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Preface

To construct computer programs — programming — can be an exciting task,
marked by creativity and professional know-how. To see a well-structured and
efficient program take shape in one’s hands can actually give the programmer
the same sort of pleasure that an artist feels when he creates a new work, or that
a mathematician gets from developing an elegant proof. But programming can
also mean an endless searching for errors in badly composed and incomprehen-
sible program code. The difference lies, of course, in the programmer’s skill and
knowledge. No one is bom a clever programmer. Just as a craftsman can learn
his trade, so can a programmer learn by studying the work of others, by practis-
ing and by acquiring different techniques.

This book will teach the craft of programming and is intended to be used
in introductory courses in programming. The reader needs no earlier experience
of programming, although the book can be used by those who have used another
language (such as Basic, Pascal or FORTRAN) and want an easy introduction
to Ada.

The main aim of the book is to teach the basics of constructing computer
programs. For that reason, concepts such as algorithms, data abstraction and
data representation, abstract data types, breaking programs into subprograms,
concealing inessential details, modular program development, generic program
units and object-oriented programming are discussed. In particular, a number
of examples are given where the technique of stepwise refinement is used to
construct algorithms.

Every craftsman can confirm the importance of having good tools. The
programmer’s most important tool is the programming language he or she uses.
In this book the programming language Ada is used, because it is an excellent
programming tool. Even if it is the fundamental principles for the construction
of programs which are the most important thing in a first programming course,
it is known that the first language one meets has a lasting effect on one’s think-
ing. Therefore it is vital that the first language is a ‘good’ language. It should
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have support for the basic principles of programming and the language should
have a good structure. The previous editions of this book have now been in use
for some years, and Ada has been used as an introductory programming lan-
guage at a number of universities and colleges all over the world. Experience
shows clearly that Ada is a language suitable for beginners. It contains all the
constructs necessary for putting programs together in a way that is both well
structured and comprehensible. It supports program construction based on algo-
rithms, and its types offer the possibility of data abstraction and representation
of data objects. The concept of packages supports modular programming, and
the revised standard now proposed also provides support for object-oriented
programming.

Ada builds on experience from the normal conventional languages. The
basic constructs of Ada are very similar to those of the other common
languages, such as Pascal. Therefore, it is no great task for those who have learnt
Ada as their first language to rather quickly learn to write programs in other lan-
guages.

Ada is a modern language with a broad field of use, appropriate for both
technical and administrative applications. Furthermore, Ada is a standardized
language (ANSI and ISO) with strong support internationally; most other
languages are found in different versions and dialects for different computers.
For Ada there is only one standard, Ada 95 (International Standard ISO/IEC
8652:1995(E), Information Technology — Programming Languages — Ada)
which replaces the original standard (Reference Manual for the Ada
Programming Language. ANSI/MIL-STD-1815A-1983) from 1983, called
Ada 83.

Ada is a language with a wide range of possibilities. Apart from the
‘ordinary’ constructs there are a number of constructs intended for more sophis-
ticated programming. For example, it is possible to write programs at machine
level (programs that work directly with the computer’s hardware), real-time
programs (programs with parallel execution) and distributed programs
(programs that are executed in several processors at the same time). One advan-
tage of this is that you can grow with the language: when you want to progress
and study more advanced types of programming you can still use Ada, as the
concepts you need are to be found there. There is no need, as with other simpler
first languages, to study special dialects and additions, or go over to another
language completely.

Just because Ada has many possibilities, it does not mean that it is a
difficult language. There is no need to learn all the fine detail in order to be able
to use it: to start with you can stick with a restricted part of the language. If you,
for example, have no knowledge about constructing real-time programs there is
no risk of getting into that part of the language by accident.

This book deals with all those parts of Ada that are not to do with
machine-level programming, real-time programming and distributed program-
ming. Chapter | gives an overview of how a computer is constructed, and how
compilation, linking and execution of programs take place. There is also a



résumé of the most common programming languages. Chapter 2 gives an intro-
duction to software engineering and the place of programming in the process of
developing programs.

Additional information about the book, corrections and solutions to
exercises, for example, will be put into a world-wide-web page with the
address http://www.cs.chalmers.se/~skanshol/ada_eng/. If you want to reach me
to make comments on the book, the easiest way is by electronic mail, to
skansholm @cs.chalmers.se.

It also contains a broad presentation of the most basic programming con-
structs in Ada and a number of simple examples which demonstrate how they
are used in writing a program. The chapters that follow go into these various
constructs in greater detail. The basics of Ada, such as control statements, dif-
ferent data types and subprograms, are covered in Chapters 3-7. In Chapters
8—14 more advanced constructs of the language are dealt with, including pack-
ages, handling exceptional events, dynamic data structures, files, generic pro-
gram units and object-oriented programming. At the end of each chapter there
are a number of exercises.

A textbook in programming must have two functions: it has to present its
material in a way that is easily understood when you read it for the first time,
and it must act as a reference book when you are sitting writing a program and
need to check on constructs and examples. This latter function has been attended
to by gathering similar aspects into single chapters. This means that you might
meet a construct in part of a chapter that does not seem necessary to learn on the
first reading: you can look at it briefly and pass on to the next section.

The parts of the language that are unique to Ada 95 have been indicated
by a clear mark in the margin, to indicate that these are not applicable if you
have only an Ada 83 compiler:

V¥ A section marked like this is only applicable to Ada 95.
A

The first edition of this book dealt with Ada 83. The second edition was
published while the final work with the new standard was taking place, conse-
quently that edition was based on a draft standard. In the second edition the new
constructs of Ada 95 were included. A new chapter dealing with object-oriented
programming was added, and descriptions of pointers to subprograms and of
child packages were included in Chapters 11 and 8 respectively. Apart from this,
minor pedagogical changes were made.

This edition, the third, is based on the final, approved version of the
standard. Some minor changes have been made to the book as a result of this.
The major difference, compared to the previous edition, is that two new sections
have been added: one describing how to give arguments to the main program,
and one dealing with generic child packages. Furthermore, Chapter 14, dealing
with object-oriented programming, has been revised. For instance, the idea of
iterators is demonstrated in a couple of new examples. Another new feature of

Preface vii
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this edition is that, on request, a table index with summaries has been added
in order to make it easier to find a certain table when you use the book as a
reference book.

All the programs written in Ada 83 have been tested using either Verdix
or Telesoft’s Ada compiler under the Unix operating system, or with Meridian’s
Ada compiler under MS-DOS. All the program examples written in Ada 95 have
been syntax checked using Gnat Ada 95 compiler. The compiler can be obtained
free of charge by using the file transfer program ftp and opening up a connec-
tion to cs.nyu.edu and logging in as an anonymous user.

Finally, I wish to extend warm thanks to the colleagues and students at
the Department of Computer Science at Chalmers University of Technology
who have contributed useful points of view on the book’s content and format.
Special thanks are due to Erland Holmstrom and Hans Lindstrém, who read the
proofs of the first edition, and Shirley Booth, who translated it into English.

Jan Skansholm
November 1995
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An Introduction to
Computers and
Programming Languages

1.1 A computer’s structure and 1.2 How the program gets into the
operation computer
1.3 Programming languages

Computers are found everywhere in modern society and, for better or

worse, we are becoming more and more dependent on them. Most large
administrative systems, such as those dealing with wages, bank accounts,
inventory control and sales, are now computerized. The computer is an
indispensable work tool for the engineer, who needs to make calculations of
many kinds. In fact, some calculations would be impossible without some help
from a computer. Computers have also come to play a greater and greater role
as components in engineering systems, as a result of developments in the field
of microelectronics, where it has become possible to manufacture powerful
electronic units in large quantities and at low cost. Computers can be found as
components in everything from kitchen stoves and sewing machines to space
shuttles and satellites. Furthermore, in recent years, developments in personal
computers have brought computers nearer to the man in the street.

This first chapter will give an introduction to the structure of the
computer, its most important components and their function. The role of
programs is explained, how they are translated and how the computer carries
them out. Finally, an overview is given of the most important programming
languages and their historic development.




2 An introduction to computers and programming languages

1.1 A computer’s structure and operation

A computer can be described as a ‘machine’ that can store and process
information. A simplified representation of what apparently happens when a
computer program is run is shown in Figure 1.1.

This shows that a computer can be seen as a unit into which certain data
can be fed — the input. The computer manipulates these data and produces the
output. The input and output data can take different forms — electric signals,
light or sound. To start with, the computer may be thought of as communicating
with people, and then it is natural that the input and output should take the form
of written text. But computers are also used in many other situations where
communication is not primarily with people: in manufacturing processes, for
example, or as components of engineering systems such as aeroplanes and cars.
Here the input generally consists of signals from monitoring devices that feed
information to the computer about the current state of the system, for instance
temperature or speed. The output from the computer might be control signals to
relays or motors, perhaps to change the flow of fuel or initiate transfers in the
system.

One very important thing to understand from the diagram is that the
computer’s behaviour is controlled by a program inside it. The computer can be
made to do other things by changing the program. It is this that distinguishes a
modern computer from an ‘ordinary’ machine which is only designed to do
certain preordained tasks. There are, however, computers that are intended to
perform only one particular task, in other words, to run only one particular pro-
gram. These are known as dedicated computers. One example is the computer
found in a computer or video game. However, this still does not contradict
the principle that a computer is always controlled by a program and that the
program is replaceable.

Output
Input data
data

Figure 1.1



A computer’s structure and operation 3

Computers compared with ordinary machines

A computer differs from an ordinary machine in that
its actions are controlled by a program.

Figure 1.2 shows the central parts of a computer in a little more detail.
The computer’s ‘brain’ consists of a central processing unit (CPU). In the CPU
there is a control unit (CU) that controls and coordinates all the computer’s
activities. Decisions are made in the control unit regarding the operations to be
executed and the order in which these should be undertaken. The control unit
also sends out control signals, which regulate all the other units of the computer.
In the CPU there is also an arithmetic logic unit (ALU) containing electronic
circuits that can carry out various operations on the data being manipulated,
such as addition, subtraction, multiplication and division.

Another very important unit in the computer is the primary memory,
which stores, among other things, the program that the computer is running or
executing at any given time. Various data and temporary storage spaces needed
for the executing program to function properly are also found in the primary
memory.

Execution

When a program is run in a computer, it is said to be
executed. :

Arithmetic Primary
logic unit memory

Control
unit
Output
Input[ ldamp
data

Figure 1.2



4 An introduction to computers and programming languages

Primary memory can be thought of as a series of memory cells, some-
times called words (although they have nothing to do with ordinary spoken
words). Each memory cell has a certain address, which specifies its position in
the memory. The number of memory cells in a computer can vary, depending
on type and model, but it is usually a question of millions of cells. Each
memory cell consists of a certain number of bits, usually 8, 16, 32 or 64. Each
bit contains a binary digit, i.e. zero or one.

A group of 8 bits is usually called a byte. The size of memory is usually
expressed in the unit kilobyte, shortened to Kb, which is 1024 (2'°) bytes.
Memory can also be expressed as a number of megabytes (Mb) (million bytes)
or gigabytes (Gb) (billions of bytes).

A program that is being executed, and is therefore in primary memory,
occupies a number of connected memory cells. A memory cell, or a group of
cells, contains one instruction from the program. Different instructions can be
represented by different combinations of bits in the memory cells. Thus a pro-
gram consists of a series of instructions. An instruction tells the computer that
it should perform a particular task, for example, move the contents of a memory
cell from primary memory to the CPU, or add two numbers in the ALU. When
a program is executed, the control unit reads the instructions one by one from
primary memory and makes sure that they are carried out in the same order.

An instruction can thus be thought of as a particular combination of zeros
and ones. These combinations look different for different models of computer.
The program must be stored in primary memory in this form so that it can be
executed in the computer, and then it is said to be in the form of machine code.
Machine code is very ‘unfriendly’ in the sense that it is difficult to read and
write. In the early days of computers, when the principle of a stored program
was first applied, programs had to be written directly in machine code.
Fortunately, this area has developed and today the programmer does not gener-
ally need to worry about the computer’s machine code. As we will see,
programs are written in what are known as high-level languages (for example,
Ada and Pascal), which are much more ‘friendly’. Special translator programs
are used to translate from high-level language to the machine code, so that the
program can be run in the computer.

In Figure 1.3 our computer system is extended with some very common
units. To be able to communicate with its environment a computer must have
one or more input and output units. The drawing shows the most common
input/output units used to communicate with people, namely a screen and a
keyboard. There are other units people use to communicate with the computer,
the most common being a mouse, which is used to point with, and output units
such as line printers and plotters.

We saw that the primary memory is used partly to store the program
being executed, but in general a computer must also be able to store programs
that are not being executed. The various data used as input to different programs
must also be stored. Such data, which will be saved more permanently, are
stored in secondary storage. Common types of secondary storage include the



How the program gets into the computer

Secondary
storage
-
J
O
Input data
data
» Other
’ external
- devices
Figure 1.3

disk and magnetic tape (Figure 1.3 shows a disk). As a rule, secondary storage
has considerably greater capacity than primary memory.

The data in secondary storage is usually organized into files. A file is a
collection of data that belong together in some way; it might contain, for exam-
ple, a program or the input data for a particular program. A file can be thought
of as an envelope into which related data can be put. Each file is given its own
name so that it can easily be referred to. It is possible to create new files, remove
files and make changes in files.

The units in a computer that do not belong to the central parts are usually
called external units or peripherals.

Important units of a computer

® (Central processing unit (CPU) controls the
computer and processes data.

e In primary memory, the program being executed
and the data needed by that program are stored.

® Peripheral units are used for reading and writing
data (input and output units) or for storing data
more permanently (secondary storage).

1.2 How the program gets into the computer

In a programming language such as Ada or Pascal, what form does a computer
program take? Because the program is written by an ordinary person, it has the

5



6 An introduction to computers and programming languages

form of normal written text. The program can even be written on ordinary paper.
In this section we shall see what happens when this original program text, or
source code, is translated into the machine’s own machine code and loaded into
the computer.

The program is an ordinary text, so it can be written in at the keyboard.
Computers are generally delivered with a number of support programs, and one
that is almost always supplied is a text-editing program, or text editor. Figure
1.4 shows what happens when this program is run.

Using the text editor, any text can be fed into the computer or stored in a
file in secondary storage. A file containing text is usually called a text file. Using
the text editor, it is easy to revise, erase, change, shift or insert text. It is
normally possible to see a section of text on the screen, and then the parts of the
text that are to be revised can be selected using the keyboard, a light-pen or a
mouse. The details of how a text editor works and which commands it under-
stands vary a lot from system to system. Note that the text editor pays no heed
to what the text is about, whether it is an Ada program or a chapter from a book.

In the next stage the program text is translated from ordinary text to
machine code, which is done, as indicated in Figure 1.5, with a special transla-
tion program called a compiler. Each compiler is designed to handle a specific
programming language. Thus, to translate an Ada program you must have
access to and use an Ada compiler. A computer system usually has compilers
for several different languages.

Every programming language has special rules regarding the form of
different program constructions; this can be likened to the rules for sentence
structure in natural languages. It is said that each language has a certain syntax.
The compiler reads the program from the text file created earlier and checks
first that it obeys the rules of the language, i.e. that it is syntactically correct. If
the compiler discovers faults it displays an error message on the screen.
Sometimes the compiler attempts to correct errors if they are not too serious, but

Secondary
storage

Program
text

Keyboard

i !

Figure 1.4
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Secondary
storage

3

Program
text

Object
module

~1 7

Figure 1.5

normally compilation stops when errors are found. The programmer then has to
go back a stage and use the text editor to revise the program and correct the
errors. A new attempt to compile the program can then be made. Sometimes this
process has to be repeated several times before the program is free of syntax
€rTors.

If no errors are found in this first stage, the compiler goes on to translate
the program from text to machine code. The machine code so produced is
generally called the object module and it is saved in a file in secondary storage.

Note that, because different models of computer have different machine
codes, a compiler designed for one computer will not work on another. Different
compilers are needed for different computers. This is no problem for the pro-
grammer, because an Ada compiler always requires an Ada program as input,
irrespective of the computer bging used. The text of an Ada program that is
developed for a particular computer can thus easily be transferred to another
computer and run there. Thus the programs are said to be portable. One of the
advantages of high-level languages is the possibility of writing portable
programs, which is not possible using machine code.

The compilation of a fairly simple program may give rise to an object
module that can be loaded directly into the primary memory and executed, but
normally a linking stage is needed before this. Figure 1.6 illustrates this stage.
A special link program must be run. When a large program is designed it is
usually divided into different parts that are written, developed and compiled
separately. The link program gathers together the different object modules from
these separate compilations into a single entity called the load module. This is
saved in a file in secondary storage. Even if the program has not been divided,
linking might still be necessary because the program needs access to existing
system routines, for example, routines for input and output or mathematical
routines.

7



8 An introduction to computers and programming languages

Secondary
storage

Object
module

Load
module

4 \

Figure 1.6

Only the final stage now remains — to get the load module into the
primary memory so that the program can be run. This brings us to the question:
how does the computer know which program it should run? For the answer to
this, study Figure 1.7.

In the earlier figures we have only shown one program at a time in the pri-
mary memory — the program that is currently being run. In actual fact there is
always one more program permanently stored in the primary memory. That is
the operating system, abbreviated to OS. The operating system is the program
that is always running when no ‘ordinary’ program is being run. It operates
automatically when the ordinary program has finished or stopped for some

Secondary
storage

-

‘Operating.
system |
e B

rogram |||||m|||||m|m|||nmul|mm

Input 4 Output A
data y data

Figure 1.7



How the program gets into the computer

reason. The computer is also designed to put the operating system directly into
operation when the computer starts.

The operating system usually communicates with the user via the screen,
keyboard and mouse. The user can write commands using the keyboard, or point
and click using the mouse. One command is the instruction to load and execute
a particular program. The operating system searches for the required module in
secondary storage and copies it into primary memory, as indicated in the dia-
gram. Control is then passed to the loaded program, which is then executed until
it is finished, or until it is stopped.

The operating system performs many other tasks in a computer. For
example, it checks that the computer’s contacts with the peripherals are work-
ing and keeps track of all the files stored in secondary storage. The operating
system is often a very advanced program and computer manufacturers generally
provide one when a computer is delivered.

Now we have seen how a program is written, and how it is loaded and
run. This process can often be simplified so that the programmer does not need
to be aware of the separate stages, by using, for example, a program that com-
bines the compiling and linking stages.

The stages of making a working program
e The program text (source code) is created using
the text editor.

e The compiler translates the program text into an
object module.

e The linker puts several object modules together to
form an executable load module.

e The operating system puts the load module into
primary memory and the program is executed.

There is another way of running programs written in a high-level
language, distinctly different from the one just described. Instead of a compiler,
a special program, called an interpreter, is used. This is shown in Figure 1.8.

The program text is created using the text editor, exactly as before. The
interpreter is then run with the program text in secondary storage as input data.
Just like the compiler, the interpreter reads the text and checks that the program
has no syntax errors. The difference is that the interpreter never translates the
program into machine code. Instead, it interprets the program step by step and
carries out the tasks of the program. From the user’s point of view, it appears as

9
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Figure 1.8

if the program he or she has written is being executed. This often provides a
faster and easier way of test running small and simple programs. The disadvan-
tage is that the program runs much more slowly. It is thus not a method to be
used in the everyday running of working programs.

In some systems even the text editor and the interpreter have been com-
bined in one program; then, using just this one program, a user’s program can
be both edited and run.

1.3 Programming languages

As mentioned earlier, the earliest computers had to be programmed in machine
code. Part of such a program might have looked like this:

0111000100001111
1001110110110001
1110000100111110

It is easy to understand that it was seen as a tremendous advance when assem-
bler languages started to be used. Then the above fragment of program might
have been rewritten as:

LOAD A
ADD B
STORE C

In the assembler language each line of the program corresponds to one instruc-
tion in machine code. Thus the little program above has three instructions. For
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a program written in assembler language to be run in the computer, a translating
program is required — an assembler — that translates the program into machine
code. Such a translator does not have to be too complicated because the assem-
bler language lies so close to the structure of the machine code.

In spite of the considerable advance provided by assembler languages,
they still have enormous disadvantages. One disadvantage is that each model of
computer has its own unique assembler language, naturally enough, because the
language is so close to the machine code. An assembler programmer is thus
forced to learn many different assembler languages, which can differ consider-
ably in their details. Another disadvantage is that the assembler language is
extremely detailed. Each individual instruction must be given to the computer,
which means it is time-consuming to use an assembler language. Furthermore,
the error risk is high, so a program may contain many errors that may be
difficult to detect.

With the development of high-level languages in the 1950s, programming
changed radically. A program written in a high-level language is more adapted
to human modes of expression than to the computer’s set of instructions.
Programs are expressed in ‘half-English’ and arithmetic calculations are written
in a way familiar in mathematics. The above fragment of program may now be
written as:

C=A+8B

The programmer can concentrate on the problem to be solved rather than a mass
of detail about how the computer works. In principle, it is also possible to write
a program in a high-level language with the intention of running it on different
computers. There is no need to learn a new language for each computer.

The first high-level language was FORTRAN (FORmula TRANSslator),
which was introduced in 1954. It was originally intended to simplify writing
programs that made calculations using arithmetic expressions. The language’s
great weakness, however, is its poor structure, which means that FORTRAN
programs often become muddled and difficult to see as a whole. In addition, the
language has poor facilities for describing data and handling input and output.
FORTRAN had something of a facelift with the more recent versions,
FORTRAN 77 and FORTRAN S0.

In 1959 a new programming language, COBOL, was introduced,
designed for programming in the areas of finance and administration. A few
years later the language was standardized and it has become, and remains, one
of the most used languages. COBOL programs are very readable in that they
resemble ordinary English. The disadvantage of this is that programs in the
language are sometimes considered wordy and awkward. What was new about
COBOL, compared to FORTRAN, was its better ways of describing the data a
program had to handle.

A language that came to be very significant for subsequent developments
was ALGOL, which was presented in 1960. The big advantage of the language
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is that it has good structure. It is possible to write a program so that the way it
works is reflected in its appearance. Despite these advances, ALGOL never had
any great commercial success. A completely new version, ALGOL68, was
presented in 1968, but even that never achieved any real breakthrough.

A language that has been significant for later language developments was
SIMULA, the first version of which appeared in 1967, a direct extension of
ALGOL. The language is used primarily, as its names implies, to write simula-
tion programs. SIMULA is significant for being the first programming language
that enabled object-oriented programs to be written. All of today’s so-called
object-oriented languages are based on SIMULA.

The language Pascal was presented in 1971. The aim was for Pascal to
be a simple programming language, suitable for use in teaching, and it has
achieved wide usage in this field. The reason is that it has good program struc-
ture, which makes it easier for beginners to acquire a good ‘programming style’.
The language is based directly on ALGOL and ALGOL68, with some ideas
from SIMULA, although several constructs have been deliberately simplified.
An important feature of the language is that data can be described well and new
data types can be introduced by the programmer. Pascal is standardized, both as
an American standard (ANSI) and as an international standard (ISO). Even so,
variants of the language have appeared in which certain additions have been
made, for example UCSD Pascal and TurboPascal. The greatest weakness of the
language is that it lacks constructs for enabling larger programs to be built up in
a modular way. Further, it is limited in its handling of text, and in its input and
output facilities.

C is a language that has become very popular in spite of its age (it was
developed at the start of the 1970s). It is a language which can be said to be a
‘high-level language at a low level’. It gives the programmer great freedom to
control the computer in detail, and has therefore come largely to replace the
assembler in the development of system programs. Most of today’s operating
systems and other system programs, such as those for handling windows and
menus, are written in C. The language is relatively small, but it demands a lot
of the programmer since monitoring is lax and it is easy to make mistakes.

The most widely used of the object-oriented languages is C++, the first
commercial version of which came out in 1985. C++ is a pure extension of C, a
number of constructs to facilitate the handling of what are called classes and
objects having been added. These constructs are largely taken from SIMULA.
C++ is not an easy language to learn as first you have to master ordinary C,
followed by the object-oriented constructs.

Remarkably fast developments in the field of electronics, in that more and
more powerful components can be produced more and more cheaply, led many
to believe that it would similarly be possible to construct ever larger and more
complex programs. In the event, this assumption was quite wrong. All too many
programs either failed to be ready on time, greatly exceeded their budget,
contained many errors or did not fulfil the customers’ specifications. This
phenomenon became known as the software crisis. Among the reasons for this
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crisis was poor project management, and the fact that the programmer often
considered the program to be his or her own property. Many individual and
curious programming styles developed and it proved difficult to create error-free
programs. In order to remedy this, the concept of structured programming
was introduced, with the aim that a program should be written in such a way that
it is both easily understood and free from errors. Structured programming can
be said to be a set of rules and recommendations for how ‘good’ programs
should be written. Such programming needs the support of a suitable program-
ming language, and it was this need for well-structured programs that was
behind the development of what became known as structured languages, such as
Pascal.

During the 1970s it became clear that even well-structured programs
were not enough for mastering the complexity involved in developing a large
program system. It was also recognized that it was necessary to support the divi-
sion of the program into well-defined parts, or modules, that could be developed
and tested independently of one another, so that several people could work
together within one large programming project.

One way to divide a program into modules is to use so-called objects as
building blocks in the program. An object in the program can be thought of as
arepresentation of a real or conceptual thing in the program’s environment. This
idea originated from the language SIMULA but was further elaborated in a pro-
ject at Xerox, where a brand new language, Smalltalk, was constructed. The
first available version of Smalltalk was presented in 1980 and the concept of
object-oriented program development was introduced in connection to this pro-
ject. Many of the special words which are used in the object-oriented programming
languages, messages and methods for instance, come from Smalltalk. In
Smalltalk the concept of object is particularly emphasized. There are no data
types in the language and all data in a program are just objects. The syntax of
Smalltalk is also somewhat particular; that is, the language looks very different
compared to other languages. A Smalltalk system is an integrated interactive
environment with a window-oriented user interface. A drawback of Smalltalk
that is often mentioned is that the interactive environment demands large
computer resources and that the programs produced usually execute slowly. The
latter is due to that fact that the program code is not compiled, but interpreted,
at execution.

The US Department of Defense was an important customer for systems
of programs, which were supplied by a large number of independent companies
and written in a large number of different languages. The cost of development
and maintenance increased steadily. In 1975, in response to the software crisis,
the Department of Defense published a list of requirements that should be met
by any programming language before its use would be accepted. It turned out
that none of the existing languages met these requirements and a competition
was announced for the design of a modern, general, programming language. The
winning entry was named Ada, and was accepted in 1983 as a standard in the
USA, later to become an ISO standard as well. Since all compilers must follow
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the standard, each compiler must go through a special validation test before it
can be called an Ada compiler.

Apart from being a well-structured language, Ada also supports the
modular development of programs. The concept of the package has been intro-
duced and it is possible to build up libraries of packages which can be put
together to make large programs. One thing that distinguishes Ada from most
other programming languages is that it can be used to write parallel programs,
that is, programs that are to be executed simultaneously and interact with one
another. Such programs are encountered in applications for computer control of
technical systems.

After a few years of use it was decided to revise the standard. The work
was started in 1988 and the new standard was officially approved in 1995; hence
it is called Ada 95. One important innovation compared with the old standard
(called Ada 83) is that of object-oriented language constructs. Another impor-
tant addition is that of child libraries, which further simplify the construction of
large programs. Furthermore, a number of minor aspects of the language have
been improved (international character sets, pointers to subprograms, etc.), and
a number of changes have taken place in the part of the language to do with
parallel programming. A number of annexes have also been brought into the
standard, which contain descriptions of the parts of the language which are
special and are not necessary in every implementation. These annexes and their
contents are: system programming (machine-level programming, such as
interrupt handling), real-time systems (control of the priority of different
processes, etc.), distributed systems (program execution on several processors
at the same time), information systems (decimal arithmetic, text handling,
etc.), security (discusses the special problems involved in writing programs that
must be secure), and numerical computation (mathematical functions, etc.).

Finally, there are a few programming languages which are based, in part
at least, on different principles from those we have discussed so far. LISP is a
language developed as early as 1958, intended to manipulate symbols of vari-
ous kinds, such as characters and words. Programs are built up using lists of
symbols and have a very special appearance. LISP has been used extensively,
especially in the area generally known as artificial intelligence.

Research is going on all the time into developing new programming
languages which are based on new ideas, and the language PROLOG and the
so-called functional programming languages are examples of these.



The Construction of
Programs

2.1 The process of developing 2.3 Top-down design
programs 2.4 Simple programming examples
2.2 Algorithms Exercises

We will start this chapter by discussing what is known as software engineering
and the place of programming in the process of developing programs. The two
important concepts of algorithms and stepwise refinement will be introduced.
Then a number of simple programs will be presented to give the reader a first
idea of what an Ada program looks like. We do not want to get caught up

in a mass of details at this stage, so this chapter will give only an outline
description of the different program constructions, and more detailed
descriptions will follow in later chapters.

15



16 The construction of programs

2.1 The process of developing programs

This book is all about programming or, in other words, how one builds or
constructs a program. However, developing a program is not only a question of
programming. It might be compared with what happens when a house is built —
it is not just a case of going ahead and laying the bricks. A good deal of careful
preparation is needed. First, you have to decide how the house will be used, then
the plans can be drawn, and after that all the calculations have to be made before
the actual building can commence. And even when the house is completely built
it cannot be left to itself: it needs to be maintained. The work of building a house
can thus be divided into a number of phases — from the decision about its future
usage to its maintenance. This is quite similar to what has to happen if you are
going to develop a computer program: the programming, corresponding to the
actual carpentry and bricklaying, is only one phase of the whole process.

This is where a useful distinction can be made between programming in
the small and programming in the large. Programming in the small means that
you work alone and produce a little program of a temporary nature. Programming
in the large means that you work with the development of a larger program and
that the work is often the joint effort of a group of programmers. Most
programming in educational settings is on the small scale, but on occasion it can
also be large-scale, for example in project-based courses and the sort of applied
project work incorporated in many educational programmes. In the case of com-
mercial and industrial program development, it is almost always a question of
programming in the large.

When there is a program to be written, it happens all too often that some-
one sits down and starts to write it at once — one could call this the direct-
programming method. In the case of professional programming, in the large, this
practice leads to greater costs and it is questionable whether a functioning and
usable program can ever be produced in this way. It is generally admitted that
such direct programming brought about the software crisis that was discussed in
the previous chapter. It is less serious to use the direct-programming approach
for programming in the small, but even then it is worthwhile to decide in advance
what the program should do and Aow it should do it.

The overall goal when developing a professional program is to produce a
high-quality program within given constraints of time and cost. A program
should match the demands of the user, be reliable, well documented and easy to
maintain. To achieve these ends the program has to be developed with a well-
structured approach; just as with building a house, this calls for engineer-like
work in accordance with a clear plan. The term software engineering is often
used to refer to such a well-structured approach.

In order to draw up a work plan you need a model for the way in which
program development proceeds, and there are several models to choose from.
The most widely used is what is known as the waterfall model, of which there
are several variants. The program development process is here divided up into
the following phases:
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Requirements analysis and specification
Design

Implementation

Test and installation

Operation and maintenance.

The reason for calling this the waterfall method is that each phase results in a
set of documents that run down to the next phase.

During the first phase, requirements analysis and specification, the goal
is to determine what has to be done. You have to try to understand the environ-
ment in which the desired program will have to function. You should specify
what the program is required to do, what different functions it should be capa-
ble of, and the principles for its communication with the user. Such questions as
the sort of computers it should be run on should also be addressed now. This
work should result in a written requirements specification, which clearly states
all these demands. The specification is the document which defines the program
that is to be constructed and it has to be accepted both by the customer and by
the program developer(s). The specifications might include a preliminary user
manual and it can also prescribe trial procedures, which state how the final
program will be tested.

In the second phase, that of design, the question being addressed is how
should the program meet the demands now specified? You could say that this is
producing a blueprint for the program. You decide what different parts should
go to make up the program, what each of these should do, how they should inter-
face and how they should communicate with one another. This is done first in
outline and then in greater detail. The detailed design really means that you have
decided how the program is to be implemented. For example, it is now that
decisions are made about suitable algorithms (see the next section) and data
structures. The details of the interface with the user are worked out — what it
should look like, how commands will be given to the program, what the menus
should include, and so on. The documents which are produced during the design
phase are firstly a detailed system description, laying out the program’s design,
and secondly a user manual, which gives directions for how the program should
be used.

It is only in the third phase, implementation, that any programming starts
to be done, when there is already a detailed system specification and user
manual to adhere to. This phase also sees the testing of the parts of the program,
one by one, as they are completed. The result of the implementation phase is,
naturally, the program code, but there might also be test protocols resulting
from the tests carried out on parts of the program.

In the fourth phase of development, test and installation, all the parts
of the program are now put together for a check that everything works. If
the program is to be installed at a particular site, that is also done now.
Testing is carried out according to the prescribed test procedures which were
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defined earlier. This phase results in a test protocol, and it is only after this has
been found acceptable that the program developer gets paid in full by the customer.

The final phase, operation and maintenance, is the longest phase in the
life of the product. Now the program is in full use, but errors that were missed
in earlier tests have to be put right and the program might have to be adjusted
to cope with new demands, for example to work in a more modern hardware
environment.

There is criticism of the waterfall model in that it is too static: if one should
happen upon a mistake made in an earlier phase it cannot be corrected. Of course,
the waterfall model is not in reality used so strictly: some degree of feedback is
allowed. There is, after all, no point in implementing something known to be
incorrect or unsuitable. For example, one might discover during the design phase
that some of the demands made in the first phase are impossible, or very expen-
sive, to implement, and then it is only natural to relax the demands.

The specifications which are drawn up during the program development
process should be as clear as possible, so that there is no possibility of misun-
derstanding. There are no generally recognized formal methods for writing spec-
ifications. The most common method is to use graphic notation, ordinary text,
or a program description language. In the case of using normal text it is usual
to make it as formal as possible, by filling in sets of prespecified forms, for exam-
ple. Program description languages (PDL) are simplified programming
languages which contain certain simple language constructs and which enable
one to include explanatory text. There are progam description languages which
are based on Ada.

2.2 Algorithms

When designing a program the problem has to be faced of deciding on suitable
methods of solving the different partial problems of the whole program. A
description of how a particular problem is solved — a computational method — is
called an algorithm. An algorithm consists of a number of elementary opera-
tions and instructions about the order in which these operations should be
carried out. Certain demands can be made of an algorithm:

it should solve the given problem;
it should be unambiguous;

if the program has an end in view, such as computing a certain value, then
the algorithm should terminate after a finite number of steps.

Note: Not all algorithms have to terminate. For instance, the algorithm that
describes the control program for a nuclear power plant should certainly not
terminate.
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We come across algorithms every day. One example is a recipe: the prob-
lem is to prepare a particular dish and the algorithm gives us the solution. Another
example is the assembly instructions we get when we buy furniture in kit form;
and then there are all the different kinds of instruction manuals. And knitters will
recognize that a knitting pattern is nothing other than an algorithm.

Algorithms can be expressed in many different ways. One common way
is in natural language. Pictures and symbols can also be used, as in a knitting
pattern; so can formal languages like mathematical notation. Flow charts have
also been popular. Here we are dealing with programming, so it is naturally of
interest to us that algorithms can be expressed in programming languages. The
programming language ALGOL, which lies at the roots of most of today’s con-
ventional programming languages, was designed specifically so that it could be
made to express algorithms, hence the name.

Algorithms

Description of how a particular problem should be
solved.

Let us look at an example. We shall describe an algorithm that shows how
thesum 1 +2+ 3+ ... + N can be evaluated, if N is a given whole number > 0.
One way of describing the algorithm in natural language is:

(1) Set SUM equal to O and the counter K equal to 1.

(2) Repeat the following steps until X is greater than N:
(2.1) Calculate the sum of SUM and K and save the result in SUM.
(2.2) Increase the value of K by 1.

(3) The result required is now the number in SUM.

Expressed as an Ada program, the algorithm looks like this:

GET (N);

SUM :=0;

K:=1;

while K <= N loop
SUM := SUM + K;
K=K+1;

end loop;

PUT (SUM);

These lines of program read in the number N from the terminal keyboard and
display the required result at the terminal.
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To describe general algorithms the description method must be able to

express the following three constructs:

8y

@)
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Sequence A sequence is a series of steps that are carried out
sequentially in the order in which they are written. Each step is
carried out only once. An example is the assembly instructions for book-
shelves:

(1) Put the side pieces in position.
(2) Screw the back piece on to the sides.
(3) Put the shelves into the frame.

Selection Selection means that one of two or more alternatives should
be chosen. Calculating the absolute value of a number T can be taken as
an example:

If T > 0 then the result is 7', otherwise the result is —7.

Iteration Part of the algorithm should be capable of repetition, either a
defined number of times or until a certain condition has been met. An
example of the latter repetition could be:

Whisk the egg whites vigorously, until they become fluffy.

The most important algorithmic constructs

® Sequence: series of steps.
® Selection: choice between alternative paths.
e [teration: repetition.

Another kind of construct that is commonly used in algorithms, and which

can sometimes replace iteration, is recursion. This construct seldom occurs in
‘everyday’ algorithms and may therefore feel a little strange. The principle is to
break down the original problem into smaller, but structurally similar, problems.
The smaller problems can then be solved by reapplying the same algorithm, The
previous example, calculating the sum of the first N positive integers, can be
solved with recursion in the following manner:

(1) If N=0 set the result to 0.
(2) Otherwise:
(2.1) Compute the sum 1 +2+3 + ... +(N-1) using this algorithm.
(2.2) The required result is obtained by adding N to the result from
step (2.1).



Top-down design 21

Problem solving with computers
(1) Specify the problem.
(2) Design an algorithm for solving the problem.

(3) Express the algorithm as a program in a pro-
gramming language.
(4) Compile and run the program on the computer.

2.3 Top-down design

When a complicated problem has to be solved it is helpful to split it into smaller
subproblems and solve them separately. The subproblems can then be split into
further subproblems, and so on. This is a very important technique in algorithm
and program design and is known as top-down design, or stepwise refinement.
We shall use it extensively in the rest of the book. Let us look at a real-world
algorithm that describes how to wash a car. A first, rough algorithm may be
simply:

(1) Wash car.
This can quickly be expanded to:

(1.1) If you are feeling lazy:

(1.1.1) Wash it at a car wash.
(1.2) Otherwise:

(1.2.1) Wash it by hand.

Step (1.1.1) can be refined to:

(1.1.1.1) Drive to the nearest car wash.
(1.1.1.2) Buy a token.

(1.1.1.3) Wait in line.

(1.1.1.4) Have the car washed.

Step (1.1.1.4) can be refined further:
(1.1.1.4.1) Drive into the car wash.

(1.1.1.4.2) Check that all the doors and windows are closed.
(1.1.1.4.3) Get out of the car.
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(1.1.1.4.4) Put the token into the machine.
(1.1.1.4.5) Wait until the car wash is finished.
(1.1.1.4.6) Get into the car.

(1.1.1.4.7) Drive away.

In this way, different parts of an algorithm can be refined until a level is reached
where the solution is trivially simple.

Top-down design

Divide a problem into subproblems.
Solve the subproblems individually.
Divide the subproblems into further subproblems.

Continue in this way until all the subproblems are
easily solvable.

Let us look at another example where iteration is also involved. Imagine
the following situation. In your bookcase you have a cassette holder for ordinary
music cassettes. You keep your cassettes there, neatly arranged alphabetically
according to the name of the composer. (For simplicity, assume that you only
have classical music.) The holder is made of small slots, each large enough for
one cassette, so that they cannot move sideways. We assume that the cassettes
are kept in the left part of the holder, so there are no gaps or empty slots on the
left, but at least five empty ones on the right.

Now suppose you have bought five new cassettes that need to be put in
the holder in their correct positions, so that alphabetical order is maintained.
Assume also that the bookshelves are so full that there is nowhere to put the cas-
settes, so you have to hold them in your hands while you shift them around. To
avoid the risk of dropping any, you cannot have more than one cassette in your
hand at a time. The five new cassettes are on the floor and you pick them up one
after the other and position them in the holder.

We can make up a crude algorithm:

(1) Sort the new cassettes into the holder.
The first refinement is:
(1.1) For each new cassette:

(1.1.1) Lift the cassette from the floor in your left hand.
(1.1.2) Sort it into its correct place.
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The way we have written points (1.1.1) and (1.1.2) inset on the line shows that
they have to be repeated several times (once per new cassette). Thus iteration
has been introduced into the algorithm. Point (1.1.1) needs no further refinement
so we can expand point (1.1.2):

(1.1.2.1) Locate the slot in the holder where the new cassette should be placed.
(1.1.2.2) Shift all the cassettes to the right of (and including) the located slot

one place to the right, so that the located one becomes empty.
(1.1.2.3) Put the new cassette into the empty slot.

Refining point (1.1.2.1) gives:

(1.1.2.1.1)  Place your left index finger on the leftmost slot of the cassette
holder. (You can do this even though you have the new cassette in
that hand.)

(1.1.2.1.2) Repeat the following point until the located slot is empty or the
composer’s name on the cassette in the located slot comes alpha-
betically after the composer’s name on the new cassette.
(1.1.2.1.2.1) Move the left index finger one place to the right.

(1.1.2.1.3) The left index finger has now located the slot where the new
cassette should be inserted.

Point (1.1.2.2) becomes:

(1.1.2.2.1) Place your right hand on the cassette on the extreme righthand side
and repeat the following steps until the slot pointed to by your left
index finger is empty: :
(1.1.2.2.1.1) Move the cassette held in your right hand one place

to the right.
(1.1.2.2.1.2) Move your right hand to the nearest cassette on the
left.

If we now put all the expanded steps together, we get the following complete
algorithm:

For each of the newly bought cassettes:

Lift the cassette from the floor with your left hand.
Put your left index finger on the slot on the extreme left of the holder. (You can
do this even though you are holding the new cassette.)
Repeat the following step until the slot pointed to is either empty or contains a
cassette with a composer whose name comes alphabetically after the name of
the composer of the new cassette.

Move your left index finger one slot to the right.
Your left index finger has now located the slot where the new cassette should
be placed.
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Put your right hand on the rightmost cassette and repeat the following steps
until the located slot is empty.

Move the cassette held in your right hand one place to the right.

Move your right hand to the nearest cassette on the left.
Put the new cassette in the located slot.

The numbering has been removed to make it look neater. Note that the lines that
are inset are repeated a number of times.

We have just seen an example of what is known as a sort algorithm. This
is not the only algorithm that could be used for sorting the cassettes into posi-
tion. You can think of several other ways of doing it. Sort algorithms often occur
in programming and many computers are used extensively for sorting different
kinds of data.

There are usually several alternative algorithms for solving a particular
problem. In general, it is sensible to design an algorithm that is as simple and
easily understood as possible, because there is a better chance that it will work
as it was intended.

2.4 Simple programming examples

We shall now look at some simple examples of programs and become familiar
with a number of the constructs of Ada. As mentioned previously, a more thor-
ough treatment of the different constructs will be given in later chapters.
Therefore there is no need to pay attention to all the details at this first reading.

2.4.1 Simple output
The first program looks like this;

with TEXT_IO;
use TEXT-IO;
procedure HELLO is
begin
PUT ("Hellow! This is your computer speaking.”);
end HELLO;

When the program is run, it prints the text:
Hello! This is your computer speaking.
at the terminal. In the program, certain words are written in bold type. These

are called reserved words, words that have special meanings. When writing a
program, it is not necessary to emphasize different words in this way. It will
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only be done here so that the programs are clearer. If desired, everything can be
written with ordinary small or capital letters.

An Ada program consists of a procedure. The procedure in the program
above starts on the third line and has been given the name HELLO. The name is
repeated on the last line so that it is easy to see where the procedure ends.

In the program there is a printout of text (the line starting PUT). Ada
is designed for use in many different working environments, so it cannot
always be taken for granted that a program should write to a terminal as this
one does. If we want to read or write to a terminal, this must be stated, as
seen here in the first line. The line says that the program needs the help of a
package called TEXT_IO which is accessible on all Ada implementations. The
package contains several tools, including PUT, which enable us to read and
write text at a terminal. (A complete specification of the package is given in
Appendix A.)

When we want to use PUT in our program we must inform the compiler
that PUT is to be found in the package TEXT_lO. We can do this by writing
TEXT_IO.PUT in the program. This is a bit cumbersome to write, especially if
we want to use PUT many times. There is a more convenient way, as shown in
our example. On the second line we have written:

use TEXT_IO;

This causes the compiler automatically to search in the package TEXT_IO.
Therefore we can continue by writing only PUT instead of TEXT_IO.PUT.
In fact, PUT is a procedure just like HELLO. The line:

PUT ("Hello! This is your computer speaking.";

means that our program calls PUT. This means that the procedure PUT will be
carried out, or executed. The text in brackets is a parameter to PUT. We can
say that this parameter is input data to PUT. This parameter is a text string, seen
from the quotation marks around it. The procedure PUT is designed so that it
expects a text string as input. When it is called it will write out the text between
the quotation marks, but not the quotation marks themselves.

Printing text
PUT ("the text to be printed");

2.4.2 Reading and writing numbers

The next example shows a program that both reads from and writes to a terminal.
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withTEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure SUM_AND_PROD is
NUMBER1, NUMBER2 : INTEGER,;
begin
PUT_LINE ("Give two whole numbers!");
GET (NUMBER?1);
GET (NUMBER2),
PUT (“The sum of the numbers is:");
PUT (NUMBER1+NUMBER2); NEW_LINE;
PUT ("The product of the numbers is:");
PUT (NUMBER1+NUMBER2); NEW_LINE;
end SUM_AND_PROD;

When the program is run the output looks like this:

Give two whole numbers!

4

12

The sum of the numbers is: 16
The product of the numbers is: 48

The second and third lines were written by the user and the rest by the program.

Another package has been introduced in this example, BASIC_NUM_IO.
This package contains all the facilities needed for reading and writing numbers
at the terminal. In Ada, as will be shown later, it is possible to work with many
different kinds of numbers, and there is a general mechanism for creating pack-
ages of facilities for reading and writing them. The non-standard package
BASIC_NUM_IO has been used here instead, to avoid complicating things unnec-
essarily, even though it is not available on all implementations of Ada.
(Appendix B shows how to create this package using TEXT_IO.) The resources
in BASIC_NUM_IO are called in exactly the same way as those in Ada’s
standardized, general packages. Therefore it will look exactly the same as if we
had used such packages.t

¥ If you do not have access to a package like BASIC_NUM_IO you can start your program as
follows (see Chapter 5.5):

with TEXT_IO;

use TEXT_IO;

procedure program_name is
package INTEGER_INCUT is new INTEGER_IO(INTEGER);
package FLOAT_INOUT is new FLOAT_IO(FLOAT);
use INTEGER_INOUT, FLOAT_INOUT;,

: the rest of the program
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To put it simply, an Ada program can be thought of as a cake recipe. First
comes the name of the cake, then the list of ingredients to be used. Finally there
is the part stating how the ingredients should be mixed. First in an Ada proce-
dure comes the procedure specification, giving, among other things, the name of
the procedure. The procedure’s name in the example above is SUM_AND_PROD.
This is followed by a part of the procedure where declarations can be made. In
our example, two objects are declared, the variables NUMBER1 and NUMBER2:

NUMBER1, NUMBERZ : INTEGER,;

A variable can be thought of as a storage box into which values may be placed.
Each box, or store, can only contain values of a certain type. The word INTE-
GER states that the variables NUMBER1 and NUMBERZ2 can contain only whole
numbers, called integers in mathematics. They are said to have type INTEGER.
This can be illustrated as in Figure 2.1. The contents of the stores are not yet
defined. Last in the procedure, between the words begin and end, is the part that
describes what it does when it is executed. This part contains a series of state-
ments. Each statement is terminated by a semicolon. It is useful to write one
statement per line.

Program structure

with ... ;
use ...;
procedure program name is
declarations (including variables)
begin
statements
end program name;

NUMBER 1 NUMBER 2

Figure 2.1
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The first statement in the program:
PUT_LINE ("Give two whole numbers!");

makes the program begin by printing at the terminal:
Give two whole numbers!

when it is run. The procedure PUT_LINE in TEXT_IO has been used here. This

works in exactly the same way as PUT in the previous example, but with the

difference that a new line is automatically started affer the text has been printed.
When the program comes to the statement:

GET(NUMBER1);

which contains a call to the procedure GET in BASIC_NUM_IO, it will stop and
wait until the user has entered a whole number at the terminal. Assume the user
types the number 4, as shown in the example output. Then the procedure GET
places the value 4 in the variable NUMBERT1, as illustrated in Figure 2.2.

The next statement:

GET(NUMBER2);
works in the same way, but this time the number read is placed in the variable

NUMBER2. If we assume that the user has written 12, then the variable
NUMBER?2 will contain the value 12.

Input of numbers

GET (variable name),

NUMBER1

GET (NUMBER1) : => 4

Figure 2.2
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The following lines:

PUT ("The sum of the numbers is:");
PUT (NUMBER1+NUMBER2); NEW_LINE;

contain three statements which together produce a line of output at the terminal.
First comes a call to the procedure PUT in the package TEXT_IO. This call
causes the text:

The sum of the numbers is:

to be written out. Then comes a fresh call to the procedure PUT, but this time it
is not PUT in TEXT_IO that is called but the procedure with the same name in
the package BASIC_NUM_IO. This procedure expects a whole number as para-
meter. The parameter is the expression:

NUMBER1+NUMBER2

The value of this expression is computed. In our example it has the value 4 + 12,
thus PUT gets the value 16 as parameter and writes out this value at the termi-
nal. The compiler sees to it that the correct version of the procedure PUT is
chosen. When an integer is given as parameter, it is ‘understood’ that we mean
PUT in BASIC_NUM_IO, and when a text string is given as parameter it is
‘understood’ that we mean PUT in TEXT_IO to be used.

The procedure NEW_LINE, called in the last line, causes a new line
to be started in the output at the terminal. Why is PUT_LINE not used here
as well? The answer is that PUT_LINE only exists for text strings, not for
numbers.

Getting new lines in output

NEW_LINE;
or:

PUT_LINE (“the text that is to be written");
The new line is generated after the text is written.

The output:

The sum of the numbers is: 16
The product of the numbers is: 48
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may not look so neat. If we want the output to look as follows:

The sum of the numbers is: 16
The product of the numbers is: 48

then we can change the program:

PUT ("The sum of the numbers is:");
PUT (NUMBER1+NUMBER2, WIDTH => 7); NEW_LINE;

PUT ("The product of the numbers is:");
PUT (NUMBER1+NUMBER2, WIDTH => 3); NEW_LINE;

The parameter WIDTH tells PUT how many positions are to be used in the
output, the width of the output field. If the number to be written requires fewer
positions than stated (as in our example), PUT fills the field in with spaces to the
left of the number. When the width of the field is decided, one position should
be allowed for a possible minus sign if the number could be negative.

If the number requires more positions than stated, then it is not an error
but the number is output using as many positions as needed. If we had written
for example:

PUT (“The sum of the numbers is:");
PUT (NUMBER1+NUMBER2, WIDTH => 1); NEW_LINE;

and the sum had been 16, then the output would have been:

The sum of the numbers is: 16
If no WIDTH parameter is specified in PUT, then the number of positions needed
to write out the greatest whole number that can be stored in the computer is

assumed. This is the reason for the original appearance of the output in our
example.

Output of whole numbers

PUT (the value to be output);
or:

PUT (the value to be output, WIDTH => N);
where N specifies the width of the output field.
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2.4.3 Writing an invoice

Now we shall look at an example in which the technique of top-down design
will be used in designing and writing a program. Our program will be used in
general sales situations and we can imagine that it is intended for use as follows.
A customer buys a number of items of the same kind and should receive an
invoice stating their product code, the number of items bought, the price per
item excluding value added tax (VAT) and the total price for all the goods,
including VAT. The invoice should also state what part of the total cost is VAT.

QOur task is to write a program to produce such an invoice. Input to the
program should be the product code (comprising six letters and numerals), the
number of items sold, and the item price, excluding VAT. We assume that the
VAT rate is a known percentage that is fixed.

First we write a very rough algorithm:

(1) Read input data.
(2) Make the computations.
(3) Print the invoice.

Step (1) can be split into substeps:

(1.1) Read in the product code.
(1.2) Read in the number of items sold.
(1.3) Read in the unit price (excluding VAT).

For simplicity we shall start with step (1.2) and expand it:

(1.2.1)  Ask the operator to enter the number of items sold.
(1.2.2) Read what the operator has written.

Step (1.2.1) can be written in Ada as follows:
PUT_LINE ("Enter number of items sold");
Step (1.2.2) becomes in Ada:
GET (NUMBER_OF_ITEMS);

Now we have introduced a variable NUMBER_OF_ITEMS which must be
declared:

NUMBER_OF_ITEMS : INTEGER,;
We can continue with step (1.3), ‘Read in the unit price’, and expand it:

(1.3.1)  Ask the operator to enter the price per unit.
(1.3.2) Read what the operator has written.

31
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Step (1.3.1) is in Ada:

PUT_LINE ("Enter price per unit");
and step (1.3.2) becomes:

GET (ITEM_PRICE);

We have introduced a second variable, ITEM_PRICE. Obviously, this cannot be
an integer variable, that is, have type INTEGER. It is unlikely that the items cost
a whole number of monetary units, whether pounds sterling, US dollars or Swiss
francs. What we need is another kind of store that can contain real numbers. If
we imagine that the user writes 13.0 at the terminal we can picture the situation
after the GET call has been executed, as in Figure 2.3.

In Ada there is a standard type called FLOAT, and this can be used to
declare variables that have to hold real numbers, that is, numbers that are
not integers. We let the variable ITEM_PRICE have this type. The declaration is
then:

ITEM_PRICE : FLOAT;
In the package BASIC_NUM_IO there is a version of GET that can be used for
reading in variables of type FLOAT. There is also a version of PUT for output of
numbers of type FLOAT.

Now we can deal with step (1.1), ‘Read in the product code’. We can start
by subdividing:

(1.1.1) Ask the operator to enter the product code.
(1.1.2) Read what the operator has written.

Step (1.1.1) is easy:

PUT_LINE ("Enter product code (6 characters)")

ITEM_PRICE

13.0

Figure 2.3
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Step (1.1.2) is then:
GET (PRODUCT_CODE);

How should the variable PRODUCT_CODE be declared? It is neither an integer
nor a real number, so neither INTEGER nor FLOAT, as used earlier, will do. In
fact the variable PRODUCT_CODE is a text string, exactly the same as the text
strings we have written in several places. It must be possible to store an arbi-
trary code of six characters in the variable, so we need yet another kind of store.
If we assume that the user writes the code a1bX67 at the terminal, after the call
to GET, we have the situation illustrated in Figure 2.4. Ada has a standard type
STRING that can be used. The declaration is:

PRODUCT_CODE : STRING(1..6);
The expression in brackets states that the text string will consist of six charac-
ters, numbered from 1 to 6.

Now we can go on to step (2), ‘Make the computations’, which can be
subdivided directly:

(2.1) Calculate the total price (excluding VAT).

(2.2) Calculate the total VAT.

(2.3) Calculate the net price (including VAT).
For step (2.1) we can immediately write the Ada statement:

PRICE := ITEM_PRICE » FLOAT (NUMBER_OF_ITEMS);
This statement contains a few new things. The expression:

ITEM_PRICE+ FLOAT (NUMBER_OF_ITEMS)

means that the values of the variables ITEM_PRICE and NUMBER_OF_ITEMS
should be multiplied together. Ada does not permit different types to be mixed

PRODUCT_CODE
all!b!X!6!7

Figure 2.4
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in expressions of this kind. Since ITEM_PRICE has type FLOAT and
NUMBER_OF_ITEMS has type INTEGER, they cannot be mixed without doing
something first. We want the final result of the expression to have type FLOAT,
and therefore we take the value of NUMBER_OF_ITEMS and convert it to a value
of type FLOAT. This is achieved with the construct:

FLOAT (NUMBER_OF_ITEMS)

We then get a temporary store containing a real number. If, for example, NUM-
BER_OF_ITEMS has value 100, then the temporary store will hold the value
100.0. This is shown in Figure 2.5. Note that the variable NUMBER_OF_ITEMS
and the value it holds are in no way changed by this.

Mixing types

It is not allowed to mix different types (for example
INTEGER and FLOAT) in expressions.

It might seem clumsy that all this is necessary, but one of the advan-
tages of Ada, as will be shown later, is that different types are carefully watched
and kept apart. It is not possible to mix apples and pears by accident, so to
speak.

The effect of the expression:

ITEM_PRICE « FLOAT (NUMBER_OF_ITEMS)
is that we get a new temporary store to hold the result of the multiplication.
Step (2.1) also introduced a new variable PRICE with the type FLOAT.

This variable should therefore be declared as:

PRICE : FLOAT,

NUMBER_OF_ITEMS Temporary storage

100 FLOAT(NUMBER_OF_ITEMS) =>

Figure 2.5
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We shall save the result of the calculation in this variable. This is achieved using
an assignment. The compound symbol := is called the assignment symbol and
is used to denote assignment. Assignment means that whatever is on the right-
hand side of the assignment symbol is placed in the variable on the left-hand
side. The variable must be of the same type as whatever is on the right of the
symbol. Note that any variables that may appear on the right-hand side are not
affected by the assignment. Their values are unchanged.

Assignment

variable_name := expression;
e The value of the right-hand side is evaluated first.

e This value is placed in the variable that appears on
the left-hand side.

e The previous value of the variable will be
destroyed.

e The expression on the right-hand side must be of
the same type as the variable on the left.

We can now continue with step (2.2), ‘Calculate the total VAT’. We make
the assumption that the rate of VAT is a known and constant percentage. Clearly
it has to be of type FLOAT because it does not necessarily have to have an
integral value. It is possible to declare constants in Ada, using a declaration that
looks like a variable declaration. If we assume that the VAT rate is 15.0%, we
can declare a constant VAT_PERCENT:

VAT_PERCENT : constant := 15.0;
We can then use this to calculate the total VAT due:

VAT := PRICE = VAT_PERCENT / 100.0;
The statement simply means that the values of PRICE and VAT_PERCENT are
multiplied together and the result is then divided by 100. Note that 100 must be
written as a real number, 100.0. If we had written 100 it would have been inter-
preted as an integer. The final result is saved in a new variable VAT which should

be declared:

VAT : FLOAT;
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Step (2.3), ‘Calculate the net price (including VAT)’ is now easy:

NET_PRICE := PRICE + VAT;

where the variable NET_PRICE has the following declaration:

NET_PRICE : FLOAT;

We finish with step (3), ‘Print the invoice’, which we can split into the follow-

ing steps:

3.1
(3.2)
3.3)
3.4)
(3.5)
(3.6)

Print a heading.

Print the product’s code.

Print the number of items sold.
Print the unit price.

Print the net price (including VAT).
Print the VAT.

We assume that the program will be run from a terminal with printer output. We
want the invoice to look like Figure 2.6.

We can deal with step (3.1), ‘Write a heading’. For simplicity we will split
it into smaller steps:

(3.1.1)
3.1.2)

(3.1.3)
(3.1.4)

Start a new page.

Set the output position so that the heading starts in column 20 of the
page.

Print the word “INVOICE”.

Skip the next two lines.

INVOICE
Product code: A1BX67
Number of items: 100
Pice per item: 13.00
Total price (incl. VAT): 1495.00
Of which VAT is:  195.00

Figure 2.6

We make use of the facilities offered by TEXT_IO. The four steps become the
four corresponding statements:
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NEW_PAGE;
SET_COL (20); PUT ("INVOICE"); NEW_LINE (2);

Two useful output facilities

NEW_PAGE;

The next output starts on a new page (useful when the
terminal output is to paper).

SET_COL(N);

The next output starts in position N on the current
line. (If output is already beyond position N, a new
line is started.)

The next step, ‘Print the product’s code’, can be split further:

(3.2.1) Set the output position so that the text starts at column 10.
(3.2.2) Print the text "Product code:".

(3.2.3) Print the product code.

(3.2.4) Move on one line.

We have the corresponding Ada statements:

SET_COL (10);
PUT ("Product code: "%
PUT (PRODUCT_CODE); NEW_LINE;

Note the six extra spaces at the end of the text in the second statement.
These have been added to provide adequate space between the colon and the
code.

Similarly, the next step, ‘Print the number of items sold’, is:

SET_COL (10);
PUT ("Number of items:");
PUT (NUMBER_OF_ITEMS, WIDTH => 9); NEW_LINE;

Here the WIDTH parameter to PUT is used to get the right edge of
NUMBER_OF_ITEMS directly under the right edge of the product code on the
line above.

37
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The step ‘Print the unit price’ is:

SET_COL (10);

PUT ("Price per item:");

PUT (ITEM_PRICE, FORE => 7, AFT => 2, EXP => 0);
NEW_LINE;

The variable ITEM_PRICE contains a real number. There are two alternative
forms for writing out real numbers. The number 125.7, for example, can be
written either:

125.7
or:
1.257E+02

The latter is called exponent form and should be read as 1.257 times 10 to the
power 2. If we had had the simple statement:

PUT (ITEM_PRICE);

in the program, PUT would have written ITEM_PRICE in exponent form.
But we do not want this, so we make use of the possibility of assigning
further parameters to PUT when real numbers are to be output. Instead, we
write:

PUT (ITEM_PRICE, FORE => 7, AFT => 2, EXP => 0);

The parameters FORE and AFT state the number of positions required in the
output before and after the decimal point, respectively. Allowance should
be made for a possible minus sign among the positions before the decimal
point. If the number that is printed does not fill all the positions before the
decimal point (as in our example), PUT will place blanks there instead. The
parameter EXP gives the number of positions that we want the exponent
to be given. Since we have decided not to have an exponent at all, we set EXP
to 0. '

If we were to give FORE a smaller value than the number of positions
actually needed, no error would result, but PUT would use as many positions
before the point as required. If, for example, the variable ITEM_PRICE had the
value 13.00 and we had the statements:

PUT ("Price per item:");
PUT (ITEM_PRICE, FORE => 1, AFT => 2, EXP => 0);
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in the program, then the output would be:

Price per item:13.00

Output of real numbers
PUT (real value);
or:
PUT (real value, FORE => N, AFT => M,
EXP => 0);

where N and M give the number of figures before and
after the decimal point, respectively.

Now we can go on to the next step, ‘Print the net price’. This is analo-
gous to the previous steps and so are the statements: "

SET_COL (10);

PUT ("Total price (incl. VAT):");

PUT (NET_PRICE, FORE => 7, AFT => 2, EXP => 0);
NEW_LINE;

The last step, ‘Print the VAT, is:

SET_COL (10);
PUT ("Of which VAT is.");
PUT (VAT, FORE => 6, AFT => 2, EXP => 0),

We finish this example by putting the whole program together. We have several
variables of type FLOAT, and their declarations can be put together as shown in
the program.

withTEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUM_IO;

procedure WRITEINVOICE is
NUMBER_of_ITEMS : INTEGER;
ITEM_PRICE, PRICE, VAT,.NET_PRICE : FLOAT;
VAT_PERCENT : constant := 15.0;
PRODUCT_CODE : STRING (1..6);

begin
PUTUNE("Enter: product code (6 characters)");



* 17 2an8yg ur umoys ndino oy 2onpoid
pinoys wesfoixd oY) og ‘1ewnioy jueid SM UT JOYPO Yoed Jopun ‘Y q V
s1o19] 931y 9y melp 01 werdoxd (ssofesn APYSIS) € AUM [[BUS d9M MON

* *

ok ok ok ok ke ke
*® *
* %
L
*

SNyl uaNm 9q ued ‘ojdwexa 10§ ‘y juelS v "uenum 2q
Ued I9)19] 9ZISINO Ue [euiuLId) oY) je Aarendoidde « 1o10eIRyd o) Sutkedsip Ag

SINI[ AzIsINO Sumeaq p°p T

‘JOIOANI 3 LIHM Pud

‘AN MaN

{0 <= dX3 ‘2 <= 14V ‘9 <= 3404 ‘LlVA)LNd
'St IVA YyoIum 30, )1Nd (01)109° 138
INIT MaAN

0 <= dX3 ‘¢ <= 14V ‘£ <= 3404 ‘30I4d~13N)LNd
(VA "1ow) soud reoL,)LNd (011007138

‘INITM3AN
M0 <= dX3 ‘2 <= 14V ‘2 <= 3HO4 ‘301dd WaLll1nd
f(..:waur Jad 8oud.)1Nd (01)1007 L3S

‘INNTM3N (6 <= HLAIM ‘SW3LI™ 40" HIgGWNN)LNd
‘(.'sway jo JaquinN,)LNd (01)100 138

INIT"M3N (3000~ LoNA0Hd)LNd

i :9p02 Jonpoid,.)1Nd (011007 13S
(2)ANITM3N ‘(.3210ANI)LNd (021007 L3S
‘39vd"MaN

IVA + 3014d = 30I4d 13N
‘0°001 / LN3OHId LVA * 30IHd = IVA
(SWILIT40™HIFGWNN) LVOTd « 301dd WALl == 301Hd

{(301”Hd WaLNLID

‘(.iun Jod eoud 493, )ININ~ LN
(SW3LIT40 HIaNNN)LID

‘(.p10s sway Jo Jequinu J8u3,) AN LNd

(30007 1LONA0Hd) 13D

sweiboud jo uononnsuod 8yl op



Simple programming examples 41

*
%k
* 0k
*® *
koK kR k
* *
* *

stk sk
* *
* *
® *
* %
seokokokok sk

®
* %
L
% *
e ok oK ok ook ok
* &K
* *

Figure 2.7

The ability to make comments will be made use of in this program. The
compound symbol -- (double hyphen) introduces a comment and everything
written after it on a line will be interpreted as a comment, which means that the
compiler does not try to translate it.

Comments are used to make a program clearer to understand and to
provide support in writing a program.

Comments

-- this is a comment
e Makes a program clearer.
e Simplifies program design and writing.

Using the top-down design technique we make a first sketch of the
program using comments:
% 1

procedure GIANT_ADA is
begin

-- draw a giant A

-- draw a giant D

-- draw a giant A
end GIANT_ADA;
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44 The construction of programs

Compare them with the call to, for example, the procedure NEW_LINE in the
package TEXT_IO.

It is worth noting that by choosing good names for our procedures we
have made the program so clear that the comments are superfluous. It is always
important to choose good names for everything in a program. You should not be
concerned about using long names, even if it seems a bit tedious while you are
actually writing the program — in the long run there is much to be gained. After
all, the program is only written once but it is read many times during develop-
ment, debugging and maintenance.

Choosing names

e Use clear names within your program.
e Do not be afraid of using long names.

Now comes the question: where should our procedures be placed in the
program? We can picture our procedures as ‘ingredients’ in the program (recall
the earlier comparison with the cake recipe) in the same way as variables are
‘ingredients’. So our procedures must be declared in the program, just like the
variables. In fact, the procedures texts are declarations and we can place them
in the declarative part of the program. We then get a new version of our
program:

with TEXT_IO;
use TEXT_IO;
procedure GIANT_ADA is

procedure DRAW_GIANT_A is

-- this procedure draws a giant A

begin
NEW_LINE;
PUT_LINE(" ™)
PUT_LINE(" * *")
PUT_LINE(" * *;
PUT_LINE(" ******");
PUT_LINE(" * *);
PUT_LINE("™ *,
NEW_LINE;

end DRAW_GIANT_A;

procedure DRAW_GIANT D is
-- this procedure draws a giant D
begin
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NEW_LINE;
PUT_LINE(" *******);
PUT_LINE(" * *)
PUT_LINE(" * *Y%
PUT_LINE(" * *):
PUT_LINE(" * *);
PUT_L'NE(“ i*ﬁ**itll);
NEW_LINE;

end DRAW_GIANT_D;

begin
DRAW_GIANT_A; --execution begins here
DRAW_GIANT_D;
DRAW_GIANT_A;

end GIANT_ADA;

The procedures DRAW_GIANT_A and DRAW_GIANT_D have been declared in
the procedure DRAW_GIANT_ADA. So that this is seen clearly, their text is writ-
ten a little further to the right on the line. This method of organizing the appear-
ance of a program by shifting parts of the text over is called indentation. It
is very important that you indent your programs properly, a skill that will be
developed by studying the various example programs as they are presented.

Indentation

e A program is made much easier to read if the text
is indented in such a way that it reflects the struc-
ture of the program.

e A well-structured program is always indented.
e Indenting should be used in all program writing.

When the program (the procedure DRAW_GIANT_ADA) is run, the three
statements between begin and end, namely:

DRAW_GIANT_A;
DRAW_GIANT_D;
DRAW_GIANT_A;

will be executed in order. The first line in the program:

DRAW_GIANT_A;
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for example, means that the statements in the procedure DRAW_GIANT_A are
executed. These statements cause a big A to be drawn at the terminal. When this
is done and we have reached the line:

end DRAW_GIANT_A;

we return to the end of the first line in the procedure DRAW_GIANT_ADA. The
first statement in that procedure has now been executed and execution can
continue with the next statement:

DRAW_GIANT_D;

This statement is also a call to a procedure and is executed in the same way.

What we have actually done is to divide our original program into a main
program and two subprograms. We have broken down the problem of writing
the outsize text ADA into two simpler problems: writing an outsize A and
writing an outsize D. What has been gained is an increase in the overall clarity
of the program and avoidance of the need to repeat identical sequences of state-
ments. This technique of refining problems, breaking them down into sub-
problems and then using subprograms, is very important. There will be much
work with subprograms in the chapters to come.

Suppose we have been given the task of writing another similar program
that will print out the giant text DADDA at the terminal. We realize that we
should be able to make use of the procedures DRAW_GIANT_A and
DRAW_GIANT_D here as well. But these procedures exist only as internal
‘ingredients’ in the procedure DRAW_GIANT_ADA and are not available to
other programs (unless we write them again). Compare this with using the pro-
cedure NEW_LINE - a useful procedure that finds uses in many different pro-
grams,. This is possible because it has been put into a package, TEXT_{O. As we
have seen, this package can be accessed so that NEW_LINE can be used without
the need to write it out and declare it in every program.

Let us now make the procedures DRAW_GIANT_A and DRAW_GIANT_D
generally accessible by placing them in a package. We will create a package
called GIANT_LETTER.

A package in Ada can be compared to a meal in a restaurant. The
guest sees brief descriptions on the menu. This is all the guest needs to
be able to decide whether he or she will order a dish. To prepare the dish,
however, a more detailed description is needed — a recipe — but this is needed
only by the cook. The guest is not normally interested in the recipe, and even if
he or she wanted to see it, it is possible that the restaurant would not agree to it.

Similarly, a package in Ada consists of two parts:

(1) A specification (menu) to inform the programs that want to use it what
resources are to be found in the package — for example, procedures — and
how they are used.



Simple programming examples

(2) A body (recipes) where the resources are described in detail. The
programs that use the package do not see this part of the package. It can
be thought of as the contents of the package’s ‘black box’ and concerns
only its designer.

Packages

Two parts:

(1) Specification: gives the user information about
the resources contained and how they are used.

(2) Package body: details the resources. Not visible
to the user.

We shall start by writing the specification of the new package,
GIANT_LETTER:

package GIANT_LETTER is

procedure DRAW_GIANT_A;
-- this procedure draws a giant A

procedure DRAW_GIANT_D;
-- this procedure draws a giant D

end GIANT_LETTER,;

This specification informs the program that is going to use the package that the
package is called GIANT_LETTER and that it contains two procedures,
DRAW_GIANT_A and DRAW_GIANT_D (neither of which has parameters).
To make this clearer we have put in a comment for each procedure. This
specification can now be used by the program that will write the outsize text
DADDA:

with GIANT_LETTER,;

procedure GIANT_DADDA is

begin
GIANT_LETTER.DRAW_GIANT_D;
GIANT_LETTER.DRAW_GIANT_A;
GIANT_LETTER.DRAW_GIANT_D;
GIANT_LETTER.DRAW_GIANT_D;
GIANT_LETTER.DRAW_GIANT_A;

end GIANT_DADDA,;
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As before, we can insert a use clause and get:

withGIANT_LETTER,;

use GIANT_LETTER;

procedure GIANT_DADDA is

begin
DRAW_GIANT_D;
DRAW_GIANT_A;
DRAW_GIANT_D;
DRAW_GIANT_A;

end GIANT_DADDA,;

The first version is often preferred for packages other than Ada’s standard pack-
ages, because it states specifically which procedures are meant.

The first line means that the procedure DRAW_GIANT_DADDA gets
access to the package GIANT_LETTER. Note that since DRAW_GIANT_DADDA
does not use the facilities in TEXT_IO directly, TEXT_IO does not need to be
included in the first line.

Now we can rewrite DRAW_GIANT_ADA in a similar manner. The inter-
nal procedures are no longer needed and so the procedure becomes very simple:

with GIANT_LETTER,;

procedure GIANT_ADA is

begin
GIANT_LETTER.DRAW_GIANT_A;
GIANT_LETTER.DRAW_GIANT_D;
GIANT_LETTER.DRAW_GIANT_A;

end GIANT_ADA,;

It only remains to write the body of the package GIANT_LETTER:

with TEXT_IO;
use TEXT_IO;
package body GIANT_LETTER is

procedure DRAW_GIANT_A is

begin
NEW_LINE;
PUT_LINE(" ™)
PUT_LINE(" * *")
PUT_LINE(" * ™)
PUT_LINE(“ Q*itt*ﬁll);
PUT_LINE(" * *);
PUT_LINE(™ ")
NEW_LINE;

end DRAW_GIANT_A;
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PUT("Give the second whole number: *);
GET(SECOND_NUMBER),

if FIRST_NUMBER > SECOND_NUMBER then
PUT("The first number is bigger.");
else
PUT("The second number is bigger.");
end if;
end BIGGER_NUMBER,;

The program asks for two whole numbers. When the user has entered them from
the terminal, the program states which is the larger. An example of output from
the program is:

Give the first whole number: 12300
Give the second whole number: 13200
The second number is bigger.

One small detail in the output from the program that might puzzle us is
how the second and third lines manage to start on new lines, despite the fact that
neither PUT_LINE nor NEW_LINE has been used in the program? The answer is
simple. The two numbers, 12300 and 13200, are written by the user at the
terminal. When input is written to a program, a number is usually terminated by
pressing the terminal’s RETURN (ENTER) key. This means that the output at the
terminal moves on a line. So the answer to the question is that in this case it is
the user who has made the output move on a line and not the program.

The more interesting part of the program is a construct that we have not
met before — the if statement, which starts with the word if and ends with end
if. The first line of the statement:

if FIRST_NUMBER > SECOND_NUMBER then

means that the values of the variables FIRST_NUMBER and SECOND
NUMBER will be compared when the program is executed. If the expression:

FIRST_NUMBER > SECOND_NUMBER

is true, that is, FIRST_NUMBER is larger than SECOND_NUMBER, then the state-
ments that appear after the word then will be executed. In this case, the statement:

PUT("The first number is bigger.");
will be executed. If, instead, the expression:

FIRST_NUMBER > SECOND_NUMBER
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is false, that is, the SECOND_NUMBER is greater than (or equal to) the
FIRST_NUMBER, then the statements following else will be executed, in this
case the statement:

PUT("The second number is bigger.");

Observe that either the statements following then or those following else are
carried out. Only one alternative is chosen when the if statement is executed.
The use of the if statement in Ada is one way to formulate algorithms where a
choice has to be made.

Note that several statements may appear after the words then and else.
For example, we can alter the program a little:

withTEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure BIGGER_NUMBER is
FIRST_NUMBER, SECOND_NUMBER : INTEGER,;

begin
PUT("Give the first whole number: “);
GET(FIRST_NUMBER);
PUT("Give the second whole number: ");
GET(SECOND_NUMBER);

if FIRST_NUMBER > SECOND_NUMBER then
PUT("The first number, *);
PUT(FIRST_NUMBER, WIDTH => 1);
PUT (", is bigger.");

else
PUT("The second number, ");
PUT (SECOND_NUMBER, WIDTH => 1);
PUT(", is bigger.");

end if;

end BIGGER_NUMBER,;

When this program is run, the following output is typical of what may appear at
the terminal:

Give the first whole number: 12300
Give the second whole number: 13200
The second number, 13200, is bigger.

The last line has been obtained using three statements in the program. In the
second of these the WIDTH parameter has deliberately been given a value that
is too small. This means that the procedure PUT chooses to allow exactly as
many positions as needed and we get the output of the bigger number exactly as
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52 The construction of programs

we want it, without unnecessary blanks in front of it. The single blank results
from the blank after the comma in the text string that precedes the number.

We need to make one more change to the program. What would happen
if the user entered the same number twice? Since the expression

FIRST_NUMBER > SECOND_NUMBER

is then false, our original program would carry out the statements following else
and say:

The second number is bigger.

This, of course, is wrong.
We can make use of another option of the if statement, and rewrite our
program thus:

withTEXT_IO, BASIC_NUM_IO;
use TEXT_|O, BASIC_NUM_IO;
procedure BIGGER_NUMBER is
FIRST_NUMBER, SECOND_NUMBER : INTEGER,;
begin
PUT("Give the first whole number: ");
GET(FIRST_NUMBER);
PUT("Give the second whole number:  ");
GET(SECOND_NUMBER);

if FIRST_NUMBER > SECOND_NUMBER then
PUT("The first number is bigger.");

elsif SECOND_NUMBER > FIRST_NUMBER then
PUT("The second number is bigger.");

else
PUT("The numbers are equal.");

end if;

end BIGGER_NUMBER,;

Now the if statement has been augmented: there is a new part starting with the
word elsif. When the program is executed the following will occur. If the
expression after if, that is:

FIRST_NUMBER > SECOND_NUMBER
is true, then the statement:
PUT("The first number is bigger.");

will be executed, as before. If the expression is not true then the expression that
comes after elsif:
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SECOND_NUMBER > FIRST_NUMBER
will be examined. If this second expression is true, then the statement:
PUT("The second number is bigger.");

will be carried out. If this is also false, as when the two numbers are the same,
then the statement that follows else will be carried out, namely:

PUT("The numbers are equal.");

Just as in the simpler type of if statement, only one alternative is chosen when
the statement is executed.

In fact, the if statement can be generalized even further; there can be as
many elseif alternatives as necessary.

Selection

e (Can be made by using an if statement.
e Only one alternative can be chosen.

2.4.6 Calculating a selling price

We can look at another program that uses selection:

with TEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUM_IO;

procedure CALCULATE_PRICE is
DISCOUNT_PERCENT : constant := 10.0;
DISCOUNT_LIMIT : constant := 1000.0;
NUMBER_OF_ITEMS : INTEGER,;
ITEM_PRICE, PRICE, DISCOUNT : FLOAT;

begin
-- read input data
PUT(*Enter the number of items sold: ");
GET(NUMBER_OF_ITEMS);
PUT("Enter the cost per item: *);
GET(ITEM_PRICE);

-- do calculations
PRICE := ITEM_PRICE ~ FLOAT(NUMBER_OF_ITEMS);
if PRICE > DISCOUNT_LIMIT then

DISCOUNT := PRICE » DISCOUNT_PERCENT/100.0;
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PRICE := PRICE - DISCOUNT;
end if;

-- print result

PUT("Final price is ");

PUT(PRICE, FORE => 1, AFT => 2, EXP => Q);
end CALCULATE_PRICE;

The program is designed for calculating a selling price. The input required is the
number of items sold and the price per item. The program calculates and dis-
plays the total price to the customer. If the total price is above a certain amount,
in this case £1000, the customer gets a quantity discount of 10%. In this exam-
ple, for the sake of simplicity, we shall ignore the problems of VAT and sales tax
— they can be assumed to be included in the price from the start. When the
program is executed the output may look like this:

Enter the number of items sold: 25
Enter the cost per item: 45.50
Final price is 1023.75

There is an if statement in the program, but note that it has no else part. This
is quite legal. What happens is that the statements following then are carried
out if the expression in the if statement is true. If the expression is false then
nothing is done. In our example, therefore, the two statements:

DISCOUNT := PRICE ~ DISCOUNT_PERCENT/100.0;
PRICE := PRICE - DISCOUNT;

are executed only if PRICE is greater than 1000.

Two constants, DISCOUNT_PERCENT and DISCOUNT_LIMIT, have
been used. In the statements in the program these have then been used instead
of the corresponding numerical values. For example, instead of writing:

if PRICE > 1000.0 then
we have written:
if PRICE > DISCOUNT_LIMIT then

It is sensible to try to avoid numerical values in the statements of a program.
Suppose at a later date the discount is lowered to 8% and the minimum discount
sale is lowered to £900. Then the only things to be changed are the constant
declarations in the program. If the numerical values 10 and 1000 had been writ-
ten, maybe in several places, it might have been difficult to find all the places
requiring change, and something could well have been changed by mistake.
Another important reason for using constant declarations is that the program
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gains clarity. The name DISCOUNT_PERCENT used in the program tells us
much more than the number 10.

Using constants

e Avoid numerical values in a program.
e Declare and use constants instead.

2.4.7 Producing tables

Now we have seen examples of programs that use sequences of statements and
selection. The third important algorithmic construct is iteration, or the repetition
of groups of statements. A couple of programs that use iteration are now pre-
sented. The first will produce a table of integers and their squares. Output from
the program should look like that in Figure 2.8. It can be seen from this figure
that when the program is run the user has to enter the size of the table, that is,
how many numbers starting from 1 are to be squared. In the example the user

has written 12.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure TABLE_OF_SQUARES is
TABLE_SIZE : INTEGER,;
begin
PUT_LINE("Give the size of the table:");

Give the size of the table:
12
Number Square

1 1

2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144

Figure 2.8



56 The construction of programs

GET(TABLE_SIZE);
NEW_LINE;
PUT_LINE("Number Square"); NEW_LINE;
for NUMBER in 1..TABLE_SIZE loop
PUT(NUMBER, WIDTH => 4);
PUT(NUMBER » NUMBER, WIDTH => 10); NEW_LINE;
end loop;
end TABLE_OF_SQUARES;

There is an iteration statement in the program that starts with the word for. The
statements that appear between the words loop and end loop will be repeated a
certain number of times. Note that these lines have been indented. The line:

for NUMBER in 1..TABLE_SIZE loop

states the number of times the repetition should occur, in this case the number
of times given by TABLE_SIZE, which has been given the value 12 in our exam-
ple. The variable NUMBER introduced on this line is the loop parameter: it
counts the number of iterations made. The first time through the loop, NUMBER
automatically gets the value 1; on the second loop it becomes 2, the third 3, and
so on, until it finally becomes 12. Note that the variable NUMBER should not be
declared explicitly. It is declared automatically because it appears after for. In
this case it is of type INTEGER. Each time through the loop the program will
write one line at the terminal.

Iteration a known number of times

When the number of times an iteration should occur is
known before it starts, a construct using for is used.

2.4.8 How long before I’m a millionaire?

In the final example in this chapter we will look at what may be unrealistic con-
ditions of employment. Imagine you have been offered a very dangerous job,
filled with all sorts of risks. If you take the job, the chances of surviving long
are slight. The pay is a bit unusual. On the first day you will receive £0.01, £0.02
for the second day, £0.04 for the third, and so on. The pay is doubled daily.
Although you are anxious about your health and safety, you are still prepared to
consider taking a few risks if it means riches, so you decide to see what the offer
really means. The question you want an answer to is simply: how many days
must you work in order to become a millionaire? To get an answer you could
use this program:
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with TEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUM_IO;

procedure RICH is
NUMBER_OF_DAYS :INTEGER :=1;
DAYS_WAGE : FLOAT := 0.01;
TOTAL_EARNINGS  : FLOAT := 0.01;
DESIRED_EARNINGS : constant := 1000000.0;

begin

while TOTAL_EARNINGS < DESIRED_EARNINGS loop
NUMBER_OF_DAYS := NUMBER_OF_DAYS + 1;
DAYS_WAGE := DAYS_WAGE » 2.0;
TOTAL_EARNINGS := TOTAL_EARNINGS+DAYS_WAGE;
end loop;

PUT("You will be a millionaire in ");
PUT(NUMBER_OF_DAYS, WIDTH => 1);
PUT_LINE(" days.");

end RICH;

Three variables are used in this program: NUMBER_OF_DAYS, DAYS_WAGE
and TOTAL_EARNINGS. In the declarations we have made use of the option to
initialize the variables. The declaration:

NUMBER_OF_DAYS : INTEGER := 1;

for example, means that the variable NUMBER_OF_DAYS automatically gets
the initial value 1 when the program is run. (If a variable is not initialized, as in
our previous examples, the variable’s value is normally undefined when the pro-
gram starts. This means that the variable contains ‘garbage’ and should not be
used until it has been given a proper value.)

The three variables in our program have been given initial values that
represent the situation after one day’s work, namely that NUMBER_OF_DAYS
is 1, DAYS_WAGE is 0.01, and TOTAL_EARNINGS is also 0.01.
DESIRED_EARNINGS contains the amount you want to earn to be rich, in this
case £1,000,000.

The iteration statement in this program starts with while. The three
statements:

NUMBER_OF_DAYS := NUMBER_OF_DAYS + 1,
DAYS_WAGE := DAYS_WAGE ~ 2.0;
TOTAL_EARNINGS := TOTAL_EARNINGS + DAYS_WAGE;

will be repeated a certain number of times: actually once for every day worked
except the first day. We see that every day we increase the day counter
NUMBER_OF_DAYS by 1; work out DAYS_WAGE, the current day’s wage
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(which is double the previous one) and add the latter quantity to the running
total, TOTAL_EARNINGS. After two days (after the first time through the loop)
NUMBER_OF_DAYS will thus be 2, DAYS_WAGE will be 0.02, and
TOTAL_EARNINGS will be 0.03. After three days (after the second loop) they
will be 3, 0.04, and 0.07, respectively.

How many iterations are needed? We do not know. Each iteration repre-
sents one day worked, and it is precisely the number of days to be worked that
the program is intended to find out. To control the iteration therefore we do not
use the construct with for as in the previous example, but a version of the loop
statement where while is used. This works as follows. Each time a new iteration
begins, the expression after while is investigated first. If this expression is true
then one iteration of the three statements in the loop is carried out. If it is not
true, then the loop statement terminates; the loop is not repeated and the pro-
gram continues with the statement after end loop. When the loop statement is
finished, the program will display the number of days you must work to become
a millionaire. The output will be:

You will be a millionaire in 27 days.

Iteration an undetermined number of times

When the number of times an iteration should be car-
ried out is not known in advance, but a condition is
known for the iteration to terminate, a construct with
while is used.

The difference between using constructs with if and while should be
noted. The lines of program:

N:=0;

if N < 10 then
PUT(N, WIDTH => 1); NEW_LINE;
N:=N+1;

end if;

assuming that the variable N has type INTEGER, would give the output:
0

when run. The statements between then and end if would therefore be executed
once only. This can be compared with the lines:
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N :=0;

while N < 10 loop
PUT(N, WIDTH => 1); NEW_LINE;
N:=N+1,;

end loop;

which would give the output:

OQONIOOTADWN-=0O

Here, then, the corresponding statements are executed 10 times.

EXERCISES

21

2.2

23

24

25

Give an algorithm for evaluating the sum:

n
i?

=1

i
Specify an algorithm, using any method, to calculate:
Nl=12X3X .. XN N>0)

A table contains N different numbers. Design an algorithm that looks through the table
to find the smallest number. The algorithm should give the position of the smallest
number in the table as its result (an index between | and N).

A table contains N different numbers. Design an algorithm that changes the table so that
the numbers are in order, from smallest to largest. Use a method that starts by putting
the smallest number in the first position, then puts the second smallest in the second posi-
tion, and so on. (Hins: Use the algorithm developed in the previous question.)

Write an Ada program that will write your name and address at the terminal.
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2.6

2.7

2.8

2.9

2.10

Write a program that works out and displays the number of miles a car has been driven
over the past year. When the program is run it should request the current mileometer
reading and that of a year ago. The two mileages should be given as whole numbers of
miles.

Add to the program in Exercise 2.6 so that it will also calculate the car’s average petrol
consumption in litres per mile. In addition to the two mileages, the program should read
in from the terminal the number of litres of petrol used during the year (stated as a real
number). The program should also read in the car’s registration number so that it can
produce output in the following format:

Registration number: ABC123X
Total mileage: 9290
Total petrol consumption in litres: 1234.5
Consumption in litres per mile: 0.13

When a car is to be insured it is common to choose ‘full cover’ in the case of a new car
(less than 5 years old, say). If the car is older it is often thought that ‘third party’ insur-
ance is adequate.

(a)  Write a program that tells you whether to choose full or third-party insurance. The
program should receive as input data the current year and the car’s year of
manufacture. One of the messages:

Choose full cover
Choose third party insurance

should be displayed, depending on whether the car is less than or more than 5
years old.

(b) A number of insurance companies offer special insurance policies for veteran cars,
that is, cars more than 25 years old. Add to the program so that it can also display
the message:

Choose a veteran car policy

if the car is at least 25 years old.

Write a program that produces a table for all the integers in the interval n, to n,. For each
integer k, k? and &3 should be written. The two integers n, and n, should be read from
the terminal.

A bank gives interest at a rate of 9.25% on money deposited in a deposit account. Suppose
you put in £X at the start of a year. Write a program to calculate how many years
it will take before the balance in the deposit account exceeds £100,000 if no
deposits or withdrawals are made. The amount deposited, X, should be read in from the
terminal.
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Exercises 61

Write a program that draws two circles and two triangles at the terminal.

Rewrite the program so that the circle and triangle are drawn using separate sub-
programs.

Construct a package containing the two subprograms that draw a circle and a
triangle.

Show what the program from part (a) would look like if the package from part (c)
is used.
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3.1 Standard types 3.5 Variables and constants
3.2 Identifiers 3.6 Errors in programs

3.3 Literals Exercises

3.4 Expressions

This chapter presents some of the basic concepts behind Ada. The built-in
standard types, INTEGER, FLOAT, CHARACTER, STRING and BOOLEAN
are described. A brief discussion is also presented about how data is stored
in a computer using binary code.

The rules for stating different values and expressions are given, and
Ada’s standard operators are described. Finally, the various errors that can
occur in the programming process are discussed.
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3.1 Standard types

The task of a computer program is to manipulate data objects of various kinds.
A data object in a program often represents something that occurs in the real
world. In Chapter 2, for example, we saw how a variable, ITEM_PRICE, could
represent a real selling price, and how another variable, PRODUCT_CODE,
could represent the product’s actual code.

Different objects have different properties. For example, the value of
the variable ITEM_PRICE could be increased by 10%, but it would be
meaningless to talk about increasing PRODUCT_CODE by 10%. Conversely,
you can imagine changing all the upper-case letters in PRODUCT_CODE to
lower case, whereas trying to change a letter in a selling price would be
nonsense. In Ada, we say that objects that have different properties have
different types. Each object that is to be used in a program must be declared
before it is used and its type is stated in the declaration. For example, the
variables ITEM_PRICE and PRODUCT_CODE were declared in the following
way:

ITEM_PRICE : FLOAT;
PRODUCT_CODE : STRING(1 .. 6);

Data objects

® A program manipulates data objects.

® An object represents something that occurs in the
real world.

e Objects with different properties have different
types.

A type is characterized by:

(1) the values that can be taken by objects belonging to the type; and
(2) the operations that can be performed on them.

For example, for the type FLOAT the possible values are, in principle, all the real
numbers, and the operations are the normal mathematical operations such as
addition and multiplication. (In reality, for each implementation of Ada the
values possible are limited by the way in which the computer stores numbers in
its memory.)
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Types

Are characterized by:

(1) the values that can be taken by objects of the
type; and

(2) the operations that can be carried out on objects
of the type.

Ada is a language that keeps careful check on the types of different
objects, that is, objects of a certain type can only take values that are acceptable
for that type. For example, it would be impossible to store a product code in the
variable ITEM_PRICE. One great advantage of keeping different types separate
in this way is that it leads to better and more reliable programs. If you try to mix
different types in a program, it is often a sign that there is an error in the logic
of the program design. The compiler detects forbidden confusion of types and
gives an error message; this can be helpful in finding certain logic faults.

In Ada, as we shall see later, there is enormous scope for the programmer
to construct types of varying complexity to represent real phenomena. For example,
a type can be created to describe a car in a car-hire company’s file, or a line of
customers in a bank. In Ada there are some basic standard types that can be used
to describe objects or to build up more complex types; we shall study some
of these in this chapter. The standard types are defined in a special package
STANDARD, which is included in all implementations of Ada. All Ada pro-
grams automatically have access to the STANDARD packages; thus with and
use clauses are not used to access it.

3.1.1 The numeric types INTEGER and FLOAT

In earlier programs we have seen the standard types INTEGER and FLOAT. The
type INTEGER can be used to describe objects that can take only integral values,
such as counters and numbers of things. The type FLOAT can be used for other
numerical values, for example, physical properties such as temperature and length.
The standard types INTEGER and FLOAT exist in all implementations of Ada.

INTEGER and FLOAT
e INTEGER represents the mathematical concept
‘integer’, that is, only whole numbers are possible.

o FLOAT represents the mathematical concept ‘real
number’.
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To the question ‘Would it be enough just to have the standard type
FLOAT, which could then be used for all numerical quantities?’ the answer is
“Yes, in principle.” The reason why INTEGER is still included is that most com-
puters handle integers more quickly and more simply than real numbers.
Moreover, integers can always be stored exactly in the computer, whereas real
numbers often can be stored only in an approximate form.

To help with understanding the properties of the types INTEGER and
FLOAT there follows a short description of the principles of storing numerical
values in a computer. It is not absolutely essential for the programmer to know
this in detail, so those who want to can leave this section for later reading.

The computer’s memory comprises a number of memory cells, as men-
tioned in Chapter 1. Each cell consists of a certain number of bits and each bit
can contain one binary digit (a zero or a one). This means that numbers are nat-
urally stored in binary form in memory and we shall therefore start by looking
at the binary number system.

In our culture the decimal system dominates completely (presumably
because we have ten fingers). So if we write a number, such as 158.32, we
assume automatically that it is expressed in the decimal system where the base
is 10. This means that we interpret 158.32 as:

1 X10°+5X 10'+8 X 10°+3 X 10" +2 X 102
Expressing this more generally, we can say that a decimal number:

aa,,..aa.dd,..d,
(where the as denote the integral part and the ds the decimal part) really
means:

a, X 10 +a,, X 10"+ ... +4a, X 10" +a, X 10°+d, X 107" +
d, X 102+ ... +d, X 10™

Using base 2 instead of base 10, the binary number:

bb,, .. bbycc,.. c,

is interpreted as:

b, X2"+b,, X2 4+ . +b X2+ by X2+, X2+

n-1

X222+ . +c, X2™

Here, the bs denote the integral part and the ¢s denote what is sometimes called
the bicimal part. For example, the binary number 10111.101 can be interpreted
as:

IX2+0X2P+1X22+1X2"+ 1 X2+ X2'+0X 2241 %273
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or:
16+0+4+2+1+05+0+0.125 = 23.625

When an integer is stored in a computer a certain number of bits are used. The
actual number of bits varies from computer to computer, but it is commonly
either 16 or 32. If, for example, the integer 23 has to be stored in 16 bits, we get
the binary pattern:

0000000000010111

The bit on the extreme left usually gives the number’s sign, zero and one indi-
cating a positive and a negative number, respectively. The greatest positive
number that can be stored in 16 bits is therefore:

O111111111111111

This is actually 2" — 1 = 32 767. For storing negative numbers it is usual to
employ a form known as two’s complement. In this, the number -1 is stored in
16 bits as:

1111111111111111

The number -2 is obtained by subtracting 1 from this, thus getting:
1111111111111110

The number -3 is:
1111111111111101

By continuing to subtract one at a time we see that the least number (that is, the
most negative number) that can be stored in 16 bits is:

1000000000000000

This has the value ~2'° = =32 768. In general, it can be stated that if integers are
stored in N bits, the least number that can be stored is —2¥', and the greatest is
281, '

Variables of type INTEGER will be stored in this, or some similar, way in
the computer. The programmer does not need to know exactly how the. storage
works; the compiler takes care of this.

There is a certain risk attached to using the type INTEGER. Because the
size of the numbers that can be stored depends on the design of the particular
computer being used, the type INTEGER will not have the same properties in all
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implementations of Ada. Suppose we develop a program in a computer that uses
32 bits for storing integers of the type INTEGER. Now suppose a variable of
type INTEGER at some point in the program takes the value 100000. This is fine
because there is room in 32 bits to store 100000. But if we want to transfer our
program to another computer that uses 16 bits to store integers we shall have a
problem. When it is run, the program will be terminated because there is not
enough space for the value 100 000.

To determine the least and greatest numbers of the type INTEGER that
can be stored in the computer, another feature of Ada can be used — an attribute.
For each type there are a number of attributes that give information about par-
ticular properties of the type. For INTEGER, for example, there are the two
attributes:

INTEGER'FIRST
INTEGER'LAST

These give, respectively, the least and greatest numbers (that is, the most nega-
tive and the most positive numbers) of type INTEGER that can be stored. A test
program could be written to see which numbers can be stored in the computer
in use, including the statements:

PUT(" The least INTEGER is:  "); PUT(INTEGER'FIRST);
PUT(" The greatest INTEGER is: "); PUT(INTEGER'LAST);

Attributes for the type INTEGER

INTEGER'FIRST
gives the least possible integer that can be stored
(the most negative number).

INTEGER'LAST
gives the greatest possible integer that can be stored.

To be on the safe side and to ensure that programs are portable, that is,
that they can be used on any computer, do not use the type INTEGER, but
declare a new integer type where it is explicitly stated how big and how small
the numbers involved will be. How to do this will be dealt with later.

In addition to the standard type INTEGER, an Ada implementation may
also have the standard types SHORT_INTEGER and LONG_INTEGER.
SHORT_INTEGER is then used to store only small integers while LONG_INTE-
GER is used for integers that cannot be stored as INTEGER. The attributes
FIRST and LAST can also be used for these types.
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In science and engineering, to avoid using too many zeros in a number,
standard notation is often used for writing very large and very small numbers.
In standard notation the numbers 350 000 600 and 0.000 000 73, for example, are
written as:

0.35 x 10° 0.73 X 10¢

The same technique is used for storing real numbers in a computer, but the base
2 is used instead of 10. The decimal number 10.5 can first be translated into
binary form, giving the binary number 1010.1, and this can be written as:

Exponent

xz

Mantissa

The first part, 0.10101, is usually called the mantissa and the second part, 100,
the exponent. Both the mantissa and exponent are written as binary numbers
(the exponent 100 meaning 4 in base 10).

When a real number is stored in a computer its mantissa and exponent
can each use a certain number of bits, the numbers varying from computer to
computer. In addition, one bit is used to store the sign of the number.

The principle of storing real numbers is demonstrated in the following
example, where we assume that the decimal number 10.5 is stored in a computer
that uses 32 bits to store real numbers; the first of the 32 bits holds the sign (0
for plus, 1 for minus), the next 8 bits are used for the exponent, and the remain-
ing 23 bits are used to store the mantissa. The integral part of the mantissa does
not need to be stored because it is always 0. (Sometimes, the first digit in the
mantissa is not stored either because it is always possible to adjust the number
so that this digit is 1.)

s exponent mantissa
0 00000100 101010000006000000000000

It must be noted that the details of storing real numbers vary considerably from
computer to computer. This example merely shows the general principles.

Note that the exponent can also be negative, when a small number is
stored. For example, the number 0.06125 (= 1/16) would be stored as follows,
using the same format as the previous example:

0 11111 101 106000000006000C0000C000
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Here, the value of the exponent (-3) is expressed in the two's complement form.

This method of storing real numbers means that some numbers, such as
the example of 10.5 above, can be stored exactly, whereas others, such as 0.6,
cannot. If the number —0.6 is to be stored in the computer using the form out-
lined above, the pattern of bits would look like:

1 G0G00C0C0 10011001100110011001100

The bit pattern 1001 in the mantissa should be repeated infinitely many times,
but only 23 bits are available.

The number of significant decimal figures obtained depends on the num-
ber of bits used to store the mantissa. (It takes, on average, 3.2 bits per decimal
figure.) The number of bits used for the exponent determines the largest and
smallest numbers (excluding zero) that can be stored. The number zero is usu-
ally handled specially, and stored exactly using a particular pattern of bits.

The type FLOAT uses the foregoing technique to store real numbers. This
means that the number of significant figures is the same over the whole range of
_possible numbers, and that the position of the decimal point ‘floats’. It is said
the numbers are stored as floating point numbers and that FLOAT is a floating
point type. (Note there is also another technique for storing real numbers in
Ada, using a fixed decimal point. ‘Fixed point types’ are used in this latter situ-
ation, but we shall not study these here.)

There are also a number of attributes for the type FLOAT that can be used
to determine the properties of the type in the computer being used. The most
common attributes are FLOAT'DIGITS, FLOAT'FIRST, and FLOAT'LAST. An
Ada implementation may also have the standard types SHORT_FLOAT and
LONG_FLOAT which are, respectively, less and more accurate than the type
FLOAT. The attributes described above can also be used for these types.

Attributes for the type FLOAT

FLOAT'DIGITS
gives the number of significant figures one has.

FLOAT'FIRST
gives the smallest positive number (apart from zero)
that can be stored.

FLOAT'LAST
gives the largest positive number that can be stored.

Storing real numbers is therefore complicated, but it is reassuring to
know that a programmer does not need to worry about the details of what is
happening. However, the programmer should be aware of the accuracy that the
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decimal numbers retain. Furthermore, the programmer should remember that
real numbers are not always stored in their exact form, that is, care must be
taken when determining whether two real numbers are equal. Even if they are
equal in principle, they can still differ by one bit in their mantissas and the com-
puter will then see them as unequal. Such problems do not arise with numbers
of the type INTEGER because all numbers are stored exactly.

Comparing real numbers
Avoid comparisons such as:
X=Y or X=237

The numbers may be ‘equal’ but they can still be
considered unequal by the computer.

3.1.2 The type CHARACTER

Most of the data handled by computers is probably not numerical at all, but text,
characters and symbols. In the programs studied earlier we saw how to read in
and print out a product code using the type STRING. We shall start by describ-
ing a more basic standard type, namely the type CHARACTER. This type is used
for handling only single characters, such as letters, digits, special symbols (for
example, question mark, full stop or colon), or non-printing control characters.
Non-printing control characters can be used for communication tasks when the
computer needs to make a terminal do certain things, for example, begin a new
line, clear the screen or make a bell ring.

Let us write a short program to read a character from the terminal key-
board and write it on the screen.

with TEXT_IO;

use TEXT_IO;

procedure CHARACTER_DEMO is
CHAR : CHARACTER;

begin
PUT_LINE("Type any character!");
GET(CHAR);
PUT(CHAR);

end CHARACTER_DEMO;

In the program we have declared a variable CHAR of type CHARACTER. The
package TEXT_IO contains versions of the procedures PUT and GET which can
be used to read and write values of type CHARACTER. The statement:
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GET(CHAR);

results in the character that the user types at the keyboard occupying the vari-
able CHAR. We can think of CHAR as a storage box, or store, for characters. If,
for instance, the user types a percentage sign, the situation after the GET state-
ment has been executed could be illustrated by Figure 3.1. Observe that CHAR
can contain only one character; if the user types in several characters at the key-
board only the first one will land in CHAR.

Values of characters are written enclosed by apostrophes. If, for example,
we want to put a plus sign in CHAR we can write the assignment statement:

CHAR ="'+
If we want to put an apostrophe in CHAR instead, we would write:
CHAR ="

To store a character in a computer, a group of eight bits — a byte — is most
often used. In Ada 83 only seven of these bits are used; the eighth bit, called the
parity bit, is reserved for purposes of checking. The parity bit is usually the first
bit of a byte; the other seven can be combined in 128 different ways, which
means that there are 128 different character codes.

There is a generally accepted standard, called the ASCII standard, which
determines which characters can be coded with the seven available bits, and for
each pattern of seven bits there is one character designated in the standard. For
example, ‘%’, ‘9’ and ‘A’ are represented by, respectively,

00100101
00111001
01000001

These patterns of bits can be interpreted as binary integers, called character
codes. The codes start with 0, which means that the character codes lie between
0 and 127; the characters ‘%’, ‘9’ and ‘A’ thus have character codes 37, 57 and
65, respectively.

o
o

Figure 3.1
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The type CHARACTER in Ada 83 is made to follow the ASCII standard,
which means that a variable of this type can contain any of the 128 characters
defined in the standard. It also means that the different characters are repre-
sented in the computer in precisely the pattern that the ASCII standard specifies.
In our example above, then, the variable CHAR will contain the bit-pattern
00100101 if the user types a percentage sign at the terminal.

The type CHARACTER is an enumeration type. It is actually defined
within the package STANDARD, where all the values that a variable of type
CHARACTER can take are enumerated; a list of all the ASCII codes and
characters is given in Appendix F.

In an enumeration type there is a relative ordering defined between the
possible values, determined by the order in which the values are given in the
definition. Of two values, the one listed first is considered to be the lesser value.
Values of type CHARACTER are ordered in just this way: first come 32 non-
printing characters, and then 95 printable characters in the order given in
Appendix F. Note that the first printable character is a blank, which corresponds
to ‘space’ on the terminal keyboard.

Below we have amended our earlier program so that it reads in two char-
acters and prints them out in order (as defined by the ASCII standard).

with TEXT_IO;
use TEXT_IO;
procedure CHARACTER_DEMO?2 is
CHAR1, CHAR2 : CHARACTER,;
begin
PUT_LINE("Type two characters!");
GET(CHAR1);
GET(CHAR2),
if CHAR1 < CHAR2 then
PUT(CHARH1);
PUT(CHAR2);
else
PUT(CHAR2);
PUT(CHAR1);
end if;
end CHARACTER_DEMO?2;

We see that the two variables CHAR1 and CHAR2 can simply be compared by
using an if statement.

The printable characters can easily be given using apostrophes, as shown
earlier, but not so for the non-printing characters. Instead, they have been given
special symbolic names which are defined in a package ASCII, which is included
in the package STANDARD. For example, the character which tells the terminal
to move on a line (linefeed) can be placed in the variable CHAR as follows:

CHAR := ASCII.LF;



74 The basics of Ada

v

The ASCII standard is an American standard which was developed on the
assumption that the language in use is English. ‘The English alphabet has 26 let-
ters derived from the Latin alphabet. This set of letters suffices for English,
Swahili and Hawaiian; all other living languages use either the Latin alphabet
plus other characters, or other, non-Latin alphabets, or syllabaries.’{ The ASCII
standard, on the other hand, is spread throughout the world. The fact that the
ASCII standard has only the letters a—z has been a problem and a constant
source of irritation for all who work in the sphere of programming in countries
with languages other than English. The languages of western Europe, for exam-
ple, are based on the Latin alphabet but have various diacritical marks (accents,
umlauts, circles and so on) on some of their letters. Sometimes such a mark
gives a special stress or pronunciation to a letter: the meaning of a word can
even be changed accordingly. For example, in Italian the word e means and, but
the word ¢ means is. In other cases such a mark gives an entirely new letter. In
Swedish, for example, the letters &, @ and 6 are quite different letters from a and
o (for example, kJ in Swedish means queue while ko means cow, and 4, 4 and 6
come last in the Swedish alphabet, without reference to a and o).

The solution to the problem is naturally to allow for more characters in
the standard. If we drop the use of the first bit in each byte as a parity bit we can
make use of eight bits instead of seven, and can, as a consequence, represent 256
different characters instead of 128. Then the numbers from 128 to 255 can be
used to represent new letters, and even other characters. This has been done, for
example, in Macintosh and PC computers (but unfortunately, codes have been
assigned inconsistently).

In Ada 95 the type CHARACTER has been extended to use eight bits and
can thus represent 256 different characters. There is an international standard
(ISO 8859) specifying which characters are defined by which codes, and Ada 95
adheres to it. For the character codes from 0 to 127 ISO 8859 agrees with the
ASCII standard, so it is no different from Ada 83 for those who only use char-
acters from the ASCII standard. The character codes between 128 and 255 are
used partly for non-printing control characters and partly for a set of printable
characters. The set of printable characters which are used in Ada 95 and which
are included in the ISO 8859 is called LATIN_1. (Ada 95 does, however, allow
sets of characters other than LATIN_1 to be used.) Among the characters of
LATIN_1 are to be found the letters with diacritics which are used in the lan-
guages of western Europe, for example 3, &, &, &, 0, i, fi, and ¢, in both lower-
and upper-case variants. (The only exceptions are the letter 8, German double
s, and the letter ¥, which are only defined as lower-case letters.) Apart from the
letters with diacritical marks, LATIN_1 also contains various graphical charac-
ters such as §, £, +, and '/,. The printable characters of LATIN_1 are given in
Appendix F. In Ada 95, the following, for example, are allowed:

* Rationale for Draft Proposal ANSI-standard, Programming Language C.
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CHAR :='é";
CHAR ="'

There are symbolic names for the non-printing control characters in just the
same way as there are in the ASCII standard. These are defined in the package
ADA.CHARACTERS.LATIN_1 (see Appendix F).

In order to handle languages which are not based on the Latin alphabet,
Ada 95 has yet another standard type, called WIDE_CHARACTER. This makes
use of 16 bits, which means that 65336 different characters can be represented,
and these are specified in another international standard (ISO 10646 BMP).
The printable characters can be referred to in the same way as for ordinary
CHARACTER, by using apostrophes. If the variable WCHAR is of type
WIDE_CHARACTER, then one could write, for example:

WCHAR :='Z
WCHAR := 'V,
WCHAR := "%/,
WCHAR :='T};

In practice, however, it can be difficult to refer to a printable character in this
way, because it might not be included on the keyboard in use, or a graphics char-
acter might not be included in the set of characters available for the program
text. In such cases, the symbolic names of the characters might be available for
use, but they are dependent on the implementation; if there is no symbolic name,
then the attribute VAL can be used (see below).

There is a standard package ADA.WIDE_TEXT_IO, which includes the
procedures GET and PUT for reading and writing characters of type
WIDE_CHARACTER. This package contains the same procedures as TEXT_|O
but the type CHARACTER is replaced by the type WIDE_CHARACTER.

A number of functions which can be used for testing and converting dif-
ferent characters are defined in the package ADA.CHARACTERS.HANDLING
(see Appendix G).

If in a program you need to know which character code a particular char-
acter has, you can use an attribute which exists for the type CHARACTER. For
example:

CHARACTER'POS('A")

gives the order number for A, which is 65. The parameter in the parentheses can
also be a variable. For example, one can write:

CHARACTER'POS(CHAR)

and get as a result the order number of the character which is stored in variable
CHAR. If you need to go in the other direction, there is another attribute to use.
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CHARACTER'VAL(65)
will give the 65th character, namely A. Note that this attribute gives a result of
type CHARACTER.

The attributes POS and VAL can also be used for the type WIDE_CHAR-
ACTER. The following expression gives the character code for the symbol eo:

WIDE_CHARACTER'POS('=')

and if you want the character with character code 10517 you write:

A WIDE_CHARACTER'VAL(10517)

Attributes for CHARACTER

CHARACTER'POS(C)
gives the character code of C (where C has type
CHARACTER).

CHARACTER'VAL(N)
gives the character that has character code N.

3.1.3 The text type STRING

The standard type CHARACTER can only be used to describe one character at a
time. For an object that contains several characters, the standard type STRING
must be used instead. We saw an example of this in the invoicing program of
Chapter 2. A declaration of a variable of type STRING, a text string variable,
might appear as follows:

NAME : STRING(1 .. 5);

The number of characters to be stored in the variable and how they are to be
numbered are stated in the brackets. In this case, NAME will hold five charac-
ters, numbered from 1 to 5.

A text string variable can, just like other sorts of variable, be given a
value by assignment. If the statement:

NAME := "Tommy";

appears in the program, then after execution NAME will be as in Figure 3.2.
Note that the text string on the right-hand side of the statement must contain the
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NAME
TEOEmimEy
1 2 3 4 5

Figure 3.2

same number of characters as the variable on the left-hand side has space for; in
Figure 3.2 this is five. To write ‘Thomas’ or ‘Tom’ on the right, for example, is
not allowed, but ‘padding out’ with blanks and writing ‘Tom °’ is permitted.
Also note that double quotation marks are used to enclose text strings in a
program. In the example in Chapter 2, we saw that it is also possible to give a
value to a text string variable by reading it in from the terminal using the GET
procedure. The situation in Figure 3.2 could also be achieved if the program
contained the statements:

PUT_LINE("Give a name with 5 letters!");
GET(NAME),

and if the user typed the name Tommy at the terminal keyboard.

When a text string variable is declared, the two quantities in the brackets
do not need to be constants. It is possible to use simple expressions that may
themselves contain variables. What is essential is that the expressions should
have integer values and that the first expression is greater than zero.

MY_WORD : STRING(2 .. 10+N);
ADDRESS : STRING(K .. K+10);

The type STRING is called a composite type. An object of type STRING is actu-
ally composed of a number of objects of type CHARACTER. The variable
NAME, for example, consists of a collection of five CHARACTER objects, num-
bered from 1 to 5. It is possible to access the individual parts of a variable of
type STRING. If, for example, the content of the variable NAME is to be changed
to Tammy, the statement:

NAME(2) := 'a’;

can be written. The expression NAME(2) is an example of indexing. The 2 spec-
ifies that it is the second element of the variable NAME that is meant. This
element has type CHARACTER, not type STRING. This is the reason for the
apostrophes around the letter a on the right-hand side of the statement: they are
used, as we saw earlier, for the type CHARACTER. Figure 3.3 shows the state
of NAME after this assignment statement has been executed.
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NAME
rTiaimimi

1 2 3 4 5

Figure 3.3

In the following example, indexing is used to print out the last character
in the variable NAME:

PUT( NAME(5) );

With indexing, the expression in brackets need not have a constant value.
The index for a text string can be any expression at all, provided it has type
INTEGER and its value lies within the declared range, as shown in the follow-
ing examples:

NAME(2+3)
NAME(J+1) --correctif0<=J <=4
NAME(2+K); -- correctif 1 <=K <=2

Indexing in a variable of type STRING
S(integer expression)

where S has type STRING and the value of the integer
expression must lie within the index range for S.

The result of indexing is a single component of type
CHARACTER.

Using indexing it is thus possible to select a particular element of a text string.
It is also possible to choose a number of contiguous elements simultaneously,
by creating a slice — a part of a string. For example, the variable NAME can be
changed so that it contains the name Jimmy instead of Tammy:

NAME(1 .. 2) “Ji";

A slice has type STRING and therefore quotation marks are needed on
the right-hand side (even if the slice that is cut consists of a single element).
The following statement will print the second, third and fourth elements of
NAME:
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PUT( NAME(2 .. 4) );

As with indexing, more general expressions are allowed as index limits. When
a slice of a text string is taken, the two indexes must have type INTEGER and
they must lie within the index range of the text string. An exception is made of
the empty slice — a slice whose second index number is lower than the first. The
index is then allowed to fall outside the range of the text string’s index. Here are
some examples of slices of the text string NAME:

NAME(2 .. 2+1);

NAME(J-3 .. J) --OK if J has, for example, the value 4

NAME(1 .. 0) -- empty slice

NAME@B ..K) --sliceif2<K <6, emptysliceif K< 3,errorift K>5

Slices of text strings
S(N1..N2)

where S has type STRING. N1 and N2 are integer
expressions.

e If N2 < N1 we get an empty slice.

e Otherwise, N1 and N2 must lie within the index
range of S.

o The result has type STRING.

It is possible to join strings together in sequence — to catenate strings —
using an operator denoted by the symbol &. Here are a few examples:

NAME := "Tom" & "my"; -- result is "Tommy"

NAME := “Ji"* & NAME(3 .. 5);  -- result is "Jimmy"

PUT( NAME & " Johnson"); -- "Jimmy Johnson" is printed
NAME := NAME(1 .. 4) & 'o; -- result is "Jimmo*"

SYMB :='A' -- SYMB has type CHARACTER
PUT( SYMB & “-team"); -- "A-team" is printed

The last three lines show that it is also possible to add a CHARACTER on to a
text string (either at the beginning or at the end).
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Catenation of text strings
Sl & S2

where S1 and S2 can be either variables of type
STRING or constant text strings.

e It is also possible for one (or both) of S1 and S2 to
have type CHARACTER.

e The result has type STRING.

The next example program shows how catenation and slices can be used.
The method used to write the date is different in different countries and can
sometimes be a little confusing. For example, the American way of writing 26th
March 1996 is 03/26/96, whereas in Britain it would be written 26/03/96. The
day and the month have swapped places. According to the ISO standard, the
same date should be written 1996-03-26. Let us look at a program that can read
in a date in the American format and translate it into the equivalent British and
ISO formats. When the program is run the conversation at the terminal would
appear as:

Give the date in the form mm/dd/yy
03126/96

The British form of the date is:
26/03/96

The ISO form of the date is:
1996-03-26

Our first version of the program looks like this:

withTEXT_IO;

use TEXT_IO;

procedure TRANSLATE-DATE is
AMERICAN_DATE : STRING(1 .. 8);

BRITISH_DATE : STRING(1 8) =
ISO_DATE : STRING(1 .. 10) :="19-- %
begin

PUT_LINE("Give the date in the form mm/dd/yy");

GET(AMERICAN_DATE);

BRITISH_DATE(1 .. 2) := AMERICAN_DATE(4 .. 5);
BRITISH_DATE(4 .. 5) := AMERICAN_DATE(1 .. 2);
BRITISH_DATE(7 .. 8) := AMERICAN_DATE(7 .. 8);
PUT_LINE("The British form of the date is:");
PUT_L1NE(BRITISH_DATE);
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ISO-DATE(3 .. 4) := AMERICAN_DATE(7 .. 8);
ISO-DATE(6 .. 7) := AMERICAN_DATE(1 .. 2);
ISO-DATE(9 .. 10) := AMERICAN_DATE(4 .. 5);
PUT_LINE("The 1SO form of the date is:");
PUT_LINE(ISO_DATE);

end TRANSLATE_DATE;

In the program, the variables BRITISH_DATE and ISO_DATE have been initial-
ized at the same time as being declared. The spaces for the year, month and day
numbers have been filled with blanks that are changed later in the program.

We can write a more compact version of the program by constructing the
text string for printing directly in the output statement. We then need only one
variable, DATE:

withTEXT_IO;
use TEXT_IO;
procedure TRANSLATE_DATE is
DATE : STRING(1 .. 8);
begin
PUT_LINE("Give the date in the form mm/dd/yy*);
GET(DATE);
PUT_LINE("The British form of the date is:");
PUT_LINE(DATE(4 .. 5) & "/" & DATE(1 .. 2) & "/* & DATE(7 .. 8));
PUT_LINE("The ISO form of the date is:");
PUT_LINE("19" & DATE(7.. 8) & "-" & DATE(1 .. 2) & "-* &
DATE(4 .. 5));
end TRANSLATE_DATE

Text strings can easily be compared with one another:

if NAME = "Clare" then
PUT("Hi Clare");
end if;

The text ‘Hi Clare’ will be printed out only if the variable NAME contains the
text string ‘Clare’. It is also possible to compare alphabetically, and compare
strings of different lengths:

NAME < "Diana"

"Betty" < "Peter" -- True

“Jill" > "Jack" -- True

‘Liz" > "Elizabeth"  -- True

"Adam" < "Eve" -- True

“Victor" /= "Victoria" -- True (/= “not equal to")
"Victor" < "Victoria" -- True

"Rose" < "rose" -- True

81
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When making comparisons the normal alphabetical order applies, but note that
Another thing to be aware of is that, for purposes of comparison, lower- and
upper-case letters are not identical; somewhat paradoxically, the upper-case
letters have lower values than the lower-case letters (see Appendix F).

Comparing text strings
e There are normal comparing operations.
e Text strings of different lengths can be compared.

e Ordinary alphabetical order is used, except for the
additional letters with diacritical marks.

o Upper- and lower-case letters are considered to be
different.

This section concludes with a useful method for reading text of variable
length from the terminal. We have seen that it is possible to read text into a vari-
able of type STRING, using GET. For example, in the date program above we
had the line:

GET(DATE);

The disadvantage of GET, however, is that the text typed at the keyboard must
contain exactly the same number of characters as there are places in the variable.
Since the variable DATE has eight places, in this example, the user must type in
eight characters at the terminal. This poses no problem when reading in a date
because we know that it always has exactly eight characters; in many other
cases, however, it is not possible to decide in advance just how many characters
to expect.

As an example, we can look at a program that reads in two lines from the
terminal. Each line ends when the user presses the end-of-line key, the RETURN
key in most systems. Assume that each line contains a name, and the program’s
job is to sort them into alphabetical order.

with TEXT_IO;

use TEXT_IO;

procedure DEMONSTRATE_LINE is
LINE1, LINE2 STRING(1 .. 100);
L1, L2 : INTEGER,;

begin
PUT_LINE("Enter first name");
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GET_LINE(LINE1, L1);
PUT_LINE("Enter second name");
GET_LINE(LINEZ2, L2);
if LINE1(1 .. L1) < LINE2(1 .. L2) then
PUT_LINE( LINE1(1 .. L1));
PUT_LINE( LINE2(1 .. L2)
else
PUT_LINE( LINE2(1 .. L2)
PUT_LINE( LINE1(1 .. L1));
end if;
end DEMONSTRATE_LINE;

In the program we have declared two text string variables, LINE1 and LINE2,
where the two lines will be placed. We assume that no line will be more than
100 characters long and, therefore, we let both variables have room for 100
characters. The integer variables L1 and L2 will be used to keep track of how
many characters the user writes in the two respective lines.

For the actual reading we use a procedure GET_LINE from the package
TEXT_IO. The first line is read with:

GET_LINE(LINE1, L1);

What happens here is that the characters the user writes at the terminal for the
first line are read in and placed in the variable LINE1, from left to right, starting
at position 1. The variable L1 will get as its value the number of characters read
in the first line. To return to an earlier example, if the user writes ‘Tommy’ for
the first line, the text ‘Tommy’ will appear in elements 1-5 of LINE1 and L1 will
automatically get the value 5. The remaining elements of LINE1 (elements 6-
100) are not defined.
The second line is read in in the same way:

GET_LINE(LINE2, L2);

If the user should write ‘Catherine’ for the second line, the text ‘Catherine’
would appear in elements 1-9 of the variable LINE2 and the variable L2 would
have the value 9.

The two names can now be compared easily. We cut two slices that con-
tain only the two names and write:

if LINE1(1 .. L1) LINE2(1 .. L2) then
If the user writes ‘Tommy’ and ‘Catherine’ for the two lines, the text strings

‘Tommy’ and ‘Catherine’ will thus be compared with one another. (The remain-
ing elements of LINE1 and LINE2 are of no significance.)
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The name is then written out using PUT_LINE, and here we also cut out
the slice that contains the name read in.

Reading in text of variable length
(1) Declare a variable S of type STRING that is long
enough to hold a text of the maximum length.
(2) Declare an integer variable N.
(3) Read a line at the terminal using:
GET_LINE(S,N);
(The user ends a line by pressing the end-of-line
key.)

The variable N will contain the number of char-
acters in the line read, and the characters them-
selves will be in elements 1-N of S.

v In Ada 95 there are a number of predefined utility routines to handle text strings
~ fixed length strings as well as unbounded strings. These utility routines are
defined in the standard package ADA.STRINGS and its child packages MAPS,
FIXED, BOUNDED and UNBOUNDED. There is also a standard type
WIDE_STRING which works in the same way as type STRING, except for the
difference that the individual characters in a string of type WIDE_STRING are
of type WIDE_CHARACTER rather than of type CHARACTER. This type is
used for describing texts written in characters other than those to be found in the
set LATIN_1. The standard package ADA.WIDE_TEXT_IO contains procedures

A for reading and writing characters of type WIDE_STRING.

3.1.4 The logical type BOOLEAN

In Ada, the comparison:
NUMBER_OF_ITEMS > 0

is considered as much an expression as:
NUMBER_OF_ITEMS + 1

The second expression has type INTEGER, but what type does the first one have?
If you make the claim:

NUMBER_OF_ITEMS > 0
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it can be either true or false. In other words, we can say that the expression can
take the value true or the value false. It is quite normal to think of values as
numerical, for example, 14 or 68.24. When we discussed the types CHARAC-
TER and STRING, we saw that characters could also be seen as values, but of
another kind. Now we have met a third sort of value, logical values, known as
Boolean values after the mathematician Boole. In Ada there is a standard type
BOOLEAN that can be used for handling such values. For example, variables of
the type BOOLEAN can be declared:

ACTIVE : BOOLEAN,;

The variable ACTIVE can only contain the values TRUE or FALSE. We can
make an assignment:

ACTIVE := TRUE;
and then we have the situation depicted in Figure 3.4.

In the same way as other variables, we have thought of ACTIVE as a
storage box, but now a store that can only contain the values FALSE or
TRUE. If we want to, we can assign the result of a comparison to a BOOLEAN
variable:

ACTIVE := NAME = "Tommy";

This may look a little strange to start with, but note the difference between :=
and =. The assignment symbol := means that what is on its right, that is, the
logical expression:

NAME = "Tommy"
should be evaluated first and then the result should be placed in the vari-
able ACTIVE. In the expression on the right-hand side the operator = appears;

this is an operator concerned with comparing and has nothing to do with
assignment.

ACTIVE

Figure 3.4
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The type BOOLEAN
o The only values allowed are FALSE and TRUE.

e Expressions of type BOOLEAN are called Boolean
expressions.

If in a program we want to test the value of a BOOLEAN variable, we
could do so as follows:

if ACTIVE = TRUE then
PUT("In action!");
end if;

Since ACTIVE already contains a value of type BOOLEAN, it is more elegant to
write simply:

if ACTIVE then
PUT("In action!");
end if;

BOOLEAN is actually an enumeration type, like the type CHARACTER. It is also
defined in the STANDARD package where the two possible values, FALSE
and TRUE, have been listed (such that FALSE < TRUE, but this is not normally
significant).

3.2 Identifiers

The concept of an identifier is found in most programming languages, and Ada
is no exception. An identifier can be used as a name for different components
in a program, such as a procedure or variable. Identifiers are also used to denote
reserved words. GIANT_ADA, PUT, begin, and if are all examples of identi-
fiers. There are strict rules governing the appearance of identifiers. In Ada, the
rules are as follows:

® An identifier consists of a series of one or more characters. The number
of characters permitted in an identifier is, in principle, limitless (at least
200, according to the standard) and all characters are significant.

e The first character must be a letter (a letter being, in Ada 83, one of the
characters a-z).
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e The remaining characters may be a letter or the underline symbol _, or
one of the numerals 0, 1, ..., 8, 9. The underline symbol is significant,
which means that, for example, NR_1 and NR1 are interpreted as two dif-
ferent identifiers. More than one underline symbol in sequence is not
allowed, nor is an underline symbol at the end of an identifier. Blank
characters (spaces) are not allowed in an identifier, so that, for example,
NUMBER NRf1 is interpreted as two identifiers.

e Lower-case letters are also permitted. They are interpreted in the same
way as the corresponding upper-case letter, so that, for example, PUT,
puT and put are taken to be the same.

Here are some examples of identifiers:

TOMMY Smallest_Number x P_1
NUMBER_NR1 PageNumber x1
In Ada 95, all the characters which are interpreted as letters in the ISO standard v

(for example, 4, 2, 4, 4, &, &, &, i, 1, 6, 0, 6 and ii) are permitted in identifiers,
whereas in Ada 83 and all other common programming languages, only the let-
ters a~z are permitted. Thus the following identifiers are valid in Ada 95 but not
in Ada 83:

CITTA  Noél Strape afio
Gargon QL péte smoérgasbord

Here are some examples of invalid identifiers:

1X -- first character may not be a numeral
max% -- the character % is not permitted
_post -- the first character may not be _
ID-NUMBER -- the minus sign may not be used

ID Number -- interpreted as two identifiers

km/hr -- / symbol not allowed

There are a number of so-called reserved words which have special
meanings, and it is therefore not permitted to use these words as names in a
program. For example, you may not declare a variable with the name END. To
show the reserved words clearly, they are always given in our examples in bold
print. (When writing programs, there is no need to mark the reserved words in
any special way.) A list of all reserved words in Ada is given in Figure 3.5;
abstract, aliased, protected, requeue, tagged and until were introduced in
Ada 95.
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abort abs abstract accept
access aliased all and
_array at begin body
case constant declare delay
delta digits do else
elsif end entry exception
exit for function generic
goto if in is
limited loop mod new

not null of or
others out package pragma
private procedure protected raise
range record rem renames
requeue return reverse select
separate subtype tagged task
terminate then type until

use when while with

xor

Figure 3.5

3.3 Literals

Sometimes actual values are needed in a program, such as 12, 34.5 or ‘Hello’.
In programming, actual values such as these are called literals. Numeric literals
are used to give numeric values and can be either integer literals or real literals.
It is most common to give numeric literals as decimal numbers, as in the
following examples:

13 0 4598 -- integer literals
1E7 15e5 1EO -- integer literals
13.0 0.0 0.379 -- real literals
1.0e7 43.2E-12 3.2E+8 -- real literals

The exponent form is interpreted as the number before the ‘e’ multiplied by 10
to the power of the integer after the ‘e’. (Both upper- and lower-case e can be
used.) 1.234e2 is therefore interpreted as 123.4, while 1.4E-3 is 0.0014. The
integer after e can be preceded by a plus or a minus sign.

Zeros can be written at the start if desired, for example 0028 or 002.35.
There must be at least one figure before the decimal point in a real number, for
example .34 is illegal and should be written 0.34. Spaces are not allowed in a
literal, so that 1.4e -3 is not allowed, but underline symbols may be inserted for
grouping digits. For example, 1_245_000 would be interpreted as 1245000,
and 1.356_491 is taken as 1.356491.



These format rules for numeric literals also apply when numbers are read
into a program using the procedure GET. This means that the user must follow
the same rules at the terminal. Note that if an integer is to be read in, the rules
for integers apply; if a real number is to be read in then the rules for real num-
bers apply. For example, if the variable TEMPERATURE has the type FLOAT
and the statements:

PUT_LINE("Enter the temperature!");
GET(TEMPERATURE);

are in the program, then the user must type a real literal at the terminal. This
could be 12.0 or 1.2e1, for example. If the user only types 12, then this is an
error because 12 is an integer literal, not a real literal. In Ada, the user will be
given a DATA_ERROR. If the statements:

PUT_LINE("Give the number of items!");
GET(NUMBER_OF_ITEMS);

appear in a program and the variable NUMBER_OF_ITEMS is declared as an
INTEGER, then the user must type an integer literal at the terminal, for exam-
ple, 123, 25_000 or 1e3. The program will malfunction if the user types a real
literal such as 1.0e3 or 123.0.

We saw character literals when we discussed the character type CHAR-
ACTER. A character literal consists of any of the printable characters enclosed
in apostrophes. Some examples are:

The last of these shows how the apostrophe is given as a character literal.

We have also seen several examples of text string literals. These comprise
a number of printable characters (or possibly none) enclosed in quotation marks,
for example:

“This is a text string literal”

"abx'+%"

In Ada 95 the characters of a character literal or a text string literal do not have
to be ASCII characters. For example, the letters with diacritical marks in
LATIN_1 can be used:

|E| |o| g 5 5 ICI
"a la carte” "pit forte"  "Dido and /Eneas"”

Literals 89
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The types of character and text string literals are determined by the context, or
in other words, how they are used in the program. In the majority of cases, char-
acter literals are of the type CHARACTER and text string literals are of type
STRING, but they might well be of other types. For example, a character literal
might be of type WIDE_CHARACTER, and a text string literal could be of type
WIDE_STRING, as is the case in this example:

WTEXT : WIDE_STRING := "The letter '?' is strange";
WTEXT(13) :='E}

A (In this example there is no need to specify an index range in the declaration of
WTEXT since the length of the text is given when it is initiated.)

The citation marks in a text string literal are not part of the text itself — they are
only delimiters. If you want to have a quotation mark in a text string, you can
get it by writing two quotation marks, as in this example:

"Americans call a "lift"" an *"elevator™."

This example is interpreted as a single text string literal and not as five.
A text string literal must appear on a single line in a program. If it is too
long for one line, then the catenation operator can be used:

“This is a text string literal that is so long that " &
“we shall have to write it on two lines."

When the user has to type in a value for a variable of type CHARACTER or
STRING from the terminal, then the apostrophes or quotation marks should not
be typed. Suppose the variable NAME is declared as a STRING(1 .. 5) and the
following two statements are in a program:

PUT_LINE("Enter a name with 5 letters!");
GET(NAME);

If the user now types the word Tommy (without quotation marks), the variable
NAME will take the value ‘Tommy’.

The final type of literal we have met is the literal of type BOOLEAN.
Since there are only two values in the type BOOLEAN, there are only two literals:

FALSE TRUE

It is also possible to read in values to BOOLEAN variables, and then these liter-
als are used. We shall return to this in a later chapter.
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Literals
e Constant values, such as numeric values.

o Exist for all types.

3.4 Expressions

Expressions can be constructed in a program to calculate new values from literals
and the names of objects. NUMBER_OF_ITEMS « 2 is an example of an expres-
sion. Note that every expression is of a particular type which is determined by how
it is constructed and the components included in it. The expression NUMBER_
OF_ITEMS = 2 has type INTEGER if NUMBER_OF_ITEMS has type INTEGER.

The simplest form of expression comprises only one literal or the name
of an object:

3.14
ID_NUMBER
VAT_PERCENT
TRUE

"Hello!"

More complicated expressions can be built using operators. The symbol =,
for example, denotes the multiplication operator in the expression NUM-
BER_OF_ITEMS « 2. A set of basic operators is defined in Ada. (It is also pos-
sible for the programmer to define new operators, as will be discussed in Section
6.9.) Some operators exist only for certain types, for example, multiplication is
defined for two integers but not for two text strings.

Expressions
o Simplest form: literal or name of an object.

® More complicated expressions are constructed
using operators and simpler expressions.

3.4.1 Numeric expressions

Expressions that calculate with ordinary numbers are called numeric or
arithmetic expressions. In arithmetic expressions the normal operations of
mathematics can be used: addition, subtraction, multiplication and division. In
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addition, there are operators to find the remainder after integer division; to find
the absolute value of a number; and to carry out exponentiation.

Ada is careful to separate the different types. As we have seen, different
types may not be mixed in an arithmetic expression at will. We shall see later
that it is possible for the programmer to define new numeric types other than the
standard types INTEGER and FLOAT. Therefore, when the term ‘integer type’ is
used in future it will refer not only to the type INTEGER but also to all other
integer types: for example, SHORT_INTEGER and integer types defined by the
programmer. In the same way, the term ‘floating number type’ refers not only to
FLOAT, but also to SHORT_FLOAT and all other defined types that are related
to the type FLOAT. ‘Numeric type’ means any integer type or float type at all.

Numeric expressions

e Expressions constructed of ordinary mathe-
matical numbers.

o Different types, for example, INTEGER and
FLOAT, may not be mixed at will in an expression.

We begin with a discussion of the types of numeric literals. Each expres-
sion has a particular resulting type depending on how it is put together. As we
saw above, a numeric literal is the simplest form of expression, but what is its
type? What are the types of the expressions 28 and 25.84? If 28 has the type
INTEGER and the variable SMALL_NUMBER has the type SHORT_INTEGER,
then the assignment:

SMALL_NUMBER := 28;

would not be permitted, because the two sides have different types. This would
be impracticable. Clearly an integer literal does not have the type INTEGER.
This problem, and all similar problems, have been solved in Ada by introducing
an anonymous type called universal_integer, and all integer literals are said to
be of this type. A value of the type universal_integer, is converted automati-
cally to a suitable integer type when it is used. In the assignment statement above,
therefore, the value 28 is converted automatically into type SHORT_INTEGER
in connection with the assignment. If instead we have the statement:

BIG_NUMBER := 28;

where BIG_NUMBER has type LONG_INTEGER, then 28 is converted automat-
ically into type LONG_INTEGER. This means that an integer literal can always
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be regarded as having the ‘right’ integer type and there is no need to worry about
converting it to a particular type.

In a similar way, there is also an anonymous real type called
universal_real and all real literals can be regarded as having this type and being
converted automatically into the ‘right’ float type.

Literals in numeric expressions

o Integer literals may be used anywhere an integer
type is required.

e Conversion to the right integer type occurs auto-
matically.

e Real literals may be used anywhere a real type is
required.

e Conversion to the right real type occurs auto-
matically.

Let us examine the different operations that can be performed in an arith-
metic expression. Addition, subtraction, multiplication and division can be
performed with the operators +, —, * and /. For example:

NUMBER + 1 NO_1 + VALUE 3.8 + MEAN_TEMP
SALARY - 378,50 34.8-185.3 NUMBER - 8

5« NUMBER NO_1+ NO_2 VALUE » 1.3E3
NUMBER /3 12/56 VALUE / 3.76

The quantities before and after the operator are called the operands. It is essential
that both operands have the same type. For example, if NO_1 has type INTEGER,
then so must VALUE; if VALUE had another type, such as SHORT_INTEGER or
FLOAT, the expression would be faulty. The whole expression has the same type
as the operands involved. If NUMBER has type INTEGER, the whole expression
NUMBER + 1 also has type INTEGER. The expression 34.8 — 185.3 has the type
universal_real and the expression 12/ 5 the type universal_integer.

There are also unary variants of the plus and minus operators. These
variants have an operand on the right but none on the left. The unary minus is
of use in constructs such as:

K:=-1; K+ (-3) PUT(-K); K:=-K;

Division requires a little more explanation. If the operands are of floating
point type, there is no problem: ordinary division takes place and the result is of
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the same type as the operands. If, however, the operands are of integer type, the
result is also of integer type: so-called integer division takes place. This means
that we see how many times the right-hand operand ‘goes into’ the left-hand
operand. For example, the expression 12 /5 gives the result 2 because there are
2 whole 5s in 12. The result is not 2.4. As a further example, the expression
(-7)/ 4 gives the result -1, 12/ (-3) gives —4, and (-12) / (-5) gives 2.

The operator rem (remainder) can be used to find the remainder after integer
division. This needs two integer parameters of the same type. The expression:

i2rem5

for example, gives the result 2, the remainder when 12 is divided by 5. There is
another operator mod (modulus operator) that works in almost the same way.
The expression:

12 mod 5

also gives the value 2. If one of the operands to rem or mod is less than zero,
then it is a little more complicated. The next few lines can be omitted by read-
ers who are not interested in the details.

A mathematical definition is necessary. A and B below denote arbitrary
integers. Integer division and the operator rem are defined by:

A = (A/B)*B + (A rem B)
(-A)/B =—(A/B) = A/(-B)

where (A rem B) has the same sign as A and an absolute value less than the
absolute value of B.
For the operator mod:

A =B+N + (A mod B) for some integer N.

(A mod B) has the same sign as B and an absolute value less than B. Figure 3.6
illustrates the similarities and differences. If the second operand to one of the
operators /, rem or mod is 0, an error occurs in the program. In Ada, the user is
given a NUMERIC_ERROR.

There is an exponentiation operator denoted by **. Its first operand can
either be integer or floating point type. The second operand is the exponent and
must always be of integer type. If the first operand is of integer type, the result
will also be of integer type; if the first operand is a floating point type then so
will be the result. Here are a few examples:

NUMBER ++2 2+ NUMBER 5+ 4
VALUE » 3 MAX_TEMP «+ K 578 7
VALUE « (=3)  MAX_TEMP = 0



Expressions 95

A B A/B AremB AmodB
10 5 2 0 0
12 5 2 2 2
14 5 2 4 4
10 -5 -2 0 0
12 -5 -2 2 -3
14 -5 -2 4 -1
-10 5 -2 0 0
-12 5 -2 -2 3
-14 5 -2 -4 1
-10 -5 2 0 0
-12 -5 2 -2 -2
-14 -5 2 -4 -4
Figure 3.6

The operation that takes place is ordinary exponentiation. The expression
N s« 5, for example, is interpreted as N # N = N % N x N. If the second operand
is 0, the result is always 1. If the first operand has floating point type, then a neg-
ative exponent is also permitted. The expression X xx (—4), for example, is
interpreted as 1/(X # X = X * X).

The final standard numeric operator is abs. This operator has only one
operand and that can be of arbitrary numeric type. The operator calculates the
absolute value of the operand: in other words, the operand itself if it is positive
and the negated operand if it is negative. The result is of the same type as the
operand.

abs K abs MEAN_VALUE abs (-23.4)

More complicated expressions can be created by combining several operators.
For example, expressions such as the following are possible:

NUMBER « 5 + 37

VALUE / FACTOR + 14.3 - CORR

NUMBER rem 8 — K

abs VALUE / 5.78 « FACTOR
TEMPERATURE *+ 3 » PRESSURE + CORR

The result of one operation is a value that, in turn, is one operand in a new oper-
ation. The question of ordering the different operations arises in a complicated

expression. In the expression:

2+4/2+3
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the result could be completely different, depending on the order of addition,
division and multiplication.

Each operator in Ada has a certain precedence. The evaluation of a
complicated expression occurs in such a way that the operator with the highest
precedence is the first to be executed, followed by the one with next highest
precedence, and so on, until finally the operator with lowest precedence is
executed. If several operators have the same precedence, they are executed from
left to right. Of the operators we have seen, abs and ** have the highest prece-
dence; next are *, /, and mod; and then the unary operators + and —. The
ordinary + and — operators have the lowest precedence.

If we apply these evaluation rules to the expression above, we see that
the operators / and * have higher precedence than + and should therefore be
performed first. Since / and * have the same precedence they are carried out
from left to right, so that the division 4/ 2 is carried out first. The result of this
division, 2, then becomes the left operand to the operator *, which is now executed.
The result of the multiplication is 6 and this makes the right operand to the
operator +, which is carried out last. Thus, the result of the whole expression
is 8.

It is possible to control the order of execution of the various operators
using parentheses. The expression:

@2+4)/2+3
has the value 9, for example, and:
(2+4)/(2+3)

has the value 1.

Order of evaluation in expressions
e Is determined by the precedence of the operators.

e Can be controlled by the use of parentheses.

In the invoice example of Chapter 2, we saw that sometimes we are
forced to mix types. We wanted to multiply a FLOAT variable, ITEM_PRICE,
with an INTEGER, NUMBER_OF_ITEMS. 1t is illegal to write ITEM_PRICE «
NUMBER_OF_ITEMS because the two operands are of different types. We must
use type conversion and write:

ITEM_PRICE + FLOAT(NUMBER_OF_ITEMS)
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The value of the variable NUMBER_OF_ITEMS is converted to a value of type
FLOAT and this converted value becomes the right-hand operand to the
operator +. Conversion between all the numeric types is allowed, and is achieved
simply by writing the required type followed by a numeric expression in brack-
ets. The numeric expression is then converted to the type requested. If a real
expression is converted to an integer expression, then rounding to the nearest
whole number occurs. Here are a few examples:

MEAN_VALUE := SUM / FLOAT(NUMBER_OF_MEASUREMENTS);
5 » SHORT_INTEGER(2.85) -- Resultis 15
X » SHORT_FLOAT(N1 + N2)

Type conversion

e This can be used when different numeric types
must be mixed in an expression. It has the follow-
ing form:

T{(expression)

where T is the name of a numeric type and expres-
sion has another numeric type.

o The result is of type T.

e Rounding occurs if T is an integer type and
expression has a real type.

The following program can be used for converting a weight in pounds
(Ib) and ounces (0z) to the equivalent in kilograms (kg) (1 1b = 0.4536 kg and
there are 16 oz in 1 1b). Output from the program may look like:

Give weight in pounds and ounces
(integers, separated by spaces)
19

This is 5.245 kg.

The program is as follows:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure WEIGHT_CONVERSION is
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OZ_PER_LB : constant := 16.0;

KG_PER_LB : constant := 0.4536;

NO_LBS, NO_OZ :INTEGER;

WEIGHT : FLOAT; -- expressed in kg
begin

PUT_LINE("Give weight in pounds and ounces");
PUT_LINE("(integers, separated by spaces)");
GET(NO_LBS);

GET(NO_OZ);

WEIGHT := (FLOAT(NO_LBS)+FLOAT(NO_OZ)/OZ_PER_LB)
+ KG_PER_LB;

PUT("This is ");

PUT(WEIGHT, FORE => 1, AFT => 3, EXP => 0);
PUT_LINE(" kg.");
end WEIGHT_CONVERSION;

The variables NO_LBS and NO_OZ are declared as INTEGER, so that the user
can enter the data in a simple way and not have to type in real numbers. The
weight in kg will be a real number and therefore NO_LBS and NO_OZ must be
converted to the type FLOAT in the arithmetic expression.

The result of an expression that only contains operands of the type
universal_integer (or universal_real) has the type universal_integer (or univer-
sal_real), depending on the operands involved. The types universal_integer and
universal_real may actually be mixed in multiplication. Also, an operand of type
universal_real may be divided by an operand of type universal_integer. In both
cases the result is universal_real. Here are a few examples:

1+2 -- has type universal_integer
1.2+53 -- has type universal_real
28 -- has type universal_integer
20+~ 8 -- has type universal_real
5428 -- has type universal_real
4/9 -- has type universal_integer
3.74/9 -- has type universal_real

On an ordinary calculator there are often several mathematical functions for
evaluating logarithms and trigonometric functions, for example. Which mathe-
matical functions are accessible with Ada, and how do you use them?

In the Ada 95 standard, there is a standard package called ADA. NUMER-
ICS.GENERIC_ELEMENTARY_FUNCTIONS, which contains various useful
mathematical functions. (The package's specification is given in Appendix E.)
If you are using Ada 83 it is most likely that there is a similar package, but its
name has not been standardized in Ada 83.

If you need to use mathematical functions in a program you must ensure
that the program has access to the mathematical package, by placing at the start
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of the program a with clause specifying the name of the package. Because it
should be possible to use mathematical functions for all floating point types, the
package GENERIC_ELEMENTARY_FUNCTIONS in Ada 95 is not a complete
package in itself but rather a template for a package, known in Ada as a generic
package. Therefore, you do not have a use clause for the package in the
program, but first have to make a new ‘complete’ package with the help of the
template, by stating what type of floating point type you want to use. This is
demonstrated by the following program, which reads in the lengths of the
shorter sides of a right-angled triangle and writes out the length of the
hypotenuse. The floating point type FLOAT is used in the program, so a new
package is created for the type FLOAT, called MATH_FUNC:

with TEXT_IO, BASIC_NUM_IO,
ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS;
use TEXT_IO, BASIC_NUM_IO, ADA.NUMERICS;
procedure HYPOTENUSE is
A, B : FLOAT;
package MATH_FUNC is new
GENERIC_ELEMENTARY_FUNCTIONS (FLOAT);
use MATH_FUNC;
begin
PUT_LINE (*Enter the lengths of the shorter sides");
GET(A);
GET(B);
PUT("The hypotenuse has length: ");
PUT( SQRT(A«2 + B«2), FORE => 1, AFT => 2, EXP =>0);
NEW_LINE;
end HYPOTENUSE;

The expression:
SQRT(A »+ 2 + B *+ 2)

is evaluated in the program, and we make use of the mathematical function
SQRT to calculate a square root. The expression in brackets is a parameter to
the function: it is evaluated first, and its value is then passed to the function as
input data. In Ada, a function call is considered to be an expression, and a
function call therefore has a particular value and type, which is the same as say-
ing that the function returns output data of a particular value and type. The result
of the function SQRT here has type FLOAT and its value depends, of course, on
the value of the parameter. If the parameter has value 25.0, for example, then
the result will be 5.0. We do not need to worry about how the square root is
actually calculated in SQRT: only the people who write the package
GENERIC_ELEMENTARY_FUNCTIONS need be concerned about that.
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Standard mathematical functions

In Ada 83, these can be found in a special package
whose name is not standardized.

In Ada 95, these are found in the package ADA.
NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS.
Use with and use clauses in the following way:

with ADA.NUMERICS.GENERIC_ELEMENTARY_
FUNCTIONS;
useADA.NUMERICS;
procedure program_name is
package name is new
GENERIC_ELEMENTARY_FUNCTIONS
(FLOAT);

use name;

In the generic package GENERIC_ELEMENTARY_FUNCTIONS, as well
as the square root function there are also functions for exponentials, logarithms
and various trigonometric functions. The package also contains a further version
of the exponentiation operator **, a version which permits the second operand
to be a real number. It can also be mentioned here that in the numeric annex to
Ada 95 there are packages specified which enable calculations to be made with
complex numbers. For reasons of tradition, many programs involving calcula-
tions are written in FORTRAN, and for that reason there are a large number of
mathematical functions already written in that language. The numeric annex to
Ada 95 contains various aids to assist in making use of these FORTRAN func-
tions in an Ada program.

3.4.2 Boolean expressions

Section 3.1.4 showed how to assign values and declare variables of the type
BOOLEAN. It is also possible to build an expression whose value has the type
BOOLEAN, that is, the result of the expression can have the value either TRUE
or FALSE. We call such an expression a Boolean expression. In fact, we have
already met several examples of Boolean expressions, most often in if state-
ments, such as:

if K > 5 then
PUT(K);
end if;
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The expression K> 5 can be either false or true: it can have the value either
FALSE or TRUE. Thus the expression has the type BOOLEAN. The operator >
has been used and the integer expressions K and 5 are its operands.

In Ada there is a set of relational operators that can be used for making
a comparison, for example in if statements. The two operands of a relational
operator must be of the same type. For example, the expressions TEMPERA-
TURE < 5 and CHAR = 78 are wrong if we assume that TEMPERATURE has
type FLOAT and CHAR has type CHARACTER. The two operands may be
expressions, such as:

5+N>K+=3+N
3.45 » SIN(ALPHA) / FACTOR <= 0.35
NAME1 & NAME2 = "PeggySue"

Relational operators

= -- equal to

/= -- not equal to

< -- less than

<= -- less than or equal to

> -- greater than

>= -- greater than or equal to

Note that real numbers should be compared with caution because they are not
always stored in an exact form. Expressions such as:

X=Y
Z=0.87

are dangerous and should be avoided. The variables X and Y may be ‘virtually’
equal but the computer still interprets them as unequal if they are not stored in
exactly the same way. Z might be ‘virtually’ equal to 0.87 but the two operands
may still be seen as unequal by the computer. It is safer to use comparisons such as:

abs(X - Y) < 1.0e-9
abs(Z - 0.87) < 0.5-4

The small quantity that should be used on the right-hand side is a matter of
judgement: it depends on the order of magnitude of the operands on the left-
hand side. Comparing integers, however, is straightforward because they are
always stored in an exact form.
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The operators in and not in can be used to test whether a value lies in a
given interval:

Kin1.. N

TEMPERATURE not in MIN_TEMP .. MAX_TEMP
CHARIn'a' ..'?

5in3..5 --true!

3.75notin 1.5 .. 3.5 --true!

Hin'D .Y --true!

The second operand has to be an interval defined by its first and last values. The
left-hand operand and the limits of the interval should be of the same type. The

operators in and not in exist for all types.
A set of operators exists for which both the operands and the result are of

the type BOOLEAN. These operators are:

not

and

or

xor

and then
or else

The operator not is the simplest. It takes only one operand and performs logical
negation, that is, it changes TRUE to FALSE and vice versa.

not ACTIVE
notK > 74
not TRUE -- gives the value FALSE

The remaining operators are called Boolean operators and all have two
operands. Figure 3.7 shows how they work.

A B Aand B AorB A xorB

TRUE TRUE  TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE  FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

Figure 3.7
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The operators and and or have their natural logical meanings. The operator
xor is generally called ‘exclusive or’ and is not used very often. Here are two
examples:

ACTIVE or TEMPERATURE > 17.6
100 < K and K < 500

Note the way of writing the second example. To write the expression:
100 < K < 500 -- MISTAKE

is not allowed.

The operators and then and or else give exactly the same results as and
and or, respectively. The difference is in the way the operands are evaluated. In
expressions such as:

expression1 and expression2
expression1 or expression2

there is no way of telling whether expression? or expression2 is evaluated first.
Normally it makes no difference, but under certain circumstances it is essential
to determine the order of evaluation. In particular, it is sometimes necessary to
avoid the evaluation of expression2; this is when the operators and then and or
else are valuable. If we look at how the operator and works, we notice that it is
not necessary to evaluate the second operand if the first operand is FALSE. The
result of the and will be FALSE regardless of the value of the second operand.
In the same way, it is unnecessary to evaluate the second operand of an or oper-
ator if the first operand is TRUE. The result will be TRUE anyway, regardless of
the value of the second operand.

The operator and then is defined so that the left operand is evaluated
first. If this is FALSE then the right operand is not evaluated, and the result of
the and then operator is FALSE. If the left operand is TRUE the right operand
is also evaluated. The result obtained is then the same as using the and operator.

For the operator or else, the left operator is also evaluated first. If this is
TRUE the right operand is not evaluated and the result of the or else operator is
TRUE. If the left operand is FALSE, the right operand is evaluated, and the same
result is obtained as if the or operator had been used.

For example, the program fragment below determines whether a variable
of type STRING(1 .. 10) contains any space characters. If it has no spaces, the
message:

No spaces
is printed. Otherwise, the message:

First space is in position X
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is printed, where X is in the interval 1-10. We assume that the variable K has
type INTEGER. The section of program is:

K:=1;

while K <= 10 and then TEXT(K) /="' ' loop
K=K+ 1;

end loop;

if K= 11 then
PUT("No spaces");

else
PUT("First space is in position “);
PUT(K, WIDTH => 1);

end if;

In the Boolean expression:
K <= 10 and then TEXT(K) /="'

it is essential that the operator and then is used rather than and. If TEXT does
not contain any spaces, then after 10 iterations of the loop the variable K takes
the value 11. If the and operator had been used, there would have been an
attempt to evaluate TEXT(11). This would be an illegal index because TEXT has
only 10 elements, and the program would stop with an error message. Using the
operator and then ensures that this cannot happen.

3.4.3 Operator precedence

We have now seen all the standard operators in Ada, namely: numeric operators,
operators that are used in Boolean expressions, and the operator & that is used
to catenate strings. Complex expressions containing several of these expressions
may be constructed:

N-J<100and K «2 <50 or | = 10
SIN(X) > 0.0 or abs COS(Y) + DELTA < 0.5
TEMPERATURE > 25.3 or PRESSURE > 2.6 and not ACTIVE

NAME & "Smith" & "25 Elm Terrace" & "Newtown"
= PERSONAL_DATA

When complicated expressions such as these are constructed, it is important to
know the order in which component expressions will be evaluated.
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Operator precedence
® Operators on the same line have the same prece-
dence.
e The top line has the highest precedence; the
bottom has the lowest.
= abs not
| mod rem

+ - {unary + and -)
& + - (ordinary + and -)
= /= < <= > >= in notin

and or xor and then orelse

Earlier we saw that operators with the highest precedence were evaluated
first and those with equal precedence were evaluated from left to right. We have
also seen that control over the order of evaluation in a complicated expression
can be achieved by using brackets. For example, the Boolean operators and and
or have the same precedence, and it may sometimes be necessary to use brack-
ets to evaluate an expression in the correct order, such as:

not (A and (B or C))

3.5 Variables and constants

In Ada, variables and constants are called objects. Objects have a name and
a value. In the case of variables, we illustrated this with our storage boxes,
or stores. Before a variable or constant can be used in a program it must be
declared.

Objects
® Variables and constants.
o Have a name and value.

o Must be declared.
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In our programs we have already seen several examples of how variables
and constants are declared. We have seen how such declarations are made in the
declaration section of a procedure; as we shall see later, they can also be made
in a similar way in functions and packages that we write ourselves. The simplest
form of variable declaration is:

NUMBER_OF_ITEMS 1 INTEGER,;
TEMPERATURE : FLOAT;
WEIGHT_PER_PERSON : SHORT_FLOAT;
ADDRESS : STRING(1 .. 30);
ACTIVE : BOOLEAN,;
SYMBOL : CHARACTER,;

First the variable’s name is stated and then its type.t If there are several vari-
ables of the same type they can be declared in a shortened form:

MEAN_TEMP, MAX_TEMP, MIN_TEMP : FLOAT;
This is equivalent to:

MEAN_TEMP : FLOAT;
MAX_TEMP  : FLOAT,
MIN_TEMP : FLOAT;

Variable declarations

variable_name : type;
or:

variable_name1, variable_name2, ... : type;
(all the variables listed are given the same type).

* If we are to be absolutely strict, it is not the variable’s type that is given but rather its subtype. In
Ada 95 all types are actually unnamed, only subtypes have names. INTEGER, for example, is a
subtype of a predefined anonymous integer type and INTEGER has exactly the same characteris-
tics as this anonymous type. The split into types and subtypes is done so that the language’s syn-
tax can be described in a correct way. In everyday usage this split can be ignored without risk of
ambiguity, and one says quite simply that a variable has a particular type. To avoid unnecessary
complication, we will also use this simplified terminology.
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What value does a variable have when it is declared like this? Normally,
a variable’s value is undefined. Certain compilers set numerical variables
to zero, but this cannot be relied on absolutely. In most cases the value of a vari-
able is undefined until it is given a value in the program. In Ada it is possible to
initialize variables, giving them a starting value at the same time as they are
declared:

BALANCE : FLOAT :=0.0;

SYMB : CHARACTER := '%';
NAME : STRING(1..5) := "David";
PRESSURE : FLOAT := 1.5;

K,N, M : INTEGER = 0;

The last of these declarations is equivalent to:

K : INTEGER := 0;
N : INTEGER := 0;
M : INTEGER = 0;

The initial value can be a complicated expression but it must be of the same type
as the variable being initialized:

VOLUME : FLOAT := 37.9;

COEFF : FLOAT := SQRT(LOG(VOLUMEY));
MIN_TEMP  : FLOAT := 10.0;

MAX_TEMP : FLOAT := 100.0;

MEAN_TEMP : FLOAT := (MIN_TEMP + MAX_TEMP) / 2.0;

Note that the order of declarations is important. In the above example, the
variable VOLUME had to be declared before it could appear on the second
line.

Initializing variables
variable_name : type = expression,
or:
variable_name1, variable_namez2, ... . type =
expression,
(all the variables listed are given the same initial value).

107
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In Ada 83, index limits must always be stated when a variable of type STRING
is being declared. In Ada 95 this is not necessary if the variable is initialized, for
v example:

NAME : STRING := "David";

The compiler will allow the variable to be just long enough for the initializing
A value to be held.

Constants can also be declared. As with variables, constants can be
regarded as storage boxes of a certain type that contain a certain value. The dif-
ference is that the value received by the constant at the time of declaration can-
not be changed later in the program. Constant declarations look like variable
declarations, but the word constant is added. In the declaration, the constant
must be given a value.

END_CHAR :constant CHARACTER := '+
MAX_NO : constant INTEGER := 500;
START_TEMP : constant FLOAT := MIN_TEMP - 5.0;

For constants of type STRING, no index limits need be given in the
declaration:

HEADING : constant STRING := "Report for first quarter”;
In addition to the sorts of constants discussed so far, there is a special form

of constant declaration in Ada called a number declaration. A number
declaration looks much like an ordinary constant declaration, but no type is

stated:
Pl : constant := 3.1415926536;
TWO_PI : constant :=2 + PI;
MIN : constant ;= 5;

TWO_16 : constant :=2 ** 16;

Number declarations can only be made for numeric values. A constant takes
one of the types universal_integeror universal_real, depending on the initializa-
tion. The initializing value must be of one of these types, that is, it can only be
an expression containing numeric literals and other constants that have been
declared in number declarations. It can be an advantage to use this type of
constant instead of an ordinary constant when the object to be declared is a
mathematical constant that should be usable in association with several numeric

types.
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Constant declarations

constant_name : constant type .= expression,
or:

constant_name : constant .= numeric
expression;,

(in the second case, the constant takes the type uni-
versal_integer or universal_real).

3.6 Errors in programs

Writing a computer program is not a trivial task and it is normal to make a num-
ber of mistakes. Even an experienced programmer falls into traps of various
kinds. It is therefore important when learning to program that we also learn how
to find and correct errors in the program. This can only be done by designing
and writing programs, running tests and correcting any errors found, which is
why practical work is necessary.

When writing a computer program, three kinds of error can occur:

(1) Compile-time error This is an error indicating that the rules of the
language have not been followed. This type of error is detected by the
compiler during compilation of the program. A printed listing of the pro-
gram is usually provided in which the mistake is marked. Examples of
compile-time errors are misspelling a variable name, forgetting an end,
losing a semicolon, or pressing a wrong key when typing the program.

(2) Run-time error Such errors do not occur until the program is run. The
program may be syntactically correct — the language rules have been
obeyed — but it still contains mistakes that prevent it from continuing
normally when executed. Examples of such mistakes are trying to index
outside the limits in a STRING variable, and attempting to enter a value
of the wrong type from the terminal. A common error is ‘overflow’, when
a value is calculated that is too large for the intended variable. This can
happen, for example, if an attempt is made to divide by 0 or some other
extremely small number. Normally the program halts when an error
occurs and an error message is given. Errors can be trapped by the
programmer, however, and as we shall see in Chapter 10, this facility
allows the program to continue in execution.

(3)  Errors of logic  Such errors are caused simply by faulty thinking when
the program was written: a faulty algorithm has been used. It is difficult
to find this kind of error because it is possible to compile and run the
program without getting any error messages. An error in the logic of a
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program only shows when a test is run and the result obtained. If there is
no verified data available for testing the program, it can be hard to be
quite certain that the program is free from logic errors. Even if the
program works correctly for a particular set of input data, it can be faulty
for another set.

Different kinds of error

o Compile-time error
Rules of the language have been broken.
Detected during compilation.

® Run-time error
Illegal values occur when the program is run, for
example, incorrect indexing. Detected during
execution.

® Errors of logic
Algorithm is incorrect. The program works out
wrong values. Detected (hopefully) during test
runs.

We shall demonstrate the different types of error by looking at an
example. The program that will be written is to evaluate NI, that is, the
product:

1«2+«3x4+...+N
We start by writing the program with the help of the text editor:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure FACTORIAL is
PRODUCT : INTEGER := 0;
N_VALUE : INTEGER,;
begin
PUT("Enter value of N: ");
GET(N_VALU);
forlin 1 .. N_VALUE loop
PRODUCT := PRODUCT + |;
end loop;
PUT("Result is: "); PUT_LINE(PRODUCT);
end FACTORIAL,
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The next step is to try to compile the program using the Ada compiler. We then
get the listing:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure FACTORIAL is
PRODUCT : INTEGER := 0;
N_VALUE : INTEGER;
begin
PUT("Enter value of N: *);
GET(N_VALU),
- A
-- error: identifier undefined
forlin 1 .. N_VALUE loop
- A
-- warning: high bound may not yet have a value
PRODUCT := PRODUCT +« I;
end loop;
PUT("Result is: "); PUT_LINE(PRODUCT);
A
-- error: types of formal and actual parameter do not match
end FACTORIAL;

Here we see that the compiler has marked certain lines in the program and
written error messages. For each error, the compiler tries to point out the line
where the error occurs. The first faulty line is:

GET(N_VALU),

The message from the compiler points to the identifier N_VALU and says
that this identifier is undefined. We see that we have left off the last letter of the
identifier — it should be N_VALUE.

The next line marked is:

forlin1 .. N_VALUE loop

The compiler has not found any real error here, but just a line that may be incor-
rect; it gives us a warning that we should watch out for this line. What may lead
to problems is that the upper limit in the expression:

1 .. N_VALUE
in other words N_VALUE, might not be given a value when the program is run

later on. This would mean a run-time error. The reason for this potential error is
that earlier in the program we wrote:
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[2

GET(N_VALU);

If this had been correct, the variable N_VALUE would always be given a value
and we would not have had a warning from the compiler. Therefore we do not
need to change the line:

forlin 1 .. N_VALUE loop

It is correct and the warning is only the result of our earlier error.
The final line to be marked faulty is:

PUT(“Result is: *); PUT_LINE(PRODUCT);

Here the compiler is complaining that the parameter to the procedure PUT_LINE
does not have the type that it should have formally. The variable PRODUCT has
type INTEGER. If we look at the package TEXT_IO we see that the procedure
PUT_LINE is only specified in one place in the package and that it requires a
parameter of type STRING. We have mistakenly assumed that the procedure
PUT_LINE, just like PUT, also exists for the type INTEGER. The solution is to
use PUT and NEW_LINE instead:

PUT(*Result is: "); PUT(PRODUCT); NEW_LINE;

Now we use the text editor again to correct the mistakes in the program, and
we get:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure FACTORIAL is
PRODUCT : INTEGER = 0;
N_VALUE : INTEGER,;
begin
PUT("Enter value of N: ");
GET(N_VALUE);
forlin 1 .. N_VALUE loop
PRODUCT := PRODUCT + |;
end loop;
PUT("Result is: *); PUT(PRODUCT); NEW_LINE;
end FACTORIAL;

This program compiles well; no error messages this time. We shall go on to run
some tests on it. The program prints the message:

Enter value of N:
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We shall try to calculate 4!, which we know should be 24; therefore we type a 4
at the terminal. The program answers, to our surprise:

Resuitis: O

We run another test, this time giving another value of N as input. Whatever
value of N we give, we find that we always get the answer 0. Of course, this is
wrong. There is an error of logic in the program.

Now we must look carefully at the program to find out where the fault
lies. In the program we have a counter | which counts from 1 to the value of
N, and at each count PRODUCT is multiplied by I. At the first count we
multiply by 1, at the second by 2, and so on. This seems right, but what was
the value of PRODUCT at the start? The declaration shows that at the start
PRODUCT had the value 0. That is the mistake! When any number is multiplied
by O the result is 0. Of course, the variable PRODUCT should be initialized
to 1. The text editor enables us to correct this so that PRODUCT is initialized

properly:
PRODUCT: INTEGER :=1;

We compile the program again. (This must be done; it is not enough to make
corrections only in the text.) A fresh test run shows that we now get the result
24 if we enter the number 4. The program appears to be working correctly. If,
for example, we enter 12, we get the result 479001600, We can try with 13, but
then we get the following strange output:

Enter value of N: 13
+» EXCEPTION "numeric_error" RAISED, line 10.

We have got an execution error. A numeric error has occurred on line 10. On this
line we have the statement:

PRODUCT := PRODUCT = |;

The result of the expression on the right-hand side has become so great that it is
bigger than the greatest whole number that can be stored in a variable of type
INTEGER in our system. The program cannot continue in the normal way and
s0 it stops running.

If we want our program to calculate N! for values of N greater than 12
we must change the program. The best way is to change PRODUCT to a
variable of type FLOAT. Such a variable can hold considerably larger numbers
than an integer variable. We now use the text editor to make the necessary
changes:
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with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure FACTORIAL is
PRODUCT : FLOAT := 1.0,
N_VALUE : INTEGER,;
begin
PUT("Enter value of N: ");
GET(N_VALUE);
forlin1 .. N_VALUE loop
PRODUCT := PRODUCT ~ FLOAT(l);
end loop;
PUT("Result is: ”); PUT(PRODUCT); NEW_LINE;
end FACTORIAL,;

In addition to changing the declaration of PRODUCT we must also make a
change so that | is converted to a floating number on each multiplication:

PRODUCT := PRODUCT « FLOAT(l);

We may not mix INTEGER and FLOAT in a multiplication. After a further com-
pilation we can run a test of the corrected program. If we now try to calculate
13! we get:

Enter value of N: 13
Result is: 6.22702080E+09

Looking for errors in a program and correcting them has come to be known,
lightheartedly, as ‘debugging’ the program. In some systems there are excellent
aids for debugging. For example, it may be possible to test run a program step
by step, or stop at particular points in the program, study the values of the
various variables and change them. Such debugging aids are very valuable when
errors have to be found in more complicated programs.

If there is no access to such debugging aids, the values of the variables
can still be studied at given points in the program by inserting temporary test
printouts, and using them to find possible errors.

In general, if a program is well-written from the start, is well-structured
and has suitable names for variables, types, subprograms and packages, and if it
uses clear and well-thought-out algorithms, it will contain fewer errors and be
easier to debug than a less well-written program. Well-written programs, there-
fore, are also more reliable and require less maintenance than programs that are
poorly conceived from the start. Therefore, with program design, the rule is to
think first and write later.
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Testing programs
o Use debuggers or insert temporary test printing
routines in the program.

o Well-written and well-structured programs are
easier to rid of errors.

EXERCISES

3.1

3.2

33

Which of the following are allowed as identifiers in Ada? Which are allowed as the
names of variables, types and constants?

MY_CAR CAR_3 “Tommy"
NUMBERt1 number1 ADAM&EVE
IN %VAT Number_5
3_DIGIT car-number identifier

State for each of the following whether it is an integer literal, a real literal, a text string
literal, a character literal or a literal of type BOOLEAN.

167 167.0 'x'

“true” 16.4e3 16e5

7 I7l n7u

false 1_000 0.000_005

What type do the integer and real literals really have?

Assume the following declarations have been made:
| : INTEGER :=2;
J : INTEGER = 3;
X : FLOAT :=4.0;
Y : FLOAT :=5.0;

Evaluate the following expressions and state the type for each value.

(@ I+J b) 1+5 c) 2+3
(d X-15 e) 20+25 #) YI/X

(g J/1 (h) 14rem4 i) Jmodl
G) X1 k) Y (1) D 1x=J
(m) [+J+2 (n) Xx*Y x2 (o) abs X-Y

() X/Y=+20 (q 2.0 +FLOAT()
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34

35

3.6

3.7

3.8

3.9

3.10

The basics of Ada

Make a suitable variable declaration to describe the following:
e the number of goals scored in a football match
winning time in the 110 m hurdles
an identity number
a shoe size
the size of fine for a parking offence
the information relating to whether a person has a driving licence
an address
a type of vitamin (A, B, C, D or E)

Write a program to calculate the volume and area of a sphere. The radius of the sphere
is to be given as input. The following formulae are given:

3
V= 47r

A =4nr?

In Europe, a car’s fuel consumption is usually given in litres per kilometre. Write a
program to read in petrol consumption in this format and translate it into the form more
common in Britain, miles per gallon. The following conversion factors apply:

1 mile = 1.609 km 1 gallon = 3.785 litres

A car-hire firm takes £30 per day plus a fee of £0.55 per mile for a particular car. In
addition there is the cost of the fuel. Assume the car does, on average, 26 miles per
gallon and that the price of fuel is £1.75 per gallon.

Write a program to calculate the total cost of hiring the car. The input should be the
distance driven and the number of days’ hire.

A running competition consists of two separate races. The winner of the competition is
the one with the shortest total time for the two races. Write a program to calculate the
total time for a competitor. The input should be the times for the two separate races.
These times are given in hours, minutes and seconds in the format hh mm ss and the
result is given in the same format.

Write a program to calculate how much change should be received after making a
purchase, and in which notes and coins the change should be given. Input to the program
should be the price to be paid and the amount given in payment. For the sake of
simplicity, assume that no transactions involve coins smaller than 10p or notes greater
than £20. For example, if a person bought goods for £62.10 and paid with four £20
notes, the program should print out that the change should be one £10 note, one £5 note,
two £1 coins, one 50p coin, and four 10p coins.

The distance between two points (x,, y,) and (x,, y,) in a coordinate system is given by
the formula:
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3.13

3.14
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s= V(x -x)P+ (- y)

Write a program to read in the coordinates of two points and write out the distance
between them.

For radioactive decomposition, the amount of radioactive material, #, remaining after a

certain time, 7, can be calculated using the formula:
n=n,e™

where n, is the amount of radioactive material at time ¢# = 0. A is a constant for the mate-
rial. This is usually given as a half-life (the time taken for half the radioactive material
to decompose). If the half-life is denoted by 7, it is easy to calculate that:

_ 0.693

T

The half-life for the isotope “C is 5730 years. Write a program to print out what
percentage of this isotope is left after S years. § is the input to the program.

A

Write a program which reads in an angle (given in degrees) and prints out the values
of its sine and cosine. The functions SIN and COS in the generic package ADA.NUMER-
ICS.GENERIC_ELEMENTARY_FUNCTIONS expect a parameter expressed in radians.
The conversion between degrees and radians uses the formula:

radians = degrees * 2
360

Evaluate the following Boolean expressions:

(a) TRUE and 10> 8

(b) 5.0>=10.30r'a'>"'d'

(c) 3notin1.7

(d I1/=0andthen14/1>3 --assume | =3
(e) 3> 3orelse "hello" /= "HELLO"

Evaluate the following expressions:
(a) CHARACTER'POS(-)
(b) CHARACTER'VAL(32)

Assume the CHARACTER variable C contains one of the lower-case letters ‘a’ to ‘z’.
Write a statement that changes C to hold the corresponding upper-case letter instead.

Assume the CHARACTER variable 7 has a value in the interval ‘0’ to ‘9’. Write a state-
ment to convert T°s value to an integer in the interval 0 to 9 and assign the integer to the
variable / of type INTEGER.
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3.17 In Sweden, every resident has a personal identification number made up of a six-figure
date of birth followed by a four-figure code. The last but one figure is odd for a male and
even for a female.

Write a program to read in a Swedish identification number and determine if the
person concerned is male or female.
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Chapter 3 dealt with the basic building blocks of Ada. It showed how to use
the standard types in expressions and in declarations of data objects. This
chapter concentrates on the part of an Ada program that describes what the
program does, in other words, the part of the program that describes
algorithms.

The chapter deals with the most common statements that can be used to
control the behaviour of a program. It shows how to put statements together
into a program sequence and how alternative paths through a program can be
achieved in various ways. Programming iterative sequences, that is, making
certain parts of a program execute repeatedly, is also covered.

In an interactive program — a program that, while running,
communicates with a user via a terminal — the user often wants to feed data to
the program in stages and decide how long the program should run. Iteration
is used in this kind of program; Section 4.8 deals with iteration in the context
of interactive programs.
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4.1 Sequential program structure

In simple terms, an Ada program or subprogram consists of a specification part,
a declarative part and a statement part.

Program and subprogram structure

subprogram_specification is
declarative part

begin
statement1;
statement2;

statementN;
end subprogram_name;

The specification of a subprogram contains its name and a description of possi-
ble parameters to the subprogram. We shall come back to this in Chapter 6. In
the declarative part, variables, constants and other parameters can be declared.
It is possible also to make other declarations, for example, declarations of inter-
nal subprograms, as seen in one of the example programs in Chapter 2. In
Chapter 5 we shall see that programmers can also declare their own types in the
declarative part of the program.

Here we shall concentrate on the part of the program between begin and
end. This part of the program should contain a sequence of one or more state-
ments. When the program is executed, these statements are executed one at a
time, from top to bottom. Each statement is executed once.

Every statement ends with a semicolon. The rules of the language do not
specify that statements should be written on special lines or that they should
start in particular positions on the line. To write well-structured programs, how-
ever, it is important to apply certain rules. Each statement should start on a fresh
line. (Exceptions can be made if a number of statements together produce out-
put at a terminal; in this case these statements can be written on the same line.)
The statements should be indented on the line; statements which belong to
the same sequence (such as statement1, statement2, ... , statementN above)
should be indented by the same amount.

There are two kinds of statement, simple statements and compound
statements. The most common simple statements are assignment statements
and procedure calls; we have already seen examples of these. Here is another
example showing a sequence of simple statements. The sequence reads in two
real numbers and calculates their mean.
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PUT_LINE("Enter two real numbers");
GET(X1);

GET(X2);

MEAN_VALUE := (X1 + X2) / 2.0;
PUT("The mean is: *);
PUT(MEAN_VALUE);

The statement:
MEAN_VALUE := (X1 + X2) / 2.0;

is an assignment statement and the others are procedure calls. Procedure calls
will be discussed more fully in Chapter 6.
There is a very simple statement which is written as follows:

null;

This is called a null statement. When this statement is executed nothing at all
happens. This statement exists because the syntax sometimes demands that a
statement should be found at a particular place in a program. If there is nothing
to do at this place, a null statement can be used.

The most common compound statements are if and loop statements. A
compound statement can contain several statements. Using these, statements
can be structured hierarchically.

4.2 Assignment statements

An assignment statement consists of two parts. On the left-hand side (the term
on the left of the assignment symbol, :=) there can be the name of a variable,
while to the right there should be an expression. The expression and the variable
must be of the same type. When an assignment statement is executed the expres-
sion on the right is evaluated and that value is given to the variable on the left,
replacing its previous value. There may be only one variable on the left-hand
side. If the same value is to be given to several variables, several assignment
statements must be written. Here are a few examples:

K:=1+15;

X1 :=23.8;

ALARM := TEMP > 200.0; -- ALARM has type BOOLEAN
HEAD := "INVOICE", -- HEAD has type STRING(1 .. 7)
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If the variable is of type STRING, as in the last example, both sides must have
the same number of components. However, the components do not need to be
numbered in the same way. A slice may also appear in the left-hand side. In the
following examples, we start by assuming that S has type STRING(1 .. 15) and
that T has type STRING(26 .. 40);

S:=T, -- same number of components
S(7 .. 11) := "HELLO";
T(31 .. 33) :=S(4 .. 6);

The left- and right-hand sides may even overlap, as shown in the following

example:
S(1 .. 3) := "Ada";
S(3..5):=8(1 .. 3); -- 8(1 .. 5) becomes "AdAda"

4.3 Selection: the if statement

The most common way of achieving selection in a program, that is, a choice
between two or more different paths in a program, is to use an if statement. An
if statement starts with the reserved word if and terminates with the reserved
words end if. An if statement comprises a then part followed by a number
(possibly zero) of elsif parts, ending possibly with an else part.

The if statement, the simplest form

if Boolean expression then
sequence_of_statements
end if;

The sequences of statements within the then, elsif and else parts of an if
statement should be inset a little on the line, to show clearly where the if state-
ment begins and ends, and which parts belong to it.

When the statement is executed, the Boolean expressions that follow the
words If and elsif are evaluated in order from the top down. If any of these
Boolean expressions are true, the sequence of statements in the corresponding
part of the If statement is executed, and control then passes to the first statement
after the words end if.
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The if statement, complete form

if Boolean expression then
sequence_of_statements

elsif Boolean expression then
sequence_of_statements

elsif Boolean expression then
sequence_of_statements
else
sequence_of_statements
end if;

The Boolean expressions following the first true expression will not be
evaluated. If all the Boolean expressions are false, but there is an else part, then
the sequence of statements contained therein will be executed. If all the Boolean
expressions are false and there is no else part, then the if statement terminates
without any of the sequences of statements being executed. Observe that, at
most, one sequence in an if statement is executed. Some examples of if state-
ments are:

ifK>50rJ<4then

K:==K+J;
J=Jd+1;
end if;

-- ACTIVE, CLOSED, and PASSIVE have type BOOLEAN
if ACTIVE and not CLOSED then
PUT_LINE("System is in operation");
else
PUT_LINE("System is down®);
PASSIVE := TRUE;
end if;

if TEMPERATURE < 15.0 then
PUT_LINE("Emergency!®);
RAD_SET := RAD_SET + 5.0;

elsif TEMPERATURE < 18.0 then
PUT_LINE("Too cold.");
RAD_SET := RAD_SET + 1.0;

elsif TEMPERATURE < 21.0 then
PUT_LINE("OK.");
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else
PUT_LINE("Too hot.");
RAD_SET := RAD_SET - 1.0;
end if;

Any statements are allowed in a sequence of statements, even compound
statements as in:

if TEMPERATURE < 15.0 then
PUT_LINE("Emergency!");
RAD_SET := RAD_SET + 5.0;
elsif TEMPERATURE < 18.0 then
if NIGHT then
PUT_LINE("OK.");
else
PUT_LINE("Too cold.");
RAD_SET := RAD_SET + 1.0;
end if;
end if;

Here, the elsif part consists of a single statement — a new if statement. When one
if statement is contained within another, they are usually said to be nested. Note
that it is particularly important to indent the text clearly in the case of nested
statements. It is essential to see the structure underlying the statements.

We can now look at a couple of variants of a program that reads in three
(different) integers from the terminal and writes them out in order of increasing
size. The first version is:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure SORT_3 is
A, B, C: INTEGER,;
begin
PUT_LINE("Enter three different integers");
GET(A); GET(B); GET(C);
if A < B then
if B < C then
PUT(A); PUT(B); PUT(C);
elsif A < C then
PUT(A); PUT(C); PUT(B);
else
PUT(C); PUT(A); PUT(B);
end if;
else
if A< C then
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PUT(B); PUT(A); PUT(C);
elsif B < C then
PUT(B); PUT(C); PUT(A);
else
end if;
end SORT_3;

In this version of the program there are two levels of if statement. We obtain a
somewhat simpler program structure if we employ more complex Boolean
expressions.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure SORT_3 is
A, B, C : INTEGER;
begin
PUT_LINE("Enter three different integers");
GET(A); GET(B); GET(C);
if A<Band B < C then
PUT(A); PUT(B); PUT(C);
elsif A < C and C < B then
PUT(A); PUT(C); PUT(B),
elsif C < A and A < B then
PUT(C); PUT(A); PUT(B);
elsif B < A and A < C then
PUT(B); PUT(A); PUT(C);
elsif B < C and C < A then
PUT(B); PUT(C); PUT(A);
else
PUT(C); PUT(B); PUT(A);
end if;
end SORT_3;

4.4 Selection: the case statement

We have seen how the if statement can be used to make a selection. In Ada there
is also a case statement that can be used if a choice has to be made between
several different paths in a program. If there are several alternatives, a case
statement is often preferable to an if statement because it gives a clearer
program.

A case statement starts with the reserved word case and ends with the
reserved words end case. After the word case appears an expression whose
value determines the choice of one of several alternatives.
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Case statement

case seleclor is
when list_of_alternatives =>
sequence_of_statements
when list_of_alternatives =>
sequence_of_statements

when list_of_alternatives =>
sequence_of_statements
end case;

where selector is a discrete expression (integer type or
enumeration type) and list_of alternatives is a list
with one or more static (constant) expressions.

The selector should be a discrete expression. In Ada, the notion discrete type
covers integer types and enumeration types. A discrete expression is an expres-
sion whose value is of a discrete type, that is, the expression is either an
integer type (for example, INTEGER) or some enumeration type (for example,
CHARACTER). Examples of discrete expressions are:

NUMBER_OF_ITEMS N+8 I3 CHAR

Note that the selector may not be a real type.

A list of alternatives following the word when in a case statement is a
list of one or several possible discrete values that the selector can assume. (Since
the selector is a discrete expression, it is possible to name all possible values.)
When the case statement is executed, the selector is evaluated. If the value
found appears among the values enumerated in a particular list of alternatives,
then the sequence of statements following the list is executed. Note that only
one sequence of statements is executed.

In the following example the simplest form of list of alternatives is used,
that has only one possible value. The variable MONTH_NUMBER is assumed to
have the type INTEGER.

case MONTH_NUMBER is
when 1 =>
PUT("January"),
when 2 =>
PUT("February");
when 3 =>
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PUT(*"March");
when 4 =>
PUT("April");
when 5 =>
PUT("May");
when 6 =>
PUT("June");
when 7 =>
PUT("July");
when 8 =>
PUT("August");
when 9 =>
PUT("September"};
when 10 =>
PUT("October");
when 11 =>
PUT("November");
when 12 =>
PUT("December");
when others =>
PUT("Error in month number”);
end case;

This case statement writes out the name of a month. The particular name
written depends on the value of a variable, MONTH_NUMBER. If it has value
1, ‘January’ is written, if 2 then ‘February’ is written, and so on. If
MONTH_NUMBER has a value that lies outside the interval 1-12, then the
message ‘Error in month number’ is written.

The values in a list of alternatives must be static expressions — expres-
sions made only of constant parts. Often the values in a list of alternatives are
simply constant values (literals), as in this example.

If any possible values are omitted from the lists of alternatives, there must
be a special others alternative. (In our example, INTEGER can take values other
than 1-12, of course.) The others alternative must come last in the case state-
ment, so that when the case statement is executed, the others alternative is
reached only if the selector has a value other than those already enumerated in
the earlier alternatives.

The example is now changed a little to show how it appears when several
possible alternatives are enumerated in one list of alternatives:

case MONTH_NUMBER is
when 1:2:12 =>
PUT("Winter");
when31415=>
PUT("Spring");
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when6:7:8=>
PUT("Summer");
when 911011 =>
PUT("Autumn");
when others =>
PUT("Error in month number");
end case;

This case statement writes the season of the year according to the value of the
variable MONTH_NUMBER. If MONTH_NUMBER has one of the values 1, 2 or
12, the text ‘Winter’ is written; if it has one of the values 3, 4 or 5, ‘Spring’ is
written; if it is 6, 7 or 8, ‘Summer’ is written; and if MONTH_NUMBER is 9, 10
or 11, then ‘Autumn’ is written. As before, the others alternative has to appear,
to trap illegal month numbers. The different alternatives in the list of alterna-
tives are enumerated with a vertical line () or an exclamation mark (!) between
them. To avoid enumerating all alternatives in a list, the interval containing them
may be stated. We can rewrite our last example to take advantage of this option:

case MONTH_NUMBER is
whent . 2/12 =
PUT("Winter");
when3..5=>
PUT("Spring");
when6 .. 8=>
PUT("Summer");
when 9 .. 11 =>
PUT("Autumn”);
when others =>
PUT("Error in month number®);
end case;

Alternative list in a case statement
e Examples of different forms:

when 5 =>

when 518123 =>

when 100 .. 125 =>

when 50:60:70..75180 .. 85 =>
when others =>

e Reference must be made to all possible values.
e If there is an others alternative, it must come last.
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The selector can also be an expression of an enumeration type. The
following example is a section of program designed to read in a character C of
type CHARACTER from the terminal and determine whether it is a letter, a
figure or some other symbol. We assume that we have already declared three
integer variables, LETTER_COUNT, FIGURE_COUNT and OTHERS_COUNT.
If the character is a letter, the variable LETTER_COUNT is increased by one and
the text ‘Letter’ is displayed at the terminal; similar actions are taken if the
character is a figure or one of the remaining symbols.

GET(C);
case Cis
when'a'..'z'1'A'.. 'Z' =>
LETTER_COUNT := LETTER_COUNT + 1;
PUT_LINE("Letter");
when '0' .. '9' =>
FIGURE_COUNT := FIGURE_COUNT + 1;
PUT_LINE("Figure");
when others =>
OTHERS_COUNT := OTHERS_COUNT + 1;
PUT_LINE("Other");
end case;

We shall show one further example of the use of a case statement, in a
program that simulates a simple calculator. When the program is run it expects
the user to type at the terminal a simple arithmetic expression, such as:

63+35

The program calculates the value of the expression and displays it at the termi-
nal. To simplify matters, we shall allow the user to write the expression only in
the form:

NoM

where the operands N and M are whole numbers and o is one of the operators +,
—, = or /. We shall not allow spaces between the operands and the operator. Here
is the program:

with TEXT_IO, BASIC_NUM_IO;

use TEXT_|O, BASIC_NUM_IO;

procedure CALCULATOR is
OPERAND_1, OPERAND_2 : INTEGER;
OPERATOR : CHARACTER,;

begin
PUT_LINE("Write a simple arithmetic expression");
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GET(OPERAND_1);
GET(OPERATOR);
GET(OPERAND_2);
case OPERATOR is
when '+' =>
PUT(OPERAND_1 + OPERAND_2, WIDTH => 1);
when '-' =>
PUT(OPERAND_1 - OPERAND_2, WIDTH => 1);
when '+' =>
PUT(OPERAND_1 « OPERAND_2, WIDTH => 1);
when /' =>
if OPERAND_2 /= 0 then
PUT(OPERAND_1/ OPERAND_2, WIDTH => 1);
else
PUT("Division by zero not allowed");
end if;
when others =>
PUT("Faulty operator");
end case;
end CALCULATOR;

In the program, checks are made for division by zero and attempts to use an
undefined operator. An appropriate error message is sent to the user in either
case. The following display shows the output from four separate runs of the program:

Write a simple arithmetic expression
63+35
2205

Write a simple arithmetic expression
17/6
2

Write a simple arithmetic expression
17/0
Division by zero not allowed

Write a simple arithmetic expression
3%67
Faulty operator

4.5 Iteration: the /oop statement

To perform iteration in Ada, that is, to execute one or several statements a num-
ber of times, a loop statement is used. There are three variants of this:
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a simple loop statement for writing part of a program that is to be
executed an infinite number of times;

a loop statement with for for writing part of a program that is to be
executed a fixed number of times;

a loop statement with while for writing part of a program that is to be
executed until a certain condition is met.

4.5.1 Simple loop statement

We shall start with the simple loop statement.

Simple loop statement

loop
sequence_of_statements
end loop;

Between the reserved words loop and end loop there is a sequence of state-
ments that is executed endlessly, repeated time after time. (The loop statement
can be stopped using the operating system to stop it ‘by force’. This can usually
be done by pressing a break key or a delete key at the terminal.) For example:

loop
PUT_LINE("HELP! | can't stop");
end loop;

Figure 4.1 shows the output from the loop statement. The program has to be
stopped ‘by force’.

In the next program, the intention is really that the program should

run without interruption. It is part of a simple supervision program ensuring
that a temperature is kept within certain permitted values. We assume
that TAKE_TEMPERATURE, INCREASE_TEMPERATURE and DECREASE_
TEMPERATURE are procedures that we have already written and that
MIN_TEMPERATURE and MAX_TEMPERATURE are two constants.

loop
TAKE_TEMPERATURE(TEMPERATURE),
if TEMPERATURE < MIN_TEMPERATURE then
INCREASE_TEMPERATURE;
elsif TEMPERATURE > MAX_TEMPERATURE then
DECREASE_TEMPERATURE;
end if;
end loop;
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HELP! | can't stop
HELP! I can’t stop
HELP! | can't stop
HELP! | can’t stop
HELP! | can't stop
HELP! | can't stop
HELP! | can't stop
HELP! | can’t stop
HELP! | can't stop
HELP! | can't stop
HELP! | can’t stop

etc.

Figure 4.1

4.5.2 The loop statement with for

Here is an example of the second variant of the loop statement, where the
repetition occurs a specified number of times. The statements in the example
write out the 12 times table, from 1 x 12 to 12 x 12,

forlin1. 12loop
PUT(I = 12); NEW_LINE;
end loop;

Loop statement with for

for loop_parameterin start_value .. end_vaiue loop
sequence_of_statements
end loop;

® start_value and end_value should be discrete
expressions (integer type or enumeration type).

® Joop_parameter is an identifier that is declared
automatically (treated as a constant in the
sequence of statements). Its type depends on
start_value and end_value.
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There must be start and end values for the iteration after the word in (1
and 12 in the foregoing example). These should be discrete expressions, that is,
expressions of an integer type or an enumeration type. Note that floating point
types are not allowed. The start and end values must be of the same type, except
that one may be of integer type and the other of type universal_integer (for
example, a constant numeric value).

The loop parameter can be seen as a constant that is declared automati-
cally because it occurs in a for construct. Thus it should not be declared in
the program’s declarative part with the other declarations. (In the foregoing
example the loop parameter is called I.)

The type of the loop parameter depends on the type of start_value and
end_value. (The rules are a little complicated, so it may not be necessary to go
into these in detail at first reading.) )

If start_value and end_value are of the same type, then the loop para-
meter also takes that type, as long as they are not both constant values, in which
case the loop parameter is of type INTEGER. If start_value is of an integer type
and end_value is a constant value, then the loop parameter is of the same type
as start_value and if start value is a constant value but end_value is of an
integer type, then the loop parameter is of the same type as end_value. (In Ada
83, these rules unfortunately led to constructions of the form

forlin-1.. 10 loop
being incorrect. Instead one had to write
for | in INTEGER range —1 .. 10 loop

In Ada 95, this is not a problem.)
We will show some examples where N is assumed to be of type INTEGER
and S is of type SHORT_INTEGER.

forlin1. 10 loop -- | is INTEGER
forJin1.. N loop --J is INTEGER

for Kin S .. 15 loop -- Kiis SHORT_INTEGER
forLinS+10..2+Sloop - Lis SHORT_INTEGER
forTin'A'..'C' loop -- T is CHARACTER

for B in FALSE .. TRUE loop -- B is BOOLEAN

It should be mentioned here that it is possible to control the type of the loop
parameter by explicitly stating it. If, for instance, the loop parameter in the first
example above should be of type SHORT_INTEGER, then it could be written
instead:

for | in SHORT_INTEGER range 1 .. 10 loop
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If the loop parameter is intended to run through all possible values for a certain
type, the range expression can be omitted and only the name of the type stated.
In the following example the loop parameter will run through all possible values
of the type CHARACTER:

for C in CHARACTER loop

When the loop statement is executed, the sfart_value and end_value are evalu-
ated first. If start_value is greater than end_value the loop statement terminates
immediately: the sequence of statements is not executed. If start_value is
less than or equal to end_value, the loop parameter is initialized to start_valfue.
The sequence of statements is then executed once. The loop parameter may
be used as a constant within the sequence of statements in the normal way,
in expressions for example. To attempt to change the value of the loop
parameter by assignment or in any other way is not allowed - it is, after all, a
constant.

When the sequence of statements has been executed once, the value of
the loop parameter is automatically changed. If it has an integer type it is
increased by one; if it has an enumeration type it takes the next value in the
series. Then the loop parameter is compared with end_value. (Note that
end_value is not evaluated again: the program ‘remembers’ the value that it
found the first time through the loop statement.) If the loop parameter is less
than or equal to end_value, the sequence is executed once again, otherwise the
loop statement terminates. This process is repeated until the loop statement ter-
minates. The number of times the sequence of statements is repeated depends,
therefore, on the start_value and end_value.

It should be noted that the loop parameter is only defined within the loop
statement: it cannot be used either before or after the loop statement.

Consider a few more examples. The first is part of a program that reads
in an integer N and then displays N « N lines at the terminal with a plus sign on
every line. If, for example, the user gives the number 4 at the terminal, 16 lines
will be displayed with a plus sign on every line.

GET(N);

for LINE_NUMBER in 1 .. N « N loop
PUT_LINE("+");

end loop;

The next example involves a loop parameter that is not an integer type
but an enumeration type. In the loop statement, the alphabet is written out in
small letters.

for CHAR in 'a' .. '2' loop
PUT(CHAR);
end loop;
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Here start_value and end_value have the enumeration type CHARACTER and
the loop parameter CHAR also takes this type. The first time through, CHAR has
value ‘a’, the second time ‘b’, the third time ‘c’, and so on, until the final time
it has the value ‘z’. (This is because the lower-case letters ‘a’ to ‘z’ are next to
each other in the ASCII code, as we saw earlier.) The display appears:

abcdefghijkimnopqrstuvwxyz

The repetition can be made to go backwards, that is, the loop parameter can
count down instead of up, if the word reverse is added. For example, the state-
ment:

for NUMBER in reverse 1 .. 5 loop
PUT(NUMBER);
end loop;

gives the output:

5 4 3 2 1

Reverse

In a loop statement with for, the loop parameter can
run through its values backwards if the word reverse
is added.

Note that a loop parameter of integer type will always increase (or
decrease) by one, each time it goes through the loop. If another step length is
required, it can be achieved as shown in the next example. First two integers,
FIRST_NUMBER and LAST_NUMBER are read from the terminal. Then every
tenth number in the interval between FIRST_NUMBER and LAST_NUMBER is
displayed at the terminal.

GET(FIRST_NUMBER);

GET(LAST_NUMBER);

for 1in 0 .. (LAST_NUMBER - FIRST_NUMBER) / 10 lcop
PUT(FIRST_NUMBER + | = 10);

end loop;

If the user types in 200 and 250, for example, the output is:

200 210 220 230 240 250
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4.5.3 The loop statement with while

The third variant of the loop statement can be used when the number of times
the repetition will be made is not known in advance. What is known, however, is
that it will be obeyed provided a certain condition is true. When the condition
becomes false, the repetition stops.

Loop statement with while

while Boolean expression loop
sequence_of_statements
end loop;

The statement is executed as follows. First the Boolean expression
following the word while is evaluated. If this expression is false nothing more
is done: the loop statement has been executed. If, however, the Boolean expres-
sion is true, the sequence of statements within the loop statement is executed
once. After that, the Boolean expression is evaluated anew. If it is false, the loop
statement terminates; if it is true it is executed once more, and so on.

Thus, execution continues until the Boolean expression finally becomes
false. If the expression never becomes false, the sequence of statements will be
executed endlessly, or until the program is terminated ‘by force’. It is very
common for an error to be made during programming such that the Boolean
expression never becomes false: the program is said to have gone into a loop,
meaning an endless loop. It is therefore important to ensure that the values used
in the Boolean expression that follow while are changed by the statements
between loop and end loop.

Here are a couple of simple examples. The lines of program:

J=0;

while J < 6 loop
PUT();
Ji=J+2

end loop;

give the output:
0 2 4
Before the first time through, J has the value 0 and the Boolean expression J < 6

is therefore true. This means that the two statements between the words loop
and end loop will be executed once: the number 0 is written and J’s value is



Iteration: the loop statement 137

increased to 2. The expression J < 6 is evaluated a second time and this time it
is also true. The sequence of statements is executed again. The number 2 is
written, and J is increased to 4. The expression J < 6 is still true and so the state-
ments are executed a third time. The number 4 is written and J is increased to
6. When the Boolean expression J < 6 is evaluated this time it is false, which
means that the loop statement terminates. Execution continues with the next
statement after the loop statement. Note that the variable J in this example is an
ordinary integer variable that is declared in the normal way. It should not be
confused with a loop parameter that is used in a loop statement with for. Such
a loop parameter may not be used outside the loop statement.

In the next example, it is presumed that the variable X has type FLOAT.
The lines of program:

X :=10.0;

while X > 1.0 loop
PUT(X, FORE => 6, AFT => 2, EXP => 0);
X:=X/20;

end loop;

when executed, give the output:
10.00 5.00 2.50 1.25
After the loop statement has been executed the variable X has value 0.625.

We shall now look at a more complicated example. We shall write a
program to calculate the sum of the mathematical series:

IX1 2X2 3X3 4%x4 5x5 6xX6

1 | 1 1 1 1

The series has an infinite number of terms, so it is impossible to take account of
them all in the program. The signs of the terms alternate between plus and minus
and the absolute value of the terms decreases with each new term. The sum of
the series therefore approaches a certain limit: the series is said to be conver-
gent. We take the decision to ignore terms that are insignificantly small with
respect to the final result. If the result is to be written with 5 decimal figures,
terms with absolute value less than 0.000 001 can be ignored without any effect.
We make up an algorithm:

4} Initialize the sum to 0 and the first term to 1.

(2)  If the absolute value of the next term >= 0.000001, carry out the following two
steps:
(2.1) Add the next term to the sum.
(2.2) Evaluate a new next term.

3) Write out the sum.
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We can refine step (1):

SUM := 0.0;
NEXT_TERM = 1.0;

Here we have introduced two variables, SUM and NEXT_TERM. They are both
real types since the sum and its terms are real numbers. The second variable is
called NEXT_TERM, even if it gives the value of the first term at this stage,
because it can then be used in the rest of the program when calculating the
values of the remaining terms. (And anyway, before starting, the first term is the
same as the next term.) We can initialize the variables directly, at the same time
as declaring them:

SUM : FLOAT := 0.0;
NEXT_TERM : FLOAT :=1.0;

Then the assignment statements above are not needed.
Step (2) becomes a loop statement:

while abs(NEXT_TERM) >= EPSILON loop
-- (2.1) Add the next term to the sum
-- (2.2) Evaluate a new next term

end loop;

We have introduced a constant EPSILON here to avoid having a constant value
within the program. EPSILON is declared as follows:

EPSILON : constant := 10.0 » (-DEC_FIGS — 1);

We have initialized EPSILON in terms of another constant DEC_FIGS which is
declared:

DEC_FIGS : constant := 5;

This is practical. If another time we want to have another number of figures after
the decimal point we only need to change the constant DEC_FIGS. EPSILON
does not need changing.

Step (2.1) becomes quite simply:

SUM := SUM + NEXT_TERM;

Step (2.2), ‘Evaluate a new next term’, requires some thought. A particular term
in the series, let us call it the kth term, should have the form:

1.0/FLOAT(K * K)
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To work out its value, therefore, we need a counter K to keep track of the
number of the term. It is best to make this counter an integer initialized to 1 and
then increase it by 1 each time a new term is calculated. Thus we have the
declaration:

K : INTEGER := 1;
and the statement:
K=K+1;

which will be executed first in step (2.2).

Having alternate terms that are positive and negative presents a compli-
cation. It can be resolved by introducing a variable SIGN which takes alternate
values + and —. If the calculated terms are multiplied by SIGN, they will become
alternately positive and negative. For simplicity, we shall let SIGN be a real
variable. Since term number 1 should be positive, we initialize SIGN to +1,
using the declaration:

SIGN : FLOAT := 1.0;
By including the statement:
SIGN := - SIGN;

in step (2.2), we make SIGN alternate between +1 and -1 each time a new term
is calculated. The actual calculation of the next term is then:

NEXT_TERM := SIGN / FLOAT (K * K);

NEXT_TERM has type FLOAT, so the right-hand side must also have this type
for the assignment to be made. SIGN has type FLOAT, but because K has type
INTEGER the expression K = K also has type INTEGER. This expression must
therefore be converted to type FLOAT before the division can be performed.
Note that if we had declared SIGN to be an integer, then the expression
SIGN / (K = K) would have been allowed. However, that would have meant
integer division, the result of which would always have been an integer and that
would be incorrect. NEXT_TERM should not be an integer.
If we put the three statements in step (2.2) together we get:

K=K+1;
SIGN := - SIGN;
NEXT_TERM := SIGN / FLOAT (K * K);

Step (3), “Write out the sum’, becomes:
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PUT("The sum of the series is: ");
PUT(SUM, FORE => 1, AFT => DEC_FIGS, EXP => 0);
Now we can assemble all the steps into a complete program:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure SUM_SERIES is

SUM : FLOAT := 0.0;
NEXT_TERM, SIGN : FLOAT := 1.0;
K . INTEGER := 1;

DEC_FIGS : constant := 5;
EPSILON : constant := 10.0 =~ (EC_FIGS — 1);
begin
while abs(NEXT_TERM) >= EPSILON loop
-- Add the next term to the sum
SUM := SUM + NEXT_TERM,;
-- Evaluate a new next term
K=K+ 1;
SIGN := - SIGN;
NEXT_TERM := SIGN / FLOAT(K * K);
end loop;
PUT("The sum of the series is: ");
PUT(SUM, FORE => 1, AFT => DEC_FIGS, EXP => 0);
end SUM_SERIES;

When the program is run, the output:
The sum of the series is: 0.82247

is obtained.

4.6 Exit statement

There is a special exit statement that can be used in conjunction with the loop
statement. There are two variants, the first of which is simply:

exit;

This statement must lie within a loop statement. When it is executed the
iteration is terminated and control passes out of the loop statement to the first
statement after end loop.

The second variant of the exit statement is conditional:

exit when Boolean_expression;
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On execution, the Boolean expression is evaluated first. If this is true, then a
jump out of the loop statement takes place, just as in the simple exit described
above. If the Boolean statement is not true, execution continues with the next
statement within the loop statement: no jump takes place.

For example:

loop
PUT("Enter data");
GET(X);
exit when X < 0.0;
-- Do calculations

-- Display result

end loop;
-- This is where you come if a number < 0 is entered.

Exit statement

Two forms:

¢)) exit;
2) exit when Boolean_expression;

Care must be taken when exit statements are used because they can
easily lead to a program that is unclear and difficult to understand. Normally, a
loop statement with while can be used instead, with the advantage that the
condition for termination is stated at the start. If an exit statement is used, this
condition is hidden within the loop statement and it can be difficult to see it.
However, it is sometimes practical to use the exit statement in connection with
interactive data input, as in the foregoing example, and as we shall see later.

4.7 Nested loop statements

Since the sequence of statements within a loop statement can be built up of
arbitrary statements, there may well be one loop statement within another. Such
program constructs are common.
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Let us look at a simple example. We shall write a few lines of program to
print NV rows of plus signs at the terminal. On the first row there will be one +,
two +s on the second, and so on. The number N will be read as input from the
terminal. If, for example, the number 5 is entered, these lines of program will
produce the following output:

+

++
+++
++++
+++++

Using the top-down method we get:

(1) Read in number VN.
(2) Repeat the following step for each number X from 1 to N.
(2.1) Print a row of K plus signs.

Step (1) is simple:

PUT_LINE("Enter the number of rows to be printed.");
GET(N);

Step (2) is:

forKin1 .. N loop
-- (2.1) Print a row of K plus signs.
end loop;

Finally we have step (2.1):

forJin1. Kloop
PUT('+";

end loop;

NEW_LINE;

If we put them all together we get:

PUT_LINE(“Enter the number of rows to be printed”);
GET(N);
for Kin 1.. N loop

forJin1 . Kloop

PUT(+");

end loop;

NEW_LINE;
end loop;
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If we want the following output instead:

+++++
++++
++4
++

+

we only need to add the word reverse to the outer loop statement:
for Kin reverse 1 .. N loop

As a further example, let us write a program that reads in 10 lines and counts
the number of lower-case letters they contain. The 10 lines can be of different
length but we shall assume that no line is longer than 100 characters. We can use
the algorithm:

(1)  Set N_SMALL_LETTERS to 0.
(2) Repeat the following for each of the ten lines.
(2.1) Read in the current line.
(2.2) Repeat the following for each character in the line.
(2.2.1) If the current character is between ‘a’ and ‘z’, increase the
value of N_SMALL_LETTERS by one.
(3) Print N_SMALL_LETTERS.

This algorithm can be translated into the Ada program:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure COUNT_SMALL_LETTERS is

CURRENT_LINE : STRING(1 .. 100);

LENGTH : INTEGER;

N_SMALL_LETTERS :INTEGER :=0;
begin

PUT_LINE("Write 10 lines");
for LINE_LNUMBER in 1 .. 10 loop
GET_LINE(CURRENT_LINE, LENGTH});
for CHAR_NUMBER in 1 .. LENGTH loop
if CURRENT_LINE(CHAR_NUMBER) in 'a' .. 'z' then
N_SMALL_LETTERS := N_SMALL_LETTERS + 1;
end if;
end loop;
end loop;
PUT("There are *);
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PUT(N_SMALL_LETTERS, WIDTH => 1);
PUT(" small letters");
end COUNT_SMALL_LETTERS;

Here the procedure GET_LINE is used to read in the current line.

4.8 Interactive input

Programs that communicate with a user at a terminal while being executed are
called interactive programs. Such programs ask the user for input data and
compute the output data, which is then displayed to the user at the terminal.
Interactive programs are very common so we shall make a special study of how
such programs can be written.

All the examples shown so far have been interactive programs. We have
seen that it is important that there is a message telling the user what data he or
she should write before each input of data. A program halts when it comes to an
input statement and will not continue until the user has entered data. If there is
no message before the input statement, the user will not notice that the program
is waiting for input.

Interactive programs
e Programs that communicate with the user at the
terminal.

e Input from the terminal to the program should be
preceded by a request for the user to input data.

A computation of any sort has the following general form:

Read input data.
Perform computations.
Write out the result.

Frequently, a program should be able to carry out a computation several times
in a row without having to be restarted each time. The program should then act
according to the following model:

e Repeat the following three steps time after time until the user wants to
stop.
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¢ Read input data.
e Carry out computations.
& Write out result.

This clearly involves iteration. We shall now look at some different ways of
producing this type of program.

As an example, we shall use a program that was shown in Section 3.4.1
to calculate the length of the hypotenuse in a right-angled triangle. The input
data required are the lengths of the two shorter sides. The program in
Section 3.4.1 does only one calculation. We shall now modify the program so
that it can be used to carry out several calculations in a row, as in the foregoing
model.

In the first version, we make it easy for ourselves as programmers.
We simply ask the user to state how many calculations are required at the
beginning of the program. Thus we use a loop statement with for and get the
program:

-- VERSION 1

with TEXT_IO, BASIC_NUM_IO,
ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS;
use TEXT_IO, BASIC_NUM_IO, ADA.NUMERICS;
procedure HYPOTENUSE is
A, B : FLOAT,
N_CALCULATIONS : INTEGER,;
package M_FUNC is new GENERIC_ELEMENTARY_FUNCTIONS(FLOAT);
use M_FUNC;
begin
PUT_LINE ("How many calculations do you want to make?");
GET(N_CALCULATIONS);
for | in 1 .. N_CALCULATIONS loop
PUT_LINE ("Enter lengths of the two shorter sides:");
GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT(SQRT(A+2 + B+2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;
end loop;
end HYPOTENUSE;

Of course, this is inconvenient for the user, who often wants to try out different
input data and see how the results vary. In this case the number of times the cal-
culation should be repeated is generally not known in advance.

What the user wants is to be able to terminate the program at any time.
This can be achieved by the program asking the user if further calculations are
to be made each time a calculation is completed:
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-- VERSION 2

with TEXT_IO, BASIC_NUM_IO,
ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS;
use TEXT_IO, BASIC_NUM_IO, ADA.NUMERICS;
procedure HYPOTENUSE is
A, B : FLOAT;
ANSWER : CHARACTER :='y";
package M_FUNC is new GENERIC_ELEMENTARY_FUNCTIONS(FLOAT);
use M_FUNC;
begin
while ANSWER ='y' loop
PUT_LINE ("Enter lengths of the two shorter sides:");
GET(A); GET(B);
PUT("The hypotenuse has length: ");
PUT(SQRT(A*+2 + B++2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;
PUT_LINE("Are there more calculations?");
PUT_LINE("Enter y or n");
GET(ANSWER);
end loop;
end HYPOTENUSE;

In this version we have introduced a character variable, ANSWER. The user is
asked if the program should continue, and then the first character entered in
reply (a ‘y’ or an ‘n’) is read to the variable ANSWER. We have assumed that
the user will want to carry out the calculation at least once, and have initialized
ANSWER to ‘y’. This makes the expression after while always true the first time
through.

The disadvantage of this second version is that the user must arswer a
question after each calculation. There is a common trick that can be used to
avoid this: a particular value of input can be taken to mean that the program
should terminate. This should be a value that would not normally occur. It is not
always possible to find such a value. Consider, for example, a program that
reads in and adds together an arbitrary number of real numbers. There is no
particular real number that may not appear in such a sum and therefore the
method cannot be used.

In our hypotenuse example, the input data are the lengths of the shorter
sides, which must be greater than 0. We can therefore use a value <= 0 to denote
that the program should terminate. If we use a loop statement with while we get
the following program:

-- VERSION 3

with TEXT_IO, BASIC_NUM_IO,
ADA.NUMERICS.GENERICELEMENTARYFUNCTIONS;
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use TEXT_IO, BASIC_NUM_IO, ADA.NUMERICS;
procedure HYPOTENUSE is
A, B: FLOAT,
package M_FUNC is new GENERIC_ELEMENTARY_FUNCTIONS(FLOAT);
use M_FUNC;
begin
PUT_LINE (*Enter lengths of the two shorter sides:"");
PUT_LINE (*Terminate by giving a negative length.");
GET(A); GET(B);
while A > 0.0 and B > 0.0 loop
PUT("The hypotenuse has length: ");
PUT( SQRT(A++2 + B+2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;
PUT_LINE; ("Enter lengths of the two shorter sides:");
PUT_LINE ("Terminate by giving a negative length.");
GET(A); GET(B);
end loop;
end HYPOTENUSE;

In this method, the calculation must come first in the loop and the input last,
because on the final go through, the negative values are read into variables A and
B. If we had the input first, as before, the program would try to carry out the
calculation using the negative values, which, of course, it should not do. We
must put the first input outside the loop statement. This is a bit clumsy because
the same statements have to be written in two places in the program.

To make the program less clumsy we can use an exit statement. Then the
input does not need to be written in several places and the loop statement becomes:

-- VERSION 4

loop
PUT_LINE ("Enter lengths of the two shorter sides:");
PUT_LINE ("Terminate by giving a negative length.");
GET(A); GET(B);
exit when A <= 0.0 or B <= 0.0;
PUT("The hypotenuse has length: ");
PUT( SQRT(A*2 + B+2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;

end loop;

Here the statements appear in an order that might be closer to the natural way
of thinking.

In the two final versions of the hypotenuse program we shall use a
function in the TEXT_IO package that we have not seen before, called
END_OF_FILE. When the function END_OF_FILE is called in a program, a
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value of type BOOLEAN is returned, in other words a value that is either TRUE
or FALSE. The value TRUE is obtained if the user states that he or she does not
intend to give more data to the program, and the value FALSE is obtained if the
user continues to input data in the normal way.

How does the user state that he does not intend to input more data? If, for
example, the program requests:

Enter the lengths of the shorter sides

and the user wants the program to continue, he writes in data in the normal way,
for example:

25.711.3

If, on the other hand, there is no further input data, a special combination of keys
should be pressed at the terminal. The combination varies from system to sys-
tem, but it is common to use the key that says CTRL on it together with another
key. (The D key or the Z key is used in some common systems.) In future, we
shall assume that the CTRL key and the D key should be pressed simultaneously.

If we use a loop statement with while, the statements in the program
appear:

-- VERSION 5

PUT_LINE("Enter lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");
while not END_OF_FILE loop
GET(A); GET(B);
PUT("The hypotenuse has length: "};
PUT( SQRT(A++2 + B*+2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;
PUT_LINE ("Enter lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");
end loop;

As we already know, there should be an expression of type BOOLEAN after the
word while. The program can be written as it is because a call to the function
END_OF_FILE gives just such a BOOLEAN value as result. As in version 3 of
the program, we have been forced to change the order of the reading and calcu-
lation within the loop. On the final go through, after the user has pressed the
CTRL and D keys, no calculation should be made. Note that the call to
END_OF_FILE should occur after the user has been asked to give the input data
and before the program tries to read in what the user has written.

In the last version we use an exit statement and avoid turning round the
order of the statements in the loop and repeating statements before the first loop
statement. This gives the most compact solution:
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-- VERSION 6

loop
PUT_LINE (*Enter the lengths of the two shorter sides:");
PUT_LINE("Terminate by typing CTRL-D.");
exit when END_OF_FILE;
GET(A); GET(B);
PUT(“The hypotenuse has length: ");
PUT( SQRT(A*+2 + B+2), FORE => 1, AFT => 2, EXP => 0);
NEW_LINE;
end loop;

The question arises: ‘Which of these methods is best?”” This depends
partly on the application. If it is known that a definite number of input data will
be read (for example, that the results from a fixed number of measurements will
be input), the first method with a for statement might be preferable.

The second version, in which the user is asked if further calculations are
to be made, is a bit clumsy, and the user may find it tedious to answer the ques-
tion over and over. This version may be useful if written for an inexperienced
user who needs accurate and easily understood instructions.

Version 3 has the advantage that the condition for continuing with the
calculations is seen at the very beginning of the loop statement. The disadvan-
tages are clearly that certain lines of program must be repeated and that the
statements come in an unnatural order. In this respect, version 4 with its exit
statement is preferable. This version avoids repeating part of the program and
the statements come in a natural order. It can be disadvantageous that the
program contains a jump out of a loop. It is usually said that no jumps should
occur in a well-structured program. Even so, the jump brought about by this exit
statement can be said to be well-controlled and, therefore, does not offend the
principles of structured programming.

In certain computer systems it may be standard to terminate the input data
to certain types of program using END_OF_FILE. Also, if there is no natural
‘end value’ for input, END_OF_FILE is useful. Then versions 5 or 6 could be
used. If these two versions are compared, version 6 might be preferred, for the
same reasons as version 4 was preferred to version 3.

EXERCISES

41 In an examination it is possible to get a maximum of 60 points. To pass requires
28 points and to get honours requires at least 48 points. Write a program that reads in
the marks obtained by a student and writes out one of the comments: fail, pass or
honours.
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Control statements

(@) Use an if statement.
(b)  Use a case statement.
The sides of a triangle can be denoted a, b and c. If the lengths of sides a and b, and the

size of the angle y between them are known then the length of the third side ¢ can be
calculated using the formula:

c=Va®+b*-2ab cos y

Write a program that reads in the lengths of two sides of a triangle and the angle between
them (in radians) and determines if the triangle is equilateral (all sides equal length),
isosceles (two sides equal), or scalene (no sides equal). The program should print one of
the comments: equilateral, isosceles or scalene. Remember to be careful when compar-
ing real numbers.

In Sweden, everyone has a personal identification number of 10 digits. The first six
denote the person’s date of birth in the format yymmdd, and the last four are a code
(described in Exercise 4.9).

Write a program that reads in the day’s date in international ISO format, namely
19yy-mm-dd, including the dashes. The program then reads in a person’s 10-digit
identification number (no dashes) and prints the message:

Congratulations!

if it is his or her birthday.

A Swedish postal code consists of five digits; the first two denote the district to which
the code belongs. If these digits lie in the range 20-62 inclusive, or are 65 or 66, then
the code belongs somewhere in the southern part of Sweden (Gotaland). If the digits are
greater than or equal to 80, the code refers to somewhere in northern Sweden (Norrland),
and all others denote central areas (Svealand).

Write a program that reads in an address consisting of two lines: street (number and
street name) and town (postal code and town name). Each line can be up to 20 charac-
ters long and will be padded with spaces when read in. The program should output one
of the messages:

To southern Sweden
To central Sweden
To northern Sweden

depending on the postal code in the first five characters in the second line of the address.

Write a program that draws up a neat table of values for the following function:
fix) =3x8 -5x2+ 2x - 20

(a) Make the program write out values of f{ix) for all integers in the interval =10 to +10.
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(b) Make the program write out values of flx) for all x-values in the interval -2 to +2
in steps of 0.1, that is, for the values -2.0, -1.9,-1.8, ..., 1.9, 2.0.

A borough has made the following prognosis for the changes in population over the next
few years:
e At the start of 1994 there were 26 000 inhabitants.

o The rates of births and deaths are estimated at 0.7% and 0.6% of the population,
respectively.

e The number of people moving in and out of the borough annually is estimated at
300 and 325, respectively. ‘

Write a program to calculate the borough’s estimated number of inhabitants at the begin-

ning of a particular year. The year in question is to be read in as input.

Write a program that will print out all the printable ASCII characters and their corre-
sponding ASCII codes.

A Caesar cipher is a very simple coding method in which each letter in the message to
be coded is replaced by the letter a fixed number of places further on in the alphabet. If,
for example, a displacement of two places is chosen, then A is replaced by C, B by D,
CbyE,...,XbyZ Y by A, and Z by B. The message:

SEND MORE MONEY
is thus coded to:
UGPF OQTG OQPGA

(a) Write a program that reads in a message (maximum 80 characters), codes the
message and prints it out. Use a displacement of three for coding. Assume that only
uppercase letters are used. If any character other than an uppercase letter appears
in the message, do not replace it.

(b) Write a program that will read in a secret message, coded with a displacement of
three, and translate the message back to a readable form.

(c) Write a program that will read in a secret coded message where the displacement
used is unknown. The program should write out all possible solutions, so that the
original message can be found among them.

Referring again to the Swedish 10-digit identification number (see Exercise 4.3) write a
program to check that a given number is correct. If it is incorrect, the text:

Incorrect identification number

should be output.
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(a) Make the program check that all characters are numerals.

(b) Make the program also check that the control figure (the final digit) is correct. The
control figure is calculated as follows:

(1) Add digits in positions 2, 4, 6 and 8.

(2) Multiply the digits in positions 1, 3, 5, 7 and 9 in the identification number by
2 and add the digits in the result.

(3) Add the results of steps 1 and 2.

(4) The control figure can now be determined because the sum of the control
figure and the sum from step (3) should be exactly divisible by 10.

A palindrome is a text that reads the same forwards as backwards. For example, ‘Ada’
and ‘Able was I ere I saw Elba’. Write a program that reads in a word (no more than 20
characters) and decides whether the word is a palindrome.

Write a program to write out a multiplication table as in the following example:

2 3 4 5
4 6 8 10
6 9 12 I5
8 12 16 20
10 15 20 25

The upper limit of the table should be read in as input.

wn A WwWN -

Write a program to compute the least integer & such that:
k

2i2>n

i=|

The number n should be read in from the terminal.

If there is no accessible package with mathematical functions, Maclaurin series can be
used to calculate the values of certain common functions. For example, the function
‘sin’ can be evaluated with the following series:

X X X x"._.

sinx=x—-—+— -+
3151 71 9l
Write a program that reads in a value of x and writes out sin x using this series. The result

should be written correct to four decimal places. Neglect any terms in the series that are
less than 1075

Write a program that reads in a certain number of real numbers and writes out at the
terminal:
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e The largest number.

e The smallest number.

e Their mean value.
Formulate the reading in of input data in a suitable way for the following cases:
(a) The number of numbers to be read in is always known (for example, 100).

(b) The number of numbers is arbitrary but it is known that all the numbers are greater
than zero.

(c) The number of numbers is arbitrary and any real number can occur.

Write a program that calculates the value of the sum:

n
=)L
i=1i
for different values of n. The program should be designed so that it repeatedly writes out
the text:

Enter the vaiue of n
and calculates and writes out the value of H,. There should be some suitable way of
indicating that no further calculations are to be made.

Write a program that reads a line from the terminal comprising a number of words
separated by one or more spaces (80 characters maximum). The program should write
out the line of text such that only one space comes between each pair of words.
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5.1 Data abstraction 5.6 'The tools for input and output
5.2 Integer types 5.7 Subtypes

5.3 Real types 5.8 Array types

5.4 Enumeration types 5.9 Searching and sorting

5.5 Attributes for scalar types Exercises

In earlier chapters use has been made of Ada’s predefined types as declared

in the package STANDARD. This chapter will show how it is possible to
declare new types. The concepts of abstraction and representation will

be discussed, that is, how types can be introduced in order to describe and
represent phenomena from the real world. The ways of declaring new numeric
types will also be reviewed. The use of enumeration types to describe the kind
of real phenomena that cannot be expressed as numerical quantities will be
studied further. In Section 5.5 a number of useful attributes for scalar types
are presented.

So far a non-standard package, BASIC_NUM_IO, has been used to
access the tools for input and output of values of the types INTEGER and
FLOAT. In Ada there is a general mechanism for creating new input/output
packages for all numeric types and enumeration types, even those declared
by the programmer. In Section 5.6 the use of this mechanism is explained.

The use of so-called subtypes in Ada will also be described, showing
how these can be used to describe objects that belong to a subgroup of a
larger, more general, group. Sections 5.8 and 5.9 deal with types that consist
of several components of the same sort and which can be used to represent
tables, texts and other data.
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5.1 Data abstraction

In Chapter 3 we discussed the concept that the task of a computer program is to
manipulate data, and that data objects in a program often represent some
phenomenon in the real world. When we talk about phenomena in the real
world, we nearly always use a technique known as abstraction. Abstraction
means creating a concept of something so that it can be talked about and
described. The word ‘truck’, for example, is an abstraction for a vehicle that can
be used for transporting things. We can talk about a truck and say that it has
certain properties, such as capacity, length, running cost and so on.

The abstraction can be made at different levels. For a maintenance
mechanic it is natural to think of a truck as consisting of many components, such
as a gear box, brake system and so on. To go down another level, it can be said
that the gear box is made up of many parts, axles, gear wheels, etc. This level
is appropriate for the design or repair of a gear box. The level of abstraction
chosen, therefore, depends on the context in which the phenomenon is to be
studied.

The advantage of deliberately choosing an abstraction is that it allows
inessential details to be ignored in favour of those properties important for the
study in hand. The driver of a truck is not interested in how the different gear
wheels inside the gear box are moving. He or she only needs to know how to
use the gear lever.

Abstraction

® A ‘model’ or ‘concept’ of a real-world phenom-
enon is created.

e Abstraction is made at such a level that inessential
details can be ignored.

Because the data objects in a program should represent a phenomenon in
the real world, we must also be able to use abstractions when we create differ-
ent data objects. This is possible in Ada. Using types and packages that we
declare ourselves, we can build up complicated types with particular properties.
It can actually be said that we have already met abstraction of data. A variable
of the built-in type INTEGER, for example, is a representation of a mathemati-
cal whole number. If we prefer, we do not need to study the underlying level of
abstraction that describes how an INTEGER is represented in binary form with
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ones and zeros. We only need to know which operations can be performed on
an object of the type INTEGER.

There are several advantages to be gained by setting up new types that
specifically represent the properties of a phenomenon. The program becomes
clearer because it is more closely linked with reality. The program also becomes
safer: the compiler checks that we are not illegally mixing different types
and that we are not giving variables illegal values. The program becomes less
complex because we can choose a suitable level of abstraction and ignore
unnecessary details.

There is a distinction in Ada between scalar types and composite types.
(There are also types called ‘access types’ and ‘private types’, but we shall not
consider these yet.) Scalar types are used to describe things that can be
expressed in a single value, for example, a temperature, a printable character, or
the score in a test. Earlier we illustrated scalar data objects as storage boxes
containing only a single value. The numeric types (integer and real types) and
enumeration types are among the scalar types. '

The composite types are used to build up more complex descriptions of
data objects. Descriptions can be built up that contain several component
elements of the same sort, for example, text strings or tables, or descriptions that
contain component elements of different kinds, for example, the description of
a person in a hospital register.

Scalar types

The object can be expressed as one single value (for
example, a number or a character).

Composite types

The objects are composed of several individual values
(for example, a text).

The declarations of types should be placed alongside other declarations
in an Ada program. It is the ways of defining different types that will be
discussed in the rest of this chapter.
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Type declaration
type typename is type definition,

where type definition depends on the type being
declared.

® A type declaration is placed among the other
declarations in the program.

e No objects of the type are created by the type
declaration: they are created when an object decla-
ration is given.

The name of a type can be used in the same way as the names of Ada’s
standard types. This includes being able to declare objects (variables and
constants) using the name. If we have the following type declaration, without
worrying how the declaration itself continues:

type TEMPERATURE is ... ;
then the following object declarations can be made:

MEAN_TEMPERATURE : TEMPERATURE;
LIMITING_TEMPERATURE : constant TEMPERATURE := 100.0;

Note that no objects are created when the type is declared. The type (or the idea
of) TEMPERATURE is only introduced so that it can be used later. It is only
when an object declaration is made that an object is created. Type declarations
and object declarations may appear in arbitrary order in the declaration
section of a program, but a type must be declared before it is used in another
declaration. ¥

When both types and objects are declared in a program it can be a
problem to find suitable names. It is all too easy to decide on names in a
program that make it difficult to tell types and objects apart, making the program
both confusing and hard to understand. It can, therefore, be useful to devise a
principle for allocating names. One common principle for differentiating
between the names of types and other quantities is to let all type names end in
TYPE, for example, TEMPERATURE_TYPE and PERSON_TYPE.

* It has been pointed out before that in Ada 95 all types are without name. TEMPERATURE is actu-
ally a subtype. The type declaration above is in fact two things: first, an anonymous type is declared
and second, a subtype, TEMPERATURE, of this anonymous type is declared. The subtype will
have exactly the same characteristics as the anonymous type.
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5.2 Integer types

When an integer type is declared, the least and greatest possible integer values
that objects of the type can take are stated. A few examples to illustrate this are:

type LINE_NUMBER is range 1 .. 72;
type SCORE is range O .. 100;
type NEGATIVE_INTEGER is range —100_000 .. -1;

Declaration of integer types
type typename is range min_value .. max_value;

where min_value and max_value are static (constant)
integer expressions.

Condition: min_value <= max_value

Here LINE_NUMBER, for example, describes a type whose possible values
are whole numbers in the interval 1-72. The permissible limits depend on how
integers are stored in the particular Ada implementation. If limits are requested
that the Ada implementation cannot cope with, the compiler will give an error
message. In the majority of implementations, it would probably not be permit-
ted to declare the following type, for instance:

type GIANT_INTEGER is range 0 .. 100_000_000_000_000_000;

In every Ada implementation, as we know, there is a predefined type
INTEGER which is declared in the package STANDARD. The declaration of
INTEGER can be considered as:

type INTEGER is range /east_integer .. greatest_integer;

where the limits /least_integer and greatest_integer can be different for different
implementations of Ada.

The standard type INTEGER

o The least possible and greatest possible values can
be different in different implementations of Ada.

® To include all desired values, the programmer
should declare a new specific integer type.
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The two limits in a declaration of an integer type do not necessarily have
to be simple literals as above. Static expressions, that is, expressions consisting
of constant components, are also allowed:

MAX_LINE : constant := 72;
MAX_COL : constant := 17;
type ELEMENT_NUMBER is range 1 .. (MAX_LINE » MAX_COL);

Facts from the real world can be represented using specifically declared integer
types. For example, a variable MY_SCORE can be created by making the object
declaration:

MY_SCORE : SCORE;

The variable is thus an object that can only take integral values between 0 and
100. It represents a genuine score in, for example, a test. If an attempt is made
to assign a value to MY_SCORE that lies outside the limits 0 and 100, there is a
run-time error and an error message is output. This gives valuable assistance in
tracing errors of logic in a program. If MY_SCORE were simply declared as an
INTEGER, this help would not be available: all the integers included in the type
INTEGER would then be allowed. The type INTEGER can be considered as
representing the concept of whole numbers in a general mathematical sense, that
is, having no connection with any particular real object, but this is too vague a
model for a real test score.

All the operations that can be performed on objects of type INTEGER (for
example, assignment, addition, comparison) can also be performed with other
integer types, but mixing different types is not allowed. Assume, for example,
we have the following object declarations:

CURRENT_LINE, NEXT_LINE : LINE_NUMBER,;
MY_SCORE : SCORE;
K : INTEGER,;

Then the following assignments are not permitted:

CURRENT_LINE := MY_SCORE; -- Error!
K := NEXT_LINE; -- Error!
MY_SCORE = K; -- Error!

Nor is it permitted to mix types in expressions:

CURRENT_LINE + K -- Error!
MY_SCORE ~ K -- Error!
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However, the following are allowed:

CURRENT_LINE := NEXT_LINE; -- Same type
CURRENT_LINE := LINE_NUMBER(K) -- Type conversion
MY_SCORE » SCORE(K) -- Type conversion

In the second example we have used explicit type conversion and converted the
value of K, which is of type INTEGER, into a value of type LINE_NUMBER. In
the expression in the third example, K’s value has been turned into the type
SCORE. Type conversion is allowed between all numeric types.

If we have the following declarations:

type PAGE_NUMBER is range 1 .. 500;

type INDEX is range 1 .. 500;
PAGE : PAGE_NUMBER,;
I : INDEX;

then PAGE_NUMBER and INDEX are different types in spite of being declared
in the same way. Therefore the variables PAGE and | have different types and
may not be mixed.

Operations on integer types

e The normal operations that exist for INTEGER (for
example, +, ) also exist for other integer types.

e Different integer types may not be mixed.

e Explicit type conversion is permitted.

~ As discussed earlier, integer literals have the type universal_integer and are
automatically converted into the ‘right’ integer type. Therefore, the following,
for example, are allowed:

CURRENT_LINE :=1;

MY_SCORE + 5
K«27

5.3 Real types

In Ada there are two categories of real types, namely floating point types and
fixed point types, as mentioned in Section 3.1.1. Only floating point types
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will be treated here. Floating point types are used to represent real values with
a certain precision, that is, with an accuracy of a certain number of digits after
the decimal point. As we saw earlier, an Ada implementation uses a binary
representation to store floating point numbers internally. Therefore only certain
real numbers can be stored exactly. The rest are stored in an approximate form.

Declaration of floating point types
type typename is digits number_of_sig_figs;

where number_of_sig_figs expresses the accuracy as
the number of significant figures following the deci-
mal point, and is a static (constant) expression.

When a floating point type is declared, the accuracy required is simply
stated in terms of the number of figures following the decimal point. The com-
piler then chooses a suitable form of binary representation, namely, how many
bits should be used to store the mantissa and the exponent. The number of
digits accuracy varies from implementation to implementation. If the number
of digits accuracy requested is greater than can be stored in the implementation
in use, the compiler will give an error message. (It should be noted that when
the compiler accepts a declaration of a floating point type, it also guarantees
that a minimum number of bits will be used to store the exponent, which determines
the range of numbers that can be stored. The greater the accuracy requested, the
greater the number of bits devoted to storing the exponent.) Some examples are:

type TEMPERATURE is digits 4;
type PRECISION_MEASUREMENT is digits 15;

Following the word digits there must be a static integer expression. An integer
literal is most often used, as in these examples.

We have already met the standard type FLOAT, which can be thought of
as being declared in the following manner in the package STANDARD:

type FLOAT is digits figure_dependent_on_implementation;

Thus the number of digits’ accuracy obtained when the type FLOAT is used can
vary from implementation to implementation. It can, therefore, be dangerous to
use this type when writing a program that is intended to be portable (usable on
all Ada implementations), because it is not possible to be sure of the accuracy
of the results computed by the program. It is thus recommended that the
programmer declares his or her own floating point types so that he or she can



Real types

state the desired precision. If it is not possible to obtain that precision, the com-
piler will detect it as an error, output an error message and the program will not
be compiled. Thus the programmer can be assured of getting the desired accu-
racy if a program can be compiled without error.

The standard type FLOAT

e The number of digits accuracy can be different in
different implementations of Ada.

e To be sure of obtaining a certain number of digits
accuracy, the programmer should declare a spe-
cific floating point type.

It is possible to state the bounds within which the numbers belonging to
the type may lie:

type PERCENTAGE is digits 4 range 0.0 .. 100.0;
type ERROR_PROBABILITY is digits 6 range 0.0 .. 1.0;

This ensures a check that, while the program is running, variables of the partic-
ular type never assume values that lie outside its limits. It also offers assistance
with tracking down possible errors in the program’s logic. The limits that appear
after the word range must be static real expressions.

In the same way as for integer types, all the operations that exist for the
type FLOAT also exist for programmer-declared floating point types, but again,
mixing different floating point types in an expression is not allowed. If this is
necessary, type conversion can be used. Real literals present no problem
because they have the type universal_real and automatically take the ‘right’
type. If, for example, we have the declarations:

MAX_PERCENT : PERCENTAGE;
MAX_PROB : ERROR_PROBABILITY;

the following assignment is incorrect:
MAX_PROB := MAX_PERCENT / 100.0; -- Error!

because the expression on the right of the assignment has type PERCENTAGE
and that on the left has type ERROR_PROBABILITY. However, the following is
correct:

MAX_PROB := ERROR_PROBABILITY(MAX_PERCENT / 100.0);
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Operations on floating point types

o The normal operations that exist for FLOAT (for
example, +, ) also exist for other floating point
types.

e Different floating point types may not be mixed.

e Explicit type conversion is allowed.

5.4 Enumeration types

There are many phenomena in the real world that are described in words rather
than numbers, for example, the days of the week. The second day of the week
is usually called Tuesday rather than day number 2. In the same way, the suits
in a pack of cards are not numbered but have names: hearts, clubs, diamonds and
spades. To describe the state of something it is also common to use different
terms rather than numbers, such as the state of an elevator being ‘going up’,
‘going down’ or ‘stationary’. If phenomena like these are to be represented in a
program, numeric types will not suffice. Instead, there is the opportunity to use
enumeration types. When an enumeration type is declared, the possible values
are simply enumerated or listed.

Let us look at the three examples already mentioned: the days of the
week, the suits in a pack of cards and the state of an elevator. We can make the
following type declarations:

type DAY_OF_THE_WEEK is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY,
SUNDAY);

type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);

type ELEVATOR_STATUS_TYPE is (GOING_UP, GOING_DOWN,
STATIONARY);

We can then declare variables of these types:

TODAY, TOMORROW : DAY_OF_THE_WEEK;
CURRENT_TRUMP_SUIT, SUIT_PLAYED : SUIT;
ELEVATOR_1_STATUS : ELEVATOR_STATUS_TYPE;

The variable CURRENT_TRUMP_SUIT can then take any of the values CLUBS,
DIAMONDS, HEARTS or SPADES, but no other value. Although values are
usually considered numeric, CLUBS must also be thought of as a value of
type SUIT in the same way as 257 is a value of type INTEGER. Here are a few
examples of permitted statements:
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SUIT_PLAYED := DIAMONDS;
CURRENT_TRUMP_SUIT := SUIT_PLAYED;

if ELEVATOR_1_STATUS = STATIONARY then
PUT_LINE("Elevator is free");
end if;

It is also possible to initialize variables of enumeration types when they
are declared, as in:

ELEVATOR_1_STATUS : ELEVATOR_STATUS_TYPE := STATIONARY;
Of course, to mix types is not allowed. The following are incorrect:

CURRENT_TRUMP_SUIT := FRIDAY; -- Error!
TODAY = 2; -- Errorl
if CURRENT_TRUMP_SUIT = TOMORROW then -- Error!

The values that are listed when an enumeration type is declared can, as in
the example above, be identifiers like TUESDAY, but it is also possible to use
character literals, as in the following example:

type HEX_DIGITS is ('O, '1*, 2, '3, 4, '5', ', 7,
I8I, Igl, IAI, lBl' ICI, IDI’ IEI’ |Fl);

Identifiers and character literals can be mixed in the same type declaration
if necessary. This has been done in the declaration of the enumeration type
CHARACTER in the package STANDARD.

Declaration of enumeration types

e type typename is (value_1, value_2, ... value_N);
where value_1, value_2, etc. are either identifiers
or character literals (can be mixed in the same dec-
laration).

e The values in the type are ordered in such a way
that value_1 < value_2 < value_3, etc.

The values in an enumeration type are ordered so that the value
listed first is least and the one that is listed last is greatest. The following logic
expressions, therefore, have the value TRUE:
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TUESDAY < SUNDAY
CLUBS <= HEARTS
STATIONARY > GOING_UP

This can be used in constructs such as:

if TODAY >= SATURDAY then
PUT_LINE("Free day");

end if;

if ELEVATOR_1_STATUS in GOING_UP .. GOING_DOWN then
PUT_LINE("Elevator in motion");

end if;

It is common to use the case statement in conjunction with enumeration
types, often leading to readable programs as in the following example:

case TODAY is
when MONDAY .. THURSDAY =>
PUT("Only work");
when FRIDAY =>
PUT("Out on the town tonight");
when SATURDAY.. SUNDAY =>
PUT("Free day");
end case;

No others alternative is needed here because all the possible values are listed.

It is also very useful to use enumeration types to control the iteration in
a loop statement with for. The total number of hours worked in a week is cal-
culated in the following program. When the program is run, the operator gives
for each day of the week how many hours have been worked.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure COMPUTE_HOURS_WORKED is
type DAY_OF_THE_WEEK is (MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY, SUNDAY);

TOTAL_HOURS :INTEGER = 0;
NUMBER_OF_HOURS : INTEGER,;
begin

PUT_LINE("Enter hours worked on each day of the week");

for DAY in MONDAY .. SUNDAY loop
GET(NUMBER_OF_HOURS);
TOTAL_HOURS := TOTAL_HOURS + NUMBER_OF_HOURS;
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end loop;
PUT("The total number of hours worked is: ");
PUT(TOTAL_HOURS, WIDTH => 1);

end COMPUTE_HOURS_WORKED;

The loop parameter here automatically takes the type DAY_OF_THE_WEEK.
The first time through the loop, DAY will have the value MONDAY, the second
time it will have TUESDAY, and so on, until, on the final time through, DAY has
the value SUNDAY.

In general, using enumeration types increases the clarity of programs.
Therefore one should try to use enumeration types and avoid ‘coding’ informa-
tion in programs, such as representing a Wednesday by the number 3.

Using enumeration types
® Makes programs clear.
® Avoids ‘coding’ information with numbers.
e Combines well with case statements.

5.5 Attributes for scalar types

When we discussed the standard types INTEGER, FLOAT and CHARACTER in
Chapter 3 we introduced the notion of an attribute. In this section we will
describe the most common attributes for scalar types, in other words for integer
types, real types and enumeration types. Attributes have the following form:
there is always a prefix first, which is the name of the type in question; that is
followed by a single apostrophe; then comes the name of the attribute.
Attributes can be divided into two categories. The first of these consists of
attributes which give information about the current type, for example, INTE-
GER'FIRST and FLOAT'DIGITS. The second category consists of attributes
which are a sort of function, and they always have a parameter following the
attribute name. An example is CHARACTER'POS(C), where the variable C is
here a parameter to the attribute.

We will start with attributes of the first category. The most common are
the following (where the identifier T specifies a type):

T'FIRST States the least possible value for objects of type T.
T'LAST  States the greatest possible value for objects of type T.

T'DIGITS States the number of decimal figures accuracy for floating
point type T.
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TWIDTH Gives an integer which states how long a text string must be in
order that all values of type T can be printed in it. In Ada 83
the attribute WIDTH is found only for integer types and enu-
meration types. This attribute is often used in conjunction with
the attribute IMAGE (see below).

We can look at some examples. If we assume that an enumeration type
DAY_OF_THE_WEEK has been declared, as in the previous section, then the
expressions DAY_OF_THE_WEEKFIRST and DAY_OF_THE_WEEK'LAST
have values MONDAY and SUNDAY, respectively. If we want to know the
number of possible values which exist for the type SHORT_INTEGER we can
use the expression:

SHORT_INTEGER'LAST - SHORT_INTEGER'FIRST + 1
Assume that the following declaration is in force:

type TEMPERATURE is digits 4;
TEMP_1 : TEMPERATURE;

If we want to find out the largest number that can be stored as type TEMPERA-
TURE we can make use of the attribute TEMPERATURE'LAST. As an example
of using the attribute DIGITS, we can look at a statement that writes out the
value in the variable TEMP_1 with as many digits accuracy as is suitable:

PUT(TEMP_1, EXP => 0, FORE => 1, AFT => TEMPERATURE'DIGITS})

The attribute WIDTH can be used in connection with declarations of text string
variables. If, for example, we want to declare a variable NUMBER_STRING
which is sufficiently long to allow all integers of type SHORT_INTEGER to be
‘written’ in it, we can write the following:

NUMBER_STRING : STRING(1 .. SHORT_INTEGER'WIDTH);

In the second category of attributes, those which are functions, the
following are most common. As before, T is the type in question, and now one
or more parameters are found in brackets.

T'POS(value) Gives the order (enumeration number) of value. The
parameter value must be of type T. This attribute
does not exist for real types.

T'VAL(number) Gives the value of type T which has order number.
The parameter number must be an integer. This
attribute does not exist for real types.
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T'PRED(value_n) Gives value_n-1 (the predecessor) of type T. The
parameter value_n must be of type T. In Ada 83 this
type does not exist for real types.

T'SUCC(value_n) Gives value_n+1 (the successor) of type T. The
parameter value_n must be of type T. In Ada 83 this
type does not exist for real types.

T'IMAGE(value) The parameter value must be of type T. It returns as
result a text string in which is ‘written’ the value of
the parameter. Integers are written without leading
zeros but with a leading sign which can be a blank
or a minus sign. No trailing blanks are given. Values
of enumeration types are ‘written’ in upper-case
letters with neither leading nor trailing blanks. This
attribute does not exist for real types in Ada 83.

T'VALUE(text) This is the inverse of IMAGE. The parameter text
must be of type STRING and contain text which can
be interpreted as a literal of type T. Leading and
trailing blanks are allowed. It returns as result a
value of type T.

T'MIN(x,y) Both parameters must be of type T. It returns as
result the lesser of x and y. This attribute exists only
in Ada 95.

T'MAX(x,y) Both parameters must be of type T. It returns as
result the greater of x and y. This attribute exists
only in Ada 95.

We can look at some examples of these attributes. The expression
DAY_OF_THE_WEEK'POS(TUESDAY) returns the value 1 since enumeration
types are numbered from 0. CHARACTER'VAL(119) gives the character which
has order number 119 in the ASCII code, namely the character ‘w’.

The attributes PRED and SUCC can be used to obtain, respectively, the
predecessor and successor of a value of an enumeration type, thus:

DAY_OF_THE_WEEK'PRED(FRIDAY) -- returns value THURSDAY
TOMORROW := DAY_OF_THE_WEEK'SUCC(TODAY);

The last of these examples indicates that the content of the brackets does not
need to be a constant value. For an enumeration type, the first value has no
predecessor and the last value has no successor; if an attempt is made to get
either such value the result will be an execution error when the program is run.

The following example shows how the attribute IMAGE might be used.
Suppose we have a procedure DRAW_STRING which can write text at a speci-
fied point on a graphics screen. The procedure will have three parameters, the
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first two giving the x and y coordinates of the point on the screen where the text
will start and the third, of type STRING, being the text to be written out. Assume
now that we have calculated a value of type INTEGER and that its value is in
variable N. If we want to write on the screen, "The final resulit is: xxx", where xxx
means the value in variable N, we make the following call:

DRAW_STRING(X, Y, “The final result is: * & INTEGER'IMAGE(N));

The attributes PRED and SUCC are defined in Ada 95 for floating point types
as well. For example, in Ada 95 the expression FLOAT'SUCC(0.0) returns the
smallest number greater than zero which can be represented.

A number of further attributes are defined for floating point types, some
of which are given below. For all those shown here, T is a floating point type
and the parameters and result are of type T.

T'ROUNDING(x)  Returns the rounded value of x.
TTRUNCATION(x) Gives the value of x with the decimal figures

dropped.
T'FLOOR(x) Gives the largest integer which is not larger than x.
T'CEILING(x) Gives the smallest integer which is not smaller
than x.

5.6 The tools for input and output

In our programs we have used the resources in the standardized package
TEXT_IO to access read and write values of the types STRING and CHARAC-
TER. To read and write values of the types INTEGER and FLOAT we have so far
used a ‘home-made’ package, BASIC_NUM_IO that is not standardized. We
have used it to simplify input and output in the early stages of learning Ada. If
we have numeric types other than INTEGER and FLOAT, the package
BASIC_NUM_IO will not do. We shall, therefore, look at how to use a general,
standardized method to create the resources needed for reading and writing any
sort of numeric type. We shall also look at how to read and write values of
enumeration types.

Contained in TEXT_IO, as well as the procedures for reading and writing
text, there are some templates that can be used to create new input/output pack-
ages. One template is called INTEGER_IO, and with its help new packages con-
taining procedures for reading and writing integer types can be created. The way
this is used in a program is illustrated by the following example, where a
package is created enabling values of the type INTEGER to be read and written
without using BASIC_NUM_IO.
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withTEXT_IO;

use TEXT_IO;

procedure INOUT_DEMO_1 is
package INTEGER_INOUT is new INTEGER_IO(INTEGER);
use INTEGER_INOUT;

N : INTEGER,;
begin
GET(N);
PUT(N);
NEW_LINE;
end INOUT_DEMO_1;

The first with statement gives access to the package TEXT_IO and all its
resources. The first use statement makes it easy to refer to the contents of the
package TEXT_|O. For example, we can write NEW_LINE, avoiding writing the
longer form TEXT_IO.NEW_LINE as we would have to if the use statement
were not there.

Within the procedure we use the template INTEGER_IO (which is in the
package TEXT_IO) to create a new package that we name INTEGER_INOUT.
Since we want our package to contain the resources to enable values of the type
INTEGER to be read and written, we write this type name in brackets after the
template’s name. (The template INTEGER_IO has all that is needed for a com-
plete package to be created; the only thing missing is the name of the type and
we must therefore state this.)

The second use statement makes it easy for us to refer to the routines in
the new package INTEGER_INOUT. For example, we can write PUT instead of
INTEGER_INOUT.PUT.

Input and output of integer types

e The following must be placed among the pro-
gram’s declarations:

package package_name is new INTEGER_IO(T);
use package_name;

where T is the name of an integer type.

e The procedures PUT and GET can then be used.
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If we also want to be able to read and write values of the integer type
LINE_NUMBER, we can create another package of routines:

with TEXT_IO;
use TEXT_IO;
procedure INOUT_DEMO_2 is
type LINE_NUMBER is range 1 .. 72;
package LINE_NO_INOUT is new INTEGER_IO(LINE_NUMBER});
package INTEGER_INOUT is new INTEGER_IO(INTEGER);
use INTEGER_INOUT, LINE_NO_INOUT;

N :INTEGER;
LINE : LINE_NUMBER,;
begin
GET(N);
PUT(N);
NEW_LINE;
GET(LINE);
PUT(LINE);
end INOUT_DEMO_2;

The new package is called LINE_NO_INOUT and is created in the same way as
the package INTEGER_INOUT. Both of these packages thus contain exactly the
same resources for their respective types. The procedures GET and PUT will be
found in two versions, one for the type INTEGER and one for the type
LINE_NUMBER.

The template FLOAT_IO in the package TEXT_IO can be used in the same
way to create new packages for input and output of floating point values. If we
want to be able to read and write values of type FLOAT without using the pack-
age BASIC_NUM_IO, we can write in our program:

package FLOAT_INOUT is new FLOAT_IO(FLOAT);
use FLOAT_INOUT;

Then we get direct access to procedures, including PUT and GET, in versions
which can handle values of the type FLOAT.

Input and output packages for other floating point types can be created in
an analogous way. If we want to be able to read and write values of the type
TEMPERATURE directly, we can add the following lines to a program:

type TEMPERATURE is digits 4;
package TEMPERATURE_INOUT is new FLOAT_IO(TEMPERATURE);
use TEMPERATURE_INOUT;
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Input and output of floating point types

o The following must be placed among the pro-
gram’s declarations:

package package_name is new FLOAT_IO(T);
use package_name;

where T is the name of a floating point type.

o The procedures PUT and GET can then be used.

As shown previously, it is good to use enumeration types because they
make a program clearer to understand. But to be really useful, there has to be a
simple way of reading and writing their values. In TEXT_IO there is a template
ENUMERATION_IO that can be used to achieve this. The following program
illustrates how a package of resources for reading and writing values of the type
SUIT is created.

with TEXT_IO;

use TEXT_IO;

procedure INOUT_DEMO_3 is
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
package SUIT_INOUT is new ENUMERATION_IO(SUIT);
use SUIT_INOUT;
TRUMP : SUIT;

begin
GET(TRUMP);
PUT(TRUMP),

end INOUT_DEMO_3;

The template ENUMERATION_IO is used to create a new package SUIT_INOUT.
Writing SUIT in brackets states that the new package will contain resources
tailored for the type SUIT. In the package there are new versions of the proce-
dures PUT and GET that can be used as in the program above. The statement:

GET(TRUMP);

makes the program halt and wait for the operator to write a value of the type
SUIT at the terminal. The operator can then type one of the words CLUBS,
DIAMONDS, HEARTS or SPADES. (Both upper- and lower-case letters are
acceptable.) Anything else is wrong and gives a run-time error.
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The statement:
PUT(TRUMP);

means that one of the words CLUBS, DIAMONDS, HEARTS or SPADES will be
displayed at the terminal, depending on the value of the variable TRUMP.

It is possible for the programmer to control whether the output is in
upper- or lower-case letters. If lower-case letters are wanted, the statement:

SUIT_INOUT.DEFAULT_SETTING := LOWER_CASE;

can be inserted near the start of the program. If upper-case letters are wanted,
then the statement:

SUIT_INOUT.DEFAULT_SETTING := UPPER_CASE,;

should be inserted instead. If no such statement is made, output will be in upper-
case letters.

Input and output of enumeration types

e The following must be placed among the pro-
gram’s declarations:

package package_name is new
ENUMERATION_IO(T);
use package_name,

where T is the name of an enumeration type.

® The procedures GET and PUT can then be used to
write and read values of type T.

The standard type BOOLEAN is an enumeration type and thus values of
type BOOLEAN can be read in and written if a new package is declared:

package BOOLEAN_INOUT is new ENUMERATION_IO(BOOLEAN);
use BOOLEAN_INOUT;

This makes it possible to use PUT and GET as in the following examples:

GET(ACTIVE); -- ACTIVE is a variable of type BOOLEAN
PUT(ACTIVE);
PUT(A > B);
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In the first example, the operator must type one of the words TRUE or FALSE at
the terminal, while in the other two examples either TRUE or FALSE is
displayed at the terminal.

This section ends by studying a program that reads in a date in the form:

28 OCTOBER 1996

and computes the number of the day in the year, the day number. The program
will take leap years into account. A year is a leap year if it is exactly divisible
by four but not by 100, or if it is exactly divisible by 400.

We introduce three types of our own into the program. We let the numbers
of the days hav type DAY_NUMBER_TYPE. years have type YEAR_TYPE, and
the months have the type MONTH_TYPE. We will confine our interest to the
years between 2000 BC and 2100 AD. To be able to read and write values of
these types, we shall create new input and output packages using the templates
in TEXT_IO. The program looks like this:

WithTEXT_IO;
use TEXT_IO;
procedure COMPUT_DAY_NUMBER is
type YEAR_TYPE is range —2000 .. 2100;
type MONTH_TYPE is (JANUARY, FEBRUARY, MARCH,
APRIL, MAY, JUNE, JULY,
AUGUST, SEPTEMBER, OCTOBER,
NOVEMBER, DECEMBER);
type DAY_NUMBER_TYPE is range 1 .. 366;
package YEAR_INOUT is new INTEGER_IO(YEAR_TYPE);
package MONTH_INOUT is new ENUMERATION_IO(MONTH_TYPE);
package DAY_NUMBER_INOUT is new
INTEGER_IO(DAY_NUMBER_TYPE);
use YEAR_INOUT, MONTH_INOUT, DAY_NUMBER_INOUT:;

YEAR : YEAR_TYPE;

MONTH : MONTH_TYPE;

DAY, DAY_NO : DAY_NUMBER_TYPE;
begin

PUT_LINE("Enter date in form: day month year,");
GET(DAY); GET(MONTH); GET(YEAR);

case MONTH is
when JANUARY => DAY_NO := DAY;
when FEBRUARY => DAY_NO := 31 + DAY;

when MARCH => DAY_NO := 59 + DAY;
when APRIL => DAY_NO =90 + DAY;
when MAY => DAY_NO := 121 + DAY;
when JUNE => DAY_NO := 151 + DAY,

when JULY => DAY_NO := 182 + DAY;
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when AUGUST => DAY_NO := 212 + DAY,
when SEPTEMBER => DAY_NO := 242 + DAY;
when OCTOBER => DAY_NO := 273 + DAY;
when NOVEMBER => DAY_NO := 303 + DAY;
when DECEMBER => DAY_NO := 334 + DAY;
end case;
if (YEAR mod 4 = 0 and YEAR mod 100 /= 0)
or YEAR mod 400 = 0 then
-- leap year
if MONTH >= MARCH then
DAY_NO := DAY_NO + 1;
end if;
end if;

PUT("The day's number in the year is ");
PUT(DAY_NO, WIDTH => 1);
end COMPUTE_DAY_NUMBER,;

The program should contain a check that DAY is not greater than the number
of days in MONTH, but to simplify the program we shall ignore this
potential problem. However, there is no risk of the program accepting incorrect
years or months. If incorrect data is typed in for these, a run-time error will
result.

Ada’s input/output mechanism may at first appear a little complicated.
This is only because it is so general and works for all possible numeric types and
enumeration types. There can be much to write in a program if you are working
with several types. Sometimes it is tempting to avoid declaring your own types
and adhere to the standard types INTEGER and FLOAT. Then access is only
needed to the input/output packages for these two types. In spite of this, an
attempt should still be made to use Ada’s facilities for working with different
types. It increases the clarity and reliability of the program. Ada’s facilities are
better equipped to represent the phenomena required, and these are automati-
cally checked so that variables contain only permitted values. Furthermore, the
program is made more easily transferable from one implementation of Ada to
another.

Using your own types

Clearer and more reliable programs.
Better representation of reality.
Automatic checks on values.

Easier to transfer programs.
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5.7 Subtypes

When a real-world phenomenon is described, it is sometimes useful to introduce
a concept that denotes a subset of a more general concept. For example, ‘work-
day’ denotes a subset of the concept ‘days of the week’, and ‘positive integers’
is a subset of the concept ‘integers’. In Ada, such subsets of concepts can be
represented by using subtypes. Declarations of subtypes appear much like the
ordinary type declarations and are placed in the same part of the program. A
declaration of a subtype begins with the reserved word subtype.

For example, suppose we have already declared the enumeration type
DAY_OF_THE_WEEK:

type DAY_OF_THE_WEEK is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Now we can declare a subtype of DAY_OF_THE_WEEK that we shall call
WORKDAY:

subtype WORKDAY is DAY_OF_THE_WEEK range MONDAY .. FRIDAY:

In the declaration of the subtype we state that the base type is
DAY_OF_THE_WEEKY and that the permitted values for the new subtype
should lie in the interval MONDAY to FRIDAY.

Now it is possible to declare objects of either the type DAY_OF_THE_WEEK or
the subtype WORKDAY:

TODAY : DAY_OF_THE_WEEK;
NEXT_WORKDAY : WORKDAY;

The declaration of a subtype does not mean that a new type has been created. It
simply means that a name has been introduced for a subset of a base type. In our
example we can express it thus: the variables TODAY and NEXT_WORKDAY
belong to the same type, namely DAY_OF_THE_WEEK, but NEXT_WORKDAY
is specified further in that it belongs to the subtype WORKDAY. This means that
the following assignment is permitted:

TODAY := NEXT_WORKDAY;

'As we have mentioned before, types in Ada 95 are actually nameless. In fact,
DAY_OF_THE_WEEK is itself a subtype, with an anonymous base type. This means that the base
type of WORKDAY is not DAY_OF_THE_WEEK but its anonymous base type.
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Both variables are simply of the same type. The assignment may also be turned
round:

NEXT_WORKDAY := TODAY;

However, this assignment could lead to a run-time error when the program is
executed; this would happen if TODAY contained some value outside the inter-
val MONDAY .. FRIDAY (that is, either of the values SATURDAY or SUNDAY).

The good thing about using subtypes, then, is that they provide extra
support in finding errors in the logic of a program. Furthermore, they allow a
better representation of the facts, which again increases the clarity of a program.

The limits stated in a declaration do not need to be static. Arbitrary
expressions may be used:

START :INTEGER :=...;
N 1 INTEGER = ... ;
type NUMBER_TYPE is range 1 .. 1000;

subtype CERTAIN_NUMBERS is NUMBER_TYPE
range START .. START + N - 1;

Here we assume that the variables START and N are initialized to some values.
If the values are such that one of the limits lies outside the interval 1-1000, or
if the second limit is lower than the first, we shall get a run-time error.

In the package STANDARD two subtypes of the type INTEGER are
declared:

subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

These represent the mathematical concepts of ‘natural numbers’ and ‘positive
integers’ and it is appropriate to use them instead of INTEGER for work with
general integral values that are known to be 2 0 or 2 1, respectively.

If we have the following object declarations:

N : NATURAL;
P :POSITIVE;
I :INTEGER,;

then the following statements are allowed because all the variables actually have
the same type, INTEGER:

P =N=+P;
| =P-=N;
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Types other than enumeration and integer types may have subtypes. For exam-
ple, subtypes of floating point types can be constructed:

type MEASUREMENT is digits 10;
subtype PRESSURE is MEASUREMENT range 0.0 .. 3.0;

If a numeric object has to be described, then either a completely new type
can be declared, as we did earlier, or a subtype of a numeric type already in
existence, such as FLOAT or INTEGER, can be used. When is one better than the
other? The choice of method should be guided by the actual objects to be
represented. To represent things that have nothing to do with one another, use
completely new types and not subtypes. Then, of course, it is possible to check
that they are not mixed by mistake in the program. Otherwise, subtypes can be
used. This can be particularly practical when carrying out many computations
with closely related objects, because then it is not necessary to make explicit
type conversions throughout the computations.

Declaring subtypes
subtype U is T range min_value .. max_value;

where U is the name of the subtype and T is the
name of a type. T can be a numeric type or an
enumeration type. The smallest and greatest pos-
sible values for objects of subtype U are given by
min_value and max_value.

e U becomes a subtype of T. No new type is created.
e Objects of subtype U will have type T.

Using subtypes

e When closely related objects are in use and many
computations are to be made using them.

e Good representation of reality.

e Provide help with tracing errors of logic.

e For real objects that are not closely related, com-
pletely new types should be used in preference to
subtypes.
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Let us look at a program where it is natural to use subtypes. The program
asks the user to choose two of the colours red, yellow and blue, and then it
writes out the name of the colour obtained by mixing them. A type COLOUR is
introduced that describes all possible colours and mixtures. We then let the three
primary colours make up a subtype of COLOUR, called PRIMARY_COLOUR.

with TEXT_IO;
use TEXT_IO;
procedure MIX_COLOURS is
type COLOUR is (RED, YELLOW, BLUE,
ORANGE, GREEN, PURPLE);
subtype PRIMARY_COLOUR is COLOUR range RED .. BLUE;
package COLOUR_INOUT is new ENUMERATION_IO(COLOUR);
use COLOUR_INOUT,

COLOURT1, COLOUR2 : PRIMARY_COLOUR,;
COLOUR_MI : COLOUR;

begin
PUT_LINE("Welcome to the colour mixing program!”);
PUT_LINE("The primary colours are RED, YELLOW and BLUE");
PUT_LINE("The colour mixes are ORANGE, GREEN and PURPLE");
PUT_LINE("Terminate the run with CTRL-D.");

loop
NEW_LINE; -- extra blank line
PUT_LINE("Enter two of the primary colours");
exit when END_OF_FILE;
GET(COLOURT1); GET(COLOUR2);

if (COLOUR1 = RED and COLOUR2 = YELLOW) or
(COLOUR2 = RED and COLOUR1 = YELLOW) then
COLOUR_MIX := ORANGE;
elsif (COLOUR1 = YELLOW and COLOUR?2 = BLUE) or
(COLOUR2 = YELLOW and COLOUR1 = BLUE) then
COLOUR_MIX := GREEN;
elsif (COLOUR1 = RED and COLOUR2 = BLUE) or
(COLOUR2 = RED and COLOUR1 = BLUE) then
COLOUR_MIX := PURPLE;
else — same colours
COLOUR_MIX := COLOURT1;
end if;

PUT("The colour mixture will be “);
PUT(COLOUR_MIX); NEW_LINE;
end loop;
end MIX_COLOURS;
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The two input colours are of the subtype PRIMARY_COLOUR, thus automati-
cally checking that no values other than the permitted ones, RED, YELLOW and
BLUE, are input. We can use the same input/output package, COLOUR_INOUT,
for reading and writing all the colours, both primary colours and mixtures,
because they all belong to the same type, COLOUR.

The program is designed so that it repeatedly reads in the primary colours
and displays the name of the mixture, until the user wants to stop. The termina-
tion variant with END_OF_FILE and an exit statement is used in the program,
as described in Section 4.8. Below is shown the output from the program:

Welcome to the colour mixing program!

The primary colours are RED, YELLOW and BLUE
The colour mixes are ORANGE, GREEN and PURPLE
Terminate the run with CTRL-D.

Enter two of the primary colours
yellow blue
The colour mix will be GREEN

Enter two of the primary colours
blue red
The colour mix will be PURPLE

Enter two of the primary colours
yellow yellow
The colour mix will be YELLOW

Enter two of the primary colours
Now the user types CTRL-D at the terminal

5.8 Array types

The scalar types we have declared so far have been simple types where each
object of the type assumes only one single value. Now we shall study array
types. In an array type, an object consists of a numbered collection of similar
components. It can also be said that an object of an array type is a kind of table
in which each element has a particular number associated with it.

5.8.1 Constrained array types

We shall start by looking at constrained array types. When a constrained array
type is declared, both the numbering of the components and the types of the
individual components must be specified. Let us look at an example:

type SERIES_OF_MEASUREMENTS is array (1 .. 10) of FLOAT,
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The idea is that the type SERIES_OF_MEASUREMENTS should represent a
series of 10 measurements of some sort, in which each single measurement is
represented by a real number. The reserved word array states that the declara-
tion involves an array type. After this word, the numbering of the components
is specified. In this example, they will be numbered using the integers 1-10,
inclusive. Finally, the type of the individual components is given, here FLOAT
because each measurement consists of a real number. We can declare variables
of this new type:

SERIES_A, SERIES_B : SERIES_OF_MEASUREMENTS;

Figure 5.1 illustrates the variable SERIES_A. The variable can be likened to 10
‘compartments’, each holding a value of the type FLOAT. The first compartment
is numbered 1, the second is 2 and so on. The contents of the compartments are
not yet defined: the value of a variable is normally undefined after declaration
unless deliberately initialized. (It is possible to initialize array variables at the
same time as they are declared in exactly the same way as simple variables. We
will return to this soon.)

To enable access to a particular component of an array, indexing is used;
we have already seen this in operation in connection with the type STRING. For
example, to give the second component of the variable SERIES_A the value 1.5,
we can write:

SERIES_A(2) := 1.5;

* Then we get the SERIES_A shown in Figure 5.2. A component that is selected

by indexing can be used in the same way as a normal scalar variable, as in the
expression:

SERIES_B(1) := 2.0 » SERIES_A(7);

When the type SERIES_OF_MEASUREMENTS was declared, the interval;
(1..10)

was specified as the way in which the individual components should be num-

bered. What this really means is that the component numbers should have type
INTEGER and lie in the interval 1-10. When an individual component is

? ? ? ? ?

1 2 3 9 10

Figure 5.1
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? 1.5 ? ? ?

1 2 3 9 10

Figure 5.2

selected by indexing, the index expression in the brackets can be a normal
expression. It does not need to be a constant value as in the example above.
However, the expression must have the same type as the numbers of the
components of the array and its value must lie in the specified interval. Thus for
the variables SERIES_A and SERIES_B, index expressions must have the type
INTEGER and be in the interval 1-10.

We shall look at a simple example of a program that uses an array.
The program will read from the terminal 10 real numbers that make up a series
of measurements. Then it will calculate the mean value of the measurements
and display it. Finally, the program will write out all the measurements that
are larger than the calculated mean. We shall use the type SERIES_OF_
MEASUREMENTS, but in the declaration we have used a constant
SERIES_LENGTH instead of writing the literal 10. This constant is also used
in the program itself, so the program can be changed easily if the size of the
series should change. It is a good rule to use constants in this way. The program
is:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure INVESTIGATE_MEASUREMENTS is
SERIES_LENGTH : constant := 10;
type SERIES_OF_MEASUREMENTS is array
(1 .. SERIES_LENGTH) of FLOAT;

SERIES : SERIES_OF_MEASUREMENTS;
SUM : FLOAT := 0.0;
MEAN : FLOAT,

begin
PUT_LINE("Enter the measurements");
for | in 1 .. SERIES_LENGTH loop
GET(SERIES()));
SUM := SUM + SERIES(l);
end loop;

MEAN := SUM / FLOAT(SERIES_LENGTH),
PUT("The mean is "); PUT(MEAN); NEW_LINE;

PUT_LINE("Measurements greater than the mean:
for lin 1 .. SERIES_LENGTH loop

~—
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if SERIES(l) > MEAN then
PUT("Measurement no. ");
PUT(l, WIDTH => 2);
PUT(" is ");
PUT(SERIES(])); NEW_LINE;

end if;

end loop;
end INVESTIGATE_MEASUREMENTS;

It is very common to use loop statements with for when arrays are
involved. In the first loop statement we make the loop parameter run from 1 to
10, that is, through all the components of the array SERIES. Each time, one
measurement is read and stored in one of the components of the array SERIES.
The statement:

GET(SERIES(I));

causes one measurement to be stored in the component numbered |. Thus, the
first time round a value is read to component 1, the second time to component
2, and so on.

While measurements are being read in, the program also calculates the
sum of all the components. The mean is obtained by dividing this sum by the
length of the series. The constant SERIES_LENGTH has type universal_integer
and must therefore be converted to type FLOAT in the calculation.

The second loop statement runs, again, through all the components in the
array SERIES. Each component now holds the result of one measurement. If a
measurement is larger than the mean, the number of the measurement and the
measurement itself are displayed at the terminal. Figure 5.3 shows the output for
one run of this program. ‘

There is much freedom in specifying how the individual components
should be indexed when an array type is declared. They do not have to be num-
bered with integers starting from 1, as we did when we declared the type

Enter the measurements
43653.8395.25.0394.46.155
The mean is 4.86000000E+00
Measurements greater than the mean:
Measurement no. 2 is 6.5000000E+00
Measurement no. 5 is 5.2000000E+00
Measurement no. 6 is 5.0000000E+00
Measurement no. 9 is 6.1000000E+00
Measurement no. 10 is 5.50000000E+00

Figure 5.3



Array types

SERIES_OF_MEASUREMENTS. For example, we can choose to start the
numbering with —100:

type LIST is array (—100 .. 100) of INTEGER,;

Here we have declared a list type in which each component is a whole number
of type INTEGER. The list is indexed with integers —100 to 100, so that the first
component is numbered —100, the second —99, and so on.

In fact, values of any discrete type (integer type or enumeration type) can
be used for indexing. Here are a few examples where enumeration types are
used:

type WORKING_HOURS is array (MONDAY .. FRIDAY) of FLOAT,
type COLOUR_NUMBER is array (RED .. PURPLE) of INTEGER,;

type NO_OF_DAYS is array (JANUARY .. DECEMBER) of
INTEGER,;

We have assumed that the types DAY_OF_THE_WEEK, COLOUR and
MONTH_TYPE have been declared as earlier in the chapter. If we declare the
variables:

MY_WORKING_HOURS : WORKING_HOURS;
NO_OF_DAYS_1 : NO_OF_DAYS;

then the first components of the variable MY_WORKING_HOURS has the index
‘number’ MONDAY, and the first component in the variable NO_OF_DAYS_1
has the index ‘number’ JANUARY. To illustrate this, we can represent the
variable MY_WORKING_HOURS as in Figure 5.4.

In the program, if a particular component is to be chosen by using index-
ing, then the enumeration values are used as ‘numbers’:

MY_WORKING_HOURS(WEDNESDAY) := 8.5;
GET(MY_WORKING_HOURS(FRIDAY));
NO_OF_DAYS_1(MARCH) := 31;

if NO_OF_DAYS_1(FEBRUARY) = 29 then
PUT("Leap year");

end if;
| 2 | 2 | ? 2 ?
MONDAY TUESDAY  WEDNESDAY  THURSDAY FRIDAY

Figure 54
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Indexing in arrays
A(N)

where N is an expression of the same type as the index
type of A.

N’s value must lie within the index constraints of A.

The type of the index expressions and the constraints on their values
depend on the index specification in the declaration. To make the type of the
index obvious, it is recommended that the following alternative form of array
declaration is used:

type SERIES_OF_MEASUREMENTS is array
(INTEGER range 1 ..10) of FLOAT:

type WORKING_HOURS is array
(DAY_OF_THE_WEEK range MONDAY .. FRIDAY)
of FLOAT;

type LETTER_COUNT is array (CHARACTER range 'a' .. '2)
of INTEGER,;

type COLOUR_NUMBER is array (COLOUR range RED .. PURPLE)
of INTEGER,;

In this alternative, the type of the index is stated in the brackets as well as the
interval to be used. In the third example we have used CHARACTER as index
type, CHARACTER being an enumeration type which can therefore also be
used. The first element in an object of type LETTER_COUNTS is ‘numbered’
‘a’ and the last element is ‘numbered’ ‘z’.

The range expression in the brackets may be left out, meaning that all the
values of the given type should be used as index values. The declaration of
COLOUR_NUMBER and NO_OF_DAYS can thus be written as follows:

type COLOUR_NUMBER is array (COLOUR) of INTEGER,;
type NO_OF_DAYS is array (MONTH_TYPE) of INTEGER;

It is often appropriate to introduce a new type or subtype for the index
using a special declaration. This often makes the program clearer and, in addi-
tion, it is then possible to declare variables of the index type. These variables
can then be used for indexing purposes. For example:

type LINE_NUMBER is range 1 .. 72;
type LINE_TABLE is array (LINE_NUMBER) of INTEGER,;
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subtype LC_LETTER is CHARACTER range 'a' .. 'z';
type LC_LETTER_COUNT is array (LC_LETTER) of INTEGER,;

Ordinary expressions may be used for stating the index constraints in a
declaration of an array type: it is not necessary to use constant values as in the
examples so far. An expression that specifies a constraint on an index may thus
contain variables whose values are unknown until the program is run. The size
of the array, therefore, does not need to be known when the program is
compiled; this applies irrespective of the form chosen for stating the constraints:

type TABLE is array (N .. 2 ~ N) of FLOAT,

type VECTOR is array (INTEGER range 1 .. N) of FLOAT;
subtype LIST_INDEX is INTEGER range 100 .. 100 + N;
type LIST is array (LIST_INDEX) of CHARACTER,;

N is assumed to be an integer variable. If the first index expression takes a value
which is greater than the second, the declaration is of an array with no compo-
nents. If such an object is declared, it is called an empty array.

Declaring constrained array types

type T is array (index_definition)
of component_type;

where T is the name of the constrained array type
and component_type is any (constrained) type.

® Index_definition can have any of the following
forms:

(first_index .. last_index)
(index_type range first_index .. last_index)
(index_type)

® First_index and last_index are expressions (not

necessarily constants) of an integer type or an enu-
meration type.

e Index_type should be an integer type or an enu-
meration type, or a subtype of such a type.

5.8.2 Array aggregates

It has been shown that values can be assigned to the individual components of
an array by indexing. If values are to be given to several components in one

187
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array, there is a more convenient method than assigning values component by
component, and that is by making use of array aggregates. Then the values of
all components are given at once. A few examples will explain what this means.
The following statement means that the first, second and third components of
array SERIES_A (declared earlier) are assigned the value 1.0, the fourth is
assigned the value 0.5 and the rest of the elements in the array (that is, compo-
nents 5-10) are assigned the value 0.0:

SERIES_A := (1.0, 1.0, 1.0, 0.5, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0);

When there is a large array where several components are to be given the same
value the reserved word others can be used. The statement above can be written:

SERIES_A := (1.0, 1.0, 1.0, 0.5, others => 0.0);
It is very common to set all the components of an array to zero. Then we write:
SERIES_B := (others => 0.0);

Using aggregates, array variables can be initialized when they are declared. The
variable DAYS_IN_MONTH can, for example, be declared in the following way:

DAYS_IN_MONTH : NO_OF_DAYS := (31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31);

There is an alternative form of aggregate that has some similarities with the
case statement. One example is:

SERIES_A := SERIES_OF_MEASUREMENTS'(1 .. 3 => 1.0,
4 => 0.5,
others => 0.0);

Before the apostrophe the type of the aggregate is given. In some cases when
the reserved word others is used it is difficult for the compiler to decide the
length of the aggregate. In those cases a qualified expression including the type
name must be given, as in this example. Another example of the alternative
form of an aggregate is:

DAYS_IN_MONTH : NO_OF_DAYS :=
NO_OF_DAYS'(APRIL | JUNE | SEPTEMBER | NOVEMBER => 30,
FEBRUARY => 28, others => 31);

In an aggregate there must be exactly one value for each component. This
is most easily arranged using an others alternative. If others is used it must
come last.
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Array aggregates

o A list where the values of all the components of an
array are stated at the same time.

e Can be used, for example, in assignments and
comparisons.
e Alternative forms:

(value_1, value_2, ... , value_N)

(index_i => value_i, index_j => value_j, ...")
(index_k | index_m => value, ... )

(index_a .. index_b => value, ... )

( ... others => value)

Value can be a general expression.

In the following example program, all the components of an array are set
to zero when the array is declared. The program’s task is to read a text from the
terminal and count how many times each of the lower-case letters ‘a’ to ‘z’
occurs in the text. To keep count of the different letters, an array COUNT is used
whose components have the standardized subtype NATURAL, that is, they are
integers 2 0. In the array COUNT there is a component for each of the lower-
case letters ‘a’ to ‘z’, and so the components of the array are ‘numbered’ with the
lower-case letters. COUNT has type COUNT_TABLE in the declaration of which
the subtype LC_LETTER has been used as index type. LC_LETTER is a subtype
of CHARACTER in which the only permitted values are the letters ‘a’ to ‘z’.

In the program, one character at a time is read from the terminal to the
variable CHAR. This continues until the user says that the text is finished by
typing CTRL-D. If the character read is one of the lower-case letters, the corre-
sponding component in the array COUNT is increased by one. The program ends
by printing the contents of the array COUNT.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_|O, BASIC_NUM_IO;
procedure LC_LETTER_FREQUENCY is
subtype LC_LETTER is CHARACTER range 'a’ .. '2';
type COUNT_TABLE is array (LC_LETTER) of NATURAL;

COUNT : COUNT_TABLE := (others => 0);
CHAR : CHARACTER;

begin
PUT_LINE("Enter the text; terminate with CTRL-D");
while not END_OF_FILE loop
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GET(CHAR);
if CHAR in 'a' .. 'Z' then
COUNT(CHAR) := COUNT(CHAR) + 1;
end if;
end loop;

-- Write how many times each letter has occurred

NEW_LINE;

PUT_LINE("Letter Frequency");

NEW_LINE;

forTin'a' .. '2' loop
SET_COL(4); PUT(T); PUT(COUNT(T), WIDTH => 11);
NEW_LINE;

end loop;

end LC_LETTER_FREQUENCY;

The statement:
COUNT(CHAR) := COUNT(CHAR) + 1;

means that if the variable CHAR contains, for example, the letter ‘g’, the
component with index ‘number’ ‘g’ is increased by one. Figure 5.5 illustrates
the output from a run of the program.

5.8.3 Unconstrained array types

The array types we have studied so far have all been constrained array types.
They are so called because the index constraints (and hence the number of
components) are specified in the type declaration. If we declare objects of such
a constrained array type, they will all have the same index constraints and
number of components. In certain situations it is undesirable to specify the
constraints on the index numbers. If, for instance, a part of a program is to be
written that will sort the elements of a list into order of magnitude, or one that
will carry out mathematical operations on vectors, then it is desirable that it
should work for all lists or vectors, irrespective of the number of elements in the
list or the number of components in the vectors. To cope with such a situation
Ada offers the possibility of declaring unconstrained array types. When an
unconstrained array type is declared, the index type is specified but there is no
need to state limits for the index. Instead, the symbol < > is used:

type VECTOR is array (INTEGER range < >) of FLOAT;

type INDEX_TYPE is range 1 .. 100;

type NUMBER_LIST is array (INDEX_TYPE range < >) of INTEGER,;
type CHAR_COUNT is array (CHARACTER range < >) of INTEGER;



Array types 191

Enter the text; terminate with CTRL-D
ada is a registered trademark of the us government
ada joint program office

Letter Frequency

N X ST <EC~®NW-"0TO33 —X—=TQ -0000CND
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Figure 5.5

When an object of an unconstrained array type is declared, then the index
constraints must be stated:

VECTOR _1 : VECTOR(-10 .. 10);

VECTOR_2 : VECTOR(1 .. N); -- N is a variable
MY_LIST : NUMBER_LIST(l .. 2 « I) -- expressions OK
YOUR_LIST : NUMBER_LIST(90 .. 100);

UC_LETTER_COUNT : CHAR_COUNT('A" .. 'Z;
DIGIT_COUNT : CHAR_COUNT('0' .. '9');
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> <

In these examples, the variables VECTOR_1 and VECTOR_2 have the same
type but different index constraints.

In Ada 95 the index constraints may be left out if the object is initialized. In that
case the index constraints are fixed by the initial value.

It is also possible to declare subtypes of an unconstrained array type.
Then the index constraints are stated in the subtype declaration:

subtype LITTLE_VECTOR is VECTOR(1 .. 3);
POINT : LITTLE_VECTOR,;

Unconstrained array types

type T is array (index_type range < >)
of component_type;
where index_type is an integer type or an enumeration
type.

The index constraints must be stated when an object
of type T, or a subtype of T, is declared.

With unconstrained array types, as with constrained array types, it is
possible to give the value of an entire array at once, by assignment or at initial-
ization, using aggregates:

VECTOR_1 = (0.0, 0.0, 0.0, others => 1.0);
VECTOR_2 := (others => 0.0);

In fact, we have already used an unconstrained array type on several occasions
- the standard type STRING that is defined in the package STANDARD:

type STRING is array (POSITIVE range < >) of CHARACTER;
The declarations of variables of type STRING that we have used, for example:
PRODUCT_CODE : STRING(1 .. 6);

are thus nothing more than declarations of variables of an unconstrained array
type. For the type STRING there is, as we have seen, a special short way of
writing an aggregate, namely by enclosing the values of the components in
quotation marks:

PRODUCT_CODE := "xWy98k";
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5.8.4 Assignment and comparison

When assigning values to an array, instead of an aggregate on the right-hand
side, it is possible to have another array of the same type and with the same
number of components as that on the left-hand side. (Two arrays that belong to
the same constrained array type always fulfil these demands.) We can, for exam-
ple, make the assignments:

SERIES_A := SERIES_B; -- constrained array types, always OK
VECTOR_1 = VECTOR_2; -- OK if same number of components

Array assignments
Al = A2;
where A1 and A2 have the same type and an equal

number of components.

It is not necessary for the components to have the
same numbering.

It is also possible to compare two entire arrays if they have the same type.
(They may even have different numbers of components if they belong to the
same unconstrained array type.)

if SERIES_A = SERIES_B then
while SERIES_A /= SERIES_B then

Aggregates can also be used in comparisons:
if SERIES_A = SERIES_OF_MEASUREMENTS'(others => 0.0) then

For making comparisons, the operators = and /= are defined for all array types.
Two arrays are equal if they have the same number of components and all their
corresponding components are equal. Otherwise, they are unequal. The bounds
of the array do not have to be the same. If, for example, A has an index range
1 ..5 and B an index range 0 .. 4, then A(1) and B(0) are corresponding compo-
nents, as well as A(2) and B(1), etc. For array types where the individual
components are of a discrete type (that is, integer type or enumeration type) the
comparison operators <, >, <= and >= are also defined. It is thus possible to
write:

if MY_LIST > YOUR_LIST then
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In such a case the comparison occurs in the same way as it does for alphabeti-
cal order: if the first element in MY_LIST is greater than the first element of
YOUR_LIST (element number 90) then MY_LIST is considered to be bigger and
the Boolean expression above is true. If, however, the first element of MY_LIST
is less than the first element of YOUR_LIST, then YOUR_LIST is the bigger and
the expression is false. If the two first elements are equal, then the comparison
continues to the two second elements. If the arrays have the same number of
elements and all corresponding elements turn out to be equal, then the two
arrays are equal and the Boolean expression above is false. If the arrays have
different numbers of components and all the elements in the shorter array are the
same as the corresponding elements in the longer array, then the shorter one is
determined to be the lesser of the two.

Comparing arrays

® The operators = and /= exist for all arrays which
have the same type (even if the numbers of com-
ponents are not the same).

e The operators <, <=, > and >= also exist if the com-
ponents are of an integer type or an enumeration
type. Comparison is made on the same principles
as sorting into alphabetical order.

In assignments and comparisons, slices can be used, in the same way as
they were earlier for the type STRING.

VECTOR_1 := VECTOR_2(N — 20..N); -- N is a variable
VECTOR_1 (0 .. 5) :== VECTOR_2(1 .. 6);
if VECTOR_1(-10 .. N — 11) = VECTOR_2 then

Slices of arrays
A(N1 .. N2)
where A is an array type. N1 and N2 are expressions
whose type is the same as the index type for A.
e If N2 < N1, the result is an empty slice.

o Otherwise N1 and N2 must lie within the index
constraints for A.

® The result has the same type as A.
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5.8.5 Attributes

We have seen that when an array is declared there are many possible ways of
indexing it. The index constraints do not even need to be known at compilation
time, but they can be determined by expressions that are only evaluated when
the program is run. It is sometimes impossible to use constant values in a pro-
gram to refer to different values of an index, for example, to state the first and
last index numbers for an array. Then some of the attributes that are defined for
array types can be used. The most useful are FIRST, LAST, RANGE and
LENGTH.

FIRST and LAST are used to find the first and last index numbers in an
array. VECTOR_1'FIRST, for example, gives the first index value for the array
VECTOR_1. FIRST and LAST can be used, for instance, to make a loop run
through all the index values for an array:

for | in VECTOR_1'FIRST .. VECTOR_1'LAST loop
end loop;

It is more elegant, maybe, to make use of the RANGE attribute instead, giving
the index interval for the array. Using RANGE we can rewrite the above loop
statement:

for | in VECTOR_1'RANGE loop
end loop;
Here the loop parameter will run through all the index values for the array

VECTOR_1.
The attribute LENGTH is used to find the number of components in an

array:

PUT("Number of components in the vector: ");
PUT(VECTOR_1'LENGTH),

In front of the apostrophe can appear either a name of an array object (variable
or constant) or a type name, but not the name of an unconstrained array type.
Here are a few further examples:

NO_OF_DAYS'LAST -- gives the value DECEMBER
NO_OF_DAYS_1'FIRST  -- gives the value JANUARY
NO_OF_DAYS_1'LENGTH -- gives the value 12
NO_OF_DAYS'RANGE -- gives JANUARY .. DECEMBER
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Attributes for array types

T'FIRST - gives first index value for array type T
T'LAST - gives last index value for array type T

T'LENGTH - gives number of components in array
type T

T'RANGE - gives the index interval for array type T

where T is the name of a constrained array type.
Instead of a type name, the name of an object of an
array type can be used:

A'FIRST  — gives first index value for array A
A'LAST  — gives last index value for array A
A'LENGTH — gives number of components in array A
A'BANGE - gives the index interval for array A

It is a good habit to try to use these attributes instead of stating index
limits as constant values in programs, for example, in loop statements.
Programs then become much more general and can more easily be changed if
the constraints on an array are changed.

5.8.6 Catenating arrays

Just as for text strings, the operator & can be used for catenating arrays. If the
type VECTOR has been declared, as earlier, to be:

type VECTOR is array (INTEGER range < >) of FLOAT:;
and we have the variables:

V2 : VECTOR(1 .. 2);

V3 : VECTOR(101 .. 103);

V5 : VECTOR(O .. 4);
then we can join V2 and V3 together:

V5 :=V2 & V3;

It is also possible to join a component onto an array as in the following examples:

V3 :=27.0 & V2;
V3:=V2 & 8.0;
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5.9 Searching and sorting

To be able to search for a piece of information in tables or lists is a very
common requirement of a computer program. Arrays are naturally used in such
programs. As an example of searching we shall study a program that produces
the selling price of an article from a catalogue. As input, the user types in the
article number at the terminal when the program is run. Assume that there are
only seven different articles with the numbers and selling prices shown in
Figure 5.6. The program should work like this: if the user types, for example,
article number 123 at the terminal, then the program should write out the price
£9.15. If the user gives an article number that is not in the table, the program
should print out the message "Price details missing". We use two constant arrays
in the program, ART_NUMBER_TABLE and ART_PRICE_TABLE, both with
seven components. In ART_NUMBER_TABLE the seven article numbers are
stored, one number to each component. The first component, ART_
NUMBER_TABLE(1), thus holds the number 56, ART_NUMBER_TABLE(2)
holds 81, and so on (see Figure 5.7).

If we want to make it easy we can let the components of array ART_
NUMBER_TABLE have type INTEGER. If, however, we want to write a program
that more closely represents reality, we should declare an integer type of our
own, ARTICLE_NUMBER, and let the components have this type. We can
assume that the article numbers lie between 1 and 999.

In the array ART_PRICE_TABLE are stored, in the same way, 3.50 in the
first component, ART_PRICE_TABLE(1), 1.75 in the second, ART_PRICE_
TABLE(2), and so on. We shall declare a floating point type ARTICLE_PRICE
and let the components of ART_PRICE_TABLE have this type, assuming that no
prices are higher than £99.99.

Both arrays are initialized when they are declared. Note that the arrays
are declared as constants. A constant has been introduced into the program,
called TAB_SIZE, with the value 7, which is made use of both in the declarations
of the array types and in the program itself. It is a good idea to use a constant in
this way because the size of the tables can then easily be changed.

Article
number Price
56 3.50
81 1.75
123 9.15
379 20.00
505 0.50
811 31.45
944 5.95

Figure 5.6
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l56|8l|l23J379|505|8HI9447
1 2 3 4 5 6 7

Figure 5.7

There are several methods available for searching in arrays, and these
methods have varying degrees of efficiency. In this program the simplest form
of searching, linear searching, is employed. This involves going through the
array ART_NUMBER_TABLE from the beginning until the component contain-
ing the required article number is found, or until the whole array has been
searched unsuccessfully. To indicate whether the article number has been found,
a variable FOUND of type BOOLEAN is used. This is given the initial value
FALSE. Another variable |, initialized to 1, is used to run through all possible
values of the index of the array ART_NUMBER_TABLE. The first version of the
program looks like this:

with TEXT_IO;
use TEXT_IO;
procedure LOOK_UP_PRICE is
type ARTICLE_NUMBER s range 1 .. 999;
type ARTICLE_PRICE s digits 4 range 0.00 .. 99.99;

package ART_NO_INOUT is new INTEGER;IO(ARTICLE_NUMBER);
package ART_PRICE_INOUT is new FLOAT_IO(ARTICLE_PRICE);
use ART_NO_INOUT, ART_PRICE_INOUT;

TAB_SIZE : constant = 7;

type ART_NO_TAB_TYPE is array(1 .. TAB_SIZE)
ARTICLE_NUMBER,;

type ART_PRICE_TAB_TYPE is array(1 .. TAB_SIZE)
of ARTICLE_PRICE;

ART_NUMBER_TABLE : constant ART_NO_TAB_TYPE :=
(56, 81, 123, 379, 505, 811, 944);

ART_PRICE_TABLE :  constant ART_PRICE_TAB_TYPE :=
(3.50, 1.75, 9.15, 20.00,
0.50, 31.45, 5.95);

| : INTEGER := 1,

FOUND : BOOLEAN := FALSE;

WANTED_ART_NO : ARTICLE_NUMBER,;

begin
PUT_LINE("Enter the article number");
GET(WANTED_ART_NO);
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while | < TAB_SIZE and not FOUND loop
if ART_NUMBER_TABLE(l) = WANTED_ART_NO then

FOUND := TRUE;
else
l=14+1;
end if;
end loop;
if FOUND then

PUT("Its price is ");
PUT(ART_PRICE_TABLE(l), EXP => 0, FORE => 1, AFT => 2);
else
PUT("Price details missing");
end if;
end LOOK_UP_PRICE;

First we shall comment on the declarations of the constant arrays ART_
NUMBER_TABLE and ART_PRICE_TABLE. These have been given the types
ART_NO_TAB_TYPE and ART_PRICE_TAB_TYPE. When an array is to be
declared, it sometimes seems clumsy to have to declare its type explicitly before
the array itself can be declared, especially if the array type is not used elsewhere
in the program. A shorter way is to declare the array’s type directly in the object
declaration instead. In our program, the declarations of ART_NUMBER_TABLE
and ART_PRICE_TABLE could look like this:

ART_NUMBER_TABLE : constant array(1 .. TAB_SIZE)
of ARTICLE_NUMBER
= (56, 81, 123, 379, 505, 811, 944);
ART_PRICE_TABLE : constant array(1 .. TAB_SIZE)
of ARTICLE_PRICE
= (3.50, 1.75, 9.15, 20.00, 0.50, 31.45, 5.95);

and the declarations of the types ART_NO_TAB_TYPE and ART_PRICE_
TAB_TYPE could be omitted.

We have created our own input/output packages in the program for the
types ARTICLE_NUMBER and ARTICLE_PRICE. The search itself takes place
in the loop statement. Each time through, one component of the array
ART_NUMBER_TABLE is looked at, and if it is the same as the required article
number the variable FOUND is set to TRUE. Otherwise, | is increased by 1 so
that the next component will be examined the next time through. This is
repeated until | has become greater than the size of the table, or until the required
article number is found.

When the loop ends, if the required article number has been found in
ART_NUMBER_TABLE the variable FOUND has the value TRUE and the
variable | contains the number of the relevant component. The corresponding
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component in the array ART_PRICE_TABLE contains the price of the required
article and this is printed in the if statement’s then part. If, however, FOUND has
the value FALSE, the message “Price details missing” is printed.

If we make the Boolean expressions after while a little more compli-
cated we can manage without the variable FOUND and we can simplify
what is written in the loop statement. The last part of the program could be
written:

while | <= TAB_SIZE
and then ART_NUMBER_TABLE(l) /= WANTED_ART_NO lcop
l=1+1;
end loop;

if | <= TAB_SIZE then

PUT("The price is ");

PUT(ART_PRICE_TABLE(l), EXP => 0, FORE => 1, AFT => 2);
else

PUT("Price details missing");
end if;

The condition for the search to continue another time is that | is not too large
and that the component that | points to does not contain the required article
number. That is, the loop statement is terminated if | is greater than TAB_SIZE
or if the required article number has been found. Note that the and then opera-
tor must be used here instead of and. Otherwise there would be an error on the
last time through the loop if the required article number is not found in the array,
because the program would attempt to evaluate ART_NUMBER_TABLE(8),
which does not exist. (Compare this with the argument presented in
Section 3.4.2.)

The variable | can be used in the if statement to determine whether
the article number sought has been found. If | has a value that is less than
or equal to TAB_SIZE then the loop statement must have terminated because
the Boolean expression after and then was false, that is, because the
article number has been found in the table, and | points to the component
holding it.

If we look at the table of article numbers we see that it is organized in
numerical order. This can be exploited to make the program more efficient. If
we look for an article number that is not in the table, for example, 250, we can
stop looking when we reach a number greater than it, 379 in this case. We then
know that all the remaining entries in the table are greater than 250 and hence
250 is not in the table. We can change the program thus:

while | <= TAB_SIZE
and then ART_NUMBER_TABLE(l) < WANTED_ART_NO loop
l=1+1;
end loop;
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if | <= TAB_size
and then ART_NUMBER_TABLE(l) = WANTED_ART_NO then
PUT("The price is ");
PUT(ART_PRICE_TABLE(l), EXP => 0, FORE => 1, AFT => 2);
else
PUT("Price details missing");
end if;

In the loop statement we have changed only the second Boolean expression, so
that the search is only continued if the article number we are looking at is less
than the one required. Thus the loop terminates as soon as we find a component
that is greater than or equal to the one we are looking for. A test is made in the
if statement to see if the required article number has been found in the table. If
it has, | must be less than or equal to TAB_SIZE and, in addition, the loop state-
ment must have stopped because the article number pointed to is the same as the
one required. Note that we must have the and then operator here as well, so that
there is no error if | has the value 8.

Because ART_NUMBER_TABLE was sorted into order, we were able
to make the search more efficient. For work with sorted arrays, there are, in
fact, much more efficient methods of searching than the linear method used in
this example. (No one looking for a name in a telephone directory starts
from the beginning and works through until he or she finds the name required!)
So it is worthwhile having arrays sorted if they have to be searched.
Therefore, in addition to searching arrays, it is important to be able to sort
them if so required. There are many common algorithms to describe ways of
sorting. We have already met one in Section 2.2 when we put cassettes into a
cassette holder. We shall now study another algorithm for sorting arrays of
integers.

We shall write a program which first reads in a maximum of 100 integers
and puts them into an array. Input ends by the user typing CTRL-D at the
terminal. Then the program sorts the array into numerical order so that the
smallest integer comes first and the largest comes last. Finally, the program
prints out the numbers in the array. To do the sort we shall use an algorithm
based on the following principle: the smallest number is found first and swapped
into the array’s first ‘compartment’, then the next smallest element is found and
swapped into the second ‘compartment’, and so on. The sort algorithm can be
described as follows:

(1) SetKtol.
(2) While X is less than the number of elements in the array:
(2.1) Search for the smallest element in that part of the array that starts at
the Kth position and ends with the last element in the array.
(2.2) Swap the smallest element (from step (2.1)) and the element in
position K.
(2.3) Increase K by 1.
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Step (2.1) can be expanded to:

(2.1.1) SetMtoK.
(2.1.2) Let/run from K + 1 to the number of the last element in the array:
(2.1.2.1) If the Ith element is less than the Mth element, then set M
tol.
(2.1.3) The smallest element is now the Mth element.

Step (2.2) can be expanded to:

(2.2.1) Move the Kth element to a temporary store.
(2.2.2) Move the Mth element to position K.
(2.2.3) Move the element in the temporary store to position M.

Using this we can now put the program together and also include reading in the
numbers to the array and printing out the array.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure SORT is
MAX_NO_OF_ELTS : constant := 100;
subtype INDEX is INTEGER range
1 .. MAX_NO_OF_ELTS;
type INTEGER_ARRAY is array (INDEX) of INTEGER,;

A : INTEGER_ARRAY;
NO_OF_ELTS : NATURAL :=0;
M : INDEX;
TEMP : INTEGER,;
begin

-- Read numbers into the array
PUT_LINE("Enter at most 100 whole numbers");
PUT_LINE("Terminate by typing CTRL-D");

while not END_OF_FILE and
NO_OF_ELTS < MAX_NO_OF_ELTS loop
NO_OF_ELTS := NO_OF_ELTS + 1;
GET(A(NO_OF_ELTS));
end loop;

-- Sort array

for Kin 1 .. NO_OF_ELTS loop
-- Find the smallest element between
-- the (K + 1)th and the last, inclusive
M :=K;
forlin K+ 1 .. NO_OF_ELTS loop
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if A(l) < A(M) then
M:=1
end if;
end loop;

-- Swap Kth and Mth elements
TEMP = A(K);
A(K) := A(M);
A(M) := TEMP;
end loop;

-- Write out the sorted array
NEW_LINE;
for Kin 1 .. NO_OF_ELTS loop
PUT(A(K));
end loop;
end SORT;

The output from a run of the program is as follows:

Enter at most 100 whole numbers
Terminate by typing CTRL-D
16 -8 34 0 -500

-500 -8 0 16 34

EXERCISES

5.1

5.2

Write type declarations for the following:

(a) A measurement of numbers of traffic accidents.

(b) The average hourly pay of an industrial worker.

(c) A bank’s rate of interest, expressed as a percentage.

(d) A type of bank account. (Assume that there are current account, savings account,
capital account, checking account and house account.)

{e) A table of information about the rates of interest on these different bank accounts.

(f) The countries of the European Union (EU).

(g) Atable of the average hourly wage of industrial workers in the countries of the EU.

A department store has five different departments numbered 1-5. Write a program that
reads in the takings of each department for the past week. The output from the program
should be a table that shows the percentage share of the total sales that each department
is responsible for.

What changes would have to be made to the program if the departments, instead of
being numbered, had the names women, men, children, sport and perfume?
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53

54

5.5

5.6

5.7

Write a program to read in a maximum of 1000 integers from the terminal and print them
out in the same order, but any given integer should only be printed once. If it has already
been printed it should not be printed again.

For example, if the following numbers are read from the terminal:

45 77 =22 3 45 0 21 -1 3
the program should output the following:

45 77 22 3 0 21 -1

Assume that the enumeration type DAY_OF_THE_WEEK is declared as earlier in the
chapter. Declare a table TOMORROW that can be used to find out which day comes after
a particular given day. For example, TOMORROW(TUESDAY) should have the value
WEDNESDAY, and the value of TOMORROW(SUNDAY) should be MONDAY.

The Swedish administrative counties are denoted for many purposes by the set of letter
codes: AB,C,D,E,F,G,H,I,K,L,LM,N,O,P,R, S, T, U, W, X, Y, Z, AC and BD.
Statistics for all traffic accidents that occurred in each county in a particular year have
been examined. Additional information is available on how many cars are registered in
each county. Write a program to read in the information about the accidents and the
numbers of registered cars, county by county. The program should print out which
county had the greatest number of accidents, which county had the most registered
cars and which county had the highest accident frequency in terms of accidents per
registered car.

The Roman numerals are indicated by the letters 1, V, X, L, C, D and M, standing for 1,
S, 10, 50, 100, 500 and 1000, respectively.

(a) Declare a table that can be used for translating a Roman numeral into an ordinary
number (for example, L to 50). Use an enumeration type to describe the Roman
numerals.

(b) Write a program to read in a Roman number and translate it into an integer. The
Roman number is to be read as input to the program. Terminate input by using the
character combination for END_OF_FILE. For simplicity, it can be assumed that
when a Roman number is input at least one space is left between the numerals.
The user can write, for instance, M X M V [ at the terminal. The program
should then print out: 1996.

In a Roman number, if the Roman numeral P stands immediately to the left
of another Roman numeral Q and if P denotes a smaller number than Q, then the value
of P is subtracted from the total number (for example, LIX means 59), otherwise P is
added to the total number (for example, LXI means 61).

A number can be shown to be a prime number if it is not exactly divisible by any smaller
prime number. Use this fact to write a program that computes the first S0 prime numbers
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5.9

5.10
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and puts them into a table. (When you want to determine whether a certain number k is
a prime, you can thus find out if £ is exactly divisible by one of those already saved in
the table.) The program should end when the table of 50 prime numbers has been
printed.

A travel agency at a tourist resort organizes bus tours. There is one tour on each day of
the week, and each tour has 40 places. Customers are able to reserve places on a tour no
more than one week in advance.

Write a program for the agency to look after the reservation of places. The pro-
gram should repeatedly read in the name of a day and one of the following commands:
book, cancel or new.

When the command book is given the program should see if there is a place free
for the given day. If there is, the program should ‘remember’ that one more place has
been reserved for that day. Otherwise the program should print the message No places
left.

If the command cancel is given, the program should cancel one reservation for
the given day and ‘remember’ that there is one more place free. If no places were
reserved for that day, an error message should be printed.

The command new is given when there is one week until a tour should take place.
Then, the program should note that there are 40 free places.

Write a program to read in a maximum of 100 integers and place them in an array, sorted
into ascending numerical order. The program should be designed so that one number at
a time is read in and placed in the array. Before each new number is read, the numbers
read in so far should be sorted.

Statistics of the rainfall for a certain location have been collected over the past 20
years. Write a program that reads in the information for the 20 years and presents the
results in the form of a histogram. Assume the annual rainfall lies in the interval
0-3000 mm.

(a) Present the result as a horizontal histogram in the format:

0 1 2 3 (x 1000 mmy)
rainfall

Year

1 KhAARAAIAANANAR
KhkAR kAR A AT Ak hddhdrkd

R g2 22422t s d
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(b) Present the result as a vertical histogram in the format:

Rainfall (mm)
3000
2000 "
1000 * * *
0 * * *
1 2 3 Year

S.11 Write a program that first reads in an integer kK from the terminal. Then the program
should read in a maximum of 500 integers from the terminal and place them in an array.
The numbers in the array should then be rearranged to form two groups in the array. The
left-hand group should contain all the numbers <k and the right-hand group all the
numbers > k. (The number of numbers in each group and where the boundary between
the two groups lies depends on the numbers read into the array and the value of k.)
For example, if k is 20 and the array consists of the numbers:

23 16 27 3 11 34 25 20 8
then one permissible rearrangement of the array is:

8§ 16 20 3 11 34 25 27 23
Several other arrangements would be allowed. Note that it is not necessary to sort the
array (even if it is a possible way of solving the problem).
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6.1
6.2
6.3
6.4
6.5
6.6

Functions

Procedures

Parameter association

Top-down design with subprograms
The scope of a declaration
Overload subprograms

6.7 Named parameter association

6.8 Recursive subprograms

6.9 Functions as operators

6.10 Interfaces to other languages

6.11 Arguments to the main program
Exercises

It has been shown that a program consists of two parts: a declarative part
where the data objects used in the program are described, and a statement
section where the actions that the program will perform are described. The
statement section describes the algorithm that the program will carry out.
Algorithms have been expressed using the statements available in Ada
(assignment statements, if statements, loop statements, etc.). In constructing
an algorithm, it is often useful to express certain steps on a ‘higher level’ than
is possible with Ada’s basic statements. Steps at such a higher level include,
for example, ‘calculate the logarithm of X”, ‘sort the table 7, ‘print a heading
at the terminal’ and ‘calculate the mean of the measurements’. As we have
seen, higher-level steps in an algorithm occur naturally when the technique of
top-down design is applied to a programming problem. The advantage of
using this higher level is that inessential details can be ignored while the
algorithm is made the focus of attention.
In Ada it is possible to define subprograms that are made up of several
basic Ada statements. Calls to subprograms can be used as higher-level
algorithmic steps when an algorithm is under construction.

207
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The use of subprograms is a very important technique when mastering
the complexity of program design. A program should normally be assembled
from several subprograms, each of which describes a particular calculation or
stage of the program. In a large program there might even be subprograms
written in different programming languages. Subprograms can be thought of
as building blocks that are used to construct a whole program. It is because of
the support given by subprograms that the top-down design method can be
used.

In Ada there are two kinds of subprogram: functions and procedures.
A function is used to describe the computation of a particular value (for
example, the calculation of the mean of a series of measurements) and a
procedure is used to describe an action that the program has to perform but that
does not result in a direct value (for example, printing a heading at the terminal).

Examples have already been given of the use of both functions and
procedures that have come in ready-written packages, mostly in connection
with input and output. This chapter will deal with how to design subprograms
and how to use them.

6.1 Functions

A function can be regarded as a ‘black box’ into which one or more values can
be placed. Out of the box comes a result, whose value depends on the input val-
ues. We have used functions before. In the example for calculating the
hypotenuse we used the supplied function SQRT which, as its name suggests,
calculates the square root of a number. The SQRT black box is illustrated in
Figure 6.1. When a supplied function is used, there is no need to worry about its
internal looks: it is sufficient to know how it should be used.

Now we shall look at how to write new functions. As the first simple
example we shall study a function MEAN_VALUE that calculates the mean of
two floating point numbers. From the point of view of the programmer who will
use it, the function will look like Figure 6.2.

In Ada, the function MEAN_VALUE appears as:

function MEAN_VALUE (X1, X2 : FLOAT) return FLOAT is
begin

return (X1 + X2) / 2.0;
end MEAN_VALUE;

SQRT

Vx

Figure 6.1
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MEAN_VALUE

mean value
ofxandy

This is called a function body.

Function body
function function_name (parameter_list)
return result_type is
declarative part

begin
statement_1;
statement_2;

statement_N;
end function_name;

After the function’s name, the data that has to be entered to the function
is specified by writing a list of the function’s formal parameters. Two values of
type FLOAT will be entered to the function MEAN_VALUE, so we have written
in brackets:

X1, X2 : FLOAT

We have given the function two formal parameters, called X1 and X2, both with
type FLOAT. This is very similar to the declaration of two variables. When the
function is called, X1 and X2 will contain the two values that are entered to the
function.

Formal parameters to functions

e Contain the values to be entered to the function.
o Exist only within the function.
® Are treated as constants in the function.
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After the reserved word return, the type of the result that will be returned
by the function is specified. We have stated that the value returned by the function
MEAN_VALUE will have type FLOAT.

Thus the first line of the function, usually called the function’s specification,
tells the programmer how to use it.

Function specification

o First part of the function body.

e Contains the function name, its formal parameters
and the type of its result.

The rest of the function body describes what is inside the ‘black box’, and the
user of the function does not normally need to bother with this. This part of
the function looks like the programs we have seen already: first comes a declar-
ative part and then a sequence of statements. The body of our ‘box’ is only one
statement:

return (X1 + X2) / 2.0;

This is a new sort of statement that we have not met before, a return statement,
in which an expression follows the word return. This expression should have
the same type as specified after the word return in the function specification. In
the function MEAN_VALUE, therefore, the expression must have the type
FLOAT. When the return statement is executed, the expression will be evaluated.
Then execution of the function terminates and the result of the function will be
the value of the expression. That is, when the return statement is executed, the
computations in the ‘box’ terminate and what comes out of the ‘box’ is the value
of the expression in the return statement. There can be several return statements
in a function, but it is most common to have only one and for that to be the last
statement in the function.

Return statement
return expression,

The type of the expression should be the same as the
type of the function’s result.

A function is only a description of how a particular computation works, telling
us what we can put into the ‘box” and what we will get out as a result. To invoke
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a computation, we have to put something into the ‘box’; we must call the func-
tion. In the example that follows, we have put our function MEAN_VALUE into
a complete program that reads in two numbers from the terminal, calculates
their mean and displays it at the terminal:

with TEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUM_IO;

procedure EVALUATE_MEAN is
NUMBER1, NUMBER2, MEAN : FLOAT;

function MEAN_VALUE (X1, X2 : FLOAT) return FLOAT is
begin
return (X1 + X2) / 2.0;
end MEAN_VALUE;
begin
PUT_LINE("Enter two real numbers");
GET(NUMBERT1); GET(NUMBER2);
MEAN := MEAN_VALUE(NUMBER1, NUMBER2);
PUT("The mean is:"); PUT(MEAN);
end EVALUATE_MEAN,;

Note that the function body has been placed in the program’s declaration sec-
tion. In Ada 83, subprogram bodies should be placed after any declarations of
types, subtypes, variables and constants.

In Ada 95 the various declarations can be placed in any order. For example, the
declarations of subprograms can be put before the declarations of variables if
appropriate.

Order of declaration

e In Ada 83, a simple rule of thumb:

Put subprogram bodies last in the
declarations.

Put all other declarations first (in arbitrary
order).

e In Ada 95, all the declarations can be placed in
arbitrary order.

When the program is executed, the first statement in the program’s statement
part is carried out as usual, in this case the first input statement. Suppose the user
types the values 2.0 and 2.5 at the terminal. After the program has read these

211
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MEAN_VALUE

MEAN :=MEAN_VALUE(NUMBER1,NUMBER2) ;

\ 2.25

Figure 6.3

values into the variables NUMBER1 and NUMBER2, there follows, on the third
line of the statement part, a call to the function MEAN_VALUE. What happens
is illustrated in Figure 6.3.

The expression:

MEAN_VALUE(NUMBER1, NUMBER?2)

is the actual function call. First there is the name of the function being called,
and then, in brackets, there is a list of the actual parameters to the function.
When the call is executed, the values of the actual parameters are calculated
first. (In this case, no calculation is necessary because the values are already in
the variables NUMBER1 and NUMBER2.) The values of the actual parameters
are then passed to the function. Thus, here the values 2.0 and 2.5 are entered to
the function MEAN_VALUE. Figure 6.4 illustrates the function.

The two formal parameters X1 and X2 can be thought of as ‘temporary
storage boxes’ that are created in connection with the call to MEAN_VALUE and
which only exist while the function call is in operation. When the function is
called, the values of the first and second actual parameters are stored in X1 and

MEAN_VALUE
X1
2.0 2.0
X1+X2)/2.0 —-22 5
—_
x2 ]
25 y

Figure 6.4
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X2, respectively. Thus here, X1 takes the value 2.0 and X2 takes the value 2.5.
Note that neither NUMBER1 nor NUMBER2 is affected by this: their values are
only copied into X1 and X2, respectively.

When the actual parameters have been copied, execution of the program
EVALUATE_MEAN stops temporarily while the statements in the function
MEAN_VALUE are executed. In this case the only statement, the return state-
ment, is executed. The expression:

(X1 +X2) /2.0

means that the values in X1 and X2 are added and the result is divided by 2. Thus
we get the result 2.25, the same result we would have got if we had calculated
the mean of NUMBER1 and NUMBER2 directly. The value calculated in the
return statement becomes the value which leaves the function. The function
call:

MEAN_VALUE(NUMBER1, NUMBER2)

will thus take the value 2.25.

When execution of the statements in the function MEAN_VALUE is fin-
ished, the call to the function MEAN_VALUE terminates and normal execution
of the program EVALUATE_MEAN is resumed. The value of the function call is
assigned to the variable MEAN, thus here MEAN takes the value 2.25. Note that
when the function call terminates, the ‘storage boxes’ X1 and X2 no longer exist.
They are only temporary, for the duration of the call to MEAN_VALUE.

Within a function, the formal parameters are considered to be constants
that are initialized at the time of the call. They can be used as ordinary constants
within the statement section of the function. In the function MEAN_VALUE, for
example, they are used in an expression. Just as the value of a constant may not
be changed, it is not permitted for a function to try and change the value of a
formal parameter.

A call to a function is considered to be an expression. The type of the
expression is the same as the type given after the word return in the function
specification. Thus a call to the function MEAN_VALUE is considered as an
expression of type FLOAT. This means that a function call can be used in the
same way as other expressions in a program. In the program EVALUATE_
MEAN, for example, a call to MEAN_VALUE was placed on the right-hand side
of an assignment. We could also use a function call in a bigger expression,
such as:

MEAN_VALUE(NUMBER1, NUMBER2) / NUMBERT1 ~ 100.0
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Since a function call is an expression, it can also be used as a parameter to the
output statement PUT. If we make use of this, we can manage without the variable
MEAN in our program:

begin

PUT_LINE("Enter two real numbers");

GET(NUMBERT1); GET(NUMBER?2);

PUT("The mean is:"); PUT( MEAN_VALUE(NUMBER1, NUMBER?2) );
end EVALUATE_MEAN;

In this version, the execution of the last statement is such that the function
MEAN_VALUE is called first. It returns a value of type FLOAT and the procedure
PUT is then called with this value as parameter.

The actual parameters to a function can be expressions: they do not
have to be simple variables of the kind used so far. What is essential is that an
actual parameter has the same type as the corresponding formal parameter in
the function specification. For example, the following function call would be
permissible:

MEAN_VALUE(NUMBER1 » NUMBER2, NUMBER1 + 10.0)

The first actual parameter is the expression:

NUMBER1 « NUMBER2

and the second is the expression:

NUMBER1 + 10.0

When a function call is executed, first the values of the actual parameters are
evaluated. If we assume the same values for NUMBER1 and NUMBER2 as
before, 2.0 and 2.5, respectively, then the first actual parameter has the value 5.0
and the second has the value 12.0.

A common misunderstanding regarding functions is that the values
that are entered to and returned by a function should be read from or written
to the terminal. Note that a function does not need to have anything at all to
do with terminal input and output. The values that enter the function come
from the calling program and are entered via the formal parameters (thus
the values are not read from the terminal), and the result of the function is
returned to the calling program using the return statement (it is not written at the
terminal).
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Function calls

function_name(a?, a2, ... an)

at, a2, ... an are actual parameters

e They may be expressions.

e Their types must agree with those of the corre-
sponding formal parameters.

e A function call is considered to be an expression.
The following occur:

(1) The values of a1, a2, ... an are computed.

(2) The value of a7 is copied to the first formal para-
meter, that of a2 to the second, and so on.

(3) The statements in the function are executed.

(4) The function terminates on execution of a return
statement.

(5) The value of the function call is the value in the
return statement.

(6) Execution continues after the function call.

Let us look at another example. This time we shall write a function MAX
that finds the larger of two integers. Two values of type INTEGER are entered
to the function, and the function returns one value, also of type INTEGER. Here
is the function:

function MAX (X, Y : INTEGER) return INTEGER is
begin
if X > Y then
return X;
else
return Y;
end if;
end MAX;

The function’s statement part consists of a single if statement, but we have used
two return statements. If the formal parameter X contains the bigger of the two
values, that is returned as the resulting value; otherwise the result is the other
formal parameter, Y.

The following program is an example of the use of the function MAX:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_lO, BASIC_NUM_IO;
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procedure MAX_DEMO is
A, B, C, M : INTEGER,;

function MAX (X, Y : INTEGER) return INTEGER is
begin
if X > Y then
return X;
else
return Y;
end if;
end MAX;

begin
loop
PUT_LINE("Enter three whole numbers");
exit when END_OF_FILE;
GET(A); GET(B); GET(C);
M := MAX(A, B);
M = MAX(M, C);
PUT("The biggest of them is");
PUT(M); NEW_LINE;
end loop;
end MAX_DEMO;

Note that the function MAX is called in two places in the program. It is quite
permissible to call the same function from several places in one program and
use different parameters for different calls. Note also that, when the program is
executed, the function will be repeated many times because the calls are both in
a loop statement. In the statement:

M := MAX(A, B);

the values of the variables A and B are used as actual parameters in the function
call. When the call is executed, ‘temporary stores’ X and Y will be created and
the values of A and B will be copied into them. If, say, A has the value 6 and B
the value 2, then X and Y will contain the values 6 and 2, respectively. This
means that the then part of the if statement will be carried out. The statement:

return X;
is thus carried out and this means that the value of X is given as the result of the
function. In our case, it means that the function call has the value 6 and this

value is assigned to the variable M.
In the next statement:

M := MAX(M, C);
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the values of M and C are used as actual parameters. New ‘temporary stores’ X
and Y are created: the previous ones no longer exist. If C has the value 9, then
the values 6 and 9 will be copied to X and Y. This time, the else part of the if
statement will be executed, and the function returns the value of C, 9, as its
result. This becomes the right-hand side of the assighment statement, and the
value 9 is assigned to the variable M. (Thus the value of M changes from 6 to 9.)
Now M contains the biggest of the three numbers.

We can manage without the variable M if we write a more complicated
expression as parameter to the last PUT statement:

loop
PUT_LINE("Enter three whole numbers");
exit when END_OF_FILE;
GET(A); GET(B); GET(C);
PUT("The biggest of them is");
PUT(MAX( MAX(A,B), C)); NEW_LINE;
end loop;

The statement:
PUT( MAX( MAX(A,B), C) );

means that the procedure PUT is called with the expression:
MAX( MAX(A,B), C)

as parameter. This expression consists of a call of the function MAX with the two
actual parameters MAX(A,B) and C. The first of these is in turn a call of the func-
tion MAX with the actual parameters A and B. When the statement is executed,
the expressions are evaluated from the innermost level, that is, the expressions
A and B are evaluated first (which is easy since they are simple variables). Then
the expression MAX(A,B) is evaluated (which will take the larger of the two val-
ues of A and B) and the expression C. When that is done, the expression:

MAX( MAX(A,B), C)

is evaluated, which thus gives the largest of the three values as a result. This
value is passed to the procedure PUT and will be printed.

A function can have parameters of different types, as demonstrated by the
following example which deals with the calculation of interest. Assume that £
is placed in a bank with an annual interest rate of »%. The capital that accrues
if the money remains invested for n years can be calculated from the formula
b(1 +0.01n".

A function for calculating the capital can take the following form:
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function COMPOUND_INTEREST(B, R : NAT_FLOAT; N : NATURAL)
return NAT_FLOAT is
begin
return B~ (1.0 + 0.01 » R) == N;
end COMPOUND_INTEREST;

The function has three formal parameters B, R and N. The first two are of
subtype NAT_FLOAT, which we declare thus:

subtype NAT_FLOAT is FLOAT range 0.0 .. FLOAT'LAST;

The values belonging to this subtype are thus non-negative and of type FLOAT.
By making B and R take the subtype NAT_FLOAT we are guaranteeing that they
are always greater than or equal to zero. In like manner we let the third para-
meter N be of subtype NATURAL, which guarantees that N never goes negative.
If the function is called in a program and one of the parameters happens to be
negative, then an execution error occurs.

In the function specification we see how to specify the formal parameters
when they are of different types and subtypes: the various parameters are spec-
ified, separated by semicolons. If there are several formal parameters of the
same type or subtype then they can be written in the shorter way, as in the exam-
ple above: the parameters are listed, separated by commas, but the type name
need only be written once. Thus the rules for writing formal parameters are like
the rules that apply for writing several variable declarations one after another in
a program.

Specifying formal parameters

Rules similar to variable declaration.
For example:
(X1, X2. ... Xn : typel, Y1, Y2, ... Yn : type2)

The functions we have studied so far have all had parameters and have returned
values of numeric types. Such functions are very common. However, a function
can have parameters and return results of any type. We shall look at some
functions that have parameters and results of types other than numeric. The
first example shows a function LETTER that determines whether a particular
character (of type CHARACTER) is a letter. The character for investigation is a
parameter to the function and as a result the function returns a BOOLEAN value.
The result of the function can be either FALSE or TRUE. The function can be
written:
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function LETTER (CHAR : CHARACTER) return BOOLEAN is
begin
case CHAR is
when'a'..'z2 'A' .. 'Z' =>
return TRUE;
when others =>
return FALSE;
end case;
end LETTER;

In the function specification we can see that the formal parameter CHAR has
type CHARACTER and that the result type is BOOLEAN. The statement part of
the program consists of only one case statement. If CHAR contains a lower- or
upper-case letter the statement:

return TRUE;
will be executed. Otherwise the statement:
return FALSE;

will be executed.
The function can be called as in the following example, assuming the
variable C has type CHARACTER:

GET(C);
if LETTER(C) then
PUT_LINE("letter");
else
PUT_LINE("not a letter");
end if;

In an if statement, an expression of type BOOLEAN should appear immediately
after the reserved word if, and the call of the function LETTER is just such an
expression.

We can make the function LETTER a little more elegant if we write
an expression of type BOOLEAN directly after return instead of using a case
statement:

function LETTER(CHAR : CHARACTER) return BOOLEAN is
begin

return CHAR in 'a’ .. 'z’ or CHAR in 'A' .. 'Z);
end LETTER;

The way of calling the function is not affected by this, since we have not
changed the function specification.
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Result type

A function may return results of any type.

The next example is a function that calculates the sum of the components
of a vector. A vector can be regarded as a list of numbers, such as:

(2.0, 1.5,-1.0)

In an Ada program we can represent a vector by an array. A vector with three
components can be described by the type:

type THREE_VECTOR is array (1 .. 3) of FLOAT;

We can now write a function SUM that has a parameter of type THREE_
VECTOR and which returns a result of type FLOAT:

function SUM(V : THREE_VECTOR) return FLOAT is

S : FLOAT :=0.0;
begin
forlin1 .. 3 loop
S:=S+ V(l);
end loop;
return S;
end SUM;

Within the function the formal parameter can be treated as an ordinary constant
array. For example, we can pick out the individual components of V by indexing.

There is something else new in this function. We use a variable S to cal-
culate the sum, and this variable is declared in a declarative part of the function.
A variable that is declared within a subprogram like this is usually called a local
variable because it can only be used locally, within the subprogram. A local
variable can be regarded in exactly the same way as a formal parameter, that is,
as a ‘temporary store’, which is created when the function is called and only
exists while the call is in operation. After a function has finished execution, the
local variables no longer exist. A local variable is something that exists only
within the ‘black box’ of the function. It is one of the things that a programmer
who is going to use the function need never know about.

Local variables

® Are declared within a subprogram.
e Exist only within the subprogram.
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Let us see how a call to SUM may appear. If we assume that a program
has the following variable declaration:

A : THREE_VECTOR := (2.0, 1.5, -1.0);
then our new function could be called, for example, like this:
PUT( SUM(A) );

The value 2.5 would be written out.

The function SUM as we have written it so far has one great weakness. It can
only be used for calculating the sum of the components of a three-dimensional
vector in which the components are numbered from 1 to 3. If on another occa-
sion we want to calculate the sum of the components of, say, a four-dimensional
vector, this function cannot be used. We shall now see how, with a few small
changes, the function can be made so general that it can be used for vectors of
arbitrary length and index constraints. To do this we shall use an unconstrained
array type. We declare a type VECTOR:

type VECTOR is array (INTEGER range < >) of FLOAT,;

We shall now give the function’s formal parameters this type instead of the type
THREE_VECTOR. This means that the number of components in V is not pre-
determined. The number of components can change from call to call and is
determined by the number of components in the actual parameter.

One more detail of the function must be changed. We can no longer let
the loop parameter go from 1 to 3 in the loop statement. The number of times
through the loop and the indexing now depend on the number of components in
V and the index constraints on V. The solution to this problem is to use the
attribute V'RANGE, which gives the interval between V’s first and last index.
With these amendments, the general version of the function SUM is as follows:

function SUM(V : VECTOR) return FLOAT is

S : FLOAT := 0.0;
begin
for | in V'RANGE loop
S =S+ V(l);
end loop;
return S;
end SUM;

Let us look at how to call this general function. If we have a variable decla-
ration:

A : VECTOR(1 .. 3) := (2.0, 1.5, —1.0);
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then the function can be called as before, using:
PUT( SUM(A) );

and we get 2.5 written out. On this call, the formal parameter V takes length 3
and index limits | and 3. However, if we also have the following declarations in
the same program:

X : VECTOR(O .. 3) := (1.0, 2.0, 6.5, —4.0);
Y : VECTOR(5 .. 6) := (3.5, 2.5);

we can also have the statements:

PUT( SUM(X) ); -- returns the result 5.5
PUT({ SUM(Y) ); -- returns the resuit 6.0

On the first call the formal parameter V will take the length 4 and have index
limits of O and 3. On the second call V’s length will be 2 and it will have index
limits 5 and 6.

An array aggregate or a slice is also allowed as an actual parameter. For
example, we can make the calls:

SUM( (1.4, 0.3) ) -- returns the result 1.7
SUM( X(1..2)) --returns the result 8.5

Writing subprograms that are as general as possible is a worthwhile habit: they
can be used in several contexts, and the risk of having to change them when
circumstances change is reduced. The use of unconstrained array types, as in
this example, is therefore highly recommended.

Subprograms and unconstrained array types

It is advantageous to make subprograms general by
using unconstrained array types for formal parameters
and the result.

The next example will show that a function in Ada can return a value of
a composite type as its result. We shall write a function ADD that calculates the
sum of two vectors, which is a new vector with the same number of components
as the original vectors. The first component of the new vector is the sum of the
two first components of the original vectors, the second is the sum of the second
components, and so on. For example, the sum of the two vectors:
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(1.0, 25,4.3)
(3.1,-1.0,0.0)

is the vector:
4.1,1.5,4.3)

One condition is that the two vectors to be added have the same number of
components. First we shall write a version of the function with the limitation
that it can only add two vectors of dimension 3. Both the formal parameters of
the function and the result have type THREE_VECTOR. This first version looks
like this:

function ADD(V1, V2 : THREE_VECTOR) return THREE_VECTOR is
TEMP : THREE_VECTOR,;
begin
forlin1.. 3 loop
TEMP(l) := V1(l) + V2(l);
end loop;
return TEMP;
end ADD;

In the function we have used a local array variable TEMP which also has type
THREE_VECTOR. The three components of TEMP are calculated in the loop
statement, one component per loop. The statement:

return TEMP;

means that we return the value of TEMP as result, TEMP having the type
THREE_VECTOR.
If we have the declarations:

A : THREE_VECTOR :
B : THREE_VECTOR :
C : THREE_VECTOR,;

(1.0, 2.5, 4.3);
(3.1, -1.0, 0.0);

in a program, then the following statement is allowed:
C := ADD(A,B);

The value of the right-hand side of the statement will be (4.1, 1.5, 4.3) and it
will have type THREE_VECTOR. The array variable C will thus be assigned the
value (4.1, 1.5, 4.3).

Of course, the function ADD should be formulated generally instead, so
that it can deal with vectors of arbitrary length, and only a few minor changes

223



224 Subprograms

are needed. Instead of the type THREE_VECTOR we can let the parameters and
result of the function have unconstrained array type VECTOR, as declared
earlier. The declaration of the local array variable TEMP must be changed, to
have the same number of components as the parameters V1 and V2. (We assume
that V1 and V2 have the same lengths.) We can achieve this using the attribute
V1'RANGE in the declaration of TEMP:

TEMP : VECTOR(V1'RANGE);

In the brackets is an interval with the same limits as the index limits for V1. If,
for example, V1 is indexed from 1 to 4, then TEMP will also be indexed from 1
to 4. In the loop statement we have used V1'RANGE in the same way as in the
function SUM, to let the loop parameter | run through the required index values.
With these amendments, the following general version of ADD is obtained:

function ADD(V1, V2 : VECTOR) return VECTOR is
TEMP : VECTOR(V1'RANGE);
begin
for | in VI'RANGE loop
TEMP(l) := V1(l) + V2(I);
end loop;
return TEMP;
end ADD;

If we have the following declarations in a program:
X :VECTOR(1 .. 4) :

Y : VECTOR(1 .. 4) :
Z: VECTOR(0 .. 1) :

(1.0,1.0, 1.0, 1.0);
(2.5, 35, 4.5, 5.5);
(0.5, 0.5);

then the following calls, as examples, are allowed:

ADD(X,Y) - gives (3.5, 4.5, 5.5, 6.5)
ADD(Z,Z) - gives (1.0, 1.0)
ADD( (2.7, 3.8), (1.0,2.0))  -- gives (3.7, 5.8)

To be able to add two vectors they must have the same length, but it is not
necessary for them to be indexed in the same way. For example, it should be
possible to add a vector indexed from O to 3 to another vector indexed from 1 to
4. This version of ADD cannot manage it. It demands that both vectors are
indexed in the same way. If we were to call it with vectors with different index-
ing we would get a run-time error. (This is because when V2(l) is executed in the
loop statement, the loop parameter | will sometimes lie outside the range of V2’s
index values.)
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It is possible to make further amendments to the function so that it can
cope with vectors with different index limits. (But the lengths of the vectors
must always be the same.) When the local variable TEMP is declared, it can be
initialized so that its components will contain the same values as those of V2.
(This is always possible since TEMP and V2 have the same number of com-
ponents.) In the loop statement we can then add V1’s components to TEMP’s
components. Since VI and TEMP have the same index limits we shall not
meet problems with indexing. With this final amendment the function ADD
becomes:

function ADD(V1, V2 : VECTOR) return VECTOR is
TEMP : VECTOR(V1'RANGE) := V2;
begin
for | in VI'RANGE loop
TEMP(I) := TEMP(I) + V1(l);
end loop;
return TEMP;
end ADD;

There are also functions without parameters. We have already seen an example
of these — the function END_OF_FILE in the package TEXT_IO. When such a
function is called it is enough to write simply the name of the function without
brackets afterwards. One example of the use of the function END_OF_FILE is:

exit when END_OF_FILE;

Thus a call to a function without parameters looks exactly as if the function were
a normal variable.

To write a function without parameters, we leave out the brackets and the
list of formal parameters in the function specification:

function MY_RANDOM_NO return FLOAT is

end MY_RANDOM_NO;

How should we name functions that we write ourselves? It is best to try to
make the function name specific, in the same way as ordinary variables. If the
function performs some mathematical operation and the parameters can be
regarded as operands to the operation, then an appropriate name will describe
the operation, for example, EXPONENTIATE and ADD. Functions that return a
BOOLEAN result can be given names in the style of a question, for example,
END_OF_FILE, END_OF_INPUT and PERMITTED_VALUE. In these cases it
helps to imagine a question mark following the function name.
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6.2 Procedures

The other subprogram is the procedure. A procedure differs from a function in
that it does not return a result when it is called. When a procedure is called, its
sequence of statements is put into action.

A procedure has exactly the same form as a function. The only differ-
ences are that the reserved word procedure is used instead of function, and that
no result type is given in the procedure specification, its first line.

Since a procedure does not return any value as a result, there need not
be a return statement in the procedure. A procedure normally terminates when
execution reaches the final end.

For example, let us write a procedure HEAD_NEW_PAGE that can be
used when a new page of output is to be started with a page number written at
the top. The page number should be written in the middle of the top line as
follows:

—34—
We shall assume that the terminal produces printed output and a line of output

has at most 80 characters. We shall make use of the existing procedures
NEW_PAGE and SET_COL in the package TEXT_IO. NEW_PAGE ensures that

Procedure specification

® The first part of the procedure body.

e Contains the name of the procedure and its formal
parameters.

Procedure body

procedure procedure_name (parameter_list) is
declarative part
begin

statement_1,

statement_2;

statement_N;
end procedure_name,
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a new page is fed and SET_COL allows a particular position on the current line
of output to be chosen for printing. The procedure is as follows:

procedure HEAD_NEW_PAGE (PAGE_NUM : INTEGER) is
begin

NEW_PAGE;

SET_COL(38),

PUT("- "); PUT(PAGE_NUM, WIDTH => 1); PUT(" -);
end HEAD_NEW_PAGE;

Procedures, like functions, can take parameters: HEAD_NEW_PAGE has the
formal parameter PAGE_NUM with type INTEGER.

We shall now examine this procedure when it is used in a program that
writes the page number at the top of three pages, numbers 34, 50 and 51.

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure PAGE_DEMO is
N :.INTEGER := 50;
procedure HEAD_NEW_PAGE (PAGE_NUM : INTEGER) is
begin
NEW_PAGE;
SET_COL(38),
PUT("- *); PUT(PAGE_NUM, WIDTH=>1); PUT(" -");
end HEAD_NEW_PAGE;
begin
HEAD_NEW_PAGE(34);
HEAD_NEW_PAGE(N),
HEAD_NEW_PAGE(N+1);
end PAGE_DEMO;

We notice that a procedure body, like a function body, should be located in the
declarative part of the program.

The program PAGE_DEMO has three calls to the procedure
HEAD_NEW_PAGE. A procedure call works in much the same way as a func-
tion call. A ‘temporary store’ PAGE_NUM is created in the procedure and the
value of the actual parameter is copied to it. In this example, the first call copies
the value 34 to PAGE_NUM. Then the execution of PAGE_DEMO is halted
while the statements in HEAD_NEW_PAGE are carried out. When their execution
is complete, the execution of PAGE_DEMO is resumed and the next statement
after the procedure call is executed.

Note that the procedure does not return any value to the calling program.
This is what distinguishes a procedure from a function. A procedure call is
considered to be an entire statement in the calling program, whereas a function
call, as shown in the foregoing section, is considered to be an expression. A call
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to a procedure is written as in the example above. It is terminated with a semi-
colon. A function call, however, is written in the same places in a program as
ordinary expressions, and the calling program must deal with the result. The
following subprogram calls are therefore in error:

PUT( HEAD_NEW_PAGE(N) ); -- ERROR! HEAD_NEW_PAGE is a

procedure
N := HEAD_NEW_PAGE(45); -- ERROR! HEAD_NEW_PAGE is a
procedure
SQRT(X); -- ERROR! SQRT is a function
END_OF_FILE; -- ERROR! END_OF_FILE is a function

Procedure call

procedure_name(at, a2, ... anj;
at, a2, ... an are actual parameters.
e Their types must agree with those of the corre-
sponding formal parameters.
e A procedure call is considered to be a statement.

As the next example, we shall write a procedure PRINT_CENTRED that
will print any piece of text in the centre of the line. A procedure, exactly like a
function, can have parameters of any types at all. The procedure we shall write
now will have a parameter of type STRING that gives the text to be output:

procedure PRINT_CENTRED (TEXT : STRING) is
LINE_LENGTH : constant := 80;

begin
SET_COL((LINE_LENGTH - TEXT'LENGTH) / 2);
PUT(TEXT);

end PRINT_CENTRED;

For simplicity, we have assumed that the output has room for only 80 characters.
To avoid having numbers in the statements, we have declared a local constant
LINE_LENGTH in the procedure. The type STRING is an unconstrained array
type and, therefore, the procedure’s parameter can be text of arbitrary length.
To refer to the length of the text within the procedure, we use the attribute
TEXT'LENGTH. If the text is 80 characters long or longer, we shall get a run-
time error when the program is executed.
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We shall look at a program that uses PRINT_CENTRED to print out the
text:

Hello
Ada

is my

name!

The program looks like this:

with TEXT_IO;
use TEXT_IO;
procedure PRINT_GREETING is
procedure PRINT_CENTRED (TEXT : STRING) is
LINE_LENGTH : constant := 80;
begin
SET_COL(LINE_LENGTH —~ TEXT'LENGTH) / 2);
PUT(TEXT);
end PRINT_CENTRED;
begin
NEW_LINE;
PRINT_CENTRED("Hello"); NEW_LINE;
PRINT_CENTRED("Ada"); NEW_LINE;
PRINT_CENTRED("is my"); NEW_LINE;
PRINT_CENTRED("name!"); NEW_LINE;
end PRINT_GREETING;

6.3 Parameter association

The two procedures we have studied so far in this chapter have both been used
for special printing. They, too, can be thought of as ‘black boxes’; we put values
into them but they return no result value to the calling program.

However, procedures can be used in a much more general way.
Transferring parameters between the calling program and the procedure can
actually be carried out in more ways than we have seen so far. This is best
explained from a simple example. We shall write a procedure NONSENSE that
does nothing of any use, but illustrates how parameter association works.

procedure NONSENSE (A : in INTEGER,;
B: in out INTEGER,;
C:out INTEGER)is

begin
B:=B+A;
C:=0;

end NONSENSE;
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The procedure NONSENSE has three formal parameters, A, B and C,
written on separate lines only for the sake of clarity. What is new is that the
reserved words in and out appear in the parameter specifications.

In Ada, a parameter can be either a parameter of mode in, a parameter
of mode in out or a parameter of mode out. In the procedure NONSENSE,
these are exemplified by A, B and C, respectively. We can say that A is used to
put values into the NONSENSE ‘box’, B is used both to put values in and get
them out, and C is used only to get values out of the NONSENSE ‘box’.

The parameters we have seen in our earlier examples, of both functions
and procedures, have all been in parameters. If neither in nor out are used in a
parameter specification, the parameter is automatically an in parameter: that is,
the specification in is assumed.

We shall put NONSENSE into a program that calls the procedure:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
procedure PARA_DEMO is

X, Y, Z: INTEGER,;

procedure NONSENSE (A : in INTEGER;
B: inout INTEGER;
C: out INTEGER) is

begin
B:=B+A;
C:=0;
end NONSENSE;
begin
X=1,Y:=5;Z:=10;
PUT(X); PUT(Y); PUT(Z); NEW_LINE;
NONSENSE(X, Y, Z);
PUT(X); PUT(Y); PUT(Z); NEW_LINE;
end PARA_DEMO;

To see what happens we shall study a couple of diagrams. The variables X, Y
and Z in the main program can be illustrated, as usual, by three storage boxes in
the program PARA_DEMO. At the start of the call:

NONSENSE(X, Y, 2);

three temporary storage boxes, A, B and C, are created in the procedure NON-
SENSE. They only exist while the call is in progress. At the start of the call the
situation is as in Figure 6.5. The formal parameter A is an in parameter. The formal
parameters we saw in our earlier examples were also in parameters, so the result
with A is exactly what we are used to. First the value of the corresponding actual
parameter is calculated. This is already done here: X already has the value 1.
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This value is then copied to the formal variable A which thus also gets the value
1. The copying does not affect the variable X at all.

The formal parameter B is an in out parameter. As with an in parameter,
the value of the actual parameter corresponding to an in out parameter is copied
to the formal parameter at the start of the call. In our example, the value 5 which
is in the variable Y is copied to B.

The third formal parameter is an out parameter. There is no copying for
an out parameter when the procedure is called. The value in the temporary store
C will thus be undefined at the start of the call, as shown in Figure 6.5.

When the temporary stores have been created and those associated with
in or in out parameters have been initialized, execution continues with the pro-
cedure’s sequence of statements. First, the statement:

B: =B +A;

is executed. This statement means, as usual, that the value in store B is changed
to 5 + 1, that is, 6. The next statement:

C:=0;

means, of course, that the store called C is given the value 0.

Within the procedure NONSENSE the in parameter A is considered to be
a constant. Therefore no attempt may be made to change its value. If we were
to try, for example, to add the statement:

A:=0; -- ERROR!

we would get a compile-time error.

An in out parameter is considered to be a normal variable within the pro-
cedure. Therefore, we can change the value of B and put it into expressions in
the normal way.

NONSENSE
X A
1 1
Y B
; ~{ 5]
Y4 c__
10 I ?

Figure 6.5
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The value of an out parameter is undefined at the start of procedure
execution. Therefore in Ada 83 it is not possible to refer to the value of an out
parameter within a procedure. For example, the parameter C is not allowed to
appear in the right-hand side of an assignment statement or in an expression.
The following statements would result in compilation errors:

B:=C; -- ERROR in Ada 83!
B:=B+C; -- ERROR in Ada 83!

The only thing you can do with out parameters is give them values, which is
often done with assignment statements, as in NONSENSE.

v It is also true of Ada 95 that the value of an out parameter is undefined when
the procedure starts execution. However, Ada 95 does allow reference to the value
of an out parameter. This change has been implemented for the practical reason
of avoiding the need to declare an extra local variable when the value of the out
parameter is derived in stages. The following is allowed in Ada 95, for example:

C:=0;
A C=C+1;

When the two statements in the procedure NONSENSE have been executed the
procedure call terminates. The result is shown in Figure 6.6. The parameter A is
an in parameter and its value cannot have changed in the procedure. Thus it
must still contain the same value as when the procedure was called. No copying of
the value of an in parameter occurs when a procedure terminates. The variable
X can thus never be changed by the procedure call.

For an in out parameter, the value it has at the end of the procedure call
is copied back to the actual parameter. In this case, the value 6 will be copied to
the variable Y. Thus Y’s value is changed by the procedure call.

For an out parameter, its value is also copied to the corresponding actual
parameter at the end of the call. The variable Z will thus have been changed by
the procedure call and get the value 0.

When the program PARA_DEMO is run, it will give the output:

1 6 0

We have seen before that an expression can be used as an actual parameter to
a call. This is only allowed when the corresponding formal parameter is an
in parameter. If the corresponding formal parameter is an in out parameter or
an out parameter the actual parameter must be a variable. Otherwise, it
would be impossible to copy the value of the formal parameter to the actual
parameter at the end of the call — a value cannot be copied to an expression.
The calls:
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NONSENSE
X A
1 1
B Y
6 s
L J
Z C
0 | 0
Figure 6.6

NONSENSE(X, 2« Y, Z); -- ERROR! The second parameter is an

-- in out parameter

NONSENSE(X, Y, Z + 1); -- ERROR! The third parameter is an

-- out parameter

are thus in error. However, the following is allowed:

NONSENSE(X + 3, Y, Z); -- CORRECT! The first parameter is an

-- in parameter

We can now summarize the rules for the different types of parameter. If we look
at them first from the point of view of the calling program, we can say:

in out

out

The actual parameter can be a variable or an expression and it must
have a legal value at the time of the call. If the actual parameter is a
variable, its value may never be changed during the call to the sub-
program. It will always have the same value after the call as before it.

The actual parameter must be a variable and the variable must have
a legal value at the time of the call. The value of the variable can
change during the procedure call, so that it has a different value at the
end.

The actual parameter must be a variable. Its value at the time of the
call is of no interest, because the procedure ignores it. At the end of
the procedure call, the actual parameter will have taken a value other
than it had before.

If we look at them from the point of view of the called subprogram, the
different parameters have the following consequences:
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in When execution of the subprogram starts, the formal parameter has a
value. Within the subprogram the formal parameter is treated like a
constant: it can be used but its value cannot be changed.

in out When execution of the procedure starts, the formal parameter has a
value. Within the procedure the parameter can be used as an ordinary
variable: its value can be both used and changed.

out When execution of the procedure starts, the value of the formal para-
meter is undefined. In Ada 83 the value of the formal parameter may
not be used within the procedure: for example, the formal parameter
may not be used in expressions. (In Ada 95, on the other hand, one
can also make use of the value of a formal out parameter.) In the pro-
cedure the formal parameter must be given a value in the procedure,
through assignment, for example. The value that the formal parameter
is given will also be given to the corresponding actual parameter in
the program which called the procedure.

The figures shown earlier in the text illustrate how parameters are copied in
a purely logical way. If there are parameters of compound types, large arrays for
example, it might be inefficient to copy values to and fro. The Ada implementa-
tion being used might implement parameter association in a more efficient way.
However, pay no attention to this and try not to make use of the fact. A program
should always be written so that parameter association occurs as described here.

The three modes of parameter can be used freely in procedures. In functions,
however, only in parameters may be used. The reason for this limitation is that
functions should be clear of side-effects. A side-effect means a subprogram
which, during execution, affects a variable that is not local to the subprogram
but which occurs in another part of the program. When a function is called
the values of actual parameters should not be changed. For example, when the
function SQRT is called to calculate the square root of a variable W:

SQRT(W)

it would be very strange if the value of W could be changed by the call. Thanks to
the fact that functions only have in parameters, there is no risk of this happening:
the actual parameters to a function can never be changed by calling the function.

The procedures in the previous section had in parameters. As a simple
example of in out parameters we shall look at a procedure that can be used to
swap the values of two variables:

procedure SWAP (NUMBER1, NUMBER? : in out INTEGER) is
TEMP : INTEGER,;
begin
TEMP = NUMBERT;
NUMBER1 := NUMBERZ2;
NUMBER2 := TEMP;
end SWAP;
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Formal parameters to procedures

e Handle communication between the procedure
and other subprograms.

e Exist only within the procedure.
e Are three different types:

— in parameters. Have values at the time of call.
Treated as constants. May not be changed
within the procedure.

— in out parameters. Have values at the time of
call. Can be both used and changed within the
procedure.

— out parameters. Values undefined at time of
call. In Ada 83 they may not be used in the pro-
cedure. Must be given values.

If we assume that in some program there are two variables P and Q with type
INTEGER and values 1 and 2, respectively, then the call:

SWAP(P, Q);

from the program will result in the variables P and Q swapping values, thus
taking values 2 and 1, respectively. It is essential that the formal parameters to
SWAP are in out parameters: in parameters would not have worked, because
they may not be changed. Nor would it have been possible to specify out para-
meters, because then it would not have been possible to use the values of P and
Q in the procedure.

When a subprogram has to be written to compute a certain value dependent
on certain input values it is, as we have seen, natural to write it as a function
rather than as a procedure. If, for example, we want a subprogram that will
search for the smallest element in an array of floating point numbers and return
it as the result, we will make the subprogram a function. Sometimes we want
more than one result from a subprogram and then a function cannot be used. In
our example, if we wanted to know both the smallest element in the array and
where in the array it occurred, we would have to write a procedure in which the
required results were out parameters.

Let us look at such a procedure, for finding details of the smallest element
in an array of floating point numbers. Input to the procedure is the array itself,
which we will give as an in parameter, because the array should not be altered.
We have two out parameters, the smallest element and its index in the array. We
shall formulate the procedure to be general and useful for all arrays of floating
point numbers, irrespective of the index constraints. We use the same declara-
tion of the type VECTOR as before:
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type VECTOR is array (INTEGER range < >) of FLOAT;
The procedure looks like this:

procedure FIND_SMALLEST (V :in VECTOR,;
SMALLEST_VALUE : out FLOAT;
SMALLEST_PLACE : out INTEGER) is

SMALLEST_SO_FAR : FLOAT = V(V'FIRST);
PLACE :INTEGER :=V'FIRST;
begin

for | in VIFFIRST + 1 .. V'LAST loop
if V(I) < SMALLEST_SO_FAR then
SMALLEST_SO_FAR := V(l);
PLACE = |;
end if;
end loop;
SMALLEST_VALUE := SMALLEST_SO_FAR;
SMALLEST_PLACE := PLACE;
end FIND_SMALLEST,

The algorithm we are using is based on looking right through the array, from
start to end, and always remembering the least element found so far and its
index. At the start we remember the first number and the first index. We use the
local variable SMALLEST_SO_FAR to hold the smallest element found so
far, and the local variable PLACE to remember its index. When we find in the
course of the search an element smaller than the smallest found so far, we have
found a new smallest number and we change the variables SMALLEST_SO_FAR
and PLACE accordingly. When the whole array has been searched
SMALLEST_SO_FAR contains the smallest element of the array and PLACE
contains its index. The procedure finishes by assigning these values to the pro-
cedure’s out parameters.

When a subprogram is designed to carry out some particular calculation,
it is often the case that the calculation can only be achieved for certain input
data: some input data will not work. Then the subprogram should take the form
of a procedure, with the calculated value as an out parameter, and a further out
parameter should be introduced with type BOOLEAN. This is given the value
TRUE in the subprogram if the calculation can be carried out in the normal way,
and FALSE if not. The calling program can then, using this parameter, know
whether the calculation has been carried out or not.

For example, let us write a procedure COMPUT_ROOTS that computes
the two real roots of a second-order equation of the form:

X2+px+qg=0

the roots of which are given by the formula:
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The expression under the square root sign, the discriminant, must be greater
than or equal to zero if the equation has real roots. Our procedure can thus only
calculate the roots if that is the case.

procedure COMPUTE_ROOTS (P, Q : in FLOAT;
ROOT1, ROOT2 : out FLOAT,
REAL_ROOTS : out BOOLEAN) is
D : FLOAT;
begin
Di=P«2/4.0-Q;
if D < 0.0 then
REAL_ROOTS := FALSE;
else
REAL_ROOTS := TRUE;
ROOT1 := /2.0 + SQRT(D);
ROOT2 := /2.0 - SQRT(D);
end if;
end COMPUTE_ROOTS;

The procedure takes the two coefficients P and Q as in parameters, and it has
three out parameters, the two calculated roots and a parameter REAL_ROOTS
of type BOOLEAN. In the procedure, the parameter REAL_ROOTS is given the
value TRUE if the equation has real roots, and otherwise is FALSE. If we assume
that the variables A, B, R1 and R2 have type FLOAT and the variable OK has
type BOOLEAN, the procedure can be called as follows:

PUT_LINE("Enter coefficients P and Q");
GET(A); GET(B);
COMPUTE_ROOTS(A, B, R1, R2, OK);
if OK then
PUT("The equation has roots “);
PUT(R1); PUT(" and “); PUT(R2);
else
PUT("The equation has no real roots");
end if;

If OK has the value FALSE after the call, the values of variables R1 and R2 are
undefined (they presumably contain rubbish).

What is the best way of naming a procedure? Since a procedure is a
program unit that describes how something is done, it is generally appropriate

to give them names that specify that something. Suitable names may be, for
example, COMPUTE_ROOTS, WRITE_HEADING and CHECK_STATE.
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6.4 Top-down design with subprograms

In this section we shall see how subprograms come into use when the technique
of top-down design is used. We will also discuss how different subprograms can
be placed in text files and compiled separately.

6.4.1 Example: Binomial coefficients

As a first example we will design and write a program to calculate and print the
binomial coefficients. These are defined for non-negative integers, n and k, as
follows:

ny\ _ n!
ki~ k!'x(n-k)!

where n! is the factorial of » and is given by:

al = 1 ifn =0
"TY11X2X3X..Xn ifn>0

In future this binomial coefficient will be written in the form (r:k).

We can specify that the program should work as follows. Input to the pro-
gram should be a value of n and the first step is to read this from the terminal.
The program should then calculate all the binomial coefficients for this value of
n, that is (n:k) for all values of k between 0 and n. Finally, the calculated bino-
mial coefficients should be printed as a table. If, for example, the value of n is
4, then the program should print the table in Figure 6.7. The program should
be written so that it can be repeated an arbitrary number of times with different
values of n.

A first, rough sketch of the program is:

(I)  Repeat the following an arbitrary number of times:
(1.1) Read the input (terminate calculations if no more input given).
(1.2) Print the table of values.

We shall try to translate this directly into Ada, making use of calls to subpro-
grams. Step (1.1) can be carried out using a procedure READ_INPUT that can
have two out parameters, the value of # read and a Boolean parameter that says
whether data has been input. We will not worry about how to indicate that input
is finished when the program is run. To write step (1.1), therefore, we must
assume that the procedure READ_INPUT exists, or will exist. Then step (1.1)
can be written:

READ_INPUT(N_VALUE, INPUT_COMPLETE),
exit when INPUT_COMPLETE;



Top-down design with subprograms 239

4:k)
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Figure 6.7

We have introduced two variables that are used as actual parameters in the
procedure call. These variables must, of course, be declared in our program.
Since the values of n must be whole numbers that are greater than or equal to 0,
NATURAL is a suitable subtype for N_VALUE. The variable INPUT_COMPLETE
is of type BOOLEAN.

In step (1.2) we can introduce another procedure, PRINT_TABLE, that
takes the value of n as an in parameter. This step can be written as:

PRINT_TABLE(N_VALUE);

Now we can put the algorithm steps into a program where we can include the
necessary variable declarations. The specifications of the two procedures we are
going to use can also be included, but their details are unimportant for the
moment. The program has the following structure:

procedure COMPUTE_BINOMIAL_COEFFICIENTS is
N_VALUE : NATURAL;
INPUT_COMPLETE : BOOLEAN,;
procedure READ_INPUT (N_INPUT  : out NATURAL,;
END_INPUT : out BOOLEAN) Iis

end READ_INPUT;
procedure PRINT_TABLE (N : in NATURAL) is

end PRINT_TABLE;

begin
loop
READ_INPUT(N_VALUE, INPUT_COMPLETE);
exit when INPUT_COMPLETE;
PRINT_TABLE(N_VALUE);
end loop;
end COMPUTE_BINOMIAL_COEFFICIENTS;
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Now we have finished at the top level of the algorithm. By using the top-down
technique combined with calls to subprograms, the program has the correct
structure right from the start, without any worry about the technical details of
reading the input, or about how the calculations or table output should be done.
The procedure at the highest level, here the procedure COMPUTE_BINO-
MIAL_COEFFICIENTS, is usually called the main program. It is enough for the
main program to have only a few statements, mostly subprogram calls, which
outline its main structure. Except for very trivial programs, where no sub-
programs are used, no calculations should be made in the main program. Even
in the earlier programs, it would have been better to introduce subprograms and
avoid doing everything in the main program.

In the foregoing program we have indicated where to place the body of
the subprograms READ_INPUT and PRINT_TABLE, and before the program can
be compiled, these procedures must be completed.

The next stage of program development is to write the procedures
READ_INPUT and PRINT_TABLE. We shall take them one at a time. It does not
matter which we take first: their internal appearance should have nothing to do
with the order in which they are written. We can start with READ_INPUT
because that should be simpler.

The procedure specification for READ_INPUT is already given:

procedure READ_INPUT (N_INPUT  : out NATURAL;
END_INPUT : out BOOLEAN)

The procedure has to read an integer greater than or equal to O from the termi-
nal. This integer will be returned from the procedure as the out parameter
N_INPUT. In the usual case, when a number is read from the terminal, the sec-
ond out parameter END_INPUT has the value FALSE, but when the operator
states that the input is finished it will be given the value TRUE. Now we have to
decide how the operator should indicate that the input is over. There are two nat-
ural alternatives. One is to make use of the END_OF_FILE, that is, to let the
operator note the end of input by writing a special combination of characters,
the combination depending on the system, for example, CTRL-D. The other
possibility is to let the operator enter a negative number to mark the end of
input, because binomial coefficients are not defined for negative values of n.
Here we choose the first alternative, END_OF_FILE. The algorithm can be very
simple:

(1) Request user to type in data.

(2) If the user indicates END_OF_FILE, then set END_INPUT to TRUE.
Otherwise, set the out parameter N_INPUT to the number read and set
END_INPUT to FALSE.

If we translate this algorithm to Ada and put it together with the procedure’s
specification, the whole procedure will be as follows:
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procedure READ_INPUT (N_INPUT  : out NATURAL;
END_INPUT : out BOOLEAN) is
begin
PUT_LINE("Enter N. Terminate with CTRL-D");
if END_OF_FILE then
END_INPUT := TRUE;
else
END_INPUT := FALSE;
GET(N_INPUT);
end if;
end READ_INPUT;

Now the procedure READ_INPUT is ready and can be put into the program text
written earlier.

The next step is to write the procedure PRINT_TABLE. The procedure
specification is already written. The procedure takes the current value of  as in
parameter, and its task is to write out the table in Figure 6.7, with the binomial
coefficients (n:k) for all values of k between 0 and n. We start, as usual, with a
rough algorithm:

) Write table heading.
) For each value of k in the interval O to n:
Q.n Write a line of the table.

Step (2.1) can be refined to:

(2.1.1) Write the value of k.
(2.1.2) Calculate (n:k).
(2.1.3) Write the calculated value.

Should any of these steps be formulated as a subprogram call? The decision as
to whether to do this is always a matter for judgement, but here it is obvious that
step (2.1.2), ‘Calculate (n:k)’, should be written as a subprogram; the reason is
that it is a well-defined calculation. From two input values, n and k&, a result is
obtained, (n:k). It is always appropriate to carry out a well-defined calculation
of this sort in a subprogram, and the subprogram should be a function. Thus we
can assume that we have a function BIN_COEFF that is specified as follows:

function BIN_COEFF (P, Q : NATURAL) return POSITIVE is

end BIN_COEFF;

The function takes two in parameters, P and Q, and returns the binary coefficient

(P:q).
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We choose to translate the other steps in the algorithm directly into Ada
without using subprograms. Step (1), ‘Write table heading’ could well be
performed in a subprogram but, because the step is not complicated, we have
chosen not to do that.

We can translate our algorithm to Ada:

-- print table heading
PUT(" k");
PUT(" ("); PUT(N, WIDTH => 1); PUT_LINE(":k)");
NEW_LINE;
forKin 0 .. N loop
-- print a line of the table
PUT(K, WIDTH => 3); PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;
end loop;

The statements contain a good deal of technical detail to make the output look
as we want it to. Step (2.1.2), the calculation of (n:k), is translated as a call to
BIN_COEFF. By placing this call inside the call to PUT, we avoid introducing
extra variables for saving the calculated values.

If suitable names are chosen for subprograms and an algorithm has steps
that are carried out by calls to subprograms, it is often clear what the steps and
the algorithm are doing; thus extra comments are not always necessary. If, how-
ever, a subprogram is not used to perform a step in the program, it is sensible to
add some comments to explain what is happening.

Now we can put together the entire procedure PRINT_TABLE:

procedure PRINT_TABLE (N : In NATURAL) is
function BIN_COEFF (P, Q : NATURAL) return POSITIVE is

end BIN_COEFF;
begin
-- print table heading
PUT(" k*);
PUT(" (");PUT(N, WIDTH => 1); PUT_LINE(":k)");
NEW_LINE;
forKin0.. N loop
-- print a line of the table
PUT(K, WIDTH => 3); PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;
end loop;
NEW_LINE'
end PRINT_TABLE;
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We have placed the specification of the function BIN_COEFF in the right place
in the procedure, but we do not yet need to worry about the inside of the func-
tion. Note that we can have several levels of subprogram defined within one
another. Here we have three levels because the procedure PRINT_TABLE is
defined inside COMPUTE_BINOMIAL_COEFFICIENTS.

Now we can go on and construct the function BIN_COEFF that will take
the numbers p and ¢ as in parameters and return the value (p:q) as its result.
Direct from the definition of the binomial coefficients we can write the following
very simple algorithm:

1) Calculate and return as result pl/(q! = (p — ¢)!)

We see that three different factorials are calculated, so it makes sense to intro-
duce a special function FACTORIAL to calculate the factorial of a given number.
Then we can write the function BIN_COEFF as follows:

function BIN_COEFF (P, Q : NATURAL) return POSITIVE is
function FACTORIAL (NUMBER : NATURAL) return POSITIVE is

end FACTORIAL;
begin

return FACTORIAL(P) / { FACTORIAL(Q) » FACTORIAL(P - Q) );
end BIN_COEFF;

The function FACTORIAL is at the fourth level inside BIN_COEFF. The only
remaining step is to write the function FACTORIAL. We have already discussed
(Section 3.6) how a factorial can be calculated. Using this we get:

function FACTORIAL (NUMBER : NATURAL) return POSITIVE is
RESULT : POSITIVE = 1;
begin
for J in 2 .. NUMBER loop
RESULT := RESULT = J;
end loop;
return RESULT;
end FACTORIAL,;

For the sake of clarity, we have given the result the type POSITIVE, but we
know that we can have problems with the calculation if the value of » is not
relatively small, because there may be insufficient room in an integer type. The
solution to the problem, as we saw earlier, would be to let the result have the
type FLOAT instead.

Now all the subprograms of the program have been written and we can
assemble them together as a complete program:
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with TEXT_IO, BASIC_NUM_IO;

use TEXT_IO, BASIC_NUM_IO;

procedure COMPUTE_BINOMIAL_COEFFICIENTS is
N_VALUE : NATURAL;
INPUT_COMPLETE : BOOLEAN;

procedure READ_INPUT (N_INPUT  : out NATURAL;
END_INPUT : out BOOLEAN) is
begin
PUT_LINE("Enter N. Terminate with CTRL-D");
if END_OF_FILE then
END_INPUT := TRUE;
else
END_INPUT := FALSE;
GET(N_INPUT);
end if;
end READ_INPUT;
procedure PRINT_TABLE (N : in NATURAL) is
function BIN_COEFF (P, Q : NATURAL) return POSITIVE is

function FACTORIAL (NUMBER : NATURAL) return
POSITIVE is RESULT : POSITIVE = 1;
begin
forJin 2 ... NUMBER loop
RESULT := RESULT ~ J;
end loop;
return RESULT;
end FACTORIAL;
begin
return FACTORIAL(P) / ( FACTORIAL(Q) « FACTORIAL
P-Q)
end BIN_COEFF;
begin
-- print table heading
PUT(" k");
PUT(" ("); PUT(N, WIDTH => 1);
PUT_LINE(":k)");
NEW_LINE;
for Kin 0 .. N loop
-- print a line of the table
PUT(K, WIDTH => 3);
PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;
end loop;
NEW_LINE;
end PRINT_TABLE;
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begin
loop
READ_INPUT(N_VALUE, INPUT_COMPLETE);
exit when INPUT_COMPLETE;
PRINT_TABLE(N_VALUE);
end loop;
end COMPUTE_BINOMIAL_COEFFICIENTS;

When we assemble the program we must make sure that we also have access to
the packages TEXT_IO and BASIC_NUM_IO, because these are used in
READ_INPUT and PRINT_TABLE.

This exercise has shown that using the technique of top-down design with
subprograms allows one step to be in focus at a time. In the procedure
PRINT_TABLE, for example, we could concentrate on how the table should be
printed and not worry about how the input should be read or how the binomial
coefficients should be calculated.

Division into subprograms

e A program should always be divided into several
subprograms.

o A well-defined calculation or operation (that is, a
‘high-level step’ of an algorithm) is carried out in
a subprogram.

e A subprogram should be no longer than can be
easily understood. If it becomes too long it should
be divided into further subprograms.

6.4.2 Separate compilation

When a largish program is to be written it can be of advantage to divide the pro-
gram text up and compile the parts separately. Then, no program text need be
too big and it is easier to keep a grasp of the program as a whole. It also becomes
possible to compile a program before all the subprograms are ready, and thus
check that it is free from compilation errors. It is even possible to run tests on a
program and check that its main features work correctly by including very simple
test versions of the separate parts; these can subsequently be replaced by complete
versions when the program as a whole is running well. The option of writing the
various parts of a program separately is of great advantage when several pro-
grammers are jointly developing a large program. They no longer need to work
on one and the same program text, but the work can be divided up so that they can
work independently of one another and develop separate parts of the program.
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In Ada there are two main methods for compiling different parts of a
program separately. One makes use of subunits and the other of library units.
The technique of working with subunits is used naturally in connection with top-
down design, so we will study it first. In the program for binomial coefficients
we placed subprograms within other subprograms. For example, READ_INPUT
and PRINT_TABLE were placed within COMPUTE_BINOMIAL_COEFFICIENTS.
The program was not complete until these subprograms had been written. When
the technique of subunits is used, you tell the Ada compiler that you are going
to write and compile the body of a subprogram by itself later, and you do this by
writing the word separate after the subprogram specification instead of writing the
body of the subprogram. The program COMPUTE_BINOMIAL_ COEFFICIENTS,
for example, could be written as follows:

procedure COMPUTE_BINOMIAL_COEFFICIENTS is
N_VALUE : NATURAL;
INPUT_COMPLETE : BOOLEAN;
procedure READ_INPUT (N_INPUT  : out NATURAL,;
END_INPUT : out BOOLEAN)

is separate;
procedure PRINT_TABLE (N : in NATURAL) is separate;
begin
loop

READ_INPUT(N_VALUE, INPUT_COMPLETE);
exit when INPUT_COMPLETE;
PRINT_TABLE(N_VALUE);
end loop;
end COMPUTE_BINOMIAL_COEFFICIENTS:

The declarations of READ_INPUT and PRINT_TABLE are known as procedure
stubs. This program is now complete and can be compiled. Of course, it cannot
be run and tested until READ_INPUT and PRINT_TABLE have been written and
compiled separately. Note that the packages TEXT_|O and BASIC_NUM_IO do not
need to be present: they are not used in the procedure COMPUTE_BINOMIAL _
COEFFICIENTS itself.

The subprograms that have been omitted can be compiled separately and
are then called subunits. When a subunit is going to be compiled separately the
name of the subprogram into which it is to be inserted has to be stated, so a sub-
unit is not an independent item but belongs to some other part of a program. The
word separate has to be written in front of the subunit and the name of the sub-
program into which it is to be inserted is written in brackets. The procedure
READ_INPUT will thus appear as follows:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;
separate (COMPUTE_BINOMIAL_COEFFICIENTS)
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procedure READ_INPUT (N_INPUT  : out NATURAL
END_INPUT : out BOOLEAN) is separate;
begin
PUT_LINE("Enter N. Terminate with CTRL-D");
if END_OF_FILE then
END_INPUT := TRUE;
else
END_INPUT := FALSE;
GET(N_INPUT);
end if;
end READ_INPUT;

Since READ_INPUT is to be inserted into the procedure COMPUTE_BINOMIAL _
COEFFICIENTS, COMPUTE_BINOMIAL_COEFFICIENTS is written in brackets
after the word separate. The packages TEXT_IO and BASIC_NUM_IO also
have to be included since they are used by the procedure READ_INPUT.

When a program is being developed, just as with any other construction
work, it is an advantage if it can be built of ready-made standard parts. As we
have seen, the method of top-down design, or stepwise refinement as it is more
fittingly known in this context, leads to a problem being broken down into
smaller and smaller parts, each of which becomes a subprogram. Subprograms
thus become components of the construction. The problem with this sort of
successive refinement is that the subprograms you arrive at are often much too
specialized to be used in other contexts. In practice, therefore, this method is not
applied too strictly. There is often an element of ‘bottom-up’ design as well. For
example, if there are existing subprograms that do a particular job, then you
might try to design your program to make use of them. In the example which
writes out the binomial coefficients, for instance, it is quite likely that a function
to calculate the coefficients already exists.

Separate compilation using subunits
Where the subprogram body would normally be placed
(in another subprogram A, for instance) is written:

function name(parameters) return resuit_type

is separate,

or

procedure name(parameters) is separate;
When the body of the subprogram is later compiled
separately, where it would normally be placed must be
specified. If the body would normally be in another
subprogram A, the following would be written:

separate (A)

subprogram_body
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Now we will look at the second method for separate compilation, using
library units. First we have to ensure that there is a function BIN_COEFF
which is ready to be used. We do this by putting the following program text into
a file of its own and compiling it:

function BIN_COEFF(P, Q : NATURAL) return POSITIVE is
function FACTORIAL(NUMBER : NATURAL) return POSITIVE is
RESULT : POSITIVE = 1;
begin
for Jin 2 .. NUMBER loop
RESULT := RESULT = J;
end loop;
return RESULT;
end FACTORIAL;
begin
return FACTORIAL(P)/FACTORIAL(Q) «+ FACTORIAL(P);
end BIN_COEFF;

We have now compiled BIN_COEFF as a free-standing library unit, which is
quite independent of the program COMPUTE_BINARY_COEFFICIENTS; the
word separate is not used.

The next stage is to compile the program COMPUTE_BINARY_
COEFFICIENTS, making use of a with clause to allow access to the function
BIN_COEFF:

with TEXT_IO, BASIC_NUM_IO, BIN_COEFF;

use TEXT_IO, BASIC_NUM_IO;

procedure COMPUTE_BINARY_COEFFICIENTS is
N_VALUE : NATURAL;
INPUT_COMPLETE : BOOLEAN;

procedure READ_INPUT (N_INPUT  : out NATURAL;
END_INPUT : out BOOLEAN) is
begin

end READ_INPUT;
procedure PRINT_TABLE(N : in NATURAL) is

begin
-- print table heading
PUT(" k");
PUT(" (*"); PUT(N, WIDTH => 1);

PUT_LINE(":K)");
PUT_LINE(" ),
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for Kin 0 ..N loop
-- print in a line of the table
PUT(K, WIDTH => 3);
PUT(BIN_COEFF(N,K), WIDTH => 10);
NEW_LINE;

end loop;

NEW_LINE;

end PRINT_TABLE;
begin

end COMPUTE_BINARY_COEFFICIENTS;

Note two things. First, BIN_COEFF is not stated in the use clause, since use
clauses are only used for packages. Secondly, there is no declaration of
BIN_COEFF anywhere in the program: it is entirely free-standing.

In general, ready-written subprograms are to be found in packages, and
not alone as BIN_COEFF is in the example we have been looking at. In fact, we
have already seen several examples of the technique of using library units in
connection with packages, such as using standard procedures from the package
TEXT_IO and standard functions from the generic package GENERIC_
ELEMENTARY_FUNCTIONS. Constructing packages and more about using
them will be the subject of Chapter 8.

Separate compilation using library units

Two different ways to make a subprogram S callable
from a program P:

(1) First, place S in a separate file and compile it.

with S;
procedure P is

(2) First, place S in a package PAK and compile the
package. (See Chapter 8.)
with PAK;
use PAK;
procedure P is
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6.4.3 Example: Sorting

Let us now look at another program using the technique of top-down design
with subprograms. We shall write a new version of the sort program in
Section 5.9. The program’s job was to read a number of integers from the terminal
and then print them out in numerical order. A rough algorithm is:

(1) Read in the numbers.
(2) Sort the numbers.
(3) Print the sorted numbers.

This can easily be translated to Ada if we assume that we have three sub-
programs, READ, SORT and WRITE. READ can be a procedure with two out
parameters: an integer array of the numbers read and an integer which gives the
number of numbers read and placed in the array. If we assume that we have the
declarations:

MAX_NO_ELTS : constant := 100;
subtype INDEX is INTEGER range 1 .. MAX_NO_ELTS;
type INTEGER_ARRAY is array (INDEX range < >) of INTEGER,;

then the specification of the procedure READ can be written:

procedure READ (S  : out INTEGER_ARRAY;
SIZE : out NATURAL)

Now step (1) in the algorithm is:
READ (A, N_ELTS);

Here we have used two variables, A and N_ELTS, as the actual parameters to
READ. They are declared as follows:

A : INTEGER_ARRAY(1 .. MAX_NO_ELTS):
N_ELTS : NATURAL;

The variable A is an integer array. The number of places in the array is determined
by the constant MAX_NO_ELTS, which has the value 100 in this example. When
the procedure READ is called it fills the array A with the numbers that are
entered from the terminal. If the user enters fewer numbers than there is room
for, then the whole array is not filled. The number of places used is given by the
parameter N_ELTS. We assume that the procedure checks that there are no more
numbers than the array has room for.

Step (2) in the algorithm is now simple. We start by writing a specification
for a subprogram SORT:
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procedure SORT (S : in out INTEGER_ARRAY)

The procedure thus has only one parameter, an in out parameter, which is an
integer array. When the procedure is called the array is sorted so that the elements
are in ascending numerical order. Using it, step (2) can be written:

SORT (A(1 .. N_ELTS)):

As parameter, we have not given the entire array, A, but only the part of it that
is being used.
Step (3) is also simple. First we specify a procedure WRITE:

procedure WRITE(S : in INTEGER_ARRAY)
The procedure takes the array to be written as an in parameter. Step (3) is:
WRITE(A(1 .. N_ELTS));

Here, too, we only give the part of the array that is in use.
Now the three steps of the program can be assembled, with the resulting
structure:

procedure SORT_EXAMPLE is
MAX_NO_ELTS : constant := 100;
subtype INDEX is INTEGER range 1 .. MAX_NO_ELTS;
type INTEGER_ARRAY is array (INDEX range < >) of INTEGER,;
A : INTEGER_ARRAY(1 .. MAX_NO_ELTS);
N_ELTS : NATURAL;

procedure READ (S  : out INTEGER_ARRAY;
SIZE : out NATURAL) is

end READ;
procedure SORT (S : in out INTEGER_ARRAY) is

end SORT:
procedure WRITE(S : in INTEGER_ARRAY) is

end WRITE;
begin
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READ (A, N_ELTS);

SORT (A(1 .. N_ELTS));

WRITE(A(1 .. N_ELTS));
end SORT_EXAMPLE;

Now the three subprograms have to be written. We shall start with WRITE,
which is the simplest and uses the algorithm:

(€)) Write heading.
2) For all the numbers in the array S:
2.1 Write out the number.

This is easily translated to Ada:

procedure WRITE(S : in INTEGER_ARRAY) is
begin

NEWLINE;

PUT_LINE("The numbers are:");

for K in S'/RANGE loop

PUT( S(K) );

end loop;

NEW_LINE;
end WRITE;

Here we have used the attribute S'RANGE to state the index range for S.
The algorithm for what should be done in the procedure READ is:

¢)) Set the number of elements read to zero and ARRAY_FULL to FALSE.
) Request the user to enter the array.
3) Repeat the following until the user states that nothing more will be
entered, or until ARRAY_FULL is TRUE.
3.1 If the array is full, output an error message and set
ARRAY_FULL to TRUE. Otherwise, read a number into the next
vacant place and increase the number of elements read by 1.
) Give the number of elements read as result.

We choose to use the END_OF_FILE technique for the user to notify the end of
input. The algorithm can be translated to Ada:

procedure READ (S : out INTEGER_ARRAY;
SIZE : out NATURAL) is
N_ELTS_READ : NATURAL :=0;
ARRAY_FULL :BOOLEAN := FALSE;
begin
PUT_LINE("Enter the integers to be sorted.”);
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PUT_LINE("Terminate input with CTRL-D");
while not END_OF_FILE and not ARRAY_FULL loop
if N_ELTS_READ = S'LENGTH then
PUT_LINE(*"Too many!");
ARRAY_FULL := TRUE;
else
N_ELTS_READ := N_ELTS_READ + 1;
GET( S(N_ELTS_READ) );
end if;
end loop;
SIZE := N_ELTS_READ;
end READ;

We use a local variable N_ELTS_READ to count the numbers read in. If the
entire array is full and another number is input at the terminal, the procedure
gives the error message:

Too many!

We have already given the algorithm for the procedure SORT in
Section 5.9:

[€)) SetKto 1.
(2)  While K is less than the number of elements in the array:
2.1) Search for the smallest element in that part of the array that
starts at the Kth position and ends with the last element in the
array. .
2.2) Swap the smallest element (from step (2.1)) and the element in
position K.
2.3) Increase K by 1.

To achieve step (2.1) we specify a function SMALLEST as follows:
function SMALLEST (T : INTEGER_ARRAY) return INDEX

The function takes an integer array as an in parameter. As result it returns the
index of the smallest number in the array. Step (2.1) can now be written:

SMALLEST_POSN := SMALLEST(S(K .. S'LAST));

We have introduced the variable SMALLEST_POSN with type INDEX in which
we save the result of the call. S is, as we can see in the specification of SORT,
the array to be sorted. As parameter to the function SMALLEST we give the part
of the array that starts at index K. SMALLEST will thus give the index of the
smallest element of that part of the array as result.
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Step (2.2) can be carried out using a procedure SWAP, which we specify
as follows:

procedure SWAP (I, J : in INDEX;
T :in out INTEGER_ARRAY)

When this procedure is called, elements number | and J in array T will swap
places.

The remaining steps in the algorithm can be achieved with a for construct.
The procedure SORT can then be written:

procedure SORT (S : in out INTEGER_ARRAY) is
SMALLEST_POSN : INDEX;

function SMALLEST (T : INTEGER_ARRAY) return INDEX is
-- gives the index number for the smallest element in T

end SMALLEST;

procedure SWAP (I, J :in INDEX;
T :inout INTEGER_ARRAY) is
-- swap the Ith and Jth elements in array T

end SWAP;
begin
for K in S'/RANGE loop
SMALLEST_POSN := SMALLEST(S(K .. S'LAST));
SWAP(K, SMALLEST_POSN, S);
end loop;
end SORT;

Now it remains to write the subprograms SMALLEST and SWAP. Algorithms
for these were given in Section 5.9. The algorithm for SMALLEST can, with
some amendment, be written:

(1) Set M to the first index in T.
2) Let / run from the second to the last index in T.
2.1 If element number / is less than element number M then set M
to L
3) The smallest element is now element number M. Give M as result.

Translation to Ada gives:
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function SMALLEST (T : INTEGER_ARRAY) return INDEX is
-- gives the index number for the smallest element in T
M : INDEX := T'FIRST;
begin
for | in T'FIRST + 1 .. T'LAST loop
if T(l) < T(M) then
M:=1;
end if;
end loop;
return M;
end SMALLEST;

The algorithm for the final procedure, SWAP, was also given in Section 5.9.

) Move the /th element to a temporary store.
(2) Move the Jth element to position /.
(3)  Move the element in the temporary store to position J.

The procedure is in Ada:

procedure SWAP (I, J : in INDEX;
T :inout INTEGER_ARRAY) is
-- swap the Ith and Jth elements in array T
TEMP : INTEGER,;

begin
TEMP :=T(I);
() =TU)
TJ) :=TEMP;
end SWAP;

All the different parts can now be assembled to make a complete program, when
we also ensure that the packages TEXT_IO and BASIC_NUM_IO are accessible:

with TEXT_IO, BASIC_NUM_IO;
use TEXT_IO, BASIC_NUM_IO;

procedure SORT_EXAMPLE is
MAX_NO_ELTS : constant := 100;
subtype INDEX is INTEGER range 1 .. MAX_NO_ELTS;
type INTEGER_ARRAY is array (INDEX range < >) of INTEGER,;

A : INTEGER_ARRAY(1 .. MAX_NO_ELTS);
N_ELTS : NATURAL;

procedure READ (S : out INTEGER_ARRAY;
SIZE : out NATURAL) is
N_ELTS_READ : NATURAL :=0;
ARRAY_FULL :BOOLEAN := FALSE;
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begin
PUT_LINE("Enter the integers to be sorted.");
PUT_LINE("Terminate input with CTRL-D");
while not END_OF_FILE and not ARRAY_FULL loop
if N_ELTS_READ = S'LENGTH then
PUT_LINE("Too many!");
ARRAY_FULL := TRUE;
else '
N_ELTS_READ := N_ELTS_READ + 1;
GET( S(N_ELTS_READ) );
end if;
end loop;
SIZE := N_ELTS_READ;
end READ;
procedure SORT (S :in out INTEGER_ARRAY) is
SMALLEST_POSN : INDEX;

function SMALLEST (T : INTEGER_ARRAY) return INDEX is
-- gives the index number for the smallest element in T
M : INDEX := T'FIRST;
begin
for | in TFIRST + 1 .. T'LAST loop
if T(1) < T(M) then
M=
end if,
end loop;
return M;
end SMALLEST;

procedure SWAP (|, J : in INDEX;
T :in out INTEGER_ARRAY) is
-- swap the Ith and Jth elements in array T
TEMP : INTEGER,;

begin
TEMP = T(l);
() =TU)
TW) :=TEMP;
end SWAP;
begin

for K in S'TRANGE loop
SMALLEST_POSN := SMALLEST(S(K .. S'LAST));
SWAP(K, SMALLEST_POSN, S);
end loop;
end SORT;

procedure WRITE(S : in INTEGER_ARRAY) is
begin
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NEW_LINE;
PUT_LINE("The numbers are:");
for K in S'RANGE loop
PUT( S(K) );
end loop;
NEW_LINE;
end WRITE;
begin
READ (A, N_ELTS);
SORT (A(1.. N_ELTS));
WRITE (A(1 .. N_ELTS));
end SORT_EXAMPLE;

Clearly, this program is longer (with regard to the number of lines) than the
program we wrote in Section 5.9. However, it is not always the case that a short
program is a ‘good’ program. The clarity of a program is determined by its
structure. In general a program that is developed from the top down with sub-
programs ‘has a better structure: it does not matter that it is a few lines longer
than it would be without subprograms.

6.5 The scope of a declaration

It has been shown that a local variable in a subprogram can be considered as a
temporary store that exists only while the subprogram is called. That is, the dec-
laration of the local variable has only a certain scope, which extends over the
subprogram in which it is declared. It is not only the declarations of variables
that have a particular scope; all sorts of declarations, such as those of types, con-
stants and subprograms, have an associated scope so that what has been declared
is only known and only used in a certain part of the program: it is said that they
are only visible in that part of the program. There are well-specified rules in Ada
for declaration scope; these are analogous to the corresponding rules in other
closely related languages such as Pascal.
To explain the rules we use the outline nonsense program:

procedure P1 is
typeTis ...;
A : constant INTEGER := 100;
B :INTEGER := 2 « A;
procedure P2 (X: INTEGER) is
A : FLOAT,

procedure P3 (C:T)is
X : FLOAT;
begin
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end P3;
begin

end P2;

procedure P4 (I : INTEGER) is
Q:T,
begin

P2(...,...); -- call of P2

end P4;
begin

end P1;

In the program there are procedures P1, P2, P3 and P4. P1 is the main program
and is the outermost procedure. The declarations of P2 and P4 are within P1 and
the declaration of P3 is within P2,

The main rule is that the scope of a declaration extends from the place
where it is made to the end of the subprogram it is in. This means, in our example,
that the variable Q and the formal parameter | are only known in the procedure
P4. If attempts are made to use Q or | outside P4 a compile-time error will result.
The fact that a declaration’s scope begins where the declaration is made means
that reference may not be made to something that is declared later in the program,
even if it is declared in the same subprogram. In the example, it is important
that A’s declaration comes before that of B because A is used in the declaration
of B.

The scope of a declaration

A declaration applies from the place where it is made
to the end of the subprogram in which it is made.

The next rule states that something declared in a subprogram P is also
visible in all subprograms declared within P. The type T in our example is thus
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visible not only in P1 but also in P2 (and therefore also in P3) and in P4,
because P2 and P4 are declared within P1. Another example is that P2 is visible
in P4 and can be called there, because both P2 and P4 are declared in P1, and
P2 is declared before P4.

Global declarations

A declaration that applies in a subprogram P also
applies in all the subprograms to P.

The two rules can also be expressed thus: from the outside it is impossible
to ‘see into’ a subprogram and get at the declarations that are made there; it is
possible, however, to ‘see out from the inside’ of a subprogram and get at
declarations made outside it.

These rules mean that in a subprogram it is possible to access variables
that are declared in an enclosing subprogram. For example, the variable B in P1
is accessible from P4. The variable B is a global variable to P4. When pro-
gramming, it is often very tempting to use global variables in a subprogram and
change them, thereby avoiding the use of parameters to the subprogram. The use
of global variables is, however, contrary to the ideals of good programming
style, because using them leads to programs being confused and difficult to
understand. Then the risk of errors in the program increases and, at the same
time, it becomes more difficult to find the errors in a program. From the calling
program it is impossible to see that variables might be changed within a
subprogram. Unexpected and elusive side effects can result. The rule is there-
fore: never use global variables. (As with all rules, there have to be exceptions.
If subprograms are written in a package, under certain circumstances global
variables can be used without offending the rules of good programming style.)

In Ada 95, as we have already seen, declarations can be placed in arbitrary v
order: the declarations of variables do not have to be placed before declarations
of subprograms. This can be used to eliminate the risk associated with global
variables. If, for example, variable B is declared after the declaration of P4 in
the example, then none of the procedures P2, P3 or P4 can mistakenly get at B. A

Global variables

In a well-structured program, never, or virtually
never, use global variables.

It is forbidden to declare several items with the same name in a particular
subprogram (except for subprograms and enumeration literals). However, the



260 Subprograms

same names may be used in declarations that are in different subprograms. In
the foregoing example, the name A appeared in both P1 and P2 and the name X
in both P2 and P3. If the same name is used in two declarations in different sub-
programs the two declared quantities have nothing to do with one another: they
only have the same name. The name A, in our example, is used to denote an
integer constant in procedure P1 but a floating point variable in P2.

Even if the scope of a declaration extends to the end of the subprogram
in which it is declared, the declared quantity can be ‘covered’ in an enclosed
subprogram, if this subprogram contains a declaration where the same name is
used. In P2 (and P3), for example, the constant A in P1 cannot be accessed. If
the name A is written in P2 or P3 it is the variable A that is declared in P2 that
matters. In the same way, P2’s formal parameter X cannot be reached within P3
because there it is ‘covered’ by the floating point variable X.

Using the same names

e Quantities that are declared in the same sub-
program must have different names (with the
exception of subprograms and enumeration literals).

¢ Quantities that are declared in different sub-
programs may have the same name.

The rules mean that if global variables are avoided then each subprogram can
be considered as a separate ‘building block’ in the total program. Contact
between each ‘building block’ and its surroundings (that is, the other subpro-
grams) occurs through the subprogram’s specification. Within the subprogram,
any name can be used for declared quantities: it makes no difference whether
the name appears in another subprogram. Subprograms can thus be developed
independently of one another.

For example, in the program we wrote to compute the binomial coeffi-
cients, we could have used the names N and K for the formal parameters to the
function BIN_COEFF; this might have been more natural than calling the para-
meters P and Q. This would not have been affected by the fact that the names N
and K were also used in the procedure PRINT_TABLE. N and K within
BIN_COEFF would be considered different from N and K in PRINT_TABLE.

6.6 Overloaded subprograms

To declare several quantities with the same name in a subprogram is normally
forbidden, but in Ada, to declare several subprograms with the same name in the
same subprogram is allowed, and they are known as overloaded subprograms.
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To explain when this is allowed, we first need some definitions. (In Ada 95 a
different terminology is used, but the meaning of the rules is the same.)

e By base type of a subtype we mean the type from which this subtype is
derived. (For example, the base type of NATURAL is INTEGER.) The
base type of an ordinary type that is not a subtype is the type itself. (For
example, the base type of INTEGER is INTEGER.)

e If two subprograms have the same number of parameters, and if the
corresponding parameters have the same base types, we say that the two
subprograms have the same parameter type profile.

e Two subprograms have the same profile (parameter and result type profile)
if they are both procedures with the same parameter type profile, or if they
are both functions with the same parameter type profile and, in addition,
their results have the same base type.

If we write the following subprogram specifications, for example:

procedure A (P1: in FLOAT, P2 : in out INTEGER)
procedure B (X: in out FLOAT; Y: out INTEGER)
function C (U : POSITIVE) return CHARACTER
function D (V : INTEGER) return CHARACTER

then A has the same profile as B, and C has the same profile as D. Note that the
two formal parameters do not need the same names for the two subprograms to
have the same profiles. Nor does it matter whether the corresponding parameters
are of the same kind in the sense of in, in out or out.

Several subprograms may have the same name in a subprogram (or a
package) if these subprograms have different profiles:

type VECTOR is array (INTEGER range < > ) of FLOAT;

function MEAN (X1, X2 : FLOAT) return FLOAT is
begin

return (X1 + X2) / 2.0;
end MEAN;

function MEAN (V : VECTOR) return FLOAT is
SUM : FLOAT := 0.0;
begin
for | in V'RANGE loop
SUM = SUM + V(I);
end loop;
return SUM / FLOAT(V'LENGTH);
end MEAN;

Here we have two different functions with the same name: the two functions are
overloaded. The functions have different profiles, in that the first takes two para-
meters of type FLOAT and the second takes one parameter of type VECTOR. If
we assume the variables MV, X, Y and W are declared as follows:
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MV : FLOAT;

X :FLOAT :=6.5;

Y :FLOAT :=4.5;

W :VECTOR (1..3):=(0.5, 3.0, 1.0);

then we can call the function MEAN:

MV = MEAN(X, Y); -- MV takes the value 5.5
MV := MEAN(0.0, 1.0); -- MV takes the value 0.5
MV := MEAN(W); -- MV takes the value 1.5
MV := MEAN( (1.1, 1.3) ); -- MV takes the value 1.2

In the first call there are two actual parameters, X and Y, which both have type
FLOAT. These actual parameters match with the formal parameters for the first
function MEAN, but not with the formal parameter of the second. The compiler
‘understands’ that we intend to call the first of the subroutines MEAN. The
second call also matches with the first function but not with the second. The last
two calls, however, do not match with the first function. They suit the second
instead, and that will be called.

Overloaded subprograms

Two subprograms that are in the same subprogram
may have the same name (the name may be over-
loaded) if they have different profiles, that is, different
base types for parameters, and for the result in the
case of functions.

The reason why overloaded subprograms must have different profiles is
that the compiler must be able to choose which subprogram is intended for use
every time a call is made. Only one subprogram can be suitabie, otherwise the
program would be ambiguous. (If none of the subprograms with the same name
fit the bill, then the program is in error and an error message will be given during
compilation.)

We have already called overloaded subprograms many times. In the
package TEXT_IO and BASIC_NUM_IO there are several procedures with the
name PUT, for example. There are several procedures PUT with different
profiles: output of text does not use the same procedure as output of a floating
point number, to give one example. In the following statements four different
procedures are being called:

PUT("Hello"."); -- The parameter has type STRING
PUT(‘a’); -- The parameter has type CHARACTER
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PUT(l); -- The parameter has type INTEGER
PUT(X); -- The parameter has type FLOAT

Because the compiler has always chosen the correct PUT procedure we have not
needed to worry that there are several versions. In the same way, TEXT_IO and
BASIC_NUM_IO have several subprograms called GET.

The use of overloaded subprograms is thus a convenient way of carrying
out similar operations on objects with different types. It is still possible to use
the same name for the operation rather than inventing different names for the
subprograms for each type.

6.7 Named parameter association

The normal procedure for calling a subprogram is to list all the actual parame-
ters, separated by commas. The first actual parameter is associated with the first
formal parameter, the second actual parameter is associated with the second
formal parameter and so on. Let us now write a procedure MULTIPLE_WRITE
that has the task of writing out a particular character a number of times at the
terminal, each time on a new line. As parameters, MULTIPLE_WRITE will have
the character to be printed and an integer that specifies the number of times it
should be written:

procedure MULTIPLE_WRITE (CHAR: CHARACTER,;
N : INTEGER) is
begin
forlin1..Nloop
PUT(CHARY); NEW_LINE;
end loop;
end MULTIPLE_WRITE;

If we want to write the character ‘x’ three times, we would use the procedure
call:

MULTIPLE_WRITE('X', 3);

Then the first actual parameter ‘x’ will be associated with the formal parameter
CHAR and the second actual parameter, 3, will be associated with the second
formal parameter N. This can be called positional parameter association
because the position of an actual parameter in a procedure call determines the
formal parameter with which it is associated.
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Positional parameter association

e The call appears thus:
subprogram_name(al, a2, ... an)
o The actual parameters are listed in the call.
e Normally, all the actual parameters are listed.

e The first actual parameter is associated with the
first formal parameter, the second actual parameter
with the second formal parameter, etc.

In Ada there is another method of associating the actual parameters with
the formal parameters in a subprogram call. It is possible to state the name of
a formal parameter the actual parameter is to be associated to. We call this
named parameter association. How it works is shown in the following call to
MULTIPLE_WRITE:

MULTIPLE_WRITE(CHAR => 'x', N => 3);
The term:
CHAR =>'X'

means that the actual parameter ‘x’ should be associated with the formal
parameter CHAR. Similarly,

N=>3

means that the actual parameter 3 should be associated with the formal parame-
ter N. One thing gained by writing a call in this way is that it is clearer (if the
formal parameters have good names). Someone reading the program later does
not need to know exactly the formal parameters used or the order in which they
appear, before being able to understand the significance of the call.

When named parameter association is used the parameters do not need to
be listed in any special order. The previous call could have been written:

MULTIPLE_WRITE(N => 3, CHAR => 'x);

and this would have been equally correct.
In addition, positional and named parameter association can be mixed.
Our call could also be written, for example:

MULTIPLE_WRITE('X', N => 3);
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Named parameter association
The call appears thus:

subprogram_name(name => al, name => a2, ... );
The parameters may be listed in any order.

When the two parameter associations are mixed in a call, the positional
associations must be written first in their correct order. Named parameters can
then be written in arbitrary order. When one named parameter association has
been used in a call, all the remaining parameters in the call must also be named.
For example, it is wrong to write:

MULTIPLE_WRITE(CHAR => 'x, 3); -- ERROR!

One question that arises is whether all the parameters must be listed in a call and
what happens if they are not. First, we can state that in the case of out and in
out parameters they must all be listed in a call. At the end of the call copying to
the actual parameters, which must be variables, will occur and this cannot happen
if actual parameters are missing.

In the case of in parameters, however, it is possible in Ada to omit actual
in parameters. The condition allowing this to be possible is that a value is given
in the subprogram that can be used if no actual parameter is given. To show
how this works we can make a simple amendment to the procedure
MULTIPLE_WRITE:

procedure MULTIPLE_WRITE (CHAR : CHARACTER,;
N :INTEGER :=2) is
begin
forlin1 .. N loop
PUT(CHARY); NEW_LINE;
end loop;
end MULTIPLE_WRITE;

Here we have given the formal parameter N a value which is to be used if there
is no actual parameter in a call. Such a value, used if no explicit value is stated,
is called a default value. Thus the formal parameter N has a default value of 2.

Now the actual parameter that is to be associated with the formal para-
meter N may be omitted. We can write, for example:

MULTIPLE_WRITE(CHAR => '+');

This call means that two plus signs will be written. The call could also be
written:
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MULTIPLE_WRITE('+);
and again two plus signs will be written.

Of course, an actual parameter can still be associated explicitly with N if
necessary. The call:

MULTIPLE_WRITE(CHAR =>'+', N => 10);

will write out 10 plus signs and the default value, the formal parameter N, is of
no significance.

Parameters with default values

® An in parameter to a subprogram may be given
a default value when the formal parameter is
specified:

(... ; parameter_name : in type = default_value; ... )

e Parameters with default values may be omitted
from calls. Then the formal parameter is given the
default value.

e In out parameters and out parameters may not
have default values.

An in parameter may not be omitted from a call if there is no default
value for the corresponding formal parameter. For example, it is wrong to write:

MULTIPLE_WRITE(N => 5); -- ERROR!

When we have called the procedures PUT in the packages TEXT_IO and
BASIC_NUM_IO we have made frequent use of named parameter association.
We have also made use of the fact that certain in parameters to PUT have default
values. For example, we have written calls such as:

PUT(l, WIDTH => 5),
where we have used positional parameter association for the first formal para-
meter and named parameter association for the formal parameter WIDTH. This
call could also have been written:

PUT(ITEM => |, WIDTH => 5);

because the first formal parameter to all the PUT procedures is called ITEM.
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When we have written a simple call, such as:
PUT(l);

we have made use of the fact that there is a default value of WIDTH in PUT.
In the same way, the formal parameters EXP, FORE and AFT also have default
values in the version of PUT that is used to write out floating point numbers.
When we make a call such as:

PUT(X);

these default values will be used.

6.8 Recursive subprograms

It has been shown that one subprogram can call another. Furthermore, a subpro-
gram can call itself, and such a subprogram is called a recursive subprogram.

It is appropriate to use recursive subprograms to solve certain types of
problem. The problems for which recursion is most useful are those which are
defined from the start in a recursive way: this occurs often in mathematical cal-
culations. The most common example of a recursive subprogram — an example
that occurs in almost all books about programming — is a function to calculate
the factorial of a number n. This is a problem we have studied a couple of times
already. We then used iteration to solve the problem but now we shall see how
recursion can be used instead. The factorial of a number n, written n!, can be
defined by:

o]l ifn =0
TTI1IX2X3X...Xn ifn>0

Another way of writing the definition is:

1 ifn =0
n! =
nn-1)! ifn >0

There is one case where the value is given (that is, 0! = 1) and one case where
induction is used to express the solution in terms of values already defined.
This second definition leads naturally to the following Ada function:

function FACTORIAL (N : NATURAL) return POSITIVE is
begin
if N =0 then
return 1;

267
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else
return N ~ FACTORIAL(N — 1);
end if;
end FACTORIAL,;

The parameter N with subtype NATURAL ensures that the case N < 0 can never
occur. If the function is called with an actual parameter that is less than 0, a run-
time error will result at the call.

We see that on the sixth line the function calls itself. To see what happens
when the function is called, assume we have a program with the statement:

M := FACTORIAL(3);

where the variable M has type POSITIVE. Figure 6.8 shows the situation at the
start of the call. As before, the formal parameter N can be thought of as a
temporary store and the value 3 is copied to it.

Because N is not 0, the second of the two return statements will be
executed. Here a new call to the function FACTORIAL occurs and the actual
parameter takes the value 2, as illustrated in Figure 6.9. We get a new instance
of the function FACTORIAL and in it a new temporary store is created, also
called N. When the new instance of FACTORIAL is called, the value 2 is copied
to the new store. Note that we now have two different stores N with different
values. When the new instance of FACTORIAL is called, execution of the first
instance is temporarily suspended waiting for the new instance to finish execution
and return a result. It works like an entirely normal function call.

When the second instance of FACTORIAL is executed it will again be the
else part of the if statement that is executed, because N in the second instance of
FACTORIAL has the value 2. This results in a third call to FACTORIAL. A further
instance of the function is generated and it creates a third temporary store called
N, this time the value 1 being placed in it. When the call occurs, execution in the
second instance is temporarily suspended in the normal way, until execution of
the third instance is finished and has given a result value. Figure 6.10 illustrates
the situation.

M:=FACTORIAL(3);

FACTORIAL
N

-0

Figure 6.8
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M:=FACTORIAL(3);
3
N ]
- El N+ FACTORIAL(N —1)
2
N
—Ha]

Figure 6.9

Now the third instance of FACTORIAL will be executed. Again, the second
of the return statements will be executed because N here has the value 1. Thus
we get a fourth call to FACTORIAL, a fourth instance of the function is made and
a fourth temporary store with the name N is created. When the call to the fourth
instance of the function occurs the value 0 will be copied into this N. Execution
of the third instance will, as with the two earlier instances of FACTORIAL, be
temporarily suspended.

Execution now continues in the fourth instance of the function FACTORIAL,
as illustrated in Figure 6.11. Since the formal parameter N has the value 0, this

M:=FACTORIAL(3);

3
N
3] 1
Y N+FACTORIAL(N — 1)
2 N
> E] ]
Y N * FACTORIAL(N — 1)
! N

Figure 6.10
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1
M :=FACTORIAL(3);

3
N |
> EI r N*FACTORIAL(N — 1)
2
N |
> '_|_2_| r N*FACTORIAL(N — 1)
1 v —
~+—{1] v N* FACTORIAL(N - 1)
)
0 N 1
> @ -

Figure 6.11

time the first return statement will be executed. As a result the function
will give the value 1. This value is returned to the third instance of the function
FACTORIAL.

In the third instance of FACTORIAL the function call:

FACTORIAL(N-1)

now has the value 1. Execution of the third instance can continue and the
multiplication:

N » FACTORIAL(N-1)

is performed. The result is 1 because N has the value | in this instance. Thus the
result given by the third instance of FACTORIAL will have the value 1. This
value is returned to the calling subprogram, that is, to the second instance of
FACTORIAL, as shown in Figure 6.12. Now execution of the second instance
can be completed. The function call:

FACTORIAL(N-1)
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|
M:=FACTORIAL(3);
3
N 1
~—3] N * FACTORIAL(N ~ 1)
2 N :
> 2 N+ FACTORIAL(N —1)
y l——-k——l
1 1
N
1]

Figure 6.12

gets the value 1 and the expression:
N » FACTORIAL(N-1)

takes the value 2 since N has the value 2 in the second instance. Thus the
second instance of FACTORIAL returns the value 2 to the first instance (see
Figure 6.13).

M:=FACTORIAL(3);

3] N * FACTORIAL(N — 1)

A

Figure 6.13
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Finally, the first instance of FACTORIAL can be resumed. The function
call:

FACTORIAL(N-1)

gets the value 6 since N has the value 3. Thus the first instance of the function
FACTORIAL will give the calling program the value 6 as its result. This means
that the variable M in our original statement:

M := FACTORIAL(3);

takes the value 6, as shown in Figure 6.14.

In this way we are able to visualize what happens in a call to a recursive
subprogram. The important thing to note is that several instances of the subpro-
gram will exist and that each instance will have its own temporary stores for its
formal parameters and any local variables.

We shall now consider a function FIBONACCI that calculates so-called
Fibonacci numbers. These are a series of numbers that were originally used in a
model to describe the growth of a population of rabbits. The first numbers in the
series are 1, 1,2, 3, 5, 8, 13, 21, 34, ... . They are defined as follows:

)1 ifn =lorn=2
Jn= fo-2+fu-1 ifn >2

Recursive subprograms
e A subprogram that directly or indirectly calls
itself.

o During execution there are as many instances of
the subprogram as the number of calls made.

e Each instance has its own unique stores for formal
parameters and local variables.

M:=FACTORIAL(3) ;
S —
3 A

Figure 6.14
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. . . . er
It is easy to write a recursive function for calculating the Ntk% Fibonacci numtl;r
based on this definition. The number N is given to the function as a parameter:

function FIBONACCI (N : POSITIVE) return POSITIVE is

begin
if N=1o0orN=2then
return 1;
else
return FIBONACCI(N-2) + FIBONACCI(N-1);
end if;

end FIBONACCI;

We see that this function contains two recursive calls. If it would help, we could
make drawings as before to show what is happening, but even for small values
of N there are many instances of the function FIBONACCI and there would be
much to draw. This function does not evaluate a Fibonacci number in the most
efficient way but it illustrates nicely the fact that a problem specified recursively
from the start can easily be solved using a recursive subprogram. Writing the
function FIBONACCI is largely a question of rewriting the definition.

Even certain problems that are not initially defined in a recursive way can
be solved easily with recursion. But first, the problem has to be reformulated
recursively. It can best be demonstrated by the problem of calculating the sum
of the components of a vector of floating point numbers. We have already solved = ~e==-
this problem using iteration in Section 6.1, where we wrote a function SUM, but
here we shall show how the problem can be solved using recursion.

The sum of the components of a vector V with N components can b
defined in the following way:

sum = 0, if the vector has no components (that is, N = 0)
V(1) + the sum of the components of the vector vV(Q2..’

This definition provides a direct basis for writing the function:

function SUM(V : VECTOR) return FLOAT is
begin
if VLENGTH = 0 then
return 0.0;
else
return V(V'FIRST) + SUM( V(V'FIRST + 1
end if;
end SUM;

In the second return statement a recursive call

parameter to this call is the vector formed from ¢
of V.

\\

S
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end if;
end BACKWARDS;

The same number of instances of this procedure will exist as there are charac-
ters in the text, plus one. The first instance of the procedure reads in the text’s
first character and saves it in the local variable CHAR. Its execution will then be
suspended temporarily while it makes its recursive call. Execution will not be
resumed until all the other instances of the procedure have finished being
executed.

When execution reaches the last instance of the procedure BACKWARDS,
the whole text has been read in. This last instance will observe that there is no
more text to read (END_OF_FILE is TRUE) and will therefore do nothing but
return immediately to the last but one instance of the procedure. The last but one
instance of the procedure has read the final character of the text and writes it out.
Thus the last character read in is written out first.

Eventually, control is returned to the first instance of the procedure
BACKWARDS, which will write out the character that it saved. This means that
the first character in the text will always be written out last.

In the examples we have looked at, recursion has always occurred
because a subprogram called itself. It is also possible to have indirect recur-
sion. A subprogram A can call another subprogram B which, in turn, calls
A. Then A and B are said to be mutually recursive. (It is even possible for
recursion to occur through several stages, for example, A calls B which calls C
which calls A.)

We can illustrate mutual recursion with the example of two subprograms
that determine whether a positive number is odd or even. This problem can, of
course, easily be solved in Ada by writing the Boolean expression:

Nmod2=1

which has the value TRUE if the integer variable N is odd. To demonstrate
mutual recursion, however, we shall assume that we do not have access to the
operators /, rem or mod. The solution to the problem is then obtained with the
algorithm:

(1) If Nisequal to O then N is not odd.
(2) Otherwise, N is odd if N - 1 is even.

If we assume access to a function EVEN that determines whether a number is
even or not, we can make a direct translation into Ada:

function ODD (NUMBER : NATURAL) return BOOLEAN is
begin
if NUMBER = 0 then
return FALSE;
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else
return EVEN(NUMBER - 1);
end if;
end ODD;

The function EVEN is, in structure, like the function ODD and can easily be
written:

function EVEN (NUMBER : NATURAL) return BOOLEAN is
begin
if NUMBER = 0 then
return TRUE;
else
return ODD(NUMBER - 1);
end if;
end EVEN;

As we see, this function uses the function ODD. The question remains: ‘How
should the two functions be placed in relation to one another?’ If the function
ODD is placed before the function EVEN it is possible to call ODD from EVEN.
But then, it is not possible to call EVEN from ODD because ODD has not yet
been declared when the call is made. If the functions are written in the other
order, the same problem arises but the opposite way round.

The solution lies in first writing a separate subprogram specification
for one of the functions. If we start by declaring a separate subprogram specifi-
cation for ODD our declarations will look like this:

function ODD (NUMBER : NATURAL) return BOOLEAN,;
function EVEN (NUMBER : NATURAL) return BOOLEAN is

begin
if NUMBER = 0 then
return TRUE;
else
return ODD(NUMBER - 1);
end if;
end EVEN;
function ODD (NUMBER : NATURAL) return BOOLEAN is
begin

if NUMBER = 0 then
return FALSE;
else
return EVEN(NUMBER - 1);
end if;
end ODD;
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On the first line the specification for ODD is given. In Ada, this permits the body
of a subprogram to be left until later. The complete declaration must be made
later, and note that the specification must then be repeated. Since ODD is spec-
ified on the first line it is now known by EVEN and can be called from within
EVEN.

Separate subprogram specification

procedure name(parameters);
or:
function name(parameters) return result_type;
o May appear anywhere among the declarations.

e The complete subprogram body (including the
specification) must be written later.

Separate subprogram specifications are always allowed, not only for
recursive subprograms. Their specifications can be put anywhere among the
declarations.

6.9 Functions as operators

In Ada, as we have seen, there are many built-in operators. The operator + exists
for both integer and floating point types, for example, and the operator = is
defined for all types met so far. When we declare our own, more complicated,
types we may also like to define operators for them. Let us take, as example, the
type VECTOR which we have already used:

type VECTOR is array (INTEGER range < >) of FLOAT;
We can declare variables of type VECTOR:

X, Y, Z : VECTOR(1 .. 5);
In Section 6.1 we wrote a function ADD that could be used to add two vectors.
The following statement, for example, adds the vectors X and Y and the result is
assigned to the vector Z:

Z := ADD(X, Y);

The meaning is quite clear, but how much more elegant it would be to write:



278 Subprograms

Z=X+Y,

This is not immediately possible because the operator + is not defined for the
type VECTOR, but it is possible in Ada to define operators for any type. This is
achieved using functions that, instead of having ordinary identifiers as names,
are given operator names.

For example, we shall alter the function ADD so that it is called “+” instead:

function "+" (V1, V2 : VECTOR) return VECTOR is
TEMP : VECTOR(V1'RANGE) := V2;
begin
for | in V1'RANGE loop
TEMP(l) := TEMP(l) + V1 (1);
end loop;
return TEMP;
end "+";

The function “+" is now called in the same way as if it were an operator. Instead
of writing, as before:

ADD(X, Y)
we can now write:
X+Y

Note that the two parameters are written before and after the function’s name.
Here are some examples of different ways in which the function "+" can be
called:

Z=X+Y,

Z=X+Y+Z -- the function is called twice
X:=X+(1.0, 2.0, 3.0, 0.0, 1.5);
Y:=(1.3,35,6.7,08,-34) + (0.3, 5.6, 1.2, 0.0, 4.5);

The third and fourth examples show that the parameters can also be array
aggregates. The compiler ‘understands’ that we do not mean the ‘ordinary’ plus
operator but the one we declared ourselves because the operands have type
VECTOR. We can say that we have overloaded operators in exactly the same
sense as the overloaded subprograms we discussed earlier. If we write the
expression:

1+J

where | and J are integer types the compiler would choose the ‘ordinary’ plus
operator, in spite of the fact that we have defined another. As many operators as
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necessary may be declared with the same name, provided their profiles are
different (see Section 6.6).

There are only certain operator names that can be used as declared oper-
ators, and they are the normal operator names we studied in Chapter 3, namely:

and or xor

= < <= > >=

+ - & -- normal + and —
+ - -- unary + and —
* / mod rem

*k abs not

The operators that normally have two operands, for example *, and and the
ordinary + operator, must also have two operands if new versions are declared;
that is, the operator functions must have two parameters. The operators abs, not
and the unary versions of + and — should have one operand.

Note that the operator /= is missing from the set of operators shown
above. In Ada 83 it is actually not permitted to declare this operator explicitly
because it is declared automatically if an equality operator, =, is declared. Since
the equality operator exists automatically for all normal types, it may not
normally be declared in Ada 83: it is only allowed for limited private types that
are used in conjunction with packages (see Section 8.8).

In Ada 95 an explicit declaration of an equality operator, =, is permitted for all v
types, not only for private types. If such an equality operator is explicitly
declared and its result type is BOOLEAN, then a corresponding inequality oper-
ator, /=, is automatically defined. If, on the other hand, an equality operator has
been explicitly declared but its result is not of type BOOLEAN, then no inequal-
ity operator is automatically defined, but it is permitted to declare one explicitly. A

6.10 Interface to other languages

From an Ada program it is possible to call a subprogram written in another pro-
gramming language. Furthermore, in Ada 95 it is possible to construct functions
and procedures that can be called from a program written in a foreign language.

First we shall demonstrate how a subprogram written in another language
can be called from an Ada program. To accomplish this we use a so-called
pragma. An example will show the details. Suppose that we want to call the
function EXP, which is written in the programming language FORTRAN. Then
we would give the following declaration in the Ada 83 program:

function EXP (X:FLOAT) return FLOAT;
pragma IMPORT(FORTRAN, EXP});
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The function EXP can now be called in the normal way. For instance we can
make the call EXP(Y).

An extra parameter can be given to the IMPORT pragma. This parameter
is a text string containing a so-called external name. The external name is the
name of the foreign subprogram in its own language. If, for example, we want to
call a function FC, written in the C language, and the true name of the function
is fun, then we can write:

function FC (LINTEGER) return INTEGER;
pragma IMPORT(C, FC, "fun");

If no external name is given, the name is assumed to be the same as the name in
the Ada program.
In Ada 83 the pragma INTERFACE should be used instead of IMPORT.
The pragma IMPORT can also be used to get access to a variable declared
in a module written in a foreign language. If, for example, we want to use a
global variable ERRNO, declared in a C module, we could give the declaration:

ERRNO: INTEGER;
pragma IMPORT(C, ERRNO, “errno");

In Ada 95 there is also a pragma EXPORT, which can be used to make Ada sub-
programs accessible from programs written in other languages. If we want to
write a procedure ADA_PROC, for example, which should be callable from a C
program, we can declare it as follows:

procedure ADA_PROC(I:INTEGER);
pragma EXPORT(C, ADA_PROC, "ada_proc");

When mixing different languages we must be very careful and make sure
that the types of the parameters match. In Ada 95 there is a standard package
INTERFACES. This package has child packages which include type declarations
that simplify the interface to various foreign languages. The package INTER-
FACES.C is perhaps of special interest. It contains declarations of all standard
types in C and functions that convert between these types and Ada’s types.
There are also the packages INTERFACES.C.STRINGS, with type declarations
and utility functions allowing an Ada program to handle text strings in C for-
mat, and INTERFACES.C.POINTERS, which makes it possible to handle point-
ers in the same way as in C. To be safe, the examples presented here should have
used the type int, which is declared in the package INTERFACE.C, instead of the
type INTEGER.
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6.11 Arguments to the main program

When we start a program from a terminal or a command window, we normally
type the name of the program. Some operating systems, MS-DOS and UNIX for
instance, also allow parameters, or arguments as they are usually called, to be
given to the program. These arguments are typed after the program name. The
command

> demo -x /r filet

for instance, means that the program with the name demo shall be run and that
the program shall be given the three arguments -x, /r and filef.

In Ada 95 there is a standard package ADA.COMMAND_LINE which

makes it possible to get access to the arguments in the main program. Three
functions are declared in this package. The function COMMAND_NAME returns
the program name (a STRING), ARGUMENT_COUNT returns the number of
arguments, and ARGUMENT, which shall have an argument number as parameter,
returns the corresponding argument (a STRING). As an example, the following
program prints its name and its arguments:

with TEXT_IO, ADA.COMMAND_LINE;

use TEXT_IO, ADA.COMMAND_LINE;

procedure DEMO is

begin
PUT_LINE("Program name: " & COMMAND_NAME);
for | in 1..ARGUMENT_COUNT loop

PUT_LINE(ARGUMENT(I));

end loop;

end DEMO;

EXERCISES

6.1

6.2

6.3

Write a function to evaluate the sign of an integer in the following way. The function
should return as its result the value 1 if the integer is greater than 0, the value O if the
integer is equal to 0, and the value —1 if the integer is less than 0.

Write a function that receives a character in the interval ‘A’..*Z’ as parameter. As its
result the function should give the corresponding lower-case letter.

Write a function that uses the following Maclaurin series to calculate the value of e*.

D
?' + ?I + z'+

Exclude terms that are less than 10~7 from the sum.

e"=l+% +
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6.4

6.5

6.6

6.7

(a)  Euclid’s algorithm for evaluating the greatest common divisor of two positive
integers m and n can be described as follows:

(1) Divide m by n and denote the remainder by r.
(2) If r =0 the evaluation is finished and the result is in ».

(3)  Otherwise, set the value of m to that of n and the value of n to that of r,
and return to step 1.

Use this algorithm to write a function GCD that evaluates the greatest common
divisor of two positive integers.

(b)  Write a program that reads in an arbitrary number of pairs of positive integers
and writes out the greatest common divisor for each pair. Use the function
GCD.

To calculate the square root of a number x we can use Newton’s method as follows.
Start by guessing a number g = 0. When we guess g, we know that there must be a num-
ber /i such that g X h = x. (The number 4 can thus be written as h = x/g.) If we are very
lucky and made a good guess, g and h are approximately equal and we have found the
solution. In general, however, guesses are not that good. A new better guess is the mean
of g and h:

new guess =

&~

Now we can replace g by the new guess and calculate a new value of h. By taking the
mean of the new values of g and & we can get a still better guess, and so on.

Use this method to write a function that evaluates the square root of x. Use x/2 for
the first guess and let the guesses continue until the difference between two consecutive
guesses is less than 1076,

The amplitude of a vector (vy, v2, ... , v,) can be calculated using the formula:

l=\/vf+v§+v§+...+v;‘:
Write a function that can be used to calculate the amplitude of a vector whose components
are real numbers.
(a) Assume the vector has four components.
(b) Write the function so that it can calculate the amplitude of a vector with an arbitrary
number of components.

Two vectors (uy, us, ... , u,) and (vy, va, ... , v,) are said to be orthogonal if the sum:

n
Z u;vi
i=1

is equal to zero. Write a function that determines whether two integer vectors are orthogo-
nal. The function may assume that the vectors have the same number of components, but
the actual number should be arbitrary and they need not be numbered in the same way.
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(a)  Write a function that checks that a given text string contains an identifier according
to Ada’s definition (see Section 3.2). The function should give one of the results
TRUE or FALSE.

(b)  Use the function to write a program that reads in a line with a number of words
from the terminal and writes out how many of the words are allowed identifiers.
The words in the line are separated by one or more spaces.

Write a function that takes two text strings, T1 and T2, as parameters. The function
should determine whether T1 is a substring of T2. If this is true, the function should
return as a result the index of the start of the substring in T2. If T1 is not a substring of
T2 the function should return the value 0.

Hint: If T1 has the value 'ada’ and T2 has the value ‘Time enough to be a gadabout when
you have finished studying’, the function would give the value 22 as its result, assuming
that T2 is indexed from 1.

In an array of integers, ‘rotation to the right’ can be defined as an operation that moves
each element one place to the right and the last element into the first position. Write a
subprogram that rotates an array an arbitrary number of places to the right. The subpro-
gram should have two parameters, the array to be rotated and an integer that gives the
number of places to be rotated.

A list can be defined as a series of objects all of which are of the same type. A list can
have an arbitrary number of objects and can also be a null list, an empty list. Examples
of integer lists are:

(-1,-8,0,326) (15) 0

The last example is of an empty list. A list can be represented in Ada by an uncon-

strained array type.

(a)  Construct a subprogram that writes out an integer list in the same format as the
examples above, that is, enclosed in brackets and with the objects separated by
commas. There should be no spaces in the output. The list to be written is given
as a parameter to the subprogram.

(b) The head of a list can be defined as the first object in the list, and its tail is the
list that is formed if the head is removed. The list (17, -3,8), for example, has
head 17 and tail (-3,8). Note that the head is a single object and not a list. The
head and tail are not defined for an empty list. A list with only one object has the
empty list as tail.

Write two functions HEAD and TAIL that return the head and tail of a list,
respectively. Both functions should have a list of integers as parameter. If the
parameter is the empty list both functions should give a suitable error message.

(c)  Write a function SECOND that gets a list of integers as its parameter and as its
result returns the second object in the list. Make use of the functions HEAD and
TAIL from part (b).

When wage statistics are presented, a median value is often quoted. The median is the
‘central’ value of a collection of values; the number of values less than the median is the
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same as the number of values that are greater. One way to evaluate the median is to sort
all the values into numerical order and then select the value in the middle. If there is an
even number of values, the median is the mean of the two central values.

Write a program to read in a maximum of 1000 monthly wages and calculate and
print their median value.

A numerically controlled drilling machine drills a large number of holes in a piece to be
machined. A large part of the machine’s time is spent moving from one hole to another.
It is, therefore, desirable to minimize the moving time by making the machine drill holes
in an appropriate order. It is practically impossible to find the optimal solution to the
problem, even for a small number of holes, but here it is enough to find an ‘acceptably’
good method rather than the optimal one. One such method is that each time a hole has
been drilled the next hole for drilling is the one that is nearest (and still needs to be
drilled).

Write a program that reads in the coordinates of the holes to be drilled and then
writes them out in the ‘acceptable’ order, according to the algorithm outlined above. The
positions of the holes can be given as points in a two-dimensional coordinate system and
can be stored in two arrays, one for each of the x and y coordinates.

Thus the program should start with an arbitrary point and then choose the next point
by determining the one that lies closest and has not yet been dealt with, etc. The coor-
dinates of the points should be written out in the order they are to be drilled. The dis-
tance between two points (x1, y1) and (x2, y2) is given by:

s =\ - %) + (31 - 2P
Assume that the coordinates of the points do not exceed a ‘reasonable’ size, say 100.

Hint: to avoid moving to a hole that has already been drilled, replace the x and y coor-
dinates for each hole visited by a large number, for example, 10'°, so that such a point
is so far away from the rest that it will not be chosen again.

A trade union makes the following offer for a long-term wage agreement:

e The first year (year number 1) each employee will receive a monthly wage of
£790.

e In the following years (years number 2, 3, 4 and so on) there will be an increase
of 4% over the previous year’s wage, and an additional general rise of £30 per
month.

Write a recursive function that will calculate the monthly wage for a particular year
according to the scheme presented here. The only input parameter is to be the year
number.

One way of finding the greatest common divisor of two positive integers is to use the
definition:
m ifm=n
ged(mn) = { gedm—n,n) ifm>n
ged(m, n —m)  otherwise
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Write a recursive function GCD that evaluates the greatest common divisor of two positive
integers based on this definition.

The binomial coefficients can be defined in the following way:

n
0
n
o=
- -1
(Z)= Z—IIJ"' (nk ) O<k<n

Write a recursive function to evaluate the binomial coefficient (;)
Assume that 0 < j < i

=1

An efficient way of sorting the elements of an array goes under the name of quicksort.
The method can be described by the following recursive algorithm:

(1)  If the array has no elements or only one element, then it is sorted. Otherwise,
perform the following steps:

(2) Choose an arbitrary element in the array and call it k.

(3) Move the elements around in the array so that two groups are formed. The element
k should be placed between the two groups. All the elements that are < k should
be placed in the group to the left of k and all the rest in the group to the right.

(4)  Sort the part of the array to the left of k using this algorithm.
(5)  Sort the part of the array to the right of k using this algorithm.

Use the algorithm to write a procedure that sorts an array of integers. (Compare with
Exercise 5.11.)

Suppose you need to calculate the value of expressions of the form p?, where both p and
q are real numbers. (If ¢ were an integer there would be no problem because the opera-
tor ** could be used from the standard definition of Ada.) If you are running under Ada
95 then it is simple, since in the generic package ADA.GENERIC_ELEMENTARY_
FUNCTIONS there is an operator, =+, which permits the second operand to be a real
number.

Let us assume, however, that there is no available operator ** to use, but that there is
access to a mathematics package containing the basic functions EXP and LN. The task
is to use them to construct an operator ** of your own, where both operands are of type
FLOAT.

Hint: The normal mathematical formula for calculating logarithms involves: p4 = ¢4,



7 Data Structures

7.1 Multidimensional array types 7.4 Arrays of records
7.2 Arrays of arrays 7.5 Records with variants
7.3 Record types Exercises

In Chapter 5 we saw how Ada’s simple types could be used to describe simple
data objects — objects that can be represented by a single value, such as a
temperature measurement. We also saw that array types can be used to
describe a series of simple objects, such as text and lists. This chapter
describes two opportunities offered by Ada which enable more complicated
data structures to be described. First array types with several dimensions will
be used to describe tables and arrays of numbers; then record types will be
used to represent objects comprising several different components.
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7.1 Multidimensional array types

In the array types studied so far there has been an index that could be used to
select particular components from an array. When the array type has been
declared the type of the index has also been stated: either integer or enumera-
tion types are allowed. In this section we shall see how array type declarations
can be generalized so that an array type can have several indexes.

7.1.1 Constrained array types

Data is often presented in the form of a table. One example is the distance tables
found in road atlases, such as the one in Figure 7.1. The types studied so far are
not adequate for describing a data structure of this kind. Using an array type, it
is possible to describe a row or a column of such a table, but not the whole table.

It is possible to describe this sort of data structure in Ada with a multi-
dimensional array type. To illustrate this we shall make a type declaration to
describe the table in Figure 7.1. The distance between two cities is expressed as
a whole number of kilometres, which can never be negative, so one possibility
is to use the type NATURAL to describe a distance. Because this type represents
natural numbers in the abstract sense, however, it is rather too general; it is
better to declare a new integer type DISTANCE_TYPE:

type DISTANCE_TYPE is range 0 .. 40077; -- expressed in km
(The upper limit for possible distances has been chosen as the equatorial
circumference.)

The rows and columns of the distance table are named by cities, so we

declare an enumeration type CITY that ‘numbers’ them:

type CITY is (AMSTERDAM, BERLIN, LONDON, MADRID,
PARIS, ROME, STOCKHOLM);

Amster- Berlin London Madrid Paris Rome  Stock-

dam holm
Amsterdam 0 648 494 1752 495 1735 1417
Berlin 648 = O 1101 2349 1092 1588 1032
London 494 1101 0 1661 404 1870 1807
Madrid 1752 2349 1661 0 1257 2001 3138
Paris 495 1092 404 1257 0 1466 1881
Rome 1735 1588 1870 2001 1466 0 2620
Stockholm 1417 1032 1807 3138 1881 2620 0

Figure 7.1
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Now the declaration of a type DISTANCE_TABLE can be made:
type DISTANCE_TABLE is array (CITY, CITY) of DISTANCE_TYPE;

This is a two-dimensional array type. It differs from the one-dimensional array
types seen earlier in that two index types have to be stated. The term:

(CITY, CITY)

states that the array will have two indexes, both of type CITY.

Multidimensional array types

type A is array (index1, index2, ... indexN)
of element_type;

Index1, index2, ... are intervals of the form
first_value .. last_value, or the names of discrete
types.

Element _type is any (constrained) type.

Now a variable of type DISTANCE_TABLE can be declared:
DISTANCE : DISTANCE_TABLE;

This variable comprises a table, as above, with seven rows and seven columns.
Both columns and rows are ‘numbered’ with the enumeration type CITY. Each
element in the table is an integer of type DISTANCE_TYPE. If we make the
definitions as above, the contents of the variable DISTANCE are still undefined.
Assignment can be used to give a particular value to each element, by indexing,
exactly as in a one-dimensional array. For example, to insert the distance from
Berlin to Rome in the table, we could write:

DISTANCE(BERLIN, ROME) := 1588;
If we want to write out this distance we can use the statement:
PUT( (DISTANCE(BERLIN, ROME) );
Thus indexing for multidimensional arrays works in exactly the same way as for

one-dimensional arrays, the only difference being that more than one index must
be given.
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Indexing in multidimensional arrays
A(valuel, valuez, ... , valueN)

where value1 has index_type1, etc.

In a one-dimensional array it is possible to cut a slice, for example:

NAME(2 .. 5)

This is not possible in multidimensional arrays. Thus constructs such as:

DISTANCE(BERLIN .. ROME, AMSTERDAM)
DISTANCE(PARIS, LONDON .. STOCKHOLM)

are wrong.

-- ERRORI!
-- ERROR!

It may be practical to give values to the whole distance table at once, and
to do this a two-dimensional array aggregate can be used. If the table is to be
initialized at the same time as it is declared, we can write:

DISTANCE : DISTANCE_TABLE :=

(0, 648, 494, 1752, 495, 1735, 1417),

( 648,
( 494, 1101,
(1752, 2349, 1661,

( 495, 1092, 404, 1257,
(1735, 1588, 1870, 2001, 1466,
(1417, 1032, 1807, 3138, 1881, 2620,

0, 1101, 2349, 1092, 1588, 1032),
0, 1661, 404, 1870, 1807),

0, 1257, 2001, 3138),
0, 1466, 1881),
0, 2620),
0));

In the two-dimensional aggregate each row has been stated as an ordinary one-

dimensional aggregate. The expression:

( 494, 1101,

0, 1661, 404, 1870, 1807)

for example, states the value of ‘London’s’ row in the table. The rules for writ-
ing aggregates are the same as those we studied earlier. If, for example, we want
to set the whole table to zero we can write one of the following alternatives:

DISTANCE := (
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DISTANCE := ( AMSTERDAM =>(0,0,0,0,0,0,0),
BERLIN =>(0,0,0,0,0,0,0),
LONDON =>(0,0,0,0,0,0,0),
MADRID =>(0,0,0,0,0,0,0),
PARIS =>(0,0,0,0,0,0,0),
ROME =>(0,0,0,0,0,0,0),
STOCKHOLM =>(0,0,0,0,0, 0, 0));

DISTANCE := ( (others => 0),
(others => 0),
(others => 0),
(others => 0),
(others => 0),
(others => 0),
(others => 0) );

DISTANCE := (others => (others => 0) );

As with one-dimensional arrays, sometimes the compiler must be given help in
the form of a qualified expression giving the type of the aggregate:

DISTANCE := DISTANCE_TABLE'
(MADRID => (1752, 2349, 1661, 0, 1257, 2001, 3138),
others =>(0,0,0,0,0,0,0));

It is very common for nested loop statements to be used in connection with
multidimensional arrays. The following lines of program show how a distance
table can be printed at the terminal:

-- write out the table
for FROM in AMSTERDAM .. STOCKHOLM loop
-- write a line of the table
for TO in AMSTERDAM .. STOCKHOLM loop
-- write a distance in the current line
PUT(DISTANCE(FROM, TO), WIDTH => 6);
end loop;
NEW_LINE;
end loop;

The outer loop statement is run through once per row of table. On the first loop
the iteration counter FROM has the value AMSTERDAM, on the second it is
BERLIN, etc. Each time round, the outer loop statement writes out a line at the
terminal, the line being terminated by NEW_LINE. The inner loop statement is
executed once for each time through the outer loop. Each execution of the inner
loop statement involves seven iterations, the iteration counter TO having the
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value AMSTERDAM the first time round, BERLIN the second, and so on. This
means that the call to PUT will occur for each possible combination of FROM
and TO, that is, 49 times.

When a multidimensional array type is declared, in the same way as for
one-dimensional arrays, any discrete type, integer or enumeration type can be
used as the index types. The same rules apply. It is probably most common to
number the rows and columns in a two-dimensional array type with figures. For
example, we shall look at the simple game of noughts and crosses, played on a
3 X 3 board. One player has crosses and the other has noughts. They take it in
turn to place a piece on the board and the player who gets three of his pieces in
a line — a row, a column or a diagonal — is the winner. The game continues until
one player wins or the board is full. During the game a square on the board can
either be empty or contain a cross or a nought. A square can thus be described
by the type declaration:

type SQUARE is (EMPTY, X, O);
and the board can be described by the two-dimensional array type:
type GAMES_BOARD is array (1 .. 3, 1 .. 3) of SQUARE;
If we wanted to, we could introduce special index types and write instead:

subtype ROW_NUMBER is INTEGER range 1 .. 3;

subtype COL_NUMBER is INTEGER range 1 .. 3;

type GAMES_BOARD is array (ROW_NUMBER, COL_NUMBER) of
SQUARE;

Now variables of type GAMES_BOARD can be declared, such as:
P : GAMES_BOARD := ( others => ( others => EMPTY) );

Here P has been initialized so that all the squares are empty when the game
starts. Individual elements of P can be selected by indexing. If, for example, we
want to put a cross in-the centre square we can write:

P(2,2) = X;
We shall study a function that determines whether the games board is full:

function FULL{(BOARD : GAMES_BOARD) return BOOLEAN is
begin
-- find out if board has any empty squares
forRin1.. 3 loop
-- find out if row R has any empty squares
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if BOARD(R,C) = EMPTY then
return FALSE;
end if;
end loop;

end loop;

-- no empty square has been found

return TRUE;

end FULL;

The function gets a board as parameter and returns a BOOLEAN value as its
result. If the board is full, that is, all the squares contain either a cross or a
nought, the function returns the value TRUE, but otherwise it returns FALSE.

The function contains two nested loop statements. The outer one goes
through all the rows and the inner one, which is performed once for each row,
goes through all the columns. If a square is reached that has the value EMPTY
the statement:

return FALSE;

is executed, which means that execution of the function ceases and the value
FALSE is returned. Thus if an empty square is found, the remaining squares are
not looked at. If none of the squares are empty then, eventually, the function’s
last statement:

return TRUE;

is executed and the function returns the value TRUE.

In a multidimensional array type the index types do not need to be the
same, as they have been in the examples seen so far. In the next example we
assume that we have measured the temperature of the air every hour for a whole
week. We shall write a program that reads in the temperature measurements
made and then calculates and writes out the mean hourly temperatures for the
week.

We start by declaring an enumeration type DAY:

type DAY is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

We can also declare an integer type HOUR to describe the 24 hours of the day:
type HOUR is range O .. 23;

If the temperature measurements have been made with an accuracy of one
decimal figure, the following type can be used to describe them:

type TEMP is digits 3 range —99.9 .. 99.9;
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Now we can construct a two-dimensional array type that describes a whole
week’s measurements:

type MEASUREMENT_TABLE is array (DAY, HOUR) of TEMP;

The two indexes here are of different types. If we declare a variable of type
MEASUREMENT_TABLE:

MEASUREMENTS : MEASUREMENT_TABLE;

then we can, for example, give the Thursday 7 pm measurement the value 11.3
by writing the statement:

MEASUREMENTS(THURSDAY, 19) := 11.3;

Now we write a procedure that reads values into a measurement table.
The user has to be requested to input 24 hourly measurements for each day. The
procedure will have a measurement table as an out parameter. When execution
of the procedure is complete this table should be filled with the week’s
measurements.

procedure READ_MEASUREMENTS
(TAB : out MEASUREMENT_TABLE) is
begin
-- Read values into table
for D in DAY loop
PUT("Enter the temperatures for “);
PUT(D); NEW_LINE;

-- Read values into a line of the table
for H in HOUR loop
GET( TAB(D, H) );
end loop;
end loop;
end READ_MEASUREMENTS;

The elements of the table are run through and filled in row by row. First the
elements in the Monday row get their values in order (for 00.00, 01.00, and so
on). Then the elements of the Tuesday row get theirs, then the Wednesday row,
and so on. At this point, we assume that packages have been created in the main
program to handle reading and writing the types DAY and TEMP.

Note the construct:

for H in HOUR loop
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This ensures that the loop parameter H has the type HOUR and that it will run
through all the values of the type HOUR, namely 0-23. It would have been
wrong to write:

forHin 0 .. 23 loop — ERROR!

because then H would have had type INTEGER and it would not have been pos-
sible to use H as index in the array TAB. If we did not want to run through all
the hours but only certain ones, for example, 0-11 am, we would have to state
the type and write:

for H in HOUR range 0 .. 11 lcop

The next procedure we shall write receives a completed measurement table as in

parameter. Its job is to calculate and write out the mean of all the week’s measure-

ments for each hour of the day. The output should look like that in Figure 7.2.
We use the algorithm:

(1) Write the heading.

(2) Carry out the following for each hour:
(2.1) Calculate the mean for the current hour.
(2.2) Write out the calculated mean.

Step (2.1) can be expanded to:

(2.1.1) Add all the measurements made during the week for the current hour.
(2.1.2) Divide the sum obtained by the number of measurements, that is, by 7.

A further refinement can be made for step (2.1.1):

(2.1.1.1) SetMV toO.
(2.1.1.2) Run through all the days of the week and add the temperatures
measured to MV.

hr mean temp

0 5.2
1 5.0
2 5.0
3 4.9
22 5.7
23 5.3

Figure 7.2
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The algorithm can now be translated to Ada, giving the procedure:

procedure WRITE_MEAN (M_TAB : MEASUREMENT_TABLE) is
MEAN : TEMP;
begin

-- Write heading

PUT_LINE("hr mean temp");
NEW_LINE;

for H in HOUR loop

-- Add all the measurements for this hour
MEAN := 0.0;
for D in DAY loop
MEAN := MEAN + M_TAB(D, H);
end loop;

-- Divide by the number of measurements
MEAN := MEAN / 7.0;

-- Print the calculated mean value
PUT(H, WIDTH => 2);
PUT(MEAN, EXP => 0, FORE => 7, AFT => 1);
NEW_LINE;
end loop;
end WRITE_MEAN;

In this procedure there is an outer loop statement which runs through all the
hours. Each time round, this loop statement calculates the mean value of
the week’s measurements at a particular hour of the day. This means that the
elements of the table are run through column by column. Compare this with the
procedure READ_MEASUREMENTS, where the elements were run through row
by row.

Running through a table row by row

for ROW in first_row_no .. last_row_no loop
for COL in first_col_no .. last_col_no loop
... A(ROW, COL) ...
end loop;
end loop;
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Running through a table column by column

for COL in first_col_no .. last_col_no loop
for ROW in first_row_no .. last_row_no loop
... A(ROW, COL) ...
end loop;
end loop;

Now we can put these two procedures into a main program where we
have also included the necessary type declarations and declared the packages for
reading and writing the types DAY, HOUR and TEMP. When the program is run
it will first call the procedure READ_MEASUREMENTS to get the week’s
temperature measurements. Then the procedure WRITE_MEAN is called, to
calculate and write out the hourly means of the temperatures.

with TEXT_IO;
use TEXT_IO;
procedure MEASUREMENTS_EXAMPLE is
type DAY is (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);
type HOUR is range 0 .. 23;
type TEMP is digits 3 range —99.9 .. 99.9;
type MEASUREMENT_TABLE is array (DAY, HOUR) of TEMP;
package DAY_INOUT is new ENUMERATION_IO(DAY);
package HOUR_INOUT is new INTEGER_IO(HOUR);
package TEMP_INOUT is new FLOAT_IO(TEMP);
use DAY_INOUT, HOUR_INOUT, TEMP_INOUT;

MEASUREMENTS : MEASUREMENT_TABLE;

procedure READ_MEASUREMENTS
(TAB : out MEASUREMENT_TABLE) is
begin

-- Read values into table

for D in DAY loop
PUT("Enter the temperatures for );
PUT(D); NEW_LINE;

-- Read values into a line of the table
for H in HOUR loop
GET( TAB(D, H) );
end loop;
end loop;
end READ_MEASUREMENTS;
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procedure WRITE_MEAN (M_TAB : MEASUREMENT_TABLE) is
MEAN : TEMP;
begin

-- Write heading
PUT_LINE("hr mean temp");
NEW_LINE;

for H in HOUR loop

-- Add all the measurements for this hour
MEAN := 0.0;
for D in DAY loop
MEAN := MEAN + M_TAB(D, H);
end loop;

-- Divide by the number of measurements
MEAN := MEAN / 7.0;

-- Print the calculated mean value
PUT(H, WIDTH => 2),
PUT(MEAN, EXP => 0, FORE => 7, AFT => 1);
NEW_LINE;
end loop;
end WRITE_MEAN;

begin
READ_MEASUREMENTS(MEASUREMENTS);
WRITE_MEAN(MEASUREMENTS);

end MEASUREMENTS_EXAMPLE;

The examples we have seen so far (distance tables, games boards,
tables of measurements) have all been arrays with two dimensions. Even if two-
dimensional arrays are the most common among multidimensional arrays, in
Ada there are no limits as to the number of dimensions allowed. For example,
we can look at the sales of various goods in a supermarket with 10 check-outs.
The goods in the store are divided into five categories: food, confectionery,
household goods, tobacco and miscellaneous goods. There are statistics
concerning the sales for a whole year. For each month the value of the goods
sold at each check-out have been collected, classified according to the five
categories above. A suitable type for describing the sales statistics is:

type STATISTICS is array (MONTH, CHECK_OUT, GOODS) of FLOAT;
where the types MONTH, CHECK_OUT and GOODS are declared as follows:

type MONTH is (JANUARY, FEBRUARY, MARCH, APRIL,
MAY, JUNE, JULY, AUGUST,
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SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);
type CHECK_OUT is range 1 .. 10;
type GOODS is (FOOD, CONFECTIONERY, HOUSEHOLD_GOODS,
TOBACCO, MISCELLANEOQOUS);

Suppose we want to know which check-out had the best total sales during the
