THE_LIST);

Note that VP can be used as a parameter to the operation INSERT, since this
operation is inherited from the parent type LIST_ELEMENT. We can also insert
an object in the list without having a pointer to it:

INSERT(PC'ACCESS, THE.LIST); — PC is a PRIVATE_CAR
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The following statements run through the entire list and print out information
for all vehicles in the list:

P := THE.LIST;

while P /= null loop
GIVEJNFO(VEHICLE_POINTER{P).all):

P := NEXT{P):

end loop;

The call to GIVE_INFO makes use of dynamic binding because the list is
heterogeneous.

This method of forming linked lists of vehicles has a certain elegance, but
it has two problems. First, even before declaring the type VEHICLE, we must
decide how it will be used so that we are sure it will inherit the properties of a
suitable container type. If, instead, we wanted to build up binary trees of vehi
cles, then we would have to derive the type VEHICLE from a different container
type. The second problem is that we are forced into making type conversions of
which we cannot be certain. In the example above this is seen in the call to the
procedure GIVE_INFO. The variable P is of type LINK, that is, a pointer to objects
of the polymorphic type LIST_ELEMENT'CLASS. In order to call the procedure
GIVEJNFO, which is only defined for the type family of VEHICLE, we have to
make a conversion to the type VEHICLE'CLASS.

One way of solving the latter of these two problems would be by tuming
the tables and using a generic construct to make VEHICLE the parent type
of LIST_ELEMENT. Ada 95 actually allows us to have generic type parameters
that specify tagged types, and we can use this to add certain properties to a
type after it has been declared. We construct a generic package that appears
like this:

generic
type BASE_TYRE Is tagged private;

package LIST_PAK2 Is
type LIST_ELEMENT Is new BASE_TYPE with private;
type LINK Is access all LIST_ELEMENTCLASS:
procedure INSERT ( ELEM : access LIST_ELEMENT;

LIST : In out LINK);

procedure REMOVE ( ELEM : access LIST_ELEMENT;
LIST : In out LINK);

function NEXT ( ELEM : access LIST_ELEMENT) return LINK;
private
type LIST.ELEMENT Is new BASE_TYPE with
record

FORWARD : LINK;

end record;

end LIST_PAK2;
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The next step is to declare an instance of this package with the type VEHICLE
as a generic parameter;

package VE is new LIST_PAK2{VEHICLE):

This means that a new type VE.LIST_ELEMENT will be declared; it will be a
child type of VEHICLE and objects of the type VE.LIST_ELEMENT will have the
property that they can form a linked list.

In order to make all the earlier child types of VEHICLE linkable, we must
now redeclare them so that they are children of VE.LIST_ELEMENT instead of
VEHICLE. We can write, for example:

type MOTOR_VEHICLE Is new VE.LIST_ELEMENT with private;

A list is created by declaring a pointer THE_LIST which points to its first
element, and we also declare a pointer P which can point to any kind of vehicle:

use VE;

THE_LIST, P : LINK;

Now linkable vehicles can be added to the list with the calls

INSERT(P, THE_LIST);

INSERT(MB'ACCESS, THE.LIST); -- MB is a MINIBUS

Information about all vehicles in the list can be printed using the statements:

P := THE.LIST;

while P /= null loop
GlVE_INFO(P.all):
P := NEXT(P);

end loop;

If we compare this with the earlier solution we see that the uncertain type
conversion has disappeared.

What we have been looking at is an example of what would be done in
other object-oriented languages by using multiple inheritance. Multiple inher
itance means that a type has several parent types and thus inherits properties
from various sources. In our example, if we had used multiple inheritance we
would have been able to create a new type L1NKABLE_VEHICLE which had both
of the types VEHICLE and LIST_ELEMENT as parents. There is no multiple
inheritance in Ada 95. It is judged that the need for it is slight and that all types
of problem where multiple inheritance would be used can be solved using other
constructions, such as the one discussed above.
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It should be mentioned that there is yet another way of specifying that a
generic type parameter is to be a tagged type. It is possible to write:

type T Is new S with private;

This means that the generic type parameter T is to be derived (directly or indi
rectly) from a given type S. This method can be used if you want to construct a
generic package which enables further properties to be added for all the types in
a particular family of types.

The solution we now have avoids the problem of type conversion, but the
problem of having to decide in advance which collection a type should go in
remains. The type VE.LIST_ELEMENT must be declared before you can declare
the different child types, such as PRIVATE_CAR, BUS, etc.

There is yet another alternative that we will look at now which avoids
both these problems, and it is rather simple. Why should you make use of inher
itance to set up collection types? It is easy to believe that inheritance must be
used in all situations when you work with object-oriented programming, but
such is not the case. Building up programs in a modular way can be achieved in
two ways, namely classification and composition. Classification is what you
use when you make use of inheritance. You try to describe your objects in a
structured way by dividing them into different categories and subcategories. The
vehicles we have been talking about provide a typical example of this.
Composition, on the other hand, is based on putting together free-standing
program modules which are independent of one another, are general, and are
developed separately. An example of a general program module of this kind is
the package TEXT_IO.

You can say that registration number, number of seats and so on are
natural properties of a vehicle, and classification is an excellent method of
describing such natural properties, but you can hardly claim that inclusion in a
list is a natural property of a vehicle: vehicles have nothing to do with lists.
Instead of this, it is more natural to have a special sort of object, a list handler,
whose only job is to deal with lists. A list handler can be written as an indepen
dent, separate module, and now composition is the obvious method to use.

In Section 13.2.2 a generic list handler package LIST_PACKAGE was
developed. A type LIST was declared together with a number of operations
which could be carried out on lists. It is simple to make a list handler which can
deal with lists of vehicles by creating an appropriate instance of the package and
then declaring an object of type LIST. This object is then the list handler we
need.

In Section 13.2.2 we demonstrated how we could build up a list of texts
of different lengths by letting the list contain pointers to texts. We can use the
same idea here and let the list contain pointers to vehicles. The pointers should
have type VEHICLE'CLASS so that the list is able to contain all the different
kinds of vehicle that are included in the VEHICLE family of types. If we have
the same declaration as before:
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type VEHICLE_POINTER Is access all VEHICLE'CLASS;

we are able to create a suitable instance of the package LIST_PACKAGE and
declare a list:

package LIST_PAK3 Is new LIST_PACKAGE(VEHICLE_POINTER):
use LIST_PAK3;

THE.LIST: LIST;

To add a vehicle to the list we can write:

INSERT(MY_CARACCESS, THE_START, THE.LIST);
INSERT(PCAR. THE_END, THE_LIST);

Information can be printed out for all vehicles in the list using the statements:

MOVE_POS(THE_START, THE_LIST);

while not POS_MISSING(THE_LIST) loop
GIVEJNFO(VALUE(THE_LIST).all);

MOVE_POS(RIGHT, THE_LIST);
end loop;

Heterogeneous collections of objects

A collection of objects of different kinds belonging to
a common family of types, T'CLASS. Can be created
in three ways:

(1) Let T be a child type of a container type, for
example, a list type. Disadvantages: when T is
declared, a decision has to be made in advance

as to what sort of collection the object should
be able to be part of. Uncertain type conver
sion becomes necessary.

(2) Let the container type be a child type of T. Can
be done using generic construct. Disadvan
tages: all types derived from T must be child
types of the container type.

(3) Do not use inheritance, but use a generic pack
age developed separately which defines the
collection wanted. Avoids the disadvantages
of (1) and (2).
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We see that both the problems we identified earlier have disappeared in this
solution. There is no need for type conversion, and the type VEHICLE and its
child classes can be developed quite separately from the type LIST. There is no
need to decide in advance what data structures VEHICLE should be part of. If
you should now decide to construct a stack of vehicles instead of a linked list,
this is possible by using the generic package STACK_PACKAGE, which was
shown in Section 13.2.1.

14«7 Storing objects in files

Input and output of data has already been discussed in terms of the standard
packages TEXTJO, SEQUENTIAL_IO and DIRECTJO. None of these packages
can be used for storing objects in files. TEXT_IO can deal with text files, files
consisting of sequences of CHARACTER, that is, codes for printable symbols.
Therefore, when reading or writing data internal to the program is not saved as
CHARACTER, conversion always occurs when TEXT_IO is used. Of course, it
is possible to use TEXT_IO to write out and read in the attributes of an object
one by one, but it is not possible to deal with whole objects at a time. Nor can
the packages SEQUENTIALJO or DIRECT_IO be used with objects. The.se two
packages demand that all the elements which are stored in one file are of exactly
the same type, but this is not the case for objects which are of polymorphic
types, such as VEHICLE'CLASS.

In order to be able to store polymorphic types in files we therefore use
what are called streams. A stream is logically seen as a sequence of memory
elements, each of these usually being a byte (eight bits). Streams can be used to
represent the content of files or other external media, for example communica
tion channels. There are two standard packages for streams: ADA.STREAMS
contains the basic declarations, and its child package ADA.STREAMS.
STREAM_IO contains operations for reading streams from and writing streams
to files. In the latter package there are operations including OPEN, CREATE and
CLOSE for opening, creating and closing files, as well as other useful opera
tions, such as END_OF_FILE, RESET and IS_OPEN. All these operations work
in exactly the same way as the corresponding operations in the package
SEQUENTIAL_IO. To make operations directly visible in a program you first
write the clauses:

with ADA.STREAMS.STREAMJO;

use ADA.STREAMS.STREAMJO:

Now it is possible to create a file:

F : STREAMJO.FILE_TYPE;

CREATE(F, NAME => "my.file");
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(We have written STREAM_IO.FILE_TYPE instead of simply FILE_TYPE to
avoid a collision with names for corresponding types in the package TEXT_IO.)
When a file has been opened a specific stream is automatically linked to the file.
A pointer to this stream can be obtained by calling the function STREAM, which
returns a pointer of the type STREAM_ACCESS. Thus, you can write:

S : STREAM_ACCESS:

S := STREAM(F);

Reading and writing a file is most easily done with the attributes T'INPUT and
T'OUTPUT, which exist for all types T (which are not limited). T'OUTPUT is a
procedure which should have two parameters: a pointer to the relevant stream
and the object which is to be written. The following statements, for example,
write first an integer I and then a real number X to the stream S (that is, to the
file 'my.file'):

INTEGER'OUTPUT(S, I);
FLOAT'OUTPUT(S, X);

The attribute T'INPUT, which is a function, takes the stream you wish to read
from as parameter and returns the object of type T which has been read. For
example, we can read the numbers which were written with the statements
above thus:

RESET(F, IN_FILE):
I  := INTEGER'INPUT(S):

X := FLOAT'INPUT(S);

The attributes T'INPUT and T'OUTPUT not only read and write the values of
data objects but also read and write bounds and discriminants, if any. For an
object of an expandable type this means that the tag is also read or written.

To demonstrate how streams are used to read and write objects of poly
morphic types we will look at two procedures, STORE_VLIST which writes a
list of vehicles to a file, and GET_VLIST which reads a number of vehicles from

a file and puts them into a list. The list has been constructed using the generic
package LIST_PACKAGE, as shown at the end of the previous section.

procedure STORE_LIST(L : in out LIST; FILENAME : STRING) is
F: STREAMJO.FILE_TYPE;

S: STREAM.ACCESS;

begin
CREATE(F, OUT.FILE, FILENAME);
S := STREAM(F);
MOVE_POS(THE_START, L);
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while not POS_MISSING(L) loop
VEHICLE'CLASS'OUTPUT(S. VALUE(L).all);
MOVE_POS(RIGHT, L);

end loop;
CLOSE(F);

end STORE_LIST;

procedure GET_LIST(L : In out LIST, FILENAME : STRING) Is
F : STREAM_IO.FILE_TYPE;

S :STREAM_ACCESS;

begin
OPEN(F, IN_FILE, FILENAME);
S ;= STREAM(F);
while not END_OF_FILE(F) loop
INSERT(new VEHICLE'CLASS'(VEHICLE'CLASS'INPUT(S)),

THE_END, L);
end loop;
CLOSE{F);

end GET_LIST;

Storing objects in files

Use the package ADA.STREAMS.STREAM_IO.

The same operations for opening and closing files as
in SEQUENTIAL 10.

S:STREAM_ACCESS;

S := STREAM(F);

pointer to a stream

gives a pointer to the
stream for file F

T'CLASSOUTPUT(S, OBJ);~ stores an object of type
T'CLASS

T'CLASS'INPUT(S) ~ reads and retums object
of type T'CLASS

14.8 Initialization, assignment and finalizing objects

In general, you do not have to worry about the details of what is happening when
you declare an object, when you assign a value to an object, or when an object
ceases to exist. There are, however, situations where you as the programmer
must have control over these operations in order for the object you are building
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to function as intended. Then you can use the package ADA.FINALIZATION and
make the types of all your objects child types of one or other of the two abstract
tagged abstract types CONTROLLED and L1MITED_C0NTR0LLED which are
defined there. The idea is to use the type LlMlTED_CONTROLLED if you want
to create new derived types which are limited, and the type CONTROLLED
otherwise. These two types contain some primitive operations which are called
automatically in certain circumstances. The type CONTROLLED has the
following primitive operations:

procedure INITIALIZE {OBJECT : In out CONTROLLED):
procedure ADJUST (OBJECT : In out CONTROLLED);
procedure FINALIZE (OBJECT : In out CONTROLLED);

The type LIMITED_CONTROLLED has corresponding operations, except that
there is no operation ADJUST (because assignment is not permitted for limited
types). The versions of INITIALIZE, ADJUST and FINALIZE that are defined for
the types CONTROLLED and LIMITED_CONTROLLED contain empty bodies,
which means they do nothing if called.

Suppose now that we declare TC, a specific child type to CONTROLLED.
(The example would work similarly for L1M1TED_C0NTR0LLED, except that
everything to do with assignment would be missing.)

type TC Is new CONTROLLED with ... ;

We can declare our own variants of INITIALIZE, ADJUST and FINALIZE:

procedure INITIALIZE (OBJECT : In out TC);
procedure ADJUST (OBJECT : In out TC);
procedure FINALIZE (OBJECT : In out TC);

Let us start by thinking about what happens when variables are declared.
Suppose we have the following declarations:

A : TC; - The call INITIALIZE(A) is made here
B : TC := ... ; -- copy value; ADJUST (B);

There is no initialization of A in its declaration, which means that the procedure
INITIALIZE is automatically called with A as parameter (without it being seen in
the program). If, however, a variable is initialized when declared, INITIALIZE
will not be called. Instead, first the initialization value is copied to the variable,
then ADJUST is called automatically.

For initialization, you should remember that it is possible to initialize
individual components of an object by initializing them in the type declaration.
Discriminants can also be used, as discussed in Section 14.3.
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A variable normally ceases to exist when execution leaves the part of the
program in which it is declared. If, for example, A is declared in the procedure
P, it will disappear when P is left. During program execution, temporary anony
mous objects can be created in certain situations and disappear when no longer
needed. (For example, a temporary anonymous object can be created when a
function returns a result, and the object disappears when the result has been
accepted by the calling subprogram.) When an object ceases to exist, 'cleaning'
might sometimes be needed, for example to free memory which was allocated
to the object dynamically. Therefore the procedure FINALIZE is automatically
called when an object ceases to exist:

procedure P Is
A:TC:

begin

end; - FINALIZE(A) Is called here

When assignment takes place (and other situations where copying occurs,
such as passing parameters), both procedures FINALIZE and ADJUST are called
automatically. Suppose we make the assignment:

A := B; ~FINALIZE(A): copy value; ADJUST(A);

First FINALIZE is called so that A's old values can be tidied away. Then, B's
value is copied to A. Finally, ADJUST is called so that A's new value can be
adjusted if necessary.

To demonstrate how these mechanisms can be used we will construct a

VSTRING type which describes text strings of arbitarry, variable length. The
package has the following specification:

wlthADAFINALIZATION;

use ADA.FINALIZATION;

package VSTRING.PACKAGE Is
type VSTRING is new CONTROLLED with private;
function VSTR (S : STRING) return VSTRING;
function STR (V : VSTRING) return STRING;
function "=" (V1, V2 : VSTRING) return BOOLEAN;
function "&" (VI, V2 : VSTRING) return VSTRING;
... further operations ...
procedure PUT (V : in VSTRING);
procedure GET (V : out VSTRING);

private
type STRING_POINTER is access STRING;
type VSTRING is new CONTROLLED with
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record

P : STRING.POINTER;

end record;

procedure INITIALIZE (V : in out VSTRING);
procedure ADJUST (V : in out VSTRING);
procedure FINALIZE (V : in out VSTRING);

end VSTRING_PACKAGE;

Control of initialization, assignment and final
izing

Use the package ADA.FINALIZATION and make
the type T a child type of CONTROLLED or
LIMITED_CONTROLLED. If necessary, write
your own versions of the primitive operations
INITIALIZE, ADJUST and FINALIZE.

Calls to INITIALIZE, ADJUST and FINALIZE take

place automatically.

INITIALIZE(OBJ) is called every time an object of
type T is declared (if there is no initialization in the
declaration).

On the assignment 0BJ1 := 0BJ2; first FINAL-
IZE(0BJ1) is called, then the value is copied, and
finally ADJUST(OBJI) is called.

When an object ceases to exist, FINALIZE(OBJ) is
called.

The type VSTRING is a child type to CONTROLLED and thus has the primitive
operations INITIALIZE, ADJUST and FINALIZE. We have placed the declarations
of our own variants of these procedures in the private part of the package, since
they will never be called directly and should therefore not be visible. We are
implementing text strings of variable length with records consisting of a pointer
P to a text string which we allocate dynamically. The functions VSTR and STR
are conversion functions between our variable-length text strings and 'ordinary'
text strings. The functions "=" and "&" in the specification of the package are
typical operations which can be carried out on strings of variable length. (You
can imagine many more useful functions, such as find substrings, change sub
strings, and so on, but the two given here are adequate to show the general ideas
involved.) There are also procedures for reading and writing strings of variable
length.
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The idea is that variables of type VSTRING can now be used in place of
variables of type STRING. Then all the problems of texts of differing lengths
can be avoided. We can do the following, for example:

Q, R : VSTRING:

GET(Q);

R := O;

PUT(Q & R);

The body of the package looks like this:

with UNCHECKED.DEALLOCATION, TEXTJO;

use TEXTJO;

package body VSTRING_PACKAGE Is
PEMPTY: constant STRING_POINTER := new STRING'("");
MAXL : constant := 300;

procedure INITIALIZE (V : in out VSTRING) is
begin
V.P := PEMPTY;

end INITIALIZE;

procedure ADJUST (V : in out VSTRING) is
begin

V.P := new STRING'(V.P.all);
end ADJUST;

procedure FREE is
new UNCHECKED.DEALLOCATION (STRING, STRING.POINTER);

procedure FINALIZE (V : in out VSTRING) is
begin

if V.P /= PEMPTY then

FREE(V.P);

end if;

end FINALIZE;

function VSTR (S : STRING) return VSTRING is
begin
return (CONTROLLED with P => new STRING'(S));

end VSTR;

function STR (V : VSTRING) return STRING is
begin
return V.P.all;

end STR;
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function "=" (VI, V2 : VSTRING) return BOOLEAN Is

begin

return V1.Rail = V2.Rall:

end

function "&" (VI, V2 : VSTRING) return VSTRING Is
begin
return (CONTROLLED with

R => new STRING'(V1.Rall & V2.Rall));
end

procedure PUT (V : In STRING) Is
begin

PUT(V.Rall):

end PUT;

procedure GET(V : out VSTRING) Is
S : STRING(1 .. MAXL);
N : NATURAL;

begin
GET_LINE(S, N);
V := VSTR(S(1 .. N));

end GET;

end VSTRING_PAGKAGE;

In the procedure INITIALIZE, the pointer P is initialized to point to a text string
of length zero, that is, an empty text string. This means that each variable of type
VSTRING starts by describing an empty string unless another initialization is
made on declaration. In order to avoid allocating a new empty string for every
variable that is declared, we have used the pointer PEMPTY, so that all variables
point to the same empty string.

The procedure ADJUST is central to this example. Suppose the variables
Q and R are both of type VSTRING and that we make the assignment Q := R. If
we had not used ADJUST, then after the assignment Q would have contained a
pointer to the same text string as R, and the consequence would be that chang
ing this text string would affect both variables. If, for example, Q were to be
changed later, then R would also be changed, which would be misleading. In
ADJUST, what happens is that Q is given a pointer to a copy of the text that is
written in R, and in this way unnatural links between different variables are
avoided.

In the procedure FINALIZE, memory is freed for the text string that is
pointed to. However, the empty text string which all newly declared text string
variables point to must not be freed.

The expression

(CONTROLLED with P => new STRING'(S))
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which is used in the function VSTR needs a comment. The expression is an
aggregate with type VSTRING. It could be seen as a conversion from the parent
type CONTROLLED to the child type VSTRING. (Compare this with Section
14.3 where we discussed conversions between expandable types.)

EXERCISES

14.1 Start from the type PERSON and construct a new derived type STUDENT with suitable
attributes. Then construct a new type COURSE and relate it in an appropriate way to the
type STUDENT.

14.2 Create a child type of the type PERSON called CAR_OWNER, with suitable attributes.
It has to be possible for a person to own more than one car. Make the necessary changes
to the type VEHICLE so that the owner of a vehicle can be specified. Consider the ques
tion of a company being the owner of a vehicle: is it reasonable to make CAR_OWNER
a child type of PERSON?

14.3 When object-oriented programming is being discussed, descriptions of geometric
figures are often used as examples.

(a) Declare a type POINT which describes the point (jr,y) in a two-dimensional plane.
Then declare a type FIGURE which has a point at its centre.

(b) Declare a number of child types to FIGURE, for example CIRCLE, TRIANGLE
and RECTANGLE. Give them suitable attributes to describe their sizes.

(c) Add an abstract function AREA for the type FIGURE. Then write a specific
version of the operation AREA for each of the child types of FIGURE.

(d) Declare an array of pointers to arbitrary figures and then write the statements
necessary to print out the areas for all the figures in the array.

14.4 In Exercise 13.7 a generic package was constructed which could be used to create binary
search trees. Suppose that the package is extended with the four following operations,
which are used when you want to read the information in a tree:

•  TO_THE_ROOT makes the root the current node.

•  NEXT_POS moves the current node to the next node in the tree (according to the
inorder principle).

•  POS_MISSING gives whether or not there is a current node.

•  VALUE gives the value of the current node.

Using this package, write a program that builds up a binary tree containing references
to vehicles of different kinds. It should be able to deal with an arbitrary number of
vehicles. The program should start by reading in information about different vehicles



Exercises 617

from the terminal. For each new vehicle, the operator should state the kind of vehicle
that is going to be entered. Then the program should create a vehicle of a suitable
category and ask the operator to give the details of the vehicle. The program should
finish by printing out information for all the vehicles, ordered according to registration
number.

14.5 Extend the program in the previous exercise so that it finally saves the information for
the vehicles in a file, making use of the package STREAM_IO.

14.6 (a) Write a generic package which enables an arbitrary tagged type to be extended
with an ID number. Define operations so that the ID number can be read and
changed.

(b) Change the package so that each new object that is created automatically gets a
unique ID number, and remove the operation which enables the ID number to be
changed. {Hint: Make the component which contains the ID number another object
and let its type be a child type of the standard type CONTROLLED.)

A
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The Package TEXTJO

with ADA.IO_EXCEPTIONS:

package ADA.TEXT_IO is - No prefix In Ada 83

type FILE_TYPE is iimited private;
type FILE_MODE is (IN_FILE, OUT_FILE, APPEND_FILE);

-- APPEND_FILE is not defined In Ada 83

type COUNT is range 0 .. implementation_defined-,
subtype POSITIVE.COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED : constant COUNT := 0; - line and page length

subtype FIELD is INTEGER range 0 .. implementation_defined-,
subtype NUMBER.BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

-- File Management

procedure CREATE (FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING

FORM : in STRING := "");

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE.MODE;

NAME : in STRING;

FORM : in STRING := "");

procedure CLOSE (FILE: in out FILE_TYPE);
procedure DELETE (FILE: In out FILE_TYPE);
procedure RESET (FILE: in out FILE_TYPE; MODE: in FILE_MODE);
procedure RESET (FILE: in out FILE_TYPE);

619
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function MODE (FILE: In FILE.TYPE) return FILE.MODE;
function NAME (FILE: In FILE_TYPE) return STRING;
function FORM (FILE: in FILE.TYPE) return STRING;
function IS_OPEN(FILE: In FILE.TYPE) return BOOLEAN;

~ Gontrol of default input and output files

procedure SET_INPUT (FILE: In FILE.TYPE);
procedure SET_OUTPUT (FILE: In FILE.TYPE);

function STANDARDJNPUT return FILE_TYPE;

function STANDARD_OUTPUT return FILE_TYPE;

function CURRENTJNPUT return FILE_TYPE;

function CURRENT.OUTPUT return FILE.TYPE;

procedure SET_ERROR (FILE: In FILE_TYPE);
function STANDARD.ERROR return FILE_TYPE;

function CURRENT.ERROR return FILE_TYPE;

type FILE_ACCESS Is access constant FILE_TYPE;

procedure SETJNPUT (FILE: In FILE_ACCESS)
procedure SET.OUTPUT (FILE: In FILE.ACCESS)
procedure SET.ERROR (FILE: In FILE_ACCESS)

function STANDARD_INPUT return FILE_ACCESS

function STANDARD.OUTPUT return FILE.ACCESS

function STANDARD_ERROR return FILE_ACCESS

function CURRENTJNPUT return FILE_ACCESS

function CURRENT_OUTPUT return FILE_ACCESS

function CURRENT.ERROR return FILE_ACCESS

procedure FLUSH (FILE : In out FILE_TYPE);
procedure FLUSH;

- Specification of line and page lengths

procedure SET_LINE_LENGTH (FILE: in FILE_TYPE; TO: in COUNT);
procedure SET_LINE_LENGTH (TO: In COUNT);

procedure SET_PAGE_LENGTH (FILE: In FILE_TYPE; TO: In COUNT);
procedure SET_PAGE_LENGTH (TO: In COUNT);

function LINE_LENGTH(FILE: In FILE_TYPE) return COUNT;
function LINE_LENGTH return COUNT;

function PAGE_LENGTH(FILE: In FILE.TYPE) return COUNT;
function PAGE_LENGTH return COUNT;
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-- Column, Line, and Page Control

procedure NEW.LINE (FILE: in FILE_TYPE;
SPACING: In POSITIVE_COUNT := 1);

procedure NEW.LINE (SPACING: In POSITIVE.COUNT := 1);
procedure SKIP_LINE (FILE: In FILE.TYPE;

SPACING: In POSITIVE_COUNT := 1);

procedure SKIP_LINE (SPACING: In POSITIVE_COUNT := 1);

function END_OF_LINE(FILE: In FILE_TYPE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

procedure NEW_PAGE (FILE: In FILE_TYPE);
procedure NEW_PAGE;

procedure SKIP_PAGE (FILE: In FILE_TYPE);
procedure SKIP_PAGE;

function END_OF_PAGE(FILE: In FILE_TYPE) return BOOLEAN;
function END_OF_PAGE return BOOLEAN;

function END_OF_FILE(FILE: In FILE_TYPE) return BOOLEAN;
function END_OF_FILE return BOOLEAN;

procedure SET_COL (FILE: In FILE_TYPE; TO: In POSITIVE_COUNT);
procedure SET_COL (TO: In POSITIVE_COUNT);

procedure SET_LINE (FILE: In FILE_TYPE; TO: In POSITIVE_COUNT);
procedure SET.LINE (TO: In POSITIVE_COUNT);

function COL (FILE: In FILE_TYPE) return POSITIVE_COUNT;
function COL return POSITIVE_COUNT;

function LINE (FILE: In FILE_TYPE) return POSITIVE_COUNT;
function LINE return POSITIVE.COUNT;

function PAGE (FILE: In FILE_TYPE) return POSITIVE_COUNT;
function PAGE return POSITIVE_COUNT;

- Character Input-Output

procedure GET (FILE: In FILE.TYPE; ITEM: out CHARACTER);
procedure GET (ITEM: out CHARACTER);
procedure PUT (FILE: In FILE_TYPE; ITEM: In CHARACTER);
procedure PUT (ITEM: In CHARACTER);

procedure LOOK_AHEAD (FILE : In FILE_TYPE;
ITEM : out CHARACTER;

END_OF_LINE : out BOOLEAN);

procedure LOOK_AHEAD (ITEM : out CHARACTER;
END_OF_LINE : out BOOLEAN);
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procedure GETJMMEDIATE ( FILE : FILE.TYPE;
ITEM : out CHARACTER):

procedure GETJMMEDIATE (ITEM : out CHARACTER);

procedure GETJMMEDIATE (FILE : FILE_TYPE;
ITEM

AVAILABLE

procedure GETJMMEDIATE (ITEM
AVAILABLE

out CHARACTER;

out BOOLEAN);

out CHARACTER;

out BOOLEAN);

- String Input-Output

procedure GET (FILE: In FILE_TYPE; ITEM: out STRING);
procedure GET (ITEM: out STRING);
procedure PUT (FILE: In FILE_TYPE; ITEM: In STRING);
procedure PUT (ITEM: In STRING);

procedure GET_LINE (FILE: In FILE_TYPE; ITEM: out STRING;
LAST: out NATURAL);

procedure GET_LINE (ITEM: out STRING; LAST: out NATURAL);
procedure PUT_LINE (FILE: In FILE_TYPE; ITEM: In STRING);
procedure PUT_LINE (ITEM: In STRING);

- Generic package for Input-Output of Integer Types

generic
type NUM Is range < >;

package INTEGERJO Is
DEFAULT.WIDTH: FIELD := NUM'WIDTH;

DEFAULT_BASE: NUMBER.BASE := 10;

procedure GET (FILE: In FILE_TYPE;
ITEM: out NUM;

WIDTH: In FIELD := 0);

procedure GET (ITEM:

procedure PUT (FILE:
ITEM:

WIDTH:

BASE:

procedure PUT (ITEM:
WIDTH:

BASE:

out NUM; WIDTH: In FIELD := 0);

n FILE_TYPE;

n NUM;

n FIELD := DEFAULT.WIDTH;

n NUMBER_BASE := DEFAULT_BASE

procedure GET (FROM:
ITEM:

LAST:

procedure PUT (TO:
ITEM:

BASE:

end INTEGERJO;

);
n NUM;

n FIELD := DEFAULT.WIDTH;

n NUMBER_BASE := DEFAULT_BASE);

n STRING;

out NUM;

out POSITIVE);

out STRING;

In NUM;

In NUMBER_BASE := DEFAULT_BASE);
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-- Generic package for Input-Output of Modular Types

generic - This package is not defined in Ada 83
type NUM Is mod < >;

package MODULARJO Is
DEFAULT.WIDTH: FIELD := NUM'WIDTH;

DEFAULT.BASE: NUMBER_BASE := 10;

procedure GET (FILE:

ITEM:

WIDTH:

procedure GET (ITEM:

procedure PUT (FILE:

ITEM:

WIDTH:

BASE:

procedure PUT (ITEM:

WIDTH:

BASE:

procedure GET (FROM:
ITEM:

LAST:

procedure PUT (TO:

ITEM:

BASE:

end MODULARJO:

In FILE_TYPE;

out NUM;

In FIELD := 0);

out NUM; WIDTH: In FIELD := 0);

n FILE_TYPE;

n NUM;

n FIELD := DEFAULT.WIDTH;

n NUMBER_BASE := DEFAULT_BASE);
n NUM;

n FIELD := DEFAULT_WIDTH;

n NUMBER_BASE := DEFAULT.BASE);

In STRING;

out NUM;

out POSITIVE);
out STRING;

In NUM;

In NUMBER_BASE := DEFAULT.BASE);

~ Generic package for Input-Output of Real Types

generic
type NUM Is digits < >;

package FLOAT_IO Is

DEFAULT_FORE: FIELD

DEFAULT_AFT: FIELD

DEFAULT EXP: FIELD

= 2;

= NUM'DIGITS- 1;

= 3;

procedure GET (FILE: In FILE_TYPE;
ITEM: out NUM;

WIDTH: In FIELD := 0);
procedure GET (ITEM: out NUM; WIDTH: In FIELD := 0);

procedure PUT (FILE:
ITEM:

FORE:

AFT:

EXP:

In FILE_TYPE;

In NUM;

In FIELD

In FIELD

In FIELD

= DEFAULT_FORE;

= DEFAULT_AFT;

= DEFAULT_EXP);
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procedure PUT (ITEM: in NUM;
FORE: In FIELD

AFT: In FIELD

EXP: In FIELD

= DEFAULT.FGRE;
= DEFAULT_AFT;

= DEFAULT.EXP):

procedure GET (FROM: In STRING;
ITEM:

LAST:

procedure PUT (TO:
ITEM:

AFT:

EXP:

out MUM;

out POSITIVE);

out STRING;

In NUM;

In FIELD := DEFAULT_AFT;

In FIELD := DEFAULT.EXP);

end FLOATJO;

generic

type NUM Is delta < >;
package DECIMAL_IO Is
DEFAULT_FORE: FIELD

DEFAULT.AFT: FIELD

DEFAULT EXP: FIELD

= NUM'FORE;

= NUM'AFT;

= 0;

procedure GET (FILE:
ITEM:

WIDTH:

procedure GET (ITEM:

In FILE_TYPE;

out NUM;

In FIELD := 0);
out NUM; WIDTH: In FIELD := 0);

procedure PUT (FILE:
ITEM:

FORE:

AFT:

EXP:

procedure PUT (ITEM:
FORE:

AFT:

EXP:

procedure GET (FROM:
ITEM:

LAST:

procedure PUT (TO:
ITEM:

AFT:

EXP:

end FIXEDJO;

n FILE_TYPE;

n NUM;

n FIELD

n FIELD

n FIELD :=

n NUM;

n FIELD ::

n FIELD ::

n FIELD :=

n STRING;

out NUM;

out POSITIVE);
out STRING;

In NUM;

In FIELD := DEFAULT

In FIELD := DEFAULT

:= DEFAULT.

:= DEFAULT

:= DEFAULT

:= DEFAULT

:= DEFAULT

:= DEFAULT

FORE;

AFT;

EXP);

FORE;

AFT;

EXP);

AFT;

EXP);
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generic -- This package Is not defined In Ada 83
type NUM Is delta < > digits < >;

package DECIMAL_IO Is
DEFAULT_FORE: FIELD

DEFAULT_AFT: FIELD

DEFAULT_EXP: FIELD

procedure GET (FILE:
ITEM:

WIDTH:

procedure GET (ITEM:

= NUM'FORE;

= NUM'AFT;

= 0:

In FILE.TYPE;

out NUM;

In FIELD := 0);
out NUM; WIDTH: In FIELD := 0);

procedure PUT (FILE: In FILE_TYPE;
ITEM:

FORE:

AFT:

EXP:

procedure PUT (ITEM:

n NUM;

n FIELD

n FIELD

n FIELD

n NUM;

= DEFAULT_FORE;

= DEFAULT_AFT;

= DEFAULT_EXP);

FORE: In FIELD := DEFAULT FORE;

AFT: In FIELD = DEFAULT_AFT;
EXP: In FIELD := DEFAULT_EXP);

procedure GET (FROM: In STRING;

ITEM:

LAST:

procedure PUT (TO:
ITEM:

AFT:

EXP:

end DECIMALJO;

out NUM;

out POSITIVE);
out STRING;

In NUM;

In FIELD := DEFAULT_AFT;

In FIELD := DEFAULT_EXP);

~ Generic package for Input-Output of Enumeration Types

generic
type ENUM Is (< >);

package ENUMERATION_IO Is
DEFAULT_WIDTH: FIELD := 0;

DEFAULT_SETTING: TYPE_SET := UPPER_CASE;

procedure GET (FILE:
procedure GET (ITEM:

In FILE_TYPE; ITEM: out ENUM);
out ENUM);

procedure PUT (FILE: In FILE_TYPE;
ITEM: In ENUM;

WIDTH: In FIELD := DEFAULT_WIDTH;
SET: In TYPE_SET := DEFAULT_SETTING);
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procedure PUT (ITEM: in ENUM;
WIDTH: In FIELD := DEFAULT_WIDTH;

SET: In TYPE_SET := DEFAULT.SETTING);

procedure GET (FROM: in STRING;
ITEM:

LAST:

procedure PUT (TO:
ITEM:

SET:

end ENUMERATIONJO;

out ENUM;

out POSITIVE);

out STRING;

In ENUM;

In TYPE.SET := DEFAULT_SETTING);

-- Exceptions

STATUS_ERROR:

MODE_ERROR:

NAME.ERROR:

USE_ERROR:

DEVICE_ERROR:

END_ERROR:

DATA _ERROR:

LAYOUT ERROR:

exception
exception
exception
exception

exception

exception
exception
exception

renames I0_

renames I0_

renames I0_

renames I0_

renames I0_

renames I0_

renames I0_

renames lO

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

EXCEPTIONS

STATUS_ERROR;

MODE_ERROR;

NAME.ERROR;

,USE_ERROR;

,DEVICE_ERROR;

,END_ERROR;

.DATA _ERROR;

.LAYOUT_ERROR;

private
-- Implementation-dependent

end ADA.TEXT_IO;
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The Package
BASIC_NUM_lO

Given below is the specification of the package BASIC_NUM_IO, which can
be used to simplify access to the procedures GET and PUT for the standard
types INTEGER and FLOAT. The two packages STANDARD_INTEGER_IO
and STANDARD_INTEGER_IO have been created using the generic packages
INTEGER_IO and FLOAT_IO, which are to be found in TEXT_IO. Using the
renames construct, the names STANDARD_INTEGER_IO.GET and so on have

been renamed so that the user of BASIC_NUM_IO can simply write GET and
PUT.

with TEXT.IO:

package BASIC_NUM_IO Is

package STANDARD_INTEGER_IO Is new
TEXTJO.INTEGERJO{INTEGER);

DEFAULT_WIDTH : TEXTJO.FIELD := INTEGER'WIDTH;

DEFAULT_BASE : TEXTJO.NUMBER_BASE := 10;

procedure GET (ITEM : out INTEGER;
WIDTH : In TEXTJO.FIELD := 0)

renames STANDARDJNTEGERJO.GET;

procedure PUT (ITEM
WIDTH

BASE

In INTEGER;

In TEXTJO.FIELD := DEFAULT_WIDTH;

in TEXTJO.NUMBER_BASE := DEFAULT_BASE)
renames STANDARD_INTEGER_IO.PUT;

package STANDARD_FLOAT_IO Is new TEXT_IO.FLOAT_IO(FLOAT);
DEFAULT_FORE : TEXT_IO.FIELD := 2;

DEFAULT.AFT : TEXTJO.FIELD := FLOAT'DIGITS - 1;

DEFAULT_EXP : TEXTJO.FIELD := 3;
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procedure GET {ITEM : out FLOAT;
WIDTH : In TEXTJO.FIELD := 0)
renames STANDARD_FLOAT_IO.GET;

procedure PUT (ITEM

FORE

AFT

EXP

In FLOAT;

in TEXT_IO.FIELD

In TEXT_IO.FIELD

In TEXT lO.FIELD

= DEFAULT_FORE;

= DEFAULT_AFT;

= DEFAULT_EXP)
renames STANDARD_FLOAT_IO. PUT;

end BASIC_NUMJO;
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The Package
SEQUENTIAL_IO

With ADA.IO_EXCEPTIONS:

generic

type ELEMENT_TYPE Is private;
package ADA.SEQUENTIAL_IO is - No prefix in Ada 83

type FILE_TYPE is limited private;

type FILE.MODE is (IN_FILE, OUT.FILE, APPEND_FILE);

-- APPEND_FILE Is not defined In Ada 83

-- File management

procedure CREATE (FILE n out FILE.TYPE;

MODE : n FILE_MODE := OUT.FILE;

NAME : n STRING := "";

FORM : n STRING := "");

procedure OPEN (FILE n out FILE_TYPE;

MODE : n FILE_MODE;

NAME : n STRING;

FORM : n STRING := "");

procedure CLOSE (FILE n out FILE_TYPE);

procedure DELETE (FILE : n out FILE_TYPE);
procedure RESET (FILE n out FILE_TYPE; MODE: in FILE_MODE);
procedure RESET (FILE n out FILE_TYPE);

function MODE (FILE : n FILE_TYPE) return FILE_MODE;

function NAME (FILE ; n FILE_TYPE) return STRING;

function FORM (FILE : n FILE.TYPE) return STRING;

function IS_OPEN (FILE : n FILE_TYPE) return BOOLEAN;
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- Input and output operations

procedure READ (FILE: In FILE_TYPE; ITEM: out ELEMENT_TYPE):
procedure WRITE (FILE: In FILE.TYPE; ITEM: In ELEMENT_TYPE):

function END_OF_FILE(FILE: In FILE_TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR: exception renames
IO_EXCEPTIONS.STATUS_ERROR;

MODE.ERROR: exception renames IO_EXCEPTIONS.MODE_ERROR;

NAME_ERROR: exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR: exception renames IO_EXCEPTIONS.USE_ERROR;

DEVICE_ERROR: exception renames
IO_EXCEPTIONS.DEVICE_ERROR;

END_ERROR: exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR: exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end ADA.SEQUENTIAL_IO;
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The Package DIRECT_IO

with ADA.IO_EXCEPTIONS:

generic
type ELEMENT.Pi'PE is private;

package ADA.DIRECT_IO is -- No prefix in Ada 83

type FILE_r/PE is limited private;

type FILE.MODE is (IN.FILE, INOUT_FILE, OUT_FILE);
type COUNT is range 0 .. implementation_defined;
subtype POSITIVE.COUNT is COUNT range 1 .. COUNT'LAST;

-- File management

procedure CREATE(FILE: in out FILE.TYPE;

MODE: in FILE.MODE := INOUT_FILE;

NAME: in STRING :="";

FORM: in STRING :="");

procedure OPEN (FILE: in out FILE_TYPE;

MODE: in FILE_MODE;

NAME: in STRING;

FORM: in STRING := "");

procedure CLOSE (FILE in out FILE_TYPE);

procedure DELETE(FILE in out FILE_TYPE);

procedure RESET (FILE in out FILE_TYPE; MODE: in FILE_MODE);
procedure RESET (FILE in out FILE_TYPE);

function MODE (FILE in FILE_TYPE) return FILE_MODE;

function NAME (FILE in FILE_TYPE) return STRING;

function FORM (FILE in FILE_TYPE) return STRING;

function IS_OPEN (FILE in FILE_TYPE) return BOOLEAN;
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-- Input and output operations

procedure READ

procedure READ

procedure WRITE

(FILE: In FILE_TYPE:
ITEM: out ELEMENT.TYPE;

FORM: In POSITIVE_COUNT):

(FILE: In FILE.TYPE; ITEM: out ELEMENT_TYPE):

(FILE: In FILE.TYPE;

ITEM: In ELEMENT.TYPE;

TO: In POSITIVE_COUNT);

procedure WRITE (FILE: In FILE.TYPE; ITEM: In ELEMENT.TYPE);

procedure SET_INDEX (FILE: In FILE.TYPE; TO: In POSITIVE.COUNT);

function INDEX (FILE: in FILE_TYPE) return POSITIVE_COUNT:
function SIZE (FILE: in FILE_TYPE) return COUNT;

function END_OF_FILE (FILE: In FILE.TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR: exception renames
IO_EXCEPTIONS.STATUS_ERROR;

MODE_ERROR: exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR: exception renames IO_EXCEPTIONS.NAME_ERROR;

USE_ERROR: exception renames IO_EXCEPTIONS.USE_ERROR;
DEVIGE_ERROR: exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR: exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR: exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end ADA.DIRECTJO;
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Mathematical Functions

generic
type FLOAT_TYPE Is digits < >;

package ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS Is
function SORT

function LOG

function LOG

function EXP

function "**"

function SIN

function SIN

function COS

function COS

function TAN

function TAN

function COT

function COT

function ARCSIN

function ARCSIN

function ARCCOS

function ARCCOS

function ARCTAN

function ARCTAN

function ARCCOT

function ARCCOT

(X: FLOAT_TYPEBASE)
(X: FLOAT_TYPE'BASE)
(X.BASE; FLOAT.TYPE'BASE)
{X: FLOAT_TYPE'BASE)

return FLOAT_TYPE'BASE

return FLOAT_TYPE'BASE

return FLOAT_TYPE'BASE

return FLOAT TYPEBASE

(LEFT, RIGHT: FLOAT_TYPEBASE)
return FLOAT.TYPEBASE

(X: FLOAT_TYPEBASE) return FLOAT_TYPEBASE
(X, CYCLE: FLOAT.TYPEBASE) return FLOAT.TYPEBASE

(X: FLOAT_TYPEBASE) return FLOAT.TYPEBASE
(X, CYCLE: FLOAT_TYPEBASE) return FLOAT_TYPEBASE
(X: FLOAT_TYPEBASE) return FLOAT.TYPEBASE
(X, CYCLE: FLOAT_TYPEBASE) return FLOAT.TYPEBASE

(X: FLOAT.TYPEBASE) return FLOAT_TYPEBASE
(X, CYCLE: FLOAT_TYPEBASE) return FLOAT_TYPEBASE

(X: FLOAT_TYPEBASE) return FLOAT_TYPEBASE

(X, CYCLE: FLOAT_TYPEBASE) return FLOAT.TYPEBASE
(X: FLOAT_TYPEBASE) return FLOAT_TYPEBASE
(X, CYCLE: FLOAT_TYPEBASE) return FLOAT_TYPEBASE

(Y: FLOAT_TYPEBASE; X: FLOAT_TYPEBASE := 1.0)
return FLOAT_TYPEBASE

(Y: FLOAT_TYPEBASE: X: FLOAT_TYPEBASE := 1.0;
CYCLE: FLOAT_TYPEBASE) return FLOAT_TYPEBASE
(X: FLOAT.TYPEBASE; Y: FLOAT_TYPEBASE := 1.0)

return FLOAT_TYPEBASE

(X: FLOAT_P«'PEBASE: Y: FLOAT_TYPEBASE := 1.0;
CYCLE: FLOAT_TYPEBASE) return FLOAT_TYPEBASE;
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function SINH (X
function COSH (X
function TANH (X

function GOTH (X

function ARCSINH (X
function ARCCOSH (X
function ARCTANH (X
function ARCCOTH (X

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

.TYPE'BASE)

return FLOAT

return FLOAT

return FLOAT

return FLOAT

return FLOAT

return FLOAT

return FLOAT

return FLOAT

.TYPE'BASE

.TYPE'BASE

.TYPE'BASE

.TYPE'BASE

.TYPE'BASE

.TYPE'BASE

.TYPE'BASE

TYPE'BASE

end ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS:
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Character Codes

Table G.l l_ATIN_1 character codes

Only the first 128 characters in the table are defined in the ASCII standard

0 nul 32 64 @ 96 • 128 160 nbsp 192 A 224 k

1 soh 33 ! 65 A 97 a 129 161 i 193 A 225 a

2 stx 34 " 66 B 98 b 130 162 C 194 A 226 a

3 etx 35 # 67 C 99 0 131 163 £ 195 A 227 a

4 eot 36 $ 68 D 100 d 132 ind 164 XX 196 A 228 a

5 enq 37 % 69 E 101 e 133 nel 165 ¥ 197 A 229 k

6 ack 38 & 70 F 102 f 134 ssa 166 1 198 /E 230 as

7 be! 39 ' 71 G 103 g 135 esa 167 § 199 Q 231 5
8 bs 40 ( 72 H 104 h 136 Ms 168 200 E 232 e

9 ht 41 ) 73 1 105 i 137 htj 169 © 201 E 233 e

10 If 42
*

74 J 106 1 138 vts 170 a 202 E 234 e

11 vt 43 + 75 K 107 k 139p/d 171 < 203 E 235 e

12 ft 44 , 76 L 108 1 140 plu 172 -• 204 1 236 1

13 cr 45 - 77 M 109 m 141 rl 173 — 205 1 237 1

14 so 46 78 N 110 n 142 ss2 174 206 1 238 T

15 si 47 79 0 111 0 143 ss3 175 - 207 1 239 i'

16 die 48 0 80 P 112 P 144 das 176
o

208 0 240 d
17 del 49 1 81 Q 113 q 145 pu1 177 ± 209 N 241 n

18 dc2 50 2 82 R 114 r ^ 46 pu2 178 2 210 6 242 6

19 dc3 51 3 83 S 115 s 147 sts 179 3 211 6 243 6

20 dc4 52 4 84 T 116 t 148 cch 180 212 6 244 6

21 nak 53 5 85 U 117 u 149 mw 181 M 213 0 245 0

22 syn 54 6 85 V 118 V 150 spa 182 1] 214 0 246 6

23 etb 55 7 87 w 119 w 151 epa 183 215 X 247

24 can 56 8 88 X 120 X 152 184 216 0 248 0

25 em 57 9 89 Y 121 y 153 185 1 217 U 24 U

26 sub 58 90 z 122 z 154 186 2 218 u 250 u

27 BSC 59 ; 91 [ 123 { 155 csl 187 > 219 0 251 u

28 fs 60 < 92 \ 124 1 156 s/ 188 74 220 0 252 u

29 gs 61 = 93 1 125 } 157 osc 189 72 221 V 253 y
30 rs 62 > 94 A 126 158 pm 190 74 222 b 254 P
31 us 63 ? 95

_ 127 del 159 ape 191 I 223 B 255 y
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Table G.2 Symbolic names in the package ADA.CHARACTERS.LATIN_1

160 no_break_space 192 uc_a_grave 224 lc_a_grave

161 inverted_exclamation 193 uc_a_acute 225 lc_a_acute

162 cenLsign 194 uc_a_circumflex 226 lc_a_circumflex

163 pound_sign 195 uc_a_tilde 227 lc_a_tilde

164 currency_sign 196 uc_a_dlaeresis 228 lc_a_diaeresis

165 yen_sign 197 uc_a_rlng 229 lc_a_ring

166 brokenjbar 198 uc_ae_diphthong 230 lc_ae_diphthong

167 paragraph_sign 199 uc_c_cedilla 231 lc_c_cedilla

168 diaeresis 200 uc_e_grave 232 lc_e_grave

169 copyrighLsign 201 uc_e_acute 233 lc_e_acute

170 feminine_ordinaUndicalor 202 uc_e_circumllex 234 lc_e_circumflex

171 left_angle_quotalion 203 uc_e_diaeresis 235 lc_e_diaeresis

172 r}ot_sign 204 ucj_grave 236 IcJjgrave

173 soft_hypher) 205 uc_i_acute 237 lcj_acute

174 registered_trade_mark_sign 206 ucj_circumflex 238 lc_i_circumflex

175 macron 207 ucj_diaeresis 239 tcjjdiaeresis

176 iing_above 208 uc_icelandic_eth 240 lcjcelandic_eth

177 plus_minus_sign 209 uc_n_tilde 241 lc_n_tilde

178 superscript_two 210 uc_o_grave 242 lc_o_grave

179 superscriptjhree 211 uc_o_acute 243 lc_0_acute

180 acute 212 uc_o_circumflex 244 lc_o_circumflex

181 micro_sign 213 uc_oJilde 245 lc_o_tllde

182 pilcrow_sign 214 uc_o_diaeresis 246 tcjojdiaeresis

183 middle_dot 215 multiplicaUon_sign 247 division_sign

184 cedilla 216 uc_o_oblique_stroke 248 lc_o_oblique_stroke

185 superscrlpt_one 217 uc_u_grave 249 lc_u_grave

186 mascullne_ordlnalJndicator 218 uc_u_acute 250 lc_u_acute

187 right_angle_quotation 219 uc_u_circumflex 251 lc_u_circumflex

188 traction_one_quarter 220 uc_u_diaeresis 252 lc_u_diaeresis

189 fraction_one_half 221 uc_y_acute 253 lc_y_acule

190 fraction_three_quarters 222 ucjcelandicjhorn 254 lc_lcelandic_thom

191 inverted_quesllon 223 lc_german_sharp_s 255 lc_y_diaeresi$
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The Package
ADA.CHARACTERS.

HANDLING

package ADA.CHARACTERS.HANDLING is

-- CHARACTER classification functions

function IS_CONTROL (ITEM
function IS_GRAPHIC (ITEM
function IS_LETTER (ITEM
function iS_LOWER (ITEM
function IS_UPPER (ITEM
function IS_BASIC (ITEM
function IS_DIGIT (ITEM
function IS_DECIMAL_DIGIT (ITEM
renames IS.DIGIT;

function IS_HEXADECIMAL_DIGIT (ITEM
function IS_ALPHANUMERIC (ITEM
function IS_SPECIAL_GRAPHIC (ITEM

CHARACTER)
CHARACTER)
CHARACTER)
CHARACTER)
CHARACTER)
CHARACTER)
CHARACTER)
CHARACTER)

return

return

return

return

return

return

return

return

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

CHARACTER) return BOOLEAN
CHARACTER) return BOOLEAN
CHARACTER) return BOOLEAN

-- Conversion functions for CHARACTER and STRING

function TO_LOWER (ITEM
function TO_UPPER (ITEM
function TO_BASIC (ITEM
function TO_LOWER (ITEM
function TO_UPPER (ITEM
function TO_BASIC (ITEM

CHARACTER) return CHARACTER
CHARACTER) return CHARACTER
CHARACTER) return CHARACTER

STRING) return STRING;
STRING) return STRING;
STRING) return STRING;

-- Classification of and conversion between CHARACTER and ISO_646

subtype ISO_646 is

CHARACTER range CHARACTER'VAL(O) .. CHARACTER'VAL(127);
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function IS_ISO_646 (ITEM : CHARACTER) return BOOLEAN;
function ISJSO_646 (ITEM : STRING) return BOOLEAN;
function TO_ISO_646 (ITEM : CHARACTER;

SUBSTITUTE : ISO_646 := ' ')return ISO_646;

function TOJSO_646 (ITEM : STRING;
SUBSTITUTE : ISO_646 := ' ') return STRING;

-- Classification of and conversion between WIDE_CHARACTER and CHARACTER

function IS_CHARACTER (ITEM : WIDE.CHARACTER) return BOOLEAN;
function IS_STRING (ITEM : WIDE_STRING) return BOOLEAN;
function TO_CHARACTER (ITEM : WIDE.CHARACTER;

SUBSTITUTE : CHARACTER := ' ')
return CHARACTER;

function TO_STRING (ITEM : WIDE.STRING;
SUBSTITUTE : CHARACTER := ' ')

return STRING;

function TO_WIDE_CHARACTER (ITEM : CHARACTER)
return WIDE_CHARACTER;

function TO_WIDE_STRING (ITEM ; STRING) return WIDE_STRING;

end ADA.CHARACTERS.HANDLING;
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3 The Basics of Ada

Data objects 64
Types 65
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Attributes for the type INTEGER 68
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Simple loop statement 131
Loop statement with for 132
Reverse 135
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Scalar types 157

Composite types 157

Type declaration 158

Declaration of integer types 159

The standard type INTEGER 159

Operations on integer types 161

Declaration of floating point types 162

The standard type FLOAT 163

Operations on floating point types 164

Declaration of enumeration types 165

Using enumeration types 167

Input and output of integer types 171

Input and output of floating point types 173

Input and output of enumeration types 174

Using your own types 176

Declaring subtypes 179

Using subtypes 179

Indexing in arrays 186

Declaring constrained array types 187

Array aggregates 189

Unconstrained array types 192

Array assignments 193

Comparing arrays 194

Slices of arrays 194

Attributes for array types 196

Subprograms
Function body 209

Formal parameters to functions 209

Function specification 210

Return statement 210

Order of declaration 211

Function calls 215

Specifying formal parameters 218

Result type 220

Local variables 220

Subprograms and unconstrained array types 222

Procedure specification 226

Procedure body 226

Procedure call 228

Formal parameters to procedures 235

Division into subprograms 245

Separate compilation using subunits 247

Separate compilation using library units 249
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Global declarations 259

Global variables 259

Using the same names 260

Overloaded subprograms 262

Positional parameter association 264

Named parameter association 265

Parameters with default values 266

Recursive subprograms 272

Sepcu^ate subprogram specification 277

Data Structures

Multidimensional array types 289

Indexing in multidimensional arrays 290

Running through a table row by row 296

Running through a table column by column 297

Unconstructed multidimensional array types 301

Attributes for multidimensional arrays 303

Arrays of arrays 305

Indexing in arrays of arrays 305

Slices in an array of arrays 306

Declaration of a record type 309

Selection in record variables 310

Assignment of records 311

Comparing records 311

Record aggregates 312

Automatic initialization of components of records 316

Packages
Package specification 335

The Ada programming environment 336

With clause 336

Compilation order for packages 337

Selection 338

Use clause 339

Package bodies 340

Packages with 'memory' 347

Using private types 353

Declaration of private data types 354

Limited private types 360

Input and Output
Page and line changes 377

Maximum size of line and page 379

Current page, line and column numbers 382
Output of characters and text 382
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Closing files 408
To go back in a text file 414

10 Exceptions
Raise statement 425

Declaring exceptions 426
Subprograms with exception handlers 430
Exception handlers 430
Block statement 433

11 Dynamic Data Structures
Allocators 445
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To access an object 447
Assignment of access variables 448
Trees 473

12 Files

Opening and closing files 500
Line and page structure 500
Reading sequential files 502
Writing sequential files 502
Current index for direct files 516

Reading and writing direct files 517

13 Generic Units

Definition of a generic unit 527
Instantiating generic units 528
Generic value parameters 532
Generic type parameters 541
Generic subprogram parameters 546
Generic package parameters . 548
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abstract 596
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abstraction 156
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access table 492
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actual parameter 212, 214, 227, 233

Ada 13

ADA 371

Ada 83 13

Ada 95 14

Ada compiler 335
Ada library 335
ADA.CALENDAR 363

ADA.CHARACTERS.HANDLING 75,
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ADA.NUMERICS.DISCRETE_RANDOM

350

ADA.NUMERICS.FLOAT_RANDOM
350

ADA.SEQUENTIAL_IO 498,629

ADA.STREAMS 608

ADA.STREAMS.STREAM_IO 608

ADA.STRINGS 84

ADA.STRINGS.BOUNDED 84

ADA.STRINGS.FIXED 84

ADA.STRINGS.MAPS 84

ADA.STRINGS.UNBOUNDED 87
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371

ADA.UNCHECKED_DEALLOCATION

449

ADA.WIDE_TEXT_IO 75,84
addition 93

address 4

ADJUST 611

AFT 38,385

aggregate

array 187,290
record 311, 444, 580

ALGOL 11, 19

algorithm 18
aliased 452

all 447, 452, 482

allocator 444

and 102,355

and then 102
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APPEND.FILE 405,499

arc 473

argument 212,214,227,263,281
ARGUMENT 281

ARGUMENT_COUNT 281

arithmetic logic unit 3
array 181,288

aggregate 187,290
assignment 193
attribute 195

catenation 196

comparison 193
constrained 181

dynamic 450
generic parameter 539
initialization 188, 192

multidimensional 288

of array 303
of records 317

parameter 220
slice 194

type 181,288
unconstrained 190, 221, 450

ASCII 73,635

ASCII standard 72, 74, 635
assembler 10

assignment 35, 121
controlled 612

of access variable 448

of array 193
of object 612
of pointer 448
of polymorphic type 529
of private type 353
of record 311

at 88

attribute

array 195
FLOAT 70, 167

INTEGER 68, 167

of object 561
scalar type 167

B

base 66, 69

BASE 383

base type 177,261
BASIC.NUMJO 26,627
begin 120,432

binary
digit 4,66
file 497

number 66,69

output 384
search 322, 518

search tree 479, 494

tree 473

binding 582
binomial coefficients 238, 285

bit 4

blank characters in input 392
block statement 432

bold type 24
BOOLEAN 84,90

boolean

expression 100
literal 90

operator 102
BOUNDED 84

bubble sort 320

byte 4

C  12, 280,490
0 280

C++ 12,560

Caesar cipher 151
CALENDAR 363

call-back function 490

capital letter 86
case 125, 166, 324

catenation 79, 196

CEILING 170

central processing unit 3
CHARACTER 71

character

blank 392

code 72,635

control 71,75,376

eight bits 74
literal 89, 165

non-printing control 71, 75, 376
seven bits 72

CHARACTERS 75, 635, 637
CHARACTERS.LATIN_1 75,635

child

node 473

package 365, 548, 577
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type 575
choice parameter 429
choosing names 44, 158
circular buffer 359

circular list 463

CLASS 584

class 561

hierarchy 563
library 563,601

class variable 563, 567

class-wide type 584
classification 606

CLOCK 364

CLOSE 407,499,518,608

close file 407,499,518

COBOL 11

COL 380,397

column 380

command interpreter 484
COMMAND_NAME 281

comment 41

comparison 100
array 193
polymorphic 594
private type 353, 360
real number 71, 100

record 311

text string 82
compilation 335

order 337

unit 336

compile-time error 109
compiler 6, 335
complex number 100
component 181, 308, 561
composite type 77
composition 606
compound statement 120
constant 35, 54, 108

constant 35, 108, 452

constant declaration 108

constrained array type 181
constrained record 325,451

CONSTRAINT.ERROR 424

container class 602

container type 601
control character 71,75,376

control unit 3

CONTROLLED 611

CONVENTION 490

conversion 34,96, 161, 163

copy file 408
COUNT 376,515

CPU 3

CREATE 405,499,517,608
create file 405,499,517,608

CTRL-D 148

CTRL-Z 148

current index 501, 515

CURRENT.ERROR 418

CURRENTJNPUT 397,418
CURRENT_OUTPUT 418

D

data abstraction 156

data attribute 561

data member 561

data object 64
data structure 287,443

DATA_ERROR 438,501

DAY 363

deallocation 449

declaration

of constant 108

of exception 425
of full type 454
of incomplete type 454
of number 108

of object 106, 191,566
of type 158
of variable 106, 191

order 211,257

scope of 257
declare 433

default value 265, 324, 532, 538
DEFAULT_Af=T 385

DEFAULT_BASE 384

DEFAULT.EXP 385

DEFAULT_FORE 385

DEFAULT_SETTING 388

DEFAULT_WIDTH 383,388
delay 88
DELETE 419,500,518

delete file 419,500,518

delta 88

depth of tree 478
derivation class 583

derived type 575
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design 17,559
DEVICE_ERROR 438
digits 162
DIGITS 70, 167
direct access file 515

direct file 515

directed graph 492
DIRECTJO 515,631

discrete expression 126
DISCRETE_RANDOM 350
discrete type 126, 537
discriminant 324, 552, 572, 581
unknown 540

disk 5

dispatching 583
distributed system 14
division 93

do 88

doubly linked list 463
DURATION 364

dynamic array 450
dynamic binding 582, 587
dynamic data structure 443
dynamic object 444

lifetime 449

E

early binding 583
echo 376

eight bits character code 74
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symbolic name 73, 75, 635, 636
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