
The

MS-DOS
®

EiKyclopedia

i-sa-s,-

Microsoft
PR E S S

Foreword, Bill Gates
General Editor, Ray Duncan

The

MS-DOS
Encyclopedia

The

MS-DOS
Encyclopedia

Microsoft Press

[J I iSk Redmond, Washington
WEiPi 1988

Ray Duncan, General Editor

Foreword by Bill Gates

Published by
Microsoft Press

A Division of Microsoft Corporation
16011NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 /

editor, Ray Duncan.
p. cm.

Includes indexes.

I. MS-DOS (Computer operating system) I. Duncan, Ray, 1952-
II. Microsoft Press.

QA76.76.063M74 1988 87-21452

005.4'46~dcl9 CIP
ISBN 1-55615-174-8

Printed and bound in the United States of America.

23456789RMRM32109

Distributed to the book trade in the

United States by Harper & Row.

Distributed to the book trade in

Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the

United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and TopView® are registered trademarks of International Business Machines Corporation.
GW-BASIC®, Microsoft®, MS®, MS-DOS®, SOFTCARD®, and XENIX® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum.
Pages 5,11,42: Intel 4004,8008,8080,8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from Popular Electronics,)2am2Lry 1975 Copyright © 1975 Ziff Communications Company.
Page 13: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission of The Seattle Times Copyright © 1983.
Pages 19,34,42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright © 1981,1982,1984. All rights reserved.
Page 21: "Big IBM's Little Computer" Copyright © 1981 by The New York Times Company. Reprinted by
permission.

"IBM Announces New Microcomputer System" Reprinted with permission of InfoWorld Copyright © 1981.
"IBM really gets personal" Reprinted with permission of Personal Computing Copyright © 1981.
"Personal Computer from IBM" Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
"IBM's New Line Likely to Shake up the Market for Personal Computers" Reprinted by permission of The Wall
Street Journal Copyright © Dow Jones & Company, Inc. 1981. All Rights Reserved.
Page 36: "Irresistible DOS 3.0" and "The Ascent of DOS" Reprinted from PC TechJournal,
December 1984 and October 1986. Copyright © 1984,1986 Ziff Communications Company.
"MS-DOS 2.00: A Hands-On Tutorial" Reprinted by permission of PC World from Volume 1, Issue 3, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107.

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi Ikeda.

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L Rygmyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:

Pamela Beason, Ann Becherer, Bob Combs,

Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,

Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,

Stephen Brown, Pat Erickson, Debbie Kem, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,

Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown

Director of Production: Christopher D. Banks

Publisher: Min S. Yee

/

Contributors

Ray Duncan, GeneralEdU€)r Duncan received a B.A. in Chemistry from the University of Califor
nia, Riverside, and an M.D. from the University of California, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He
has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr. Dobb's
Journal, and Softalk/PC, and is the author of the Microsoft Press book Advanced MS-DOS. He is the
founder of Laboratory Microsystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Bostwick Bostwick holds a B.S. in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systems for applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-SOs, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

Robert A. Byers Byers is the author of the bestselling Everyman's Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc.

Thorn Hogan During 11 years working with personal computers, Hogan has been a software devel
oper, a programmer, a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer's Sourcebook.

Jim Kyle Kyle has 23 years' experience in computing. Since 1967, he has been a systems program
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently MIS Administrator for BTI Systems, Inc., the OEM Division of BancTec Inc., manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine's CLMFORUM on CompuServe since early 1985.

Gordon Letwin Letwin is Chief Architect, Systems Software, Microsoft Corporation. He is the author
of Inside OS/2, published by Microsoft Press.

Charles Petzold Petzold holds an M.S. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2.0, a contributing editor to PC Magazine, and a frequent contributor to the Microsoft Systems
Journal.

Chip Rabimnvitz Rabinowitz has been a programmer for 11 years. He is presently chief program
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986.

Contributors Vii

Jim TcmtUn Tomlin holds a B.S. and an M.S. in Mathematics. He has programmed at Boeing,

Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications.

Richard Wttton Wilton has programmed extensively in PL/1, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer's Guide to PC & PS/2 Video Systems, published
by Microsoft Press.

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

WUUam Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Wo€Micock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor
Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newel 1 Ralph Ryan
John Butler Kaamel Kermaani Tani Newell Karl Schulmeisters

Chuck Carroll Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw
David Chell James Landowski Bob O'Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka

Mike Courtney Thomas Lennon Larry Osterman Jon Smirl
Mike Dryfoos Dan Lipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Sunil Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman

Eric Evans Pascal Martin Gary Perez Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount

Bill Gates Bob Matthews Charles Petzold Steve Zeck

via The MS-DOS Encyclopedia

Contents

Foreword by Bill Gates xiii

Preface byRayl>uncan xv

Introduction xvii

Section I: The Development of MS-DOS 1

Section 11: Programming in the MS-DOS Environment 47

Part A: Structure of MS-DOS

Article 1

Article 2

Article 3

An Introduction to MS-DOS 51

The Components of MS-DOS 6l
MS-DOS Storage Devices 85

FartB: Programming for MS-DOS

Article 4

Article 5

Article 6

Article 7

Article 8

Article 9

Structure of an Application Program 107
Character Device Input and Output 149
Interrupt-Driven Communications l67
File and Record Management 247
Disk Directories and Volume Labels 279

Memory Management 297
Article 10: The MS-DOS EXEC Function 321

PartC: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385

Article 13: Hardware Interrupt Handlers 409
Article 14: Writing MS-DOS Filters 429
Article 15: Installable Device Drivers 447

PartD: Directions of MS-DOS

Article l6: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

Contents ix

/

Section HI: User Commands 723

Introduction 725

User commands are listed in alphabetic order. This section includes ANSI.SYS,
BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN, RAMDRIVE.SYS, and VDISK.SYS.

Section IV: Programming Utilities 96I

Introduction 963

CREF 967

EXE2BIN 971

EXEMOD 974

EXEPACK 977

LIB 980

LINK 987

MAKE 999

MAPSYM 1004

MASM 1007

Microsoft Debuggers:

DEBUG 1020

SYMDEB 1054

CodeView 1157

Section V: System Calls 1175

Introduction 1177

System calls are listed in numeric order.

Appendixes 1431

Appendix A: MS-DOS Version 3.3 1433
Appendix B: Critical Error Codes 1459
Appendix C: Extended Error Codes 1461
Appendix D: ASCII and IBM Extended ASCII Character Sets 1465
Appendix E: EBCDIC Character Set 1469
Appendix F: ANSI.SYS Key and Extended Key Codes 1471
Appendix G: File Control Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP) Structure 1477
Appendix I: 8086/8088/80286/80386 Instruction Sets 1479
Appendix J: Common MS-DOS Filename Extensions 1485
Appendix K: Segmented (New) .EXE File Header Format 1487
Appendix L: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509
Appendix O: IBM PC BIOS Calls 1513

X The MS-DOS Encyclopedia

Indexes 1531

Subject 1533
Commands and System Calls 1565

Contents xi

Foreword

Microsoft's MS-DOS is the most popular piece of software in the world. It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications—the largest set of applications in any computer environment. As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur
thering Microsoft's original vision—a computer for every desktop and in every home. The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet
ing this challenge since the release of MS-DOS in 1981. The true measure of our success
in this effort is MS-DOS's continued prominence in the microcomputer industry.

Since MS-DOS's creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as for old. To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM's deci
sion to build a computer that incorporated l6-bit technology.

The compatibility revolution began with the Intel 8080 microprocessor. This technolog
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort—each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this because different manu
facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually
every personal computer manufacturer—Radio Shack, Commodore, Apple, and dozens
of others—to build Microsoft BASIC into its machines. For the first time, one common lan
guage cut across all hardware vendor lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli
cations from one vendor's machine to another.

Most machines produced during this early period did not have a built-in disk drive.
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market. A standard disk operating system that could accommodate these develop
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CP/M-80, Digital Research's 8080 DOS.

Foreword xiU

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs. It was important that software designed for
the new l6-bit machines have this same advantage. No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard—a standard that would be the software
industry's lifeblood. The intricacies of how MS-DOS became the most common l6-bit
operating system, in part through the work we did for IBM, is not the key point here. The
key point is that it was inevitable for a popular operating system to emerge for the l6-bit
machine, just as Microsoft's BASIC had prevailed on the 8-bit systems.

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer "Man of the Year." MS-
DOS was integral to this acceptance and popularity, and we have continued to adapt
MS-DOS to support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile.

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers. The length of this book is many
times greater than the source listing of the first version of MS-DOS—evidence of the
growing complexity and sophistication of the operating system. The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor. MS-DOS will continue to play an integral part in this effort. Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno
vative graphical user interface, and communication subsystems. MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
API of OS/2. Users will continue to benefit from our commitment to improved operating-
system performance and usability as the future unfolds.

Bill Gates

xiv The MS-DOS Encyclopedia

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information. MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines.

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit. The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers. We have therefore been free to bypass elemen
tary subjects such as the number of bits in a byte and the interpretation of hexadecimal
numbers. Instead, we have emphasized detailed technical explanations, working code ex
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, and install
able device drivers. We have commissioned definitive articles on the relocatable object
modules generated by Microsoft language translators, the operation of the Microsoft Ob
ject Linker, and terminate-and-stay-resident utilities. We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain
ing, illustrated account of the origins of Microsoft's standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS services, commands, directives, and utilities. In many instances, the manu
scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are
timely and trustworthy. In a work of this size, however, it is inevitable that errors and omis
sions will occur. If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow programmers. To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information.

Ray Duncan

Preface XV

updates to The MS-DOS Encyclopedia

Periodically, the staff of The MS-DOS Encyclopedia will publish updates containing
clarifications or corrections to the information presented in this current edition. To ob
tain information about receiving these updates, please check the appropriate box on the
business reply card in the back of this book, or send your name and address to: MS-DOS
Encyclopedia Update Information, c/o Microsoft Press, I6OIINE 36th Way, Box 97017,
Redmond, WA 98073-9717.

Bulletin Board Service

Microsoft Press is sponsoring a bulletin board on MCI Mail for posting and receiving cor
rections and comments for The MS-DOS Encyclopedia. To use this service, log on to MCI
Mail and, after receiving the prompt, type

VIEW <Enter>

The Bulletin Board name: prompt will be displayed. Then type

MSPRESS <Enter>

to connect to the Microsoft Press bulletin board. A list of the individual Microsoft Press

bulletin boards will be displayed; simply choose MSPress DOSENCY to enter the en
cyclopedia's bulletin board.

Special Companion Disk Offer

Microsoft Press has created a set of valuable, time saving companion disks to The MS-DOS
Encyclopedia. They contain the routines and functional programs that are listed through
out this book—thousands of lines of executable code. Conveniently organized, these
disks will save you hours of typing time and allow you to start using the code immediately.
The companion disks are only available directly from Microsoft Press. To order, use the
special bind-in card in the back of the book or send $49.95 for each set of disks, plus sales
tax if applicable and $5.50 per disk for domestic postage and handling, $8.00 per disk for
foreign orders, to: Microsoft Press, Attn: Companion Disk Offer, 21919 20th Ave. S.E., Box
3011, Bothell, WA 98041-3011. Please specify 5.25-inch or 3.5-inch format. Payment must be
in U.S. funds. You may pay by check or money order (payable to Microsoft Press), or by
American Express, VISA, or MasterCard; please include your credit card number and ex
piration date. All domestic orders are shipped 2nd day air upon receipt of order by
Microsoft.

CA residents 5% plus local option tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 4.225%, NY 4% plus local
option tax, WA State 7.8%.

XVi The MS-DOS Encyclopedia

Introduction

The MS-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system. Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information on all the
MS-DOS commands, utilities, and system calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content. Special typographic conven
tions are also used to clarify the material.

Organization of the Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes. Each
section has a unique internal organization; explanatory introductions are included where
appropriate.

Section I, The Development of MS-DOS, presents the history of Microsoft's standard-
setting operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotations are included.

Section II, Programming in the MS-DOS Environment, is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools. Each part contains several articles by acknowledged experts on these
topics. The articles include numerous figures, tables, and programming examples that pro
vide detail about the subject.

Section III, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, including ANSI.SYS, BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN,
RAMDRIVE.SYS, and VDISK.SYS. Each command is presented in a structure that allows
the experienced user to quickly review syntax and restrictions on variables; the less-
experienced user can refer to the detailed discussion of the command and its uses.

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
debuggers. Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefore included to create a com
prehensive reference.

Introduction XVU

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functions are listed in individual entries. This section, like the User Com
mands and Programming Utilities sections, presents a quick review of usage for the ex
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

The book includes two indexes—one organized by subject and one organized by com
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com
mand or system call.

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles. Most of these
programs are complete utilities; some are routines that can be incorporated into function
ing programs. Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 2.0.

The functional programs and larger routines are also available on disk. Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume.

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text.

XViii The MS-DOS Encyclopedia

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan
guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase 1 and the numeral 1 in both text and
program listings.

Cross-references appear in the form SECTION NAME: Part Name, Command name, or In
terrupt NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple
mentation of MS-DOS. If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter> is included in a
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference. Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H ih in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash—for example, 07-0AH.

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page. The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages.

Introduction xix

mmM

The Development of MS-DOS

imiisBi

>'v*.

llpl^lll -:1

^plllli^pi

liipiiiiiipiip^^i^M
8HIIBill8B8l8^8i!|

iii^^^pi
iPiii^^piiiPiilWlii

igftiiii

liii^^^^jiiiti
liii^^^pililliisiil

■i
itel

ttiiiili

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the

cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files. ^

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected—so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft's decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft's decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac
complishments, and in this respect the roots of MS-DOS reach farther back, to four hard
ware and software developments of the 1970s: Microsoft's disk-based and stand-alone
versions of BASIC, Digital Research's CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development of MS-DOS

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was namedfor the night's destination ofthe starship Enterprise. Thephotograph
clearly shows the input switches on the frontpanel ofthe cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first "personal" computer to appear in an environ
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair's combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

■.Ke:- ' ("i '■ " '

• ' ' ^r.:
-funm

■ - ■

»iipiliii¥

I J " M W « M ,7 I ' ■

s«» .'i-

a# Vv/

:4 '
!-!e ?'%.

'^iia oii[^ »!>[□ wiiaa^a_M
.;iil~, J~E rj"',7*

^ It , s >■ t <.. < li ' ^ W ™niilli i*=^,
s'i'f
□iiinl " " -./i

-•-"?¥;!% vii.
^ '!7:Z ^ -

'iA % -r
"■- zr^''p 1^ wm

"<

I® i--'' ^ ' '' ' '

Iu4 RB^ -.■*. '-t ̂ / - Y*. ■ ■ - ■ i* '■ 'B
a fai - :: or "fcf apai>miaf,-'-a '-JJbi

Intel's 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number ofold-fashioned transistors it replaced. At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB ofmemory. The brain oftheMITS Altair, the 8080 was, in many
respects, the chip on which thepersonal computing industry was built. The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language — and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-O-Data to produce a machine that automated the reading of l6-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section 1: The Development of MS-DOS

HOW TO "READ" FM TUNER SPECIFICATIONS

n 1 - - • _ _

WORLDS LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/75«

PROJECT BREAKTHROUGH I

World's First Minicomputer Kit
to Ri>^l Commercial Models...
"ALTAIR 8800" save over $1000

The January 1975 cofer q/' Popular
Electronics magazine, featuring the
machine that caught the imaginations

ofthousands oflike-minded electron

ics enthusiasts — among them, Paul
Allen and Bill Gates.

ALTAIR 8800

ALSO IN THIS ISSUE:

• An Under-$90 Scientific Calculator Project■ • CCD's-TV Camera Tube Successor?
• Thyrlstor-Controlled Photoflashers

TEST REPORTS 1

Technics 200 Speaker System
Pioneer RT-lOU Open-Reel Recorder
Tram Dlamond-40 CB AM Transceiver

Edmund Scientific "KIrllan" Photo Kit
Hewlett-Packard 5381 Frequency Counter

Although it was too limited to serve as the central processor for a general-purpose compu
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc
tion set were concerned. Thus Traf-O-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon

strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

The MS-DOS Encyclopedia

1976

5+»

([-rv-rT/^ip'^
ie/-e

point er

cWar« <rV-€-r o«^
•Z-ero

tt

r±6*<<5

Cit-^icO \
Ci«-«- Ktfto n
C-t

;

P</ipcA^ a.{>&ije "e-AoV _/

q
[sTi^Hw^rQ

C^tKtdp^

LFieerbp^

Sc:Ww^ "6>r

S>wNy»U. t>a/->a/6'«_S

(«£. Xy^G cA"

^^rccwV S-lrn'nq
^•rti)tiG'S

f^
. (^

'2.

H ̂iaa^ \/al^>.
<R€.l^ect "^W" faJU >

/a.«^iA/^U-3
2 t tj 4^ k« Kn^ ■

2 b "fc .

i/a.lxju.^ —

|ou»«/t hctist Iffy^ -Qr- sittoj^
pr<^ 5|;O.Ca/ t<

rtc^t* 5i«cV €v,-^r»y^
Stt&.d'- , '

ho^ir^ tff ̂ h^cK I {oC<ct

U- ~foj
r^cJis a o-i

f
T^plLcC''tlir^

k)^n<s^ AreK^ (v\

OCMPUICT NOIES/JULY, 1975

Loading Software

Software from MITS wili be pro
vided in a checksuDBned format.
There will be a bootstrap loader
that you key in manually (less than
25 bytes). This will read a eheck-
SUB loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex
plained in detail in a cover package
that will go out with all software.

For loading non-checksummed
paper tapes here is a short px*ogram:

STKLOC; DW GETHEW

(2 bytes-ll low byte of
GETNEW address

#2 high byte of
GETNEW address)

START: LXI H,0
GETNEW: LXI SP, STKLOC

IN <flag-input channel>
RAL ;get input ready bit
RNZ iready?
IN <data-input channel>

CHGLOC: CPI <0U3 = INX B>

RNZ

INR A

STA CHGLOC

RET

(22 bytes)

Punch a paper tape with leader,
a 0H3 start byte, the byte to be
stored at loc 0, the byte to be
stored at 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. Make
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI - 376.

On the left, Bill Gates's original handwritten notes describing memory configurationfor Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in theJuly 1975 edition of the
MITS user newsletter. Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair—the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section I: The Development of MS-DOS

1977-1978

Microsoft, 1978, Albuquerque,
New Mexico. Top row, left to right:
Steve Wood, Bob Wallace, fim Lane.

Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,

Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Maria Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone.
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft's entry into the business of languages for per
sonal computers — not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
"chained" references pointing to the actual storage locations on disk. Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS.

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

The MS-DOS Encyclopedia

. th2
standard fa

1^^ rt^rmicDcompxiter
soft^vae

Onty one company sets ftie pace wltti
software for microprocessors.

MACRO-80 PACKAGE QjrreiocataOieQwefri-
THATS MICROSOFT.

bier now hos o cofTplete VACJO fociiiV inchjdirtg \
i!?PC. StPEAT, 'ocal voriobies orid EXiTM. listmg caitd ana \
conditicoatassernblyhawebeengfeatV©nf"onced.AnotTer \
plus - the assembler !S new twice OS fas! OS pxe-AXiSvef^cra \
The MACCC-80 Pockoge, i.'x:!uJlng Micfoscft's Link^ Icxxler
ond Ooss Reference fTogrcm, may now be fxnchoseo sepor-
crely from Ec:)»TPAN-eo Single copy S^O Marxid 3*5 (!vV>0<0-
80 w irxsluded m FQ?^AN-gO. Verson 3.1.)

Wt^tner it's EASC. FCiMPAN, cx
CX)BC.\. itne lorgest-seHiri^) mi-
crocompgte' systems use sc^-

w wore by Microsoft:
\ fJocftcShockJeki'onix.rjCR
\ AocSe. Ccmmodc*©. Cn-
\ tel. n^. Extensys. im-
\ 5ai.O>io3C'entific.C''o-
\ rnefTx:o. AiXJS ZiI<xj
\ Mcsfek. Notional.

MBASIC-NEW RELEASE Ther«....osCTi50Me«Cin. \
chxJes long vonobte fxmes. -vorKjOse length records, ayrcrrc smng \ Mcst«
spoce oHocoton. VVt^fj'v'vEND. protected files, arxl ctiointf^ wrth COM- \

verson 5 0 iS fully r^NSl compaftse (.\t MBAS-C ctocxmer^tofon has \ rr
been comcfetety -ewrif^n ona e Signrfoamt/ irr^xo-^d. Siry^ copy 3350. \
Monool 320 \

\ .Arrd
EDiT-80 PACKAGE (CP.rM v©fSlon onlyl'n^fostesttexted'tcr \ nev
cn the motvef more seorchirg ttvouQ?^ files or c?vptc ccrnmaixls "his rondorr, \ ^
occess.line orer^tBO editor IS Simiofiottiofe used on tageconxHjrers Ik© the FC*^- \ ̂
10 Also includes FtCCV. the fife corrpore uWity. whch orows componson of source \ "
end binary files Single copy S120 Worxioi Sid \

ANSI 74 COBOL-80 isrxjwovOiicotewilhfuitytes'ediSAJyt,rr<*cveamteroch« \
ACCEPT/DrSFLAV. CO^ and EX^r^O. Sirgfe copy S75D VonucS

PREVIEW OF UPCOMING PRODUCTS a.~. 8-o8o/z« basc csmpfe sup- .
porting the same feot-jes as oj irVerpret^. the long-owcited BC807Z-^1 interpre-
ter. ond o corrpiefe set of systems scftwae products tor Pdh the 80% arp Z8(X0

Pcckweit. and
rrprrv ottiers.

-Arrd at Microsc^.

rnew fhiings ore
L hopr^eniixj on
\ tt>e time

A Microsoft advertisement from the
January 1979 issue of Byte magazine
mentioning someproducts and the

machines they ran on. In the lower

right corner is an announcement of
the company's move to Bellevue,
Washington.

AH software <TRO;tab'e ct Single-copy piiC" v Oi^V
Dealer ogreemonl prices.

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced "Midas" or "My DOS"). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system. At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele
gated to the back room. As Allen describes it, "Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that."

In the volatile microcomputer era of 1976 through 1978, both users and developers of per
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft's Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I: The Development of MS-DOS

1978

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair's Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor, or CP/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M's history is that the software was developed several
years before its release date—actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. KildalPs
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build
a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu
ter and the disk drive while Kildall worked on the software portion—the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat
ing systems.

Digital Research's CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output—disk I/O, screen display, print requests, and so on—CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv
ing the disk locations of I6 allocation units. If a long file required more than I6 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

10 The MS-DOS Encyclopedia

The 16-bit Intel 8086chip, introduced in 1978.
Muchfaster andfar morepowerful than its 8-bit
predecessor the 8080, the 8086had the ability to
address one megabyte of memory.

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future.
The 8080 was designed not to make computing a part of everyday life but to make house
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the l6-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086's full l6-bit buses made it fast
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080's 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson's operating system for the 8086 and, through Paterson's
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new l6-bit technology. For a time, Microsoft did both. Acting on Paul Allen's
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple II users could
run any program or language designed to run on a CP/M machine.

It was l6-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal — more than one voice in the trade press warned that industry invest
ment in 8-bit equipment and software was too great to successfully introduce a new stan
dard. Microsoft, however, disregarded these forecasts and entered the l6-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I: The Development of MS-DOS 11

1979-1980

At the same time and, coincidentally, a few miles south in Tukwiia, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S-100 bus machine.

86-DOS

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his employer. Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, "all its instructions
worked on both 8 and 16 bits, and you didn't have to do everything through the accumu
lator. It was also real fast—it could do a l6-bit ADD in three clocks."

After the seminar, Paterson—again with Brock's support—began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer's new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital's represen
tative said December 1979, which meant, according to Paterson's diary, "we'll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we'll be
able to switch to a real operating system."

Early in June, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates' ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track of disk files—the FAT devel
oped for Stand-alone BASIC—that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a l6-bit operating system of its own. Originally, three operating sys
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a l6-bit system became one of
Paterson's major goals for the new operating system. To achieve this compatibility, the sys
tem he developed mimicked CP/M-80's functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

12 The MS-DOS Encyclopedia

G016-BIT NOW — WEHAVEMADEIT EASY

8086
8Mhz.2-cardCPUSet

595WITH 86'DOS® ^ ̂ y

ASSEMBLED, TESTED, GUARANTEED

With our 2-card 0086 CPU set you can upgrade your Z0O B-
bit S-100 system to run three times as fast by swapping the
CPUs. I(you use our 16-bil memory, it will run five limes as
fast. Up to 64K of your static 0-bit memory may be used m the
8086's 1 -megabyte addressing range. A switch allows either 4
or 8 Mhz. operation. Memory access requirements at 4 Mhz.
exceed 500 nsec.

The EPROM monitor allows you to display, alter, and
search memory, do inputs and outputs, and boot your disk
Debugging aids include register display and change, single
stepping, and execute with breakpoints.
The set includes a serial port with programmable baud rate,

four independent programmable 16-bil timers (two may be
combined for a lime-of-day clock), a parallel m and parallel out
port, and an interrupt controller with 15 inputs. External power

may l>e applied to the timers to maintain the clock during
system power-off time Total power: 2 amps at + 8V. less than
100 ma at ♦ 16V and at •16V
66-OOS", our $195 8086 smgle user disk operating

system, is provided without additional charge. It allows

functions such as console I O of characters and strings, and
random or sequencial reading and writing to named disk files.
While It has a different formal from CP M. it performs similar
calls plus some extensions (CP M is a registered trademark of
Digital Research Corporation) Its construction allows relative
ly easy configuration of I O to different hardware Directly
supported are Ihe Tarbell and Cromemco disk controllers
The 86-DOS'' package includes an 8086 resident as

sembler. a Z80 to 8086 source code translator, a utility to read

files written m CP Mand convert them to the 86-DOS format, a

line editor, and disk maintenance utilities. Of significarKe to
Z80 users IS the ability of the translator to accept Z80 source

8/16 16-BIT MEMORY
This t»ard was designed for the 1980s It is configured as

t6K by 8 bits when accessed by an 8-bit processor and

configured 8K by 16 bits when used with a 16-bit processor
The configuration switching is automatic and is done by the
card sampling the "sixteen request" signal sent out by all S-
100 IEEE 16-bit CPU boards The card has all the high noise
immunity leaturesof our well known PLUS RAM cards as well
as "extended addressing" Extended addressing is a replace
ment for bank select It makes use of a total of 24 address imes

to give a directly addressable range of over 16 megabytes
(For older systems, a switch wilt cause the card to ignore the
top 8 address lines) This card ensures that your memory
board purchase will not soon t>e obsolete It is guaranteed to
run without wait stales with our 8086 CPU set using an 8 Mhz
clock Shipped from stock Pnces 1-4. $280.5-9. S260. l0-up.
$240

An advertisement for
the Seattle Computer
Products 8086 CPU,

with 86-DOS; published
in the December 1980

issue of Byte,

code written for CP M. translate this to 8086 source code,
assemble Ihe source code, and then run the program on the-
8086 processor under 86-OOS. This allows the conversion of
any Z80 program, for which source code is available, to run on

the much higher performance 8086
BASIC-86 by Microsoft is available for the 8086 at S350

Several firms are working on application programs Call for
current software status

Atl software licensed for use on a single computer only
fjon-disdosure agreements required Shipping from stock to
one week Bank cards, personal checks, CODs okay There is
a 10-day return privilege All boards are guaranteed one year
— both parts and labor Shipped prepaid by air m US and
Canada. Foreign purchases must be prepaid m US funds
Also add $10 per (ward for overseas air shipment

^SeQ»le Computer Products, Inc.
indusiry Olive Seatiie W

1206) 575-1830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a

translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I: The Development of MS-DOS

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten
tion to the possibility of developing a low-end workstation for a market it knew well: busi
ness and business people.

On August 21,1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM's interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles—typically four or five years—and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One of IBM's solutions—the one outlined by Sams's group—was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques
tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a l6-bit machine based on Intel's 8086 chip instead? At the end
of this meeting—the first of many—Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, l6-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft's BASIC had been
designed to run as a stand-alone product, it was unique in that respect—the other lan
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM—approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

That state of indecision, then, was Microsoft's situation on Sunday, September 28,1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates's eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, "Kay and I were just sitting there at
night and Paul was on the couch. Kay said, 'Got to do it, got to do it.' It was only 20 more K

14 The MS-DOS Encyclopedia

1980

of code at most—actually, it turned out to be 12 more K on top of the 400. It wasn't that big
a deal, and once Kay said it, it was obvious. We'd always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on l6-bit."

At that point. Gates and Allen began looking again at Microsoft's proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson's 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM's new computer, the more
possible—even preferable—the idea became.

Allen's first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP's operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily. Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, "If I was awake, I was thinking about
the project."

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson's
86-DOS—not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT)—arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5y4-inch disks, so Microsoft needed to de
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I: The Development of MS-DOS 15

Xf7M V-
\

VMff
NVUcr. V"'

~4v-- —■——> <?cH£

Paul Allen and
Bill Gates (1982).

v-Vv\ips-« I,

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format—different from Paterson's 8-inch
format—was an added challenge. Paterson's ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system's startup
messages to changes in EDLIN, the line editor he had written for his own use. Throughout
this process, IBM's security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

The MS-DOS Encyclopedia

1980-1981

«" ft.5t
StvACja.

o
C9)A:4i*-'^Airiaig/h

n

Rte

etDoS

B«»e Pw8«^

£>/e A£CX£
r ̂

fi DOS we«,f-*«i'
liS>*>

«eK

g^(,D6S »v«a^>$^6^

rrrrHjjjS

QLw-~

CaC***^

Csx.idfr.,

^•-^-'kJL llMoAJrOL

'spjc-eg'eAajy
Aji,.JU»^ 4o A#ei«»W

O"'

X6K\^

P/UOJjUUww Ci^J*Ml •

b»(C

■^3 ^

Bob O'Rear's sketch of
the steps involved in
moving 86-DOS to the
IBM prototype.

Section I: The Development of MS-DOS 17

1980-1981

^ VO^
(y^/*o ^ lp>c«vv«|A'A "^cvi^

^ d^ <v pA-^rw"^~to ejllih^ umslaj to
AJI^lIax*- >.(«v»n£<»ft/t^ A. dXv-^^ ̂ ^AArA.

"to 4> 0. ̂ ft"'—L fr̂ -Cb't^
' '\>^'^^o\o . ̂ tDOS Vwrv4.ibo(0d:o .

5/L |9. CAjCvji *^<^T jk/oyiu,^— "tb LoblA. *f'2)£)S
V\A^ t-^-^AXt^ -(wJ^'^-tV 1(a /-OtcCu^^
ju4(' JliujtC-C fvs^^oU^ CUs ^ ItJ^ ̂ Cc.

A < .**46^^ LA /C^A«^ 'tt*. d^Cw-C^AS Jb^fLr«A.A-«AL. 'ft\ aX^LaaJ^

''''iM4^
if-L f AajML

H(^

CAArtlfc

-^40

i3t"ryvd> (vcctf-

r>. ,it? ^ - c

O
'DoS CMd^s.

(.)PfU^ ^djftit,' ^ Xfrc^dU^ ♦ S"0: "a,
se> ; 3

-4^-"^ St>;Jk -14£M3%lo
V- >.^Jti d <t 4 J

1 t

^ ts I'fiTiv'ii loq^TiT^* ®'
•l •) 11 s 11»^'^^'>^<»ddd

So'.b

ih

>vmt^ "t» 8tt>{>S "t© ija* I'' qaJIms^ <flc>/c covwtjftfiY
VuilA 'tiAAa. «wjf 86t>OS il«4c. ♦onxk*. tft Ca»nm4«<^

(jein«n4W0 tb OiUuJk. ^ i{U,To&cec,,t^T ^ \J
■ ■■ -- .RVf-f

-A - ' •-fc' _ t ^•. .
(Uln^SUi^ (ftjo a On tXci X^ (^uxqc^c^c-JQn^ (JL%^ yU^A/'ftJt AjsJ^

.^5. jtb AjO <£©aOLAAfi*»4»^ C>»-ouuj^!)^^

^ J' i yuicjitrw bg*j^ ^ fio)C3.r ^cAja^y

Y- FbRm^Hr tb dsd^Jt^ itif '1ul«4i
jjp

tr'i-

i*-
ih

r% aKl
>. pA..<r<A£e«- U-^i^v &X60 AuO SPAC.8 (A>^ftAA. ^ h4u4le**^

AS!-^^ k0n«i)9«

% tkuA ^ >C-> ^ %Xi>%

CkuA, ^Kt ^U& LorMnrtO"*^
/\ ^PCXrS jJtC"! ^Am. 'tAi^ Qj*^^t^jkifU.
ihjr^ av

U- J*-Xfc.c«£lrfv\ .^t/tTMv ^ cl«-**j2veA^(Z' (!u^it<Af*^ fi«*^iA€S.

/Virr o/'jBofe O'Rear's "laundry" list ofoperating-system changes and correctionsfor early April 1981. Around
this time, interim beta copies were shipped to IBM for testing.

18 The MS-DOS Encyclopedia

"My own IBM computer
Imagine that."

The 1981 debut ofthe
IBM Personal

Computer.

Presenting the IBM of
Personal Computers.

'Dad, can I use
the IBM computer

CO use your mcui racqucc. SomeiifOM you In chetn. Often

you cktn'i. But when they sun asking to use your IBM
IVrsonai Computer, it's better to say yes.

Because learning abtxjt computers Is a subfect your

kids can study and enjoy at home.
I($ also a fact that the IBM Perscxial Computer can

be as useful in your home as it is in your cflice. To help
plan the family budget, for iastancc. Or to compute

anything from interest pakl to talorks consumed. You

can even tap directly into the Dow Jortcs data hank with
your telephone and an inexpensive adapter

But as surely as an IBM Personal Computer

can help you. it can also lieip your children.

Becatise just by playing games or drawing

It's not an unusual colorful graphics, your .scm or daughter will discover
phcnumeiMjn. lt what makes a computer tick—and whM it can do. They

starts when your can take the same word proces.sing prtjgram you use
Min asks to to create hustness reports to write and edit book reports

borrow (and Icam how to type in thepfocess) Your kids might

a lie. Or even get so 'computer smart.' they'll start writing
In I when your their trwn programs in BASIC or Pascal.

daughter Ultimately, an IBM Personal Computer can be one
""^^wanLsio of the best investments you nuke in yuur family's future.
1 them. Often AimI one of the least cxpeasive. Starting at less than

your IBM flMX)'therc^ a system that, with the additkxi of one
simple device, htxvks up to your home TV and uses your

subject your audio cassette recorder.
■R) introduce your family to the IBM Personal

Tiputercan Computer, visit any ComputerLand* store or Sears
cc. To help Business Systems Center. Or see it ail at one rf our IBM
impute ProdiKi Centers. (The IBM National Accounts Diviskm
imed. You will serve business custtxners who want to purchase in
ta hank with quantity.)

And remember. When your kids ask to use your
jtcr Personal Computer, let them. But just make

sure ytxi can get it hack. Afterall yoursoo's
still wearing that tic.==wa

The IBM ftrsonal Computer }

In spite of such difficulties, however, the new operating system ran on the prototype for
the first time in February 1981. In the six months that followed, the system was continually
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM
Personal Computer on which it appeared, had become a functional product for home
and office use.

Section 1: The Development of MS-DOS

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi
sioned as a final model for l6-bit computer systems. According to Bill Gates, "Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file

system and everything... the key thing [in developing version 1.0] was my saying, 'Look,
we can come out with a subset first and just go upward from that.'"

This first version—Gates's subset of MS-DOS—was actually a good compromise be
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
with CP/M.

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory. In addition to utilities such
as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and

character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND.COM, was the external command processor—the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CP/M. The resem
blance was even more striking at the programming level, with an almost one-to-one cor
respondence between CP/M and MS-DOS in the system calls available to application
programs.

New Features

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably
bonded to the IBM PC. Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate
changes and new directions in the hardware technology—disks, memory boards, even
microprocessors—on which it depended. The first steps toward this independence from

20 The MS-DOS Encyclopedia

w,BUSINESS

hgest
Big I.B.M.'s Little Computer

Its Desk-Top
Model Brings
A New Image/

IBM's New Line Likely to Shake Up
The Market for Personal Computers

^IViDrld
Mlnvs Foe Mircocompufei Users

IBMAnnouncesNewMicrocomputerSystem
It's Official; One surprise i

But Analysts

Are Dubious of

General Upturn

By Gjcmo* a?<o«r» e««rh-up. T7t» rBM mactilnw oper*tt oa an lar p-«at«r, equivalent to more Uiar. I.MO
Muy/B»»er«»e/T»«WA>j.»T».»Tjnu««»t Qwp- gQgg tnlemproTesnr, a laater typewritten pages. The new IBM computers
.t2W ynpj(_i..(»m.t1ftrul RiKlnen* M*- irrt qw. nnwerfiil "rhlp" thsn ihr^ ineri (Vm't iwe all that capacity. Put what they <ki

cMnes Corp has made Its Iwld entry tnio Ln rivab' machUies. IBM also has obtained use will enable them to work with lonfer
the person^ computer market, and experts tor distribution such popular program.': pnrgramn and more data than competnc
believe the computer itani could capluie the VlslCalc, a financial forecasting model mar- machines and to display Images on tbeir
lead In the youthful Industry within two keted by Personal Software Inc. video screens In greater detail
years. Othei piogranu, ot software, for the But the added memory comes ai a prKe.

Yesterday (be company introduced sev- IBM equipment Include the EasyWrter IBM acknowledges that a fully stocked con
eral versions of a small computer designed word piocMSlng system, three accounting puter wtll cost tS.OOO or more Its bask
lor use In homes, schools and ofltees. Prices packages from Peactltree teftware Inc and ll.MS machine comes with 16.000 characters

lage." he says.
' little that you

that IBM

IBM really gets personal.

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM
The mainframer's long-
awaitad entry into the personal
computing market aims for
corporate as wall as home
users.

With uncharactenstio but resounding fan
fare. IBM ended (he sutnmer's most popular
guessing game for (he industry by introduc
ing iis Personal Computer. Highly compa
rable to offerings from arch-contenders Ap
ple and Radio Shack, the machine repre
sents several new tacks for (he leading com
puter manufacturer as it allempts to hitch its
wagon to one of the fastest growing seg
ments of the industry.

The compuier. which is designed (o
appeal to home usen as well as corporate
professionals, ranges In price from SI .565
for a bare-bones configuration lo S6.300 for
the full-blown model. It will be sold through

Sears and Compuierland computer retail
siores as well as directly lo large corporate
and educational users. IBM says, pointing
out that it has set up a special national mar
keting team to handle such volume orders.

Donald Estridge. the articulate di
rector of IBM's entry systems business who
braved strobes and movie lights at the ma
chine's Waldorf-Astoria introduction, de
clines to say how many personnel have been
dedicated to the national marketing effort,
but says it will be selling in volumes of 20
machines or more. Several weeks after the
unveiling, he said response so far had been
"very, very good." with orders being taken
but no deliveries to be made before (his

month.

In addition to the game of Adven
ture. which Estridge said has been thor
oughly exercised by his Boca Raton. Fla..
staff. IBM has decked out the machine with
an array of packaged applications programs
that arc expected to make it attractive to the
corporate user.

Among these are the pcpular Vtsi-
Calc spreadsheet package from Personal
Software, accounting packages from Man
agement Science America's Peachtree Soft
ware operation, and Information Unlimit-
ed's EasyWriter word processing system.
Although IBM wouldn't say. more indepen
dently developed packages are certain to be
offered for the compuier as well as packages

[cntly unveiled its first ofiierlngin the
personal computer market—the IBM Personal
Computer. The unit, perhaps surprisingly, plays
music and itKludes game software to say ixKhing
of the standard features available.

The machine is impressive. ItSstarting price is a
mere 11565. For that price the buyer gets the 83-
key keyboard, the computer itself based on an
8088 microprocessor, arxl I6k of main memory
This minimai configuration can u.se a tape ca.ssette
for mass stcn^e and a television set (with an rf

modulator) for a display. (The machine isfiiUy FCC
certified for hotnc operation as a class B
computing device.)
IBM is cogniaant o(the bet that this minimally

configured machine probably won't last a serkxis
computerist long before he wants to cxpatxl The
company <^ers upgraded versions of the machine,
and will sell them in different configuraikxts. For
example, the finn lists a more typical oxifiguratkxi
fir borne or sdxx^ as (>ik ofmain mctnoiy. une didt

A sampling ofthe headlines and newspaper articles that abounded when IBM announced its Personal
Computer.

Section I: The Development of MS-£X)S 21

MCfiOSOFT
QUARTERLY

A pagefrom Microsoft's third-quarter
report for 1981.

This pokey IS especially advan
tageous when a large number ol
programs is ttsinbuied using a
single copy ol the runtime mod
ule because or>ly one royalty
payment is paid
(Microsori still supports the

runtime system usM with pre
vious versions II application
programmers link trie old library
to their applications, there is
no royally fee. This applies to
versions 5 2 and earlier, too.)

This change in the
BASCOM royaffy pobcy rellects
Microsoft s wish to increase the

number ol application packages
onthemarkef This pokey
Change. the addition of CHAIN
with COMMON, and the im

plementation of itie runtime
module make 6ASC0M a much

nxxe flexible and powerful tool
for the application programmer.
eASCOMS.3isavaHable

now hx CP/M systems,
mchiOMtg the Apple II with the
Microsoft Softcard. Mcrosott

IS commuted to supporting
BASCOM and the BASIC
mterpreter on many processors

and operating systems, tftus
assunng that appkcation pro

gramscreated with BASCOM
have, and will continue to have,

the broadest possible market.

IBM Breaks the

16-Bit Barrier

The most important feature of
the new IBM Personal Compu
ter IS Its B0S8 CPU. IBM's choice

of the 6086 opens up two areas
of the industry that have been

on the verge of changing for
the past tOmonths: first, the
industry 's hesitancyover a
senous l6-b>l software

commitment tias finally been
txoken; and second, ttie

capabilities of the i6-bit
processors arefinalfy being
put to some really exciting uses.
A 16-C«t processorgives

software designers many
advantages inherent in an
enhanced insfrucfon set For

example, we ve taken advan
tage of the expanded address
ing in our MS-LINK, a tinker for
Pascal or FORTRAN programs
that are up to a megabyte in size
In 96K ol memory, ihe Microsoft
6066 BASIC interpreter can
execute a 64K program, almost
double the sizeexecutable on
an 6-bit runtime. Applications
programs can Ce more sophis
ticated in theirleatures, human
en^neering factors, and in
solving problems that involve
larger amounts of data.
The larger numberof reg

isters wflh the 8066/6088 pro
cessors also means ttiat com

plex operations. such as floating
point and graphics routines
execute much faster. The
speed of the graphics primitives
in MBASIC-86 makes it very
easy to construct a graphns
application without machine
language.

Withttie IBM anrxjuncemeni

ol the Personal Computer, it
looks as though Ihemdustry is
finally geanng up for senous
16-bil software support. In addi
tion to itte Microsoft software

already provided lor Ihe IBM
Personal Computer, we re
planning a tul line of 16-bit lan
guages and erxl-user software
tools. Application packages are
rapidly being ada^ed to the
16-brt environment, especially
those programs alrea^wniien
in Mcrosoft BASIC.
The ' hnch pm' of Microsoft's

new l6-bil product line for the
6066/6066 is our compact,
ftexibfe operating system. MS-
DOS MS-DOSisthepnmary
operating system on itte IBM
Personal Computer We've
maintained compatitxiity with
existing CP/M 2.x operating
system calls, so it's a siraght-
forward process to convert 8060
and Z60 programs to run under
MS-DOS MS-DOSalsopro-
vides a future upgrade path
to theXENIX multi-user, multi

tasking environment. Other
important features of MS-OOS
include error recovery, device
independent I/O. and built-in
vanabte length disk reads and
wnle? Whaiisnowlheslan-

dard operating system for the
IBM Personal Computer will
no doubl twcome an industry
standard.

Now that the l6-bi1 software

barrier has been crossed and

the technicaf capabilities of the
16-bit processors are being
appreciated, Uicrosoff expects
to see many 16-bii personal
computers. It's an industry move
we've antlopated for quite some
time and. given the momentum
ollBM. It should soon be m fun

Microsoft
COBOL
Passes GSA
Validation

Microsoft IS always con
cerned about standards for all

its products The United Stales
governmeni. trie largest user
of computer equipment and
software in the world, has de

veloped tests lor compliance
with and implementation of
standards lor compilers Testing
olcompileis. called validalion.
IS performed by governmeni m-
speciors. who are irxlependent
of software developers

Microsoft Submitted Its

COBOL compiler (under ifte
CP/M operating system) for
vaMation. The General

Services Administration (GSA)
perlonned the vafKtation lesfs
and vakdated Microsoft COB(DL

as a low-intermediate impiemen-
faiion of the 1974 ANSI standard

for COBOL
Why IS Microsoft concerned

about standards, artd why (M
we submit Microsoft COBOL

for validation'' Mike Or. COBOL

product manager, offered the
following reasons
(continued on back)

Specific hardware configurations appeared in MS-DOS version 1.0 in the form of device-
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con
trol block of a file named in a command, ail operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application's portion of the memory space. It includes, among other things, the file
name, the extension, and information about the size and starting location of the file
on disk.)

Such device independence benefited both application developers and computer users.

On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap
plication did not have to be modified if new devices were added to the system. From the

The MS-DOS Encyclopedia

1981

user's point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys
tem maintained file lengths to the exact size in bytes and could be relied on to support logi
cal records of any size desired.

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND.COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM's phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk.

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table—the
FAT—that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al
location map—a list of sixteen 1 KB allocation units where successive parts of the file
were stored—an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I: The Development of MS-DOS 23

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS's
ability to find and load even very long files was extremely rapid compared with CP/M's.

Two other important features—the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor—provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre
sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initiali2ation portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commonly requested func
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in
tegrity of the functions for the user, the resident part of COMMAND.COM was given the
job of checking the transient portion for damage when an application terminated. If neces
sary, this resident portion would then load a new copy of its transient partner into memory.

Ease of Use

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing.

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications.

24 The MS-DOS Encyclopedia

1981

Package Contents

1 diskette, with the following files:
COKMAKO.COM

MSDOS.COM

BDLIN.COH

DEBUG.COM

FILCOM.COH

1 MS-DOS Disk Operating System Manual

System Requirements

The MS-DOS Operating System requires 8K bytes of memory.

O

o

o
Introduction

O

Features and Benefits of MS-DOS

Using This Manual
Syntax Notation
MS-DOS Structure and Characteristics

General MS-DOS Commands

Control Function Characters

Special Editing Commands
Disk Errors

COMMAND.COM

Prompt
Filenames

Commands

Internal Commands

External Commands

EDLIN

Invoking EDLIN
Commands

Command Parameters

Interline Commands

Error Messages

Invoking DEBUG

Command Parameters

Command Descriptions
Error Messages

FILCOM

Invoking FILCOM
Commands

Filenames

Switches

Examples

Instructions for Single Disk Drive Users

Two pages from Microsoft's MS-DOS version 1.0 manual. On the left, the system's requirements — 8 KB of
memory; on the right, the llS-page manual's complete table of contents.

In a further attempt to safeguard data, MS-DOS also trapped hard errors—such as critical
hardware errors—that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them—a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature—one visible with the DIR command—was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first l6 bytes of a directory entry

Section I: The Development of MS-DOS 25

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining l6 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run
scripts—sequences of commands or other operations—one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and Sof Tech Microsystem's p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the InfoWorld bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con
cern was compatibility: To what extent was Microsoft's new operating system compatible
with the existing st.andard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that "our most optimistic view of
the number of machines using MS-DOS wouldn't have matched what really ended up
happening."

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM's name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC—in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available.
Future Computing referred to the IBM PC as the "CP/M Record Player"—presumably in
anticipation of a vast inventory of CP/M applications for the new computer—and led its
readers to assume that the PC was actually a CP/M machine.

26 The MS-DOS Encyclopedia

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM's machine or any other
l6-bit microcomputer depended ultimately on the emergence of an industry standard for a
l6-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be
the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM's new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson's
"Quick and Dirty Operating System" for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM's version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat's version of CP/M-80.

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as
COMPAQ-DOS and Zenith's Z-DOS.

Given this confusing host of names for a product it believed could become the industry
standard, Microsoft finally took the lead and, as developer, insisted that the operating sys
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft's business—
mvich larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I: The Development of MS-DOS 27

1981-1982

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS's biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick—
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on l6-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

• First, one of Microsoft's goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

• Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502.

• Third, many applications were written in a high-level language, rather than in assem
bly language.

• Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto
matically make the installed base of CP/M-80 software available to the IBM PC and other
l6-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing—and appropriate—
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and l6-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines—although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so.

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft's list of MS-DOS custom
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and "dramatically" better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

28 The MS-DOS Encyclopedia

1981-1982

Additional MS-DOS Features and Benefits

• Written Entlrtly in 8086 Attambly Lanswg*

This provides sionlflcant speed improvements over
operating systems thst are largely translated from their 8-
bit counterparts.

• Fast Etflclent FIte Stnicture

The formal eliminates the need (or'extents.' minimizes
access to the directory trsctr. and provides lor duplicate
directory information and verify after write.

• No Need to Log in Disks

As long as no file is currently open, there is no need to
log in a new disk by typing ControhC. This greatly
improves usability for single disk system users and for
people who like to store their data on separate diskettes.

• No Physical FDe/Oisk Size Umltatlon

Unlike users of operating systems thai are limited to 8
megabytes. MS-DOS users would not have to break a 24
megabyte hard disk into three separate drives.

• No Overhead for Non-128-Byte PhysiesI Sectors

One does not have to worry about different physical
sector sizes when writing a BIOS.

• Time/Date Stamps

This alleviates, for instance, the need to recompile a file if
the time on the relocatable file is more recent than on the

source file.

• Ltfeboat Associates

The world's largest independent distributor of
microcomputer software has chosen to support MS-DOS
as its low-end tS-bit operating system. Recognizing the
important migration path from the S-t>it level to XENIX
OS. Lifeboat will be offering a wide range of software for
the MS-DOS environment.

• 100% IBM Compatible

IBM is offering software running under MS-DOS. IBM has
announced Microsoft BASIC and Microsoft Pascal, along
with accounting, financial planning, and word processing
software running under MS-DOS.

MS-DOS

Standard Operating System tor 8086 Micros

MS-DOS is a disk operating system from Microsoft for
8CB6/8088 microprocessors. International Business Machines
Corp. chose MS-DOS (called IBM Personal Computer DOS) to
be its operating system of choice for its Personal Computer.
Microsoft's agreements with IBM and several other major
computer manufacturers indicate that end-user systems

What Makes MS-DOS Important?

running MS-DOS will be widely available m the near future,
making MS-DOS the standard low-end operating system for
8086 micros. Why is MS-DOS becoming popular? MS-DOS is
an important advance in microcomputer operating systems.

All of Microsoft's languages (BASIC Inlerpreler, BASIC
Compiler, FORTRAN, COBOL, Pascal) are available
Immediately under MS-DOS. Users of MS-DOS are assured
that their operating system will be the first that Microsoft will
support when any new products or major releases are
announced. In addition, the 8-bit versions of Microsoft's

languages are upward compatible with the 16-bil versions.
Thus, application programs written in 8-bil Microsoft
languages can be run under MS-DOS with little or no
modification. Microsoft wants to encourage both the
transporting of 8-bit to 16-bit software, and the development of
new 16-bil software.

• Easy Conversion from 8080 to 8088

MS-DOS allows as much transportability of 8-bit machine
language software as is possible. MS-DOS emulates
system calls to CP/M-80. By simply running assembly
language source code through the Intel conversion
program, almost all 8080 programs will work without
modification. In most cases, a conversion to MS-DOS Is
easier than conversion to other operating systems.

• Devlee Independent I/O

MS-DOS simplifies I/O to different devices on the UNIX
concept. A single set of I/O calls treats all devices alike
from the user's perspective. Tliere is no need to rewrite
programs when a new device is added to the system.
Simply OPEN the device and READ or WRITE. Also,
device independent I/O assures that different controi
characters (specifically TAB) are handled the same by

• Advanced Error Recovery Procedures

MS-DOS doesn't simply fade away when errors occur. If
a disk error occurs at any time during any program. MS-
DOS wiil retry the operation three times. If the operation
cannot t>e completed successfully, MS-DOS will return «
an error message, then wait for the user to enter a

response. The user can attempt recovery rather than
reboot the operating system.

• Complete Program Relocatabillty

MS-DOS is a truly relocatable operating system. Not only
can the Microsoft relocatable linking loader provide for
separate segments, but also the COMMAND program in
MS-DOS relocates the modules during loading rather
then loading them to preset addresses. Thus, MS-DOS
does not have the 64K program space limitation of other
operating systems.

• Powerful, Flexible File Characteristics

MS-DOS has no practical limit on file or disk size. MS-
DOS uses4-byte XENIX OS compatible logical pointers
for file and disk capacity up to 4 gigabytes.

Within a single diskette, the user of MS-DOS can have
files of different logical record lengths. MS-DOS is
designed to block and deblock its own physical sectors:
128 Is not a sacred number in MS-DOS.

MS-DOS remembers the exact end of file marker. Thus,

stiould one open a file with a logical record length other
than the physical record length, MS-DOS remembers
exactly where the file ends lo the byte, rather than
rounded to 128 bytes. This alleviates the need for forcing
Contro;-2's or the like at the end of a file.

The Future of MS-DOS

Microsoft plans to enhance MS-DOS. The additional
addressing space of the 6086 processor makes multi-tasking a
particularly attractive enhancement. An upward migration path
to the XENIX operating system through XENIX compatible
system calls, "pipes," and "forking" is another planned

Plans for MS-CX2S also include disk buffering, graphics and
cursor positioning, kanji support, multi-user and hard disk
support, and networking.

MiCi©s©n
Microsoft, Inc.
10B00 NE Eighth, Suite 619
Bellevue,WA 98004

206-45S-6080 Telex 32SS4S

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS.

Section I: The Development of MS-DOS 29

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft's UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS—one closer to the operating system Microsoft had envisioned from the start—
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible example of its difference from ver
sions 1.0,1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-
management needs of the XT's fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team's choice for
handling files on the XT's fixed disk.

30 The MS-DOS Encyclopedia

The MS-DOS version 1.0 manual next to the version 2.0 manual.

Partitioning, IBM's initial choice, had the advantages of familiarity, size, and ease of imple
mentation. Many small-system users — particularly software developers—were already
familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub
stantial growth in the storage capacity of disk-based media. Second, partitioning de
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
1.x, and was based on a root, or main, directory under which the user could create a sys
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM's
request, decided to use the backslash as the separator instead. Although the backslash

Section I: The Development of MS-DOS

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services.

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when
ever an MS-DOS program opened a file. All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure—different
from an FCB—so that the program never had to deal directly with information about the
file's location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten—
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program's input and out
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

Installable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM's approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it—the BIOS

32 The MS-DOS Encyclopedia

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer's operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version
of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, lO.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list—this time, of device drivers—that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre
viously installed driver—for example, the ANSI.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM's request, version 2.0 of MS-DOS also possessed the undocumented ability to per
form rudimentary background processing—an interim solution to a growing awareness of
the potentials of multitasking.

Background print spooling was sufficient to meet the needs of most people in most situa
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, arid print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I: The Development of MS-DOS 33

ri r I 11 i I 1111 it

'.il
11 r I i r r r 11 • «]

Two members ofthe
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel

oped. On the left, the
original IBM PC (ver
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2.0).

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM—whether for a fixed disk or a floppy—was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code.
Though it maintained its compatibility with versions 1.x, it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the

scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5y4-inch drives, would employ a slightly different disk-controller architecture. Be
cause of these differences from the standard PC line, IBM's immediate concern was for a

version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita
tions for the file allocation table as it worked in version 2.0.

However, IBM's primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3 0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country's huge installed base of 8-bit machines, l6-bit computers were not taking
hold. Mitsubishi, however, offered a l6-bit computer. Although CP/M-86 was Mitsubishi's
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer's support for
MS-DOS.

Section I: The Development of MS-DOS 35

A sample ofthe reviews that appeared
with each new version of MS-DOS.

Irresistible
DOS 3.0
InterruUioruil support, file-sharing capa
bilities, and rttany oth^ features in DOS
3-0 result in a significantly enhanced

I operating system.

The Ascent
of DOS

^ Hands On; Operating Sj^tcms

MS-DOS 2.00: A

Hands-On Tutorial

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs.
Several wanted a networking capability, adding weight to IBM's request, but a more urgent
need for many—a need not shared by IBM at the time—was support for international
products. Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries — a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats.

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file.

The MS-DOS Encyclopedia

1983

NEC PC-9800 Series Personal Computer

MS-DOS A'-'/3V 3. 10

Copyright 1981, 1985 Microsoft Corp. / NEC Corporation

iji^y K 7 'f y© NECDic . sys T't

COMMAND A'-y 3V 3. 10

K7-f7'A: ©r-'Y KAWAI RYU
■f'-f h y {i A;¥BIN

ASSIGN
CHKDSK EXE C0PY2 COM COPYA
FC EXE FIND EXE FORMAT
MORE COM SPEED COM SWITCH

3604480

A>-7-f

R g|^MS-DOS

COM
COM
EXE
COM

ATTRIB EXE
DISKCOPY COM
KEY COM
SYS EXE

MOUSE
LABEL
SORT

EXE
SYS
EXE
COM

A Kanji screen with
the MS-DOS copyright
message.

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo
grams) arose. The difficulty with Kanji is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char
acters, however, sometimes use one byte, sometimes two. This variability creates prob
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ
ence between their version of the operating system and IBM's introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM's.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages. Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji.

Section I: The Development of MS-DOS 37

1983

Software Concerns

After the release of version 2.0, Microsoft also gained an appreciation of the importance—
and difficulty—of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver
sion of MS-DOS had to continue supporting CP/M-style calls.

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version 1.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft

could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft's own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2.0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems—requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running.
For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM's upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone's best interest.

38 The MS-DOS Encyclopedia

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project,
"there was a very long period of time between 2.1 and 3.0—almost a year and a half. Dur
ing that time, we believed we understood all the problems involved in making DOS a net
working product. [But] as time progressed, we realized that we didn't fully understand it,
either from a compatibility standpoint or from an operating-system standpoint. We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short."

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and; in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage
ment, and logical device independence at the network level. Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 3.0 supported the AT's larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft's other OEM

customers as version 3.05.

Section I: The Development of MS-DOS 39

1983-1984

Roiv\ /(yBTgo0

Rowv

Rowa

l(»fJbRe:* FAIL.m/5c Pl5K-(iGSeT
Rei'ainef RENAne.

-firfo I ATTff"
cmt/Rft^e^-eMv/r
ao^e I cLosB
Ualeh

^ignore" fail

[FlA/i>CArfry r

SETDiKSRpH] /NexTFA/TlRY"!^

ALLOLATg

»((jNJPftcKl IPftOfC y-^ vaapclustep

»/cr?uFw<aT

- jifLUSHBuFl] >1^:HECKFUU5H/—^ BOFtJRlTi
iT"^ ^ fVor^B-^ ■

PIR
PAT

^AygxTSPc t

—|^SiO>JR\TEl
PU^lTE-l

HFNPCLl/Slfri

d NSR REAt>\..
3 s;RlT6

l^e^f itlu.k5
rn K;ffers
data

y4flron Reynolds's diagram of version 3 0's network support, sketched out to enable him to add thefail option
to Interrupt 24 andfind all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagram pinned to his office wall simply because "it was so much work
to put together."

40 The MS-DOS Encyclopedia

1983-1984

H ev)pfibl«

—-< Meu/pit^
w^Mmr'ss^

RcM^

AUfce

^M^l 5cV /IK

kcA/ffCt/t—dir I P^TM

TfZAr^SMTH I ̂ twro

R<MPIf^ 5(Rcnt^
WKDlK

DOS--CZ.OSE)-^

^ fTgT^ F/WB4TH I'

LF/»rKEAP-cDS <=
[F2rIOEI?ED^

RmcWl
c:hnjs--Er.r

ET6vFFR> IV/^LIp/tTECPSV

1D15KRe/»D^|®(S
>ECRD

Carry •> toi I
cf lENOf^

fSGEr.M?iN/£ .FREESP/K:^

o(v/:.uS Cttt)

^ ,CHAR I /o

-f

g-et.ppbT' JSEE^M^ «18=.
^

D|5|c./a/Po r" Doi//=o

^€r^biSK- lATf^^ mr*ii-£

Section I: The Development of MS-DOS 41

r I' r r I *) ' 1 t t <

a_ tittiitfit

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS-DOS 1.0 used FCBs, requests in version 2.0 used
file handles. However, the version 2.0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 1.0. The redirected input and
output in version 2.0 further complicated the file-system requests. When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this

redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of I/O calls that could be called directly by both FCB calls and handle
calls. The look-alike calls for CP/M-compatible character I/O were included as part of the
set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the ISO Open System Intercon
nect model Microsoft was using for networking. The ISO model describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physical link — plugging into the network — at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data. The layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware.

On the IBM PC network, the transport layer and the server functions were handled by
IBM's Network Adapter card and the task of MS-DOS was to support this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3.0 did not provide this general-purpose
networking software, it did provide the basic support for IBM's networking hardware.

The support for IBM consisted of redirector and sharer software. MS-DOS used an ap
proach to networking in which remote requests were routed by a redirector that was able

The MS-DOS Encyclopedia

1984

to interact with the transport layer of the network. The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-level file I/O code, the operating sys
tem determined whether the call was local or remote. A local call would be allowed to fall

through to the local file I/O code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local.

Version 3.1

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place
in version 3.0 when it was delivered to IBM, but the redirector itself wasn't ready. Version
3.1, completed by Zbikowski and Reynolds and released three months later,, completed this
network support and made it available in the form of Microsoft Networks for use on non-
IBM network cards.

Microsoft Networks was built on the concept of "services" and "consumers." Services
were provided by a file server, which was part of the Networks application and ran on a
computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk.
The requesting programs—the consumers—did not need any knowledge of the remote
machine, not even what type of file system it had.

This ability to pass a high-level request to a remote server without having to know the
details of the server's file structure allowed another level of generalization of the system.
In MS-DOS 3.1, different types of file systems could be accessed on the same network. It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files.

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

• First were the MS-DOS-compatible programs. These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any MS-DOS machine without problems.

• Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines.

• Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor
mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.

Section I: The Development of MS-DOS 43

1986

Network concerns

The file-access module was changed in version 3.0 to simplify file management on the
network, but this did not solve all the problems. For instance, MS-DOS still needed to han
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it. One of the functions of the server was to keep track of all open files
on the network, and it ran into difficulties when an FCB was opened 50 or ICQ times and
never closed. To solve this problem, Microsoft introduced an FCB cache in version 3.1 that
allowed only four FCBs to be open at any one time. If a fifth FCB was opened, the least re
cently used one was closed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure.

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning—and generated new problems—with networking. One problem concerned
printers on the network. Commonly, networks are used to allow several people to share a
printer. The network could easily accommodate a program that would open the printer,
write to it, and close it again. Some programs, however, would try to use the direct IBM
BIOS interface to access the printer. To handle this situation, Microsoft's designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most
types of printer output on the network in a transparent manner.

Version 3.2

In January 1986, Microsoft released another revision of MS-DOS, version 3.2, which
supported 3y2-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM.

44 The MS-DOS Encyclopedia

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment. Not only has it "taught" millions of personal computers
"how to think," it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 of MS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users. In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story
of MS-DOS will, of course, remain even longer. For this operating system has earned its
place in microcomputing history.

JoAnne Woodcock

Section I: The Development of MS-DOS 45

lfciSilS*pllil®ilpsii?liipi||lii^iSi#iiil®i^liliii|p|^i^S#iilil^^
iililiiiilBlplI^liiliilgilil^llp^j^^

*t:;: ■ 1

■willBiBiiii

sCM . ' :

7r
IggigMlg^lM

l^lii

ft i" '■ I"«- '■ F k "r. \ H

'r\--a;;' ;v.:--- ■: :■■■» . ■=. :■■.. ■.■

Part A

Structure of MS-DOS

Article 1: An Introduction to MS-DOS

Article 1

An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

• Storage management

• Processing management

• Security

• Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments. The general charac
teristics of the three categories are listed in Table 1-1.

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

ROM

Monitor

Traditional
Operating
System

Operating
Environment

Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk

Programs on ROM Disk Disk

Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular
hardware configuration and provides a program with basic—and often direct—access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additional features such as a file system and log
ical access to peripherals. (Logical access to peripherals allows applications to run in a
hardware-independent manner.) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution.
MS-DOS is a traditional operating system.

An operating environment is built on top of a traditional operating system. The operating
environment provides additional services, such as common menu and forms support, that

Section II: Programming in the MS-DOS Environment 51

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent. Microsoft
Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

• The operating-system loader
• The MS-DOS BIOS

• The MS-DOS kernel

• The user interface (shell)

• Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Structure of ms-dos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved. (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps.) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS—MSDOS.SYS and lO.SYS
(IBMDOS.COM and IBMBIO.COM with PC-DOS)—from conventional disk files into mem

ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS's tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Struc

ture OF MS-DOS: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution. This loader is different from the ROM
loader and the operating-system loader.)

The MS-DOS BIOS

The MS-DOS BIOS, loaded from the file lO.SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel and the hardware. An
application performs input and output by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly. See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers.

(A device driver is a specialized program that provides support for a specific device such as

52 The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file lO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur
ing system initialization as a result of DEVICE directives in the system's configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Installable

Device Drivers; USER COMMANDS: config.sys:device.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

• Process control

• Memory management

• Peripheral support
• A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few "hooks" that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is "idle," and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it
is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53

Part A; Structure of MS-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable-size memory blocks. The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool.
Many programs perform their own memory management by using a local memory pool, or
heap—an additional memory block allocated from the operating system that the applica
tion program itself divides into blocks for use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Memory M^^nagement.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices—and
block devices in general—have the greatest number of features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system.

The file system

The file system is one of the largest portions of an operating system. A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos: MS-DOS

Storage Devices.

The file allocation information can take various forms, depending on the operating sys
tem, but all forms basically track the space used by files and the space available for new
data. The directory contains a list of the files stored on the device, their sizes, and informa
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS-DOS uses a
particular allocation method called a file allocation table (FAT) and a hierarchical directory

54 The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

Structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos:

MS-DOS Storage Devices; Programming for ms-dos: Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These
device "files" can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such
files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND.COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro
gram terminates, control returns to the shell, which prompts the user for another com
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem
ory space versus speed and flexibility. Early microcomputer-based operating systems pro
vided a minimal number of resident shell commands because of limited memory space;
modern operating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND.COM. Because
these programs are stored as executable files on disk, they are essentially the same as ap
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running). See USER COMMANDS.

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See THE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum
marized in the following table.

Section II: Programming in the MS-DOS Environment 55

Part A; Structure of MS-DOS

Version Date Special Characteristics

PC-DOS 1.0 1981 First operating system for the IBM PC
Record-oriented files

PC-DOS 1.1 1982 Double-sided-disk support
MS-DOS 1.25 1982 First OEM release of MS-DOS

MS-DOS/PC-DOS 2.0 1983 Operating system for the IBM PC/XT

PC-DOS 2.1

MS-DOS2.il

MS-DOS/PC-DOS 3.0

MS-DOS/PC-DOS 3.1

MS-DOS/PC-DOS 3.2

MS-DOS/PC-DOS 3.3

1984

1984

1986

1987

UNDC/XENDC-like file system
Installable device drivers

Byte-oriented files
Support for fixed disks

Operating system for the IBM PCjr
Internationalization support
2.0x bug fixes

Operating system for the IBM PCAT
Support for 1.2 MB floppy disks
Support for large fixed disks
Support for file and record locking
Application control of print spooler

Support for MS Networks
3.5-inch floppy-disk support
Disk track formatting support added to
device drivers

Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions 1.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks. Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS.

Although they retained compatibility with versions 1.x, MS-DOS and PC-DOS versions 2.x
represented a major change. In addition to providing support for fixed disks, the new ver
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file-
handle access instead of FCBs. (A file handle is a l6-bit number used to reference an inter

nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table.) The UNDC/XENEX-style file functions allow files to be
treated as a byte stream instead of as a collection of records. Applications can read or write
1 to 65535 bytes in a single operation, starting at any byte offset within the file. Filenames

56 The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.
Installable device drivers were another major enhancement.

MS-DOS and PC-DOS versions 3.x added a number of valuable features, including support
for the added capabilities of the IBM PCAT, for larger-capacity disks, and for file-locking
and record-locking functions. Network support was added by providing hooks for a redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system. It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera
tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086-compatible microproces
sor. See Specific Hardware Requirements below.

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program. The RAM must start at ad
dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family—1 MB.

The final requirement for MS-DOS is a set of devices supported by device drivers, includ
ing at least one block device, one character device, and a clock device. The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the character
device is usually a keyboard/display combination for interaction with the user; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub-
multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
components include

• An 8086-family microprocessor
• Memory

• Peripheral devices
• A ROM BIOS (PC-DOS only)

The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, including the Intel 8086,80C86,8088,80186, 80188,80286, and 80386 and
the NEC V20, V30, and V40.

Section II: Programming in the MS-DOS Environment 57

Part A: Structure of MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timer, and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Hardware Interrupt Handlers.
MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS. Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088).

The 80386 adds further instructions and a third mode called virtual 86 mode. The 80386

instructions operate in either a l6-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386.

Memory requirements

At a minimum, MS-DOS versions 1.x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is
1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters.)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include

Base Address Size (bytes) Description

AOOO:OOOOH lOOOOH (64 KB) EGA video buffer

BOOO:OOOOH lOOOH (4 KB) Monochrome video buffer

B800:0000H 4000H (16 KB) Color/graphics video buffer
C800:0000H 4000H (l6 KB) Fixed-disk ROM

FOOO:OOOOH lOOOOH (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro
processor for an interrupt vector table—that is, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

58 The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS-DOS system:

Device Name Description

CON Console input and output
PRN Printer output

AUX Auxiliary input and output
CLOCKS Date and time support
Varies (A-E) One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.
However, most MS-DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos:

Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a "bit
bucket"—that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end-of-file marker. One common use for the NUL device is as the redirected

output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file's menus and displays.

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
lO.SYS file loaded at initialization. PC-DOS, on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou
tines used by the device drivers found in IBMBIO.COM (the PC-DOS version of lO.SYS).
The support provided by a PC ROM BIOS includes

• Power-on self test (POST)

• Bootstrap loader
• Keyboard
• Displays (monochrome and color/graphics adapters)
• Serial ports 1 and 2
• Parallel printer ports 1, 2, and 3
• Clock

• Print screen

Section II: Programming in the MS-DOS Environment 59

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit
for additional ROMs. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs. (The fixed-disk ROM also includes an additional loader routine that

allows the system to start from the fixed disk.)

Summary

MS-DOS is a widely accepted traditional operating system. Its consistent and well-defined
interface makes it one of the easier operating systems to adapt and program.

MS-DOS is also a growing operating system—each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver
sion has included more support for different devices, from 5.25-inch floppy disks to high-
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become
more sophisticated, MS-DOS too will continue to evolve.

William Wong

60 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Article 2

The Components of MS-DOS

MS-DOS is a modular operating system consisting of multiple components with special
ized functions. When MS-DOS is copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, when it is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module MS-DOS Filename PC-DOS Filename

MS-DOS BIOS lO.SYS IBMBIO.COM

MS-DOS kernel MSDOS.SYS IBMDOS.COM

MS-DOS shell COMMAND.COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Structure of ms-dos: An Introduction to MS-DOS. The kernel

is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS—that is, no modifications are made by the OEM. The shell is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND.COM, is supplied by Microsoft.

The MS-DOS BIOS

The file lO.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,

SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into lO.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section II: Programming in the MS-DOS Environment 6l

Part A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa

tion module created by the OEM. The device drivers appear first in lO.SYS because they
remain resident after lO.SYS is initialized; the MS-DOS BIOS initialization routine and
SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$, and the driver
for one block device. The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel.

Device driver code can be split between lO.SYS and ROM. For example, most MS-DOS sys
tems and all PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations.)

The lO.SYS file is an absolute program image and does not contain relocation information.
The routines in lO.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, lO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an Application
Program. Larger lO.SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside
the first 64 KB.

The MS-DOS kernel

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi
tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programs in a hardware-independent manner and, in turn, is iso
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

• File and directory management
• Character device input and output
• Time and date support

It also provides the following non-device-related functions:

Memory management
Task and environment management
Country-specific configuration

62 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS-DOS
reserves Interrupts 20H through 3FH for this purpose. The MS-DOS interrupts are

Interrupt Name

20H Terminate Program
21H MS-DOS Function Calls

22H Terminate Routine Address

23H Control-C Handler Address

24H Critical Error Handler Address

25H Absolute Disk Read

26H Absolute Disk Write

27H Terminate and Stay Resident
28H-2EH Reserved

2FH Multiplex
30H-3FH Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The CP/M interface was provided in MS-DOS version 1.0
solely to assist in movement of CP/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively.)

MS-DOS version 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG.SYS file. CONFIG.SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de
vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG.SYS.

The MS-DOS sheU

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized. It provides the interface
between the kernel and the user. The default MS-DOS shell, COMMAND.COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented.

COMMAND.COM is a replaceable shell. A number of commercial products can be used
as COMMAND.COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND.COM or by using
the SHELL command in CONFIG.SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section II: Programming in the MS-DOS Environment 63

Part A: Structure of MS-DOS

COMMAND.COM can execute a set of internal (built-in) commands, load and execute
programs, or interpret batch files. Most of the internal commands support file and direc
tory operations and manipulate the program environment segment maintained by
COMMAND.COM. The programs executed by COMMAND.COM are .COM or .EXE files
loaded from a block device. The batch (.BAT) files supported by COMMAND.COM pro
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands. In particular, when it is first loaded by
MS-DOS, COMMAND.COM searches for the batch file AUTOEXEC.BAT and interprets it, if
found, before taking any other action. COMMAND.COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter

rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Customizing ms-dos: Exception Handlers.

COMMAND.COM's split personality

COMMAND.COM is a conventional .COM application with a slight twist. Ordinarily, a
.COM program is loaded into a single memory segment. COMMAND.COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in low memory. The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated
and the resident portion ofCOMMAND.COM regains control of the system. The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND.COM continues its normal
operation.

This "split personality" exists because MS-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND.COM, which contains the
built-in commands and batch-file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional
RAM and allows larger application programs to be run.

Command execution

COMMAND.COM interprets commands by first checking to see if the specified command
matches the name of an internal command. If so, it executes the command; otherwise, it
searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM
or .EXE program is found, COMMAND.COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMAND.COM itself interprets .BAT files.
If no file is found, the message Bad command or file name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name to be preceded by a full pathname. If a path is not
explicitly specified, the COMMAND.COM search mechanism uses the contents of the

64 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted. For example, the PATH
specification

PATH C:\BIN;D:\BIN;E:\

causes COMMAND.COM to search the current directory, then CABIN, then DABIN, and
finally the root directory of drive E. COMMAND.COM searches each directory for a match
ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS. An environment is a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable^value

that provide such information as the current search path used by COMMAND.COM to find
executable files, the location of COMMAND.COM itself, and the format of the user prompt.
The end of the set of strings is marked by a null string—that is, a single zero byte. A
specific environment is associated with each program in memory through a pointer con
tained at offset 2CH in the 256-byte program segment prefix (PSP). The maximum size of
an environment is 32 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of
the new program's environment are provided to MS-DOS by the initiating program—one
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program's
environment. The default environment provided to the new program is a copy of the
initiating program's environment.

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program's environment, because MS-DOS provides a pointer
to this environment only to the new program. Any changes made to the new program's en
vironment during program execution are invisible to the initiating program because a
child program's environment is always discarded when the child program terminates.

The system's master environment is normally associated with the shell COMMAND.COM.
COMMAND.COM creates this set of environment strings within itself from the contents
of the CONFIG.SYS and AUTOEXEC.BAT files, using the SET, PATH, and PROMPT com
mands. See USER COMMANDS: autoexec.bat; config.sys. In MS-DOS version 3.2, the
initial size of COMMAND.COM's environment can be controlled by loading
COMMAND.COM with the /E parameter, using the SHELL directive in CONFIG.SYS.
For example, placing the line

SHELL=COMMAND.COM /E:2048 /P

Section II: Programming in the MS-DOS Environment 65

Part A: Structure of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND.COM's environment to 2 KB. (The /P

option prevents COMMAND.COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND.COM environment con
tents. SET with no parameters displays the list of all the environment strings in the envi
ronment. A typical listing might show the following settings:

COMSPEC=A:\COMMAND.COM

PATH=C:\;A:\;B:\

PROMPT=$p $d t_ng

TMP=C:\TEMP

The following is a dump of the environment segment containing the previous environment
example:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 43 4F 40 53 50 45 43 30-41 3A 5C 43 4F 40 40 41 COMSPEC=A;\COMMA

0010 4E 44 2E 43 4F 40 00 50-41 54 48 30 43 3A 5C 3B NO.COM.PATH=C:\;

0020 41 3A 5C 3B 42 3A 5C 00-50 52 4F 40 50 54 30 24 A:\;B:\.PROMPT=$

0030 70 20 20 24 64 20 20 24-74 24 5F 24 6E 24 67 00 p $d t_ng.

0040 54 40 50 30 43 3A 5C 54-45 40 50 00 00 00 00 00 TMP=C:\TEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a .BAT extension that contain MS-DOS user and batch com

mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: batch. Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

OCOPY CON SAMPLE.BAT <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the
screen as it is typed. The copy operation is terminated by pressing Ctrl-2 (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND.COM one line at a time. In addition to the stan
dard MS-DOS commands, COMMAND.COM's batch-file interpreter supports a number of
special batch commands:

Command Meaning

ECHO * Display a message.
FOR * Execute a command for a list of files.

(more)

66 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Command Meaning

GOTO * Transfer control to another point.
IF * Conditionally execute a command.
PAUSE Wait for any key to be pressed.
REM Insert comment line.

SHIFT * Access more than 10 parameters.

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Ctrl-C or
Ctrl-Break, causing COMMAND.COM to display the prompt

Terminate batch job? (Y/N)

I/O redirection

I/O redirection was introduced with MS-DOS version 2.0. The redirection facility is imple
mented within COMMAND.COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H). C0MMAND.COM uses these func
tions to provide both redirection at the command level and a UNIX/XENEX-like pipe
facility.

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and output file handles. The in
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the
special characters >,», and <. Standard output (default = CON) is redirected using > and
» followed by the name of a file or character device. The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device. See also PRO
GRAMMING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Writing MS-DOS
Filters.

The redirection facility can also be used to pass information from one program to an
other through a "pipe." A pipe in MS-DOS is a special file created by COMMAND.COM.
COMMAND.COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar (!), separates the pro
gram names. Multiple program names can be piped together in the same command line:

ODIR 1 SORT ! MORE <Enter>

This command is equivalent to

ODIR *.* > PIPED <Enter>

OSORT < PIPED > PIPE1 <Enter>

OMORE < PIPE1 <Enter>

Section 11: Programming in the MS-DOS Environment 67

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper
ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations. This section discusses the complete process normally associated with MS-DOS
versions 2.0 and later. (MS-DOS versions 1.x use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a "cold boot" or a "warm boot." On IBM-compatible
machines, a cold boot is performed when the computer is first turned on or when a hard
ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time. For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos:

MS-DOS Storage Devices. The body of MS-DOS is contained in two files: lO.SYS and
MSDOS.SYS (IBMBIO.COM and IBMDOS.COM with PC-DOS). lO.SYS contains the

Microsoft system initialization module, SYSINIT, which configures MS-DOS using either
default values or the specifications in the CONFIG.SYS file, if one exists, and then starts up
the shell program (usually COMMAND.COM, the default). COMMAND.COM checks for an
AUTOEXEC.BAT file and interprets the file if found. (Other shells might not support such
batch files.) Finally, COMMAND.COM prompts the user for a command. (The standard
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:OOOOH, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine. (This has nothing to do with MS-DOS;^
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS ̂
occupies the address space from FOOO:OOOOH to this jump instruction. Figure 2-1 shows the
location of the ROM BIOS within the 1 MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory.

68 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

ROM BIOS

Other ROM and RAM

^ FFFF:000FH(1 MB)

- FFFF:OOOOH

<— FOOO:OOOOH

— Top of RAM
(AOOO:OOOOH for IBM PC)

Free RAM

Mr- OOOOiOOOOH

Figure 2-1. Memory layout at startup.

The initialization routine in the ROM BIOS—the POST procedure—typically deter
mines what devices are installed and operational and checks conventional memory (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB). The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera
tion. First, it initializes the interrupt vector table at the beginning of memory and any inter
rupt controllers that reference the table. The interrupt vector table area is located from
OOOOiOOOOH to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done
before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is runniftg; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed
by scanning the memory from AOOOiOOOOH to FOOOiOOOOH for a particular sequence of sig
nature bytes. If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT's fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a bootable

Section II: Programming in the MS-DOS Environment 69

Part A: Structure of MS-DOS

ROM BIOS

Other ROM and RAM

Free RAM

ROM BIOS tables

Interrupt vectors

<— FFFF:000FH(1 MB)

FFFF:OOOOH

<- FOOOiOOOOH

■<— Top of RAM
(AOOO:OOOOH for IBM PC)

0000:0600H

0000:0400H

OOOOiOOOOH

Figure 2-2. The interrupt vector table and the ROM BIOS table.

disk in it. If there is not, the routine then invokes the ROM associated with another boot
able device to see if that device contains a bootable disk. This procedure is repeated until
a bootable disk is found or until all bootable devices have been checked without success,
in which case ROM BASIC is enabled.

Bootable devices can be detected by a number of proprietary means. The IBM PC ROM
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family
short or long jump at the beginning of the sector and for AA55H in the last word of the sec
tor. This signature indicates that the sector contains the operating-system loader. Data
disks—those disks not set up with the MS-DOS system files—usually cause the ROM
loader routine to display a message indicating that the disk is not a bootable system disk.
The customary recovery procedure is to display a message asking the user to insert
another disk (with the operating system files on it) and press a key to try the load opera
tion again. The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure.

When it finds a bootable device, the ROM loader routine loads the operating-system loader
and transfers control to it. The operating-system loader then uses the ROM BIOS services
through the interrupt table to load the next part of the operating system into low memory.

Before it can proceed, the operating-system loader must know something about the con
figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data
structure that contains this information. This structure, known as the BIOS parameter
block (BPB), is located in the same sector as the operating-system loader. From the con
tents of the BPB, the operating-system loader calculates the location of the root directory

70 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

ROM BIOS tables

Interrupt vectors

FFFF:000FH(1 MB)

<— FFFF:OOOOH

FOOO:OOOOH

Top of RAM

(AOOO:OOOOH for IBM PC)

Arbitrary location

0000:0600H

<- 0000:0400H

OOOOrOOOOH

Figure 2-3. A loaded boot sector.

Boot sector

Reserved

(optional)

FAT#1

FAT#2

Root directory

lO.SYS

MSDOS.SYS

File data area

First sector on the disk

Figure 2-4. Boot-disk configuration.

Section II: Programming in the MS-DOS Environment 11

Part A: Structure of MS-DOS

for the boot disk so that it can verify that the first two entries in the root directory are
lO.SYS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
loader usually does not check the file allocation table [FAT] to see if lO.SYS and
MSDOS.SYS are actually stored in contiguous sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Structure of ms-dos: MS-DOS Storage Devices.

Next, the operating-system loader reads the sectors containing lO.SYS and MSDOS.SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5). (An alterna
tive method is to take advantage of the operating-system loader's final jump to the entry
point in lO.SYS and include routines in lO.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating-system loader
transfers control to lO.SYS, passing the identity of the boot device. The operating-system
loader is no longer needed and its RAM is made available for other purposes.

ROM BIOS

Other ROM and RAM

Possible free RAM

Boot sector

Free RAM

MSDOS.SYS

lO.SYS

ROM BIOS tables

Interrupt vectors

^ FFFF:000FH(1 MB)

FOOOiOOOOH

— Top of RAM
(AOOOiOOOOH for IBM PC)

Arbitrary location

SYSINIT

MS-DOS BIOS (resident device drivers)

0000:0600H

0000:0400H

0000:0000H

Figure 2-5. lO.SYS and MSDOS.SYS loaded.

72 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded lO.SYS
and MSDOS.SYS and transferred control to the beginning of lO.SYS. To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to lO.SYS, however, MS-DOS imposes its standards.

The lO.SYS file is divided into three modules:

• The resident device drivers

• The basic MS-DOS BIOS initialization module

• The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the lO.SYS file,
before the initialization modules.

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created lO.SYS. On IBM-compatible machines, it then
examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust
ment usually entails removing those drivers that have no corresponding installed hard
ware. The initialization routine may also modify internal tables within the device drivers.
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with system initialization. The first step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of lO.SYS, which contains the resident device drivers. This move over
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou
tine, which are no longer needed. The resulting memory layout is shown in Figure 2-6.

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel. This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH.

The MS-DOS kernel initialization routine then calls the initialization function of each

resident device driver to set up vectors for any external hardware interrupts used by the
device. Each block-device driver returns a pointer to a BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos:

MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section II: Programming in the MS-DOS Environment 73

Part A: Structure of MS-DOS

ROM BIOS

Other ROM and RAM

SYSINIT

Free RAM

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

<— FFFF:000FH(1 MB)

<r- FOOOrOOOOH

<— Top of RAM
(AOOO:OOOOH for IBM PC)

Resident device drivers

0000:0600H

0000:0400H

0000:0000H

Figure 2-6. SYSINIT and MSDOS.SYS relocated.

The kernel initialization routine's final operation before returning to SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS-DOS is now com
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIG.SYS file in the root directory of the boot
drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these struc
tures are allocated following the MS-DOS kernel (Figure 2-7).

Then SYSINIT processes the CONFIG.SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is

loaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI
RONMENT: Customizing ms-dos: Installable Device Drivers.

74 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

ROM BIOS

Other ROM and RAM

SYSESriT

Free RAM

Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

FFFF:000FH(1 MB)

<- FOOOiOOOOH

<— Top of RAM

(AOOOiOOOOH for IBM PC)

Resident device drivers

0000:0600H

0000:0400H

0000:0000H

Figure 2- 7. Tables allocated and installable device drivers loaded.

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
device driver initialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character-

device drivers supersede resident character-device drivers with the same name; installable
block-device drivers cannot supersede resident block-drivers and are assigned drive letters
following those of the resident block-device drivers.

Section II: Programming in the MS-DOS Environment 75

Part A: Structure of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX. The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to LPTl); the standard auxiliary port
is AUX (which defaults to COMl). Installable device drivers with these names will replace
any resident versions.

Starting the shell

SYSINIT's last function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming

FOR MS-DOS: The MS-DOS EXEC Function. The SHELL statement in CONFIG.SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND.COM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are

no installable device drivers (Figure 2-8).

COMMAND.COM

COMMAND.COM consists of three parts:

• A resident portion
• An initialization module

• A transient portion

The resident portion contains support for termination of programs started by
COMMAND.COM and presents critical-error messages. It is also responsible for re
loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran
sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG.SYS file, if any. See USER
COMMANDS: command. Next, it processes the AUTOEXEC.BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The relocated transient portion then displays
the MS-DOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes
it. Commands are divided into three categories:

• Internal commands

• Batch files

• External commands

Internal commands are routines contained within COMMAND.COM and include opera
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran

sient portion. Internal commands consist of a keyword, sometimes followed by a list of
command-specific parameters.

76 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

ROM BIOS

Other ROM and RAM

SYSINIT

Free RAM

COMMAND.COM

(transient)

COMMAND.COM

(initialization)

COMMAND.COM

(resident)

Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(IO.SYS)

ROM BIOS tables

Interrupt vectors

FFFF:000FH(1 MB)

<- FOOOiOOOOH

— Top of RAM
(AOOOiOOOOH for IBM PC)

Resident device drivers

0000:0600H

0000:0400H

<- OOOOrOOOOH

Figure 2-8. COMMAND.COMloaded.

Section II: Programming in the MS-DOS Environment 77

Part A; Structure of MS-DOS

ROM BIOS

Other ROM and RAM

COMMAND.COM

(transient)

Free RAM

COMMAND.COM

(resident)

Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)

MS-DOS BIOS

(lO.SYS)

ROM BIOS tables

Interrupt vectors

<— FFFF:000FH(1 MB)

Mr- FOOOiOOOOH

M— Top of RAM
(AOOO:OOOOH for IBM PC)

Resident device drivers

0000:0600H

0000:0400H

Mr- 0000:0000H

Figure 2-9. COMMAND.COM after relocation.

Batch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: batch.

External commands, which are actually executable programs, are stored in separate
files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.

PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Struc

ture of an Application Program. These programs are invoked with the name of the file
without the extension. (MS-DOS versions 3.x allow the complete pathname of the external
command to be specified.)

78 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

External commands are loaded by COMMAND.COM by means of the MS-DOS EXEC func
tion. The EXEC function loads a program into the free memory area, also called the tran
sient program area (TPA), and then passes it control. Control returns to COMMAND.COM
when the new program terminates. Memory used by the program is released unless it is a
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Customizing ms-dos: Terminate-and-Stay-Resident Utilities.

After a program terminates, the resident portion of COMMAND.COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion's memory space. The validity check is done by computing a check
sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND.COM file.

Just as COMMAND.COM uses the EXEC function to load and execute a program, pro
grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active task—the last one executed—ordinarily has complete control over the
system, with the exception of the hardware interrupt.handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND.COM. RAM-resident programs that remain in memory after they have termi
nated are the exception. In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is still in effect.

A custom shell program

The SHELL directive in the CONFIG.SYS file can be used to replace the system's default
shell, COMMAND.COM, with a custom shell. Nearly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions.
For example, the program in Figure 2-11 can be used to make any application program
appear to be a shell program—if the application program terminates, SHELL.COM
restarts it, giving the appearance that the application program is the shell program.

SHELL.COM sets up the segment registers for operation as a .COM file and reduces the
program segment size to less than 1 KB. It then initializes the segment values in the param
eter table for the EXEC function, because .COM files cannot set up segment values within a
program. The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL.COM prints a
message if the EXEC operation fails. The loop continues forever and. SHELL.COM will
never return to the now-discarded SYSINIT that started it.

Section II: Programming in the MS-DOS Environment 79

Part A: Structure of MS-DOS

ROM BIOS

Other ROM and RAM

COMMAND.COM

(transient)

Free RAM

Program #3

(active)

Program #2

Program #1

COMMAND.COM

(resident)

Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kemel

(MSDOS.SYS)

MS-DOS BIOS

(lO.SYS)

ROM BIOS tables

Interrupt vectors

<- FFFF:000FH(1 MB)

<— FOOO:OOOOH

<— Top of RAM

(AOOO:OOOOH for IBM PC)

^r— Resident device drivers

0000:0600H

<r- 0000:0400H

0000:0000H

Figure 2-10. Multiple programs loaded.

80 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

SHELL.ASM A simple program to run an application as an

MS-DOS shell program. The program name and

startup parameters must be adjusted before

SHELL is assembled.

Written by William Wong

To create SHELL.COM:

OMASM SHELL;

OLINK SHELL;

OEXE2BIN SHELL.EXE SHELL.COM

stderr

cr

If

equ 2

equ Odh

equ Oah

; standard error

; ASCII carriage return

; ASCII linefeed

cseg segment para public 'CODE 1

; — Set up DSj, ES, and SSrSP to run as .COM

assume CS:cseg

start proc far

mov ax,cs ; set up segment registers

add ax,10h ; AX = segment after PSP

mov ds, ax

mov ss,ax ; set up stack pointer

mov sp,offset stk

mov ax,offset shell

push CS ; push original CS

push ds ; push segment of shell

push ax ; push offset of shell

ret ; jump to shell

start endp

Main program running as .COM

CS, DS, SS = cseg

Original CS value on top of stack

assume cs:cseg,ds:cseg,ss:cseg

seg_size equ (((offset last) - (offset start)) + 10fh)/16

shell proc near

pop es ES = segment to shrink

mov bx,seg_size BX = new segment size

mov ah,4ah AH = modify memory block

int 21h free excess memory

mov cmd_seg, ds setup segments in

mov fcb1_seg, ds parameter block for EXEC

mov fcb2_seg,ds

mov dx,offset main_loop

mov ax,2523h ,; AX = set Control-C handler

Figure 2-11. A simple program to run an application as an MS-DOS shell. (more)

Section II: Programming in the MS-DOS Environment 81

Part A: Structure of MS-DOS

shell

int 21h set handler to DS:DX

mov dx,offset main_loop

mov ax,2524h AX = set critical error handler

int 21h set handler to DSrDX

Note: DS is equal to CS

op:

push ds ; save segment registers

push es

mov cs:stk_seg,ss ; save stack pointer

mov cs:stk_off, sp

mov dx,offset pgm_name

mov bx,offset par_blk

mov ax,4b00h ; AX = EXEC/run program

int 21h carry = EXEC failed

mov ss,cs:stk_seg ; restore stack pointer

mov sp,cs:stk_off

pop es ; restore segment registers

pop ds

jnc main_loop ; loop if program run

mov dx,offset load_msg

mov CX,load_msg_length

call print ; display error message

mov ah,08h ; AH = read without echo

int 21h wait for any character

jmp main_loop ; execute forever

endp

Print string

DS:DX = address of string

CX = size

print

print

proc

mov

mov

int

ret

endp

near

ah,40h

bx,stderr

21h

AH = write to file

BX = file handle

print string

-- Message strings

load_msg db or,If

db 'Cannot load program. cr,If

db 'Press any key to try again cr,If

loacLjfnsg_length equ $-load_msg

Program data area

stk_seg dw 0 ; stack segment pointer

stk_off dw 0 ; save area during EXEC

pgm_name db '\NEWSHELL.COM',0 ; any program will do

Figure 2-11. Continued. (more)

82 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

par_blk dw 0 use current environment

dw offset cmd_line command-line address

cmd_seg dw 0 fill in at initialization

dw offset fcbl default FOB #1

fcb1_seg dw 0 fill in at initialization

dw offset fcb2 default FOB #2

fcb2_seg dw 0 fill in at initialization

cmd_line db 0, or actual command line

fcbl db 0

db 11 dup (' •)

db 25 dup (0)

fcb2 db 0

db 11 dup (• ')

db 25 dup (0)

dw 200 dup' (0) ;r program stack area

stk dw 0

last equ $: last address used

cseg ends

end start

Figure 2-11. Continued.

SHELL.COM is very short and not too smart. It needs to be changed and rebuilt if the name
of the application program changes. A simple extension to SHELL—call it XSHELL—
would be to place the name of the application program and any parameters in the com
mand line. XSHELL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function. The CONFIG.SYS line for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAM2 PARAM3

SHELL.COM does not set up a new environment but simply uses the one passed to it.

William Wong

Section II: Programming in the MS-DOS Environment 83

Article 3: MS-DOS Storage Devices

Article 3

MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-
system support that is part of the MS-DOS kernel. The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in lO.SYS and installable block-device drivers loaded

from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: Structure of ms-dos: The Components of MS-DOS; Customizing
MS-DOS: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver. Information
about the number of heads, tracks, and so on is required only for those partitioning pro
grams that allocate logical devices along these boundaries. See Layout of a Partition below.

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving on to the logical layout of the file sys
tem. The scheme examined is for the IBM PC fixed disk.

structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

• Physical device layout
• Logical device layout
• Logical block layout
• MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device. A partitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one. Each logical device

Section II: Programming in the MS-DOS Environment 85

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See also PROGRAMMING IN THE MS-DOS

ENVIRONMENT: Programming for ms-dos: File and Record Management; Disk Directo
ries and Volume Labels.

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag
netic media such as floppy or fixed disks. Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer's power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its contents are not lost when the computer's power is turned off). Second, they are
usually not portable.

Physical disks

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material. The disk is rotated in the drive at high
speeds—approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term "fixed" refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium.) Fixed disks are also referred to as "hard"
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium. The regions act like small bar magnets with
north and south poles. The magnetic regions of the medium can be logically oriented
toward one or the other of these poles—orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli
ably capable of flux reversal. Higher densities of these regions yield higher-capacity disks.
The flux density of a particular system depends on the drive mechanics, the characteris
tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

86 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding.
Each technique offers double the data encoding density of the previous one. The associ
ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a

track, which is laid out in a circular fashion around the disk (Figure 3-1). Standard 5.25-
inch floppy disks contain either 40 (0-39) or 80 (0-79) tracks per side. Like-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track. For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer
media usually use one of two types of concentric rings. The first type keeps the same num
ber of sectors on each track isee Sectors below) and is rotated at a constant angular veloc
ity (CAV). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter. This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLV).

Sector

Tracks

Figure 3-1- The physical layout of a CAV 9-sector, 5.25-inch floppy disk.

Most MS-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the flux density of the medium and a CAV disk must maintain the same number
of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,
the sectors on or near the perimeter do not use the full capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track. Thus, CAV disks are preferred for MS-DOS systems.

Section II: Programming in the MS-DOS Environment 87

Part A: Structure of MS-DOS

Heads

Simple disk systems use a single disk, or platter, and use one or two sides of the platter;
more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor. The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter. (Performance
can be increased by increasing the number of heads to as many as one head per track,
eliminating the positioning mechanism. However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of
a single platter, whereas the term cylinder refers to the number of like-numbered tracks on
a device (Figure 3-2).

Side 0, track 7

t:

track?

y 1
cylinder

Side 3, track 7
Side 2, track 7

Figure 3-2. Tracks and cylinders on a fixed-disk system.

Sectors

Each track is divided into equal-size portions called sectors. The size of a sector is a power
of 2 and is usually greater than 128 bytes—typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and
the medium. Hard-sectored disks are implemented using a series of small holes near the

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per
formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a
disk drive built for use with soft-sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.

The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec
tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To
access a particular sector, the disk drive controller hardware moves all heads to the speci
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen
tations. The first method, used with floppy disks, employs an "open-loop" servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed

position.) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly—the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second method—a "closed-loop" servomechanism that
reserves one side of one platter for positioning information. This information, which indi
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled. Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly. This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller. Because the "servo platter" usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving
CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency).

Section II: Programming in the MS-DOS Environment 89

Part A: Structure of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3). The underlying princi
ple is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track. This staggering of sectors is called skewing or, more com
monly, interleaving. A 2-to-l (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave
means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction

Figure 3-3- A 3:1 interleave.

One approach to improving fixed-disk performance is to decrease the interleave ratio.
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,
provided the disk controller can process at that speed. The normal interleave for an IBM
PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail
able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS-
based computers all have a 1:1 interleave ratio.

Layout of a partition

For several reasons, large physical block devices such as fixed disks are often logically par
titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow
a device to be shared among different operating systems. Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MB restriction (important for
large fixed disks). MS-DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of
the disk. This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table.)

90 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

- Partition 1

-Partition 2

— Partition 3

- Partition 4

Figure 3-4. A partitioned disk.

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con
tains the partition table and a bootstrap program capable of checking the partition table
for a bootable partition, loading the bootable partition's boot sector, and transferring con
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start of Sector Size G>ytes) Description

OIBEH

OICEH

OlDEH

OlEEH

OlFEH

16

16

16

l6

2

Partition #4

Partition #3

Partition #2

Partition #1

Signature: AA55H

The partitions are allocated in reverse order. Each 16-byte entry contains the following
information:

Offset From

Start of Entry Size Cbytes) Description

OOH

OIH

Boot indicator

Beginning head

(more)

Section II: Programming in the MS-DOS Environment 91

Part A: Structure of MS-DOS

Offset From

Start of Entry Size Cbytes) Description

02H 1 Beginning sector
03H 1 Beginning cylinder
04H 1 System indicator
05H 1 Ending head
06H 1 Ending sector
07H 1 Ending cylinder
08H 4 Starting sector (relative to beginning

of disk)

OCH 4 Number of sectors in partition

The boot indicator is zero for a nonbootable partition and 80H for a bootable (active) parti
tion. A fixed disk can have only one bootable partition. (When setting a bootable partition,
partition programs such as FDISK reset the boot indicators for all other partitions to zero.)
See USER COMMANDS: fdisk.

The system indicators are

Code Meaning

OOH Unknown

OIH MS-DOS, 12-bit FAT

04H MS-DOS, 16-bit FAT

Each partition's boot sector is located at the start of the partition, which is specified in
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor
mation, stored in the partition table in this order, is loaded into the DX and CX registers by
the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting
sector of the partition relative to the beginning of the disk is also indicated. The ending
head, sector, and cylinder numbers, also included in the partition table, specify the last ac
cessible sector for the partition. The total number of sectors in a partition is the difference
between the starting and ending head and cylinder numbers times the number of sectors
per cylinder.

MS-DOS versions 2.0 through 3.2 allow only one MS-DOS partition per partitioned device.
Various device drivers have been implemented that use a different partition table that
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS parti
tions are usually accessible only by means of an installable device driver that knows about
this change. (Even with additional MS-DOS partitions, a fixed disk can have only one boot
able partition.)

92 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

Layout of a file system

Block devices are accessed on a sector basis. The MS-DOS kernel, through the device
driver, sees a block device as a logical fixed-size array of sectors and assumes that the array
contains a valid MS-DOS file system. The device driver, in turn, translates the logical sector
requests from MS-DOS into physical locations on the block device.

The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT
program. See USER COMMANDS: format. The general layout for the file system is shown
in Figure 3-5.

OEM identification, BIOS parameter block. Loader routine
Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory

Files area

Figure 3-5. The MS-DOS file system.

The boot sector is always at the beginning of a partition. It contains the OEM identifica
tion, a loader routine, and a BIOS parameter block (BPB) with information about the
device, and it is followed by an optional area of reserved sectors. See The Boot Sector
below. The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area. The file allocation tables (FATs) indicate how the
file data area is allocated; the root directory contains a fixed number of directory entries;
and the file data area contains data files, subdirectory files, and free data sectors.

Section II: Programming in the MS-DOS Environment 93

Part A: Structure of MS-DOS

All the areas just described—the boot sector, the FAT, the root directory, and the file data
area—are of fixed size; that is, they do not change after FORMAT sets up the medium.
The size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file data area. The root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and
some implementations of FORMAT allow the number of directory entries to be specified.)

The file data area is allocated in terms of clusters. A cluster is a fixed number of con

tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are
possible. Commonly used MS-DOS cluster sizes are

Disk Type Sectors/Cluster Bytes/Cluster*

Single-sided floppy disk 1 512

Double-sided floppy disk 2 1024

PCAT fixed disk 4 2048

PC/XT fixed disk 8 4096

Other fixed disks 16 8192

Other fixed disks 32 16384

* Assumes 512 bytes per sector.

In general, larger cluster sizes are used to support larger fixed disks. Although smaller clus
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for
random and sequential access, especially if the clusters for a single file are not sequentially
allocated.

The file allocation table contains one entry per cluster in the file data area. Doubling the
sectors per cluster will also halve the number of FAT entries for a given partition. See The
File Allocation Table below.

The boot sector

The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some
other fields useful to device drivers. The BPB describes a number of physical parameters
of the device, as well as the location and size of the other areas on the device. The device
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter
mine how the disk is configured.

Figure 3-7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot sec
tor shown in Figure 3-7 would be E9H 2CH OOH if a long jump were used instead of a short
one (as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, are a
fixed signature used by the loader routine to verify that the sector is a valid boot sector.

94 The MS-DOS Encyclopedia

OOH

03H

OBH

ODH

OEH

lOH

IIH

13H

15H

16H

18H

lAH

ICH

lEH

Article 3: MS-DOS Storage Devices

E9XXXXorEBXX90

OEM name and version (8 bytes)

Bytes per sector (2 bytes)

Sectors per allocation unit (1 byte)

Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

Number of root-directory entries (2 bytes)

Total sectors in logical volume (2 bytes)

Media descriptor byte

Number of sectors per FAT (2 bytes)

Sectors per track (2 bytes)

Number of heads (2 bytes)

Number of hidden sectors (2 bytes)

Loader routine

BPB

Figure 3-6. Map of the boot sector of an MS-DOS disk. Bytes OBH through 17H are the BIOS parameter block
(BPB).

The BPB information contained in bytes OBH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot sector)

2 FATs

112 root directory entries
1440 sectors on the disk

F9H media descriptor

3 sectors per FAT

Section II: Programming in the MS-DOS Environment 95

Part A: Structure of MS-DOS

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 EB 2D 90 20 20 20 20 20-20 20 20 00 02 02' 01 k-.

0010 02 70 00 AO 05 F9 03 00-09 00 02 00 00 00 00 00 •p. .y

0020 00 OA 00 00 DF 02 25 02-09 2A FF 50 F6 OA 02 FA ... %..*.Pv..z

0030 B8 CO 07 8E D8 BC 00 7C-33 CO 8E DO 8E CO FB FC 80..X<.!30.P.0{:

0180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu

0190 72 65 OD OA OD OA 4E 6F-6E 2D 53 79 73 74 65 6D re....Non-System

01A0 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 65 72 disk or disk er

01B0 72 6F 72 OD OA 52 65 70-60 61 63 65 20 61 6E 64 ror..Replace and

01C0 20 70 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w

01D0 68 65 6E 20 72 65 61 64-79 OD OA 00 00 00 00 00 hen ready

01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA *

Figure 3- 7. Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted.

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
indicate the type of medium currently in a drive. IBM-compatible media have the follow
ing descriptors:

Descriptor Media Type MS-DOS Versions

0F8H Fixed disk

OFOH 3.5-inch, 2-sided, 18 sector

0F9H 3.5-inch, 2-sided, 9 sector

0F9H 5.25-inch, 2-sided, 15 sector

OFCH 5.25-inch, 1-sided, 9 sector

OFDH 5.25-inch, 2-sided, 9 sector
OFEH 5.25-inch, 1-sided, 8 sector

OFFH 5.25-inch, 2-sided, 8 sector

OFEH 8-inch, 1-sided, single-density
OFDH 8-inch, 2-sided, single-density
OFEH 8-inch, 1-sided, double-density
OFDH 8-inch, 2-sided, double-density

2,3

3.2

3.2

3.x

2.x, 3.x

2.x, 3.x

1.x, 2.x, 3.x

1.x (except 1.0), 2, 3

96 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi
cating which clusters are allocated to each file and in what order. To enable MS-DOS to
locate a file, the file's directory entry contains its beginning FAT entry number. This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links.
(The set of links for a particular file is called a chain.)

Additional copies of the FAT are used to provide backup in case of damage to the first,
or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are
arranged sequentially after the boot sector, with some possible intervening reserved area.
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs.
It also compares all FATs when a disk is first accessed, to make sure they match.

MS-DOS supports two types of FAT: One uses 12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses l6-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (for a l6-bit FAT) OFFH bytes, as shown
in the following dumps of the first l6 bytes of the FAT:

12-bit FAT:

F9 FF FF 03 40 00 FF 6F-00 07 FO FF GO 00 00 00

16-bit FAT:

F8 FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF

The remaining FAT entries have a one-to-one relationship with the clusters in the file data
area. Each cluster's use status is indicated by its corresponding FAT value. (FORMAT in
itially marks the FAT entry for each cluster as free.) The use status is one of the following:

12-bit l6-bit Meaning

OOOH

OOIH

FF0-FF6H

FF7H

FFB-FFFH

All other values

OOOOH

OOOIH

FFF0-FFF6H

FFF7H

FFF8-FFFFH

All other values

Free cluster

Unused code

Reserved

Bad cluster; cannot be used
Last cluster of file

Link to next cluster in file

Section II: Programming in the MS-DOS Environment 97

Part A: Structure of MS-DOS

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is
found by scanning the FAT from the beginning to find the first zero value. Bad clusters are
ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain.

FAT entry: 0

1
FFDH FFFH 003H 005H FF7H 006H FFFH OOOH OOOH OOOH

continues..
(4093) (4095) (3) (5) (4087) (6) (4095) (0) (0) (0)

Unused; available cluster

— Unusable

— Unused; not available

— Disk is double-sided, double-density

Figure 3-8. Space allocation in the FAT for a typical MS-DOS disk.

Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first
allocatable link number, associated with the first available cluster in the file data area, is 2,
which is the number assigned to the first physical cluster in the file data area. Figure 3-9
shows the relationship of files, FAT entries, and clusters in the file data area.

There is no logical difference between the operation of the 12-bit and l6-bit FAT entries;
the difference is simply in the storage and access methods. Because the 8086 is specifically
designed to manipulate 8- or l6-bit values efficiently, the access procedure for the 12-bit
FAT is more complex than that for the l6-bit FAT isee Figures 3-10 and 3-11).

Special considerations
The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can
occur. One tradeoff is having a partially filled cluster at the end of a file. This situation
leads to an efficiency problem when a large cluster size is used, because an entire cluster is
allocated, regardless of the number of bytes it contains. For example, ten 100-byte files on a
disk with 16 KB clusters use l60 KB of disk space; the same files on a disk with 1 KB clus
ters use only 10 KB—a difference of 150 KB, or 15 times less storage used by the smaller
cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty
(and therefore slowness) of moving through a large file that has a long linked list of many
small clusters. Therefore, the nature of the data must be considered: Large database appli
cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily
sets the cluster size.)

98 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

12-bit FAT:

Reserved 003H FFFH 007H OOOH

rTI ^F9 FF FF 03 |0 ^00^ FF jF ^00^ 07 FO ^FF^ 00 00
004H 006H FFFH

16 bit FAT:

Reserved

0003H 0004H FFFFH 0006H 0007H FFFFH OOOOH

1 I I I I I I I 1 I 1 I 1 I 1
FS FF FF FF 03 00 04 00 FF FF 06 00 07 00 FF FF 00 00

FAT entry: 0 1 2 3 4 5 6 7 8

12-bit FAT: 1 003H 004H FFFH 006H 007H FFFH OOOH

Reserved continues..

16-bit FAT: 1 0003H 0004H FFFFH 0006H 0007H FFFFH OOOOH

Directory entry

FILEl. TXT

(points to FAT entry 2)

FILE2. TXT

(points to FAT entry 5)

File data area

FILEl. TXT

FELEl. TXT

FILEl. TXT

FILE2. TXT

FILE2. TXT

FILE2.TXT

Unused (available)

Corresponding FAT entry

2

3

4

5

6

7

8

Figure 3-9. Correspondence between the FAT and thefile data area.

Section II: Programming in the MS-DOS Environment 99

Part A: Structure of MS-DOS

Obtain the next link number from a 12-bit FAT

Parameters:

ax

ds :bx

Returns:

ax

current entry number

address of FAT (must be contiguous)

= next link number

Uses: ax, bx, cx

next12 proc near

add bx,ax

shr ax,1

shift:

nextl2

pushf

add

mov

popf

jc

and

ret

mov

shr

ret

endp

bx, ax

ax,[bx]

shift

ax,Offfh

cx, 4

ax, cl

ds:bx = partial index

ax = offset/2

carry = no shift needed

save carry

ds:bx = next cluster number index

ax = next cluster number

carry = no shift needed

skip if using top 12 bits

ax = lower 12 bits

cx = shift count

ax = top 12 bits in lower 12 bits

Figure 3-10. Assembly-language routine to access a 12-bit FAT.

Obtain the next link number from a 1 6-bit FAT

Parameters:

ax = current entry number

ds:bx = address of FAT (must be contiguous)

Returns:

ax = next link number

Uses: ax, bx, cx

next 16 proc near

add ax,ax

add bx,ax

mov ax,[bx]

ret

nextl6 endp

ax = word offset

ds:bx = next link number index

ax = next link number

Figure 3-11- Assembly-language routine to access a 16-bit FAT.

100 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

Problems with corrupted directories or FATs, induced by such events as power failures
and programs running wild, can lead to greater problems if not corrected. The MS-DOS
CHKDSK program can detect and fix some of these problems. See USER COMMANDS:
CHKDSK. For example, one common problem is dangling allocation lists caused by the
absence of a directory entry pointing to the start of the list. This situation often results
when the directory entry was not updated because a file was not closed before the com
puter was turned off or restarted. The effect is relatively benign: The data is inaccessible,
but this limitation does not affect other file allocation operations. CHKDSK can fix this
problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entry does not match the file
length as computed by traversing the linked list in the FAT. This problem can result in
improper operation of a program and in error responses from MS-DOS.

A more complex (and rarer) problem occurs when the directory entry is properly set up
but all or some portion of the linked list is also referenced by another directory entry. The
problem is grave, because writing or appending to one file changes the contents of the
other file. This error usually causes severe data and/or directory corruption or causes the
system to crash.

A similar difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster number. If the free cluster is allocated before the error is corrected, the
problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered.

In addition to CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT.

The root directory

Directory entries, which are 32 bytes long, are found in both the root directory and the
subdirectories. Each entry includes a filename and extension, the file's size, the starting
FAT entry, the time and date the file was created or last revised, and the file's attributes.
This structure resembles the format of the CP/M-style file control blocks (FCBs) used by
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: Programming for ms-dos: Disk Directories and Volume Labels.

The MS-DOS file-naming convention is also derived from CP/M: an eight-character file
name followed by a three-character file type, each left aligned and padded with spaces if
necessary. Within the limitations of the character set, the name and type are completely
arbitrary. The time and date stamps are in the same format used by other MS-DOS func
tions and reflect the time the file was last written to.

Figure 3-12 shows a dump of a 512-byte directory sector containing l6 directory entries.
(Each entry occupies two lines in this example.) The byte at offset OABH, containing a
lOH, signifies that the entry starting at OAOH is for a subdirectory. The byte at offset l60H,
containing 0E5H, means that the file has been deleted. The byte at offset 8BH, containing

Section II: Programming in the MS-DOS Environment 101

Part A: Structure of MS-DOS

the value 08H, indicates that the directory entry beginning at offset 80H is a volume label.
Finally the zero byte at offset lEOH marks the end of the directory, indicating that the sub
sequent entries in the directory have never been used and therefore need not be searched
(versions 2.0 and later).

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

0000 49 4F 20 20 20 20 20 20-53 59 53 27 00 00 00 00 10 SYS'..

0010 00 00 00 00 00 00 59 53-89 OB 02 00 01 12 00 00 .YS Q.

0020 4F 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 MSOOS SYS'..

0030 00 00 00 00 00 00 41 49-52 OA 07 00 09 43 00 00 .AIR...IC

0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 00 00 00 ANSI SYS . .

0050 00 00 00 00 00 00 41 49-52 OA 18 00 76 07 00 00 .AIR...V.

0060 58 54 41 40 4B 20 20 20-45 58 45 20 00 00 00 00 XTALK EXE . .

0070 00 00 00 00 00 00 F7 70-38 09 23 02 84 OB 01 00 .w}8.#...

0080 40 41 42 45 40 20 20 20-20 20 20 08 00 00 00 00 LABEL

0090 00 00 00 00 00 00 80 20-2A 09 00 00 00 00 00 00 . . *.0..R

00 AO 40 4F 54 55 53 20 20 20-20 20 20 10 00 00 00 00 LOTUS

OOBO 00 00 00 00 00 00 EO OA-El 06 A6 01 00 00 00 00 . ' . a. & . a.

OOCO 40 54 53 40 4F 41 44 20-43 4F 40 20 00 00 00 00 LTSLOAO COM ..

OODO 00 00 00 00 00 00 EO OA-El 06 A7 01 AO 27 00 00 . '.a.'. '

OOEO 4D 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 MCI-SF XTK ..

OOFO 00 00 00 00 00 00 46 19-32 OO B1 01 79 04 00 00 .F.2.1.y.

0100 58 54 41 40 4B 20 20 20-48 40 50 20 00 00 00 00 XTALK HLP . .

0110 00 00 00 00 00 00 05 60-73 07 A3 02 AF 88 00 00 .Ems.#./.

0120 54 58 20 20 20 20 20 20-43 4F 40 20 00 00 00 00 TX COM . .

0130 00 00 00 00 00 00 05 61-65 OC 39 01 E8 20 00 00 ..ae.9.h

0140 43 4F 4D 4D 41 4E 44 20-43 4F 40 20 00 00 00 00 COMMAND COM ..

0150 00 00 00 00 00 00 41 49-52 OA 27 00 55 3F 00 00 .AIR.•.U?

0160 E5 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 e23 EXE . .

0170 00 00 00 00 00 00 90 B2-85 OB 42 01 80 5F 01 00

0180 47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 GO ORV . .

0190 00 00 00 00 00 00 EO OA-El 06 9A 01 5B 08 00 00 .'.a...[.

01A0 4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 KB ORV . .

01B0 00 00 00 00 00 00 EO OA-El 06 90 01 60 01 00 00 .'.a...'.

01C0 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 PR ORV . .

01D0 00 00 00 00 00 00 EO OA-El 06 9E 01 49 01 00 00 .'.a...1.

01E0 00 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6

01F0 F6 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6

Figure 3-i2. Hexadecimal dump ofa 512-byte directory sector.

The sector shown in Figure 3-12 is actually an example of the first directory sector in the
root directory of a bootable disk. Notice that lO.SYS and MSDOS.SYS are the first two files
in the directory and that the file attribute byte (offset OBH in a directory entry) has a
binary value of 00100111, indicating that both files have hidden (bit 1 = 1), system (bit 0 = 1),
and read-only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for
possible backup.

102 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

The root directory can optionally have a special type of entry called a volume label, iden
tified by an attribute type of 08H, that is used to identify disks by name. A root directory
can contain only one volume label. The root directory can also contain entries that point to
subdirectories; such entries are identified by an attribute type of lOH and a file size of zero.
Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These
entries have the filenames. and and correspond to the current directory and the parent
directory of the current directory. These special entries, sometimes called directory
aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS-DOS, excluding a drive specifier but
including any filename and extension and subdirectory name separators, is 64 characters.
The size of the directory structure itself is limited only by the number of root directory
entries and the available disk space.

The file area

The file area contains subdirectories, file data, and unallocated clusters. The area is
divided into fixed-size clusters and the use for a particular cluster is specified by the corre
sponding FAT entry.

other MS-DOS Storage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
tape drives and CD ROM drives. Tape drives are most often used for archiving and for
sequential transaction processing and therefore are not discussed here.

CD ROMs are compact laser discs that hold a massive amount of information—a single
side of a Cp ROM can hold almost 500 MB of data. However, there are some drawbacks to
current CD ROM technology. For instance, data cannot be written to them—the informa
tion is placed on the compact disk at the factory when the disk is made and is available on
a read-only basis. In addition, the access time for a CD ROM is much slower than for most
magnetic-disk systems. Even with these limitations, however, the ability to hold so much
information makes CD ROM a good method for storing large amounts of static information.

William Wong

Section II: Programming in the MS-DOS Environment 103

PartB

Programming for MS-DOS

Article 4: Structure of an Application Program

Article 4

Structure of an Application Program

Planning an MS-DOS application program requires serious analysis of the program's size.
This analysis can help the programmer determine which of the two program styles sup
ported by MS-DOS best suits the application. The .EXE program structure provides a large
program with benefits resulting from the extra 512 bytes (or more) of header that preface
all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program
structure does not burden a small program with the overhead of these extra header bytes.

Because .COM programs start their lives as .EXE programs (before being converted by
EXE2BIN) and because several aspects of application programming under MS-DOS
remain similar regardless of the program structure used, a solid understanding of .EXE
structures is beneficial even to the programmer who plans on writing only .COM pro
grams. Therefore, we'll begin our discussion with the structure and behavior of .EXE
programs and then look at differences between .COM programs and .EXE programs,
including restrictions on the structure and content of .COM programs.

The .EXE Program

The .EXE program has several advantages over the .COM program for application design.
Considerations that could lead to the choice of the .EXE format include

• Extremely large programs
• Multiple segments
• Overlays
• Segment and far address constants
• Long calls
• Possibility of upgrading programs to MS OS/2 protected mode

The principal advantages of the .EXE format are provided by the file header. Most
important, the header contains information that permits a program to make direct seg
ment address references—a requirement if the program is to grow beyond 64 KB.

The file header also tells MS-DOS how much memory the program requires. This informa
tion keeps memory not required by the program from being allocated to the program—
an important consideration if the program is to be upgraded in the future to run efficiently
under MS OS/2 protected mode.

Before discussing the .EXE program structure in detail, we'll look at how .EXE programs
behave.

Section II: Programming in the MS-DOS Environment 107

Part B: Programming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a .EXE program might appear in memory when
MS-DOS first gives the program control. The diagram shows Microsoft's preferred pro
gram segment arrangement.

Start segment
and start of ^
program image
(load module)

Any segments with class

STACK

All segments

declared)

Any segments with class

BSS

as part of group "*S
DGROUP

Any DGROUP segments
not shown elsewhere

Any segments with class

BEGDATA

Any segments with class names
ending with CODE

< SP

< ss

Program segment prefix (PSP)

< IP

< CS

DS,ES

I

Figure 4-1. The .EXE program: memory map diagram with register pointers.

Before transferring control to the .EXE program, MS-DOS initializes various areas of
memory and several of the microprocessor's registers. The following discussion explains
what to expect from MS-DOS before it gives the .EXE program control.

The program segment prefix

The program segment prefix (PSP) is not a direct result of any program code. Rather, this
special 256-byte (l6-paragraph) page of memory is built by MS-DOS in front of all .EXE
and .COM programs when they are loaded into memory. Although the PSP does contain
several fields of use to newer programs, it exists primarily as a remnant of CP/M—
Microsoft adopted the PSP for ease in porting the vast number of programs available under
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP.

PSP:OOOOH (Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm

Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping
to this vector. This method of termination should not be used in newer programs. See
Terminating the .EXE Program below.

PSP:0002H(Addressof Last Segment Allocated to Program) MS-DOS introduced the word
at offset 02H into the PSP. It contains the segment address of the paragraph following the
block of memory allocated to the program. This address should be used only to determine
the size or the end of the memory block allocated to the program; it must not be con
sidered a pointer to free memory that the program can appropriate. In most cases this ad
dress will not point to free memory, because any free memory will already have been

108 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

xOH xlH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

OxH
INT20H End alloc Resv. Far call to MS-DOS fii handler Prev terminate address Prev Ctrl C...

OCDh| 20H seglojseghi 9AH ofs lo ofs hi seg lo seg hi ofslojofshi jseglo 1 seg hi ofslojofshi 1

IxH ,
...address Prev critical error adIdress Reserved...

11 seg lo j seg hi ofslo 1 ofshi 1|seglo 1 seg hi 1 1 1 1 1 1 L ' '
2xH ,

...Reserved Environ seg Reserved...

11 1 11 1 11 1 1 MM 1 seg lo jseg hi 1 1
3xH

4xH

5xH

6xH

7xH

8xH

...Reserved...

M M 1

1 1

...Reserved

M M 1 M 1 1 1 1
INT21HandRETF

OCDh| 21H joCBH
Reserved

I I I
Primary FCB...

d 1 F 1 i 1 1 1
...Primary file control block (FCB)

|e|n|a|m|e|E|x |t |00h|00h|00h|00H
Secondary FCB...

d 1 F 1 i 1 1
...Secondary file control block (FCB)

e|n|a |m| e|E|x|t |oOh|oOh|oOh|oOH
Reserved

1 1 1
Command tail and default disk transfer area (DTA) (continues through OFFH)...

■'"i 1 1 I l l

MS-DOS 2.0
and later only

Figure 4-2. The program segment prefix (PSP).

allocated to the program unless the program was linked using the /CPARMAXALLOC
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block
of memory only as big as the program requires. Well-behaved programs should acquire
additional memory only through the MS-DOS function calls provided for that purpose.
PSP:0005H (MS-DOS Function Call [old BDOS] Vector) Offset 05H is also a hand-me-
down from CP/M. This location contains an 8086-family far (intersegment) call instruction
to MS-DOS's function request handler. (Under CP/M, this address was the Basic Disk Oper
ating System [BDOS] vector, which served a similar purpose.) This vector should not be
used to call MS-DOS in newer programs. The System Calls section of this book explains
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup
port CP/M-style programs and therefore honors only the CP/M-style functions (00-24H)
through it.

PSP:000AH-0015H (Parent's 22H, 23H, and 24HInterrupt Vector Save) MS-DOS uses
offsets OAH through 15H to save the contents of three program-specific interrupt vectors.
MS-DOS must save these vectors because it permits any program to execute another pro
gram (called a child process) through an MS-DOS function call that returns control to the
original program when the called program terminates. Because the original program
resumes executing when the child program terminates, MS-DOS must restore these three

Section II: Programming in the MS-DOS Environment 109

Part B: Programming for MS-DOS

interrupt vectors for the original program in case the called program changed them. The
three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors
in the child program's PSP as doubleword fields beginning at offsets OAH for the program
termination handler vector, OEH for the Control-C/Control-Break handler vector, and 12H
for the critical error handler vector.

PSP:002CH (Segment Address of Environment) Under MS-DOS versions 2.0 and later, the
word at offset 2CH contains one of the most useful pieces of information a program can
find in the PSP—the segment address of the first paragraph of the MS-DOS environment.
This pointer enables the program to search through the environment for any configuration
or directory search path strings placed there by users with the SET command.

PSP:0050H (NewMS-DOS Call Vector) Many programmers disregard the contents of offset
50H. The location consists simply of an INT 21H instruction followed by a RETF. A .EXE
program can call this location using a far call as a means of accessing the MS-DOS function
handler. Of course, the program can also simply do an INT 21H directly, which is smaller
and faster than calling 50H. Unlike calls to offset 05H, calls to offset 50H can request the
full range of MS-DOS functions.

PSP:005CH (Default File Control Block 1) and PSP:006CH (Default File Control Block 2)
MS-DOS parses the first two parameters the user enters in the command line following the
program's name. If the first parameter qualifies as a valid (limited) MS-DOS filename
(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes
offsets 5CH through 6BH with the first l6 bytes of an unopened file control block (FCB) for
the specified file. If the second parameter also qualifies as a valid MS-DOS filename,
MS-DOS initializes offsets 6CH through 7BH with the first l6 bytes of an unopened FCB for
the second specified file. If the user specifies a directory path as part of either filename,
MS-DOS initializes only the drive code in the associated FCB. Many programmers no
longer use this feature, because file access using FCBs does not support directory paths
and other newer MS-DOS features.

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset
5CH causes it to grow from l6 bytes to 37 bytes and to overwrite the second FCB. Similarly,
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA). (The command tail and default

DTA are described below.) To use the contents of both default FCBs, the program should
copy the FCBs to a pair of 37-byte fields located in the program's data area. The program
can use the first FCB without moving it only after relocating the second FCB (if necessary)
and only by performing sequential reads or writes when using the first FCB. To perform
random reads and writes using the first FCB, the programmer must either move the first
FCB or change the default DTA address. Otherwise, the first FCB's random record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Programming for ms-dos: File and Record Management.

110 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

PSP:0080H (Command Tail and Default DTA) The default DTA resides in the entire sec
ond half (128 bytes) of the PSR MS-DOS uses this area of memory as the default record
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program can call to change the
address MS-DOS will use as the current DTA. See SYSTEM CALLS: Interrupt 21h: Func

tion lAH.) Because the default DTA serves no purpose until the program performs some
file activity that requires it, MS-DOS places the command tail in this area for the program
to examine. The command tail consists of any text the user types following the program
name when executing the program. Normally, an ASCII space (20H) is the first character
in the command tail, but any character MS-DOS recognizes as a separator can occupy this
position. MS-DOS stores the command-tail text starting at offset 81H and always places an
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length
of the command tail at offset 80H. This length includes all characters except the final ODH.
For example, the command line

OdOIT with class <Enter>

will result in the program DOIT being executed with PSP:0080H containing

OB 20 57 49 54 48 20 43 4C 41 53 53 OD

len sp W I T H sp C L A S S cr

The stack

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to
supply its own stack. (Figure 4-1 shows the program's stack as the top box in the diagram.)

Microsoft's high-level-language compilers create a stack themselves, but when writing in
assembly language the programmer must specifically declare one or more segments with
the STACK combine type. If the programmer declares multiple stack segments, possibly in
different source modules, the linker combines them into one large segment. See Control
ling the .EXE Program's Structure below.

Many programmers declare their stack segments as preinitialized with some recognizable
repeating string such as *STACK This makes it possible to examine the program's stack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro
gram actually used. On the other hand, if the stack is left as uninitialized memory and
linked at the end of the .EXE program, it will not require space within the .EXE file. (The
reason for this will become more apparent when we examine the structure of a .EXE file.)

Note: When multiple stack segments have been declared in different .ASM files, the
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci
fied in all the source modules, but the initialization data from all modules is overlapped
module by module at the high end of the combined segment.

An important difference between .COM and .EXE programs is that MS-DOS preinitializes
a .COM program's stack with a termination address before transferring control to the pro
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply
execute an 8086-family RET instruction as a means of terminating.

Section II: Programming in the MS-DOS Environment 111

Part B: Programming for MS-DOS

Note: In the assembly-language files generated for a Microsoft C program or for programs
in most other high-level-languages, the compiler's placement of a RET instruction at the
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS
does not place any return address on the stack. The compiler places the RET at the end of
main because main does not receive control directly from MS-DOS. A library initializa
tion routine receives control from MS-DOS; this routine then calls main. When main per
forms the RET, it returns control to a library termination routine, which then terminates
back to MS-DOS in an approved manner.

Preallocated memory

While loading a .EXE program, MS-DOS performs several steps to determine the initial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of the .EXE header: The first value, MINALLOC, indicates the
minimum amount of extra memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the program would
like allocated before it starts executing. Next, MS-DOS locates the largest free block of
memory available. If the size of the program's image within the .EXE file combined with
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns
an error to the process trying to load the program. If that process is COMMAND.COM,
COMMAND.COM then displays a Program too big tofit in memory error message and
terminates the user's execution request. If the block exceeds the program's MINALLOC
requirement, MS-DOS then compares the memory block against the program's image
combined with the MAXALLOC request. If the free block exceeds the maximum memory
requested by the program, MS-DOS allocates only the maximum request; otherwise, it
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads

the program's image from the .EXE file into memory following the PSP.

This process ensures that the extra memory allocated to the program will immediately
follow the program's image. The same will not necessarily be true for any memory
MS-DOS allocates to the program as a result of MS-DOS function calls the program per
forms during its execution. Only function calls requesting MS-DOS to increase the initial
allocation can guarantee additional contiguous memory. (Of course, the granting of such
increase requests depends on the availability of free memory following the initial
allocation.)

Programmers writing .EXE programs sometimes find the lack of keywords or compiler/
assembler switches that deal with MINALLOC (and possibly MAXALLOC) confusing. The
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC
to the total size of all uninitialized data and/or stack segments linked at the very end of the
program. The MINALLOC field allows the compiler to indicate the size of the initialized
data fields in the load module without actually including the fields themselves, resulting in
a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program
must be coded and linked in such a way as to place all uninitialized data fields at the end
of the program. Microsoft high-level-language compilers handle this automatically;
assembly-language programmers must give LINK a little help.

112 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Note: Beginning and even advanced assembly-language programmers can easily fall into
an argument with the assembler over field addressing when attempting to place data fields
after the code in the source file. This argument can be avoided if programmers use the
SEGMENT and GROUP assembler directives. See Controlling the .EXE Program's Struc
ture below.

No reliable method exists for the linker to determine the correct MAXALLOC value
required by the .EXE program. Therefore, LINK uses a "safe" value of FFFFH, which
causes MS-DOS to allocate all of the largest block of free memory—which is usually all
free memory—to the program. Unless a program specifically releases the memory for
which it has no use, it denies multitasking supervisor programs, such as IBM's TopView,
any memory in which to execute additional programs—hence the rule that a well-
behaved program releases unneeded memory during its initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor supports the
ability to load several programs into memory without executing them. Therefore, pro
grams that have correctly established MAXALLOC values actually are well-behaved
programs.

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch
to permit specification of the maximum amount of memory required by the program. The
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to
be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:1) forces
MS-DOS to allocate only MINALLOC extra paragraphs to the program. In addition,
Microsoft supplies a program called EXEMOD with most of its languages. This program
permits modification of the MAXALLOC field in the headers of existing .EXE programs.
See Modifying the .EXE File Header below.

The registers

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers
before transferring control to a .EXE program. MS-DOS determines most of the original
register values from information the linker places in the .EXE file header at the start of the
.EXE file.

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg
ments declared with the STACK combine type and sets the SP register to the offset from SS
of the byte immediately after the combined stack segments. (If no stack segment is
declared, MS-DOS sets SS:SP to CS:0000.) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stack. Therefore, if the programmer declares stack segments when writing an assem
bly-language program, the program will not need to initialize the SS and SP registers.
Microsoft's high-level-language compilers handle the creation of stack segments automati
cally. In both cases, the linker determines the initial SS and SP values and places them in
the header at the start of the .EXE program file.

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES
registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of

Section II: Programming in the MS-DOS Environment 113

Part B: Programming for MS-DOS

the PSR It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to
tell the program the address of the PSP; second, most programs start by examining the
command tail within the PSP. Because the program starts without DS pointing to the data
segments, the program must initialize DS and (optionally) ES to point to the data segments
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE
programs can do this easily because they can make direct references to segments, as
follows:

MOV AX,SEG DATA_SEGMENT_OR_GROUP_NAME

MOV DS,AX

MOV ES,AX

High-level-language programs need not initialize and maintain DS and ES; the compiler
and library support routines do this.

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and AL to reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS-DOS sets
AL to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier;

otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier
placed in the second FCB at PSP:006CH.

When MS-DOS analyzes the first two command-line parameters following the program
name in order to build the first and second FCBs, it treats any character followed by a
colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through
z), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it
subtracts 40H from the character, regardless of its original value. This converts the drive
prefix letters A through Z to the drive codes OIH through lAH, as required by the two
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB.

This process does not actually preclude invalid drive specifications from being placed in
the FCBs. For instance, MS-DOS will accept the drive prefix!: and place a drive code of
OEIH in the FCB (! = 21H; 21H-40H = OEIH). However, MS-DOS will then check the drive
code to see if it represents an existing drive attached to the computer and will pass a value
of OFFH to the program in the appropriate register (AL or AH) if it does not.

As a side effect of this process, MS-DOS accepts @: as a valid drive prefix because the
subtraction of 40H converts the @ character (40H) to OGH. MS-DOS accepts the OGH value
as valid because a GGH drive code represents the current default drive. MS-DOS will leave
the FCB's drive code set to GGH rather than translating it to the code for the default drive
because the MS-DOS function calls that use FCBs accept the GGH code.

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program's
entry point. Programs developed using high-level-language compilers usually receive con
trol at a library initialization routine. A programmer writing an assembly-language pro
gram using the Microsoft Macro Assembler (MASM) can declare any label within the

114 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

program as the entry point by placing the label after the END statement as the last line of the
program:

END ENTRY_POINT_LABEL

With multiple source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, LINK uses the first one it encoun
ters as the entry point.

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when
the program receives control from MS-DOS. Once again, high-level-language program
mers can ignore this fact—the compiler and library support routines deal with the situa
tion. However, assembly-language programmers should keep this fact in mind. It may give
needed insight sometime in the future when a program functions at certain times and
not at others.

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undocumented state. For instance, some debuggers may predictably
set BP to zero before starting program execution. However, a program must not rely on
such debugger actions, because MS-DOS makes no such promises. Situations like this
could account for a program that fails when executed directly under MS-DOS but works
fine when executed using a debugger.

Terminating the .EXE program

After MS-DOS has given the .EXE program control and it has completed whatever task
it set out to perform, the program needs to give control back to MS-DOS. Because of
MS-DOS's evolution, five methods of program termination have accumulated—not
including the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data has been written or
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files
opened using handles. However, good programming practice dictates that the program
not rely on the operating system to close the program's files. In addition, programs written
to use shared files under MS-DOS versions 3.0 and later should release any file locks before
closing the files and terminating.

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Return Code function (4CH) is recommended for programs running under MS-DOS ver
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro
gram, regardless of its structure or segment register settings. The Terminate Process with
Return Code function call simply consists of the following:

MOV AH,4CH /load the MS-DOS function code

MOV AL,RETURN—CODE /load the termination code

INT 21H /call MS-DOS to terminate program

Section II: Programming in the MS-DOS Environment 115

Part B: Programming for MS-DOS

The example loads the AH register with the Terminate Process with Return Code function
code. Then it loads the AL register with a return code. Normally, the return code repre
sents the reason the program terminated or the result of any operation the program
performed.

A program that executes another program as a child process can recover and analyze the
child program's return code if the child process used this termination method. Likewise,
the child process can recover the RETURN_CODE returned by any program it executes as
a child process. When a program is terminated using this method and control returns to
MS-DOS, a batch (.BAT) file can be used to test the terminated program's return code
using the IFERRORLEVEL statement.

Only two general conventions have been adopted for the value of RETUR]N__CODE:
First, a RETURN_CODE value of OOH indicates a normal no-error termination of the
program; second, increasing RETURN_CODE values indicate increasing severity of con
ditions under which the program terminated. For instance, a compiler could use the
RETURN__CODE OOH if it found no errors in the source file, OIH if it found only warning
errors, or 02H if it found severe errors.

If a program has no need to return any special RETURN_CODE values, then the following
instructions will suffice to terminate the program with a RETURN_CODE of OOH:

MOV AX,4C00H

INT 21H

Apart from being the approved termination method. Terminate Process with Return Code
is easier to use with .EXE programs than any other termination method because all other
methods require that the CS register point to the start of the PSP when the program termi
nates. This restriction causes problems for .EXE programs because they have code seg
ments with segment addresses different from that of the PSP.

The only problem with Terminate Process with Return Code is that it is not available under
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the
approved termination method when available but still remain pre-2.0 compatible. See The
Warm Boot/Terminate Vector below.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS;TEXT,OS:NOTHING,ES:NOTHING,SS:NOTHING

TERM_VECTOR DD ?

ENTRY_PROC PROC FAR

;save pointer to termination vector in PSP

MOV WORD PTR CS:TERM_VECTOR+0,OOOOh ;save offset of Warm Boot vector

MOV WORD PTR CS:TERM_VECT0R+2,DS ;save segment address of PSP

Figure 4-3. Terminating properly under any MS-DOS version. (more)

116 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;***** Place main task here *****

/determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH,30h /load Get MS-DOS Version Number function code

INT 21h /call MS-DOS to get version number

OR AL,AL /see if pre-2.0 MS-DOS

JNZ TERM_0200 /jump if 2.0 or later

/terminate under pre-2.0 MS-DOS

JMP CS:TERM_VECTOR /jump to Warm Boot vector in PSP

/terminate under MS-DOS 2.0 or later

TERML0200:

MOV AX,4C00h /load MS-DOS termination function code

/and return code

INT 21h /call MS-DOS to terminate

ENTRY_PROC ENDP

TEXT ENDS

END ENTRY_PROC /define entry point

Figure 4-3. Continued.

The Terminate Program interrupt

Before MS-DOS version 2.0, terminating with an approved method meant executing
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was
replaced as the approved termination method for two primary reasons: First, it did not
provide a means whereby programs could return a termination code; second, CS had
to point to the PSP before the INT 20H instruction was executed.

The restriction placed on the value of CS at termination did not pose a problem for .COM
programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro
gram, on the other hand, executes with CS pointing to various code segments of the pro
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro
gram interrupt from directly within their own code segments. Instead, they usually use
the termination method discussed next.

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE
program can use to terminate: Offset OOH within the PSP contains an INT 20H instruction
to which the program can jump in order to terminate. MS-DOS adopted this technique to
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was
referred to as the Warm Boot vector because the CP/M operating system was always
reloaded from disk (rebooted) whenever a program terminated.

Section II: Programming in the MS-DOS Environment 117

Part B: Programming for MS-DOS

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location
terminates a program in the same manner as an INT 20H included directly within the pro
gram, but with one important difference: By jumping to PSPrOOOOH, the program sets the
CS register to point to the beginning of the PSP, thereby satisfying the only restriction
imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func
tion 4CH gave an example of how a .EXE program can terminate via PSPiOOOOH. The ex
ample first asks MS-DOS for its version number and then terminates via PSP:OOOOH only
under versions of MS-DOS earlier than 2.0. Programs can also use PSP:OOOOH under
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is
preferred under the later MS-DOS versions.

The RET instruction

The other popular method used by CP/M programs to terminate involved simply execut
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot
vector onto the stack before giving the program control. MS-DOS provides this support
only for .COM-style programs; it does not push a termination address onto the stack
before giving .EXE programs control.

The programmer who wants to use the RET instruction to return to MS-DOS can use the
variation of the Figure 4-3 listing shown in Figure 4-4.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING

ENTRY_PROC PROC FAR ;make proc FAR so RET will be FAR

;Push pointer to termination vector in PSP

PUSH DS /push PSP's segment address

XOR AX,AX ;ax = 0 = offset of Warm Boot vector in PSP

PUSH AX /push Warm Boot vector offset

Place main task here *****

/Determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH,30h /load Get MS-DOS Version Number function code

INT 21h /call MS-DOS to get version number

OR AL,AL /see if pre-2.0 MS-DOS

JNZ TERM_0200 /jump if 2.0 or later

/Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR)

RET ;pop PSP:OOH into CS:IP to terminate

Figure 4-4. Using RET to return control to MS-DOS. (more)

118 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

/Terminate under MS-DOS 2.0 or later

TERM_0200:

MOV AX,4C00h ;AH =

INT

ENTRY_PROC

21h

ENDP

 MS-DOS Terminate Process with Return Code

/function code, AL = return code of OGH

/call MS-DOS to terminate

TEXT ENDS

END ENTRY_PROC /declare the program's entry point

Figure 4-4. Continued.

The Terminate Process function

The final method for terminating a .EXE program is Interrupt 21H Function OOH (Termi
nate Process). This method maintains the same restriction as all other older termination

methods: CS must point to the PSP. Because of this restriction, .EXE programs typically
avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0.

Terminating and staying resident

A .EXE program can use any of several additional termination methods to return con
trol to MS-DOS but still remain resident within memory to service a special event. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Terminate-and-

Stay-Resident Utilities.

Structure of the .EXE files

So far we've examined how the .EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS.
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory. Figure 4-5 shows the general structure of a .EXE file.

The file header

Unlike .COM program files, .EXE program files contain information that permits the
.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces
sors. The linker places all this extra information in a header at the start of the .EXE file.
Although the .EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes. (This minimum header size corre
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains
the following information, which MS-DOS reads into a temporary work area in memory
for use while loading the .EXE program:

OO-OIH (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH 5AH

Section II: Programming in the MS-DOS Environment 119

Part B: Programming for MS-DOS

xOH xlH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

OxH ̂

IxH ̂

Signature

4DH |5AH
Last Page Size

lo byt|hi byt
File Pages

lo byt|hi byt
Reloc Items

lo byt|hi byt
Header Paras

lo bytjhi byt
MINALLOC

lo bytjhi byt
MAXALLOC

lo bytjhi byt
PreReloc SS

lo byt jhi byt
Initial SP

ofs lo|ofs hi
Neg Chksum
lo byt|hi byt

Initial IP

ofs lo|ofs hi
Pre Reloc CS

seg lojseg hi
Reloc Tbl Ofs

lo bytjhi byt
Overlay Num

lo byt^i byt
Reserved

Use Reloc

Tbl Ofsatl8H

(offset is from

start of file)

Use Header

Paras at 08H

(load module ^

always starts on

paragraph boundary)

End of file ^

Seg Relocation Ptr # 1 Seg Relocation Ptr #2 Seg Relocation Ptr #3
ofs lo|ofs hi|seg lo|seg hi ofs lo|ofs hi | seg lo|seg hi ofs lo|ofs hi|se]

Seg Relocation Ptr #4

!g lojseg hi|ofs lojofs hi|seg lojseg hi

^

Seg Relocation Ptr #n-3

ofs lojofs hi|seg lo|seg hi

Seg Relocation Ptr #n-2

ofs lo|ofs hi|seg lojseg hi

Seg Relocation Ptr #n-l

ofs lojofs hijseg lojseg hi

Seg Relocation Ptr #n

ofs lojofs hijseg lojseg hi

▲

Program image

(load m^ule) Use Last Pa^ Size at 02H Final 512-byte page as

Use Reloc

Items

at06H

indicated by Pages at 04H

Figure 4-5. Structure of a .EXEfile.

(ASCII characters M and Z). If either or both of the signature bytes contain other values,
MS-DOS assumes the file contains a .COM program, regardless of the extension. The
reverse is not necessarily true—that is, MS-DOS does not accept the file as a .EXE pro
gram simply because the file begins with a .EXE signature. The file must also pass several
other tests.

02—03H (Last Page Size) The word at this location indicates the actual number of bytes
in the final 512-byte page of the file. This word combines with the following word to deter
mine the actual size of the file. 1

04—05H (File Pages) This word contains a count of the total number of 512-byte pages
required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last
Page Size, 02~03H) is used to determine the number of valid bytes in the final 512-byte
page. Thus, if the file contains 1024 bytes, the Last Page Size word contains OOOOH because
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page
Size word contains OOOIH because the final page contains only a single valid byte (the
1025th byte).

06—07H (Relocation Items) This word gives the number of entries that exist in the reloca
tion pointer table. See Relocation Pointer Table below.

120 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

08—09H (HeaderParagraphs) This word gives the size of the .EXE file header in 16-byte
paragraphs. It indicates the offset of the program's compiled/assembled and linked image
(the load module) within the .EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program's image. The header always spans
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file's total size is 1025 bytes. As discussed
before, the Last Page Size word (02-03H) will contain OOOIH and the File Pages word
(04-05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs
word (08-09H) will contain 32 (0020H). (That is, 32 paragraphs times l6 bytes per para
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program's image can be determined—in this case, 513 bytes.

OA—OBH(MINALLOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold
the program's image. MINALLOC normally represents the total size of any uninitialized
data and/or stack segments linked at the end of the program. LINK excludes the
space reserved by these fields from the end of the .EXE file to avoid wasting disk space.
If not enough memory remains to satisfy MINALLOC when loading the program, MS-
DOS returns an error to the process trying to load the program. If the process is
COMMAND.COM, COMMAND.COM then displays a Program too big tofit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE
File Header below.

OC—ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution. MAXALLOC indicates
additional memory desired beyond that required to hold the program's image. MS-DOS
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para
graphs are not available, the program receives the largest memory block available—at
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example.

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory
it has available to the program. To make the program compatible with multitasking super
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum
number of extra paragraphs the program desires. The EXEMOD utility can also be used
to alter this field.

Note: If both MINALLOC and MAXALLOC have been set to OOOOH, MS-DOS loads the
program as high in memory as possible. LINK sets these fields to OOOOH if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields.

OE—OFH (Initial SS Value) This word contains the paragraph address of the stack segment
relative to the start of the load module. At load time, MS-DOS relocates this value by adding
the program's start segment address to it, and the resulting value is placed in the SS regis
ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSP.)

Section II: Programming in the MS-DOS Environment 121

Part B: Programming for MS-DOS

10—llH (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control. Because MS-DOS always loads pro
grams starting on a segment address boundary, and because the linker knows the size of
the stack segment, the linker is able to determine the correct SP offset at link time; there
fore, MS-DOS does not need to adjust this value at load time. The EXEMOD utility can be
used to alter this field.

12—1311 (Complemented Checksum) This word contains the one's complement of the
summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this
word when they load a .EXE program; however, future versions might not. When LINK
generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE
header) by treating the entire file as a long sequence of l6-bit words. During this addition,
LINK gives the Complemented Checksum word (12-13H) a temporary value of OOOOH. If
the file consists of an odd number of bytes, then the final byte is treated as a word with a
high byte of OOH. Once LINK has totaled all words in the .EXE file, it performs a one's
complement operation on the total and records the answer in the .EXE file header at
offsets 12-13H. The validity of a .EXE file can then be checked by performing the same
word-totaling process as LINK performed. The total should be FFFFH, because the total
will include LINK'S calculated complemented checksum, which is designed to give the file
the FFFFH total.

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This
is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic
titious file contained the bytes 8CH C8H 8EH D8H BAH lOH B4H, then the file's total
would be calculated using C88CH+D88EH+10BAH+00B4H=1B288H. (Overflow past l6
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then
the B288H total would have been FFFFH instead.

14—15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into

the IP register in order to transfer control to the program. Because MS-DOS always loads
programs starting on a segment address boundary, the linker can calculate the correct IP
offset from the initial CS register value at link time; therefore, MS-DOS does not need
to adjust this value at load time.

16—17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro
gram control. MS-DOS adjusts this value in the same manner as the initial SS value before
loading it into the CS register.

18—19H (Relocation Table Offset) This word gives the offset from the start of the file to
the relocation pointer table. This word must be used to locate the relocation pointer table,
because variable-length information pertaining to program overlays can occur before the
table, thus causing the position of the table to vary.

lA—lBH(Overlay Number) This word is normally set to OOOOH, indicating that the .EXE
file consists of the resident, or primary, part of the program. This number changes only in
files containing programs that use overlays, which are sections of a program that remain

122 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

on disk until the program actually requires them. These program sections are loaded into
memory by special overlay managing routines included in the run-time libraries supplied
with some Microsoft high-level-language compilers.

The preceding section of the header (00-lBH) is known as the formatted area. Optional
information used by high-level-language overlay managers can follow this formatted area.
Unless the program in the .EXE file incorporates such information, the relocation pointer
table immediately follows the formatted header area.

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words
within the .EXE program image that MS-DOS must adjust before giving the program con
trol. These words consist of references made by the program to the segments that make up
the program. MS-DOS must adjust these segment address references when it loads the pro
gram, because it can load the program into memory starting at any segment address
boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative to the start of the load module. Together, these two words point to a third word
within the load module that must have the start segment address added to it. (The start seg
ment corresponds to the segment address at which MS-DOS started loading the program's

.EXE File

Rel Sag Ref=003CH

Abs SegRef=25DlH

Load module

Relocation pointer
0002H:0005H -

Relocation pointer table

Formatted header area

End of file

Memory

^ 0002H:0{)05H
•f2595H <-

2597H:0005H-

Start of file

003CH<i

► + 2595H L-
25D1H

• "Start Sag"
2595H '

Rel SegRef=003CH
*Abs SegRef=25DlH

Load module

Program segment prefix

Figure 4-6. The .EXE file relocation procedure.

Section II: Programming in the MS-DOS Environment 123

Part B: Programming for MS-DOS

image, immediately following the PSR) Figure 4-6 shows the entire procedure MS-DOS
performs for each relocation table entry.

The load module

The load module starts where the .EXE header ends and consists of the fully linked image
of the program. The load module appears within the .EXE file exactly as it would appear in
memory if MS-DOS were to load it at segment address OOOOH. The only changes MS-DOS
makes to the load module involve relocating any direct segment references.

Although the .EXE file contains distinct segment images within the load module, it pro
vides no information for separating those individual segments from one another. Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memory, relocate any direct segment references, and give the program
control.

Loading the .EXE program

So far we've covered all the characteristics of the .EXE program as it resides in memory
and on disk. We've also touched on all the steps MS-DOS performs while loading the .EXE
program from disk and executing it. The following list recaps the .EXE program loading
process in the order in which MS-DOS performs it:

1. MS-DOS reads the formatted area of the header (the first IBH bytes) from the .EXE
file into a work area.

2. MS-DOS determines the size of the largest available block of memory.

3. MS-DOS determines the size of the load module using the Last Page Size (offset
02H), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
header. An example of this process is in the discussion of the Header Paragraphs
field.

4. MS-DOS adds the MINALLOC field (offset OAH) in the header to the calculated load-

module size and the size of the PSP (lOOH bytes). If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and returns an error to
the calling process. If the calling process was COMMAND.COM, COMMAND.COM
then displays a Program too big to fit in memory error message.

5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated

load-module size and the size of the PSP. If the memory block found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size to the program
from the memory block; if the calculated total exceeds the block's size, MS-DOS
allocates the entire block.

6. If the MINALLOC and MAXALLOC fields both contain OOOOH, MS-DOS uses the
calculated load-module size to determine a start segment. MS-DOS calculates the
start segment so that the load module will load into the high end of the allocated
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal

case), MS-DOS establishes the start segment as the segment following the PSP.
7. MS-DOS loads the load module into memory starting at the start segment.

124 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod
ule's direct segment references, as shown in Figure 4-6.

9. MS-DOS builds a PSP in the first lOOH bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
AL and AH registers.

10. MS-DOS sets the SS and SP registers to the values in the header after the start seg
ment is added to the SS value.

11. MS-DOS sets the DS and ES registers to point to the beginning of the PSP.
12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in

the header after adding the start segment to the CS value.

Controlling the .EXE program's structure

We've now covered almost every aspect of a completed .EXE program. Next, we'll discuss
how to control the structure of the final .EXE program from the source level. We'll start by
covering the statements provided by MASM that permit the programmer to define the
structure of the program when programming in assembly language. Then we'll cover the
five standard memory models provided by Microsoft's C and FORTRAN compilers (both
version 4.0), which provide predefined structuring over which the programmer has
limited control.

The MASM SEGMENT directive

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data that have
offset addresses relative to the same common segment address.

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT [align] [combine] [^class^]

With MASM, the contents of a segment can be defined at one point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off. This occurs regard
less of the combine type specified in the SEGMENT directive—the combine type influ
ences only the actions of the linker. See The combine Type Parameter below.

The align type parameter
The optional align parameter lets the programmer send the linker an instruction on how
to align a segment within memory. In reality, the linker can align the segment only in rela
tion to the start of the program's load module, but the result remains the same because
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE
align type creates a special exception, as discussed below.)

The following alignment types are permitted:

BYTE This align type instructs the linker to start the segment on the byte immediately
following the previous segment. BYTE alignment prevents any wasted memory between
the previous segment and the BYTE-aligned segment.

Section II: Programming in the MS-DOS Environment 125

Part B: Programming for MS-DOS

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might
not be able to directly address the start of the segment in all cases. Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment. This means that the segment size should not
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

Another possible concern is execution speed on true l6-bit 8086-family microprocessors.
When using non-8088 microprocessors, a program can actually run faster if the instruc
tions and word data fields within segments are aligned on word boundaries. This permits
the l6-bit processors to fetch full words in a single memory read, rather than having to per
form two single-byte reads. The EVEN directive tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment of the items within the segment.

WORD This align type instructs the linker to start the segment on the next word bound
ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre
vious segment and the word-aligned segment in order to position the new segment on a
word boundary.

Another minor disadvantage to WORD alignment is that the 8086-family segment registers
might not be able to directly address the start of the segment in all cases. Because they can
address only on paragraph boundaries, the segment registers may have to point as many as
14 bytes behind the start of the segment. This means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

PARA This align type instructs the linker to start the segment on the next paragraph
boundary. The segments default to PARA if no alignment type is specified. Paragraph
boundaries occur every l6 bytes and consist of all addresses with hexadecimal values end
ing in zero (OOOOH, OOlOH, 0020H, and so forth). Paragraph alignment ensures that the
segment begins on a segment register addressing boundary, thus making it possible to ad
dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment. The only real disadvantage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment.

PAGE This align type instructs the linker to start the segment on the next page boundary.
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (OOOOH, OlOOH, 0200H, and so forth). PAGE alignment ensures

126 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

only that the linker positions the segment on a page boundary relative to the start of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary.

When a programmer declares pieces of a segment with the same name in different source
modules, the align type specified for each segment piece influences the alignment of that
specific piece of the segment. For example, assume the following two segment declara
tions appear in different source modules:

_DATA SEGMENT PARA PUBLIC 'DATA'

DB '123'

-DATA ENDS

-DATA SEGMENT PARA PUBLIC 'DATA'

DB '456'

-DATA ENDS

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. When the linker encounters the second segment piece
in the second object module, it aligns that piece on the first paragraph boundary following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second. The segment pieces must exist in separate source modules for this to occur. If
the segment pieces exist in the same source module, MASM assumes that the second seg
ment declaration is simply a resumption of the first and creates an object module with
segment declarations equivalent to the following:

-DATA SEGMENT PARA PUBLIC 'DATA'

DB '123'

DB '456'

-DATA ENDS

'Thit combine type parameter
The optional combine parameter allows the programmer to send directions to the linker
on how to combine segments with the same segname occurring in different object mod
ules. If no combine type is specified, the linker treats such segments as if each had a dif
ferent segname. The combine type has no effect on the relationship of segments with
different segnames. MASM and LINK both support the following combine types:

PUBLIC This combine type instructs the linker to concatenate multiple segments having
the same segname into a single contiguous segment. The linker adjusts any address refer
ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac
cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the program's stack and initialization data contained within STACK segments is handled
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker to determine the initial SS and SP register values it places in the .EXE

Section II: Programming in the MS-DOS Environment 127

Part B: Programming for MS-DOS

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source modules, the linker
will concatenate them in the same fashion as PUBLIC segments. However, initialization
data declared within any STACK segment is placed at the high end of the combined STACK
segments on a module-by-module basis. Thus, each successive module's initialization data
overlays the previous module's data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can
not determine the program's initial SS and SP values. (The warning can be ignored if the
program itself initializes SS and SP.)

COMMON This combine type instructs the linker to overlap multiple segments having
the same segname. The length of the resulting segment reflects the length of the longest
segment declared. If any code or data is declared in the overlapping segments, the data
contained in the final segments linked replaces any data in previously loaded segments.
This combine type is useful when a data area is to be shared by code in different source
modules.

MEMORY Microsoft's LINK treats this combine type the same as it treats the PUBLIC
type. MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel's definition of a MEMORY combine type.

AT address This combine type instructs LINK to pretend that the segment will reside at
the absolute segment address. LINK then adjusts all address references to the segment in
accordance with the masquerade. LINK will not create an image of the segment in the
load module, and it will ignore any data defined within the segment. This behavior is con
sistent with the fact that MS-DOS does not support the loading of program segments into
absolute memory segments. All programs must be able to execute from any segment ad
dress at which MS-DOS can find available memory. The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the program. For
instance, SEGMENT AT OOOOH could be used to create a template of the 8086-family inter
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed
by LINK and not by MASM (which places the data in the object module), it is possible to
use .OBJ files generated by MASM with another linker that supports ROM or other absolute
code generation should the programmer require this specialized capability.

The cl^ss type parameter
The class parameter provides the means to organize different segments into classifications.
For instance, here are three source modules, each with its own separate code and data
segments:

/Module "A"

A_DATA SEGMENT PARA PUBLIC 'DATA'

/Module "A" data fields

A_DATA ENDS

A_CODE SEGMENT PARA PUBLIC 'CODE'

/Module "A" code

A^CODE ENDS

END

(more)

128 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;Module "B"

B_DATA SEGMENT PARA PUBLIC 'DATA'

/Module "B" data fields

B_DATA ENDS

B_CODE SEGMENT PARA PUBLIC 'CODE'

/Module "B" code

B_CODE ENDS

END

/Module "C"

C_DATA SEGMENT PARA PUBLIC 'DATA'

/Module "C" data fields

C_DATA ENDS

C_CODE SEGMENT PARA PUBLIC 'CODE'

/Module "C" code

C_CODE ENDS

END

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them. If the programmer speci
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A__DATA

A_CODE

B_DATA

B_CODE

C_DATA

C_CODE

However, if the programmer specifies the class types shown in the sample source mod
ules, the linker organizes the segments by classification as follows:

•DATA' class: A_DATA

B_DATA

C_DATA

'CODE' class: A_CODE

B_CODE

C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches. The preferred method involves using the /DOSSEG switch with the linker.
This produces the segment ordering shown in Figure 4-1. The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segments declared in the various other source modules. The programmer creates the list
in the order the segments are to be arranged in memory and then specifies the .OBJ file for
this module as the first file for the linker to process. This procedure establishes the order
of all the segments before LINK begins processing the other program modules, so the

Section II: Programming in the MS-DOS Environment 129

Part B: Programming for MS-DOS

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous example so
that the linker places the 'CODE' class before the 'DATA' class:

A_CODE SEGMENT PARA PUBLIC • CODE

A_CODE ENDS

B_CODE SEGMENT PARA PUBLIC' CODE

B_CODE ENDS

C_CODE SEGMENT PARA PUBLIC • CODE

C_CODE ENDS

A_DATA SEGMENT PARA PUBLIC 'DATA

A_DATA ENDS

B_DATA SEGMENT PARA PUBLIC 'DATA

B_DATA ENDS

C_DATA SEGMENT PARA PUBLIC 'DATA

C_X)ATA ENDS

END

Rather than creating a new module, the third method places the same segment ordering
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying for the linker. This duplicates the approach used by
Microsoft's newer compilers, such as C version 4.0.

The ordering of segments within the load module has no direct effect on the linker's
adjustment of address references to locations within the various segments. Only the
GROUP directive and the SEGMENT directive's combine parameter affect address
adjustments performed by the linker. See The MASM GROUP Directive below.

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object
file in alphabetic order regardless of their order in the source file. These older versions can
limit efforts to control segment ordering. Upgrading to a new version of the assembler is
the best solution to this problem.

Ordering segments to shrink the .EXE file
Correct segment ordering can significantly decrease the size of a .EXE program as it
resides on disk. This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker's ordering of the program's
segments so that the uninitialized data field segments all reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod
ules to tell the linker about initialized and uninitialized areas of all segments. The linker
then uses this information to prevent the writing of uninitialized data areas that occur at
the end of the program image as part of the resulting .EXE file. To account for the memory
space required by these fields, the linker also sets the MINALLOC field in the .EXE file
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC
field to reallocate this missing space when loading the program.

130 The MS-DOS Encyclopedia

Article 4; Structure of an Application Program

The MASM GROUP directive

The MASM GROUP directive can also have a strong impact on a .EXE program. However,
the GROUP directive has no effect on the arrangement of program segments within mem
ory. Rather, GROUP associates program segments for addressing purposes.

The GROUP directive has the following syntax:

grpname GROUP segname,segname,segname,...

This directive causes the linker to adjust all address references to labels within any speci
fied segname to be relative to the start of the declared group. The start of the group is de
termined at link time. The group starts with whichever of the segments in the GROUP list
the linker places lowest in memory.

That the GROUP directive neither causes nor requires contiguous arrangement of the
grouped segments creates some interesting, although not necessarily desirable, possi
bilities. For instance, it permits the programmer to locate segments not belonging to the
declared group between segments that do belong to the group. The only restriction im
posed on the declared group is that the last byte of the last segment in the group must
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment
arrangement:

64KB

m^imum

•LABEL_C ►

^ LABEL_B ►
Offset to

LABEL.B
Offset to ^

LABEL C- ^ LABEL^A ►
Offset to

LABEL A

SEGMENT.C
(listed with GROUP directive)

SEGMENT.B
(not listed with GROUP directive)

SEGMENT_A
(listed with GROUP directive)

Figure 4-7. Noncontiguous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM's
OFFSET operator. The GROUP directive affects only the offset addresses generated by
such direct addressing instructions as

MOV AX,FIELD_LABEL

but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSET FIELD-LABEL

Section 11: Programming in the MS-DOS Environment 131

Part B: Programming for MS-DOS

Using the OFFSET operator on labels contained within grouped segments requires the
following approach:

MOV AX,OFFSET GROUP-NAME:FIELD-LABEL

The programmer must explicitly request the offset from the group base, because MASM
defines the result of the OFFSET operator to be the offset of the label from the start of its
segment, not its group.

Structuring a small program with SEGMENT and GROUP

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc
tives, we'll put both directives to work structuring a skeleton program. The program,
shown in Figures 4-8,4-9, and 4-10, consists of three source modules (MODULE_A,
MODULE_B, and MODULE_C), each using the following four program segments:

Segment Definition

_TEXT The code or program text segment
DATA The standard data segment containing preinitialized data fields the pro

gram might change
CONST The constant data segment containing constant data fields the program

will not change
_RSS The "block storage segment/space" segment containing uninitialized data

fields*

* Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as
"block started at symbol," which reflects an equally appropriate, although somewhat more elaborate, defini
tion of the abbreviation. Other common translations of BSS, such as "blank static storage," misrepresent the
segment name, because blanking of BSS segments does not occur—the memory contains undetermined
values when the program begins execution.

/Source Module MODULE_A

/Predeclare all segments to force the linker's segment ordering **************

-TEXT SEGMENT BYTE PUBLIC 'CODE'

-TEXT ENDS

-DATA SEGMENT WORD PUBLIC 'DATA'

-DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'

CONST ENDS

-BSS

-BSS

SEGMENT WORD PUBLIC 'BSS'

ENDS

Figure 4-8. Structuring a .EXEprogram: MODULE_A. (more)

132 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

STACK SEGMENT PARA STACK 'STACK'

STACK ENDS

DGROUP GROUP _DATA,CONST,_BSS,STACK

;Constant declarations

CONST SEGMENT WORD PUBLIC 'CONST*

CONST_FIELD_A DB 'Constant A' ;declare a MODULE—A constant

CONST ENDS

;Preinitialized data fields **

-DATA SEGMENT WORD PUBLIC 'DATA'

DATA-FIELDS DB 'Data A' /declare a MODULE-A preinitialized field

-DATA ENDS

/Uninitialized data fields ***

-BSS SEGMENT WORD PUBLIC 'BSS'

BSS—FIELDS DB 5 DUP(?) /declare a MODULE—A uninitialized field

-BSS ENDS

/Program text **

-TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:-TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

EXTRN PROC-B:NEAR

EXTRN PROC_C:NEAR

PROCS PROC NEAR

CALL PROC-B

CALL PROC-C

MOV AX,4C00H

INT 21H

PROCS ENDP

-TEXT ENDS

Figure 4-8. Continued.

/label is in —TEXT segment (NEAR)

/label is in —TEXT segment (NEAR)

/call into MODULE-B

/call into MODULE-C

/terminate (MS-DOS 2.0 or later only)

(more)

Section II: Programming in the MS-DOS Environment 133

Part B: Programming for MS-DOS

;Stack ***

STACK SEGMENT PARA STACK 'STACK'

DW 128 DUP(?) /declare some space to use as stack

STACK—BASE LABEL WORD

STACK ENDS

END PROC_A /declare PROC_A as entry point

Figure 4-8. Continued.

/Source Module MODULE_B

/Constant declarations ***

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_B DB 'Constant B' /declare a MODULE_B constant

CONST ENDS

/Preinitialized data fields **

-DATA SEGMENT WORD PUBLIC 'DATA'

DATA_FIELD_B DB 'Data B' /declare a MODULE_B preinitialized field

-DATA ENDS

/Uninitialized data fields ***

_BSS SEGMENT WORD PUBLIC 'ESS'

BSS_FIELD_B DB 5 DUP{?) /declare a MODULE_B uninitialized field

-BSS ENDS

/Program text **

DGROUP GROUP -DATA,CONST,_BSS

-TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:-TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

Figure 4-9. Structuring a .EXEprogram: MODULE^. (more)

134 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

/reference in MODULE_APUBLIC PROC_B

PROC_B PROG NEAR

RET

PROC_B ENDP

-TEXT ENDS

END

Figure 4-9. Continued.

/Source Module MODULE_C

/Constant declarations ***

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_C DB 'Constant C /declare a MODULE_C constant

CONST ENDS

/Preinitialized data fields **

-DATA SEGMENT WORD PUBLIC 'DATA'

DATA—FIELD—C DB 'Data C /declare a MODULE—C preinitialized field

-DATA ENDS

/Uninitialized data fields ***

-BSS SEGMENT WORD PUBLIC 'BSS'

BSS-FIELD-C DB 5 DUP{?) /declare a MODULE-C uninitialized field

-BSS ENDS

/Program text **

DGROUP GROUP -DATA,CONST,_BSS

-TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:-TEXT,DS:DGROUP,ES/NOTHING,SS/NOTHING

Figure 4-10. Structuring a .EXEprogram: MODULE_^C. (more)

Section II: Programming in the MS-DOS Environment 135

Part B: Programming for MS-DOS

PUBLIC PROC_C ;referenced in MODULE_A

PROC_C PROG NEAR

RET

PROC_C ENDP

_TEXT ENDS

END

Figure 4-10. Continued.

This example creates a small memory model program image, so the linked program can
have only a single code segment and a single data segment—the simplest standard form
of a .EXE program. See Using Microsoft's Contemporary Memory Models below.

In addition to declaring the four segments already discussed, MODULE_ A declares a
STACK segment in which to define a block of memory for use as the program's stack and
also defines the linking order of the five segments. Defining the linking order leaves the
programmer free to declare the segments in any order when defining the segment con
tents—a necessity because the assembler has difficulty assembling programs that use
forward references.

With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com
mands can be made into a batch file:

MASM STRUCA;

MASM STRUCB;

MASM STRUCC;

LINK STRUCA+STRUCB+STRUCC/M;

These commands will assemble and link all the .ASM files listed, producing the memory
map report file STRUCA.MAP shown in Figure 4-11.

start Stop Length Name Class

OOOOOH OOOOCH OOOODH _TEXT CODE

OOOOEH 0001FH 00012H _DATA DATA

00020H 0003DH 0001 EH CONST CONST

0003EH 0004EH 00011H _BSS BSS

00050H 0014FH 001OOH STACK STACK

Origin Group

0000:0 DGROUP

Address Publics by Name

OOOOrOOOB PROC_B

0000:000C PROC_C

Figure 4-11. Structuring a .EXEprogram: memory map report. (more)

136 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Address Publics by Value

0000:000B PROC_B

0000:000c PROC_C

Program entry point at 0000:0000

Figure 4-11. Continued.

The above memory map report represents the memory diagram shown in Figure 4-12.

Absolute

address

00150H ^

00050H ^

0004FH ►

0004AH ►

00049H ^

00044H ^

00043H ^

0003EH ^

00034H ^

0002AH ^

00020H ^

OOOIAH ^

00014H ^

OOOOEH ^
OOOODH ^

OOOOCH ^

DGROUP OOOOBH ^
addressing ^ OOOOOH ^

base

Size in bytes

STACK

Class
STACK (A)

PARA align gap
BSS (C)

BSS -

Class -

WORD align gap

BSS (B)

_ r\nD/^T TD
WORD align gap

OOKUUr

- Group BSS (A)

CONST

Class

CONST (C)

CONST (B)
CONST (A)

DATA -

Class

DATA (C)
DATA (B)
DATA (A)

WORD align gap

CODE
_ _ _ _ PlflfiS

TEXT(C)
TEXT(B)

TEXT (A)

256

I
1 321

10

10

10 i
I
I

11

.1
i

Figure 4-12. Structure of the sample .EXE program.

Using Microsoft's contemporary memory models
Now that we've analyzed the various aspects of designing assembly-language .EXE pro
grams, we can look at how Microsoft's high-level-language compilers create .EXE pro
grams from high-level-language source files. Even assembly-language programmers will
find this discussion of interest and should seriously consider using the five standard
memory models outlined here.

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
generator currently available. These newer compilers generate code based on three to five

Section II: Programming in the MS-DOS Environment 137

Part B: Programming for MS-DOS

of the following standard programmer-selectable program structures, referred to as mem
ory models. The discussion of each of these memory models will center on the model's
use with the Microsoft C Compiler and will close with comments regarding any differences
for the Microsoft FORTRAN Compiler.

Small (C compiler switch/AS) This model, the default, includes only a single code seg
ment and a single data segment. All code must fit within 64 KB, and all data must fit within
an additional 64 KB. Most C program designs fall into this category. Data can exceed the
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments. The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used with a small model. The C compiler uses the default segment name
_TEXT for all code and the default segment name _DATA for all non-far/huge data.
Microsoft FORTRAN programs can generate a semblance of this model only by using the
/NM (name module) and /AM (medium model) compiler switches in combination with the
near attribute on all subprogram declarations.

Medium (C and FORTRAN compiler switch/AM) This model includes only a single data
segment but breaks the code into multiple code segments. All data must fit within 64 KB,
but the 64 KB restriction on code size applies only on a module-by-module basis. Data can
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments.
The data-size-threshold switch described for the compact model is ignored by the
Microsoft C Compiler when used with a medium model. The compiler uses the default seg
ment name _DATA for all non-far/huge data and the template module to create
names for all code segments. The module element of module JX'Ey/Y indicates where the
compiler is to substitute the name of the source module. For example, if the source module
HELPFUNC.C is compiled using the medium model, the compiler creates the code seg
ment HELPFUNC_TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports
the medium model.

Compact (C compiler switch/AC) This model includes only a single code segment but
breaks the data into multiple data segments. All code must fit within 64 KB, but the data is
allowed to consume all the remaining available memory. The Microsoft C Compiler's op
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into
additional data segments, leaving the smaller items in the default segment for faster access.
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge. The compiler uses the default segment name
_TEXT for all code segments and the template module*_T>KTK to create names for all data
segments. The module element indicates where the compiler is to substitute the source
module's name; the # element represents a digit that the compiler changes for each addi
tional data segment required to hold the module's data. The compiler starts with the digit 5
and counts up. For example, if the name of the source module is HELPFUNC.C, the com
piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate
a semblance of this model only by using the /NM (name module) and /AL (large model)
compiler switches in combination with the near attribute on all subprogram declarations.

138 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Large (C and FORTRAN compiler switch/AL) This model creates multiple code and data
segments. The compiler treats data in the same manner as it does for the compact model
and treats code in the same manner as it does for the medium model. The Microsoft

FORTRAN Compiler version 4.0 directly supports the large model.

Huge (C and FORTRAN compiler switch/AH) Allocation of segments under the huge
model follows the same rules as for the large model. The difference is that individual data
items can exceed 64 KB. Under the huge model, the compiler generates the necessary
code to index arrays or adjust pointers across segment boundaries, effectively transforming
the microprocessor's segment-addressed memory into linear-addressed memory. This
makes the huge model especially useful for porting a program originally written for a pro
cessor that used linear addressing. The speed penalties the program pays in exchange for
this addressing freedom require serious consideration. If the program actually contains
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best
to avoid using the huge model by explicitly declaring those few data items as huge using
the huge keyword within the source module. This prevents penalizing all the non-huge
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly
supports the huge model.

Figure 4-13 shows an example of the segment arrangement created by a large/huge model
program. The example assumes two source modules: MSCA.C and MSCB.C. Each source
module specifies enough data to cause the compiler to create two extra data segments for
that module. The diagram does not show all the various segments that occur as a result of
linking with the run-time library or as a result of compiling with the intention of using the
CodeView debugger.

Groups Classes Segments

STACK STACK A SMCLH: Program stack

BSS
c_common A SM: All uninitialized global items, CLH: Empty

DGROUP _BSS A SMCLH: All uninitialized non-far/huge items

CONST CONST A SMCLH: Constants (floating point constraints, segment addresses, etc.)

DATA _DATA A SMCLH: All items that don't end up anywhere else

FAR.BSS FAR.BSS A SM: Nonexistent, CLH: All uninitialized global items

MSCB6_DATA A From MSCB only: SM: Far/huge items, CLH: Items larger than threshold

FAR DATA
MSCB5_DATA A From MSCB only: SM: Far/huge items, CLH: Items larger than threshold

MSCA6_DATA A From MSCA only: SM: Far/huge items, CLH: Items larger than threshold

MSCA5_DATA A From MSCA only: SM: Far/huge items, CLH: Items larger than threshold

TEXT A SC: All code, MLH: Run-time library code only
CODE MSCB.TEXT A SC: Nonexistent, MLH: MSCB.C Code

MSCA.TEXT A SC: Nonexistent, MLH: MSCA.C Code

S = Small model

M = Medium model

C = Compact model

L = Large model

H=Huge model

Figure 4-13. General structure of a Microsoft Cprogram.

Section II: Programming in the MS-DOS Environment 139

Part B: Programming for MS-DOS

Note that if the program declares an extremely large number of small data items, it can
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory
model specified. This occurs because the data items all fall below the data-size-threshold
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.
Lowering the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem.

Modifying the .EXE file header

With most of its language compilers, Microsoft supplies a utility program called EXEMOD.
See PROGRAMMING UTILITIES: exemod. This utility allows the programmer to display
and modify certain fields contained within the .EXE file header. Following are the header
fields EXEMOD can modify (based on EXEMOD version 4.0):

MAXALLOC This field can be modified by using EXEMOD's /MAX switch. Because
EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be
used to modify the MAXALLOC field in existing .EXE programs that contain the default
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS's allocating
all free memory to them. EXEMOD's /MAX switch functions in an identical manner to
LINK'S /CPARMAXALLOC switch.

MINALLOC This field can be modified by using EXEMOD's /MIN switch. Unlike the case
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC.
MINALLOC normally represents uninitialized memory and stack space the linker has com
pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value
within a .EXE program written by someone else. If a program requires some minimum
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in
creased to ensure that the program will have this extra memory before receiving control. If
this is done, the program will not have to verify that MS-DOS allocated enough memory to
meet program needs. Of course, the same result can be achieved without EXEMOD by
declaring this minimum extra memory as an uninitialized field at the end of the program.

Initial SP Value This field can be modified by using the /STACK switch to increase or
decrease the size of a program's stack. However, modifying the initial SP value for pro
grams developed using Microsoft language compiler versions earlier than the following
may cause the programs to fail: C version 3.0, Pascal version 3-3, and FORTRAN version
3.3. Other language compilers may have the same restriction. The /STACK switch can also
be used with programs developed using MASM, provided the stack space is linked at the
end of the program, but it would probably be wise to change the size of the STACK seg
ment declaration within the program instead. The linker also provides a /STACK switch
that performs the same purpose.

Note: With the /H switch set, EXEMOD displays the current values of the fields within
the .EXE header. This switch should not be used with the other switches. EXEMOD also

displays field values if no switches are used.

140 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Warning: EXEMOD also functions correctly when used with packed .EXE files created
using EXEPACK or the /EXEPACK linker switch. However, it is important to use the
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in
the packing method may result in incompatibilities between EXEMOD and nonassociated
linker/EXEPACK versions.

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at least one
unspotted error. If a program has been distributed to other users, the programmer will
probably need to provide those users with corrections when such bugs come to light. One
inexpensive updating approach used by many large companies consists of mailing out
single-page instructions explaining how the user can patch the program to correct the
problem.

Program patching usually involves loading the program file into the DEBUG utility sup
plied with MS-DOS, storing new bytes into the program image, and then saving the pro
gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory
and then save it back to disk in .EXE format. The programmer must trick DEBUG into
patching .EXE program files, using the procedure outlined below. See PROGRAMMING
UTILITIES: debug.

Note: Users should be reminded to make backup copies of their program before attempt
ing the patching procedure.

1. Rename the .EXE file using a filename extension that does not have special meaning
for DEBUG. (Avoid .EXE, .COM, and .HEX.) For instance, MYPROG.BIN serves well as

a temporary new name for MYPROG.EXE because DEBUG does not recognize a file
with a .BIN extension as anything special. DEBUG will load the entire image of
MYPROG.BIN, including the .EXE header and relocation table, into memory starting
at offset lOOH within a .COM-style program segment (as discussed previously).

2. Locate the area within the load module section of the .EXE file image that requires
patching. The previous discussion of the .EXE file image, together with compiler/
assembler listings and linker memory map reports, provides the information neces
sary to locate the error within the .EXE file image. DEBUG loads the file image start
ing at offset lOOH within a .COM-style program segment, so the programmer must
compensate for this offset when calculating addresses within the file image. Also, the
compiler listings and linker memory map reports provide addresses relative to the
start of the program image within the .EXE file, not relative to the start of the file
itself. Therefore, the programmer must first check the information contained in the
.EXE file header to determine where the load module (the program's image) starts
within the file.

3. Use DEBUG's E (Enter Data) or A (Assemble Machine Instructions) command to

insert the corrections. (Normally, patch instructions to users would simply give an
address at which the user should apply the patch. The user need not know how to
determine the address.)

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors)
command to write the corrected image back to disk under the same filename, pro
vided the patch has not increased the size of the program. If program size has

Section II: Programming in the MS-DOS Environment l4l

Part B: Programming for MS-DOS

increased, first change the appropriate size fields in the .EXE header at the start of the
file and use the DEBUG R (Display or Modify Registers) command to modify the BX
and CX registers so that they contain the file image's new size. Then use the W com
mand to write the image back to disk under the same name.

5. Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then
rename the file to the original .EXE filename extension.

.EXE summary

To summarize, the .EXE program and file structures provide considerable flexibility in the
design of programs, providing the programmer with the necessary freedom to produce
large-scale applications. Programs written using Microsoft's high-level-language compilers
have access to five standardized program structure models (small, medium, compact,
large, and huge). These standardized models are excellent examples of ways to structure
assembly-language programs.

The .COM Program

The majority of differences between .COM and .EXE programs exist because .COM
program files are not prefaced by header information. Therefore, .COM programs do not
benefit from the features the .EXE header provides.

The absence of a header leaves MS-DOS with no way of knowing how much memory the
.COM program requires in addition to the size of the program's image. Therefore, MS-DOS
must always allocate the largest free block of memory to the .COM program, regardless of
the program's true memory requirements. As was discussed for .EXE programs, this allo
cation of the largest block of free memory usually results in MS-DOS's allocating all
remaining free memory—an action that can cause problems for multitasking supervisor
programs.

The .EXE program header also includes the direct segment address relocation pointer
table. Because they lack this table, .COM programs cannot make address references to the
labels specified in SEGMENT directives, with the exception of SEGMENT AT address
directives. If a .COM program did make these references, MS-DOS would have no way of
adjusting the addresses to correspond to the actual segment address into which MS-DOS
loaded the program. See Creating the .COM Program below.

The .COM program structure exists primarily to support the vast number of CP/M pro
grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding
the 512 bytes or more of .EXE header information onto small, simple programs that often
do not exceed 512 bytes by themselves.

The .COM program structure has another advantage: Its memory organization places the
PSP within the same address segment as the rest of the program. Thus, it is easier to access
fields within the PSP in .COM programs.

142 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the .COM program, MS-DOS builds
a PSP in the lowest lOOH bytes of the block. No difference exists between the PSP MS-DOS
builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro
grams, MS-DOS determines the initial values for the AL and AH registers at this time and
then loads the entire .COM-file image into memory immediately following the PSP.
Because .COM files have no file-size header fields, MS-DOS relies on the size recorded in
the disk directory to determine the size of the program image. It loads the program exactly
as it appears in the file, without checking the file's contents.

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH
+ 1 (OOOOH) to establish an initial stack; if less than 64 KB are available for allocation to the
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DOS then pushes a single word of OOOOH onto the program's stack for
use in terminating the program.

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP's
segment address and the IP register to OlOOH. This means that the program's entry point
must exist at the very start of the program's image, as shown in later examples.

Figure 4-14 shows the overall structure of a .COM program as it receives control from
MS-DOS.

.COM program memory image

SP=FFFEH*

M IP=0100H

4 CS,DS,ES,SS

.COM program image

OOH OOH

Remaining free memory
within first 64 KB allocated

to .COM program
(provided a full 64 KB was available)

.COM program image from file

Program segment prefix

64KB*

*The SP and 64 KB values are dependent upon
MS-DOS having 64 KB or more of memory
available to allocate to the .COM program
at load time.

Figure 4-14. The .COM program: memory map diagram with register pointers.

Section II: Programming in the MS-DOS Environment 143

Part B: Programming for MS-DOS

Terminating the .COM program

A .COM program can use all the termination methods described for .EXE programs but
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function
(4CH) as the preferred method. If the .COM program must remain compatible with ver
sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods,
including those described as difficult to use from EXE programs, because .COM programs
execute with the CS register pointing to the PS? as required by these methods.

Creating the .COM program

A .COM program is created in the same manner as a .EXE program and then converted
using the MS-DOS EXE2BIN utility. See PROGRAMMING UTILITIES: exe2bin.

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot
exceed 64 KB minus lOOH bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack.

Next, only a single segment—or at least a single addressing group—should exist within
the program. The following two examples show ways to structure a .COM program to sat
isfy both this restriction and MASM's need to have data fields precede program code in the
source file.

COMPROG1.ASM (Figure 4-15) declares only a single segment iCOMSEG^, so no special
considerations apply when using the MASM OFFSET operator. See The MASM GROUP
Directive above. COMPROG2.ASM (Figure 4-l6) declares separate code iCSEG) and data
iDSEG) segments, which the GROUP directive ties into a common addressing block.
Thus, the programmer can declare data fields at the start of the source file and have the
linker place the data fields segment iDSEG) after the code segment iCSEG^ when it links
the program, as discussed for the .EXE program structure. This second example simulates
the program structuring provided under CP/M by Microsoft's old Macro-80 (M80) macro
assembler and Link-80 (L80) linker. The design also expands easily to accommodate
COMMON or other additional segments.

COMSEG SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS;COMSEG

ORG 0100H

BEGIN:

JMP START

/Place your data fields]

START:

/Place your program text

MOV AX,4C00H

INT 21H

COMSEG ENDS

END BEGIN

;skip over data fields

/terminate (MS-DOS 2.0 or later only)

Figure 4-15. . COM program with data at start.

144 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

CSEG SEGMENT BYTE PUBLIC 'CODE' /establish segment order

CSEG ENDS

DSEG SEGMENT BYTE PUBLIC 'DATA'

DSEG ENDS

COMGRP GROUP CSEG,DSEG /establish joint address base

DSEG SEGMENT

/Place your data fields here.

DSEG ENDS

CSEG SEGMENT

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP

ORG 0100H

BEGIN:

/Place your program text here. Remember to use

/OFFSET COMGRP:LABEL whenever you use OFFSET.

MOV AX,4C00H /terminate (MS-DOS 2.0 or later only)

INT 21H

CSEG ENDS

END BEGIN

Figure 4-16. .COMprogram with data at end.

These examples demonstrate other significant requirements for producing a functioning
.COM program. For instance, the ORG OlOOH statement in both examples tells MASM to
start assembling the code at offset lOOH within the encompassing segment. This corre
sponds to MS-DOS's transferring control to the program at IP = OlOOH. In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a
parameter to the END statement. Together, these factors satisfy the requirement that .COM
programs declare their entry point at offset lOOH. If any factor is missing, the MS-DOS
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM
file. Specifically, if a .COM program declares an entry point (as a parameter to the END
statement) that is at neither offset OlOOH nor offset OOOOH, EXE2BIN rejects the .EXE file
when the programmer attempts to convert it. If the program fails to declare an entry point
or declares an entry point at offset OOOOH, EXE2BIN assumes that the .EXE file is to be
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE
file to a non-.COM binary file, it does not strip the extra lOOH bytes the linker places in
front of the code as a result of the ORG OlOOH instruction. Thus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program's address
references will have been assembled and linked based on the lOOH offset. As a result, the
program—and probably the rest of the system as well—is likely to crash.

A .COM program also must not contain direct segment address references to any segments
that make up the program. Thus, the .COM program cannot reference any segment labels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive.)
Following are various examples of direct segment address references that are not per
mitted as part of .COM programs:

Section II: Programming in the MS-DOS Environment 145

Part B: Programming for MS-DOS

PROC_J^ PROC

PROC_A ENDP

CALL

JMP

or

or

EXTRN

CALL

JMP

MOV

DD

FAR

PROC_A

PROC^

PROC_A:FAR

PROC_A

PROC_A

AX,SEG SEG_A

LABELS

/intersegment call

;intersegment jump

/intersegment call

/intersegment jump

/segment address

/segment:offset pointer

Finally, .COM programs must not declare any segments with the STACK combine type. If
a program declares a segment with the STACK combine type, the linker will insert initial
SS and SP values into the .EXE file header, causing EXE2BIN to reject the .EXE file. A .COM
program does not have explicitly declared stacks, although it can reserve space in a non-
STACK combine type segment to which it can initialize the SP register after it receives
control. The absence of a stack segment will cause the linker to issue a harmless warning
message.

When the program is assembled and linked into a .EXE file, it must be converted into a
binary file with a .COM extension by using the EXE2BIN utility as shown in the following
example for the file YOURPROG.EXE:

C>EXE2BIN YOURPROG YOURPROG.COM <Enter>

It is not necessary to delete or rename a .EXE file with the same filename as the .COM
file before trying to execute the .COM file as long as both remain in the same directory,
because MS-DOS's order of execution is .COM files first, then .EXE files, and finally .BAT
files. However, the safest practice is to delete a .EXE file immediately after converting it to
a .COM file in case the .COM file is later renamed or moved to a different directory. If a
.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash
the system.

Patching the .COM program using DEBUG

As discussed for .EXE files, a programmer who distributes software to users will probably
want to send instructions on how to patch in error corrections. This approach to software
updates lends itself even better to .COM files than it does to .EXE files.

For example, because .COM files contain only the code image, they need not be renamed
in order to read and write them using DEBUG. The user need only be instructed on how to
load the .COM file into DEBUG, how to patch the program, and how to write the patched
image back to disk. Calculating the addresses and patch values is even easier, because no
header exists in the .COM file image to cause complications. With the preceding excep
tions, the details for patching .COM programs remain the same as previously outlined for
.EXE programs.

146 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

.COM summary

To summarize, the .COM program and file structures are a simpler but more restricted
approach to writing programs than the .EXE structure because the programmer has only a
single memory model from which to choose (the .COM program segment model). Also,
.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so
the .COM program structure is well suited to small programs for which adding 512 bytes
of header would probably at least double the file's size.

Summary of Differences

The following table summarizes the differences between .COM and .EXE programs.

Maximum size

Entry point

CS at entry

IP at entry

DS at entry

ES at entry

SS at entry

SP at entry

Stack at entry

Stack size

Subroutine calls

Exit method

•COM program •EXE program

Size of file

65536 bytes minus 256 bytes
for PSP and 2 bytes for stack

PSPiOlOOH

PSP

OlOOH

PSP

PSP

PSP

FFFEH or top word in available
memory, whichever is lower

Zero word

65536 bytes minus 256 bytes
for PSP and size of executable

code and data

NEAR

Interrupt 21H Function 4CH
preferred; NEAR RET if
MS-DOS versions 1.x

Exact size of program

No limit

Defined by END statement
Segment containing program's
entry point

Offset of entry point within its
segment

PSP

PSP

Segment with STACK attribute
End of segment defined with
STACK attribute

Initialized or uninitialized,

depending on source
Defined in segment with
STACK attribute

NEAR or FAR

Interrupt 21H Function 4CH
preferred; indirect jump
to PSP:OOOOH if MS-DOS

versions 1.x

Size of program plus header (at
least 512 extra bytes)

Section II: Programming in the MS-DOS Environment 147

Part B: Programming for MS-DOS

Which format the programmer uses for an application usually depends on the program's
intended size, but the decision can also be influenced by a program's need to address mul
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR
MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler)
are designed as .EXE programs. The ultimate decision is, of course, the programmer's.

Keith Burgoyne

148 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Article 5:

Character Device Input and Output

All functional computer systems are composed of a central processing unit (CPU), some
memory, and peripheral devices that the CPU can use to store data or communicate with
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard
(for input), the display (for output), and one or more disk drives (for nonvolatile storage).
Additional devices such as printers, modems, and pointing devices extend the function
ality of the computer or offer alternative methods of using the system.

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com
munications ports.

The distinction between block and character devices is not always readily apparent, but
in general, block devices transfer information in chunks, or blocks, and character devices
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by
a drive letter assigned when the device's controlling software, the device driver, is loaded.
A character device, on the other hand, is identified by a logical name (similar to a filename
and subject to many of the same restrictions) built into its device driver. See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Installable Device Drivers.

Background Information

Versions 1.x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices
with a fixed set of device drivers loaded during system initialization from the hidden file
lO.SYS (or IBMBIO.COM with PC-DOS). These versions of MS-DOS offered application
programs a high degree of input/output device independence by allowing character
devices to be treated like files, but they did not provide an easy way to augment the built-in
set of drivers if the user wished to add a third-party peripheral device to the system.

With the release of MS-DOS version 2.0, the hardware flexibility of the system was tremen
dously enhanced. Versions 2.0 and later support installable device drivers that can reside in
separate files on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIG.SYS file on the startup disk. See USER COMMANDS:
CONFIG.SYS: DEVICE. A well-defined interface between installable drivers and the MS-DOS

kernel allows such drivers to be written for most types of peripheral devices without the
need for modification to the operating system itself.

The CONFIG.SYS file can contain a number of different DEVICE commands to load sepa
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on. Each
driver, in turn, is specialized for the hardware characteristics of the device it supports.

Section II: Programming in the MS-DOS Environment 149

Part B: Programming for MS-DOS

When the system is turned on or restarted, the installable device drivers are added to the
chain, or linked list, of default device drivers loaded from lO.SYS during MS-DOS initializa
tion. Thus, the need for the system's default set of device drivers to support a wide range of
optional device types and features at an excessive cost of system memory is avoided.

One important distinction between block and character devices is that MS-DOS always
adds new block-device drivers to the tail of the driver chain but adds new character-device

drivers to the head of the chain. Thus, because MS-DOS searches the chain sequentially
and uses the first driver it finds that satisfies its search conditions, any existing character-
device driver can be superseded by simply installing another driver with an identical logi
cal device name.

This article covers some of the details of working with MS-DOS character devices: display
ing text, keyboard input, and other basic character I/O functions; the definition and use of
standard input and output; redirection of the default character devices; and the use of the
lOCTL function (Interrupt 21H Function 44H) to communicate directly with a character-
device driver. Much of the information presented in this article is applicable only to
MS-DOS versions 2.0 and later.

Accessing Character Devices

Application programs can use either of two basic techniques to access character devices in
a portable manner under MS-DOS. First, a program can use the handle-type function calls
that were added to MS-DOS in version 2.0. Alternatively, a program can use the so-called
"traditional" character-device functions that were present in versions 1.x and have been
retained in the operating system for compatibility. Because the handle functions are more
powerful and flexible, they are discussed first.

A handle is a l6-bit number returned by the operating system whenever a file or device is
opened or created by passing a name to MS-DOS Interrupt 21H Function 3CH (Create File
with Handle), 3DH (Open File with Handle), 5AH (Create Temporary File), or 5BH (Create
New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the
computer's memory and the file or device.

During an open or create function call, MS-DOS searches the device-driver chain sequen
tially for a character device with the specified name (the extension is ignored) before
searching the disk directory. Thus, a file with the same name as any character device in the
driver chain—for example, the file NUL.TXT—cannot be created, nor can an existing file
be accessed if a device in the chain has the same name.

The second method for accessing character devices is through the traditional MS-DOS
character input and output functions. Interrupt 21H Functions OIH through OCH. These
functions are designed to communicate directly with the keyboard, display, printer, and
serial port. Each of these devices has its own function or group of functions, so neither

150 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

names nor handles need be used. However, in MS-DOS versions 2.0 and later, these func
tion calls are translated within MS-DOS to make use of the same routines that are used by
the handle functions, so the traditional keyboard and display functions are affected by I/O
redirection and piping.

Use of either the traditional or the handle-based method for character device I/O results

in highly portable programs that can be used on any computer that runs MS-DOS. A third,
less portable access method is to use the hardware-specific routines resident in the read
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral
device's adapter directly, bypassing the system software altogether. Although these latter
hardware-dependent methods cannot be recommended, they are admittedly sometimes
necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS-DOS system supports at least the following set of logical character devices
without the need for any additional installable drivers:

I>evice Meaning

CON Keyboard and display
PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port
CLOCK$ System real-time clock
NUL "Bit-bucket" device

These devices can be opened by name or they can be addressed through the "traditional"
function calls; strings can be read from or written to the devices according to their capabili
ties on any MS-DOS system. Data written to the NUL device is discarded; reads from the
NUL device always return an end-of-file condition.

PC-DOS and compatible implementations of MS-DOS typically also support the following
logical character-device names:

Device Meaning

COMl First serial communications port
COM2 Second serial communications port
LPTl First parallel printer port
LPT 2 Second parallel printer port
LPT3 Third parallel printer port

Section II: Programming in the MS-DOS Environment 151

Part B: Programming for MS-DOS

In such systems, PRN is an alias for LPTl and AUX is an alias for COMl. The MODE com
mand can be used to redirect an LPT device to another device. See USER COMMANDS:

MODE.

As previously mentioned, any of these default character-device drivers can be superseded
by a user-installed device driver—for example, one that offers enhanced functionality or
changes the device's apparent characteristics. One frequently used alternative character-
device driver is ANSI.SYS, which replaces the standard MS-DOS CON device driver and
allows ANSI escape sequences to be used to perform tasks such as clearing the screen,
controlling the cursor position, and selecting character attributes. See USER COMMANDS:
ANSI.SYS.

The standard devices

Under MS-DOS versions 2.0 and later, each program owns five previously opened handles
for character devices (referred to as the standard devices) when it begins executing. These
handles can be used for input and output operations without further preliminaries. The
five standard devices and their associated handles are

Standard Device Name Handle Default Assignment

Standard input istdiri) 0 CON
Standard output istdouf) 1 CON
Standard error istderr) 2 CON

Standard auxiliary istdawd 3 AUX
Standard printer istdprri) 4 PRN

The standard input and standard output handles are especially important because they are
subject to I/O redirection. Although these handles are associated by default with the CON
device so that read and write operations are implemented using the keyboard and video
display, the user can associate the handles with other character devices or with files by
using redirection parameters in a program's command line:

Redirection Result

< file Causes read operations from standard input to obtain data from file.
> file Causes data written to standard output to be placed in file.
» file Causes data written to standard output to be appended to file,
pi ! p2 Causes data written to standard output by program pi to appear as the

standard input of program p2.

This ability to redirect I/O adds great flexibility and power to the system. For example,
programs ordinarily controlled by keyboard entries can be run with "scripts" from files,
the output of a program can be captured in a file or on a printer for later inspection, and
general-purpose programs (filters) can be written that process text streams without regard
to the text's origin or destination. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Customizing ms-dos: Writing MS-DOS Filters.

152 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Ordinarily, an application program is not aware that its input or output has been redi
rected, although a write operation to standard output will fail unexpectedly if standard
output was redirected to a disk file and the disk is full. An application can check for the
existence of I/O redirection with an lOCTL (Interrupt 21H Function 44H) call, but it can
not obtain any information about the destination of the redirected handle except whether
it is associated with a character device or with a file.

Raw versus cooked mode

MS-DOS associates each handle for a character device with a mode that determines how

I/O requests directed to that handle are treated. When a handle is in raw mode, characters
are passed between the application program and the device driver without any filtering or
buffering by MS-DOS. When a handle is in cooked mode, MS-DOS buffers any dka that is
read from or written to the device and takes special actions when certain characters are
detected.

During cooked mode input, MS-DOS obtains characters from the device driver one at a
time, checking each character for a Control-C. The characters are assembled into a string
within an internal MS-DOS buffer. The input operation is terminated when a carriage
return (ODH) or an end-of-file mark (lAH) is received or when the number of characters
requested by the application have been accumulated. If the source is standard input, lone
linefeed characters are translated to carriage-return/linefeed pairs. The string is then
copied from the internal MS-DOS buffer to the application program's buffer, and control
returns to the application program.

During cooked mode output, MS-DOS transfers the characters in the application pro
gram's output buffer to the device driver one at a time, checking after each character for
a Control-C pending at the keyboard. If the destination is standard output and standard
output has not been redirected, tabs are expanded to spaces using eight-column tab stops.
Output is terminated when the requested number of characters have been written or when
an end-of-file mark (lAH) is encountered in the output string.

In contrast, during raw mode input or output, data is transferred directly between the
application program's buffer and the device driver. Special characters such as carriage
return and the end-of-file mark are ignored, and the exact number of characters in the ap
plication program's request are always read or written. MS-DOS does not break the strings
into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entries during the I/O operation. Finally, characters read from standard input
in raw mode are not echoed to standard output.

As might be expected from the preceding description, raw mode input or output is usu
ally much faster than cooked mode input or output, because each character is not being
individually processed by the MS-DOS kernel. Raw mode also allows programs to read
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for
example, Control-C, Control-P, and Control-S). (If BREAK is on, MS-DOS will still check for
Control-C entries during other function calls, such as disk operations, and transfer control

Section II: Programming in the MS-DOS Environment 153

Part B: Programming for MS-DOS

to the Control-C exception handler if a Control-C is detected.) A program can use the
MS-DOS lOCTL Get and Set Device Data services (Interrupt 21H Function 44H Subfunc-
tions OOH and OIH) to set the mode for a character-device handle. See lOCTL below.

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was
obtained from a previous open operation and affects only the I/O operations requested
by the program that owns the handle. However, when a program uses lOCTL to select raw
or cooked mode for one of the standard device handles, the selection has a global effect
on the behavior of the system because those handles are never closed. Thus, some of the
"traditional" keyboard input functions might behave in unexpected ways. Consequently,
programs that change the mode on a standard device handle should save the handle's
mgde at entry and restore it before performing a final exit to MS-DOS, so that the opera
tion of COMMAND.COM and other applications will not be disturbed. Such programs
should also incorporate custom critical error and Control-C exception handlers so that the
programs cannot be terminated unexpectedly. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: Customizing ms-dos: Exception Handlers.

The keyboard

Among the MS-DOS Interrupt 21H functions are two methods of checking for and receiv
ing input from the keyboard: the traditional method, which uses MS-DOS character input
Functions OIH, 06H, 07H, 08H, OAH, OBH, and OCH (Table 5-1); and the handle method,
which uses Function 3FH. Each of these methods has its own advantages and disadvan
tages. See SYSTEM CALLS.

Table 5-1. Traditional MS-DOS Character Input Functions.

Function Name

Read Multiple
Characters Echo

Ctrl-C

Check

OIH Character Input with Echo No Yes Yes

06H Direct Console I/O No No No

07H Unfiltered Character Input
Without Echo No No No

08H Character Input Without Echo No No Yes

OAH Buffered Keyboard Input Yes Yes Yes

OBH Check Keyboard Status No No Yes

OCH Flush Buffer, Read Keyboard * * *

* Varies depending on function (from above) called in the AL register.

The first four traditional keyboard input calls are really very similar. They all return a char
acter in the AL register; they differ mainly in whether they echo that character to the dis
play and whether they are sensitive to interruption by the user's entry of a Control-C. Both
Functions 06H and OBH can be used to test keyboard status (that is, whether a key has
been pressed and is waiting to be read by the program); Function OBH is simpler to use,
but Function 06H is immune to Control-C entries.

154 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Function OAH is used to read a "buffered line" from the user, meaning that an entire line is
accepted by MS-DOS before control returns to the program. The line is terminated when
the user presses the Enter key or when the maximum number of characters (to 255) speci
fied by the program have been received. While entry of the line is in progress, the usual
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and
compatibles) are active; only the final, edited line is delivered to the requesting program.

Function OCH allows a program to flush the type-ahead buffer before accepting input.
This capability is important for occasions when a prompt must be displayed unexpectedly
(such as when a critical error occurs) and the user could not have typed ahead a valid
response. This function should also be used when the user is being prompted for a critical
decision (such as whether to erase a file), to prevent a character that was previously
pressed by accident from triggering an irrecoverable operation. Function OCH is unusual
in that it is called with the number of one of the other keyboard input functions in register
AL. After any pending input has been discarded. Function OCH simply transfers to the
other specified input function; thus, its other parameters (if any) depend on the function
that ultimately will be executed.

The primary disadvantage of the traditional function calls is that they handle redirected
input poorly. If standard input has been redirected to a file, no way exists for a program
calling the traditional input functions to detect that the end of the file has been reached—
the input function will simply wait forever, and the system will appear to hang.

A program that wishes to use handle-based I/O to get input from the keyboard must use
the MS-DOS Read File or Device service. Interrupt 21H Function 3FH. Ordinarily, the pro
gram can employ the predefined handle for standard input (0), which does not need to be
opened and which allows the program's input to be redirected by the user to another file
or device. If the program needs to circumvent redirection and ensure that its input is from
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the
handle obtained from that open operation instead of the standard input handle.

A program using the handle functions to read the keyboard can control the echoing of
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the
lOCTL Get and Set Device Data services (default = cooked mode). To test the keyboard
status, the program can either issue an lOCTL Check Input Status call (Interrupt 21H Func
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt
21H Function OBH).

The primary advantages of the handle method for keyboard input are its symmetry with
file operations and its graceful handling of redirected input. The handle function also
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard
Input function allows a maximum of 255 characters to be read at a time. This considera
tion is important for programs that are frequently used with redirected input and output
(such as filters), because reading and writing larger blocks of data from files results in
more efficient operation. The only real disadvantage to the handle method is that it is
limited to MS-DOS versions 2.0 and later (although this is no longer a significant
restriction).

Section II: Programming in the MS-DOS Environment 155

Part B: Programming for MS-DOS

Role of the ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard
ware interrupt (09H) that is serviced by a routine in the ROM BIOS. The ROM BIOS inter
rupt handler reads I/O ports assigned to the keyboard controller and translates the key's
scan code into an ASCII character code. The result of this translation depends on the cur
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control,
or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address
0000:0417H that gives the current status of each of these modifier keys.)

After translation, both the scan code and the ASCII code are placed in the ROM BIOS's
32-byte (l6-character) keyboard input buffer. In the case of "extended" keys such as the
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the
information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed
as a first-in/first-out queue. Because of the method used to determine when the buffer is
empty, one position in the buffer is always wasted; the maximum number of characters
that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are
discarded and a warning beep is sounded.

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that
allows programs to test keyboard status, determine whether characters are waiting in the
type-ahead buffer, and remove characters from the buffer. See Appendix O: IBM PC BIOS
Calls. Its use by application programs should ordinarily be avoided, however, to prevent
introducing unnecessary hardware dependence.

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the
BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-
dependent work. Thus, calls to MS-DOS for keyboard input by an application program are
subject to two layers of translation: The Interrupt 21H function call is converted by the
MS-DOS kernel to calls to the CON driver, which in turn remaps the request onto a ROM
BIOS call that obtains the character.

Keyboard programming examples

Example: Use the ROM BIOS keyboard driver to read a character from the keyboard. The
character is not echoed to the display.

iRov ah, OOh ; subfunction OOH = read character

int 16h ; transfer to ROM BIOS

; now AH = scan code, AL = character

Example: Use the MS-DOS traditional keyboard input function to read a character from
the keyboard. The character is not echoed to the display. The input can be interrupted
with a Ctrl-C keystroke.

mov ah,08h

int 21h

function 08H = character input

without echo

transfer to MS-DOS

now AL = character

156 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Example: Use the MS-DOS traditional Buffered Keyboard Input function to read an entire
line from the keyboard, specifying a maximum line length of 80 characters. All editing
keys are active during entry, and the input is echoed to the display.

kbuf db 80 ; maximum length of read

db 0 ; actual length of read

db 80 dup (0) ; keyboard input goes here

mov

mov

mov

mov

int

dx,seg kbuf

ds, dx

dx,offset kbuf

ah,Oah

21h

set DS:DX = address of

keyboard input buffer

function OAH = read buffered line

transfer to MS-DOS

; terminated by a carriage return,

; and kbuf+1 = length of input,

; not including the carriage return

Example: Use the MS-DOS handle-based Read File or Device function and the standard
input handle to read an entire line from the keyboard, specifying a maximum line length
of 80 characters. All editing keys are active during entry, and the input is echoed to the dis
play. (The input will not terminate on a carriage return as expected if standard input is in
raw mode.)

kbuf db 80 dup (0) buffer for keyboard input

mov

mov

mov

mov

mov

mov

int

jc

The display

dx,seg kbuf

ds, dx

dx,offset kbuf

cx, 80

bx, 0

ah,3fh

21h

error

set DS:DX = address of

keyboard input buffer

CX = maximum length of input

standard input handle = 0

function 3FH = read file/device

transfer to MS-DOS

jump if function failed

otherwise AX = actual

length of keyboard input,

including carriage-return and

linefeed, and the data is

in the buffer 'kbuf

The output half of the MS-DOS logical character device CON is the video display. On IBM
PCs and compatibles, the video display is an "option" of sorts that comes in several forms.
IBM has introduced five video subsystems that support different types of displays: the
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics
Array (MCGA). Other, non-IBM-compatible video subsystems in common use include the
Hercules Graphics Card and its variants that support downloadable fonts.

Section II: Programming in the MS-DOS Environment 157

Part B: Programming for MS-DOS

Two portable techniques exist for writing text to the video display with MS-DOS function
calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out
put), 06H (Direct Console I/O), and 09H (Display String). The handle method is supported
by Function 40H (Write File or Device) and is available only in MS-DOS versions 2.0 and
later. See SYSTEM CALLS: Interrupt 21h: Functions 02H, 06H, 09H, 40H. All these calls
treat the display essentially as a "glass teletype" and do not support bit-mapped graphics.

Traditional Functions 02H and 06H are similar. Both are called with the character to be

displayed in the DL register; they differ in that Function 02H is sensitive to interruption by
the user's entry of a Control-C, whereas Function 06H is immune to Control-C but cannot
be used to output the character OFFH (ASCII rubout). Both calls check specifically for car
riage return (ODH), linefeed (OAH), and backspace (08H) characters and take the appro
priate action if these characters are detected.

Because making individual calls to MS-DOS for each character to be displayed is inefficient
and slow, the traditional Display String function (09H) is generally used in preference to
Functions 02H and 06H. Function 09H is called with the address of a string that is termi
nated with a dollar-sign character ($); it displays the entire string in one operation, regard
less of its length. The string can contain embedded control characters such as carriage
return and linefeed.

To use the handle method for screen display, programs must call the MS-DOS Write File
or Device service. Interrupt 21H Function 40H. Ordinarily, a program should use the pre
defined handle for standard output (1) to send text to the screen, so that any redirection
requested by the user on the program's command line will be honored. If the program
needs to circumvent redirection and ensure that its output goes to the screen, it can either
use the predefined handle for standard error (2) or explicitly open the CON device with
Interrupt 21H Function 3DH and use the resulting handle for its write operations.

The handle technique for displaying text has several advantages over the traditional
calls. First, the length of the string to be displayed is passed as an explicit parameter, so
the string need not contain a special terminating character and the $ character can be dis
played as part of the string. Second, the traditional calls are translated to handle calls
inside MS-DOS, so the handle calls have less internal overhead and are generally faster.
Finally, use of the handle Write File or Device function to display text is symmetric with
the methods the program must use to access its files. In short, the traditional functions
should be avoided unless the program must be capable of running under MS-DOS ver
sions 1.x.

Controlling the screen

One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen-

control capabilities. The default CON driver has no built-in routines to support cursor
placement, screen clearing, display mode selection, and so on.

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the
file ANSI.SYS. This driver contains most of the screen-control capabilities needed by text-
oriented application programs. The driver is installed by adding a DEVICE directive to the

158 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

CONFIG.SYS file and restarting the system. When ANSI.SYS is active, a program can
position the cursor, inquire about the current cursor position, select foreground and
background colors, and clear the current line or the entire screen by sending an escape
sequence consisting of the ASCII Bsc character (IBH) followed by various function-
specific parameters to the standard output device. See USER COMMANDS: ansi.sys.

Programs that use the ANSI.SYS capabilities for screen control are portable to any MS-DOS
implementation that contains the ANSI.SYS driver. Programs that seek improved perfor
mance by calling the ROM BIOS video driver or by assuming direct control of the hard
ware are necessarily less portable and usually require modification when new PC models
or video subsystems are released.

Role of the ROM BIOS

The video subsystems in IBM PCs and compatibles use a hybrid of memory-mapped and
port-addressed I/O. A range of the machine's memory addresses is typically reserved for a
video refresh buffer that holds the character codes and attributes to be displayed on the
screen; the cursor position, display mode, palettes, and similar global display char
acteristics are governed by writing control values to specific I/O ports.

The ROM BIOS of IBM PCs and compatibles contains a primitive driver for the MDA, CGA,
EGA, VGA, and MCGA video subsystems. This driver supports the following functions:

• Read or write characters with attributes at any screen position.
• Query or set the cursor position.
• Clear or scroll an arbitrary portion of the screen.
• Select palette, background, foreground, and border colors.
• Query or set the display mode (40-column text, 80-column text, all-points-addressable

graphics, and so on).
• Read or write a pixel at any screen coordinate.

These functions are invoked by a program through software Interrupt lOH. See Appendix
O: IBM PC BIOS Calls. In PC-DOS-compatible implementations of MS-DOS, the display
portions of the MS-DOS CON and ANSI.SYS drivers use these ROM BIOS routines. Video
subsystems that are not IBM compatible either must contain their own ROM BIOS or must
be used with an installable device driver that captures Interrupt lOH and provides appro
priate support functions.

Text-only application programs should avoid use of the ROM BIOS functions or direct
access to the hardware whenever possible, to ensure maximum portability between
MS-DOS systems. However, because the MS-DOS CON driver contains no support for bit
mapped graphics, graphically oriented applications usually must resort to direct control
of the video adapter and its refresh buffer for speed and precision.

Section II: Programming in the MS-DOS Environment 159

Part B: Programming for MS-DOS

Display programming examples

Example: Use the ROM BIOS Interrupt lOH function to write an asterisk character to the
display in text mode. (In graphics mode, BL must also be set to the desired foreground
color.)

mov

mov

int

ah,Oeh

al,'*•

bh,0

lOh

subfunction OEH = write character

in teletype mode

AL = character to display

select display page 0

transfer to ROM BIOS video driver

Example: Use the MS-DOS traditional function to write an asterisk character to the dis
play. If the user's entry of a Control-C is detected during the output and standard output is
in cooked mode, MS-DOS calls the Control-C exception handler whose address is found
in the vector for Interrupt 23H.

mov

mov

int

ah,02h

dl,'*•

21h

function 02H = display character

DL = character to display

transfer to MS-DOS

Example: Use the MS-DOS traditional function to write a string to the display. The output
is terminated by the $ character and can be interrupted when the user enters a Control-C if
standard output is in cooked mode.

msg db •This is a test message','$'

mov

mov

mov

mov

int

dx,seg msg

ds, dx

dx,offset msg

ah,09h

21h

DS:DX = address of text

to display

function 09H = display string

transfer to MS-DOS

Example: Use the MS-DOS handle-based Write File or Device function and the predefined
handle for standard output to write a string to the display. Output can be interrupted by the
user's entry of a Control-C if standard output is in cooked mode.

msg db 'This is a test message'

equ $-msg

mov dx,seg msg ; DS;:DX = address of text

mov ds, dx ; to display

mov dx,offset msg

mov cx,msg_len ; CX = length of text

mov bx, 1 ; BX = handle for standard output

mov ah,40h ; function 40H = write file/device

int 21h ; transfer to MS-DOS

160 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,
identified as COMl and COM2, by means of three drivers named AUX, COMl, and COM2.
(AUX is ordinarily an alias for COMl.)

The traditional MS-DOS method of reading from and writing to the serial ports is through
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS-DOS
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux
iliary device. A program can use the predefined handle for the standard auxiliary device
(3) with Functions 3FH and 40H, or it can explicitly open the COMl or COM2 devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to
perform read and write operations.

MS-DOS support for the serial communications port is inadequate in several respects for
high-performance serial I/O applications. First, MS-DOS provides no portable way to test
for the existence or the status of a particular serial port in a system; if a program "opens"
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the
program may simply hang. Similarly, if the serial port exists but no character has been
received and the program attempts to read a character, the program will hang until one is
available; there is no traditional function call to check if a character is waiting as there is
for the keyboard.

MS-DOS also provides no portable method to initialize the communications adapter to a
particular baud rate, word length, and parity. An application must resort to ROM BIOS
calls, manipulate the hardware directly, or rely on the user to configure the port properly
with the MODE command before running the application that uses it. The default settings
for the serial port on PC-DOS-compatible systems are 2400 baud, no parity, 1 stop bit, and
8 databits. See USER COMMANDS: mode.

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and
compatibles, however, is that it is not interrupt driven. Accordingly, when baud rates above
1200 are selected, characters can be lost during time-consuming operations performed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk
sector. Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial port
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not
usually improve matters.

Because of all the problems just described, telecommunications application programs
commonly take over complete control of the serial port and supply their own interrupt
handler and internal buffering for character read and write operations. See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Interrupt-Driven
Communications.

Section II: Programming in the MS-DOS Environment l6l

Part B: Programming for MS-DOS

Serial port programming examples

Example: Use the ROM BIOS serial port driver to write a string to COMl.

msg db 'This is a test message'

msg_len equ $-msg

mov bx,seg msg ; DS:BX = address of message

mov ds,bx

mov bx,offset msg

mov cx,msg_len ; CX = length of message

mov dx, 0 ; DX = 0 for COMl

LI : mov al,[bx] ; get next character into AL

mov ah,01h ; subfunction 01H = output

int 14h ; transfer to ROM BIOS

inc bx ; bump pointer to output string

loop LI ; and loop until all chars, sent

Example: Use the MS-DOS traditional function for auxiliary device output to write a string
to COMl.

msg db 'This is a test message'

msg_len equ $-msg

mov bx,seg msg ; set DS:BX = address of message

mov ds,bx

mov bx,offset msg

mov cx,msg_len ; set CX = length of message

LI : mov dl,[bx] ; get next character into DL

mov ah,04h ; function 04H = auxiliary output

int 21h ; transfer to MS-DOS

inc bx ; bump pointer to output string

loop LI ; and loop until all chars, sent

Example: Use the MS-DOS handle-based Write File or Device function and the predefined
handle for the standard auxiliary device to write a string to COMl.

msg db 'This is a test message'

equ $-msg

mov dx,seg msg ; DS:DX = address of message

mov ds,dx

mov dx,offset msg

mov cx,msg_len ; CX = length of message

mov bx, 3 ; BX = handle for standard aux.

mov ah,40h ; function 40H = write file/device

int 21h ; transfer to MS-DOS

jc error ; jump if write operation failed

162 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

The parallel port and printer

Most MS-DOS implementations contain device drivers for four printer devices: LPTl, LPT2,
LPT3, and PRN. PRN is ordinarily an alias for LPTl and refers to the first parallel output
port in the system. To provide for list devices that do not have a parallel interface, the LPT
devices can be individually redirected with the MODE command to one of the serial com
munications ports. See USER COMMANDS: mode.

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be
accessed with either traditional or handle-based function calls. The traditional function

call is Interrupt 21H Function 05H, which accepts a character in DL and sends it to the
physical device currently assigned to logical device name LPTl.

A program can perform handle-based output to the printer with Interrupt 21H Function
40H (Write File or Device). The predefined handle for the standard printer (4) can be used
to send strings to logical device LPTl. Alternatively, the program can issue an open oper
ation for a specific printer device with Interrupt 21H Function 3DH and use the handle
obtained from that open operation with Function 40H. This latter method also allows
more than one printer to be used at a time from the same program.

Because the parallel ports are assumed to be output only, no traditional call exists for
input from the parallel port. In addition, no portable method exists to test printer port
status under MS-DOS; programs that wish to avoid sending a character to the printer
adapter when it is not ready or not physically present in the system must test the adapter's
status by making a call to the ROM BIOS printer driver (by means of software Interrupt
17H; Appendix O: IBM PC BIOS Calls) or by accessing the hardware directly.

Parallel port programming examples

Example: Use the ROM BIOS printer driver to send a string to the first parallel printer port.

msg db 'This is a test message'

msg_len equ $-msg

mov bx,seg msg ; DS:BX = address of message

mov cls,bx

mov bx,offset msg

mov cx,msg_len ; CX = length of message

mov dx, 0 ; DX = 0 for LPTl

LI : mov al,[bx] ; get next character into AL

mov ah,OOh ; subfunction OOH = output

int 17h ; transfer to ROM BIOS

inc bx ; bump pointer to output string

loop LI ; and loop until all chars, sent

Section II: Programming in the MS-DOS Environment 163

Part B: Programming for MS-DOS

Example: Use the traditional MS-DOS function call to send a string to the first parallel
printer port.

msg db

msg_len equ

'This is a test message'

$-msg

LI :

mov

mov

mov

mov

mov

mov

int

inc

loop

bx,seg msg

ds,bx

bx,offset msg

cx,msg_len

dl,[bx]

ah,05h

21h

bx

LI

DS:BX = address of message

CX = length of message

get next character into DL

function 05H = printer output

transfer to MS-DOS

bump pointer to output string

and loop until all chars, sent

Example: Use the handle-based MS-DOS Write File or Device call and the predefined
handle for the standard printer to send a string to the system list device.

msg db 'This is a test message'

msg_len equ $-msg

mov dx,seg msg ; DS:DX = address of message

mov ds, dx

mov dx,offset msg

mov CX,msg_len ; CX = length of message

mov bx, 4 ; BX = handle for standard printer

. mov ah,40h ; function 40H = write file/device

int 21h ; transfer to MS-DOS

jc error ; jump if write operation failed

lOCTL

In versions 2.0 and later, MS-DOS has provided applications with the ability to communi
cate directly with device drivers through a set of subfunctions grouped under Interrupt
21H Function 44H (lOCTL). See SYSTEM CALLS: Interrupt 21h: Function 44H. The

lOCTL subfunctions that are particularly applicable to the character I/O needs of appli
cation programs are

Subfunction Name

OGH

OIH

02H

Get Device Data

Set Device Data

Receive Control Data from Character Device

(more)

l64 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Subfiinction Name

03H Send Control Data to Character Device

06H Check Input Status
07H Check Output Status
OAH Check if Handle is Remote (version 3.1 or later)

OCH Generic I/O Control for Handles: Get/Set Output Iteration Count

Various bits in the device information word returned by Subfunction OOH can be tested
by an application to determine whether a specific handle is associated with a character
device or a file and whether the driver for the device can process control strings passed by
Subfunctions 02H and 03H. The device information word also allows the program to test
whether a character device is the CLOCK$, standard input, standard output, or NUL device
and whether the device is in raw or cooked mode. The program can then use Subfunction
OIH to select raw mode or cooked mode for subsequent I/O performed with the handle.

Subfunctions 02H and 03H allow control strings to be passed between the device driver
and an application; they do not usually result in any physical I/O to the device. For exam
ple, a custom device driver might allow an application program to configure the serial port
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi
larly, the custom driver might respond to Subfunction 02H by passing the application a
series of bytes that defines the current configuration and status of the serial port.

Subfunctions 06H and 07H can be used by application programs to test whether a device is
ready to accept an output character or has a character ready for input. These subfunctions
are particularly applicable to the serial communications ports and parallel printer ports
because MS-DOS does not supply traditional function calls to test their status.

Subfunction OAH can be used to determine whether the character device associated

with a handle is local or remote—that is, attached to the computer the program is running
on or attached to another computer on a local area network. A program should not or
dinarily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.
This subfunction is available only if Microsoft Networks is running.

Finally, Subfunction OCH allows a program to query or set the number of times a device
driver tries to send output to the printer before assuming the device is not available.

lOCTL programming examples

Example: Use lOCTL Subfunction OOH to obtain the device information word for the stan
dard input handle and save it, and then use Subfunction OIH to place standard input into
raw mode.

info dw ? ; save device information word here

(more)

Section II: Programming in the MS-DOS Environment l65

Part B: Programming for MS-DOS

mov

int

mov

or

mov

mov

int

ax,4400h

bx, 0

21h

info,dx

dl,20h

dh,0

ax,4401h

21h

AH = function 44H, lOCTL

AL = subfunction OGH, get device

information word

BX = handle for standard input

transfer to MS-DOS

save device information word

(assumes OS = data segment)

set raw mode bit

and clear DH as MS-DOS requires

AL = subfunction 01H, set device

information word

(BX still contains handle)

transfer to MS-DOS

Example: Use lOCTL Subfunction 06H to test whether a character is ready for input on the
first serial port. The function returns AL = OFFH if a character is ready and AL = OOH if not.

mov

int

or

jnz

ax,4406H

bx,3

21h

al, al

ready

AH = function 44H, lOCTL

AL = subfunction 06H, get

input status

BX = handle for standard aux

transfer to MS-DOS

test status of AUX driver

jump if input character ready

else no character is waiting

Jim Kyle
Chip Rabinowitz

l66 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Article 6

Interrupt-Driven Communications

In the earliest days of personal-computer communications, when speeds were no faster
than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate. The PC had time between characters to determine what it
ought to do next and could spend that time keeping track of the status of the remote
system.

Modern data-transfer rates, however, are four to eight times faster and leave little or no
time to spare between characters. At 1200 bits per second, as many as three characters can
be lost in the time required to scroll the display up one line. At such speeds, a technique to
permit characters to be received and simultaneously displayed becomes necessary.

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs
attention, it sends an interrupt request to the processor. The processor interrupts its activ
ity, services the request, and then goes back to what it was doing. Because the response is
driven by the request, this type of processing is known as interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors.

Successful telecommunication with PCs at modern data rates demands an interrupt-driven
routine for data reception. This article discusses in detail the techniques for interrupt-
driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS-DOS to achieve this goal.
To see what must be done to supplement MS-DOS functions, the hardware (both the
modem and the serial port) is examined. This leads to a discussion of the method MS-DOS
has provided since version 2.0 for solving the problems of special hardware interfacing:
the installable device driver.

With the background established, alternate paths to interrupt-driven communications are
discussed—one following recommended MS-DOS techniques, the other following stan
dard industry practice—and programs are developed for each.

Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM
PC family. MS-DOS systems not totally compatible with this architecture may require sub
stantially different approaches at the detailed level, but the same general principles apply.

Purpose of Communications Programs

The primary purpose of any communications program is communicating—that is, trans
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for

Section II: Programming in the MS-DOS Environment 167

Part B: Programming for MS-DOS

transmission to a remote computer via phone lines and, conversely, converting informa
tion received from the remote computer into a display on the video screen (or data in a
file).

Some years ago, the most abstract form of all communications programs was dubbed a
modem engine, by analogy to Babbage's analytical engine or the inference-engine model
used in artificial-intelligence development. The functions of the modem engine are com
mon to all kinds of communications programs, from the simplest to the most complex,
and can be described in a type of pseudo-C as follows:

The Modem Engine Pseudocode

DO { IF (input character is available)

send_it_to_remote;

IF (remote character is available)

use_it_locally;

} UNTIL (told_to_stop);

The essence of this modem-engine code is that the absence of an input character, or of a
character from the remote computer, does not hang the loop in a wait state. Rather, the
engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking.

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message, it is nice to be able to pause and read the mes
sage before the lines scroll into oblivion. On the other hand, taking too long to study the
screen means that incoming characters are lost. The answer is a technique called flow con
trol, in which a special control character is sent to shut down transmission and some other
character is later sent to start it up again.

Several conventions for flow control exist. One of the most widespread is known as
XON/XOFF, from the old Teletype-33 keycap legends for the two control codes involved.
In the original use, XOFF halted the paper tape reader and XON started it going again. In
mid-1967, the General Electric Company began using these signals in its time-sharing com
puter services to control the flow of data, and the practice rapidly spread throughout the
industry.

The sample program named ENGINE, shown later in this article, is an almost literal imple
mentation of the modem-engine approach. This sample represents one extreme of sim
plicity in communications programs. The other sample program, CTERM.C, is much more
complex, but the modem engine is still at its heart.

Using Simple MS-DOS Functions

Because MS-DOS provides, among its standard service functions, the capability of sending
output to or reading input from the device named AUX (which defaults to COMl, the first

168 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

serial port on most machines), a first attempt at implementing the modem engine using
MS-DOS functions might look something like the following incomplete fragment of
Microsoft Macro Assembler (MASM) code:

/Incomplete (and Unworkable) Implementation

LOOP: MOV AH,08h ; read keyboard, no echo

INT 21h

MOV DL,AL ; set up to send

MOV AH,04h ; send to AUX device

INT 21h

MOV AH,03h ; read from AUX device

INT 21h

MOV DL,AL ; set up to send

MOV AH,02h ; send to screen

INT 21h

JMP LOOP ; keep doing it

The problem with this code is that it violates the keep-looking principle both at the key
board and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard
character is available, so no data from the AUX port can be read until a key is pressed
locally. Similarly, Function 03H waits for a character to become available from AUX, so no
more keys can be recognized locally until the remote system sends a character. If nothing
is received, the loop waits forever.

To overcome the problem at the keyboard end. Function OBH can be used to determine if
a key has been pressed before an attempt is made to read one, as shown in the following
modification of the fragment:

LOOP:

RMT:

id, (but Still Unworkable) Implementation

MOV AH,OBh test keyboard for char

INT 21h

OR AL,AL test for zero

JZ RMT no char avail, skip

MOV AH,08h have char, read it in

INT 21h

MOV DL,AL set up to send

MOV AH,04h send to AUX device

INT 21h

MOV AH,03h • ; read from AUX device

INT 21h

MOV DL,AL set up to send

MOV AH,02h send to screen

INT 21h

JMP LOOP keep doing it

This code permits any input from AUX to be received without waiting for a local key to
be pressed, but if AUX is slow about providing input, the program waits indefinitely before
checking the keyboard again. Thus, the problem is only partially solved.

Section II: Programming in the MS-DOS Environment l69

Part B: Programming for MS-DOS

MS-DOS, however, simply does not provide any direct method of making the required
tests for AUX or, for that matter, any of the serial port devices. That is why communications
programs must be treated differently from most other types of programs under MS-DOS
and why such programs must be intimately involved with machine details despite all
accepted principles of portable program design.

The Hardware Involved

Personal-computer communications require at least two distinct pieces of hardware (sepa
rate devices, even though they are often combined on a single board). These hardware
items are the serial port, which converts data from the computer's internal bus into a bit
stream for transmission over a single external line, and the modem, which converts the bit
stream into a form suitable for telephone-line (or, sometimes, radio) transmission.

The modem

The modem (a word coined from MOdulator-DEModulator) is a device that converts a

stream of bits, represented as sequential changes of voltage level, into audio frequency sig
nals suitable for transmission over voice-grade telephone circuits (modulation) and con
verts these signals back into a stream of bits that duplicates the original input (demodu
lation).

Specific characteristics of the audio signals involved were established by AT&T when that
company monopolized the modem industry, and those characteristics then evolved into
de facto standards when the monopoly vanished. They take several forms, depending on
the data rate in use; these forms are normally identified by the original Bell specification
number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard).

The data rate is measured in bits per second (bps), often mistermed baud or even "baud
per second." A baud measures the number of signals per second; as with knot (nautical
miles per hour), the time reference is built in. If one signal change marks one bit, as is true
for the Bell 103 standard, then baud and bps have equal values. However, they are not
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200
bps uses two tone streams, each operating at 600 baud, to transmit data at 1200 bits per
second.

For accuracy, this article uses bps, rather than baud, except where widespread industry
misuse of baud has become standardized (as in "baud rate generator").

Originally, the modem itself was a box connected to the computer's serial port via a cable.
Characteristics of this cable, its connectors, and its signals were standardized in the 1960s
by the Electronic Industries Association (EIA), in Standard RS232C. Like the Bell standards
for modems, RS232C has survived almost unchanged. Its characteristics are listed in
Table 6-1.

170 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Table 6-1. R$232C Signals.

DB25Pin 232 Name Description

1 Safety Ground
2 BA TXD Transmit Data

3 BB RXD Receive Data

4 CA RTS Request To Send

5 CB CTS Clear To Send

6 CC DSR Data Set Ready
7 AB GND Signal Ground
8 CP DCD Data Carrier Detected

20 CD DTR Data Terminal Ready
22 CE RI Ring Indicator

With the increasing popularity of personal computers, internal modems that plug into the
PC's motherboard and combine the modem and a serial port became available.

The first such units were manufactured by Hayes Corporation, and like Bell and the EIA,
they created a standard. Functionally, the internal modem is identical to the combination
of a serial port, a connecting cable, and an external modem.

The serial port

Each serial port of a standard IBM PC connects the rest of the system to a type INS8250
Universal Asynchronous Receiver Transmitter (UART) integrated circuit (IC) chip devel
oped by National Semiconductor Corporation. This chip, along with associated circuits in
the port,

1. Converts data supplied via the system data bus into a sequence of voltage levels on
the single TXD output line that represent binary digits.

2. Converts data received as a sequence of binary levels on the single RXD input line
into bytes for the data bus.

3. Controls the modem's actions through the DTR and RTS output lines.
4. Provides status information to the processor; this information comes from the

modem, via the DSR, DCD, CTS, and RI input lines, and from within the UART itself,
which signals data available, data needed, or error detected.

The word asynchronous in the name of the IC comes from the Bell specifications. When
computer data is transmitted, each bit's relationship to its neighbors must be preserved;
this can be done in either of two ways. The most obvious method is to keep the bit stream
strictly synchronized with a clock signal of known frequency and count the cycles to iden
tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or
sometimes bisync for binary synchronous. The second method, first used with mechanical
teleprinters, marks the start of each bit group with a defined start bit and the end with one
or more defined stop bits, and it defines a duration for each bit time. Detection of a start bit

Section II: Programming in the MS-DOS Environment 171

Part B: Programming for MS-DOS

marks the beginning of a received group; the signal is then sampled at each bit time until
the stop bit is encountered. This method is known as asynchronous (or just asynch) and is
the one used by the standard IBM PC.

The start bit is, by definition, exactly the same as that used to indicate binary zero, and the
stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a
one signal is called MARK, from terms used in the teleprinter industry.

During transmission, the least significant bit of the data is sent first, after the start bit. A
parity bit, if used, appears as the most significant bit in the data group, before the stop bit
or bits; it cannot be distinguished from a databit except by its position. Once the first stop
bit is sent, the line remains in MARK (sometimes called idling) condition until a new start
bit indicates the beginning of another group.

In most PC uses, the serial port transfers one 8-bit byte at a time, and the term word speci
fies a l6-bit quantity. In the UART world, however, a word is the unit of information sent by
the chip in each chunk. The word length is part of the control information set into the chip
during setup operations and can be 5,6,7, or 8 bits. This discussion follows UART conven
tions and refers to words, rather than to bytes.

One special type of signal, not often used in PC-to-PC communications but sometimes
necessary in communicating with mainframe systems, is a BREAK. The BREAK is an all-
SPACE condition that extends for more than one word time, including the stop-bit time.
(Many systems require the BREAK to last at least 150 milliseconds regardless of data rate.)
Because it cannot be generated by any normal data character transmission, the BREAK is
used to interrupt, or break into, normal operation. The IBM PC's 8250 UART can generate
the BREAK signal, but its duration must be determined by a program, rather than by the
chip.

The 8250 UART architecture

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits,
and status circuits. Because these areas are closely related, some terms used in the follow
ing descriptions are, of necessity, forward references to subsequent paragraphs.

The major parts of the receiver are a shift register and a data register called the Received
Data Register. The shift register assembles sequentially received data into word-parallel
form by shifting the level of the RXD line into its front end at each bit time and, at the same
time, shifting previous bits over. When the shift register is full, all bits in it are moved over
to the data register, the shift register is cleared to all zeros, and the bit in the status circuits
that indicates data ready is set. If an error is detected during receipt of that word, other bits
in the status circuits are also set.

Similarly, the major parts of the transmitter are a holding register called the Transmit
Holding Register and a shift register. Each word to be transmitted is transferred from the

172 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

data bus to the holding register. If the holding register is not empty when this is done, the
previous contents are lost. The transmitter's shift register converts word-parallel data into
bit-serial form for transmission by shifting the most significant bit out to the TXD line once
each bit time, at the same time shifting lower bits over and shifting in an idling bit at the
low end of the register. When the last databit has been shifted out, any data in the holding
register is moved to the shift register, the holding register is filled with idling bits in case
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit
Holding Register is empty is set to indicate that another word can be transferred. The
parity bit, if any, and stop bits are added to the transmitted stream after the last databit
of each word is shifted out.

The control circuits establish three communications features: first, line control values,
such as word length, whether or not (and how) parity is checked, and the number of stop
bits; second, modem control values, such as the state of the DTK and RTS output lines; and
third, the rate at which data is sent and received. These control values are established by
two 8-bit registers and one l6-bit register, which are addressed as four 8-bit registers. They
are the Line Control Register (ICR), the Modem Control Register (MCR), and the l6-bit
BRG Divisor Latch, addressed as BaudO and Baudl.

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro
grammable Baud Rate Generator (PBRG), a major part of the control circuits. The PBRG
can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the
IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported.
How the LCR and the MCR establish their control values, how the PBRG is programmed,
and how interrupts are enabled are discussed later.

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status
registers) the conditions in the receive and transmit circuits, any errors that are detected,
and any change in state of the RS232C input lines from the modem. When any status regis
ter's content changes, an interrupt request, if enabled, is generated to notify the rest of the
PC system. This approach lets the PC attend to other matters without having to continually
monitor the status of the serial port, yet it assures immediate action when something does
occur.

The 8250 programming interface

Not all the registers mentioned in the preceding section are accessible to programmers.
The shift registers, for example, can be read from or written to only by the 8250's internal
circuits. There are 10 registers available to the programmer, and they are accessed by only
seven distinct addresses (shown in Table 6-2). The Received Data Register and the
Transmit Holding Register share a single address (a read gets the received data; a write
goes to the holding register). In addition, both this address and that of the Interrupt Enable
Register (lER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register
called the Divisor Latch Access Bit (DLAB) determines which register is addressed at any
specific time.

Section II: Programming in the MS-DOS Environment 173

Part B: Programming for MS-DOS

In the IBM PC, the seven addresses used by the 8250 are selected by the low 3 bits of the
port number (the higher bits select the specific port). Thus, each serial port occupies eight
positions in the address space. However, only the lowest address used—the one in which
the low 3 bits are all 0—need be remembered in order to access all eight addresses.

Because of this, any serial port in the PC is referred to by an address that, in hexadecimal
notation, ends with either 0 or 8: The COMl port normally uses address 03F8H, and COM2
uses 02F8H. This lowest port address is usually called the base port address, and each
addressable register is then referenced as an offset from this base value, as shown in
Table 6-2.

Table 6-2. 8250 Port Offsets from Base Address.

Offset Name Description

IfDLAB bit inLCR = 0:

OOH DATA Received Data Register if
read from. Transmit Holding
Register if written to

OIH lER Interrupt Enable Register

IfDLAB bit inLCR = l:

OOH BaudO BRG Divisor Latch, low byte
OIH Baudl BRG Divisor Latch, high byte

Not affected by DLAB bit:
02H IID Interrupt Identifier Register
03H LCR Line Control Register
04H MCR Modem Control Register
05H LSR Line Status Register
06H MSR Modem Status Register

The control circuits

The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG),
the Line Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En
able Register (lER).

The PBRG establishes the bit time used for both transmitting and receiving data by divid
ing an external clock signal. To select a desired bit rate, the appropriate divisor is loaded
into the PBRG's l6-bit Divisor Latch by setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then
writing the divisor into BaudO and Baudl. After the bit rate is selected, DLAB is changed
back to 0, to permit normal operation of the DATA registers and the lER.

174 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

With the 1.8432 MHz external UART clock frequency used in standard IBM systems,
divisor values (in decimal notation) for bit rates between 45.5 and 38400 bps are listed in
Table 6-3. These speeds are established by a crystal contained in the serial port (or internal
modem) and are totally unrelated to the speed of the processor's clock.

Table 6-3. Bit Rate Divisor Table for 8250/IBM.

BPS Divisor

45.5 2532

50 2304

75 1536

110 1047

134.5 857

150 768

300 384

600 192

1200 96

1800 64

2000 58

2400 48

4800 24

9600 12

19200 6

38400 3

The remaining control circuits are the Line Control Register, the Modem Control Register,
and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1,
transmission of the BREAK signal, parity generation, the number of stop bits, and the word
length sent and received, as shown in Table 6-4.

Table 6-4. 8250 line Control Register Bit Values.

Bit Name Binary Meaning

Address Control:

7 DL AB Oxxxxxxx Offset 0 refers to DATA;

offset 1 refers to lER

Ixxxxxxx Offsets 0 and 1 refer to

BRG Divisor Latch

BREAK Control:

6 SETBRK xQxxxxxx Normal UART operation
xlxxxxxx Send BREAK signal

(more)

Section II: Programming in the MS-DOS Environment 175

Part B: Programming for MS-DOS

Table 6-4. Continued.

Bit Name Binary Meaning

Parity Checking:
5,4,3 GENPAR xxxxOxxx

xxOOlxxx

xxOllxxx

xxlOlxxx

xxlllxxx

No parity bit
Parity bit is ODD
Parity bit is EVEN
Parity bit is 1
Parity bit is 0

Stop Bits:
2 XSTOP xxxxxOxx

xxxxxlxx

Only 1 stop bit
2 stop bits
(1.5ifWL=5)

Word Length:
1,0 WD5

WD6

WD7

WD8

xxxxxxOO

xxxxxxOl

xxxxxxlO

xxxxxxll

Word length = 5
Word length = 6
Word length = 7
Word length = 8

Two bits in the MGR (Table 6-5) control output lines DTR and RTS; two other MGR bits
(OUTl and OUT2) are left free by the UART to be assigned by the user; a fifth bit (TEST)
puts the UART into a self-test mode of operation. The upper 3 bits have no effect on the
UART. The MGR can be both read from and written to.

Both of the user-assignable bits are defined in the IBM PG. OUTl is used by Hayes internal
modems to cause a power-on reset of their circuits; OUT2 controls the passage of UART-
generated interrupt request signals to the rest of the PG. Unless OUT2 is set to 1, interrupt
signals from the UART cannot reach the rest of the PG, even though all other controls are
properly set. This feature is documented, but obscurely, in the IBM Technical Reference
manuals and the asynchronous-adapter schematic; it is easy to overlook when writing an
interrupt-driven program for these machines.

Table 6-5. 8250 Modem Control Register Bit Values.

Name Binary Description

TEST xxxlxxxx Turns on UART self-test configuration.
OUT2 xxxxlxxx Controls 8250 interrupt signals (User2 Output).
OUTl xxxxxlxx Resets Hayes 1200b internal modem (Userl Output).
RTS xxxxxxlx Sets RTS output to RS232G connector.
DTR xxxxxxxl Sets DTR output to RS232G connector.

176 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

The 8250 can generate any or all of four classes of interrupts, each individually enabled or
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6-6).
Thus, setting the lER to OGH disables all the UART interrupts within the 8250 without
regard to any other settings, such as OUT2, system interrupt masking, or the CLI/STI com
mands. The lER can be both read from and written to. Only the low 4 bits have any effect
on the UART.

Table 6-6. 8250 Interrupt Enable Register Constants.

Binary Action

xxxxlxxx

xxxxxlxx

xxxxxxlx

xxxxxxxl

The status circuits

Enable Modem Status Interrupt.
Enable Line Status Interrupt.
Enable Transmit Register Interrupt.
Enable Received Data Ready Interrupt.

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status
Register (MSR), the Interrupt Identifier (IID) Register, and the interrupt-request generation
system.

The 8250 includes circuitry that detects a received BREAK signal and also detects three
classes of data-reception errors. Separate bits in the LSR (Table 6-7) are set to indicate that
a BREAK has been received and to indicate any of the following: a parity error (if lateral
parity is in use), a framing error (incoming bit = 0 at stop-bit time), or an overrun error
(word not yet read from receive buffer by the time the next word must be moved into it).

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the
Transmit Holding Register, and the Received Data Register; the most significant bit of the
LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect.

Table 6-7. 8250 line Status Register Bit Values.

Bit Binary Meaning

7 Oxxxxxxx Always zero
6 xlxxxxxx Transmit Shift Register empty
5 xxlxxxxx Transmit Holding Register empty
4 xxxlxxxx BREAK received

3 xxxxlxxx Framing error

2 xxxxxlxx Parity error

1 xxxxxxlx Overrun error

0 xxxxxxxl Received data ready

Section 11: Programming in the MS-DOS Environment Y71

Part B: Programming for MS-DOS

The MSR (Table 6-8) monitors the four RS232C lines that report modem status. The upper
4 bits of this register indicate the voltage level of the associated RS232C line; the lower 4
bits indicate that the voltage level has changed since the register was last read.

Table 6-8. 8250 Modem Status Register Bit Values.

Bit Binary Meaning

7 Ixxxxxxx Data Carrier Detected (DCD) level

6 xlxxxxxx Ring Indicator (RI) level

5 xxlxxxxx Data Set Ready (DSR) level
4 xxxlxxxx Clear To Send (CTS) level

3 xxxxlxxx DCD change
2 xxxxxlxx RI change
1 xxxxxxlx DSR change
0 xxxxxxxl CTS change

As mentioned previously, four types of interrupts are generated. The four types are iden
tified by flag values in the IID Register (Table 6-9). These flags are set as follows:

• Change of any bit value in the MSR sets the modem status flag.
• Setting of the BREAK Received bit or any of the three error bits in the LSR sets the line

status flag.
• Setting of the Transmit Holding Register Empty bit in the LSR sets the transmit flag.
• Setting of the Received Data Ready bit in the LSR sets the receive flag.

The IID register indicates the interrupt type, even though the lER may be disabling that
type of interrupt from generating any request. The IID is a read-only register; attempts to
write to it have no effect.

Table 6-9. 8250 Interrupt Identification and Causes.

no content Meaning

xxxxxxxlB No interrupt active
xxxxxOOOB Modem Status Interrupt; bit changed in MSR
xxxxxOlOB Transmit Register Interrupt; Transmit Holding Register empty, bit

set in LSR

xxxxxlOOB Received Data Ready Interrupt; Data Register full, bit set in LSR
xxxxxllOB Line Status Interrupt; BREAK or error bit set in LSR

As shown in Table 6-9, an all-zero value (which in most of the other registers is a totally
disabling condition) means that a Modem Status Interrupt condition has not yet been ser
viced. A modem need not be connected, however, for a Modem Status Interrupt condition
to occur; all that is required is for one of the RS232C non-data input lines to change state,
thus changing the MSR.

178 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Whenever a flag is set in the IID, the UART interrupt-request generator will, if enabled
by the UART programming, generate an interrupt request to the processor. Two or more
interrupts can be active at the same time; if so, more than one flag in the IID register is set.

The IID flag for each interrupt type (and the LSR or MSR bits associated with it) clears
when the corresponding register is read (or, in one case, written to). For example, reading
the content of the MSR clears the modem status flag; writing a byte to the DATA register
clears the transmit flag; reading the DATA register clears the receive flag; reading the LSR
clears the line status flag. The LSR or MSR bit does not clear until it has been read; the IID
flag clears with the LSR or MSR bit.

Programming the UART

Each time power is applied, any serial-interface device must be programmed before it is
used. This programming can be done by the computer's bootstrap sequence or as a part of
the port initialization routines performed when a port driver is installed. Often, both tech
niques are used: The bootstrap provides default conditions, and these can be modified
during initialization to meet the needs of each port driver used in a session.

When the 8250 chip is programmed, the BRG Divisor Latch should be set for the proper
baud rate, the LCR and MCR should be loaded, the lER should be set, and all internal inter
rupt requests and the receive buffer should be cleared. The sequence in which these are
done is not especially critical, but any pending interrupt requests should be cleared before
they are permitted to pass on to the rest of the PC.

The following sample code performs these startup actions, setting up the chip in device
COMl (at port 03F8H) to operate at 1200 bps with a word length of 8 bits, no parity check
ing, and all UART interrupts enabled. (In practical code, all values for addresses and
operating conditions would not be built in; these values are included in the example to
clarify what is being done at each step.)

MOV DX,03FBh ; base port COMl (03F8) +]

MOV AL,080h ; enable Divisor Latch

OUT DX,AL

MOV DX,03F8h ; set for BaudO

MOV AX, 96 ; set divisor to 1200 bps

OUT DX,AL

INC DX ; to offset 1 for Baudi

MOV AL,AH ; high byte of divisor

OUT DX,AL

MOV DX,03FBh ; back to the LCR offset

MOV AL, 03 ; DLAB = 0, Parity = N, WL

OUT DX,AL

MOV DX,03F9h ; offset 1 for lER

MOV AL,OFh ; enable all ints in 8250

OUT DX, AL

MOV DX,03FCh ; COMl + MCR (4)

MOV AL,OBh ; 0UT2 + RTS + DTR bits

OUT DX,AL

(more)

Section II: Programming in the MS-DOS Environment 179

Part B: Programming for MS-DOS

CLRGS:

MOV DX,03FDh ; clear LSR

IN AL,DX

MOV DX,03F8h ; clear RX reg

IN AL,DX

MOV DX,03FEh ; clear MSR

IN AL,DX

MOV DX,03FAh ; IID reg

IN AL,DX

IN AL,DX ; repeat, to be sure

TEST AL, 1 ; int pending?

JZ CLRGS ; yes, repeat

Note: This code does not completely set up the IBM serial port. Although it fully programs
the 8250 itself, additional work remains to be done. The system interrupt vectors must be
changed to provide linkage to the interrupt service routine (ISR) code, and the 8259
Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt
requests from the UART channels. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Customizing ms-dos: Hardware Interrupt Handlers.

Device Drivers

All versions of MS-DOS since 2.0 have permitted the installation of user-provided device
drivers. From the standpoint of operating-system theory, using such drivers is the proper
way to handle generic communications interfacing. The following paragraphs are intended
as a refresher and to explain this article's departure from standard device-driver terminol
ogy. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos:
Installable Device Drivers.

An installable device driver consists of (1) a driver header that links the driver to

others in the chain maintained by MS-DOS, tells the system the characteristics of this spe
cific driver, provides pointers to the two major routines contained in the driver, and (for a
character-device driver) identifies the driver by name; (2) any data and storage space the
driver may require; and (3) the two major code routines.

The code routines are called the Strategy routine and the Interrupt routine in normal
device-driver descriptions. Neither has any connection with the hardware interrupts dealt
with by the drivers presented in this article. Because of this, the term Request routine is
used instead of Interrupt routine, so that hardware interrupt code can be called an
interrupt service routine (ISR) with minimal chances for confusion.

MS-DOS communicates with a device driver by reserving space for a command packet
of as many as 22 bytes and by passing this packet's address to the driver with a call to the
Strategy routine. All data transfer between MS-DOS and the driver, in both directions,
occurs via this command packet and the Request routine. The operating system places a
command code and, optionally, a byte count and a buffer address into the packet at the
specified locations, then calls the Request routine. The driver performs the command
and returns the status (and sometimes a byte count) in the packet.

180 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Two Alternative Approaches

Now that the factors involved in creating interrupt-driven communications programs have
been discussed, they can be put together into practical program packages. Etoing so brings
out not only general principles but also minor details that make the difference between
success and failure of program design in this hardware-dependent and time-critical area.

The traditional way: Going it alone

Because MS-DOS provides no generic functions suitable for communications use, virtually
all popular communications programs provide and install their own port driver code, and
then remove it before returning to MS-DOS. This approach entails the creation of a com
munications handler for each program and requires the "uninstallation" of the handler on
exit from the program that uses it. Despite the extra requirements, most communications
programs use this method.

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system
before returning to the command level, an installable device driver can be built as a
replacement for COMjc so that every program can have all features. However, this
approach is not compatible with existing terminal programs because it has never been a
part of MS-DOS.

Comparison of the two methods

The traditional approach has several advantages, the most obvious being that the driver
code can be fully tailored to the needs of the program. Because only one program will
ever use the driver, no general cases need be considered.

However, if a user wants to keep communications capability available in a terminate-and-
stay-resident (TSR) module for background use and also wants a different type of commu
nications program running in the foreground (not, of course, while the background task is
using the port), the background program and the foreground job must each have its own
separate driver code. And, because such code usually includes buffer areas, the duplicated
drivers represent wasted resources.

A single communications device driver that is installed when the system powers up and
that remains active until shutdown avoids wasting resources by allowing both the back
ground and foreground tasks to share the driver code. Until such drivers are common,
however, it is unlikely that commercial software will be able to make use of them. In addi
tion, such a driver must either provide totally general capabilities or it must include control
interfaces so each user program can dynamically alter the driver to suit its needs.

At this time, the use of a single driver is an interesting exercise rather than a practical
application, although a possible exception is a dedicated system in which all software is
either custom designed or specially modified. In such a system, the generalized driver
can provide significant improvement in the efficiency of resource allocation.

Section II: Programming in the MS-DOS Environment 181

Part B: Programming for MS-DOS

A Device-Driver Program Package

Despite the limitations mentioned in the preceding section, the first of the two complete
packages in this article uses the concept of a separate device driver. The driver handles all
hardware-dependent interfacing and thus permits extreme simplicity in all other modules
of the package. This approach is presented first because it is especially well suited for in
troducing the concepts of communications programs. However, the package is not merely
a tutorial device: It includes some features that are not available in most commercial

programs.

The package itself consists of three separate programs. First is the device driver, which
becomes a part of MS-DOS via the CONFIG.SYS file. Second is the modem engine, which
is the actual terminal program. (A functionally similar component forms the heart of every
communications program, whether it is written in assembly language or a high-level lan
guage and regardless of the machine or operating system in use.) Third is a separately exe
cuted support program that permits changing such driver characteristics as word length,
parity, and baud rate.

In most programs that use the traditional approach, the driver and the support program
are combined with the modem engine in a single unit and the resulting mass of detail
obscures the essential simplicity of each part. Here, the parts are presented as separate
modules to emphasize that simplicity.

The device driver: COMDVR.ASM

The device driver is written to augment the default COMl and COM2 devices with other
devices named ASYl and ASY2 that use the same physical hardware but are logically sepa
rate. The driver (COMDVR.ASM) is implemented in MASM and is shown in the listing in
Figure 6-1. Although the driver is written basically as a skeleton, it is designed to permit
extensive expansion and can be used as a general-purpose sample of device-driver
source code.

The code

1

2

3

4

5

6

7

8

9

10

11

12

13

Title

Subttl

Dbg

COMDVR Driver for IBM COM Ports

Jim Kyle, 1987

Based on ideas from many sources

including Mike Higgins, CLM March 1985;

public-domain INTBIOS program from BBS's;

COMBIOS.COM from CIS Programmers' SIG; and

ADVANCED MS-DOS by Ray Duncan.

MS-DOS Driver Definitions

Comment * This comments out the Dbg macro

Macro Ltrl,Ltr2,Ltr3 ; used only to debug driver.

Local Xxx

Push Es ; save all regs used

Figure 6-1. COMDVR.ASM. (more)

182 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

14 Push Di

15 Push Ax

16 Les Di,Cs:Dbgptr ; get pointer to CRT

17 Mov Ax,Es:[di]

18 Mov Al,Ltr1 ; move in letters

19 Stosw

20 Mov Al,Ltr2

21 Stosw

22 Mov Al,Ltr3

23 Stosw

24 Cmp Di,1600 ; top 10 lines only

25 Jb Xxx

26 Xor Di, Di

27 Xxx: Mov Word Ptr Cs:Dbgptr,Di

28 Pop Ax

29 Pop Di

30 Pop Es

31 Endm

32
* ; asterisk ends commented-out

33 ;

34 ; Device Type Codes

35 DevChr Equ 8000h this is a character device

36 DevBlk Equ OOOOh this is a block (disk) device

37 Devloc Equ 4000h this device accepts lOCTL requests

38 DevNon Equ 2000h non-IBM disk driver (block only)

39 DevOTB Equ 2000h MS-DOS 3.x out until busy supported

40 DevOCR Equ 0800h MS-DOS 3.x open/close/rm supported

41 DevX32 Equ 0040h MS-DOS 3.2 functions supported

42 DevSpc Equ OOlOh accepts special interrupt 29H

43 DevClk Equ 0008h this is the CLOCK device

44 DevNul Equ 0004h this is the NUL device

45 DevSto Equ 0002h this is standard output

46 DevSti Equ OOOIh this is standard input

47 ;

48 ; Error Status BITS

49 StsErr Equ 8000h ? general error

50 StsBsy Equ 0200h r device busy

51 StsDne Equ OlOOh r request completed

52 ;

53 ; ■ Error Reason values for lower-order bits

54 ErrWp Equ 0 write protect error

55 ErrUu Equ 1 unknown unit

56 ErrDnr Equ 2 drive not ready

57 ErrUc Equ 3 unknown command

58 ErrCrc Equ 4 cyclical redundancy check error

59 ErrBsl Equ 5 bad drive request structure length

60 ErrSl Equ 6 seek error

61 ErrUm Equ 7 unknown media

62 ErrSnf Equ 8 sector not found

63 ErrPop Equ 9 printer out of paper

64 ErrWf Equ 10 write fault

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 183

Part B: Programming for MS-DOS

65 ErrRf Equ 11 ; read fault

66

67

ErrGf Equ 12 ; general failure

68 Structure of an I/O request packet header.

69

70 Pack Struc

71 Len Db 0 length of record

72 Prtno Db 0 unit code

73 Code Db 0 command code

74 Stat Dw o return status

75 Dosq Dd 7 (unused MS-DOS queue link pointer)

76 Devq Dd 7 (unused driver queue link pointer)

77 Media Db 7 media code on read/write

78 Xfer Dw 7 xfer address offset

79 Xseg Dw 7 xfer address segment

80 Count Dw 7 transfer byte count

81 Sector Dw 7 starting sector value (block only)

82 Pack Ends

83

84 Subttl IBM-PC Hardware Driver Definitions

85 page

86 ;

87 ; 8259 data

88 PIC_b Equ 020h r port for EOI

89 PIC_e Equ 021h ;: port for Int enabling

90

91

EOI Equ 020h ;r EOI control word

92 ; 8250 port offsets

93 RxBuf Equ 0F8h base address

94 Baudi Equ RxBuf+1 baud divisor high byte

95 IntEn Equ RxBuf+1 interrupt enable register

96 Intid Equ RxBuf+2 interrupt identification register
97 Lctrl Equ RxBuf+3 line control register

98 Met r-1 Equ RxBuf+4 modem control register

99 Lstat Equ RxBuf+5 line status register

100 Mstat Equ RxBuf+6 modem status register

101 ;

102 / 8250 LCR constants

103 Dlab Equ 10000000b ; divisor latch access bit

104 SetBrk Equ 01000000b ; send break control bit

105 StkPar Equ 00100000b ; stick parity control bit

106 EvnPar Equ 00010000b ; even parity bit

107 GenPar Equ 00001000b ; generate parity bit

108 Xstop Equ 00000100b ; extra stop bit

109 Wd8 Equ 00000011b ; word length = 8

110 Wd7 Equ 00000010b ; word length = 7

111

11 2

Wd6 Equ 00000001b ; word length = 6

113 ; 8250 LSR constants

114 xsre Equ 01000000b ; xmt SR empty

115 xhre Equ 00100000b ; xmt HR empty

Figure 6-1. Continued.
'

(more)

184 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

116 : BrkRcv Equ 00010000b ; break received

117 : FrmErr Equ 00001000b ; framing error

118 : ParErr Equ 00000100b ; parity error

119 : OveRun Equ 00000010b ; overrun error

120 : rdta Equ 00000001b ; received data ready

121 : AnyErr Equ BrkRcv+FrmErr+ParErr+OveRun

122 : ;

123 : ; 8250 MCR constants

124 : LpBk Equ 00010000b ; UART out loops to in (test)

125 : Usr2 Equ 00001000b ; Gates 8250 interrupts

126 : Usri Equ 00000100b ; aux userl output

127 : SetRTS Equ 00000010b ; sets RTS output

128 : SetDTR Equ 00000001b ; sets DTR output

129 : ;

130 : ; 8250 MSR constants

131 : CDlvl Equ 10000000b ; carrier detect level

132 : RIlvl Equ 01000000b ; ring indicator level

133 : DSRlvl Equ 00100000b ; DSR level

134 : CTSlvl Equ 00010000b ; CTS level

135 : CDchg Equ 00001000b ; Carrier Detect change

136 : RIchg Equ 00000100b ; Ring Indicator change

137 : DSRchg Equ 00000010b ; DSR change

138 : CTSchg Equ 00000001b ; CTS change

139 : ;

140 : ; 8250 lER constants

141 : S_Int Equ 00001000b ; enable status interrupt

142 : E_Int Equ 00000100b ; enable error interrupt

143 ; X_Int Equ 00000010b ; enable transmit interrupt

1 44 : R_Int Equ 00000001b ; enable receive interrupt

145 : Allint Equ 00001111b ; enable all interrupts

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

1 61

162

163

164

165

166

Subttl

page

Definitions for THIS Driver

Linldl Equ

LinXof Equ

LinDSR Equ

LinCTS Equ

Badlnp Equ

LostDt Equ

OffLin Equ

Bit definitions for the output status byte

{ this driver only)

Offh ; if all bits off, xmitter is idle

1 ; output is suspended by XOFF

2 ; output is suspended until DSR comes on again

4 ; output is suspended until CTS comes on again

Bit definitions for the input status byte

(this driver only)

1 ; input line errors have been detected

2 ; receiver buffer overflowed, data lost

4 ; device is off line now

Bit definitions for the special characteristics words

(this driver only)

InSpec controls how input from the UART is treated

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 185

Part B: Programming for MS-DOS

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

InEpc Equ

OutDSR Equ OOOIh

OutCTS Equ 0002h

OutXon Equ 0004h

OutCdf Equ OOlOh

OutDrf Equ 0020h

0001h ; errors translate to codes with parity bit on

OutSpec controls how output to the UART is treated

DSR is used to throttle output data

CTS is used to throttle output data

XON/XOFF is used to throttle output data

carrier detect is off-line signal

DSR is off-line signal

Unit Struc ; each unit has a structure defining its state:

Port Dw 7 ; I/O port address

Vect Dw 7 ; interrupt vector offset (NOT interrupt number!)

Isradr Dw 7 ; offset to interrupt service routine

OtStat Db Wd8 ; default LCR bit settings during INIT,

InStat Db

; output status bits after

Usr2+SetRTS+SetDTR ; MCR bit settings during INIT,

184 input status bits after

185 InSpec Dw InEpc special mode bits for INPUT

186 OutSpec Dw OutXon special mode bits for OUTPUT

187 Baud Dw 96 current baud rate divisor value (1200 b)

188 Ifirst Dw 0 offset of first character in input buffer

189 lavail Dw 0 offset of next available byte

190 Ibuf Dw 7 pointer to input buffer

191 Ofirst Dw 0 offset of first character in output buffer

192 Oavail Dw 0 offset of next avail byte in output buffer

193 Obuf Dw 7 pointer to output buffer

194 Unit Ends

Driver

Beginning of driver code and data

Segment

Assume Cs:driver, ds:driver, es:driver

Async2:

Org

Dw

Dw

Dw

Dw

Db

Dw

Dw

Dw

Dw

Db

Async2,-1

DevChr + Devloc

Strtegy

Request1

'ASY1

-1,-1

DevChr + Devloc

Strtegy

Request2

'ASY2 •

drivers start at 0

pointer to next device

character device with lOCTL

offset of Strategy routine

offset of interrupt entry point 1

device 1 name

pointer to next device; MS-DOS fills in

character device with lOCTL

offset of Strategy routine

offset of interrupt entry point 2

device 2 name

dbgptr Dd ObOOOOOOOh

Following is the storage area for the request packet pointer

Figure 6-1. Continued. (more)

186 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

218 ;

219 PackHd Dd 0

220 ;

221 ; baud rate conversion table

222 Asy_baudt Dw 50,2304 ; first value is desired baud rate

223 Dw 75,1536 ; second is divisor register value

224 Dw 110,1047

225 Dw 134, 857

226 Dw 150, 786

227 Dw 300, 384

228 Dw 600, 192

229 Dw 1200, 96

230 Dw 1 800, 64

231 Dw 2000, 58

232 Dw 2400, 48

233 Dw 3600, 32

234 Dw 4800, 24

235 Dw 7200, 16

236 Dw 9600, 12

237

238 ; table of structures

239 ASY1 defaults to the C0M1 port, INT OCH vector, XON,

240 ; no parity, 8 databits. 1 stop bit, and 1200 baud

241 Asy_tab1:

242 Unit <3f8h,3Oh,asylisr,,,,,,,,inlbuf,,,out1buf>

243

244 ASY2 defaults to the COM2 port, INT OBH vector, XON,

245 ; no parity, 8 databits. 1 stop bit, and 1200 baud

246 Asy_tab2:

247 Unit <2f8h,2ch,asy2isr,,,,,,,,in2buf,,,out2buf>

248

249 Bufsiz Equ 256 ; input buffer size

250 Bufmsk Bufsiz-1 ; mask for calculating offsets modulo bufsiz

251 Inlbuf Db Bufsiz DUP (?)

252 Outlbuf Db Bufsiz DUP (?)

253 In2buf Db Bufsiz DUP (?)

254 Out2buf Db Bufsiz DUP (?)

255 ;

256 ; Following is a table of offsets to all the driver functions

257"
258 Asy_funcs;

259 Dw Init 0 initialize driver

260 Dw Mchek 1 media check (block only)

261 Dw BldBPB 2 build BPB (block only)

262 Dw loctlin 3 lOCTL read

263 Dw Read 4 read

264 Dw Ndread 5 nondestructive read

265
Dw Rxstat 6 input status

266 Dw Inflush 7 flush input buffer

267 Dw Write 8 write

268
Dw Write 9 write with verify

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 187

Part B: Programming for MS-DOS

269 Dw Txstat 10 output status

270 Dw Txflush 11 flush output buffer

271 Dw loctlout 12 lOCTL write

272 ; Following are not used in this driver

273 Dw Zexit 13 open (3.x only, not used)

274 Dw Zexit 14 close (3.x only, not used)

275 Dw Zexit 15 rem med (3.x only, not used)

276 Dw Zexit 16 out until bsy (3.x only, not used)

277 Dw Zexit 1 7

278 Dw Zexit 18

279 Dw Zexit 19 generic lOCTL request (3.2 only)

280 Dw Zexit 20

281 Dw Zexit 21

282 Dw Zexit 22

283 Dw Zexit 23 get logical drive map (3.2 only)

284 Dw Zexit 24 set logical drive map (3.2 only)

285

286 Subttl Driver Code

287 Page

288
f

289 ; The Strategy routine itself:

290

291 Strtegy Proc Far

292 dbg 'S•,•R',• •

293 Mov Word Ptr CS:PackHd,BX ; store the offset

294 Mov Word Ptr OS:PackHd+2,ES ; store the segment

295 Ret

296 Strtegy Endp

297 ;

298 Request1: ;r asynci has been requested

299 Push Si ;r save SI

300 Lea Si,Asy_tab1 ;' get the device unit table address

301 Jmp Short Gen_request

302

303 Request2: ;r async2 has been requested

304 Push Si ;r save SI

305 Lea Si,Asy_tab2 ;: get unit table two's address

306

307 Gen_request:

308 dbg 'R','R',' '

309 Pushf ;: save all regs

310 Old

311 Push Ax

312 Push Bx

313 Push Cx

314 Push Dx

315 Push Di

316 Push Bp

317 Push Ds

318 Push Es

31 9 Push Cs ;: set DS = CS

Figure 6-1. Continued. (more)

188 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

320 Pop Ds

321 Les Bx,PackHd ; get packet pointer

322 Lea Di,Asy_funcs ; point DI to jump table

323 Mov Al,es:code[bx] ; command code

324 Cbw

325 Add Ax,Ax ; double to word

326 Add Di, ax

327 Jmp [di] go do it

328

329
/ Exit from driver request

330 /

331 ExitP Proc Far

332 Bsyexit

333 Mov Ax,StsBsy

334 Jmp Short Exit

335

336 Mchek:

337 BldBPB:

338 Zexit: Xor Ax, Ax

339 Exit: Les Bx,PackHd ; get packet pointer

340 Or Ax,StsDne

341 Mov Es:Stat[Bx],Ax ; set return status

342 Pop Es restore registers

343 Pop Ds

344 Pop Bp

345 Pop Di

346 Pop Dx

347 Pop Cx

348 Pop Bx

349 Pop Ax

350 Popf

351 Pop Si

352 Ret

353 ExitP Endp

354

355 Subttl Driver Service Routines

356 Page

357

358 ; Read data from device

359

360 Read:

361 ; dbg •R','d',' '

362 Mov Cx,Es:Count[bx] ; get requested nbr

363 Mov Di,Es:Xfer[bx] ; get target pointer

364 Mov Dx,Es:Xseg[bx]

365 Push Bx save for count fixup

366 Push Es

367 Mov Es, Dx

368 Test InStat[si],Badlnp Or LostDt

369 Je No_lerr ; no error so far...

370 Add Sp,4 error, flush SP

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 189

Part B: Programming for MS-DOS

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

No_lerr:

Got_all:

And

Mov

Jmp

Call

Or

Jnz

Stosb

Loop

Pop

Pop

Sub

Mov

Jmp

InStat[si],Not (Badlnp Or LostDt)

Ax,ErrRf

Exit

Get—in

Ah, Ah

Got all

No—lerr

Es

Bx

Di,Es:Xfer[bx]

Es:Count[bx],Di

Zexit

error, report it

go for one

none to get now

store it

go for more

calc number stored

return as count

Nondestructive read from device

Ndread:

Ndget:

Rxstat:

Rxful:

Mov Di,ifirst[si]

Cmp Di,iavail[si]

Jne Ndget

Jmp Bsyexit

Push Bx

Mov Bx,ibuf[si]

Mov Al,[bx+di]

Pop Bx

Mov Es:media[bx],al

Jmp Zexit

Input status request

Mov Di,ifirst[si]

Cmp Di,iavail[si]

Jne Rxful

Jmp Bsyexit

Jmp Zexit

Input flush request

; buffer empty

return char

; buffer empty

; have data

Inflush:

Mov Ax,iavail[si]

Mov Ifirst[si],ax

Jmp Zexit

Output data to device

Figure 6-1. Continued. (more)

190 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

.459

460

461

462

463

464

465

466

467

468

469

470

471

Write:

Wlup:

Wwait:

dbg '

Mov Cx,es:count[bx]

Mov Di,es:xfer[bx]

Mov Ax,es:xseg[bx]

Mov Es,ax

Mov Al,es:[di]

Inc Di

Call Put_out

Cmp Ah, 0

Jne Wwait

Call Start—output

Loop Wlup

Jmp Zexit

Output status request

get the byte

put away

wait for room!

get it going

Txstat:

Txroom:

Mov

Dec

And

Cmp

Jne

Jmp

Jmp

Ax,ofirst[si]

Ax

Ax,bufmsk

Ax,oavail[si]

Txroom

Bsyexit

Zexit

; buffer full

; room exists

lOCTL read request, return line parameters

loctlin:

Doiocin:

Getport:

Mov

Mov

Mov

Mov

Cmp

Je

Mov

Jmp

Mov

Mov

Mov

In

Stos

Inc

Loop

Cx,es:count[bx]

Di,es:xfer[bx]

Dx,es:xseg[bx]

Es, dx

Cx, 1 0

Doiocin

Ax,errbsl

Exit

Dx,port[si]

DI,Lctrl

Cx, 4

Al, dx

Byte Ptr [DI]

Dx

Getport

base port

line status

LCR, MCR, LSR, MSR

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 191

Part B: Programming for MS-DOS

472 Mov Ax,InSpec[si] ; spec in flags

473 Stos Word Ptr [DI]

474 Mov Ax,OutSpec[si] ; out flags

475 Stos Word Ptr [DI]

476 Mov Ax,baud[si] ; baud rate

477 Mov Bx, di

478 Mov Di,offset Asy_baudt+2

479 Mov Cx,15

480 Baudcin:

481 Cmp [di],ax

482 Je Yesinb

483 Add Di,4

484 Loop Baudcin

485 Yesinb:

486 Mov Ax,-2[di]

487 Mov Di, bx

488 Stos Word Ptr [DI]

489 Jmp Zexit

490

491 ; Flush output buffer request

492

493 Txflush:

494 Mov Ax,oavail[si]

495 Mov Ofirst[si],ax

496 Jmp Zexit

497

498 lOCTL request: change line parameters for

499

500 loctlout:

501 Mov Cx,es:count[bx]

502 Mov Di,es rxfer[bx]

503 Mov Dx,es:xseg[bx]

504 Mov Es, dx

505 Cmp Cx, 10

506 Je Doiocout

507 Mov Ax,errbsl

508 Jmp Exit

509

510 Doiocout:

511 Mov Dx,port[si] ; base port

512 Mov Dl,Lctrl ; line Ctrl

513 Mov Al,es:[di]

514 Inc Di

515 Or Al,Dlab set baud

516 Out Dx, al

517 Clc

518 Jnc $+2

51 9 Inc Dx mdm Ctrl

520 Mov Al,es:[di]

521 Or Al,Usr2 Int Gate

522 Out Dx, al

Figure 6-1. Continued. (more)

192 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

523 Add Di,3 ; skip LSR,MSR

524 Mov Ax,03:[di]

525 Add Di,2

526 Mov InSpec[si],ax

527 Mov Ax,es:[di]

528 Add Di,2

529 Mov OutSpec[si],ax

530 Mov Ax,es:[di] ; set baud

531 Mov Ex, di

532 Mov Di,offset Asy_baudt

533 Mov Cx, 15

534 Baudcout:

535 Cmp [di],ax

536 Je Yesoutb

537 Add Di, 4

538 Loop Baudcout

539

540 Mov DI,Lctrl ; line Ctrl

541 In Al, dx ; get LCR data

542 And Al,not Dlab ; strip

543 Clc

544 Jnc $+2

545 Out Dx, al ; put back

546 Mov Ax,ErrUm ; "unknown media"

547 Jmp Exit

548

549 Yesoutb:

550 Mov Ax,2[di] ; get divisor

551 Mov Baud[si],ax ; save to report later

552 Mov Dx,port[si] ; set divisor

553 Out Dx, al

554 Clc

555 Jnc $+2

556 Inc Dx

557 Mov Al, ah

558 Out Dx, al

559 Clc

560 Jnc $+2

561 Mov DI,Lctrl ; line Ctrl

562 In Al, dx ; get LCR data

563 And Al,not Dlab ; strip

564 Clc

565 Jnc $+2

566 Out Dx, al ; put back

567 Jmp Zexit

568

569 Subttl Ring Buffer Routines

570 Page

571

572 Put_out Proc Near ; puts AL into output ring buffer

573 Push Cx

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 193

Part B: Programming for MS-DOS

574 Push Di

575 Pushf

576 Cli

511 Mov Cx,oavail[si] ; put ptr

578 Mov Di, cx

579 Inc Cx ; bump

580 And Cx,bufmsk

581 Cmp Cx,ofirst[si] ; overflow?

582 Je Poerr ; yes, don't

583 Add Di,obuf[si] ; no

584 Mov [di],al ; put in buffer

585 Mov Oavail[si],cx

586 ; dbg 'p','0',' *

587 Mov Ah,0

588 Jmp Short Poret

589 Poerr:

590 Mov Ah,-1

591 Poret:

592 Popf

593 Pop Di

594 Pop Cx

595 Ret

596 Put_out Endp

597

598 Get_out Proc Near ; gets next character from output ring buffer

599 Push Cx

600 Push Di

601 Pushf

602 Cli

603 Mov Di,ofirst[si] ; get ptr

604 Cmp Di,oavail[si] ; put ptr

605 Jne Ngoerr

606 Mov Ah,-1 ; empty

607 Jmp Short Goret

608 Ngoerr:

609 ; dbg •g','o',' '

610 Mov Cx, di

611 Add Di,obuf[si]

612 Mov Al, [di] ; get char

613 Mov Ah,0

614 Inc Cx ; bump ptr

615 And Cx,bufmsk ; wrap

616 Mov Ofirst[si],cx

617 Goret:

618 Popf

619 Pop Di

620 Pop Cx

621 Ret

622

0
fl)

tf
1

0
c

tr

Endp

623

624 Put—in Proc Near ; puts the char from AL into input ring buffer

Figure 6-1. Continued. (more)

194 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

625 Push Cx

626 Push Di

627 Pushf

628 Cli

629 Mov Di,iavail[si]

630 Mov Cx, di

631 Inc Cx

632 And Cx,bufmsk

633 Cmp Cx,ifirst[si]

634 Jne Npierr

635 Mov Ah,-1

636 Jmp Short Piret

637 Npierr:

638 Add Di,ibuf[si]

639 Mov [di],al

640 Mov Iavail[si], cx

641 ; dbg

642 Mov Ah,0

643 Piret:

644 Popf

645 Pop Di

646 Pop Cx

647 Ret

648 Put_in Endp

649

650 Get_in Proc Near ; gets

651 Push Cx

652 Push Di

653 Pushf

654 Cli

655 Mov Di,ifirst[si]

656 Cmp Di,iavail[si]

657 Je Gierr

658 Mov Cx, di

659 Add Di,ibuf[si]

660 Mov Al, [di]

661 Mov

>

o

662 ; dbg 'g'/'i'/' '

663 Inc Cx

664 And Cx,bufmsk

665 Mov Ifirst[si],cx

666 Jmp Short Giret

667 Gierr:

668 Mov Ah,-1

669 Giret:

670 Popf

671 Pop Di

672 Pop Cx

673 Ret

674 Get_in Endp

675

gets one from input ring buffer into AL

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 195

Part B: Programming for MS-DOS

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

Subttl

Page

Asylisr:

Interrupt Dispatcher Routine

Sti

Push

Lea

Jmp

Asy2isr:

Sti

Push

Lea

Int_serve:

Push

Push

Push

Push

Push

Push

Push

Pop

Int_exit:

; dbg

Mov

Mov

In

Cmp

Je

Jmp

Int_modem:

dbg

Mov

In

Test

Jnz

Test

Jz

Or

Msdsr:

Dsroff:

Test

Jnz

Test

Jz

Or

Test

Jz

Or

Jmp

Si

Si, asy_tab1

Short Int_serve

Si

Si,asy_tab2

Ax

Bx

Cx

Dx

Di

Ds

Cs

Ds

save all regs

; set DS = CS

•I','x',• •

Dx,Port[si]

Dl,Intid

Al,Dx

Al,00h

Int^odem

Int_mo_no

■M', 'S', ' •
Dl,Mstat

Al, dx

Al,CDlvl

Msdsr

OutSpec[si],OutCdf
Msdsr

InStat[si],OffLin

;

;

 base address

; check Int ID

; dispatch filter

 read MSR content

; carrier present?
; yes, test for DSR

; no, is CD off line?

Al,DSRlvl ; DSR present?
Dsron ; yes, handle it
OutSpec[si],OutDSR ; no, is DSR throttle?
Dsroff

OtStat[si],LinDSR ; yes, throttle down

OutSpec[si],OutDrf
Mscts

InStat[si],OffLin
Short Mscts

; is DSR off line?

; yes, set flag

Figure 6-1. Continued. (more)

196 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

727 Dsron:

728 Test OtStat[si],LinDSR ; throttled for DSR?

729 Jz Mscts

730 Xor OtStat[si],LinDSR ; yes, clear it out

731 Call Start—output

732 Mscts:

733 Test Al,CTSlvl CTS present?

734 Jnz Ctson ; yes, handle it

735 Test OutSpec[si],OutCTS ; no, is CTS throttle?

736 Jz Int—exit2

737 Or OtStat[si],LinCTS ; yes, shut it down

738 Jmp Short Int_exit2

739 Ctson:

740 Test OtStat[si],LinCTS ; throttled for CTS?

741 Jz Int_exit2

742 Xor OtStat[si],LinCTS ; yes, clear it out

743 Jmp Short Int_exit1

744 Int_mo_no:

745 Cmp Al,02h

746 Jne Int—tx_no

747 Int_txmit:

748 ; dbg 'T','x',' '

749 Int_exit1:

750 Call Start—output ; try to send another

751 Int_exit2:

752 Jmp Int—exit

753 Int_tx_no:

754 Cmp Al,04h

755 Jne Int—rec—no

756 Int_receive:

757 ; dbg 'R','x',' '

758 Mov Dx,port[si]

759 In A1,dx ; take char from 8250

760 Test OutSpec[si],OutXon ; is XON/XOFF enabled?

761 Jz Stuff—in ; no

762 Cmp A1,'S' And 01FH ; yes, is this XOFF?

763 Jne Isq ; no, check for XON

764 Or OtStat[si],LinXof ; yes, disable output

765 Jmp Int—exit2 ; don't store this one

766 Isq:

767 Cmp Al,'Q' And 01FH ; is this XON?

768 Jne Stuff—in ; no, save it

769 Test OtStat[si],LinXof ; yes, waiting?

770 Jz Int—exit2 ; no, ignore it

771 Xor OtStat[si],LinXof ; yes, clear the XOFF bit

772 Jmp Int—exit 1 ; and try to resume xmit

773 Int_rec_no:

774 Cmp Al,06h

775 Jne Int—done

776 Int_rxstat:

777 ; dbg •E*,'R',' '

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 197

Part B: Programming for MS-DOS

778 Mov Dl,Lstat

779 In Al, dx

780 Test InSpec[si],InEpc ;: return them as codes?

781 Jz Nocode ; no, just set error alarm

782 And Al,AnyErr ; yes, mask off all but error

783 Or Al,080h

784 Stuff_in:

785 Call Put—in ; put input char in buffer
786 Cmp Ah,0 did it fit?

787 Je Int—exit3 ; yes, all OK

788 Or InStat[si],LostDt ; no, set DataLost bit

789 Int_exit3:

790 Jmp Int—exit

791 Nocode:
(5)>

792 Or InStat[si],Badlnp

793 Jmp Int—exits

794 Int_done:

795 Clc

796 Jnc $+2

797 Mov A1,E0I all done now

798 Out PIC_b,Al

799 Pop Ds restore regs

800 Pop Di

801 Pop Dx

802 Pop Cx

803 Pop Bx

804 Pop Ax

805 Pop Si

806 Iret

807

808 Start—output Proc Near

809 Test OtStat[si],Linldl ; Blocked?

810 Jnz Dont—start ; yes, no output

811 Mov Dx,port[si] ; no, check UART

812 Mov Dl,Lstat

813 In Al,Dx

814 Test Al,xhre ; empty?

815 Jz Dont—start ; no

816 Call Get—out ; yes, anything waiting?
817 Or Ah, Ah

818 Jnz Dont—start ; no

819 Mov Dl,RxBuf ; yes, send it out
820 Out Dx, al

821 ; dbg 's','o',' '

822 Dont—start:

823 ret

824 Start—Output Endp

825

826 Subttl Initialization Request Routine
827 Page

828

Figure 6-1. Continued. (more)

198 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

829 Init: Lea Di, $; release rest..

830 Mov Es:Xfer[bx],Di

831 Mov Es:Xseg[bx], Cs
832

833 Mov Dx,Port[si] ; base port
834 Mov Dl,Lctrl

835 Mov Al,Dlab ; enable divisor

836 Out Dx,Al

837 Clc

838 Jnc $+2

839 Mov DI,RxBuf

840 Mov Ax,Baud[si] ; set baud

841 Out Dx,Al

842 Clc

843 Jnc $+2

844 Inc Dx

845 Mov Al,Ah

846 Out Dx,Al

847 Clc

848 Jnc $+2

849

850 Mov Dl,Lctrl ; set LCR

851 Mov Al,OtStat[si] ; from table

852 Out Dx,Al

853 Mov OtStat [si],0 ; clear status

854 Clc

855 Jnc $+2

856 Mov DI,IntEn ; lER

857 Mov Al,AllInt ; enable ints in

858 Out Dx,Al

859 Clc

860 Jnc $+2

861 Mov Dl,Mctrl ; set MCR

862 Mov Al,InStat[si] ; from table

863 Out Dx,Al

864 Mov InStat [si],0 ; clear status

865

866 ClRgs: Mov DI,Lstat ; clear LSR

867 In Al,Dx

868 Mov DI,RxBuf ; clear RX reg

869 In Al,Dx

870 Mov Dl,Mstat ; clear MSR

871 In Al, Dx

872 Mov DI,Intid ; IID reg

873 In Al,Dx

874 In Al,Dx

875 Test Al, 1 ; int pending?
876 Jz ClRgs ; yes, repeat

877

878 Cli

879 Xor Ax, Ax ; set int vec

Figure 6-1. Continued. (more)

Section II: Programming in the MS-DOS Environment 199

Part B: Programming for MS-DOS

880 Mov Es,Ax

881 Mov Di,Vect[si]

882 Mov Ax,IsrAdr[si] ; from table

883 Stosw

884 Mov Es:[di],OS

885

886 In Al,PIC_e ; get 8259

887 And Al,0E7h ; comi/2 mask

888 Clc

889 Jnb $+2

890 Out PIC_e,Al

891 Sti

892

893 Mov A1,E0I ; now send EOI just

894 Out PIC_b,Al

895

896 dbg 'D','I',' • ; driver installed

897 Jmp Zexit

898

899 Driver Ends

900 End

Figure 6-1. Continued.

The first part of the driver source code (after the necessary MASM housekeeping details
in lines 1 through 8) is a commented-out macro definition (lines 10 through 32). This
macro is used only during debugging and is part of a debugging technique that requires
no sophisticated hardware and no more complex debugging program than the venerable
DEBUG.COM. (Debugging techniques are discussed after the presentation of the driver
program itself.)

Definitions

The actual driver source program consists of three sets of EQU definitions (lines 34
through 194), followed by the modular code and data areas (lines 197 through 900). The
first set of definitions (lines 34 through 82) gives symbolic names to the permissible values
for MS-DOS device-driver control bits and the device-driver structures.

The second set of definitions (lines 84 through 145) assigns names to the ports and bit
values that are associated with the IBM hardware—both the 8259 PIC and the 8250 UART

The third set of definitions (lines 147 through 194) assigns names to the control values and
structures associated with this driver.

The definition method used here is recommended for all drivers. To move this driver from

the IBM architecture to some other hardware, the major change required to the program
would be reassignment of the port addresses and bit values in lines 84 through 145.

The control values and structures for this specific driver (defined in the third EQU set)
provide the means by which the separate support program can modify the actions of each
of the two logical drivers. They also permit the driver to return status information to both

200 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

the support program and the using program as necessary. Only a few features are imple
mented, but adequate space for expansion is provided. The addition of a few more defini
tions in this area and one or two extra procedures in the code section would do all that is
necessary to extend the driver's capabilities to such features as automatic expansion of
tab characters, case conversion, and so forth, should they be desired.

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for
ASYl (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following
the headers, in lines 215 through 236, are a commented-out space reservation used by the
debugging procedure (line 215), the pointer to the command packet (line 219), and the
baud-rate conversion table (lines 221 through 236).

The conversion table is followed by structure tables containing all data unique to ASYl
(lines 239 through 242) and ASY2 (lines 244 through 247). After the structure tables,
buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a
name (at line 249) so that it can be changed by editing a single line of the program.

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be
able to hold at least 2 seconds' worth of data (240 bytes at 1200 bps) to avoid data loss dur
ing writes to disk. Whatever size is chosen should be a power of 2 for simple pointer arith
metic and, if video display is intended, should not be less than 8 bytes, to prevent losing
characters when the screen scrolls.

If additional ports are desired, more headers can be added after line 213; corresponding
structure tables for each driver, plus matching pairs of buffers, would also be necessary.
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets
of all request routines in the driver; its use is discussed below.

Strategy and Request routines
With all data taken care of, the program code begins at the Strategy routine (lines 289
through 296), which is used by both ports. This code saves the command packet address
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS.

The Request routines (lines 298 through 567) are also shared by both ports, but the two
drivers are distinguished by the address placed into the SI register. This address points to
the structure table that is unique to each port and contains such data as the port's base
address, the associated hardware interrupt vector, the interrupt service routine offset
within the driver's segment, the base offsets of the input and output buffers for that port,
two pointers for each of the buffers, and the input and output status conditions (including
baud rate) for the port. The only difference between one port's driver and the other's is
the data pointed to by SI; all Request routine code is shared by both ports.

Each driver's Request routine has a unique entry point (at line 298 for ASYl and at line 303
for ASY2) that saves the original content of the SI register and then loads it with the ad
dress of the structure table for that driver. The routines then join as a common stream at
line 307 iGen_requesf).

Section II: Programming in the MS-DOS Environment 201

Part B: Programming for MS-DOS

This common code preserves all other registers used (lines 309 through 318), sets DS
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code
to calculate an offset into a table of addresses (lines 324 through 326), and performs an in
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the
routine that executes the requested command (at line 336,360,389,404,4l4,421,441,453,
500, or 829).

Although the device-driver specifications for MS-DOS version 3.2 list command request
codes ranging from 0 to 24, not all are used. Earlier versions of MS-DOS permitted only 0
to 12 (versions 2.x) or 0 to l6 (versions 3.0 and 3.1) codes. In this driver, all 24 codes are

accounted for; those not implemented in this driver return a DONE and NO ERROR status
to the caller. Because the Request routine is called only by MS-DOS itself, there is no check
for invalid codes. Actually, because the header attribute bits are not set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273
through 284) could be saved by omitting the entries. They are included only to show
how nonexistent commands can be accommodated.

Immediately following the dispatch indexed jump, at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the command packet, restore the registers, and return to the caller. The
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an error
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant
code but also improve readability of the code by providing unique single labels for BUSY,
NO ERROR, and ERROR return conditions.

All of the Request routines, except for the Init code at line 829, immediately follow the
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such
as read data in or write data out. The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user's buffer address are obtained from the command
packet. Next, the pointer to the command packet is saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer to the port's input buffer.

Before the Get_in routine that actually accesses the input buffer is called, the input status
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error-return exit from
the driver. If no error exists, line 375 calls Get_in to access the input buffer and lines 376
and 377 determine whether a byte was obtained. If a byte is found, it is stored in the user's
buffer by line 378, and line 379 loops back to get another byte until the requested count
has been obtained or until no more bytes are available. In practice, the count is an upper
limit and the loop is normally broken when data runs out.

No matter how it happens, control eventually reaches the Got_all routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.
Lines 383 and 384 adjust the count value in the packet to reflect the actual number of bytes
obtained. Finally, line 385 jumps to the normal, no-error exit from the driver.

202 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Buffering
Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer's beginning. Two pointers are used here
for each buffer, one to put data into it and one to get data out. The get pointer always
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written. The full-buffer condition is more difficult to test for: The put pointer
is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674). Put^out
(lines 572 through 596) writes a byte to the driver's output buffer or returns a buffer-full
indication by setting AH to OFFH. Get^out (lines 598 through 622) gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available. Put^ in (lines 624
through 648) and Get_in (lines 650 through 674) do exactly the same as Put_out and
Get_out, but for the input buffer. These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Interrupt service routines
The most complex part of this driver is the ISR (lines 676 through 806), which decides
which of the four possible services for a port is to be performed and where. Like the
Request routines, the ISR provides unique entry points for each port (line 679 for ASYl and
line 685 for ASY2y, these entry points first preserve the SI register and then load it with the
address of the port's structure table. With SI indicating where the actions are to be per
formed, the two entries then merge at line 690 into common code that first preserves all
registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action.

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although it could be used to prevent
attempts to transmit while off line), these ISR options can be removed so that only the
Transmit and Receive interrupts are serviced. To do this, Allint (at line 145) should be
changed from the OR of all four bits to include only the transmit and receive bits (03H,
orOOOOOOllB).

The transmit and receive portions of the ISR incorporate XON/XOFF flow control (for
transmitted data only) by default. This control is done at the ISR level, rather than in the
using program, to minimize the time required to respond to an incoming XOFF signal.
Presence of the flow-control decisions adds complexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec word in the structure table
with the Driver Status utility (presented later) via the lOCTL function (Interrupt 21H Func
tion 44H). When flow control is enabled, any XOFF character (IIH) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section II: Programming in the MS-DOS Environment 203

Part B: Programming for MS-DOS

buffer to be sent on to any program, although all patterns other than XOFF and XON are
passed through by the driver. When flow control is disabled, the driver passes all patterns
in both directions. For binary file transfer, flow control must be disabled.

The transmit action is simple: The code merely calls the Start_output procedure at line
750. Start_output is described in detail below.

The receive action is almost as simple as transmit, except for the flow-control testing. First,
the ISR takes the received byte from the UART (lines 758 and 759) to avoid any chance of
an overrun error. The ISR then tests the input specifier (at line 760) to determine whether
flow control is in effect. If it is not, processing jumps directly to line 784 to store the
received byte in the input buffer with Put_in (line 785).

If flow control is active, however, the received byte is compared with the XOFF character
(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored. If
the byte is not XOFF, it is compared with XON (lines 766 through 768). If it is not XON
either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled.
Regardless, the XON byte itself is ignored.

When control reaches Stuff^in at line 784, Put^in is called to store the received byte in
the input buffer. If there is no room for it, a lost-databit is set in the input status flags (line
788); otherwise, the receive routine is finished.

If the interrupt was a line-status action, the LSR is read (lines 776 through 779). If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte.
Otherwise, the Line Status interrupt merely sets the generic Badlnp error bit in the input
status flags, which can be read with the lOCTL Read function of the driver.

When all ISR action is complete, lines 794 through 806 restore machine conditions to those
existing at the time of the interrupt and return to the interrupted procedure.

The Start̂ output routine
Start^output (lines 808 through 824) is a routine that, like the four buffer procedures, is
used by both the Request routines and the ISR. Its purpose is to initiate transmission of a
byte, provided that output is not blocked by flow control, the UART Transmit Holding
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine
uses the Get_out buffer routine to access the buffer and determine whether a byte is avail
able. If all conditions are met, the byte is sent to the UART holding register by lines 819
and 820.

The Initialization Request routine
The Initialization Request routine (lines 829 through 897) is critical to successful operation
of the driver. This routine is placed last in the package so that it can be discarded as soon
as it has served its purpose by installing the driver. It is essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop through this

204 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

action until the 8250 finally shows no requests pending. The strange Clc jnc $-1-2
sequence that appears repeatedly in this routine is a time delay required by high-speed
machines (6 MHz and up) so that the 8250 has time to settle before another access is
attempted; the delay does no harm on slower machines.

Using COMDVR

The first step in using this device driver is assembling it with the Microsoft Macro Assem
bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert
the .EXE file into a binary image file with the EXE2BIN utility. Finally, include the line
DEVICE=COMDVR.SYS in the CONFIG.SYS file so that COMDVR will be installed when

the system is restarted.

Note: The number and colon at the beginning of each line in the program listings in this
article are for reference only and should not be included in the source file.

Figure 6-2 shows the sequence of actions required, assuming that EDLIN is used for
modifying (or creating) the CONFIG.SYS file and that all commands are issued from the
root directory of the boot drive.

Creating the driver:

OMASM COMDVR; <Enter>

OLINK COMDVR; <Enter>

OEXE2BIN COMDVR.EXE COMDVR.SYS <Enter>

Modifying CONFIG.SYS (^2 = press Ctrl-Z):

OEDLIN CONFIG.SYS <Enter>

*#I <Enter>

*DEVICE=COMDVR.SYS <Enter>

<Enter>

*E <Enter>

Figure 6-2. Assembling, linking, and installing COMDVR.

Because the devices installed by COMDVR do not use the standard MS-DOS device names,
no conflict occurs with any program that uses conventional port references. Such a pro
gram will not use the driver, and no problems should result if the program is well behaved
and restores all interrupt vectors before returning to MS-DOS.

Device-driver debugging techniques

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more
difficult than normal program checking because the debugging program, DEBUG.COM or
DEBUG.EXE, itself uses MS-DOS functions to display output. When these functions are
being checked, their use by DEBUG destroys the data being examined. And because
MS-DOS always saves its return address in the same location, any call to a function from
inside the operating system usually causes a system lockup that can be cured only by
shutting the system down and powering up again.

Section II: Programming in the MS-DOS Environment 205

Part B: Programming for MS-DOS

One way to overcome this difficulty is to purchase costly debugging tools. An easier
way is to bypass the problem: Instead of using MS-DOS functions to track program opera
tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of
COMDVR.ASM).

This macro is invoked with a three-character parameter string at each point in the pro
gram a progress report is desired. Each invocation has its own unique three-character
string so that the sequence of actions can be read from the screen. When invoked, DBG
expands into code that saves all registers and then writes the three-character string to
video RAM. Only the top 10 lines of the screen (800 characters, or l600 bytes) are used:
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer.

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points
to location BOOO:OOOOH; to use a CGA or EGA (in CGA mode), the location should be
changed to B800:0000H.

Most of the frequently used Request routines, such as Read and Write, have calls to DBG
as their first lines (for example, lines 361 and 422). As shown, these calls are commented
out, but for debugging, the source file should be edited so that all the calls and the macro
itself are enabled.

With DBG active, the top 10 lines of the display are overwritten with a continual sequence
of reports, such as RR Tx, put directly into video RAM. Because MS-DOS functions are not
used, no interference with the driver itself can occur.

Although this technique prevents normal use of the system during debugging, it greatly
simplifies the problem of knowing what is happening in time-critical areas, such as hard
ware interrupt service. In addition, all invocations of DBG in the critical areas are in con
ditional code that is executed only when the driver is working as it should.

Failure to display the pi message, for instance, indicates that the received-data hardware
interrupt is not being serviced, and absence of go after an Ix report shows that data is not
being sent out as it should.

Of course, once debugging is complete, the calls to DBG should be deleted or commented
out. Such calls are usually edited out of the source code before release. In this case, they
remain to demonstrate the technique and, most particularly, to show placement of the calls
to provide maximum information with minimal clutter on the screen.

A simple modem engine

The second part of this package is the modem engine itself (ENGINE.ASM), shown in the
listing in Figure 6-3. The main loop of this program consists of only a dozen lines of code
(lines 9 through 20). Of these, five (lines 9 through 13) are devoted to establishing initial
contact between the program and the serial-port driver and two (lines 19 and 20) are for
returning to command level at the program's end.

Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro
gram as far as the main loop is concerned. Four of these lines are calls to subroutines that

206 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

get and put data from and to the console and the serial port; the fifth is the JMP that closes
the loop. This structure underscores the fact that a basic modem engine is simply a data-
transfer loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

TITLE engine

CODE SEGMENT PUBLIC 'CODE*

ASSUME CS:CODE,DS:CODE,ES:CODE,SS;CODE

ORG OlOOh

START: mov

mov

int

mov

jc

alltim: call

call

call

call

jmp

quit: mov

int

getmdm proc

mov

mov

mov

mov

int

jc

mov

ret

getmdm endp

getkbd proc

mov

mov

int

inc

jnz

mov

int

cmp

je

mov

inc

cmp

jne

dx,offset devnm

ax,3d02h

21h

handle,ax

quit

getmdm

putcrt

getkbd

putmdm

alltim

ah,4ch

21h

cx,256

bx,handle

dx,offset mbufr

ax,3F00h

21h

quit

mdlen,ax

kblen,0

ah, 11

21h

al

nogk

ah, 7

21h

al,3

quit

kbufr,al

kblen

al,13

nogk

open named device (ASYI)

save the handle

main engine loop

come here to quit

get input from modem

get input from keyboard

first zero the count

key pressed?

no

yes, get it

was it Ctrl-C?

yes, get out

no, save it

was it Enter?

no

Figure 6-3. ENGINE. ASM. (more)

Section II: Programming in the MS-DOS Environment 207

Part B: Programming for MS-DOS

47 mov byte ptr kbufr+1

48 inc kblen

49 nogk: ret

50 getkbd endp

51

52 putmdm proc

53 mov cx,kblen

54 jcxz nopm

55 mov bx,handle

56 mov dx,offset kbufr

57 mov ax,4000h

58 int 21h

59 jc quit

60 nopm: ret

61 putmdm endp

62

63 putcrt proc

64 mov cx,mdlen

65 jcxz nope

66 mov bx, 1

67 mov dx,offset mbufr

68 mov ah,40h

69 int 21h

70 jc quit

71 nope: ret

72 putcrt endp

73

74 devnm db 'ASY1',0

75 handle dw 0

76 kblen dw 0

77 mdlen dw 0

78 mbufr db 256 dup (0)

79 kbufr db 80 dup (0)

80

81 CODE ENDS

82 END START

yes, add LF

put output to modem

put output to CRT

; miscellaneous data and buffers

Figure 6-3- Continued.

Because the details of timing and data conversion are handled by the driver code, each
of the four subroutines is—to show just how simple the whole process is—essentially a
buffered interface to the MS-DOS Read File or Device or Write File or Device routine.

For example, the getmdm procedure (lines 22 through 31) asks MS-DOS to read a max
imum of 256 bytes from the serial device and then stores the number actually read in a
word named mdlen. The driver returns immediately, without waiting for data, so the nor
mal number of bytes returned is either 0 or 1. If screen scrolling causes the loop to be
delayed, the count might be higher, but it should never exceed about a dozen characters.

When called, the putcrt procedure (lines 63 through 72) checks the value in mdlen. If
the value is zero, putcrt does nothing; otherwise, it asks MS-DOS to write that number of
bytes from mhufr (where getmdm put them) to the display, and then it returns.

208 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbufr, and posts a
count in kblen\ putmdm checks kblen and, if the count is not zero, sends the required
number of bytes from kbufr to the serial device.

Note that getkbd does not use the Read File or Device function, because that would wait
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS
functions that test keyboard status (OBH) and read a key without echo (07H). In addition,
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
kbufr immediately behind Enter and kblen is set to 2.

A Ctrl-C keystroke ends program operation; it is detected in getkbd (line 41) and causes
immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE
uses only permanently resident routines, there is no need for any uninstallation before
returning to the MS-DOS command prompt.

ENGINE.ASM is written to be used as a .COM file. Assemble and link it the same as

COMDVR.SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIG.SYS is needed.

The driver-status utility: CDVUTL.C

The driver-status utility program CDVUTL.C, presented in Figure 6-4, permits either of
the two drivers iASYl andASY2) to be reconfigured after being installed, to suit different
needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word
length, parity, and number of stop bits can be changed; each change is made indepen
dently, with no effect on any of the other characteristics. Additionally, flow control can be
switched between two types of hardware handshaking—the software XON/XOFF control
or disabled—and error reporting can be switched between character-oriented and
message-oriented operation.

1

2

3

4

5

6

7

8

9

10

11

12

/* cdvutl.c - COMDVR Utility

* Jim Kyle - 1987

* for use with COMDVR.SYS Device Driver

*/

linclude <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <dos.h>

/* i/o definitions

/* special console i/o

/* misc definitions

/* defines intdosO

/* the following define the driver status bits

*/

*/

*/

*/

*/

13 #define HWINT 0x0800 /* MCR, first word. HW Ints; gated */

14 #define o_DTR 0x0200 /* MCR, first word. output DTR */

15 #define o_RTS 0x0100 /* MCR, first word. output RTS */

1 6

17 #define m_PG 0x0010 /* LCR, first word. parity ON */

18 #define ni_PE 0x0008 /* LCR, first word. parity EVEN */

Figure 6-4. CDVUTL.C (more)

Section II: Programming in the MS-DOS Environment 209

Part B: Programming for MS-DOS

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

#define m_XS 0x0004 /* LCR, first word, 2 stop bits */

#define m-WL 0x0003 /* LCR, first word, wordlen mask */

#define i_CD 0x8000 /* MSR, 2nd word. Carrier Detect */

#define i_RI 0x4000 /* MSR, 2nd word. Ring Indicator */

#define i_DSR 0x2000 /* MSR, 2nd word. Data Set Ready */

#define i_CTS 0x1000 /* MSR, 2nd word. Clear to Send */

#define 1_SRE 0x0040 /* LSR, 2nd word. Xmtr SR Empty */

#define 1_HRE 0x0020 /* LSR, 2nd word. Xmtr HR Empty */

#define 1_BRK 0x0010 /* LSR, 2nd word. Break Received */

Idefine 1_ER1 0x0008 /* LSR, 2nd word. FrmErr */

#define 1_ER2 0x0004 /* LSR, 2nd word. ParErr */

#define 1_ER3 0x0002 /* LSR, 2nd word. OveRun */

#define 1_RRF 0x0001 /* LSR, 2nd word. Rcvr DR Full */

/* now define CLS string for ANSI.SYS

#define CLS "\033[2J"

FILE * dvp;

union REGS rvs;

int iobf [5];

main ()

{ cputs ("\nCDVUTL - COMDVR Utility Version 1.0 - 1987\n");

disp 0; /* do dispatch loop

disp 0

{ int c,

u;

u = 1;

while (1)

{ cputs ("\r\n\tCommand (? for help): ");

switch (tolower (c = getche ())) /* dispatch

{

case '1' : /* select port 1

fclose (dvp);

dvp = fopen ("ASY1", "rb+");

u = In

break;

/* select port 2case '2' :

fclose (dvp);

dvp = fopen ("ASY2", "rb+");

u = 2;

break;

case 'b' : /* set baud rate

if (iobf [4] == 300)

iobf [4] = 1200;

*/

/* dispatcher; infinite loop */

*/

*/

*/

*/

Figure 6-4. Continued. (more)

210 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

center

center

center

center

center

center

else

if (iobf [4] == 1200)

iobf [4] = 2400;

else

if { iobf [4 1 == 2400)

iobf [4] = 9600;

else

iobf [4] = 300;

iocwr 0;

break;

case 'e' :

iobf [0]

iocwr ();

break;

/* set parity even

! = (itL_PG + m_PE) ;

/* toggle flow controlcase 'f :

if { iobf [3] == 1)

iobf [3] = 2;

else

if (iobf [3] == 2)

iobf [3] = 4;

else

if { iobf [3] == 4)

iobf [3] = 0;

else

iobf [3] = 1;

iocwr ();

break;

case 'i' : /* initialize MCR/LCR to 8N1

iobf [0] = (HWINT + o_DTR + o_RTS + in_WL) ;

iocwr ();

*/

*/

break;

case '?' :

cputs (CLS);

center ("COMMAND LIST \n"

("1 = select port 1

("2 = select port 2

"B = set BAUD rate

"E = set parity to EVEN

"F = toggle FLOW control

"I = INITIALIZE ints, etc.

continue;

case '1' :

iobf [0] "= 1;

iocwr ();

break;

/* this help list

/* clear the display

);

L = toggle word LENGTH

N = set parity to NONE

0 = set parity to ODD

R = toggle error REPORTS

S = toggle STOP bits

Q = QUIT

/* toggle word length

*/

♦/

*/

*/

Figure 6-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 211

Part B: Programming for MS-DOS

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

}

case 'n' : /* set parity off

iobf [0] &=- (m_PG + m_PE);

iocwr ();

break;

iobf [0] 1= m_PG;

iobf [0] &=~ m_PE;

iocwr ();

break;

case 'r' :

iobf [2] 1;

iocwr ();

break;

/* set parity odd

♦/

*/

case 's' :

iobf [0]

iocwr 0;

break;

/* toggle error reports

/* toggle stop bits

*/

*/

'^= m_XS;

case 'q' :

fclose (dvp);

exit (0);

}

cputs (CLS);

/* break the loop, get out

/* clear the display

center { "CURRENT COMDVR STATUS");

report (u, dvp); /* report current status

/♦ centers a string on CRTcenter (s) char * s;

{ int i ;

for (i = 80 - strlen (s); i > 0; i -= 2)

putch (' ');

cputs (s);

cputs ("\r\n");

*/

»/

*/

*/

iocwr ()

{ rvs . X

rvs . X

rvs . X

rvs . X

/* lOCTL Write to COMDVR */

ax = 0x4403;

bx = fileno (dvp);

cx = 10;

dx = { int) iobf;

intdos (& rvs, & rvs);

}

char ♦ onoff (x) int x ;

{ return (x ? " ON" : " OFF");

Figure 6-4. Continued. (more)

212 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

report (unit) int unit ;

{ char temp [80];

rvs . X . ax = 0x4402;

rvs . X . bx = fileno (dvp);

rvs . X . cx = 10;

rvs . X . dx = (int) iobf;

intdos (& rvs, & rvs); /* use lOCTL Read to get data */

sprintf (temp, "\nDevice ASY%d\t%d BPS, %d-c-%c\r\n\n".

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

cputs

unit, iobf [

5 + (iobf [

(iobf [0]

(iobf [0

(iobf [0]

(temp) ;

4],

0] & m_WL) ,

& m_PG ?

] & m_PE ? 'E'

& m_XS ? '2' :

/* baud rate

/* word length

•0')

•));

: 'N'),

/* stop bits

*/

*/

*/

"Hardware Interrupts are");

onoff (iobf [0] & HWINT));

", Data Terminal Rdy");

onoff (iobf [0] & o_DTR));

", Rqst To Send");

onoff (iobf [0] & o_RTS));

".\r\n");

"Carrier Detect");

onoff (iobf [1] & i-CD));

", Data Set Rdy");

onoff (iobf [1] & i_DSR));

", Clear to Send");

onoff (iobf [1] & i_CTS));

", Ring Indicator");

onoff (iobf [1

".\r\n");

] & i_RI));

cputs 1_SRE & iobf [: 1 ;] ? "Xmtr SR Empty, " : ""

cputs 1_HRE & iobf [: 1 :1 ? "Xmtr HR Empty, " : ""

cputs 1_BRK & iobf [: 1] ? "Break Received, " : "

cputs 1_ER1 & iobf (: 1 :] ? "Framing Error, " : ""

cputs 1_ER2 & iobf I; 1 :] ? "Parity Error, " : ""

cputs 1_ER3 & iobf 1: 1] ? "Overrun Error, " : ""

cputs 1_RRF & iobf 1: 1] ? "Rcvr DR Full, " ; ""

cputs "\b\b..\r\n");

);

) ;

");

) ;

) ;

) ;

) ;

cputs ("Reception errors ");

if (iobf [2] == 1)

cputs ("are encoded as graphics in buffer") ,

else

cputs ("set failure flag");

cputs (".\r\n");

cputs ("Outgoing Flow Control ");

if (iobf [3] & 4)

Figure 6-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 213

Part B: Programming for MS-DOS

223

224

225

226

227

228

229

230

231

232

233

234

235

cputs ("by XON and XOFF");

else

if (iobf [3] & 2)

cputs ("by RTS and CTS");

else

if { iobf [3] & 1)

cputs ("by DTR and DSR");

else

cputs ("disabled");

cputs (".\r\n");

}

/♦end of cdvutl.c ♦/

Figure 6-4. Continued.

Although CDVUTL appears complicated, most of the complexity is concentrated in the
routines that map driver bit settings into on-screen display text. Each such mapping
requires several lines of source code to generate only a few words of the display report.
Table 6-10 summarizes the functions found in this program.

Table 6-10. CDVUTL Program Functions.

lines Name Description

42-45 mainO Conventional entry point.
47-150 dispC) Main dispatching loop.

152-158 centerC) Centers text on CRT.
160-166 iocwr() Writes control string to driver with lOCTL Write.
168-170 onoffO Returns pointer to ON or OFF.
172-233 reportO Reads driver status and reports it on display.

The long list of ̂ define operations at the start of the listing (lines 11 through 33) helps
make the bitmapping comprehensible by assigning a symbolic name to each significant bit
in the four UART registers.

The mainO procedure of CDVUTL displays a banner line and then calls the dispatcher
routine, disp(X to start operation. CDVUTL makes no use of either command-line parame
ters or the environment, so the usual argument declarations are omitted.

Upon entry to di^X the first action is to establish the default driver as ASYl by setting
u = l and opening ASYl (line 50); the program then enters an apparent infinite loop
(lines 51 through 149).

With each repetition, the loop first prompts for a command (line 52) and then gets the
next keystroke and uses it to control a huge switchO statement (lines 53 through 145). If
no case matches the key pressed, the switchQ statement does nothing; the program sim
ply displays a report of all current conditions at the selected driver (lines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke.

214 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

However, if the key pressed matches one of the cases in the switchQ statement, the corre-
spending command is executed. The digits 1 (line 55) and 2 (line 61) select the driver to
be affected. The ? key (line 105) causes the list of valid command keys to be displayed.
The q key (line 142) causes the program to terminate by calling exitC 0) and is the only
exit from the infinite loop. The other valid keys all change one or more bits in the lOCTL
control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-1X)S lOCTL Write function (Interrupt 21H Function 44H Sub-
function 03H) via function iocwrQ (lines 160 through 166).

After the command is executed (except for the q command, which terminates operation
of CDVUTL and returns to MS-DOS command level, and the ? command, which displays
the command list), the reportO function (lines 172 through 233) is called (at line 148) to
display all of the driver's attributes, including those just changed. This function issues an
lOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through
178) to get new status information into the control string and then uses a sequence of bit
filtering (lines 179 through 232) to translate the obtained status information into words for
display.

The special console I/O routines provided in Microsoft C libraries have been used exten
sively in this routine. Other compilers may require changes in the names of such library
routines as getch or dosint as well as in the names of Mnclude files (lines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the driver. A full-featured communica
tions program might make several changes at one time—for example, switching from
7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre
vent losing any bytes with values of IIH or 13H while performing a binary file transfer with
error-correcting protocol. In such a case, the program could make all required changes to
the control string before issuing a single lOCTL Write to put them into effect.

The Traditional Approach

Because the necessary device driver has never been a part of MS-DOS, most communica
tions programs are written to provide and install their own port driver code and remove it
before returning to MS-DOS. The second sample program package in this article illustrates
this approach. Although the major part of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou
tines, the exception handler, and faster video display. They are discussed first.

The hardware ISR module

The first module is a handler to service UART interrupts. Code for this handler, including
routines to install it at entry and remove it on exit, appears in CH1.ASM, shown in Figure
6-5.

Section II: Programming in the MS-DOS Environment 215

Part B: Programming for MS-DOS

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

TITLE CHI.ASM

CHI.ASM — support file for CTERM.C terminal emulator

set up to work with COM2

for use with Microsoft C and SMALL model only...

-TEXT segment byte public 'CODE f

-TEXT ends

-DATA segment byte pubj.ic 'DATA
-DATA ends

CONST segment byte public 'CONST'

CONST ends

-BSS segment byte public 'BSS'

-BSS ends

DGROUP GROUP CONST, -BSS, -DATA

assume cs:-TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

-TEXT segment

public —i—m,—rdmdm,—Send—Byte,—wrtmdm,—set—mdm,—u_m

bport EQU 02F8h COM2 base address, use 03F8H for C0M1

getiv EQU 350Bh COM2 vectors, use OCH for C0M1

putiv EQU 250Bh

imrmsk EQU 00001000b COM2 mask, use 000001OOb for C0M1

oiv—o DW 0 old int vector save space

oiv—s DW 0

bf-pp DW in_bf put pointer (last used)

bf-gp DW in-bf get pointer (next to use)

hf-bq DW in-bf ; start of buffer

bf-fi DW b—last ; end of buffer

in—bf DB 512 DUP (?) input buffer

b—last EQU $ address just past buffer end

bd-dv DW 041 7h baud rate divisors (0=110 bps)

DW 0300h code 1 = 150 bps

DW 0180h code 2 = 300 bps

DW OOCOh code 3 = 600 bps

DW 0060h code 4 = 1200 bps

DW 0030h code 5 = 2400 bps

DW 001 8h code 6 = 4800 bps

DW OOOCh code 7 = 9600 bps

_set_mdm proc

PUSH

MOV

PUSH

near

BP

BP,SP

ES

replaces BIOS 'init' function

establish stackframe pointer

save registers

Figure 6-5. CHI.ASM (more)

216 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

52 PUSH DS

53 MOV AX,CS ; point them to CODE segment

54 MOV DS,AX

55 MOV ES,AX

56 MOV AH,[BP+4] ; get parameter passed by C

57 MOV DX,BP0RT+3 ; point to Line Control Reg

58 MOV AL,80h ; set DLAB bit (see text)

59 OUT DX, AL

60 MOV DL,AH ; shift param to BAUD field

61 MOV CL, 4

62 ROL DL,CL

63 AND DX, 00001 11 Ob ; mask out all other bits

64 MOV DI,OFFSET bd_dv

65 ADD DI,DX ; make pointer to true divisor

66 MOV DX,BP0RT+1 ; set to high byte first

67 MOV AL,[DI+1]

68 OUT DX,AL ; put high byte into UART

69 MOV DX,BPORT ; then to low byte

70 MOV AL,[DI]

71 OUT DX, AL

72 MOV AL, AH ; now use rest of parameter

73 AND AL,00011111b ; to set Line Control Reg

74 MOV DX,BP0RT+3

75 OUT DX,AL

76 MOV DX,BP0RT+2 ; Interrupt Enable Register

77 MOV AL, 1 ; Receive type only

78 OUT DX,AL

79 POP DS ; restore saved registers

80 POP ES

81 MOV SP,BP

82 POP BP

83 RET

84 —set—mdm endp

85

86 _wrtmcim proc near ; write char to modem

87 -Send Byte: ; name used by main program

88 PUSH BP

89 MOV BP,SP ; set up pointer and save regs

90 PUSH ES

91 PUSH DS

92 MOV AX,CS

93 MOV DS,AX

94 MOV ES,AX

95 MOV DX,BP0RT+4 ; establish DTR, RTS, and 0UT2

96 MOV AL,OBh

97 OUT DX,AL

98 MOV DX,BP0RT+6 ; check for on line, CTS

99 MOV BH,30h

100 CALL w—tmr

101 JNZ w—out ; timed out

102 MOV DX,BP0RT+5 ; check for UART ready

Figure 6-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 217

Part B: Programming for MS-DOS

103 MOV BH,20h

104 CALL w_tmr

105 JNZ w_out ; timed out

106 MOV DX,BPORT ; send out to UART port
107 MOV AL,[BP+4] ; get char passed from C
108 OUT DX,AL

109 w_out: POP DS ; restore saved regs

110 POP ES

111 MOV SP,BP

112 POP BP

113 RET

114 —wrtmdm endp

115

116 _rdmdm proc near ; reads byte from buffer
117 PUSH BP

118 MOV BP,SP ; set up ptr, save regs

119 PUSH ES

120 PUSH DS

121 MOV AX,CS

122 MOV DS,AX

123 MOV ES,AX

124 MOV AX,OFFFFh ; set for EOF flag
125 MOV BX,bf_gp ; use "get" ptr
126 CMP BX,bf_pp ; compare to "put"
127 JZ nochr ; same, empty

128 INC BX ; else char available

129 CMP BX,bf_fi ; at end of bfr?

130 JNZ noend ; no

131 MOV BX,bf_bg ; yes, set to beg
132 noend: MOV AL,[BX] ; get the char
133 MOV bf_gp,BX ; update "get" ptr
134 INC AH ; zero AH as flag
135 nochr; POP DS ; restore regs

136 POP ES

137 MOV SP,BP

138 POP BP

139 RET

140 —rdmdm endp

141

142 w_tmr proc near

143 MOV BL, 1 ; wait timer, double loop
144 w_tm1 : SUB CX,CX ; set up inner loop
145 w_tm2: IN AL,DX ; check for requested response
146 MOV AH,AL ; save what came in

147 AND AL,BH ; mask with desired bits

148 CMP AL,BH ; then compare
149 JZ w_tm3 ; got it, return with ZF set
150 LOOP w_tm2 ; else keep trying
151 DEC BL ; until double loop expires
152 JNZ w_tm1

153 OR BH,BH ; timed out, return NZ

Figure 6-5. Continued. (more)

218 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

154 w_tm3: RET

155 w_tmr endp

156

157 ; hardware interrupt service routine

158 rts_m: CLI

159 PUSH DS ; save all regs

160 PUSH AX

161 PUSH BX

162 PUSH CX

163 PUSH DX

164 PUSH CS ; set DS same as CS

165 POP DS

166 MOV DX,BPORT ; grab the char from UART

167 IN AL,DX

168 MOV BX,bf_pp ; use "put" ptr

169 INC BX ; step to next slot

170 CMP BX,bf_fi ; past end yet?

171 JNZ nofix ; no

172 MOV BX,bf_bg ; yes, set to begin

173 nofix: MOV [BX],AL ; put char in buffer

174 MOV bf_pp,BX ; update "put" ptr

175 MOV AL,20h ; send EOI to 8259 chip

176 OUT 20h,AL

177 POP DX ; restore regs

178 POP CX

179 POP BX

180 POP AX

181 POP DS

182 I RET

183

184 _i_m proc near ; install modem service

185 PUSH BP

186 MOV BP, SP ; save all regs used

187 PUSH ES

188 PUSH DS

189 MOV AX,CS ; set DS,ES=CS

190 MOV DS,AX

191 MOV ES,AX

192 MOV DX,BP0RT+1 ; Interrupt Enable Reg

193 MOV AL,OFh ; enable all ints now

194 OUT DX,AL

195

196 imi : MOV DX,BP0RT+2 ; clear junk from UART

197 IN AL,DX ; read IID reg of UART

198 MOV AH,AL ; save what came in

199 TEST AL, 1 ; anything pending?

200 JNZ im5 •; no, all clear now

201 CMP AH,0 ; yes. Modem Status?

202 JNZ im2 ; no

203 MOV DX,BP0RT+6 ; yes, read MSR to clear

204 IN AL,DX

Figure 6-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 219

Part B: Programming for MS-DOS

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

im2:

im3:

im4:

im5:

CMP

JNZ

CMP

JNZ

MOV

IN

CMP

JNZ

MOV

IN

JMP

MOV

MOV

OUT

MOV

MOV

OUT

MOV

INT

MOV

MOV

MOV

MOV

INT

IN

AND

OUT

MOV

OUT

POP

POP

MOV

POP

RET

endp

proc

PUSH

MOV

IN

OR

OUT

PUSH

PUSH

MOV

MOV

MOV

MOV

MOV

OUT

AH, 2

im3

AH, 4

im4

DX,BPORT

AL,DX

AH, 6

imi

DX,BP0RT+5

AL,DX

imi

DX,BP0RT+4

AL,OBh

DX, AL

AL, 1

DX,BP0RT+1

DX,AL

AX,GETIV

21h

oiv_o,BX

oiv_s,ES

DX,OFFSET rts_m

AX,PUTIV

21h

AL,21h

AL,NOT IMRMSK

21h,AL

AL,20h

20h,AL

DS

ES

SP,BP

BP

near

BP

BP,SP

AL,21h

AL, IMRMSK

21h,AL

ES

DS

AX,CS

DS,AX

ES,AX

AL, 0

DX,BP0RT+1

DX,AL

Transmit HR empty?

no (no action needed)

Received Data Ready?

no

yes, read it to clear

Line Status?

no, check for more

yes, read LSR to clear

then check for more

set up working conditions

DTR, RTS, 0UT2 bits

enable RCV interrupt only

get old int vector

save for restoring later

set in new one

now enable 8259 PIC

then send out an EOI

restore regs

uninstall modem service

save registers

disable COM int in 8259

set same as CS

disable UART ints

Figure 6-5. Continued. (more)

220 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

256 MOV DX,oiv_o

257 MOV OS,oiv_s

258 MOV AX,PUTIV

259 INT 21h

260 POP OS

261 POP ES

262 MOV SP,BP

263 POP BP

264 RET

265 _u_m endp

266

267 _TEXT ends

268

269 END

restore original vector

restore registers

Figure 6-5. Continued.

The routines in CHI are set up to work only with port COM2; to use them with COMl, the
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to
match the COMl values. Also, as presented, this code is for use with the Microsoft C small
memory model only; for use with other memory models, the C compiler manuals should
be consulted for making the necessary changes. See also PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an Application Program.

The parts of CHI are listed in Table 6-11, as they occur in the listing. The leading under
score that is part of the name for each of the six functions is supplied by the C compiler;
within the C program that calls the function, the underscore is omitted.

Table 6-11. CHI Module Functions.

lines Name Description

1-26

27-46

48-84 ^et_mdm

86-114 _ivrtmdm

87 _Send_Byte
116-140 _rdmdm

142-155 UL.tmr

157-182 rts^m

184-240 —i—m

242-265 —U_m

Administrative details.

Data areas.

Initializes UART as specified by parameter passed
from C.

Outputs character to UART.
Entry point for use if flow control is added to system.
Gets character from buffer where ISR put it, or signals
that no character available.

Wait timer; internal routine used to prevent infinite
wait in case of problems.

Hardware ISR; installed by and removed by

Installs ISR, saving old interrupt vector.
Uninstalls ISR, restoring saved interrupt vector.

Section II: Programming in the MS-DOS Environment 221

Part B: Programming for MS-DOS

For simplest operation, the ISR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.
Each time a byte is received by the UART, the ISR puts it into the buffer. Vcs&_rdmdm
code, when called by the C program, gets a byte from the buffer if one is available. If not,
_rdmdm returns the C EOF code (-1) to indicate that no byte can be obtained.

To send a byte, the C program can call QiXhex _^Send^Byte ot^wrtrndm-, in the package
as shown, these are alternative names for the same routine. In the more complex program
from which this package was adapted, ̂Send^Byte is called when flow control is desired
and the flow-control routine cdlls ̂ wrtmdm. To implement flow control, line 87 should be
deleted from CH1.ASM and a control function named Send_ByteO should be added to the
main C program. Flow-control tests must occur in Send^ByteO\ ̂wrtmdm performs the
actual port interfacing.

To set the modem baud rate, word length, and parity, ̂ set^mdm is called from the C
program, with a setup parameter passed as an argument. The format of this parameter is
shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function OOH
(Initialization).

Table 6-12. set^mdmQ Parameter Coding.

Binary Meaning

OOOxxxxx Set to 110 bps
OOlxxxxx Set to 150 bps
OlOxxxxx Set to 300 bps
01 Ixxxxx Set to 600 bps
lOOxxxxx Set to 1200 bps
lOlxxxxx Set to 2400 bps
I lOxxxxx Set to 4800 bps
II Ixxxxx Set to 9600 bps
xxxxOxxx No parity
xxxOlxxx ODD Parity
xxxl Ixxx EVEN Parity

xxxxxOxx 1 stop bit
xxxxxlxx 2 stop bits (1.5 if WL= 5)
xxxxxxOO Word length = 5
xxxxxxOl Word length = 6
xxxxxxlO Word length = 7
xxxxxxl 1 Word length = 8

The CHI code provides a 512-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps without loss of data during scrolling.

222 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

The exception-handler module

For the ISR handler of CHI to be usable, an exception handler is needed to prevent return
of control to MS-DOS before restores the ISR vector to its original value. If a pro
gram using this code returns to MS-DOS without calling the system is virtually cer
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer
in memory.

A replacement exception handler (CH1A.ASM), including routines for installation, access,
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with
Microsoft C (again, the small memory model only).

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customizing
MS-DOS: Exception Handlers.

TITLE CH1A.ASM

3 CHIA.ASM — support file for CTERM.C terminal emulator

4 this set of routines replaces Ctrl-C/Ctrl-BREAK

5 usage: void set—int(), rst—int();

6 int broke 0; /* boolean if BREAK */

7

o

for use with Microsoft C and SMALL model only...

0

9 -TEXT segment byte public 'CODE'

10 -TEXT ends

11 -DATA segment byte public 'DATA'

12 -DATA ends

13 CONST segment byte public 'CONST'

14 CONST ends

15 -BSS segment byte public 'BSS'

16 -BSS ends

17

18 DGROUP GROUP CONST, -BSS, -DATA

19 ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

20

21 -DATA SEGMENT BYTE PUBLIC 'DATA'

22

23 0LDINT1B DD 0 ; storage for original INT

24

25 -DATA ENDS

26

27 -TEXT SEGMENT

28

29 PUBLIC —set—int,—rst—int,—broke

30

31 myintib

32 mov word ptr csibrkflg,1Bh ; make it]

33 iret

Figure 6-6. CHIA.ASM. (more)

Section II: Programming in the MS-DOS Environment 223

Part B: Programming for MS-DOS

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

word ptr cs:brkfIg,23h ; make it nonzero

myint23:

mov

iret

brkflg dw

—broke proc

xor

xchg

ret

—broke endp

_set—int proc near

mov ax,351bh ; get interrupt vector for 1BH

int 21h ; (don't need to save for 23H)

mov word ptr oldint1b,bx ; save offset in first word

mov word ptr oldintib+2,es ; save segment in second word

near

ax, ax

ax,cs:brkflg

flag that BREAK occurred

returns 0 if no break

prepare to reset flag

return current flag value

push

mov

mov

lea

mov

int

mov

mov

lea

mov

int

pop

ret

-set—int endp

ds

ax, cs

ds, ax

dx,myint1b

ax,251bh

21h

ax, cs

ds, ax

dx,myint23

ax,2523h

21h

ds

—rst—int proc near

push

Ids

mov

int

pop

ret

_rst—int endp

-TEXT ends

END

ds

dx,oldintib

ax,251bh

21h

ds

; save our data segment

; set DS to CS for now

; DS:DX points to new routine

; set interrupt vector

; set DS to CS for now

; DS:DX points to new routine

; set interrupt vector

; restore data segment

save our data segment

DS:DX points to original

set interrupt vector

restore data segment

Figure 6-6. Continued.

The three functions in CHIA are _set_int, which saves the old vector value for Interrupt
IBH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt
23H (Control-C Handler Address) to internal ISR code; ̂rst^int, which restores the

224 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

original value for the Interrupt IBH vector; and which returns the present value of
an internal flag (and always clears the flag, just in case it had been set). The internal flag is
set to a nonzero value in response to either of the revectored interrupts and is tested from
the main C program via the _broke function.

The ̂deo display module

The final assembly-language module (CH2.ASM) used by the second package is shown
in Figure 6-7. This module provides convenient screen clearing and cursor positioning via
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou
tines that call its functions. In the original, more complex program (DT115.EXE, available
from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod
ule provided windowing capability in addition to improved display speed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

TITLE CH2.ASM

; CH2.ASM — support file for CTERM.C terminal emulator

; for use with Microsoft C and SMALL model only...

—TEXT segment byte public 'CODE'

-TEXT ends

—DATA segment byte public 'DATA'

—DATA ends

CONST segment byte public 'CONST'

CONST ends

—BSS segment byte public 'BSS'

—BSS ends

DGROUP GROUP CONST, -BSS, -DATA

assume CS:-TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

-TEXT

atrib

—coir

V—bas

V—ulc

V—Ire

V—col

key

segment

public

DB

DB

DW

DW

DW

DW

proc

PUSH

MOV

INT

MOV

JZ

MOV

cls, color,—deol, -key, ^wrchr, wrpos

0

0

0

0

1 84Fh

0

near

BP

AH, 1

16h

AX,OFFFFh

keyOO

AH, 0

; attribute

; color

; video segment

; upper left corner cursor

; lower right corner cursor

; current col/row

; get keystroke

; check status via BIOS

; none ready, return EOF

; have one, read via BIOS

Figure 6-7. CH2.ASM. (more)

Section II: Programming in the MS-DOS Environment 225

Part B: Programming for MS-DOS

36 INT 16h

37 keyOO: POP BP

38 RET

39 key endp

40

41 ^wrchr proc near

42 PUSH BP

43 MOV BP,SP

44 MOV AL,[BP+4] ; get char passed by C

45 CMP AL, • •

46 JNB prchr ; printing char, go do it

47 CMP AL,8

48 JNZ notbs

49 DEC BYTE PTR v_col ; process backspace

50 MOV AL,byte ptr v_col

51 CMP AL,byte ptr v_ulc

52 JB nxt_c ; step to next column

53 JMP norml

54

55 notbs: CMP AL, 9

56 JNZ notht

57 MOV AL,byte ptr v_col ; process HTAB

58 ADD

00

<
59 AND AL,0F8h

60 MOV byte ptr v_col,AL

61 CMP AL,byte ptr v_lrc

62 JA nxt_c

63 JMP SHORT norml

64

65 notht: CMP AL,OAh

66 JNZ notlf

67 MOV AL,byte ptr v_col+1 ; process linefeed

68 INC AL

69 CMP AL,byte ptr v_lrc+1

70 JBE nohtl

71 CALL scrol

72 MOV AL,byte ptr v_lrc+1

73 nohtl: MOV byte ptr v_col+1,AL

74 JMP SHORT norml

75

76 notlf: CMP AL,OCh

77 JNZ ck_cr

78 CALL els ; process formfeed

79 JMP SHORT ignor

80

81 ck_cr: CMP AL,ODh

82 JNZ ignor ; ignore all other CTL char

83 MOV AL,byte ptr v_ulc ; process CR

84 MOV byte ptr v_col,AL

85 JMP SHORT norml

86

Figure 6-7. Continued. (more)

226 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

prchr:

nxt_c:

norml:

ignor:

MOV

PUSH

XOR

MOV

PUSH

MOV

PUSH

CALL

MOV

INC

MOV

CMP

JLE

MOV

PUSH

CALL

POP

MOV

PUSH

CALL

POP

CALL

MOV

POP

RET

-wrchr endp

_i_v proc

PUSH

MOV

MOV

MOV

MOV

POP

RET

_i_v endp

_wrpos proc

PUSH

MOV

MOV

MOV

MOV

MOV

MOV

PUSH

INT

POP

MOV

MOV

POP

AH,_colr ; process printing char

AX

AH, AH

AL,byte ptr v_col+1

AX

AL,byte ptr v_col

AX

wrtvr

SP,BP

BYTE PTR v_col ; advance to next column

AL,byte ptr v_col

AL,byte ptr v_lrc

norml

AL,ODh ; went off end, do CR/LF

AX

wrchr

AX

AL, OAh

AX

^wrchr

AX

set_cur

SP,BP

BP

near

BP

BP,SP

AX,OBOOOh

v_bas,AX

SP,BP

BP

near

BP

BP,SP

DH,[BP+4]

DL,[BP+6]

v_col,DX

BH,atrib

AH, 2

BP

lOh

BP

AX,v_col

SP,BP

BP

establish video base segment

mono, B800 for CGA

could be made automatic

set cursor position

row from C program

col from C program

cursor position

attribute

return cursor position

Figure 6-7. Continued. (more)

Section II: Programming in the MS-DOS Environment 227

Part B; Programming for MS-DOS

138 RET

139 wrpos endp

140

141 set_cur proc near ; set cursor to v_col

142 PUSH BP

143 MOV BP,SP

144 MOV DX,v_col ; use where v_col says

145 MOV BH,atrib

146 MOV AH, 2

147 PUSH BP

1 48 INT lOh

149 POP BP

150 MOV AX,v_col

151 MOV SP,BP

152 POP BP

153 RET

154 set_cur endp

155

156 color proc near ; —Color(fg, bg)

157 PUSH BP

158 MOV BP, SP

159 MOV AH, [BP+6] ; background from C

160 MOV AL,[BP+4] ; foreground from C

161 MOV CX, 4

162 SHL AH,CL

163 AND AL,OFh

164 OR AL, AH ; pack up into 1 byte

165 MOV _colr,AL ; store for handler's use

166 XOR AH, AH

167 MOV SP,BP

168 POP BP

169 RET

170 color endp

171

172 scrol proc near ; scroll CRT up by one line

173 PUSH BP

174 MOV BP, SP

175 MOV AL, 1 ; count of lines to scroll

176 MOV CX,v_ulc

177 MOV DX,v_lrc

178 MOV BH,_colr

1 79 MOV AH, 6

180 PUSH BP

181 INT lOh ; use BIOS

1 82 POP BP

183 MOV SP,BP

184 POP BP

185 RET

186 scrol endp

187

188 els proc near ; clear CRT

Figure 6-7. Continued. (more)

228 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

189 PUSH BP

190 MOV BP,SP

191 MOV

o

<

; flags CLS to BIOS

192 MOV CX,v_ulc

193 MOV v_col,CX ; set to HOME

194 MOV DX,v_lrc

195 MOV BH,_colr

196 MOV AH, 6

1 97 PUSH BP

198 INT lOh ; use BIOS scroll up

199 POP BP

200 CALL set_cur ; cursor to HOME

201 MOV SP,BP

202 POP BP

203 RET

204 els endp

205

206 deol proc near ; delete to end of line

207 PUSH BP

208 MOV BP,SP

209 MOV AL, • •

210 MOV AH,_colr ; set up blanks

211 PUSH AX

212 MOV AL,byte ptr

+
1—1

o
o

213 XOR AH, AH ; set up row value

214 PUSH AX

215 MOV AL,byte ptr

o
u

1

>

216

217 deoll: CMP AL,byte ptr

u
u

r-i
1

>

218 JA deol2 ; at RH edge

219 PUSH AX ; current location

220 CALL wrtvr ; write a blank

221 POP AX

222 INC AL ; next column

223 JMP deoll ; do it again

224

225 deol2: MOV AX,v_col ; return cursor position

226 MOV SP,BP

227 POP BP

228 RET

229 deol endp

230

231 wrtvr proc near ; write video RAM (col, row.

232 PUSH BP

233 MOV BP,SP ; set up arg ptr

234 MOV DL,[BP+4] ; column

235 MOV DH,[BP+6] ; row

236 MOV BX,[BP+8] ; char/atr

237 MOV AL, 80 ; calc offset

238 MUL DH

239 XOR DH,DH

Figure 6-7. Continued. (more)

Section II: Programming in the MS-DOS Environment 229

Part B: Programming for MS-DOS

240 ADD AX,DX

241 ADD AX, AX ; adjust bytes to words

242 PUSH ES ; save seg reg

243 MOV DI,AX

244 MOV AX,v—bas ; set up segment

245 MOV ES,AX

246 MOV AX,BX ; get the data

247 STOSW ; put on screen

248 POP ES ; restore regs

249 MOV • SP,BP

250 POP BP

251 RET

252 wrtvr endp

253

254 -TEXT ends

255

256 END

Figure 6-7. Continued.

The sample smarter terminal emulator: CTERM.C

Given the interrupt handler (CHI), exception handler (CHIA), and video handler (CH2), a
simple terminal emulation program (CTERM.C) can be presented. The major functions of
the program are written in Microsoft C; the listing is shown in Figure 6-8.

1

2

3

4

5

6

7

8

9

10

11

12

13

1 4

15

16

17

18

19

20

21

22

23

24

/* Terminal Emulator (cterm.c)

* Jim Kyle, 1987

*

*/

Uses files CHI, CHIA, and CH2 for MASM support...

/* special console i/o

/* misc definitions

/* defines intdosO

/* control characters

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <dos.h>

finclude <string.h>

#define BRK 'C'-'@*

#define ESC ' ['-'0*

#define XON 'Q'-'0»

#define XOFF

#define True 1

#define False 0

#define Is_Function_Key(C) ((C) == ESC)

static char capbfr [4096]; /* capture buffer

static int wh,

ws;

*/

*/

*/

*/

*/

Figure 6-8. CTERM.C. (more)

230 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

static int I,

waitchr = 0,

vflag = False,

capbp,

capbc,

Ch,

Want_7_Bit = True,

ESC_Seq_State = 0;

int _cx ,

-cy,

_atr = 0x07,

_pag = 0,

oldtop = 0,

oldbot = 0x184f;

FILE * in_file = NULL;

FILE * cap_file = NULL;

#include "cterm.h"

int Wants_To—Abort ()

{ return broke ();

}

void

/* escape sequence state variable

/* white on black

/* start with keyboard input

/* external declarations, etc.

/* checks for interrupt of script

'r /* main routinemain (argc, argv) int argc

char * argv [];

{ char * cp,

* addext ();

if { argc > 1) /* check for script filename

in_file = fopen (addext (argv [1], ".SCR"), "r");

if { argc > 2) /* check for capture filename

cap_file = fopen (addext (argv [2], ".CAP"), "w").;

set_int 0; /* install CHI module

Set_Vid 0; /* get video setup

els 0; /* clear the screen

cputs ("Terminal Emulator"); /* tell who's working

cputs ("\r\n< ESC for local commands >\r\n\n");

Want_7_Bit = True;

ESC_Seq_State = 0;

Init—Comm (); /* set up drivers, etc.

while (1) /* main loop

{ if ({ Ch = kb_file {)) > 0) /* check local

{ if (Is_Function_Key (Ch))

(if (docmd () < 0) /* command

break;

}

else

Send—Byte (Ch & 0x7F); /* else send it

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

Section 11: Programming in the MS-DOS Environment 231

Part B: Programming for MS-DOS

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Figure 6-8. Continued.

)

if ({ Ch = Read—Modem ()) >= 0) /* check remote

{ if (Want_7_Bit)

Ch &= 0x7F;

switch (ESC_Seq_State)

{

case 0 :

switch (Ch)

{

case ESC :

ESC_Seq_State = 1;

break;

/* trim off high

/* Esc char rece

 bit

/* state machine

/* no Esc sequence

ived

default :

if (Ch == waitchr) /* wait if required

waitchr = 0;

if (Ch == 12)

els 0;

else

if (Ch != 127)

/* clear screen on FF

*/

*/

*/

*/

*/

*/

*/

// ignore rubouts

{ putchx ((char) Ch); /* handle all others */

put—cap ((char) Ch) ;

}

breaks-

case 1 : /* ESC — process any escape sequences here

switch (Ch)

ESC_Seq_State = 0;

breaks-

case 'B' :

ESC_Seq_State = 0;

break;

ESC_Seq_State = 0;

break;

ESC_Seq_State = 0;

break;

/* VT52 up

/* nothing but stubs here

/* VT52 down

/* VT52 left

/* VT52 right

els 0;

/* VT52 Erase CRT

/* actually do this one

*/

*/

*/

*/

*/

*/

*/

*/

(more)

232 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

/* VT52 home cursor

/* VT52 Erase to EOS

ESC_Seq_State = 0;

break;

case 'H' :

locate (0, 0);

ESC_Seq_State =0;

breaks-

case ' j' :

decs ();

ESC_Seq_State = 0;

breaks-

case : /* ANSI.SYS - VT100 sequence

ESC_Seq_State = 2;

break;

default :

putchx (ESC); /* pass thru all others

putchx ((char) Ch);

ESC_Seq_State = 0;

}

break;

case 2 :

ESC_Seq_State = 0;

/* ANSI 3.64 decoder

/* not implemented

if (broke ()) /* check CHIA handlers

{ cputs ("\r\n**#BREAK***\r\n");

break;

if (cap_file)

cap_flush 0;

Term_Comm ();

rst_int 0 ;

exit (0);

*/

*/

*/

*/

}

docmd ()

{ FILE * getfil 0;

int wp;

wp = True;

if (! in_file I I vflag)

cputs ("\r\n\tCommand: "

else

wp = False;

Ch = toupper (kbd_wait ());

if (wp)

putchx ((char) Ch) ;

) ;

/* end of main loop

/* save any capture

/* restore when done

/* restore break handlers

/* be nice to MS-DOS

/* local command shell

/* ask for command

/* get response

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 233

Part B: Programming for MS-DOS

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

switch (Ch)

{

case '3' :

if (wp)

cputs ("low speed\r\n");

Set_Baud (300);

break;

case 'D' :

if (wp)

cputs ("elay (1-9 sec): ");

Ch = kbd_wait ();

if (wp)

putchx ((char) Ch) ;

Delay (1000 * (Ch - '0 *));

if (wp)

putchx ('\n');

break;

case 'E' :

if (wp)

cputs ("ven Parity\r\n");

Set-Parity (2);

break;

case 'F' :

if (wp)

cputs ("ast speed\r\n");

Set-Baud (1200);

break;

/* and act on it */

210 if (wp)

211 { cputs "\r\n\tVALID COMMANDS:\r\n");

212 cputs "\tD = delay 0-9 seconds.\r\n");

213 cputs "\tE = even parity.\r\n");

214 cputs "\tF = (fast) 1200-baud.\r\n");

215 cputs "\tN = no parity.\r\n");

216 cputs "\tO = odd parity.\r\n");

217 cputs "\tQ = quit, return to DOS.\r\n");

218 cputs "\tR = reset modem.\r\n");

219 cputs "\tS = (slow) 300-baud.\r\n");

220 cputs "\tU = use script file.\r\n");

221 cputs "\tv = verify file input.\r\n");

222 cputs "\tw = wait for char.");

223 }

224 break;

225

226 case 'N' :

227 if (wp)

Figure 6-8. Continued. (more)

234 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

cputs ("o Parity\r\n");

Set—Parity (1);

break;

case '0' :

if (wp)

cputs ("dd Parity\r\n");

Set-Parity (3);

breaks-

case 'R' :

if (wp)

cputs ("ESET Conun Port\r\n") ;

Init—Comm ();

breaks-

case 'Q' :

if (wp)

cputs (" = QUIT Command\r\n");

Ch = (- 1);

breaks-

case 'U' :

if (in—file && ! vflag)

putchx { 'U');

cputs ("se file: ");

getfil 0;

cputs ("File ");

cputs (in-file ? "Open\r\n" : "Bad\r\n");

waitchr = 0;

break;

case 'V :

if (wp)

{ cputs ("erify flag toggled ");

cputs (vflag ? "OFF\r\n" : "ON\r\n");

}

vflag = vflag ? False : True;

break;

case 'W* :

if (wp)

cputs ("ait for: <");

waitchr = kbd—wait ();

if (waitchr == ' ')

waitchr = 0;

if (wp)

{ if (waitchr)

putchx ((char) waitchr);

else

cputs ("no wait");

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 235

Part B: Programming for MS-DOS

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

cputs (">\r\n");

}

break;

default ;

if (wp)

{ cputs ("Don't know ");

putchx ((char) Ch);

cputs ("\r\nUse 'H' command for Help.\r\n");

}

Ch

/* if window open...if (wp)

{ cputs ("\r\n[any key]\r");

while (Read—Keyboard () == EOF) /* wait for response

}

return Ch ;

}

kbd—wait ()

{ int c ;

while {(c = kb_file ()) == (- 1))

return c & 255;

/* wait for input

/* input from kb or file

/* USING SCRIPT

/* use first as flag

/* then for char

kb_file 0

{ int c ;

if (in_file)

{ c = WantS—To—Abort ();

if (waitchr && ! c)

c = (- 1);

else

if (c ! 1 (c = getc (in—file)) == EOF I I c == 26

{ fclose (in—file);

cputs ("\r\nScript File Closed\r\n");

in-file = NULL;

waitchr = 0;

c = (- 1);

}

else

if (c == '\n')

c = (- 1) ;

if (c == 'W)

c = esc ();

if { vflag && c != (- 1))

{ putchx ('{');

putchx ((char) c);

putchx ('}*);

/* ignore LFs in file

/* process Esc sequence

/* verify file char

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

236 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

}

else

c = Read—Keyboard ();

return (c);

esc ()

{ int c ;

c = getc (in_file) ;

switch (toupper (c))

{

case 'E' :

c = ESC;

break;

case 'N' :

c = 'Xn';

break;

case 'R' :

c = '\r';

breaks-

case 'T' :

c = '\t * ;

breaks-

case :

c = getc (in_file) & 31;

break;

}

return (c);

/* USING CONSOLE

/* if not using file

/* script translator

/* control chars in file

*/

*/

*/

*/

}

FILE * getfil 0

{ char fnm [20];

getnam { fnm, 15) ;

if (! (strchr (fnm, '.')))

strcat (fnm, ".SCR");

return (in_file = fopen (fnm, "r"));

}

/* get the name */

void getnam (b, s) char * b;

int s ;

{ while (s — > 0)

{ if ((* b = (char) kbd_wait ()) != '\r')

putchx (* b ++);

else

break ;

}

putchx ('\n');

/* take input to buffer */

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 237

Part B: Programming for MS-DOS

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

* b = 0;

char * addext { b,

e) char * b,

* e;

{ static char bfr [20];

if (strchr (b, '.'))

return (b);

strcpy (bfr, b);

strcat (bfr, e);

return (bfr);

void put_cap (c) char c ;

{ if (cap_file && c != 13)

fputc (c, cap_file);

void cap—flush ()

{ if (cap—file)

{ fclose { cap—file);

cap-file = NULL;

/* add default EXTension */

/* strip out CRs

/* use MS-DOS buffering

/* end Capture mode

cputs ("\r\nCapture file closed\r\n");

/* TIMER SUPPORT STUFF (IBMPC/MSDOS) */

static long timr; /* timeout register

static union REGS rgv ;

long getmr ()

{ long now ;

rgv.X.ax = 0x2c00;

intdos (& rgv, & rgv);

now = rgv.h.ch;

now *= 60L;

now += rgv.h.cl;

now *= 60L;

now += rgv.h.dh;

now *= 100L;

now += rgv.h.dl;

return (1OL * now);

}

void Delay (n) int n ;

{ long wakeup ;

wakeup = getmr () + (long) n;

while { getmr () < wakeup)

/* msec since midnite

/* hours

/* to minutes

/* plus min

/* to seconds

/* plus sec

/* to 1/100

/* plus 1/100

/* msec value

/* sleep for n msec

/* wakeup time

/* now sleep

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

238 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

void Start—Timer (n) int n ; /* set timeout for n sec

{ timr = getmr () + (long) n * 1000L;

Timer—Expired () /* if timeout return 1 else return 0

{ return (getmr () > timr);

}

Set—Vid ()

{ -i_v 0;

return 0;

}

/* initialize video

void locate (row, col) int row ,

col;

{ —cy = row % 25;

-cx = col % 80;

—wrpos (row, col); /* use ML from CH2.ASM

}

void deol ()

{ —deol ();

void deos ()

{ deol 0;

if (-cy < 24)

{ rgv.x.ax = 0x0600;

rgv.x.bx = (—atr << 8);

rgv.x.cx = (—cy + 1) « 8;

rgv.x.dx = 0x184F;

int86 (0x10, & rgv, & rgv);

locate (_cy, —cx);

}

void els 0

{ -els 0;

}

void cursor (yn) int yn ;

{ rgv.x.cx = yn ? 0x0607 : 0x2607;

rgv.x.ax = 0x0100;

int86 (0x10, & rgv, & rgv);

}

void revvid (yn) int yn ;

{ if (yn)

—atr = —color (8, 7);

/* use ML from CH2.ASM

/* if not last, clear

/* use ML

/* ON/OFF

/* black on white

*/

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

Section JL Programming in the MS-DOS Environment 239

Part B: Programming for MS-DOS

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

else

_atr = -color (15, 0);

putchx (c) char c ;

{ if (c == '\n')

putch ('\r*);

putch (c);

return c ;

}

Read—Keyboard ()

(int c ;

if { kbhit 0)

return (getch ());

return (EOF);

}

/* MODEM SUPPORT

static char mparm,

wrk [80];

void Init—Comm ()

{ static int ft = 0;

if (ft ++ == 0)

i-m ();

Set-Parity (1) ;

Set-Baud (1200);

}

#define B1200 0x80

#define B300 0x40

/* white on black

/* put char to CRT

Set—Baud (n) int n ;

{ if (n == 300)

mparm = (mparm & 0x1F) + B300;

else

if (n == 1200)

mparm = (mparm & 0x1F) + B1200;

else

return 0; /* invalid speed

sprintf (wrk, "Baud rate = %d\r\n", n);

cputs (wrk);

set^mdm (mparm);

return n ;

/* n is baud rat

#define PAREVN 0x18

#define PARODD 0x10

#define PAROFF 0x00

/* MCR bits for commands

*/

*/

/* get keyboard character

returns -1 if none present

/* no char at all

*/

/* initialize comm port stuff

/* firstime flag

/* 8,N,1

/* 1200 baud

/* baudrate codes

e

*/

*/

*/

*/

*/

*/

*/

*/

Figure 6-8. Continued. (more)

240 The MS-DOS Encyclcpedia

Article 6: Interrupt-Driven Communications

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

#define ST0P2 0x40

#define W0RD8 0x03

#define W0RD7 0x02

#define W0RD6 0x01

Set—Parity (n) int n ;

{ static int mmode;

if (n == 1)

nunode = (W0RD8 i PAROFF) ;

else

if (n == 2)

mmode = (WORD7 1 PAREVN);

else

if (n == 3)

mmode = (WORD7 ! PARODD);

else

return 0;

mparm = (mparm & OxEO) + mmode;

sprintf (wrk, "Parity is %s\r\n", (n == 1 ? "OFF"

(n == 2 ? "EVEN"

cputs (wrk);

set_mdm (mparm);

return n ;

}

/* n is parity code

/* off

/* on and even

/* on and odd

/* invalid code

*/

*/

*/

*/

*/

"ODD")));

Write—Modem (c) char c ;

{ wrtmdm (c);

return (1);

}

Read—Modem ()

{ return (rdmdm ());

}

void Term—Comm ()

{ u-m () ;

/* return 1 if ok, else 0 */

/* never any error */

/* from int bfr */

/* uninstall comm port drivers */

/* end of cterm.c */

Figure 6-8. Continued.

CTERM features file-capture capabilities, a simple yet effective script language, and a
number of stub (that is, incompletely implemented) actions, such as emulation of the VT52
and vnOO series terminals, indicating various directions in which it can be developed.

The names of a script file and a capture file can be passed to CTERM in the command line.
If no filename extensions are included, the default for the script file is .SCR and that for the
capture file is .CAP. If extensions are given, they override the default values. The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section II: Programming in the MS-DOS Environment 241

Part B: Programming for MS-DOS

The functions included in CTERM.C are listed and summarized in Table 6-13.

Table 6-13. CTERM.C Functions.

Lines Name Description

1-5

7-11

12-20

22-43

45

47-49

52-165

WantsJTo^AbortO

mainO

167-297 docmdC)

299-304 kbd_wait()

306-334 kb_/ileO

336-362 escO

364-370 getfiK)
372-382 getnamO

384-393 addextO

395-398 put_capC)
400-406 cap_flushO

408-411

413-425 getmr()
427-432 DelayC)
434-436 Start_Timer()

438-440 Timer_ExptredO
442-445 Set_VidO
447-452 locateC)

454-456 deoK)
458-468 deosO
470-472 clsO

474-478 cursorO

480-485 rewidO
487-492 putchxC)

Program documentation.
Include files.

Definitions.

Global data areas.

External prototype declaration.
Checks for Ctrl-Break or Ctrl-C being pressed.
Main program loop; includes modem engine and
sequential state machine to decode remote
commands.

Gets, interprets, and performs local (console or
script) command.

Waits for input from console or script file.
Gets keystroke from console or script; returns EOF
if no character available.

Translates script escape sequence.
Gets name of script file and opens the file.
Gets string from console or script into designated
buffer.

Checks buffer for extension; adds one if none
given.

Writes character to capture file if capture in effect.
Closes capture file and terminates capture mode if
capture in effect.

Timer data locations.

Returns time since midnight, in milliseconds.
Sleeps n milliseconds.
Sets timer for n seconds.

Checks timer versus clock.

Initializes video data.

Positions cursor on display.
Deletes to end of line.

Deletes to end of screen.

Clears screen.

Turns cursor on or off.

Toggles inverse/normal video display attributes.
Writes char to display using putchO (Microsoft C
library).

(more)

242 The MS-DOS Encyclopedia

Article 6; Interrupt-Driven Communications

Table 6-13. Continued.

Lines Name Description

494-500

502-504

506-512

514-515

517-529

531-537

539-557

559-562

564-566

568-570

Read^eyboardO

Init^CommO

Set^BaudO

Set^ParityO
Write^ModemO

Read^ModemO

Term_Comm()

Gets keystroke from keyboard.
Modem data areas.

Installs ISR and so forth and initializes modem.

Baud-rate definitions.

Changes bps rate of UART.
Parity, WL definitions.
Establishes UART parity mode.
Sends character to UART.

Gets character from ISR's buffer.

Uninstalls ISR and so forth and restores original
vectors.

For communication with the console, CTERM uses the special Microsoft C library func
tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much
of the code may require editing if used with other compilers. CTERM also uses the func
tion prototype file CTERM.H, listed in Figure 6-9, to optimize function calling within the
program.

/* CTERM.H - function prototypes for CTERM.C */

int Wants_To_Abort(void);

void main(int ,char * *);

int docmd(void);

int kbd_wait(void);

int kb_file(void);

int esc(void);

FILE *getfil(void);

void getnam(char *,int);

char *addext(char *,char *);

void put_cap(char);

void cap_flush(void);

long getmr(void);

void Delay(int);

void Start—Timer(int);

int Timer—Expired(void);

int Set—Vid(void);

void locate(int ,int);

void deol(void);

void deos(void);

void els(void);

void cursor(int)

void revvid(int)

int putchx(char)

Figure 6-9. CTERM.H. (more)

Section II: Programming in the MS-DOS Environment 243

Part B; Programming for MS-DOS

int Read—Keyboard(void);

void Init—Comm(void);

int Set-Baud(int);

int Set—Parity(int);

int Write—Modem(char);

int Read-Modem(void);

void Term—Comm(void);

/* CHI.ASM functions - modem interfacing */

void i—m(void);

void set—mdm(int);

void wrtmdm(int);

void Send—Byte(int);

int rdmdm(void);

void u—m(void);

/* CH1A.ASM functions - exception handlers */

void set—int (void);

void rst—int (void);

int broke (void);

/* CH2.ASM functions - video interfacing */

void —i—V(void);

int —wrpos(int, int);

void —deol(void);

void —els(void);

int —color(int, int);

Figure 6-9. Continued.

Program execution begins at the entry to main(X line 52. CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CTERM opens the corresponding files. Next, the program installs the exception handler
(line 60), initializes the video handler (line 6l), clears the display (line 62), and announces
its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159).

This loop is functionally the same as that used in ENGINE, but it has been extended to
detect an Esc from the keyboard as signalling the start of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog
nize incoming escape sequences, such as the VT52 or VTIOO codes. To specify a local com
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local
command desired. After the local command has been selected, press any key (such as
Enter or the spacebar) to continue. To get a listing of all the commands available, press
Esc-H.

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from
either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input. Otherwise,

244 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given.

To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translated according to the following rules:

Character Interpretation

E or e Translates to Esc.

N or n Translates to Linefeed.

R or r Translates to Enter (CR).

T or t Translates to Tab.

^ Causes the next character input to be converted into a control character.

Any other character, including another \, is not translated at all.

When the Esc character is detected from either the console or a script file, the docmdO
function (lines l67 through 297) is called to prompt for and decode the next input charac
ter as a command and to perform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character Action

D Delay 0-9 seconds, then proceed. Must be followed by a decimal
digit that indicates how long to delay.

E Set EVEN parity.

F Set (fast) 1200 baud.

H Display list of valid commands.
N Set no parity.

O Set ODD parity.
Q Quit; return to MS-DOS command prompt.
R Reset modem.

S Set (slow) 300 baud.

U Use script file (CTERM prompts for filename).
V Verify file input. Echoes each script-file byte.
W Wait for character; the next input character is the one that must be

matched.

Any other character input after an Esc and the resulting Command prompt generates the
message Don't knowX (where X stands for the actual input character) followed by the
prompt Use 'H' command for Help.

Section II: Programming in the MS-DOS Environment 245

Part B: Programming for MS-DOS

If input is taken from a script and the V flag is off, docmdQ performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let
ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu
tion of the local commands are accomplished much as in CDVUTL, by way of a large
switchO statement (lines 178 through 290).

Although the listed commands are only a subset of the features available in CDVUTL for
the device-driver program, they are more than adequate for creating useful scripts. The
predecessor of CTERM (DT115.EXE), which included the CompuServe B-Protocol file-
transfer capability but had no additional commands, has been in use since early 1986 to
handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files. In conjunction with an auto-dialing modem, DT115.EXE
handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM are put together by assembling the three handlers
with MASM, compiling CTERM with Microsoft C, and linking all four object modules into
an executable file. Figure 6-10 shows the complete sequence and also the three ways of
using the finished program.

Compiling:

OMASM CHI; <Enter>

OMASM CHI A; <Enter>

OMASM CH2; <Enter>

OMSC CTERM; <Enter>

linking:

OLINK CTERM+CH1+CH1A+CH2; <Enter>

Use:

(no files)

OCTERM <Enter>

or

(script only)

OCTERM script file <Enter>

or

OCTERM script file capturefile <Enter>

Figure 6-10. Putting CTERM together and using it.

Jim Kyle
Chip Rabinowitz

246 The MS-DOS Encyclopedia

Article 7: File and Record Management

Article 7

File and Record Management

The core of most application programs is the reading, processing, and writing of data
stored on magnetic disks. This data is organized into files, which are identified by name;
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard to the hardware characteristics of the disk device. Thus, applica
tions can concern themselves solely with the form and content of the data, leaving the
details of the data's location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files.
(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well.) This article discusses the MS-DOS function calls that

allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect or change the information (such as
attributes and date and time stamps) associated with disk filenames in disk directories.
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos:

MS-DOS Storage Devices; Programming for ms-dos: Disk Directories and Volume Labels.

Historical Perspective

Current versions of MS-DOS provide two overlapping sets of file and record management
services to support application programs: the handle functions and the file control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: Interrupt 21h. The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programmers in converting the many
existing CP/M application programs to the l6-bit MS-DOS environment; consequently,
MS-DOS versions 1.x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives.

Accordingly, MS-DOS version 2.0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to

use and more flexible than their FCB counterparts and fully support a hierarchical (tree
like) directory structure. The handle functions also allow character devices, such as the

Section II: Programming in the MS-DOS Environment 247

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver
sion 3.0 introduced additional handle functions, enhanced some of the existing handle
functions for use in network environments, and provided improved error reporting for
all functions.

The handle functions, which offer far more capability and performance than the FCB
functions, should be used for all new applications. Therefore, they are discussed first in
this article.

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Handle FCB
Operation Function Function

Create file. 3CH 16H

Create new file. 5BH

Create temporary file. 5AH
Open file. 3DH OFH
Close file. 3EH lOH

Delete file. 41H 13H

Rename file. 56H 17H

Perform sequential read. 3FH 14H
Perform sequential write. 40H 15H
Perform random record read. 3FH 21H

Perform random record write. 40H 22H

Perform random block read. 27H

Perform random block write. 28H

Set disk transfer area address. lAH

Get disk transfer area address. 2FH

Parse filename. 29H

Position read/write pointer. 42H
Set random record number. 24H

Get file size. 42H 23H

Get/Set file attributes. 43H

Get/Set date and time stamp. 57H
Duplicate file handle. 45H
Redirect file handle. 46H

248 The MS-DOS Encyclopedia

Article 7: File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:path\ filename.ext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filename.ext identifies the file itself. If drive
and/or path is omitted, MS-DOS assumes the default disk drive and current directory.
Examples of acceptable pathnames include

C: \ PAYROLL\TAXES.DAT

LETTERS\MEMO.TXT

BUDGET.DAT

Pathnames can be hard-coded into a program as part of its data. More commonly, how
ever, they are entered by the user at the keyboard, either as a command-line parameter or
in response to a prompt from the program. If the pathname is provided as a command-
line parameter, the application program must extract it from the other information in the
command line. Therefore, to allow a program to distinguish between pathnames and
other parameters when the two are combined in a command line, the other parameters,
such as switches, usually begin with a slash (/) or dash (-) character.

All handle functions that use a pathname require the name to be in the form of an ASCIIZ
string—that is, the name must be terminated by a null (zero) byte. If the pathname is
hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path
name is obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters
and, if the open or create operation is successful, returns a l6-bit handle, or identification
code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

The total number of handles for simultaneously open files is limited in two ways. First, the
per-process limit is 20 file handles. The process's first five handles are always assigned to
the standard devices, which default to the CON, AUX, and PRN character devices:

Handle Service Default

0 Standard input Keyboard (CON)
1 Standard output Video display (CON)
2 Standard error Video display (CON)
3 Standard auxiliary First communications port (AUX)
4 Standard list First parallel printer port (PRN)

Section II: Programming in the MS-DOS Environment 249

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,
when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused.

In addition to the per-process limit of 20 file handles, there is a system-wide limit.
MS-DOS maintains an internal table that keeps track of all the files and devices opened
with file handles for all currently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file. The size of this table, which is set when MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta
neously. The default limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process limit.

To increase the size of MS-DOS's internal handle table, the statement FILES=nnn can be
included in the CONFIG.SYS file. (CONFIG.SYS settings take effect the next time the sys
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2.x

and 255 in versions 3.x. See USER COMMANDS: config.sys: files.

Error handling and the handle functions

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear. If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register. The program should check the carry flag after each opera
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountered error codes for file and record I/O (exclusive of network
operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles left)
05 Access denied

06 Invalid handle

11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter

17 Not same device

18 No more files

The error codes used by MS-DOS in versions 3.0 and later are a superset of the MS-DOS
version 2.0 error codes. See APPENDIX B: Critical Error Codes; APPENDIX C: Extended

Error Codes. Most MS-DOS version 3 error diagnostics relate to network operations,
which provide the program with a greater chance for error than does a single-user system.

250 The MS-DOS Encyclopedia

Article 7: File and Record Management

Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files.

Under MS-DOS versions 3.x, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a

failed handle function. The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning; Many file and record I/O operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

3CH Create File with Handle (versions 2.0 and later)

5AH Create Temporary File (versions 3.0 and later)
5BH Create New File (versions 3 0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register. The possible
attribute values are

Code Attribute

OOH Normal file

OIH Read-only file
02H Hidden file

04H System file

Files with more than one attribute can be created by combining the values listed above^
For example, to create a file that has both the read-only and system attributes, the value
05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for
subsequent access to the new file and sets the file read/write pointer to the beginning of
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX.

Function 3CH is the only file-creation function available under MS-DOS versions 2.x. It
must be used with caution, however, because if a file with the specified name already
exists. Function 3CH will open it and truncate it to zero length, eradicating the previous
contents of the file. This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call.

Section II: Programming in the MS-DOS Environment 251

Part B: Programming for MS-DOS

Under MS-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases
because it will fail if a file with the same name already exists. In networking environments,
this function can be used to implement semaphores, allowing the synchronization of pro
grams running in different network nodes.

Function 5AH is used to create a temporary work file that is guaranteed to have a unique
name. This capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volume on a server. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file. MS-DOS generates a name for the
created file that is a sequence of alphanumeric characters derived from the current time
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the
file's handle in AX. The program must save the filename so that it can delete the file later, if
necessary; the file created with Function 5AH is not destroyed when the program exits.

Example: Create a file named MEMO.TXT in the \ LETTERS directory on drive C using
Function 3CH. Any existing file with the same name is truncated to zero length and
opened.

fname db 'C:\LETTERS\MEMO..TXT',0

fhandle dw 7

mov dx,seg fname ;: DS:DX = address of

mov ds,dx ;r pathname for file

mov dx,offset fname

xor cx,cx ;r CX = normal attribute

mov ah,3ch ;r Function 3CH = create

int 21h ;: transfer to MS-DOS

jc error ;: jump if create failed

mov fhandle,ax ;r else save file handle

Example: Create a temporary file using Function 5AH and place it in the \TEMP directory
on drive C. MS-DOS appends the filename it generates to the original path in the buffer
named fname. The resulting file specification can be used later to delete the file.

fname db 'C:\TEMP\' ; generated ASCIIZ filename

db 13 dup (0) ; is appended by MS-DOS

fhandle dw 7

(more)

252 The MS-DOS Encyclopedia

Article 7: File and Record Management

mov dx,seg fname ,? DS:DX = address of

mov ds,dx ,; path for temporary file

mov dx,offset fname

xor cx,cx ,? CX = normal attribute

mov ah,5ah ,; Function 5AH = create

? temporary file

int 21h ? transfer to MS-DOS

jc error ?̂ jump if create failed

mov fhandle,ax ; else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file
in the current or specified directory. When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL
register. This access code includes the read/write permissions, the file-sharing mode, and
an inheritance flag. The bits of the access code are assigned as follows:

Bit(s) Description

0-2 Read/write permissions (versions 2.0 and later)
3 Reserved

4-6 File-sharing mode (versions 3.0 and later)
7 Inheritance flag (versions 3.0 and later)

The read/write permissions field of the access code specifies how the file will be used and
can take the following values:

Bits 0-2 Description

000 Read permission desired
001 Write permission desired
010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file's attribute
byte in the disk directory. For example, if the program attempts to open an existing file
that has the read-only attribute when the permissions field of the access code byte is set to
write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-mode field of the access code byte is important in a networking environment.
It determines whether other programs will also be allowed to open the file and, if so,
what operations they will be allowed to perform. Following are the possible values of the
file-sharing mode field:

Section II: Programming in the MS-DOS Environment 253

Part B: Programming for MS-DOS

Bits 4-6 Description

000 Compatibility mode. Other programs can open the file and perform read or
write operations as long as no process specifies any sharing mode other than
compatibility mode.

001 Deny all. Other programs cannot open the file.
010 Deny write. Other programs cannot open the file in compatibility mode or

with write permission.
011 Deny read. Other programs cannot open the file in compatibility mode or with

read permission.
100 Deny none. Other programs can open the file and perform both read and

write operations but cannot open the file in compatibility mode.

When file-sharing support is active (that is, SHARE.EXE has previously been loaded),
the result of any open operation depends on both the contents of the permissions and file-
sharing fields of the access code byte and the permissions and file-sharing requested by
other processes that have already successfully opened the file.

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle. If the inheritance bit is cleared, the child can use the inherited handle to
access the file without performing its own open operation. Subsequent operations per
formed by the child process on inherited file handles also affect the file pointer associated
with the parent's file handle. If the inheritance bit is set, the child process does not inherit
the handle.

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry
flag and returns an error code in AX.

Example: Copy the first parameter from the program's command tail in the program
segment prefix (PSP) into the array fname and append a null character to form an ASCIIZ
filename. Attempt to open the file with compatibility sharing mode and read/write access.
If the file does not already exist, create it and assign it a normal attribute.

cmdtail equ 80h ; PSP offset of command tail

fname db 64 dup (?)

fhandle dw ?

assume that DS already

contains segment of PSP

(more)

254 The MS-DOS Encyclopedia

Article 7: File and Record Management

mov

mov

mov

mov

eld

lodsb

or

jz

labell:

lodsb

cmp

jz

label2:

si,cmdtail

di,seg fname

es, di

di,offset fname

al, al

error

cmp

jz

cmp

jz

stosb

lodsb

jmp

al,20h

labell

al,Odh

labels

al,20h

labels

label2

prepare to copy filename...

DS:SI = command tail

ES:DI = buffer to receive

filename from command tail

safety first!

check length of command tail

jump, command tail empty

scan off leading spaces

get next character

is it a space?

yes, skip it

look for terminator

quit if return found

quit if space found

else copy this character

get next character

labels:

xor

stosb

mov

mov

mov

mov

int

jnc

cmp

jnz

xor

mov

int

jc

al,al

dx,seg fname

ds, dx

dx,offset fname

ax,Sd02h

21h

label4

ax, 2

error

cx, cx

ah,Sch

21h

error

store final NULL to

create ASCIIZ string

now open the file...

DS:DX = address of

pathname for file

Function SDH = open r/w

transfer to MS-DOS

jump if file found

error 2 = file not found

jump if other error

else make the file...

CX = normal attribute

Function SCH = create

transfer to MS-DOS

jump if create failed

label4:

fhandle,ax save handle for file

Closing a file

Function 3EH (Close File) closes a file created or opened with a file handle function. The
program must place the handle of the file to be closed in BX. If a write operation was per
formed on the file, MS-DOS updates the date, time, and size in the file's directory entry.

Section II: Programming in the MS-DOS Environment 255

Part B: Programming for MS-DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk
and causes the disk's file allocation table (FAT) to be updated if necessary.

Good programming practice dictates that a program close files as soon as it finishes
using them. This practice is particularly important when the file size has been changed, to
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the
user. A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles.

Reading and writing with handles

Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle. Before calling Function 3FH, the program must set
the DS:DX registers to point to the beginning of a data buffer large enough to hold the
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX.
The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer.

If the read operation succeeds, the data is read, beginning at the current position of the
file read/write pointer, to the specified location in memory. MS-DOS then increments its
internal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reached is that the length returned is less than the length
requested. In contrast, when Function 3FH is used to read from a character device that is
not in raw mode, the read will terminate at the requested length or at the receipt of a car
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: Programming for ms-dos: Character Device Input and Output. If the
read operation fails, MS-DOS returns with the carry flag set and an error code in AX.

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle
previously obtained from an open or create operation. Before calling Function 40H, the
program must set DSrDX to point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the number of bytes to write in CX. The number of bytes
to write can be a maximum of 65535.

If the write operation is successful, MS-DOS puts the number of bytes written in AX and
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets
the carry flag and returns an error code in AX.

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it to disk when the internal

buffer is full, when the file is closed, or when a call to Interrupt 21H Function ODH (Disk
Reset) is issued.

Note: If the destination of the write operation is a disk file and the disk is full, the only
indication to the calling program is that the length returned in AX is not the same as the
length requested in CX. Disk full is not returned as an error with the carry flag set.

A special use of the Write function is to truncate or extend a file. If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location of
the file read/write pointer.

256 The MS-DOS Encyclopedia

Article 7: File and Record Management

Example: Open the file MYFILE.DAT, create the file MYFILE.BAK, copy the contents of
the .DAT file into the .BAK file using 512-byte reads and writes, and then close both files.

filel

file2

buff

loop:

db •MYFILE.DAT',0

db 'MYFILE.BAK',0

dw 7 ;r handle for MYFILE.DAT

dw 7 ;r handle for MYFILE.BAK

db 512 dup (?) i buffer for file I/O

: open MYFILE.DAT...

mov dx,seg filel ;•, DS:DX = address of filename

mov ds, dx

mov dx,offset filel

mov ax,3d00h ;; Function 3DH = open (read-only)

int 21h ;; transfer to MS-DOS

jc error j; jump if open failed

mov handlel,ax ; save handle for file

create MYFILE.BAK...

mov dx,offset file2 DS:DX = address of filename

mov cx, 0 CX = normal attribute

mov ah,3ch Function 3CH = create

int 21h transfer to MS-DOS

jc error jump if create failed

mov handle2,ax save handle for file

read MYFILE.DAT

mov dx,offset buff DS:DX = buffer address

mov cx,512 CX = length to read

mov bx,handlel BX = handle for MYFILE.DAT

mov ah,3fh Function 3FH = read

int 21h transfer to MS-DOS

jc error jump if read failed

or ax, ax were any bytes read?

jz done no, end of file reached

write MYFILE.BAK

mov dx,offset buff DS:DX = buffer address

mov cx, ax CX = length to write

mov bx,handle2 BX = handle for MYFILE.BAK

mov ah,40h Function 40H = write

int 21h transfer to MS-DOS

jc error jump if write failed

cmp ax, cx was write complete?

jne error jump if disk full

jmp loop continue to end of file

(more)

Section II: Programming in the MS-DOS Environment 257

Part B: Programming for MS-DOS

done: ; now close files...

mov bx,handle 1 ; handle for MYFILE.DAT

mov ah,3eh ; Function 3EH = close file

int 21h ; transfer to MS-DOS

jc error ; jump if close failed

mov bx,handle2 ; handle for MYFILE.BAK

mov ah,3eh ; Function 3EH = close file

int 21h ; transfer to MS-DOS

jc error ; jump if close failed

Positioning the read/write pointer

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle. The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
in AL:

Mode Significance

00 Supplied offset is relative to beginning of file.
01 Supplied offset is relative to current position of read/write pointer.
02 Supplied offset is relative to end of file.

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
file pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX.

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a value in DX:AX that represents the
offset of the end-of-file position relative to the beginning of the file.

Example: Assume that the file MYFILE.DAT was previously opened and its handle is
saved in the variable fhandle. Position the file pointer 32768 bytes from the beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw

buff db 512 dup (?)

handle from previous open

buffer for data from file

(more)

258 The MS-DOS Encyclopedia

Article 7: File and Record Management

mov

mov

mov

mov

mov

int

jc

ox, 0

dx,32768

bx,fhandle

al,0

ah,42h

21h

error

position the file pointer...

CX = high part of file offset •

DX = low part of file offset

BX = handle for file

AL = positioning mode

Function 42H = position

transfer to MS-DOS

jump if function call failed

mov

mov

mov

mov

int

jc

cmp

jne

dx,offset buff

CX,512

bx,fhandle

ah,3fh

21h

error

ax,512

error

now read 512 bytes from file

DS:DX = address of buffer

CX = length of 512 bytes

BX = handle for file

Function 3FH = read

transfer to MS-DOS

jump if read failed

was 512 bytes read?

jump if partial rec. or EOF

Example: Assume that the file MYFILE.DAT was previously opened and its handle is saved
in the variable /handle. Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file. The returned offset, which is relative to the begin
ning of the file, is the file's size.

fhandle dw handle from previous open

mov

mov

mov

mov

mov

int

jc

CX, 0

dx, 0

bx,fhandle

al,2

ah,42h

21h

error

position the file pointer

to the end of file...

CX = high part of offset

DX = low part of offset

BX = handle for file

AL = positioning mode

Function 42H = position

transfer to MS-DOS

jump if function call failed

if call succeeded, DX:AX

now contains the file size

Other handle operations

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file,
read or change a file's attributes, read or change a file's date and time stamp, and duplicate
or redirect a file handle. The first three of these are "file-handle-like" because they use an
ASCIIZ string to specify the file; however, they do not return a file handle.

Section II: Programming in the MS-DOS Environment 259

Part B: Programming for MS-DOS

Renaming a file

Function 56H (Rename File) renames an existing file and/or moves the file from one loca
tion in the hierarchical file structure to another. The file to be renamed cannot be a hidden

or system file or a subdirectory and must not be currently open by any process; attempting
to rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its
directory entry; it moves a file by removing its current directory entry and creating a new
entry in the target directory that refers to the same file. The location of the file's actual
data on the disk is not changed.

Both the current and the new filenames must be ASCIIZ strings and can include a drive
and path specification; wildcard characters (* and ?) are not permitted in the filenames.
The program calls Function 56H with the address of the current pathname in the DS:DX
registers and the address of the new pathname in ES:DI. If the path elements of the two
strings are not the same and both paths are valid, the file "moves" from the source direc
tory to the target directory. If the paths match but the filenames differ, MS-DOS simply
modifies the directory entry to reflect the new filename.

If the function succeeds, MS-DOS returns to the calling program with the carry flag clear.
The function fails if the new filename is already in the target directory; in that case,
MS-DOS sets the carry flag and returns an error code in AX.

Example: Change the name of the file MYFILE.DAT to MYFILE.OLD. In the same opera
tion, move the file from the WORK directory to the \BACKUP directory.

filel db ' \WORK\MYFILE.DAT',0

file2 db '\BACKUP\MYFILE.OLD',0

mov dx,seg filel ,; DS:DX = old filename

mov ds, dx

mov es, dx

mov dx,offset filel

mov di,offset file2 ,; ES:DI = new filename

mov ah,56h ; Function 56H = rename

int 21h ; transfer to MS-DOS

jc error ? jump if rename failed

Deleting a file

Function 41H (Delete File) effectively deletes a file from a disk. Before calling the function,
a program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be
deleted. The supplied pathname cannot specify a subdirectory or a read-only file, and the
file must not be currently open by any process.

260 The MS-DOS Encyclopedia

Article 7: File and Record Management

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its
directory entry with a special character (0E5H), making the entry subsequently unrecog
nizable. MS-DOS then updates the disk's FAT so that the clusters that previously belonged
to the file are "free" and returns to the program with the carry flag clear. If the delete
function fails, MS-DOS sets the carry flag and returns an error code in AX.

The actual contents of the clusters assigned to the file are not changed by a delete opera
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C.

fname dbdb 'C:\WORK\MYFILE.

DS:DX = address of filename

Function 41H = delete

transfer to MS-DOS

jump if delete failed

Getting/setting file attributes

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file.
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file. To read the attributes, the program must set AL to zero; to set
the attributes, it must set AL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOS reads or sets the attribute byte in the file's directory
entry and returns with the carry flag clear and the file's attribute in CX. If the function
fails, MS-DOS sets the carry flag and returns an error code in AX.

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of a file. It also should not be used on a file that is currently open by any process.

Example: Change the attributes of the file MYFILE.DAT in the \BACKUP directory on
drive C to read-only. This prevents the file from being accidentally deleted from the disk.

mov dx,seg fname

mov ds, dx

mov dx,offset fname

mov ah,41h

int 21h

jc error

fname db 'C:\BACKUP\MYFILE.DAT',0

mov dx,seg fname

mov ds, dx

mov dx,offset fname

mov CX,1

mov al,1

DS:DX = address of filename

CX = attribute (read-only)

AL = mode (0 = get, 1 = set)

(more)

Section II: Programming in the MS-DOS Environment 26l

Part B: Programming for MS-DOS

mov ah,43h ; Function 43H = get/set attr

int 21h ; transfer to MS-DOS

jc error ; jump if set attrib. failed

Getting/setting file date and time

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp
of an open file. To set the time and date to a particular value, the program must call Func
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob
tained from a previous open or create operation) in BX, and the value 1 in AL. To read the
time and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is returned
cleared; if the function fails, MS-DOS returns the carry flag set and an error code in AX.

The formats used for the file time and date are the same as those used in disk directory
entries and FCBs. See Structure of the File Control Block below.

The main uses of Function 57H are to force the time and date entry for a file to be updated
when the file has not been changed and to circumvent MS-DOS's modification of a file
date and time when the file has been changed. In the latter case, a program can use this
function with AL = 0 to obtain the file's previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with AL = 1 before
closing the file.

Duplicating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when
the file has been modified. Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this is a relatively slow procedure and in a network environment can cause the program
to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to
duplicate the original handle of the file to be updated, can protect data added to a disk file
before the file is closed. To use Function 45H, the program must put the handle to be
duplicated in BX. If the operation is successful, MS-DOS clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
error code in AX.

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. This forces the desired update of the disk directory and FAT. The orig
inal handle remains open and the program can continue to use it for file read and write
operations.

Note: While the second handle is open, moving the read/write pointer associated with
either handle moves the pointer associated with the other.

262 The MS-DOS Encyclopedia

Article 7: File and Record Management

Example: Assume that the file MYFILE.DAT was previously opened and the handle for
that file has been saved in the variable Jhandle. Duplicate the handle and then close the
duplicate to ensure that any data recently written to the file is saved on the disk and that
the directory entry for the file is updated accordingly.

fhandle dw handle from previous open

mov

mov

int

jc

mov

mov

int

jc

mov

bx,fhandle

ah,45h

21h

error

bx, ax

ah,3eh

21h

error

bx,fhandle

duplicate the handle...

BX = handle for file

Function 45H = dup handle

transfer to MS-DOS

jump if function call failed

now close the new handle...

BX = duplicated handle

Function 3EH = close

transfer to MS-DOS

jump if close failed

replace closed handle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle—in
other words, to refer to the same file or device at the same file read/write pointer location.
The handle is then said to be redirected.

The most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function. In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro
gram. In such cases. Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:

Customizing ms-dos: Writing MS-DOS Filters.

Using the FCB Functions

A file control block is a data structure, located in the application program's memory space,
that contains relevant information about an open disk file: the disk drive, the filename and
extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the
application program.

Section II: Programming in the MS-DOS Environment 263

Part B: Programming for MS-DOS

MS-DOS moves data to and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the

control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP). See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: Programming for ms-dos: Structure of an Application Program.

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers. However, under MS-DOS versions 3.0 and later,
when file-sharing support (SHARE.EXE) is loaded, MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files. If the
application attempts to open too many FCBs, MS-DOS simply closes the least recently used
FCBs to keep the total number within a limit.

The CONFIG.SYS file directive FCBS allows the user to control the allowed maximum

number of FCBs and to specify a certain number of FCBs to be protected against automatic
closure by the system. The default values are a maximum of four files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system. See USER
COMMANDS: CONFIG.SYS: fobs.

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCB file and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk. For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps. The FCB structure is shown in Table 7-3.

Table 7-3. Structure of a Normal File Control Block.

Offset Size

Maintained by (bytes) (bytes) Description

Program OOH 1 Drive identifier

Program OIH 8 Filename

Program 09H 3 File extension

MS-DOS OCH 2 Current block number

Program OEH 2 Record size (bytes)
MS-DOS lOH 4 File size (bytes)
MS-DOS 14H 2 Date stamp

MS-£)0S 16H 2 Time stamp

MS-DOS 18H 8 Reserved

MS-DOS 20H 1 Current record number

Program 21H 4 Random record number

264 The MS-DOS Encyclopedia

Article 7: File and Record Management

Drive identifier: Initialized by the application to designate the drive on which the file to
be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a value of 1 or greater.

Filename: Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters. A device
name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters.

Current block number: Initialized to zero by MS-DOS when the file is opened. The block
number and the record number together make up the record pointer during sequential file
access.

Record size: The size of a record (in bytes) as used by the program. MS-DOS sets this field
to 128 when the file is opened or created; the program can modify the field afterward to
any desired record size. If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program's own code or data.

File size: The size of the file in bytes. MS-DOS initializes this field from the file's directory
entry when the file is opened. The first 2 bytes of this 4-byte field are the least significant
bytes of the file size.

Date stamp: The date of the last write operation on the file. MS-DOS initializes this field
from the file's directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Date Format

Bit: 15 14 13 12 11 10 9 8

Content: M M M M D

Bits Contents

0-4 Day of month (1-31)
5-8 Month (1-12)

9-15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field
from the file's directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Section II: Programming in the MS-DOS Environment 265

Part B: Programming for MS-DOS

Content:

Time!

15 14 13 12 11 10 9 8

Format

7 6 5 4 3 2 1 0

H H H H H M M M M M M S S s s s

Bits Contents

0-4 Number of 2-second increments (0-29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

Current record number: Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127; thus, there
are 128 records per block. The beginning of a file is record 0 of block 0.

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,
only the first 3 bytes of this field are used. MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but not after random record reads and writes
(Functions 21H and 22H).

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex
tended FCB are simply prefixed to the normal FCB format (Table 7-4). The first byte of
an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes
of the file being manipulated. The remainder of an extended FCB has exactly the same
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func
tion call that accepts a normal FCB.

Table 7-4. Structure of an Extended File Control Block.

Offset Size

Maintained by (bytes) (bytes) Description

Program OOH 1 Extended FCB flag = OFFH

MS-DOS OIH 5 Reserved

Program 06H 1 File attribute byte
Program 07H 1 Drive identifier

Program 08H 8 Filename

(more)

266 The MS-DOS Encyclopedia

Article 7: File and Record Management

Table 7-4. Continued.

onset Size

Maintained by (bytes) (bytes) Description

Program lOH 3 File extension

MS-DOS 13H 2 Current block number

Program 15H 2 Record size (bytes)
MS-DOS 17H 4 File size (bytes)
MS-DOS IBH 2 Date stamp
MS-DOS IDH 2 Time stamp
MS-DOS IFH 8 Reserved

MS-DOS 27H 1 Current record number

Program 28H 4 Random record number

Extended FCB flag: When OFFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of a normal FCB (37 bytes).

File attribute byte: Must be initialized by the application when an extended FCB is used to
open or create a file. The bits of this field have the following significance:

Bit Meaning

0 Read-only
1 Hidden

2 System

3 Volume label

4 Directory

5 Archive

6 Reserved

7 Reserved

FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the default FCBs, the default DTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSP Offset
(bytes) Size (bytes) Description

5CH 16 Default FCB #1

6CH 20 Default FCB #2

80H 1 Length of command tail
81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section II: Programming in the MS-DOS Environment 267

Part B: Programming for MS-DOS

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets 5CH and 6CH. (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names.) MS-DOS then sets the initial DTA address for the

program to PSP:0080H.

For several reasons, the default FCBs and the DTA are often moved to another location
within the program's memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs overlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict. Finally, unless either the command
tail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail.

Function lAH (Set DTA Address) is used to alter the DTA address. It is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the same until another call to Function lAH, regardless of other file and record
management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the original address can be restored later.

Parsing the filename

Before a file can be opened or created with the FCB function calls, its drive, filename, and
extension must be placed within the proper fields of the FCB. The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or
by prompting the user and reading it in with one of the several function calls for character
device input.

MS-DOS automatically parses the first two parameters in the program's command tail into
the default FCBs at PSP:005CH and PSP:006CH. It does not, however, attempt to differenti
ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to
the application program. If the filenames were preceded by any switches, the program
itself has to extract the filenames directly from the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends.

After a filename has been located. Function 29H (Parse Filename) can be used to test it
for invalid characters and separators and to insert its various components into the proper
fields in an FCB. The filename must be a string in the standard form drive:filename.ext.
Wildcard characters are permitted in the filename and/or extension; asterisk (*) wildcards
are expanded to question mark (?) wildcards.

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CALLS: Interrupt 21h: Function 29H.

268 The MS-DOS Encyclopedia

Article 7: File and Record Management

If a drive code is not included in the filename, MS-DOS inserts the drive number of the
current drive into the FCB. Parsing stops at the first terminator character encountered in
the filename. Terminators include the following:

;, = + /"[]!<>! space tab

If a colon character (:) is not in the proper position to delimit the disk drive identifier or if
a period (.) is not in the proper position to delimit the extension, the character will also be
treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC.

If an invalid drive is specified in the filename. Function 29H returns OFFH in AL; if the
filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename.

Note that this function simply parses the filename into the FCB. It does not initialize any
other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists.

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor
mation when a function fails. Typically, an FCB function returns a zero in AL if the func
tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program
is left to its own devices to determine the cause of the error. Under MS-DOS versions 3.x,
however, a failed FCB function call can be followed by a call to Interrupt 21H Function
59H (Get Extended Error Information). Function 59H will return the same descriptive
codes for the error, including the error locus and a suggested recovery strategy, as would
be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/
write operations. The function is called with DS:DX pointing to a valid, unopened FCB.
MS-DOS searches the current directory for the specifed filename. If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero-
length file; if the filename is not found, MS-DOS creates a new file and opens it. Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File.

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it
returns OFFH in AL. This function will not ordinarily fail unless the file is being created in
the root directory and the directory is full.

Warning: To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file.

Section II: Programming in the MS-DOS Environment 269

Part B: Programming for MS-DOS

Opening a file

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain
ing the name of the file to be opened. If the specified file is found in the current directory,
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with AL set
to OOH; if the file is not found, MS-DOS returns with AL set to OFFH, indicating an error.

When the file is opened, MS-DOS

• Sets the drive identifier (offset OOH) to the actual drive (01 = A, 02 = B, and so on).

• Sets the current block number (offset OCH) to zero.

• Sets the file size (offset lOH) to the value found in the directory entry for the file.
• Sets the record size (offset OEH) to 128.

• Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc
tory entry for the file.

The program may need to adjust the FCB—change the record size and the random record
pointer, for example—before proceeding with record operations.

Example: Display a prompt and accept a filename from the user. Parse the filename into
an FCB, checking for an illegal drive identifier or the presence of wildcards. If a valid,
unambiguous filename has been entered, attempt to open the file. Create the file if it does
not already exist.

kbuf db 64,0,64 dup (0)

prompt db Odh,Oah,'Enter filename: $'

myfcb db 37 dup (0)

mov dx,seg prompt ;

mov ds, dx

mov es,dx

mov dx,offset prompt

mov ah,09h ;

int 21h ;

display the prompt...

DS:DX = prompt address

Function 09H = print string

transfer to MS-DOS

mov

mov

int

dx,offset kbuf

ah,Oah

21h

now input filename...

DS:DX = buffer address

Function OAH = enter string

transfer to MS-DOS

mov si,offset kbuf+2

mov di,offset myfcb ;

mov ax,2900h ;

int 21 h ;

or al,al ;

jnz error ;

parse filename into FCB...

; DS:SI = address of filename

ESrDI = address of fcb

Function 29H = parse name

transfer to MS-DOS

jump if bad drive or

wildcard characters in name

(more)

270 The MS-DOS Encyclopedia

Article 7: File and Record Management

mov

mov

int

or

jz

mov

mov

int

or

jnz

dx,offset myfcb

ah,Ofh

21h

al, al

proceed

dx,offset myfcb

ah,16h

21h

al, al

error

proceed:

try to open file...

DS:DX = FCB address

Function OFH = open file

transfer to MS-DOS

check status

jump if open successful

else create file...

DSrDX = FCB address

Function 16H = create

transfer to MS-DOS

did create succeed?

jump if create failed

file has been opened or

created, and FCB is valid

for read/write operations.

Closing a file

Function lOH (Close File with FCB) closes a file previously opened with an FCB. As usual,
the function is called with DS:DX pointing to the FCB of the file to be closed. MS-DOS
updates the directory, if necessary, to reflect any changes in the file's size and the date and
time last written.

If the operation succeeds, MS-DOS returns OOH in AL; if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time. MS-DOS increments the
current record and current block numbers after each file access so that they point to the
beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in
the file, without sequentially reading all records up to that point in the file. The program
must set the random record number field of the FCB appropriately before the read or write
is requested. This method is useful in database applications, in which a program must
manipulate fixed-length records.

Random block operations combine the features of sequential and random record access
methods. The program can set the record number to point to any record within a file, and
MS-DOS updates the record number after a read or write operation. Thus, sequential
operations can easily be initiated at any file location. Random block operations with a
record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,
that the DTA be large enough for the specified record size, and that the DTA address be
previously set with Function 1 AH if the default DTA in the program's PSP is not being
used.

Section II: Programming in the MS-DOS Environment 271

Part B: Programming for MS-DOS

MS-DOS reports the success or failure of any FCB-related read operation (sequential,
random record, or random block) with one of four return codes in register AL:

Code Meaning

OOH Successful read

OIH End of file reached; no data read into DTA
02H Segment wrap (DTA too close to end of segment); no data read into DTA
03H End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three
return codes in register AL:

Code Meaning

OOH Successful write

OIH Disk full; partial or no write
02H Segment wrap (DTA too close to end of segment); write failed

For FOB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter
rupt 21H Function ODH (Disk Reset) is issued.

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file to the current
DTA address, which must point to an area at least as large as the record size specified in
the file's FOB. After each read operation, MS-DOS updates the FCB block and record num
bers (offsets OCH and 20H) to point to the next record.

Sequential access: writing

Function 15H (Sequential Write) writes records sequentially from memory into the file.
The length written is specified by the record size field (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to point to the next record.

Random record access: reading

Function 21H (Random Read) reads a specific record from a file. Before requesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA

address must also have been previously set with Function lAH to point to a buffer of
adequate size if the default DTA is not large enough.

272 The MS-DOS Encyclopedia

Article 7: File and Record Management

After the read, MS-DOS sets the current block and current record number fields (offsets
OCH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record
access, it must continue to update the random record field of the FCB before each random
record read or write operation.

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written.

After the write, MS-DOS sets the current block and current record number fields (offsets
OCH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. If the program wants to continue with random record access, it
must continue to update the random record field of the FCB before each random record
read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FCB (offsets OEH and 21H) and

must put the number of records to be read in CX. The DTA address must have already been
set with Function lAH to point to a buffer large enough to contain the group of records to
be read if the default DTA was not large enough. The program can then issue the Function
27H call with DS:DX pointing to the FCB for the file.

After the random block read operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next record not read and returns the number of records
actually read in CX.

If the record size is set to 1 byte. Function 27H reads the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of read operation (Function 3FH).

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random record pointer fields in the FCB (offsets OEH and 21H). If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function lAH. When Function 28H is called,
DS:DX must point to the FCB for the file and CX must contain the number of records to
be written.

After the random block write operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next block of data and returns the number of records
actually written in CX.

Section II: Programming in the MS-DOS Environment 273

Part B: Programming for MS-DOS

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of write operation (Function 40H).

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset
21H) multiplied by the contents of the record size field (offset OEH).

Example: Open the file MYFILE.DAT and create the file MYFILE.BAK on the current disk
drive, copy the contents of the .DAT file into the .BAK file using 512-byte reads and writes,
and then close both files.

fcbl db 0 drive = default

db 'MYFILE ' 8 character filename

db •DAT' 3 character extension

db 25 dup (0) remainder of fcbl

fcb2 db 0 drive = default

db 'MYFILE ' 8 character filename

db 'BAK' 3 character extension

db 25 dup (0) remainder of fcb2

buff db 512 dup (?) buffer for file I/O

loop:

mov

mov

mov

mov

int

or

jnz

mov

mov

int

or

jnz

mov

mov

mov

mov

int

mov

mov

int

or

jnz

dx,seg fcbl

ds, dx

dx,offset fcbl

ah,Ofh

21h

al,al

error

dx,offset fcb2

ah,16h

21h

al, al

error

word ptr fcbl+Oeh

word ptr fcb2+0eh

dx,offset buff

ah,1 ah

21h

dx,offset fcbl

ah,14h

open MYFILE.DAT...

DS:DX = address of FCB

21h

al, al

done

Function OFH = open

transfer to MS-DOS

did open succeed?

jump if open failed

create MYFILE.BAK...

DS:DX = address of FCB

Function 16H = create

transfer to MS-DOS

did create succeed?

jump if create failed

set record length,to 512

,512

,512

set DTA to our buffer...

DS:DX = buffer address

Function 1AH = set DTA

transfer to MS-DOS

read MYFILE.DAT

DS:DX = FCB address

Function 14H = seq. read

transfer to MS-DOS

was read successful?

no, quit

write MYFILE.BAK...

(more)

274 The MS-DOS Encyclopedia

Article 7: File and Record Management

done:

mov dx,offset fcb2 DSrDX = FCB address

mov ah,15h Function 15H = seq. write

int 21h transfer to MS-DOS

or al, al was write successful?

jnz error jump if write failed

jmp loop continue to end of file

now close files...

mov dx,offset fcbl DSrDX = FOB for MYFILE.DAT

mov ah,lOh Function 10H = close file

int 21h transfer to MS-DOS

or al, al did close succeed?

jnz error jump if close failed

mov dx,offset fcb2 DSrDX = FCB for MYFILE.BAK

mov ah,lOh Function 10H = close file

int 21h transfer to MS-DOS

or al, al did close succeed?

jnz error jump if close failed

Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file. Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters. An additional FCB function allows the size or existence of a
file to be determined without actually opening the file.

Renaming a file

Function 17H (Rename File) renames a file (or files) in the current directory. The file to be
renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro
gram must create a special FCB that contains the drive code at offset OOH, the old filename
at offset OIH, and the new filename at offset IIH. Both the current and the new filenames
can contain the ? wildcard character.

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS
searches the current directory for the old filename. If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no matching filename, changes the
directory entry for the old filename to reflect the new filename. If the old filename field of
the special FCB contains any wildcard characters, MS-DOS renames every matching file.
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns
OFFH. The error condition may indicate either that no files were renamed or that at least
one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Rename all the files with the extension .ASM in the current directory of the
default disk drive to have the extension .COD.

Section II: Programming in the MS-DOS Environment 275

Part B: Programming for MS-DOS

renfcb db

db

db

db

db

db

db

*????????'

'ASM'

5 dup (0)

'????????'

'COD'

15 dup (0)

default drive

wildcard filename

old extension

reserved area

wildcard filename

new extension

remainder of FOB

mov dx,seg renfcb ; DS:DX = address of

mov ds,dx ; "special" FCB

mov dx,offset renfcb

mov ah,17h Function 17H = rename

int 21h transfer to MS-DOS

or al,al ; did function succeed?

jnz error ; jump if rename failed

Deleting a file

Function 13H (Delete File) deletes a file from the current directory. The file should not be
currently open by any process. If the file to be deleted has special attributes, such as read
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB.

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted. The filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name. If at least one file matches the FCB
and is deleted, MS-DOS returns OOH in AL; if no matching filename is found, it returns
OFFH.

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions IIH and 12H) to inspect candidate
filenames. 5^^ PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for

MS-DOS: Disk Directories and Volume Labels. The files can then be deleted individually.

Example: Delete all the files in the current directory of the current disk drive that have
the extension .BAK and whose filenames have A as the first character.

delfcb db

db

db

db

'A???????'

'BAK'

25 dup (0)

; default drive

; wildcard filename

; extension

; remainder of FCB

(more)

276 The MS-DOS Encyclopedia

Article 7: File and Record Management

mov dx,seg delfob ; DS:DX = FCB address

mov ds, dx

mov dx,offset delfcb

mov ah,13h Function 13H = delete

int 21h transfer to MS-DOS

or al,al ; did function succeed?

jnz error ; jump if delete failed

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function IIH (Find First File) to simply test for the
existence of a file. Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the
DS:DX registers to point to the FCB.

When Function 23H returns, AL contains OOH if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call. This method is not any faster than simply opening the file, but it does avoid the over
head of closing the file afterward (which is necessary in a networking environment).

Summary

MS-DOS supports two distinct but overlapping sets of file and record management
services. The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and l6-bit file identifiers, called handles, that are returned by MS-DOS after a file
is opened or created. The filenames can include a full path specifying the file's location in
the hierarchical directory structure. The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file's read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section II: Programming in the MS-DOS Environment ITJl

Part B: Programming for MS-DOS

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program's memory space, to specify the name and location of
the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica
tion to hold other information about the file, such as the current read/write file pointer,
while that file is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOS version 2.0 and do not have room to hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci
fied drive.

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
environments because they do not support file sharing and locking. Consequently, it is
strongly recommended that the handle-related file and record functions be used ex
clusively in all new applications.

Robert Byers
Code by Ray Duncan

278 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

Article 8

Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk. Directories are ac
cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions.

MS-DOS versions 1.x support only one directory on each disk. Versions 2.0 and later,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
describe the location in the directory hierarchy in which the name appears. This specifica
tion, or path, is created by concatenating a disk drive specifier (for example. A: or C:), the

C:\ (root directory)

subdirectory ALPHA

subdirectory BETA

file FBLEl.COM

file FILE2.COM

C:\ALPHA C:\BETA

subdirectory •

subdirectory • •

subdirectory GAMMA

subdirectory DELTA

file FILE3.COM

C:\ALPHANGAMMA

subdirectory •

subdirectory • •

file FILE5.COM

C:\ALPHA\DELTA

subdirectory

subdirectory

subdirectory

subdirectory

subdirectory

file

•

• •

EPSILON

FILE4.COM

C:\BETA ÊPSILON

subdirectory

subdirectory

file

•

• •

FILE1.COM

Figure 8-1. Typical hierarchical directory structure (MS-DOS versions 2.0 and later).

Section II: Programming in the MS-DOS Environment 279

Part B; Programming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally
the name of the file or directory. For example, in Figure 8-1, the complete pathname for
FILE5.COM is C:\ALPHA\GAMMA\FILE5.COM. The two instances ofFILEl.COM, in the
root directory and in the directory EPSILON, are distinguished by their pathnames:
C:\FILEl.COM in the first instance and C:\BETA\EPSILON\FILE1.COM in the second.

Note: If no drive is specified, the current drive is assumed. Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative to
the current directory. For example, if the current directory is C:\BETA\EPSILON, the
specification \ FILE1.COM indicates the file FILE1.COM in the root directory and the
specification FILE1.COM indicates the file FILE1.COM in the directory C:\BETA\EPSILON.
See Figure 8-1.

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip
ulating directory contents and maintaining the links between directories. This article
provides that information.

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con
tains a name and descriptive information. In MS-DOS versions 1.x, each name must be a
filename; in versions 2.0 and later, volume labels and directory names can also appear
in directory entries.

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a directory for a name, the search must proceed linearly from the first
name in the directory. In MS-DOS versions 1.x, a directory search continues until the spec
ified name is found or until every entry in the directory has been examined. In versions 2.0
and later, the search continues until the specified name is found or until a null directory
entry (that is, one whose first byte is zero) is encountered. This null entry indicates the
logical end of the directory.

Adding and deleting directory entries

MS-DOS deletes a directory entry by marking it with 0E5H in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends
the new entry to the list.

280 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

The cuirent directory

when more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated later, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory).

Directory Format

The root directory is created by the MS-DOS FORMAT program. See USER COMMANDS:
FORMAT. The FORMAT program places the root directory immediately after the disk's file
allocation tables (FATs). FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks. In contrast, the size
of subdirectories is limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Struc

ture OF MS-DOS: MS-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,
date and time stamps, and information that describes the file's size and physical location
on the disk (Figure 8-2). The fields are formatted as described in the following paragraphs.

Byte 0 OBH OCH 16H 18H lAH ICH IFH

Name Attribute (Reserved) Time Date Starting cluster File size

Figure 8-2. Format of a directory entry.

The name field (bytes O-OAH) contains an 11-byte name unless the first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section II: Programming in the MS-DOS Environment 281

Part B: Programming for MS-DOS

followed by a 3-byte extension), or an 11-byte volume label. Names less than 8 bytes and
extensions less than 3 bytes are padded to the right with blanks so that the extension al
ways appears in bytes 08-0AH of the name field. The first byte of the name field can con
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)
5 First character of name to be displayed as the character represented by 0E5H

(MS-DOS version 3.2)

0E5H Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly created directory. The name. (an ASCII period) is an alias for the name of
the current directory; the name.. (two ASCII periods) is an alias for the directory's parent
directory—that is, the directory in which the entry containing the name of the current
directory is found.

The attribute field (byte OBH) is an 8-bit field that describes the way MS-DOS processes
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri
bute of that directory entry; more than one of the bits can be set at a time.

Bit 7 6 5 4 3 2 1 0

(Reserved) (Reserved) Archive
Sub

directory
Volume

label
System file Hidden file Read-only

file

Figure 8-3- Format ofthe attributefield in a directory entry.

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function 3DH
(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory
searches—that is, in directory searches that do not specifically request that hidden entries
be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to
a file used by the operating system. Like the hidden bit, the system bit excludes a directory
entry from normal directory searches. The volume label bit (bit 3) is set to 1 to indicate that
the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when
the directory entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the current directory (.) and the parent
directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to. Simply opening and closing a file is not sufficient to update the
archive bit in the file's directory entry.

The time and date fields (bytes 16-17H and 18-19H) are initialized by MS-DOS when
the directory entry is created. These fields are updated whenever a file is written to. The
formats of these fields are shown in Figures 8-4 and 8-5.

282 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

Bit 15 10 4 0

Hours (0-23) Minutes (0-59)
2-second

increments (0-29)

Figure 8-4. Format of the timefield in a directory entry.

Bit 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5. Format of the date field in a directory entry.

The starting cluster field (bytes lA-lBH) indicates the disk location of the first cluster
assigned to the file. This cluster number can be used as an entry point to the file allocation
table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with
the aid of the information in the disk's BPB.)

For the. entry (the alias for the directory that contains the entry), the starting cluster field
contains the starting cluster number of the directory itself. For the.. entry (the alias for the
parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero.

The file size field (bytes IC-IFH) is a 32-bit integer that indicates the file size in bytes.

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape. In computer environments where many different volumes
might be used, the operating system can uniquely identify each volume by initializing it
with a volume label.

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of
directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc
tory entry, the name field contains an 11-byte string specifying a name for the disk volume.
A volume label can appear only in the root directory of a disk, and only one volume label
can be present on any given disk.

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch
to initialize a disk with a volume label. In versions 3 0 and later, the LABEL command can
be used to create, update, or delete a volume label. Several commands can display a disk's
volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section II: Programming in the MS-DOS Environment 283

Part B: Programming for MS-DOS

In MS-DOS versions 2.x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In MS-DOS versions 3.x, however, the
SHARE command examines a disk's volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation.
Removable disk volumes should therefore be assigned unique volume names if they are
to contain shared files.

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu
late directories and their contents (Table 8-1). The routines can be broadly grouped into
two categories: those that use a modified file control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions IIH, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for
MS-DOS: File and Record Management; SYSTEM CALLS: Interrupt 21h.

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interrupt 21H function is called. The calling program ini
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOS service routine in DS:DX. The functions that use pathnames expect all path
names to be in ASCIIZ format—that is, the last character of the name must be followed
by a zero byte.

Names in pathnames passed to Interrupt 21H fimctions can be separated by either a back
slash (\) or a forward slash (/). (The forward slash is the separator character used in path
names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS
and C:\ MSP\ SOURCEX ROSE.PAS are equivalent when passed to an Interrupt 21H ftmction.
The forward slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENIX. However, the MS-DOS comand processor (COMMAND.COM)
recognizes only the backslash as a pathname separator character, so forward slashes can
not be used as separators in the command line.

Table 8-1. MS-DOS Functions for Accessing Directories.

Function CaUWith Returns Comment

Find First File

Find Next File

AH=11H

DS:DX = pointer to

unopened FCB
INT21H

AH=12H

DS:DX = pointer to

unopened FCB
INT21H

AL = 0 (directory entry
found) or OFFH (not found)

DTA updated (if directory
entry found)

AL = 0 (directory entry
found) or OFFH (not found)

DTA updated (if directory
entry found)

If default not satisfac

tory, DTA must be

set before using
this function.

Use the same FCB

for Function IIH and

Function 12H.

(more)

284 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

Table 8-1. Continued.

Function CaUWith Returns Comment

Rename File AH=17H

DS:DX = pointer to

modified FCB

INT21H

AL = 0 (file renamed) or

OFFH (no directory entry
or duplicate filename)

Get File Size

Create Directory

AH = 23H

DS:DX = pointer to

unopened FCB
INT21H

AH = 39H

DS:DX = pointer to

ASCIIZ pathname
INT21H

AL = 0 (directory entry
found) or OFFH (not found)

FCB updated with number
of records in file

Carry flag set (if error)
AX = error code (if error)

Remove Directory AH = 3AH

DS:DX = pointer to

ASCIIZ pathname
INT21H

Carry flag set (if error)
AX = error code (if error)

Change Current
Directory

AH = 3BH

DS:DX = pointer to

ASCIIZ pathname
INT21H

Carry flag set (if error)
AX = error code (if error)

Get/Set File

Attributes

AH = 43H

AL = 0 (get attributes)
1 (set attributes)

CX = attributes (if AL = 1)

DS:DX = pointer to

ASCIIZ pathname
INT21H

Carry flag set (if error)
AX = error code (if error)

CX = attribute field from

directory entry (if called
with AL = 0)

Cannot be used to

modify the volume
label or subdirectory

bits.

Get Current

Directory

Find First File

AH = 47H

DS:SI = pointer to

64-byte buffer
DL = drive number

INT21H

AH = 4EH

DS:DX = pointer to

ASCIIZ pathname
(2X = file attributes to

match

INT21H

Carry flag set (if error)
AX = error code (if error)

Buffer updated with
pathname of current
directory

Carry flag set (if error)
AX = error code (if error)

DTA updated

If default not satisfac

tory, DTA must be
set before using
this function.

Find Next File AH = 4FH

INT21H

Carry flag set (if error)
AX = error code (if error)

DTA updated
(more)

Section II: Programming in the MS-DOS Environment 285

Part B: Programming for MS-DOS

Table 8-1. Continued.

Function CaUWith Returns Comment

Rename File AH = 56H

DS:DX = pointer to

ASCIIZ pathname

ES:DI = pointer to

new ASCIIZ pathname
INT 21H

Carry flag set (if error)
AX = error code (if error)

Get/Set Date/Time

of File

AH = 57H

AL = 0 (get date/time)
1 (set date/time)

BX = handle

CX = time(ifAL=l)

DX = date(ifAL=l)

INT21H

Carry flag set (if error)
AX = error code (if error)

CX = time(ifAL = 0)

DX = date(ifAL = 0)

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches. Functions IIH
and 12H use FCBs to transfer filenames to MS-DOS; these functions are available in all ver
sions of MS-DOS, but they cannot be used with pathnames. Functions 4EH and 4FH sup
port pathnames, but these functions are unavailable in MS-DOS versions 1.x. All four
functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked. When Function 12H or 4FH is used, the current DTA must
be the same as the DTA for the preceding call to Function IIH or 4EH.

The Interrupt 21H directory search functions are designed to be used in pairs. The Find
First File functions return the first matching directory entry in the current directory (Func
tion IIH) or in the specified directory (Function 4EH). The Find Next File functions
(Functions 12H and 4FH) can be called repeatedly after a successful call to the corre
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the name originally specified to the Find First File
function. A directory search can thus be summarized as follows:

call "find first file" function

while (matching directory entry returned)

call "find next file" function

Wildcard characters

This search strategy is used because name specifications can include the wildcard charac
ters ?, which matches any single character, and ♦ isee below). When one or more wildcard
characters appear in the name specified to one of the Find First File functions, only the
nonwildcard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOOl, F002, and so on; the specification
FOO?????.??? matches F004.COM, FOOBAR.EXE, and FOONEW.BAK, as well as FOOl and
F002; the specification ????????.TXT matches all files whose extension is .TXT; the speci
fication ????????.??? matches all files in the directory.

286 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character », which matches any remaining
characters in a filename or extension. MS-DOS expands the ♦ wildcard character inter
nally to question marks. Thus, for example, the specification FOG » is the same as
FOG?????; the specification FGG ».»is the same as FGG?????.???; and, of course, the spec
ification ** is the same as ????????.???.

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, although the format is different for the two pairs of functions:
Functions IIH and 12H return a copy of the 32-byte directory entry—including the cluster
number—in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number. See SYSTEM CALLS: Interrupt 21h: Function
4EH.

The attribute field of a directory entry can be examined using Function 43H (Get/Set File
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's
time or date. However, unlike the other functions discussed here. Function 57H is in
tended only for files that are being actively used within an application—that is. Function
57H can be called to examine the file's time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, or 5BH).

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directory entry. Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid
den or system files, subdirectories, and the volume label. Related Function 56H (Rename
File) also changes the name field of a filename but cannot rename a volume label or a hid
den or system file. However, it can be used to move a directory entry from one directory to
another. (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H.)

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time of File) can be used
to modify specific fields in a directory entry. Function 43H can mark a directory entry as a
hidden or system file, although it cannot modify the volume label or subdirectory bits.
Function 57H, as noted above, can be used only with a previously opened file; it provides
a way to read or update a file's time and date stamps without writing to the file itself.

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories—that is, directory
entries with the subdirectory bit set to 1. (Interrupt 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory. (The
subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 4lH, cannot be used to delete subdirectories.

Section II: Programming in the MS-DOS Environment 287

Part B: Programming for MS-DOS

Specifying the current directory

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the
current directory in use by MS-DOS to a user-supplied buffer. The converse operation, in
which a new current directory can be specified to MS-DOS, is performed by Function 3BH
(Change Current Directory).

Programming examples: Searching for files

The subroutines in Figure 8-6 below illustrate Functions 4EH and 4FH, which use path
specifications passed as ASCIIZ strings to search for files. Figure 8-7 applies these assem
bly-language subroutines in a simple C program that lists the attributes associated with
each entry in the current directory. Note how the directory search is performed in the
WHILE loop in Figure 8-7 by using a global wildcard file specification (».*) and by repeat
edly executing FindNextFileQ until no further matching filenames are found. {See Pro
gramming Example: Updating a Volume Label for examples of the FCB-related search
functions, IIH and 21H.)

TITLE •DIRS.ASM'

Subroutines for DIRDUMP.C

ARG1

ARG2

EQU [bp + 4]

EQU [bp + 6]

stack frame addressing for C arguments

-TEXT SEGMENT byte public 'CODE*

ASSUME cs:_TEXT

void SetOTA(OTA);

char *DTA;

-SetDTA

PUBLIC -SetDTA

PROC near

push bp

mov bp, sp

mov dx,ARG1 ; DS:DX -> DTA

mov ah,1 Ah ; AH = INT 21H function

int 21h ; pass DTA to MS-DOS

Figure 8-6. Subroutines illustrating Interrupt 21HFunctions 4EH and 4FH. (more)

288 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

pop

ret

bp

-SetDTA ENDP

int GetCurrentDir(*path);

char *path;

/* returns error code */

/* pointer to buffer to contain path */

PUBLIC -GetCurrentDir

-GetCurrentDir PROC near

push

mov

push

bp

bp, sp

si

mov

xor

mov

int

jc

si,ARG1

dl,dl

ah,47h

21h

L01

DS:SI -> buffer

DL = 0 (default drive number)

AH = INT 21H function number

call MS-DOS; AX = error code

jump if error

no error, return AX 0

L01 : pop

pop

ret

SI

bp

-GetCurrentDir ENDP

int FindFirstFile(path, attribute); /* returns error code */

char *path;

int attribute;

PUBLIC -FindFirstFile

—FindFirstFile PROC near

push

mov

bp

bp, sp

mov

mov

mov

int

jc

Figure 8-6. Continued.

dx,ARG1

cx,ARG2

ah,4Eh

21h

L02

DS:DX -> path

CX = attribute

AH = INT 21H function number

call MS-DOS; AX = error code

jump if error

(more)

Section II: Programming in the MS-DOS Environment 289

Part B: Programming for MS-DOS

L02: pop

ret

-FindFirstFile ENDP

bp

; no error, return AX = 0

int FindNextFile(); /* returns error code */

PUBLIC -FindNextFile

—FindNextFile PROG near

push

mov

mov

int

jc

bp

bp,sp

ah,4Fh

21h

L03

ax, ax

; AH = INT 21H function number

; call MS-DOS; AX = error code

; jump if error

; if no error, set AX = 0

L03: pop

ret

-FindNextFile ENDP

-TEXT ENDS

bp

-DATA

CurrentDir

DTA

-DATA

SEGMENT word public 'DATA'

DB

DB

ENDS

END

Figure 8-6. Continued.

64 dup(?)

64 dup(?)

290 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

/* DIRDUMP.C */

#define AllAttributes 0x3F

main()

{

/* bits set for all attributes */

static char CurrentDir[64];

int ErrorCode;

int FileCount = 0;

struct

{

char reserved[21];

char attrib;

int time;

int date;

long size;

char name[13];

} DTA;

/* display current directory name */

ErrorCode = GetCurrentDir(CurrentDir);

if(ErrorCode)

{

printf ("\nError %d: GetCurrentDir", ErrorCode);

exit (1);

printf ("\nCurrent directory is \\%s", CurrentDir);

/* display files and attributes */

SetDTA(&DTA); /* pass DTA to MS-DOS */

ErrorCode = FindFirstFile(AllAttributes);

while(!ErrorCode)

{

printf("\n%12s — DTA.name);

ShowAttributes(DTA.attrib);

++FileCount;

ErrorCode = FindNextFile();

}

/* display file count and exit */

printf ("\nCurrent directory contains %d filesXn", FileCount);

return (0);

Figure 8-7. The complete DIRDUMP.C program. (more)

Section II: Programming in the MS-DOS Environment 291

Part B: Programming for MS-DOS

ShowAttributes(a

int a;

int

int

i;

mask = 1;

static char *AttribName[] =

{

"read-only

"hidden ",

"system ",

"volume ",

"subdirectory ",

"archive "

};

for(i=0; i<6; i++)

{

if(a & mask)

printf(AttribName[i]);

mask = mask << 1;

}

/* test each attribute bit */

/* display a message if bit is set */

Figures-?. Continued.

Programming example: Updating a volume label

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to
search for, rename, create, or delete a volume label in MS-DOS versions 2.0 and later.

TITLE 'VOLS.ASM'

C-callable routines for manipulating MS-DOS volume labels.

Note: These routines modify the current OTA address.

ARG1

DGROUP

-TEXT

EQU

GROUP

[bp + 4]

-DATA

stack frame addressing

SEGMENT byte public 'CODE'

ASSUME cs:-TEXT,ds:DGROUP

Figure 8-8. Subroutines for manipulating volume labels. (more)

292 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

char *GetVolLabel0; /* returns pointer to volume label name */

-GetVolLabel

PUBLIC -GetVolLabel

FROG near

push bp

mov bp,sp

push si

push di

call SetDTA ; pass DTA address to MS-DOS

mov dx,offset DGROUP:ExtendedFCB

mov ah,11h ; AH = INT 21H function number

int 21h ; Search for First Entry

test al,al

jnz L01

; label found so make a copy

mov si,offset DGROUP:DTA + 8

mov di,offset DGROUPiVolLabel

call CopyName

mov ax,offset DGROUP:VolLabel ; return the copy's address

jmp short L02

L01 :

L02: pop

pop

pop

ret

di

si

bp

no label, return 0 (null pointer)

-GetVolLabel

int RenameVolLabel(label);

char *label;

/* returns error code */

/* pointer to new volume label name */

PUBLIC -RenameVolLabel

—RenameVolLabel PROC near

push bp

mov bp,sp

push si

push di

Figure 8-8. Continued. (more)

Section 11: Programming in the MS-DOS Environment 293

Part B: Programming for MS-DOS

mov si,offset DGROUP:VolLabel ; DS:SI -> old volume name

mov di,offset DGROUP:Name1

call CopyName ; copy old name to FCB

mov si,ARG1

mov di,offset DGROUP:Name2

call CopyName ; copy new name into FCB

mov dx,offset DGROUP:ExtendedFCB ; DS:DX -> FCB

mov ah,17h ; AH = INT 21H function number

int 21h ; rename

xor ah,ah ; AX = OOH (success) or OFFH (failure)

pop

pop

pop

ret

di

si

bp

; restore registers and return

-RenameVolLabel ENDP

int NewVolLabel(label) ;

char *label;

/* returns error code */

/* pointer to new volume label name */

—NewVolLabel

PUBLIC -NewVolLabel

PROC near

push

mov

push

push

bp

bp, sp

si

di

mov si,ARG1

mov di,offset DGROUP:Name1

call CopyName ; copy new name to FCB

mov

mov

int

xor

dx,offset DGROUP:ExtendedFCB

ah,16h

21h

ah, ah

; AH = INT 21H function number

; create directory entry

; AX = OOH (success) or OFFH (failure)

pop

pop

pop

ret

di

si

bp

; restore registers and return

-NewVolLabel ENDP

Figure 8-8. Continued. (more)

294 The MS-DOS Encyclopedia

Article 8: Disk Directories and Volume Labels

int DeleteVolLabel(); /* returns error code */

PUBLIC _DeleteVolLabel

—DeleteVolLabel FROG near

push bp

mov bp,sp

push si

push di

mov si,offset DGROUP:VolLabel

mov di,offset DGROUP:Name1

call CopyName ; copy current volume name to FOB

mov dx,offset DGROUP:ExtendedFCB

mov ah,13h ; AH = INT 21H function number

int 21h ; delete directory entry

xor ah,ah ; AX = OOH (success) or OFFH (failure)

pop

pop

pop

ret

di

si

bp

; restore registers and return

—DeleteVolLabel ENDP

miscellaneous subroutines

SetDTA PROG

push

push

ax

dx

; preserve registers used

mov

mov

int

dx,offset DGROUP:DTA ; DS:DX -> DTA

ah,1Ah

21h

; AH = INT 21H function number

; set DTA

pop

pop

ret

dx

ax

; restore registers and return

SetDTA ENDP

Figure 8-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 295

Part B: Programming for MS-DOS

CopyName

L11 :

L12:

CopyName

-TEXT

PROC

push

pop

mov

lodsb

test

jz

stosb

loop

mov

rep

ret

END?

ENDS

ds

es

cx, 11

al, al

L12

L11

al,' •

stosb

Caller: SI -> ASCIIZ source

DI -> destination

ES = DGROUP

length of name field

copy new name into FCB ..

.. until null character is reached

pad new name with blanks

-DATA

VolLabel

ExtendedFCB

Namel

Name 2

SEGMENT word public 'DATA'

DB 11 dup(0),0

DB

DB

DB

DB

DB

DB

DB

DB

DTA DB

-DATA ENDS

END

Figure 8-8. Continued.

OFFh

5 dup(0)

1000b

0

11 dupC?')

5 dup(O)

11 dup(O)

9 dup(O)

64 dup(O)

must be OFFH for extended FCB

(reserved)

attribute byte (bit 3=1)

default drive ID

global wildcard name

(unused)

second name (for renaming entry)

(unused)

Richard Wilton

296 The MS-DOS Encyclopedia

Article 9: Memory Management

Article 9

Memory Management

Personal computers that are MS-DOS compatible can be outfitted with as many as three
kinds of random-access memory (RAM): conventional memory, expanded memory, and
extended memory.

All MS-DOS machines have at least some conventional memory, but the presence of ex
panded or extended memory depends on the installed hardware options and the model of
microprocessor on which the computer is based. Each storage class has its own capabil
ities, characteristics, and limitations. Each also has its own management techniques, which
are the subject of this chapter.

Conventional Memory

Conventional memory is the term for the up to 1 MB of memory that is directly addressable
by an Intel 8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in
real mode (8086-emulation mode). Physical addresses for references to conventional
memory are generated by a l6-bit segment register, which acts as a base register and holds
a paragraph address, combined with a l6-bit offset contained in an index register or in the
instruction being executed.

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
the bottom 640 KB or less of the conventional memory space. The memory space above
the 640 KB mark is partitioned among ROM (read-only memory) chips on the system
board that contain various primitive device handlers and test programs and among RAM
and ROM chips on expansion boards that are used for input and output buffers and for ad
ditional device-dependent routines.

The bottom 640 KB of memory administered by MS-DOS is divided into three zones
(Figure 9-1):

• The interrupt vector table
• The operating system area
• The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000-
003FFH); its address and length are hard-wired into the processor and cannot be changed.
Each doubleword position in the table is called an interrupt vector and contains the seg
ment and offset of an interrupt handler routine for the associated hardware or software in
terrupt number. Interrupt handler routines are usually built into the operating system.

Section II: Programming in the MS-DOS Environment 297

Part B: Programming for MS-DOS

ROM BIOS

additional ROM code

on expansion boards,

memory-mapped I/O

buffers

100000H(1 MB)

Transient

program area

MS-DOS and

its buffers, tables,

and device drivers

Interrupt vector table

A0000H(640KB)

Boundary varies

00400H(1KB)

OOOOOH

Figure 9-1. A diagram showing conventional memory in an IBM PC-compatible MS-DOS system. The bottom
1024 bytes of memory are usedfor the interrupt vector table. The memory above the vector table, up to the 640
KB boundary, is availablefor use by MS-DOS and the programs that run under its control. The top 384 KB are
usedfor the ROM BIOS, other device-control and diagnostic routines, and memory-mapped input and output.

but in Special cases application programs can contain handler routines of their own.
Vectors for interrupt numbers that are not used for software linkages or by some hardware
device are usually initialized by the operating system to point to a simple interrupt return
(IRET) instruction or to a routine that displays an error message.

The operating-system area begins immediately above the interrupt vector table and
holds the operating system proper, its tables and buffers, any additional installable device
drivers specified in the CONFIG.SYS file, and the resident portion of the COMMAND.COM
command interpreter. The amount of memory occupied by the operating-system area
varies with the version of MS-DOS being used, the number of disk buffers, and the number
and size of installed device drivers.

The transient program area (TPA) is the remainder of RAM above the operating-system
area, extending to the 640 KB limit or to the end of installed RAM (whichever is smaller).
External MS-DOS commands (such as CHKDSK) and other programs are loaded into the
TPA for execution. The transient portion of COMMAND.COM also runs in this area.

The TPA is organized into a structure called the memory arena, which is divided into por
tions called arena entries (or memory blocks). These entries are allocated in paragraph
(16-byte) multiples and can be as small as one paragraph or as large as the entire TPA.
Each arena entry is preceded by a control structure called an arena entry header, which
contains information indicating the size and status of the arena entry.

298 The MS-DOS Encyclopedia

Article 9: Memory Management

MS-DOS inspects the arena entry headers whenever a function requesting a memory-
block allocation, modification, or release is issued; when a program is loaded and exe
cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to
the calling process. If that process is COMMAND.COM, COMMAND.COM then displays
the message Memory allocation error and halts the system.

MS-DOS support for conventional memory management

The MS-DOS kernel supports three memory-management functions, invoked with Inter
rupt 21H, that operate on the TEA:

• Function 48H (Allocate Memory Block)
• Function 49H (Free Memory Block)
• Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command
processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries
as they are needed. See SYSTEM CALLS: Interrupt 21h: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-Management Functions.

Function Name Call With Returns

Allocate Memory Block

Free Memory Block

Resize (Allocated)

Memory Block

Get/Set Allocation

Strategy*

AH = 48H

BX = paragraphs needed

AH = 49H

FS = segment of block to
release

AH = 4AH

BX = new size of block in

paragraphs
FS = segment of block to

resize

AH = 58H

AL = OOH (get strategy)
OIH (set strategy)

If setting:
BX = strategy:

OOH = first fit

OIH = best fit

02H = last fit

AX = segment of allocated
block

If failed:

BX = size of largest available
block in paragraphs

nothing

If failed:

BX = maximum size

for block in paragraphs

If getting:
AX = strategy code

• MS-DOS versions 3.x only.

Section II: Programming in the MS-DOS Environment 299

Part B: Programming for MS-DOS

When the MS-DOS kernel receives a memory-allocation request, it inspects the chain of
arena entry headers to find a free arena entry that can satisfy the request. The memory
manager can use any of three allocation strategies:

• First fit-the arena entry at the lowest address that is large enough to satisfy the
request

• Best fit-the smallest available arena entry that satisfies the request, regardless of its
position

• Last fit-the arena entry at the highest address that is large enough to satisfy the
request

If the arena entry selected is larger than the size needed to fulfill the request, the arena
entry is divided and the program is given an arena entry exactly the size it requires. A new
arena entry header is then created for the remaining portion of the original arena entry; it
is marked "unowned" and can be used to satisfy subsequent allocation calls.

Research on allocation strategies has demonstrated that the first-fit approach is most
efficient, and this is the default strategy used by MS-DOS. However, in MS-DOS versions
3.0 and later, an application program can select a different strategy for the memory man
ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS:
Interrupt 21h: Function 58H.

Using the memory-management functions

When a program begins executing, it already owns two arena entries allocated on its
behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). The first entry holds
the program's environment and is just large enough to contain this information; the second
entry (called the program block in this article) contains the program's PSP, code, data, and
stack.

The amount of memory MS-DOS allocates to the program block for a newly loaded tran
sient program depends on its type (.COM or .EXE). Under typical conditions, a .COM pro
gram is allocated all of the first arena entry that is large enough to hold the contents of its
file, plus 256 bytes for the PSP and at least 2 bytes for the stack. Because the TP A is seldom
fragmented into more than one arena entry before a program is loaded, a .COM program
usually ends up owning all the memory in the system that does not belong to the operat
ing system itself—memory divided between a relatively small environment and a com
paratively immense program block.

The amount of memory allocated to a .EXE program, on the other hand, is controlled
by two fields called MINALLOC and MAXALLOC in the .EXE program file header. The
MINALLOC field tells the MS-DOS loader how many paragraphs of memory, in addition to
the memory required to hold the initialized code and the data present in the file, must be
available for the program to execute at all. The MAXALLOC field contains the maximum
number of excess paragraphs, ifavailable, to allocate to the program.

300 The MS-DOS Encyclopedia

Article 9: Memory Management

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para
graphs, corresponding to 1 MB. Consequently, a .EXE program is typically allocated all of
available memory when it is loaded, as is a .COM file. Although it is possible to set the
MAXALLOC field to other, smaller values with the linker's /CPARMAXALLOC switch or
with the EXEMOD utility supplied with Microsoft language compilers, few programmers
bother to do so.

In short, when a program begins executing, it usually owns all of available memory—
frequently much more memory than it needs. If the program wants to be well behaved in
its use of memory and, possibly, load child programs as well, it should immediately release
any extra memory. In assembly-language programs, the extra memory is released by call
ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program's
PS? in the ES register and the number of paragraphs of memory to retain for the program's
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as
Microsoft C, excess memory is released by the run-time library's startup module.

—TEXT segment para public 'CODE'

org lOOh

assume cs:_TEXT,ds:_TEXT, es:_TEXT,ss TEXT

main proc near ; entry point from MS-DOS

; CS = DS = ES = SS = PSP

mov

mov

shr

inc

mov

int

c

endp

sp,offset stk

bx,offset stk

cl, 4

bx, cl

bx

ah,4ah

21h

error

; first move our stack

; to a safe place...

; now release extra memory...

; calculate paragraphs to keep

; (divide offset of end of

; program by 16 and round up)

; Fxn 4AH = resize mem block

; transfer to MS-DOS

; jump if resize failed

; otherwise go on with work...

(more)

Figure 9-2. An example ofa .COM program releasing excess memory after it receives control from MS-DOS.
Interrupt 21H Function 4AH is called with the segment address of the program's PSP in register ES and the
number of paragraphs of memory to retain in register BX.

Section II: Programming in the MS-DOS Environment 301

Part B: Programming for MS-DOS

dw

equstk

_TEXT ends

end ma:

Figure 9-2. Continued.

64 dup (?)

$ base of new stack area

defines program entry point

_TEXT segment word public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

farproc ; entry point from MS-DOS

mov

mov

mov

mov

sub

add

inc

mov

int

jc

ax,—DATA

ds, ax

ax, es

bx, ss

bx,ax

bx,stksize/1(

bx

ah,4ah

21h

error

; CS = -TEXT segment,

; DS = ES = PSP

; set DS = our data segment

give back extra memory...

let AX = segment of PSP base

and BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack

round up

Fxn 4AH = resize memory block

transfer to MS-DOS

jump if resize failed

main endp

—TEXT ends

—DATA segment word public 'DATA' static & variable data

—DATA ends

(more)

Figure 9-3. An example of a .EXE program releasing excess memory after it receives control from MS-DOS.
This particular code sequence depends on the segment order shown. When a .EXEprogram is linked from
many different object modules, other techniques may be needed to determine the amount of memory occupied
by the program at run time.

302 The MS-DOS Encyclopedia

Article 9: Memory Management

STACK segment para stack 'STACK*

db stksize dup (?)

STACK ends

end mai

Figure 9-3- Continued.

; defines program entry point

Later, if the transient program needs additional memory for a buffer, table, or other work
area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired
number of paragraphs. If a sufficiently large block of memory is available, MS-DOS creates
a new arena entry of the requested size and returns a pointer to its base in the form of a
segment address in the AX register. If an arena entry of the requested size cannot be cre
ated, MS-DOS returns an error code in the AX register and the size in paragraphs of the
largest available block of memory in the BX register. The application program can inspect
this value to determine whether it can continue in a degraded fashion with a smaller
amount of memory.

When a program finishes using an allocated arena entry, it should promptly call Interrupt
21H Function 49H to release it. This allows MS-DOS to collect small blocks of freed mem

ory into contiguous arena entries and reduces the chance that future allocation requests by
the same program will fail because of memory fragmentation. In any case, all arena entries
owned by a program are released when the program terminates with Interrupt 20H or
with Interrupt 21H Function OOH or 4CH.

A program skeleton demonstrating the use of dynamic memory allocation services is
shown in Figure 9-4.

mov bx,800h ; 800H paragraphs = 32 KB

mov ah,48h ; Fxn 48H = allocate block

int 21h ; transfer to MS-DOS

jc error ; jump if allocation failed

mov bufseg,ax ; save segment of block

; open working file...

mov dx,offset filel ; DS:DX = filename address

mov ax,3d00h ; Fxn 3DH = open, read only

int 21h ; transfer to MS-DOS

jc error ; jump if open failed

mov handlel, ax ; save handle for work file

(more)

Figure 9-4. A skeleton example ofdynamic memory allocation. The program requests a 32 KB memory block,
uses it to copy its working file to a backup file, and then releases the memory block. Note the use of ASSUME
directives toforce the assembler to generate proper segment overrides on references to variables containingfile
handles.

Section II: Programming in the MS-DOS Environment 303

Part B: Programming for MS-DOS

create backup file...

mov dx,offset file? DS:DX = filename address

mov cx, 0 CX = attribute (normal)

mov ah,3ch Fxn 3CH = create file

int 21h transfer to MS-DOS

jc error jump if create failed

mov handle?,ax save handle for backup file

push ds ,; set ES = our data segment

pop es

mov ds,bufseg : set DS:DX = allocated block

xbr dx,dx

assume ds:NOTHING,es:-DATA tell assembler

next-:

mov

mov

mov

int

jc

or

jz

mov

mov

mov

int

jc

cmp

jne

jmp

bx,handle1

cx,8000h

ah,3fh

21h

error

ax, ax

done

cx, ax

bx,handle2

ah,40h

21h

error

ax, cx

error

next

read working file...

handle for work file

try to read 32 KB

Fxn 3FH = read

transfer to MS-DOS

jump if read failed

was end of file reached?

yes, exit this loop

now write backup file...

set write length = read length

handle for backup file

Fxn 40H = write

transfer to MS-DOS

jump if write failed

was write complete?

no, disk must be full

transfer another record

done: push

pop

es

ds

restore DS = data segment

assume ds:—DATA,es:NOTHING tell assembler

mov

mov

int

jc

mov

mov

int

jc

es,bufseg

ah,49h

21h

error

bx,handle?

ah,3eh

21h

error

release allocated block,

segment base of block

Fxn 49H = release block

transfer to MS-DOS

(should never fail)

now close backup file...

handle for backup file

Fxn 3EH = close

transfer to MS-DOS

jump if close failed

Figure 9-4. Continued. (more)

304 The MS-DOS Encyclopedia

Article 9: Memory Management

filel db •MYFILE.DAT',0 ; name of working file

file2 db •MYFILE.BAK',0 ; name of backup file

handlel dw 7 ; handle for working file

handle2 dw 7 ; handle for backup file

bufseg dw 7 ; segment of allocated block

Figure 9-4. Continued.

Expanded Memory

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint
effort of Lotus Development Corporation and Intel Corporation and was announced at the
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica
tions running on 8086/8088-based personal computers, or on 80286/80386-based com
puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing
such programs with much larger amounts of fast random-access storage. The EMS version
3.2, modified from 3.0 to add support for multitasking operating systems, was released
shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMS is a functional definition of a bank-switched memory subsystem; it consists of
user-installable boards that plug into the IBM PC's expansion bus and a resident driver pro
gram called the Expanded Memory Manager (EMM) that is provided by the board manu
facturer. As much as 8 MB of expanded memory can be installed in a single machine.
Expanded memory is made available to application software in 16 KB pages, which are
mapped by the EMM into a contiguous 64 KB area called the page frame somewhere
above the conventional memory area used by MS-DOS (0-640 KB). An application pro
gram can thus access as many as four l6 KB expanded memory pages simultaneously. The
location of the page frame is user configurable so that it will not conflict with other hard
ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Manager provides a hardware-independent interface between
application programs and the expanded memory board(s). The EMM is supplied by the
board manufacturer in the form of an installable character-device driver and is linked into

MS-DOS by a DEVICE directive added to the CONFIG.SYS file on the system startup disk.

Internally, the EMM is divided into two distinct components that can be referred to as the
driver and the manager. The driver portion mimics some of the actions of a genuine in
stallable device driver, in that it includes Initialization and Output Status subfunctions and
a valid device header. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customiz

ing MS-DOS: Installable Device Drivers.

Section II: Programming in the MS-DOS Environment 305

Part B: Programming for MS-DOS

Expanded memory

Conventional memory
1MB

EMS page frame
(four 16 KB pages){

640 KB

00400H

0

ROM BIOS etc.

Transient program area

MS-DOS

Interrupt vector table

8MB

Figure 9-5. A sketch ofthe relationship ofexpanded memory to conventional memory; 16 KB pages of
expanded memory are mapped into a 64 KB area, called the page frame, above the 640KB boundary. The
location of the page frame can be configured by the user to eliminate conflicts with ROMs or I/O buffers on
expansion boards.

The second, and major, element of the EMM is the true interface between application soft
ware and the expanded memory hardware. Several classes of services provide

• Status of the expanded memory subsystem
• Allocation of expanded memory pages
• Mapping of logical pages into physical memory
• Deallocation of expanded memory pages
• Support for multitasking operating systems
• Diagnostic routines

Application programs communicate with the EMM directly by means of a software inter
rupt (Interrupt 67H). The MS-DOS kernel does not take part in expanded memory
manipulations and does not use expanded memory for its own purposes.

306 The MS-DOS Encyclopedia

Article 9: Memory Management

Checking for expanded memory

Before it attempts to use expanded memory for storage, an application program must
establish that the EMM is present and functional, and then it must use the manager portion
of the EMM to check the status of the memory boards themselves. There are two methods
a program can use to test for the existence of the EMM.

The first method is to issue an Open File or Device request (Interrupt 21H Function 3DH)
using the guaranteed device name of the EMM driver: EMMXXXXO. If the open operation
succeeds, one of two conditions is indicated—either the driver is present or a file with the
same name exists in the current directory of the default disk drive. To rule out the latter
possibility, the application can issue lOCTL Get Device Information (Interrupt 21H Func
tion 44H Subfunction OOH) and Check Output Status (Interrupt 21H Function 44H Subfunc-
tion 07H) requests to determine whether the handle returned by the open operation is
associated with a file or with a device. In either case, the handle that was obtained from
the open function should then be closed (Interrupt 21H Function 3EH) so that it can be
reused for another file or device.

The second method of testing for the driver is to use the address that is found in the vector
for Interrupt 67H to inspect the device header of the presumed EMM. (The contents of
the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is
present, the name field at offset OAH of the device header contains the string EMMXXXXO.
This method is nearly foolproof, and it avoids the relatively high overhead of an MS-DOS
open function. However, it is somewhat less well behaved because it involves inspection
of memory that does not belong to the application.

The two methods of testing for the existence of the EMM are illustrated in Figures 9-6 and
9-7.

; attempt to "open" EMM..

mov dx,seg emm_name ; DS:DX = address of name

mov ds,dx ; of EMM

mov dx,offset emm_name

mov ax,3d00h ; Fxn 3DH, Mode = OOH

= open, read-only

int 21 h transfer to MS-DOS

jc error ; jump if open failed

; open succeeded, make sure

; it was not a file...

(more)

Figure 9-6. Testingfor the presence of the Expanded Memory Manager with the MS-DOS Open File or Device
(Interrupt 21HFunction 3DH) and lOCTL (Interrupt 21HFunction 44H)functions.

Section II: Programming in the MS-DOS Environment 307

Part B: Programming for MS-DOS

mov

mov

int

jc

and

jz

bx, ax

ax,4400h

21h

error

dx,80h

error

BX = handle from open

Fxn 44H Subfxn OOH

= lOCTL Get Device Information

transfer to MS-DOS

jump if lOCTL call failed

Bit 7 = 1 if character device

jump if it was a file

int

jc

or

jz

ax,4407h

21h

error

al, al

error

EMM is "present, make sure

it is available...

(BX still contains handle)

Fxn 44H Subfxn 07H

= lOCTL Get Output Status

transfer to MS-DOS

jump if lOCTL call failed

test device status

if AL = 0 EMM is not available

mov

int

jc

ah,3eh

21h

error

now close handle ...

(BX still contains handle)

Fxn 3EH = Close

transfer to MS-DOS

jump if close failed

emm_name db 'EMMXXXXO',0 ; guaranteed device name for EMM

Figure 9-6. Continued.

emm_int equ 67h ; EMM software interrupt

mov

mov

int

al,emm_int

ah,35h

21h

first fetch contents of

EMM interrupt vector...

AL = EMM int number

Fxn 35H = get vector

transfer to MS-DOS

now ES:BX = handler address

assume ESiOOOO points

to base of the EMM...

(more)

Figure 9- 7. Testing for the presence of the Expanded Memory Manager by inspecting the namefield in the
device driver header.

308 The MS-DOS Encyclopedia

Article 9: Memory Management

mov di,10 ES:DI = address of name

field in device header

mov si,seg emm_name ; DS:SI = address of

mov ds,si ; expected EMM driver name

mov si,offset emm_name

mov cx, 8 ; length of name field

eld

repz cmpsb ; compare names...

jnz error ; jump if driver absent

emm_name db 'EMMXXXXO' ; guaranteed device name for EMM

Figure 9-7. Continued.

Using expanded memory

After establishing that the EMM is present, the application program can bypass MS-DOS
and communicate with the EMM directly by means of software Interrupt 67H. The calling
sequence is as follows:

ah,function AH selects EMM function

int 67h

Load other registers with

values specific to the

requested service

Transfer to EMM

In general, the ESrDI registers are used to pass the address of a buffer or an array, and the
DX register is used to hold an expanded memory "handle." Some EMM functions also use
other registers (chiefly AL and BX) to pass such information as logical and physical page
numbers. Table 9-2 summarizes the services available from the EMM.

Upon return from an EMM function call, the AH register contains zero if the function was
successful; otherwise, AH contains an error code with the most significant bit set (Table
9-3). Other values are typically returned in the AL and BX registers or in a user-specified
buffer.

Section II: Programming in the MS-DOS Environment 309

Uo
h-1

O

I

C/5

I
a-

Table 9-2. Summary of the Software Interface to Application Programs Provided by the EMM.*

Function

Name

Allocate

Expanded

Memory

Map Memory

Action

CaU

With Returns Comments

Get Manager

Status

Get Page

Frame Segment

Get Expanded
Memory Pages

Test whether the

expanded memory
software and hardware

are functional.

Obtain the segment

address of the EMM page
frame.

Obtain the number

of logical expanded
memory pages present

in the system and the

number of pages that are
not already allocated.

Obtain an EMM handle

and allocate logical

pages to be controlled by
that handle.

Map one of the logical
pages of expanded
memory assigned to a
handle onto one of the

four physical pages
within the EMM's page

frame.

AH = 40H

AH = 41H

AH = 42H

AH = 43H

BX = logical pages

to allocate

AH = status

AH = status

BX = segment of page
frame, if AH = OOH

AH = status

BX = unallocated EMM

pages, if AH = OOH
DX = total EMM pages in

system

AH = status

DX = handle, if AH =

OOH

AH = 44H

AL = physical page

(0-3)

BX = logical page
(0...W-1)

DX = EMM handle

AH = status

This call is used after the program has established, with
one of the techniques presented in Figures 9-6 and 9-7,
that the EMM is present.

The page frame is divided into four l6 KB pages that are
used to map logical expanded memory pages into the
physical memory space of the 8086/8088 processor.

The application need not have already acquired an EMM
handle to use this function.

This function is equivalent to a file-open function for the
EMM. The handle returned is analogous to a file handle
and owns a certain number of EMM pages. The handle
must be used with every subsequent request to map
memory and must be released by a close operation when
the application is finished.

This function can fail because either the available EMM

handles or the EMM pages have been exhausted.
Function 42H can be called by the application to
determine the actual number of pages available.

The logical page number must be in the range 0- w-1,
where n is the number of logical pages previously
allocated to the EMM handle with Function 43H.

To access the memory after it has been mapped to a
physical page, the application also needs the segment of
the EMM's page frame, which can be obtained with
Function 4lH.

Release Handle

and Memory
Deallocate the logical
pages of expanded
memory currently
assigned to a handle
and then release the

handle itself for reuse.

AH = 45H

DX = EMM handle

AH = status This function is the equivalent of a close operation on
a file. It notifies the EMM that the application will not be
making further use of the data it may have stored within
expanded memory pages.

Get EMM

Version

Return the version

number of the EMM

software.

AH = 46H AH = status The returned value is the version of the EMM with which

AL = EMM version, the driver complies. The version number is encoded as
if AH = OOH BCD, with the integer part in the upper 4 bits and the

fractional part in the lower 4 bits.

Save Mapping

Context

cS

§
J'
Oq

to

2

2
s

Restore

Mapping

Context

Get Number of

EMM Handles

Get Pages

Owned by
Handle

Save the contents of the

expanded memory page-
mapping roisters on

the expanded memory
boards, associating those
contents with a specific
EMM handle.

Restore the contents

of all expanded memory
hardware page-mapping
roisters to the values
associated with the given
handle.

Return the number of

active EMM handles.

Return the number

of logical expanded
memory pages allocated
to a specific handle.

AH = 47H

DX = EMM handle

AH = status

AH = 48H

DX = EMM handle

AH = status

AH = 4BH

AH = 4CH

DX = EMM handle

AH = status

BX= number of EMM

handles, if AH =

OOH

AH = status

BX = logical pages,
ifAH = OOH

This function is designed for use by interrupt handlers
and resident drivers or utilities that must access expanded
memory. The handle supplied to the function is the
handle that was assigned to the interrupt handler during
its initialization sequence, not to the program that was
interrupted.

Use of this function must be balanced by a previous call
to EMM Function 47H. It allows an interrupt handler or a
resident driver that used expanded memory to restore the
mapping context to its state at the point of interruption.

If the number of handles returned is zero, none of the

expanded memory is in use. The number of active EMM
handles never exceeds 255.

A single program can make several allocation requests
and therefore own several EMM handles.

The number of pages returned if the function is success
ful is always in the range 1-512. An EMM handle never
has zero pages of memory allocated to it.

*EMM Functions 49H and 4AH (not listed) were defined in EMS version 3.0 and are "reserved" in later EMS versions.

(more)

uo
I—»

N)

I

i
g
§■
t

Table 9-2. Continued.

1
I

Function

Name

Get Pages for
All Handles

Get/Set
Page Map

Action

CaU
With Returns Comments

Return an array that
contains all the active
handles and the number
of logical expanded
memory pages associ
ated with each handle.

Save or set the contents
of the EMM page-
mapping registers on the
expanded memory
boards.

AH = 4DH
DI = offset of array

to receive

information
ES = array s^ment

AH = 4EH
AL = subfunction

number
DS:SI = array

holding
mapping
information
(Subfunc-
tions

OIH, 02H)
ES:DI = array to

receive informa
tion (Subfunc-
tionsOOH, 02H)

AH = status

BX = number of active
EMM handles

IfAH = OOH, array is
filled in as described in
comments column

AH = status

AL = bytes in page-
mapping array
(Subfunction 03H)

Array pointed to by
ES:DI receives mapping
information for Sub-
functions OOH and 02H

The array is filled in with doubleword entries. The first
word of each entry contains a handle; the second word
contains the number of pages associated with that handle.
The value returned in BX gives the number of valid
doubleword entries in the array.

Because 255 is the maximum number of EMM handles,
the array need not be larger than 1020 bytes.

Subfunctions:
OOH = get mapping registers into array
OIH = set mapping registers from array
02H = get and set mapping registers in one operation
03H = return needed size of page-mapping array

This function was added in EMM version 3.2 and is
designed to support multitasking. It should not ordinarily
be used by application programs.

The content of the array is hardware and EMM software
dependent. In addition to the contents of the page-
mapping registers, it may contain other information that
is necessary to restore the expanded memory subsystem
to its previous state.

8

Article 9: Memory Management

Table 9-3. The Expanded Memory Manager (EMM) Error Codes.

Error Code Significance

OOH Function was successful.

80H' Internal error in the EMM software. Possible causes include an error in the

driver itself or damage to its memory image.
81H Malfunction in the expanded memory hardware.
82H EMM is busy.
83H Invalid expanded memory handle.
84H Function requested by the application is not supported by the EMM.
85H No more expanded memory handles available.
86H Error in save or restore of mapping context.
87H Allocation request specified more logical pages than are available in the

system; no pages were allocated.
88H Allocation request specified more logical pages than are currently avail

able in the system (the request does not exceed the physical pages that
exist, but some are already allocated to other handles); no pages were
allocated.

89H Zero pages cannot be allocated.
8AH Logical page requested for mapping is outside the range of pages assigned

to the handle.

8BH Illegal physical page number in mapping request (not in the range 0-3).
8CH Save area for mapping contexts is full.
8DH Save of mapping context failed because save area already contains a con

text associated with the requested handle.
8EH Restore of mapping context failed because save area does not contain a

context for the requested handle.
8FH Subfunction parameter not defined.

An application program that uses expanded memory should regard that memory as a
system resource, such as a file or a device, and use only the documented EMM services to
allocate, access, and release expanded memory pages. Here is the general strategy that
can be used by such a program:

1. Establish the presence of the EMM by one of the two methods demonstrated in
Figures 9-6 and 9-7.

2. After the driver is known to be present, check its operational status with EMM
Function 40H.

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser

vices the application will request are available.
4. Obtain the segment of the page frame used by the EMM with EMM Function 41H.
5. Allocate the desired number of expanded memory pages with EMM Function 43H. If

the allocation is successful, the EMM returns a handle in DX that is used by the appli
cation to refer to the expanded memory pages it owns. This step is exactly analogous

Section II: Programming in the MS-DOS Environment 313

Part B: Programming for MS-DOS

to opening a file and using the handle obtained from the open function for subse
quent read/write operations on the file.

6. If the requested number of pages is not available, query the EMM for the actual num
ber of pages available (EMM Function 42H) and determine whether the program can
continue.

7. After successfully allocating the number of expanded memory pages needed, use
EMM Function 44H to map logical pages in and out of the physical page frame, to store
and retrieve data in expanded memory.

8. When finished using the expanded memory pages, release them by calling EMM
Function 45H. Otherwise, the pages will not be available for use by other programs
until the system is restarted.

A program skeleton that illustrates this general approach to the use of expanded memory
is shown in Figure 9-8.

mov ah,40h ; test EMM status

int 67h

or ah, ah

jnz error ; jump if bad status from EMM

mov ah,46h ; check EMM version

int 67h

or ah, ah

jnz error ; jump if couldn't get version

cmp al,30h ; make sure at least ver. 3.0

jb error ; jump if wrong EMM version

mov ah,41h ; get page frame segment

int 67h

or ah, ah

jnz error ; jump if failed to get frame

mov page_frame,bx ; save segment of page frame

mov ah,42h ; get no. of available pages

int 67h

or ah, ah

jnz error ; jump if get pages error

mov total—pages,dx ; save total EMM pages

mov avail—pages,bx ; save available EMM pages

or bx, bx

jz error ; abort if no pages available

mov ah,43h ; try to allocate EMM pages

(more)

Figure 9-8. A program skeleton for the use of expanded memory. This code assumes that the presence ofthe
Expanded Memory Manager has already been verified with one of the techniques shown in Figures 9-6
and 9-7.

314 The MS-DOS Encyclopedia

Article 9: Memory Management

mov bx,needed—pages

int 67h

or ah,ah

jnz error

mov emm_handle, dx

if allocation is successful

jump if allocation failed

save handle for allocated pages

mov

mov

mov

mov

int

or

jnz

bx,log_page

al,phys_page

dx,emm_handle

ah,44h

67h

ah, ah

error

now we are ready for other

processing using EMM pages

map in EMM memory page . . .

BX <- EMM logical page number

AL <- EMM physical page (0-3)

EMM handle for our pages

Fxn 44H = map EMM page

jump if mapping error

mov

mov

int

or

jnz

dx, emm__handle

ah,45h

67h

ah, ah

error

program ready to terminate,

give up allocated EMM pages ,

handle for our pages

EMM Fxn 45H = release pages

jump if release failed

Figure 9-8. Continued.

An interrupt handler or resident driver that uses the EMM follows the same general
procedure outlined in steps 1 through 8, with a few minor variations. It may need to
acquire an EMM handle and allocate pages before the operating system is fully functional;
in particular, the MS-DOS services Open File or Device (Interrupt 21H Function 3DH),
lOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function
35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod
ified version of the "get interrupt vector" technique to test for the existence of the EMM,
fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter
rupt 21H Function 35H.

A device driver or interrupt handler typically owns its expanded memory pages on a
permanent basis (until the system is restarted) and never deallocates them. Such a pro
gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H)
the EMM'S page-mapping context (the EMM pages mapped into the page frame at the
time the device driver or interrupt handler takes control of the system) so that use of the
expanded memory by a foreground program will not be disturbed.

Section II: Programming in the MS-DOS Environment 315

Part B: Programming for MS-DOS

The EMM relies heavily on the good behavior of application software to avoid the corrup
tion of expanded memory. If several applications that use expanded memory are running
under a multitasking manager, such as Microsoft Windows, and one or more of those appli
cations does not abide strictly by the EMM's conventions, the data stored in expanded
memory can be corrupted.

Extended Memory

Extended memory is that storage at addresses above 1 MB (lOOOOOH) that can be accessed
by an 80286 or 80386 microprocessor running in protected mode. IBM PC/AT-compatible
machines can (theoretically) have as much as 15 MB of extended memory installed, in
addition to the usual 1 MB of conventional memory address space. Unlike expanded mem
ory, extended memory is linearly addressable: The address of each memory cell is fixed,
so no special manager program is required.

Protected-mode operating systems, such as Microsoft XENIX and MS OS/2, can use ex
tended memory for execution of programs. MS-DOS, on the other hand, runs in real mode
on an 80286 or 80386, and programs running under its control cannot ordinarily execute
from extended memory or even address that memory for storage of data.

To provide some access to extended memory for real-mode programs, IBM PCAT-
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5)
that allow the amount of extended memory present to be determined (Interrupt 15H Func
tion 88H) and that transfer blocks of data between conventional memory and extended

Table 9-4. IBM PC AT ROM BIOS Interrupt 15H Functions for
Access to Extended Memory.

Interrupt 15H Function Call With Returns

Move Extended Memory Block AH = 87H* Carry flag = 0 if successful
CX = length (words) 1 if error

ES:SI = address of block AH = status:

move descriptor OOH no error

table OIH RAM parity error
02H exception inter

rupt error

03H gate address line
20 failed

Obtain Size of Extended AH = 88H AX = kilobytes of memory
Memory installed above 1 MB

•Table 9-5 shows the descriptor table format used by Function 87H.

316 The MS-DOS Encyclopedia

Article 9: Memory Management

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks
(RAMdisks) and by other programs that wish to use extended memory for fast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS
Interrupt 15H Function 87H (Move Extended Memory Block).

Bytes Contents

OO-OFH Zero

10-1IH Segment length in bytes (2♦ CX-1 or greater)
12- 14H 24-bit source address

15H Access rights byte (93H)
16-17H Zero

18- 19H Segment length in bytes (2*CK-1 or greater)
lA- ICH 24-bit destination address

IDH Access rights byte (93H)
lE-lFH Zero

20-2FH Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used
by the CPU while it is running in protected mode; the zero bytes at offsets O-OFH and
20-2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-
bit address is a linear address in the range 000000-FFFFFFH (not a segment and offset),
with the least significant byte first and the most significant byte last.

Programmers should use these ROM BIOS routines with caution. Data stored in extended
memory is volatile; it is lost if the machine is turned off. The transfer of data to or from
extended memory involves a switch from real mode to protected mode and back again.
This is a relatively slow process on 80286-based machines; in some cases it is only margin
ally faster than actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com
patibility Box of MS OS/2, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOS functions is that they do not make any attempt
to arbitrate between two or more programs or device drivers that are using extended
memory for temporary storage. For example, if an application program and an installed
RAMdisk driver attempt to put data in the same area of extended memory, no error is
returned to either program, but the data belonging to one or both may be destroyed.

Figure 9-9 demonstrates the use of the ROM BIOS routines to transfer a block of data from
extended memory to conventional memory.

Section II: Programming in the MS-DOS Environment 317

Part B: Programming for MS-DOS

bmdt db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

db 8 dup (0)

block move descriptor table

dummy descriptor

GOT descriptor

source segment descriptor

destination segment descriptor

BIOS CS segment descriptor

BIOS SS segment descriptor

buff db 8Oh dup (0) buffer to receive data

mov

mov

mov

mov •

mov

mov

mov

mov

mov

call

or

jnz

dx,1 Oh

ax, 0

bx,seg buff

ds,bx

bx,offset buff

cx,80h

si,seg bmdt

es, si

si,offset bmdt

getblk

ah, ah

error

DX:AX = source extended memory

address lOOOOOH (1 MB)

DS:BX = destination conventional

memory address

CX = length to move (bytes)

ES:SI = block move descriptor table

get block from extended memory

test status

jump if block move failed

getblk proc

mov

mov

mov

mov

transfer block from extended

memory to real memory

call with

DX:AX = extended memory address

DS:BX = destination buffer

CX = length (bytes)

ES:SI = block move descriptor table

returns

AH = 0 if transfer OK

es:[si+1Oh],CX ; store length in descriptors

es:[si+18h],cx

; store access rights bytes

byte ptr es:[si+15h],93h

byte ptr es:[si+1dh],93h

(more)

Figure 9-9. Demonstration of a block move from extended memory to conventional memory using the ROM
BIOS routine. The procedure gcxbWi accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset of a block move descriptor table. The
extended-memory address is a linear 32-bit address, of which only the lower 24 bits are significant; the
conventional-memory address is a segment and offset. ThegcxbXk routine converts the destination segment
and offset to a linear address, builds the appropriate fields in the block move descriptor table, invokes the ROM
BIOS routine to perform the transfer, and returns the status in the AH register.

318 The MS-DOS Encyclopedia

Article 9: Memory Management

source (extended memory) address

mov es:[si+12h],ax

mov es:[si+14h],dl

; destination (conv memory) address

mov ax, ds ; segment * 16

mov dx, 1 6

mul dx

add ax, bx ; + offset -> linear address

ado dx, 0

mov es:[si+1ah],ax

mov es:[si+1ch],dl

shr cx, 1 ; convert length to words

mov ah,87h ; Fxn 87H = block move

int 15h ; transfer to ROM BIOS

ret ; back to caller

Figure 9-9. Continued.

Summary

Personal computers that run MS-DOS can support as many as three different types of fast,
random-access memory (RAM). Each type has specific characteristics and requires differ
ent techniques for its management.

Conventional memory is the term used for the 1 MB of linear address space that can be ac
cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run
ning in real mode. MS-DOS and the programs that execute under its control run in this
address space. MS-DOS provides application programs with services to dynamically allo
cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can be installed in a PC and used for electronic
disks, disk caching, and storage of application program data. The memory is made avail
able in 16 KB pages and is administered by a driver program called the Expanded Memory
Manager, which provides allocation, mapping, deallocation, and multitasking support.

Extended memory refers to the memory at addresses above 1 MB that can be accessed by
an 80286-based or 80386-based microprocessor running in protected mode; it is not avail
able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended
memory can be installed; however, the ROM BIOS services to access the memory are
primitive and slow, and no manager is provided to arbitrate between multiple programs
that attempt to use the same extended memory addresses for storage.

Ray Duncan

Section II: Programming in the MS-DOS Environment 319

Article 10: The MS-DOS EXEC Function

Article 10

The MS-DOS EXEC Function

The MS-DOS system loader, which brings .COM or .EXE files from disk into memory and
executes them, can be invoked by any program with the MS-DOS EXEC function (Inter
rupt 21H Function 4BH). The default MS-DOS command interpreter, COMMAND.COM,
uses the EXEC function to load and run its external commands, such as CHKDSK, as well
as other application programs. Many popular commercial programs, such as databases and
word processors, use EXEC to load and run subsidiary programs (spelling checkers, for
example) or to load and run a second copy of COMMAND.COM. This allows a user to run
subsidiary programs or enter MS-DOS commands without losing his or her current
working context.

When EXEC is used by one program (called the parent) to load and run another (called
the child), the parent can pass certain information to the child in the form of a set of strings
called the environment, a command line, and two file control blocks. The child program
also inherits the parent program's handles for the MS-DOS standard devices and for any
other files or character devices the parent has opened (unless the open operation was per
formed with the "noninheritance" option). Any operations performed by the child on
inherited handles, such as seeks or file I/O, also affect the file pointers associated with the
parent's handles. A child program can, in turn, load another program, and the cycle can be
repeated until the system's memory area is exhausted.

Because MS-DOS is not a multitasking operating system, a child program has complete
control of the system until it has finished its work; the parent program is suspended. This
type of processing is sometimes called synchronous execution. When the child termi
nates, the parent regains control and can use another system function call (Interrupt 21H
Function 4DH) to obtain the child's return code and determine whether the program ter
minated normally, because of a critical hardware error, or because the user entered a
Control-C.

In addition to loading a child program, EXEC can also be used to load subprograms and
overlays for application programs written in assembly language or in a high-level language
that does not include an overlay manager in its run-time library. Such overlays typically
cannot be run as self-contained programs; most require "helper" routines or data in the
application's root segment.

The EXEC function is available only with MS-DOS versions 2.0 and later. With MS-DOS
versions 1.x, a parent program can use Interrupt 21H Function 26H to create a program
segment prefix for a child but must carry out the loading, relocation, and execution of the
child's code and data itself, without any assistance from the operating system.

Section II: Programming in the MS-DOS Environment 321

Part B: Programming for MS-DOS

How EXEC Works

When the EXEC function receives a request to execute a program, it first attempts to locate
and open the specified program file. If the file cannot be found, EXEC fails immediately
and returns an error code to the caller.

If the file exists, EXEC opens the file, determines its size, and inspects the first block of the
file. If the first 2 bytes of the block are the ASCII characters AfZ, the file is assumed to con
tain a .EXE load module, and the sizes of the program's code, data, and stack segments are
obtained from the .EXE file header. Otherwise, the entire file is assumed to be an absolute
load image (a .COM program). The actual filename extension (.COM or .EXE) is ignored
in this determination.

At this point, the amount of memory needed to load the program is known, so EXEC
attempts to allocate two blocks of memory: one to hold the new program's environment
and one to contain the program's code, data, and stack segments. Assuming that enough
memory is available to hold the program itself, the amount actually allocated to the pro
gram varies with its type. Programs of the .COM type are usually given all the free mem
ory in the system (unless the memory area has previously become fragmented), whereas
the amount assigned to a .EXE program is controlled by two fields in the file header,
MINALLOC and MAXALLOC, that are set by the Microsoft Object Linker (LINK). See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure

of an Application Program; Programming Tools: The Microsoft Object Linker; PROGRAM
MING UTILITIES: link.

EXEC then copies the environment from the parent into the memory allocated for child's
environment, builds a program segment prefix (PSP) at the base of the child's program
memory block, and copies into the child's PSP the command tail and the two default file
control blocks passed by the parent. The previous contents of the terminate (Interrupt
22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors are saved in the
new PSP, and the terminate vector is updated so that control will return to the parent
program when the child terminates or is aborted.

The actual code and data portions of the child program are then read from the disk file
into the program memory block above the newly constructed PSP. If the child is a .EXE
program, a relocation table in the file header is used to fix up segment references within
the program to reflect its actual load address.

Finally, the EXEC function sets up the CPU registers and stack according to the program
type and transfers control to the program. The entry point for a .COM file is always offset
lOOH within the program memory block (the first byte following the PSP). The entry point
for a .EXE file is specified in the file header and can be anywhere within the program. See
also PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos:

Structure of an Application Program.

When EXEC is used to load and execute an overlay rather than a child program, its opera
tion is much simpler than described above. For an overlay, EXEC does not attempt to allo
cate memory or build a PSP or environment. It simply loads the contents of the file at the

322 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

address specified by the calling program and performs any necessary relocations (if the
overlay file has a .EXE header), using a segment value that is also supplied by the caller.
EXEC then returns to the program that invoked it, rather than transferring control to the
code in the newly loaded file. The requesting program is responsible for calling the
overlay at the appropriate location.

Using EXEC to Load a Program

When one program loads and executes another, it must follow these steps:

1. Ensure that enough free memory is available to hold the code, data, and stack of the
child program.

2. Set up the information to be passed to EXEC and the child program.
3. Call the MS-DOS EXEC function to run the child program.
4. Recover and examine the child program's termination and return codes.

Making memory available

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is
loaded. (The infrequent exceptions to this rule occur when the transient program area
is fragmented by the presence of resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.)

Therefore, before a program can load another program, it must free any memory it does
not need for its own code, data, and stack.

The extra memory is released with a call to the MS-DOS Resize Memory Block function
(Interrupt 21H Function 4AH). In this case, the segment address of the parent's PSP is
passed in the ES register, and the BX register holds the number of paragraphs of memory
the program must retain for its own use. If the prospective parent is a .COM program, it
must be certain to move its stack to a safe area if it is reducing its memory allocation to less
than 64 KB.

Preparing parameters for EXEC

When used to load and execute a program, the EXEC function must be supplied with two
principal parameters:

• The address of the child program's pathname
• The address of a parameter block

The parameter block, in turn, contains the addresses of information to be passed to the
child program.

The program name

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program; if a drive specifier is not present, the default drive is used.

Section II: Programming in the MS-DOS Environment 323

Part B: Programming for MS-DOS

The parameter block

The parameter block contains the addresses of four data items (Figure 10-1):

• The environment block

• The command tail

• The two default file control blocks (FCBs)

The position reserved in the parameter block for the pointer to an environment is only
2 bytes and contains a segment address, because an environment is always paragraph
aligned (its address is always evenly divisible by l6); a value of GOOGH indicates the parent
program's environment should be inherited unchanged. The remaining three addresses
are all doubleword addresses in the standard Intel format, with an offset value in the lower
word and a segment value in the upper word.

ToCaU

AH = 4BH

AL = OOH load and execute child process
03H load overlay

DS:DX = segment:offset of ASCIIZ pathname for an executable program file
ES:BX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.
Other registers are preserved if MS-DOS version 3.0 or later, destroyed if MS-DOS
versions 2.x.

If function is not successful:

Carry flag is set.

AX = error code

Parameter Block Format

Offset Contents

IfAL =OOH (load and execute program):

OOH Segment pointer of the environment to be passed
02H Offset of command-line tail for the new PSP

04H Segment of command-line tail for the new PSP
06H Offset of first file control block, to be copied into new PSP at offset 5CH
08H Segment of first file control block
OAH Offset of second file control block, to be copied into new PSP at offset 6CH
OCH Segment of second file control block

IfAL =03H (load overlay):

OOH Segment address where overlay is to be loaded
02H Relocation factor to apply to loaded image

Figure 10-1. Synopsis of calling conventions for the MS-DOS EXECfunction (Interrupt 21H Function 4BH),
which can he used to load and execute child processes or overlays.

324 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

The environment

An environment always begins on a paragraph boundary and is composed of a series of
null-terminated (ASCII2) strings of the form:

name^variable

The end of the entire set of strings is indicated by an additional null byte.

If the environment pointer in the parameter block supplied to an EXEC call contains zero,
the child simply acquires a copy of the parent's environment. The parent can, however,
provide a segment pointer to a different or expanded set of strings. In either case, under
MS-DOS versions 3.0 and later, EXEC appends the child program's fully qualified path
name to its environment block. The maximum size of an environment is 32 KB, so very
large amounts of information can be passed between programs by this mechanism.

The original, or master, environment for the system is owned by the command processor
that is loaded when the system is turned on or restarted (usually COMMAND.COM).
Strings are placed in the system's master environment by COMMAND.COM as a result of
PATH, SHELL, PROMPT, and SET commands, with default values always present for the
first two. For example, if an MS-DOS version 3.2 system is started from drive C and a PATH
command is not present in the AUTOEXEC.BAT file nor a SHELL command in the
CONFIG.SYS file, the master environment will contain the two strings:

PATH=

COMSPEC=C: \ COMMAND.COM

These specifications are used by COMMAND.COM to search for executable "external"
commands and to find its own executable file on the disk so that it can reload its transient

portion when necessary. When the PROMPT string is present (as a result of a previous
PROMPT or SET PROMPT command), COMMAND.COM uses it to tailor the prompt dis
played to the user.

0 1 2 3 4 5 6 7 8 9 A B C D E F 01 23456789ABCDEF

0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 40 40 41 COMSPEC=C:\COMMA

0010 4E 44 2E 43 4F 40 00 50 52 4F 40 50 54 30 24 70 NO.COM.PROMPT=$p

0020 24 5F 24 64 20 20 20 24. 74 24 68 24 68 24 68 24 $_$d thhh$

0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT

0040 48 30 43 3A 5C 53 59 53 54 45 40 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A

0050 53 40 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C: \WS;C;\ETHE

0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC

0070 33 31 3B 00 00 01 00 43 3A 50 46 4F 52 54 48 50 31; 0:\FORTH\

0080 50 43 33 31 50 46 4F 52 54 48 2E 43 4F 40 00 P031\FORTH.COM.

Figure 10-2. Dump ofa typical environment under MS-DOS version 3.2. This particular example contains
the default COMSPECparameter and two relatively complex PATH and PROMPT control strings that were set
up by entries in the user's AUTOEXECfile. Note the two null bytes at offset 73H, which indicate the end of the
environment. These bytes arefollowed by the pathname of the program that owns the environment.

Section II: Programming in the MS-DOS Environment 325

Part B: Programming for MS-DOS

Other strings in the environment are used only for informational purposes by transient
programs and do not affect the operation of the operating system proper. For example,
the Microsoft C Compiler and the Microsoft Object Linker look in the environment for
INCLUDE, LIB, and TMP strings that specify the location of include files, library files, and
temporary working files. Figure 10-2 contains a hex dump of a typical environment block.

The command tail

The command tail to be passed to the child program takes the form of a byte indicating
the length of the remainder of the command tail, followed by a string of ASCII characters
terminated with an ASCII carriage return (ODH); the carriage return is not included in the
length byte. The command tail can include switches, filenames, and other parameters that
can be inspected by the child program and used to influence its operation. It is copied
into the child program's PSP at offset 80H.

When COMMAND.COM uses EXEC to run a program, it passes a command tail that
includes everything the user typed in the command line except the name of the program
and any redirection parameters. I/O redirection is processed within COMMAND.COM
itself and is manifest in the behavior of the standard device handles that are inherited

by the child program. Any other program that uses EXEC to run a child program must try
to perform any necessary redirection on its own and must supply an appropriate com
mand tail so that the child program will behave as though it had been loaded by
COMMAND.COM.

The default file control blocks

The two default FCBs pointed to by the EXEC parameter block are copied into the child
program's PSP at offsets 5CH and 6CH. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: Programming for ms-dos: File and Record Management.

Few of the currently popular application programs use FCBs for file and record I/O
because FCBs do not support the hierarchical directory structure. But some programs do
inspect the default FCBs as a quick way to isolate the first two switches or other parame
ters from the command tail. Therefore, to make its own identity transparent to the child
program, the parent should emulate the action of COMMAND.COM by parsing the first
two parameters of the command tail into the default FCBs. This can be conveniently ac
complished with the MS-DOS function Parse Filename (Interrupt 21H Function 29H).

If the child program does not require one or both of the default FCBs, the corresponding
address in the parameter block can be initialized to point to two dummy FCBs in the appli
cation's memory space. These dummy FCBs should consist of 1 zero byte followed by 11
bytes containing ASCII blank characters (20H).

326 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters, it can invoke the
EXEC function by issuing Interrupt 21H with the registers set as follows:

AH = 4BH

AL = OOH (EXEC subfunction to load and execute program)
DS:DX = segment:offset of program pathname
ESiBX = segmentroffset of parameter block

Upon return from the software interrupt, the parent must test the carry flag to determine
whether the child program did, in fact, run. If the carry flag is clear, the child program was
successfully loaded and given control. If the carry flag is set, the EXEC function failed, and
the error code returned in AX can be examined to determine why. The usual reasons are

• The specified file could not be found.
• The file was found, but not enough memory was free to load it.

Other causes are uncommon and can be symptoms of more severe problems in the
system as a whole (such as damage to disk files or to the memory image of MS-DOS). With
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can
be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In general, supplying either an invalid address for an EXEC parameter block or invalid
addresses within the parameter block itself does not cause a failure of the EXEC function,
but may result in the child program behaving in unexpected ways.

Special considerations

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP
can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently,
before issuing the EXEC call, the parent must push onto the stack the contents of any regis
ters that it needs to preserve, and then it must save the stack segment and offset in a loca
tion that is addressable with the CS segment register. Upon return, the stack segment and
offset can be loaded into SS:SP with code segment overrides, and then the other registers
can be restored by popping them off the stack. With MS-DOS versions 3.0 and later, regis
ters are preserved across an EXEC call in the usual fashion.

Note: The code segments of Windows applications that use this technique should be
given the IMPURE attribute.

In addition, a bug in MS-DOS version 2.0 and in PC-DOS versions 2.0 and 2.1 causes an
arbitrary doubleword in the parent's stack segment to be destroyed during an EXEC call.
When the parent is a .COM program and SS = PSP, the damaged location falls within the
PSP and does no harm; however, in the case of a .EXE parent where DS = SS, the affected
location may overlap the data segment and cause aberrant behavior or even a crash after
the return from EXEC. This bug was fixed in MS-DOS versions 2.11 and later and in
PC-DOS versions 3^0 and later.

Section II: Programming in the MS-DOS Environment 327

Part B: Programming for MS-DOS

Examining the child program's return codes

If the EXEC function succeeds, the parent program can call Interrupt 21H Function 4DH
(Get Return Code of Child Process) to learn whether the child executed normally to com
pletion and passed back a return code or was terminated by the operating system because
of an external event. Function 4DH returns

AH = termination type:

OOH Child terminated normally (that is, exited via Interrupt 20H or Interrupt
21H Function OOH or Function 4CH).

OIH Child was terminated by user's entry of a Ctrl-C.
02H Child was terminated by critical error handler (either the user responded

with A to the Abort, Retry, Ignore prompt from the system's default Inter
rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS
with action code = 02H in register AL).

03H Child terminated normally and stayed resident (that is, exited via Interrupt
21H Function 31H or Interrupt 27H).

AL = return code:

Value passed by the child program in register AL when it terminated with Interrupt
21H Function 4CH or 31H.

OOH if the child terminated using Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function OOH.

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse
quent call to Function 4DH, without an intervening EXEC call, does not necessarily return
any useful information. Additionally, if Function 4DH is called without a preceding suc
cessful EXEC call, the returned values are meaningless.

Using COMMAND.COM with EXEC

An application program can "shell" to MS-DOS—that is, provide the user with an MS-DOS
prompt without terminating—by using EXEC to load and execute a secondary copy of
COMMAND.COM with an empty command tail. The application can obtain the location of
the COMMAND.COM disk file by inspecting its own environment for the COMSPEC string.
The user returns to the application from the secondary command processor by typing exit
at the COMMAND.COM prompt.

Batch-file interpretation is carried out by COMMAND.COM, and a batch (.BAT) file can
not be called using the EXEC function directly. Similarly, the sequential search for .COM,
.EXE, and .BAT files in all the locations specified in the environment's PATH variable is a
function of COMMAND.COM, rather than of EXEC. To execute a batch file or search the
system path for a program, an application program can use EXEC to load and execute a
secondary copy of COMMAND.COM to use as an intermediary. The application finds the
location of COMMAND.COM as described in the preceding paragraph, but it passes a
command tail in the form:

/C program parameterl parameter2...

328 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

where program is the .EXE, .COM, or .BAT file to be executed. When program termi
nates, the secondary copy of COMMAND.COM exits and returns control to the parent.

A parent and child example

The source programs PARENT.ASM in Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate
how one program uses EXEC to load another.

name

title

parent

'PARENT demonstrate EXEC call'

PARENT.EXE demonstration of EXEC to run process

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction OOH)

to load and execute a child process named CHILD.EXE,

then displays CHILD'S return code.

Ray Duncan, June 1987

stdin equ 0 ; standard input

stdout equ 1 ; standard output

stderr equ 2 ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return

If equ Oah ; ASCII linefeed

DGROUP group _DATA,_ENVIR,_STACK

-TEXT segment byte public 'CODE' ; executable code segment

assume cs:-TEXT,ds:-DATA,ss:-STACK

stk—seg dw

stk—ptr dw

; original 83 contents

; original SP contents

proc

mov

mov

far

ax,—DATA

ds, ax

; entry point from MS-DOS

; set DS = our data segment

now give back extra memory

so child has somewhere to run.

Figure 10-3. PARENT.ASM, sourcecodeforPARENT.EXE. (more)

Section II: Programming in the MS-DOS Environment 329

Part B: Programming for MS-DOS

mov ax,es

mov bx,ss

sub bx,ax

add bx,stksize/16

mov ah,4ah

int 21 h

jc maini

mov dx,offset DGROUPrmsgl

mov cx,msg1_len

call pmsg

let AX = segment of PSP base

and BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack

fxn 4AH = modify memory block

display parent message ...

DS:DX = address of message

CX = length of message

push

mov

mov

ds

stk_seg,ss

stk_ptr,sp

save parent's data segment

save parent's stack pointer

mov ax,ds

mov es,ax

mov dx,offset DGROUP:cname

mov bx,offset DGROUPipars

mov ax,4b00h

int 21 h

now EXEC the child process...

set ES = DS

DS:DX = child pathname

ESiBX = parameter block

function 4BH subfunction OOH

transfer to MS-DOS

cli

mov

mov

sti

pop

jc

ss,stk_seg

sp,stk_ptr

ds

main2

(for bug in some early 8088s)

restore parent's stack pointer

(for bug in some early 8088s)

restore DS = our data segment

jump if EXEC failed

mov ah,4dh

int 21 h

xchg al,ah

mov bx,offset DGR0UP:msg4a

call b2hex

mov al,ah

mov bx,offset DGR0UP:msg4b

call b2hex

mov dx,offset DGR0UP:msg4

mov cx,msg4_len

call pmsg

otherwise EXEC succeeded,

convert and display child's

termination and return codes...

fxn 4DH = get return code

transfer to MS-DOS

convert termination code

get back return code

and convert it

DS:DX = address of message

CX = length of message

display it

mov

int

ax,4c00h

21h

Figure 10-3. Continued.

no error, terminate program

with return code = 0

(more)

330 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

maini: mov bx,offset DGR0UP:msg2a

call b2hex

mov dx,offset DGR0UP:msg2

mov cx,msg2_len

call pmsg

jmp main3

convert error code

display message 'Memory

resize failed...'

main2: mov

call

mov

mov

call

mains: mov

int

endp

b2hex

push

shr

shr

shr

shr

call

mov

pop

and

call

mov

ret

endp

bx,offset DGROUPrmsgSa

b2hex

dx,offset DGROUPrmsgS

cx,msg3_len

pmsg

ax,4c01h

21h

b2hex proc near

ax

al, 1

al, 1

al, 1

al, 1

ascii

[bx],al

ax

al,Ofh

ascii

[bx+1],al

convert error code

display message 'EXEC

call failed...'

error, terminate program

with return code = 1

end of main procedure

convert byte to hex ASCII

call with AL = binary value

BX = addr to store string

become first ASCII character

store it

isolate lower 4 bits, which

become the second ASCII character

store it

proc

add

cmp

jle

add

near

al,'0'

al,'9'

ascii2

al,'A'-'9'

convert value OO-OFH in AL

into a "hex ASCII" character

jump if in range 00-09H,

offset it to range OA-OFH,

ascii2: ret

ascii endp

return ASCII char, in AL

pmsg proc

Figure 10-3. Continued.

displays message on standard output

call with DS:DX = address,

CX = length

(more)

Section II: Programming in the MS-DOS Environment 331

Part B: Programming for MS-DOS

mov

mov

int

ret

bx,stdout

ah,40h

21h

; BX = standard output handle

; function 40H = write file/device

; transfer to MS-DOS

; back to caller

pmsg endp

-TEXT ends

-DATA

pars

tail

fcbl

fcb2

segment

db

dw

dd

dd

dd

db

db

db

db

db

db

db

db

para public 'DATA'

'CHILD.EXE',0

-ENVIR

tail

fcbl

fcb2

fcbl-tail-2

'dummy command tail',cr

11 dup (' ')

25 dup (0)

11 dup (' ')

25 dup (0)

; static & variable data segment

; pathname of child process

; segment of environment block

; long address, command tail

; long address, default FOB #1

; long address, default FOB #2

; command tail for child

copied into default FOB #1 in

child's program segment prefix

; copied into default FCB #2 in

; child's program segment prefix

msgl db

msgl—len equ

msg2 db

msg2a db

msg2—len equ

msg3 db

msg3a db

msg3—len equ

msg4 db

db

msg4a db

msg4b db

msg4—len equ

cr,If,'Parent executing!',cr,If

$-msg1

cr,If,'Memory resize failed, error code='

'xxh.',cr,If

$-msg2

cr,If,'EXEC call failed, error code='

'xxh.',cr,If

$-msg3

cr,If,'Parent regained control!'

cr,If,'Child termination type='

'xxh, return code='

'xxh.',cr,If

$-msg4

-DATA ends

—ENVIR segment para public 'DATA'

Figure 10-3. Continued.

; example environment block

; to be passed to child

(more)

332 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

db 'PATH=',0 ; basic PATH, PROMPT,

db 'PROMPT=p_ng',0 ; and COMSPEC strings

db 'COMSPEC=C:\COMMAND.COM',0

db 0 ; extra null terminates block

_ENVIR ends

_STACK segment para stack 'STACK'

db stksize dup (?)

-STACK ends

end mair

Figure 10-3. Continued.
; defines program entry point

name child

title 'CHILD process'

CHILD.EXE a simple process loaded by PARENT.EXE

to demonstrate the MS-DOS EXEC call, Subfunction OGH.

Ray Duncan, June 1987

stdin

stdout

cr

If

equ

equ

stderr equ

equ

equ

0

1

2

Odh

Oah

standard input

standard output

standard error

ASCII carriage return

ASCII linefeed

DGROUP group _DATA,STACK

—TEXT segment byte public 'CODE' executable code segment

assume cs:—TEXT,ds:—DATA,ss:STACK

main proc far

mov ax,—DATA

mov ds,ax

; entry point from MS-DOS

; set DS = our data segment

; display child message ...

Figure 10-4. CHILD. ASM, source code for CHILD.EXE. (more)

Section II: Programming in the MS-DOS Environment 333

Part B: Programming for MS-DOS

mov

mov

mov

mov

int

jc

mov

int

main2: mov

int

main endp

ends_TEXT

dx,offset msg

cx,msg_len

bx,stdout

ah,40h

21h

main2

ax,4c00h

21h

ax,4c01h

21h

DS:DX = address of message

CX = length of message

BX = standard output handle

AH = fxn 40H, write file/device

transfer to MS-DOS

jump if any error

no error, terminate child

with return code = 0

error, terminate child

with return code = 1

end of main procedure

—DATA segment para public 'DATA' static & variable data segment

msg db

msg_len equ

—DATA ends

cr,If,'Child executing!',cr,If

$-msg

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main

Figure 10-4. Continued.

defines program entry point

PARENT.ASM can be assembled and linked into the executable program PARENT.EXE
with the following commands:

OMASM PARENT; <Enter>

OLINK PARENT; <Enter>

Similarly, CHILD.ASM can be assembled and linked into the file CHILD.EXE as follows:

OMASM CHILD; <Enter>

OLINK CHILD; <Enter>

When PARENT.EXE is executed with the command

OPARENT <Enter>

334 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

PARENT reduces the size of its main memory block with a call to Interrupt 21H Function
4AH, to maximize the amount of free memory in the system, and then calls the EXEC func
tion to load and execute CHILD.EXE.

CHILD.EXE runs exactly as though it had been loaded directly by COMMAND.COM.
CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H
Function 40H to display a message on standard output, and then terminates using Interrupt
21H Function 4CH, passing a return code of zero.

When PARENT.EXE regains control, it first checks the carry flag to determine whether
the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and
terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to
COMMAND.COM to indicate an error.

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE's termination
type and return code, which it converts to ASCII and displays. PARENT then terminates
using Interrupt 21H Function 4CH and passes a return code of zero to COMMAND.COM
to indicate success. COMMAND.COM in turn receives control and displays a new user
prompt.

Using EXEC to Load Overlays

Loading overlays with the EXEC function is much less complex than using EXEC to run
another program. The main program, called the root segment, must carry out the follow
ing steps to load and execute an overlay:

1. Make a memory block available to receive the overlay.
2. Set up the overlay parameter block to be passed to the EXEC function.
3. Call the EXEC function to load the overlay.
4. Execute the code within the overlay by transferring to it with a far call.

The overlay itself can be constructed as either a memory image (.COM) or a relocatable
(.EXE) file and need not be the same type as the root program. In either case, the overlay
should be designed so that the entry point (or a pointer to the entry point) is at the begin
ning of the module after it is loaded. This allows the root and overlay modules to be main
tained separately and avoids a need for the root to have "magical" knowledge of addresses
within the overlay.

To prevent users from inadvertently running an overlay directly from the command line,
overlay files should be assigned an extension other than .COM or .EXE. The most conve
nient method relates overlays to their root segment by assigning them the same filename
but an extension such as .OVL or .OVl, .OV2, and so on.

Making memory available

If EXEC is to load a child program successfully, the parent must release memory. In
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the

Section II: Programming in the MS-DOS Environment 335

Part B: Programming for MS-DOS

root segment is a .COM program and has not explicitly released extra memory, the root
segment program need only ensure that the system contains enough memory to load the
overlay and that the overlay load address does not conflict with its own code, data, or
stack areas.

If the root segment program was loaded from a .EXE file, no straightforward way exists
for it to determine unequivocally how much memory it already owns. The simplest course
is for the program to release all extra memory, as discussed earlier in the section on load
ing a child program, and then use the MS-DOS memory allocation function (Interrupt 21H
Function 48H) to obtain a new block of memory that is large enough to hold the overlay.

Preparing overlay parameters

When it is used to load an overlay, the EXEC function requires two major parameters:

• The address of the pathname for the overlay file
• The address of an overlay parameter block

As for a child program, the pathname for the overlay file must be an unambiguous ASCII2
file specification (again, no wildcard characters), and it must include an explicit extension.
As before, if a path and/or drive are not included in the pathname, the current directory
and default drive are used.

The overlay parameter block contains the segment address at which the overlay should be
loaded and a fixup value to be applied to any relocatable items within the overlay file. If
the overlay file is in .EXE format, the fixup value is typically the same as the load address; if
the overlay is in memory-image (.COM) format, the fixup value should be zero. The EXEC
function does not attempt to validate the load address or the fixup value or to ensure that
the load address actually belongs to the calling program.

Loading and executing the overlay

After the root segment program has prepared the filename of the overlay file and the
overlay parameter block, it can invoke the EXEC function to load the overlay by issuing an
Interrupt 21H with the registers set as follows:

AH = 4BH

AL = 03H (EXEC subfunction to load overlay)
DS:DX = segment:offset of overlay file pathname
ES:BX = segment:offset of overlay parameter block

Upon return from Interrupt 21H, the root segment must test the carry flag to determine
whether the overlay was loaded. If the carry flag is clear, the overlay file was located and
brought into memory at the requested address. The overlay can then be entered by a far
call and should exit back to the root segment with a far return.

If the carry flag is set, the overlay file was not found or some other (probably severe) sys
tem problem was encountered, and the AX register contains an error code. With MS-DOS

336 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information
about the EXEC failure. An invalid load address supplied in the overlay parameter block
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting
message Memory Allocation Error, System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figure 10-5 and OVERLAY.ASM in Figure 10-6 demon
strate the use of EXEC to load a program overlay. The program ROOT.EXE is executable
from the MS-DOS prompt; it represents the root segment of an application. OVERLAY is
constructed as a .EXE file (although it is named OVERLAY.OVL because it cannot be run
alone) and represents a subprogram that can be loaded by the root segment when and
if it is needed.

name

title

root

' ROOT demonstrate EXEC overlay'

ROOT.EXE demonstration of EXEC for overlays

Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 03H)

to load an overlay named OVERLAY.OVL, calls a routine

within the OVERLAY, then recovers control and terminates.

Ray Duncan, June 1987

stdin equ 0 ; standard input

stdout equ 1 ; standard output

stderr equ 2 ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return

If equ Oah ; ASCII linefeed

DGROUP group _DATA,-STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,sj3:-STACK

stk_seg dw •p ; original SS contents

stk_ptr dw 7 ; original SP contents

Figure 10-5. ROOT.ASM, source code for ROOT.EXE. (more)

Section II: Programming in the MS-DOS Environment 337

Part B: Programming for MS-DOS

proc

mov

mov

far

ax,—DATA

ds, ax

entry point from MS-DOS

set DS = our data segment

mov

mov

sub

add

mov

int

jc

mov

mov

call

mov

mov

int

jc

mov

mov

mov

ax, es

bx, ss

bx, ax

bx,stksize/1 <

ah,4ah

21h

maini

dx,offset DGR0UP:msg1

cx,,msg1—len

pmsg

bx,1000h

ah,48h

21h

main2

pars,ax

pars+2,ax

word ptr entry+2,ax

now give back extra memory

AX = segment of PS? base

BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack

fxn 4AH = modify memory block

transfer to MS-DOS

jump if resize failed

display message "Root

segment executing...'

DS:DX = address of message

CX = length of message

allocate memory for overlay

get 64 KB (4096 paragraphs)

fxn 48H, allocate mem block

transfer to MS-DOS

jump if allocation failed

set load address for overlay

set relocation segment for overlay

set segment of entry point

push

mov

mov

ds

stk—seg, ss

Stk—ptr,sp

save root's data segment

save root's stack pointer

mov ax,ds

mov es,ax

mov dx,offset DGROUProname

mov bx,offset DGROUP:pars

mov ax,4b03h

int 21h

now use EXEC to load overlay

set ES = DS

DS:DX = overlay pathname

ES:BX = parameter block

function 4BH, subfunction

transfer to MS-DOS

03H

cli

mov

mov

sti

pop

jc

ss,stk—seg

sp,stk—ptr

ds

main3

(for bug in some early 8088s)

restore root's stack pointer

(for bug in some early 8088s)

restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded...

Figure 10-5. Continued. (more)

338 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

push ds

call dword ptr entry

pop ds

save our data segment

now call the overlay

restore our data segment

mov dx,offset DGR0UP:msg5

mov cx,msg5_len

call pmsg

display message that root

segment regained control...

DS:DX = address of message

CX = length of message

display it

mov ax,4c00h

int 21h

maini: mov bx,offset DGR0UP:msg2a

call b2hex

mov dx,offset DGR0UP:msg2

mov cx,msg2_len

call pmsg

jmp main4

no error, terminate program

with return code = 0

convert error code

display message 'Memory

resize failed...'

main2: mov bx,offset DGR0UP:msg3a

call b2hex

mov dx,offset DGR0UP:msg3

mov cx,msg3_len

call pmsg

jmp main4

; convert error code

; display message 'Memory

; allocation failed...'

main3: mov

call

mov

mov

call

bx,offset DGR0UP:msg4a ; convert error code

b2hex

dx,offset DGR0UP:msg4

cx,msg4_len

pmsg

/ display message 'EXEC

; call failed...'

main4: mov

int

ax,4c01h

21h

error, terminate program

with return code = 1

endp ; end of main procedure

b2hex proc

push

shr

shr

shr

shr

call

mov

pop

ax

al, 1

al, 1

al, 1

al, 1

ascii

[bx],al

ax

convert byte to hex ASCII

call with AL = binary value

BX = addr to store string

become first ASCII character

store it

Figure 10-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 339

Part B: Programming for MS-DOS

and al,Ofh ; isolate lower 4 bits, which

call ascii ; become the second ASCII character

mov [bx+1],al ; store it

ret

b2hex endp

ascii proc near ; convert value OO-OFH in AL

add al,'0' ; into a "hex ASCII" character

cmp al,'9'

jle ascii2 ; jump if in range 00-09H,

add al,'A'-'9'-1 ; offset it to range OA-OFH,

ascii2: ret ; return ASCII char, in AL.

ascii endp

pmsg proc near ; displays message on standard output

; call with DS:DX = address.

; CX = length

mov bx,stdout ; BX = standard output handle

mov ah,40h ; function 40H = write file/device

int 21h ; transfer to MS-DOS

ret ; back to caller

pmsg endp

-TEXT ends

-DATA segment para public 'DATA' ; static & variable data segment

oname db 'OVERLAY.OVL',0 ; pathname of overlay file

pars dw 0 ; load address (segment) for file

dw 0 ; relocation (segment) for file

entry dd 0 ; entry point for overlay

msgl db cr,If,'Root segment executing!',cr,If

msgl—len equ $-msg1

msg2 db cr,If,'Memory resize failed, error code='

msg2a db 'xxh.',cr,If

msg2—len equ $-msg2

msg3 db cr,If,'Memory allocation failed, error code='

msg3a db 'xxh.',cr,If

msg3_len equ $-insg3

Figure 10-5. Continued. (more)

340 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

msg4 db cr,if,'EXEC call failed, error code='

msg4a db 'xxh.',cr,lf

msg4_len equ $-msg4

msgS db cr,If,'Root segment regained control!',cr,If

msg5_len equ $-msg5

_DATA ends

—STACK segment para stack 'STACK'

db stksize dup (?)

-STACK ends

end main ; defines program entry point

Figure 10-5. Continued.

name overlay

title 'OVERLAY segment'

OVERLAY.OVL a simple overlay segment

loaded by ROOT.EXE to demonstrate use of

the MS-DOS EXEC call Subfunction 03H.

The overlay does not contain a STACK segment

because it uses the ROOT segment's stack.

Ray Duncan, June 1987

stdin equ 0 ; standard input

stdout equ 1 ; standard output

stderr equ 2 ; standard error

cr equ Odh ; ASCII carriage return

If equ Oah ; ASCII linefeed

-TEXT segment byte public 'CODE' ; executable code segment

assume c s: -TEXT,ds:-DATA

ovlay proc far ; entry point from root segment

mov ax,-DATA ; set DS = local data segment

mov ds, ax

Figure 10-6. OVERLAY.ASM, source codefor OVERLAY.OVL. (more)

Section II: Programming in the MS-DOS Environment 341

Part B: Programming for MS-DOS

ovlay

-TEXT

mov dx,offset msg

mov CX,msg—len

mov bx,stdout

mov ah,40h

int 21h

ret

en dp

ends

display overlay message ...

DS:DX = address of message

CX = length of message

BX = standard output handle

AH = fxn 40H, write file/device

transfer to MS-DOS

return to root segment

end of ovlay procedure

—DATA segment para public 'DATA' ; static & variable data segment

msg db

msg—len equ

—DATA ends

cr,lf,'Overlay executing!',cr,lf

$-msg

end

Figure 10-6. Continued.

ROOT.ASM can be assembled and linked into the executable program ROOT.EXE with the
following commands:

C>^SM ROOT; <Enter>

OliNK ROOT; <Enter>

OVERLAY.ASM can be assembled and linked into the file OVERLAY. OVL by typing

C>MASM OVERLAY; <Enter>

C>LINK OVERLAY,OVERLAY.OVL; <Enter>

The Microsoft Object Linker will display the message

Warning: no stack segment

but this message can be ignored.

When ROOT.EXE is executed with the command

C>rooT <Enter>

it first shrinks its main memory block with a call to Interrupt 21H Function 4AH and then
allocates a separate block for the overlay with Interrupt 21H Function 48H. Next, ROOT
calls the EXEC function to load the file OVERLAY.OVL into the newly allocated memory
block. If the EXEC function fails, ROOT displays an error message and terminates with
Interrupt 21H Function 4CH, passing a nonzero return code to COMMAND.COM to indi
cate an error. If the EXEC function succeeds, ROOT saves the contents of its DS segment
register and then enters the overlay through an indirect far call.

342 The MS-DOS Encyclopedia

Article 10: The MS-DOS EXEC Function

The overlay resets the DS segment register to point to its own data segment, displays a
message using Interrupt 21H Function 40H, and then returns. Note that the main pro
cedure of the overlay is declared with the far attribute to force the assembler to generate
the opcode for a far return.

When ROOT regains control, it restores the DS segment register to point to its own data
segment again and displays an additional message, also using Interrupt 21H Function 40H,
to indicate that the overlay executed successfully. ROOT then terminates using Interrupt
21H Function 4CH, passing a return code of zero to indicate success, and control returns
to COMMAND.COM.

Ray Duncan

Section II: Programming in the MS-DOS Environment 343

PartC

Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities

Article 11

Terminate-and-Stay-Resident Utilities

The MS-DOS Terminate and Stay Resident system calls (Interrupt 21H Function 31H and
Interrupt 27H) allow the programmer to install executable code or program data in a
reserved block of RAM, where it resides while other programs execute. Global data, inter
rupt handlers, and entire applications can be made RAM-resident in this way. Programs
that use the MS-DOS terminate-and-stay-resident capability are commonly known as
TSR programs or TSRs.

This article describes how to install a TSR in RAM, how to communicate with the resident
program, and how the resident program can interact with MS-DOS. The discussion pro
ceeds from a general description of the MS-DOS functions useful to TSR programmers to
specific details about certain MS-DOS structural elements necessary to proper functioning
of a TSR utility and concludes with two programming examples.

Note: Microsoft cannot guarantee that the information in this article will be valid for fu
ture versions of MS-DOS.

structure of a Terminate-and-Stay-Resident Utility

The executable code and data in TSRs can be separated into RAM-resident and transient
portions (Figure 11-1). The RAM-resident portion of a TSR contains executable code and
data for an application that performs some useful function on demand. The transient por
tion installs the TSR; that is, it initializes data and interrupt handlers contained in the RAM-
resident portion of the program and executes an MS-DOS Terminate and Stay Resident
function call that leaves the RAM-resident portion in memory and frees the memory used
by the transient portion. The code in the transient portion of a TSR runs when the .EXE or
.COM file containing the program is executed; the code in the RAM-resident portion runs
only when it is explicitly invoked by a foreground program or by execution of a hardware
or software interrupt.

TSRs can be broadly classified as passive or active, depending on the method by which
control is transferred to the RAM-resident program. A passive TSR executes only when
another program explicitly transfers control to it, either through a software interrupt or by
means of a long JMP or CALL. The calling program is not interrupted by the TSR, so the
status of MS-DOS, the system BIOS, and the hardware is well defined when the TSR pro
gram starts to execute.

In contrast, an active TSR is invoked by the occurrence of some event external to the
currently running (foreground) program, such as a sequence of user keystrokes or a pre
defined hardware interrupt. Therefore, when it is invoked, an active TSR almost always

Section II: Programming in the MS-DOS Environment 347

Part C: Customizing MS-DOS

Higher addresses

Lower addresses

Initialization code and data

Application code and data

Monitor routines

Program segment prefix

Transient portion
(executed when .EXE file runs)

> RAM-resident portion

Figure 11-1. Organization of a TSRprogram in memory.

interrupts some other program and suspends its execution. To avoid disrupting the inter
rupted program, an active TSR must monitor the status of MS-DOS, the ROM BIOS, and
the hardware and take control of the system only when it is safe to do so.

Passive TSRs are generally simpler in their construction than active TSRs because a passive
TSR runs in the context of the calling program; that is, when the TSR executes, it assumes
that it can use the calling program's program segment prefix (PSP), open files, current
directory, and so on. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Program
ming FOR MS-DOS: Structure of an Application Program. It is the calling program's respon
sibility to ensure that the hardware and MS-DOS are in a stable state before it transfers
control to a passive TSR.

An active TSR, on the other hand, is invoked asynchronously; that is, the status of the
hardware, MS-DOS, and the executing foreground program is indeterminate when the
event that invokes the TSR occurs. Therefore, active TSRs require more complex code. The
RAM-resident portion of an active TSR must contain modules that monitor the operating
system to determine when control can safely be transferred to the application portion of
the TSR. The monitor routines typically test the status of keyboard input, ROM BIOS inter
rupt processing, hardware interrupt processing, and MS-DOS function processing. The
TSR activates the application (the part of the RAM-resident portion that performs the TSR's
main task) only when it detects the appropriate keyboard input and determines that the
application will not interfere with interrupt and MS-DOS function processing.

Keyboard input

An active TSR usually contains a RAM-resident module that examines keyboard input
for a predetermined keystroke sequence called a "hot-key" sequence. A user executes the
RAM-resident application by entering this hot-key sequence at the keyboard.

The technique used in the TSR to monitor keyboard input depends on the keyboard
hardware implementation. On computers in the IBM PC and PS/2 families, the keyboard
coprocessor generates an Interrupt 09H for each keypress. Therefore, a TSR can monitor
user keystrokes by installing an interrupt handler (interrupt service routine, or ISR) for
Interrupt 09H. This handler can thus detect a specified hot-key sequence.

348 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

ROM BIOS interrupt processing

The ROM BIOS routines in IBM PCs and PS/2s are not reentrant. An active TSR that calls

the ROM BIOS must ensure that its code does not attempt to execute a ROM BIOS function
that was already being executed by the foreground process when the TSR program took
control of the system.

The IBM ROM BIOS routines are invoked through software interrupts, so an active TSR
can monitor the status of the ROM BIOS by replacing the default interrupt handlers with
custom interrupt handlers that intercept the appropriate BIOS interrupts. Each of these in
terrupt handlers can maintain a status flag, which it increments before transferring control
to the corresponding ROM BIOS routine and decrements when the ROM BIOS routine has
finished executing. Thus, the TSR monitor routines can test these flags to determine when
non-reentrant BIOS routines are executing.

Hardware interrupt processing

The monitor routines of an active TSR, which may themselves be executed as the result of
a hardware interrupt, should not activate the application portion of the TSR if any other
hardware interrupt is being processed. On IBM PCs, for example, hardware interrupts are
processed in a prioritized sequence determined by an Intel 8259A Programmable Inter
rupt Controller. The 8259A does not allow a hardware interrupt to execute if a previous
interrupt with the same or higher priority is being serviced. All hardware interrupt
handlers include code that signals the 8259A when interrupt processing is completed.
(The programming interface to the 8259A is described in IBM's Technical Reference
manuals and in Intel's technical literature.)

If a TSR were to interrupt the execution of another hardware interrupt handler before the
handler signaled the 8259A that it had completed its interrupt servicing, subsequent hard
ware interrupts could be inhibited indefinitely. Inhibition of high-priority hardware inter
rupts such as the timer tick (Interrupt 08H) or keyboard interrupt (Interrupt 09H) could
cause a system crash. For this reason, an active TSR must monitor the status of all hardware
interrupt processing by interrogating the 8259A to ensure that control is transferred to the
RAM-resident application only when no other hardware interrupts are being serviced.

MS-DOS function processing

Unlike the IBM ROM BIOS routines, MS-DOS is reentrant to a limited extent. That is, there
are certain times when MS-DOS's servicing of an Interrupt 21H function call invoked by a
foreground process can be suspended so that the RAM-resident application can make an
Interrupt 21H function call of its own. For this reason, an active TSR must monitor operat
ing system activity to determine when it is safe for the TSR application to make its calls
to MS-DOS.

Section II; Programming in the MS-DOS Environment 349

Part C: Customizing MS-DOS

MS-DOS Support for Terminate-and-Stay-Resident
Programs

Several MS-DOS system calls are useful for supporting terminate-and-stay-resident
utilities. These are listed in Table 11-1. See SYSTEM CALLS.

Table 11-1. MS-DOS Functions Useful in TSR Programs.

Function Name CaUWith Returns Comment

Terminate and

Stay Resident
AH = 31H

AL = return code

DX = size of resident program
(in 16-byte paragraphs)

INT21H

Nothing Preferred over Interrupt
27H with MS-DOS

versions 2.x and later

Terminate and

Stay Resident

Set Interrupt

Vector

CS = PSP Nothing
DX = size of resident program
(bytes)

INT27H

AH = 25H Nothing
AL = interrupt number
DS:DX = address of interrupt
handler

INT21H

Provided for com

patibility with
MS-DOS versions 1.x

Get Interrupt

Vector

AH = 35H

AL = interrupt number
INT21H

ES:BX = address of

interrupt handler

Set PSP Address AH = 50H

BX = PSP segment

INT21H

Nothing

Get PSP Address AH = 51H

INT21H

BX = PSP s^ment

Set Extended AX=5D0AH Nothing
Error Information DS:DX = address of 11-word data structure:

word 0: register AX
as returned by Function 59H

word 1: register BX
word 2: register CX
word 3: register DX
word 4: register SI
word 5: register DI
word 6: register DS
word 7: register ES
words 8-OAH: reserved; should be 0

INT21H

MS-DOS versions 3.1

and later

(more)

350 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

Table 11-1. Continued.

Function Name Call With Returns Comment

Get Extended

Error Information

Set Disk

Transfer Area

Address

Get Disk

Transfer Area

Address

Get InDOS Flag
Address

AH = 59H

BX = 0

INT21H

AH«1AH

DS:DX= address of DTA

INT21H

AH = 2FH

INT21H

AH = 34H

INT21H

AX = extended error

code

BH = error class

BL = suggested action
CH = error locus

Nothing

ES:BX « address of

current DTA

ES:BX = address of

InDOS flag

Terminate-and-stay-resident functions

MS-DOS provides two mechanisms for terminating the execution of a program while leav
ing a portion of it resident in RAM. The preferred method is to execute Interrupt 21H Func
tion 31H.

Interrupt 21H Function 31H

When this Interrupt 21H function is called, the value in DX specifies the amount of RAM
(in paragraphs) that is to remain allocated after the program terminates, starting at the
program segment prefix (PSP). The function is similar to Function 4CH (Terminate
Process with Return Code) in that it passes a return code in AL, but it differs in that open
files are not automatically closed by Function 31H.

Interrupt 27H

When Interrupt 27H is executed, the value passed in DX specifies the number of bytes of
memory required for the RAM-resident program. MS-DOS converts the value passed in DX
from bytes to paragraphs, sets AL to zero, and jumps to the same code that would be exe
cuted for Interrupt 21H Function 31H. Interrupt 27H is less flexible than Interrupt 21H
Function 31H because it limits the size of the program that can remain resident in RAM to
64 KB, it requires that CS point to the base of the PSP, and it does not pass a return code.
Later versions of MS-DOS support Interrupt 27H primarily for compatibility with versions
1.x.

TSR RAM management

In addition to the RAM explicitly allocated to the TSR by means of the value in DX, the
RAM allocated to the TSR's environment remains resident when the installation portion
of the TSR program terminates. (The paragraph address of the environment is found at

Section II: Programming in the MS-DOS Environment 351

Part C: Customizing MS-DOS

offset 2CH in the TSR's PSR) Moreover, if the installation portion of a TSR program has
used Interrupt 21H Function 48H (Allocate Memory Block) to allocate additional RAM, this
memory also remains allocated when the program terminates. If the RAM-resident pro
gram does not need this additional RAM, the installation portion of the TSR program
should free it explicitly by using Interrupt 21H Function 49H (Free Memory Block) before
executing Interrupt 21H Function 31H.

Set and Get Interrupt Vector functions

Two Interrupt 21H function calls are available to inspect or update the contents of a
specified 8086-family interrupt vector. Function 25H (Set Interrupt Vector) updates the
vector of the interrupt number specified in the AL register with the segment and offset
values specified in DS:DX. Function 35H (Get Interrupt Vector) performs the inverse
operation: It copies the current vector of the interrupt number specified in AL into the
ES:BX register pair.

Although it is possible to manipulate interrupt vectors directly, the use of Interrupt 21H
Functions 25H and 35H is generally more convenient and allows for upward compatibility
with future versions of MS-DOS.

Set and Get PSP Address functions

MS-DOS uses a program's PSP to keep track of certain data unique to the program, includ
ing command-line parameters and the segment address of the program's environment. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure

of an Application Program. To access this information, MS-DOS maintains an internal vari
able that always contains the location of the PSP associated with the foreground process.
When a RAM-resident application is activated, it should use Interrupt 21H Functions 50H
(Set Program Segment Prefix Address) and 51H (Get Program Segment Prefix Address) to
preserve the current contents of this variable and to update the variable with the location
of its own PSP. Function 50H (Set Program Segment Prefix Address) updates an internal
MS-DOS variable that locates the PSP currently in use by the foreground process. Function
51H (Get Program Segment Prefix Address) returns the contents of the internal MS-DOS
variable to the caller.

Set and Get Extended Error Information functions

In MS-DOS versions 3.1 and later, the RAM-resident program should preserve the fore
ground process's extended error information so that, if the RAM-resident application
encounters an MS-DOS error, the extended error information pertaining to the foreground
process will still be available and can be restored. Interrupt 21H Functions 59H and
5D0AH provide a mechanism for the RAM-resident program to save and restore this
information during execution of a TSR application.

Function 59H (Get Extended Error Information), which became available in version 3.0,
returns detailed information on the most recently detected MS-DOS error. The inverse
operation is performed by Function 5D0AH (Set Extended Error Information), which can
be used only in MS-DOS versions 3.1 and later. This function copies extended error
information to MS-DOS from a data structure defined in the calling program.

352 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

Set and Get Disk Transfer Area Address functions

Several MS-DOS data transfer functions, notably Interrupt 21H Functions 21H, 22H, 27H,
and 28H (the Random Read and Write functions) and Interrupt 21H Functions 14H and 15H
(the Sequential Read and Write functions), require a program to specify a disk transfer area
(DTA). By default, a program's DTA is located at offset 80H in its program segment prefix.
If a RAM-resident application calls an MS-DOS function that uses a DTA, the TSR should
save the DTA address belonging to the interrupted program by using Interrupt 21H Func
tion 2FH (Get Disk Transfer Area Address), supply its own DTA address to MS-DOS using
Interrupt 21H Function lAH (Set Disk Transfer Area Address), and then, before terminat
ing, restore the interrupted program's DTA.

The MS-DOS idle interrupt (Interrupt 28H)

Several of the first 12 MS-DOS functions (OIH through OCH) must wait for the occurrence
of an expected event such as a user keypress. These functions contain an "idle loop" in
which looping continues until the event occurs. To provide a mechanism for other system
activity to take place while the idle loop is executing, these MS-DOS functions execute an
Interrupt 28H from within the loop.

The default MS-DOS handler for Interrupt 28H is only an IRET instruction. By supplying
its own handler for Interrupt 28H, a TSR can perform some useful action at times when
MS-DOS is otherwise idle. Specifically, a custom Interrupt 28H handler can be used to
examine the current status of the system to determine whether or not it is safe to activate
the RAM-resident application.

Determining MS-DOS Status

A TSR can infer the current status of MS-DOS from knowledge of its internal use of stacks
and from a pair of internal status flags. This status information is essential to the proper
execution of an active TSR because a RAM-resident application can make calls to MS-DOS
only when those calls will not disrupt an earlier call made by the foreground process.

MS-DOS internal stacks

MS-DOS versions 2.0 and later may use any of three internal stacks: the I/O stack
UOStacH), the disk stack WiskStacli), and the auxiliary stack (AuxStacU). In general,
lOStack is used for Interrupt 21H Functions OIH through OCH and DiskStack is used for
the remaining Interrupt 21H functions; AuxStack is normally used only when MS-DOS has
detected a critical error and subsequently executed an Interrupt 24H. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Exception Handlers. Specifically,
MS-DOS's internal stack use depends on which MS-DOS function is being executed and
on the value of the critical error flag.

The critical error flag

The critical error flag {ErrorMod^ is a 1-byte flag that MS-DOS uses to indicate whether
or not a critical error has occurred. During normal, errorless execution, the value of the

Section II: Programming in the MS-DOS Environment 353

Part C: Customizing MS-DOS

critical error flag is zero. Whenever MS-DOS detects a critical error, it sets this flag to a
nonzero value before it executes Interrupt 24H. If an Interrupt 24H handler subsequently
invokes an MS-DOS function by using Interrupt 21H, the nonzero value of the critical error
flag tells MS-DOS to use its auxiliary stack for Interrupt 21H Functions OIH through OCH
instead of using the I/O stack as it normally would.

In other words, when control is transferred to MS-DOS through Interrupt 21H, the function
number and the critical error flag together determine MS-DOS stack use for the function.
Figure 11-2 outlines the internal logic used on entry to an MS-DOS function to select which
stack is to be used during processing of the function. As stated above, for Functions OIH
through OCH, MS-DOS uses lOStack if the critical error flag is zero and AuxStack if the
flag is nonzero. For function numbers greater than OCH, MS-DOS usually uses DiskStack,
but Functions 50H, 51H, and 59H are important exceptions. Functions 50H and 51H use
either lOStack (in versions 2.x) or the stack supplied by the calling program (in versions
3.x). In version 3.0, Function 59H uses either lOStack or Ai4xStack, depending on the
value of the critical error flag, but in versions 3.1 and later. Function 59H always uses
AwcStack

MS-DOS versions 2.x

if (FunctionNumber >= OIH and FunctionNumber <= OCH)

or

FunctionNumber = 50H

or

FunctionNumber = 51H

then if ErrorMode = 0

then use lOStack

else use AuxStack

else ErrorMode = 0

use DiskStack

MS-DOS version 3.0

if FunctionNumber = 50H

or

FunctionNumber = 51H

or

FunctionNumber = 62H

then use caller's stack

else if (FunctionNumber >= OIH and FunctionNumber <= OCH)

or

Function Number = 59H

then if ErrorMode = 0

then use lOStack

else use AuxStack

else ErrorMode = 0

use DiskStack

Figure 11-2. Strategyfor use of MS-DOS internal stacks. (more)

354 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

MS-DOS versions 3*1 and later

if FunctionNumber = 33H

or

FunctionNumber = 50H

or

FunctionNumber = 51H

or

FunctionNumber = 62H

then use caller's stack

else if (FunctionNumber >= 01H and FunctionNumber <= OCH)

then if ErrorMode = 0

then use lOStack

else use AuxStack

else if FunctionNumber = 59H

then use AuxStack

else ErrorMode = 0

use DiskStack

Figure 11-2. Continued.

This scheme makes Functions OIH through OCH reentrant in a limited sense, in that a
substitute critical error (Interrupt 24H) handler invoked while the critical error flag
is nonzero can still use these Interrupt 21H functions. In this situation, because the
flag is nonzero, AuxStack is used for Functions OIH through OCH instead of lOStack
Thus, if lOStack is in use when the critical error is detected, its contents are preserved
during the handler's subsequent calls to these functions.

The stack-selection logic differs slightly between MS-DOS versions 2 and 3. In versions
3.x, a few functions—notably 50H and 51H—avoid using any of the MS-DOS stacks.
These functions perform uncomplicated tasks that make minimal demands for stack
space, so the calling program's stack is assumed to be adequate for them.

The InDOS flag

InDOS is a 1-byte flag that is incremented each time an Interrupt 21H function is invoked
and decremented when the function terminates. The flag's value remains nonzero as long
as code within MS-DOS is being executed. The value of InDOS does not indicate which
internal stack MS-DOS is using.

Whenever MS-DOS detects a critical error, it zeros InDOS before it executes Interrupt 24H.
This action is taken to accommodate substitute Interrupt 24H handlers that do not return
control to MS-DOS. If InDOS were not zeroed before such a handler gained control, its
value would never be decremented and would therefore be incorrect during subsequent
calls to MS-DOS.

The address of the 1-byte InDOS flag can be obtained from MS-DOS by using Interrupt
21H Function 34H (Return Address of InDOS Flag). In versions 3.1 and later, the 1-byte crit
ical error flag is located in the byte preceding InDOS, so, in effect, the address of both

Section II; Programming in the MS-DOS Environment 355

Part C: Customizing MS-DOS

flags can be found using Function 34H. Unfortunately, there is no easy way to find the
critical error flag in other versions. The recommended technique is to scan the MS-DOS
segment, which is returned in the ES register by Function 34H, for one of the following
sequences of instructions:

test ss:[CriticalErrorFlag],OFFH ;(versions 3.1 and later)

jne NearLabel

push ss:[NearWord]

int 28H

or

cmp ss:[CriticalErrorFlag],00 /(versions earlier than 3.1)

jne NearLabel

int 28H

When the TEST or CMP instruction has been identified, the offset of the critical error flag
can be obtained from the instruction's operand field.

The Multiplex Interrupt

The MS-DOS multiplex interrupt (Interrupt 2FH) provides a general mechanism for a
program to verify the presence of a TSR and communicate with it. A program communi
cates with a TSR by placing an identification value in AH and a function number in AL and
issuing an Interrupt 2FH. The TSR's Interrupt 2FH handler compares the value in AH to its
own predetermined ID value. If they match, the TSR's handler keeps control and performs
the function specified in the AL register. If they do not match, the TSR's handler relin
quishes control to the previously installed Interrupt 2FH handler. (Multiplex ID values OOH
through 7FH are reserved for use by MS-DOS; therefore, user multiplex numbers should be
in the range 80H through OFFH.)

The handler in the following example recognizes only one function, corresponding to
AL = OOH. In this case, the handler returns the value OFFH in AL, signifying that the han
dler is indeed resident in RAM. Thus, a program can detect the presence of the handler by
executing Interrupt 2FH with the handler's ID value in AH and OOH in AL.

mov ah,MultiplexID

mov al,OOH

int 2FH

cmp al,OFFH

je Alreadylnstalled

To ensure that the identification byte is unique, its value should be determined at the
time the TSR is installed. One way to do this is to pass the value to the TSR program as a
command-line parameter when the TSR program is installed. Another approach is to place
the identification value in an environment variable. In this way, the value can be found in
the environment of both the TSR and any other program that calls Interrupt 2FH to verify
the TSR's presence.

356 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

In practice, the multiplex interrupt can also be used to pass information to and from a
RAM-resident program in the CPU registers, thus providing a mechanism for a program to
share control or status information with a TSR.

TSR Programming Examples

One effective way to become familiar with TSRs is to examine functional programs.
Therefore, the subsequent pages present two examples: a simple passive TSR and a more
complex active TSR.

HELLO.ASM

The "bare-bones" TSR in Figure 11-3 is a passive TSR. The RAM-resident application, which
simply displays the message Hello, World, is invoked by executing a software interrupt.
This example illustrates the fundamental interactions among a RAM-resident program,
MS-DOS, and programs that execute after the installation of the RAM-resident utility.

Name: hello

Description: This RAM-resident (terminate-and-stay-resident) utility

displays the message "Hello, World" in response to a

software interrupt.

Comments: Assemble and link to create HELLO.EXE.

Execute HELLO.EXE to make resident.

Execute INT 64h to display the message.

TSRInt

STDOUT

EQU

EQU

64h

1

RESIDENT_TEXT SEGMENT byte public 'CODE'

ASSUME cs:RESIDENT_TEXT,ds:RESIDENT_DATA

TSRAction PROC far

sti

push

push

push

push

push

ds

ax

bx

cx

dx

Figure 11-5. HELLO.ASM, a passive TSR.

enable interrupts

preserve registers

(more)

Section II: Programming in the MS-DOS Environment 357

Part C: Customizing MS-DOS

mov dx,seg RESIDENT_DATA

mov ds,dx

mov dx,offset Message

mov cx, 1 6

mov bx,STDOUT

mov ah,4Oh

int 21h

DS:DX -> message

CX = length

BX = file handle

AH = INT 21H function 40H

(Write File)

display the message

pop

pop

pop

pop

pop

iret

dx

cx

bx

ax

ds

restore registers and exit

TSRAction

RESIDENT_TEXT

ENDP

ENDS

RESIDENT_DATA SEGMENT word public 'DATA'

Message DB ODh,OAh,'Hello, World',ODh,OAh

RESIDENT_DATA ENDS

TRANSIENT_TEXT SEGMENT para public 'TCODE'

ASSUME cs:TRANSIENT_TEXT,ss:TRANSIENT_STACK

HelloTSR PROC far At entry: CSrIP -> SnapTSR

SS:SP -> stack

DS,ES -> PSP

; Install this TSR's interrupt handler

mov ax,seg RESIDENT_TEXT

mov ds,ax

mov dx,offset RESIDENT_TEXT:TSRAction

mov al,TSRInt

mov ah,25h

int 21h

; Terminate and stay resident

mov dx,cs

mov ax,es

sub dx,ax

Figure 11-3. Continued.

; DX = paragraph address of start of

; transient portion (end of resident

; portion)

; ES = PSP segment

; DX = size of resident portion

(more)

358 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

mov ax,3100h ; AH = INT 21H function number (TSR)

; AL = OOH (return code)

int 21h

HelloTSR ENDP

TRANSIENT-TEXT ENDS

TRANSIENT-STACK SEGMENT word stack 'TSTACK'

DB 80h dup(?)

TRANSIENT-STACK ENDS

END HelloTSR

Figure 11-3. Continued.

The transient portion of the program (in the segments TRANSIENT_TEXT and
TRANSIENT^STACK) runs only when the file HELLO.EXE is executed. This installation
code updates an interrupt vector to point to the resident application (the procedure
TSRActiori) and then calls Interrupt 21H Function 31H to terminate execution, leaving the
segments RESIDENT^TEXT and RESIDENT_DATA in RAM.

The order in which the code and data segments appear in the listing is important. It
ensures that when the program is executed as a .EXE file, the resident code and data are
placed in memory at lower addresses than the transient code and data. Thus, when Inter
rupt 21H Function 31H is called, the memory occupied by the transient portion of the pro
gram is freed without disrupting the code and data in the resident portion.

The RAM containing the resident portion of the utility is left intact by MS-DOS during
subsequent execution of other programs. Thus, after the TSR has been installed, any pro
gram that issues the software interrupt recognized by the TSR (in this example. Interrupt
64H) will transfer control to the routine TSRActiori^ which uses Interrupt 21H Function
40H to display a simple message on standard output.

Part of the reason this example is so short is that it performs no error checking A truly reli
able version of the program would check the version of MS-DOS in use, verify that the pro
gram was not already installed in memory, and chain to any previously installed interrupt
handlers that use the same interrupt vector. (The next program, SNAP.ASM, illustrates
these techniques.) However, the primary reason the program is small is that it makes the
basic assumption that MS-DOS, the ROM BIOS, and the hardware interrupts are all stable
at the time the resident utility is executed.

SNAP. ASM

The preceding assumption is a reliable one in the case of the passive TSR in Figure 11-3,
which executes only when it is explicitly invoked by a software interrupt. However, the
situation is much more complicated in the case of the active TSR in Figure 11-4. This

Section II: Programming in the MS-DOS Environment 359

Part C: Customizing MS-DOS

program is relatively long because it makes no assumptions about the stability of the
operating environment. Instead, it monitors the status of MS-DOS, the ROM BIOS, and the
hardware interrupts to decide when the RAM-resident application can safely execute.

Name: snap

Description: This RAM-resident (terminate-and-stay-resident) utility

produces a video "snapshot" by copying the contents of the

video regeneration buffer to a disk file. It may be used

in 80-column alphanumeric video modes on IBM PCs and PS/2s.

Comments: Assemble and link to create SNAP.EXE.

Execute SNAP.EXE to make resident.

Press Alt-Enter to dump current contents of video buffer

to a disk file.

MultiplexID

TSRStackSize

KB_FLAG

KBIns

KBCaps

KBNum

KBScroll

KBAlt

KBCtl

KBLeft

KBRight

SCEnter

CR

LF

TRUE

FALSE

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

OCAh

lOOh

17h

80h

40h

20h

lOh

8

4

2

1

ICh

ODh

OAh

-1

0

; unique INT 2FH ID value

; resident stack size in bytes

; offset of shift-key status flag in

; ROM BIOS keyboard data area

; bit masks for KB_FLAG

PAGE

RAM-resident routines

RESIDENT_GROUP GROUP RESIDENT_TEXT,RESIDENT_DATA,RESIDENT_STACK

Figure 11-4. SNAP. ASM, a video snapshot TSR. (more)

360 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

RESIDENT_TEXT SEGMENT byte public 'CODE'

ASSUME cs:RESIDENT-GROUP,ds:RESIDENT-GROUP

System verification routines

VerifyDOSState PROG near

push

push

push

ds

bx

ax

Returns: carry flag set if MS-DOS

is busy

preserve these registers

Ids bx,cs:ErrorModeAddr

mov ah,[bx] ; AH = ErrorMode flag

Ids

mov

xor

cmp

rcl

cmp

pop

pop

pop

ret

bx,cs:InDOSAddr

al,[bx] ; AL = InDOS flag

bx,bx

bl,cs:InISR28

bl,01h

bx, ax

ax

bx

ds

; BH = OOH, BL = OOH

; carry flag set if INT 28H handler

; is running

; BL = 01H if INT 28H handler is running

; carry flag zero if AH = OOH

; and AL <= BL

; restore registers

VerifyDOSState ENDP

VerifylntState PROG near Returns: carry flag set if hardware

or ROM BIOS unstable

push ; preserve AX

; Verify hardware interrupt status by interrogating Intel 8259A Programmable

; Interrupt Controller

L10:

out

jmp

in

Figure 11-4. Continued.

ax,00001011b

20h,al

short LI 0

al,20h

AH = 0

AL = 0GW3 for Intel 8259A (RR = 1,

RIS = 1)

request 8259A's in-service register

wait a few cycles

AL = hardware interrupts currently

being serviced (bit = 1 if in-service)

(more)

Section 11: Programming in the MS-DOS Environment 361

Part C: Customizing MS-DOS

cmp

jc

ah, al

L11 ; exit if any hardware interrupts still

; being serviced

Verify status of ROM BIOS interrupt handlers

L11 :

cmp

jc

cmp

jc

cmp

jc

cmp

pop

ret

al, al

al,cs:InlSRS

L11

al,cs:InISR9

L11

al, cs:InlSRI0

L11

AL = OOH

; exit if currently in INT 05H handler

exit if currently in INT 09H handler

exit if currently in INT 10H handler

al,cs:InlSRI3 ; set carry flag if currently in

; INT 13H handler

ax ; restore AX and return

VerifylntState ENDP

VerifyTSRState PROC near

rol

cmc

jc

ror

jc

call

jc

call

L20: ret

VerifyTSRState ENDP

PAGE

cs:HotFlag,1

L20

cs:ActiveTSR,1

L20

VerifyDOSState

L20

VerifylntState

Returns: carry flag set if TSR

inactive

carry flag set if (HotFlag = TRUE)

carry flag set if (HotFlag = FALSE)

exit if no hot key

carry flag set if (ActiveTSR = TRUE)

exit if already active

exit if MS-DOS unstable

set carry flag if hardware or BIOS

unstable

System monitor routines

ISR5 PROC far

inc csrInlSRS

Figure 11-4. Continued.

INT 05H handler

(ROM BIOS print screen)

increment status flag

(more)

362 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

ISR5

pushf

cli

call cs:PrevISR5

dec

iret

ENDP

cs:InlSRS

; chain to previous INT 05H handler

; decrement status flag

ISR8

L30:

L31 :

ISR8

PROC

pushf

cli

call

cmp

jne

sti

call

jc

mov

call

mov

dec

iret

ENDP

far INT 08H handler (timer tick, IRQO)

cs:PrevISR8 ; chain to previous handler

cs:InISR8,0

L31

cs:InISR8

; exit if already in this handler

; increment status flag

; interrupts are ok

VerifyTSRState

L30 ; jump if TSR is inactive

byte ptr cs:ActiveTSR,TRUE

TSRapp

byte ptr cs:ActiveTSR,FALSE

cs:InlSRS

ISR9 PROC

push

push

push

push

pop

pushf

cli

call

far

ds

ax

bx

cs

ds

al,60h

ds:PrevISR9

INT 09H handler

(keyboard interrupt IRQ1)

preserve these registers

DS -> RESIDENT_GROUP

AL = current scan code

simulate an INT

let previous handler execute

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 363

Part C: Customizing MS-DOS

mov

or

jnz

inc

sti

ah,ds:InISR9

ah,ds:HotFlag

L43

ds:InISR9

if already in this handler ..

.. or currently processing hot key ..

.. jump to exit

increment status flag

now interrupts are ok

; Check scan code sequence

cmp

je

ds:HotSeqLen,0

L40 jump if no hot sequence to match

mov bx,ds:Hotlndex

cmp al,[bx+HotSequence] ; test scan code sequence

jne L41 ; jump if no match

inc bx

cmp bx,ds:HotSeqLen

jb L42 ; jump if not last scan code to match

Check shift-key state

L40: push ds

mov ax,40h

mov ds,ax ; DS -> ROM BIOS data area

mov al,ds:[KB_FLAG] ; AH = ROM BIOS shift-key flags

pop ds

and al,ds:HotKBMask ; AL = flags AND "don't care" mask

cmp al,ds:HotKBFlag

jne L42 ; jump if shift state does not match

; Set flag when hot key is found

mov byte ptr ds:HotFlag,TRUE

L41 :

L42:

bx, bx reinitialize index

mov ds:Hotlndex,bx ; update index into sequence

dec ds:InISR9 ; decrement status flag

L43: pop

pop

pop

iret

bx

ax

ds

; restore registers and exit

ISR9 ENDP

Figure 11-4. Continued. (more)

364 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

ISR1 0

ISR1 0

PROC

pushf

cli

call

dec

iret

END?

far

cs:InlSRI0

cs rPrevISRI0

cs:InlSRI0

INT 10H handler (ROM BIOS video I/O)

increment status flag

chain to previous INT 10H handler

decrement status flag

ISR1 3

ISR13

PROC

pushf

cli

call

pushf

dec

popf

sti

ret

ENDP

far

cs:InlSRI3

cs:PrevISR13

cs:InlSRI3

INT 13H handler

(ROM BIOS fixed disk I/O)

increment status flag

chain to previous INT 13H handler

preserve returned flags

decrement status flag

restore flags register

enable interrupts

simulate IRET without popping flags

ISR1B

ISR1B

PROC

mov

iret

ENDP

far ; INT 1BH trap (ROM BIOS Ctrl-Break)

byte ptr cs:TraplB,TRUE

ISR23

ISR23

PROC

mov

iret

ENDP

far ; INT 23H trap (MS-DOS Ctrl-C)

byte ptr cs:Trap23,TRUE

ISR24 • PROC far ; INT 24H trap (MS-DOS critical error)

mov byte ptr cs:Trap24,TRUE

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 365

Part C: Customizing MS-DOS

xor al,al ; AL = OOH (MS-DOS 2.x):

cmp cs:MajorVersion,2 ; ignore the error

je L50

al,3 AL = 03H (MS-DOS 3.x):

fail the MS-DOS call in which

the critical error occurred

L50:

ISR24

iret

ENDP

ISR28

L60:

L61 :

ISR28

PROC

pushf

cli

call

cmp

jne

call

jc

mov

call

mov

dec

iret

ENDP

far INT 28H handler

(MS-DOS idle interrupt)

cs:PrevISR28 ; chain to previous INT 28H handler

cs:InISR28,0

L61 ; exit if already inside this handler

cs:InISR28 ; increment status flag

VerifyTSRState

L60 ; jump if TSR is inactive

byte ptr cs:ActiveTSR,TRUE

TSRapp

byte ptr cs:ActiveTSR,FALSE

cs:InISR28 ; decrement status flag

ISR2F PROC far

cmp

je

jmp

Figure 11-4. Continued.

ah,MultiplexID

L70

cs:PrevISR2F

INT 2FH handler

(MS-DOS multiplex interrupt)

Caller: AH = handler ID

AL = function number

Returns for function 0: AL = OFFH

for all other functions: nothing

jump if this handler is requested

chain to previous INT 2FH handler

(more)

366 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

L70: test al,al

jnz MultiplexIRET ; jump if reserved or undefined function

AL = OFFH (this handler is installed)

return from interrupt

; Function 0: get installed state

mov al,OFFh

MultiplexIRET: iret

ISR2F ENDP

PAGE

Auxlnt21—sets ErrorMode while executing INT 21H to force use of the

AuxStack instead of the lOStack.

Auxlnt21 PROC

push

push

Ids

inc

pop

pop

near ; Caller: registers for INT 21H

; Returns: registers from INT 21H

ds

bx

bx,ErrorModeAddr

byte ptr [bx] ; ErrorMode is now nonzero

bx

ds

int 21h perform MS-DOS function

push

push

Ids

dec

pop

pop

ret

ds

bx

bx,ErrorModeAddr

byte ptr [bx] ;

bx

ds

restore ErrorMode

Auxlnt21 ENDP

Int21V PROC ; perform INT 21H or Auxlnt21,

; depending on MS-DOS version

cmp DOSVersion,30Ah

jb L80 ; jump if earlier than 3.1

int

ret

Figure 11-4. Continued.

21h versions 3.1 and later

(more)

Section II: Programming in the MS-DOS Environment 367

Part C: Customizing MS-DOS

L80: call

ret

Auxlnt21 versions earlier than 3.1

Int21v ENDP

PAGE

RAM-resident application

TSRapp PROC near

stack

push ds ; save previous DS on previous

push cs

pop ds ; DS -> RESIDENT-GROUP

mov PrevSP,sp ; save previous SS:SP

mov PrevSS,ss

mov ss,TSRSS ; SS:SP -> RESIDENT-STACK

mov sp,TSRSP

push es ; preserve remaining registers

push ax

push bx

push cx

push dx

push si

push di

push bp

eld clear direction flag

; Set break and critical error traps

mov cx,NTrap

mov si,offset RESIDENT-GROUP:StartTrapList

L90: lodsb

push

mov

int

mov

mov

Figure 11-4. Continued.

; AL = interrupt number

; OS:SI -> byte past interrupt number

byte ptr [si],FALSE ; zero the trap flag

ax

ah,35h

21h

[si+1],bx

[si+3],es

preserve AX

INT 21H function 35H

(get interrupt vector)

ES:BX = previous interrupt vector

save offset and segment ..

.. of previous handler

(more)

368 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

pop

mov

mov

int

add

ax

dx,[si+5]

ah,25h

21h

si, 7

AL = interrupt number

DS:DX -> this TSR's trap

INT 21H function 25H

(set interrupt vector)

DS:SI -> next in list

loop L90

Disable MS-DOS break checking during disk I/O

int

mov

ax,3300h ; AH = INT 21H function number

; AL = OOH (request current break state)

21h ; DL = current break state

PrevBreak,dl ; preserve current state

mov

int

dl,dl

ax,3301h

21h

; DL = OOH (disable disk I/O break

; checking)

; AL = 01H (set break state)

Preserve previous extended error information

cmp DOSVersion,30Ah

jb L91

push ds

xor bx,bx

mov ah,59h

call Int21v

jump if MS-DOS version earlier

than 3.1

preserve DS

BX = OOH (required for function 59H)

INT 21H function 59H

(get extended error info)

mov OS:PrevExtErrDS,ds

pop ds

mov PrevExtErrAX,ax

mov PrevExtErrBX,bx

mov PrevExtErrCX,cx

mov PrevExtErrDX,dx

mov PrevExtErrSI,si

mov PrevExtErrDI,di

mov PrevExtErrES,es

preserve error information

in data structure

Inform MS-DOS about current PSP

L91 : mov

call

ah,51h

Int21v

INT 21H function 51H (get PSP address)

BX = foreground PSP

PrevPSP,bx preserve previous PSP

mov

mov

call

Figure 11-4. Continued.

bx,TSRPSP

ah,50h

Int21V

BX = resident PSP

INT 21H function 50H (set PSP address)

(more)

Section II: Programming in the MS-DOS Environment 369

Part C: Customizing MS-DOS

Inform MS-DOS about current DTA (not really necessary in this application

because DTA is not used)

mov

int

mov

mov

push

mov

mov

mov

int

pop

ah,2Fh

21h

PrevDTAoffs,bx

PrevDTAseg, es

ds

ds,TSRPSP

dx,80h

ah,lAh

21h

ds

INT 21H function 2FH

(get DTA address) into ES:BX

preserve DS

DS:DX -> default DTA at PSP:0080H

INT 21H function 1AH

(set DTA address)

restore DS

Open a file, write to it, and close it

int

mov

mov

mov

int

jc

ax,0E07h

lOh

AH = INT 10H function number

(write teletype)

AL = 07H (bell character)

emit a beep

dx,offset RESIDENT—GROUP:SnapFile

ah,3Ch

cx, 0

21h

L94

INT 21H function 3CH

(create file handle)

file attribute

jump if file not opened

push

mov

int

pop

ax

ah,OFh

lOh

bx

push file handle

INT 10H function OFH (get video status)

AL = video mode number

AH = number of character columns

BX = file handle

cmp

jne

mov

cmp

jbe

ah, 80

L93

dx,0B800h

al,3

L92

jump if not 80-column mode

DX = color video buffer segment

jump if color alphanumeric mode

L92:

cmp

jne

push

mov

xor

mov

mov

al,7

L93

dx,0B000h

ds

ds, dx

dx, dx

cx,80*25*2

ah,40h

jump if not monochrome mode

DX = monochrome video buffer segment

DS:DX -> start of video buffer

CX = number of bytes to write

INT 21H function 40H (write file)

Figure 11-4. Continued. (more)

370 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

L93:

int

pop

mov

int

21h

ds

ah,3Eh

21h

; INT 21H function 3EH (close file)

mov

int

ax,0E07h

lOh

; emit another beep

; Restore previous DTA

L94: push

ids

mov

int

pop

ds

dx,PrevDTA

ah,1 Ah

21h

ds

preserve DS

DS:DX -> previous DTA

INT 21H function 1AH (set DTA address)

; Restore previous PSP

mov

mov

call

bx,PrevPSP ; BX = previous PSP

ah,50h ; INT 21H function 50H

Int21v ; (set PSP address)

Restore previous extended error information

mov

cmp

jb

cmp

jae

mov

mov

int

ax,DOSVersion

ax,30Ah

L95

ax,GAOOh

L95

; jump if MS-DOS version earlier than 3.1

; jump if MS 0S/2-D0S 3.x box

dx,offset RESIDENT_GROUP:PrevExtErrInfo

ax,5D0Ah

21h ; (restore extended error information)

; Restore previous MS-DOS break checking

L95: mov dl,PrevBreak ; DL = previous state

mov ax,3301h

int 21h

; Restore previous break and critical error traps

L96:

mov

mov

push

lods

Ids

mov

int

cx,NTrap

si,offset RESIDENT_GROUP:StartTrapList

ds ; preserve DS

byte ptr cs;[si] ; AL = interrupt number

; ES:SI -> byte past interrupt number

dx,cs:[si+1] ; DS:DX -> previous handler

ah,25h ; INT 21H function 25H

21h ; (set interrupt vector)

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 371

Part C: Customizing MS-DOS

add si,7

loop L96

pop ds

Restore all registers

; DS:SI -> next in list

; restore DS

pop

pop

pop

pop

pop

pop

pop

pop

mov

mov

pop

bp

di

si

dx

ex

bx

ax

es

ss,PrevSS

sp,PrevSP

ds

; SS:SP -> previous stack

; restore previous DS

Finally, reset status flag and return

byte ptr cs:HotFlag,FALSEmov

ret

TSRapp ENDP

RESIDENT_TEXT ENDS

RESIDENT_DATA SEGMENT word public 'DATA'

ErrorModeAddr

InDOSAddr

NISR

DD

DD

DW

? ; address of MS-DOS ErrorMode flag

? ; address of MS-DOS InDOS flag

(EndlSRList-StartlSRList)/8 ; number of installed ISRs

StartlSRList DB 05h ; INT number

InlSRS DB FALSE ; flag

PrevISRS DD ? ; address of previous handler

DW offset RESIDENT_GR0UP:ISR5

InlSRS

PrevISRS

DB

DB

DD

DW

08h

FALSE

offset RESIDENT_GROUP:ISRS

InISR9

PrevISR9

DB

DB

DD

DW

09h

FALSE

offset RESIDENT_GROUP:ISR9

DB

InlSRIO DB

Figure 11-4. Continued.

lOh

FALSE

(more)

372 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

PrevISRI0

InISR13

PrevISRI3

InISR28

PrevISR28

InISR2F

PrevISR2F

EndlSRList

TSRPSP

TSRSP

TSRSS

PrevPSP

PrevSP

PrevSS

HotIndex

HotSeqLen

HotSequence

EndHotSeq

HotKBFlag

HotKBMask

HotFlag

DD

DB

DB

DD

DW

DB

DB

DD

DW

DB

DB

DD

DW

offset RESIDENT-GROUP: I SRI 0

13h

FALSE

7

offset RESIDENT-GROUP:ISRI 3

28h

FALSE

7

offset RESIDENT-GROUP:ISR28

2Fh

FALSE

offset RESIDENT-GROUP:ISR2F

LABEL BYTE

DW

DW

DW

DW

DW

DW

DW

DW

DB

LABEL

DB

DB

DB

DB

? ; resident PSP

TSRStackSize ; resident SS:SP

seg RESIDENT-STACK

? ; previous PSP

? ; previous SS:SP

0 ; index of next scan code in sequence

EndHotSeq-HotSequence ; length of hot-key sequence

SCEnter

BYTE

; hot sequence of scan codes

ActiveTSR

DOSVersion

MajorVersion

; The following data is

LABEL

DB

DB

KBAlt ; hot value of ROM BIOS KB-FLAG

(KBIns OR KBCaps OR KBNum OR KBScroll) XOR OFFh

FALSE

FALSE

WORD

; minor version number

; major version number

NTrap

StartTrapList

TraplB

PrevISRIB

DW

DB

DB

DD

DW

DB

used by the TSR application:

(EndTrapList-StartTrapList)/8

IBh

FALSE

7

offset RESIDENT-GROUP:ISRI B

23h

number of traps

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 373

Part C: Customizing MS-DOS

Trap23 DB FALSE

PrevISR23 DD 7

DW offset RESIDENT-GROUP:ISR23

DB 24h

Trap24 DB FALSE

PrevISR24 DD 7

DW offset RESIDENT-GROUP:ISR24

EndTrapList LABEL BYTE

PrevBreak DB ? ; previous break-checking

PrevDTA LABEL DWORD ; previous DTA address

PrevDTAoffs DW 7

PrevDTAseg DW 7

PrevExtErrInfo LABEL BYTE ; previous extended error

PrevExtErrAX DW 7

PrevExtErrBX DW 7

PrevExtErrCX DW 7

PrevExtErrDX DW 7

PrevExtErrSI DW 7

PrevExtErrDI DW 7

PrevExtErrDS DW 7

PrevExtErrES DW 7

DW 3 dup(O)

SnapFile DB '\snap.img* ; output filename in root ^

RESIDENT-DATA ENDS

RESIDENT-STACK SEGMENT word stack 'STACK'

DB TSRStackSize dup(?)

RESIDENT-STACK ENDS

PAGE

Transient installation routines

TRANSIENT-TEXT SEGMENT para public 'TCODE'

ASSUME OS:TRANSIENT-TEXT,ds:RESIDENT-DATA,ss:RESIDENT-STACK

InstallSnapTSR PROG

Figure 11-4. Continued.

far At entry: CS:IP -> InstallSnapTSR

SS:SP -> stack

DS,ES -> PSP

(more)

374 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

; Save PSP segment

mov

mov ds, ax

mov TSRPSP,es

Check the MS-DOS version

ax,seg RESIDENT_DATA

; DS -> RESIDENT_DATA

; save PSP segment

call GetDOSVersion ; AH = major version number

; AL = minor version number

Verify that this TSR is not already installed

Before executing INT 2FH in MS-DOS versions 2.x, test whether INT 2FH

vector is in use. If so, abort if PRINT.COM is using it.

(Thus, in MS-DOS 2.x, if both this program and PRINT.COM are used,

this program should be made resident before PRINT.COM.)

cmp

ja

int

ah, 2

L101

ax,352Fh

21h

jump.if version 3.0 or later

AH = INT 21H function number

AL = interrupt number

ES:BX = INT 2FH vector

mov

or

jnz

ax, es

ax, bx

L100

jump if current INT 2FH vector ..

.. is nonzero

push ds

mov ax,252Fh ; AH = INT 21H function number

; AL = interrupt number

mov dx,seg RESIDENT—GROUP

mov ds,dx

mov dx,offset RESIDENT—GROUP:MultiplexIRET

LI GO:

int

pop

jmp

mov

int

cmp

je

21h

ds

short LI 03

ax,OFFOOh

2Fh

ah,OFFh

LI 01

point INT 2FH vector to IRET

jump to install this TSR

look for PRINT.COM:

if resident, AH = print queue length;

otherwise, AH is unchanged

if PRINT.COM is not resident ..

.. use multiplex interrupt

mov

call

Figure 11-4. Continued.

al,1

FatalError abort if PRINT.COM already installed

(more)

Section II: Programming in the MS-DOS Environment 375

Part C: Customizing MS-DOS

L101 : mov

xor

int

ah,MultiplexID

al, al

2Fh

AH = multiplex interrupt ID value

AL = OOH

multiplex interrupt

test

jz

al, al

L103 jump if ok to install

cmp

jne

al,OFFh

LI 02 jump if not already installed

mov

call

al,2

FatalError already installed

L102: mov

call

al,3

FatalError can't install

; Get addresses of InDOS and ErrorMode flags

L103:

L104:

call GetDOSFlags

TSR's interrupt handlers

push es ; preserve PSP segment

mov cx,NISR

mov si,offset StartlSRList

lodsb ; AL = interrupt number

; DS:SI -> byte past interrupt number

push ax ; preserve AX

mov ah,35h ; INT 21H function 35H

int 21h ; ES:BX = previous interrupt vector

mov [si+1],bx ; save offset and segment ..

mov [si+3],es ; .. of previous handler

pop ax ; AL = interrupt number

push ds ; preserve DS

mov dx,[si+5]

mov bx,seg RESIDENT.-GROUP

mov ds, bx ; DS:DX -> this TSR's handler

mov ah,25h ; INT 21H function 25H

int 21h ; (set interrupt vector)

pop ds ; restore DS

add si, 7 ; DS:SI -> next in list

loop LI 04

Free the environment

pop

push

mov

Figure 11-4. Continued.

es ; ES = PSP segment

es ; preserve PSP segment

es,es:[2Ch] ; ES = segment of environment

(more)

376 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

mov ah,49h

int 21h

Terminate and stay resident

INT 21H function 49H

(free memory block)

pop

mov

sub

int

ax

dx, cs

dx, ax

ax,31OOh

21h

AX = PSP segment

DX = paragraph address of start of

transient portion (end of resident

portion)

DX = size of resident portion

AH = INT 21H function number

AL = OOH (return code)

InstallSnapTSR ENDP

GetDOSVersion PROC

int

cmp

jb

xchg

ASSUME ds:RESIDENT_DATA

mov ah,3Oh ;

21h

al,2

L110

ah, al

DOSVersion,ax

Caller: DS = seg RESIDENT_DATA

ES = PSP

Returns: AH = major version

AL = minor version

INT 21H function 30H:

(get MS-DOS version)

jump if versions 1.x

AH = major version

AL = minor version

save with major version in

high-order byte

L110: mov

call

al,00h

FatalError abort if versions 1.x

GetDOSVersion ENDP

GetDOSFlags PROC

ASSUME ds:RESIDENT_DATA

Get InDOS address from MS-DOS

push es

Caller: DS = seg RESIDENT_DATA

Returns: InDOSAddr -> InDOS

ErrorModeAddr -> ErrorMode

Destroys: AX,BX,CX,DI

mov

int

Figure 11-4. Continued.

ah,34h

21h

INT 21H function number

ES:BX -> InDOS

(more)

Section II: Programming in the MS-DOS Environment 377

Part C: Customizing MS-DOS

mov word ptr InDOSAddr,bx

mov word ptr InDOSAddr+2,es

; Determine ErrorMode address

mov word ptr ErrorModeAddr+2,es assume ErrorMode is

in the same segment

as InDOS

mov

cmp

jb

cmp

jae

dec

mov

jmp

ax,DOSVersion

ax,30Ah

L120

ax,OAOOh

L120

; jump if MS-DOS version earlier

; than 3.1 ..

; .. or MS 0S/2-D0S 3.x box

bx ; in MS-DOS 3.1 and later, ErrorMode

word ptr ErrorModeAddr,bx ; is just before InDOS

short LI 25

L120:

mov

xor

cx,OFFFFh

di, di

; scan MS-DOS segment for ErrorMode

; CX = maximum number of bytes to scan

; ES:DI -> start of MS-DOS segment

L121 :

L122:

L123:

repne

jne

cmp

jne

mov

cmp

jne

mov

jmp

mov

cmp

jne

ax,word ptr cs:LF2 ; AX = opcode for INT 28H

scasb ; scan for first byte of fragment

LI 26 ; jump if not found

ah,es:[di] ; inspect second byte of opcode

LI 22 ; jump if not INT 28H

ax,word ptr cs:LF1 + 1 ; AX = opcode for CMP

ax,es:[di] [LF1-LF2]

LI 23 ; jump if opcode not CMP

ax,es:[di] [(LF1-LF2)+2] ; AX = offset of ErrorMode

short LI 24 ; in DOS segment

ax,word ptr cs:LF3 + 1 ; AX = opcode for TEST

ax,es:[di][LF3-LF4]

L121

ax,es:[di] [(LF3-LF4)+2]

jump if opcode not TEST

AX = offset of ErrorMode

LI 24: mov

LI 25: pop

ret

Figure 11-4, Continued.

word ptr ErrorModeAddr,ax

(more)

378 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

; Come here if address of ErrorMode not found

L126: mov al,04h

call FatalError

Code fragments for scanning for ErrorMode flag

LFnear LABEL near dummy labels for addressing

LFbyte LABEL byte

LFword LABEL word

; MS-DOS versions earlier than 3. 1

LF1 : cmp ss:LFbyte,0 ; CMP ErrorMode,0

jne LFnear

LF2 : int 28h

; MS-DOS versions 3.1 and later

LF3: test ss:LFbyte,OFFh ; TEST ErrorMode,OFFH

jne LFnear

push ss:LFword

LF4 : int 28h

GetDOSFlags ENDP

FatalError PROC near ; Caller: AL = message number

ES = PSP

ASSUME ds:TRANSIENT-DATA

push ax ; save message number on stack

mov bx,seg TRANSIENT-DATA

mov ds,bx

; Display the requested message

mov bx,offset MessageTable

xor ah,ah ; AX = message number

shl ax,1 ; AX = offset into MessageTable

add bx,ax ; DSrBX -> address of message

mov dx,[bx] ; DS:DX -> message

mov ah,09h ; INT 21H function 09H (display ,string)

int 21h ; display error message

pop ax ; AL = message number

or al, al

jz LI 30 ; jump if message number is zero

; (MS-DOS versions 1.x)

; Terminate (MS-DOS 2.x and later)

mov ah,4Ch ; INT 21H function 4CH

int 21h ; (terminate process with return code)

Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 379

Part C: Customizing MS-DOS

; Terminate (MS-DOS 1 .x)

LI 30

L130

FatalError

PROC

push

xor

push

ret

ENDP

far

es

ax, ax

ax

; push PSP:OOOOH

far return (jump to PSP:OOOOH)

TRANSIENT_TEXT ENDS

PAGE

Transient data segment

TRANSIENT_DATA SEGMENT word public 'DATA'

MessageTable

MessageO

Messagel

Message2

Messages

Message4

DW

DW

DW

DW

DW

DB

DB

DB

DB

DB

MessageO

Messagel

Message2

Messages

Message4

MS-DOS version error

PRINT.COM found in MS-DOS 2.x

already installed

can't install

can't find flag

CR,LF,'TSR requires MS-DOS 2.0 or later version',CR,LF,'$'

CR,LF,'Can''t install TSR: PRINT.COM active',CR,LF,'$'

CR,LF,'This TSR is already installed',CR,LF,'$'

CR,LF,'Can''t install this TSR',CR,LF,'$'

CR,LF,'Unable to locate MS-DOS ErrorMode flag',CR,LF,'$'

TRANSIENT_DATA ENDS

END

Figure 11-4. Continued.

InstallSnapTSR

When installed, the SNAP program monitors keyboard input until the user types the
hot-key sequence Alt-Enter. When the hot-key sequence is detected, the monitoring rou
tine waits until the operating environment is stable and then activates the RAM-resident
application, which dumps the current contents of the computer's video buffer into the file
SNAP.IMG. Figure 11-5 is a block diagram of the RAM-resident and transient components
of this TSR.

380 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

Higher addresses

Lower addresses

Transient data

InstallSnapTSR

Initialization code and data

RAM-resident stack

RAM-resident data

TSRapp
RAM-resident application

ISR2F

INT 2FH (multiplex interrupt) handler

ISR28

INT 28H (DOS idle interrupt) handler

ISR24

INT 24H (critical error) handler

ISR23

INT 23H (Control-C) handler

ISRIB

INT IBH (Control-Break) handler

ISR13

INT 13H (BIOS fixed-disk I/O) handler

ISRIO

INT lOH (BIOS video I/O) handler

ISR9

INT 09H (keyboard interrupt) handler

ISR8

INT 08H (timer interrupt) handler

ISR5

INT 05H (BIOS print screen) handler

TRANSIENT_DAT A segment

TRANSIENT TEXT segment

RESIDENT STACK segment

RESIDENTJDATA segment

yRESIDENT JEXT segment

Figure 11-5. Block structure ofthe TSRprogram SNAP.EXE when loaded into memory. (Compare with
Figure 11-1.)

Installing the program

When SNAP.EXE is run, only the code in the transient portion of the program is executed.
The transient code performs several operations before it finally executes Interrupt 21H
Function 31H (Terminate and Stay Resident). First it determines which MS-DOS version is
in use. Then it executes the multiplex interrupt (Interrupt 2FH) to discover whether the
resident portion has already been installed. If an MS-DOS version earlier than 2.0 is in use
or if the resident portion has already been installed, the program aborts with an error
message.

Otherwise, installation continues. The addresses of the InDOS and critical error flags are
saved in the resident data segment. The interrupt service routines in the RAM-resident por
tion of the program are installed by updating all relevant interrupt vectors. The transient
code then frees the RAM occupied by the program's environment, because the resident

Section II: Programming in the MS-DOS Environment 381

Part C: Customizing MS-DOS

portion of this program never uses the information contained there. Finally, the transient
portion of the program, which includes the TRANSIENT-TEXT and TRANSIENT-DATA
segments, is discarded and the program is terminated using Interrupt 21H Function 31H.

Detecting a hot key

The SNAP program detects the hot-key sequence (Alt-Enter) by monitoring each keypress.
On IBM PCs and PS/2s, each keystroke generates a hardware interrupt on IRQl (Interrupt
09H). The TSR's Interrupt 09H handler compares the keyboard scan code corresponding to
each keypress with a predefined sequence. The TSR's handler also inspects the shift-key
status flags maintained by the ROM BIOS Interrupt 09H handler. When the predetermined
sequence of keypresses is detected at the same time as the proper shift keys are pressed,
the handler sets a global status flag (HotFlag).

Note how the TSR's handler transfers control to the previous Interrupt 09HISR before it
performs its own work. If the TSR's Interrupt 09H handler did not chain to the previous
handler(s), essential system processing of keystrokes (particularly in the ROM BIOS
Interrupt 09H handler) might not be performed.

Activating the application

The TSR monitors the status of HotFlag by regularly testing its value within a timer-tick
handler. On IBM PCs and PS/2s, the timer-tick interrupt occurs on IRQO (Interrupt 08H)
roughly 18.2 times per second. This hardware interrupt occurs regardless of what else the
system is doing, so an Interrupt 08H ISR a convenient place to check whether HotFlag has
been set.

As in the case of the Interrupt 09H handler, the TSR's Interrupt 08H handler passes control
to previous Interrupt 08H handlers before it proceeds with its own work. This procedure is
particularly important with Interrupt 08H because the ROM BIOS Interrupt 08H handler,
which maintains the system's time-of-day clock and resets the system's Intel 8259A Pro
grammable Interrupt Controller, must execute before the next timer tick can occur. The
TSR's handler therefore defers its own work until control has returned after previous
Interrupt 08H handlers have executed.

The only function of the TSR's Interrupt 08H handler is to attempt to transfer control to the
RAM-resident application. The routine VerifyTSRState performs this task. It first examines
the contents of HotFlag to determine whether a hot-key sequence has been detected. If
so, it examines the state of the MS-DOS InDOS and critical error flags, the current status of
hardware interrupts, and the current status of any non-reentrant ROM BIOS routines that
might be executing.

If HotFlag is nonzero, the InDOS and critical error flags are both zero, no hardware inter
rupts are currently being serviced, and no non-reentrant ROM BIOS code has been inter
rupted, the Interrupt 08H handler activates the RAM-resident utility. Otherwise, nothing
happens until the next timer tick, when the handler executes again.

While HotFlag is nonzero, the Interrupt 08H handler continues to monitor system status
until MS-DOS, the ROM BIOS, and the hardware interrupts are all in a stable state. Often

382 The MS-DOS Encyclopedia

Article 11: Terminate-and-Stay-Resident Utilities

the system status is stable at the time the hot-key sequence is detected, so the RAM-
resident application runs immediately. Sometimes, however, system activities such as
prolonged disk reads or writes can preclude the activation of the RAM-resident utility for
several seconds after the hot-key sequence has been detected. The handler could be
designed to detect this situation (for example, by decrementing HotFlag on each timer
tick) and return an error status or display a message to the user.

A more serious difficulty arises when the MS-DOS default command processor
(COMMAND.COM) is waiting for keyboard input. In this situation. Interrupt 21H Function
OIH (Character Input with Echo) is executing, so InDOS is nonzero and the Interrupt 08H
handler can never detect a state in which it can activate the RAM-resident utility. This
problem is solved by providing a custom handler for Interrupt 28H (the MS-DOS idle inter
rupt), which is executed by Interrupt 21H Function OIH each time it loops as it waits for a
keypress. The only difference between the Interrupt 28H handler and the Interrupt 08H
handler is that the Interrupt 28H handler can activate the RAM-resident application when
the value of InDOS is 1, which is reasonable because InDOS must have been incremented
when Interrupt 21H Function OIH started to execute.

The interrupt service routines for ROM BIOS Interrupts 05H, lOH, and 13H do nothing
more than increment and decrement flags that indicate whether these interrupts are being
processed by ROM BIOS routines. These flags are inspected by the TSR's Interrupt 08H
and 28H handlers.

Executing the RAM-resident application

When the RAM-resident application is first activated, it runs in the context of the program
that was interrupted; that is, the contents of the registers, the video display mode, the cur
rent PSP, and the current DTA all belong to the interrupted program. The resident applica
tion is responsible for preserving the registers and updating MS-DOS with its PSP and DTA
values.

The RAM-resident application preserves the previous contents of the CPU registers on
its own stack to avoid overflowing the interrupted program's stack. It then installs its own
handlers for Control-Break (Interrupt IBH), Control-C (Interrupt 23H), and critical error
(Interrupt 24H). (Otherwise, the interrupted program's handlers would take control if the
user pressed Ctrl-Break or Ctrl-C or if an MS-DOS critical error occurred.) These handlers
perform no action other than setting flags that can be inspected later by the RAM-resident
application, which could then take appropriate action.

The application uses Interrupt 21H Functions 50H and 51H to update MS-DOS with the
address of its PSP. If the application is running under MS-DOS versions 2.x, the critical
error flag is set before Functions 50H and 51H are executed so that AuxStack is used for
the call instead of lOStack, to avoid corrupting lOStack in the event that InDOS is 1.

The application preserves the current extended error information with a call to Interrupt
21H Function 59H. Otherwise, the RAM-resident application might be activated immedi
ately after a critical error occurred in the interrupted program but before the interrupted

Section II: Programming in the MS-DOS Environment 383

Part C: Customizing MS-DOS

program had executed Function 59H and, if a critical error occurred in the TSR applica
tion, the interrupted program's extended error information would inadvertently be
destroyed.

This example also shows how to update the MS-DOS default DTA using Interrupt 21H
Functions lAH and 2FH, although in this case this step is not necessary because the DTA
is never used within the application. In practice, the DTA should be updated only if the
RAM-resident application includes calls to Interrupt 21H functions that use a DTA
(Functions IIH, 12H, 14H, 15H, 21H, 22H, 27H, 28H, 4EH, and 4FH).

After the resident interrupt handlers are installed and the PSP, DTA, and extended error
information have been set up, the RAM-resident application can safely execute any Inter
rupt 21H function calls except those that use lOStack (Functions OIH through OCH). These
functions cannot be used within a RAM-resident application even if the application sets
the critical error flag to force the use of the auxiliary stack, because they also use other
non-reentrant data structures such as input/output buffers. Thus, a RAM-resident utility
must rely either on user-written console input/output functions or, as in the example, on
ROM BIOS functions.

The application terminates by returning the interrupted program's extended error infor
mation, DTA, and PSP to MS-DOS, restoring the previous Interrupt IBH, 23H, and 24H
handlers, and restoring the previous CPU registers and stack.

Richard Wilton

384 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Article 12

Exception Handlers

Exceptions are system events directly related to the execution of an application program;
they ordinarily cause the operating system to abort the program. Exceptions are thus dif
ferent from errors, which are minor unexpected events (such as failure to find a file on
disk) that the program can be expected to handle appropriately. Likewise, they differ from
external hardware interrupts, which are triggered by events (such as a character arriving at
the serial port) that are not directly related to the program's execution.

The computer hardware assists MS-DOS in the detection of some exceptions, such as an
attempt to divide by zero, by generating an internal hardware interrupt. Exceptions related
to peripheral devices, such as an attempt to read from a disk drive that is not ready or does
not exist, are called critical errors. Instead of causing a hardware interrupt, these excep
tions are typically reported to the operating system by device drivers. MS-DOS also sup
ports a third type of exception, which is triggered by the entry of a Control-C or Control-
Break at the keyboard and allows the user to signal that the current program should be
terminated immediately.

MS-DOS contains built-in handlers for each type of exception and so guarantees a
minimum level of system stability that requires no effort on the part of the application
programmer. For some applications, however, these default handlers are inadequate. For
example, if a communications program that controls the serial port directly with custom
interrupt handlers is terminated by the operating system without being given a chance to
turn off serial-port interrupts, the next character that arrives on the serial line will trigger
an interrupt for which a handler is no longer present in memory. The result will be a sys
tem crash. Accordingly, MS-DOS allows application programs to install custom exception
handlers so that they can shut down operations in an orderly way when an exception
occurs.

This article examines the default exception handlers provided by MS-DOS and discusses
methods programmers can use to replace those routines with handlers that are more
closely matched to specific application requirements.

Overview

Two major exception handlers of importance to application programmers are supported
under all versions of MS-DOS. The first, the Control-C exception handler, terminates the
program and is invoked when the user enters a Ctrl-C or Ctrl-Break keystroke; the address

Section II: Programming in the MS-DOS Environment 385

Part C: Customizing MS-DOS

of this handler is found in the vector for Interrupt 23H. The second, the critical error
exception handler, is invoked if MS-DOS detects a critical error while servicing an I/O
request. (A critical error is a hardware error that makes normal completion of the request
impossible.) This exception handler displays the familiar Abort, Retry, Ignore prompt;
its address is saved in the vector for Interrupt 24H.

When a program begins executing, the addresses in the Interrupt 23H and 24H vectors
usually point to the system's default Control-C and critical error handlers. If the program is
a child process, however, the vectors might point to exception handlers that belong to the
parent process, if the immediate parent is not COMMAND.COM. In any case, the applica
tion program can install its own custom handler for Control-C or critical error exceptions
simply by changing the address in the vector for Interrupt 23H or Interrupt 24H so that the
vector points to the application's own routine. When the program performs a final exit by
means of Interrupt 21H Function OOH (Terminate Process), Function 31H (Terminate and
Stay Resident), Function 4CH (Terminate Process with Return Code), Interrupt 20H (Ter
minate Process), or Interrupt 27H (Terminate and Stay Resident), MS-DOS restores the pre
vious contents of the Interrupt 23H and 24H vectors.

Note that Interrupts 23H and 24H never occur as externally generated hardware interrupts
in an MS-DOS system. The vectors for these interrupts are used simply as storage areas for
the addresses of the exception handlers.

MS-DOS also contains default handlers for the Control-Break event detected by the ROM
BIOS in IBM PCs and compatible computers and for some of the Intel microprocessor ex
ceptions that generate actual hardware interrupts. These exception handlers are not re
placed by application programs as often as the Control-C and critical error handlers. The
interrupt vectors that contain the addresses of these handlers are not restored by MS-DOS
when a program exits.

The address of the Control-Break handler is saved in the vector for Interrupt IBH and is
invoked by the ROM BIOS whenever the Ctrl-Break key combination is detected. The
default MS-DOS handler normally flushes the keyboard input buffer and substitutes
Control-C for Control-Break, and the Control-C is later handled by the Control-C exception
handler. The default handlers for exceptions that generate hardware interrupts either abort
the current program (as happens with Divide by Zero) or bring the entire system to a halt
(as for a memory parity error).

The Control-C Handier

The vector for Interrupt 23H points to code that is executed whenever MS-DOS detects a
Control-C character in the keyboard input buffer. When the character is detected, MS-DOS
executes a software Interrupt 23H.

In response to Interrupt 23H, the default Control-C exception handler aborts the current
process. Files that were opened with handles are closed (FCB-based files are not), but no

386 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Other cleanup is performed. Thus, unsaved data can be left in buffers, some files might
not be processed, and critical addresses, such as the vectors for custom interrupt handlers,
might be left pointing into free RAM. If more complete control over process termination is
wanted, the application should replace the default Control-C handler with custom code.
See Customizing Control-C Handling below.

The Control-Break exception handler, pointed to by the vector for Interrupt IBH, is closely
related to the Control-C exception handler in MS-DOS systems on the IBM PC and close
compatibles but is called by the ROM BIOS keyboard driver on detection of the Ctrl-Break
keystroke combination. Because the Control-Break exception is generated by the ROM
BIOS, it is present only on IBM PC-compatible machines and is not a standard feature of
MS-DOS. The default ROM BIOS handler for Control-Break is a simple interrupt return—
in other words, no action is taken to handle the keystroke itself, other than converting the
Ctrl-Break scan code to an extended character and passing it through to MS-DOS as normal
keyboard input.

To account for as many hardware configurations as possible, MS-DOS redirects the ROM
BIOS Control-Break interrupt vector to its own Control-Break handler during system
initialization. The MS-DOS Control-Break handler sets an internal flag that causes the
Ctrl-Break keystroke to be interpreted as a Ctrl-C keystroke and thus causes Interrupt 23H
to occur.

Customizing Control-C handling

The exception handlers most often neglected by application programmers—and most
often responsible for major program failures—are the default exception handlers invoked
by the Ctrl-C and Ctrl-Break keystrokes. Although the user must be able to recover from a
runaway condition (the reason for Ctrl-C capability in the first place), any exit from a com
plex program must also be orderly, with file buffers flushed to disk, directories and in
dexes updated, and so on. The default Control-C and Control-Break handlers do not
provide for such an orderly exit.

The simplest and most direct way to deal with Ctrl-C and Ctrl-Break keystrokes is to install
new exception handlers that do nothing more than an IRET and thus take MS-DOS out of
the processing loop entirely. This move is not as drastic as it sounds: It allows an applica
tion to check for and handle the Ctrl-C and Ctrl-Break keystrokes at its convenience when
they arrive through the normal keyboard input functions and prevents MS-DOS from
terminating the program unexpectedly.

The following example sets the Interrupt 23H and Interrupt IBH vectors to point to an
IRET instruction. When the user presses Ctrl-C or Ctrl-Break, the keystroke combination
is placed into the keyboard buffer like any other keystroke. When it detects the Ctrl-C or
Ctrl-Break keystroke, the executing program should exit properly (if that is the desired
action) after an appropriate shutdown procedure.

To install the new exception handlers, the following procedure (set^int) should be called
while the main program is initializing:

Section 11: Programming in the MS-DOS Environment 387

Part C: Customizing MS-DOS

—DATA segment para public 'DATA*

oldintib dd 0

oldint23 dd 0

—DATA ends

—TEXT segment byte public 'CODE'

assume cs:-TEXT,ds:-DATA,es:NOTHING

original INT 1BH vector

original INT 23H vector

myintib:

myint23:

handler for Ctrl-Break

handler for Ctrl-C

proc near

mov ax,351bh ; get current contents of

int 21h ; Int IBH vector and save ;

mov word ptr oldintib,-bx

mov word ptr oldint1b+2,es

mov ax,3523h ; get current contents of

int 21h ; Int 23H vector and save ;

mov word ptr oldint23,, bx

mov word ptr oldint23+2,es

push ds ; save our data segment

push cs ; let DS point to our

pop ds ; code segment

mov dx,offset. myintib

mov ax,251bh ; set interrupt vector IBH

int 21h ; to point to new handler

mov dx,offset. myint23

mov ax,2523h ; set interrupt vector 23H

int 21h ; to point to new handler

pop ds ; restore our data segment

ret ; back to caller

endp

ends

The application can use the following routine to restore the original contents of the vectors
pointing to the Control-C and Control-Break exception handlers before making a final exit
back to MS-DOS. Note that, although MS-DOS restores the Interrupt 23H vector to its pre
vious contents, the application must restore the Interrupt IBH vector itself.

: proc near

push ds ; save our data segment

mov dx,word ptr oldint23

mov ds,word ptr oldint23+2

mov ax,2523h ; restore original contents

int 21h ; of Int 23H vector

pop ds ; restore our data segment

push ds ; then save it again

mov dx,word ptr oldintiB

mov ds,word ptr oldintiB+2

mov ax,251Bh ; restore original contents

int 21h ; of Int IBH vector

pop ds ; get back our data segment

ret ; return to caller

rest—int endp

388 The MS-DOS Encyclopedia

Article 12: Exception Handlers

The preceding example simply prevents MS-DOS from terminating an application when a
Ctrl-C or Ctrl-Break keystroke is detected. Program termination is still often the ultimate
goal, but after a more orderly shutdown than is provided by the MS-DOS default Control-C
handler. The following exception handler allows the program to exit more gracefully:

myintib: ; Control-Break exception handler

iret ; do nothing

myint23: ; Control-C exception handler

call safe_shut_down ; release interrupt vectors,

; close files, etc.

jmp program_exit_point

Note that because the Control-Break handler is invoked by the ROM BIOS keyboard driver
and MS-DOS is not reentrant, MS-DOS services (such as closing files and terminating with
return code) cannot be invoked during processing of a Control-Break exception. In con
trast, any MS-DOS Interrupt 21H function call can be used during the processing of a
Control-C exception. Thus, the Control-Break handler in the preceding example does
nothing, whereas the Control-C handler performs orderly shutdown of the application.

Most often, however, neither a handler that does nothing nor a handler that shuts down
and terminates is sufficient for processing a Ctrl-C (or Ctrl-Break) keystroke. Rather than
simply prevent Control-C processing, software developers usually prefer to have a Ctrl-C
keystroke signal sorae important action without terminating the program. Using methods
similar to those above, the programmer can replace Interrupts IBH and 23H with a routine
like the following:

myintib: ; Control-Break exception handler

myint23: ; Control-C exception handler

call control_c_happened

iret

Notes on processing Control-C

The preceding examples assume the programmer wants to treat Control-C and Control-
Break the same way, but this is not always desirable. Control-C and Control-Break are not
the same, and the difference between the two should be kept in mind: The Control-Break
handler is invoked by a keyboard-input interrupt and can be called at any time; the
Control-C handler is called only at "safe" points during the processing of MS-DOS Interrupt
21H functions. Also, even though MS-DOS restores the Interrupt 23H vector on exit from a
program, the application must restore the previous contents of the Interrupt IBH vector
before exiting. If this interrupt vector is not restored, the next Ctrl-Break keystroke will
cause the machine to attempt to execute an undetermined piece of code or data and will
probably crash the system.

Although it is generally desirable to take control of the Control-C and Control-Break inter
rupts, control should be retained only as long as necessary. For example, a RAM-resident
pop-up application should take over Control-C and Control-Break handling only when it is
activated, and it should restore the previous contents of the Interrupt IBH and Interrupt
23H vectors before it returns control to the foreground process.

Section II: Programming in the MS-DOS Environment 389

Part C: Customizing MS-DOS

The Critical Error Handler

When MS-DOS detects a critical error—an error that prevents successful completion of
an I/O operation—it calls the exception handler whose address is stored in the vector for
Interrupt 24H. Information about the operation in progress and the nature of the error is
passed to the exception handler in the CPU registers. In addition, the contents of all the
registers at the point of the original MS-DOS call are pushed onto the stack for inspection
by the exception handler.

The action of MS-DOS's default critical error handler is to present a message such as

Error type error action device

Abort, Retry, Ignore?

This message signals a hardware error from which MS-DOS cannot recover without user
intervention. For example, if the user enters the command

ODIR A: <Enter>

but drive A either does not contain a disk or the disk drive door is open, the MS-DOS criti
cal error handler displays the message

Not ready error reading drive A

Abort, Retry, Ignore?

I Qgnor^ simply tells MS-DOS to forget that an error occurred and continue on its way.
(Of course, if the error occurred during the writing of a file to disk, the file is generally
corrupted; if the error occurred during reading, the data might be incorrect.)

R CRetrjd gives the application a second chance to access the device. The critical error
handler returns information to MS-DOS that says, in effect, "Try again; maybe it will work
this time." Sometimes, the attempt succeeds (as when the user closes an open drive door),
but more often the same or another critical error occurs.

A CAborf) is the problem child of Interrupt 24H. If the user responds with A, the applica
tion is terminated immediately. The directory structure is not updated for open files,
interrupt vectors are left pointing to inappropriate locations, and so on. In many cases, re
starting the system is the only safe thing to do at this point.

Note: Beginning with version 3.3, an F {Fail) option appears in the message displayed by
MS-DOS's default critical error handler. When Fail is selected, the current MS-DOS func
tion is terminated and an error condition is returned to the calling program. For example,
if a program calls Interrupt 21H Function 3DH to open a file on drive A but the drive door
is open, choosing F in response to the error message causes the function call to return
with the carry flag set, indicating that an error occurred but processing continues.

390 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Like the Controi-C exception handier, the default critical error exception handler can and
should be replaced by an application program when complete control of the system is
desired. The program installs its own handler simply by placing the address of the new
handler in the vector for Interrupt 24H; MS-DOS restores the previous contents of the Inter
rupt 24H vector when the program terminates.

Unlike the Control-C handler, however, the critical error handler must be kept within
carefully defined limits to preserve the stability of the operating system. Programmers
must rigidly adhere to the structure described in the following pages for passing informa
tion to and from an Interrupt 24H handler.

CS

IP

ES

DS

BP

DI

SI

DX

CX

BX

AX

CS

IP

>
Flags and CS:IP pushed on stack
by original Interrupt 21H call

- SP on entry to Interrupt 21H handler

Registers at point of
original Interrupt 21H call

Return address from

Interrupt 24H handler

SP on entry to Interrupt 24H handler

Figure 12-1. The stack contents at entry to a critical error exception handler.

Section II: Programming in the MS-DOS Environment 391

Part C: Customizing MS-DOS

Mechanics of critical error handling

MS-DOS critical error handling has two components: the exception handler, whose ad
dress is saved in the Interrupt 24H vector and which can be replaced by an application
program; and an internal routine inside MS-DOS. The internal routine sets up the informa
tion to be passed to the exception handler on the stack and in registers and, in turn, calls
the exception handler itself. The internal routine also responds to the values returned by
the critical error handler when that handler executes an IRET to return to the MS-DOS

kernel.

Before calling the exception handler, MS-DOS arranges the stack (Figure 12-1 on the pre
ceding page) so the handler can inspect the location of the error and register contents at
the point in the original MS-DOS function call that led to the critical error.

When the critical error handler is called by the internal routine, four registers may contain
important information: AX, DI, BP, and SI. (With MS-DOS versions 1.x, only the AX and DI
registers contain significant information.) The information passed to the handler in the
registers differs somewhat, depending on whether a character device or a block device is
causing the error.

Block-device (disk-based) errors

If the critical error handler is entered in response to a block-device (disk-based) error,
registers BP:SI contain the segment:offset of the device driver header for the device caus
ing the error and bit 7 (the high-order bit) of the AH register is zero. The remaining bits of
the AH register contain the following information (bits 3 through 5 apply only to MS-DOS
versions 3.1 and later):

Bit Value Meaning

0 0 Read operation
1 Write operation

1-2 Indicate the affected disk area:

00 MS-DOS

01 File allocation table

10 Root directory
11 Files area

3 0 Fail response not allowed
1 Fail response allowed

4 0 Retry response not allowed
1 Retry response allowed

5 0 Ignore response not allowed
1 Ignore response allowed

6 0 Undefined

The AL register contains the designation of the drive where the error occurred; for exam
ple, AL = OOH (drive A), AL = OIH (drive B), and so on.

392 The MS-DOS Encyclopedia

Article 12: Exception Handlers

The lower half of the DI register contains the following error codes (the upper half of this
register is undefined):

Error Code Meaning

OOH Write-protected disk
OIH Unknown unit

02H Drive not ready
03H Invalid command

04H Data error (CRC)

05H Length of request structure invalid
06H Seek error

07H Non-MS-DOS disk

08H Sector not found

09H Printer out of paper
OAH Write fault

OBH Read fault

OCH General failure

OFH Invalid disk change (version 3.0 or later)

Note: With versions 1.x, the only valid error codes are OOH, 02H, 04H, 06H, 08H, OAH,
andOCH.

Before calling the critical error handler for a disk-based error, MS-DOS tries from one to
five times to perform the requested read or write operation, depending on the type of
operation. Critical disk errors result only from Interrupt 21H operations, not from failed
sector-read and sector-write operations attempted with Interrupts 25H and 26H.

Character-device errors

If the critical error handler is called from the MS-DOS kernel with bit 7 of the AH register
set to 1, either an error occurred on a character device or the memory image of the file allo
cation table is bad (a rare occurrence). Again, registers BP:SI contain the segment and
offset of the device driver header for the device causing the critical error. The exception
handler can inspect bit 15 of the device attribute word at offset 04H in the device header to
confirm that the error was caused by a character device—this bit is 0 for block devices
and 1 for character devices. See also PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Customizing ms-dos: Installable Device Drivers.

If the error was caused by a character device, the lower half of the DI register contains
error codes as described above and the contents of the AL register are undefined. The
exception handler can inspect the other fields of the device header to obtain the logical
name of the character device; to determine whether that device is the standard input,
standard output, or both; and so on.

Critical error processing

The critical error exception handler is entered from MS-DOS with interrupts disabled.
Because an MS-DOS system call is already in progress and MS-DOS is not reentrant, the

Section II: Programming in the MS-DOS Environment 393

Part C: Customizing MS-DOS

handler cannot request any MS-DOS system services other than Interrupt 21H Functions
01 through OCH (ctoracter I/O functions), Interrupt 21H Function 30H (Get MS-DOS Version
Number), and Interrupt 21H Function 59H (Get Extended Error Information). These func
tions use a special stack so that they can be called during error processing.

In general, the critical error handler must preserve all but the AL register. It must not
change the contents of the device header pointed to by BP:SI. The handler must return to
the MS-DOS kernel with an IRET, passing an action code in register AL as follows;

Value in AL Meaning

OOH Ignore
OIH Retry

02H Terminate process

03H Fail current system call

These values correspond to the options presented by the MS-DOS default critical error
handler. The default handler prompts the user for input, places the appropriate return
information in the AL register, and immediately issues an IRET instruction.

NtOe: Although the Fail option is displayed by the MS-DOS default critical error handler
in versions 3.3 and later, the Fail option inside the handler was added in version 3.1.

With MS-DOS versions 3.1 and later, if the handler returns an action code in AL that is not
allowed for the error in question (bits 3 through 5 of the AH register at the point of call),
MS-DOS reacts according to the following rules:

If Ignore is specified by AL = OOH but is not allowed because bit 5 of AH = 0, the response
defaults to Fail (AL = 03H).

If Retry is specified by AL = OIH but is not allowed because bit 4 of AH = 0, the response
defaults to Fail (AL = 03H).

If Fail is specified by AL = 03H but is not allowed because bit 3 of AH = 0, the response
defaults to Abort.

Custom critical error handlers

Each time it receives control, COMMAND.COM restores the Interrupt 24H vector to point
to the system's default critical error handler and displays a prompt to the user. Conse
quently, a single custom handler cannot terminate and stay resident to provide critical
error handling services for subsequent application programs. Each program that needs
better critical error handling than MS-DOS provides must contain its own critical error
handler.

Figure 12-2 contains a simple critical error handler, INT24.ASM, written in assembly lan
guage. In the form shown, INT24.ASM is no more than a functional replacement for the
MS-DOS default critical error handler, but it can be used as the basis for more sophisticated
handlers that can be incorporated into application programs.

394 The MS-DOS Encyclopedia

Article 12: Exception Handlers

INT24.ASM contains three routines:

Routine Action

get24 Saves the previous contents of the Interrupt 24H critical error handler vec
tor and stores the address of the new critical error handler into the vector.

res24 Restores the address of the previous critical error handler, which was
saved by a call to get24, into the Interrupt 24 vector.

int24 Replaces the MS-DOS critical error handler.

A program wishing to substitute the new critical error handler for the system's default han
dler should call the get24 routine during its initialization sequence. If the program wishes
to revert to the system's default handler during execution, it can accomplish this with a call
to the res24 routine. Otherwise, a call to res24 (and the presence of the routine itself in
the program) is not necessary, because MS-DOS automatically restores the Interrupt 24H
vector to its previous value when the program exits, from information
stored in the program segment prefix (PSP).

The replacement critical error handler, int24, is simple. First it saves all registers; then it
displays a message that a critical error has occurred and prompts the user to enter a key
selecting one of the four possible options: Abort, Retry, Ignore, or Fail. If an illegal key is
entered, the prompt is displayed again; otherwise, the action code corresponding to the
key is extracted from a table and placed in the AL register, the other registers are restored,
and control is returned to the MS-DOS kernel with an IRET instruction.

Note that the handle read and write functions (Interrupt 21H Functions 3FH and 40H),
which would normally be preferred for interaction with the display and keyboard, cannot
be used in a critical error handler.

name int24

title INT24 Critical Error Handler

INT24.ASM — Replacement critical error handler

by Ray Duncan, September 1987

or equ Odh ; ASCII carriage return

If equ Oah ; ASCII linefeed

DGROUP group -DATA

-DATA segment word public 'DATA'

save24 dd 0 ; previous contents of Int

; critical error handler vector

Figure 12-2. INT24.ASM, a replacement Interrupt 24H handler. (more)

Section II: Programming in the MS-DOS Environment 395

Part C: Customizing MS-DOS

prompt db

db

keys db

keys_len equ

codes db

; prompt message used by

; critical error handler

cr,If,'Critical Error Occurred: '

'Abort, Retry, Ignore, Fail? $'

'aArRilfF*

$-keys

possible user response keys

(both cases of each allowed)

2,2,1,1,0,0,3,3 ; codes returned to MS-DOS kernel

; for corresponding response keys

_X>ATA ends

—TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP

public

get24 proc

get24

near ; set Int 24H vector to point

; to new critical error handler

push

push

mov

int

ds

es

ax,3524h

21h

; save segment registers

; get address of previous

; INT 24H handler and save it

mov word ptr save24,bx

mov word ptr save24+2,es

push cs ; set DSiDX to point to

pop ds ; new INT 24H handler

mov dx,offset _TEXT:int24

mov ax,2524h ; then call MS-DOS to

int 21h ; set the INT 24H vector

pop

pop

ret

es

ds

; restore segment registers

; and return to caller

get24 endp

public res24

res24 proc near ; restore original contents

; of Int 24H vector

push ds

Figure 12-2. Continued.

; save our data segment

(more)

396 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Ids dx,save24 ; put address of old handler

mov ax,2524h ; back into INT 24H vector

int 21h

pop ds ; restore data segment

ret ; and return to caller

res24 endp

; This is the replacement critical error handler. It

; prompts the user for Abort, Retry, Ignore, or Fail and

; returns the appropriate code to the MS-DOS kernel.

int24 proc far ; entered from MS-DOS kernel

push bx ; save registers

push cx

push dx

push si

push di

push bp

push ds

push es

int24a: mov

mov

mov

mov

mov

int

ax,DGROUP ;

ds,ax ;

es,ax ;

dx,offset prompt

ah,09h

21h

display prompt for user

using function 09H (print string

terminated by $ character)

mov

int

ah,01h

21h

; get user's response

; function 01H = read one character

mov

mov

eld

repne scasb

jnz int24a

di,offset keys ; look up code for response key

cx,keys_len

; prompt again if bad response

; set AL = action code for MS-DOS

; according to key that was entered:

; 0 = ignore, 1 = retry, 2 = abort, 3 fail

al,[di+keys_len-1]

pop

pop

pop

pop

pop

es

ds

bp

di

si

; restore registers

Figure 12-2. Continued. (more)

Section II: Programming in the MS-DOS Environment 397

Part C: Customizing MS-DOS

pop

pop

pop

iret

dx

cx

bx

exit critical error handler

int24 endp

-TEXT ends

end

Figure 12-2. Continued.

Hardware-generated Exception Interrupts

Intel reserved the vectors for Interrupts OOH through IFH (Table 12-1) for exceptions
generated by the execution of various machine instructions. Handling of these chip-
dependent internal interrupts can vary from one make of MS-DOS machine to another;
some such differences are mentioned in the discussion.

Table 12-1. Intel Reserved Exception Interrupts.

Interrupt
Number Definition

OOH Divide by Zero
OIH Single-Step
02H Nonmaskable Interrupt (NMI)
03H Breakpoint Trap
04H Overflow Trap
05H BOUND Range Exceeded *
06H Invalid Opcode *
07H Coprocessor not Available t
08H Double-Fault Exception t
09H Coprocessor Segment Overrunt
OAH Invalid Task State Segment (TSS) f
OBH Segment not Presentf
OCH Stack Exceptiont
ODH General Protection Exception!
OEH Page Fault!
OFH (Reserved)

lOH Coprocessor Errorf
11-IFH (Reserved)

*The 80186,80286, and 80386 microprocessors only.
fThe 80286 and 80386 microprocessors only.
:j:The 80386 microprocessor only.

398 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Note: A number of these reserved exception interrupts generally do not occur in MS-DOS
because they are generated only when the 80286 or 80386 microprocessor is operating in
protected mode. The following discussions do not cover these interrupts.

Divide by Zero (Interrupt OOH)

An Interrupt OOH occurs whenever a DIV or IDIV operation fails to terminate within a
reasonable period of time. The interrupt is triggered by a mathematical anomaly: Division
by zero is inherently undefined. To handle such situations, Intel built special processing
into the DIV and IDIV instructions to ensure that the condition does not cause the pro
cessor to lock up. Although the assumption underlying Interrupt OOH is an attempt to
divide by zero (a condition that will never terminate), the interrupt can also be triggered
by other error conditions, such as a quotient that is too large to fit in the designated register
(AXorAL).

The ROM BIOS handler for Interrupt OOH in the IBM PC and close compatibles is a simple
IRET instruction. During the MS-DOS startup process, however, MS-DOS modifies the in
terrupt vector to point to its own handler—a routine that issues the warning message
Divide by Zero and aborts the current application. This abort procedure can leave the
computer and operating system in an extremely unstable state. If the default handler is
used, the system should be restarted immediately and an attempt should be made to find
and eliminate the cause of the error. A better approach, however, is to provide a replace
ment handler that treats Interrupt OOH much as MS-DOS treats Interrupt 24H.

Single-Step (Interrupt OIH)

If the trap flag (bit 8 of the microprocessor's l6-bit flags register) is set. Interrupt OIH
occurs at the end of every instruction executed by the processor. By default. Interrupt OIH
points to a simple IRET instruction, so the net effect is as if nothing happened. However,
debugging programs, which are the only applications that use this interrupt, modify the
interrupt vector to point to their own handlers. The interrupt can then be used to allow a
debugger to single-step through the machine instructions of the program being debugged,
as DEBUG does with its T (Trace) command.

Nonmaskable Interrupt, or NMI (Interrupt 02H)

In the hardware architecture of IBM PCs and close compatibles. Interrupt 02H is invoked
whenever a memory parity error is detected. MS-DOS provides no handler, because this
error, as a hardware-related problem, is in the domain of the ROM BIOS.

In response to the Interrupt 02H, the default ROM BIOS handler displays a message and
locks the machine, on the assumption that bad memory prevents reliable system opera
tion. Many programmers, however, prefer to include code that permits orderly shutdown
of the system. Replacing the ROM BIOS parity trap routine can be dangerous, though,
because a parity error detected in memory means the contents of RAM are no longer reli
able—even the memory locations containing the NMI handler itself might be defective.

Section II: Programming in the MS-DOS Environment 399

Part C: Customizing MS-DOS

Breakpoint Trap (Interrupt 03H)

Interrupt 03H, which is used in conjunction with Interrupt OIH for debugging, is invoked
by a special 1-byte opcode (OCCH). During a debugging session, a debugger modifies the
vector for Interrupt 03H to point to its own handler and then replaces 1 byte of program
opcode with the OCCH opcode at any location where a breakpoint is needed.

When a breakpoint is reached, the OCCH opcode triggers Interrupt 03H and the debugger
regains control. The debugger then restores the original opcode in the program being
debugged and issues a prompt so that the user can display or alter the contents of memory
or registers. The use of Interrupt 03H is illustrated by DEBUG and SYMDEB's breakpoint
capabilities.

Overflow Trap (Interrupt 04H)

If the overflow bit (bit 11) in the microprocessor's flags register is set. Interrupt 04H occurs
when the INTO (Interrupt on Overflow) instruction is executed. The overflow bit can be
set during prior execution of any arithmetic instruction (such as MUL or IMUL) that can
produce an overflow error.

The ROM BIOS of the IBM PC and close compatibles initializes the Interrupt 04H vector to
point to an IRET, so this interrupt becomes invisible to the user if it is executed. MS-DOS
does not have its own handler for Interrupt 04H. However, because the Intel microproces
sors also include JO (Jump if Overflow) andJNO (Jump if No Overflow) instructions,
applications rarely need the INTO instruction and, hence, seldom have to provide their
own Interrupt 04H handlers.

BOUND Range Exceeded (Interrupt 05H)

Interrupt 05H is generated on 80186,80286, and 80386 microprocessors if a BOUND
instruction is executed to test the value of an array index and the index falls outside the
limits specified by the instruction's operand. The exception handler is expected to alter
the index so that it is correct—when the handler performs an interrupt return (IRET), the
CPU reexecutes the BOUND instruction that caused the interrupt.

On IBM PCAT-compatible machines, the ROM BIOS assignment of the PrtSc (print screen)
routine to Interrupt 05H is in conflict with the CPU's use of Interrupt 05H for BOUND
exceptions.

Invalid opcode (Interrupt 06H)

Interrupt 06H is generated by the 80186,80286, and 80386 microprocessors if the current
instruction is not a valid opcode—for example, if the machine tries to execute a data
statement.

On IBM PCMTs, Interrupt 06H simply points to an IRET instruction. The ROM BIOS rou
tines of some IBM PCAT-compatibles, however, provide an interrupt handler that reports
an unexpected software Interrupt 06H and asks if the user wants to continue. A V re
sponse causes the interrupt handler to skip over the invalid opcode. Unfortunately,
because the succeeding opcode is often invalid as well, the user may have the feeling of
being trapped in a loop.

400 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Extended Error Information

Under MS-DOS versions 1.x, the operating system provided limited information about
errors that occurred during calls to the Interrupt 21H system functions. For example, if a
program called Function OFH to open a file, there were only two possible results: On
return, the AL register either contained OOH for a successful open or OFFH for failure. No
further detail was available from the operating system. Although some of these early sys
tem calls (such as the read and write functions) returned somewhat more information,
the 1.x versions of MS-DOS were essentially limited to success/failure return codes.

Beginning with version 2.0 and the introduction of the handle concept, additional error
information became available. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:

Programming for ms-dos: File and Record Management. For example, if a program
attempts to open a file with Interrupt 21H Function 3DH (Open File with Handle), it can
check the status of the carry flag on return to detect whether an error occurred. If the
carry flag is not set, the call was successful and the AX register contains the file handle.
If the carry flag is set, the AX register contains one of the following possible error codes:

Error Code Meaning

OIH Invalid function code

02H File not found

03H Path not found

04H Too many open files (no more handles available)
05H Access denied

OCH Invalid access code

In some circumstances, however, even these error codes do not provide enough infor
mation. Therefore, beginning with version 3.0, MS-DOS made extended error information
available through Interrupt 21H Function 59H (Get Extended Error Information). This
function can be called after any other Interrupt 21H function fails, or it can be called from a
critical error handler. The extended error codes, briefly described below, maintain com
patibility with the MS-DOS versions 2.x error returns and are grouped as follows:

Error Code Error Group

OOH No error encountered.

01- 12H MS-DOS versions 2.x and 3.x Interrupt 21H errors. These error codes are
identical to those returned in the AX register by Functions 38H through
57H if the carry flag is set on return from the function call.

13- IFH MS-DOS versions 2.x and 3.x Interrupt 24H errors. These error codes are
13H (19) greater than the codes passed to a critical error handler in the
lower half of the DI register; that is, if the critical error handler receives
error code 04H (CRC error). Interrupt 21H Function 59H returns 17H.

20-58H Extended error codes, many related to networking and file sharing, for
MS-DOS versions 3.0 and later.

Section II: Programming in the MS-DOS Environment 401

Part C: Customizing MS-DOS

Note: The contents of the CPU registers (except CS:IP and SS:SP) are destroyed by a call
to Function 59H. Also, as mentioned earlier, this function is available only with MS-DOS
versions 3.x, even though it maintains compatibility with error returns in versions 2.x.

On return. Function 59H provides the extended error code in the AX register, the error
class (type) in the BH register, a code for the suggested corrective action in the BL register,
and the locus of the error in the CH register. These values are defined in the following
paragraphs. With MS-DOS or PC-DOS versions 3.x, if an error 22H (invalid disk change)
occurs and if the capability is supported by the system's block-device drivers, ES:DI points
to an ASCIIZ volume label that designates the disk to be inserted in the drive before the
operation is retried.

Error Code (AX register). This value is defined as follows:

Value in AX Meaning

Interrupt 21H errors (MS-DOS versions 2.0 and later):
OIH Invalid function number

02H File not found

03H Path not found

04H Too many open files (no handles available)
05H Access denied

06H Invalid handle

07H Memory control blocks destroyed
08H Insufficient memory
09H Invalid memory-block address
OAH Invalid environment

OBH Invalid format

OCH Invalid access code

ODH Invalid data

GEH Reserved

OFH Invalid disk drive specified
lOH Attempt to remove the current directory
IIH Not same device

12H No more files

Interrupt 24H errors (MS-DOS versions 2.0 and later):
13H Attempt to write on write-protected disk
14H Unknown unit

15H Drive not ready
16H Invalid command

17H Data error based on cyclic redundancy check (CRC)
18H Length of request structure invalid
19H Seek error

(more)

402 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Value in AX Meaning

Interrupt 24H errors (continued)
lAH Unknown media type (non-MS-DOS disk)
IBH Sector not found

ICH Printer out of paper
lOH Write fault

lEH Read fault

IFH General failure

MS-DOS versions 3.x extended errors:

20H Sharing violation
21H Lock violation

22H Invalid disk change
23H FCB unavailable

24H Sharing buffer exceeded
25H-31H Reserved

32H Network request not supported
33H Remote computer not listening
34H Duplicate name on network
35H Network name not found

36H Network busy
37H Device no longer exists on network
38H Net BIOS command limit exceeded

39H Error in network adapter hardware
3AH Incorrect response from network
3BH Unexpected network error
3CH Incompatible remote adapter
3DH Print queue full
3EH Queue not full
3FH Not enough room for print file
40H Network name deleted

41H Access denied

42H Incorrect network device type
43H Network name not found

44H Network name limit exceeded

45H Net BIOS session limit exceeded

46H Temporary pause
47H Network request not accepted
48H Print or disk redirection paused
49H-4FH Reserved

50H File already exists
51H Reserved

(more)

Section II: Programming in the MS-DOS Environment 403

Part C: Customizing MS-DOS

Value in AX Meaning

MS-DOS versions 3.x extended errors (continued)

52H Cannot make directory
53H Failure on Interrupt 24H
54H Out of structures

55H Already assigned
56H Invalid password
57H Invalid parameter
58H Network write fault

Locus (CH register). This value provides information on the location of the error:

Value in CH Meaning

OIH Location unknown

02H Block device; generally caused by a disk error
03H Network

04H Serial device; generally caused by a timeout from a character device
05H Memory; caused by an error in RAM

Error Class (BH register). This value gives the general category of the error:

Value inBH Meaning

OIH Out of resource; out of storage space or I/O channels.
02H Temporary situation; expected to clear, as in a file or record lock—gener

ally occurs only in a network environment.
03H Authorization; a problem with permission to access the requested device.
04H Internal error in system software; generally reflects a system software bug

rather than an application or system failure.
05H Hardware failure; a serious hardware-related problem not the fault of the

user program.

06H System failure; a serious failure of the system software, not directly the
fault of the application—generally occurs if configuration files are
missing or incorrect.

07H Application-program error; generally caused by inconsistent function
requests from the user program.

08H File or item not found.

09H File or item of invalid format or type detected, or an otherwise unsuitable
or invalid item requested.

OAH File or item interlocked by the system.

(more)

404 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Value in BH Meaning

OBH Media failure; generally occurs with a bad disk in a drive, a bad spot on the
disk, or the like.

OCH Already exists; generally occurs when application tries to declare a
machine name or device that already exists.

ODH Unknown.

Suggested Action (BL register). One of the most useful returns from Function 59H, this
value suggests a corrective action to try:

Value in BL Meaning

OIH Retry a few times before prompting the user to choose Ignore for the
program to continue or Abort to terminate.

02H Pause for a few seconds between retries and then prompt user as above.
03H Ask user to reenter the input. In most cases, this solution applies when an

incorrect drive specifier or filename was entered. Of course, if the value
was hard-coded into the program, the user should not be prompted for
input.

04H Clean up as well as possible, then abort the application. This solution
applies when the error is destructive enough that the application cannot
safely proceed, but the system is healthy enough to try an orderly shut
down of the application.

05H Exit from the application as soon as possible, without trying to close files
and clean up. This means something is seriously wrong with either the
application or the system.

06H Ignore; error is informational.
07H Prompt user to perform some action, such as changing floppy disks in a

drive and then retry.

Function 59H and older system calls

The Interrupt 21H functions—primarily the FCB-related file and record calls—that return
OFFH in the AL register to indicate that an error has occurred but provide no further infor
mation about the type of error include

Function Name

OFH Open File with FOB
lOH Close File with FCB

IIH Find First File

12H Find Next File

(more)

Section II: Programming in the MS-DOS Environment 405

Part C: Customizing MS-DOS

Function Name

13H Delete File

16H Create File with FCB

17H Rename File

23H Get File Size

These function calls now exist only to maintain compatibility with MS-DOS versions 1.x.
The preferred choices are the handle-style calls available in MS-DOS versions 2.0 and later,
which offer full path support and much better error reporting. See also SYSTEM CALLS.

If the older calls must be used, the program can use Function 59H to obtain more detailed
information under MS-DOS version 3.0 or later. For example:

myfob db 0 drive = default

db •MYFILE ' filename, 8 chars

db •DAT' extension, 3 chars

db 25 dup (0) jr remainder of FCB

mov dx,seg myfcb ;? DS:DX = FCB

mov ds, dx

mov dx,offset myfcb

mov ah,Ofh j: function OFH = Open FCB

int 21h transfer to MS-DOS

or al, al test status

jz success jump, open succeeded

open failed, get

extended error info

mov bx, 0 BX = OOH for ver. 2.x-3.x

mov ah,59h function 59H = Get Info

int 21h transfer to MS-DOS

or ax, ax really an error?

jz success no error, jump

test recommended actions

cmp bl,01h

jz retry ;r if BL = OIH retry operation

cmp bl,04h

jz cleanup ,r if BL = 04H clean up and exit

cmp bl,05h

jz panic ,; if BL = 05H exit immediately

Function 59H and newer system calls

The function calls listed below were added in MS-DOS versions 2.0 and later. These calls

return with the carry flag set if an error occurs; in addition, the AX register contains an
error value corresponding to error codes OIH through 12H of the extended error return
codes:

406 The MS-DOS Encyclopedia

Article 12: Exception Handlers

Function Name

MS-DOS versions 2.0 and later:

38H Get/Set Current Country

39H Create Directory

3AH Remove Directory

3BH Change Current Directory
3CH Create File with Handle

3DH Open File with Handle
3EH Close File

3FH Read File or Device

40H Write File or Device

41H Delete File

42H Move File Pointer

43H Get/Set File Attributes

44H lOCTL (I/O Control for Devices)

45H Duplicate File Handle
46H Force Duplicate File Handle
47H Get Current Directory

48H Allocate Memory Block
49H Free Memory Block
4AH Resize Memory Block
4BH Load and Execute Program (EXEC)
4EH Find First File

4FH Find Next File

56H Rename File

57H Get/Set Date/Time of File

MS-DOS versions 3.0 and later:

58H Get/Set Allocation Strategy
5AH Create Temporary File
5BH Create New File

5CH Lock/Unlock File Region

MS-DOS versions 3-1 and later:

5EH Network Machine Name/Printer Setup
5FH Get/Make Assign List Entry

Although these newer functions have much better error reporting than the older FCB
functions, Function 59H is still useful. Regardless of the version of MS-DOS that is running,
the error code returned in the AX register from an Interrupt 21H function call is always in
the range 0-12H. If a program is running under MS-DOS versions 3.x and wants to obtain
one or more of the more specific error codes in the range 20-58H, the program must

Section II: Programming in the MS-DOS Environment 407

Part C: Customizing MS-DOS

follow the failed Interrupt 21H call with a subsequent call to Interrupt 21H Function 59H.
The program can then use the code returned by Function 59H in the BL register as a guide
to the action to take in response to the error. For example:

myfile db 'MYFILE.DAT',0 ASCIIZ filename

mov

mov

mov

mov

int

jnc

mov

mov

int

or

jz

cmp

jz

dx,seg myfile

ds, dx

dx,offset myfile

ax,3d02h

21h

success

bx, 0

ah,59h

21h

ax, ax

success

bl,01h

retry

DS:DX = ASCIIZ filename

open, read/write

transfer to MS-DOS

jump, open succeeded

open failed, get

extended error info

BX = OOH for ver. 2.X-3.X

function 59H = Get Info

transfer to MS-DOS

really an error?

no error, jump

test recommended actions

if BL = 01H retry operation

If the standard critical error handler is replaced with a customized critical handler,
Function 59H can also be used to obtain more detailed information about an error inside

the handler before either returning control to the application or aborting. The value in the
BL register should be used to determine the appropriate action to take or the message to
display to the user.

Jim Kyle
Chip Rabinowitz

408 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

Article 13

Hardware Interrupt Handlers

Unlike software interrupts, which are service requests initiated by a program, hardware
interrupts occur in response to electrical signals received from a peripheral device such as
a serial port or a disk controller, or they are generated internally by the microprocessor
itself. Hardware interrupts, whether external or internal to the microprocessor, are given
prioritized servicing by the Intel CPU architecture.

The 8086 family of microprocessors (which includes the 8088,8086,80186,80286,
and 80386) reserves the first 1024 bytes of memory (addresses OOOOrOOOOH through
0000:03FFH) for a table of 256 interrupt vectors, each a 4-byte far pointer to a specific
interrupt service routine (ISR) that is carried out when the corresponding interrupt is pro
cessed. The design of the 8086 family requires certain of these interrupt vectors to be used
for specific functions (Table 13-1). Although Intel actually reserves the first 32 interrupts,
IBM, in the original PC, redefined usage of Interrupts 05H to IFH. Most, but not all, of
these reserved vectors are used by software, rather than hardware, interrupts; the
redefined IBM uses are listed in Table 13-2.

Table 13-1. Intel Reserved Exception Interrupts.

Interrupt
Number Definition

OOH Divide by zero
OIH Single step
02H Nonmaskable interrupt (NMI)
03H Breakpoint trap
04H Overflow trap
05H BOUND range exceeded*
06H Invalid opcode*
07H Coprocessor not available f
08H Double-fault exception t
09H Coprocessor segment overrunf

OAR Invalid task state segment (TSS)t
OBH Segment not presentf
OCR Stack exception!
ODR General protection exception!
OER Page fault!

(more)

Section II: Programming in the MS-DOS Environment 409

Part C: Customizing MS-DOS

Table 13-1. Continued.

Interrupt
Number Definition

OFH (Reserved)

lOH Coprocessor errorf

*The 80186,80286, and 80386 microprocessors only.
tThe 80286 and 80386 microprocessors only.
+The 80386 microprocessor only.

Table 13-2. IBM Interrupt Usage.

Interrupt
Number Definition

05H Print screen

06H Unused

07H Unused

08H Hardware IRQO (timer-tick)*
09H Hardware IRQl (keyboard)
OAH Hardware IRQ2 (reserved) t
OBH Hardware IRQ3 (COM2)
OCH Hardware IRQ4 (COMl)
ODH Hardware IRQ5 (fixed disk)
GEH Hardware IRQ6 (floppy disk)
OFH Hardware IRQ7 (printer)
lOH Video service

IIH Equipment information
12H Memory size
13H Disk I/O service

14H Serial-port service
15H Cassette/network service

16H Keyboard service
17H Printer service

18H ROM BASIC

19H Restart system
lAH Get/Set time/date

IBH Control-Break (user defined)

ICR Timer tick (user defined)

IDH Video parameter pointer
lEH Disk parameter pointer
IFH Graphics character table

•IRQ = Interrupt request line,

t See Table 13-4.

410 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

Nestled in the middle of Table 13-2 are the eight hardware interrupt vectors (08-0FH) IBM
implemented in the original PC design. These eight vectors provide the maskable inter
rupts for the IBM PC-family and close compatibles. Additional IRQ lines built into the IBM
PC/AT are discussed imder The IRQ Levels below.

The conflicting uses of the interrupts listed in Tables 13-1 and 13-2 have created com
patibility problems as the 8086 family of microprocessors has developed. For complete
compatibility with IBM equipment, the IBM usage must be followed even when it conflicts
with the chip design. For example, a BOUND error occurs if an array index exceeds the
specified upper and lower limits (bounds) of the array, causing an Interrupt 05H to be
generated. But the 80286 processor used in all AT-class computers will, if a BOUND error
occurs, send the contents of the display to the printer, because IBM uses Interrupt 05H for
the Print Screen function.

Hardware Interrupt Categories

The 8086 family of microprocessors can handle three types of hardware interrupts. First
are the internal, microprocessor-generated exception interrupts (Table 13-1). Second is the
nonmaskable interrupt, or NMI (Interrupt 02H), which is generated when the NMI line
(pin 17 on the 8088 and 8086, pin 59 on the 80286, pin B8 on the 80386) goes high (active).
In the IBM PC family (except the PCjr and the Convertible), the nonmaskable interrupt is
designated for memory parity errors. Third are the maskable interrupts, which are usually
generated by external devices.

Maskable interrupts are routed to the main processor through a chip called the 8259A
Programmable Interrupt Controller (PIC). When it receives an interrupt request, the PIC
signals the microprocessor that an interrupt needs service by driving the interrupt request
(INTR) line of the main processor to high voltage level. This article focuses on the mask
able interrupts and the 8259A because it is through the PIC that external I/O devices (disk
drives, serial communication ports, and so forth) gain access to the interrupt system.

Interrupt priorities in the 8086 family

The Intel microprocessors have a built-in priority system for handling interrupts that
occur simultaneously. Priority goes to the internal instruction exception interrupts, such as
Divide by Zero and Invalid Opcode, because priority is determined by the interrupt num
ber: Interrupt OOH takes priority over all others, whereas the last possible interrupt, OFFH,
would, if present, never be allowed to break in while another interrupt was being serviced.
However, if interrupt service is enabled (the microprocessor's interrupt flag is set), any
hardware interrupt takes priority over any software interrupt (INT instruction).

The priority sequencing by interrupt number must not be confused with the priority
resolution performed by hardware external to the microprocessor. The numeric priority
discussed here applies only to interrupts generated within the 8086 family of microproces
sor chips and is totally independent of system interrupt priorities established for compo
nents external to the microprocessor itself.

Section 11: Programming in the MS-DOS Environment 411

Part C: Customizing MS-DOS

Interrupt service routines

For the most part, programmers need not write hardware-specific program routines to
service the hardware interrupts. The IBM PC BIOS routines, together with MS-DOS ser
vices, are usually sufficient. In some cases, however, MS-DOS and the ROM BIOS do not
provide enough assistance to ensure adequate performance of a program. Most notable in
this category is communications software, for which programmers usually must access the
8259A and the 8250 Universal Asynchronous Receiver and Transmitter (UART) directly.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos:

Interrupt-Driven Communications.

Characteristics of Maskable Interrupts

Two major characteristics distinguish maskable interrupts from all other events that can
occur in the system: They are totally unpredictable, and they are highly volatile. In gener
al, a hardware interrupt occurs when a peripheral device requires the f^ull attention of the
system and data will be irretrievably lost unless the system responds rapidly.

All things are relative, however, and this is especially true of the speed required to service
an interrupt request. For example, assume that two interrupt requests occur at essentially
the same time. One is from a serial communications port receiving data at 300 bps; the
other is from a serial port receiving data at 9600 bps. Data from the first serial port will not
change for at least 30 milliseconds, but the second serial port must be serviced within one
millisecond to avoid data loss.

Unpredictability

Because maskable interrupts generally originate in response to external physical events,
such as the receipt of a byte of data over a communications line, the exact time at which
such an interrupt will occur cannot be predicted. Even the timer interrupt request, which
by default occurs approximately 18.2 times per second, cannot be predicted by any pro
gram that happens to be executing when the interrupt request occurs.

Because of this unpredictability, the system must, if it allows any interrupts to be recog
nized, be prepared to service all maskable interrupt requests. Conversely, if interrupts can
not be serviced, they must all be disabled. The 8086 family of microprocessors provides
the Set Interrupt Flag (STI) instruction to enable maskable interrupt response and the
Clear Interrupt Flag (CLI) instruction to disable it. The interrupt flag is also cleared auto
matically when a hardware interrupt response begins; the interrupt handler should ex
ecute STI as quickly as possible to allow higher priority interrupts to be serviced.

VolatiUty

As noted earlier, a maskable interrupt request must normally be serviced immediately to
prevent loss of data, but the concept of immediacy is relative to the data transfer rate of the
device requesting the interrupt. The rule is that the currently available unit of data must be
processed (at least to the point of being stored in a buffer) before the next such item can

412 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

arrive. Except for such devices as disk drives, which always require immediate response,
interrupts for devices that receive data are normally much more critical than interrupts
for devices that transmit data.

The problems imposed by data volatility during hardware interrupt service are solved by
establishing service priorities for interrupts generated outside the microprocessor chip it
self. Devices with the slowest transfer rates are assigned lower interrupt service priorities,
and the most time-critical devices are assigned the highest priority of interrupt service.

Handling Maskable Interrupts

The microprocessor handles all interrupts (maskable, nonmaskable, and software) by
pushing the contents of the flags register onto the stack, disabling the interrupt flag, and
pushing the current contents of the CS:IP registers onto the stack.

The microprocessor then takes the interrupt number from the data bus, multiplies it by 4
(the size of each vector in bytes), and uses the result as an offset into the interrupt vector
table located in the bottom 1 KB (segment OOOOH) of system RAM. The 4-byte address
at that location is then used as the new CS:IP value (Figure 13-1).

Process interrupt

IRET

Restore CS:IP,

Push

Disable interrupts

Push CS:IP

Get address of ISR

from table;

place in CS:IP

Figure 13-1. General interrupt sequence.

Section II: Programming in the MS-DOS Environment 413

Part C: Customizing MS-DOS

External devices are assigned dedicated interrupt request lines (IRQs) associated with the
8259A. See The IRQ Levels below. When a device requires attention, it sends a signal to
the PIC via its IRQ line. The PIC, which functions as an "executive secretary" for the exter
nal devices, operates as shown in Figure 13-2. It evaluates the service request and, if appro
priate, causes the microprocessor's INTR line to go high. The microprocessor then checks
whether interrupts are enabled (whether the interrupt flag is set). If they are, the flags are
pushed onto the stack, the interrupt flag is disabled, and CS:IP is pushed onto the stack.

DEVICE 8259A MICROPROCESSOR

Any

IRQs

active?
Signals request

INT masked

INTs

enabled?

serviced?
Push flags

Signal request Disable INTs

Push CS:IP

^ESTTA

Acknowledge
INT

Place INT num

ber on data bus Data w

bus Get INT

number

Calculate

new CS:IP

Figure 13-2. Maskable interrupt service.

414 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

The microprocessor acknowledges the interrupt request by signaling the 8259A via the
interrupt acknowledge (INTA) line. The 8259A then places the interrupt number on the
data bus. The microprocessor gets the interrupt number from the data bus and services
the interrupt. Before issuing the IRET instruction, the interrupt service routine must issue
an end-of-interrupt (EOI) sequence to the 8259A so that other interrupts can be processed.
This is done by sending 20H to port 20H. (The similarity of numbers is pure coincidence.)
The EOI sequence is covered in greater detail elsewhere. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Programming forms-dos: Interrupt-Driven Communications.

The 8259A Programmable Interrupt Controller

The 8259A (Figure 13-3) has a number of internal components, many of them under soft
ware control. Only the default settings for the IBM PC family are covered here.

Three registers influence the servicing of maskable interrupts: the interrupt request regis
ter (IRR), the in-service register (ISR), and the interrupt mask register (IMR).

The IRR is used to keep track of the devices requesting attention. When a device causes
its IRQ line to go high to signal the 8259A that it needs service, a bit is set in the IRR that
corresponds to the interrupt level of the device.

The ISR specifies which interrupt levels are currently being serviced; an ISR bit is set when
an interrupt has been acknowledged by the CPU (via INTA) and the interrupt number has
been placed on the data bus. The ISR bit associated with a particular IRQ remains set until
an EOI sequence is received.

The IMR is a read/write register (at port 21H) that masks (disables) specific interrupts.
When a bit is set in this register, the corresponding IRQ line is masked and no servicing for
it is performed until the bit is cleared. Thus, a particular IRQ can be disabled while all
others continue to be serviced.

The fourth major block in Figure 13-3, labeled Priority resolver, is a complex logical circuit
that forms the heart of the 8259A. This component combines the statuses of the IMR, the
ISR, and the IRR to determine which, if any, pending interrupt request should be serviced
and then causes the microprocessor's INTR line to go high. The priority resolver can be
programmed in a number of modes, although only the mode used in the IBM PC and close
compatibles is described here.

Section II: Programming in the MS-DOS Environment 415

Part C: Customizing MS-DOS

DATA BUS ?

CONTROL BUS

ESTTA INT

\7
INTERNAL BUS

IRQO'
IRQl

IRQ2

IRQ3 ylRQ
IRQ4 r lines
IRQ5

IRQ6

irqtJ

In-service

register (ISR)
Priority resoiver

Interrupt request
register (IRR)

Interrupt mask register
(IMR)

Control logic

Figure 13-3- Block diagram of the 8259A Programmable Interrupt Controller.

The IRQ levels

When two or more unserviced hardware interrupts are pending, the 8259A determines
which should be serviced first. The standard mode of operation for the PIC is the fully
nested mode, in which IRQ lines are prioritized in a fixed sequence. Only IRQ lines with
higher priority than the one currently being serviced are permitted to generate new
interrupts.

4l6 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

The highest priority is IRQO, and the lowest is IRQ7. Thus, if an Interrupt 09H (signaled
by IRQl) is being serviced, only an Interrupt 08H (signaled by IRQO) can break in. All
other interrupt requests are delayed until the Interrupt 09H service routine is completed
and has issued an EOI sequence.

Eight-level designs

The IBM PC, PCjr, and PC/XT (and port-compatible computers) have eight IRQ lines to
the PIC chip—IRQO through IRQ7. These lines are mapped into interrupt vectors for
Interrupts 08H through OFH (that is, 8 + IRQ level). These eight IRQ lines and their associ
ated interrupts are listed in Table 13-3.

Table 13-3. Eight-Level Interrupt Map.

IRQ line Interrupt Description

IRQO 08H Timer tick, 18.2 times per second
IRQl 09H Keyboard service required
IRQ2 OAH I/O channel (unused on IBM PC/XT)

IRQ3 OBH COMl service required
IRQ4 OCH COM2 service required
IRQ5 ODH Fixed-disk service required
IRQ6 GEH Floppy-disk service required
IRQ7 OFH Data request from parallel printer*

* This request cannot be reliably generated by older versions of the IBM Monochrome/Printer Adapter and
compatibles. Printer drivers that depend on this signal for operation with these cards are subject to failure.

Sixteen-level designs

In the IBM PC/AT, 8 more IRQ levels have been added by using a second 8259A PIC (the
"slave") and a cascade effect, which gives 16 priority levels.

The cascade effect is accomplished by connecting the INT line of the slave to the IRQ2 line
of the first, or "master," 8259A instead of to the microprocessor. When a device connected
to one of the slave's IRQ lines makes an interrupt request, the INT line of the slave goes
high and causes the IRQ2 line of the master 8259A to go high, which, in turn, causes the
INT line of the master to go high and thus interrupts the microprocessor.

The microprocessor, ignorant of the second 8259A's presence, simply generates an inter
rupt acknowledge signal on receipt of the interrupt from the master 8259A. This signal ini
tializes both 8259As and also causes the master to turn control over to the slave. The slave

then completes the interrupt request.

On the IBM PC/AT, the eight additional IRQ lines are mapped to Interrupts 70H through
77H (Table 13-4). Because the eight additional lines are effectively connected to the master

Section II: Programming in the MS-DOS Environment 417

Part C: Customizing MS-DOS

8259A's IRQ2 line, they take priority over the master's IRQ3 through IRQ7 events. The
cascade effect is graphically represented in Figure 13-4.

Table 13-4. Sixteen-Level Interrupt Map.

IRQ line Interrupt Description

IRQO 08H Timer tick, 18.2 times per second
IRQl 09H Keyboard service required
IRQ2 OAH INT from slave 8259A:

IRQ8 70H Real-time clock service

IRQ9 71H Software redirected to IRQ2
IRQIO 72H Reserved

IRQll 73H Reserved

IRQ12 74H Reserved

IRQ13 75H Numeric coprocessor

IRQ14 76H Fixed-disk controller

IRQ15 77H Reserved

IRQ3 OBH COM2 service required
IRQ4 OCH COMl service required
IRQ5 ODH Data request from LPT2
IRQ6 OEH Floppy-disk service required
IRQ7 OFH Data request from LPTl

DATA BUS

Z>
?

CONTROL BUS

INTA INT

Slave 8259A

IRQ15

i k >|k ik
ilRQlSIRQll IRQ9

?

Control lines

INTA INT

Master 8259A

IRQ2

IRQ?

IRQ14IRQ12 IRQIO IRQ8

IRQ5 IRQ3

IRQ6 IRQ4

IRQl

IRQO

Figure 13-4. A graphic representation ofthe cascade effectfor IRQ priorities.

418 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

Note: During the INTA sequence, the corresponding bit in the ISR register of both 8259As
is set, so two EOIs must be issued to complete the interrupt service—one for the slave and
one for the master.

Programming for the Hardware Interrupts

Any program that modifies an interrupt vector must restore the vector to its original condi
tion before returning control to MS-DOS (or to its parent process). Any program that totally
replaces an existing hardware interrupt handler with one of its own must perform all the
handshaking and terminating actions of the original—re-enable interrupt service, signal
EOI to the interrupt controller, and so forth. Failure to follow these rules has led to many
hours of programmer frustration. See also PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Customizing ms-dos: Exception Handlers.

When an existing interrupt handler is completely replaced with a new, customized rou
tine, the existing vector must be saved so it can be restored later. Although it is possible to
modify the 4-byte vector by directly addressing the vector table in low RAM (and many
published programs have followed this practice), any program that does so runs the risk
of causing system failure when the program is used with multitasking or multiuser en
hancements or with future versions of MS-DOS. The only technique that can be recom
mended for either obtaining the existing vector values or changing them is to use the
MS-DOS functions provided for this purpose: Interrupt 21H Functions 25H (Set Interrupt
Vector) and 35H (Get Interrupt Vector).

After the existing vector has been saved, it can be replaced with a far pointer to the
replacement routine. The new routine must end with an IRET instruction. It should also
take care to preserve all microprocessor registers and conditions at entry and restore
them before returning.

A sample replacement handler

Suppose a program performs many mathematical calculations of random values. To
prevent abnormal termination of the program by the default MS-DOS Interrupt OOH han
dler when a DIV or IDIV instruction is attempted and the divisor is zero, a programmer
might want to replace the Interrupt OOH (Divide by Zero) routine with one that informs the
user of what has happened and then continues operation without abnormal termination.
The .COM program DIVZERO.ASM (Figure 13-5) does just that. (Another example is in
cluded in the article on interrupt-driven communications. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Programming for ms-dos: Interrupt-Driven Communications.)

Section II: Programming in the MS-DOS Environment 419

Part C: Customizing MS-DOS

name divzero

title 'DIVZERO - Interrupt OOH Handler'

DIVZERO.ASM: Demonstration Interrupt OOH Handler

To assemble, link, and convert to COM file:

OMASM DIVZERO; <Enter>

OLINK DIVZERO; <Enter>

OEXE2BIN DIVZERO.EXE DIVZERO.COM <Enter>

ODEL DIVZERO.EXE <Enter>

cr equ Odh ASCII carriage return

If equ Oah ; ASCII linefeed

eos equ '$' end of string marker

-TEXT segment word public 'CODE'

assume cs:-TEXT,ds:-TEXT,r es:-TEXT,ss:-TEXT

org lOOh

entry: jmp start ; skip over data area

intmsg db 'Divide by Zero Occurred!',cr,If,eos

divmsg db 'Dividing ' ; message used by demo

parl db 'OOOOh' dividend goes here

db ' by '

par2 db 'OOh' divisor goes here

db ' equals '

par3 db 'OOh' quotient here

db ' remainder '

par4 db 'OOh' and remainder here

db cr,If,eos

oldintO dd 7 save old Int OOH vector

intflag db 0 nonzero if divide by

'

zero interrupt occurred

oldip dw 0 save old IP value

The routine 'intO' is the actual divide by zero

interrupt handler. It gains control whenever a

divide by zero or overflow occurs. Its action

is to set a flag and then increment the instruction

pointer saved on the stack so that the failing

(more)

Figure 13-5. The Divide by Zero replacement handler, DIVZERO. ASM. This code is specific to 80286and
80386microprocessors. (See Appendix M: 8086/8088 Software Compatibility Issues.)

420 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

divide will not be reexecuted after the IRET.

In this particular case we can call MS-DOS to

display a message during interrupt handling

because the application triggers the interrupt

intentionally. Thus, it is known that MS-DOS or

other interrupt handlers are not in control

at the point of interrupt.

into: pop cs:oldip ; capture instruction pointer

push

push

push

push

push

push

push

push

push

pop

mov

mov

int

ax

bx

cx

dx

di

si

ds

es

cs

ds

; set DS = CS

ah,09h

dx,offset —TEXTiintmsg

21h

; print error message

add oldip,2 ; bypass instruction causing

; divide by zero error

pop

pop

pop

pop

pop

pop

pop

pop

intflag,1

es

ds

si

di

dx

cx

bx

ax

; set divide by 0 flag

; restore all registers

push cs:oldip ; restore instruction pointer

iret ; return from interrupt

; The code beginning at 'start' is the application

; program. It alters the vector for Interrupt OOH to

; point to the new handler, carries out some divide

Figure 13-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 421

Part C: Customizing MS-DOS

operations (including one that will trigger an

interrupt) for demonstration purposes, restores

the original contents of the Interrupt OOH vector,

and then terminates.

start: mov

int

ax,3500h

21h

get current contents

of Int OOH vector

mov

mov

; save segment:offset

; of previous Int OOH handler

word ptr oldintO,bx

word ptr oldint0+2,es

mov

mov

int

dx,offset into

ax,2500h

21h

install new handler...

DS:DX = handler address

call MS-DOS to set

Int OOH vector

now our handler is active,

carry out some test divides.

mov

mov

call

ax,20h

bx,1

divide

test divide

divide by 1

mov

mov

call

ax,1234h

bx,5eh

divide

test divide

divide by 5EH

mov

mov

call

ax,5678h

bx,7fh

divide

test divide

divide by 127

mov

mov

call

ax,20h

bx, 0

divide

test divide

divide by 0

(triggers interrupt)

demonstration complete,

restore old handler

Ids

mov

int

dx,oldintO

ax,2500h

21h

DS:DX = handler address

call MS-DOS to set

Int OOH vector

mov

int

ax,4c00h

21h

final exit to MS-DOS

with return code = 0

The routine 'divide' carries out a trial division,

displaying the arguments and the results. It is

Figure 13-5. Continued. (more)

422 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

; called with AX = dividend and BL = divisor.

divide proc near

push

push

ax

bx

save arguments

mov

call

di,offset parl

wtoa

convert dividend to

ASCII for display

mov

mov

call

ax,bx

di,offset par2

btoa

convert divisor to

ASCII for display

pop

pop

bx

ax

restore arguments

div

cmp

jne

push

mov

call

bl

intflag, 0

nodiv

ax

di,offset par3

btoa

perform the division

divide by zero detected?

yes, skip display

no, convert quotient to

ASCII for display

pop

xchg

mov

call

ax

ah, al

di,offset par4

btoa

convert remainder to

ASCII for display

mov ah,09h ;

mov dx,offset divmsg

int 21h

show arguments, results

nodiv: mov

ret

intflag,0 clear divide by 0 flag

and return to caller

divide endp

proc convert word to hex ASCII

call with AX = binary value

DI = addr for string

returns AX, CX, DI destroyed

push

mov

call

add

ax

al, ah

btoa

di,2

Figure 13-5. Continued.

save original value

convert upper byte

increment output address

(more)

Section 11: Programming in the MS-DOS Environment 423

Part C: Customizing MS-DOS

pop

call

ret

ax

btoa convert lower byte

return to caller

endp

btoa proc

mov

mov

shr

call

mov

mov

and

call

mov

ret

ah, al

cx, 4

al, cl

ascii

[di],al

al, ah

al,Ofh

ascii

[di+1],al

convert byte to hex ASCII

call with AL = binary value

DI = addr to store string

returns AX, CX destroyed

save lower nibble

shift right 4 positions

to get upper nibble

convert 4 bits to ASCII

store in output string

get back lower nibble

blank out upper one

convert 4 bits to ASCII

store in output string

back to caller

btoa endp

ascii proc near ; convert AL bits 0-3 to

; ASCII {0...9,A...F}

add al,'0' ; and return digit in AL

cmp al,'9'

jle ascii2

add

1

o^

1

<

1—1
03

; "fudge factor" for A-F

ascii2: ret ; return to caller

ascii endp

-TEXT ends

end entry

Figure 13-5. Continued.

Supplementary handlers

In many cases, a custom interrupt handler augments, rather than replaces, the existing
routine. The added routine might process some data before passing the data to the exist
ing routine, or it might do the processing afterward. These cases require slightly different
coding for the handler.

If the added routine is to process data before the existing handler does, the routine need
only jump to the original handler after completing its processing. This jump can be done

424 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

indirectly, with the same pointer used to save the original content of the vector for restor
ation at exit. For example, a replacement Interrupt 08H handler that merely increments an
internal flag at each timer tick can look something like the following:

myflag dw

oldintS dd

mov

int

mov

mov

mov

mov

mov

mov

int

ax,3508h

21h

word ptr oldint8,bx

word ptr oldint8+2,es

dx,seg myint8

ds, dx

dx,offset myint8

ax,2508h

21h

variable to be incremented

on each timer-tick interrupt

contains address of previous

timer-tick interrupt handler

get the previous contents

of the Interrupt 08H vector...

AH = 35H (Get Interrupt Vector)

AL = Interrupt number (08H)

save the address of

the previous Int 08H Handler

put address of the new

interrupt handler into DS:DX

and call MS-DOS to set vector

AH = 25H (Set Interrupt Vector)

AL = Interrupt number (08H)

myint8:

cs:myflag

this is the new handler

for Interrupt 08H

increment variable on each

timer-tick interrupt

jmp dword ptr cs:[oldint8] ; then chain to the

; previous interrupt handler

The added handler must preserve all registers and machine conditions, except those
machine conditions it will modify, such as the value of myflag in the example (and the
flags register, which is saved by the interrupt action), and it must restore those registers
and conditions before performing the jump to the original handler.

A more complex situation arises when a replacement handler does some processing after
the original routine executes, especially if the replacement handler is not reentrant. To
allow for this processing, the replacement handler must prevent nested interrupts, so that
even if the old handler (which is chained to the replacement handler by a CALL instruc
tion) issues an EOI, the replacement handler will not be interrupted during postprocess
ing. For example, instead of using the preceding Interrupt 08H example routine, the
programmer could use the following code to implement myflag as a semaphore and
use the XCHG instruction to test it:

Section II: Programming in the MS-DOS Environment 425

Part C: Customizing MS-DOS

myintS:

mov ax,1

xchg cs:myflag,ax

push ax

pushf

call dword ptr cs:oldint8

pop ax

or ax,ax

jnz myintBx

this is the new handler

for Interrupt 08H

test and set interrupt-

handling-in-progress semaphore

save the semaphore

simulate interrupt, allowing

the previous handler for the

Interrupt 08H vector to run

get the semaphore back

is our interrupt handler

already running?

yes, skip this one

now perform our interrupt

processing here...

cs:myflag,0 clear the interrupt-handling-

in-progress flag

myint8x:

iret ; return from interrupt

Note that an interrupt handler of this type must simulate the original call to the interrupt
routine by first doing a PUSHF, followed by a far CALL via the saved pointer to execute the
original handler routine. The flags register pushed onto the stack is restored by the IRET
of the original handler. Upon return from the original code, the new routine can preserve
the machine state and do its own processing, finally returning to the caller by means
of its own IRET.

The flags inside the new routine need not be preserved, as they are automatically restored
by the IRET instruction. Because of the nature of interrupt servicing, the service routine
should not depend on any information in the flags register, nor can it return any informa
tion in the flags register. Note also that the previous handler (invoked by the indirect
CALL) will almost certainly have dismissed the interrupt by sending an EOI to the 8259A
PIC. Thus, the machine state is not the same as in the first myintS example.

To remove the new vector and restore the original, the program simply replaces the new
vector (in the vector table) with the saved copy. If the substituted routine is part of an
application program, the original vector must be restored for every possible method of
exiting from the program (including Control-Break, Control-C, and critical-error Abort
exits). Failure to observe this requirement invariably results in system failure. Even though
the system failure might be delayed for some timie after the exit from the offending pro
gram, when some subsequent program overlays the interrupt handler code the crash
will be imminent.

426 The MS-DOS Encyclopedia

Article 13: Hardware Interrupt Handlers

Summary

Hardware interrupt handler routines, although not strictly a part of MS-DOS, form an
integral part of many MS-DOS programs and are tightly constrained by MS-DOS require
ments. Routines of this type play important roles in the functioning of the IBM personal
computers, and, with proper design and programming, significantly enhance product
reliability and performance. In some instances, no other practical method exists for
meeting performance requirements.

Jim Kyle
Chip Rabinowitz

Section II: Programming in the MS-DOS Environment

Article 14: Writing MS-DOS Filters

Article 14

Writing MS-DOS Filters

A filter is, essentially, a program that operates on a stream of characters. The source and
destination of the character stream can be files, another program, or almost any character
device. The transformation applied by the filter to the character stream can range from an
operation as simple as substituting a character set to an operation as elaborate as gener
ating splines from sets of coordinates.

The standard MS-DOS paclcage includes three simple filters: SORT, which alphabetically
sorts text on a line-by-line basis; FIND, which searches a text stream to match a specified
string; and MORE, which displays text one screenful at a time. This article describes how
filters work and how new ones can be constructed. See also USER COMMANDS: find;
MORE; SORT.

System Support for Filters

The operation of a filter program relies on two features that appeared in MS-DOS version
2.0: standard devices and redirectable I/O.

The standard devices are represented by five handles that are originally established when
the system is initialized. Each process inherits these handles from its immediate parent.
Thus, the standard device handles are already opened when a process acquires control of
the system, and the process can use the handles with Interrupt 21H Functions 3FH and
40H for read and write operations without further preliminaries. The default assignments
of the standard device handles are

Handle Name Default Device

0 stdin (standard input) CON
1 stdout (standard output) CON
2 stderr (standard error) CON

3 stdaux (standard auxiliary) AUX
4 stdlst (standard list) PRN

The CON device is assigned by default to the system's keyboard and video display. AUX
is assigned by default to COMl (the first physical serial port), and PRN is assigned by
default to LPTl (the first physical parallel printer port); in some systems these assign
ments can be altered with the MODE command. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: Programming for ms-dos: Character Device Input and Output; USER
COMMANDS: mode; ctty.

Section II: Programming in the MS-DOS Environment 429

PartC: Customizing MS-DOS

When a program is executed by entering its name at the system (COMMAND.COM)
prompt, the user can redirect either or both of the standard input and standard output han
dles from their default device (CON) to another file, a character device, or a process. This
redirection is accomplished by including one of the special characters <, >, », or 1 in the
command line, in the following form:

Redirection Result

< file Contents of the specified file are used instead of the keyboard as the pro
gram's standard input.

< device Program takes its standard input from the named device instead of from
the keyboard.

> device Program sends its standard output to the named device instead of to the
video display.

> file Program sends its standard output to the specified file instead of to the
video display.

» file Program appends its standard output to the current contents of the speci
fied file instead of to the video display.

pi 1 p2 Standard output of program pi is routed to become the standard input of
program p2 (output of pi is said to be piped to p2).

For example, the command

OSORT < MYFILE.TXT > PRN <Enter>

causes the SORT filter to read its input from the file MYFILE.TXT, sort the lines alpha
betically, and write resulting text to the character device PRN (the logical name for the
system's list device).

The redirection requested by the <,>,», or 1 characters takes place at the level of
COMMAND.COM and is invisible to the program it affects. Such redirection can also be
put into effect by another process. See Using a Filter as a Child Process below.

Note that if a program "goes around" MS-DOS to perform its input and output, either by
calling ROM BIOS functions or by manipulating the keyboard or video controller directly,
redirection commands placed in the program's command line do not have the expected
effect.

How Filters Work

By convention, a filter program reads its text from standard input and writes the results of
its operations to standard output. When the end of the input stream is reached, the filter
simply terminates, optionally writing an end-of-file mark (lAH) to the output stream. As a
result, filters are both flexible and simple.

Filter programs are flexible because they do not know, and do not care, about the source
of the data they process or the destination of their output. Any redirection that the user

430 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

specifies in the command line is invisible to the filter. Thus, any character device that has
a logical name within the system (CON, AUX, COMl, COM2, PRN, LPTl, LPT2, LPT3, and
so on), any file on any block device (local or network) known to the system, or any other
program can supply a filter's input or accept its output. If necessary, several functionally
simple filters can be concatenated with pipes to perform very complex operations.

Although flexible, filters are also simple because they rely on their parent process to
supply standard input and standard output handles that have already been appropriately
redirected. The parent is responsible for opening or creating any necessary files, checking
the validity of logical character device names, and loading and executing the preceding or
following process in a pipe. The filter need only concern itself with the transformation it
will apply to the data; it can leave the I/O details to the operating system and to its parent.

Building a Filter

Creating a new filter for MS-DOS is a straightforward process. In its simplest form, a filter
need only use the handle-oriented read (Interrupt 21H Function 3FH) and write (Interrupt
21H Function 40H) functions to get characters or lines from standard input and send them
to standard output, performing any desired alterations on the text stream on a character-
by-character or line-by-line basis.

Figures 14-1 through 14-4 contain template character-oriented and line-oriented filters
in both assembly language and C. The C version of the character filter runs much faster
than the assembly-language version, because the C run-time library provides hidden
blocking and deblocking (buffering) of character reads and writes; the assembly-language
program actually makes two calls to MS-DOS for each character processed. (Of course, if
buffering is added to the assembly-language version it will be both faster and smaller than
the C filter.) The C and assembly-language versions of the line-oriented filter run at
roughly the same speed.

name

title

protoc

'PROTOC.ASM template character filter'

PROTOC.ASM: a template for a character-oriented filter.

Ray Duncan, June 1987

stdin equ

stdout equ

stderr equ

standard input

standard output

standard error

cr

If

equ

equ

Odh

Oah

ASCII carriage return

ASCII linefeed

Figure 14-1. Assembly-language templatefor a character-orientedfilter (file PROTOC. ASM). (more)

Section II: Programming in the MS-DOS Environment 431

Part C: Customizing MS-EXDS

DGROUP group _DATA,STACK 'automatic data group'

maini :

segment byte public 'CODE'

assume cs:_TEXT,ds:: DGROUP,ss:STACK

proc far entry point from MS-DOS

mov ax,DGROUP ; set DS = our data segment

mov ds, ax

read a character from standard input

mov dx,offset DGROUP:char ; address to place character

mov cx, 1 length to read = 1

mov bx,stdin handle for standard input

mov ah,3fh function SFH = read from file or device

int 21h transfer to MS-DOS

jc mainS error, terminate

cmp ax, 1 any character read?

jne main2 end of file, terminate program

call transit translate character if necessary

now write character to standard output

mov dx,offset DGROUP:char ; address of character

mov cx, 1 length to write = 1

mov bx,stdout handle for standard output

mov ah,40h function 40H = write to file or device

int 21h transfer to MS-DOS

jc mains error, terminate

cmp ax, 1 was character written?

jne mains disk full, terminate program

jmp maini go process another character

mov ax,4c00h ; end of file reached, terminate

int 21h ; program with return code = 0

mains: mov ax,4c01h ; error or disk full, terminate

int 21h ; program with return code = 1

main endp ; end of main procedure

Perform any necessary translation on character from input,

stored in 'char'. Template action: leave character unchanged.

transit proc neai

ret

transit endp

Figure 14-1. Continued.

; template action: do nothing

(more)

432 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

-TEXT ends

—DATA segment word public 'DATA'

char db 0 ; temporary storage for input character

—DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main

Figure 14-1. Continued.

; defines program entry point

/*

*/

PROTOC.C: a template for a character-oriented filter.

Ray Duncan, June 1987

#include <stdio.h>

main(argc,argv)

int argc;

char *argv[];

{

}

/*

*/

char ch;

while ((ch=getchar0)!=EOF)

{ ch=translate(ch);

putchar(ch);

}

exit (0);

/* read a character */

/* translate it if necessary */

/* write the character */

/* terminate at end of file */

Perform any necessary translation on character from

input file. Template action just returns same character.

int translate(ch)

char ch;

{ return (ch);

}

Figure 14-2. C template for a character-oriented filter (file PROTOC. C).

Section II: Programming in the MS-DOS Environment 433

Part C: Customizing MS-DOS

name protol

title 'PROTOL.ASM template line filter'

PROTOL.ASM: a template for a line-oriented filter.

Ray Duncan, June 1987

stdin equ

stdout equ

stderr equ

or

If

equ

equ

0

1

2

Odh

Oah

standard input

standard output

standard error

ASCII carriage return

ASCII linefeed

DGROUP group _DATA,STACK 'automatic data group'

—TEXT segment byte public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:DGROUP,ss:STACK

proc

mov

mov

mov

far

ax,DGROUP

ds, ax

es, ax

entry point from MS-DOS

; set DS = ES = our data segment

maini ;

mov

mov

mov

mov

int

jc

or

jz

call

or

jz

dx,offset

cx,256

bx,stdin

ah,3fh

21h

main3

ax, ax

main2

transit

ax, ax

maini

DGROUP

mov dx,offset DGROUP

mov cx,ax

mov bx,stdout

mov ah,40h

int 21h

jc main3

read a line from standard input

input ; address to place data

max length to read = 256

handle for standard input

function 3FH = read from file or device

transfer to MS-DOS

if error, terminate

any characters read?

end of file, terminate program

translate line if necessary

anything to output after translation?

no, get next line

now write line to standard output

output ; address of data

length to write

handle for standard output

function 40H = write to file or device

transfer to MS-DOS

if error, terminate

Figure 14-3' Assembly-language templatefor a line-orientedfilter (file PROTOL ASM). (more)

434 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

cmp

jne

jmp

main2: mov

int

mains: mov

int

main endp

ax, cx

mains

maini

ax,4c00h

21h

ax,4c01h

21h

was entire line written?

disk full, terminate program

go process another line

end of file reached, terminate

program with return code = 0

error or disk full, terminate

program with return code = 1

end of main procedure

Perform any necessary translation on line stored in

'input' buffer, leaving result in 'output' buffer.

Call with: AX = length of data in 'input' buffer.

Return: AX = length to write to standard output.

Action of template routine is just to copy the line.

transit proc near

mov

mov

mov

rep movsb

ret

; just copy line from input to output

si,offset DGROUP:input

di,offset DGROUP:output

cx, ax

; return length in AX unchanged

transit endp

_TEXT ends

_DATA segment word public 'DATA'

input db

output db

_DATA ends

256 dup (?) ; storage for input line

256 dup (?) ; storage for output line

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main

Figure 14-3. Continued.

; defines program entry point

Section II: Programming in the MS-DOS Environment 435

Part C: Customizing MS-DOS

/*

PROTOL.C: a template for a line-oriented filter.

Ray Duncan, June 1987.

*/

#include <stdio.h>

static char input[256]; /* buffer for input line */

static char output[256]; /* buffer for output line */

main(argc,argv)

int argc;

char *argv[];

{ while(gets(input) != NULL) /* get a line from input stream */

/* perform any necessary translation

and possibly write result */

{ if (translate 0) puts (output) ;

}

exit(O); /* terminate at end of file */

/*

*/

Perform any necessary translation on input line, leaving

the resulting text in output buffer. Value of function

is 'true' if output buffer should be written to standard output

by main routine, 'false' if nothing should be written.

translate()

{ strcpy(output,input); /* template action is copy input */

return(1); /* line and return true flag */

}

Figure 14-4. C template for a line-oriented filter (file PROTOL.C).

Each of the four template filters can be assembled or compiled, linked, and run exactly as
they are shown in Figures 14-1 through 14-4. Of course, in this form they function like an
incredibly slow COPY command.

To obtain a filter that does something useful, a routine that performs some modification
of the text stream that is flowing by must be inserted between the reads and writes. For
example. Figures 14-5 and 14-6 contain the assembly-language and C source code for a
character-oriented filter named LC. This program converts all uppercase input characters
(A-Z) to lowercase (a-z) output, leaving other characters unchanged. The only difference
between LC and the template character filter is the translation subroutine that operates
on the text stream.

436 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

name Ic

title 'LC.ASM lowercase filter'

LC.ASM: a simple character-oriented filter to translate

all uppercase {A-Z} to lowercase {a-z}.

Ray Duncan, June 1987

stdin equ

stdout equ

stderr equ

cr

If

equ

equ

0

1

2

Odh

Oah

standard input

standard output

standard error

ASCII carriage return

ASCII linefeed

DGROUP group -DATA,STACK 'automatic data group'

-TEXT segment byte public 'CODE'

assume cs:_TEXT,ds:DGROUP,ss:STACK

maini :

proc far r entry point from MS-DOS

mov ax,DGROUP ? set DS = our data segment

mov ds, ax

read a character from standard input

mov dx,offset DGROUP char ; address to place character

mov cx, 1 length to read = 1

mov bx,stdin handle for standard input

mov ah,3fh function 3FH = read from file or device

int 21h transfer to MS-DOS

jc mains error, terminate

cmp ax, 1 any character read?

jne main2 end of file, terminate program

call transit r translate character if necessary

now write character to standard output

mov dx,offset DGROUP char ; address of character

mov cx, 1 length to write = 1

mov bx,stdout handle for standard output

mov ah,40h function 40H = write to file or device

int 21h transfer to MS-DOS

jc mainS error, terminate

cmp ax, 1 was character written?

jne mainS disk full, terminate program

jmp maini go process another character

Figure 14-5. Assembly-language source code for the LCfilter (file LC. ASM). (more)

Section II: Programming in the MS-DOS Environment 437

Part C: Customizing MS-DOS

main2: mov

int

mainS: mov

int

main endp

ax,4c00h

21h

ax,4c01h

21h

end of file reached, terminate

program with return code = 0

error or disk full, terminate

program with return code = 1

end of main procedure

Translate uppercase {A-Z} characters to corresponding

lowercase characters {a-z}. Leave other characters unchanged.

transit proc near

cmp

jb

cmp

ja

add

transx: ret

transit endp

byte ptr char,'A'

transx

byte ptr char,'Z'

transx

byte ptr char,'a'-'A'

_TEXT ends

—DATA segment word public 'DATA'

char db 0 ; temporary storage for input character

-DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main

Figure 14-5. Continued.

; defines program entry point

/*

LC: a simple character-oriented filter to translate

all uppercase {A-Z} to lowercase {a-z} characters.

Usage: LC [< source] [> destination]

Figure 14-6. C source codefor the LCfilter (file LC. C). (more)

438 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

Ray Duncan, June 1987

*/

#include <stdio.h>

main(argc,argv)

int argc;

char *argv[];

{ char ch;

/* read a character */

while ((ch=getchar0) != EOF)

{ ch=translate(ch); /* perform any necessary

character translation */

putchar(ch); /* then write character */

}

exit(O); /* terminate at end of file */

}

/*

*/

Translate characters A-Z to lowercase equivalents

int translate(ch)

char ch;

{ if (ch >= *A' && ch <= 'Z') ch += 'a'-*A';

return (ch);

}

Figure 14-6. Continued.

As another example, Figure 14-7 contains the C source code for a line-oriented filter called
FIND. This simple filter is invoked with a command line in the form

FIND ̂^patterri^ < source > destination

FIND searches the input stream for lines containing the pattern specified in the command
line. The line number and text of any line containing a match is sent to standard output,
with any tabs expanded to eight-column tab stops.

/*

FIND.C Searches text stream for a string.

Usage: FIND "pattern" [< source] [> destination]

by Ray Duncan, June 1987

*/

#include <stdio.h>

Figure 14- 7. C source codefor a new FIND filter (file FIND. C). (more)

Section II: Programming in the MS-DOS Environment 439

Part C: Customizing MS-DOS

#define TAB

#define BLANK

'\x09'

•\x20'

#define TAB_WIDTH 8

static char input[256];

static char output[256];

static char pattern[256];

main(argc,argv)

int argc;

char *argv[];

{ int line=0;

if (argc < 2)

puts("find: missing pattern.")

/* ASCII tab character C^I) */

/* ASCII space character */

/* columns per tab stop */

/* buffer for line from input */

/* buffer for line to output */

/* buffer for search pattern */

/* initialize line variable */

/* was search pattern supplied? */

exit(1); /* abort if not */

}

/*

*/

strcpy(pattern,argv[1]);

strupr(pattern);

while(gets(input) != NULL)

/* save copy of string to find */

/* fold it to uppercase */

/* read a line from input */

/* count lines */

/* save copy of input string */

/* fold input to uppercase */

/* if line contains pattern */

if(strstr(input,pattern))

/* write it to standard output */

writeline(line,output);

/* terminate at end of file */

{ line++;

strcpy(output,input)

strupr(input);

}

exit (0);

WRITELINE: Write line number and text to standard output,

expanding any tab characters to stops defined by TAB_WIDTH.

writeline(line,p)

int line;

char *p;

{ int i=0;

int col=0;

printf("\n%4d: ",line);

while(p[i]!=NULL)

{ if(p[i]==TAB)

/* index to original line text */

/* actual output column counter */

/* write line number */

/* while end of line not reached */

/* if current char = tab, expand it */

{ do putchar(BLANK);

while((++col % TAB_WIDTH) 0);

else /* otherwise just send character */

{ putchar(p[i]);

col++; /* count columns */

Figure 14-7. Continued. (more)

440 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

i++; /* advance through output line */

}

}

Figure 14-7. Continued.

This sample FIND filter differs from the FIND filter supplied by Microsoft with MS-DOS in
several respects. It is not case sensitive, so the pattern "foobar" will match "FOOBAR",
"FooBar", and so forth. Second, this filter supports no switches; these are left as an ex
ercise for the reader. Third, unlike the Microsoft version of FIND, this program always
reads from standard input; it is not able to open its own files.

Using a Filter as a Child Process

Instead of incorporating all the code necessary to do the job itself, an application program
can load and execute a filter as a child process to carry out a specific task. Before the child
filter is loaded, the parent must arrange for the standard input and standard output handles
that will be inherited by the child to be attached to the files or character devices that will
supply the filter's input and receive its output. This redirection is accomplished with the
following steps using Interrupt 21H functions:

1. The parent process uses Function 45H (Duplicate File Handle) to create duplicates of
its standard input and standard output handles and then saves the duplicates.

2. The parent opens (with Function 3DH) or creates (with Function 3CH) the files or
devices that the child process will use for input and output.

3. The parent uses Function 46H (Force Duplicate File Handle) to force its own standard
device handles to track the new file or device handles acquired in step 2.

4. The parent uses Function 4B00H (Load and Execute Program [EXEC]) to load and
execute the child process. The child inherits the redirected standard input and stan
dard output handles and uses them to do its work. The parent regains control after
the child filter terminates.

5. The parent uses the duplicate handles created in step 1, together with Function 46H
(Force Duplicate File Handle), to restore its own standard input and standard output
handles to their original meanings.

6. The parent closes (with Function 3EH) the duplicate handles created in step 1,
because they are no longer needed.

It might seem as though the parent process could just as easily close its own standard input
and standard output (handles 0 and 1), open the input and output files needed by the child,
load and execute the child, close the files upon regaining control, and then reopen the
CON device twice. Because the open operation always assigns the first free handle, this
approach would have the desired effect as far as the child process is concerned. However,
it would throw away any redirection that had been established for the parent process by its
parent. Thus, the need to preserve any preexisting redirection of the parent's standard

Section II: Programming in the MS-DOS Environment 441

Part C: Customizing MS-DOS

input and standard output, along with the desire to preserve the parent's usual output
channel for informational messages right up to the actual point of the EXEC call, is the
reason for the elaborate procedure outlined above in steps 1 through 6.

The program EXECSORT.ASM in Figure 14-8 demonstrates this redirection of input and
output for a filter run as a child process. The parent, which is called EXECSORT, saves
duplicates of its current standard input and standard output handles and then redirects
those handles respectively to the files MYFILE.DAT (which it opens) and MYFILE.SRT
(which it creates). EXECSORT then uses Interrupt 21H Function 4BH (EXEC) to run the
SORT.EXE filter that is supplied with MS-DOS (this file must be in the current drive and
directory for the demonstration to work correctly).

name execsort

title 'EXECSORT —

.sail

- demonstrate EXEC of filter'

EXECSORT.ASM demonstration of use of EXEC to run the SORT

filter as a child process, redirecting its input and output.

This program requires the files SORT.EXE and MYFILE.DAT in

the current drive and directory.

Ray Duncan, June 1987

stdin equ

stdout equ

stderr equ

standard input

standard output

standard error

stksize equ 128 size of stack

cr

If

equ

equ

Odh

Oah

ASCII carriage return

ASCII linefeed

^err

notset:

macro

local

jnc

jmp

endm

target

notset

notset

target

Macro to test carry flag

and jump if flag set.

Uses JMP DISP16 to avoid

branch out of range errors

DGROUP group _DATA,_STACK 'automatic data group'

(more)

Figure 14-8. Assembly-language source code demonstrating use of afilter as a childprocess. This code redi
rects the standard input and standard output handles tofiles, invokes the EXECfunction (Interrupt 21H Func
tion 4BH) to run the SORT.EXE program, and then restores the original meaning of the standard input and
standard output handles (file EXECSORT.ASM).

442 The MS-DOS Encyclopedia

Article 14; Writing MS-DOS Filters

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:DGROUP,ss:-STACK

stk—seg dw

stk—ptr dw

original SS contents

original SP contents

proc far

mov ax,DGROUP

mov ds,ax

mov ax,es

mov bx,ss

sub bx,ax

add bx,stksize/16

mov ah,4ah

int 21h

jerr maini

mov bx,stdin

mov ah,45h

int 21h

jerr maini

mov oldin,ax

mov dx,offset DGROUP:infile

mov ax,3d00h

int 21h

jerr maini

mov bx,ax

mov cx,stdin

mov ah,46h

int 21h

jerr maini

mov bx,stdout

mov ah,45h

int 21h

jerr maini

mov oldout,ax

entry point from MS-DOS

set DS = our data segment

now give back extra memory so

child SORT has somewhere to run.

let AX = segment of PSP base

and BX = segment of stack base

reserve seg stack - seg psp

plus paragraphs of stack

fxn 4AH = modify memory block

transfer to MS-DOS

jump if resize block failed

prepare stdin and stdout

handles for child SORT process

dup the handle for stdin

transfer to MS-DOS

jump if dup failed

save dup'd handle

now open the input file

mode = read-only

transfer to MS-DOS

jump if open failed

force stdin handle to

track the input file handle

transfer to MS-DOS

jump if force dup failed

dup the handle for stdout

transfer to MS-DOS

jump if dup failed

save dup'd handle

mov dx,offset dGROUPtoutfile ; now create the output file

Figure 14-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 443

Part C: Customizing MS-DOS

mov

mov

int

jerr

cx, 0

ah,3ch

21h

maini

normal attribute

transfer to MS-DOS

jump if create failed

mov

mov

mov

int

jerr

bx, ax

cx,stdout

ah,46h

21h

maini

force stdout handle to

track the output file handle

transfer to MS-DOS

jump if force dup failed

now EXEC the child SORT,

which will inherit redirected

stdin and stdout handles

push

mov

mov

ds

stk_seg,ss

stk_ptr,sp

save EXECSORT's data segment

save EXECSORT's stack pointer

mov ax,ds

mov es,ax

mov dx,offset DGROUP:cname

mov bx,offset DGROUP:pars

mov ax,4b00h

int. 21h

set ES = DS

DS:DX = child pathname

EX:BX = parameter block

function 4BH, subfunction OOH

transfer to MS-DOS

cli

mov

mov

sti

pop

ss,stk_seg

sp,stk_ptr

ds

(for bug in some early 8088s)

restore execsort's stack pointer

(for bug in some early 8088s)

restore DS = our data segment

jerr maini jump if EXEC failed

mov

mov

mov

int

jerr

bx,oldin

cx,stdin

ah,46h

21h

maini

restore original meaning of

standard input handle for

this process

jump if force dup failed

mov

mov

mov

int

jerr

mov

mov

int

bx,oldout

cx,stdout

ah,46h

21h

maini

bx,oldin

ah,3eh

21h

restore original meaning

of standard output handle

for this process

jump if force dup failed

close dup'd handle of

original stdin

transfer to MS-DOS

Figure 14-8. Continued. (more)

444 The MS-DOS Encyclopedia

Article 14: Writing MS-DOS Filters

]err maini jump if close failed

mov

mov

int

jerr

bx,oldout

ah,3eh

21h

mainl

close dup'd handle of

original stdout

transfer to MS-DOS

jump if close failed

mov

mov

mov

mov

int

jerr

dx,offset DGROUPrmsgl

cx,msg1_len

bx,stdout

ah,40h

21h

mainl

display success message

address of message

message length

handle for standard output

fxn 40H = write file or device

transfer to MS-DOS

mov

int

ax,4c00h

21h

no error, terminate program

with return code = 0

mainl :

-TEXT

mov

int

endp

ends

ax,4c01h

21h

error, terminate program

with return code = 1

end of main procedure

-DATA segment para public 'DATA'

infile db

outfile db

'MYFILE.DAT',0

'MYFILE.SRT',0

static & variable data segment

input file for SORT filter

output file for SORT filter

oldin dw

oldout dw

dup of old stdin handle

dup of old stdout handle

cname db

pars dw

dd

dd

dd

'SORT.EXE', 0

tail

-1

-1

tail db 0, or

pathname of child SORT process

segment of environment block

(0 = inherit parent's)

long address, command tail

long address, default FOB #1

(-1 = none supplied)

long address, default FOB #2

(-1 = none supplied)

empty command tail for child

msgl db cr,If,'SORT was executed as child.',cr,If

msg1_len equ $-msg1

—DATA ends

Figure 14-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 445

Part C: Customizing MS-DOS

—STACK segment para stack 'STACK'

db stksize dup (?)

—STACK ends

end main ; defines program entry point

Figure 14-8. Continued.

The MS-DOS SORT program reads the file MYFILE.DAT via its standard input handle, sorts
the file alphabetically, and writes the sorted data to MYFILE.SRT via its standard output
handle. When SORT terminates, MS-DOS closes SORT'S inherited handles for standard in

put and standard output, which forces an update of the directory entries for the associated
files. The program EXECSORT then resumes execution, restores its own standard input
and standard output handles (which are still open) to their original meanings, displays a
success message on standard output, and exits to MS-DOS.

Ray Duncan

446 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Article 15

Installable Device Drivers

The software that runs on modern computer systems is, by convention, organized into
layers with varied degrees of independence from the underlying computer hardware. The
purpose of this layering is threefold:

• To minimize the impact on programs of differences between hardware devices or
changes in the hardware.

• To allow the code for common operations to be centralized and optimized.
• To ease the task of moving programs and their data from one machine to another.

The top and most hardware-independent layer is usually the transient, or application,
program, which performs a specific job and deals with data in terms of files and records
within those files. Such programs are called transient because they are brought into RAM
for execution when needed and are discarded from memory when their job is finished.
Examples of such programs are Microsoft Word, various programming tools such as the
Microsoft Macro Assembler (MASM) and the Microsoft Object Linker (LINK), and even
some of the standard MS-DOS utility programs such as CHKDSK and FORMAT.

The middle layer is the operating-system kernel, which manages the allocation of system
resources such as memory and disk storage, provides a battery of services to application
programs, and implements disk directories and the other housekeeping details of disk
storage. The MS-DOS kernel is brought into memory from the file MSDOS.SYS (or
IBMDOS.COM with PC-DOS) when the system is turned on or restarted and remains fixed
in memory until the system is turned off. The system's default command processor,
COMMAND.COM, and system manager programs such as Microsoft Windows bridge the
categories of application program and operating system: Parts of them remain resident in
memory at all times, but they rely on the MS-DOS kernel for services such as file I/O. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Structure of ms-dos: Components

of MS-DOS.

The modules in the lowest layer are called device drivers. These drivers are the com
ponents of the operating system that manage the controller, or adapter, of a peripheral
device—a piece of hardware that the computer uses for such purposes as storage or com
municating with the outside world. Thus, device drivers are responsible for transferring
data between a peripheral device and the computer's RAM memory, where other pro
grams can work on it. Drivers shield the operating-system kernel from the need to deal
with hardware I/O port addresses, operating characteristics, and the peculiarities of a par
ticular peripheral device, just as the kernel, in turn, shields application programs from
the details of file management.

Section II: Programming in the MS-DOS Environment 447

Part C: Customizing MS-DOS

In MS-DOS versions 1.x, device drivers were integrated into the operating system and
could be extended or replaced only by patching the files that contained the operating sys
tem itself. Because every third-party peripheral manufacturer evolved a different method
of modifying these files to get its product to work, conflicts between products from differ
ent manufacturers were frequent and expansion of a PC with new disk drives and other
devices (especially fixed disks) was often a chancy proposition.

In MS-DOS versions 2.0 and later, there is a clean separation between device drivers and
the MS-DOS kernel. Device drivers have a straightforward structure and are interfaced to
the kernel through a simple and clearly defined scheme that consists of far calls, function
codes, and data packets. Given adequate information about the hardware, a programmer
can write a new device driver that follows this structure and interface for almost any con
ceivable peripheral device; such a driver can subsequently be installed and used without
any changes to the underlying operating system.

This article explains the anatomy, operation, and creation of drivers for MS-DOS versions
2.0 and later. Device drivers for versions 1.x are not discussed further here.

Resident and Installable Drivers

Every MS-DOS system contains built-in device drivers for the console (keyboard and video
display), the serial port, the parallel printer port, the real-time clock, and at least one disk
storage device (the system boot device). These drivers, known as the resident drivers, are
loaded as a set from the file lO.SYS (or IBMBIO.COM with PC-DOS) when the system is
turned on or restarted.

Drivers for additional peripheral devices occupy individual files on the disk. These drivers,
called installable drivers, are loaded and linked into the system during its initialization as
a result of DEVICE directives in the CONFIG.SYS file. See PROGRAMMING IN THE

MS-DOS ENVIRONMENT: Structure of ms-dos: Components of MS-DOS. Examples of
such drivers are the ANSI.SYS and RAMDISK.SYS files included with MS-DOS version 3.2.
In all other respects, installable drivers have the same structure and relationship to the
MS-DOS kernel as the resident drivers. All drivers in the system are chained together so
that MS-DOS can rapidly search the entire set to find a specific block or character device
when an I/O operation is requested.

Device drivers as a whole are categorized into two groups: block-device drivers and
character-device drivers. A driver's membership in one of these two groups determines
how the associated device is viewed by MS-DOS and what functions the driver itself must
support.

Character-device drivers

Character-device drivers control peripheral devices, such as a terminal or a printer, that
perform input and output one character (or byte) at a time. Each character-device driver

448 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

ordinarily supports a single hardware unit. The device has a one-character to eight-
character logical name that can be used by an application program to "open" the device
for input or output as though it were a file. The logical name is strictly a means of identify
ing the driver to MS-DOS and has no physical equivalent on the device (unlike a volume
label for block devices).

The three resident character-device drivers for the console, serial port, and printer carry
the logical device names CON, AUX, and PRN, respectively. These three drivers receive
special treatment by MS-DOS that allows application programs to address the associated
devices in three different ways:

• They can be opened by name for input and output (like any other character device).
• They are supported by special-purpose MS-DOS function calls (Interrupt 21H Func

tions Ol-OCH).

• They are assigned to default handles (standard input, standard output, standard error,
standard auxiliary, and standard list) that need not be opened to be used.

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos:

Character Device Input and Output.

Other character devices can be supported by simply installing additional character-device
drivers. The only significant restriction on the total number of devices that can be sup
ported, other than the memory required to hold the drivers, is that each driver must have a
unique logical name. When MS-DOS receives an open request for a character device, it
searches the chain of device drivers in order from the last driver loaded to the first. Thus, if
more than one driver uses the same logical name, the last driver to be loaded supersedes
any others and receives all I/O requests addressed to that logical name. This behavior can
be used to advantage in some situations. For example, it allows the more powerful
ANSI.SYS display driver to supersede the system's default console driver, which does not
support cursor positioning and character attributes.

The MS-DOS kernel's buffering and filtering of the characters that pass between it and
a character-device driver are affected by whether MS-DOS regards the device to be in
cooked mode or raw mode. During cooked mode input, MS-DOS requests characters one
at a time from the driver and places them in its own internal buffer, echoing each character
to the screen (if the input device is the keyboard) and checking each character for a
Control-C (03H) or a Return (ODH). When either the number of characters requested by
the application program has been received or a Return is detected, the input is terminated
and the data is copied from MS-DOS's internal buffer into the requesting program's buffer.
When a Control-C is detected, MS-DOS aborts the input operation and transfers to the rou
tine whose address is stored in the Interrupt 23H (Control-C Handler Address) vector. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: Customizing ms-dos: Exception Han
dlers. Similarly, during output in cooked mode, MS-DOS checks between each character
for a Control-C pending at the keyboard and aborts the output operation if one is detected.

Section II: Programming in the MS-DOS Environment 449

Part C: Customizing MS-DOS

In raw mode, the exact number of bytes requested by the application program is read or
written, without regard to any control characters such as Return or Control-C. MS-DOS
passes the entire I/O request to the driver in a single operation, instead of breaking the
request into single-character reads or writes, and the characters are transferred directly to
or from the requesting program's buffer.

The mode for a specific device can be queried by an application program with the lOCTL
Get Device Data function (Interrupt 21H Function 44H Subfunction OOH); the mode can be
selected with the Set Device Data function (Interrupt 21H Function 44H Subfunction OIH).
See SYSTEM CALLS: Interrupt 21h: Function 44H. The driver itself is not usually aware
of its mode and the mode does not affect its operation.

Block-Device Drivers

Block-device drivers control peripheral devices that transfer data in chunks rather than 1
byte at a time. Block devices are usually randomly addressable devices such as floppy- or
fixed-disk drives, but they can also be sequential devices such as magnetic-tape drives. A
block driver can support more than one physical unit and can also map two or more logical
units onto a single physical unit, as with a partitioned fixed disk.

MS-DOS assigns single-letter drive identifiers (A, B, and so forth) to block devices, instead
of logical names. The first letter assigned to a block-device driver is determined solely by
the driver's position in the chain of all drivers—that is, by the number of units supported
by the block drivers loaded before it; the total number of letters assigned to the driver is
determined by the number of logical drive units the driver supports.

MS-DOS does not associate a mode (cooked or raw) with block-device drivers. A block-

device driver always reads or writes exactly the number of sectors requested (barring hard
ware or addressing errors) and never filters or otherwise manipulates the contents of the
blocks being transferred.

structure of an MS-DOS Device Driver

A device driver has three major components (Figure 15-1):

• The device header

• The Strategy routine CStraf)
• The Interrupt routine (/n/r)

The device header

The device header (Figure 15-2) always lies at the beginning of the driver. It contains a link
to the next driver in the chain, a word (l6 bits) of device attribute flags, offsets to the exe
cutable Strategy and Interrupt routines for the device, and the logical device name if it is a
character device such as PRN or COMl or the number of logical units if it is a block device.

450 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Initialization

Media Check

Build BPB

lOCTL Read and Write

Status

Read

Write, WriteA^erify
Interrupt routine Output Until Busy

Flush Buffers

Device Open

Device Close

Check if Removable

Generic lOCTL

Get/Set Logical Device

Strategy routine

Device-driver header

Figure 15-1. General structure of an MS-DOS installable device driver.

Offset
OOH

02H

04H

06H

08H

OAH

12H

Link to next driver, offset

Link to next driver, segment

Device attribute word

Offset, Strategy entry point

Offset, Interrupt entry point

Logical name (8 bytes) if character device
or

Number of units (1 byte) followed by
7 bytes of reserved space if block device

Figure 15-2. Device header. The offsets to the Strat andlnir routines are offsets from the same segment used to
point to the device header.

The device attribute flags word (Table 15-1) defines whether a driver controls a character
or a block device, which of the optional subfunctions added in MS-DOS versions 3.0 and
3.2 are supported by the driver, and, in the case of block drivers, whether the driver sup
ports IBM-compatible disk media. The least significant 4 bits of the device attribute flags
word control whether MS-DOS should use the driver as the standard input, standard out
put, clock, or NUL device; each of these 4 bits should be set on only one driver in the
system at a time.

Section II: Programming in the MS-DOS Environment 451

Part C: Customizing MS-DOS

Table 15-1. Device Attribute Word in Device Header.

Bit Setting

15 * 1 if character device, 0 if block device
14* 1 if lOCTL Read and Write supported

13 * 1 if non-IBM format (block device)
1 if Output Until Busy supported (character device)

12 0 (reserved)

11* 1 if Open/Close/Removable Media supported (versions 3.0 and later)
10 0 (reserved)

9 0 (reserved)

8 0 (reserved)

7 0 (reserved)

6* 1 if Generic lOCTL and Get/Set Logical Drive supported (version 3.2)
5 0 (reserved)

4 1 if special fast output function for CON device supported
3 1 if current CLOCK device

2 1 if current NUL device

1 1 if current standard output istdout)
0 1 if current standard input istdiri)

* Only bits 6,11, and 13-15 have significance on block devices; the remainder should be zero.

The information in the device header is ordinarily used only by the MS-DOS kernel and
is not available to application programs. However, the lOCTL subfunctions Get and Set
Device Data (Interrupt 21H Function 44H Subfunctions OOH and OIH) can be used to in
spect or modify some of the bits in the device attribute flags word. Note that there is not a
one-to-one correspondence between the bits defined for those functions and the bits in
the device header. For example, in the device information word used by the lOCTL sub-
functions, bit 7 indicates a block or character device; in the device attribute word of the
device header, bit 15 indicates a block or character device.

The strategy routine (Strati

MS-DOS calls the driver's Strategy routine as the first step of any operation, passing it the
segment and offset of a data structure called a request header in registers ES:BX. The Strat
egy routine saves this pointer for subsequent processing by the Interrupt routine and
returns to MS-DOS.

A request header is essentially a small buffer used for private communication between
MS-DOS and the device driver. Both MS-DOS and the device driver read and write infor

mation in the request header.

The first 13 bytes of a request header are the same for all device-driver functions and are
therefore referred to as the static portion of the header. The number and contents of the
subsequent bytes vary according to the type of operation being requested by the MS-DOS

452 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

kernel (Figure 15-3). The request header's most important component is the command
code passed in its third byte; this code selects a driver function such as Read or Write.
Other information passed to the driver in the request header includes unit numbers,
transfer addresses, and sector or byte counts.

OOH

OIH

02H

03H

Static portion
of request header05H

ODH

OEH

lOH

Variable portion

12H

14H

Command code (driver subfunction)

Segment of data to be transferred

Offset of data to be transferred

Block-device unit number

Starting sector number

Byte/sector count

Returned status

Media ID byte

Reserved

Request header length

Figure 15-3- A typical driver request header. The bytesfollowing the static portion are theformat usedfor
driver Read, Write, Write with Verify, lOCTLRead, andlOCTL Write operations.

The Interrupt routine (/iitr)

The last and most complex part of a device driver is the Interrupt routine, which is called
by MS-DOS immediately after the call to the Strategy routine. The bulk of the Interrupt
routine is a collection of functions or subroutines, sometimes called command-code rou

tines, that carry out each of the various operations the MS-DOS kernel requires a driver to
support.

When the Interrupt routine receives control from MS-DOS, it saves any affected registers,
examines the request header whose address was previously passed in the call to the Strat
egy routine, determines which command-code routine is needed, and branches to the
appropriate function. When the operation is completed, the Interrupt routine stores the
status (Table 15-2), error (Table 15-3), and any other applicable information into the re
quest header, restores the previous contents of the affected registers, and returns to the
MS-DOS kernel.

Section II: Programming in the MS-DOS Environment 453

Part C: Customizing MS-DOS

Table 15-2. The Request Header Status Word.

Bits Meaning

15 Error

12-14 Reserved

9 Busy
8 Done

0-7 Error code if bit 15 = 1

Table 15-3. Device-Driver Error Codes.*

Code Meaning

OGH Write-protect violation
OIH Unknown unit

02H Drive not ready
03H Unknown command

04H CRC error

05H Bad drive request structure length
06H Seek error

07H Unknown media

08H Sector not found

09H Printer out of paper
OAH Write fault

OBH Read fault

OGH General failure

ODH Reserved

GEH Reserved

GFH Invalid disk change (versions 3.x)

• Returned in bits 0 -7 of the request header status word.

The Interrupt routine's name is misleading in that it is never entered asynchronously as a
hardware interrupt. The division of function between the Strategy and Interrupt routines is
present for symmetry with UNIX/XENIX and MS OS/2 drivers but is essentially meaning
less in single-tasking MS-DOS because there is never more than one I/O request in
progress at a time.

The command-code functions

A total of twenty command codes are defined for MS-DOS device drivers. The command
codes and the names of their associated Interrupt routines are shown in the following list:

454 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Code Routine

0 Init (initialization)

1 Media Check (block devices only)
2 Build BIOS Parameter Block (block devices only)
3 lOCTLRead

4 Read (Input)
5 Nondestructive Read (character devices only)
6 Input Status (character devices only)
7 Flush Input Buffers (character devices only)
8 Write (Output)
9 Write with Verify
10 Output Status (character devices only)
11 Flush Output Buffers (character devices only)
12 lOCTL Write

13* Device Open
14* Device Close

15 * Removable Media (block devices only)
16 * Output Until Busy (character devices only)
191 Generic lOCTL Request
231 Get Logical Device (block devices only)
24t Set Logical Device (block devices only)

* MS-DOS versions 3.0 and later

t MS-DOS version 3.2

Functions 0 through 12 must be supported by a driver's Interrupt section under all versions
of MS-DOS. Drivers tailored for versions 3.0 and 3.1 can optionally support an additional 4
functions defined under those versions of the operating system and drivers designed for
version 3.2 can support 3 more, for a total of 20. MS-DOS inspects the bits in the device at
tribute word of the device header to determine which of the optional version 3.x functions
a driver supports, if any.

As noted in the list above, some of the functions are relevant only for character drivers,
some only for block drivers, and some for both. In any case, there must be an executable
routine present for each function, even if the routine does nothing but set the done flag in
the status word of the request header. The general requirements for each function routine
are described below.

The Init function

The Init (initialization) function (command code 0) for a driver is called only once, when
the driver is loaded (Figure 15-4). Init is responsible for checking that the hardware device
controlled by the driver is present and functional, performing any necessary hardware in
itialization (such as a reset on a printer or a seek to the home track on a disk device), and
capturing any interrupt vectors that the driver will need later.

Section II: Programming in the MS-DOS Environment 455

Part C: Customizing MS-DOS

The Init function is passed a pointer in the request header to the text of the DEVICE line
in CONFIG.SYS that caused the driver to be loaded—specifically, the address of the next
byte after the equal sign (=). The line is read-only and is terminated by a linefeed or
carriage-return character; it can be scanned by the driver for switches or other parameters
that might influence the driver's operation. (Alphabetic characters in the line are folded to
uppercase.) With versions 3.0 and later, block drivers are also passed the drive number
that will be assigned to their first unit (0 = A, 1 = B, and so on).

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

16H

Request header length

Command code

Reserved

Offset of CONHG.SYS

line loading driver t

Segment of CONFIG.SYS
line loading driver t

First unit number *t

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

16H

Status

Reserved

Units supported*

Offset of free memory
above driver

Segment of free memory
above driver

Offset of

BPB pointer array*

Segment of
BPB pointer array*

* Block-device drivers only
t Points to the character after DEVICE=

t MS-DOS 3.0 and later only

Figure 15-4. Initialization request header (command code 0).

When it returns to the kernel, the Init function must set the done flag in the status word
of the request header and return the address of the start of free memory after the driver
(sometimes called the break address). This address tells the kernel where it can build cer
tain control structures of its own associated with the driver and then load the next driver.

The Init routine of a block-device driver must also return the number of logical units
supported by the driver and the address of a BPB pointer array.

The number of units returned by a block driver is used to assign device identifiers. For
example, if at the time the driver is loaded there are already drivers present for four block
devices (drive codes 0-3, corresponding to drive identifiers A through D) and the driver
being initialized supports four units, it will be assigned the drive numbers 4 through 7

456 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

(corresponding to the drive names E through H). (Although there is also a field in the
device header for the number of units, it is not inspected by MS-DOS; rather, it is set by
MS-DOS from the information returned by the Init function.)

The BPB pointer array is an array of word offsets to BIOS parameter blocks. See The Build
BIOS Parameter Block Function below; PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Structure of ms-dos: MS-DOS Storage Devices. The array must contain one entry
for each unit defined by the driver, although all entries can point to the same BPB to con
serve memory. During the operating-system boot sequence, MS-DOS scans all the BPBs
defined by all the units in all the resident block-device drivers to determine the largest
sector size that exists on any device in the system; this information is used to set MS-DOS's
cache buffer size. Thus, the sector size in the BPB of any installable block driver must be
no larger than the largest sector size used by the resident block drivers.

If the Init routine finds that its hardware device is missing or defective, it can bypass the
installation of the driver completely by returning the following values in the request
header:

Item Value

Number of units 0

Address of free memory Segment and offset of the driver's own device header

A character-device driver must also clear bit 15 of the device attribute word in the device

header so that MS-DOS will load the next driver in the same location as the one that just
terminated itself.

The operating-system services that can be invoked by the Init routine are very limited.
Only MS-DOS Interrupt 21H Functions Ol-OCH (various character input and output ser
vices), 25H (Set Interrupt Vector), 30H (Get MS-DOS Version Number), and 35H (Get Inter
rupt Vector) can be called by the Init code. These functions assist the driver in configuring
itself for the version of the host operating system it is to run under, capturing vectors for
hardware interrupts, and displaying informational or error messages.

The amount of RAM required by a device driver can be reduced by positioning the Init
routine at the end of the driver and returning that routine's starting address as the location
of the first free memory.

The Media Check function

The Media Check function (command code 1) is used only in block-device drivers. It is
called by the MS-DOS kernel when there is a pending drive access call other than a simple
file read or write (for example, a file open, close, rename, or delete), passing the media ID
byte (Figure 15-5) for the disk that MS-DOS assumes is in the drive:

Section II: Programming in the MS-DOS Environment 457

Part C: Customizing MS-DOS

Description Medium

0F9H

OFCH

OFDH

OFEH

OFFH

0F9H

OFOH

0F8H

5.25-inch double-sided, 15 sectors
5.25-inch single-sided, 9 sectors
5.25-inch double-sided, 9 sectors

5.25-inch single-sided, 8 sectors
5.25-inch double-sided, 8 sectors
3.5-inch double-sided, 9 sectors
3.5-inch double-sided, 18 sectors
Fixed disk

The function returns a code indicating whether the medium has been changed since the
last transfer:

Code Meaning

-1 Medium changed
0 Don't know if medium changed
1 Medium not changed

OOH

OIH

02H

03H

05H

ODH

OEH

OFH

IIH

Driver called with

Request header length

Unit number

Command code

Reserved

Media ID byte

Driver returns

OOH

OIH

02H

03H

05H

ODH

OEH

OFH

IIH

Status

Reserved

Media change code

Offset of volume label

(if error OFH)*

Segment of volume label
(if error OFH)*

* MS-DOS 3.0 and later only

Figure 15-5. Media Check request header (command code 1).

458 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

If the Media Check routine asserts that the disk has not been changed, MS-DOS bypasses
rereading the FAT and proceeds with the disk access. If the returned code indicates that
the disk has been changed, MS-DOS invalidates all buffers associated with the drive,
including buffers containing data waiting to be written (this data is simply lost), performs
a Build BPB call, and then reads the disk's FAT and directory.

The action taken by MS-DOS when Don't know is returned depends on the state of its
internal buffers. If data that needs to be written out is present in the buffers associated with
the drive, MS-DOS assumes that no disk change has occurred. If the buffers are empty or
have all been previously flushed to the disk, MS-DOS assumes that the disk was changed
and proceeds as described above for the Medium changed return code.

If bit 11 of the device attribute word is set (that is, the driver supports the optional Open/
Close/Removable Media functions), the host system is MS-DOS version 3.0 or later, and
the function returns the Medium changed code (-1), the function must also return the
segment and offset of the ASCIIZ volume label for the previous disk in the drive. (If
the driver does not have the volume label, it can return a pointer to the ASCIIZ string
NO NAMEd If MS-DOS determines that the disk was changed with unwritten data still
present in the buffers, it issues a critical error OFH (Invalid Disk Change). Application
programs can trap this critical error and prompt the user to replace the original disk.

In character-device drivers, the Media Change function should simply set the done flag in
the status word of the request header and return.

The Build BIOS Parameter Block function

The Build BPB function (command code 2) is supported only on block devices. MS-DOS
calls this function when the Medium changed code has been returned by the Media
Check routine or when the Don 't know code has been returned and there are no dirty
buffers (buffers that have not yet been written to disk). Thus, a call to this function indi
cates that the disk has been legally changed.

The Build BPB call receives a pointer to a one-sector buffer in the request header (Figure
15-6). If the non-IBM-format bit (bit 13) in the device attribute word in the device header is
zero, the buffer contains the first sector of the disk's FAT, with the media ID byte in the first
byte of the buffer. In this case, the contents of the buffer should not be modified by the
driver. However, if the non-IBM-format bit is set, the buffer can be used by the driver as
scratch space.

The Build BPB function must return the segment and offset of a BIOS parameter block
(Table 15-4) for the disk format indicated by the media ID byte and set the done flag in the
status word of the request header. The information in the BPB is used by the kernel to
interpret the disk structure and is also used by the driver itself to translate logical sector
addresses into physical track, sector, and head addresses. If bit 11 of the device attribute
word is set (that is, the driver supports the optional Open/Close/Removable Media func
tions) and the host system is MS-DOS version 3.0 or later, this routine should also read the
volume label from the disk and save it.

Section II: Programming in the MS-DOS Environment 459

Part C; Customizing MS-DOS

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

Request header length

Unit number

Command code

Reserved

Media ID byte

Offset of FAT buffer

or scratch area

Segment of FAT buffer
or scratch area

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

Status

Reserved

Offset of BIOS

parameter block

Segment of BIOS

parameter block

Figure 15-6. Build BPS request header (command code 2).

Table 15-4. Format of a BIOS Parameter Block (BPB).

Bytes Contents

OO-OIH Bytes per sector

02H Sectors per allocation unit (must be power of 2)
03~04H Number of reserved sectors (starting at sector 0)
05H Number of file allocation tables (FATs)

06-07H Maximum number of root-directory entries
08-09H Total number of sectors in medium

OAH Media ID byte
OB-OCH Number of sectors occupied by a single FAT
OD-OEH Sectors per track (versions 3.0 and later)
OF- lOH Number of heads (versions 3.0 and later)

11 - 12H Number of hidden sectors (versions 3.0 and later)

13- 14H High-order word of number of hidden sectors (version 3.2)
15 - 18H If bytes 8-9 are zero, total number of sectors in medium (version 3.2)

In character-device drivers, the Build BPB function should simply set the done flag in the
status word of the request header and return.

460 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

The Read, Write, and Write with Verify functions
The Read (Input) function (command code 4) transfers data from the device into a speci
fied memory buffer. The Write (Output) function (command code 8) transfers data from a
specified memory buffer to the device. The Write with Verify function (command code 9)
works like the Write function but, if feasible, also performs a read-after-write verification
that the data was transferred correctly. The MS-DOS kernel calls the Write with Verify
ftmction, instead of the Write function, whenever the system's global verify flag has
been turned on with the VERIFY command or with Interrupt 21H Function 2EH (Set
Verify Flag).

All three of these driver functions are called by the MS-DOS kernel with the address and
length of the buffer for the data to be transferred. In the case of block-device drivers, the
kernel also passes the drive imit code, the starting logical sector number, and the mpHia
ID byte for the disk (Figure 15-7).

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

16H

18H

Request header length

Unit number*

Command code

Reserved

Media ID byte*

Offset of data

Segment of data

Bytes/sectors requested

Starting sector number*

OOH

OIH

02H

03H

05H

ODH

OEH

lOH

12H

14H

16H

18H

Status

Reserved

Bytes/sectors transferred

Offset of volume label

(if error OFH)* t

Segment of volume label

(if error OFH)* t

* Block-device drivers only
+ MS-DOS 3.0 and later, command codes 4, 8, and 9 only

Figure 15-7. The request header for lOCTL Read (command code 3X Read (command code 4), Write(com-
mand code 8), Write with Verify (command code 9), lOCTL Write (command code 12), and Output Until
Busy (command code 16).

Section II: Programming in the MS-DOS Environment 46l

Part C: Customizing MS-DOS

The Read and Write functions must perform the requested I/O, first translating each logical
sector number for a block device into a physical track, head, and sector with the aid of the
BIOS parameter block. Then the functions must return the number of bytes or sectors
actually transferred in the appropriate field of the request header and also set the done
flag in the request header status word. If an error is encountered during an operation, the
functions must set the done flag, the error flag, and the error type in the status word and
also report the number of bytes or sectors successfully transferred before the error; it is not
sufficient to simply report the error.

Under MS-DOS versions 3.0 and later, the Read and Write functions can optionally use the
reference count of open files maintained by the driver's Device Open and Device Close
functions, together with the media ID byte, to determine whether the medium has been
illegally changed. If the medium was changed with files open, the driver can return the
error code OFH and the segment and offset of the volume label for the correct disk so that
the user can be prompted to replace the disk.

The Nondestructive Read function

The Nondestructive Read function (command code 5) is supported only on character
devices. It allows MS-DOS to look ahead in the character stream by one character and is
used to check for Control-C characters pending at the keyboard.

The function is called by the kernel with no parameters other than the command code
itself (Figure 15-8). It must set the done bit in the status word of the request header and
also set the busy bit in the status word to reflect whether the device's input buffer is empty
(busy bit = 1) or contains at least one character (busy bit = 0). If the latter, the function must
also return the next character that would be obtained by a kernel call to the Read function,
without removing that character from the buffer (hence the term nondestructive).

In block-device drivers, the Nondestructive Read function should simply set the done flag
in the status word of the request header and return.

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

Request header length

Command code

Reserved

OOH

OIH

02H

03H

05H

ODH

Status

Reserved

Character

Figure 15-8. The Nondestructive Read request header.

462 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

The Input Status and Output Status functions
The Input Status and Output Status functions (command codes 6 and 10) are defined only
for character devices. They are called with no parameters in the request header other than
the command code itself and return their results in the busy bit of the request header
status word (Figure 15-9). These functions constitute the driver-level support for the ser
vices the MS-DOS kernel provides to application programs by means of Interrupt 21H
Function 44H Subfunctions 06H and 07H (Check Input Status and Check Output Status).

MS-DOS calls the Input Status function to determine whether there are characters waiting
in a type-ahead buffer. The function sets the done bit in the status word of the request
header and sets the busy bit to 0 if at least one character is already in the input buffer or to
1 if no characters are in the buffer and a read request would wait on a character from the
physical device. If the character device does not have a type-ahead buffer, the Input Status
routine should always return the busy bit set to 0 so that MS-DOS will not wait for some
thing to arrive in the buffer before calling the Read function.

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

Request header length

Command code

Reserved

OOH

OIH

02H

03H

05H

ODH

Status

Reserved

Figure 15-9. The request header for Input Status (command code 6), Flush Input Buffers (command code 7),
Output Status (command code 10), and Flush Output Buffers (command code 11).

MS-DOS uses the Output Status function to determine whether a write operation is
already in progress for the device. The function must set the done bit and the busy bit (0
if the device is idle and a write request would start immediately; 1 if a write is already in
progress and a new write request would be delayed) in the status word of the request
header.

In block-device drivers, the Input Status and Output Status functions should simply set the
done flag in the status word of the request header and return.

The Flush Input Buffer and Flush Output Buffer functions
The Flush Input Buffer and Flush Output Buffer functions (command codes 7 and 11) are
defined only for character devices. They simply terminate any read (for Flush Input) or
write (for Flush Output) operations that are in progress and empty the associated buffer.
The Flush Input Buffer function is used by MS-DOS to discard characters waiting in the
type-ahead queue. This driver action corresponds to the MS-DOS service provided to
application programs by means of Interrupt 21H Function OCH (Flush Buffer, Read
Keyboard).

Section II: Programming in the MS-DOS Environment 463

Part C: Customizing MS-DOS

These functions are called with no parameters in the request header other than the
command code itself Csee Figure 15-9) and return only the status word.

In block-device drivers, the Flush Buffer functions have no meaning. They should simply
set the done flag in the status word of the request header and return.

The lOCTL Read and lOCTL Write functions

The lOCTL (I/O Control) Read and lOCTL Write functions (command codes 3 and 12)

allow control information to be passed directly between a device driver and an application
program. The lOCTL Read and Write driver functions are called by the MS-DOS kernel
only if the lOCTL flag (bit 14) is set in the device attribute word of the device header.

The MS-DOS kernel passes the address and length of the buffer that contains or will
receive the lOCTL information (,see Figure 15-7). The driver must return the actual count
of bytes transferred and set the done flag in the request header status word. Any error
code returned by the driver is ignored by the kernel.

lOCTL Read and lOCTL Write operations are typically used to configure a driver or device
or to report driver or device status and do not usually result in the transfer of data to or
from the physical device. These functions constitute the driver support for the services
provided to application programs by the MS-DOS kernel through Interrupt 21H Function
44H Subfunctions 02H, 03H, 04H, and 05H (Receive Control Data from Character Device,
Send Control Data to Character Device, Receive Control Data from Block Device, and Send
Control Data to Block Device).

The Device Open and Device Close functions
The Device Open and Device Close functions (command codes 13 and 14) are supported
only in MS-DOS versions 3.0 and later and are called only if the open/close/removable
media flag (bit 11) is set in the device attribute word of the device header. The Device
Open and Device Close functions have no parameters in the request header other than the
unit code for block devices and return nothing except the done flag and, if applicable, the
error flag and number in the request header status word (Figure 15-10).

Driver called with

OOH

OIH

02H

03H

05H

ODH

Request header length

Unit number*

Command code

Reserved

* Block-device drivers only

Driver returns

OOH

OIH

02H

03H

05H

ODH

Status

Reserved

Figure 15-10. The request header for Device Open (command code 13), Device Close (command code 14), and
Removable Media (command code 15).

464 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Each Interrupt 21H request by an application to open or create a file or to open a character
device for input or output results in a Device Open call by the kernel to the corresponding
device driver. Similarly, each Interrupt 21H call by an application to close a file or device
results in a Device Close call by the kernel to the appropriate device driver. These Device
Open and Device Close calls are in addition to any directory read or write calls that may
be necessary.

On block devices, the Device Open and Device Close functions can be used to manage
local buffering and to maintain a reference count of the number of open files on a device.
Whenever this reference count is decremented to zero, all files on the disk have been
closed and the driver should flush any internal buffers so that data is not lost, as the user
may be about to change disks. The reference count can also be used together with the
media ID byte by the Read and Write functions to determine whether the disk has been
changed while files are still open.

The reference count should be forced to zero when a Media Check call that returns the

Medium changed code is followed by a Build BPB call, to provide for those programs
that use FCBs to open files and then never close them. This problem does not arise with
programs that use the handle functions for file management, because all handles are
always closed automatically by MS-DOS on behalf of the program when it terminates.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: File

and Record Management.

On character devices, the Device Open and Device Close functions can be used to send
hardware-dependent initialization and post-I/O strings to the associated device (for exam
ple, a reset sequence or formfeed character to precede new output and a formfeed to fol
low it). Although these strings can be written directly by an application using ordinary
write function calls, they can also be previously passed to the driver by application pro
grams with lOCTL Write calls (Interrupt 21H Function 44H Subfunction 05H), which in
turn are translated by the MS-DOS kernel into driver command code 12 (lOCTL Write)
requests. The latter method makes the driver responsible for sending the proper control
strings to the device each time a Device Open or Device Close is executed, but this
method can be used only with drivers specifically written to support it.

The Removable Media function

The Removable Media function (command code 15) is defined only for block devices. It
is supported in MS-DOS versions 3.0 and later and is called by MS-DOS only if the open/
close/removable media flag (bit 11) is set in the device attribute word of the device header.
This function constitutes the driver-level support for the service provided to application
programs by MS-DOS by means of Interrupt 21H Function 44H Subfunction 08H (Check If
Block Device Is Removable).

The only parameter for the Removable Media function is the unit code isee Figure 15-10).
The function sets the done bit in the request header status word and sets the busy bit to 1 if
the disk is not removable or to 0 if the disk is removable. This information can be used by
MS-DOS to optimize its accesses to the disk and to eliminate unnecessary FAT and direc
tory reads.

Section II: Programming in the MS-DOS Environment 465

Part C: Customizing MS-DOS

In character-device drivers, the Removable Media function should simply set the done flag
in the status word of the request header and return.

The Output Until Busy function
The Output Until Busy Unction (command code l6) is defined only for character devices
under MS-DOS versions 3.0 and later and is called by the MS-DOS kernel only if the corre
sponding flag (bit 13) is set in the device attribute word of the device header. This function
is an optional driver-optimization function included specifically for the benefit of back
ground print spoolers driving printers that have internal memory buffers. Such printers can
accept data at a rapid rate until the buffer is full.

The Output Until Busy function is called with the address and length of the data to be
written to the device {.see Figure 15-7). It transfers data continuously to the device until the
device indicates that it is busy or until the data is exhausted. The function then must set the
done flag in the request header status word and return the actual number of bytes trans
ferred in the appropriate field of the request header.

For this function to return a count of bytes transferred that is less than the number of bytes
requested is not an error. MS-DOS will adjust the address and length of the data passed in
the next Output Until Busy function request so that all characters are sent.

In block-device drivers, the Output Until Busy function should simply set the done flag in
the status word of the request header and return.

The Generic lOCTL function

The Generic lOCTL function (command code 19) is defined under MS-DOS version 3.2

and is called only if the 3.2-functions-supported flag (bit 6) is set in the device attribute
word of the device header. This driver function corresponds to the MS-DOS generic lOCTL
service supplied to application programs by means of Interrupt 21H Function 44H Sub-
functions OCH (Generic I/O Control for Handles) and ODH (Generic I/O Control for Block

Devices).

In addition to the usual information in the static portion of the request header, the Generic
lOCTL function is passed a category (major) code, a function (minor) code, the contents
of the SI and DI registers at the point of the lOCTL call, and the segment and offset of a
data buffer (Figure 15-11). This buffer in turn contains other information whose format
depends on the major and minor lOCTL codes passed in the request header. The driver
must interpret the major and minor codes in the request header and the contents of the ad
ditional buffer to determine which operation it will carry out and then set the done flag in
the request header status word and return any other applicable information in the request
header or the data buffer.

Services that can be invoked by the Generic lOCTL function, if the driver supports them,
include configuring the driver for nonstandard disk formats, reading and writing entire
disk tracks of data, and formatting and verifying tracks. The Generic lOCTL function has
been designed to be open-ended so that it can be used to easily extend the device driver
definition in future versions of MS-DOS.

466 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

OEH

OFH

IIH

13H

15H

Request header length

Unit number*

Command code

Reserved

Category (major) code

Function (minor) code

SI register contents

DI register contents

Offset of generic
lOCTL data packet

Segment of generic

lOCTL data packet

OOH

OIH

02H

03H

05H

ODH

OEH

OFH

IIH

13H

15H

Status

Reserved

* Block-device drivers only

Figure 15-11. Generic lOCTL request header.

The Get Logical Device and Set Logical Device functions
The Get and Set Logical Device functions (command codes 23 and 24) are defined only for
block devices under MS-DOS version 3.2 and are called only if the 3.2-functions-supported
flag (bit 6) is set in the device attribute word of the device header. They correspond to the
Get and Set Logical Drive Map services supplied by MS-DOS to application programs by
means of Interrupt 21H Function 44H Subfunctions OEH and OFH.

The (jet and Set Logical Device functions are called with a drive unit number in the
request header (Figure 15-12). Both functions return a status word for the operation in the
request header; the Get Logical Device function also returns a unit number.

The Get Logical Device function is called to determine whether more than one drive letter
is assigned to the same physical device. It returns a code for the last drive letter used to ref
erence the device (1 = A, 2 = B, and so on); if only one drive letter is assigned to the device,
the returned unit code should be 0.

The Set Logical Device function is called to inform the driver of the next logical drive iden
tifier that will be used to reference the device. The unit code passed by the MS-DOS kernel
in this case is zero based relative to the logical drives supported by this particular driver.
For example, if the driver supports two logical floppy-disk-drive units (A and B), only one
physical disk drive exists in the system, and Set Logical Device is called with a unit number
of 1, the driver is being informed that the next read or write request from the MS-DOS
kernel will be directed to drive B.

Section II: Programming in the MS-DOS Environment 467

Part C: Customizing MS-DOS

Driver called with Driver returns

OOH

OIH

02H

03H

05H

ODH

Request header length

Unit number

Command code

Reserved

OOH

OIH

02H

03H

05H

ODH

Last device referenced*

Status

Reserved

* Get Logical Device (Command code 23) only

Figure 15-12. Get Logical Device and Set Logical Device request header.

In character-device drivers, the Get Logical Device and Set Logical Device functions should
simply set the done flag in the status word of the request header and return.

The Processing of a Typical I/O Request

An application program requests an I/O operation from MS-DOS by loading registers with
the appropriate values and addresses and executing a software Interrupt 21H. MS-DOS
inspects its internal tables, searches the chain of device headers if necessary, and deter
mines which device driver should receive the I/O request.

MS-DOS then creates a request header data packet in a reserved area of memory. Disk I/O
requests are transformed from file and record information into logical sector requests by
MS-DOS's interpretation of the disk directory and file allocation table. (MS-DOS locates
these disk structures using the information returned by the driver from a previous Build
BPB call and issues additional driver read requests, if necessary, to bring their sectors into
memory.)

After the request header is prepared, MS-DOS calls the device driver's Strategy entry point,
passing the address of the request header in registers ES:BX. The Strategy routine saves the
address of the request header and performs a far return to MS-DOS.

MS-DOS then immediately calls the device driver's Interrupt entry point. The Interrupt
routine saves all registers, retrieves the address of the request header that was saved by the
Strategy routine, extracts the command code, and branches to the appropriate function to
perform the operation requested by MS-DOS. When the requested function is complete,
the Interrupt routine sets the done flag in the status word and places any other required
information into the request header, restores all registers to their state at entry, and per
forms a far return.

468 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Application program

Interrupt 21H Function 3FH,
Read File or Device

i

r

<

Read status returned

in carry flag and AX register

MS-DOS kemel

Calls to driver Strategy, then

Interrupt routine, passing
request header with conunand

code 4, Read (Input)
>

i

Status retumed to MS-DOS

kemel in request header;
data placed in buffer

indicated by kemel

Device driver

Device commands issued to

adapter I/O ports, requesting

read sector at physical track,
head, and sector number

t

f

Data transferred from

device to memory

Physical device

Figure 15-13. The processing ofa typical I/O request from an application program.

MS-DOS translates the driver's returned status into the appropriate carry flag status,
register values, and (possibly) error code for the MS-DOS Interrupt 21H function that was
requested and returns control to the application program. Figure 15-13 sketches this entire
flow of control and data.

Note that a single Interrupt 21H function request by an application progrto can result in
many operation requests by MS-DOS to the device driver. For example, if the application
invokes Interrupt 21H Function 3DH (Open File with Handle) to open a file, MS-DOS may
have to issue multiple sector read requests to the driver while searching the directory for
the filename. Similarly, an application program's request to write a string to the screen in
cooked mode with Interrupt 21H Function 40H (Write File or Device) will result in a write
request to the driver for each character in the string, because MS-DOS filters the characters
and polls the keyboard for a pending Control-C between each character output.

Writing Device Drivers

Device drivers are traditionally coded in assembly language, both because of the rigid
structural requirements and because of the need to keep driver execution speed high and
memory overhead low. Although MS-DOS versions 3-0 and later are capable of loading

Section II: Programming in the MS-DOS Environment 469

Part C: Customizing MS-DOS

drivers in .EXE format, versions 2.x can load only pure memory-image device drivers that
do not require relocation. Therefore, drivers are typically written as though they were
.COM programs with an "origin" of zero and converted with EXE2BIN to .BIN or .SYS files
so that they will be compatible with any version of MS-DOS (2.0 or later). See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an

Application Program.

The device header must be located at the beginning of the file (offset 0). Both words in the
header's link field should be set to -1, thus allowing MS-DOS to fix up the link field when
the driver is loaded during system initialization so that it points to the next driver in the
chain. When a single file contains more than one driver, the offset portion of each header
link field should point to the next header in that file, all using the same segment base of
zero, and only the link field of the last header in the file should be set to -1, -1.

The device attribute word must reflect the device-driver type (character or block) and the
bits that indicate support for the various optional command codes must have appropriate
values. The device header's offsets to the Strategy and Interrupt routines must be relative
to the same segment base as the device header itself. If the driver is for a character device,
the name field should be filled in properly with the device's logical name, which can be
any legal eight-character uppercase filename padded with spaces and without a colon.
Duplication of existing character-device names or existing disk-file names should be
avoided (unless a resident character-device driver is being intentionally superseded).

The Strategy and Interrupt routines for the device are called by MS-DOS by means of an
intersegment call (CALL FAR) and must return to MS-DOS with a far return. Both routines
must preserve all CPLF registers and flags. The MS-DOS kernel's stack has room for 40 to 50
bytes when the driver is called; if the driver makes heavy use of the stack, it should switch
to an internal stack of adequate depth.

The Strategy routine is, of course, very simple. It need only save the address of the request
header that is passed to it in registers ES:BX and exit back to the kernel.

The logic of the Interrupt routine is necessarily more complex. It must save the CPU reg
isters and flags, extract the command code from the request header whose address was
previously saved by the Strategy routine, and dispatch the appropriate command-code
function. When that function is finished, the Interrupt routine must ensure that the appro
priate status and other information is placed in the request header, restore the CPU regis
ters and flags, and return control to the kernel.

Although the interface between the MS-DOS kernel and the command-code routines is
fairly simple, it is also strict. The command-code functions must behave exactly as they are
defined or the system will behave erratically. Even a very subtle discrepancy in the action
of a driver function can have unexpectedly large global effects. For example, if a block
driver Read function returns an error but does not return a correct value for the number of

sectors successfully transferred, the MS-DOS kernel will be misled in its attempts to retry
the read for only the failing sectors and disk data might be corrupted.

470 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Example character driver: TEMPLATE

Figure 15-14 contains the source code for a skeleton character-device driver called
TEMPLATE.ASM. This driver does nothing except display a sign-on message when it is
loaded, but it demonstrates all the essential driver components, including the device
header. Strategy routine, and Interrupt routine. The command-code functions take no
action other than to set the done flag in the request header status word.

name template

title 'TEMPLATE installable driver template'

TEMPLATE.ASM: A program skeleton for an installable

device driver (MS-DOS 2.0 or later)

The driver command-code routines are stubs only and have

no effect but to return a nonerror "Done" status.

Ray Duncan, July 1987

_TEXT segment byte public 'CODE'

assume cs:_TEXT,ds:_TEXT,es:NOTHING

0

24

org

MaxCmd equ maximum allowed command code

12 for MS-DOS 2.x

16 for MS-DOS 3.0-3.1

24 for MS-DOS 3.2-3.3

cr equ Odh ASCII carriage return

If equ Oah ASCII linefeed

eom equ '$• end-of-message signal

Header: device driver header

dd -1 link to next device driver

dw 0c840h device attribute word

dw Strat "Strategy" routine entry point

dw Intr "Interrupt" routine entry point

db 'TEMPLATE' logical device name

RHPtr dd pointer to request header, passed

; by MS-DOS kernel to Strategy routine

Figure 15-14. TEMPLATE.ASM, the source file for the TEMFLATE.SYS driver. (more)

Section II: Programming in the MS-DOS Environment 471

Part C: Customizing MS-DOS

Dispatch: Interrupt routine command-code

dispatch table

dw Init 0 = initialize driver

dw MediaChk 1 = media check on block device

dw BuildBPB 2 = build BIOS parameter block

dw loctlRd 3 = I/O control read

dw Read 4 = read (input) from device

dw NdRead 5 = nondestructive read

dw InpStat 6 = return current input status

dw InpFlush 7 = flush device input buffers

dw Write 8 = write (output) to device

dw WriteVfy 9 = write with verify

dw OutStat 10 = return current output status

dw OutFlush 11 = flush output buffers

dw loctlWt 12 = I/O control write

dw DevOpen 13 = device open (MS-DOS 3.0+)

dw DevClose 14 = device close (MS-DOS 3.0+)

dw RemMedia 15 = removable media (MS-DOS 3.0+)

dw OutBusy 16 = output until busy (MS-DOS 3.0+)

dw Error 17 = not used

dw Error 18 = not used

dw GenlOCTL 19 = generic lOCTL (MS-DOS 3.2+)

dw Error 20 = not used

dw Error 21 = not used

dw Error 22 = not used

dw GetLogDev 23 = get logical device (MS-DOS 3.2+)

dw SetLogDev 24 = set logical device (MS-DOS 3.2+)

Strat proc far device driver Strategy routine,

called by MS-DOS kernel with

ESrBX = address of request header

; save pointer to request header

mov word ptr cs:[RHPtr] ,bx

mov word ptr cs:[RHPtr+2],es

ret

Strat endp

back to MS-DOS kernel

Intr proc

push

push

push

push

push

far

ax

bx

cx

dx

ds

device driver Interrupt routine,

called by MS-DOS kernel immediately

after call to Strategy routine

save general registers

Figure 15-14. Continued. (more)

472 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Intrl:

push es

push di

push si

push bp

push cs ; make local data addressable

pop ds ; by setting DS = CS

les di, [RHPtr] ; let ES:DI = request header

; get BX = command code

mov bl,es:[di+2]

xor bh,bh

cmp bx,MaxCmd ; make sure it's valid

jle Intrl ; jump, function code is ok

call Error ; set error bit, "Unknown Command" code

jmp Intr2

shl bx, 1 ; form index to dispatch table

; and branch to command-code routine

call word ptr [bx+Dispatch]

les di,[RHPtr] ; ES:DI = address of request header

or ax,01OOh ; merge Done bit into status and

mov es:[di+3],ax ; store status into request header

pop bp ; restore general registers

pop si

pop di

pop es

pop ds

pop dx

pop cx

pop bx

pop ax

ret ; return to MS-DOS kernel

Command-code routines are called by the Interrupt routine

via the dispatch table with ES:DI pointing to the request

header. Each routine should return AX = OOH if function was

completed successfully or AX = 8000H + error code if

function failed.

MediaChk proc near ; function 1 = Media Check

xor

ret

MediaChk endp

Figure 15-14. Continued. (more)

Section II: Programming in the MS-DOS Environment 473

Part C: Customizing MS-DOS

BuildBPB proc near

xor

ret

BuildBPB endp

loctlRd proc near

xor

ret

loctlRd endp

ax, ax

; function 2 = Build BPB

; function 3 = I/O Control Read

Read proc near function 4 = Read (Input)

xor

ret

ax, ax

Read endp

NdRead proc near

xor ax,ax

ret

NdRead endp

InpStat proc near

xor ax,ax

ret

InpStat endp

function 5 = Nondestructive Read

; function 6 = Input Status

InpFlush proc near

xor ax,ax

ret

InpFlush endp

Figure 15-14. Continued.

; function 7 = Flush Input Buffers

(more)

474 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Write proc near function 8 = Write (Output)

xor

ret

ax, ax

Write endp

WriteVfy proc near

xor ax,ax

ret

WriteVfy endp

OutStat proc near

xor ax,ax

ret

OutStat endp

OutFlush proc near

xor ax,ax

ret

OutFlush endp

function 9 = Write with Verify

function 10 = Output Status

function 11 = Flush Output Buffers

loctlWt proc near

xor

ret

loctlWt endp

ax, ax

function 12 = I/O Control Write

DevOpen proc near

xor ax,ax

ret

DevOpen endp

Figure 15-14. Continued.

function 13 = Device Open

(more)

Section II: Programming in the MS-DOS Environment 475

Part C: Customizing MS-DOS

DevClose proc near

xor ax, ax

ret

DevClose endp

RemMedia proc near

xor ax,ax

ret

RemMedia endp

OutBusy proc near

xor ax,ax

ret

OutBusy endp

GenlOCTL proc near

xor ax,ax

ret

GenlOCTL endp

GetLogDev proc near

xor ax,ax

ret

GetLogDev endp

SetLogDev proc near

xor ax,ax

function 14 = Device Close

function 15 = Removable Media

function 16 = Output Until Busy

function 19 = Generic lOCTL

function 23 = Get Logical Device

function 24 = Set Logical Device

SetLogDev endp
Figure 15-14. Continued. (more)

476 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Error proc

mov

ret

ax,8003h

; bad command code in request header

; error bit + "Unknown Command" code

Error endp

Init proc

push

push

mov

mov

int

es

di

ah, 9

dx,offset Ident

21h

; function 0 = initialize driver

; save address of request header

; display driver sign-on message

pop

pop

mov

mov

xor

ret

di

es

; restore request header address

; set address of free memory

; above driver (break address)

word ptr es:[di+14],offset Init

word ptr es:[di+16],cs

ax,ax ; return status

Init

Intr

endp

Ident db

db

db

endp

cr,lf,lf

'TEMPLATE Example Device Driver'

cr,If,eom

-TEXT ends

end

Figure 15-14. Continued.

TEMPLATE.ASM can be assembled, linked, and converted into a loadable driver with the

following commands;

OMASM TEMPLATE; <Enter>

OLINK TEMPLATE; <Enter>

OEXE2BIN TEMPLATE.EXE TEMPLATE . SYS <Enter>

The Microsoft Object Linker (LINK) will display the warning message No Stack Segment-,
this message can be ignored. The driver can then be installed by adding the line

DEVICE=TEMPLATE.SYS

Section 11: Programming in the MS-DOS Environment 477

Part C: Customizing MS-DOS

to the CONFIG.SYS file and restarting the system. The fact that the TEMPLATE.SYS
driver also has the logical character-device name TEMPLATE allows the demonstration of
an interesting MS-DOS effect: After the driver is installed, the file that contains it can no
longer be copied, renamed, or deleted. The reason for this limitation is that MS-DOS
always searches its list of character-device names first when an open request is issued,
before it inspects the disk directory. The only way to erase the TEMPLATE.SYS file is to
modify the CONFIG.SYS file to remove the associated DEVICE statement and then restart
the system.

For a complete example of a character-device driver for interrupt-driven serial communica
tions, See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos:

Interrupt-Driven Communications.

Example block driver: TINYDISK

Figure 15-15 contains the source code for a simple 64 KB virtual disk (RAMdisk) called
TINYDISK.ASM. This code provides a working example of a simple block-device driver.
When its Initialization routine is called by the kernel, TINYDISK allocates itself 64 KB of
RAM and maps a disk structure onto the RAM in the form of a boot sector containing a
valid BPB, a FAT, a root directory, and a files area. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: Structure of ms-dos: MS-DOS Storage Devices.

name tinydisk

title TINYDISK example block-device driver

; TINYDISK.ASM — 64 KB RAMdisk

; Ray Duncan, July 1987

; Example of a simple installable block-device driver.

-TEXT segment public 'CODE'

assume cs:-TEXT,ds:-TEXT,res:-TEXT

org 0

MaxCmd equ 12 max driver command code

'
(no MS-DOS 3.x functions)

cr equ Odh ASCII carriage return

If equ Oah ; ASCII linefeed

blank equ 020h ASCII space code

eom equ •$' end-of-message signal

Secsize equ 512 bytes/sector, IEM-compatible media

Figure 15-15. TINYDISK.ASM, the source file for the TINYDISKSYS driver. (more)

478 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

device-driver header

Header dd -1 ;r link to next driver in chain

dw 0 ;r device attribute word

dw Strat ;: "Strategy" routine entry point

dw Intr ;: "Interrupt" routine entry point

db 1 ;: number of units, this device

db 7 dup (0) ;r reserved area (block-device drivers!

RHPtr dd ? ;r segment:offset of request header

Secseg dw ? ;r segment base of sector storage

Xfrsec dw 0 ir current sector for transfer

Xfrcnt dw 0 ;r sectors successfully transferred

Xfrreq dw 0 ;: number of sectors requested

Xfraddr dd 0 ;r working address for transfer

Array dw BPB ;r array of pointers to BPB

; for each supported unit

Bootrec equ $

jmp $;r phony JMP at start of

nop r boot sector; this field

r must be 3 bytes

db 'MS 2.0' j: OEM identity field

BIOS Parameter Block (BPB)

BPS dw Secsize OOH - bytes per sector

db 1 02H - sectors per cluster

dw 1 03H - reserved sectors

db 1 05H - number of FATs

dw 32 06H - root directory entries

dw 128 08H - sectors = 64 KB/secsize

db OfBh OAR - media descriptor

dw 1 OBH - sectors per FAT

Bootrec._len equ $-Bootrec

Strat proc far ; RAMdisk strategy routine

; save address of request header

mov word ptr cs:RHPtr,bx

mov word ptr cs:[RHPtr+2],es

ret ; back to MS-DOS kernel

Strat endp

Figure 15-15. Continued. (more)

Section II: Programming in the MS-DOS Environment 479

Part C: Customizing MS-DOS

Intr proc

push

push

push

push

push

push

push

push

push

mov

mov

les

mov

xor

cmp

jle

mov

jmp

Intrl: shl

call

les

Intr3: or

mov

Intr4: pop

pop

pop

pop

pop

pop

pop

pop

pop

ret

far

ax

bx

cx

dx

ds

es

di

si

bp

ax, cs

ds, ax

di,[RHPtr]

bl,es:[di+2]

bh,bh

bx,MaxCmd

Intrl

ax,8003h

Intr3

bx, 1

; RAMdisk interrupt routine

; save general registers

; make local data addressable

; ES:DI = request header

; get command code

; make sure it's valid

; jump, function code is ok

; set Error bit and

; "Unknown Command" error code

; form index to dispatch table and

; branch to command-code routine

word ptr [bx+Dispatch]

; should return AX = status

di,[RHPtr]

ax,01OOh

es:[di+3],ax

bp

si

di

es

ds

dx

cx

bx

ax

restore ES:DI = request header

merge Done bit into status and store

status into request header

restore general registers

return to MS-DOS kernel

Intr endp

Figure 15-15. Continued. (more)

480 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

Dispatch:

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

mov

xor

ret

Init

MediaChk

BuildBPB

Dummy

Read

Dummy

Dummy

Dummy

Write

Write

Dummy

Dummy

Dummy

MediaChk proc near

command-code dispatch table

all command-code routines are

entered with ES:DI pointing

to request header and return

the operation status in AX

0 = initialize driver

1 = media check on block device

2 = build BIOS parameter block d

3 = I/O control read

4 = read (input) from device

5 = nondestructive read

6 = return current input status

7 = flush device input buffers

8 = write (output) to device

9 = write with verify

10 = return current output status

11 = flush output buffers

12 = I/O control write

command code 1 = Media Check

; return "not changed" code

byte ptr es:[di+Oeh],1

ax,ax ; and success status

MediaChk endp

BuildBPB proc near command code 2 = Build BPB

mov

mov

xor

ret

; put BPB address in request header

word ptr es:[di+12h],offset BPB

word ptr es:[di+14h],cs

ax,ax ; return success status

BuildBPB endp

Read proc near

call Setup

Readi: mov

cmp

je

mov

call

ax,Xfrent

ax,Xfrreq

Read2

ax,Xfrsec

Mapsec

; command code 4 = Read (Input)

; set up transfer variables

; done with all sectors yet?

; jump if transfer completed

; get next sector number

; and map it

Figure 15-15. Continued. (more)

Section II: Programming in the MS-DOS Environment 481

Part C: Customizing MS-DOS

mov

mov

les

mov

mov

eld

rep movsb

ax, es

si, di

di,Xfraddr

ds, ax

ox,Secsize

pu§h

pop

inc

add

inc

jmp

OS

ds

Xfrsec

ES:DI = requester's buffer

DS:SI = RAMdisk address

transfer logical sector from

RAMdisk to requestor

restore local addressing

; advance sector number

; advance transfer address

word ptr Xfraddr,Secsize

Xfrcnt

Readi

count sectors transferred

Read2:

xor

les

mov

mov

ret

ax, ax

di,RHPtr

bx,Xfrcnt

es:[di+12h],bx

all sectors transferred

return success status

put actual transfer count

into request header

Read en dp

Write proc near ; command code 8 = Write (Output)

; command code 9 = Write with Verify

call

Writel: mov

cmp

je

Setup

ax,Xfrcnt

ax,Xfrreq

Write2

; set up transfer variables

; done with all sectors yet?

; jump if transfer completed

mov

call

Ids

mov

eld

rep movsb

push cs

ax,Xfrsec

Mapsec

si,Xfraddr

cx,Secsize

pop

inc

add

inc

jmp

ds

Xfrsec

; get next sector number

; and map it

; transfer logical sector from

; requester to RAMdisk

; restore local addressing

; advance sector number

; advance transfer address

word ptr Xfraddr,Secsize

Xfrcnt

Writel

count sectors transferred

Write2:

xor

les

ax, ax

di,RHPtr

Figure 15-15. Continued.

; all sectors transferred

; return success status

; put actual transfer count

(more)

482 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

mov

mov

ret

Write endp

Dummy proc

xor

ret

Dummy endp

bx,Xfrcnt

es:[di+12h],bx

; into request header

; called for unsupported functions

; return success flag for all

Mapsec proc map sector number to memory address

call with AX = logical sector no.

return ES:DI = memory address

mov di,Secsize/16 ; paragraphs per sector

mul di ; * logical sector number

add ax,Secseg ; + segment base of sector storage

mov es, ax

xor di,di ; now ES:DI points to sector

ret

Mapsec endp

Setup proc near ; set up for read or write

; call ES:DI = request header

extracts address, start, count

push es ; save request header address

push di

mov ax,es:[di+14h] ; starting sector number

mov Xfrsec,ax

mov ax,es;[di+12h] ; sectors requested

mov Xfrreq,ax

les di,es:[di+Oeh] ; requester's buffer address

mov word ptr Xfraddr,di

mov word ptr Xfraddr+2,es

mov Xfrcnt,0 ; initialize sectors transferred count

pop di / restore request header address

pop es

ret

Setup endp

Figure 15-15. Continued. (more)

Section II: Programming in the MS-DOS Environment 483

Part C: Customizing MS-DOS

Init proc

mov

add

mov

add

mov

mov

call

call

les

mov

mov

mov

; command code 0 = Initialize driver

; on entry ES:DI = request header

calculate segment base for sector

storage and save it

ax, cs

ax,Driver_len

Secseg,ax

ax,1000h ; add 1000H paras (64 KB) and

es:[di+1Oh],ax ; set address of free memory

word ptr es:[di+Oeh],0

Format

Signon

di,cs:RHPtr

; format the RAMdisk

; display driver identification

; restore ES:DI = request header

; set logical units = 1

byte ptr es:[di+Odh],1

; set address of BPB array

word ptr es:[di+12h],offset Array

word ptr es:[di+14h],cs

xor

ret

return success status

Init endp

Format proc near

mov

xor

mov

xor

eld

rep stosw

es,Secseg

di,di

cx,SOOOh

ax, ax

mov

call

mov

mov

ax, 0

Mapsec

; format the RAMdisk area

; first zero out RAMdisk

; 32 K words = 64 KB

; get address of logical

; sector zero

si,offset Bootrec

cx,Bootrec_len

rep movsb ; and copy boot record to it

mov ax,word ptr BPB+3

call Mapsec ; get address of 1st FAT sector

mov al,byte ptr BPB+Oah

mov es:[di],al ; put media ID byte into it

mov word ptr es:[di+1],-1

mov ax,word ptr BPB+3

add ax,word ptr BPB+Obh

call Mapsec ; get address of 1st directory sector

Figure 15-15. Continued. (more)

484 The MS-DOS Encyclopedia

Article 15: Installable Device Drivers

si,offset Volname

mov cx,Volname_len

rep movsb

ret

Format endp

; copy volume label to it

; done with formatting

Signon proc near

les

mov

add

mov

mov

int

cmp

ja

mov

Signoni:

mov

mov

int

di,RHPtr

al,es:[di+22]

al,'A'

drive,al

ah,30h

21h

al,2

Signoni

Identi,eom

ah,09H

dx,offset Ident

21h

driver identification message

let- ES:DI = request header

get drive code from header,

convert it to ASCII, and

store into sign-on message

get MS-DOS version

jump if version 3.0 or later

version 2.x, don't print drive

print sign-on message

Function 09H = print string

DS:DX = address of message

transfer to MS-DOS

back to caller

Signon endp

Ident

Identi

Drive

db or,If,If

db 'TINYDISK 64 KB RAMdisk

db cr,lf

db 'RAMdisk will be drive

db 'X:'

db cr,lf,eom

driver sign-on message

Volname db

db

db

dw

dw

db

'DOSREF_DISK'

08h

10 dup (0)

0

OfOlh

6 dup (0)

Volname_len equ $-volname

Driver_len dw {($-header)/16)+1

-TEXT ends

end

Figure 15-15. Continued.

; volume label for RAMdisk

; attribute byte

; reserved area

; t ime = 00:00

; date = August 1, 1987

; reserved area

driver size in paragraphs

Section II: Programming in the MS-DOS Environment 485

Part C: Customizing MS-DOS

Subsequent driver Read and Write calls by the kernel to TINYDISK function as though they
were transferring sectors to and from a physical storage device but actually only copy data
from one area in mqpiory to another. A programmer can learn a great deal about the oper
ation of block-device drivers and MS-DOS's relationship to those drivers (such as the order
and frequency of Media Change, Build BPB, Read, Write, and Write With Verify calls) by
inserting software probes into TINYDISK at appropriate locations and monitoring its
behavior.

TINYDISK.ASM can be assembled, linked, and converted into a loadable driver with the
following commands:

OmASM TINYDISK; <Enter>

C>LINK TINYDISK; <Enter>

OEXE2BIN TINYDISK.EXE TINYDISK.SYS <Enter>

The linker will display the warning message No Stack Segment-, this message can be
ignored. The driver can then be installed by adding the line

DEVICE=TINYDISK.SYS

to the CONFIG.SYS file and restarting the system. When it is loaded, TINYDISK displays a
sign-on message and the drive letter that it was assigned if it is running under MS-DOS ver
sion 3.0 or later. (If the host system is MS-DOS version 2.x, this information is not provided
to the driver.) Files can then be copied to the RAMdisk as though it were a small but
extremely fast disk drive.

Ray Duncan

486 The MS-DOS Encyclopedia

PartD

Directions of MS-DOS

Article l6: Writing Applications for Upward Compatibility

Article 16

Writing Applications for
Upward Compatibility

One of the major concerns of the designers of Microsoft OS/2 was that it be backwardly
compatible—that is, that programs written to run under MS-DOS versions 2 and 3 be able
to run on MS OS/2. A major concern for present application programmers is that their pro
grams run not only on current versions of MS-DOS (and MS OS/2) but also on future ver
sions of MS-DOS. Ensuring such upward compatibility involves both hardware issues and
operating-system issues.

Hardware Issues

A basic requirement for ensuring upward compatibility is hardware-independent code. If
you bypass system services and directly program the hardware—such as the system inter
rupt controller, the system clock, and the enhanced graphics adapter (EGA) registers—
your application will not run on future versions of MS-DOS.

Protected mode compatibility

The 80286 and the 80386 microprocessors can operate in two incompatible modes: real
mode and protected mode. When either chip is operating in real mode, it is perceived by
the operating system and programs as a fast 8088 chip. Applications written for the 8086
and 8088 run the same on the 80286 and the 80386—only faster. They cannot, however,
take advantage of 80286 and 80386 features unless they can run in protected mode.

Following the guidelines below will minimize the work necessary to convert a real mode
program to protected mode and will also allow a program to use a special subset of the
MS OS/2 Applications Program Interface (API)—Family API. A binary program (.EXE)
that uses the family API can run in either protected mode or real mode under MS OS/2 and
subsequent systems, but it can run only in real mode under MS-DOS version 3.

Family API

The Family API requires that the application use a subset of the MS OS/2 Dynamic Link
System API. Special tools link the application with a special library that implements the
subset MS OS/2 system services in the MS-DOS version 3 environment. Many of these ser
vices are implemented by calling the appropriate Interrupt 21H subfunction; some are
implemented in the special library itself.

Section II: Programming in the MS-DOS Environment 489

Part D: Directions of MS-DOS

When a Family API application is loaded under MS OS/2 protected mode, MS OS/2 ignores
the special library code and loads only the application itself. MS OS/2 then provides the
requested services in the normal fashion. However, MS-DOS version 3 loads the entire
package—the application and the special library—because the Family API .EXE file is
constructed to look like an MS-DOS 3 .EXE file.

linear vs segmented memory

The protected mode and the real mode of the 80286 and the 80386 are compatible except
in the area of segmentation. The 8086 has been described as a segmented machine, but it
is actually a linear memory machine with offset registers. When a memory address is gen
erated, the value in one of the "segment" registers is multiplied by l6 and added as a
displacement to the offset value supplied by the instruction's addressing mode. No length
information is associated with each "segment"; the "segment" register supplies only a
20-bit addressing offset. Programs routinely use this by computing a 20-bit address and
then decomposing it into a l6-bit "segment" value and a l6-bit displacement value so that
the address can be referenced.

The protected mode of the 80286 and the 80386, however, is truly segmented. A value
placed in a segment register selects an entry from a descriptor table; that entry contains
the addressing offset, a segment length, and permission bits. On the 8086, the so-called
segment component of an address is multiplied by 16 and added to the offset component,
producing a 20-bit physical address. Thus, if you take an address in the segment:offset
form, add 4 to the segment value, and subtract 64 (that is, 4 »l6) from the offset value, the
new address references exactly the same location as the old address. On the 80286 and
the 80386 in protected mode, however, segment values, called segment selectors, have no
direct correspondence to physical addresses. In other words, in 8086 mode, the two
address forms

1000,^:0345,6

and

1004,6:0305,6

reference the same memory location, but in protected mode these two forms reference
totally different locations.

Creating segment values

This architectural difference gives rise to the most common cause of incompatibility—the
program performs addressing arithmetic to compute "segment" values. Any program that
uses the 20-bit addressing scheme to create or to compute a value to be loaded in a seg
ment register cannot be converted to run in protected mode. To be protected mode com
patible, a program must treat the 8086's so-called segments as true segments.

To create a program that does this, write according to the following guidelines:

1. Do not generate any segment values. Use only the segment values supplied by
MS-DOS calls and those placed in the segment registers when MS-DOS loaded your
program. The exception is "huge objects"—memory objects larger than 64 KB. In

490 The MS-DOS Encyclopedia

Article l6: Writing Applications for Upward Compatibility

this case, MS OS/2 provides a base segment number and a "segment offset value."
The returned segment number selects the first 64 KB of the object and the segment
number, plus the segment offset value address the second 64 KB of the object. Like
wise, the returned segment value plus N» (segment offset value) selects the N+1
64 KB piece of the huge object. Write real mode code in this same fashion, using
4096 as the segment offset value. When you convert your program, you can substitute
the value provided by MS OS/2.

2. Do not address beyond the allocated length of a segment.
3. Do not use segment registers as scratch registers by placing general data in them.

Place only valid segment values, supplied by MS-DOS, in a segment register. The one
exception is that you can place a zero value in a segment register, perhaps to indicate
"no address." You can place the zero in the segment register, but you cannot reference
memory using that register; you can only load/store or push/pop it.

4. Do not use CS: overrides on instructions that store into memory. It is impossible to
store into a code segment in protected mode.

CPU speed

Because various microprocessors and machine configurations execute at different speeds,
a program should not contain timing loops that depend on CPU speed. Specifically, a pro
gram should not establish CPU speed during initialization and then use that value for tim
ing loops because the preemptive scheduling of MS OS/2 and future operating systems
can "take away" the CPU at any time for arbitrary and unpredictable lengths of time. (In
any case, time should not be wasted in a timing loop when other processes could be using
system resources.)

Program timing

Programs must measure the passage of time carefully. They can use the system clock-tick
interrupt while directly interfacing with the user, but no clock ticks will be seen by real
mode programs when the user switches the screen interface to another program.

It is recommended that applications use the time-of-day system interface to determine
elapsed time. To facilitate conversion to MS OS/2 protected mode, programs should encap
sulate time-of-day or elapsed-time functions into subroutines.

BIOS

Avoid BIOS interrupt interfaces except for Interrupt lOH (the screen display functions)
and Interrupt 16H (the keyboard functions). Interrupt lOH functions are contained in the
MS OS/2 VIO package, and Interrupt 16H functions are in the MS OS/2 KBD package.
Other BIOS interrupts provide functions that are available under MS OS/2 only in con
siderably modified forms.

Special operations

Uncommon, or special, operations and instructions can produce varied results, depending
on the microprocessor. For example, when a "divide by 0" trap is taken on an 8086, the
stack frame points to the instruction after the fault; when such action is taken on the 80286
and 80386, the return address points to the instruction that caused the fault. The effect of

Section II: Programming in the MS-DOS Environment 491

Part D: Directions of MS-DOS

pushing the SP register is different between the 80286 and the 80386 as well. See Appen
dix M: 8086/8088 Software Compatibility Issues. Write your program to avoid these
problem areas.

operating-System Issues

Basic to writing programs that will run on future operating systems is writing code that is
not version specific. Incorporating special version-specific features in a program will vir
tually ensure that the program will be incompatible with future versions of MS-DOS and
MS OS/2.

Following the guidelines below will not necessarily ensure your program's compatibility,
but it will facilitate converting the program or using the Family API to produce a dual-
mode binary program.

Filenames

MS-DOS versions 2 and 3 silently truncate a filename that is longer than eight characters
or an extension that is longer than three characters. MS-DOS generates no error message
when performing this task. In real mode, MS OS/2 also silently truncates a filename or ex
tension that exceeds the maximum length; in protected mode, however, it does not.
Therefore, a real mode application program needs to perform this truncating function.
The program should check the length of the filenames that it generates or that it obtains
from a user and refuse names that are longer than the eight-character maximum. This pre
vents improperly formatted names from becoming embedded in data and control files—a
situation that could cause a protected mode version of the application to fail when it pre
sents that invalid name to the operating system.

When you convert your program to protected mode API, remove the length-checking
code; MS OS/2 will check the length and return an error code as appropriate. Future file
systems will support longer filenames, so it's important that protected mode programs sim
ply present filenames to the operating system, which is then responsible for judging their
validity.

Other MS-DOS version 2 and 3 elements have fixed lengths, including the current directory
path. To be upwardly compatible, your program should accept whatever length is provided
by the user or returned from a system call and rely on MS OS/2 to return an error message
if a length is inappropriate. The exception is filename length in real mode non-Family API
programs: These programs should enforce the eight-character maximum because MS-DOS
versions 2 and 3 fail to do so.

File truncation

Files are truncated by means of a zero-length write under MS-DOS versions 2 and 3; under
MS OS/2 in protected mode, files are truncated with a special API. File truncation opera
tions should be encapsulated in a special routine to facilitate conversion to MS OS/2 pro
tected mode or the Family API.

492 The MS-DOS Encyclopedia

Article 16: Writing Applications for Upward Compatibility

File searches

MS-DOS versions 2 and 3 never close file-system searches (Find First File/Find Next File).
The returned search contains the information necessary for MS-DOS to continue the
search later, and if the search is never continued, no harm is done.

MS OS/2, however, retains the necessary search continuation information in an internal
structure of limited size. For this reason, your program should not depend on more than
about 10 simultaneous searches and it should be able to close searches when it is done. If
your program needs to perform more than about 10 searches simultaneously, it should be
able to close a search, restart it later, and advance to the place where the program left off,
rather than depending on MS OS/2 to continue the search.

MS OS/2 further provides a Find Close function that releases the internal search infor
mation. Protected mode programs should use this call at the end of every search se
quence. Because MS-DOS versions 2 and 3 have no such call, your program should call a
dummy procedure by this name at the appropriate locations. Then you can convert your
program to the protected mode API or to the Family API without reexamining your
algorithms.

Note: Receiving a "No more files" return code from a search does not implicitly close the
search; all search closes must be explicit.

The Family API allows only a single search at a time. To circumvent this restriction, code
two different Find Next File routines in your program—one for MS OS/2 protected mode
and one for MS-DOS real mode—and use the Family API function that determines the
program's current environment to select the routine to execute.

MS-DOS calls

A program that uses only the Interrupt 21H functions listed below is guaranteed to work
in the Compatibility Box of MS OS/2 and will be relatively easy to modify for MS OS/2
protected mode.

Function Name

ODH Disk Reset

OEH Select Disk

19H Get Current Disk

lAH Set DTA Address

25H Set Interrupt Vector
2AH Get Date

2BH Set Date

2CH Get Time

2EH Set/Reset Verify Flag
2FH Get DTA Address

(more)

Section II: Programming in the MS-DOS Environment 493

Part D: Directions of MS-DOS

Function Name

30H Get MS-DOS Version Number

33H Get/Set Control-C Check Flag
35H Get Interrupt Vector

36H Get Disk Free Space
38H Get/Set Current Country

39H Create Directory

3AH Remove Directory

3BH Change Current Directory
3CH Create File with Handle

3DH Open File with Handle
3EH Close File

3FH Read File or Device

40H Write File or Device

41H Delete File

42H Move File Pointer

43H Get/Set File Attributes

44H lOCTL (all subfunctions)

45H Duplicate File Handle
46H Force Duplicate File Handle
47H Get Current Directory

48H Allocate Memory Block
49H Free Memory Block
4AH Resize Memory Block
4BH Load and Execute Program (EXEC)
4CH Terminate Process with Return Code

4DH Get Return Code of Child Process

4EH Find First File

4FH Find Next File

54H Get Verify Flag
56H Rename File

57H Get/Set Date/Time of File

59H Get Extended Error Information

5AH Create Temporary File
5BH Create New File

5CH Lock/Unlock File Region

FCBs

FCBs are not supported in MS OS/2 protected mode. Use handle-based calls instead.

494 The MS-DOS Encyclopedia

Article 16: Writing Applications for Upward Compatibility

Interrupt calls

MS-DOS versions 2 and 3 use an interrupt-based interface; MS OS/2 protected mode uses
a procedure-call interface. Write your code to accommodate this difference by encap
sulating the interrupt-based interfaces into individual subroutines that can then easily be
modified to use the MS OS/2 procedure-call interface.

System call register usage

The MS OS/2 procedure-call interface preserves all registers except AX and FLAGS. Write
your program to assume that the contents of AX and the contents of any register modified
by MS-DOS version 2 and 3 interrupt interfaces are destroyed at each system call, regard
less of the success or failure of that call.

Flush/Commit calls

Your program should issue Flush/Commit calls where necessary—for example, after
writing out the user's work file—but no more than necessary. Because MS OS/2 is multi
tasking, the floppy disk that contains the files to be flushed may not be in the drive. In
such a case, MS OS/2 prompts the user to insert the proper floppy disk. As a result, too
frequent flushes could generate a great many Insert disk messages and degrade the
system's usability.

Seeks

Seeks to negative offsets and to devices also create compatibility issues.

To negative offsets

Your program should not attempt to seek to a negative file location. A negative seek offset
is permissible as long as the sum of the seek offset and the current file position is positive.
MS-DOS versions 2 and 3 allow seeking to a negative offset as long as you do not attempt to
read or write the file at that offset. MS OS/2 and subsequent systems return an error code
for negative net offsets.

On devices

Your program should not issue seeks to devices (such as AUX, COM, and so on). Doing so
produces an error under MS OS/2.

Error codes

Because future releases of the operating system may return new error codes to system
calls, you should write code that is open-ended about error codes—that is, write your pro
gram to deal with error codes beyond those currently defined. You can generally do this
by including special handling for any codes that require special treatment, such as "File not
found," and by taking a generic course of action for all other errors. The MS OS/2 pro
tected mode API and the Family API have an interface that contains a message describing
the error; this message can be displayed to the user. The interface also returns error
classification information and a recommended action.

Section II: Programming in the MS-DOS Environment 495

Part D: Directions of MS-DOS

Multitasking concerns

Multitasking is a feature of MS OS/2 and will be a feature of all future versions of MS-DOS.
The following guidelines apply to all programs, even to those written for MS-DOS version
3, because they may run in compatibility mode under MS OS/2.

Disabling interrupts

Do not disable interrupts, typically with the CLI instruction. The consequences of doing so
depend on the environment.

In real mode programs under MS OS/2, disabling interrupts works normally but has a
negative impact on the system's ability to maintain proper system throughput. Communi
cations programs or networking applications might lose data. In a future version of real
mode MS OS/2-80386, the operating system will disregard attempts to disable interrupts.

Protected mode programs under MS OS/2 can disable interrupts only in special Ring 2
segments. Disabling interrupts for longer than 100 microseconds might cause communica
tions programs or networking applications to lose data or break connection. A future
80386-specific version of MS OS/2 will ignore attempts to disable interrupts in protected
mode programs.

Measuring system resources

Do not attempt to measure system resources by exhausting them, and do not assume that
because a resource is available at one time it will be available later. Remember: System
resources are being shared with other programs.

For example, it is common for an MS-DOS version 3 application to request 1 MB of mem
ory. The system cannot fulfill this request, so it returns the largest amount of memory
available. The application then requests that amount of memory. Typically, applications do
not even check for an error code from the second request. They routinely request all avail
able memory because their creators knew that no other application could be in the system
at the same time. This practice will work in real mode MS OS/2, although it is inefficient
because MS OS/2 must allocate memory to a program that has no effective use for it. How
ever, this practice will not work under MS OS/2 protected mode or under the Family API.

Another typical resource-exhaustion technique is opening files until an open is refused
and then closing unneeded file handles. All applications, even those that run only in an
MS OS/2 real mode environment, must use only the resources they need and not waste
system resources; in a multitasking environment, other programs in the system usually
need those resources.

Sharing rules

Because multiple programs can run under MS OS/2 simultaneously and because the
system can be networked, conflicts can occur when two programs try to access the same
file. MS OS/2 handles this situation with special file-sharing support. Although programs

496 The MS-DOS Encyclopedia

Article 16: Writing Applications for Upward Compatibility

ignorant of file-sharing rules can run in real mode, you should explicitly specify file-
sharing rules in your program. This will reduce the number of file-access conflicts the user
will encounter.

Miscellaneous guidelines

Do not use undocumented features of MS-DOS or undocumented fields such as those in

the Find First File buffer. Also, do not modify or store your own values in such areas.

Maintain at least 2048 free bytes on the stack at all times. Future releases of MS-DOS may
require extra stack space at system call and at interrupt time.

Print using conventional handle writes to the LPT device(s). For example:

fd = openC'LPTI") ;

write(fd, data, datalen);

Do not use Interrupt 17H (the IBM ROM BIOS printer services), writes to the stdprn han
dle (handle 3), or special-purpose Interrupt 21H functions such as 05H (Printer Output).
These methods are not supported under MS OS/2 protected mode or in the Family API.

Do not use the MS-DOS standard handles stdaux and stdprn (handles 3 and 4); these
handles are not supported in MS OS/2 protected mode. Use only stdin (handle 0), stdout
(handle 1), and stderr (handle 2). Do use these latter handles where appropriate and avoid
opening the CON device directly. Avoid Interrupt 21H Functions 03H (Auxiliary Input) and
04H (Auxiliary Output), which are polling operations on stdaux.

Summary

A tenet of MS OS/2 design was flexibility: Each component was constructed in anticipa
tion of massive changes in a future release and with an eye toward existing versions of
MS-DOS. Writing applications that are upwardly and backwardly compatible in such an
environment is essential—and challenging. Following the guidelines in this article will
ensure that your programs function appropriately in the MS-DOS/OS/2 operating-
system family.

Gordon Letwin

Section II: Programming in the MS-DOS Environment 497

Article 17: Windows

Article 17

Windows

Microsoft Windows is an operating environment that runs under MS-DOS versions 2.0
and later. The current version of Windows, version 2.0, requires either a fixed disk or two
double-sided floppy-disk drives, at least 320 KB of memory, and a video display board
and monitor capable of graphics and a screen resolution of at least 640 (horizontal) by 200
(vertical) pixels. A fixed disk and 640 KB of memory provide the best environment for run
ning Windows; a mouse or other pointing device is optional but recommended.

For the user, Windows provides a multitasking, graphics-based windowing environment
for running programs. In this environment, users can easily switch among several pro
grams and transfer data between them. Because programs specially designed to run under
Windows usually have a consistent user interface, the time spent learning a new program
is greatly diminished. Furthermore, the user can carry out command functions using only
the keyboard, only the mouse, or some combination of the two. In some cases, Windows
(and Windows applications) provides several different ways to execute the same
command.

For the program developer, Windows provides a wealth of high-level routines that make
it easy to incorporate menus, scroll bars, and dialog boxes (which contain controls, such as
push buttons and list boxes) into programs. Windows' graphics interface is device inde
pendent, so programs developed for Windows work with every video display adapter and
printer that has a Windows driver (usually supplied by the hardware manufacturer). Win
dows also includes features that facilitate the translation of programs into foreign lan
guages for international markets.

When Windows is running, it shares responsibility for managing system resources with
MS-DOS. Thus, programs that run under Windows continue to use MS-DOS function calls
for all file input and output and for executing other programs, but they do not use MS-DOS
for display or printer output, keyboard or mouse input, or memory management. Instead,
they use functions provided by Windows.

Program Categories

Programs that run under Windows can be divided into three categories:

1. Programs specially designed for the Windows environment. Examples of such pro
grams include Clock and Calculator, which come with Windows. Microsoft Excel is
also specially designed for Windows. Other programs of this type (such as Aldus's
Pagemaker) are available from software vendors other than Microsoft. Programs in
this category cannot run under MS-DOS without Windows.

2. Programs designed to run under MS-DOS but that can usually be run in a window
along with programs designed specially for Windows. These programs do not require

Section II: Programming in the MS-DOS Environment 499

Part D: Directions of MS-DOS

large amounts of memory, do not write directly to the display, do not use graphics,
and do not alter the operation of the keyboard interrupt. They cannot use the mouse,
the Windows application-program interface (such as menus and dialog boxes), or
the graphics services that Windows provides. MS-DOS utilities, such as EDLIN and
CHKDSK, are examples of programs in this category.

3. Programs designed to run under MS-DOS but that require large amounts of memory,
write directly to the display, use graphics, or alter the operation of the keyboard inter
rupt. When Windows runs such a program, it must suspend operation of all other
programs running in Windows and allow the program to use the full screen. In some
cases, Windows cannot switch back to its normal display until the program termi
nates. Microsoft Word and Lotus 1-2-3 are examples of programs in this category.

The programs in categories 2 and 3 are sometimes called standard applications. To run
one of these programs in Windows, the user must create a PIF file (Program Information
File) that describes how much memory the program requires and how it uses the com
puter's hardware.

Although the ability to run existing MS-DOS programs under Windows benefits the user,
the primary purpose of Windows is to provide an environment for specially designed pro
grams that take f^ull advantage of the Windows interface. This discussion therefore concen
trates almost exclusively on programs written for the Windows 2.0 environment.

The Windows Display

Figure 17-1 shows a typical Windows display running several programs that are included
with the retail version of Windows 2.0.

The display is organized as a desktop, with each program occupying one or more rect
angular windows that, unlike the tiled (juxtaposed) windows typical of earlier versions,
can be overlapped. Only one program is active at any time—usually the program that is
currently receiving keyboard input. Windows displays the currently active program on top
of (overlying) the others. Programs such as CLOCK and TERMINAL that are not active
continue to run normally, but do not receive keyboard input.

The user can make another program active by pressing and releasing (clicking) the mouse
button when the mouse cursor is positioned in the new program's window or by pressing
either the Alt-Tab or Alt-Esc key combination. Windows then brings the new active pro
gram to the top.

Most Windows programs allow their windows to be moved to another part of the display
or to be resized to occupy smaller or larger areas. Most of these programs can also be max
imized to fill the entire screen or minimized—generally as a small icon displayed at the
bottom of the screen—to occupy a small amount of display space.

500 The MS-DOS Encyclopedia

Eile Edit Search i
[intl] B
iCountrs(=1 m
iDdte=0 g
iCurrency=0 g
iDigits=2 g
iTime=0 g!
iLzero=8 g
s1159=0M m
s2359=Pli m

sCurrency=§ g
sThousand=, g
sDecimal=. g
sDate=- g
sTiDe=: g
sLlst=, H
dialog=yes M

[ports] g
; To output to a file make an entrv in t g
; filename.PRN followed bg an equal sign g
; The filename will appear in the Contro g
; any printer may then be connected to t g
; be done to this file. ^

jtan cau

I CD CD CD CZ) ©
I CD CD CD Q CD
1 © CD @ Q ©
I © O © Q ©

allation Setup Ereferences

Date

7-88-87

□

SiiciockfsiaH

Figure 17-1. A typical Windows display.

Parts of the window

Figure 17-2 shows the Windows NOTEPAD program, with the different parts of the win
dow identified. NOTEPAD is a small ASCII text editor limited to files of l6 KB. The various
parts of the NOTEPAD window (similar to all Windows programs) are described in this
section.

Title bar (or caption bar). The title bar identifies the program and, if applicable, the data
file currently loaded into the program. For example, the NOTEPAD window shown in
Figure 17-2 on the next page has the file WIN.INI loaded into memory. Windows uses dif
ferent title-bar colors to distinguish the active window from inactive windows. The user
can move a window to another part of the display by pressing the mouse button when the
mouse pointer is positioned anywhere on the title bar and dragging (moving) the mouse
while the button is pressed.

System-menu icon. When the user clicks a system-menu icon with the mouse (or presses
Alt-Spacebar), Windows displays a system menu like that shown in Figure 17-3. (Most Win
dows programs have identical system menus.) The user selects a menu item in one of
several ways: clicking on the item; moving the highlight bar to the item with the cursor-
movement keys and then pressing Enter; or pressing the letter that is underlined in the
menu item (for example, n for Minimize.

The keyboard combinations (Alt plus function key) at the right of the system menu are
keyboard accelerators. Using a keyboard accelerator, the user can select system-menu
options without first displaying the system menu.

Section 11. Programming in the MS-DOS Environment

System-menu Title bar Minimize

Maximize

Eile^ Edit Search

iCountry=1
iDate=e

iCu»*rency=0
iDigits=2
iTine=0

iLzero=0

s1159=fiM

s2359=PM

sCurKency=$
sThousand^,
sDecinal^.

sDate=-

sTine=:

sList=,
dialog=yes

Window

border

; To output to a file nake an entry in this section of the forn
; filenane.PRN followed by an equal sign.
; The filename will appear in the Control Panel Connections dialog and
; any printer nay then be connected to this file and all printing will
: be done to this file.

Figure 17-2. The Windows NOTEPADprogram, with differentparts ofthe display labeled.

The six options on the standard system menu are

• Restore-. Return the window to its previous position and size after it has been
minimized or maximized.

• Move-. Allow the window to be moved with the cursor-movement keys.
• Size-. Allow the window to be resized with the cursor-movement keys.
• Minimize-. Display the window in its iconic form.
• Maximize-. Allow the window to occupy the full screen.
• Close-. End the program.

Windows displays an option on the system menu in grayed text to indicate that the option
is not currently valid. In the system menu shown in Figure 17-3, for example, the Restore
option is grayed because the window is not in a minimized or maximized form.

ijoue filt+F7

Mioimize fllt+F9

Maximize fllt+F10

Figure 17-3. A system menu, displayed either when the user clicks the system-menu icon (top left corner) or
presses Alt-Spacebar.

502 The MS-DOS Encyclopedia

Article 17: Windows

i O l<X^| Restore icon

Figure 17-4. The restore icon, which replaces the maximize icon when a window is expanded to fill
the entire screen.

Minimize icon. When the user clicks on the minimize icon with the mouse, Windows
displays the program in its iconic form.

Maximize icon. Clicking on the maximize icon expands the window to fill the full screen.
Windows then replaces the maximize icon with a restore icon (shown in Figure 17-4).
Clicking on the restore icon restores the window to its previous size and position.

Programs that use a window of a fixed size (such as the CALC.EXE calculator program
included with Windows) do not have a maximize icon.

Menu bar. The menu bar, sometimes called the program's main or top-level menu, dis
plays keywords for several sets of commands that differ from program to program.

When the user clicks on a main-menu item with the mouse or presses the Alt key and the
underlined letter in the menu text, Windows displays a pop-up menu for that item. The
pop-up menu for NOTEPAD'S keyword File is shown in Figure 17-5. Items are selected
from a pop-up menu in the same way they are selected from the system menu.

A Windows program can display options on the menu in grayed text to indicate that they
are not currently valid. The program can also display checkmarks to the left of pop-up
menu items to indicate which of several options have been selected by the user.

In addition, items on a pop-up menu can be followed by an ellipsis (...) to indicate that
selecting the item invokes a dialog box that prompts the user for additional information—
more than can be provided by the menu.

Client area. The client area of the window is where the program displays data. In the case
of the NOTEPAD program shown in Figure 17-2, the client area displays the file currently
being edited. A program's handling of keyboard and mouse input within the client area
depends on the type of work it does.

Scroll bars. Programs that cannot display all the data in a file within the client area of the
window often have a horizontal scroll bar across the bottom and a vertical scroll bar down

the right edge. Both types of scroll bars have a small, boxed arrow at each end to indicate
the direction in which to scroll. In the NOTEPAD window in Figure 17-2, for example,
clicking on the up arrow of the vertical scroll bar moves the data within the window down

Eile Edit Search

Ilpen...

Save As...
firirit

Exit

flhout Notepad...

Figure 17-5. The NOTEPAD program's pop-up file menu.

Section II: Programming in the MS-DOS Environment 503

Part D: Directions of MS-DOS

one line. Clicking on the shaded part of the vertical scroll bar above the thumb (the box
near the middle) moves the data within the client area of the window down one screen;
clicking below the thumb moves the data up one screen. The user can also drag the thumb
with the mouse to move to a relative position within the file.

Windows programs often include a keyboard interface (generally relying on the cursor-
movement keys) to duplicate the mouse-based scroll-bar commands.

Window border. The window border is a thick frame surrounding the entire window. It is
segmented into eight sections that represent the four sides and four corners of the window.
The user can change the size of a window by dragging the window border with the
mouse. Dragging a corner section moves two adjacent sides of the border.

When a program is maximized to fill the full screen, Windows does not draw the window
border. Programs that use a window of a fixed size do not have a window border either.

Dialog boxes

When a pop-up menu is not adequate for all the command options a program requires, the
program can display a dialog box. A dialog box is a pop-up window that contains various
controls in the form of push buttons, check boxes, radio buttons, list boxes, and text and
edit fields. Programmers can also design their own controls for use in dialog boxes. A user
fills in a dialog box and then clicks on a button, such as OK, or presses Enter to indicate
that the information can be processed by the program.

Most Windows programs use a dialog box to open an existing data file and load it into the
program. The program displays the dialog box when the user selects the Open option on
the File pop-up menu. The sample dialog box shown in Figure 17-6 is from the NOTEPAD
program.

The list box displays a list of all valid disk drives, the subdirectories of the current direc
tory, and all the filenames in the current directory, including the filename extension used
by the program. (NOTEPAD uses the extension .TXT for its data files.) The user can scroll
through this list box and change the current drive or subdirectory or select a filename with
the keyboard or the mouse. The user can also perform these actions by typing the name
directly into the edit field.

Open File Name:

Eiles in C:\UIN2

LETTER.TXT
REODME.TXT
TGDO.TXT
UPDflTE.TXT
[-R-]
[-B-]

LzCzi

Cancel

Push

buttons

List box

Figure 17-6. A dialog boxfrom the NOTEPAD program, with parts labeled.

504 The MS-DOS Encyclopedia

Article 17: Windows

Check

boxes

Terninal Settings

lerminal Type Si[UT52l O ftNSI -

dhew Line □ Local Echo IZIfiuto Wraparound

Text size <8) Large O Small

Lines in BuFfer:

Txanslation: GB M
lUn: m

S
Un:
Denmark/Norway

[Cancel

Radio

buttons

Figure 17-7. A dialog boxfrom the TERMINAL program, with parts labeled.

Clicking the Open button (or pressing Enter) indicates to NOTEPAD that a file has been
selected or that a new drive or subdirectory has been chosen (in this case, the program
displays the files on the new drive or subdirectory). Clicking the Cancel button (or press
ing Esc) tells NOTEPAD to close the dialog box without loading a new file.

Figure 17-7 shows a different dialog box—this one from the Windows TERMINAL com
munications program. The check boxes turn options on (indicated by an X) and off. The
circular radio buttons allow the user to select from a set of mutually exclusive options.

Another, simple form of a dialog box is called a message box. This box displays one or
more lines of text, an optional icon such as an exclamation point or an asterisk, and one
or more buttons containing the words OK, Yes, No, or Cancel. Programs sometimes use
message boxes for warnings or error messages.

The MS-DOS Executive

Within Windows, the MS-DOS Executive program (shown in Figure 17-8) serves much the
same function as the COMMAND.COM program in the MS-DOS environment.

The top of the MS-DOS Executive client area displays all valid disk drives. The current
disk drive is highlighted. Below or to the right of the disk drives is a display of the full path
of the current directory. Below this is an alphabetic listing of all subdirectories in the cur
rent directory, followed by an alphabetic listing of all files in the current directory. Sub
directory names are displayed in boldface to distinguish them from filenames.

The user can change the current drive by clicking on the disk drive with the mouse or by
pressing Ctrl and the key corresponding to the disk drive letter.

To change to one of the parent directories, the user double-clicks (clicks the mouse button
twice in succession) on the part of the text string corresponding to the directory name.
Pressing the Backspace key moves up one directory level toward the root directory. The
user can also change the current directory to a child subdirectory by double-clicking on
the subdirectory name in the list or by pressing the Enter key when the cursor highlight is
on the subdirectory name. In addition, the menu also contains an option for changing the
current directory.

Section II: Programming in the MS-DOS Environment 505

£ile Uiew Special

aB bQQbIdB eB fB gB
C:AT DRIUE C \UINDOWS

CALENDAR.EXE

CLIPBRD.EXE

CLOCK.EXE

COHTROL.EXE

COURA.FON

CQURB.FON

COURC.FON

COURD.FON

COURE.FON

DDE.EXE

EGA.FOM

EMAIL.TRM

GDI.EXE

HELUA.FOH

HELUB.FON

HELUC.FON

HELUD.FON

KERHEL.EXE

MODERN.FON

MSDGS.EXE

MSDOSD.EXE

HOTEPAD.EXE

PAINT.EXE

REUERSI.EXE

ROMAN.FOM

SCRIPT.FON

SPOOLER.EXE

TERMIHAL.EXE

TMSRA.FGN

TMSRB.FON

TMSRC.FOH

TMSRD.FOH

TMSRE.FOH

WIH.CNF

UIN.COM

UIN.IMI

UIN20e.BIN

UIN2Q0.0UL

UINDATA.BIH

UINOLDAP.MOD

URITE.EXE

Figure 17-8. The MS-DOS Executive.

The user can run a program by double-clicking on the program filename, by pressing the
Enter key when the highlight is on the program name, or by selecting it from a menu.

Other menu options allow the user to display the file and subdirectory lists in a variety
of ways. A long format includes the same information displayed by the MS-DOS DIR com
mand, or the user can choose to display a select group of files. Menu options also enable
the user to specify whether the files should be listed in alphabetic order by filename, by
filename extension, or by date or size.

The remaining options on the MS-DOS Executive menu allow the user to run programs;
copy, rename, and delete files; format a floppy disk; change a volume name; make a
system disk; create a subdirectory; and print a text file.

Other Windows Programs

Windows 2.0 also includes a number of application and utility programs. The application
programs are CALC (a calculator), CALENDAR, CARDFILE (a database arranged as a
series of index cards), CLOCK, NOTEPAD, PAINT (a drawing and painting program),
REVERSI (a game), TERMINAL, and WRITE (a word processor).

The utility programs include

CLIPBRD. This program displays the current contents of the Clipboard, which is a storage
facility that allows users to transfer data from one program to another.

506 The MS-DOS Encyclopedia

Article 17: Windows

CONTROL. The Control Panel utility allows the user to add or delete font files and printer
drivers and to change the following: current printer, printer output port, communications
parameters, date and time, cursor blink rate, screen colors, border width, mouse double
click time and options, and country-specific information, such as time and date formats.
The Control Panel stores much of this information in the file named WIN.INI (Windows

Initialization), so the information is available to other Windows programs.

PIFEDIT The PIF editor allows the user to create or modify the PIFs that contain infor
mation about standard applications that have not been specially designed to run under
Windows. This information allows Windows to adjust the environment in which the
program runs.

SPOOLER. Windows uses the print-spooler utility to print files without suspending the
operation of other programs. Most printer-directed output from Windows programs goes
to the print spooler, which then prints the files while other programs run. SPOOLER
enables the user to change the priority of print jobs or to cancel them.

The Structure of Windows

When programs run under MS-DOS, they make requests of the operating system through
MS-DOS software interrupts (such as Interrupt 21H), through BIOS software interrupts, or
by directly accessing the machine hardware.

When programs run under Windows, they use MS-DOS function calls only for file input
and output and (more rarely) for executing other programs. Windows programs do not use
MS-DOS function calls for memory management, keyboard input, display or printer out
put, or RS232 communications. Nor do Windows programs use BIOS routines or direct
access to the hardware.

Instead, Windows provides application programs with access to more than 450 functions
that allow programs to create and manipulate windows on the display; use menus, dialog
boxes, and scroll bars; display text and graphics within the client area of a window; use
the printer and RS232 communications port; and allocate memory.

The Windows modules

The functions provided by Windows are largely handled by three main modules named
KERNEL, GDI, and USER. The KERNEL module is responsible for scheduling and multi
tasking, and it provides functions for memory management and some file I/O. The GDI
module provides Windows' Graphics Device Interface functions, and the USER module
does everything else.

The USER and GDI modules, in turn, call functions in various driver modules that are also
included with Windows. Drivers control the display, printer, keyboard, mouse, sound,
RS232 port, and timer. In most cases, these driver modules access the hardware of the com
puter directly. Windows includes different driver files for various hardware configurations.
Hardware manufacturers can also develop Windows drivers specifically for their products.

Section II: Programming in the MS-DOS Environment 507

Part D: Directions of MS-DOS

A block diagram showing the relationships of an application program, the KERNEL, USER,
and GDI modules, and the driver modules is shown in Figure 17-9. The figure shows each
of these modules as a separate file—KERNEL, USER, and GDI have the extension .EXE;
the driver files have the extension .DRV. Some program developers install Windows with
these modules in separate files, as in Figure 17-9, but most users install Windows by
running the SETUP program included with Windows.

SETUP combines most of these modules into two larger files called WIN200.BIN and
WIN200.0VL. Printer drivers are a little different from the other driver files, however,
because the Windows SETUP program does not include them in WIN200.BIN and
WIN200.0VL. The name of the driver file identifies the printer. For example, IBMGRX.DRV
is a printer driver file for the IBM Personal Computer Graphics Printer.

Display

Printer

Keyboard

■>- Mouse

Sound hardware

RS-232 hardware

■>• Tinier hardware

MS-DOS file I/O

Memory management

SYSTEM.DRV

DISPLAY.DRV

COMM.DRV

SOUND.DRV

KEYBOARD.DRV

MOUSE.DRV

Printer driver

Windows
application

program

KERNEL.EXE

GDI.EXE

USER.EXE

Figure 17-9. A simplified block diagram showing the relationships of an application program, Windows
modules (GDI, USER, and KERNEL), driver modules, and system hardware.

508 The MS-DOS Encyclopedia

Article 17: Windows

The diagram in Figure 17-9 is somewhat simplified. In reality, a Windows application
program can also make direct calls to the KEYBOARD.DRV and SOUND.DRV modules,
and USER.EXE calls the DISPLAY.DRV and printer driver modules directly. The GDI.EXE
module and driver modules can also call routines in KERNEL.EXE, and drivers sometimes

call routines in SYSTEM.DRV.

Also, Figure 17-9 omits the various font files provided with Windows, the WIN.INI file
that contains Windows initialization information and user preferences, and the files
WINOLDARMOD and WINOLDARGRB, which Windows uses to run standard MS-DOS
applications.

libraries and programs

The USER.EXE, GDI.EXE, and KERNEL.EXE files, all driver files with the extension .DRY,
and all font files with the extension .EON are called Windows libraries or, sometimes,

dynamic link libraries to distinguish them from Windows programs. Programs and
libraries both use a file format called the New Executable format.

From the user's perspective, a Windows program and a Windows library are very differ
ent. The user cannot run a Windows library directly: Windows loads a part of a library into
memory only when a program needs to use a function that the library provides.

The user can also run multiple instances of the same Windows program. Windows uses
the same code segments for the different instances but creates a unique data segment for
each. Windows never runs multiple instances of a Windows library.

From the programmer's perspective, a Windows program is a task that creates and
manages windows on the display. Libraries are modules that assist the task. A programmer
can write additional library modules, which one or more programs can use. For the devel
oper, one important distinction between programs and libraries is that a Windows library
does not have its own stack; instead, the library uses the stack of the program that calls
the routine in the library.

The New Executable format used for both programs and libraries gives Windows much
more information about the module than is provided by the current MS-DOS .EXE format.
In particular, the module contains information that allows Windows to make links be
tween program modules and library modules when a program is run.

When a module (such as a library) contains functions that can be called from another
module (such as a program), the functions are said to be exported from the module that
contains them. Each exported function in a module is identified either by a name (gener
ally the name of the function) or by an ordinal (positive) number. A list of all exported
functions in a module is included in the New Executable format header section of the

module.

Conversely, when a module (such as a program) contains code that calls a function in
another module (such as a library), the function is said to be imported to the module that
makes the call. This call appears in the .EXE file as an unresolved reference to an external
function. The New Executable format identifies the module and the function name or

ordinal number that the call references.

Section II: Programming in the MS-DOS Environment 509

Part D: Directions of MS-DOS

When Windows loads a program or a library into memory, it must resolve all calls the
module makes to functions in other modules. Windows does this by inserting the ad
dresses of the functions into the code—a process called dynamic linking.

For example, many Windows programs use the function TextOut to display text in the
client area. In the code segment of the program's .EXE file, a call to TextOut appears as an
unresolved far (intersegment) call. The code segment's relocation table shows that this call
is to an imported function in the GDI module identified by the ordinal number 33. The
header section of the GDI module lists TextOut as an exported function with the ordinal
number 33. When Windows loads the program, it resolves all references to TextOut by
inserting the address of the function into the program's code segment in each place
where TextOut is called.

Although Windows programs reference many functions that are exported from the stan
dard Windows libraries, Windows programs also often include at least one exported func
tion, called a window function. While the program is running, Windows calls this function
to pass messages to the program's window. See The Structure of a Windows Program
below.

Memory Management

Windows' memory management is based on the segmented-memory architecture of
the Intel 8086 family of microprocessors. The memory space controlled by Windows is
divided into segments of various lengths. Windows uses separate segments for nearly
everything kept in memory—such as the code and data segments of programs and
libraries—and for resources, such as fonts and bitmaps.

Windows programs and libraries contain one or more code segments, which are usually
both movable and discardable. Windows can move a code segment in memory in order to
consolidate free memory space. It can also discard a code segment from memory and later
reload the code segment from the program's or library's .EXE file when it is needed again.
This capability is called demand loading.

Windows programs usually contain only one data segment; Windows libraries are limited
to one data segment. In most cases, Windows can move data segments in memory. How
ever, it cannot usually discard data segments, because they can contain data that changes
after the program begins executing. When a user runs multiple copies of a program, the
different instances share the same code segments but have separate data segments.

The use of movable and discardable segments allows Windows to run several large
programs in a memory space that might be inadequate for even one of the programs if the
entire program were kept in memory, as is typical under MS-DOS without Windows. The
ability of Windows to use memory in this way is called memory overcommitment.

The moving and discarding of code segments requires Windows to make special provi
sions so that intersegment calls continue to reference the correct address when a code

510 The MS-DOS Encyclopedia

Article 17: Windows

segment is moved. These provisions are another part of dynamic linking. When Windows
resolves a far call from one code segment to a function in another code segment that is
movable and discardable, the call actually references a fixed area of memory. This fixed
area of memory contains a small section of code called a thunk. If the code segment con
taining the function is currently in memory, the thunk simply jumps to the function. If the
code segment with the function is not currently in memory, the thunk calls a loader that
loads the segment into memory. This process is called dynamic loading. When Windows
moves or discards a code segment, it must alter the thunks appropriately.

Windows and Windows programs generally reference data structures stored in Windows'
memory space by using l6-bit unsigned integers known as handles. The data structure that
a handle references can be movable and discardable, so when Windows or the Windows
program needs to access the data directly, it must lock the handle to cause the data to
become fixed in memory. The function that locks the segment returns a pointer to the
program.

During the time the handle is locked, Windows cannot move or discard the data. The data
can then be referenced directly with the pointer. When Windows (or the Windows pro
gram) finishes using the data, it unlocks the segment so that it can be moved (or in some
cases discarded) to free up memory space if necessary.

Programmers can choose to allocate nonmovable data segments, but the practice is not
recommended, because Windows cannot relocate the segments to make room for seg
ments required by other programs.

The Structure of a Windows Program

During development, a Windows program includes several components that are combined
later into a single executable file with the extension .EXE for execution under Windows.
Although the Windows executable file has the same .EXE filename extension as MS-DOS
executable files, the format is different. Among other things, the New Executable format
includes Windows-specific information required for dynamic linking and the discarding
and reloading of the program's code segments.

Programmers generally use C, Pascal, or assembly language to create applications specially
designed to run under Windows. Also required are several header files and development
tools, which are included in the Microsoft Windows Software Development Kit.

The Microsoft Windows Software Development Kit

The Windows Software Development Kit contains reference material, a special linker
(LINK4), the Windows Resource Compiler (RC), special versions of the SYMDEB and
CodeView debuggers, header files, and several programs that aid development and testing.
These programs include

• DIALOG: Used for creating dialog boxes.
• ICONEDIT: Used for creating a program's icon, customized cursors, and bitmap

images.

Section II: Programming in the MS-DOS Environment 511

• FONTEDIT: Used for creating customized fonts derived from an existing font file
with the extension .FNT.

• HEAPWALK: Used for displaying the organization of code and data segments in
Windows' memory space and for testing programs under low memory conditions.

• SHAKER: Used for randomly allocating memory to force segment movement and
discarding. SHAKER tests a program's response to movement in memory and is useful
for exposing program bugs involving pointers to unlocked segments.

The Windows Software Development Kit also provides several include and header files
that contain declarations of all Windows functions, definitions of many macro identifiers
that the programmer can use, and structure definitions. Import libraries included in the
kit allow LINK4 to resolve calls to Windows functions and to prepare the program's .EXE
file for dynamic linking.

Work with the Windows Software Development Kit requires one of the following com
pilers or assemblers:

• Microsoft C Compiler version 4.0 or later
• Microsoft Pascal Compiler version 3-31 or later
• Microsoft Macro Assembler version 4.0 or later

Other software manufacturers also provide compilers that are suitable for compiling
Windows programs.

Components of a Windows program

The discussion in this section is illustrated by a program called SAMPLE, which displays
the word Windows in its client area. In response to a menu selection, the program

I lypeface lypeface

Window:
IM: lypeface

fclows WWmcLay.

Figure 17-10. A display produced by the example program SAMPLE.

512 The MS-DOS Encyclopedia

Article 17: Windows

displays this text in any of the three vector fonts — Script, Modern, and Roman—that are
included with Windows. Sometimes also called stroke or graphics fonts, these vector fonts
are defined by a series of line segments, rather than by the pixel patterns that make up the
more common raster fonts. The SAMPLE program picks a font size that fits the client area.

Figure 17-10 shows several instances of this program running under Windows.

Five separate files go into the making of this program:

1. Source-code file: This is the main part of the program, generally written in C, Pascal,
or assembly language. The SAMPLE program was written in C, which is the most
popular language for Windows programs because of its flexibility in using pointers
and structures. The SAMPLE.C source-code file is shown in Figure 17-11.

/* SAMPLE.C — Demonstration Windows Program */

#include <windows.h>

#include "sample.h"

long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

int PASCAL WinMain (hinstance, hPrevInstance, IpszCmdLine, nCmdShow)

HANDLE hinstance, hPrevInstance ;

LPSTR IpszCmdLine ;

int nCmdShow ;

{

WNDCLASS wndclass ;

HWND hWnd ;

MSG msg ;

static char szAppName [] = "Sample" ;

/* */

/* Register the Window Class */

if (!hPrevInstance)

{

wndclass.style = CS_HREDRAW 1 CS_VREDRAW ;

wndclass.IpfnWndProc = WndProc ;

wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;

wndclass.hinstance = hinstance ;

wndclass.hicon = NULL ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground = GetStockObject (WHITE—BRUSH) ;

wndclass.IpszMenuName = szAppName ;

wndclass.IpszClassName = szAppName ;

RegisterClass (fifwndclass) ;

}

Figure 17-11. The SAMPLE.C source code. (more)

Section II: Programming in the MS-DOS Environment 513

Part D: Directions of MS-DOS

/* */

/* Create the window and display it */
/* */

hWnd = CreateWindow (szAppName, "Demonstration Windows Program",

WS_OVERLAPPEDWINDOW,

(int) CW_USEDEFAULT, 0,

(int) CW_USEDEFAULT, 0,

NULL, NULL, hinstance, NULL) ;

ShowWindow (hWnd, nCmdShow) ;

UpdateWindow (hWnd) ;

/* */

/* Stay in message loop until a WM—QUIT message */
/* */

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

return msg.wParam ;

long FAR PASCAL WndProc (hWnd, iMessage, wParam, iParam)

HWND hWnd ;

unsigned iMessage ;

WORD wParam ;

LONG IParam ;

{

PAINTSTRUCT ps ;

HFONT hFont ;

HMENU hMenu ;

static short xClient, yClient, nCurrentFont = IDM_SCRIPT ;

static BYTE cFamily [] = { FF_SCRIPT, FF_MODERN, FF_ROMAN

static char *szFace [] = { "Script", "Modern", "Roman"

switch (iMessage)

/* */

/* WM_COMMAND message: Change checJcmarked font */
/* */

case WM_COMMAND:

hMenu = GetMenu (hWnd) ;

CheckMenuItem (hMenu, nCurrentFont, MF_UNCHECKED) ;

nCurrentFont = wParam ;

CheckMenuItem (hMenu, nCurrentFont, MF—CHECKED) ;

InvalidateRect (hWnd, NULL, TRUE) ;

break ;

Figure 17-11. Continued. (more)

514 The MS-DOS Encyclopedia

Article 17: Windows

/* */

/* WM_SIZE message: Save dimensions of window */
/* */

case WM_SIZE:

xClient = LOWORD (IParam) ;

yClient = HIWORD (IParam) ;

break ;

/* */

/* WM_PAINT message: Display "Windows" in Script */
/* */

case WM_PAINT:

BeginPaint (hWnd, &ps) ;

hFont = CreateFont (yClient, xClient / 8,

0, 0, 400, 0, 0, 0, OEM_CHARSET,

OUT_STROKE_PRECIS, OUT_STROKE_PRECIS,

DRAFT_QUALITY, (BYTE) VARIABLE_PITCH 1

cFamily [nCurrentFont - IDM_SCRIPT],

szFace [nCurrentFont - IDM_SCRIPT]) ;

hFont = SelectObject (ps.hdc, hFont) ;

TextOut (ps.hdc, 0, 0, "Windows", 7) ;

DeleteObject (SelectObject (ps.hdc, hFont)) ;

EndPaint (hWnd, &ps) ;

break ;

/* */

/* WM-DESTRGY message: Post Quit message */
/* */

case WM_DESTROY:

PostQuitMessage (0) ;

break ;

/* */

/* Other messages: Do default processing */
/* */

default:

return DefWindowProc (hWnd, iMessage, wParam, IParam) ;

}

return OL ;

}

Figure 17-11. Continued.

Section II: Programming in the MS-DOS Environment 515

Part D: Directions of MS-DOS

2. Resource script: The resource script is an ASCII file that generally has the extension
.KG. This file contains definitions of menus, dialog boxes, string tables, and keyboard
accelerators used by the program. The resource script can also reference other files
that contain icons, cursors, bitmaps, and fonts in binary form, as well as other read
only data defined by the programmer. When a program is running, Windows loads
resources into memory only when they are needed and in most cases can discard
them if additional memory space is required.

SAMPLE.RC, the resource script for the SAMPLE program, is shown in Figure 17-12; it
contains only the definition of the menu used in the program.

#include "sample.h"

Sample MENU

BEGIN

POPUP "STypeface"

BEGIN

MENUITEM "SScript", IDM_SCRIPT, CHECKED

MENUITEM "SModern", IDM_MODERN

MENUITEM "&Roman", IDM_ROMAN

END

END

Figure 17-12. The resource scriptfor the SAMPLEprogram.

3. Header (or include) file: This file, with the extension .H, can contain definitions of
constants or macros, as is customary in C programming. For Windows programs, the
header file also reconciles constants used in both the resource script and the pro
gram source-code file. For example, in the SAMPLE.RC resource script, each item in
the pop-up menu ̂Script, Modern, and Roman) also includes an identifier—
IDM_SCRIPT, IDM_MODERN, and IDM_ROMAN, respectively. These identifiers
are merely numbers that Windows uses to notify the program of the user's selection
of a menu item. The same names are used to identify the menu selection in the C
source-code file. And, because both the resource compiler and the source-code com
piler must have access to these identifiers, the header file is included in both the
resource script and the source-code file.

The header file for the SAMPLE program, SAMPLE.H, is shown in Figure 17-13.

#define IDM_SCRIPT 1

tdefine IDM_MODERN 2

#define IDM_ROMAN 3

Figure 17-13. The SAMPLE.H header file.

4. Module-definition file: The module-definition file generally has a .DEF extension.
The Windows linker uses this file in creating the executable .EXE file. The module-
definition file specifies various attributes of the program's code and data segments,
and it lists all imported and exported functions in the source-code file. In large pro
grams that are divided into multiple code segments, the module-definition file allows
the programmer to specify different attributes for each code segment.

516 The MS-DOS Encyclopedia

Article 17: Windows

The module-definition file for the SAMPLE program is named SAMPLE.DEF and is
shown in Figure 17-14.

NAME SAMPLE

DESCRIPTION 'Demonstration Windows Program'

STUB 'WINSTUB.EXE'

CODE MOVABLE

DATA MOVABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 4096

EXPORTS WndProc

Figure 17-14. The SAMPLE.DBF module-definition file.

5. Make file: To facilitate construction of the executable file from these different com

ponents, Windows programmers often use the MAKE program to compile only those
files that have changed since the last time the program was linked. To do this, the
programmer first creates an ASCII text file called a make file. By convention, the
make file has no extension.

The make file for the SAMPLE program is named SAMPLE and is shown in Figure
17-15. The programmer can create the SAMPLE.EXE executable file by executing

OMAKE SAMPLE <Enter>

A make file often contains several sections, each beginning with a target filename,
followed by a colon and one or more dependent filenames, such as

sample.obj : sample.c sample.h

If either or both the SAMPLE.G and SAMPLE.H files have a later creation time than

SAMPLE.OBJ, then MAKE runs the program or programs listed immediately below.
In the case of the SAMPLE make file, the program is the C compiler, and it compiles
the SAMPLE.G source code:

cl -c -Gsw -W2 -Zdp sample.c

Thus, if the programmer changes only one of the several files used in the develop
ment of SAMPLE, then running MAKE ensures that the executable file is brought up
to date, while carrying out only the required steps.

sample.obj : sample.c sample.h

cl -c -Gsw -W2 -Zdp sample.c

sample.res : sample.rc sample.h

rc -r sample.rc

sample.exe : sample.obj sample.def sample.res

link4 sample, /align:16, /map /line, slibw, sample

rc sample.res

mapsym sample

Figure 17-15. The makefilefor the SAMPLEprogram.

Section II: Programming in the MS-DOS Environment 517

Part D: Directions of MS-DOS

Construction of a Windows program

The make file shows the steps that create a program's .EXE file from the various
components:

1. Compiling the source-code file:

cl -c -Gsw -W2 -Zdp sample.c

This step uses the CL.EXE C compiler to create a .OBJ object-module file. The com
mand line switches are

- -c: Compiles the program but does not link it. Windows programs must be linked
with Windows' LINK4 linker, rather than with the LINK program the C compiler
would normally invoke.

- -Gsw: Includes two switches, -Gs and -Gw. The -Gs switch removes stack checks

from the program. The -Gw switch inserts special prologue and epilogue code in
all far functions defined in the program. This special code is required for Win
dows' memory management.

- -W2: Compiles with warning level 2. This is the highest warning level, and it causes
the compiler to display messages for conditions that may be acceptable in normal C
programs but that can cause serious errors in a Windows program.

- -Zdp: Includes two switches, -Zd and -Zp. The -Zd switch includes line numbers
in the .OBJ file—helpful for debugging at the source-code level. The -Zp switch
packs structures on byte boundaries. The -Zp switch is required, because data
structures used within Windows are in a packed format.

2. Compiling the resource script:

rc -r sample.rc

This step runs the resource compiler and converts the ASCII .RC resource script into a
binary .RES form. The -r switch indicates that the resource script should be compiled
but the resources should not yet be added to the program's .EXE file.

3. Linking the program:

link4 sample, /align:16, /map /line, slibw, sample

This step uses the special Windows linker, LINK4. The first parameter listed is the
name of the .OBJ file. The /align: l6 switch instructs LINK4 to align segments in the
.EXE file on 16-byte boundaries. The /map and /line switches cause LINK4 to create a
.MAP file that contains program line numbers—again, useful for debugging source
code. Next, slibw is a reference to the SLIBW.LIB file, which is an import library that
contains module names and ordinal numbers for all Windows functions. The last

parameter, sample, is the program's module-definition file, SAMPLE.DEF.
4. Adding the resources to the .EXE file:

rc sample.res

518 The MS-DOS Encyclopedia

Article 17: Windows

This step runs the resource compiler a second time, using the compiled resource file,
SAMPLE.RES. This time, the resource compiler adds the resources to the .EXE file.

Module

definition file

(.DEF)

Program

source code

(.C, .PAS, or .ASM)

C or Pascal

Compiler or
Macro Assembler

Object module
(.OBJ)

LINK4.EXE

Window linker

Map file

(.MAP)

Executable

without resources

(.EXE)

> r i 1
MAPSYM.EXE

Converts map file

to symbol file

RC.EXE

Resource compiler

1

Symbol file
(.SYM)

Executable

(.EXE)

Header or

include files

(.Hor.INC)

Resource script

(.RC)

RC.EXE

Resource compiler

Libraries

(.LIB)

Compiled resources
(.RES)

Figure 17-16. A block diagram showing the creation ofa Windows .EXEfile.

Section II: Programming in the MS-DOS Environment 519

Part D: Directions of MS-DOS

5. Creating a symbol (.SYM) file from the linker's map (.MAP) file:

mapsym sample

This step is required for symbolic debugging with SYMDEB.

Figure 17-16 on the preceding page shows how the various components of a Windows pro
gram fit into the creation of a .EXE file.

Program initialization

The SAMFLE.G program shown in Figure 17-11 contains some code that appears in almost
every Windows program. The statement

#include <windows.h>

appears at the top of every Windows source-code file written in C. The WINDOWS.H file,
provided with the Microsoft Windows Software Development Kit, contains templates for
all Windows functions, structure definitions, and #define statements for many mnemonic
identifiers.

Some of the variable names in SAMFLE.G may look unusual to G programmers because
they begin with a prefix notation that denotes the data type of the variable. Windows
programmers are encouraged to use this type of notation. Some of the more common
prefixes are

Prefix Data Type

i or n Integer (l6-bit signed integer)
w Word (l6-bit unsigned integer)
1 Long (32-bit signed integer)
dw Doubleword (32-bit unsigned integer)
h Handle (l6-bit unsigned integer)
sz Null-terminated string
Ipsz Long pointer to null-terminated string
Ipfn Long pointer to a function

The program's entry point (following some startup code) is the WinMain function,
which is passed the following parameters: a handle to the current instance of the
program (hinstance), a handle to the most recent previous instance of the program
(hFrevInstance), a long pointer to the program's command line (IpszGmdLine), and a
number (nGmdShow) that indicates whether the program should initially be displayed as a
normally sized window or as an icon.

The first job SAMFLE performs in the WinMain function is to register a window class—a
structure that describes characteristics of the windows that will be created in the class.

These characteristics include background color, the type of cursor to be displayed in the
window, the window's initial menu and icon, and the window function (the structure

member called IpfnWndFroc).

520 The MS-DOS Encyclopedia

Article 17: Windows

Multiple instances of a program can share the same window class, so SAMPLE registers the
window class only for the first instance of the program:

if (!hPrevInstance)

{

wndclass.style = CS_HREDRAW 1 CS_VREDRAW ;

wndclass.IpfnWndProc = WndProc ;

wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;

wndclass.hinstance = hinstance ;

wndclass.hicon = NULL ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

wndclass.IpszMenuName = szAppName ;

wndclass.IpszClassName = szAppName ;

RegisterClass (&wndclass) ;

}

The SAMPLE program then creates a window using the CreateWindow call, displays it to
the screen by calling ShowWindow, and updates the client area by calling UpdateWindow:

hWnd = CreateWindow (szAppName, "Demonstration Windows Program",

WS_OVERLAPPEDWINDOW,

(int) CW_USEDEFAULT,0,

(int) CW_USEDEFAULT,0,

NULL, NULL, hinstance, NULL) ;

ShowWindow (hWnd, nCmdShow) ;

UpdateWindow (hWnd) ;

The first parameter to CreateWindow is the name of the window class. The second param
eter is the actual text that appears in the window's title bar. The third parameter is the style
of the window—in this case, the WINDOWS.H identifier WS_OVERLAPPEDWINDOW.

The WS__OVERLAPPEDWINDOW is the most common window style. The fourth through
seventh parameters specify the initial position and size of the window. The identifier
CW_USEDEFAULT tells Windows to position and size the window according to the default
rules.

After creating and displaying a Window, the SAMPLE program enters a piece of code
called the message loop:

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

return msg.wParam ;

This loop continues to execute until the GetMessage call returns zero. When that happens,
the program instance terminates and the memory required for the instance is freed.

Section II: Programming in the MS-DOS Environment 521

Part D: Directions of MS-DOS

The Windows messaging system

Interactive programs written for the normal MS-DOS environment generally obtain user
input only from the keyboard, using either an MS-DOS or a ROM BIOS software interrupt
to check for keystrokes. When the user types something, such programs act on the key
stroke and then return to wait for the next keystroke.

Programs written for Windows, however, can receive user input from a variety of sources,
including the keyboard, the mouse, the Windows timer, menus, scroll bars, and controls,
such as buttons and edit boxes.

Moreover, a Windows program must be informed of other events occurring within the
system. For instance, the user of a Windows program might choose to make its window
smaller or larger. Windows must make the program aware of this change so that the pro
gram can adjust its screen output to fit the new window size. Thus, for example, if a Win
dows program is minimized as an icon and the user maximizes its window to fill the full
screen, Windows must inform the program that the size of the client area has changed
and needs to be re-created.

Windows carries out this job of keeping a program informed of other events through the
use of formatted messages. In effect, Windows sends these messages to the program. The
Windows program receives and acts upon the messages.

This messaging makes the relationship between Windows and a Windows program much
different from the relationship between MS-DOS and an MS-DOS program. Whereas
MS-DOS does not provide information until a program requests it through an MS-DOS
function call, Windows must continually notify a program of all the events that affect its
window.

Window messages can be separated into two major categories: queued and nonqueued.

Queued messages are similar to the keyboard information an MS-DOS program obtains
from MS-DOS. When the Windows user presses a key on the keyboard, moves the mouse,
or presses one of the mouse buttons, Windows saves information about the event (in the
form of a data structure) in the system message queue. Each message is destined for a par
ticular window in a particular instance of a Windows program. Windows therefore deter
mines which window should get the information and then places the message in the
instance's own message queue.

A Windows program retrieves information from its queue in the message loop:

while (GetMessage {&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

The msg variable is a structure. During the GetMessage call, Windows fills in the fields of
this structure with information about the message. The fields are as follows:

522 The MS-DOS Encyclopedia

Article 17: Windows

• hwnd\ The handle for the window that is to receive the message.
• iMessage: A numeric code identifying the type of message (for example, keyboard

or mouse).

• wParam-. A l6-bit value containing information specific to the message. See The
Windows Messages below.

• iParam-. A 32-bit value containing information specific to the message.
• time-. The time, in milliseconds, that the message was placed in the queue. The time

is a 32-bit value relative to the time at which the current Windows session began.
• pt.x: The horizontal coordinate of the mouse cursor at the time the event occurred.
• pt.y: The vertical coordinate of the mouse cursor at the time the event occurred.

GetMessage always returns a nonzero value except when it receives a quit message. The
quit message causes the message loop to end. The program should then terminate and
return control to Windows.

Within the message loop, the TranslateMessage function translates physical keystrokes into
character-code messages. Windows places these translated messages into the program's
message queue.

The DispatchMessage function essentially makes a call to the window function of the win
dow specified by the hwnd field. This window function (WndProc in SAMPLE) is indicated
in the IpfnWndProc field of the window class structure.

When DispatchMessage passes the message to the window function, Windows uses the
first four fields of the message structure as parameters to the function. The window func
tion can then process the message. In SAMPLE, for instance, the four fields passed to
WndProc are hiund (the handle to the window), iMessage (the numeric message iden
tifier), wParam, and IParam. Although Windows does not pass the time and mouse-
position information fields as parameters to the window function, this information is
available through the Windows functions GetMessageTime and GetMessagePos.

A Windows program obtains only a few specific types of messages through its message
queue. These are keyboard messages, mouse messages, timer messages, the paint message
that tells the program it must re-create the client area of its window, and the quit message
that tells the program it is being terminated.

In addition to the queued messages, however, a program's window function also receives
many nonqueued messages. Windows sends these nonqueued messages by bypassing the
message loop and calling the program's window function directly.

Many of these nonqueued messages are derived from queued messages. For example,
when the user clicks the mouse on the menu bar, a mouse-click message is placed in the
program's message queue. The GetMessage function retrieves the message and the Dis
patchMessage function sends it to the program's window function. However, because this
mouse message affects a nonclient area of the window (an area outside the window's cli
ent area), the window function normally does not process it. Instead, the function passes
the message back to Windows. In this example, the message tells Windows to invoke a
pop-up menu. Windows calls up the menu and then sends the window function several
nonqueued messages to inform the program of this action.

Section II: Programming in the MS-DOS Environment 523

Part D: Directions of MS-DOS

A Windows program is thus message driven. Once a program reaches the message loop,
it acts only when the window function receives a message. And, although a program
receives many messages that affect the window, the program usually processes only some
of them, sending the rest to Windows for normal default processing.

The Windows messages

Windows can send a window function more than 100 different messages. The
WINDOWS.H header file includes identifiers for all these messages so that C programmers
do not have to remember the message numbers. Some of the more common messages and
the meanings of the wParam and iParam parameters are discussed here:

WM^CREATE. Windows sends a window function this nonqueued message while pro
cessing the CreateWindow call. The iParam parameter is a pointer to a creation structure.
A window function can perform some program initialization during the WM_CREATE
message,

WM_MOVE. Windows sends a window function the nonqueued WM_MOVE message
when the window has been moved to another part of the display. The IParam parameter
gives the new coordinates of the window relative to the upper left corner of the screen.

WM^SIZE. This nonqueued message indicates that the size of the window has been
changed. The new size is encoded in the IParam parameter. Programs often save this
window size for later use.

WM_ PAINT. This queued message indicates that a region in the window's client area
needs repainting. (The message queue can contain only one WM_ PAINT message.)

WM_COMMAND. This nonqueued message signals a program that a user has selected a
menu item or has triggered a keyboard accelerator. Child-window controls also use
WM_COMMAND to send messages to the parent window.

WM^KEYDOWN. The wParam parameter of this queued message is a virtual key code
that identifies the key being pressed. The IParam parameter includes flags that indicate
the previous key state and the number of keypresses the message represents.

WM^KEYUP. This queued message tells a window function that a key has been released.
The wParam parameter is a virtual key code.

WM^CHAR. This queued message is generated from WM_KEYDOWN messages during
the TranslateMessage call. The wParam parameter is the ASCII code of a keyboard key.

WM_MOUSEMOVE. Windows uses this queued message to tell a program about mouse
movement. The IParam parameter contains the coordinates of the mouse relative to the
upper left corner of the client area of the window. The wParam parameter contains flags
that indicate whether any mouse buttons or the Shift or Ctrl keys are currently pressed.

WM_yiBUTTONDOWN. This queued message tells a program that a button on the mouse
was depressed while the mouse was in the window's client area. The xc^n be either L, R,
or M for the left, right, or middle mouse button. The wParam and IParam parameters are
the same as for WM^MOUSEMOVE.

524 The MS-DOS Encyclopedia

Article 17: Windows

WM^xBUTTONUP. This queued message tells a program that the user has released a
mouse button.

WM^xBUTTONDBLCLK. When the user double-clicks a mouse button, Windows
generates a WM_xBUTTONDOWN message for the first click and a queued
WM__ JcBUTTONDBLCLK message for the second click.

WMjtlMER. When a Windows program sets a timer with the SetTimer function,
Windows places a WM_TIMER message in the message queue at periodic intervals.
The wParam parameter is a timer ID. (If the message queue already contains a
WM_TIMER message, Windows does not add another one to the queue.)

WM_VSCROLL A Windows program that includes a vertical scroll bar in its window
receives nonqueued WM_ySCROLL messages indicating various types of scroll-bar
manipulation.

WM^HSCROLL This nonqueued message indicates a user is manipulating a horizontal
scroll bar.

WM_CLOSE. Windows sends a window function this nonqueued message when the user
has selected Close from the window's system menu. A program can query the user to de
termine whether any action, such as saving a file to disk, is needed before the program
is terminated.

WM_QUERYENDSESSION. This nonqueued message indicates that the user is shutting
down Windows by selecting Close from the MS-DOS Executive system menu. A program
can request the user to verify that the program should be ended. If the window function
returns a zero value from the message, Windows does not end the session.

WM^DESTROY. This nonqueued message is the last message a window function receives
before the program ends. A window function can perform some last-minute cleanup while
processing WM_ DESTROY.

WM^QUIT. This is a queued message that never reaches the window function because it
causes GetMessage to return a zero value that causes the program to exit the message loop.

Message processing

Programmers can choose to process some messages and ignore others in the window
function. Messages that are ignored are generally passed on to the function
Def WindowProc for default processing within Windows.

Because Windows eventually has access to messages that a window function does not
process, it can send a program messages that might otherwise be regarded as pertaining to
system functions—for example, mouse messages that occur in a nonclient area of the win
dow, or system keyboard messages that affect the menu. Unless these messages are passed
on to Def WindowProc, the menu and other system functions do not work properly.

A program can, however, trap some of these messages to override Windows' default pro
cessing. For example, when Windows needs to repaint the nonclient area of a window (the
title bar, system-menu box, and scroll bars), it sends the window function a WM_NCPAINT

Section II: Programming in the MS-DOS Environment 525

Part D: Directions of MS-DOS

(nonclient paint) message. The window function normally passes this message to
Def WindowProc, which then calls routines to update the nonclient areas of the window.
The program can, however, choose to process the WM_NCPAINT message and paint the
nonclient area itself. A program that does this can, for example, draw its own scroll bars.

The Windows messaging system also notifies a program of important events occurring
outside its window. For example, if the MS-DOS Executive were simply to end the Win
dows session when the user selects the Close option from its system menu, then applica
tions that were still running would not have a chance to save changed files to disk. Instead,
when the user selects Close from the last instance of the MS-DOS Executive's system
menu, the MS-DOS Executive sends a WM__QUERYENDSESSION message to each cur
rently running application. If any application responds by returning a zero value, the MS-
DOS Executive does not end the Windows session.

Before responding, an application can process the WM_QUERYENDSESSION message
and display a message box asking the user if a file should be saved. The message box
should include three buttons labeled Yes, No, and Cancel. If the user answers Yes, the pro
gram can save the file and then return a nonzero value to the WM_QUERYENDSESSION
message. If the user answers No, the program can return a nonzero value without saving
the file. But if the user answers Cancel, the program should return a zero value so that
the Windows session will not be ended. If a program does not process the
WM_QUERYENDSESSION message, Def WindowProc returns a nonzero value.

When a user selects Close from the system menu of a particular instance of an application,
rather than from the MS-DOS Executive's menu, Windows sends the window function a
WM_CLOSE message. If the program has an unsaved file loaded, it can query the user with
a message box—possibly the same one displayed when WM_QUERYENDSESSION is
processed. If the user responds Yes to the query, the program can save the file and then
call DestroyWindow. If the user responds No, the program can call DestroyWindow
without saving the file. If the user responds Cancel, the window function does not call
DestroyWindow and the program will not be terminated. If a program does not process
WM_CLOSE messages, Def WindowProc calls DestroyWindow.

Finally, a window function can send messages to other window functions, either within
the same program or in other programs, with the Windows SendMessage function. This
function returns control to the calling program after the message has been processed. A
program can also place messages in a program's message queue with the PostMessage
function. This function returns control immediately after posting the message.

For example, when a program makes changes to the WIN.INI file (a file containing
Windows initialization information), it can notify all currently running instances of these
changes by sending them a WM_WININICHANGE message:

SendMessage (-1, WM_WININICHANGE, 0, OL) ;

The -1 parameter indicates that the message is to be sent to all window functions of
all currently running instances. Windows calls the window functions with the
WM__WININICHANGE message and then returns control to the program that sent the
message.

526 The MS-DOS Encyclopedia

Article 17: Windows

SAMPLE'S message processing

The SAMPLE program shown in Figure 17-11 processes only four messages:
WM_COMMAND, WM_SIZE, WM_ PAINT, and WM_ DESTROY. All other messages are
passed to Def WindowProc. As is typical with most Windows programs written in C,
SAMPLE uses a switch and case construction for processing messages.

The WM_COMMAND message signals the program that the user has selected a new font
from the menu. SAMPLE first obtains a handle to the menu and removes the checkmark

from the previously selected font:

hMenu = GetMenu (hWnd) ;

CheckMenuItem (hMenu, nCurrentFont, MF_UNCHECKED) ;

The value of wParam in the WM_COMMAND message is the menu ID of the newly
selected font. SAMPLE saves that value in a static variable (nCurrentFont) and then places a
checkmark on the new menu choice:

nCurrentFont = wParam ;

CheckMenuItem (hMenu, nCurrentFont, MF_CHECKED) ;

Because the typeface has changed, SAMPLE must repaint its display. The program does
not repaint it immediately, however. Instead, it calls the InvalidateRect function:

InvalidateRect (hWnd, NULL, TRUE) ;

This causes a WM_PAINT message to be placed in the program's message queue. The
NULL parameter indicates that the entire clietlt area should be repainted. The TRUE
parameter indicates that the background should be erased.

The WM_SIZE message indicates that the size of SAMPLE'S client area has changed.
SAMPLE simply saves the new dimensions of the client area in two static variables:

xClient = LOWORD (IParam) ;

yClient = HIWORD (iParam) ;

The LOWORD and HIWORD macros are defined in WINDOWS.H.

Windows also places a WM_ PAINT message in SAMPLE'S message queue when the size
of the client area has changed. As is the case with WM_COMMAND, the program does
not have to repaint the client area immediately, because the WM_ PAINT message is in the
message queue.

SAMPLE can receive a WM_ PAINT message for many reasons. The first WM__ PAINT mes
sage it receives results from calling UpdateWindow in the WinMain function. Later, if the
current font is changed from the menu, the program itself causes a WM_ PAINT message
to be placed in the message queue by calling InvalidateRect. Windows also sends a win
dow function a WM_ PAINT message whenever the user changes the size of the window
or when part of the window previously covered by another window is uncovered.

Programs begin processing WM_ PAINT messages by calling Begin Paint:

BeginPaint (hWnd, &ps) ;

Section II: Programming in the MS-DOS Environment 527

Part D: Directions of MS-DOS

The SAMPLE program then creates a font based on the current size of the client area and
the current typeface selected from the menu:

hFont = CreateFont (yClient, xClient / 8,

0, 0, 400, 0, 0, 0, OEM_CHARSET,

OUT_STROKE_PRECIS, OUT_STROKE_PRECIS,

DRAFT_QUALITY, (BYTE) VARIABLE_PITCH 1

cFamily [nCurrentFont - IDM_SCRIPT],

szFace [nCurrentFont - IDM_SCRIPT]) ;

The font is selected into the device context (a data structure internal to Windows that

describes the characteristics of the output device); the program also saves the original
device-context font:

hFont = SelectObject (ps.hdc, hFont) ;

And the word Windows is displayed:

TextOut (ps.hdc, 0, 0, "Windows", 7) ;

The original font in the device context is then selected, and the font that was created is
now deleted:

DeleteObject (SelectObject (ps.hdc, hFont)) ;

Finally, SAMPLE calls EndPaint to signal Windows that the client area is now updated and
valid:

EndPaint (hWnd, &ps) ;

Although the processing of the WM_ PAINT message in this program is simple, the
method used is common to all Windows programs. The Begin Paint and EndPaint func
tions always occur in pairs, first to get information about the area that needs repainting
and then to mark that area as valid.

SAMPLE will display this text even when the program is minimized to be displayed as an
icon at the bottom of the screen. Although most Windows programs use a customized icon
for this purpose, the window-class structure in SAMPLE indicates that the program's icon
is NULL, meaning that the program is responsible for drawing its own icon. SAMPLE does
not, however, make any special provisions for drawing the icon. To it, the icon is simply
a small client area. As a result, SAMPLE displays the word Windows in its "icon," using a
small font size.

Windows sends the window function the WM_DESTROY message as a result of the
DestroyWindow function that Def WindowProc calls when processing a WM_CLOSE
message. The standard processing involves placing a WM_QUIT message in the message
queue:

PostQuitMessage (0) ;

When the GetMessage function retrieves WM_QUIT from the message queue, GetMessage
returns 0. This terminates the message loop and the program.

528 The MS-DOS Encyclopedia

Article 17: Windows

For all other messages, SAMPLE calls Def WindowProc and exits the window function by
returning the value from the call:

return DefWindow?roc (hWnd, IMessage, wParam, iParam) ;

This allows Windows to perform default processing on the messages SAMPLE ignores.

Windows' multitasking

Most operating systems or operating environments that allow multitasking use what is
called a preemptive scheduler. Generally, the procedure involves use of the computer's
clock to switch rapidly between programs and allow each a small time slice. When
switching between programs, the operating system must preserve the machine state.

Windows is different. It is a nonpreemptive multitasking environment. Although Windows
allows several programs to run simultaneously, it never switches from one program to
allow another to run. It switches between programs only when the currently running pro
gram calls the GetMessage function or the related PeekMessage and WaitMessage
functions.

When a Windows program calls GetMessage and the program's message queue contains
a message other than WM_ PAINT or WM_TIMER, Windows return's control to the pro
gram with the next message. However, if the program's message queue contains only a
WM_PAINT or WM__TIMER message and another program's queue contains a message
other than WM_ PAINT or WM_TIMER, Windows returns control to the other program,
which is also waiting for its GetMessage call to return.

(Windows also switches between programs temporarily when a program uses
SendMessage to send a message to a window function in another program, but control
returns to the calling program after the window function has processed the message sent
to it.)

To cooperate with Windows' nonpreemptive multitasking, programmers should try to
perform message processing as quickly as possible. Programs can, for example, split a
large amount of processing into several smaller pieces to allow other programs to run in
the interval. During long processing a program can also periodically call PeekMessage to
allow other programs to run.

Graphics Device Interface

Programs receive input through the Windows message system. For program output,
Windows provides a device-independent interface to graphics output devices, such as the
video display, printers, and plotters. This interface is called the Graphics Device Interface,
or GDI.

Section II: Programming in the MS-DOS Environment 529

Part D: Directions of MS-DOS

The device context (DC)

When a Windows program needs to send output to the video screen, the printer, or
another graphics output device, it must first obtain a handle to the device's device context,
or DC. Windows provides a number of functions for obtaining this device-context handle:

Begin Paint Used for obtaining a video device-context handle during processing of a
WM_PAINT message. This device context applies only to the rectangular section of the
client area that is invalid (needs repainting). This region is also a clipping region, meaning
that a program cannot paint outside this rectangle. BeginPaint fills in the fields of a
PAINTSTRUCT structure. This structure contains the coordinates of the invalid rectangle
and a byte that indicates if the background of the invalid rectangle has been erased.

GetDC. Generally used for obtaining a video device-context handle during processing of
messages other than WM_ PAINT. The handle obtained with this function references only
the client area of the window.

GetWindowDC. Used for obtaining a video device-context handle that encompasses the
entire window, including the title bar, menu bar, and scroll bars. A Windows program can
use this function if it is necessary to paint over areas of the window outside the client area.

CreateDC. Used for obtaining a device-context handle for the entire display or for a
printer, a plotter, or other graphics output device.

CreatelC. Used for obtaining an information-context handle, which is similar to a
device-context handle but can be used only for obtaining information about the output
device, not for drawing.

CreateCompatibleDC. Used for obtaining a device-context handle to a memory device
context compatible with a particular graphics output device. This function is generally
used for transferring bitmaps to a graphics output device.

CreateMetaFile. Used for obtaining a metafile device-context handle. A metafile is a collec
tion of GDI calls encoded in binary form.

The Windows program uses the device-context handle when calling GDI functions. In
addition to drawing, the various GDI functions can change the attributes of the device con
text, select different drawing objects (such as pens and fonts) into the device context, and
determine the characteristics of the device context.

Device-independent programming

Windows supports such a wide variety of video displays, printers, and plotters that pro
grams cannot make assumptions about the size and resolution of the device. Furthermore,
because the user can generally alter the size of a program's window, the program must be
able to adjust its output appropriately. The SAMPLE program, for example, showed how
the window function can use the WM_SIZE message to obtain the current size of a win
dow to create a font that fits text within the window's client area.

Programs can also use other Windows functions to determine the physical characteristics
of a device. For instance, a program can use the GetDeviceCaps function to obtain

530 The MS-DOS Encyclopedia

Article 17: Windows

information about the device context, including the resolution of the device, its physical
dimensions, and its relative pixel height and width.

Then, too, the GetTextMetrics function returns information about the current font selected
in the device context. In the default device context, this is the system font. Many Windows
programs base the size of their display output on the size of a system-font character.

Device-context attributes

The device context includes attributes that define how the graphics output functions work
on the device. When a program first obtains a handle to a device context, Windows sets
these attributes to default values, but the program can change them. Some of these
device-context attributes are as follows:

Pen. Windows uses the current pen for drawing lines. The default pen produces a solid
black line 1 pixel wide. A program can change the pen color, change to a dotted or dashed
line, or make the pen draw a solid line wider than 1 pixel.

Brush. Windows uses the current brush (sometimes called a pattern) for filling areas. A
brush is an 8-pixel-by-8-pixel bitmap. The default brush is solid white. Programs can
create colored brushes, hatched brushes, and customized brushes based on bitmaps.

Background color. Windows uses the background color to fill the spaces in and between
characters when drawing text and to color the open areas in hatched brushstrokes and
dotted or dashed pen lines. Windows uses the background color only if the background
mode (another attribute of the display context) is opaque. If the background mode is
transparent, Windows leaves the background unaltered. The default background color
is white.

Text color. Windows uses this color for drawing text. The default is black.

Font. Windows uses the font to determine the shape of text characters. The default is
called the system font, a fixed-pitch font that also appears in menus, caption bars, and
dialog boxes.

Additional device-context attributes (such as mapping modes) are described in the follow
ing sections.

Mapping modes

Most GDI drawing functions in Windows have parameters that specify the coordinates or
size of an object. For instance, the Rectangle function has five parameters:

Rectangle (hDC, x1, y1, x2, y2) ;

The first parameter is the handle to the device context. The others are

• xl: horizontal coordinate of the upper left corner of the rectangle.
• yT. vertical coordinate of the upper left corner of the rectangle.
• x2'. horizontal coordinate of the lower right corner of the rectangle.
• y2'. vertical coordinate of the lower right corner of the rectangle.

Section II: Programming in the MS-DOS Environment 531

Part D: Directions of MS-DOS

In the Rectangle and most other GDI functions, coordinates are logical coordinates, which
are not necessarily the same as the physical coordinates (pixels) of the device. To translate
logical coordinates into physical coordinates, Windows uses the current mapping mode.

In actuality, the mapping mode defines a transformation of coordinates between a win
dow, which is defined in terms of logical coordinates, and a viewport, which is defined in
terms of physical coordinates. For any mapping mode, a program can define separate win
dow and viewport origins. The logical point defined as the window origin is then mapped
to the physical point defined as the viewport origin. For some mapping modes, a program
can also define window and viewport extents, which determine how the logical coordi
nates are scaled to the physical coordinates.

Windows programs can select one of eight mapping modes. The first six are sometimes
called fully constrained, because the ratio between the window and viewport extents is
fixed and cannot be changed.

In MM_TEXT, the default mapping mode, coordinates on the x axis increase from left to
right, and coordinates on the y axis increase from the top downward. In the other five fully
constrained mapping modes, coordinates on the x axis also increase from left to right, but
coordinates on the y axis increase from the bottom upward. The six fully constrained
mapping modes are

• MM^TEXT: Logical coordinates are the same as physical coordinates.
• MMULOMETRIO. Logical coordinates are in units of 0.1 millimeter.
• MM^IMETRIC: Logical coordinates are in units of 0.01 millimeter.
• MM_LOENGLISH: Logical coordinates are in units of 0.01 inch.
• MM^IENGLISH: Logical coordinates are in units of 0.001 inch.

MM_TWIPS: Logical coordinates are in units of Vi44o inch. (These units are V20 of a
typographic point, which is approximately Vii inch.)

The seventh mapping mode is called partially constrained, because a program can change
the window and viewport extents but Windows adjusts the values to ensure that equal
horizontal and vertical logical coordinates translate to equal horizontal and vertical physical
dimensions:

• MMUISOTROPIO. Logical coordinates represent the same physical distance on both
the X and y axes.

The MM_ISOTROPIC mapping mode is useful for drawing circles and squares. The
MM_LOMETRIC, MM^HIMETRIC, MM_LOENGLISH, MM^HIENGLISH, and

MM_TWIPS mapping modes are also isotropic, because equal logical coordinates map to
the same physical dimensions on both axes.

The final mapping mode is sometimes called unconstrained because a program is free to
set different window and viewport extents on the x and y axes.

• MM^ANISOTROPIC: Logical coordinates are mapped to arbitrarily scaled physical
coordinates.

532 The MS-DOS Encyclopedia

Article 17: Windows

Functions for drawing

Windows includes several functions that programs can use to draw in the client area of a
window. The most common of these functions are

SetPixel. Sets a point to a particular color.

LineTo. Draws a line from the current position to a point specified in the LineTo function.
The current position is defined in the device context and can be altered before the call to
LineTo with the MoveTo function, which changes the current position but does not draw
anything. Windows uses the current pen and the current drawing mode isee below) for
drawing the line.

Polyline. Draws multiple lines much like a series of LineTo calls but does not alter the cur
rent position on completion.

Rectangle. Draws a filled rectangle with a border. Parameters to the Rectangle function
specify the coordinates of the upper left and lower right corners of the rectangle. Windows
draws the border of the rectangle with the current pen and current drawing mode defined
in the device context, just as if it were using the Polyline function then Windows fills the
rectangle with the current brush defined in the device context.

Ellipse. Uses the same parameters as Rectangle but draws an ellipse within the rectangular
area.

RoundRect. Draws a rectangle with rounded corners. Two parameters to this function
define the height and width of an ellipse that Windows uses for drawing the rounded
corners.

Polygon. Draws a polygon connecting a series of points and fills the enclosed areas in
either an alternate or winding mode. The winding mode causes Windows to fill every area
within the polygon. The alternate mode fills every other area. For a polygon that defines a
five-pointed star, for instance, the center is filled if the mode is winding but is not filled if
the mode is alternate.

Arc. Draws a curved line that is part of the circumference of an ellipse.

Chord. Similar to the Arc function, but Windows connects the beginning and ending
points of the arc with a straight line. The area is filled with the current brush defined in
the device context.

Pie. Similar to the Arc function, but Windows draws lines from the beginning and ending
points of the arc to the center of the ellipse. The area is filled with the current brush
defined in the device context.

TextOut. Writes text with the current font, text color, background color, and background
mode (transparent or opaque).

Windows also includes other drawing functions for filling areas, formatting text, and trans
ferring bitmaps.

Section II: Programming in the MS-DOS Environment 533

Part D: Directions of MS-DOS

Raster operations for pens

When Windows uses a pen to write to a device context, it must first determine which pix
els of the destination are to be altered by the pen (the foreground) and which pixels will
not be affected (the background). With dotted and dashed pens, the background—
the space between the dots or dashes—is left unaltered if the drawing mode is trans
parent and is filled with the background color if the drawing mode is opaque.

When Windows alters the pixels of the destination that correspond to the foreground of
the pen, the most obvious result is that the color of the current pen defined in the display
context is used to color the destination. But this is not the only possible result. Windows
also generalizes the process by using a logical operation to combine the pixels of the pen
and the pixels of the destination.

This logical operation is defined by the drawing mode attribute of the device context. This
drawing mode can be set to one of 16 binary raster operations (abbreviated ROP2).

The following table shows the l6 binary raster operation codes defined in WINDOWS.H.
The column headed "Resultant Destination" shows how the destination changes, depend
ing on the bit pattern of the pen and the bit pattern of the destination before the line is
drawn. The words OR, AND, XOR, and NOT are the logical operations.

Binary Raster Resultant
Operation Destination

R2_BLACK 0

R2_COPYPEN pen
R2_MERGEPEN pen OR destination
R2_MASKPEN pen AND destination
R2 _XORPEN pen XOR destination
R2_NOTCOPYPEN NOT pen
R2_NOTMERGEPEN NOT (pen OR destination)
R2_NOTMASKPEN NOT (pen AND destination)
R2_NOTXORPEN NOT (pen XOR destination)
R2_MERGEPENNOT pen OR (NOT destination)
R2_MASKPENNOT pen AND (NOT destination)
R2_MERGENOTPEN (NOT pen) OR destination
R2_MASKNOTPEN (NOT pen) AND destination
R2_NOP destination

R2_NOT NOT destination

R2_WHITE 1

The default drawing mode defined in a device context is R2_COPYPEN, which simply
copies the pen to the destination. However, if the pen color is blue, the destination is red,
and the drawing mode is R2_MERGEPEN, then the drawn line appears as magenta, which

534 The MS-DOS Encyclopedia

Article 17; Windows

results from combining the pen and destination colors. If the pen color is blue, the desti
nation is red, and the drawing mode is R2_ NOTMERGEPEN, then the drawn line is green,
because the blue pen and the red destination are combined into magenta, which Windows
then inverts to make green.

Bit-block transfers

Windows also uses logical operations when transferring a rectangular pixel pattern (a bit
block) from one device context to another or from one area of a device context to another
area of the same device context.

While line drawing involves a logical combination of two sets of pixels (the pen and the
destination), the bit-block transfer functions perform a logical combination of three sets
of pixels: a source bitmap, a destination bitmap, and the brush currently selected in the
destination device context. As shown in the preceding section, there are 16 different ROP2
drawing modes for all the possible combinations of two sets of pixels. The tertiary raster
operations (abbreviated ROP3) for bit-block transfers require 256 different operations for
all possible combinations.

Windows defines three functions for transferring rectangular pixel patterns: BitBlt (bit-
block transfer), StretchBlt (stretch-block transfer), and PatBlt (pattern-block transfer). Of
these three functions, StretchBlt is the most generalized. StretchBlt transfers a bitmap from
a source device context to a destination device context. Function parameters specify the
origin, width, and height of the bitmap. If the source and destination widths and heights
are different, Windows stretches or compresses the bitmap appropriately. Negative values
of widths and heights cause Windows to draw a mirror image of the bitmap.

The BitBlt function transfers a bitmap from a source device context to a destination device
context, but the width and height of the source and destination must be the same. If the
source and destination device contexts have different mapping modes, Windows uses
StretchBlt instead.

In both BitBlt and StretchBlt, Windows performs a bit-by-bit logical operation with the bit
block in the source device context, the bit block in the destination area of the destination
device context, and the brush currently selected in the destination device context.
Although Windows supports all 256 possible raster operations with these three bitmaps,
only a few have been given WINDOWS.H identifiers:

Raster Resultant
Operation Destination

BLACKNESS 0

SRCCOPY source

SRCAND source AND destination

SRCPAINT source OR destination

(more)

Section II: Programming in the MS-DOS Environment 535

Part D: Directions of MS-DOS

Raster Resultant
Operation Destination

SRCINVERT source XOR destination

SRCERASE source AND (NOT destination)

MERGEPAINT source OR (NOT destination)

NOTSRCCOPY NOT source

NOTSRCERASE NOT (source OR destination)

DSTINVERT NOT destination

PATCOPY pattern

MERGECOPY source AND pattern
PATINVERT destination XOR pattern
PATPAINT source OR (NOT destination) OR pattern
WHITENESS 1

The PatBlt function is similar to BitBlt and StretchBlt but performs a logical operation only
between the currently selected brush and a destination area of the device context. Thus,
only 16 raster operations can be used with PatBlt; these are equivalent to the binary raster
operations used with line drawing.

Text and fonts

Windows supports file-based text fonts in two different formats: raster and vector. The
raster fonts, such as Courier, Helvetica, and Times Roman, are defined by digital represen
tations of the bit patterns of the characters. Font files usually contain several different sizes
for each typeface. The vector fonts, such as Modern, Script, and Roman, are defined by
points that are connected to form the letters and can be scaled to different sizes.

When using a device such as a printer, which has built-in fonts, Windows can also use
these device-based fonts.

To specify a font, a Windows program uses the CreateFont function to create a logical
font—a detailed description of the desired font. When this logical font is selected into a
device context, Windows finds the actual font that best fits this description. In many cases,
this match is not exact. The program can then call GetTextMetrics to determine the char
acteristics of the actual font that the device will use to display text.

Windows supports both fixed-width and variable-width fonts, as well as such attributes as
italics, underlining, and boldfacing. Programs can also justify text with the GetTextExtent
call, which obtains the width of a particular text string. The program can then insert extra
spaces between words with SetTextJustification or it can insert extra spaces between
letters with SetTextCharacterExtra.

Metafiles

As explained earlier, a metafile is a collection of GDI function calls stored in a binary
coded form. A program can create a metafile by calling CreateMetaFile and giving it either

536 The MS-DOS Encyclopedia

Article 17: Windows

an MS-DOS filename or NULL as a parameter. If CreateMetaFile is given an MS-DOS file
name, Windows creates a disk-based metafile; if the parameter is NULL, Windows creates
a metafile in memory. The CreateMetaFile call returns a handle to a metafile device con
text. Any GDI calls that reference this device-context handle become part of the metafile.

When the program calls CloseMetaFile, Windows closes the metafile device context and
returns a handle to the metafile. The program can then "play" this metafile on another
device context (such as the video display) without calling the GDI functions directly.

Metafiles provide a useful way to transfer device-independent pictures between programs.

Data Sharing and Data Exchange

Windows includes a variety of methods by which programs can share and exchange data.
These methods are discussed in the following sections.

Sharing local data among instances

Multiple instances of the same program can share data in the static data area of the pro
gram's data segment. Later instances of a program can thus call GetlnstanceData and copy
configuration options established by the user in the first instance. Multiple instances of
programs can also share resources, such as dialog-box templates.

The Windows Clipboard

The Windows Clipboard is a general-purpose mechanism that allows a user to transfer
data from one program to another. Programs that support the Clipboard generally include
a top-level menu item called Edity which invokes a pop-up menu that offers at least these
three options:

• Cut'. Copies the current selection to the Clipboard and deletes the selection from the
current program file.

• Copy-. Copies the current selection to the Clipboard without deleting the selection
from the current program file.

• Paste: Copies the contents of the Clipboard to the current program file.

The Clipboard can hold only one item at a time. A program can transfer data to the Clip
board through the function call SetClipboardData. With this function, the program passes
the Clipboard a handle to a global memory block, which then becomes the property of the
Clipboard. A program can access Clipboard data through the complementary function
GetClipboardData.

The Clipboard supports several formats:

• Text: ASCII text; each line ends with a carriage return and linefeed, and the text is
terminated with a NULL character.

• Bitmap: A collection of bits in the GDI bitmap format.

Section II: Programming in the MS-DOS Environment 537

Part D: Directions of MS-DOS

• Metafile Picture: A structure that contains a handle to a metafile along with other
information suggesting the mapping mode and aspect ratio of the picture.

• SYLK: Microsoft's Symbolic Link format.
• DIP: Software Arts' Data Interchange Format.

Programs can also use the Clipboard for storing data in private formats.

Some programs, such as the CLIPBRD program included with Windows, can also become
Clipboard viewers. Such programs receive a message whenever the contents of the Clip
board change.

Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is a protocol that cooperating programs can use to
exchange data without user intervention. DDE makes use of the facilities in Windows that
enable programs to send messages among themselves.

In DDE, the program that needs data from another program is called the client. The client
sends a WM_DDE_JNITIATE message either to a dedicated server program or to all cur
rently running programs. Parameters to the WM__ DDE_ INITIATE message are atoms,
which are numbers referring to text strings. A server application that has the data the client
needs sends a WM_ DDE_ ACK message back to the client. The client can then be more
specific about the data it needs by sending the server a WM_DDE_ ADVISE message. The
server can then pass global memory handles to the client with the WM_DDE_ DATA
message.

Internationalization

Windows includes several features that ease the conversion and translation of programs
for international markets. Among these features are keyboard drivers appropriate for many
European languages and use of the ANSI character set, which provides a richer set of
accented letters than does the character set resident in the IBM PC and compatibles.

Windows also includes several functions that assist in language-independent coding. The
AnsiUpper and AnsiLower functions translate characters or strings to uppercase or lower
case in the full ANSI character set, rather than the more limited ASCII character set. In

addition, the AnsiNext and AnsiPrev functions allow scanning of text strings that may
contain 2 or more bytes per character.

Windows programmers can also help in program translation by defining all text strings
used within the program as resources contained in the resource script file. Because the
resource script file also contains menu templates and dialog-box templates, it thus
becomes the only file that needs alteration when a foreign-language version of the
program is created.

Charles Petzold

538 The MS-DOS Encyclopedia

PartE

Programming Tools

Article 18: Debugging in the MS-DOS Environment

Article 18

Debugging in the MS-DOS Environment

It is axiomatic that any program will need debugging at some time in its development
cycle, and programs written to run under MS-DOS are no exception. This article provides
an introduction to the debugging tools and techniques available to the serious program
mer developing code in the MS-DOS environment. Space does not permit a thorough
investigation of the philosophy, psychology, and science of debugging computer pro
grams; instead, a brief and practical discussion of the basic debugging approaches is pre
sented, along with some rules-of-thumb for choosing the best approach. Nor are the details
of every single utility and command included in this article; these are described in detail
in the reference sections of this volume. The commands and utility programs that are
most useful for debugging are discussed and illustrated with examples and case histories
that also serve as models for the various debugging methods.

The reader of this article is assumed to be a programmer with sufficient experience to
understand an assembly-language program. The reader is also assumed to be familiar with
MS-DOS—terms like FCB and PSP are not explained. A reader without this background in
MS-DOS need not be deterred, however; these terms are thoroughly explained elsewhere
in this book. Besides assembly language, examples in this article are written in Microsoft
QuickBASIC and Microsoft C. A detailed knowledge of these languages is not required; the
examples are short and straightforward.

The reader should also keep in mind that the examples given here are real but not neces
sarily realistic. To avoid the tedium that accompanies debugging, the examples have been
designed to reveal their bugs fairly quickly. All the methods and techniques shown are
accurate in detail but not always in scale. Most of the debugging examples presented here
would require one-half to one hour of work. It is possible for real debugging sessions to
last for hours or days, especially if the wrong approach or tool is chosen. One of the pur
poses of this article is to help the programmer choose the correct tool and, thus, to reduce
the tedium.

The Programs

There are more than a dozen listings in this article. Some of them are correct and others
contain errors for use in illustrating debugging techniques. Many of the programs serve
as examples in multiple sections of the article. The following summary of the programs
(Table 18-1) is given to avoid confusion and to provide a common location to consult for
explanations of the programs.

Section II: Programming in the MS-DOS Environment 541

Part E: Programming Tools

Table 18-1. Summary of Example Programs.

Name: EXP.BAS

Figure: 18-1

Status: Incorrect—do not use.

Purpose: Computes EXP(a:) (the exponential of x) to a specified precision using an
infinite series.

Compiling: QB EXP;
LINKEXP;

Parameters: Prompts for value for x and a convergence criterion. Enter zero to quit.

Name: EXP.BAS

Figure: 18-3

Status: Correct version of Figure 18-1.
Purpose: Computes EXP(x) (the exponential of x) to a specified precision using an

infinite series.

Compiling: QB EXP;
LINKEXP;

Parameters: Prompts for value for x and a convergence criterion. Enter zero to quit.

Name: COMMSCOP.ASM

Figure: 18-4
Status: Correct.

Purpose: Monitors the activity on a specified COM port and places a copy of all
transmitted and received data in a RAM buffer. Each entry in the buffer is
tagged to indicate whether the byte was sent by or received by the applica
tion program under test. Control is provided to start, stop, and resume trac
ing by means of a control interrupt. When tracing is stopped and resumed,
a marker is left in the buffer. COMMSCOP is a terminate-and-stay-resident
(TSR) program.

Compiling: MASM COMMSCOP;
LINK COMMSCOP;

EXE2BIN COMMSCOP.EXE COMMSCOP.COM

DEL COMMSCOP.EXE

Parameters: Installed by entering COMMSCOP \ no parameters for installation. The
TSR is controlled by passing parameter data in registers with an Interrupt
60H call. The registers can have the following values:

AH: Command:

OOH STOP

OIH FLUSH AND START

02H RESUME TRACE

03H RETURN TRACE BUFFER ADDRESS

(more)

542 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

DX: COM port:

OOH COMl

OIH COM2

Interrupt 60H returns the following in response to function 3:

CX Buffer count in bytes
DX Segment address of buffer
BX Offset address of buffer

Name: COMMSCMD.C

Figure: 18-5
Status: Correct.

Purpose: Controls the COMMSCOP program by issuing Interrupt 60H calls.
C version.

COMPILING: MSC COMMSCMD;

LINKCOMMSCMD;

Parameters: Commands are issued by
COMMSCMD [[cmd][port]]
where: cmd is the command to be executed:

STOP Stop trace
START Flush buffer and start trace

RESUME Resume a stopped trace
port is the COM port (1 = COMl, 2 = COM2)

If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed.

Name: COMMSCMD.BAS

Figure: 18-6
Status: Correct.

Purpose: Controls the COMMSCOP program by issuing Interrupt 60H calls.
QuickBASIC version.

Compiling: QB COMMSCMD;
LINK COMMSCMD USERLIB;

Parameters: Commands are issued by
COMMSCMD [[cmd]lport]]
where: cmd is the command to be executed:

STOP Stop trace
START Flush buffer and start trace

RESUME Resume a stopped trace
port is the COM port (1 = COMl, 2 = COM2)

If cmd is omitted, STOP is assumed; if port is omitted, 1 is assumed.

Name COMMDUMP.BAS

Figure: 18-7

Status: Correct.

Purpose: Produces a formatted dump of the communications trace buffer.

(more)

Section II: Programming in the MS-DOS Environment 543

Part E: Programming Tools

Compiling: QB COMMDUMP;
LINK COMMDUMP USERLIB;

Parameters: No parameters. When COMMDUMP is invoked, it formats and dumps the
entire buffer.

Name: TESTCOMM.ASM

Figure: 18-9
Status: Incorrect—do not use.

Purpose: Provides test data for the COMMSCOP routine.
Compiling: MASM TESTCOMM;

LINKTESTCOMM;

Parameters: No parameters. TESTCOMM reads data from the keyboard and writes to
COMl and reads COMl data and displays it on the screen. Ctrl-C cancels.

Name: TESTCOMM.ASM

Figure: 18-10

Status: Correct version of Figure 18-9.
Purpose: Provides test data for the COMMSCOP routine.
Compiling: MASM TESTCOMM;

LINKTESTCOMM;

Parameters: No parameters. TESTCOMM reads data from the keyboard and writes to
COMl and reads COMl data and displays it on the screen. Ctrl-C cancels.

Name: BADSCOP.ASM

Figure: 18-11

Status: Incorrect version of Figure 18-4—do not use.
Purpose: Monitors the activity on a specified COM port and places a copy of all

transmitted and received data in a RAM buffer. Each entry in the buffer is
tagged to indicate whether the byte was sent by or received by the applica
tion program under test. Control is provided to start, stop, and resume trac
ing by means of a control interrupt. When tracing is stopped and resumed,
a marker is left in the buffer. BADSCOP is a terminate-and-stay-resident
(TSR) program.

Compiling: MASM BADSCOP;
LINK BADSCOP;

EXE2BIN BADSCOP.EXE BADSCOP.COM

DEL BADSCOP.EXE

Parameters: Installed by entering BADSCOP \ no parameters for installation. The TSR is
controlled by passing parameter data in registers with an Interrupt 60H
call. The registers can have the following values:

AH: Command:

OOH STOP

OIH FLUSH AND START

(more)

544 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

02H RESUME TRACE

03H RETURN TRACE BUFFER ADDRESS

DX: COM port:

OOH COMl

OIH COM2

Interrupt 60H returns the following in response to function 3:

CX Buffer count in bytes
DX Segment address of buffer
BX Offset address of buffer

Name: UPPERCAS.C

Figure: 18-13
Status: Incorrect—do not use.

Purpose: Converts a fixed string to uppercase and prints it.
Compiling: MSC /Zi UPPERCAS;

LINKUPPERCAS/CO;

Parameters: No parameters.

Name: UPPERCAS.C

Figure: 18-14
Status: Correct version of Figure 18-13.
Purpose: Converts a fixed string to uppercase and prints it.
Compiling: MSC /Zi UPPERCAS;

LINKUPPERCAS/CO;
Parameters: No parameters.

Name: ASCTBL.C

Figure: 18-16
Status: Incorrect—do not use.

Purpose: Displays a table of all displayable characters.
Compiling: MSC /Zi ASCTBL;

LINKASCTBL/CO;

Parameters: No parameters.

Name: ASCTBL.C

Figure: 18-17
Status: Correct version of Figure 18-16.
Purpose: Displays a table of all displayable characters.
Compiling: MSC /Zi ASCTBL;

LINKASCTBL/CO;
Parameters: No parameters.

Section II: Programming in the MS-DOS Environment 545

Part E: Programming Tools

Debugging Tools and Techniques

MS-DOS provides a wide variety of tools to aid in the debugging process. Some are
intended specifically for debugging. For example, the DEBUG program is delivered with
MS-DOS and provides basic debugging aid; the more sophisticated SYMDEB is supplied
with MASM, Microsoft's macro assembler; CodeView, a debugger for high-order languages,
is supplied with Microsoft C, Microsoft Pascal, and Microsoft FORTRAN. Others are gen
eral MS-DOS services and features that are also useful in the debugging process.

Debugging, like programming, has aspects of both an art and a craft. The craft—the
mechanical details of using the tools—is discussed both here and elsewhere in this
volume, but the main subject of this article is the art of debugging—the choice of the
correct tool, the best techniques to use in various situations, the methods of extracting the
clues to the problem from a recalcitrant program.

Debugging a program is a form of puzzle solving. As with most intellectual detective
work, the following rule applies:

Gather enough information and the solution will be obvious.

The craft of debugging involves gathering the data; the art lies in deciding which data to
gather and in noticing when the solution has become obvious.

The methods of gathering data for debugging, listed in order of increasing difficulty and
tediousness, fall into four major categories:

• Inspection and observation
• Instrumentation

• Use of software debugging monitors (DEBUG, SYMDEB, and CodeView)
• Use of hardware debugging aids

As mentioned above, part of the art of debugging is knowing which method to use. This
is one of the most difficult aspects of debugging—so difficult, in fact, that even program
mers with years of experience make mistakes. Many programmers have spent hours
single-stepping through a program with DEBUG only to discover that the cause of the
problem would have been obvious if they had given the program's output even a cursory
check. The only universal rule for choosing the correct debugging method is

Try them all starting with the simplest.

Inspection and observation

Inspection and observation is the oldest and, usually, the best method of program debug
ging. It is also the basis for all the other methods. The first step with this method, as with
the others, is to gather all the pertinent materials. Program listings, file layouts, report
layouts, and program design materials (such as algorithm descriptions and flowcharts)
are all extremely valuable in the debugging process.

546 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Desk-checking

Before a programmer can determine what a program is doing wrong, he or she must
know the correct operation of the program. There was a time, when computers were rare
and expensive resources, that programmers were encouraged not to run their programs
until the programs had been thoroughly desk-checked. The desk-checking process in
volves sitting down with a listing, a hand calculator, and some sample data. The program
mer then "plays computer," executing each line of the program manually and writing
down on paper the results of each program step. This process is extremely slow and
tedious. When the desk-checking is completed, however, the programmer not only has
found most of the bugs in the program but also has become intimately familiar with the
execution of the program and the values of the program variables at each step.

The advent of inexpensive yet powerful personal computers, combined with the rising
cost of programmer time, has made complete desk-checking nearly obsolete. It is now
cheaper to run the program and let the computer find the errors. However, the usefulness
of the desk-checking technique remains. Many programmers find it helpful to manually
execute those sections of a program that they suspect are causing trouble. Even if they
don't find errors in the code, the insight they gain into the workings of the code and the
values of the variables at each step can be invaluable when applying other debugging
techniques.

The inspection-and-observation methodology

The basic technique of the inspection-and-observation method is simple: After gathering
all the required materials, run the program and observe. Observe very carefully; events
that seem insignificant may be the very clues needed to discover where the program is
going astray. As the program executes, note whether each section performs correctly.
Does the program clear the screen when it should? Does it ask for input when it should?
Does it produce the correct results? Observable events are the debugger's milestones in
the execution of the program. If the program clears the screen but writes purple asterisks
instead of requesting input, then the problem lies somewhere after the program issues the
Clear Screen command but before it writes the input prompt on the screen. At this point,
the program listing and design data become important. Inspect the listing and examine
the area after the last successful milestone and before the missing milestone. Look for a
logic error in the code that could explain the observed data.

If the program produces printed reports, they may also be useful. Watch the screen and
listen to the printer. Clues can sometimes be found in the order in which things happen.
The light on the disk drive can be another indication of activity. See how disk activity co
ordinates with screen and printer events. Try to identify each section of the program from
these clues. Then use this information to localize the inspection of the listing to isolate
the erroneous code.

The values of data given in reports and on the screen can also give clues to what's going
wrong. Examining the data and reconstructing the values used to compute it sometimes
leads to inferences about data problems. Perhaps a variable was misspelled in the code

Section II: Programming in the MS-DOS Environment 547

Part E: Programming Tools

or perhaps a data file is in the wrong format or has been corrupted. With this information,
the bug can often be isolated. However, a very thorough knowledge of the program and its
algorithms is required. See Desk-checking above.

MS-DOS provides four commands and filters that are useful in the collection and examina
tion of data for debugging: TYPE, PRINT, FIND, and DEBUG. All these commands display
the data in a file in some way. If the data is ASCII (displayable) characters, TYPE and
PRINT can be used, with some help from FIND. Binary files can be examined and modi
fied with the DEBUG utility. See USER COMMANDS: find; print; type; PROGRAMMING
UTILITIES: debug.

The TYPE command provides the simplest way to display ASCII data files. This method
can be used to examine both input and output files. Checking the input files may uncover
some bad (or unexpected) data that causes the program to malfunction; examining the
output files will show whether calculations are being performed correctly and may help
pinpoint the erroneous calculations if they are not.

The FIND utility is useful in locating specific data in a file. Using FIND is more accurate
and definitely less tedious than examining the file manually using the TYPE command.
The /N switch causes FIND to also display the relative line number of the matching line—
information that is most useful in debugging.

Sometimes the data is too complex to be examined on the screen and printed copy is
needed. The PRINT command will produce hard copy of an ASCII file as will the TYPE
command if its output is redirected to the printer with the >PRN command-line parameter
after the filename.

Not all data files contain pure ASCII data, and displaying such non-ASCII files requires a
different approach. The TYPE command can be used, but nonprintable characters will
produce garbage on the screen. This technique can still prove useful if the file has a large
amount of ASCII data or if the records are regular and the ASCII information always
appears at the same location, but no information can be gained about non-ASCII numeric
data in such files. Note also that the entire file might not be displayed using TYPE because
if TYPE encounters a byte containing lAH (Control-Z), it assumes it has reached the end
of the file and stops.

Clearly, a more useful tool for examining non-ASCII files would be a program that dumps
the file in hexadecimal, with an appropriate translation of all displayable characters. Such
programs exist in the public domain (through bulletin-board services, for instance) and, in
any event, are not difficult to write. MS-DOS does not include a stand-alone file-dumping
program among its standard commands and utilities, but the DEBUG program can be
used, with minor inconvenience, to display files. This program is discussed in detail later
in this article; for now, simply follow these instructions to use DEBUG as a file dumper.
To load DEBUG and the program to be debugged, use the form

DEBUG [drive-] [paMfilename.ext

DEBUG will display a hyphen as a prompt. To see the contents of the file, enter D (the
DEBUG Display Memory command) and press Enter. DEBUG will display the first 128
(BOH) bytes of the file in hexadecimal and will also show any displayable characters.

548 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

To see the rest of the file, simply continue entering D until the desired area is found. Hard
copy of the contents of the display can be made by using the PrtSc key (or Ctrl-PrtSc to
print continuously). Note that the offset addresses for the bytes in the file begin at the
value in the program's CS:IP registers, which can be viewed by using the Debug R (Display
or Modify Registers) command. To obtain the true offsets, subtract CS:IP from the address
shown.

The essence of the inspection-and-observation method is careful and thoughtful observa
tion. The computer and the operating system can provide tools to aid in the collection of
data, but the most important tool is the programmer's mind. By applying the logical skills
they already possess to the observed data, programmers can usually avoid the more
complex forms of debugging.

Instrumentation

Debugging by instrumentation is a traditional method that has been popular since pro
grams were holes punched in cards. In general, this method consists of adding something
to the program, either internally or externally, to report on the progress of program execu
tion. Programmers call this added mechanism instrumentation because of its resemblance
to the measuring instruments used in science and engineering. Instrumentation can be
software, hardware, or a combination of both; it can be internal to the program or external
to it. Internal instrumentation is always software, but external instrumentation may be
either hardware or software.

Internal instrumentation

Internal instrumentation usually consists of display or print statements placed at strategic
locations. Other signals to the user can be used if they are available. For instance, the sys
tem beeper can be sounded at key locations, perhaps in a coded sequence of beeps; if the
device being debugged has lights that can be accessed by the program, these lights can be
flashed at important locations in the program. Beeping and flashing do not, however,
possess the information content usually required for debugging, so display or print state
ments are preferred.

The use of display or print statements to display key data and milestones on the screen or
printer requires careful planning. First, apply the techniques of inspection and observation
described in the previous section to determine the most probable points of failure. Then, if
there is some doubt about what path execution is taking through the code, embed mes
sages of the following types after key decision points:

BEGINNING SORT PHASE

ENDING PRINCIPAL CALCULATION

PROCESSING RECORD XX

A second way to use display or print statement instrumentation is to embed statements that
display the data and interim values used for calculations. This technique can be extremely
useful in finding problems related to the data being processed. Consider the QuickBASIC
program in Figure 18-1 as an example. The program has no syntax errors and compiles
cleanly, but it sometimes produces an incorrect answer.

Section II: Programming in the MS-DOS Environment 549

Part E: Programming Tools

EXP.BAS — COMPUTE EXPONENTIAL WITH INFINITE SERIES

**

* *

* EXP *

* *

* This routine computes EXP(x) using the following infinite series: *

X x^2 x^3 x^4 x'^5

EXP(x) = 1 + + + + + + ...

1 ! 2! 3! 4! 5!

* The program requests a value for x and a value for the convergence *

* criterion, C. The program will continue evaluating the terms of *

* the series until the difference between two terms is less than C. *

* *

* The result of the calculation and the number of terms required to *

* converge are printed. The program will repeat until an x of 0 is *

* entered. *

* *

**

Initialize program variables

INITIALIZE:

TERMS = 1

FACT = 1

LAST = 1.E35

DELTA = 1.E34

EX = 1

* Input user data

INPUT "Enter number: X

IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places);

Compute exponential until difference of last 2 terms is < C

WHILE ABS(LAST - DELTA) >= C

LAST = DELTA

FACT = FACT * TERMS

DELTA = X'^TERMS / FACT

EX = EX + DELTA

TERMS = TERMS + 1

WEND

Figure 18-1. A routine to compute exponentials. (more)

550 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Display answer and number of terms required to converge

PRINT EX

PRINT TERMS; "elements required to converge"

PRINT

GOTO INITIALIZE

Figure 18-1. Continued.

The purpose of the EXP.BAS program is to compute the exponential of a given number
to a specified precision using an infinite series. The program computes the value of each
term in the infinite series and adds it to a running total. To keep from executing forever,
the program checks the difference between the last two elements computed and stops
when this difference is less than the convergence criterion entered by the user.

When the program is run for several values, the following results are observed:

Enter number: ? 1

Enter convergence criterion (.0001 for 4 places): ? .0001

2.718282

10 elements required to converge

Enter number: ? 1.5

Enter convergence criterion (.0001 for 4 places): ? .0001

4.481686

11 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001

5

3 elements required to converge

Enter number: ? 2.5

Enter convergence criterion (.0001 for 4 places): ? .0001

12.18249

15 elements required to converge

Enter number: ? 3

Enter convergence criterion (.0001 for 4 places): ? .0001

13

4 elements required to converge

Enter number: ? 0

Some of these numbers are incorrect. Table 18-2 shows the computed values and the
correct values.

Section II: Programming in the MS-DOS Environment 551

Part E: Programming Tools

Table 18-2. The Computed Values Generated by EXP.BAS and the Expected
Values.

X Computed Correct

1.0 2.718282 2.718282

1.5 4.481686 4.481689

2.0 5 7.389056

2.5 12.18249 12.18249

3.0 13 20.08554

Applying the methods from the first section of this article and observing the data quickly
reveals a pattern. With the exception of 1, all whole numbers give incorrect results, but all
numbers with fractions give results that are correct to the specified convergence criterion.
Examination of the listing shows no obvious reason for this. The answer is there, but only
an exceptionally intuitive numeric analyst would see it. Because no answer is obvious, the
next step is to validate the only information available—that whole numbers produce er
rors and fractional ones do not. Repeating the first experiment with 2 and a number
very close to 2 yields the following results:

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001
7.38167

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001
5

3 elements required to converge

Enter number: ? 0

The outcome is the same—repeating the experiment with a number as near to 2 as the
convergence criterion permits (1.9999) produces the same result. The error is indeed
caused by the fact that the number is an integer.

Because no intuitive way can be found to solve the mystery by inspection, the program
mer must turn to the next method in the hierarchy, instrumentation. The problem has
something to do with the calculation of the terms of the series. Therefore, the section of
the program that performs this calculation should be instrumented by placing PRINT
statements inside the WHILE loop (Figure 18-2) to display all the intermediate values
of the calculation.

WHILE ABS(LAST - DELTA) >= C

LAST = DELTA

FACT = FACT * TERMS

DELTA = X TERMS / FACT

Figure 18-2. Instrumenting the WHILE loop. (more)

552 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

EX = EX + DELTA

PRINT "TERMS="; TERMS; "EX="; EX; "FACT="; FACT; "DELTA="; DELTA;

PRINT "LAST="; LAST

TERMS = TERMS + 1

WEND

Figure 18-2. Continued.

The print statements used in this WHILE loop are typical of the type used for instrumenta
tion. The program makes no attempt at fancy formatting. The print statements simply
identify each value with its variable name, allowing easy correlation of the data and the
code in the listing. Repeating the experiment with 1.999 and 2 yields

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001

TERMS= 1 EX= 2.999 FACT= 1 DELTA= 1.999 LAST= 1E+34

TERMS= 2 EX= 4.997001 FACT= 2 DELTA= 1.998 LAST= 1.999

TERMS= 3 EX= 6.328335 FACT= 6 DELTA= 1.331334 LAST= 1.998

TERMS= 4 EX= 6.993669 FACT= 24 DELTA= .6653343 LAST= 1.331334

TERMS= 5 EX= 7.25967 FACT= 120 DELTA= .2660006 LAST= .6653343

TERMS= 6 EX= 7.348292 FACT= 720 DELTA= 8.862254E-02 LAST= .2660006

TERMS= 7 EX= 7.373601 FACT= 5040 DELTA= 2.530806E-02 LAST= 8.862254E-02

TERMS= 8 EX= 7.379924 FACT= 40320 DELTA= 6.323853E-03 LAST= 2.530806E-02

TERMS= 9 EX= 7.381329 FACT= 362880 DELTA= 1.404598E-03 LAST= 6.323853E-03

TERMS= 10 EX= 7.38161 FACT= 3628800 DELTA= 2.807791E-04 LAST= 1.404598E-03

TERMS= 11 EX= 7.381661 FACT= 3.99168E+07 DELTA= 5.102522E-05 LAST= 2.807791E-04

TERMS= 12 EX= 7.38167 FACT= 4.790016E+08 DELTA= 8.499951E-06 LAST= 5.102522E-05

7.38167

13 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001

TERMS= 1 EX= 3 FACT= 1 DELTA= 2 LAST= 1E+34

TERMS= 2 EX= 5 FACT= 2 DELTA= 2 LAST= 2

5

3 elements required to converge

Examination of the instrumentation printout for the two cases shows a drastically different
pattern. The fractional number went through 13 iterations following the expected pattern;
the whole number, however, quit on the third step. The loop is terminating prematurely.
Why? Look at the values calculated for DELTA and LAST on the last complete step. They
are the same, giving a difference of zero. Because this difference will always be less than
the convergence criterion, the loop will always terminate early. A moment's reflection
shows why. The numerator of the fraction for each term but the first in the infinite series is
a power of the number entered; the denominator is a factorial, a product formed by multi
plying successive integers. Because n\ = n♦(w-1)!, when an integer is raised to a power
equal to itself and divided by the factorial of that integer the result will always be the same
as the preceding term. That is what has happened here.

Section II: Programming in the MS-DOS Environment 553

Part E: Programming Tools

Now that the cause of the problem is found, it must be fixed. How can this problem be
prevented' In this case, the problem is caused by a logic error. The programmer misread
(or miswrote!) the algorithm and assumed that the criterion for termination was that the
difference between the last two terms be less than the specified value. This is incorrect.
Actually, the termination criterion should be that the difference between the forming
EXP(.j(r) and the last term be less than the criterion. To simplify, the last term itself must be
less than the value specified. The correct program listing, including the new WHILE loop,
is shown in Figure 18-3.

EXP.BAS — COMPUTE EXPONENTIAL WITH INFINITE SERIES

He***

* *

* EXP *

* *

* This routine computes EXP(x) using the following infinite series; *
Jfc *

* X x^2 x^3 x^4 x^'S *

* EXP(x) = 1 + + + + + + ... *

* 1! 2! 3! 4! 5! *

* The program requests a value for x and a value for the convergence *

* criterion, C. The program will continue evaluating the terms of *

* the series until the amount added with a term is less than C. *

:ic *

* The result of the calculation and the number of terms required to *

* converge are printed. The program will repeat until an x of 0 is *
* entered. *

* *

**

Initialize program variables

INITIALIZE:

TERMS = 1

FACT = 1

DELTA = 1 .E35

EX = 1

Input user data

INPUT "Enter number: X

IF X = 0 THEN END

INPUT "Enter convergence criterion (.0001 for 4 places): "; C

' Compute exponential until difference of last 2 terms is < C
I

Figure 18-3- Corrected exponential calculation routine. (more)

554 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

WHILE DELTA > C

FACT = FACT * TERMS

DELTA = X'^TERMS / FACT

EX = EX + DELTA

TERMS = TERMS + 1

WEND

' Display answer and number of terms required to converge
I

PRINT EX

PRINT TERMS; "elements required to converge"

PRINT

GOTO INITIALIZE

Figure 18-3. Continued.

The program now produces the correct results within the limits of the specified accuracy:

Enter number: ? 1.999

Enter convergence criterion (.0001 for 4 places): ? .0001

7.381661

12 elements required to converge

Enter number: ? 2

Enter convergence criterion (.0001 for 4 places): ? .0001

7.389047

12 elements required to converge

Enter number: ? 0

This example illustrates how easy it is to use internal instrumentation in high-order lan
guages. Because these languages usually have simple formatted output commands, they
require very little work to instrument. When these output commands are not available,
however, more work may be required. For instance, if the program being debugged is in
assembly language, it is possible that the code required to format and print internal data
will be longer than the program being debugged. For this reason, internal instrumentation
is rarely used on small and moderate assembly programs. However, large assembly pro
grams and systems often already have print formatting routines built into them; in these
cases, internal instrumentation may be as easy as with high-order languages.

External instrumentation

Sometimes it is difficult to use internal instrumentation with a program. If, for instance,
the problem is timing related, adding print statements could cloud the problem or, worse
yet, make it go away completely. This leaves the programmer in the frustrating position of
having the problem only when the cause can't be seen and not having the problem when
it can. A solution to this type of problem can sometimes be found by moving the instru
mentation outside the program itself. There are two types of external instrumentation:
hardware and software.

Section II: Programming in the MS-DOS Environment 555

Part E: Programming Tools

Hardware instrumentation consists of whatever logic analyzers, oscilloscopes, metets,
lights, bells, or gongs are appropriate to the hardware and software under test. Hardware
instrumentation is difficult to set up and tedious to use. It is, therefore, usually reserved for
those problems directly associated with hardware. Such problems often arise when new
software is being run on new hardware and no one is quite sure where the bugs are.
Because most programmers reading this book are developing software on tried-and-true
personal computer hardware and because most of those programmers are unlikely to have
a logic analyzer costing several thousand dollars, we will skip over the use of hardware
instrumentation for software debugging. If a logic analyzer must be used, the programmer
should remember that the debugging philosophy and techniques discussed in this article
can still be applied effectively.

MS-DOS provides a feature that is very useful in building external instrumentation soft
ware: the TSR, or terminate-and-stay-resident routine. See PROGRAMMING IN THE MS-
DOS ENVIRONMENT: Customizing ms-dos: Terminate-and-Stay-Resident Utilities. This
feature of the operating system allows the programmer to build a monitoring routine that
is, in essence, a part of the operating system and outside the application program. The TSR
is loaded as a normal program, but instead of leaving the system when it is done, it remains
intact in memory. The operating system provides no way to reexecute the program after it
terminates, so most TSRs are interrupt driven.

Because TSRs exist outside the application program, they can be used to build external
instrumentation devices. This independence allows them to perform monitoring functions
without disturbing the logic flow of the application program. The only areas where inter
ference is likely are those where the TSR and the program must use common resources.
These conflicts typically involve timing but can also involve other resources, such as I/O
devices, disk files, and MS-DOS resources, including environment space. Some of these
problems are addressed in the next example.

The TSR type of external instrumentation software can prove useful in analyzing serial
communications. Such an instrumentation program monitors the serial communication
line and records all data. To detect protocol or timing problems, the program tags the
recorded data so that transmitted data can be differentiated from received data. Hardware

devices exist that plug into the serial port and perform both the monitoring and tagging
function, but they are expensive and not always handy. Fortunately, this inexpensive piece
of software instrumentation will serve in many cases.

Software interrupt calls are made with the INT instruction. Although their service routines
must obey similar rules, these interrupts should not be confused with hardware interrupts
caused by external hardware events. Software interrupts in MS-DOS are used by an appli
cation program to communicate with the operating system and, by extension in IBM sys
tems, with the ROM BIOS. For example, on IBM PCs and compatibles, application pro
grams can use software Interrupt 14H to communicate with the ROM BIOS serial port
driver. The ROM BIOS routine, in turn, manages the hardware interrupts from the actual

556 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

serial device. Thus, Interrupt 14H does not communicate directly with the hardware. All
the programs in this article deal with software interrupts to the ROM BIOS and MS-DOS.

A program to trace the serial data flow must have access to the serial data, so such a pro
gram must replace the vector for Interrupt 14H with one that points to itself. The routine
can then record all the serial data and pass it along through the serial port. Because the
goal is to minimize the effect of this monitoring on the timing of the data, the method used
for recording the data should be fast. This requirement rules out writing to a disk file,
because unexpected delays can be introduced (and because doing disk I/O from an inter
rupt service routine under MS-DOS is difficult, if not impossible). Printing the data on
paper is clearly too slow, and data displayed on the screen is too ephemeral. Thus, about
the only thing that can be done with the data is to write it to RAM. Luckily, memory has
become cheap and most personal computers have plenty.

Writing a routine that monitors and records serial data is not enough, however. The data
must still flow through the serial port to and from the external serial device. Thus, the
monitor program can have only temporary custody of the data and must pass it on to the
serial interrupt service routine in the ROM BIOS. This is accomplished by using MS-DOS
function calls to extract the address of the serial interrupt handler before the new vector is
installed in its place. The process of intercepting interrupts and then passing the data on is
known as "daisy-chaining" interrupt handlers. So long as such intercepting programs are
careful to maintain the data and conditions upon entrance for subsequent routines (that is,
so long as routines are well behaved; see PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Programming for ms-dos), several interrupt handlers can be daisy-chained
together with no detriment to processing. (Woe be unto the person who breaks the daisy
chain—the results are annoying at best and unpredictable at worst.)

The serial monitoring program, as described so far, correctly collects and stores serial data
and then passes it on to the serial port. This may be intellectually satisfying, but it is not of
much use in the real world. Some way must be provided to control the program—to start
collection, to stop collection, to pause and resume collection. Also, once data is collected,
a control function must be provided that returns the number of bytes collected and their
starting location, so that the data can be examined.

From all this, it is clear that a serial communications monitoring instrument must

1. Replace the Interrupt 14H vector with one pointing to itself.
2. Save the address of the old interrupt handler.

3. Collect the serial data, tag it as transmitted or received, and store it in RAM.
4. Pass the data on, in a completely transparent manner, to the old interrupt handler.
5. Provide some way to control data collection.

A program that meets all these criteria is shown in Figure 18-4. The COMMSCOP program
has three major parts:

Section II: Programming in the MS-DOS Environment 557

Part E: Programming Tools

Procedure Purpose

COMMSCOPE

CONTROL

VECTOR_INIT

Monitoring and tagging
External control

Interrupt vector initialization

The COMMSCOPE procedure provides the new Interrupt 14H handler that intercepts the
serial I/O interrupts. The CONTROL procedure provides the external control needed to
make the system work. The VECTOR^INIT procedure gets the old interrupt handler
address, installs COMMSCOPE as the new interrupt handler, and installs the interrupt
handler for the control interrupt.

TITLE COMMSCOP — COMMUNICATIONS TRACE UTILITY

* *

* COMMSCOP — *

* THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT *

* AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH ♦

* ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE *

* WAS SENT BY OR RECEIVED BY THE SYSTEM. *

* *

* COMMSCOP IS INSTALLED BY ENTERING *

* *

♦ COMMSCOP *

* *

* THIS WILL INSTALL COMMSCOP AND SET UP A 64K BUFFER TO BE USED *

* FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR *

* EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT *

*

*

*

30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD,

ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY

HOLD MORE THAN 30 SECONDS WORTH OF DATA.

WHEN INSTALLED, COMMSCOP INTERCEPTS ALL INT 14H CALLS. IF THE

PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE

CEIVE DATA, A COPY OF THE DATA BYTE, PROPERLY TAGGED, IS PLACED

IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL

INT 14H HANDLER.

COMMSCOP IS INVOKED BY ISSUING AN INT 60H CALL.

THE FOLLOWING CALLING SEQUENCE:

THE INT HAS

AH ~ COMMAND

0 — STOP TRACING, PLACE STOP MARK IN BUFFER

1 — FLUSH BUFFER AND START TRACE

2 — RESUME TRACE

3 — RETURN COMM BUFFER ADDRESSES

DX ~ COMM PORT (ONLY USED WITH AH = 1 or 2)

0 — C0M1

1 — COM2

Figure 18-4. Communications trace utility. (more)

558 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH = 3:

CX ~ BUFFER COUNT IN BYTES

DX — SEGMENT ADDRESS OF THE START OF THE BUFFER

BX — OFFSET ADDRESS OF THE START OF THE BUFFER

THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE

FOLLOWING FORM:

BYTE 0 — CONTROL

BIT 0 — ON FOR RECEIVED DATA, OFF FOR TRANS.

BIT 7 — STOP MARK — INDICATES COLLECTION WAS

INTERRUPTED AND RESUMED.

BYTE 1 — 8-BIT DATA

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 10OH ;T0 MAKE A COMM FILE

INITIALIZE:

JMP VECTOR-INIT JUMP TO THE INITIALIZATION

ROUTINE WHICH, TO SAVE SPACE,

IS IN THE COMM BUFFER

SYSTEM VARIABLES

OLD_COMM_INT DD ?

COUNT DW 0

COMMSCOPE_INT EQU 60H

STATUS

PORT

BUFPNTR

DB

DB

;ADDRESS OF REAL COMM INT

/BUFFER COUNT

/COMMSCOPE CONTROL INT

/PROCESSING STATUS

/ 0 — OFF

/ 1 — ON

/COMM PORT BEING TRACED

DW VECTOR-INIT /NEXT BUFFER LOCATION

SUBTTL DATA INTERRUPT HANDLER

PAGE

* *

* COMMSCOPE *

* THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *

* IF APPROPRIATE. *

* *

COMMSCOPE PROC NEAR

TEST CS:STATUS,1

JZ OLD-JUMP

/ARE WE ON?

/ NO, SIMPLY JUMP TO OLD HANDLER

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 559

Part E: Programming Tools

CMP

JE

AH,OOH

OLD_JUMP

;SKIP SETUP CALLS

CMP

JAE

AH,03H

OLD-JUMP

;SKIP STATUS REQUESTS

CMP

JE

AH,02H

GET-READ

;IS THIS A READ REQUEST?

; YES, GO PROCESS

DATA WRITE REQUEST SAVE IF APPROPRIATE

CMP

JNE

DL,CS:PORT

OLD-JUMP

;IS WRITE FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

PUSH DS SAVE CALLER'S REGISTERS

PUSH BX

PUSH CS SET UP DS FOR OUR PROGRAM

POP DS

MOV BX,BUFPNTR GET ADDR OF NEXT BUFFER LOG

MOV [BX],BYTE PTR 0 MARK AS TRANSMITTED BYTE

MOV [BX+1],AL SAVE DATA IN BUFFER

INC COUNT INCREMENT BUFFER BYTE COUNT

INC COUNT

INC BX POINT TO NEXT LOCATION

INC BX

MOV BUFPNTR,BX SAVE NEW POINTER

JNZ WRITE-DONE ZERO MEANS BUFFER HAS WRAPPED

STATUS,0 ;TURN COLLECTION OFF

RESTORE CALLER'S REGISTERS

PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

MOV

BX

DS

OLD-JUMP

WRITE-DONE:

POP

POP

JMP

GET-READ:

CMP

JNE

DL,CS:PORT

OLD-JUMP

;IS READ FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

PUSH

PUSH

PUSH

POP

DS

BX

CS

DS

SAVE CALLER'S REGISTERS

SET UP DS FOR OUR PROGRAM

PUSHF

CLI

CALL

TEST

JNZ

OLD-COMM_INT

AH,80H

READ-DONE

Figure 18-4. Continued.

;FAKE INT 14H CALL

;PASS REQUEST ON TO BIOS

;VALID READ?

; NO, SKIP BUFFER UPDATE

(more)

560 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

MOV BX,BUFPNTR

MOV [BX],BYTE PTR 1

MOV [BX+1],AL

INC COUNT

INC COUNT

INC BX

INC BX

MOV BUFPNTR,BX

JNZ READ_DONE

GET ADDR OF NEXT BUFFER LOC

MARK AS RECEIVED BYTE

SAVE DATA IN BUFFER

INCREMENT BUFFER BYTE COUNT

POINT TO NEXT LOCATION

SAVE NEW POINTER

ZERO MEANS BUFFER HAS WRAPPED

MOV

READ_DONE:

POP

POP

IRET

STATUS,0

BX

DS

/TURN COLLECTION OFF

/RESTORE CALLER'S REGISTERS

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP CS: OLD_COMM_INT

COMMSCOPE ENDP

SUBTTL CONTROL INTERRUPT HANDLER

PAGE

* *

* CONTROL *

* THIS ROUTINE PROCESSES CONTROL REQUESTS. *

* *

PROC NEAR

CMP AH,OOH STOP REQUEST?

JNE CNTL_START NO, CHECK START

PUSH DS SAVE REGISTERS

PUSH BX

PUSH CS SET DS FOR OUR ROUTINE

POP DS

MOV STATUS,0 TURN PROCESSING OFF

MOV BX,BUFPNTR PLACE STOP MARK IN BUFFER

MOV [BX],BYTE PTR 80H

MOV [BX+1],BYTE PTR OFFH

INC BX INCREMENT BUFFER POINTER

INC BX

MOV BUFPNTR,BX

INC COUNT INCREMENT COUNT

INC COUNT

POP BX RESTORE REGISTERS

POP DS

JMP CONTROL_DONE

Figure 18-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 561

Part E: Programming Tools

CNTL_START:

CMP AH,01H /START REQUEST?

JNE CNTL-RESUME / NO, CHECK RESUME

MOV CS:PORT,DL /SAVE PORT TO TRACE

MOV CS:BUFPNTR,OFFSET VECTOR-INIT /RESET BUFFER TO START

MOV CS:COUNT,0 /ZERO COUNT

MOV CS:STATUS,1 /START LOGGING

JMP CONTROL-DONE

CNTL_RESUME;

CMP

JNE

CMP

JE

MOV

MOV

JMP

AH,02H

CNTL_STATUS

CS:BUFPNTR,0

CONTROL_DONE

CS:PORT,DL

CS:STATUS,1

CONTROL-DONE

;RESUME REQUEST?

; NO, CHECK STATUS

;END OF BUFFER CONDITION?

; YES, DO NOTHING

;SAVE PORT TO TRACE

;START LOGGING

CNTL-STATUS:

CMP

JNE

MOV

PUSH

POP

MOV

CONTROL-DONE:

I RET

CONTROL ENDP

AH,03H

CONTROL-DONE

CX,CS:COUNT

CS

DX

BX,OFFSET VECTOR-INIT

RETURN STATUS REQUEST?

NO, ERROR ~ DO NOTHING

RETURN COUNT

RETURN SEGMENT ADDR OF BUFFER

RETURN OFFSET ADDR OF BUFFER

SUBTTL INITIALIZE INTERRUPT VECTORS

PAGE

* *

* VECTOR-INIT *

* THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *

* EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *

* A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE *

* IN THE BUFFER IS THE OFFSET OF VECTOR-INIT. *

* *

EVEN

VECTOR-INIT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

MOV AH,35H

Figure 18-4. Continued.

/ASSURE BUFFER ON EVEN BOUNDARY

(more)

562 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

MOV AL,14H

INT 21H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX

MOV AX,ES

MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE

MOV AH,25H

MOV AL,14H

INT 21H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL

MOV AH,25H

MOV AL,COMMSCOPE_INT

INT 21H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV AX,3100H /TERM AND STAY RES COMMAND

MOV DX,1000H ;64K RESERVED

INT 21H /DONE

VECTOR_INIT ENDP

CSEG ENDS

END INITIALIZE

Figure 18-4. Continued.

The first executable statement of the program is a jump to the VECTOR^INIT procedure.
The vector initialization code is needed only during installation; after initialization of the
vectors, the code can be discarded. In this case, the area where this code resides will

become the start of the trace buffer; therefore, it makes sense to put the initialization code
at the end of the program where it can be overlaid by the trace buffer. The jump at the start
of the program is required because the rules for making .COM files require that the entry
point be the first instruction of the program.

The vector initialization routine uses Interrupt 21H Function 35H (Get Interrupt Vector)
to get the address of the current Interrupt 14H service routine. The segment and offset ad
dress (returned in the ES:BX registers) is stored in the doubleword at QZZLCOMNL^INT.
Interrupt 21H Function 25H (Set Interrupt Vector) is then used to vector all Interrupt 14H
calls to COMMSCOPE. Another Function 25H call sets Interrupt 60H to vector to the
CONTROL routine. This interrupt, which provides the means to control and interrogate
the COMMSCOPE routine, was chosen because it is unused by MS-DOS and because some
IBM technical materials list 60H through 66H as being available for user interrupts. (If,
for some reason. Interrupt 60H is not available, simply change the equated symbol
COMMSCOPE_INT to an available interrupt.)

Section II: Programming in the MS-DOS Environment 563

Part E: Programming Tools

When the vector initialization process is complete, the routine exits and stays resident by
using Interrupt 21H Function 31H (Terminate and Stay Resident). As part of the termina
tion process, the routine requests lOOOH paragraphs, or 64 KB, of storage. A little over 500
bytes of this storage area is used for the code; the rest is available for trace data. If the serial
port is running at 2400 baud, a solid stream of data will fill this buffer in about two min
utes. However, a solid 32 KB block of data is unusual in asynchronous communications
and, in reality, the buffer will usually contain many minutes worth of data. Note that the
buffer-handling routines in COMMSCOPE require that the buffer be aligned on an even
byte boundary, so VECTOIL.INIT is preceded by the EVEN directive.

The interrupt service routine, COMMSCOPE, receives all Interrupt 14H calls. First
COMMSCOPE checks its own status. If it has not been activated, it immediately passes
control to the real service routine. If the tracer is active, COMMSCOPE examines the Inter
rupt 14H function in AH. Setup and status requests (AH = 0 and AH = 3) do not affect trac
ing, so they are passed on directly to the the real service routine. If the Interrupt 14H call
is a write-data request (AH = 1), COMMSCOPE moves the byte marking the data as trans
mitted and the data byte itself to the current buffer location and increments both the byte
count and the buffer pointer by 2. If the buffer pointer goes to zero, the buffer has
wrapped; data collection is turned off and cannot be turned on again without clearing the
trace buffer. Because the buffer, which starts at VECTOR_INIT, is always on an even byte
boundary, there is no danger of the first byte of the data pair forcing a wrap. After the
transmitted data is added to the buffer, COMMSCOPE passes control to the real service
routine.

A read-data request (AH = 2) must be handled a little differently. In this case, the data
to be collected is not yet available. In order to get it, COMMSCOPE must pass control to
the real service routine and then intercept the results on the way back. The code at
GET_READ fakes an interrupt to the service routine by pushing the flags onto the stack so
that the service routine's IRET will pop them off again. COMMSCOPE then calls the ser
vice routine and, when it returns, retrieves the incoming serial data character from AL. If
the incoming data byte is valid (bit 7 of AH is zero), the byte marking the data as received
and the data byte itself are placed in the trace buffer, and both the byte count and the
buffer pointer are incremented by 2. The buffer-wrap condition is detected and handled in
the same manner as with transmitted data. Because the real service routine has already
been called, COMMSCOPE exits as if it were the service routine by issuing an IRET.

The CONTROL procedure provides the mechanism for external control of the trace pro
cedure. The routine is entered whenever an Interrupt 60H is executed. Commands are
sent through the AH register and can cause the routine to STOP (AH = 0), START/FLUSH
(AH = 1), RESUME (AH = 2), or RETURN STATUS (AH = 3). This routine also sets the com
munications port to be traced. The required information is provided in DX using the same
format as the Interrupt 14H routine. The port information is used only with START and
RESUME requests. The RETURN STATUS command returns data in registers: the byte
count (CX), the segment address of the buffer (DX), and the offset of the first byte in the
buffer (BX).

564 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

The COMMSCOP program is assembled using the Microsoft Macro Assembler (MASM),
linked using the Microsoft Object Linker (LINK), and then converted to a .COM file using
EXE2BIN (see PROGRAMMING UTILITIES):

C>MASM COMMSCOP; <Enter>

C>LINK COMMSCOP; <Enter>

C>EXE2BIN COMMSCOP.EXE COMMSCOP.COM <Enter>

C>DEL COMMSCOP.EXE <Enter>

The linker will display the message Warning: no stack segment-, this message can be
ignored because the rules for making a .COM file forbid a separate stack segment.

The program is installed by simply typing COMMSCOP. Tracing can then be started and
stopped using Interrupt 60H. MS-DOS does not allow resident routines to be removed, so
COMMSCOP will be in the system until the system is restarted. Also note that, because
COMMSCOP is well behaved, nothing disastrous will happen if multiple copies of it are
accidentally installed. As each new copy is installed, it chains to the previous copy. When
Interrupt 14H is intercepted, the new routine dutifully passes the data on to the previous
routine, which repeats the process until the real service routine is reached. The data is
added to the trace buffer of each copy, giving multiple, redundant copies of the same data.
Because Interrupt 60H is not chained, only the last copy's buffer can be accessed. Thus,
the other copies simply waste 64 KB each.

Two techniques can be used to start or stop a trace. The first is to issue Interrupt 60H
calls at strategic locations within the program being debugged. With assembly-language
programs, this is easy. The appropriate registers are loaded and an INT 60H instruction is
executed. Issuing this INT instruction is not much more difficult with higher-order Micro
soft languages—both QuickBASIC and C provide a library routine called INT86 that
allows registers to be loaded and INT instructions to be executed. (In QuickBASIC, the
INT86 library routine is included in the File USERLIB.OBJ; in Microsoft C, it is included in
the file DOS.H.) Embedded Interrupt 60H calls can be convenient because they limit trac
ing to those areas where processing is suspect. Because COMMSCOP marks the buffer
each time the trace is stopped and resumed, the separate pieces of a trace are easy to dif
ferentiate.

The second technique is to write a simple routine to start or stop the trace outside the pro
gram being debugged. The example in Figure 18-5, COMMSCMD, is a Microsoft C program
that can perform these functions using the INT86 library function to issue Interrupt 60H
calls.

* *

* COMMSCMD *

* *

* This routine controls the COMMSCOP program that has been in- *

* stalled as a resident routine. The operation performed is de- *

* termined by the command line. The COMMSCMD program is invoked *

* as follows: *

* *

* COMMSCMD [[cmd][port]] *

* *

Figure 18-5. A serial-trace control routine written in C. (more)

Section II: Programming in the MS-DOS Environment 565

Part E: Programming Tools

* where cmd is the corranand to be executed *

* STOP — stop trace *

* START — flush trace buffer and start trace *

* RESUME — resume a stopped trace *

* port is the COMM port to be traced {1=C0M1, 2=COM2, etc.) *

* *

* If cmd is omitted, STOP is assumed. If port is omitted, 1 is *

* assumed. *

* *

#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

#define COMMCMD 0x60

main(argc, argv)

int argc;

char *argv[];

{

int cmd, port, result;

static char commands[3] [10] = {"STOPPED", "STARTED", "RESUMED"};

union REGS inregs, outregs;

cmd =0;

port =0;

if (argc > 1)

{

if (0 == stricmp(argv[1], "STOP"))

cmd = 0;

else if (0 == stricmp(argv[1], "START"))

cmd = 1;

else if (0 == stricmp(argv[1], "RESUME"))

cmd =2;

if (argc == 3)

{

port = atoi(argv[2]);

if (port > 0)

port = port - 1;

inregs.h.ah = cmd;

inregs.x.dx = port;

result = intS6(COMMCMD, Sinregs, Soutregs);

printf("\nCommunications tracing %s for port C0M%1d:\n",

commands[cmd], port + 1);

}

Figure 18-5. Continued.

566 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

COMMSCMD is passed arguments in the command line. The first argument is the com
mand to be performed: STOP, START, or RESUME. If no command is specified, STOP is
assumed. The second argument is the port number: 1 (for COMl) or 2 (for COM2). If no
port number is specified, 1 is assumed.

The COMMSCMD program uses a simple IF filter to determine the function to be per
formed. The program tests the number of arguments in the command line to see if a port
has been specified. If the argument count iarg<^ is 3 (one for the command name, one for
the command, and one for the port number), the port number argument is retrieved and
converted to an integer. The Interrupt 60H routine expects port numbers to be specified in
the same manner as for Interrupt 14H, so the port number is decremented if it is not already
zero. The AH register is loaded with the command icmd), the DX register is loaded with
the port number (port), and the INT86 library function is then used to execute an Interrupt
60H call. When the interrupt returns, COMMSCMD displays a message showing the func
tion and port.

The same function can be performed by the QuickBASIC program in Figure 18-6.

* *

♦ COMMSCMD *

* *

* This routine controls the COMMSCOP program that has been in- *

* stalled as a resident routine. The operation performed is de- *

* termined by the command line. The COMMSCMD program is invoked *

* as follows: *

* *

* COMMSCMD [[cmd][,port]] *

* *

* where cmd is the command to be executed *

* STOP — stop trace *

* START — flush trace buffer and start trace *

* RESUME — resume a stopped trace *

* port is the COMM port to be traced (1=C0M1, 2=COM2, etc.) *
* *

* If cmd is omitted, STOP is assumed. If port is omitted, 1 is *

* assumed. *

* *

' Establish system constants and variables
I

DEFINT A-Z

DIM INREG{7), 0UTREG(7) 'Define register arrays

Figure 18-6. A QuickBASIC version of COMMSCMD. (more)

Section II: Programming in the MS-DOS Environment 567

Part E: Programming Tools

RAX = 0

RBX = 1

RCX = 2

RDX = 3

RBP = 4

RSI = 5

RDI = 6

RFL = 7

Establish values for 8086

registers

DIM TEXT$(2)

TEXT${0) = "STOPPED"

TEXT$(1) = "STARTED"

TEXT$(2) = "RESUMED"

' Process command-line tail

I

C$ = COMMAND$

IF LEN(C$) = 0 THEN

CMD = 0

PORT = 0

GOTO SENDCMD

END IF

'Get command-line data

'If no command line specified

'Set CMD to STOP

'Set PORT to C0M1

COMMA = INSTR(C$, ")

IF COMMA = 0 THEN

CMDTXT$ = C$

PORT = 0

ELSE

CMDTXT$ = LEFT$(C$, COMMA - 1)

PORT = VAL(MID$(C$, COMMA + 1))

END IF

'Extract operands

IF PORT < 0 THEN PORT = 0

IF CMDTXT$ = "STOP" THEN

CMD = 0

ELSEIF CMDTXT$ = "START" THEN

CMD = 1

ELSEIF CMDTXT$ = "RESUME" THEN

CMD = 2

ELSE

CMD = 0

END IF

Send command to COMMSCOP routine

SENDCMD:

INREG(RAX) = 256 * CMD

Figure 18-6. Continued. (more)

568 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

INREG(RDX) = PORT

CALL INT86(&H60, VARPTR(INREG(0)), VARPTR(OUTREG(0)))

' Notify user that action is complete
f

PRINT : PRINT

PRINT "Communications tracing TEXT$(CMD);

IF CMD <> 0 THEN

PRINT " for port COM"; MID${STR$(PORT + 1), 2); ":"

ELSE

PRINT

END IF

END

Figure 18-6. Continued.

Both versions of COMMSCMD accept their commands from the command tail; both are
invoked with a STOP, START, or RESUME command and a serial port number (1 or 2). If
the operands are omitted, STOP and COMl are assumed.

After data has been collected and safely placed in the trace buffer, it must be read before
it can be useful. Interrupt 60H provides a function (AH = 3) that returns the buffer address
and the number of bytes in the buffer. The QuickBASIC routine in Figure 18-7 uses this
function to get the address of the data and then formats the data on the screen.

He***

* *

* COMMDUMP *

* *

* This routine dumps the contents of the COMMSCOP trace buffer to *

* the screen in a formatted manner. Received data is shown in *

* reverse video. Where possible, the ASCII character for the byte *

* is shown; otherwise a dot is shown. The value of the byte is *

* displayed in hex below the character. Points where tracing was *

* stopped are shown by a solid bar. *

* *

**

' Establish system constants and variables

DEFINT A-Z

DIM INREG(7), OUTREG(7) 'Define register arrays

RAX = 0 'Establish values for 8086

RBX = 1 ' registers

RCX =2 ' .

RDX =3 ' .

Figure 18- 7. Formatted dump routine for serial-trace buffer. (more)

Section II: Programming in the MS-DOS Environment 569

Part E: Programming Tools

RBP = 4

RSI = 5

RDI = 6

RFL = 7

' Interrogate COMMSCOP to obtain addresses and count of data in

' trace buffer

I

INREG(RAX) = &H0300 'Request address data and count

CALL INT86(&H60, VARPTR(INREG(0)), VARPTR(OUTREG(0)))

NUM = OUTREG(RCX) 'Number of bytes in buffer

BUFSEG = OUTREG(RDX) 'Buffer segment address

BUFOFF = OUTREG(RBX) 'Offset of buffer start

IF NUM = 0 THEN END

' Set screen up and display control data

CLS

KEY OFF

LOCATE 25, 1

PRINT "NUM NUM;"BUFSEG = HEX$(BUFSEG); " BUFOFF =

PRINT HEX$(BUFOFF);

LOCATE 4, 1

PRINT STRING$(80,"-")

DEF SEG = BUFSEG

' Set up display control variables

DLINE = 1

DCOL = 1

DSHOWN = 0

' Fetch and display each character in buffer
I

FOR 1= BUFOFF TO BUFOFF+NUM-2 STEP 2

STAT = PEEK(I)

DAT = PEEK(I + 1)

IF (STAT AND 1) = 0 THEN

COLOR 7, 0

ELSE

COLOR 0, 7

END IF

RLINE = (DLINE-1) * 4 + 1

Figure 18-7. Continued. (more)

570 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

IF (STAT AND &H80) = 0 THEN

LOCATE RLINE, DCOL

C$ = CHR$(DAT)

IF DAT < 32 THEN C$ =

PRINT C$;

H$ = RIGHT$("00". + HEX$(DAT), 2)

LOCATE RLINE + 1, DCOL

PRINT LEFT$(H$, 1);

LOCATE RLINE + 2, DCOL

PRINT RIGHT$(H$, 1);

ELSE

LOCATE RLINE, DCOL

PRINT CHR$(178);

LOCATE RLINE. + 1, DCOL

PRINT CHR$(178);

LOCATE RLINE + 2, DCOL

PRINT CHR$(178);

END IF

DCOL = DCOL + 1

IF DCOL >80 THEN

COLOR 7, 0

DCOL = 1

DLINE = DLINE + 1

SHOWN = SHOWN + 1

IF SHOWN = 6 THEN

LOCATE 25, 50

COLOR 0, 7

PRINT "ENTER ANY KEY TO CONTINUE;

WHILE LEN(INKEY$) = 0

WEND

COLOR 7, 0

LOCATE 25, 50

PRINT SPACE$(29);

SHOWN = 0

END IF

IF DLINE > 6 THEN

LOCATE 24, 1

PRINT : PRINT : PRINT : PRINT

LOCATE 24, 1

PRINT STRING$(80, ;

DLINE = 6

ELSE

LOCATE DLINE * 4, 1

PRINT STRING$(80, ;

END IF

END IF

NEXT I

END

Figure 18-7. Continued.

Section II: Programming in the MS-DOS Environment 571

Part E: Programming Tools

COMMDUMP is a simple routine. Like most debugging aids, it lacks needless frills. When
it is executed, COMMDUMP displays the data in the trace buffer on the screen in the for
mat shown in Figure 18-8.

.012832.132056780001806713205678000100671320567800010067132856780001006713205678
B333333033
10128323132056780001006713205678000100671320567800010067132056780001006713205678

00010067132056780001006713205678000100671320567800010067.«.1.012832.567813200001
3302ip3333330333333333333
00010067132056780001006713205678000100671320567800010067338310128323567813200001

00675678132000010067567813200001006756781320000100675678132000010067567813200001
33
00675678132000010067567813200001006756781320000100675678132000010067567813200001

006756781320000100675678132000010067.«.1.812832.00671320567800010067132056780001
333333333333333333333333333333333333021^333333033333333333333333333333333333333
00675678132000010067567813200001006733831012832300671320567800010067132056780001

00671320567800010067132056780001006713205678000100671320567800010067132056780001
33
00671320567800010067132056780001006713205678000100671320567800010067132056780001

0067132056780001.ft.1.012832.1320567800010067132056780001006713205678000100671320
3333333333333333021^333333033
00671320567800013383101283231320567800010067132056780001006713285678000100671320

NUM = 1122 BUFSE6 = 1313 BUFOFF = 208 NTER ANV KEV TO CONTINUE:

Figure 18-8. Formatted trace dump routine output.

Note that the data for each byte is presented in two forms. If the byte is greater than
IFH, the ASCII character represented by that number is shown; otherwise, a dot is shown.
Directly below each character is the hexadecimal representation of the data. The display
shows received data in reverse video and transmitted data in normal video. The mark

placed in the buffer when collection is stopped and resumed is represented on the screen
as a vertical bar one character wide. The display pauses when the screen is full and waits
for a key to be pressed.

Data collected and displayed in this way can be invaluable to the programmer trying to
debug a program involving a communications protocol. The example shown above is
part of an ordered exchange of sales data for a system using blocked transmissions and
ACK/NAK protocol. Like all debugging, finding bugs in such a system requires the collec
tion of large amounts of data. With no data, the causes of problems can be almost impos
sible to find; with sufficiently large amounts of data, the solutions are obvious.

Several things could be done to the COMMSCOP program to increase its usefulness. For
instance, there are six unused bits in the tag accompanying each data byte in the trace
buffer. These could be used to record the status of the modem control bits, to place timer
ticks in the buffer, or to coordinate the data with some outside event. (Such changes to
COMMSCOP would require a more complicated COMMDUMP routine to display them.)

572 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Software debugging monitors

Debugging monitors provide the next level of sophistication in the hierarchy of debugging
methods. These monitors are coresident in memory with the application being debugged
and provide a controlled testing environment—that is, they allow the programmer to con
trol the execution of the program and to monitor the results. They even allow some prob
lems to be fixed directly and the result reexecuted immediately, without the need to
reassemble or recompile.

These monitors are analogous to the TSR serial monitor from the previous section. The
debugging monitors, however, do not reside permanently in memory and are controlled
interactively from the keyboard during the execution of the program under test. Although
this level of control is more flexible than instrumentation, it is also more intrusive into pro
gram execution. While the debugging monitor sits and waits for input from the keyboard,
the application program is also idle. For programs that must run in real time or must
respond to external stimuli, long delays can be fatal. Careful planning and a thorough
knowledge of the internal workings of the program are required to debug in such an
environment.

Other problems with debugging monitors arise from the nature of the monitors them
selves. They are programs, no different from the application program being debugged and
are therefore limited to those things that can be done with software. For instance, they can
break (stop execution to allow investigation of program status) when a specific instruction
address is executed (because this can be done with software), but they cannot break
when a data address is referenced (because this would require special hardware). Because
these monitors reside in RAM, as do the application program and MS-DOS, they are sus
ceptible to damage from a program running wild. Some trial and error is usually involved
in locating the problem causing this kind of damage; breakpoints won't work here because
the problem kills the monitor (and usually MS-DOS also).

Microsoft provides three debugging monitors, each with greater capabilities than its pre
decessor. In order of increasing sophistication, these three monitors are

Monitor Description

DEBUG A basic debugging monitor with the ability to load files, modify memory
and registers, execute programs, set simple breakpoints, trace execution,
modify disk files, and enter assembly-language statements into memory.

SYMDEB A more advanced debugging monitor incorporating all the features of
DEBUG plus more sophisticated data display, support for graphics pro
grams, support for the Intel 80186/80286 microprocessors and the Intel
80287 math coprocessor, improved breakpoints, improved tracing,
recognition of symbols from the program being debugged, and limited
source-line display.

CodeView The most sophisticated debugging monitor, incorporating the func
tionality of SYMDEB (with some differences in the details) plus win
dows, full source-line support, mouse support, and generally more
sophistication on all functions.

Section II: Programming in the MS-DOS Environment 573

Part E: Programming Tools

Although all these debugging monitors will be discussed here, this section is not intended
to be a tutorial on all the commands and options of the monitors—those are presented
elsewhere in this volume and in the manuals accompanying the monitors. See PROGRAM
MING UTILITIES: debug; symdeb; CodeView. Rather, this section uses case histories and

sample programs to illustrate the techniques for solving various types of common debug
ging problems. The case histories have been chosen to show a wide range of problems,
from simple to extremely complex.

DEBUG

Although DEBUG is the least sophisticated of the software debugging monitors, it is quite
useful with moderately complex programs and is an effective tool for learning basic
techniques.

Basic techniques
The first sample program is written in assembly language. It is a test program that per
forms serial input and output and was used to debug COMMSCOP, the serial-trace TSR
presented earlier. The routine reads from the keyboard and writes to COMl by means of
Interrupt 14H. It also accepts incoming serial data and displays it on the screen. This
process continues until Ctrl-C is pressed on the keyboard. A serial terminal is attached
to COMl to serve as a data source. Figure 18-9 shows the erroneous program.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

* *

* TESTCOMM *

* THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS *

* CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO COMl USING *

* INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE *

* SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *

* ON THE KEYBOARD. *

* *

SSEG SEGMENT PARA STACK 'STACK'

DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR

PUSH DS

XOR AX,AX

PUSH AX

Figure 18-9. Incorrect serial test routine.

SET UP FOR RET TO MS-DOS

(more)

574 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

MAINLOOP:

MOV

MOV

INT

JZ

AH, 6

DL,OFFH

21

TESTCOMM

;USE MS-DOS CALL TO CHECK FOR

; KEYBOARD ACTIVITY

; IF NO CHARACTER, JUMP TO

; COMM ACTIVITY TEST

CMP

JNE

RET

AL, 03

SENDCOMM

;WAS CHARACTER A Ctrl-C?

; NO, SEND IT TO SERIAL PORT

; YES, RETURN TO MS-DOS

SENDCOMM:

MOV

MOV

INT

AH, 01

DX, 0

14H

USE INT 14H WRITE FUNCTION TO

SEND DATA TO SERIAL PORT

TESTCOMM:

MOV

MOV

INT

AND

JZ

MOV

MOV

INT

MOV

INT

JMP

BEGIN ENDP

CSEG ENDS

END

AH, 3

DX, 0

14H

AH, 1

MAINLOOP

AH, 2

DX,0

14H

AH, 6

21H

MAINLOOP

BEGIN

GET SERIAL PORT STATUS

ANY DATA WAITING?

NO, GO BACK TO KEYBOARD TEST

READ SERIAL DATA

WRITE SERIAL DATA TO SCREEN

CONTINUE

Figure 18-9. Continued.

When executed, this program produces a constant stream of zeros from the serial port.
Incoming serial data is not echoed on the screen, but the cursor moves as if it were. Fur
ther, the Ctrl-C keystroke is not recognized, so the only way to stop the program is to
restart the system.

An examination of the listing should reveal the errors that cause these problems, but
things do not always happen that way. For the purposes of this case study, assume that the
listing was no help. Instrumentation is more difficult for assembly-language programs than
for programs written in higher-order languages, so in this case it is advantageous to go
directly to a debugging monitor. The monitor for this example is DEBUG.

The first step in using DEBUG is not to invoke the monitor; rather, it is to gather all perti
nent listings, link maps, and program design documentation. In this case, the program is
so short that a link map will not be needed; all the design documentation that exists is in
the program comments.

Now begin DEBUG by typing

C>DEBUG TESTCOMM.EXE <Enter>

Section II: Programming in the MS-DOS Environment 575

Part E: Programming Tools

The filename must be fully qualified; DEBUG makes no assumptions about the extension.
Any type of file can be examined with DEBUG, but only files with an extension of .COM,
.EXE, or .HEX are actually loaded and made ready for execution. Since TESTCOMM is a
.EXE file, DEBUG loads it and prepares it for execution in a manner compatible with the
MS-DOS loader. Type the Display or Modify Registers command, R.

-R <Enter>

AX=0000 BX=0000 CX=0131 DX=0000 SP=0100 BP=0000 81=0000 DI=0000

DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0000 NV UP El PL NZ NA PO NC

lACDiOOOO IE PUSH DS

Notice that the SS and CS registers have been loaded to their correct values and that SP
points to the bottom of the stack. DS and ES point to an address lOOH bytes (lOH para
graphs) before the stack segment. (This is because the system sets these registers to point
to the program segment prefix [PSP] when a .EXE program is loaded.) Normally, the pro
gram code would be responsible for loading the correct value of DS, but this example does
not use the data segment, so the program doesn't bother. The register display also shows
the instruction at the current value of CS:IP, lACDrOOOOH. The instruction pointer was set
to this address because the END statement in the source program specified the procedure
BEGIN as the entry point and that procedure begins at CS:IP. Note that the instruction dis
played below the register information has not yet been executed. This condition is true for
all register displays in DEBUG—IP always points to the next instruction to be executed,
so the instruction at IP has not been executed.

From the symptoms observed during program execution, it is clear that the keyboard data
is not reaching the serial port. The failure could be in the keyboard read routine or in the
serial port write routine. This code is compact and fairly linear, so the easiest way to find
out what is going on is to trace through the first few instructions of the program. Executing
five instructions with the Trace Program Execution command, T, will do this.

-T5 <Enter>

AX=0000 BX=0000

DS=1AAD ES=1AAD

1ACD:0001 33C0

CX=0131 DX=0000 SP=OOFE

SS=1ABD CS=1ACD IP=0001

XOR AX,AX

BP=0000 31=0000 DI=0000

NV UP El PL NZ NA PO NC

AX=0000 BX=0000

DS=1AAD ES=1AAD

1AGO:0003 50

CX=0131 DX=0000 SP=OOFE

SS=1ABD CS=1ACD IP=0003

PUSH AX

BP=0000 81=0000 DI=0000

NV UP El PL ZR NA PE NC

AX=0000 BX=0000

D8=1AAD E8=1AAD

1ACD:0004 B406

CX=0131 DX=0000 8P=00FC

8S=1ABD C8=1ACD IP=0004

MOV AH,06

BP=0000 81=0000 DI=0000

NV UP El PL ZR NA PE NC

AX=0600 BX=0000

D8=1AAD E8=1AAD

1ACD:0006 B2FF

CX=0131 DX=0000 SP=OOFC

8S=1ABD CS=1ACD IP=0006

MOV DL,FF

BP=0000 81=0000 DI=0000

NV UP El PL ZR NA PE NC

AX=0600 BX=0000

D8=1AAD E8=1AAD

1ACD:0008 CD15

CX=0131 DX=00FF SP=OOFC

S8=1ABD C8=1ACD IP=0008

INT 15

BP=0000 81=0000 DI=0000

NV UP EX PL ZR NA PE NC

576 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

The Trace command shows the contents of the registers as each instruction is executed.
The register contents are after the execution of the instruction listed above the registers
and the instruction shown with the registers is the next m' sXxuclion to be executed. The
first register display in this example represents the state of affairs after the execution of the
PUSH DS instruction, as indicated by SP. The first three instructions set up the stack so
that the far return issued at the end of the program will pass control to the PSP for termina
tion. The next two instructions set the registers for a Direct Console I/O MS-DOS call
(AH = 060, DL = HFFH for input). After these registers are set up, the program should ex
ecute the MS-DOS call INT 21H. However, the next instruction to be executed is INT 15H.

This is the reason the keyboard data is not being read. The code requests INT 21, not 21H.
This mistake is a common one. The assembler's default radix is decimal, so it converted 21
into 15H. This error can be corrected in memory from within DEBUG and, because the in
struction hasn't executed yet, the fix can be tested immediately. To make the correction,
use the Assemble Machine Instructions command, A.

-A 8 <Enter>

1ACD:0008 int 21 <Enter>

lACDrOOOA <Enter>

The A 8 code instructs DEBUG to begin assembling at CS:0008H. DEBUG prompts with
the address and waits for an instruction to be entered. The letter H is not needed after the

21 this time because DEBUG assumes all numbers entered with the Assemble command

are in hexadecimal form. In general, any valid 8086/8087/8088 assembly-language state
ment can be entered this way and translated into executable machine code. See
PROGRAMMING UTILITIES: debug: a. Within its restrictions, the Assemble command

is a handy way of making changes. The Enter Data command, E, could also have been
used to change the 15H to a 21H, but the Assemble command is safer, especially for com
plex instructions. After the new instruction has been entered, press Enter again to stop
the assembly process.

There is a danger associated with making changes in memory during debugging: The
memory copy of the program is temporary; the changes exist only in memory and when
DEBUG exits, they are lost. Changes made to .EXE and .HEX files cannot be written back
to disk. To avoid forgetting the changes, write them down. When DEBUG exits, edit the
source file immediately. Changes made to other files can be written back to disk with
DEBUG's Write File or Sectors command, W.

To be sure that the change was made correctly, use the Disassemble (Unassemble)
Program command, U, to show the instructions starting at CS:0004H.

-U 4 <Enter>

1AGO:0004 B406 MOV AH,06

1AGO:0006 B2FF MOV DL,FF

1AGD:0008 GD21 INT 21

lAGDiOOOA 740G JZ 0018

1AGD:000G 3G03 GMP AL,03

1AGD:000E 7501 JNZ 0011

1AGD:0010 GB RETF

Section II: Programming in the MS-DOS Environment 577

Part E: Programming Tools

1AGD:0011 B401 MOV AH, 01

1AGD:0013 BAOOOO MOV DX,0000

1AGD:0016 GDI 4 INT 14

00

o
o

Q
U
<

B403 MOV AH, 03

lAGDrOOIA BAOOOO MOV DXOOOO

lAGDiOOID GDI 4 INT 14

lAGDrOOIF 80E401 AND AH, 01

1AGD:0022 74E0 JZ 0004

The change has been correctly made. Now, to test the change, start the program to see if
characters make it out the serial port. The problem of data from the serial port not making
it to the screen remains, however, so instead of simply starting the program, set a break
point at the location in the program that handles incoming serial data (CS:0024H). This
technique allows the output section of the code to be tested separately. The breakpoint is
set using the Go command, G.

-G 24 <Enter>

AX=0130 BX=0000 CX=0131 DX=0000 SP=OOFC BP=0000 31=0000 DI=0000

DS=1AAD ES=1AAD SS=1ABD CS=1ACD IP=0024 NV UP El PL NZ NA PO NC

1ACD:0024 B402 MOV AH,02

-U <Enter>

1ACD:0024 B402 MOV AH,02

1AGO:0026 BAOOOO MOV DX,0000

1ACD:0029 GDI 4 INT 14

1AGD:002B B406 MOV AH,06

1AGD:002D GD21 INT 21

1AGD:002F EBD3 JMP 0004

1AGD:0031 0000 ADD [BX+SI],AL

1AGD:0033 0000 ADD [BX+SI],AL

1AGD:0035 0000 ADD [BX+SI],AL

1AGD:0037 0000 ADD [BX+SI],AL

1AGD;0039 0000 ADD [BX+SI],AL

1AGD:003B 0000 ADD [BX+SI],AL

1AGD:003D 0000 ADD [BX+SI],AL

1AGD:003F 0000 ADD [BX+SI],AL

1AGD;0041 0000 ADD [BX+SI],AL

1AGD:0043 0000 ADD [BX+SI],AL

As stated earlier, the serial port is attached to a serial terminal. After execution of the pro
gram is started with the Go command, all keys typed on the keyboard are displayed cor
rectly on the terminal, thus confirming the fix made to the INT 21H instruction. To test
serial input, a key must be pressed on the terminal, causing the breakpoint at CS:0024H
to be executed.

The fact that location CS:0024H was reached indicates that Interrupt 14H is detecting the
presence of an input character. To test if the character is now making it to the screen, a
breakpoint is needed after the write to the screen. The Disassemble command shows the
instructions starting at the current IP value. The program ends at CS:002FH; the instruc
tions shown after that are whatever happened to be in memory when the program was
loaded. A good place to set the next breakpoint is CS:002FH, just after the Interrupt 21H
call.

578 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

-G 2f <Enter>

AX=0600 BX=0000

DS=1AAD ES=1AAD

1ACD:002F EBD3

CX=0131 DX=0000 SP=OOFC

SS=1ABD CS=1ACD IP=002F

JMP 0004

BP=0000 SI=0000 DI=0000

NV UP El PL NZ NA PO NC

DEBUG shows that the breakpoint was reached and the character did not print (it should
have been on the line after -G2f\ so something must be wrong with the Interrupt 21H
call. A breakpoint just before the MS-DOS call at CS:002DH should reveal the cause of the
problem.

-G 2d <Enter>

AX=0662 BX=0000

DS=1AAD ES=1AAD

1ACD:002D CD21

CX=0131 DX=0000 SP=OOFC

88=1ABD C8=1ACD IP=002D

INT 21

BP=0000 81=0000 DI=0000

NV UP El PL NZ NA PO NC

The key that was entered on the serial terminal (b) is in AL, where it was returned by
Interrupt 14H. Unfortunately, it is not in DL, where it is expected by the Direct Console I/O
function (06H) of the MS-DOS command. The MS-DOS function was simply printing a null
(OOH) and then moving the cursor. An instruction (MOV DL,AL) is missing.

Fixing this problem requires the insertion of a line of code, which is usually difficult to do
inside DEBUG. The Move (Copy) Data command, M, can be used to move the code located
below the point where the insertion is to be made down 2 bytes, but this will probably
throw any subsequent addressing off. It is usually easier to exit DEBUG, edit the source file,
and then reassemble. In this case, however, because the instruction to be added is near the
last instruction, a patch can easily be made by entering only three instructions: the new
one and the two it destroys.

-A 2d <Enter>

1ACD:002D mov dl,al <Enter>

1ACD:002F int 21 <Enter>

1ACD:0031 jmp 4 <Enter>

1ACD:0033 <Enter>

-U 2b <Enter>

1ACD:002B B406 MOV AH, 06

1ACD:002D 88C2 MOV DL,AL

1ACD:002F CD21 INT 21

1ACD:0031 EBD1 JMP 0004

1ACD:0033 0000 ADD [BX+8I],AL

1ACD;0035 0000 ADD [BX+8I],AL

1ACD:0037 0000 ADD [BX+8I],AL

1ACD:0039 0000 ADD [BX+8I],AL

1ACD;003B 0000 ADD [BX+8I],AL

1ACD;003D 0000 ADD [BX+8I],AL

1ACD:003F 0000 ADD [BX+8I],AL

1ACD;0041 0000 ADD [BX+8I],AL

1ACD:0043 0000 ADD [BX+8I],AL

1ACD:0045 0000 ADD [BX+8I],AL

1ACD:0047 0000 ADD [BX+8I],AL

1ACD:0049 0000 ADD [BX+8I],AL

Section II: Programming in the MS-DOS Environment 579

Part E: Programming Tools

The new line of code has been inserted and verified with the Disassemble command. The

fix is ready to test. The Trace command could be used to single-step through the program
to verify execution. A word of warning is in order, however: The DEBUG Trace command
should never be used to trace an Interrupt 21H call. Once the trace enters the MS-DOS call,
it will wander around for a while and then lock the machine, requiring a restart. Avoid this
problem either by setting a breakpoint just beyond the Interrupt 21H call or by using the
Proceed Through Loop or Subroutine command, P. The Proceed command operates in a
similar manner to the Trace command but does not trace loops, calls, and interrupts.

Because the fix is fairly certain, use the Go command in its simple form with no break
points. The program will execute without further intervention from DEBUG.

-G <Enter>

lasdfgh

Program terminated normally

-Q <Enter>

The lasdfgh text entered on the serial terminal is displayed correctly. When a Ctrl-C is
entered from the keyboard, the program terminates properly and DEBUG displays the
message Program terminated normally. Now exit DEBUG with the Quit command, Q.

The source code of TESTCOMM should be edited immediately so that it reflects the two
changes made temporarily under DEBUG. Figure 18-10 shows the corrected listing.

TITLE TESTCOMM - TEST COMMSCOP ROUTINE

* *

* TESTCOMM *

* THIS ROUTINE PROVIDES DATA FOR THE COMMSCOP ROUTINE. IT READS *

* CHARACTERS FROM THE KEYBOARD AND WRITES THEM TO C0M1 USING *

* INT 14H. DATA IS ALSO READ FROM INT 14H AND DISPLAYED ON THE *

* SCREEN. THE ROUTINE RETURNS TO MS-DOS WHEN Ctrl-C IS PRESSED *

* ON THE KEYBOARD. *

* *

SSEG SEGMENT PARA STACK 'STACK'

DW 128 DUP(?)

SSEG ENDS

CSEG SEGMENT

ASSUME CS:CSEG,SS:SSEG

BEGIN PROC FAR

PUSH DS ;SET

XOR AX, AX ; .

PUSH AX ; .

;SET UP FOR RET TO MS-DOS

Figure 18-10. Correct serial test routine. (more)

580 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

MAINLOOP:

MOV

MOV

INT

JZ

AH, 6

DL,OFFH

21H

TESTCOMM

;USE DOS CALL TO CHECK FOR

; KEYBOARD ACTIVITY

; IF NO CHARACTER, JUMP TO

; COMM ACTIVITY TEST

CMP

JNE

RET

AL, 03

SENDCOMM

;WAS CHARACTER A Ctrl-C?

; NO, SEND IT TO SERIAL PORT

; YES, RETURN TO MS-DOS

SENDCOMM:

MOV

MOV

INT

AH, 01

DX,0

14H

USE INT 14H WRITE FUNCTION TO

SEND DATA TO SERIAL PORT

TESTCOMM:

MOV

MOV

INT

AND

JZ

MOV

MOV

INT

MOV

MOV

INT

JMP

AH, 3

DX, 0

1 4H

AH, 1

MAINLOOP

AH, 2

DX, 0

1 4H

AH, 6

DL,AL

21H

MAINLOOP

GET SERIAL PORT STATUS

ANY DATA WAITING?

NO, GO BACK TO KEYBOARD TEST

READ SERIAL DATA

WRITE SERIAL DATA TO SCREEN

CONTINUE

BEGIN

CSEG

ENDP

ENDS

END BEGIN

Figure 18-10. Continued.

DEBUG has a rich set of commands and features. The preceding case study shows the
more common ones in their most straightforward aspect. Some of the other commands
and some useful techniques are described below. See PROGRAMMING UTILITIES:
DEBUG.

Establishing initial conditions
When a program is loaded for testing, four areas may require initialization:

• Registers

• Data areas

• Default file-control blocks (FCBs)

• Command tail

These areas may also require changes during testing, especially when the programmer is
working around bugs or establishing different test conditions.

Section II: Programming in the MS-IX)S Environment 581

Part E: Programming Tools

Registers. Registers are ordinarily set when the program is loaded. The values in them
depend on whether a .EXE, .COM, or .HEX file was loaded. Generally, the segment regis
ters, the IP register, and the SP register are set to appropriate values; with the exception of
AX, BX, and CX, the rest of the registers are set to zero. BX and CX contain the length of
the loaded file. By MS-DOS convention, when a program is loaded, the contents of AL and
AH indicate the validity of the drive specifiers in the first and second DEBUG command-
line parameters, respectively. Each register contains zero if the corresponding drive was
valid, OIH if the drive was valid and wildcards were used, or OFFH if the drive was invalid.

To change the value of any register, use an alternate form of the Register command. Enter
R followed by the two-letter register name. Only l6-bit registers can be changed, so use the
X form of the general-purpose registers:

-R AX <Enter>

DEBUG will respond with the current contents of the register and prompt for a new value.
Either enter a new hexadecimal value or press Enter to keep the current value:

AX 0000

:FFFF <Enter>

In this example, the new value of AX is FFFFH.

When changing registers, exercise caution modifying the segment registers. These regis
ters control the execution of the program and should be changed only after careful and
thoughtful consideration.

The Register command can also be used to modify the CPU flags.

Data areas. Initializing or changing data areas is easy, and several methods are provided.
The Fill Memory command, F, can be used to initialize areas of RAM. For instance,

-F 0 L400 0 <Enter>

fills DS:OOOOH through DS:03FFH with zero. (The absence of a segment override causes
the Fill command to use its default segment, DS.) Entering

-F OS:100 200 IB "[Hello" OD <Enter>

fills CS:0100H through CS:0200H with many repetitions of the string IB 5B 48 65 6C 6C 6F
OD. (Note that an address range was specified, not a length.)

When the wholesale changing of memory is not appropriate, the Enter command can be
used to edit a small number of locations. The Enter command has two forms: One enters a

list of bytes into the specified memory location; the other prompts with the contents of
each location and waits for input. Either form can be used as appropriate.

Defaultfile-control blocks and the command tail. The setting of the default FCBs and
of the command tail are related functions. When DEBUG is entered, the first parameter
following the command DEBUG is the name of the file to be loaded into memory for
debugging. If the next two parameters are filenames, FCBs for these files are formatted at

582 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

DS:005CH and DS:006CH in the PSR See PROGRAMMING IN THE MS-DOS ENVIRON

MENT: Programming for ms-dos: File and Record Management. If either parameter con
tains a pathname, the corresponding FCB will contain only a valid drive number; the
filename field will not be valid. All filenames and switches following the name of the file
to be debugged are considered the command tail and are saved in memory starting at
DS:0081H. The length of the command tail is in DS:0080H. For example, entering

ODEBUG COMMDUMP.EXE FILE1.DAT FILE2.DAT <Enter>

results in the first FCB (5CH), the second FCB (6CH), and the command tail (81H) being
loaded as follows:

-D 50 <Enter>

4209:0050 CD 21 CB 00 00 00 00 00-00 00 00 00 00 46 49 40 .! FIL

4209:0060 45 31 20 20 20 44 41 54-00 00 00 00 00 46 49 40 El DAT FIL

4209:0070 45 32 20 20 20 44 41 54-00 00 00 00 00 00 00 00 E2 DAT

4209:0080 15 20 66 69 60 65 31 2E-64 61 74 20 66 69 60 65 . file1.dat file

4209:0090 32 2E 64 61 74 20 OD 74-20 66 69 60 65 32 2E 64 2.dat .t file2.d

42O9:00A0 61 74 20 OD 00 00 00 00-00 00 00 00 00 00 00 00 at

42O9:00B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

4209:0000 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

In this example, location DS:005CH contains an unopened FCB for file FILE1.DAT on the
current drive. Location DS:006CH contains an unopened FCB for FILE2.DAT on the current
drive. (The second FCB cannot be used where it is and must be moved to another location

before the first FCB is opened.) Location DS:0080H contains the length of the command
tail, 15H (21) bytes. The next 21 bytes are the command tail prepared by DEBUG; they cor
respond exactly to what the command tail would be if the program had been loaded by
COMMAND.COM instead of by DEBUG.

The default FCBs and the command tail can also be set after the program has been loaded,
by using the Name File or Command-Tail Parameters command, N. DEBUG treats the
string of characters that follow the Name command as the command tail: If the first two
parameters are filenames, they become the first and second FCBs, respectively. The Name
command also places the string at DS:0081H, with the length of the string at DS:0080H.
Entering the DEBUG command

-N FILE1.DAT FILE2.DAT <Enter>

produces the same results as specifying the filenames in the command line. When em
ployed in this manner, the Name command is useful for initializing command-tail data that
was not in the command line or for changing the command-tail data to test different
aspects of a program. (If files are named in this manner, they are not validated until the
Load File or Sectors command, L, is used.) Note that the data following the Name com
mand need not be filenames; it can be any parameters, data, or switches that the applica
tion program expects to see.

Section II: Programming in the MS-DOS Environment 583

Part E: Programming Tools

More on breakpoints
The case study at the beginning of this section used breakpoints in their simplest form:
Only a single breakpoint was specified at a time and the execution address was con
sidered to be the current IP. The Go command is also capable of setting multiple break
points and of beginning execution at any address in memory. The more general form of
the Go command is

G[=address] [address [address...]]

If Go is used with no operands, execution begins at the current value of CSrIP and no
breakpoints are set. If the =address operand is used, DEBUG sets IP to the address speci
fied and execution then begins at the new CS:IP. The other optional addresses are break
points. When execution reaches one of these breakpoints, DEBUG stops and displays the
system's registers. As many as 10 breakpoints can be set on one Go command, and they
can be in any order.

The breakpoint addresses must be on instruction boundaries because DEBUG replaces
the instruction at each breakpoint address with an INT 03H instruction (OCCH). DEBUG
saves the replaced instructions internally. When any breakpoint is reached, DEBUG stops
execution and restores the instructions at all the breakpoints; if no breakpoint is reached,
the instructions are not restored and the Load command must be used to reload the origi
nal program.

The multiple-breakpoint feature of the Go command allows the tracing of program exe
cution when branches exist in the code. When a program contains, for instance, a condi
tional jump on the zero flag, a breakpoint can be placed in each of the two possible
branches. When the branch is reached, one of the two breakpoints will be encountered
shortly thereafter. When DEBUG displays the breakpoint, the programmer knows which
branch was taken. Moving through a program with breakpoints at key locations is faster
than using the Trace command to execute each and every instruction.

Multiple breakpoints can also be used to home in on a bad piece of code. This technique
is particularly useful in those nasty situations when there are no symptoms except that the
system locks up and must be restarted. When debugging a problem such as this, set break
points at each of the major sections of the program and then note those breakpoints that
are executed successfully, continuing until the system locks up. The problem lies some
where between the last successful breakpoint and the next breakpoint set. Now repeat the
processes, setting breakpoints between the last breakpoint and the one that was never
reached. By progressively narrowing the gap between breakpoints, the exact offending
instruction can be isolated.

Some general comments about the Go command and breakpoints:

• After a program has reached completion and returned to MS-DOS, it must be reloaded
with the Load command before it can be executed again. (DEBUG intercepts this
return and displays Program terminated normally^

• Because DEBUG replaces program instructions with an INT 03H instruction to form
breakpoints, the break address must be on an instruction boundary. If it is not, the
INT 03H will be stuck in the middle of an instruction, causing strange and sometimes
entertaining results.

584 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

• Breakpoints cannot be set in data, because data is not executed.
• The target program's SS:SP registers must point to a valid stack that has at least 6 bytes

of stack space available. When the Go command is executed, it pushes the target pro
gram's flags and CS and IP registers onto the stack and then transfers control to the
program with an IRET instruction. Thus, if the target program's stack is not valid or
is too small, the system may crash.

• Finally, and obviously, breakpoints cannot be set in read-only memory (the ROM
BIOS, for instance).

Using the Write commands
After a program has been debugged, fixed, and tested with DEBUG, the temptation exists
to write the patched program directly back to the disk as a .COM file. This action is some
times legitimate, but only rarely. The technique will be explained in a moment, but first a
sermon:

DON'T DO IT.

One of the greatest sadnesses in a programmer's life comes when, after a program has
been running wonderfully, enhancements are made to the source code and the recom
piled program suddenly has bugs in it that haven't been seen for months. Always make any
debugging patches permanent in the source file immediately.

Unless, of course, the source code is not available. This is the only time saving a patched
program is permissible. For example, sometimes commercial programs require patching
because the program does not quite fit the hardware it must run on or because bugs have
been found in the program. The source of these patches is sometimes word-of-mouth,
sometimes a bulletin-board service, and sometimes the program's manufacturer.

Even when legitimate reasons exist to save patched code, precautions should be taken. Be
very careful, meticulous, and alert as the patches are applied. Understand each step before
undertaking it. Most important of all, always have a backup of the original unpatched
program safely on a floppy disk.

Use the Write command to write the program image to disk. A starting address can op
tionally be specified; otherwise the write starts at CSiOlOOH. The name of the file will be
either the name specified in the last Name command or the name of the program from the
DEBUG command line if the Name command has not been used. The number of bytes to
be written is in BX and CX, with the most significant half in BX. These registers will have
been loaded correctly when the program was loaded, but they should be checked if the
program has executed since it was loaded.

The .EXE and .HEX file types cannot be written to disk with the Write command. The
command performs no formatting and only writes the binary image of memory to the disk
file. Thus, all programs written with Write must be .COM files. The image of a .EXE or
.HEX file can still be written as a .COM file provided no segment fixups are required and
provided the other rules for a .COM file are followed. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an Application Program.
(A segment fixup is a segment address that must be provided by the loader when the

Section II: Programming in the MS-DOS Environment 585

Part E: Programming Tools

program is originally loaded. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Pro
gramming Tools: Object Modules.) If a .EXE file containing a segment fixup is written as a
.COM file, the new file will execute correctly only when loaded at exactly the same address
as the original file, and this is difficult to ensure for programs running under MS-DOS.

If it is necessary to patch a .EXE or .HEX file and the exact addresses relative to the start of
the file are known, use the following procedure:

1. Rename (or better yet, copy) the file to an extension other than .EXE or .HEX.
2. Load the program image into memory by placing the new name on DEBUG's com

mand line. Note that the loaded file is an image of the disk file and is not executable.
3. Modify the program image in memory, but never try to execute the program. Results

would be unpredictable and the program image could be damaged.
4. Write the modified image back to disk using a simple w. No other action is needed,

because the original load will have set the filename and the correct length in BX
and ex.

5. Rename the file to a name with the correct .EXE or .HEX extension. The new name
need not be the same as the original, but it should have the same extension.

The same technique can be used to load, modify, and save data files. Simply make sure
that the file does not have an extension of .COM, .EXE, or .HEX. The data file will be
loaded at address CS:0100H. (DEBUG treats the file much the same as a .COM file.) After

patching the data (the Enter command works best), use the Write command to write it
back to the disk.

SYMDEB

SYMDEB is an extension of DEBUG; virtually all the DEBUG commands and techniques
still work as expected. The major new feature, and the source of the name SYMDEB, is
symbolic debugging: SYMDEB can use all public labels in a program for reference, instead
of using hexadecimal offset addresses. In addition, SYMDEB allows the use of line num
bers for reference in compatible high-order languages; source-line display within SYMDEB
is also possible for these languages. Currently, the languages supporting these options are
Microsoft FORTRAN versions 3.0 and later, Microsoft Pascal versions 3.0 and later, and
Microsoft C versions 2.0 and later. Versions 4.0 and earlier of the Microsoft Macro Assem

bler (MASM) do not generate the data needed for line-number display and source-line
debugging.

In addition to symbolic debugging, SYMDEB has added several other new features and has
expanded existing DEBUG features:

• Breakpoints have been made more sophisticated with the addition of "sticky"
breakpoints. Unlike the breakpoints set with the Go command, sticky breakpoints
remain attached to the program throughout a SYMDEB session until they are explic
itly removed. Specific commands are supplied for listing, removing, enabling, and
disabling sticky breakpoints.

• DEBUG's Display Memory command, D, has been extended so that data can be
displayed in different formats.

586 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

• Full redirection is supported.
• A stack trace feature has been added.

• Terminate-and-stay-resident programs are supported.
• A shell escape command has been added to allow the execution of MS-DOS

commands and programs without leaving SYMDEB and the debugging session.

These additions allow more sophisticated debugging techniques to be used and, in some
cases, also simplify locating problems. To see the advantages of using symbols and sticky
breakpoints in debugging, consider a type of program that is one of the most difficult to
debug—the TSR.

Debugging TSRs with SYMDEB
Terminate-and-stay-resident routines can be difficult to debug. They exist in two worlds
and can have bugs associated with each. At the outset, they are usually simple programs
that perform some initialization task and then exit. At this point, they are transformed into
another type of beast entirely—resident routines that are more a part of the operating sys
tem than of any application program. Each form of the program must be debugged sepa
rately, using different techniques.

The TSR routine used for this case study is the same one created previously to serve
as external instrumentation to trace serial communications. The program was called
COMMSCOP, but to avoid confusion of that working program with the broken one pre
sented here, the name has been changed to BADSCOP. BADSCOP was assembled and
linked in the usual manner and then converted to a .COM file using EXE2BIN. When it was
installed, it returned normally, but at the first attempt to issue an Interrupt 14H, the system
locked up completely. Warm booting was not sufficient to restore it, and a power-on cold
boot was required to get the system working again.

Figure 18-11 is a listing of BADSCOP. The only difference from COMMSCOP, aside from the
errors, is the addition of two PUBLIC statements to make all the procedure names and the
important data names available to SYMDEB.

TITLE BADSCOP - BAD VERSION OF COMMUNICATIONS TRACE UTILITY

* *

* BADSCOP - *

* THIS PROGRAM MONITORS THE ACTIVITY ON A SPECIFIED COMM PORT *

* AND PLACES A COPY OF ALL COMM ACTIVITY IN A RAM BUFFER. EACH *

* ENTRY IN THE BUFFER IS TAGGED TO INDICATE WHETHER THE BYTE *

* WAS SENT BY OR RECEIVED BY THE SYSTEM. *

* *

* BADSCOP IS INSTALLED BY ENTERING *

* *

* BADSCOP *

* *

Figure 18-11. An incorrect version ofthe serial trace utility. (more)

Section II: Programming in the MS-DOS Environment 587

Part E: Programming Tools

THIS WILL INSTALL BADSCOP AND SET UP A 64K BUFFER TO BE USED

FOR DATA LOGGING. REMEMBER THAT 2 BYTES ARE REQUIRED FOR

EACH COMM BYTE, SO THE BUFFER IS ONLY 32K EVENTS LONG, OR ABOUT

30 SECONDS OF CONTINUOUS 9600 BAUD DATA. IN THE REAL WORLD,

ASYNC DATA IS RARELY CONTINUOUS, SO THE BUFFER WILL PROBABLY

HOLD MORE THAN 30 SECONDS WORTH OF DATA.

WHEN INSTALLED, BADSCOP INTERCEPTS ALL INT 14H CALLS. IF THE

PROGRAM HAS BEEN ACTIVATED AND THE INT IS EITHER SEND OR RE

CEIVE DATA, A COPY OF THE DATA BYTE, PROPERLY TAGGED, IS PLACED

IN THE BUFFER. IN ANY CASE, DATA IS PASSED ON TO THE REAL

INT 14H HANDLER.

BADSCOP IS INVOKED BY ISSUING AN INT 60H CALL.

THE FOLLOWING CALLING SEQUENCE:

THE INT HAS

* AH - COMMAND *

* 0 - STOP TRACING, PLACE STOP MARK IN BUFFER *

* 1 - FLUSH BUFFER AND START TRACE *

* 2 - RESUME TRACE *

* 3 - RETURN COMM BUFFER ADDRESSES *

* DX - COMM PORT (ONLY USED WITH AH = 1 or 2) *

* 0 - C0M1 *

* 1 - COM2 *

* *

* THE FOLLOWING DATA IS RETURNED IN RESPONSE TO AH = 3: *

* *

* CX - BUFFER COUNT IN BYTES *

* DX - SEGMENT ADDRESS OF THE START OF THE BUFFER *

* BX - OFFSET ADDRESS OF THE START OF THE BUFFER *

* *

* THE COMM BUFFER IS FILLED WITH 2-BYTE DATA ENTRIES OF THE *

* FOLLOWING FORM: *

* *

* BYTE 0 - CONTROL *

* BIT 0 - ON FOR RECEIVED DATA, OFF FOR TRANS. *

* BIT 7 - STOP MARK - INDICATES COLLECTION WAS *

* INTERRUPTED AND RESUMED. *

* BYTE 1 - 8-BIT DATA *

* *

PUBLIC INITIALIZE,CONTROL,VECTOR_INIT,COMMSCOPE

PUBLIC OLD_COMM_INT,COUNT,STATUS,PORT,BUFPNTR

CSEG SEGMENT

ASSUME CS:CSEG,DS:CSEG

ORG 10OH

Figure 18-11. Continued.

;T0 MAKE A COM FILE

(more)

588 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

INITIALIZE:

JMP VECTOR_INIT ;JUMP TO THE INITIALIZATION

; ROUTINE WHICH, TO SAVE SPACE,

; IS IN THE COMM BUFFER

SYSTEM VARIABLES

OLD_COMM_INT DD ?

COUNT DW 0

COMMSCOPE_INT EQU 60H

STATUS

PORT

BUFPNTR

DB 0

DB 0

DW VECTOR-INIT

SUBTTL DATA INTERRUPT HANDLER

ADDRESS OF REAL COMM INT

BUFFER COUNT

COMMSCOPE CONTROL INT

PROCESSING STATUS

0 - OFF

1 - ON

COMM PORT BEING TRACED

NEXT BUFFER LOCATION

PAGE

* *

* COMMSCOPE *

* THIS PROCEDURE INTERCEPTS ALL INT 14H CALLS AND LOGS THE DATA *

* IF APPROPRIATE. ♦

* *

**

COMMSCOPE PROC NEAR

TEST CS:STATUS,1

JZ OLD_JUMP

CMP AH,OOH

JE OLD_JUMP

CMP AH,03H •

JAE OLD_JUMP

CMP AH,02H

JE GET_READ

;ARE WE ON?

; NO, SIMPLY JUMP TO OLD HANDLER

;SKIP SETUP CALLS

;SKIP STATUS REQUESTS

;IS THIS A READ REQUEST?

; YES, GO PROCESS

DATA WRITE REQUEST - SAVE IF APPROPRIATE

CMP

JNE

PUSH

POP

MOV

DL,CS:PORT

OLD_JUMP

PUSH DS

PUSH BX

CS

DS

BX,BUFPNTR

Figure 18-11. Continued.

;IS WRITE FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

SAVE CALLER'S REGISTERS

SET UP DS FOR OUR PROGRAM

GET ADDRESS OF NEXT BUFFER LOCATION

(more)

Section II: Programming in the MS-DOS Environment 589

Part E: Programming Tools

MOV [BX],BYTE PTR 0

MOV [BX+1],AL

INC COUNT

INC COUNT

INC BX

INC BX

MOV BUFPNTR,BX

JNZ WRITE_DONE

MARK AS TRANSMITTED BYTE

SAVE DATA IN BUFFER

INCREMENT BUFFER BYTE COUNT

POINT TO NEXT LOCATION

SAVE NEW POINTER

ZERO INDICATES BUFFER HAS WRAPPED

STATUS,0 ;TURN COLLECTION OFF - BUFFER FULL

RESTORE CALLER'S REGISTERS

PASS REQUEST ON TO BIOS ROUTINE

PROCESS A READ DATA REQUEST AND WRITE TO BUFFER IF APPROPRIATE

MOV

BX

DS

OLD_JUMP

WRITE_DONE:

POP

POP

JMP

GET_READ:

CMP

JNE

DL,CS:PORT

OLD_JUMP

;IS READ FOR PORT BEING TRACED?

; NO, JUST PASS IT THROUGH

PUSH

PUSH

PUSH

POP

DS

BX

CS

DS

SAVE CALLER'S REGISTERS

SET UP DS FOR OUR PROGRAM

PUSHF

CLI

CALL

TEST

JNZ

OLD_COMM_INT

AH,80H

READ_DONE

FAKE INT 14H CALL

PASS REQUEST ON TO BIOS

VALID READ?

NO, SKIP BUFFER UPDATE

MOV BX,BUFPNTR

MOV [BX],BYTE PTR 1

MOV [BX+1],AL

INC COUNT

INC COUNT

INC BX

INC BX

MOV BUFPNTR,BX

JNZ READ_DONE

GET ADDRESS OF NEXT BUFFER LOCATION

MARK AS RECEIVED BYTE

SAVE DATA IN BUFFER

INCREMENT BUFFER BYTE COUNT

POINT TO NEXT LOCATION

SAVE NEW POINTER

ZERO INDICATES BUFFER HAS WRAPPED

MOV

READ_DONE:

POP

POP

I RET

STATUS,0

BX

DS

;TURN COLLECTION OFF - BUFFER FULL

;RESTORE CALLER'S REGISTERS

JUMP TO COMM BIOS ROUTINE

OLD_JUMP:

JMP OLD_COMM_INT

COMMSCOPE ENDP

Figure 18-11. Continued. (more)

590 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

SUBTTL CONTROL INTERRUPT HANDLER

PAGE

* *

* CONTROL *

* THIS ROUTINE PROCESSES CONTROL REQUESTS. *

* *

:ic:ic4c4c:|c:(c4:4c;t:3ic4E3ic3ic4c*4c3i(*!(c*4(3|(4c!|e4c4!4c*4:1:3ic4:*3it3|e******4e4::<c4c4c4c3(:*4:3i(*4:4:*:ic:ic4c4:4:4:4c3|c3|c*4e4«***

CONTROL PROC NEAR

CMP AH,OOH ;rSTOP REQUEST?

JNE CNTL-START ; NO, CHECK START

PUSH DS ;rSAVE REGISTERS

PUSH BX i

PUSH CS ;rSET DS FOR OUR ROUTINE

POP DS

MOV STATUS,0 TURN PROCESSING OFF

MOV BX,BUFPNTR PLACE STOP MARK IN BUFFER

MOV [BX],BYTE PTR 8OH

MOV [BX+1],BYTE PTR OFFH

INC COUNT INCREMENT COUNT

INC COUNT

POP BX RESTORE REGISTERS

POP DS

JMP CONTROL-DONE

CNTL_START:

CMP

JNE

MOV

MOV

MOV

MOV

JMP

CNTL_RESUME;

CMP

JNE

CMP

JE

MOV

MOV

JMP

AH,01H

CNTL_RESUME

CS:PORT,DL

;START REQUEST?

; NO, CHECK RESUME

;SAVE PORT TO TRACE

CSiBUFPNTR,OFFSET VECTOR_INIT ;RESET BUFFER TO START

CS:COUNT,0

CS:STATUS,1

CONTROL-DONE

AH,02H

CNTL-STATUS

CSrBUFPNTR,0

CONTROL-DONE

CS:PORT,DL

CS:STATUS,1

CONTROL-DONE

;ZERO COUNT

;START LOGGING

;RESUME REQUEST?

; NO, CHECK STATUS

;END OF BUFFER CONDITION?

; YES, DO NOTHING

;SAVE PORT TO TRACE

;START LOGGING

CNTL-STATUS:

CMP

JNE

MOV

PUSH

POP

MOV

AH,03H

CONTROL-DONE

CX,CS:COUNT

CS

DX

BX,OFFSET VECTOR-INIT

RETURN STATUS REQUEST?

NO, ERROR - DO NOTHING

RETURN COUNT

RETURN SEGMENT ADDR OF BUFFER

RETURN OFFSET ADDR OF BUFFER

Figure 18-11. Continued. (more)

Section II: Programming in the MS-DOS Environment 591

Part E: Programming Tools

CONTROL_DONE:

IRET

CONTROL ENDP

SUBTTL INITIALIZE INTERRUPT VECTORS

PAGE

**

* *

* VECTOR_INIT *

* THIS PROCEDURE INITIALIZES THE INTERRUPT VECTORS AND THEN *

* EXITS VIA THE MS-DOS TERMINATE-AND-STAY-RESIDENT FUNCTION. *

* A BUFFER OF 64K IS RETAINED. THE FIRST AVAILABLE BYTE *

* IN THE BUFFER IS THE OFFSET OF VECTOR_INIT. *

* *

Ht*

EVEN

VECTOR_INIT PROC NEAR

GET ADDRESS OF COMM VECTOR (INT 14H)

/ASSURE BUFFER ON EVEN BOUNDARY

MOV

MOV

INT

AH,35H

AL,14H

21H

SAVE OLD COMM INT ADDRESS

MOV WORD PTR OLD_COMM_INT,BX

MOV AX,ES

MOV WORD PTR OLD_COMM_INT[2],AX

SET UP COMM INT TO POINT TO OUR ROUTINE

MOV DX,OFFSET COMMSCOPE

MOV AH,25H

MOV AL,14H

INT 21H

INSTALL CONTROL ROUTINE INT

MOV DX,OFFSET CONTROL

MOV AH,25H

MOV AL,COMMSCOPE_INT

INT 21H

SET LENGTH TO 64K, EXIT AND STAY RESIDENT

MOV

MOV

INT

AX,3100H

DX,1000H

21H

TERM AND STAY RES COMMAND

64K RESERVED

DONE

Figure 18-11. Continued. (more)

592 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

VECTOR_INIT ENDP

CSEG ENDS

END INITIALIZE

Figure 18-11. Continued.

In order to use the symbolic debugging features of SYMDEB, a symbol file must be built in
a specific format. The SYMDEB utility MAPSYM performs this function, using the contents
of the .MAP file built by LINK. MAPSYM is easy to use because it has only two parameters:
the .MAP file and the /L switch (which triggers verbose mode). The symbol table for
BADSCOP is built as follows:

C>MAPSYM BADSCOP <Enter>

This operation produces a symbol file called BADSCOP.SYM.

Armed with the .SYM file and the usual collection of listing and design notes, the program
mer can begin the debugging process using SYMDEB^

The first task is to discover if the BADSCOP TSR is installing correctly. To test this, run the
.COM file under SYMDEB by typing

C>SYMDEB BADSCOP.SYM BADSCOP.COM <Enter>

Note the order in which operands are passed to SYMDEB—it is not the order that
would be expected. All switches (none were used here) must immediately follow the
word SYMDEB. These switches must be followed in turn by the fully qualified names of
any symbol files (in this case, BADSCOP.SYM). Only then is the name of the file to be
debugged given. If BADSCOP expected any parameters in the command tail, they would
be last. This potential need for command-tail data is the reason the name of the file to be
debugged follows the name of the symbol file. SYMDEB knows that the first non-.SYM file
it encounters is the file to be loaded; the parameters that follow the filename may be of
any form and number.

When SYMDEB begins, it displays

Microsoft (R) Symbolic Debug Utility Version 4.00

Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

The debugger identifies itself and then notes the type of CPU it is running on—in this
case, an Intel 80286. The Display or Modify Registers command, R, gives the same display
that DEBUG gives, with one exception.

-R <Enter>

AX=0000 BX=0000 CX=0133 DX=0000 SP=FFFE BP=0000 81=0000 DI=0000

DS=1FD0 ES=1FD0 SS=1FD0 CS=1FD0 IP=0100 NV UP El PL NZ NA PO NC

CSEG:INITIALIZE:

1 EDO:0100 E90701 JMP VECTOR_INIT

Section II: Programming in the MS-DOS Environment 593

Part E: Programming Tools

The instruction at CS:IP, JMP, is now preceded by the information that the instruction is
at label INITIALIZE within segment CSEG. An examination of Figure 18-11 shows that this
is indeed the case.

To check that all the symbols requested with the PUBLIC statement are present, use the
X?* form of the Examine Symbol Map command.

-X?* <Enter>

CSEG: (IFDO)

0100 INITIALIZE

01 OA PORT

02OA VECTOR_INIT

0103 OLD_COMM_INT 0107 COUNT

01 OB BUFPNTR 01OD COMMSCOPE

0109 STATUS

018F CONTROL

The display shows that the value of CSEG (IFDOH) matches the current value of CS. The
offset values shown for the procedure names and data names match the numbers from an
assembled listing. Because this is a .COM file, there is only one segment. If there had been
other segments—a data segment, for instance—they would have been shown with their
values and associated labels and offsets.

The purpose of this test is to determine whether the problems this program is having are
caused by an incorrect installation. First, use the Trace Program Execution command, T, to
trace through the first few steps.

-T7 <Enter>

AX=0000 BX=0000 CX=

DS=1FD0 ES=1FD0 33=

C3EG:VECT0R_INIT:

1FD0:020A B435

AX=3500 BX=0000 CX=

D3=1FD0 E3=1FD0 33=

1FD0:020C B014

AX=3514 BX=0000 CX=

D3=1FD0 E3=1FD0 33=

1FD0:020E CD21

AX=3514 BX=1375 CX=

D3=1FD0 E3=1567 33=

1FD0:0210 891E0301

AX=3514 BX=1375 CX=

D3=1FD0 E3=1567 33=

IFDO:0214 8CC0

AX=1567 BX=1375 CX=

D3=1FD0 E3=1567 33=

1FD0:0216 A30501

AX=1567 BX=1375 CX=

DS=1FD0 E3=1567 33=

IFDO:0219 BA0D01

=0133 DX=0000 3P=FFFE BP=0000 31=0000 DI=0000

=1FD0 C3=1FD0 IP=020A NV UP El PL NZ NA PO NC

MOV

=0133 DX=

= 1FD0 C3=

MOV

=0133 DX=

= 1FD0 C3=

INT

=0133 DX=

= 1FD0 C3=

MOV

=0133 DX=

= 1FD0 C3=

MOV

=0133 DX=

= 1FD0 C3=

MOV

=0133 DX=

= 1FD0 C3=

MOV

AH, 35

=0000

= 1FD0

AL, 14

=0000

= 1FD0

3P=FFFE

IP=020C

BP=0000 31=0000 DI=0000

NV UP El PL NZ NA PO NC

3P=FFFE BP=0000 31=0000 DI=0000

IP=020E NV UP El PL NZ NA PO NC

21 ;Get Interrupt Vector

=0000 3P=FFFE BP=0000 31=0000 DI=0000

= 1FD0 IP=0210 NV UP El PL NZ NA PO NC

[OLD_COMM_INT],BX D3:0103=0000

=0000 3P=FFFE BP=0000 31=0000 DI=0000

=1FD0 IP=0214 NV UP El PL NZ NA PO NC

AX,E3

=0000

= 1FD0

3P=FFFE

IP=0216

BP=0000 31=0000 DI=0000

NV UP El PL NZ NA PO NC

[OLD_COMM_INT+02 (0105)],AX D3:0105=0000

0000 3P=FFFE BP=0000 31=0000 DI=0000

IFDO IP=0219 NV UP El PL NZ NA PO NC

DX,01OD

This part of the program uses Interrupt 21H Function 35H to obtain the current vector for
Interrupt 14H. Note that, unlike DEBUG, SYMDEB coasts right through an Interrupt 21H
call with no problems. It not only knows enough not to make the call but also displays the
type of function call being made, based on the value in AH.

594 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

To make sure that the correct vector for the old Interrupt 14H handler has been stored, use
the Display Doublewords command, DD, in conjunction with a symbol name.

-DD OLD_COMM_INT LI <Enter>

1FD0:01030 1567:1375

This is the correct vector address (1567:1375H). Now trace through the next part of the
program, which establishes the new vectors for interrupts.

-T8 <Enter>

AX=1567 BX=1375

DS=1FD0 ES=1567

1FD0:021C B425

AX=2567 BX=1375

DS=1FD0 ES=1567

1FD0:021E B014

AX=2514 BX=1375

DS=1FD0 ES=1567

1FD0:0220 CD21

AX=2514 BX=1375

DS=1FD0 ES=1567

1FD0:0222 BA8F01

AX=2514 BX=1375

DS=1FD0 ES=1567

1FD0:0225 B425

AX=2514 BX=1375

DS=1FD0 ES=1567

1FD0:0227 B060

AX=2560 BX=1375

DS=1FD0 ES=1567

1FD0:0229 CD21

AX=2560 BX=1375

DS=1FD0 ES=1567

1FD0:022B B80031

CX=0133 DX=

SS=1FD0 CS=

MOV

CX=0133 DX=

38=1FDO CS=

MOV

CX=0133 DX=

33=1FDO C3=

INT

CX=0133 DX=

33=1FDO C3=

MOV

CX=0133 DX=

33=1FDO C3=

MOV

CX=0133 DX=

33=1FDO C3=

MOV

CX=0133 DX=

33=1FDO 03=

INT

CX=0133 DX=

33=1FDO 03=

MOV

=01OD 3P=

= 1FD0 IP=

AH, 25

=01OD 3P=

= 1FD0 IP=

AL, 14

=01 OD 3P=

= 1FD0 IP=

21 ;Set

=01 OD 3P=

= 1FD0 IP=

DX,018F

=018F 3P=

1FD0 IP=

AH, 25

=018F 3P=

= 1FD0 IP=

AL, 60

=018F 3P=

= 1FD0 IP=

21 ;3et

=018F 3P=

= 1FD0 IP=

AX,3100

=FFFE BP=0000 31=0000 DI=0000

=0210 NV UP El PL NZ NA PO NO

; '%•

=FFFE BP=0000 31=0000 DI=0000

=02IE NV UP El PL NZ NA PO NO

=FFFE BP=0000 31=0000 DI=0000

=0220 NV UP El PL NZ NA PO NO

Vector

=FFFE BP=0000 31=0000 DI=0000

=0222 NV UP El PL NZ NA PO" NO

FFFE BP=0000 31=0000 DI=0000

=0225 NV UP El PL NZ NA PO NO

FFFE BP=0000 31=0000 DI=0000

=0227 NV UP El PL NZ NA PO NO

. t % t

FFFE BP=0000 31=0000 DI=0000

=0229 NV UP El PL NZ NA PO NO

Vector

=FFFE BP=0000 31=0000 DI=0000

022B NV UP El PL NZ NA PO NO

Examination of these trace steps shows that all went normally. The new Interrupt 14H
vector has been established at COMMSCOPE\ the vector for the new Interrupt 60H has also
been correctly installed. Use the Go command, G, to allow the program to continue to
termination and then use the Quit command, Q, to exit SYMDEB.

-G <Enter>

Program terminated and stayed resident (0)

-Q <Enter>

SYMDEB displays the information that the program terminated with a completion code
of zero and stayed resident. This is as it should be, and the conclusion is that the installa
tion portion of this TSR is running properly. The problem must be in the real-time execu
tion of the program.

Debugging the resident portion of a TSR is complicated but not especially difficult. A sim
ple program is used to exercise the TSR, and it is this program that is debugged. As this
driver program exercises the TSR, the tracing process continues into the resident routine.

Section II: Programming in the MS-DOS Environment 595

Part E: Programming Tools

Because symbol tables exist for the TSR, symbolic debugging can be used to follow its
execution.

The driver program will be TESTCOMM, shown in Figure 18-10. To make the program
more easily usable by SYMDEB, one line has been added before the first SEGMENT
statement:

PUBLIC BEGIN,MAINLOOP,SENDCOMM,TESTCOMM

Using the .MAP file produced by LINK, the MAPSYM routine creates TESTCOMM.SYM.
TESTCOMM can now be invoked with two symbol files:

C>SYMDEB TESTCOMM.SYM BADSCOP.SYM TESTCOMM.EXE <Enter>

SYMDEB will load both symbol files and then load TESTCOMM.EXE. Because the name of
the TESTCOMM.SYM file matches the name of the program being loaded, SYMDEB makes
TESTCOMM.SYM the active symbol file.

Use the Register command to show that the test program was properly loaded.

-R <Enter>

AX=0000 BX=0000 CX=0133 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000

DS=38EE ES=38EE SS=38FE CS=390E IP=0000 NV UP El PL NZ NA PO NC

CSEG:BEGIN:

390E:0000 IE PUSH OS

Then use the Examine Symbol Map command to determine whether the symbol files
were loaded correctly. The form X* lists all the symbol maps and their segments; the form
X?* lists all the symbols for the current symbol map and segment.

-X* <Enter>

[38FE TESTCOMM]

[390E CSEG]

0000 BADSCOP

0000 CSEG

-X?* <Enter>

CSEG: (390E)

0000 BEGIN 0004 MAINLOOP 0011 SENDCOMM 0018 TESTCOMM

The current symbol map and segment are shown in square brackets. The symbol map for
BADSCOP is also present but not selected. Note that there are no values associated with
BADSCOP in the listing produced by the X?* command, because all the symbols currently
available to SYMDEB are shown and only the symbols in TESTCOMM's CSEG are available
(that is, TESTCOMM.SYM is the only active symbol file).

Recall that the BADSCOP TSR loaded normally but locked the system up at the first attempt
to issue an Interrupt 14H. This behavior indicates that the problem is associated with an In
terrupt 14H call. TESTCOMM repeatedly makes the system fail, but which of the Interrupt
14H calls within TESTCOMM is causing the trouble is not known. The most straightfor
ward approach would be to put a breakpoint just before each Interrupt 14H instruction.
Use the Disassemble (Unassemble) command, U, to find the location of all Interrupt 14H
calls.

596 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

-U MAINLOOP LI 9 <Enter>

CSEGrMAINLOOP:

390E:0004 B406

390E:0006 B2FF

390E:0008 CD21

390E;000A 740C

390E:000C 3C03

390E:000E 7501

390E:0010 CB

CSEG:SENDCOMM:

390E:0011 B401

390E;0013 BAOGOG

39GE:GG16 CD14

CSEG:TESTCOMM:

39GE:GG18 B4G3

39GE:GG1A BAGGGG

39GE:GG1D GDI 4

39GE:GG1F 8GE4G1

39GE:GG22 74EG

39GE;GG24 B4G2

39GE:GG26 BAGGGG

39GE:GG29 GDI 4

39GE:GG2B B4G6

39GE:GG2D 8ADG

39GE:GG2F GD21

39GE:GG31 EBD1

The Disassemble request starts at MAINLOOP and acts on the next 25 (19H) instructions.
SYMDEB displays symbol names instead of numbers whenever it can. However, it does
get confused from time to time, so a grain of salt might be needed when reading the dis
assembly. Notice, for instance, the MOV DX,0 instructions at offsets 13H, lAH, and 26H.
SYMDEB has decided that what is being moved is not zero, but BADSCOPICSEG. (The!
identifies a mapname in the same way a : defines a segment.) In this case, SYMDEB
searched its map tables for an address of zero and found one at CSEG in BADSCOP. This
segment has the address of zero because it has not been initialized.

Ignoring the name confusions, the disassembly clearly shows the three INT 14H instruc
tions at offsets 16H, IDH, and 29H. Use the Set Breakpoints command, BP, to set a sticky,
or permanent, breakpoint at each of these locations. In this way, any Interrupt 14H call
issued by TESTCOMM will be intercepted before it executes. Use the List Breakpoints
command, BL, to verify the breakpoints.

-BP 16 <Enter>

-BP 1D <Enter>

-BP 29 <Enter>

-BL <Enter>

G e 39GE:GG16 [GSEG:SENDG0MM+G5 (GG16)]

1 e 39GE:GG1D [GSEG:TESTG0MM+G5 (GG1D)]

2 e 39GE:GG29 [GSEG:TESTGOMM+11 (GG29)]

MOV AH,G6

MOV DL,FF

INT 21

JZ TESTGOMM

GMP AL,G3

JNZ SENDGOMM

RETF

MOV AH,G1

MOV DX,BADSGOP!GSEG

INT 14

MOV AH,G3

MOV DX, BADSGOP!GSEG

INT 14

AND AH, G1

JZ MAINLOOP

MOV AH, G2

MOV DX,BADSGOP!GSEG

INT 14

MOV AH, G6

MOV DL,AL

INT 21

JMP MAINLOOP

Section II: Programming in the MS-DOS Environment 597

Part E: Programming Tools

The List Breakpoints command shows that breakpoint 0 is enabled and set to
SENDCOMM+05, or CS:0016H. Likewise, breakpoint 1 is at CSiOOlDH and breakpoint 2 is at
CS:0029H. It is important to trap on an Interrupt 14H so that the subsequent actions of the
Interrupt 14H service routine can be traced. Now allow the program to execute until it
encounters a breakpoint.

-G <Enter>

AX=0300 BX=0000 CX=0133 DX=0000 SP=OOFC BP=0000 31=0000 DI=0000

DS=38EE ES=38EE SS=38FE CS=390E IP=001D NV UP El PL ZR NA PE NC

390E:001D GDI 4 INT 14 ;BR1

The first Interrupt 14H encountered is the one at the second breakpoint, breakpoint 1, as
can be seen from the address at which execution broke. Also, SYMDEB was kind enough
to include the comment ;BR1 on the disassembled line, indicating that this is Break Re
quest 1. The instruction at this location is a request for serial port status (AH = 3) and the
registers are loaded correctly. Execution can now be passed to the TSR by simply exe
cuting the current instruction. (Remember that the instruction displayed at a breakpoint
has not yet been executed.)

-T <Enter>

AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 31=0000 DI=OOQO

DS=38EE E3=38EE 33=38FE C3=1FD0 IP=010D NV UP DI PL ZR NA PE NC

IFDOrOIOD 2EF606090101 TE3T Byte Ptr C3:[0109],01 03:0109=00

The single Trace command has moved execution into the TSR. Note that the Interrupt
14H has changed the value of CS and jumped to location lODH off the new CS. This loca
tion contains the first instruction of the COMMSCOPE procedure in the TSR. SYMDEB
does not know that a different segment is being executed and must be instructed to use a
different map table. Use the Open Symbol Map command, XO, to do this, instructing
SYMDEB to set the active map table to BADSCOP!.

-XO BADSCOP! <Enter>

-X?* <Enter>

C3EG: (0000)

0100 INITIALIZE 0103 OLD-COMM-INT 0107 COUNT 0109 STATUS

01 OA PORT 01 OB BUFPNTR 01OD COMMSCOPE 018F CONTROL

020A VECTOR_INIT

The X?* command shows that the BADSCOP symbols are now the current map. They are
not usable, however, because the value of CSEG—zero—needs to be changed to the cur
rent CS register. To correct this, use the SYMDEB Set Symbol Value command, 2. This
command can set any symbol in the current map table to any value; the value can be a
number, another symbol, or the contents of a register. In this case, set the value of CSEG
in BADSCOP! to the current contents of the CS register.

-Z CSEG CS <Enter>

-X* <Enter>

38FE TESTCOMM

390E CSEG

[0000 BADSCOP]

[1FD0 CSEG]

598 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

The X» command confirms that BADSCOP! is now the selected symbol map and that the
CSEG within it has the value IFDOH. The CSEG segment in TESTCOMM is an entirely dif
ferent entity and still has its correct value, which will be valid when the TSR returns.

With the symbols set, the debugging can begin by tracing the first few instructions. Be
cause COMMSCOPE is not currently active, the routine should quickly pass the processing
on to the old interrupt handler.

-T5 <Enter>

AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 81=0000 DI=0000

DS=38EE ES=38EE SS=38FE CS=1FD0 IP=0113 NV UP DI PL ZR NA PE NO

1FD0:0113 7476 JZ C0MMSC0PE+7E (018B)

AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 31=0000 DI=0000

DS=38EE ES=38EE SS=38FE CS=1FD0 IP=018B NV UP DI PL ZR NA PE NC

1FD0:018B FF2E0301 JMP FAR [0103] 05:0103=0000

AX=0300 BX=0000 CX=0133 DX=0000 SP=00F6 BP=0000 81=0000 DI=0000

D8=38EE E8=38EE 88=38FE C8=0000 IP=0000 NV UP DI PL ZR NA PE NC

0000:0000 381E6715 CMP [1567],BL 08:1567=00

AX=0300 BX=0000 CX=0133 DX=0000 8P=00F6 BP=0000 81=0000 01=0000

08=38EE E8=38EE 88=38FE C8=0000 IP=0004 NV UP 01 PL ZR NA PE NC

0000:0004 BC2CE1 MOV 8P,E12C

AX=0300 BX=0000 CX=0133 OX=0000 8P=E12C BP=0000 81=0000 01=0000

08=38EE E8=38EE 88=38FE C8=0000 IP=0007 NV UP 01 PL ZR NA PE NC

0000:0007 2F 0A8

STATUS is tested with a mask of OIH at CSiOlODH; the test sets the zero flag, indicating that
tracing is disabled. The JZ to COMMSCOPE+7E (CS:018BH) is taken. At this address is a far
jump to the old Interrupt 14H handler at 1567:1375H. The jump is taken and then disaster
strikes. Instead of going to the correct address, processing is suddenly at 0000:0000H. Any
wild jump is dangerous, but a far jump into low memory is exceptionally so. This explains
the system's locking up and requiring a cold boot to recover.

Now that the bug has been caught in the act, it should be a simple matter to determine
what went wrong. When the BADSCOP TSR installed itself, it was seen to place the correct
offset address at 0103H. Yet whenever the resident portion of the TSR tries to use the value
at that address, it finds all zeros. The initialization routine placed the address at the symbol
OLD_COMM_JNT (1FD0:0103H). If that location is examined, the following is found:

^D0 OLO_COMM_INT Li <Enter>

1FO0:0103 1567:1375

This is the correct address. Why, then, did the programs find zero there? Use the Display
Doublewords command to look at the same memory location again, this time using the
specific address 0103H rather than a program symbol.

-00 103 LI <Enter>

38EE:0103 0000:0000

The dump of OLD_COMM_INT looked at 1FD0:0103H, but the simple dump looked at
38EE:0103H. The explanation is clear when the values of the registers just before the far
jump are examined. The CS register contains IFDOH and the DS register contains 38EEH.

Section II: Programming in the MS-DOS Environment 599

Part E: Programming Tools

This is the problem—there is a missing CS override on the indirect jump command.
When the TSR installed itself, CS and DS were the same because it was a .COM file. When
the TSR is entered as the result of an interrupt call, only CS is set; DS remains what it was
in the calling program. Without an override, the CPU assumed that the address of the desti
nation of the far call was located at offset 103H from the DS register. This offset, unfortu
nately, contained zeros, and the program locked up the system.

The problem is now easily corrected. Exit SYMDEB with the Quit command and edit the
program source so that the offending line reads

OLD_JUMP:

JMP CS:OLD_COMM_INT

Debugging C programs with SYMDEB
One of SYMDEB's finest features is the ability to debug with source-line data from pro
grams written in Microsoft C, Pascal, and FORTRAN. The actual lines of C or FORTRAN
can be included in the debugging display, and the addresses for breakpoints show which
line of code the breakpoints are in. Combined with symbolic debugging, these features
provide a powerful tool that can significantly reduce debugging time for programs
written in a supported language.

The following rather complicated case illustrates SYMDEB at its best. The program
BADSCOP from the previous example was not completely debugged. Although the patch
to the BADSCOP code at OLD_JUMP: did correct the disastrous problem that caused the
system to lock up, running the program in a realistic test situation reveals that a subtle
problem still remains that might be in either BADSCOP or one of the support programs.

Before we investigate the problem, a quick review of the programs in the COMMSCOP
system is in order. At the heart of the system is the Interrupt 14H intercept program
COMMSCOP. When executed, this program installs itself as a TSR and intercepts all Inter
rupt 14H calls. (The incorrect version of the COMMSCOP program is called BADSCOP.)
The installed COMMSCOP TSR passes all Interrupt 14H calls on to the real service routine
in the ROM BIOS until it is commanded to start tracing. The COMMSCMD routine controls
tracing. This control routine can request that COMMSCOP start, stop, or resume tracing for
a specific serial port. These commands are facilitated through Interrupt 60H, which is
recognized by the COMMSCOP TSR as a command request. When tracing is started, the
trace buffer is emptied by zeroing the trace count and setting the buffer pointer to the first
buffer location. When tracing is stopped by COMMSCMD's STOP command, a marker is
placed in the buffer to indicate the end of a trace segment. Tracing can be resumed with
COMMSCMD's RESUME command. Resuming a trace preserves collected data and places
new trace data after the marker in the trace buffer. The RESUME command differs from

the START command in that the buffer is not emptied.

Now the problem: When the serial data tracing is started with COMMSCMD {.see Figure
18-5), data is collected normally. When COMMSCMD issues a STOP command and the
data is displayed with COMMDUMP isee Figure 18-7), the data appears normal. The
traced data ends with a stop mark just as it should. However, the RESUME command of

600 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

COMMSCMD causes the stop mark to be overwritten with collected data. After this, when
ever COMMDUMP displays data an extra byte appears at the end of the data. The problem
could be with either BADSCOP or COMMSCMD. SYMDEB has the facilities to debug both
the routines at once.

The first step in the debugging process is, as usual, to gather all the listings and design
documentation. As a part of this process, the symbol tables needed for SYMDEB must be
prepared. The process of preparing a symbol table for BADSCOP has already been ex
plained; however, preparing the SYMDEB input and supporting listings for a C program is
slightly more complicated.

First, when the C program is compiled, three switches must be specified. (C switches are
case sensitive and must be entered exactly as shown.)

C>MSC /Fc /Zd /Od COMMSCMD; <Enter>

The /Zd switch produces an object file containing line-number information that corre
sponds to the line numbers of the source file. The /Od switch disables optimization that
involves complex code rearrangement; localized optimization, peephole optimization, and
other simple forms of optimization are still performed. The /Od switch is not required, but
code rearrangement can make the resulting object code more difficult to debug.

The /Fc switch invokes a feature of C that is especially important for debugging with
SYMDEB: a listing that contains the C source lines and the generated assembler code inter
mixed. The file is a .COD file; the command line shown above would produce the file
COMMSCMD.COD. Figure 18-12 shows the contents of COMMSCMD.COD.

static Name Aliases

$S142_commands EQU

TITLE commscmd

NAME commscmd.C

commands

-TEXT

-TEXT

-DATA

-DATA

CONST

CONST

-BSS

-BSS

DGROUP

EXTRN

EXTRN

EXTRN

EXTRN

EXTRN

-DATA

.287

SEGMENT

ENDS

SEGMENT

ENDS

SEGMENT

ENDS

SEGMENT

ENDS

GROUP

ASSUME

_int86:NEAR

-printf:NEAR

—stricmp:NEAR

-atoi:NEAR

chkstkrNEAR

SEGMENT

BYTE PUBLIC 'CODE'

WORD PUBLIC 'DATA'

WORD PUBLIC 'CONST'

WORD PUBLIC 'BSS'

CONST, -BSS, -DATA

CS: -TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

Figure 18-12. COMMSCMD.COD. (more)

Section II: Programming in the MS-DOS Environment 601

Part E: Programming Tools

Oah, OOh

$SG148 DB

$SG151 DB

$SG154 DB

$SG157 DB

$S1 42_coinmands

ORG

DB

ORG

DB

ORG

-DATA ENDS

-TEXT SEGMENT

*:|c:ie * Hf

COMMSCMD ♦

'STOP', OOh

'START', OOh

'RESUME', OOh

Oah, 'Communications tracing %s for port C0M%1d:',

DB 'STOPPED', OOh

$+2

'STARTED', OOh

$+2

'RESUMED', OOh

$+2

*** *

This routine controls the COMMSCOP program that has been in

stalled as a resident routine. The operation performed is de

termined by the command line. The COMMSCMD program is invoked

as follows:

COMMSCMD [[cmd][port]]

where cmd is the command to be executed

STOP — stop trace

START — flush trace buffer and start trace

RESUME — resume a stopped trace

port is the COMM port to be traced {1=C0M1, 2=COM2, etc.)

* * * *

*** *

*** *

*** ♦

♦ *

*** *

*** *

* 4: * *

*** *

*** *

*** *

*** *

*** *

*** *

*** *

* * *

*** #include <stdlib.h>

*** #include <stdio.h>

*** #include <dos.h>

*** #define COMMSCMD 0x60

*** main(argc, argv)

*** int argc;

Line 29

PUBLIC —main

nain PROC NEAR

If cmd is omitted, STOP is assumed,

assumed.

If port is omitted, 1 is

***00000055pushbp

♦ * *0000018becmovbp, sp

***000003b82200movax, 34

***000006e80000callchkstk

***00000957pushdi

***00000a56pushsi

Figure 18-12, Continued.(more)

602 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

I*** char *argv[];

I *** {

Line 31

argc = 4

argv = 6

cmd = -4

port = -6

result = -2

inregs = -34

outregs = -20

int cmd, port, result;

static char commands[3] [10] = {"STOPPED",

union REGS inregs, outregs;

Line 36

*** 00000b

*** port = 0;

cmd = 0;

c7 46 fc 00 00

000010

(argc > 1)

; Line 37

; ! ***

; I *** if

; Line 39

*** 000015

*** 000019

*** 00001b

{! ♦**

c7 46 fa 00 00

83 7e 04 01

It 03

e9 5d 00

cmp

jg
jmp

"STARTED", "RESUMED"};

WORD PTR [bp-4],0 ;cmd

WORD PTR [bp-6],0 ;port

WORD PTR [bp+4],1 ;argc
$JCC25

$11 45

Line 40

;*** if (0 == stricmp(argv[1 ;

$JCC25:

"STOP"))

Line 41

*** OOOOle b8 00 00 mov ax,OFFSET DGR0UP:$SG148
* 000021 50 push ax

*** 000022 8b 5e 06 mov bx, [bp+6] ;argv
*** 000025 ff 77 02 push WORD PTR [bx+2]

* * * 000028 e8 00 00 call _stricmp
*** 00002b 83 c4 04 add sp,4
*** 00002e 3d 00 00 cmp ax, 0

*** 000031 74 03 je $JCC49

*** 000033 e9 08 00 jmp $1147

; J * * * cmd = 0;
; Line 42

*** 000036

; I *** else if

Figure 18-12. Continued.

c7

$JCC49:

46 fc 00 00 mov

(0 == stricmp(argv[1], "START") !
WORD PTR [bp-4],0 ;cmd

(more)

Section II: Programming in the MS-DOS Environment 603

Part E: Programming Tools

Line 43

***00003be93d00

$1147:

jmp$1149

***00003eb80500movax,OFFSET DGR0UP:$SG151

t * 4:00004150pushax

***0000428b5e06movbx,[bp+6] ;argv
»**000045ff7702pushWORD PTR [bx+2]
***000048e80000call—Stricmp
***00004b83c404addsp, 4
* * *00004e3d0000cmpax, 0
***0000517403je$JCC81
***000053e90800

$JCC81:

jmp$1150

cmd= 1;

Line44

* * *000056c746fc0100movWORD PTR [bp-4],1 ;cmd
***else if(0 === stricmp(argv[1],"RESUME"))

Line45

***00005be9Id00

$1150:

jmp$1152

***00005eb8Ob00movax,OFFSET DGR0UP:$SG154
***00006150pushax

***0000628b5e06movbx, [bp+6] ;a'rgv
***000065ff7702pushWORD PTR [bx+2]
4= * *000068e80000call—Stricmp

00006b83c404addsp, 4
* * *00006e3d0000cmpax, 0
* * *0000717403je$JCC113
***000073e90500

$JCC113:

jmp$1153

cmd == 2;

Line46

***000076c746fc0200movWORD PTR [bp-4],2 ;cmd

}

Line47

$1153:

$1152:

$1149:

***if(argc ==3)

Line49

$1145:

** *00007b837e0403cmpWORD PTR [bp+4],3 ;argc
♦** 00007f

*** 000081

74 03

e9 lb 00

De

jmp
$JCC127

$1155
$JCC127:

r [***

: Line
r J ***

{
50

port = atoi(argv[2]);

Figure 18-12. Continued.(more)

604 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Line 51

* * * 000084 8b 5e 06 mov bx,[bp+6] ; argv

*** 000087 ff 77 04 push WORD PTR [bx+4]

*** 00008a e8 00 00 call _atoi

** * 00008d 83 c4 02 add sp,2

** * 000090 89 46 fa mov [bp-6],ax ; port

** * if (port > 0)

Line 52

*** 000093 83 7e fa 00 cmp WORD PTR [bp-6],0 ;port

* * 000097 7f 03 jg $JCC151

** * 000099 e9 03 00

$JCC151:

jmp $1156

* 4: 4: port, = port-1;

Line 53

*** 00009c ff 4e fa dec WORD PTR [bp-6] ;port
** * }

Line 54

] * * *

] * * *

Line

[***

Line

; ***

Line

inregs.h.ah = cmd;

56

*** 00009f 8a 46 fc

*** 0000a2 88 46 df

inregs.x.dx = port;

57

*** 0000a5 8b 46 fa

*** 0000a8 89 46 e4

$1156:

$1155:

mov

mov

mov

mov

al,[bp-4]

[bp-33],al

ax,[bp-6]

[bp-28],ax

result = int86(COMMCMD, &inregs, Soutregs);

58

*** OOOOab 8d 46 ec lea ax,[bp-20]

*** OOOOae 50 push ax

*** OOOOaf 8d 46 de lea ax,[bp-34]

*** 0000b2 50 push ax

** * 0000b3 b8 60 00 mov ax, 96

*** 0000b6 50 push ax

** * 0000b7 e8 00 00 call _int86

*** OOOOba 83 c4 06 add sp, 6

** * OOOObd 89 46 fe mov [bp-2],ax

* * *

Line

printf("\nCommunications tracing %s for port C0M%1d:\n",

commands[cmd], port + 1);

62

*** OOOOcO 8b 46 fa mov ax,[bp-6
*** 0000c3 40 inc ax

*** 0000c4 50 push ax

*** 0000c5 8b 46 fc mov ax,[bp-4
*** 0000c8

OC

c8 mov cx, ax

*** OOOOca d1 eO shl ax, 1

*** OOOOcc d1 eO shl ax, 1

OOOOce 03 c1 add ax, cx

*** OOOOdO d1 eO shl ax, 1

; cmd

;port

;result

; port

; cmd

Figure 18-12. Continued. (more)

Section II: Programming in the MS-DOS Environment 605

Part E: Programming Tools

*** 0000d2 05 40 00 add ax,OFFSET DGROUP : $S1 42—commands

*** OOOOdS 50 push ax

0000d6 b8 12 00 mov ax,OFFSET DGROUP:$SG157

*** 0000d9 50 push ax

*** OOOOda e8 00 00 call —printf

*** OOOOdd 83 c4 06 add sp, 6

; *** }

Line 63

*** OOOOeO

*** OOOOel

*** 0000e2

*** 000004

*** OOOOeS

5e

5f

8b e5

5d

c3

$EX138:

pop

pop

mov

pop

ret

SI

di

sp, bp

bp

—main ENDP

-TEXT ENDS

END

Figure 18-12. Continued.

After the C program is compiled, it must be linked using the /LI switch to indicate that the
line number information is to be maintained:

OLINK COMMSCMD /MAP /LI; <Enter>

The /MAP switch is still required to generate a map file of public names for use in building
the symbol file, which is created in the usual manner:

OMAPSYM COMMSCMD <Enter>

Everything needed to debug COMMSCMD and BADSCOP is now available. The first test is
an attempt to start tracing. To invoke SYMDEB, type

OSYMDEB COMMSCMD.SYM BADSCOP.SYM COMMSCMD.EXE START 1 <Enter>

SYMDEB first loads the symbol files for COMMSCMD and BADSCOP and then loads the
.EXE file for COMMSCMD. BADSCOP is already in memory, having been loaded by simply
running it. (It then stays resident.) The last two entries in the command line load the com
mand tail for COMMSCMD with a start request for COMl. SYMDEB responds with

Microsoft (R) Symbolic Debug Utility Version 4.00

Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [80286]

Use the Register and Examine Symbol Map commands to display the initial register values
and symbol table information.

606 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

-R <Enter>

AX=0000 BX=0000

DS=2CA0 ES=2CA0

-TEXT: astart:

CX=1928

SS=2E85

DX=0000

CS=2CB0

SP=0800

IP=010F

BP=0000 31=0000 DI=0000

NV UP El PL NZ NA PO NC

2CB0:010F B430 MOV AH, 30 '0'

-X* <Enter>

[2CB0 COMMSCMD]

[2CB0 -TEXT]

2E08 DGROUP

0000 BADSCOP

0000 CSEG

-X?* <Enter>

9876 acrtused 9876 acrtmsg

-TEXT: (2CB0)

0010 —main 00F6 —atoi

00F9 chkstk 01 OF astart 01AB cintDIV 01AE amsg—exit

01B9 -int86 023A —printf 0270 -strcmpi 0270 —stricmp

02C2 stbuf 0361 ftbuf 03E7 catox 043C nullcheck

0458 cinit 0507 —exit 051E exit 054A ctermsub

0572 dosretO 057A dosretax 0586 maperror 05BA NMSG-TEXT

05EA NMSG-WRITE 0613 output 0E22 setargv 0F07 setenvp

0F6D flsbuf 1098 fassign 1098 cropzeros 1098 ^positive

1098 forcdecpt 1098 cfltcvt 109B _fflush 1103 —isatty

1125 myalloc 1167 —strlen 1182 —ultoa 118C fptrap

1192 -flushall 11C3 -free 11C3 nfree 11D1 —malloc

11D1 nmalloc 1217 —write 12F1 cltoasub 12FD cxtoa

1351 amalloc 1432 amexpand 14 6C ami ink 148E amallocbrk

14AD —brkctl

DGROUP: (2E08)

0094 STKHQQ 0096 asizds 0098 atopsp

009A abrktb OOEA abrktbe OOEA abrkp OOEC iob

01 8C _iob2 0204 lastiob 0212 aintdiv 0216 fac

021E —errno 0220 umaskval 0222 ^pspadr 0224 —^psp

0226 osmajor 0226 dosvermajor 0227 osminor 0227 dosverminor

0228 oserr 0228 doserrno 022A osfile 023E argc

0240 argv 0242 -environ 0244 child 0246 csigtab

0278 cflush 027A asegds 0286 asegl 0288 asegn

028A asegr 028C amblksiz 0292 fpinit 03A8 —edata

03D0 bufout 05D0 bufin 07D0 —end

The Register command shows that the first instruction to be executed will be at symbol
astart in the _TEXT segment. (Note that C puts a single underscore in front of all public

library and routine names; a double underscore indicates routines for C's internal use.) The
Examine Symbol Map command reveals that the symbol map COMMSCMD! has two seg
ments, ̂ TEXT and DGROUP, with _TEXT currently selected. The segment in BADSCOP!,
CSEG, has no value assigned to it because SYMDEB doesn't know where it is; one of the
debugging tasks is to determine the location of CSEG.

C places initialization and preamble code at the front of its object modules. This code can
be skipped during debugging, so this example begins at the label ̂ main. Examination of
the code at this label using the Disassemble command reveals the following:

Section II: Programming in the MS-DOS Environment 607

Part E: Programming Tools

PUSH BP

MOV BP,SP

MOV AX,0022

CALL chkstk

PUSH DI

-U —main <Enter>

commscmd.C

29: int argc;

—TEXT:—main:

2CB0:0010 55

2CB0:0011 8BEC

2CB0:0013 B82200

2CB0:0016 E8E000

2CB0:0019 57

This disassembly shows the way source-line information is displayed. These instructions
are generated by line 29 of COMMSCMD.C. When the disassembly is compared with the
listing in Figure 18-12, the same instructions are seen. However, their addresses are differ
ent. The addresses in the disassembly are relative to the start of the segment _TEXT, but
the addresses in the listing are relative to the start oi^main. SYMDEB allows address ref
erences to be made relative to a symbol, so breakpoints can be set as displacements from
^main and the addresses shown in the listing can be used.

Because the location of the problem being debugged is not known, breakpoints must be
placed strategically throughout COMMSCMD to trace the execution of the program. Use
the Set Breakpoints command to set the breakpoints.

-BP -main+1e <Enter>

-BP —main+36 <Enter>

-BP -main+56 <Enter>

-BP —main+76 <Enter>

-BP —main+7b <Enter>

-BP —main+9c <Enter>

-BP —main+b7 <Enter>

-BP -main+e5 <Enter>

-BL <Enter>

0 e 2CB0:002E [—TEXT:—main+1 E <002E)] commscmd.C:41

1 e 2CB0:0046 [-TEXT:-main+36 (0046)] commscmd.C:42

2 e 2CB0:0066 [—TEXT:—main+56 (0066)] commscmd.C:44

3 e 2CB0:0086 [-TEXT:-main+76 (0086)] commscmd.C:46

4 e 2CB0:008B [-TEXT:-main+7B (008B)] commscmd.C:49

5 e 2CB0:00AC [—TEXT:—main+9C (OOAC)] commscmd.C:53

6 e 2CB0:00C7 [—TEXT:—main+B7 (00C7)] commscmd.C:58

7 e 2CB0:00F5 [—TEXT:—main+E5 (00F5)] commscmd.C:63

The List Breakpoints command shows the breakpoint addresses in three ways: first the
absolute segmentioffset address, then the displacement from the label _m^m, and finally
the line number in COMMSCMD.C.

The first part of the COMMSCMD program decodes the arguments and sets the appro
priate values for cmd and port. If there are no arguments, this decoding is skipped; if there
are arguments, the decoding begins at line 41, so the first breakpoint is set there. If the cri
terion of line 41 is met (the first argument is STOP), then line 42 is executed. The second
breakpoint is set there. Reaching the second breakpoint means that a STOP command was
properly decoded. If the command was not STOP, execution continues at line 43. If this

608 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

test is passed, line 44 is executed. This is the location of the third breakpoint. If the test at
line 44 fails but the one at line 45 is passed, then the breakpoint at line 46 is executed.
Whether or not one of the tests passes, execution ends up at line 49. At this point, the pro
gram tests for the presence of a second operand. If there is a second operand, execution
traps at line 53, where the program decrements the port number to put it in the proper
form for the Interrupt 60H handler. Execution will then always stop in line 58, just before
the call to ̂ int86. i_int86 is a library routine that loads registers and executes INT
instructions.)

When the program is run with START 1 in the command tail, it gives the following results:

-G <Enter>

AX=0022 BX=0F82

DS=2E08 ES=2E08

41 :

2CB0:002E B83600

-G <Enter>

AX=0000 BX=415A

DS=2E08 ES=2E08

44:

2CB0:0066 C746FC0100

-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098

DS=2E08 ES=2E08 SS=2E08 CS=2CB0

49: if (argc == 3)

2CB0:008B 837E0403 CMP

-G <Enter>

AX=0001 BX=OODO CX=0000 DX=0000

DS=2E08 ES=2E08 SS=2E08 CS=2CB0

5 port = port-1;

CX=0019 DX=0098

SS=2E08 CS=2CB0

if (0 == stricmp

MOV

CX=0000 DX=0098

SS=2E08 CS=2CB0

cmd = 1 ;

MOV

SP=0F7E BP=0FA4 SI=0089 DI=1065

IP=002E NV UP El PL NZ NA PC NC

(argv[1],"STOP"))

AX,0036 ;BRO

SP=0F7E BP=0FA4 31=0089 DI=1065

IP=0066 NV UP El PL ZR NA PE NC

Word Ptr [BP-04),0001 ;BR2 38:0FA0=0000

3P=0F7E BP=0FA4 31=0089 DI=1065

IP=008B NV UP El PL ZR NA PE NC

Word Ptr [BP+04],+03 ;BR4 33:0FA8=0003

3P=0F7E BP=0FA4 31=0089 DI=1065

IP=OOAC NV UP El PL NZ NA PO NC

2CB0:00AC FF4EFA

-G <Enter>

AX=0060 BX=OODO

D3=2E08 E3=2E08

2CB0:00C7 E8EF00

DEC

CX=0000 DX=0000

33=2E08 C3=2CB0

CALL

Word Ptr [BP-06] ;BR5 33:0F9E=0001

3P=0F78 BP=0FA4 31=0089 DI=1065

IP=00C7 NV UP El PL ZR NA PE NC

_int86 ;BR6

The first break occurs at line 41, indicating that one or more arguments were present in
the command line. The next break is at line 44, where the program sets the cmd code for
Interrupt 60H to 1, the correct value for a start request. The next break occurs at line 49,
where the program checks the number of arguments. If this number is 3, then there is a
second argument in the command line. (Remember that, in C, the first argument is the
name of the routine, so an argument count of 3 actually means that there are 2 arguments
present.) The number of arguments is at BP+04, or SSiOFABH, and it is indeed 3. Therefore,
the next break is at line 53. The program decrements the current value of port, leaving a
value of 0, which is what Interrupt 60H expects to see for COMl.

Continuing execution causes a break just before the call to _ int86. To validate that
the Interrupt 60H call is being made correctly, set a breakpoint just before the INT 60H
instruction is issued. Unfortunately, no listing of _int86 is available, so no alternative

Section II: Programming in the MS-DOS Environment 609

Part E: Programming Tools

exists but to trace the execution of the routine until the INT instruction is issued. The

details of the processing are of no interest to this debugging session, so they can be
ignored until an INT 60H is seen. (The trace offers a great deal of information about how C
interfaces with subroutines. Studying the trace would be educational but is beyond the
scope of this example.)

-T 5 <Enter>

AX=0060 BX=OODO CX=

DS=2E08 ES=2E08 33=

_TEXT:_int86:

2CB0:01B9 55

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01BA 8BEC

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01BC 56

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01BD 57

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01BE 83EC0A

-T 5 <Enter>

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01C1 C646F6CD

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01C5 8B4604

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01C8 8846F7

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01CB 3C25

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01CD 740A

-T 5 <Enter>

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01CF 3026

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01D1 7406

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

2CB0:01D3 C646F8CB

AX=0060 BX=OODO CX=

D3=2E08 E3=2E08 33=

=0000 DX=0000 3P=0F76 BP=0FA4 31=0089 DI=1065

=2E08 C3=2CB0 IP=01B9 NV UP El PL ZR NA PE NO

PU3H

=0000 DX=

=2E08 03=

MOV

=0000 DX=

=2E08 03=

PU3H

=0000 DX=

=2E08 03=

PU3H

=0000 DX=

=2E08 03=

3UB

=0000 DX=

=2E08 03=

MOV

=0000 DX=

=2E08 03=

MOV

=0000 DX=

=2E08 03=

MOV

=0000 DX=

=2E08 03=

OMP

=0000 DX=

=2E08 03=

JZ

=0000 DX=

=2E08 03=

OMP

=0000 DX=

=2E08 03=

JZ

=0000 DX=

=2E08 03=

MOV

=0000 DX=

=2E08 03=

BP

=0000 3P=0F74

=2OB0 IP=01BA

BP,3P

=0000 3P=0F74

=2OB0 IP=01BO

31

=0000 3P=0F72

=2OB0 IP=01BD

DI

=0000 .3P=0F70

=2OB0 IP=01BE

3P,+0A

BP=0FA4 31=0089 DI=1065

NV UP El PL ZR NA PE NO

BP=0F74 31=0089 DI=1065

NV UP El PL ZR NA PE NO

BP=0F74 31=0089 DI=1065

NV UP El PL ZR NA PE NO

BP=0F74 31=0089 DI=1065

NV UP El PL ZR NA PE NO

=0000 3P=0F66

=2OB0 IP=01O1

Byte Ptr [BP-OA],OD

=0000 3P=0F66 BP=0F74

=20BO IP=01O5

AX,[BP+04]

=0000 3P=0F66

=2OB0 IP=01O8

[BP-09],AL

=0000 3P=0F66

=2OB0 IP=01OB

AL,25

=0000 3P=0F66

=2OB0 IP=01OD

BP=0F74

BP=0F74

31=0089 DI=1065

NV UP El PL NZ AO PE NO

33:0F6A=BE

31=0089 DI=1065

NV UP El PL NZ AO PE NO

33:0F78=0060

BP=0F74 31=0089 DI=1065

NV UP El PL NZ AO PE NO

33:0F6B=01

BP=0F74 31=0089 DI=1065

NV UP El PL NZ AO PE NO

 31=0089 DI=1065

NV UP El PL NZ AO PC NO

_int86+20 (01D9)

=0000 3P=0F66

=2OB0 IP=01OF

AL,26

=0000 3P=0F66

=2OB0 IP=01D1

BP=0F74 31=0089 DI=1065

NV UP El PL NZ AO PC NO

; '&•

BP=0F74 31=0089 DI=1065

NV UP El PL NZ AO PE NO

_int86+20 (01D9)

=0000 3P=0F66 BP=0F74 31=0089 DI=1065

=2OB0 IP=01D3 NV UP El PL NZ AO PE NO

Byte Ptr [BP-08],OB 33:0F6O=B0

=0000 3P=0F66 BP=0F74 31=0089 DI=1065

=2OB0 IP=01D7 NV UP El PL NZ AO PE NO

(more)

6lO The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

2CB0:01D7 EBOC

AX=0060 BX=OODO

DS=2E08 ES=2E08

2CB0:01E5 8C56F4

-T 5 <Enter>

AX=0060 BX=OODO

DS=2E08 ES=2E08

2CB0:01E8 8D46F6

AX=0F6A BX=OODO

DS=2E08 ES=2E08

2CB0:01EB 8946F2

AX=0F6A BX=OODO

DS=2E08 ES=2E08

2CB0:01EE 8B7E06

AX=0F6A BX=OODO

DS=2E08 ES=2E08

2CB0:01F1 8B05

AX=0100 BX=OODO

DS=2E08 ES=2E08

2CB0:01F3 8B5D02

-T 5 <Enter>

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:01F6 8B4D04

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:01F9 8B5506

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:01FC 8B7508

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:01FF 8B7D0A

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:0202 55

-T 5 <Enter>

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:0203 83ED0E

AX=0100 BX=0000

DS=2E08 ES=2E08

2CB0:0206 FF5E00

AX=0100 BX=0000

DS=2E08 ES=2E08

2E08:0F6A CD60

AX=0100 BX=0000

DS=2E08 ES=2E08

1313:0190 80FC00

AX=0100 BX=0000

DS=2E08 ES=2E08

1313:0193 7521

JMP _int86+2C (01E5)

CX=0000 DX=0000 SP=0F66 BP=0F74

SS=2E08 CS=2CB0 IP=01E5

MOV [BP-OC],SS

81=0089 DI=1065

NV UP El PL NZ AC PE NC

SS:0F68=0F74

CX=0000 DX=

SS=2E08 CS=

LEA

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

MOV

CX=0000 DX=

SS=2E08 CS=

PUSH

CX=0000 DX=

SS=2E08 CS=

SUB

CX=0000 DX=

SS=2E08 CS=

CALL

CX=0000 DX=

SS=2E08 CS=

INT

CX=0000 DX=

SS=2E08 CS=

CMP

CX=0000 DX=

SS=2E08 CS=

JNZ

=0000 SP=0F66

=2CB0 IP=01E8

AX,[BP-OA]

=0000 SP=0F66

=2CB0 IP=01EB

[BP-OE],AX

=0000 SP=0F66

=2CB0 IP=01EE

DI,[BP+06]

=0000 SP=0F66

=2CB0 IP=01F1

AX, [DI]

=0000 SP=0F66

=2CB0 IP=01F3

BX,[DI+02]

=0000 SP=0F66

=2CB0 IP=01F6

CX,[DI+04]

=0000 SP=0F66

=2CB0 IP=01F9

DX,[DI+06]

=0000 SP=0F66

2CB0 IP=01FC

SI,[DI+08]

=0000 SP=0F66

2CB0 IP=01FF

DI,[DI+OA]

=0000 SP=0F66

2CB0 IP=0202

BP

0000 SP=0F64

2CB0 IP=0203

BP,+OE

0000 SP=0F64

2CB0 IP=0206

FAR [BP+00]

BP=0F74 81=0089 DI=1065

NV UP El PL NZ AC PE NC

SS:0F6A=60CD

BP=0F74 81=0089 DI=1065

NV UP El PL NZ AC PE NC

SS:0F66=0060

BP=0F74 81=0089 DI=1065

NV UP El PL NZ AC PE NC

88:0F7A=0F82

BP=0F74 81=0089 DI=0F82

NV UP El PL NZ AC PE NC

D8:0F82=0100

BP=0F74 81=0089 DI=0F82

NV UP El PL NZ AC PE NC

D8:0F84=0000

BP=0F74 81=0089 DI=0F82

NV UP El PL NZ AC PE NC

D8:0F86=0000

BP=0F74 81=0089 DI=0F82

NV UP El PL NZ AC PE NC

DS:0F88=0000

BP=0F74 81=0089 DI=0F82

NV UP El PL NZ AC PE NC

D8:0F8A=0000

BP=0F74 81=0000 DI=0F82

NV UP El PL NZ AC PE NC

D8:0F8C=0000

BP=0F74 81=0000 DI=0000

NV UP El PL NZ AC PE NC

BP=0F74 81=0000 DI=0000

NV UP El PL NZ AC PE NC

BP=0F66 81=0000 DI=0000

NV UP El PL NZ AC PE NC

S8:0F66=0F6A

0000

2E08

60

0000

1313

8P=0F60

IP=0F6A

8P=0F5A

IP=0190

AH, 00

0000 8P=0F5A

1313 IP=0193

01B6

BP=0F66 81=0000 DI=0000

NV UP El PL NZ AC PE NC

BP=0F66 81=0000 DI=0000

NV UP DI PL NZ AC PE NC

BP=0F66 81=0000 DI=0000

NV UP DI PL NZ NA PO NC

Section II: Programming in the MS-DOS Environment 6l 1

Part E: Programming Tools

When the Interrupt 60H call is encountered at offset 0F6AH, the values passed to it can
be checked. AH contains 1 and DX contains 0—the correct values for START COMl.

In order to use the symbols for BADSCOP, use the Open Symbol Map command, XO, to
switch to the correct symbol map. Then, because the value of CSEG is not defined in the
map, use the Set Symbol Value command to set CSEG to the current value of CS. (CS was
changed to the correct value for BADSCOP when the program executed the INT 60H
instruction.)

-XO BADSCOP! <Enter>

-Z CSEG CS <Enter>

-X?* <Enter>

CSEG: (1313)

0100 INITIALIZE

01 OA PORT

020A VECTOR_INIT

0103 OLD_COMM_INT 0107 COUNT

01 OB BUFPNTR 01OD COMSCOPE

0109 STATUS

0190 CONTROL

Because the BADSCOP symbols now have meaning, a great deal of trouble can be avoided
by setting a breakpoint at CONTROL, the entry point for Interrupt 60H, so that it will no
longer be necessary to trace the _Ant86 routine to find the INT 60H command. Execution
will automatically stop when the Interrupt 60H handler is entered.

-BP CONTROL <Enter>

-BL <Enter>

2CB0:002E

2CB0:0046

2CB0:OO66

2CB0:0086

2CB0:008B

2CB0:00AC

2CB0:00C7

2CB0:00F5

1313:0190

[COMMSCMD

[COMMSCMD

[COMMSCMD

[COMMSCMD

[COMMSCMD

[COMMSCMD

[COMMSCMD

[COMMSCMD

_TEXT

_TEXT

_TEXT

_TEXT

_TEXT

_TEXT

-TEXT

-TEXT

main+IE

:—main+36

:_main+56

:—main+7 6

:_main+7B

main+9C

:_main+B7

:—main+E5

(002E)]

(0046)]

(0066)]

(0086)]

(008B)]

(OOAC)]

(00C7)]

(OOFS)]

conunscmd.C: 41

commscmd.C:42

commscmd.C:44

commscmd.C:46

commscmd.C:49

commscmd.C:53

commscmd.C:58

commscmd.C:63

[CSEGS:CONTROL]

With the housekeeping tasks done, the business of debugging BADSCOP can begin. The
first thing CONTROL does is check for a stop request. If no stop request is present, the
routine jumps to the check for a start request. (The first test and jump were already com
plete when the trace ended above.) The test for a start request is passed. CONTROL
places the port number in a local variable, resets the buffer pointer and the buffer count,
and turns tracing status on. With all this complete, CONTROL returns.

-T 5 <Enter>

AX=01BB BX=E81E

DS=2E08 ES=2E08

1313:01B6 80FC01

AX=01BB BX=E81E

DS=2E08 ES=2E08

1313:01B9 751C

AX=01BB BX=E81E

DS=2E08 ES=2E08

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01B6

CMP AH, 01

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01B9

JNZ CONTROL+47

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01BB

BP=0F66 SI=1CE7 DI=7400

NV UP DI PL NZ NA PO NC

BP=0F66 SI=1CE7 DI=7400

NV UP DI PL ZR NA PE NC

(01D7)

BP=0F66 SI=1CE7 DI=7400

NV UP DI PL ZR NA PE NC

1313:01BB 2E88160Aai MOV CS: [PORT] ,DL CS:010A=00

(more)

6l 2 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

1313:01C0 2EC7060B010202 MOV

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

1313:01C7 2EC70607010000 MOV

-T 5 <Enter>

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

1313;01CE 2EC606090101 MOV

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

1313:01D4 EB2B JMP

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

1313:0201 CF IRET

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

2E08:0F6C CB RETF

AX=01BB BX=E81E CX=3F48 DX=

DS=2E08 ES=2E08 SS=2E08 CS=

2CB0:0209 5D POP

=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400

=1313 IP=01C0 NV UP DI PL ZR NA PE NC

Word Ptr CS:[BUFPNTR],VECTOR_INIT (0209) CS:010B=0202

=0000 SP=0F5A BP=0F66 31=1CE7 DI=7400

= 1313 IP=01C7 NV UP DI PL ZR NA PE NC

Word Ptr CS:[COUNT],0000 03:0107=0002

=0000 3P=0F5A BP=0F66 3I=1CE7 DI=7400

=1313 IP=01CE NV UP DI PL ZR NA PE NC

Byte Ptr C3:[STATUS],01 03:0109=01

=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400

= 1313 IP=01D4 NV UP DI PL ZR NA PE NC

CONTROL+71 (0201)

=0000 SP=0F5A BP=0F66 SI=1CE7 DI=7400

= 1313 IP=0201 NV UP DI PL ZR NA PE NC

=0000 SP=0F60 BP=0F66 SI=1CE7 DI=7400

2E08 IP=0F6C NV UP El PL NZ AC PE NC

0000 SP=0F64

2CB0 IP=0209

BP

BP=0F66 SI=1CE7 DI=7400

NV UP El PL NZ AC PE NC

As can be seen from the trace, CONTROL performed correctly, so execution of the routine
can continue.

-<G <Enter>

Communications tracing STARTED for port C0M1:

AX=002F BX=0001 CX=0C13 DX=0000 SP=0FA6 BP=0000 31=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=00F5 NV UP El PL NZ NA PE NC

2CB0:00F5 C3 RET ;BR7

COMMSCMD has written the message to the user and trapped at the breakpoint set at the
end oi^main. The Examine Symbol Map command now shows that SYMDEB has auto
matically switched to the symbol map for COMMSCMD.

-X* <Enter>

[2CB0 COMMSCMD]

[2CB0 -TEXT]

2E08 DGROUP

0000 BADSCOP

1313 CSEG

No problems have been encountered with the START command; now the same process of
checking COMMSCMD and BADSCOP must be repeated for the STOP command. (Even if
problems had been found with the START command, it would be imprudent not to test the
other commands—they could have errors, too.) SYMDEB could be exited and restarted
with new commands, but this would mean the loss of the painfully created set of break
points. Instead, a new copy of COMMSCMD is loaded without leaving SYMDEB. One
problem with this, however, is that when SYMDEB loads an .EXE file, it adds the value of
the initial CS register to the addresses of the segments in the symbol map whose name

Section II: Programming in the MS-DOS Environment 6l 3

Part E: Programming Tools

matches the .EXE file. This is fine the first time the program loads, but the second time, all
the values are doubled and therefore incorrect. To avoid this error, the addresses must be

adjusted before the load. Use the Set Symbol Value command to subtract CS from each seg
ment name in COMMSCMD!. The Examine Symbol Map command shows the new values.

-Z _TEXT _TEXT-CS <Enter>

-Z DGROUP DGROUP-CS <Enter>

-X* <Enter>

[2CB0 COMMSCMD]

[0000 -TEXT]

0158 DGROUP

0000 BADSCOP

1313 CSEG

The Name File or Command-Tail Parameters command, N, and the Load File or Sectors
command, L, can now be used to load a new copy of COMMSCMD.EXE.

-N COMMSCMD.EXE <Enter>

"*L <Enter>

-X* <Enter>

[2CB0 COMMSCMD]

[2CB0 -TEXT]

2E08 DGROUP

0000 BADSCOP

1313 CSEG

Notice that the segment values inside COMMSCMD! are the same as they were when the
program was first loaded. Use the Name command again, this time to set the command tail
to contain a STOP command for COMl. The breakpoint table from the first execution is
still set, so the program can now be traced in the same way.

-N STOP 1 <Enter>

"G <Enter>

AX=0022 BX=0F84 CX=0019 DX=0098 SP=0F80 BP=0FA6 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=002E NV UP El PL NZ NA PO NC

41: if (0 == stricmp(argv[1],"STOP"))

2CB0:002E B83600 MOV AX,0036 ;BRO

-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098 SP=0F80 BP=0FA6 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=0046 NV UP El PL ZR NA PE NC

42: cmd = 0;

2CB0:0046 C746FC0000 MOV Word Ptr [BP-04],0000 ;BR1 SS:0FA2=0000

-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098 SP=0F80 BP=0FA6 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=008B NV UP El PL ZR NA PE NC

49: if (argc == 3)

2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:0FAA=0003

~G <Enter>

AX=0001 BX=OODO CX=0000 DX=0000 SP=0F80 BP=0FA6 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=OOAC NV UP El PL NZ NA PO NC

53: port = port-1;

(more)

6l4 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

2CB0:00AC FF4EFA

-G <Enter>

AX=0060 BX=OODO

DS=2E08 ES=2E08

2CB0:00C7 E8EF00

DEC Word Ptr [BP-06] ;BR5 SS:OFAO=OO01

CX=0000 DX=0000 SP=0F7A

SS=2E08 CS=2CB0 IP=00C7

CALL _int86

BP=0FA6 31=0089 DI=1065

NV UP El PL ZR NA PE NC

;BR6

COMMSCMD detected that this is a stop request for COMl and set the arguments for
^int86 correctly. Because a breakpoint is now set at CONTROL, tracing until the Interrupt
60H call is found is not necessary. Simply executing the program will cause it to stop at
CONTROL

-G <Enter>

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5C BP=0F68 31=7400 DI=E903

D3=2E08 E3=2E08 33=2E08 C3=1313 IP=0190 NV UP DJ PL NZ AC PO NC

C3EG:CONTROL:

1313:0190 80FC00 CMP AH,00 ;BR8

The registers are set correctly for a stop request on COMl (AH = 0, DX = 0). The routine
can now be traced to check for correct operation. First, however, a quick look at the sym
bol maps shows that SYMDEB has automatically switched to BADSCOP's symbols.

-X* <Enter>

2CB0 COMMSCMD

2CB0 -TEXT

2E08 DGROUP

[0000 BAD3C0P]

[1313 C3EG]

-T 5 <Enter>

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5C

D3=2E08 E3=2E08 33=2E08 C3=1313 IP=0193

1313:0193 7521 JNZ CONTROL+26

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5C

D3=2E08 E3=2E08 33=2E08 C3=1313 IP=0195

1313:0195 IE PUSH DS

AX=001E BX=3F48 CX=0000 DX=0000 3P=0F5A

D3=2E08 E3=2E08 33=2E08 C3=1313 IP=0196

1313:0196 53 PUSH BX

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F58

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0197

1313:0197 OE PUSH CS

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F56

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0198

1313:0198 IF POP DS

-T 5 <Enter>

AX=001E BX=3F48 CX=0000 DX=

DS=1313 ES=2E08 SS=2E08 CS=

1313:0199 C606090100 MOV

AX=001E BX=3F48 CX=0000 DX=

DS=1313 ES=2E08 SS=2E08 CS=

1313:019E 8B1E0B01 MOV

AX=001E BX=0202 CX=0000 DX=

DS=1313 ES=2E08 SS=2E08 CS=

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

(01B6)

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

0000 3P=0F58

1313 IP=0199

BP=0F68 31=7400 DI=E903

NV UP DI PL ZR NA PE NC

Byte Ptr [STATUS],00 DS:0109=01

0000 3P=0F58 BP=0F68 31=7400 DI=E903

1313 IP=019E NV UP DI PL ZR NA PE NC

BX,[BUFPNTR] D3:010B=0202

0000 3P=0F58 BP=0F68 31=7400 DI=E903

1313 IP=01A2 NV UP DI PL ZR NA PE NC

(more)

Section II: Programming in the MS-DOS Environment 6l 5

Part E: Programming Tools

1313:01A2 C60780 MOV Byte Ptr [EX],80 DS:0202=80

AX=001E BX=0202 CX=0000 DX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903

DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A5 NV UP DI PL ZR NA PE NC

1313:01A5 C64701FF MOV Byte Ptr [BX+01],FF DS:0203=FF

AX=001E BX=0202 CX=0000 DX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903

DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01A9 NV UP DI PL ZR NA PE NC

1313:01A9 FF060701 INC Word Ptr [COUNT] DS:0107=0000

-T 5 <Enter>

AX=001E BX=0202 CX=0000 DX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903

DS=1313 ES=2E08 SS=2E08 CS=1313 TP=01AD NV UP DI PL NZ NA PO NC

1313:01AD FF060701 INC Word Ptr [COUNT] DS:0107=0001

AX=001E BX=0202 CX=0000 DX=0000 SP=0F58 BP=0F68 SI=7400 DI=E903

DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01B1 NV UP DI PL NZ NA PO NC

1313:01B1 5B POP BX

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5A BP=0F68 SI=7400 DI=E903

DS=1313 ES=2E08 SS=2E08 CS=1313 IP=01B2 NV UP DI PL NZ NA PO NC

1313:01B2 IF POP DS

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5C BP=0F68 SI=7400 DI=E903

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01B3 NV UP DI PL NZ NA PO NC

1313:01B3 EB4C JMP CONTROL+71 (0201)

AX=001E BX=3F48 CX=0000 DX=0000 SP=0F5C BP=0F68 SI=7400 DI=E903

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=0201 NV UP DI PL NZ NA PO NC

1313:0201 CF IRET

CONTROL correctly detected that this was a stop request. It then saved the user's registers
and established a DS equal to CS. (Remember that BADSCOP is a .COM file and CS = DS =
SS.) Having done this, the routine moves a zero to STATUS, which turns the trace off. It
then moves 80H FFH to the buffer to indicate the end of a trace session, increments

COUNT to allow for the new entry, and restores the user's registers. What it does not do
is increment the buffer pointer to allow for the stop marker. This behavior is entirely con
sistent with the observed phenomena: When a trace is stopped and resumed, the stop
marker is missing and the count is one too high. The fix is to add

INC BX

INC BX

MOV BUFPNTR,BX

INCREMENT BUFFER POINTER

to the CONTROL procedure before the registers are restored. (Insert these lines later with
your favorite editor.)

Even though the bug has been found, the rest of the routine should be checked for other
possible bugs.

-G <Enter>

Communications tracing STOPPED for port C0M1 :

AX=002F BX=0001 CX=0C13 DX=0000 SP=0FA8 BP=0000 81=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=00F5 NV UP El PL NZ AC PO NC

2CB0:00F5 C3 RET ;BR7

Loading a new copy of COMMSCMD, setting the command tail to RESUME 1, and monitor
ing program execution yields the following:

616 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

-N COMMSCMD.EXE <Enter>

-Z -TEXT _TEXT-CS <Enter>

-Z DGROUP DGROUP-CS <Enter>

-X* <Enter>

[2CB0 COMMSCMD]

[0000 -TEXT]

0158 DGROUP

0000 BADSCOP

1313 CSEG

-L <Enter>

-X* <Enter>

[2CB0 COMMSCMD]

[2CB0 -TEXT]

2E08 DGROUP

0000 BADSCOP

1313 CSEG

-N RESUME 1 <Enter>

-G <Enter>

AX=0022 BX=0F82 CX=0019 DX=0098 SP=0F7E

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=002E

41: if (0 == stricmp(argv[1],"STOP"))

2CB0:002E B83600 MOV AX,0036

-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098 SP=0F7E BP=0FA4 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=0086 NV UP El PL ZR NA PE NC

46: cmd =2;

2CB0:0086 C746FC0200 MOV Word Ptr [BP-04],0002 ;BR3 SS:0FA0=0000

-G <Enter>

AX=0000 BX=415A CX=0000 DX=0098 SP=0F7E BP=0FA4 SI=0089 DI=1065

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=008B NV UP El PL ZR NA PE NC

49: if (argc == 3)

2CB0:008B 837E0403 CMP Word Ptr [BP+04],+03 ;BR4 SS:0FA8=0003

-G <Enter>

CX=0000 DX=0000 SP=0F7E BP=0FA4 SI=0089 DI=1065

SS=2E08 CS=2CB0 IP=OOAC NV UP El PL NZ NA PO NC

port = port-1;

DEC Word Ptr [BP-06] ;BR5 SS:0F9E=0001

BP=0FA4 SI=0089 DI=1065

NV UP El PL NZ NA PO NC

;BRO

BX=OODO

ES=2E08

AX=0001

DS=2E08

53:

2CB0:00AC FF4EFA

-G <Enter>

AX=0060 BX=OODO

DS=2E08 ES=2E08

2CB0:00C7 E8EF00

-G <Enter>

AX=0265 BX=001E

DS=2E08 ES=2E08

CSEG:CONTROL:

1313:0190 80FC00

-T 5 <Enter>

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:0193 7521

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:01B6 80FC01

CX=0000 DX=0000 SP=0F78

SS=2E08 CS=2CB0 IP=00C7

CALL —int8 6

CX=3F48

SS=2E08

DX=0000

CS=1313

SP=0F5A

IP=0190

CMP AH, 00

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=0193

JNZ CONTROL+26

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01B6

CMP AH, 01

BP=0FA4 SI=0089 DI=1065

NV UP El PL ZR NA PE NC

;BR6

BP=0F66 SI=0000 DI=7400

NV UP DI PL NZ AC PE NC

;BR8

BP=0F66 SI=0000 DI=7400

NV UP DI PL NZ NA PO NC

(01B6)

BP=0F66 SI=0000 DI=7400

NV UP DI PL NZ NA PO NC

(more)

Section II: Programming in the MS-DOS Environment 6Y7

Part E: Programming Tools

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:01B9 751C

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:01D7 80FC02

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:01DA 7516

-T 5 <Enter>

AX=0265 BX=001E

DS=2E08 ES=2E08

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01B9

JNZ CONTROL+47

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01D7

CMP AH,02

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01DA

JNZ CONTROL+62

BP=0F66 SI=0000 DI=7400

NV UP DI PL NZ NA PO NC

(01D7)

BP=0F66 SI=OGOO DI=7400

NV UP DI PL NZ NA PO NC

BP=0F66 SI=0000 DI=7400

NV UP DI PL ZR NA PE NC

(01F2)

CX=3F48 DX=0000 SP=0F5A

SS=2E08 CS=1313 IP=01DC

1313:01DC 2E833E0B0100 CMP .Word Ptr CS:[BUFPNTR],+00

AX=0265 BX=001E CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=0000

BP=0F66 SI=0000 DI=7400

NV UP DI PL ZR NA PE NC

CS:010B=0202

DI=7400

DS=2E08 ES=2E08

1313:01E2 741D

AX=0265 BX=001E

DS=2E08 ES=2E08

SS=2E08 CS=1313 IP=01E2 NV UP DI PL NZ NA PO NC

JZ CONTROL+71 (0201)

CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=0000 DI=7400

SS=2E08 CS=1313 IP=01E4 NV UP DI PL NZ NA PO NC

1313:01E4 2E88160A01 MOV CS:[PORT],DL CS:010A=00

AX=0265 BX=001E CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=0000 DI=7400

DS=2E08 ES=2E08 SS=2E08 CS=1313 IP=01E9 NV UP DI PL NZ NA PO NC

1313:01E9 2EC606090101 MOV Byte Ptr CS:[STATUS],01 CS:0109=00

AX=0265 BX=001E CX=3F48 DX=0000 SP=0F5A BP=0F66 SI=0000 DI=7400

SS=2E08 CS=1313 IP=01EF

JMP CONTROL+71

DS=2E08 ES=2E08

1313:01EF EB10

NV UP DI PL NZ NA PO NC

(0201)

-T 5 <Enter>

AX=0265 BX=001E

DS=2E08 ES=2E08

1313:0201 CF

AX=0265 BX=001E

DS=2E08 ES=2E08

2E08:0F6C CB

AX=0265 BX=001E

DS=2E08 ES=2E08

2CB0:0209 5D

AX=0265 BX=001E

DS=2E08 ES=2E08

2CB0:020A 57

AX=0265 BX=001E

DS=2E08 ES=2E08

2CB0:020B 8B7E08

-G <Enter>

Communications tracing RESUMED for port C0M1

AX=002F BX=0001 CX=0C13 DX=0000 SP=0FA6

DS=2E08 ES=2E08 SS=2E08 CS=2CB0 IP=00F5

2CB0:00F5 C3 RET

-Q <Enter>

CX=3F48 DX=0000

SS=2E08 CS=1313

IRET

CX=3F48 DX=0000

SS=2E08 CS=2E08

RETF

CX=3F48 DX=0000

SS=2E08 CS=2CB0

POP BP

CX=3F48 DX=0000

SS=2E08 CS=2CB0

PUSH DI

CX=3F48 DX=0000 SP=0F64

SS=2E08 CS=2CB0 IP=020B

MOV DI,[BP+08]

SP=0F5A

IP=0201

SP=0F60

IP=0F6C

SP=0F64

IP=0209

SP=0F66

IP=020A

BP=0F66 SI=0000 DI=7400

NV UP DI PL NZ NA PO NC

BP=0F66 SI=0000 DI=7400

NV UP El PL NZ AC PE NC

BP=0F66 SI=0000 DI=7400

NV UP El PL NZ AC PE NC

BP=0F74 SI=0000 DI=7400

NV UP El PL NZ AC PE NC

BP=0F74 SI=0000 DI=7400

NV UP El PL NZ AC PE NC

SS:0F7C=0F90

BP=0000 SI=0089 DI=1065

NV UP El PL NZ NA PE NC

;BR7

The processing of a resume request is correct. Thus, the problem with stop processing
in BADSCOP was the only problem. The corrected BADSCOP, which is actually
COMMSCOP, is shown in Figure 18-4.

6l8 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

CodeView

CodeView is the most sophisticated debugging monitor produced by Microsoft. It
combines the philosophy and many of the commands of its predecessors, DEBUG and
SYMDEB, with true source-code debugging. The availability of source lines and symbols
allows CodeView to rival the convenience of program development and debugging pre
viously available only in interpreters such as Microsoft GW-BASIC. However, this high level
of interaction with the source program is also the root of its problems for advanced
debugging.

In order to provide the debugger with the tools to debug at the source-line level and to
interrogate program variables, CodeView is required to have a detailed knowledge of how
high-order languages work and of their internal conventions. This is not a problem for lan
guages like C, Pascal, and FORTRAN, versions of which are produced by the same com
pany that created CodeView. The object code generated by these compilers obeys a
stringent set of rules and conventions. Assembly-language programs, however, tend to fol
low their own rules and traditions, making them quite different from C programs, with
their own separate debugging needs.

C, Pascal, and FORTRAN programmers will find CodeView a dream to use. Assembly-
language programmers using versions of MASM earlier than 5.0 will find CodeView cum
bersome and will have to weigh its advantages over its disadvantages. All users will,
however, appreciate the good design and programming that have gone into CodeView. It
is pleasing to know that someone understands the programmer's debugging needs and is
trying to ease the burden.

CodeView has added several welcome functions to the debugger's repertoire, but one
of these new features towers above the rest—watchpoints. The debugger can watch the
values of program variables or expressions and set breakpoints on them, making it possi
ble to stop execution if an expression evaluates to zero or if a location changes. Previous
debugging monitors have been limited to tracing and breaking on instructions. This new
facet of debugging changes, somewhat, the approach to resolving a bug.

In the previous discussion of debugging techniques, an orderly application of techniques
from inspection and observation through instrumentation to debugging monitors was
recommended. This sequence is still recommended with CodeView, but now the instru
mentation features have been integrated into the debugging monitor.

A simple example
The following example shows how CodeView uses the instrumentation approach to isolate
a problem and then uses the debugging monitor functions to solve it. The example is also
an introduction to CodeView commands and techniques. The commands are, for the most
part, similar to those used by SYMDEB. Those commands that differ greatly are indicated.
This example, like all the examples and demonstrations in this article, is not intended to
be a complete tutorial—CodeView commands are summarized elsewhere in this book
and explained in detail in the manual accompanying the product. See PROGRAMMING
UTILITIES: codeview. The example simply shows some of the more common CodeView
commands and demonstrates debugging techniques using them.

Section II: Programming in the MS-DOS Environment 6l9

Part E: Programming Tools

UPPERCAS.C (Figure 18-13) is a simple program whose sole function is to convert a canned
string to uppercase. When executed, the program prints a few of the characters from the
string and some that aren't in the string. Inspecting the listing doesn't reveal the cause of
the problem. (Some readers with experience writing C programs will see the cause of the
problem, because it is quite common; pretend, for now, that the listing is of no help and
enjoy the wonders of CodeView.)

/**

* *

* UPPERCAS.C *

* This routine converts a fixed string to uppercase and prints it. *
* *

**/

#include <ctype.h>

#include <string.h>

#include <stdio.h>

main{argc,argv)

int argc;

char *argv[];

{

char *cp,c;

cp = "a stringXn";

/* Convert *cp to uppercase and write to standard output */

while (*cp != '\0')

{

c = toupper (*cp++);

putchar (c);

}

Figure 18-13- An erroneous Cprogram to convert a string to uppercase.

Like SYMDEB, CodeView requires some special preparation to produce a suitable exe
cutable file. CodeView, however, makes the job much simpler. Using the Microsoft C Com
piler, compile the program with

OMSC /Zi UPPERCAS; <Enter>

(Remember that C is case sensitive when interpreting switches, so the /Zi switch should
be entered exactly as shown.) The /Zi switch instructs the compiler to generate the symbol
tables and line-number information needed by CodeView. Other options appropriate to
the program can also be included, but /Zi is required.

To form an executable file, use the Microsoft Object Linker (LINK) as follows:

OLINK /CO UPPERCAS; <Enter>

620 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

This command line instructs LINK to build an executable file with the information
needed for CodeView. Other options can be used as needed or desired. The output of
LINK, UPPERCAS.EXE, will be larger than a .EXE file built without /CO (about 2600 bytes
larger in this case), but the program will run correctly when executed without CodeView.

Starting CodeView is straightforward. Simply type

OCV UPPERCAS <Enter>

CodeView loads UPPERCAS.EXE. It locates UPPERCAS.C, the source file, and loads that
too. It then presents a full-screen display similar to this:

i:

File Uieu Search Run Hatch Options Language Calls Help | F8=Trace F5=Go
I uppercas.C |

ICICMKKKKXMKKKKKMKlCKMXXICKKKKXKXKXKKKXXKXMij

3: *

4: « UPPERCAS.C

5: * This routine converts a fixed string to uppercase and prints it.
S: *

71 XXK
3:

9: It include <ctype.h>
10: Itinclude <string.h>
11: Itinclude <stdio.h>
12:

13: nain(argc«argv)
14:

15: int argc;
16: char «argv[];
17:

18: i

licrosoft (R) CodeUieu (R) Uersion 2.0
(C) Copyright Microsoft Corp. 1986j 1987. All rights reserved.
>

This display has two windows open: the display window, which shows the program being
debugged, and the the dialog window, which currently contains only the copyright notice
and a prompt (>) for input. The F6 function key moves the cursor back and forth between
the two windows.

CodeView can be instructed from either window to go to a specific line (that is, to execute
until a specific line is reached). If the cursor is in the display window, use the arrow keys
to select a line and press the F7 key. Execution will proceed until the selected line (or the
end of the program) is reached. To start execution without specifying a stop line, press F5.

The same functions can be performed from the dialog window using typed commands,
which may seem more familiar. Enter the Go Execute Program command, G, optionally
followed by an address. Execution will continue until the specified address is reached

Section II: Programming in the MS-DOS Environment 621

Part E: Programming Tools

or until stopped by something else, such as the end of the program. In this sense, the
CodeView Go command is the same as that of DEBUG and SYMDEB. Unlike those rou

tines, however, CodeView's Go command does not allow an equals operator (=).

The address for the Go command can be specified in several ways. Because the display
window is currently showing only source lines, it is appropriate to set the stop location in
terms of line numbers. The syntax of a line-number specification is the same as in
SYMDEB—simply enter the line number preceded by a period:

>G .27 <Enter>

Note that the line number is specified in decimal. This seemingly innocent statement
uncovers one of the problem areas in CodeView, especially for assembly-language pro
grammers. The default radix for CodeView is decimal. This convention works well for
things associated with the C program, such as line numbers, but is very inconvenient for
addresses and other similar items, which are usually in hexadecimal. Hexadecimal num
bers must be specified using the cumbersome C notation. Thus, the number FF3EH would
be entered as Oxff3e. The radix can be changed using the Change Current Radix com
mand, N (different from the DEBUG and SYMDEB N command). (The problems associ
ated with hexadecimal numbers in early versions of CodeView are no longer present in
versions 2.0 and later.)

The radix problem can be avoided, for the moment, by using labels. Issue

>G _main <Enter>

to cause CodeView to execute until the main routine is reached. CodeView then shows

File Uieu Search Run Hatch (^tions Language Calls Help | F8=Trace F5=Go|
=] uppercas.C |

10:

11:

12:

13:

14:

a
16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

Itinclude <ctype.h>
llinclude <string.h>
ftinclude <stdio.h>

nain(argc«argu)

char KarguCl;

char *cp#c;

cp = "a stringSn":

/« Conuert ̂ p to uppercase and urite to standard output

uhile (*cp ?= 'S0')

licrosoft (R) CodeUieu (R) Uersion 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
>g _nain
>

622 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

The display shows line 15 in reverse video, indicating that CodeView has stopped there.
This is the first line of the mainO module, but it is not executable. Press the FLO key,
which has the same effect as entering the Step Through Program command, P, in the dia
log window, to cause line 19 to be executed. The reverse video line is then 21, which is the
next line to be executed.

To see the changes to cp, *cp, and c, establish a watch on these three variables. To use the
Watch Word command, WW, for the word cp, type

>WW cp <Enter>

When entered from the dialog window, this command opens the watch window at the top
of the screen and displays the current value of cp. To display the expression at *cp, use the
Watch Expression command, W?, as follows:

>W? cp,s <Enter>

This expression will display the null-delimited string at *cp. Finally, to see the ASCII char
acter value of c, use the Watch ASCII command, WA:

>WA c <Enter>

The results of these watch commands are shown in the following screen:

9) cp
1) CPiS
2) c : 55C4:0FF2

55C4:eFF

File Mieu Search Hun llatch ^tlons Language Calls Help | F8=Trace F5=Go
=1 uppercas.C |

0 5527
till

9:

10:

11:

12:

13:

14:

15:

15:

17:

18:

19:

20:

ttinclude <ctype.h>
It include <string.h>
IIinclude <stdio.h>

nain(argc«argu)

int argc;
char «argu[];

i

char «cpjc;

21: cp = "'a stringSn"; 1
22:

>uu cp
>U? CPiS
>ua c

,

1
i

> 1

The values displayed in the watch window are not yet defined because line 21, which
initialized cp, has not been executed. Press F8 to rectify this. Press it again to bring the ex
ecution of the program into the main loop.

Section II: Programming in the MS-DOS Environment 623

Part E: Programming Tools

File Uieu Search Run Hatch Options Language Calls Help | F8=Trace F5=Go
^ uppercas.C | =

9) CP : 55C4:0FF0 0036
1) cpjS : "a string
2) c : 55C4:0FF2 .

18:

19:

20:

21:

22:

23:

24:

25:

26:

pL
28:

29:

30:

31:

char «cpic;

cp = "a stringSn";

Convert «cp to uppercase and urite to standard output

uhile («cp != '\0')
{

c = toiipper(*cp + +);

putchar(c);
>

>uu

>u?

>ua

>

cp

cp,s

c

The pointer cp now contains the correct address. The Display Memory command, D,
could be used to display the contents of DS:0036H, just as in DEBUG and SYMDEB. (This
step is not necessary, however, because there is a formatted display of memory in the
watch window at 1). The variable c has not yet been initialized.

624 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Press the F8 key to execute line 27. A curious and unexpected thing happens, as shown in
the next screen:

File Vieu Search Huii Uatch Options Language Calls Help | F8=Trace F5=Go
=\ uppercas.C \=

El) CP : 55C4:0FF0 0038
1) cp,s : "string
2) c : 55C4:0FF2

18: {

19: char *cpjc:
20:

21: cp = "a stringSn";
22:

23: /* Convert *cp to uppercase and urite to standard output */
24:

25: uhile (*cp ?= '\0')
26: {

27: c = toupper(«cp-»^-fr);

29:

30:

31:

putchar(c):

>uu cp
>u? cp,s
>ua c

>

Notice that the value of cp has changed from 0036H to 0038H. The line of code, however,
indicates that the pointer should have been incremented by only one (*cp++). The second
character of the string, a blank, has been loaded into c. This could explain the apparent
random selection of characters being displayed (actually every other character) and the
garbage characters displayed (the zero at the end of the string might be skipped, causing
the routine to continue converting until a zero is encountered somewhere in memory).

Source-line debugging does not reveal enough about what is happening in this case. To
look more closely at the mechanism of the program, the program must be restarted.
Before doing this, set a breakpoint at line 27:

>BP .27 <Enter>

Section II: Programming in the MS-DOS Environment 625

Part E: Programming Tools

Then restart (actually, reload) the program with the Reload Program command, L. Note
that watch commands and breakpoints are preserved when a program is restarted.
Executing the restarted program with G yields

File Uieu Search Run Hatch Options Language Calls Help | F8=Trace F5=Go
uppercas.C |

9) CP : 55C4:0FF0 0036
1) cpiS : "a string
2) c : 55C4:0FF2 .

^e:
19:

^0:

^8:
Z9:
30:

31:

char «cpic;

cp = "a stringSn";

Convert ̂ p to uppercase and urite to standard output

uhile (*cp t= 'S0')

c = toupper(*cp++);
putchar(c);
>

>bp
>1

>g
>

.27

The display shows line 27 in reverse video, indicating that it is the next line to be executed.
The pointer cp has the correct value, as shown in the watch window. Now Press the F2 key
to turn on the register display and press F3 to show the assembly code.

626 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Pile Vieu Search Run Hatch (^tions Language Calls Help | F8=Trace F5=Go
I uppercas.C |

El) CP : 55C4:0FF0 0036
1) cpis "a string
2) c : 5SC4:0FF2 .

8X = 0004

BX = 0036

CX r 0019

c = tcwpper(ecp**)«
527:0026 FF46FC Word Ptr Icpl

ALiBute Ftr [BX]:0029

:002B

:002C

:002E

:0033

:0035

:003e

:003B

:003D

:003F

:0041

:0044

8A07

90

8BD8

F687B30102

740C

8B5EFC

FF46FC

8A07

2C20

EB08

8B5EFC

FF46FC

BXiAX
Bi^te Ftr [BX^01B3]^02
nain+31 (0041)

BXiUord Ptr [cpl
Uord Ftr [cp]
8LiByte Ptr [BXl
8Li20
jiain+39 (0049)
BXiUord Ptr Ecp]
Uord Ptr [cpl

DX = 00B8

SP s 0FF0

BP s 0FF4

SI = 0089

DI = 10D5

DS r 55C4

ES = 55C4

SS s 5504

CS s 5527

IP = 0026

NU UP

El PL

NZ m

PO NC

S8:0FF0
0036

The display highlights line 27, indicating that a breakpoint exists at this line. The line of
code at CS:0026H is in reverse video, indicating that it is the next line to be executed.

The previous instruction has loaded BX with [cpl The first thing the code for line 27
does is increment the word at memory location [cpl The initial value of cp is in BX, so the
♦cp++ request can now be executed. Use the F8 key to single-step through the lines of
code. Notice that when only source lines are on the screen, F8 steps one source line at a
time, but when assembly code is shown, F8 steps one assembly line at a time. Single-
stepping through the code, note how the registers and watch window change. Everything
appears normal until CS:0038H is executed.

Section II: Programming in the MS-DOS Environment 627

Part E: Programming Tools

Calls Help | F8=Tpace F5=GoFile Uieu Search Run

cp

cp,s

c :

55C4:eFF0

: "string
55C4:0FF2

0038

liatch (Options Language
uppercas.C |

27:

5527:0026 FF46FC

5527:0029 8807

5527:0028 98

5527:0020 8BD8

5527:002E F687B30102

5527:0033 7400

5527:0035 8B5EF0

5527:0038 FF46F0

c = taupper(*i:p+*);
INC Uord Ptr Icpl
nOM 8LiByte Ptr CBXl
OBU

nOU BX,8X
TEST Bi^te Ptr [BX^01B3]«02
JZ _nain+31 (0041)
MOU BXjUord Ptr [cp]
INO Uord Ptr Ecp]

>bp .27
>1

>g
>

5527:003B 8A07 MOU AL,Byte Ptr [BX] ■ i:
5527:003D 2C20 SUB AL.20 i
5527:003F EB08 JMP _nain+39 (0049) i
5527:0041 8B5EFC NOU BXfUord Ptr [cp] 1
5527:0044 FF46FC INC Uord Ptr [cp] D

AX = 0061

BX = 0037

OX = 0019

DX = 00B8

SP = 0FF0

BP = 0FF4

SI = 00A9

DI = 10D5

BS = 5504

1 ES = 5504
SS = 5504

OS = 5527

IP = 003B

NU UP

El PL

NZ NA

PO NO

DS:0037

20

Notice that the value of cp in the watch window has incremented again. The line of C
code has two increments hidden in it, not the expected single increment. Why is this?

To find the answer, examine the toupperQ macro. The following definition, extracted
from CTYPE.H, explains what is happening:

#define -UPPER

#define -LOWER

#define isupper(c)

#define islower(c)

#define —tolower(c)

#define —toupper(c)

#define toupper(c)

#define tolower(c)

0x1 /* uppercase letter */

0x2 /* lowercase letter */

(-Ctype+1)[c] & -UPPER)

{-Ctype+D [c] & -LOWER)

(c)-'A'+'a')

(c)-'a'+'A*)

(islower(c)) ? —toupper(c) : (c))

(isupper(c)) ? —tolower(c) : (c))

The argument to toupperQ, c, is used twice, once in the macro that checks for lowercase,
islowerQ, and once in ̂ toupperQ. The argument is replaced in this case with *cp++,
which has the famous C unexpected side effects. Because the unary post-increment is the
handiest way to perform the function desired in the program, fixing the problem by
changing the code in the main loop is undesirable. Another solution to the problem is to
use the function version of toupperQ. Because toupperQ is defined as a function in
STDIO.H, simply deleting ̂ include <ctype.h> would solve the problem. Unfortunately,
this would also deprive the program of the other useful definitions in CTYPE.H. (Admit
tedly, the features are not currently used by the program, but little programs sometimes
grow into mighty systems.) So to keep CTYPE.H but still remove the macro definition of

628 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

toupper(X use the #undef command. (Because tolowerQ has the same problem, it should
also be undefined.) The corrected listing is shown in Figure 18-14.

* *

* UPPERCAS.C *

* This routine converts a fixed string to uppercase and prints it. *
* *

#include <ctype.h>

#undef toupper

#undef tolower

#include <string.h>

#include <stdio.h>

main (argc,argv)

int argc;

char *argv[];

{

char *cp,c;

cp = "a stringXn";

/* Convert *cp to uppercase and write to standard output */

while (*cp != 'NO')

{

c = toupper(*cp++);

putchar(c);

}

Figure 18-14. The corrected version of UPPERCAS. C.

An example using screen output
A problem with DEBUG is that it writes to the same screen as the program does. Both
SYMDEB and CodeView, however, allow the debugger to switch back and forth between
the screen containing the program's output and the screen containing the debugger's out
put. This feature is a special option with SYMDEB and is sometimes clumsy to use, but
with CodeView, keeping a separate program output screen is automatic and switching
back and forth involves simply pressing a function key (F4).

The following example program is intended to display an ASCII lookup table with all the
displayable characters available on an IBM PC. The expected output is shown in Figure
18-15.

Section II: Programming in the MS-DOS Environment 629

Part E: Programming Tools

Oasctbl

ASCII LOOKUP TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F

B B f ♦ ♦ D
1 ► < t !! § a t t i «•

2 ? IP tt $ 'A & » () +
p - /

3 0 1 2 3 4 5 6 7 8 9 » < = > 7

4 0 A B C D E F G H I J K L n N 6
5 P q R S T U U U X y Z C S]

A

b
t

a b c d e f sr h i j k 1 n n 0

7 P q r s t u w u X 9 z { 1
1 } 6

B Q u e
A

a a a
«

a 9
A

e e
\

e i'
A

1
\

1
4»

A

9 E » a 6 0 0 a ii y U u 0 £ ¥ R f
a 1

y

0 u n N s s 6 1- -i i «

B ii
t

i 1 1 i n I il
If

11 11 n il J
1

C I y [\ } B Jl
If 1}

■

= Jl
If

1

D J1
T IT

E L f IT 1 + J
r 1 1 1 ■

E oc P r n Z (T P T S 0 0 5 <D p) (n
F = + > < r J T a

0
■ J n 2 I

Figure 18-15. The output expected from ASCTBL C.

The program that should produce this display, ASCTBL.C, is shown in Figure 18-16.

* *

* ASCTBL.C *

* This program generates an ASCII lookup table for all displayable *
* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *
* codes. *

* *

#include <ctype.h>
#include <stdio.h>

main()

{

int i, j, k;
/* Print table title. */

printf("\n\n\n ASCII LOOKUP TABLE\n\n") ;

/* Print column headers. */

printf(" ");
for (i = 0; i < 16; i++)

printf("%X i);
fputchar("\n");

Figure 18-16. An erroneous program to display ASCII characters. (more)

630 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

/* Print each line of the table. */

for (i = 0, k = 0; i < 16; i++)

{

/* Print first hex digit of symbols on this line. */

printf("%X i);

/* Print each of the 16 symbols for this line. */

for (j = 0; j < 16; j++)

{

/* Filter nonprintable characters. */

if ((k >= 7 && k <= 13) II (k >= 28 && k <= 31))

printfC ");

else

printf("%c k);

k++;

}

fputchar("\n");

}

}

Figure 18-16. Continued.

The problem to be debugged in this example is evident when the program in Figure 18-16
is compiled, linked, and executed. Here is the resulting display:

Oasctbl

ASCII LOOKUP TABLE

e i 2 3 45A 7 8 9 A B CDE F h0

!" ll S x a' () * ♦ , - . /y3 0 1 2 3 4 5 6 7 8
9 : ; < = > ?y4 e A B C D E F G H I J K L M N O yS P
Q B S T U M U X y Z [\] '' .y6 ' a b c d e f g h
j k l n n o y7 p q p s t u v u x y z 'C i > '" a y8 Q
U £ d K ^ d 9 6 0 b Y t l » A y9 E a ff d U b Q ili y U
U « £ ¥ RfyA & i
I I M 1 jl n 1 J II TI J 1 „«C t 1 T h - + Ml 1 ii
® lf |} = il *tf® riB l .l 'yE ot p
r ir Z (r)< T s e fi 6 »0 e nyF s + i s r j + s * .
^ n t ■ y

|c>

Section II: Programming in the MS-DOS Environment 631

Part E: Programming Tools

Something is clearly wrong. The output is jumbled and no pattern is immediately obvious.
To locate the problem, first prepare a .EXE file and start CodeView as follows:

C>MSC /Zi ASCTBL; <Enter>

OLINK /CO ASCTBL; <Enter>

OCV ASCTBL <Enter>

CodeView starts and displays the following screen:

File Uieu Search Run Uatch Cations Language Calls Help | F8=Trace F5=Go
I asctbl.C I

i:

2:

3:

4:

5:

7:

B:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

« ASCTBL.C

M This program generates an ASCII lookup table for all displayable
» ASCII and extended IBNPC codes1 leaving blanks for nondisplayable
* codes.

ftinclude <ctype.h>
ttinclude <stdio.h>

nainO

{

int ij k;

/* Print table title,

printf("SnSnSn ASCII LOOKUP TABLESnSn");

licrosoft (B) Cod'eUieu (R) Uersion 2.0

(C) Copyright Microsoft Corp. 1986j 1987.
>

All rights reserved.

The start of the source program is shown in the display window and the dialog window
contains an input prompt. Press the FIO key three times to bring execution to line 21.
(Remember that the line indicated in reverse video has not yet been executed.)

632 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

File Uieu Search Hun Hatch <^tions Language Calls Help | F8=Trace F5=Go
I asctbl.C I =

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Z0:

ftinclude <ctype.h>
ftinclude <stdio.h>

nainO

i

int ii jf k;
/* Print table title.

printfCNnSnSn

/* Print column headers. */

ASCII LOOKUP TABLESnSn");

121: printfC ");
22: for (i = 0; i < 16; i++) i
23: printf("y.X i); i
24: fputchar("Sn"); !
25: i
26: Print each line of the table.

1-4^

iicrosoft (K) CodeUieu (R) Uersion 2.0

(C) Copgright Nicrosoft Corp. 1986j 1987. All rights reserved.
>

The display heading has been printed at line 18. Press the F4 key to display what the pro
gram has written on the screen.

Ocv asctbl

ASCII LOOKUP TABLE

Section II: Programming in the MS-DOS Environment 633

Part E: Programming Tools

Note: Any information on the screen when you started CodeView will remain on the vir
tual output screen until program execution clears it or forces it to scroll off.

The table heading has been properly written to the screen. Press the F4 key again to return
to the CodeView display. Continue executing the program with the FIO key to bring the
program to line 24.

File Mieu Search Ruii Hatch Cations Language Calls Help | F8=Trace F5=Go
I asctbl.C I

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

25:

26:

tlinclude <ctype.h>
ttinclude <stdio.h>

nainO

i

int i, i, h;
/* Print table title.

printf("SnSnSn

Print colunn headers. V

printf(" ");
for (i = 0; i < 16; i*+)

printf("xX i);
fputchar("Sn");

Print each line of the table.

ASCII LOOKUP TABLESnSn");

nicrosoft (K) CodeUieu (K) Uersion 2.0

(C) Copyright Microsoft Corp. 1986« 1987.
>

All rights reserved.

At this point in program execution, the column headings have been written on the screen.
Press the F4 key again to see the results.

634 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Ocu asctbl

ASCII LOOKUP TABLE

e i 2 3 4 5 6 7 8 9 A B C D E F

The output of the program is still correct, so allow execution to continue by pressing F4 to
return to the CodeView screen and then pressing the FIO key. This will execute the call to
the fputcharO function to write a newline character.

File Uieu Search Hun Hatch Options Language Calls Help | F8=Trace F5=Go
=1 asctbl.C I I

printf(" ");
for (i = 0; i < 16; i++)

printfC'xX i);
fputcharC'Sn");

Print each line of the table.

Print first hex digit of symbols on this line.
printf("xX i);

Print each of the 16 symbols for this line.
for (J = 0; J < 16; j++)

Filter non-printable characters.
if ((k >= 7 ftft k <= 13) II (k >= 28 && k <= 31)

printf(" ");
else

printfC'xc k);
X

Microsoft (R) CodeUieu (R) Uersion 2.0
(C) Copyright Microsoft Corp. 1986i 1987. All rights reserved.
>

Section II: Programming in the MS-DOS Environment 635

Part E: Programming Tools

Examination of the output screen shows that the display is now incorrect.

Ocu asctbl

ASCII LOOKUP TABLE

1 2 3 4 5 6 7 8 9 A B C D E F h

A lowercase h has been written to the screen instead of a newline character. Further ex

ecution demonstrates that newline characters written with fputcharO are not working. A
closer inspection of the fputcharO function is needed.

To see what is happening, use the Reload Program command to restart execution at
the top of the program. Change the cursor window with the F6 key, use the arrow keys
to place the cursor on line 24, and press F7. This brings execution back to line 24, where
fputcharO is called. Press the F3 key to place the display in assembly mode and the F2
key to show the CPU registers and flags. The first assembly instruction of the fputcharO
function call is about to be executed.

636 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

fputchar("Sn");

File Uieu Search Run llatch <^tions Language Calls Help | F8=Trace F5=Go
=j asctbl.C I I

n AX = 0003
BX = 0001

CX = 0001

BX = 03C0

SP = 0F90

BP = 0F96

SI = 00A9

DI = 1075

DS = 555D

ES = 5661)

SS = 566D

OS = 5527

IP = 004E

MOU AX.0068

AX

.fputchar (0194)
SP,+02

0; 1 < is;

Uord Ptr [ill
Uord Ptr [kl10000

50

E83F01

83C402

for (

C746FE0000

C746FA0000

837EFE10

7D68

EBBS

FF46FE

EBF3

PUSH

CALL

ADD

1 = 01 k
nog

nog

CMP

JGE

JMP

INC

jnp

Uord Ptr [111+10
nain+c0 (00D0)

_nain+5f (006F)
Uord Ptr [11

jiain+52 (0062)

5527:004E B86800

5527:0051

5527:0052

5527:0055

27:

5527:0058

5527:005D

5527:0062

5527:0066

5527:0068

5527:006A

5527:006B

30:

5527:006F

5527:0072

5527:0075

5527:0076

FF76FE

B86A00

50

printf(
PUSH

nog

PUSH

CALL

" i);
Uord Ptr [11

AXI006A
AX

.printf (01C1)

nicrosoft (B) CodeUieu (R) Uersion 2.0

(C) Copyright Microsoft Corp. 1986i 1987.
>1

>

All rights reserved.

Ng UP

El PL

ZR MA

PR NC

Notice that the parameter being passed to the function by means of the stack is 0068H. Use
the Display Memory command to display DS:0068H. (Note the hexadecimal notation.)

FileUieuSearchRun HatchOptionsLanguageOillsHelp | F8=Trace F5=Go
asctbl.C \

24: fputchar("Sn");
SS27:004E B86800

^527:0051

5527:0052

5527:0055

27:

5527:0058

5527:005D

5527:0062

5527:0066

5527:0068

5527:006A

5527:006D

30:

5527:006F

5527:0072

5527:0075

5527:0076

50

E83F01

83C402

for (

C746FE0000

C746FA0000

837EFE10

7D68

EB05

FF46FE

EBF3

FF76FE

B86A00

50

>1

>d 0x68 L8

566D:0060

MOU AX,0068

PUSH AX

CALL Jputchar (0194)
ADD SPi+02

i = 01 k = 0; i < 16; i++)
MOg Uord Ptr [i]i0000
MOg Uord Ptr [k]|0000
CMP Uord Ptr [ili+10
JGE jiain+c0 (00D0)
JMP nain+5f (006F)

INC Uord Ptr [il

JMP nain+52 (0062)

printf("xX i);
PUSH Uord Ptr [il

MOg AXi006A
PUSH AX

CALL j>rintf (01C1)

AX = 0003

BX = 0001

CX =0001

DX = 03C0

SP = 0F9e

BP = 0F96

SI = 00A9

DI = 1075

I DS = 566D
I ES = 566D
I SS = 566D
I CS = 5527
IP = 004E

Ng UP

El PL

ZR MA

FE NC

-0A 00 25 58 20 20 20 00

Section II: Programming in the MS-DOS Environment 637

Part E: Programming Tools

The contents of memory at this address consist of a null-delimited string containing a
newline character. The representation of \n is correct. To see how the string is handled,
use the trace key, F8, to single-step through fputcharO and subordinate functions. These
functions are complicated; nearly 100 steps are required to reach the MS-DOS Interrupt
21H call that actually writes the screen.

File Uieu Search Run

S527:10E9 51

5527:i0EA 8BCF

5527:i0EC 2BC8

llatch Options
1 asctbl.C

PUSH CX

MOM CX^BI
SUB CXiBX

LanguageCalls Help | F8=Trace F5=Go

5527:10EE CD21

5527:i0F0

5527:i0Fi

5527:i0F3

5527:i0F4

5527:i0F6

5527:i0F8

S527:i0FA

B527:i0FC

5527:i0FE

S527:ii03

5527:1105

5527:1108

5527:110B

5527:110D

90

03F0

9D

7304

B409

EBIA

0BC0

7516

F637120240

740B

8B5E06

803F1A

7503

F8

PUSHF

ADD

POPF

JNB

HOU

JMP

OR

JNZ

TEST

JZ

MOU

CMP

JNZ

CLC

SLAX

_write+82 (10FA)
AH|09

_urite+9c (1114)
AXjAX

urite*9c (1114)

Byte Ptr IBX+_osfile],40
_urite+98 (1110)
BXiUord Ptr [BP^061
Byte Ptr [BXl^lA
urite^98 (1110)

566D:0060

>d 0xf84 L8

566D:0F80

>

-0A 00 25 58 20 20 20

68 00 DC 00-A9 00 96 0F h...

A AX =
BX = 0001

CX = 0001

DX = 0F84

SP = 0F68

BP = 0F6E

SI = 0000

DI = 0F85

DS = 566D

ES = 566D

SS = 566D

CS = 5527

IP = 10EE

NU UP

El PL

NZ NA

PC NC

The AH register's contents, 40H, indicate that the Interrupt 21H call is a request for a write
to a device. The BX register has the handle of the device, 1, which is the special file handle
for standard output istdouf). For this program as it was invoked, standard output is the
screen. The CX register indicates that 1 byte is to be written; DS:DX points to the data to be
written. The contents of memory at DS:0F84H finally reveal the cause of the problem:
This memory location contains the address of the data to be written, not the data. The

fputcharO function was called with the wrong level of indirection.

Examination of the listing shows that all the newline requests were made with

fputchar("\n");

Strings specified with double quotes are replaced in C functions with the address of the
string, but the function expected the actual character and not its address. The problem can
be corrected by replacing the fputcharO calls with

fputchar('\n') ;

The newline character will now be passed directly to the function.

638 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

This kind of problem can be avoided. C provides the ability to check the type of each
parameter passed to a function against the expected type. If the following definition is
included at the top of the C program, incorrect types will generate error messages:

#define LINT_ARGS

The corrected listing is shown in Figure 18-17. This new program produces the correct
output.

/**

* *

* ASCTBL.C *

* This program generates an ASCII lookup table for all displayable *

* ASCII and extended IBM PC codes, leaving blanks for nondisplayable *

* codes. *

* *

#define LINT_ARGS

#include <ctype.h>

#include <stdio.h>

main ()

{

int i, j, k;

/* Print table title. */

printf ("\n\n\n ASCII LOOKUP TABLE\n\n");

/* Print column headers. */

printf (" ");

for (i = 0; i < 16; i++)

printf("%X i);

fputchar('\n');

/* Print each line of the table. */

for (i = 0, k = 0; i < 16; i++)

{

/* Print first hex digit of symbols on this line. */

printf{"%X i);

/* Print each of the 16 symbols for this line. */

for (j = 0; j < 16; j++)

{

/* Filter nonprintable characters. */

if ({k >= 7 && k <= 13) II (k >= 28 && k <= 31))

printf(" ");

else

printf("%c k);

k++;

}

fputchar ('\n');

}

}

Figure 18-17. The correct ASCII table generation program.

Section II: Programming in the MS-DOS Environment 639

Part E: Programming Tools

CodeView is a good choice for debugging C, Pascal, BASIC, and FORTRAN programs.
The fact that versions of MASM earlier than 5.0 do not generate data for CodeView makes
CodeView a poorer choice for these assembly-language programs. These disadvantages
must be weighed against the ability to set watchpoints and to trap nonmaskable interrupts
(NMIs). CodeView is also not as well suited as SYMDEB for debugging programs that in
teract with TSRs and device drivers, because CodeView does not provide any mechanism
for including symbol tables for routines not linked together.

Hardware debugging aids

Hardware debuggers are a combination of hardware and software designed to be installed
in a PC system. The software provides features much like those available with SYMDEB
and CodeView. The advantages of hardware debuggers over purely software debuggers
can be summarized in three points:

• Crash protection
• Manual execution break

• Hardware breakpoints

A hardware debugger can provide program crash protection because of its independence
from the PC software. If the program being debugged goes wild and destroys the operat
ing system of the PC, the hardware debugger is protected by virtue of being a separate
hardware system and is capable of recovering enough control to allow the user to find
out what happened.

All hardware debuggers offer a means of breaking into the program under test from some
external source—usually a push button in the hands of the programmer. The mechanism
used to get the attention of the PC's CPU is the nonmaskable interrupt (NMI). This inter
rupt provides a more reliable means of interrupting program execution than the Break key
because its operation is independent of the state of interrupts and other conditions.

Hardware debuggers usually have access to the address and data lines on the PC bus,
allowing them to set hardware breakpoints. Thus, these debuggers can be set to break
when specific addresses are referenced. They execute the breakpoint code from a debug
ging monitor, which generally runs from their own memory. This memory is usually
protected from the regular operating system and the application program.

Although hardware debuggers can be used to instrument a program, they should not be
confused with the external hardware instrumentation discussed earlier in this article. The

logic analyzers and in-circuit emulators mentioned there are general-purpose test instru
ments; the hardware debuggers are highly specific devices intended to do only one thing
on one type of hardware—provide debugging monitor functions at a hardware level to
IBM PC-type machines. It is this specialization that makes hardware debuggers so much
easier to use for programmers trying to get a piece of code running.

Because this volume deals only with MS-DOS and associated Microsoft software, a detailed
discussion of hardware debuggers and debugging would not be appropriate. Instead, a
few popular hardware products that work with MS-DOS utilities are mentioned and a gen
eral discussion of debugging with hardware is presented.

640 The MS-DOS Encyclopedia

Article 18: Debugging in the MS-DOS Environment

Several manufacturers make hardware products that can be used for debugging. These
products vary in the features offered and in their suitability for various kinds of debugging.
Three of these products that can be used with SYMDEB are

• IBM Professional Debug Utility
• PC Probe and AT Probe from Atron Corporation
• Periscope from The Periscope Company, Inc.

These boards can be used with SYMDEB by specifying the /N switch when the program is
started. When used in this way, however, the hardware provides little more than a source
of NMIs to interrupt program execution; otherwise, SYMDEB runs as usual. This restric
tion may not be acceptable to a programmer who wants to use the sophisticated debug
ging software that accompanies these products and makes use of their hardware features.
For this reason, these boards are rarely used with SYMDEB.

The general techniques of debugging with hardware aids will already be familiar to the
reader—they are the same techniques discussed at length earlier in this article. The tech
niques of inspection and observation should still be applied; instrumentation is facilitated
by hardware; a debugging monitor accompanies all hardware debuggers and the same
techniques discussed for DEBUG, SYMDEB, and CodeView apply. No new techniques are
needed to use these devices. The changes in the details of the techniques come with the
added features available with the hardware debuggers. (Remember that all these features
are not universally available on all hardware debuggers.)

The manual interrupt feature of hardware debuggers is useful in a system crash. Every
programmer, especially assembly-language programmers, has had the situation where the
program runs wild, destroys the operating system, and locks up the system. The tech
niques described in previous sections of this article show that about the only way to solve
these problems without hardware help is to set breakpoints at strategic locations in the
program and see how many are passed before the system locks up. The breakpoints are
placed at finer and finer increments until the instruction causing the crash is located.

This long and ugly procedure can sometimes be shortened with a hardware debugger.
When the system crashes, the programmer can push the manual interrupt button, suspend
program execution, and give control to the debugger card. At this point, the programmer
can use the debugging monitor software supplied with the card to sniff around memory
looking for something suspicious. Clues can sometimes be found by examining the pro
gram's stack and data areas—provided, of course, that they are still in memory and
haven't been destroyed, along with the operating system, by the rampaging program. This
approach is not always an immediate solution to the problem, however; often, the start-
and-set-breakpoints process has to be repeated even with a hardware debugger. The hard
ware will, however, possibly shed some light on the causes of the problem and shorten the
procedure.

Another feature offered by many of the debugging boards is the ability to set breakpoints
on events other than the execution of a line of code. Often, these boards will allow the
programmer to break on a reference to a specific memory location, to a range of memory

Section II: Programming in the MS-DOS Environment 641

Part E: Programming Tools

locations, or to an I/O port. This feature allows a watch to be set on data, analogous to the
watchpoint feature of CodeView. This technique is almost always useful, as it is with
CodeView, but there is one class of problems where it is essential to reaching a solution.

Consider the case of a program that seems to be running well. Every so often, however,
an ampersand appears in the middle of a payroll amount, or occasionally the program
makes an erroneous branch and executes the wrong path. Suppose that, after painstaking
investigation, the programmer discovers that these problems are being caused by a change
in a specific location in memory sometime during the execution of the program. In debug
ging, the discovery of the cause of a problem usually leads almost instantly to a fix. Not so
in this case. That byte of memory could be changed by an error in the program, by a glitch
in the operating system or in a device driver, or by cosmic rays from outer space. Discover
ing the culprit in a case like this is almost impossible without the help of hardware break
points. Setting a breakpoint on the affected memory location and running the program
will solve the problem. As soon as the memory location is changed, the breakpoint will be
executed and the state of the system registers will point a clear finger at the instruction
that caused the problem.

Hardware debuggers can provide significant aid to the serious programmer. They are
especially helpful in debugging operating systems and operating-system services such as
device drivers. They are also helpful in complicated situations where many programs may
be running at the same time. The consensus among programmers who have hardware
debuggers is that they are well worth the money.

Summary

Although Microsoft and others have provided an impressive array of technology to aid
in program debugging, the most important tool a programmer has is his or her native wit
and talent. As the examples in this article have illustrated, the technology makes the task
easier, but never easy. In all cases, however, it is the programmer who debugs the program
and solves the problems.

Technology will never be able to replace the person for solving the problem of a bug-
ridden program. (This is an area where artificial intelligence will undoubtedly fail.)
Therefore, it is the skills discussed in the first part of this article—debugging by inspec
tion and observation—that deserve the greatest attention and practice. All the other tech
niques and technologies, with their ever-increasing sophistication, are only extensions of
these basic techniques. A programmer who can debug effectively at the lowest level of
technology will always be ready to use whatever advanced technology is available.

Therefore, as a final word, remember the rule that opened this article:

Gather enough information and the solution will be obvious.

All the rest of this article was merely a discussion of ways to gather the information.

Steve Bostwick

642 The MS-DOS Encyclopedia

Article 19: Object Modules

Article 19

Object Modules

Object modules are used primarily by programmers. The end user of an MS-DOS appli
cation need never be concerned with object code, object modules, and object libraries
because application programs are almost always distributed as .EXE or .COM files that can
be executed with a simple startup command.

An application programmer writing in a high-level language can use object modules and
object libraries without knowing either the format of object code or the details of what the
utilities that process object modules, such as the Microsoft Library Manager (LIB) and the
Microsoft Object Linker (LINK), are actually doing. Most application programmers simply
regard the contents of an object module as a "black box" and trust their compilers and
object module utility programs to do the right thing.

A programmer using assembly language or an assembly-language debugger such as
DEBUG or SYMDEB, however, might want to know more about the content and function
of object modules. The use of assembly language gives the programmer more control over
the actual contents of object modules, so knowing how the modules are constructed and
examining their contents can sometimes help with program debugging.

Finally, a programmer writing a compiler, an assembler, or a language translator must
know the details of object module format and processing. To take advantage of LIB and
LINK, a language translator must construct object modules that conform to the format and
usage conventions specified by Microsoft.

Note: This article assumes some background knowledge of the process by which source
code is converted into an executable file in the MS-DOS environment. See PROGRAM

MING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an

Application Program; Programming Tools: The Microsoft Object Linker; PROGRAMMING
UTILITIES.

The Use of Object Modules

Although some MS-DOS language translators generate executable 8086-family machine
code directly from source code, most produce object code instead. Typically, a translator
processes each file of source code individually and leaves the resulting object module
in a separate file bearing a .OBJ extension. The source-code files themselves remain
unchanged. After all of a program's source-code modules have been translated, the result
ing object modules can be linked into a single executable program. Because object mod
ules frequently represent only a portion of a complete program, each source-code module
usually contains instructions that indicate how its corresponding object code is to be
combined with the object code in other object modules when they are linked.

Section II: Programming in the MS-DOS Environment 643

Part E: Programming Tools

The object code contained in each object module consists of a binary image of the pro
gram plus program structure information. This object code is not directly executable. The
binary image corresponds to the executable code that will ultimately be loaded into mem
ory for execution; it contains both machine code and program data. The program struc
ture information includes descriptions of logical groupings defined in the source code
(such as named subroutines or segments) and symbolic references to addresses in other
object modules.

The program structure information is used by a linkage editor, or linker, such as Microsoft
LINK to edit the binary image of the program contained in the object module. The linker
combines the binary images from one or more object modules into a complete executable
program.

The linker's output is a .EXE file—a file containing executable machine code that can be
loaded into RAM and executed (Figure 19-1). The linker leaves intact all of the object
modules it processes.

Source code

Language translator or assembler
> r

Object module Object module Object library
(.OBJ file) librarian (LIB) (.LIB file)

>
^ Linker (LINK)

Executable

binary image

(.EXE file)

TMS-DOS loader

(Program runs)

Figure 19-1. Generation of an executable (.EXE) file.

Object code thus serves as an intermediate form for compiled programs. This form offers
two major advantages:

• Modular intermediate code. The use of object modules eliminates the overhead of
repeated compilation of an entire program whenever changes are made to parts of its
source code. Instead, only those object modules affected by source-code revisions
need be recompiled.

• Shareable format. Object module format is well defined, so object modules can be
linked even if they were produced by different translators. Many high-level-language
compilers take advantage of this commonality of object-code format to support
"interlanguage" linkage.

644 The MS-DOS Encyclopedia

Article 19: Object Modules

Contents of an object module

Object modules contain five basic types of information. Some of this information exists
explicitly in the source code (and is subsequently passed on to the object module), but
much is inferred by the program translator from the structure of the source code and the
way memory is accessed by the 8086.

Binary Image. As described earlier, the binary image comprises executable code (such as
opcodes and addresses) and program data. When object modules are linked, the linker
builds an executable program from the binary image in each object module it processes.
The binary image in each object module is always associated with program structure in
formation that tells the linker how to combine it with related binary images in other object
modules.

External References. Because an object module generally represents only a small portion
of a larger program that will be constructed from several object modules, it usually con
tains symbols that allow it to be linked to the other modules. Such references to corre
sponding symbols in other object modules are resolved when the modules are linked.

For example, consider the following short C program:

main ()

{

puts("Hello, worldXn");

}

This program calls the C function to display a character string, but putsQ is not
defined in the source code. Rather, the name puts is a reference to a function that is exter
nal to the program's mainQ routine. When the C compiler generates an object module for
this program, it will identify puts as an external reference. Later, the linker will resolve the
external reference by linking the object module containing the putsQ routine with the
module containing the mainO routine.

Address References. When a program is built from a group of object modules, the actual
values of many addresses cannot be computed until the linker combines the binary image
of executable code and the program data from each of the program's constituent object
modules. Object modules contain information that tells the linker how to resolve the
values of such addresses, either symbolically (as in the case of external references) or rela
tively, in terms of some other address (such as the beginning of a block of executable code
or program data).

Debugging Information. An object module can also contain information that relates
addresses in the executable program to the corresponding source code. After the linker
performs its address fixups, it can use the object module's debugging information to relate
a line of source code in a program module to the executable code that corresponds to it.

Miscellaneous Information. Finally, an object module can contain comments, lists of
symbols defined in or referenced by the module, module identification information, and

Section II: Programming in the MS-DOS Environment 645

Part E: Programming Tools

information for use by an object library manager or a linker (for example, the names of
object libraries to be searched by default).

Object module terminology

When the linker generates an executable program, it organizes the structural components
of the program according to the information contained in the object modules. The layout
of the executable program can be conceptually described as a run-time memory map
after it has been loaded into memory.

The basic structure of every executable program for the 8086 family of microprocessors
must conform to the segmented architecture of the microprocessor. Thus, the run-time
memory map of an executable program is partitioned into segments, each of which can be
addressed by using one of the microprocessor's segment registers. This segmented struc
ture of 8086-based programs is the basis for most of the following terminology.

Frames. The memory address space of the 8086 is conceptually divided into a sequence
of paragraph-aligned, overlapping 64 KB regions called frames. Frame 0 in the 8086's ad
dress space is the 64 KB of memory starting at physical address GOGOOH (GGGG:GGGG in seg-
mentioffset notation), frame 1 is the 64 KB of memory starting at GGGIGH (GGG1:GGGG), and
so on. A frame number thus denotes the beginning of any paragraph-aligned 64 KB of
memory. For example, the location of a 64 KB buffer that starts at address B8GG:GGGG can
be specified as frame GB8GGH.

Logical Segments. The run-time memory map for every 8G86 program is partitioned into
one or more logical segments, which are groupings of logically related portions of the pro
gram. Typically, an MS-DOS program includes at least one code segment (that contains all
of the program's executable code), one or more data segments (that contain program
data), and one stack segment.

When a program is loaded into RAM to be executed, each logical segment in the program
can be addressed with a frame number—that is, a physical 8G86 segment address. Before
the MS-DOS loader transfers control to a program in memory, it initializes the CS and SS
registers with the segment addresses of the program's executable code and stack seg
ments. If an MS-DOS program has a separate logical segment for program data, the pro
gram itself usually stores this segment's address in the DS register.

Relocatable Segments. In MS-DOS programs, most logical segments are relocatable.
The loader determines the physical addresses of a program's relocatable segments when
it places the program into memory to be executed. However, this address determination
poses a problem for the MS-DOS loader, because a program may contain references to the
address of a relocatable segment'even though the address value is not determined until
the program is loaded. The problem is solved by indicating where such references occur
within the program's object modules. The linker then extracts this information from the
object modules and uses it to build a list of such address references into a segment reloca
tion table in the header of executable files. After the loader copies a program into memory
for execution, it uses the segment relocation table to update, or fix up, the segment address
references within the program.

646 The MS-DOS Encyclopedia

Article 19: Object Modules

Consider the following example, in which a program loads the starting addresses of two
data segments into the DS and ES segment registers:

mov ax,seg —DATA

mov ds,ax ; make —DATA segment addressable through DS

mov ax,seg FAR_DATA

mov es,ax ; make FAR—DATA segment addressable through ES

The actual addresses of the _DATA and FAR_DATA segments are unknown when the
source code is assembled and the corresponding object module is constructed. The assem
bler indicates this by including segment fixup information, instead of actual segment ad
dresses, in the program's object module. When the object module is linked, the linker
builds this segment fixup information into the segment relocation table in the header of the
program's .EXE file. Then, when the .EXE file is loaded, the MS-DOS loader uses the infor
mation in the .EXE file's header to patch the actual address values into the program.

Absolute Segments. Sometimes a program needs to address a predetermined segment of
memory. In this case, the program's source code must declare an absolute segment so that
a reference to the corresponding frame number can be built into the program's object
module.

For example, a program might need to address a video display buffer located at a specific
physical address. The following assembler directive declares the name of the segment and
its frame number:

VideoBufferSeg SEGMENT at OBSOOh

Segment Alignment. When a program is loaded, the physical address of each logical seg
ment is constrained by the segment's alignment. A segment can be page aligned (aligned
on a 256-byte boundary), paragraph aligned (aligned on a 16-byte paragraph boundary),
word aligned (aligned on an even-byte boundary), or byte aligned (not aligned on any
particular boundary). A specification of each segment's alignment is part of every object
module's program structure information.

High-level-language translators generally align segments according to the type of data
they contain. For example, executable code segments are usually byte aligned; program
data segments are usually word aligned. With an assembler, segment alignment can be
specified with the SEGMENT directive and the assembler will build this information into
the program's object module.

Concatenated Segments. The linker can concatenate logical segments from different
object modules when it builds the executable program. For example, several object mod
ules may each contain part of a program's executable code. When the linker processes
these object modules, it can concatenate the executable code from the different object
modules into one range of contiguous addresses.

The order in which the linker concatenates logical segments in the executable program is
determined by the order in which the linker processes its input files and by the program

Section II: Programming in the MS-DOS Environment 647

Part E: Programming Tools

Structure information in the object modules. With a high-level-language translator, the
translator infers which segments can be concatenated from the structure of the source
code and builds appropriate segment concatenation information into the object modules
it generates. With an assembler, the segment class type can be used to indicate which
segments can be concatenated.

Groups of Segments. Segments with different names may also be grouped together by the
linker so that they can all be addressed within the same 64 KB frame, even though they are
not concatenated. For example, it might be desirable to group program data segments and
a stack segment within the same 64 KB frame so that program data items and data on the
stack can be addressed with the same 8086 segment register.

In high-level languages, it is up to the translator to incorporate appropriate segment group
ing information into the object modules it generates. With an assembler, groups of seg
ments can be declared with the GROUP directive.

Fixups. Sometimes a compiler or an assembler encounters addresses whose values cannot
be determined from the source code. The addresses of external symbols are an obvious
example. The addresses of relocatable segments and of labels within those segments are
another example.

A fixup is a language translator's way of passing the buck about such addresses to the
linker. Typically, a translator builds a zero value in the binary image at locations where it
cannot store an actual address. Accompanying each such location is fixup information,
which allows the linker to determine the correct address. The linker then completes the
fixup by calculating the correct address value and adding it to the value in the correspond
ing location in the binary image. The only fixups the linker cannot fully resolve are those
that refer to the segment address of a relocatable segment. Such addresses are not known
until the program is actually loaded, so the linker, in turn, passes the responsibility to the
MS-DOS loader by creating a segment relocation table in the header of the executable file.

To process fixups properly, the linker needs three pieces of information: the LOCATION
of the value in the object module, the nature of the TARGET (the address whose value is
not yet known), and the FRAME in which the address calculations are to take place. Object
modules contain the LOCATION, TARGET, and FRAME information the linker uses to
calculate the appropriate address for any given fixup.

Consider the "program" in Figure 19-2. The statement:

start: call far ptr FarProc

contains a reference to an address in the logical segment FarSeg2. Because the assembler
does not know the address of FarSeg2, it places fixup information about the address into
the object module. The LOCATION to be fixed up is 1 byte past the label start (the 4-byte
pointer following the call opcode 9AH). The TARGET is the address referenced in the call
instruction—that is, the label FarProc in the segment FarSeg2. The FRAME to which

648 The MS-DOS Encyclopedia

Article 19: Object Modules

the fixup relates is designated by the group FarGroup and is inferred from the statement

ASSUME cs:FarGroup

in the FarSeg2 segment.

title fixups

0000

0000 9A 0000 R

0005

FarGroup GROUP FarSegl,FarSeg2

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg

start: call

CodeSeg ENDS

far ptr FarProc

0000

0000

FarSegl SEGMENT byte public

FarSegl ENDS

;part of FarGroup

0000

0000

0000 CB

0001

FarSeg2 SEGMENT byte public

ASSUME cs:FarGroup

far

;a FAR return

FarProc PROC

ret

FarProc ENDP

FarSeg2 ENDS

END

Figure 19-2. A sample "program " containing statements from which the assembler derives fixup information.

There are several different ways for a language translator to identify a fixup. For example,
the LOCATION might be a single byte, a l6-bit offset, or a 32-bit pointer, as in Figure 19-2.
The TARGET might be a label whose offset is relative either to the base (beginning) of a
particular segment or to the LOCATION itself. The FRAME might be a relocatable seg
ment, an absolute segment, or a group of segments.

Taken together, all the information in an object module that concerns the alignment and
grouping of segments can be regarded as a specification of a program's run-time memory
map. In effect, the object module specifies what goes where in memory when a program
is loaded. The linker can then take the program structure information in the object mod
ules and generate a file containing an executable program with the corresponding
structure.

Section II: Programming in the MS-DOS Environment 649

Part E: Programming Tools

The Structure of an Object Module

Although object modules contain the information that ultimately determines the structure
of an executable program, they bear little structural resemblance to the resulting execut
able program. Each object module is made up of a sequence of variable-length object
records. Different types of object records contain different types of program information.

Each object record begins with a 1-byte field that identifies its type. This is followed by a
2-byte field containing the length (in bytes) of the remainder of the record. Next comes the
actual structural or program information, represented in one or more fields of varied
lengths. Finally, each record ends with a 1-byte checksum.

The sequence in which object records appear in an object module is important. Because
the records vary in length, each object module must be constructed linearly, from start to
end. More important, however, is the fact that some types of object records contain ref
erences to preceding object records. Because the linker processes object records sequen
tially, the position of each object record within an object module depends primarily on
the type of information each record contains.

Types of object records

Microsoft LINK currently recognizes 14 types of object records, each of which carries a
specific type of information within the object module. Each type of object record is
assigned an identifying six-letter abbreviation, but these abbreviations are used only in
documentation, not within an object module itself. As already mentioned, the first byte
of each object record contains a value that indicates its type. In a hexadecimal dump of
the contents of an object module, these identifying bytes identify the start of each object
record.

Table 19-1 lists the types of object records supported by LINK. The value of each record's
identifying byte (in hexadecimal) is included, along with the six-letter abbreviation and a
brief functional description. The functions of the 14 types of object records fall into six
general categories:

• Binary data (executable code and program data) is contained in the LEDATA and
LIDATA records.

• Address binding and relocation information is contained in FIXUPP records.
• The structure of the run-time memory map is indicated by SEGDEF, GRPDEF,

COMDEF, andTYPDEF records.
• Symbol names are declared in LNAMES, EXTDEF, and PUBDEF records.
• Debugging information is in the LINNUM record.
• Finally, the structure of the object module itself is determined by the THEADR,

COMENT, and MODEND records.

650 The MS-DOS Encyclopedia

Article 19: Object Modules

Table 19-1. Types of8086 Object Records Supported by Microsoft LINK.

ID byte Abbreviation Description

80H THEADR Translator Header Record

88H COMENT Comment Record

8AH MODEND Module End Record

8CH EXTDEF External Names Definition Record

8EH TYPDEF Type Definition Record
90H PUBDEF Public Names Definition Record

94H LINNUM Line Number Record

96H LNAMES List of Names Record

98H SEGDEF Segment Definition Record
9AH GRPDEF Group Definition Record
9CH FIXUPP Fixup Record
OAOH LEDATA Logical Enumerated Data Record
0A2H LIDATA Logical Iterated Data Record
OBOH COMDEF Communal Names Definition Record

Object record order

The sequence in which the types of object records appear in an object module is fairly
flexible in some respects. Several record types are optional, and if the type of information
they carry is unnecessary, they are omitted from an object module. In addition, most
object record types can occur more than once in the same object module. And, because
object records are variable in length, it is often possible to choose, as a matter of conve
nience, between combining information into one large record or breaking it down into
several smaller records of the same type.

As stated previously, an important constraint on the order in which object records appear
is the need for some types of object records to refer to information contained in other
records. Because the linker processes the records sequentially, object records containing
such information must precede the records that refer to it. For example, two types of object
records, SEGDEF and GRPDEF, refer to the names contained in an LNAMES record. Thus,
an LNAMES record must appear before any SEGDEF or GRPDEF records that refer to it so
that the names in the LNAMES record are known to the linker by the time it processes the
SEGDEF or GRPDEF records.

A typical object module

Figure 19-3 contains the source code for HELLO.ASM, an assembly-language program
that displays a short message. Figure 19-4 is a hexadecimal dump of HELLO.OBJ, the object
module generated by assembling HELLO.ASM with the Microsoft Macro Assembler. Figure
19-5 isolates the object records within the object module.

Section II: Programming in the MS-DOS Environment 651

Part E: Programming Tools

NAME HELLO

_TEXT SEGMENT byte public 'CODE*

ASSUME cs:-TEXT,ds:-DATA

start:

mov

mov

mov

mov

int

mov

int

-TEXT ENDS

ax,seg msg

ds, ax

dx,offset msg

ah,09h

21h

ax,4C00h

21h

/program entry point

;DS:DX -> msg

/perform int 21H function 09H

/ (Output character string)

/perform int 21H function 4CH

/(Terminate with return code)

-DATA SEGMENT word public 'DATA*

msg DB 'Hello, world',ODh,OAh,'$'

-DATA ENDS

-STACK SEGMENT stack 'STACK'

DW 80h dup(?)

-STACK ENDS

END start

Figure 19-3- The source code for HELLO. ASM.

/stack depth = 128 words

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 80 07 00 05 48 45 4C 4C 4F 00 96 25 00 00 04 43 HELLO C

0010 4F 44 45 04 44 41 54 41 05 53 54 41 43 4B 05 5F ODE.DATA.STACK._

0020 44 41 54 41 06 5F 53 54 41 43 4B 05 5F 54 45 58 DATA.-STACK.-TEX

0030 54 8B 98 07 00 28 11 00 07 02 01 IE 98 07 00 48 T (H

0040 OF 00 05 03 01 01 98 07 00 74 00 01 06 04 01 El t

0050 AO 15 00 01 00 00 B8 00 00 8E D8 BA 00 00 B4 09

0060 CD 21 B8 00 4C CD 21 D5 9C OB 00 C8 01 04 02 02 .!..L.!

0070 C4 06 04 02 02 B6 AO 13 00 02 00 00 48 65 6C 6C

0080 6F 2C 20 77 6F 72 6C 64 OD OA 24 A8 8A 07 00 C1 o, world..$

0090 00 01 01 00 00 AC

Figure 19-4. A hexadecimal dump of HELLO.OBJ.

652 The MS-DOS Encyclopedia

Article 19: Object Modules

0 1 2 3 4 5 6 7 8 9 A B C D E F

THEADR

0000 80 07 00 05 48 45 4C 4C 4F 00 HELLO.

LNAMES

0000 96 25 00 00 04 43 . .C

0010 4F 44 45 04 44 41 54 41 05 53 54 41 43 4B 05 5F ODE.DATA.STACK._

0020 44 41 54 41 06 5F 53 54 41 43 4B 05 5F 54 45 58 DATA._STACK._TEX

0030 54 8B T.

SEGDEF

0030 98 07 00 28 1 1 00 07 02 01 IE ...(

SEGDEF

0030 98 07 00 48 ...H .

0040 OF 00 05 03 01 01

SEGDEF

0040 98 07 00 74 00 01 06 04 01 El ...t

LEDATA

0050 AO 15 00 01 00 00 B8 00 00 8E D8 BA 00 00 B4 09

0060 CD 21 B8 00 4C CD 21 D5 .!..L.!.

FIXUPP

0060 9C OB 00 C8 01 04 02 02

0070 C4 06 04 02 02 B6

LEDATA

0070 AO 13 00 02 00 00 48 65 6C 6C Hell

0080 6F 2C 20 77 6F 72 6C 64 OD OA 24 A8 o, world..$.

MODEND

0080 8A 07 00 C1

0090 00 01 01 00 00 AC

Figure 19-5. The object records in HELLO. OBJ.

As shown most clearly in Figure 19-5, each of the object records begins with the single byte
value identifying the record's type. The second and third bytes of each record contain a
single l6-bit value, stored with its low-order byte first, that represents the length (in bytes)
of the remainder of the object record.

The first record, THEADR, identifies the object module and the last record, MODEND,
terminates the object module. The second record, LNAMES, contains a list of segment
names and segment class names that LINK will use to lay out the run-time memory map.
The three succeeding SEGDEF records describe the three corresponding segments
defined in the source code.

Section II: Programming in the MS-DOS Environment 653

Part E: Programming Tools

The order in which the object records appear reflects both the structure of the source
code and the record order constraints already mentioned. The LNAMES record appears
before the three SEGDEF records because each SEGDEF record contains a reference to

a name in the LNAMES record.

The binary data representing each of the two segments in the source code is contained
in the two LEDATA records. The first LEDATA record represents the _TEXT segment; the
second specifies the data in the _DATA segment. The FIXUPP record following the first
LEDATA record contains information about the address references in the _TEXT segment.
Again, the order in which the records appear is important: the FIXUPP record refers to
the LEDATA record preceding it.

References between object records

Object records can refer to information in other records either indirectly, by means of
implicit references, or directly, by means of indexed references to names or other records.

Implicit References. Some types of object records implicitly reference another record in
the same object module. The most important example of such implicit referencing is in the
FIXUPP record, which always contains fixup information for the preceding LEDATA or
LIDATA record in the object module. Whenever an LEDATA or LIDATA record contains a
value that needs to be fixed up, the next record in the object module is always a FIXUPP
record containing the actual fixup information.

Indexed References to Names. An object record that refers to a symbolic name, such as
the name of a segment or an external routine, uses an index into a list of names contained
in a previous object record. (The LNAMES record in Figure 19-5 is an example.) The first
name in such a list has the index number 1, the second name has index number 2, the third
has index number 3, and so on. Altogether, a list of as many as 32,767 (7FFFH) names can
be incorporated into an object module—generally adequate for even the most verbose
programmer. (LINK does, however, impose its own version-specific limits.)

Indexed References to Object Records. An object record can also refer to a previous
object record by using the same type of index. In this case, the index number refers to one
of a list of object records of a particular type. For example, a FIXUPP record might refer to
a segment by referencing one of several preceding SEGDEF records in the object module.
In that case, a value of 1 would indicate the first SEGDEF record in the object module, a
value of 2 would indicate the second, and so on.

The index-number field in an object record can be either 1 or 2 bytes long. If the number
is in the range 0-7FH, the high-order bit (bit 7) is 0 and the low-order 7 bits contain the
index number, so the field is only 1 byte long:

bit 7 6 5 4 3 2 1 0

Index number

654 The MS-DOS Encyclopedia

Article 19: Object Modules

If the index number is in the range 80-7FFFH, the field is 2 bytes long. The high-order bit
of the first byte in the field is set to 1, and the high-order byte of the index number (which
must be in the range 0-7FH) fits in the remaining 7 bits. The low-order byte of the index
number is specified in the second byte of the field:

bit 1 6 1

high-order byte of index number low-order byte of index number

first byte second byte

The same format is used whether an index refers to a list of names or to a previous object
record.

Microsoft 8086 Object Record Formats

Just as the design of the Intel 8086 microprocessor reflects the design of its 8-bit predeces
sors, 8086 object record formats are reminiscent of the 8-bit software tradition. In 8-bit sys
tems, disk space and RAM were often at a premium. To minimize the space consumed by
object records, information is packed into bit fields within bytes and variable-length fields
are frequently used.

Microsoft LINK recognizes a major subset of Intel's original 8086 object module speci
fication (Intel Technical Specification 121748-001). Intel also proposed a six-letter name for
each type of object record and symbolic names for fields. These names are documented in
the following descriptions, which appear in the order shown earlier in Table 19-1.

The Intel record types that are not recognized by LINK provide information about an
executable program that MS-DOS obtains in other ways. (For example, information about
run-time overlays is supplied in LINK'S command line rather than being encoded in object
records.) Because they are ignored by LINK, they are not included here.

All 8086 object records conform to the following format:

1
—

record record body chk
type length sum

The record type field is a 1-byte field containing the hexadecimal number that identifies
the type of object record isee Table 19-1).

The record length is a 2-byte field that gives the length of the remainder of the object
record in bytes (excluding the bytes in the record type and record length fields). The
record length is stored with the low-order byte first.

Section 11: Programming in the MS-DOS Environment 655

Part E: Programming Tools

The body field of the record varies in size and content, depending on the record type.

The checksum is a 1-byte field that contains the negative sum (modulo 256) of all other
bytes in the record. In other words, the checksum byte is calculated so that the low-order
byte of the sum of all the bytes in the record, including the checksum byte, equals zero.

Note: As shown in the preceding example, the boxes used to depict the fields vary in size.
The square boxes used for record type and chksum indicate a single byte, the rectangular
box used for record length indicates 2 bytes, and the diagonal lines used for body indicate
a variable-length field.

656 The MS-DOS Encyclopedia

Article 19: Object Modules

80H THEADR Translator Header Record

The THEADR record contains the name of the object module. This name identifies an
object module within an object library or in messages produced by the linker.

Record format

80H length

—

T-module
name

7^//^

chk
sum

T-module name

The T-module name field is a variable-length field that contains the name of the object
module. The first byte of the field contains the number of subsequent bytes that contain
the name itself. The name can be uppercase or lowercase and can be any string of
characters.

The T-module name is used by LIB and LINK within error messages. Language translators
frequently derive the T-module name from the name of the file that contains a program's
source code. Assembly-language programmers can specify the T-module name explicitly
with the assembler NAME directive.

Location in object module

As its name implies, the THEADR record must be the first record in every object module
generated by a language translator.

Example

The following THEADR record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B

0000 80 09 00 07 68 65 6C 60 6F 2E 63 CBhello.c.

Byte OOH contains 80H, indicating a THEADR record.
Bytes 01-02H contain 0009H, the length of the remainder of the record.
Bytes 03-0AH contain the T-module name. Byte 03H contains 07H, the length of
the name, and bytes 04H through OAH contain the name itself Qiello.c). (In object
modules generated by the Microsoft C Compiler, the THEADR record indicates
the filename that contained the C source code for the module.)

Byte OBH contains the checksum, OCBH.

Section II: Programming in the MS-DOS Environment 657

Part E: Programming Tools

88H COMENT Comment Record

The COMENT record contains a character string that may represent a plain text comment,
a symbol meaningful to a program such as LIB or LINK, or even binary-encoded identifica
tion data. An object module can contain any number of COMENT records.

Record format

88H length
I

attrib
com

ment
class

///—

comment
chk
sum

Attrib

Attrib is a 1-byte field in which only the first 2 bits are meaningful:

bit

no

purge
no

list 0 0 0 0 0 0

• If bit 7 {nopurge) is set to 1, utility programs that manipulate object modules should
not delete the comment record from the object module. Bit 7 can thus protect an
important comment, such as a copyright message, from deletion.

• If bit 6 {no list) is set to 1, utility programs that can list the contents of object modules
are directed not to list the comment. Bit 6 can thus hide a comment.

• Bits 5 through 0 are unused and should be set to 0.

Microsoft LIB ignores the attrib field.

Comment class

Comment class is a 1-byte field whose value provides information about the type of
comment. The original Intel specification provided for the following possible comment
class values:

Value Use

OOH Language-translator comment (the name of the translator that generated the
object module).

OIH Copyright comment.
02-9BH Reserved for Intel proprietary software.

658 The MS-DOS Encyclopedia

Article 19: Object Modules

Microsoft language translators can generate several other classes of COMENT record that
communicate specific information about the object module to LINK:

Value Use

81H

9CH

9DH

9EH

9FH

OAIH

OCOH-

OFFH

Obsolete; replaced by comment class 9FH.
MS-DOS version number. Some language translators create a COMENT record
with a 2-byte binary value in the comment field indicating the MS-DOS ver
sion under which the module was created. This record is ignored by LINK.
Memory model. The comment field contains a string that indicates the mem
ory model used by the language translator. The string contains one of the
lowercase letters s, c, m, 1, and h to designate small, compact, medium, large,
and huge memory models. Microsoft language translators generate COMENT
records with this comment class only for compatibility with the XENIX ver
sion of LINK. The MS-DOS version of LINK ignores these COMENT records.

Sets Microsoft LINK'S DOSSEG switch.

Default library search name. LINK interprets the contents of the comment
field as the name of a library to be searched in order to resolve external ref
erences within the object module. The default library search can be overrid
den with LINK'S NODEFAULTLIBRARYSEARCH switch.

Indicates that Microsoft extensions to the Intel object record specification are
used in the object module. For example, when COMDEF records are used
within an object module, a COMENT record with comment class OAIH must
appear in the object module at some point before the first COMDEF record.
LINK ignores the comment string in COMENT records with this comment
class.

Reserved for user-defined comment classes.

Comment

The comment field is a variable-length string of bytes that represent the comment. The
length of the string is inferred from the length of the object record.

Location in object module

A COMENT record can appear almost anywhere in an object module. Only two restric
tions apply:

• A COMENT record cannot be placed between a FIXUPP record and the LEDATA or
LIDATA record to which it refers.

• A COMENT record cannot be the first or last record in an object module. (The first
record must always be a THEADR record and the last must always be MODEND.)

Section II: Programming in the MS-DOS Environment 659

Part E: Programming Tools

Examples

The following three examples are typical COMENT records taken from an object module
generated by the Microsoft C Compiler.

This first example is a language-translator comment:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 88 07 00 00 00 4D 53 20 43 6E MS Cn

• Byte OOH contains 88H, indicating that this is a COMENT record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.
• Byte 03H (the attrib field) contains OOH. Bit 7 inopurge) is set to 0, indicating that

this COMENT record may be purged from the object module by a utility program that
manipulates object modules. Bit 6 (jio list) is set to 0, indicating that this comment
need not be excluded from any listing of the module's contents. The remaining bits
are all 0.

• Byte 04H (the comment class field) contains OOH, indicating that this COMENT record
contains the name of the language translator that generated the object module.

• Bytes 05H through 08H contain the name of the language translator, MS C.
• Byte 09H contains the checksum, 6EH.

The second example contains the name of an object library to be searched by default
when LINK processes the object module containing this COMENT record:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 88 09 00 00 9F 53 4C 49 42 46 50 10 SLIBFP.

• Byte 04H (the comment class field) contains 9FH, indicating that this record contains
the name of a library for LINK to use to resolve external references.

• Bytes 05-0AH contain the library name, SLIBFP. In this example, the name refers to
the Microsoft C Compiler's floating-point function library, SLIBFP.LIB.

The last example indicates that the object module contains Microsoft-defined extensions to
the Intel object module specification:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 88 06 00 00 A1 01 43 56 37 CV7

• Byte 04H indicates the comment class, OAIH.
• Bytes 05-07H, which contain the comment string, are ignored by LINK.

660 The MS-DOS Encyclopedia

Article 19: Object Modules

8AH MODEND Module End Record

The MODEND record denotes the end of an object module. It also indicates whether the
object module contains the main routine in a program, and it can, optionally, contain a
reference to a program's entry point.

Record format

8AH length module
type Start address

chk
sum

Module type

The module type field is an 8-bit (1-byte) field:

bit

main start 0 0 0 0 0 1

• Bit 7 (jnairi) is set to 1 if the module is a main program module.
• Bit 6 (^start^ is set to 1 if the MODEND record contains an entry point istart address),
• Bit 0 is set to 1 if the start address field contains a relocatable address reference that

LINK must fix up. If bit 6 is set to 1, bit 0 must also be set to 1. (The Intel specification
allows bit 0 to be set to 0, to indicate that start address is an absolute physical address,
but this capability is not supported by LINK.)

Start address

The start address field appears in the MODEND record only when bit 6 is set to 1:

end

dat
frame datum

✓/y^

-//y^

target datum

✓/y^^

-/y/y^
target

displacement
/y/y^

The format and interpretation of the start address field corresponds to the fixup field
of the FIXUPP record. The end dat field corresponds to the fix dat field in the FIXUPP
record. Bit 2 of the end dat field, which corresponds to the P bit in a fix dat field, must
be zero.

Location in object module

A MOE)END record can appear only as the last record in an object module.

Section II: Programming in the MS-DOS Environment 66l

Part E: Programming Tools

Example

Consider the MODEND record of the HELLO.ASM example:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 8A 07 00 C1 00 01 01 00 00 AC

Byte OOH contains 8AH, indicating a MODEND record.
Bytes 01-02H contain 0007H, the length of the remainder of the record.
Byte 03H contains OCIH (IIOOOOOIB). Bit 7 is set to 1, indicating that this module is
the main module of the program. Bit 6 is set to 1, indicating that a start address field is
present. Bit 0 is set to 1, indicating that the address referenced in the start address
field must be fixed up by LINK.
Byte 04H iend dat in the start address field) contains OOH. As in a FIXUPP record,
bit 7 indicates that the frame for this fixup is specified explicitly, and bits 6 through 4
indicate that a SEGDEF index specifies the frame. Bit 3 indicates that the target refer
ence is also specified explicitly, and bits 2 through 0 indicate that a SEGDEF index
also specifies the target. See also FIXUPP 9CH Fixup Record below.
Byte 05H frame datum in the start address field) contains OIH. This is a reference
to the first SEGDEF record in the module, which in this example corresponds to the
^TEXT segment. This reference tells LINK that the start address lies in the ̂ TEXT
segment of the module.
Byte 06H Qarget datum in the start address field) contains OIH. This too is a ref
erence to the first SEGDEF record in the object module, which corresponds to the
_TEXT segment. LINK uses the following target displacement field to determine
where in the ̂ TEXT segment the address lies.
Bytes 07-08H {target displacement in the start address field) contain OOOOH. This is
the offset (in bytes) of the start address.
Byte 09H contains the checksum, OACH.

662 The MS-DOS Encyclopedia

Article 19: Object Modules

8CH EXTDEF External Names Definition Record

The EXTDEF record contains a list of symbolic external references—that is, references to
symbols defined in other object modules. The linker resolves external references by
matching the symbols declared in EXTDEF records with symbols declared in PUBDEF
records.

Record format

8CH length
I

-///-

external reference list

35

chk
sum

^can be-^
repeated

External reference list

The external reference list is a variable-length field containing a list of names and name
types, each formatted as follows:

name

length
name

type
Index

• The name length is a 1-byte field containing the length of the name field that follows
it. (LINK restricts name length to a value between OIH and 7FH.)

• The type index is a 1-byte reference to the TYPDEF record in the object module that
describes the type of symbol the name represents. A type index value of zero indi
cates that no TYPDEF record is associated with the symbol. A nonzero value indicates
which TYPDEF record is associated with the external name. Microsoft LINK recog
nizes TYPDEF records only for the purpose of declaring communal variables. See 8EH
TYPDEF Type Definition Record below.

LINK imposes a limit of 1023 external names.

Location in object module

Any EXTDEF records in an object module must appear before the FIXUPP records that
reference them. Also, if an EXTDEF record contains a nonzero type index, the indexed
TYPDEF record must precede the EXTDEF record.

Example

Consider this EXTDEF record generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 8C 25 00 OA 5F 5F 61 63 72 74 75 73 65 64 00 05

0010 5F 6D 61 69 6E 00 05 5F 70 75 74 73 00 08 5F 5F

0020 63 68 6B 73 74 6B 00 A5

.%. acrtused..

_main.._puts.

chkstk..

Section II: Programming in the MS-DOS Environment 663

Part E: Programming Tools

• Byte OOH contains 8CH, indicating that this is an EXTDEF record.
• Bytes 01-02H contain 0025H, the length of the remainder of the record.
• Bytes 03-26H contain a list of external references. The first reference starts in byte

03H, which contains OAH, the length of the name acrtused. The name itself fol
lows in bytes 04-0DH. Byte OEH contains OOH, which indicates that the symbol's type
is not defined by any TYPDEF record in this object module. Bytes 0F-26H contain
similar references to the external symbols _main, ̂puts, and chkstk

• Byte 27H contains the checksum, 0A5H.

664 The MS-DOS Encyclopedia

Article 19: Object Modules

8EH T YPDEF Type Definition Record

The TYPDEF record contains details about the type of data represented by a name
declared in a PUBDEF or an EXTDEF record. This information may be used by the linker
to validate references to names, or it may be used by a debugger to display data according
to type.

Starting with Microsoft LINK version 3.50, the COMDEF record should be used for declara
tion of communal variables. For compatibility, however, later versions of LINK recognize
TYPDEF records as well as COMDEF records.

Record format

8EH length
L_

name
eight-leaf
descriptor

\ can be X
repeated

chk
sum

Although the original Intel specification allowed for many different type specifications,
such as scalar, pointer, and mixed data structure, LINK uses TYPDEF records to declare
only communal variables. Communal variables represent globally shared memory areas—
for example, FORTRAN common blocks or uninitialized public variables in C.

The size of a communal variable is declared explicitly in the TYPDEF record. If a
communal variable has different sizes in different object modules, LINK uses the largest
declared size when it generates an executable module.

Name

The name field of a TYPDEF record is a 1-byte field that is always null; that is, it contains a
single zero byte.

Eight-leaf descriptor

The eight-leafdescriptor field, in the original Intel specification, was a variable-length
field that contained as many as eight "leaves" that could be used to describe mixed data
structures.

Microsoft uses a stripped-down version of the eight-leaf descriptor, because the field's only
function is to describe communal variables:

-//X-

leaf descriptor

\ can be X> can be <
repeated

Section II: Programming in the MS-DOS Environment 665

Part E: Programming Tools

The first field in the eight-leafdescriptor is a 1-byte field that contains a zero byte.
The leaf descriptor field is a variable-length field that is itself divided into four fields
("leaves") that describe the size and type of a variable. The two possible variable
types are NEAR and FAR.

If the field describes a NEAR variable (one that can be referenced as an offset within a

default data segment), the format is

62H variable
type length In bits

The 1-byte field containing 62H signifies a NEAR variable.
The variable type field is a 1-byte field that specifies the variable type:

77H

79H

7BH

Array
Structure

Scalar

This field is ignored by LINK.
- The length in bits field is a variable-length field that indicates the size of the com

munal variable. Its format depends on the size it represents. If the size is less than
128 (BOH) bits, length in bits is a 1-byte field containing the actual size of the field:

size

If the size is 128 bits or greater, it cannot be represented in a single byte value, so
the length in bits field is formatted with an extra initial byte that indicates whether
the size is represented as a 2-, 3-, or 4-byte value:

81H 2-byte size
I

84H 3-byte size
I I

88H 4-byte size

666 The MS-DOS Encyclopedia

Article 19: Object Modules

If the leaf descriptor field describes a FAR variable (one that must be referenced with
an explicit segment and offset), the format is

61H
variable
type

-///-
number of
elements

///—

element type
index
/y/

- The 1-byte field containing 6lH signifies a FAR variable.
- The 1-byte variable type for a FAR communal variable is restricted to 77H (array).
(As with the NEAR variable type field, LINK ignores this field.)

- The number of elements is a variable-length field that contains the number of
elements in the array. It has the same format as the length in bits field in the leaf
descriptor for a NEAR variable.

- The element type index is an index field that references a previous TYPDEF
record. A value of 1 indicates the first TYPDEF record in the object module, a value
of 2 indicates the second TYPDEF record, and so on. The TYPDEF record refer
enced must describe a NEAR variable. This way, the data type and size of the
elements in the array can be determined.

Location in object module

Any TYPDEF records in an object module must precede the EXTDEF or PUBDEF records
that reference them.

Examples

The following three examples of TYPDEF records were generated by the Microsoft C
Compiler version 3.0. (Later versions use COMDEF records.)

The first sample TYPDEF record corresponds to the public declaration

int foo; /* 16-bit integer */

The TYPEDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 8E 06 00 00 00 62 7B 10 7F b{..

• Byte OGH contains 8EH, indicating that this is a TYPDEF record.
• Bytes 01-02H contain 0006H, the length of the remainder of the record.
• Byte 03H (the name field) contains OGH, a null name.
• Bytes G4-G7H represent the eight-leaf descriptor field. The first byte of this field

(byte G4H) contains GGH. The remaining bytes (bytes G5-G7H) represent the leaf
descriptorfield:
- Byte G5H contains 62H, indicating this TYPDEF record describes a NEAR variable.
- Byte G6H (the variable type field) contains 7BH, which describes this variable as

a scalar.

- Byte G7H (the length in bits field) contains IGH, the size of the variable in bits.

Section II: Programming in the MS-DOS Environment 667

Part E: Programming Tools

• Byte 08H contains the checksum, 7FH.

The next example demonstrates how the variable size contained in the length in bits field
of the leaf descriptor is formatted:

char foo2[32768]; /* 32 KB array */

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 8E 09 00 00 00 62 7B 84 00 00 04 04 b{

• The length in bits field (bytes 07-0AH) starts with a byte containing 84H, which in
dicates that the actual size of the variable is represented as a 3-byte value (the follow
ing 3 bytes). Bytes 08-0AH contain the value 040000H, the size of the 32 KB array
in bits.

This third C statement, because it declares a FAR variable, causes two TYPDEF records to
be generated:

char far foo3[10] [2] [20]; /* 400-element FAR array */

The two TYPDEF records are

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 8E 06 00 00 00 62 7B 08 87 8E 09 00 00 00 61 77 b{ aw
0010 81 90 01 01 7E !

• Bytes 00-08H contain the first TYPDEF record, which defines the data type of the
elements of the array (NEAR, scalar, 8 bits in size).

• Bytes 09-14H contain the second TYPDEF record. The leafdescriptor field of this
record declares that the variable is FAR (byte OEH contains 6lH) and an array (byte
OFH, the variable type, contains 77H).
- Because this TYPDEF record describes a FAR variable, bytes 10-12H represent

a number ofelements field. The first byte of the field is 81H, indicating a 2-byte
value, so the next 2 bytes (bytes 11-12H) contain the number of elements in the
array, 0190H (400D).

• Byte 13H (the element type indeoi) contains OIH, which is a reference to the first
TYPDEF record in the object module—in this example, the one in bytes 00-08H.

668 The MS-DOS Encyclopedia

Article 19: Object Modules

90H PUBDEF Public Names Definition Record

The PUBDEF record contains a list of public names. When object modules are linked, the
linker uses these names to resolve external references in other object modules.

Record format

90H length public base
public
offset

public name

y/A

type index

y/A

^can be -
repeated

Public base

Each name in the PUBDEF record refers to a location (a l6-bit offset) in a particular seg
ment or group. The public base, a variable-length field that specifies the segment or group,
is formatted as follows:

-3///-

group index segment index frame
number

Group index is an index field that references a previous GRPDEF record in the object
module. If the group index value is 0, no group is associated with this PUBDEF
record.

Segment index is also an index field. It associates a particular segment with this
PUBDEF record by referencing a previous SEGDEF record. A value of 1 indicates the
first SEGDEF record in the object module, a value of 2 indicates the second, and so on.
If the segment index value is 0, the group index must also be 0—in this case, the
frame number appears in the public base field.
The 2-byte frame number appears in the public base field only when the group
index and segment index are both 0. In other words, the frame number specifies
the start of an absolute segment. If present, the value in the frame number field indi
cates the number of the frame containing the public name.

Public name

Public name is a variable-length field containing a public name. The first byte specifies
the length of the name; the remainder is the name itself. (The Intel specification allows
names of 1 to 255 bytes. Microsoft LINK restricts the maximum length of a public name to
127 bytes.)

Section II: Programming in the MS-DOS Environment 669

Part E: Programming Tools

Public offset

Public offset is a 2-byte field containing the offset of the location referred to by the public
name. This offset is assumed to lie within the segment, group, or frame specified in the
public base field.

Type index

Type index is an index field that references a previous TYPDEF record in the object mod
ule. A value of 1 indicates the first TYPDEF record in the module, a value of 2 indicates the
second, and so on. The type index value can be 0 if no data type is associated with the
public name.

The public name, public offset, and type index fields can be repeated within a single
PUBDEF record. Thus, one PUBDEF record can declare a list of public names.

Location in object module

Any PUBDEF records in an object module must appear after the GRPDEF and SEGDEF
records to which they refer. Because PUBDEF records are not themselves referenced by
any other type of object record, they are generally placed near the end of an object
module.

Examples

The following two examples show PUBDEF records created by the Microsoft Macro
Assembler.

The first example is the record for the statement

PUBLIC GAMMA

The PUBDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90 OC 00 00 01 05 47 41 4D 4D 41 02 00 00 F9 GAMMA

Byte OOH contains 90H, indicating a PUBDEF record.
Bytes 01-02H contain OOOCH, the length of the remainder of the record.
Bytes 03-04H represent the public base field. Byte 03H (the group indeoi) contains 0,
indicating that no group is associated with the name in this PUBDEF record. Byte 04H
(the segment indeoc) contains 1, a reference to the first SEGDEF record in the object
module. This is the segment to which the name in this PUBDEF record refers.
Bytes 05-0AH represent the public name field. Byte 05H contains 05H (the length of
the name), and bytes O6-OAH contain the name itself, GAMMA.
Bytes OB-OCH contain 0002H, the public offset. The name GAMMA thus refers to the
location that is offset 2 bytes from the beginning of the segment referenced by the
public base.
Byte ODH is the type index. The value of the type index is 0, indicating that no data
type is associated with the name GAMMA.
Byte OEH contains the checksum, 0F9H.

670 The MS-DOS Encyclopedia

Article 19: Object Modules

The next example is the PUBDEF record for the following absolute symbol declaration:

PUBLIC ALPHA

ALPHA EQU 1234h

The PUBDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90 OE 00 00 00 00 00 05 41 40 50 48 41 34 12 00 ALPHA4

0010 B1

• Bytes 03-06H (thepublic base field) contain a group index of 0 (byte 03H) and a
segment index of 0 (byte 04H). Since both the group index and segment index are 0,
a frame number also appears in the public base field. In this instance, the frame
number (bytes 05-06H) also happens to be 0.

• Bytes 07~0CH (the public name field) contain the name ALPHA, preceded by its
length.

• Bytes OD-OEH (the public offset field) contain 1234H. This is the value associated
with the symbol ALPHA in the assembler EQU directive. If ALPHA is declared in
another object module with the declaration

EXTRN ALPHA:ABS

any references to ALPHA in that object module are fixed up as absolute references to
offset 1234H in frame 0. In other words, ALPHA would have the value 1234H.

• Byte OFH (the type indeoc) contains 0.

Section II: Programming in the MS-DOS Environment 671

Part E: Programming Tools

94H LINNUM line Number Record

The LINNUM record relates line numbers in source code to addresses in object code.

Record format

94H length
I

line number
base

line
1

line number chk
number offset

1

sum

^can be^
repeated

Line number base

The line number base describes the segment to which the line number refers. Although
the complete Intel specification allows the line number base to refer to a group or to an
absolute segment as well as to a relocatable segment, Microsoft restricts references in this
field to relocatable segments. The format of the line number base field is

group
index segment index

• The group index field always contains a single zero byte.
• The segment index is an index field that references a previous SEGDEF record. A

value of 1 indicates the first SEGDEF record in the object module, a value of 2 indicates
the second, and so on.

line number

Line number is a 2-byte field containing a line number between 0 and 32,767
(0-7FFFH).

line number offset

The line number offset is a 2-byte field that specifies the offset of the executable code (in
the segment specified in the line number base field) to which the line number in the line
number field refers.

The line number and line number offset fields can be repeated, so a single LINNUM
record can specify multiple line numbers in the same segment.

Location in object module

Any LINNUM records in an object module must appear after the SEGDEF records to which
they refer. Because LINNUM records are not themselves referenced by any other type of
object record, they are generally placed near the end of an object module.

672 The MS-DOS Encyclopedia

Article 19: Object Modules

Example

The following LINNUM record was generated by the Microsoft C Compiler:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 94 OF 00 00 01 02 00 00 00 03 00 08 00 04 00 OF

0010 00 30

• Byte OOH contains 94H, indicating that this is a LINNUM record.
• Bytes 01-02H contain OOOFH, the length of the remainder of the record.

Bytes 03-04H represent the line number base field. Byte 03H (the group index field)
contains OOH, as it must. Byte 04H (the segment index field) contains OIH, indicating
that the line numbers in this LINNUM record refer to code in the segment defined in
the first SEGDEF record in this object module.
Bytes 05-06H (a line number field) contain 0002H, and bytes 07-08H (a line num
ber offset field) contain OOOOH. Together, they indicate that source-code line number
0002 corresponds to offset OOOOH in the segment indicated in the line number base
field.

Similarly, the two pairs of line number and line number offset fields in bytes 09-lOH
specify that line number 0003 corresponds to offset 0008H and that line number 0004
corresponds to offset OOOFH.
Byte IIH contains the checksum, 3CH.

Section II: Programming in the MS-DOS Environment 673

Part E: Programming Tools

96H LNAMES List of Names Record

The LNAMES record is a list of names that can be referenced by subsequent SEGDEF and
GRPDEF records in the object module.

Record format

96H length
I

name list

-///-

chk
sum

xcan be /
repeated

Name list

Name list is a variable-length field that contains the list of names. Each name is preceded
by 1 byte that defines its length, which can be a value between 0 and 255 (O-OFFH).

The names in the list are indexed implicitly in the order they appear: The first name in the
list has an index of 1, the second name has an index of 2, and so forth. References to the
names contained in name list by subsequent object records, such as SEGDEF, are accom
plished by using this index number. LINK imposes a limit of 255 logical names per object
module.

Location in object module

Any LNAMES records in an object module must appear before the GRPDEF or SEGDEF
records that refer to them. Because it does not refer to any other type of object records, an
LNAMES record usually appears near the start of an object module.

Example

The following LNAMES record contains the segment and class names specified in all three
of the assembler statements:

-TEXT SEGMENT byte public 'CODE*

-DATA SEGMENT word public 'DATA*

-STACK SEGMENT para public 'STACK'

The LNAMES record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 96 25 00 00 04 43 4F 44 45 04 44 41 54 41 05 53 .%...CODE.DATA.S

0010 54 41 43 4B 05 5F 44 41 54 41 06 5F 53 54 41 43 TACK.-DATA.-STAC

0020 4B 05 5F 54 45 58 54 8B K.-TEXT.

• Byte OOH contains 96H, indicating that this is an LNAMES record.
• Bytes 01-02H contain 0025H, the length of the remainder of the record.

674 The MS-DOS Encyclopedia

Article 19: Object Modules

Byte 03H contains OOH, a zero-length name.
Byte 04H contains 04H, the length of the class name CODE, which is found in bytes
05-08H. Bytes 09-26H contain the class names DATA and STACK and the segment
names ̂ DATA, _STACK, and _TEXT, each preceded by 1 byte giving its length.
Byte 27H contains the checksum, 8BH.

Section II: Programming in the MS-DOS Environment 675

Part E: Programming Tools

98H SEGDEF Segment Definition Record

The SEGDEF record describes a logical segment in an object module. It defines the seg
ment's name, length, and alignment, and the way the segment can be combined with other
logical segments. LINK imposes a limit of 255 SEGDEF records per object module.

Object records that follow a SEGDEF record can refer to it to identify a particular segment.

Record format

98H length
i

segment
attributes

segment
length

segment name
Index
/X/

classi name
Index

overlay name
Index

chk
sum

Segment attributes

Segment attributes is a variable-length field:

ACBP

1

frame
offset

byte number

The ACBP byte

The contents and size of the segment attributes field depend on the first byte of the field,
the ACBP byte:

bit 7 6 5 4 3 2 1 0

A C B P

The bit fields in the ACBP byte describe the following characteristics of the segment:

A Alignment in the run-time memory map
C Combination with other segments
B Big (a segment of exactly 64 KB)
P Page-resident (not used in MS-DOS)

The A field. Bits 7-5 of the ACBP byte, the A field, describe the logical segment's
alignment:

A = 0 (OOOB) Absolute (located at a specified frame address)
A^\ (OOIB) Relocatable, byte aligned
A^2 (OlOB) Relocatable, word aligned
A = 5 (01 IB) Relocatable, paragraph aligned
A = 4 (lOOB) Relocatable, page aligned

676 The MS-DOS Encyclopedia

Article 19: Object Modules

The original Intel specification includes two additional segment-alignment values not
supported in MS-DOS.

The following examples of Microsoft assembler SEGMENT directives show the resulting
values for the A field in the corresponding SEGDEF object record:

aseg SEGMENT at 400h ; A = 0

bseg SEGMENT byte public 'CODE' ; A = 1

cseg SEGMENT para stack 'STACK' ; A = 3

The Cfield. Bits 4-2 of the ACBP byte, the C field, describe how the linker can combine
the segment with other segments. Under MS-DOS, segments with the same name and class
can be combined in two ways. They can be concatenated to form one logical segment, or
they can be overlapped. In the latter case, they have either the same starting address or the
same end address and they describe a common area of memory.

The value in the C field corresponds to one of these two methods of combining segments.
Meaningful values, however, also depend on whether the segment is absolute (A = 0) or
relocatable (A = 1, 2, 3, or 4). If A = 0, then C must also be 0, because absolute segments
cannot be combined. Values for the C field are

C= 0 (OOOB) Cannot be combined; used for segments whose combine type is not
explicitly specified (private segments).

C7= 1 (OOIB) Not used by Microsoft.
C7= 2 (OlOB) Can be concatenated with another segment of the same name; used for

segments with the public combine type.
C=3(011B) Undefined.

C= 4 (lOOB) As defined by Microsoft, same as C = 2.
6*= 5 (lOlB) Can be concatenated with another segment with the same name; used for

segments with the stack combine type.
(7= 6 (1 lOB) Can be overlapped with another segment with the same name; used for

segments with the common combine type.
6*= 7 (lllB) As defined by Microsoft, same as C = 2.

The following examples of assembler SEGMENT directives show the resulting values for
the C field in the corresponding SEGDEF object record:

aseg SEGMENT at 40OH ; C = 0

bseg SEGMENT public 'DATA' ; C = 2

cseg SEGMENT stack 'STACK' ; C = 5

dseg SEGMENT common 'COMMON' ; C = 6

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming Tools: The

Microsoft Object Linker.

The B and Pfields. Bit 1 of the ACBP byte, the B field, is set to 1 (and the segment length
field is set to 0) only if the segment is exactly 64 KB long.

Bit 0 of the ACBP byte, the P field, is unused in MS-DOS. Its value should always be 0.

Section II: Programming in the MS-DOS Environment 677

Part E: Programming Toois

Frame number and offset

The frame number and offset fields of the segment attributes field are present only if the
segment is an absolute segment (A = 0 in the ACBP byte). Taken together, the frame num
ber and offset indicate the starting address of the segment.

• Frame number is a 2-byte field that contains the frame number of the start of the
segment.

• Offset is a 1-byte field that contains an offset between OOH and OFH within the speci
fied frame. LINK ignores the offset field.

Segment length

Segment length is a 2-byte field that specifies the length of the segment in bytes. The
length can be from OOH to FFFFH. If a segment is exactly 64 KB (lOOOOH) in size, segment
length should be 0 and the Afield in the ACBP byte should be 1.

Segment name index, class name index, and overlay name index

Each of the segment name index, class name index, and overlay name index fields
contains an index into the list of names defined in previous LNAMES records in the object
module. An index value of 1 indicates the first name in the LNAMES record, a value of 2 the
second, and so on.

• The segment name index identifies the segment with a unique name. The name may
have been assigned by the programmer, or it may have been generated by a compiler.

• The class name index identifies the segment with a class name (such as CODE,
FAR__DATA, and STACK). The linker places segments with the same class name into
a contiguous area of memory in the run-time memory map.

• The overlay name index identifies the segment with a run-time overlay. Starting with
version 2.40, however, LINK ignores the overlay name index. In versions 2.40 and
later, command-line parameters to LINK, rather than information contained in object
modules, determine the creation of run-time overlays.

Location in object module

SEGDEF records must follow the LNAMES record to which they refer. In addition, SEGDEF
records must precede any PUBDEF, LINNUM, GRPDEF, FIXUPP, LEDATA, or LIDATA
records that refer to them.

Examples

In this first example, the segment is byte aligned:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 98 07 00 28 11 00 07 02 01 IE ...(

• Byte OOH contains 98H, indicating that this is a SEGDEF record.
• Bytes 01-02H contain 0007H, the length of the remainder of the record.

678 The MS-DOS Encyclopedia

Article 19: Object Modules

Byte 03H contains 28H (OOlOlOOOB), the ACBP byte. Bits 7-5 (the A field) contain 1
(OOIB), indicating that this segment is relocatable and byte aligned. Bits 4-2 (the C
field) contain 2 (OlOB), which represents a public combine type. (When this object
module is linked, this segment will be concatenated with all other segments with the
same name.) Bit 1 (the B field) is 0, indicating that this segment is smaller than 64 KB.
Bit 0 (the P field) is ignored and should be zero, as it is here.
Bytes 04-05H contain OOllH, the size of the segment in bytes.
Bytes 06-08H index the list of names defined in the module's LNAMES record. Byte
06H Ohe segment name index) contains 07H, so the name of this segment is the
seventh name in the LNAMES record. Byte 07H (the class name indeoi) contains 02H,
so the segment's class name is the second name in the LNAMES record. Byte 08H (the
overlay name index) contains 1, a reference to the first name in the LNAMES record.
(This name is usually null, as MS-DOS ignores it anyway.)
Byte 09H contains the checksum, lEH.

The second SEGDEF record declares a word-aligned segment. It differs only slightly from
the first.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 98 07 00 48 OF 00 05 03 01 01 ...H

• Bits 7-5 (the A field) of byte 03H (the ACBP byte) contain 2 (OlOB), indicating that
this segment is relocatable and word aligned.

• Bytes 04-05H contain the size of the segment, OOOFH.
• Byte 06H (the segment name index) contains 05H, which refers to the fifth name in

the previous LNAMES record.
• Byte 07H (the class name indeoc) contains 03H, a reference to the third name in the

LNAMES record.

Section II: Programming in the MS-DOS Environment 679

Part E; Programming Tools

9AH GRPDEF Group Definition Record

The GRPDEF record defines a group of segments, all of which lie within the same 64 KB
frame in the run-time memory map. LINK imposes a limit of 21 GRPDEF records per
object module.

Record format

9AH length group name
Index

group component
descriptor

y//-

chk
sum

repeated

Group name index

Group name index is an index field whose value refers to a name in the name list field of
a previous LNAMES record.

Group component descriptor

The group component descriptor consists of two fields:

type segment Index

///

• Type is a 1-byte field whose value is always OFFH, indicating that the following field
contains a segment index value. The original Intel specification defines four other
types of group component descriptor with the values OFEH, OFDH, OFBH, and OFAH.
LINK ignores these other type values, however, and assumes that the group compo
nent descriptor contains a segment index value.

• The segment index field contains an index number that refers to a previous SEGDEF
record. A value of 1 indicates the first SEGDEF record in the object module, a value of
2 indicates the second, and so on.

The group component descriptor field is usually repeated within the GRPDEF record, so
all segments constituting the group can be included in one GRPDEF record.

Location in object module

GRPDEF records must follow the LNAMES and SEGDEF records to which they refer. They
must also precede any PUBDEF, LINNUM, FIXUPP, LEDATA, or LIDATA records that refer
to them.

680 The MS-DOS Encyclopedia

Article 19: Object Modules

Example

The following example of a GRPDEF record corresponds to the assembler directive:

tgroup GROUP segl,seg2,seg3

The GRPDEF record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 9A 08 00 06 FF 01 FF 02 FF 03 55 U

• Byte OOH contains 9AH, indicating that this is a GRPDEF record.
• Bytes 01~02H contain 0008H, the length of the remainder of the record.
• Byte 03H contains 06H, the group name index. In this instance, the index number

refers to the sixth name in the previous LNAMES record in the object module. That
name is the name of the group of segments defined in the remainder of the record.

• Bytes 04-05H contain the first of three group component descriptor fields. Byte 04H
contains the required OFFH, indicating that the subsequent field is a segment index.
Byte 05H contains OIH, a segment index that refers to the first SEGDEF record in the
object module. This SEGDEF record declared the first of three segments in the group.

• Bytes 06-07H represent the second group component descriptor, this one referring to
the second SEGDEF record in the object module.

• Similarly, bytes 08-09H are a group component descriptor field that references the
third SEGDEF record.

• Byte OAH contains the checksum, 55H.

Section II: Programming in the MS-DOS Environment 681

Part E: Programming Tools

9CH FIXUPP Fixup Record

The FIXUPP record contains information that allows the linker to resolve (fix up) ad
dresses whose values cannot be determined by the language translator. FIXUPP records
describe the LOCATION of each address value to be fixed up, the TARGET address to
which the fixup refers, and the FRAME relative to which the address computation is
performed.

Record format

9CH length

-V/A-

thread

-///-

^\can be ,
repeated

-V//-

fixup

V/Z—^
.can be
repeated

chk
sum

Thread and fixup fields

A FIXUPP record can contain zero or more thread fields and zero or more fiocup fields.
Each fixup field describes the method to be used by the linker to compute the TARGET
address to be placed at a particular location in the executable image, relative to a particular
FRAME. The information that determines the LOCATION, TARGET, and FRAME can b^
specified explicitly in the fixup field. It can also be specified within the fiocup field by a
reference to a previous thread field.

A thread field describes only the method to be used by the linker to refer to a particular
TARGET or FRAME. Because the same thread field can be referenced in several subse

quent fiocup fields, a FIXUPP record that uses thread fields may be smaller than one in
which thread fields are not used.

Thread and fiocup fields are distinguished from one another by the high-order bit of the
first byte in the field. If the high-order bit is 0, the field is a thread field. If the high-order
bit is 1, the field is a fiocup field.

The thread field

A thread field contains information that can be referenced in subsequent thread or fiocup
fields in the same or subsequent FIXUPP records. It has the following format:

thread

data

—Z/Z-

Index

—zzz-

682 The MS-DOS Encyclopedia

Article 19: Object Modules

The thread data field is a single byte comprising five subfields:

bit 7 6 5 4 3 2 1 0

0 D 0 method
thread

number

• Bit 7 of the thread data byte is 0, indicating the start of a thread field.
• The D field (bit 6) indicates whether the thread field specifies a FRAME or a

TARGET. The D bit is set to 1 to indicate a FRAME or to 0 to indicate a TARGET.

• Bit 5 of the thread data byte is not used. It should always be set to 0.
• Bits 4 through 2 represent the method field. If D = 1, the method field contains 0,1, 2,

4, or 5. Each of these numbers corresponds to one method of specifying a FRAME isee
Table 19-2). If D = 0, the method field contains 0,1, 2,4, 5, or 6, each of which corre
sponds to one of the methods of specifying a TARGET isee Table 19-3).

In the case of a TARGET address, only bits 3 and 2 of the method field are used. When
= 0, the high-order bit of the value in the method field is derived from the P bit in

the fix dat field of any subsequent fixup field that refers to this thread field. Thus, if
£> = 0, bit 4 of the method field is also 0, and the only meaningful values for the
method field are 0,1, and 2.

• The thread number field (bits 1 and 0) contains a number between 0 and 3. This

number is used in subsequent fixup or thread fields to refer to this particular thread
field.

The thread number is implicitly associated with the D field by the linker, so as many
as eight different thread fields (four FRAMEs and four TARGETs) can be referenced at
any time. A thread number can be reused in an object module and, if it is, always
refers to the thread field in which it last appeared.

Table 19-2. FRAME Fixup Methods.

Method Description

0 The FRAME is specified by a segment index.
1 The FRAME is specified by a group index.
2 The FRAME is indicated by an external index. LINK determines the FRAME

from the external name's corresponding PUBDEF record in another object
module, which specifies either a logical segment or a group.

3 The FRAME is identified by an explicit frame number. (Not supported by
LINK.)

4 The FRAME is determined by the segment in which the LOCATION is defined.
In this case, the largest possible frame number is used.

5 The FRAME is determined by the TARGET'S segment, group, or external
index.

Section II: Programming in the MS-DOS Environment 683

Part E: Programming Tools

Table 19-3- TARGET Fixup Methods.

Method Description

0

1

2

4*

5*

6*

1*

The TARGET is specified by a segment index and a displacement. The
displacement is given in the target displacement field of the FIXUPP record.

The TARGET is specified by a group index and a target displacement.
The TARGET is specified by an external index and a target displacement.
LINK adds the displacement to the address it determines from the external
name's corresponding PUBDEF record in another object module.

The TARGET is identified by an explicit frame number. (Not supported by
LINK.)

The TARGET is specified by a segment index only.
The TARGET is specified by a group index only.
The TARGET is specified by an external index. The TARGET is the address
associated with the external name.

The TARGET is identified by an explicit frame number. (Not supported by
LINK.)

* TARGET methods 4-7 are analogous to the preceding four, except that methods 4-7 do not use an explicit
displacement to identify the TARGET. Instead, a displacement of 0 is assumed.

The index field either contains an index value that refers to a previous SEGDEF, GRPDEF,
or EXTDEF record, or it contains an explicit frame number. The interpretation of the index
value depends on the value of the method field of the thread data field:

method = 0 Segment index (reference to a previous SEGDEF record)
method = 1 Group index (reference to a previous GRPDEF record)
method = 2 External index (reference to a previous EXTDEF record)
method = 3 Frame number (not supported by LINK; ignored)

The fixup field
The fiocup field provides the information needed by the linker to resolve a reference to a
relocatable or external address. The fiocup field has the following format:

locat
fix

dat
frame datum

///

target datum
target

displacement

The 2-byte locat field has an unusual format. Contrary to the usual byte order in Intel data
structures, the most significant bits of the locat field are found in the low-order, rather than
the high-order, byte:

low-order byte

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 M S loo data record offset

high-order byte

684 The MS-DOS Encyclopedia

Article 19: Object Modules

Bit 15 (the high-order bit of the locat field) contains 1, indicating that this is a fixup
field.

Bit 14 (the M bit) is 1 if the fixup is segment relative and 0 if the fixup is self-relative.
Bit 13 (the S bit) is currently unused and should always be set to 0.
Bits 12 through 10 represent the loc field. This field contains a number between 0 and
5 that indicates the type of LOCATION to be fixed up:

loc = 0 Low-order byte
loc = 1 Offset

loc = 2 Segment
loc = 3 Pointer (segment:offset)
loc = 4 High-order byte (not recognized by LINK)
loc = 5 Loader-resolved offset (treated as loc = 1 by the linker)

• Bits 9 through 0 (the data record offset^ indicate the position of the LOCATION to be
fixed up in the LEDATA or LIDATA record immediately preceding the FIXUP? record.
This offset indicates either a byte in the data field of an LEDATA record or a data byte
in the content field of an iterated data block in an LIDATA record.

The fix dat field is a single byte comprising five fields:

bit 7 6 5 4 3 2 1 0

F frame T P targt

Bit 7 (the F bit) is set to 1 if the FRAME for this fixup is specified by a reference to a
previous thread field. The F bit is 0 if the FRAME method is explicitly defined in this
fixup field.
The interpretation of the frame field in bits 6 through 4 depends on the value of the
F bit. If F* = 1, the frame field contains a number between 0 and 3 that indicates the
thread field containing the FRAME method. If F = 0, the frame field contains 0,1, 2,
4, or 5, corresponding to one of the methods of specifying a FRAME listed in Table
19-2.

Bit 3 (the T bit) is set to 1 if the TARGET for the fixup is specified by a reference to a
previous thread field. If the T bit is 0, the TARGET is explicitly defined in this fiocup
field.

Bit 2 (the P bit) and bits 1 and 0 (the targt field) can be considered a 3-bit field analo
gous to the frame field.
If the T bit indicates that the TARGET is specified by a previous thread reference
(r = 1), the targt field contains a number between 0 and 3 that refers to a previous
thread field containing the TARGET method. In this case, the P bit, combined with
the 2 low-order bits of the method field in the thread field, determines the TARGET
method.

Section II: Programming in the MS-DOS Environment 685

Part E: Programming Tools

If the T bit is 0, indicating that the target is explicitly defined, the P and targt fields
together contain 0,1, 2,4, 5, or 6. This number corresponds to one of the TARGET
fixup methods listed in Table 19-3. On this case, the P bit can be regarded as the
high-order bit of the method number.)

Frame datum is an index field that refers to a previous SEGDEF, GRPDEF, or EXTDEF
record, depending on the FRAME method.

Similarly, the target datum field contains a segment index, a group index, or an external
index, depending on the TARGET method.

The target displacement field, a 2-byte field, is present only if the P bit in the fixdat field
is set to 0, in which case the target displacement field contains the l6-bit offset used in
methods 0,1, and 2 of specifying a TARGET.

Location in object module

FIXUPP records must appear after the SEGDEF, GRPDEF, or EXTDEF records to which
they refer. In addition, if a FIXUPP record contains any fixup fields, it must immediately
follow the LEDATA or LIDATA record to which the fixups refer.

Examples

Although crucial to the proper linking of object modules, FIXUPP records are terse:
Almost every bit is meanin^ul. For these reasons, the following three examples of FIXUPP
records are particularly detailed.

A good way to understand how a FIXUPP record is put together is to compare it to the cor
responding source code. The Microsoft Macro Assembler is helpful in this regard, because
it marks in its source listing address references it cannot resolve. The "program" in Figure
19-6 is designed to show how some of the most frequently encountered fixups are encoded
in FIXUPP records.

TITLE fixupps

_TEXT SEGMENT byte public 'CODE'

ASSUME OS:-TEXT

EXTRN NearLabel:near

EXTRN FarLabel:far

0000 NearProc PROG near

0000 E9 0000 E jmp NearLabel /relocatable word offset

0003 EB 00 E jmp short NearLabel /relocatable byte offset

0005 EA 0000 R jmp far ptr FarProc /far jump to a known seg

OOOA EA 0000 E jmp FarLabel /far jump to an unknown seg

OOOF BE 0015 R mov bx,offset LocalLabel /relocatable offset

0012 B8 R mov ax,seg LocalLabel /relocatable seg

Figure 19-6. A sample "program'' showing how some common fixups are encoded in FIXUPP records, (more)

686 The MS-DOS Encyclopedia

Article 19: Object Modules

0015 C3

0016

LocalLabel: ret

NearProc END?

-TEXT ENDS

0000

0000

0000 CB

0001

FAR-TEXT SEGMENT byte public 'FAR_CODE'

AS SUME 0 S:FAR-TEXT

FarProc PROC far

ret

FarProc ENDP

FAR-TEXT ENDS

END

Figure 19-6. Continued.

The assembler generates one LEDATA record for this program:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0010 AO 1A 00 01 00 00 E9 00 00 EB 00 EA 00 00 00 00

0020 EA 00 00 00 00 BB 00 00 B8 00 00 C3 67

Bytes 06-2BH (the data field) of this LEDATA record contain 8086 opcodes for each of
the instruction mnemonics in the source code. The gaps (zero values) in the data field
correspond to address values that the assembler cannot resolve. The linker will fix up the
address values in the gaps by computing the correct values and adding them to the zero
values in the gaps. The FIXUPP record that tells the linker how to do this immediately
follows the LEDATA record in the object module:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 9C 21 00 84 01 06 01 02 80 04 06 01 02 CO 06 04 .!

0010 02 02 CO OB 06 01 01 04 10 00 01 01 15 00 08 13

0020 04 01 01 A3

• Byte OOH contains 9CH, indicating this is a FIXUPP record.
• Bytes 01-02H contain 0021H, the length of the remainder of the record.
• Bytes 03-07H represent the first of the six fixup fields in this record:

80 04 06 01 02 CO 06 040000 90 21 84 01 06 01 02

The information in this fiocup field will allow the linker to resolve the address refer
ence in the statement

jmp NearLabel

Section II: Programming in the MS-DOS Environment 687

Part E: Programming Tools

- Bytes 03-04H (the locat field) contain 8401H (lOOOOlOOOOOOOOOlB). (Recall that
this field does not conform to the usual Intel byte order.) Bit 15 is 1, signifying that
this is a fiocup field, not a thread field. Bit 14 (the M bit) is 0, so this fixup is self-
relative. Bit 13 is unused and should be set to 0, as it is here. Bits 12-10 (the loc
field) contain 1 (OOIB), so the LOCATION to be fixed up is a l6-bit offset. Bits 9-0
(the data record offset) contain 1 (OOOOOOOOOIB), which informs the linker that the
LOCATION to be fixed up is at offset 1 in the data field of the LEDATA record im
mediately preceding this FIXUPP record—in other words, the 2 bytes immedi
ately following the first opcode 0E9H.

- Byte 05H (the fix dat field) contains 06H (OOOOOllOB). Bit 7 (the F bit) is 0, mean
ing the FRAME for this fixup is explicitly specified in this fixup field. Bits 6-4
(the frame field) contain 0 (OOOB), indicating that FRAME method 0 specifies the
FRAME. Bit 3 (the T bit) is 0, so the TARGET for this fixup is also explicitly speci
fied. Bits 2-0 (the P bit) and the targt field contain 6 (HOB), so TARGET method 6
specifies the TARGET.

- Byte 06H is a frame datum field, because the FRAME is explicitly specified (the
F bit of the fix dat field = 0). And, because method 0 is specified, the frame
datum is an index field that refers to a previous SEGDEF record. In this example,
the frame datum field contains 1, which indicates the first SEGDEF record in the
object module: the _TEXT segment.

- Similarly, byte 07H is a target datum, because the TARGET is also explicitly speci
fied (the T bit of the fix dat field = 0). The fix dat field also indicates that
TARGET method 6 is used, so the target datum is an index field that refers to the
external reference list in a previous EXTDEF record. The value of this index is 2,
so the TARGET is the second external reference declared in the EXTDEF record:

NearLabel in this object module.
Bytes 08-0CH represent the second fiocup field:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90-21 00 8,4.. 01 06 01 pi 80 04 06 01 02 Op 06 04 i
0010 02 02 Ce-OB 06, 01 01 04 10 00 01 Ql IS-OOTcS 13
0020\ 0,4 01,01 ^ ^ '*>•*•

This fixup field corresponds to the statement

jmp short NearLabel

The only difference between this statement and the first is that the jump uses an 8-bit,
rather than a l6-bit, offset. Thus, the loc field (bits 12-10 of byte 08H) contains 0
(OOOB) to indicate that the LOCATION to be fixed up is a low-order byte.
Bytes OD-llH represent the third fixup field in this FIXUPP record:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90 2l"00 84 01 0'6 01' 02 ;aO' 04 06 01 02 CO 06 04 . U 7. ,
tOOlO 02 02,^gC^,0B.0^.,.01 01 01 15^P0.:C8.137 .
0020 04 01 01 A3 ' ' 'V ~ ^ ̂ ^

This fixup field corresponds to the statement

jmp far ptr FarProc

688 The MS-DOS Encyclopedia

Article 19: Object Modules

In this case, both the TARGET'S frame (the segment FAR_TEXT) and offset (the label
FarProc^ are known to the assembler. Both the segment address and the label offset are
relocatable, however, so in the FIXUPP record the assembler passes the responsibility
for resolving the addresses to the linker.
- Bytes OD-OEH (the locat field) indicate that the field is a fixup field (bit 15 = 1)

and that the fixup is segment relative (bit 14—the M bit = 1). The loc field (bits
12-10) contains 3 (OllB), so the LOCATION being fixed up is a 32-bit (FAR) pointer
(segment and offset). The data record offset (bits 9-0) is 6 (OOOOOOOllOB); the
LOCATION is the 4 bytes following the first far jump opcode (FAH) in the preced
ing LFDATA record.

- In byte OFH (the fix dat field), the F bit and the frame field are 0, indicating that
method 0 (a segment index) is used to specify the FRAME. The T bit is 0 (meaning
the target is explicitly defined in the fiocup field); therefore, the P bit and targt
fields together indicate method 4 (a segment index) to specify the TARGET.

- Because the FRAME is specified with a segment index, byte lOH (the frame
datum field) is a reference to the second SEGDEF record in the object module,
which in this example declared the FAIL.TEXT segment. Similarly, byte IIH (the
target datum field) references the FAR_TEXT segment. In this case, the FRAME
is the same as the TARGET segment; had FAR^TEXT been one of a group of seg
ments, the FRAME could have referred to the group instead.

The fourth assembler statement is different from the third because it references a

segment not known to the assembler:

jmp FarLabel

Bytes 12-16H contain the corresponding fixup field:

0 1 2 3 4 5 6 7 8 9 A B C D E F

04 ;p$. Ol' 02 CC 06 04
02 ̂0^2 CC OB 06 01 01 c4''10 Ob 0T01 15 bo'cs 13

The significant difference between this and the preceding fiocup field is that the
P bit and targt field of the fix dat hyte (byte 14H) specify TARGET method 6. In this
fiocup field, the target datum (byte 16H) refers to the first EXTDEF record in the
object module, which declares FarLabel as an external reference.
The fifth fiocup field (bytes 17-lDH) is

0 1 2 3 4 5 6 7 8 9 A B C D E F

.0000 9C 2i:V0P si 04 06 01 02 80X04 06 01 02VgG 06 04 . 1 ...
,0dl0, 02u0A^G^^;>0B^.,06.Tp1' iC4 10 00 01 01 15 00 C8 13^

, 04 01 :a3 , / . ,

This fiocup field contains information that enables the linker to calculate the value of
the relocatable offset LocalLabel:

mov bx,offset LocalLabel

Section II: Programming in the MS-DOS Environment 689

Part E: Programming Tools

- Bytes 17-18H (the locat field) contain C410H (IIOOOIOOOOOIOOOOB). Bit 15 is 1,
denoting a fiocup field. The M bit (bit 14) is 1, indicating that this fixup is segment
relative. The loc field (bits 12-10) contains 1 (OOIB), so the LOCATION is a l6-bit
offset. The data record offset (bits 9-0) is lOH (OOOOOIOOOOB), a reference to the
2 bytes in the LEDATA record following the opcode OBBH.

- Byte 19H (the fix dat byte) contains OOH. The F bit, frame field, T bit, P bit, and
targt field are all 0, so FRAME method 0 and TARGET method 0 are explicitly
specified in this fixup field.

- Because FRAME method 0 is used, byte lAH (the frame datum field) is an index
field. It contains OIH, a reference to the first SEGDEF record in the object module,
which declares the segment ̂ TEXT.

Similarly, byte IBH (the target datum field) references the ̂ TEXT segment.
- Because TARGET method 0 is specified, an offset, in addition to a segment, is

required to define the TARGET. This offset appears in the target displacement
field in bytes IC-IDH. The value of this offset is 0015H, corresponding to the offset
of the TARGET CLocalLabeO in its segment C^TEXT).

The sixth and final fixup field in this FIXUPP record (bytes 1E-22H) is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 9C 21 00 84 Ot 06 01 02 80 04 06 01 02 CC 06 04

0010 02 02 CC OB 06 01 01 04 10 00 01 01 15 00 08 13

04^01 01

This corresponds to the segment of the relocatable address LocalLabeh

mov ax,seg LocalLabel

- Bytes lE-lFH (the locat field) contain C813H (IIOOIOOOOOOIOOIIB). Bit 15 is 1, so
this is a fixup field. The M bit (bit 14) is 1, so the fixup is segment relative. The loc
field (bits 12-10) contains 2 (OlOB), so the LOCATION is a l6-bit segment value.
The data record offset (bits 9-0) indicates the 2 bytes in the LEDATA record
following the opcode 0B8H.

- Byte 20H (the fix dat byte) contains 04H, so FRAME method 0 and TARGET
method 4 are explicitly specified in this fixup field.

- Byte 21H (the frame datum field) contains OIH. Because FRAME method 0 is
specified, the frame datum is an index value that refers to the first SEGDEF record
in the object module (corresponding to the _ TEXT segment).

- Byte 22H (the target datum field) contains OIH. Because TARGET method 4 is
specified, the target datum also references the ̂ TEXT segment.

• Finally, byte 23H contains this FIXUPP record's checksum, 0A3H.

The next two FIXUPP records show how thread fields are used. The first of the two

contains six thread fields that can be referenced by both thread and fixup fields in sub
sequent FIXUPP records in the same object module:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 9C OD 00 00 03 01 02 02 01 03 04 40 01 45 01 CO 0

690 The MS-DOS Encyclopedia

Article 19: Object Modules

Bytes 03-04H, 05-06H, 07-08H, 09-0AH, OB-OCH, and OD-OEH represent the six
thread fields in this FIXUPP record. The high-order bit of the first byte of each of these
fields is 0, indicating that they are, indeed, thread fields and not fixup fields.

• Byte 03H, which contains OOH, is the thread data byte of the first thread field. Bit 7
of this byte is 0, indicating this is a thread field. Bit 6 (the D bit) is 0, so this field
specifies a TARGET. Bit 5 is 0, as it must always be. Bits 4 through 2 (the method field)
contain 0 (OOOB), which specifies TARGET method 0. Finally, bits 1 and 0 contain 0
(OOB), the thread number that identifies this thread field.

Byte 04H represents a segment index field, because method 0 of specifying a
TARGET references a segment. The value of the index, 3, is a reference to the third
SEGDEF record defined in the object module.

• Bytes 05-06H, 07-08H, and 09-0AH contain similar thread fields. In each, the
method field specifies TARGET method 0. The three thread fields also have thread
numbers of 1,2, and 3. Because TARGET method 0 is specified for each thread field,
bytes 06H, 08H, and OAH represent segment index fields, which reference the
second, first, and fourth SEGDEF records, respectively.

• Byte OBH (the thread data byte of the fifth thread field in this FIXUPP record) con
tains 40H (OlOOOOOOB). The D bit (bit 6) is 1, so this thread field specifies a FRAME.
The method field (bits 4 through 2) contains 0 (OOOB), which specifies FRAME
method 0. Byte OCH (which contains OIH) is therefore interpreted as a segment index
reference to the first SEGDEF record in the object module.

• Byte ODH is the thread data byte of the sixth thread field. It contains 45H
(OlOOOlOlB). Bit 6 is 1, which indicates that this thread specifies a FRAME. The
method field (bits 4 through 2) contains 1 (OOIB), which specifies FRAME method 1.
Byte OEM (which contains OIH) is therefore interpreted as a group index to the first
preceding GRPDEF record.

The thread number fields of the fifth and sixth thread fields contain 0 and 1, respec
tively, but these thread numbers do not conflict with the ones used in the first and
second thread fields, because the latter represent TARGET references, not FRAME
references.

The next FIXUPP example appears after the preceding record, in the same object module.
This FIXUPP record contains a fixup field in bytes 03-05H that refers to a thread in the
previous FIXUPP record:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90 04 00 04 09 9D F6 ...

• Bytes 03-04H represent the l6-bit locat field, which contains C409H
(IIOOOIOOOOOOIOOIB). Bit 15 of the locat field is 1, indicating a fixup field. The M bit
(bit 14) is 1, so this fixup is relative to a particular segment, which is specified later in
the fixup field. Bit 13 is 0, as it should be. Bits 12-10 (the loc field) contain 1 (OOIB),
so the LOCATION to be fixed up is a l6-bit offset. Bits 9-0 (the data record offset
field) contain 9 (OOOOOOIOOIB), so the LOCATION to be fixed up is represented at an
offset of 9 bytes into the data field of the preceding LEDATA or LIDATA record.

Section II: Programming in the MS-DOS Erwironment 691

Part E: Programming Tools

• Byte 05H (the fix dat byte) contains 9DH (lOOlllOlB). The F bit (bit 7) is 1, so this
fixup field references a thread field that, in turn, defines the method of specifying
the FRAME for the fixup. Bits 6-4 (the frame field) contain 1 (OOIB), the number of
the thread that contains the FRAME method. This thread contains a method number

of 1, which references the first GRPDEF record in the object module, thus specifying
the FRAME.

The T bit (bit 3 in the fix dat byte) is 1, so the TARGET method is also defined in a
preceding thread field. The targt field (bits 1 and 0 in the fix dat byte) contains 1
(OIB), so the TARGET thread field whose thread number is 1 specifies the TARGET.
The P bit (bit 3 in the fix dat byte) contains 1, which is combined with the low-order
bits of the method field in the thread field that describes the target to obtain TARGET
method number 4 (lOOB). The TARGET thread references the second SEGDEF record
to specify the TARGET.

The last FIXUPP example illustrates that the linker performs a fixup by adding the calcu
lated address value to the value in the LOCATION being fixed up. This function of the
linker can be exploited to use fixups to modify opcodes or program data, as well as to
resolve address references.

Consider how the following assembler instruction might be fixed up:

lea bx,alpha+10h ; alpha is an external symbol

Typically, this instruction is translated into an LEDATA record with zero in the LOCATION
(bytes 08-09H) to be fixed up:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 AO 08 00 01 00 00 8D IE 00 00 AC

The corresponding FIXUPP record contains a target displacement of lOH bytes (bytes
08-09H):

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 9C 08 00 04 02 02 01 01 10 00 82

This FIXUPP record specifies TARGET method 2, which is indicated by the targt field
(bits 2-0) of the fixdat field (byte 05H). In this case, the linker adds the target displace
ment to the address it has determined for the TARGET ialphd) and then completes the
fixup by adding this calculated address value to the zero value in the LOCATION.

The same result can be achieved by storing the displacement (lOH) directly in the
LOCATION in the LEDATA record:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 AO 08 00 01 00 00 8D IE 10 00 90

Then, the target displacement can be omitted from the FIXUPP record:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 90 06 00 04 02 06 01 01 90

692 The MS-DOS Encyclopedia

Article 19: Object Modules

This FIXUPP record specifies TARGET method 6, which does not use a target displace
ment. The linker performs this fixup by adding the address of alpha to the value in the
LOCATION, so the result is identical to the preceding one.

The difference between the two techniques is that in the latter the linker does not perform
error checking when it adds the calculated fixup value to the value in the LOCATION. If
this second technique is used, the linker will not flag arithmetic overflow or underflow
errors when it adds the displacement to the TARGET address. The first technique, then,
traps all errors; the second can be used when overflow or underflow is irrelevant and an
error message would be undesirable.

Section II: Programming in the MS-DOS Environment 693

Part E: Programming Tools

OAOH LEDATA Logical Enumerated Data Record

The LEDATA record contains contiguous binary data—executable code or program
data—that is eventually copied into the program's executable binary image.

The binary data in an LEDATA record can be modified by the linker if the record is fol
lowed by a FIXUPP record.

Record format

AOH length segment index

1

enumerated

data offset
data

\ can be /
repeated

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value of 1 indicates the first SEGDEF
record, a value of 2 the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LEDATA record is to be placed.

Enumerated data offset

The enumerated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
enumerated data offset fields indicate the location where the enumerated data will be
placed in the run-time memory map.

Data

The data field contains the actual data, which can be either executable 8086 instructions
or program data. The maximum size of the data field is 1024 bytes.

Location in object module

Any LEDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LEDATA record requires a fixup, a FIXUPP record must imme
diately follow the LEDATA record.

Example

The following LEDATA record contains a simple text string:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 AO 13 00 02 00 00 48 65 6C 6C 6F 20 20 77 6F 72 Hello, wor

0010 60 64 OD OA 24 A8 ld..$.

• Byte OOH contains OAOH, which identifies this as an LEDATA record.
• Bytes 01-02H contain 0013H, the length of the remainder of the record.

chk
sum

694 The MS-DOS Encyclopedia

Article 19: Object Modules

• Byte 03H (the segment index field) contains 02H, a reference to the second SEGDEF
record in the object module.

• Bytes 04-05H (the enumerated data offset field) contain OOOOH. This is the offset,
from the base of the segment indicated by the segment index field, at which the data
in the data field will be placed when the program is linked. Of course, this offset is
subject to relocation by the linker because the segment declared in the specified
SEGDEF record may be relocatable and may be combined with other segments
declared in other object modules.

• Bytes 06-14H (the data field) contain the actual data.
• Byte 15H contains the checksum, 0A8H.

Section II: Programming in the MS-DOS Environment 695

Part E: Programming Tools

0A2H LIDATA Logical Iterated Data Record

Like the LEDATA record, the LIDATA record contains binary data—executable code or
program data. The data in an LIDATA record, however, is specified as a repeating pattern
(iterated), rather than by explicit enumeration.

The data in an LIDATA record may be modified by the linker if the LIDATA record is
followed by a FEKUPP record.

Record format

A2H length
I

/C//

segment index
iterated

data offset
Iterated data block

-///-

chk
sum

^can be^
repeated

Segment index

The segment index is a variable-length index field. The index number in this field refers
to a previous SEGDEF record in the object module. A value of 1 indicates the first SEGDEF
record, 2 indicates the second, and so on. That SEGDEF record, in turn, indicates the
segment into which the data in this LIDATA record is to be placed when the program is
executed.

Iterated data offset

The iterated data offset is a 2-byte offset into the segment referenced by the segment
index, relative to the base of the segment. Taken together, the segment index and the
iterated data offset fields indicate the location where the iterated data will be placed in
the run-time memory map.

Iterated data block

The iterated data block is a variable-length field containing the actual data—executable
code and program data. Iterated data blocks can be nested, so one iterated data block
can contain one or more other iterated data blocks. Microsoft LINK restricts the maximum

size of an iterated data block to 512 bytes.

The format of the iterated data block is

repeat
count

block
count

—///—

content

—///—

• Repeat count is a 2-byte field indicating the number of times the content field is to
be repeated.

• Block count is a 2-byte field indicating the number of iterated data blocks in the
content field. If the block count is 0, the content field contains data only.

696 The MS-DOS Encyclopedia

Article 19: Object Modules

• Content is a variable-length field that can contain either nested iterated data blocks
(if the block count is nonzero) or data (if the block count is 0). If the content field

contains data, the field contains a 1-byte count of the number of data bytes in the field,
followed by the actual data.

Location in object module

Any LIDATA records in an object module must be preceded by the SEGDEF records to
which they refer. Also, if an LIDATA record requires a fixup, a FDCUPP record must imme
diately follow the LIDATA record.

Example

This sample LIDATA record corresponds to the following assembler statement, which
declares a 10-element array containing the strings ALPHA and BETA.

db 10 dupCALPHA*, 'BETA')

The LIDATA record is

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 A2 IB 00 01 00 00 OA 00 02 00 01 00 00 00 05 41 A

0010 4C 50 48 41 01 00 00 00 04 42 45 54 41 A9 LPHA BETA.

• Byte OOH contains 0A2H, identifying this as an LIDATA record.
• Bytes 01-02H contain IBH, the length of the reimainder of the record.
• Byte 03H (the segment indeoc) contains OIH, a reference to the first SEGDEF record in

this object module, indicating that the data declared in this LIDATA record is to be
placed into the segment described by the first SEGDEF record.

• Bytes 04-05H (the iterated data offset) contain OOOOH, so the data in this LIDATA
record is to be located at offset OOOOH in the segment designated by the segment
index.

• Bytes 06-ICH represent an iterated data block:
- Bytes 06-07H contain the repeat count, OOOAH, which indicates that the content

field of this iterated data block is to be repeated 10 times.
- Bytes 08-09H (the block count for this iterated data block) contain 0002H, which

indicates that the content field of this iterated data block (bytes OA-ICH) con
tains two nested iterated data block fields (bytes 0A-13H and bytes 14-lCH).

- Bytes OA-OBH contain OOOIH, the repeat count for the first nested iterated data
block. Bytes OC-ODH contain OOOOH, indicating that the content field of this
nested iterated data block contains data, rather than more nested iterated data

blocks. The content field (bytes 0E-13H) contains the data: Byte OEH contains
05H, the number of subsequent data bytes, and bytes 0F-13H contain the actual
data (the string ALPHA).

- Bytes 14-lCH represent the second nested iterated data block, which has a format
similar to that of the block in bytes 0A-13H. This second nested iterated data
block represents the 4-byte string BETA.

• Byte IDH is the checksum, 0A9H.

Section II: Programming in the MS-DOS Environment 697

Part E: Programming Tools

OBOH COMDEF Communal Names Definition Record

The COMDEF record is a Microsoft extension to the basic set of 8086 object record types
defined by Intel that declares a list of one or more communal variables/The COMDEF
record is recognized by versions 3 50 and later of LINK. Microsoft encourages the use
of the COMDEF record for declaratioii of communal variables.

Record format

BOH length

-✓/A-
communal
name

-///-

type
index

data
segment
type

-tOA-
communal

length
-y//-

chk
sum

^can be.
repeated

Communal name

The communal name field is a variable-length field that contains the name of a communal
variable. The first byte of this field indicates the length of the name contained in the re
mainder of the field.

Type index

The type index field is an index field that references a previous TYPDEF record in the
object module. A value of 1 indicates the first TYPDEF record in the module, a value of 2
indicates the second, and so on. The type index value can be 0 if no data type is associated
with the public name.

Data segment type

The data segment type field is a single byte that indicates whether the communal variable
is FAR or NEAR. There are only two possible values for data segment type:

6lH FAR variable

62H NEAR variable

Communal length

The communal length is a variable-length field that indicates the amount of memory to be
allocated for the communal variable. The contents of this field depend on the value in the
data segment type field. If the data segment type is NEAR (62H), the communal length
field contains the size (in bytes) of the communal variable:

-yZA-

varlable size

698 The MS-DOS Encyclopedia

Article 19: Object Modules

If the data segment type is FAR (6lH), the communal length field is formatted las follows:

number of

elements

/C//'

element size

A FAR communal variable is viewed as an array of elements of a specified size. Thus, the
number ofelements field is a variable-length field representing the number of elements in
the array, and the element size field is a variable-length field that indicates the size (in
bytes) of each element. The amount of memory required for a FAR communal variable is
thus the product of the number ofelements and the element size.

The format of the variable size, number of elements, and element size fields depends upon
the magnitude of the values they contain:

• If the value is less than 128 (BOH), the field is formatted as a 1-byte field containing the
actual value:

value

• If the value is 128 (BOH) or greater, the field is formatted with an extra initial byte that
indicates whether the value is represented in the subsequent 2, 3, or 4 bytes:

81H

84H

2-byte value
__!

3-byte value

T 1 r

4-byte value
j I L

88H

Groups of communal name, type index, data segment type, and communal length fields
can be repeated so that more than one communal variable can be declared in the same
COMDEF record.

Location in object module

Any object module that contains COMDEF records must also contain one COMENT record
with the comment class OAIH, indicating that Microsoft extensions to the Intel object
record specification are included in the object module. This COMENT record must appear
before any COMDEF records in the object module.

Section II: Programming in the MS-DOS Environment 699

Part E: Programming Tools

Example

The following COMDEF record was generated by the Microsoft C Compiler version 4.0 for
these public variable declarations:

int foo; /* 2-byte integer */

char foo2[32768]; /* 32768-byte array */

char far foo3[10][2][20]; /* 400-byte array */

The COMDEF record is

0 1 2 3 4 5 6 7 8 . 9 A B C D E F

0000 BO 20 00 04 5F 66 6F 6F 00 62 02 05 5F 66 6F 6F . foo.b foo

0010 32 00 62 81 00 80 05 5F 66 6F 6F 33 00 61 81 90 2.b foo3.a..

0020 01 01 99

• Byte OOH contains OBOH, indicating that this is a COMDEF record.
• Bytes 01-02H contain 0020H, the length of the remainder of the record.
• Bytes 03-0AH, 0B-15H, and 16-21H represent three declarations for the communal

variables foo, foo2, and foo3. The C compiler prepends an underscore to each of the
names declared in the source code, so the symbols represented in this COMDEF
record are —foo, —foo2, and —foo3.
- Byte 03H contains 04H, the length of the first communal name in this record.

Bytes 04-07H contain the name itself i—fo6). Byte 08H (the type index field) con
tains OOH, as required. Byte 09H (the data segment type field) contains 62H, indi
cating this is a NEAR variable. Byte OAH (the communal length field) contains
02H, the size of the variable in bytes.

- Byte OBH contains 05H, the length of the second communal name. Bytes OC-IOH
contain the name, —foo2. Byte IIH is the type index field, which again contains
OOH as required. Byte 12H (the data segment type field) contains 62H, indicating
that —foo2 is a NEAR variable.

Bytes 13-15H (the communal length field) contain the size in bytes of the variable.
The first byte of the communal length field (byte 13H) is 81H, indicating that the
size is represented in the subsequent 2 bytes of data—bytes 14-15H, which con
tain the value 8000H.

- Bytes 16--1BH represent the communal name field for —foo3, the third communal
variable declared in this record. Byte ICH (the type index field) again contains
OOH as required. Byte IDH (the data segment type field) contains 6lH, indicating
this is a FAR variable. This means the communal length field is formatted as a
number of elements field (bytes 1E~20H, which contain the value 0190H) and an
element size field (byte 21H, which contains OIH). The total size of this communal
variable is thus 190H times 1, or 400 bytes.

• Byte 22H contains the checksum, 99H.

Richard Wilton

700 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Article 20

The Microsoft Object Linker

MS-DOS object modules can be processed in two ways: They can be grouped together in
object libraries, or they can be linked into executable files. All Microsoft language transla
tors are distributed with two utility programs that process object modules: The Microsoft
Library Manager (LIB) creates and modifies object libraries; the Microsoft Object Linker
(LINK) processes the individual object records within object modules to create executable
files.

The following discussion focuses on LINK because of its crucial role in creating an execut
able file. Before delving into the complexities of LINK, however, it is worthwhile reviewing
how object modules are managed.

Object Files, Object libraries, and LIB

Compilers and assemblers translate source-code modules into object modules (Figure
20-1). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming Tools:

Object Modules. An object module consists of a sequence of object records that describe
the form and content of part of an executable program. An MS-DOS object module always
starts with a THEADR record; subsequent object records in the module follow the
sequence discussed in the Object Modules article.

Object modules can be stored in either of two types of MS-DOS files: object files and object
libraries. By convention, object files have the filename extension .OBJ and object libraries
have the extension .LIB. Although both object files and object libraries contain one or

Source code

Language translator or assembler
> r

Object module Object module Object library
(.OBJ file) librarian (LIB) (.LIB file)

Linker (LINK)

Executable

binary image
(.EXEfile)

^ MS-DOS loader

(Program runs)

Figure 20-1. Object modules, object libraries, LIB, and LINK.

Section II: Programming in the MS-DOS Environment 701

Part E: Programming Tools

more object modules, the files and the libraries have different internal organization.
Furthermore, LINK processes object files and libraries differently.

The structures of object files and libraries are compared in Figure 20-2. An object file is a
simple concatenation of object modules in any arbitrary order. (Microsoft discourages the
use of object files that contain more than one object module; Microsoft language translators
never generate more than one object module in an object file.) In contrast, a library con
tains a hashed dictionary of all the public symbols declared in each of the object modules,
in addition to the object modules themselves. Each symbol in the dictionary is associated
with a reference to the object module in which the symbol was declared.

LINK processes object files differently than it does libraries. When LINK builds an execut
able file, it incorporates all the object modules in all the object files it processes. In con
trast, when LINK processes libraries, it uses the hashed symbol dictionary in each library
to extract object modules selectively—it uses an object module from a library only when
the object module contains a symbol that is referenced within some other object module.
This distinction between object files and libraries is important in understanding what
LINK does.

(a)

(b)

Object module

Object module

Object module

Symbol dictionary

Object module

Object module

Library header

Object module

Figure 20-2. Structures of an objectfile and an object library, (a) An objectfile contains one or more object
modules. (Microsoft discourages using more than one object module per objectfile.) (b) An object library con
tains one or more object modules plus a hashed symbol dictionary indicating the object modules in which
each public symbol is defined.

702 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

What LINK Does

The function of LINK is to translate object modules into an executable program. LINK'S
input consists of one or more object files (.OBJ files) and, optionally, one or more libraries
(.LIB files). LINK'S output is an executable file (.EXE file) containing binary data that can
be loaded directly from the file into memory and executed. LINK can also generate a sym
bolic address map listing (.MAP file)—a text file that describes the organization of the
.EXE file and the correspondence of symbols declared in the object modules to addresses
in the executable file.

Building an executable file

LINK builds two types of information into a .EXE file. First, it extracts executable code and
data from the LEDATA and LIDATA records in object modules, arranges them in a specified
order according to its rules for segment combination and relocation, and copies the result
into the .EXE file. Second, LINK builds a header for the .EXE file. The header describes the

size of the executable program and also contains a table of load-time segment relocations
and initial values for certain CPU registers. See Pass 2 below.

Relocation and linking

In building an executable image from object modules, LINK performs two essential tasks:
relocation and linking. As it combines and rearranges the executable code and data it ex
tracts from the object modules it processes, LINK frequently adjusts, or relocates, address
references to account for the rearrangements (Figure 20-3). LINK links object modules by
resolving address references among them. It does this by matching the symbols declared
in EXTDEF and PUBDEF object records (Figure 20-4). LINK uses FEXUPP records to deter
mine exactly how to compute both address relocations and linked address references.

object Module Order

LINK processes input files from three sources: object files and libraries specified explicitly
by the user (in the command line, in response to LINK'S prompts, or in a response file)
and object libraries named in object module COMENT records.

Code segment (64H bytes)

Label 1 at offset lOH Code segment (50H bytes)
Label2 at offset lOH

Module! ModuleZ

Code segment (B4H bytes)

Label! at offset lOH

Label2 at offset 74H

Combined code segment

Figure 20-3. A simple relocation. Both object modules contain code that LINK combines into one logical
segment. In this example, LINK appends the 50H bytes of code in Module2 to the 64H bytes of code in Modulel.
LINK relocates all references to addresses in the code segment so that they apply to the combined segment.

Section II: Programming in the MS-DOS Environment 703

Part E: Programming Tools

Code segment:

Code segment
EXTDEF Label2

jmpLabel2

Modulel

Code segment
PUBDEFLabel2

Label2: ;

Module2

jmp Label2

Label2:

Combined code segment

Figure 20-4. Resolving an external reference. LINK resolves the external reference in Modulel (declared in
an EXTDEF record) with the address of Label2 in Module2 (declared in a PUBDEF record).

LINK always uses all the object modules in the object files it processes. In contrast, it
extracts individual object modules from libraries—only those object modules needed to
resolve references to public symbols are used. This difference is implicit in the order in
which LINK reads its input files:

1. Object files specified in the command line or in response to the Object Modules
prompt

2. Libraries specified in the command line or in response to the Libraries prompt
3. Libraries specified in COMENT records

The order in which LINK processes object modules influences the resulting executable
file in three ways. First, the order in which segments appear in LINK'S input files is
reflected in the segment structure of the executable file. Second, the order in which LINK
resolves external references to public symbols depends on the order in which it finds the
public symbols in its input files. Finally, LINK derives the default name of the executable
file from the name of the first input object file.

Segment order in the executable file

In general, LINK builds named segments into the executable file in the order in which it
first encounters the SEGDEF records that declare the segments. (The /DOSSEG switch also
affects segment order. See Using the /DOSSEG Switch below.) This means that the order in
which segments appear in the executable file can be controlled by linking object modules
in a specific order. In assembly-language programs, it is best to declare all the segments
used in the program in the first object module to be linked so that the segment order in
the executable file is under complete control.

Order in which references are resolved

LINK resolves external references in the order in which it encounters the corresponding
public declarations. This fact is important because it determines the order in which LINK
extracts object modules from libraries. When a public symbol required to resolve an exter
nal reference is declared more than once among the object modules in the input libraries,
LINK uses the first object module that contains the public symbol. This means that the
actual executable code or data associated with a particular external reference can be
varied by changing the order in which LINK processes its input libraries.

704 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

For example, imagine that a C programmer has written two versions of a function named
myfuncQlYvaX is called by the program MYPROG.C. One version of myfuncOis for
debugging; its object module is found in MYFUNC.OBJ. The other is a production version
whose object module resides in MYLIB.LIB. Under normal circumstances, the program
mer links the production version of myfuncOhy using MYLIB.LIB (Figure 20-5). To use
the debugging version of myfuncCX the programmer explicitly includes its object module
(MYFUNC.OBJ) when LINK is executed. This causes LINK to build the debugging version
of myfuncO into the executable file because it encounters the debugging version in
MYFUNC.OBJ before it finds the qther version in MYLIB.LIB.

To exploit the order in which LINK resolves external references, it is important to know
LINK'S library search strategy: Each individual library is searched repeatedly (from first
library to last, in the sequence in which they are input to LINK) until no further external
references can be resolved.

main {)

{ EXTUEF fox myfunc()
x=myfunc(y);

}

MYPROG.C MYPROG.OBJ

myfunc(a)

int a;
w PUBDEF for myfunc()

{

}

MYFUNC.OBJ

MYFUNC.C

PUBDEF for myfunc()

Executable code

contains)

derived from either

MYFUNC.OBJ or

MYLIB.OBJ

MYLIB.LIB

Figure 20-5. Ordered object module processing by LINK, (a) With the command LINK MYPROG,„MYLIB,
the production version c/myfunc() in MYLIB.LIB is used, (b) With the command LINK MYPROG+
MYFUNC„,MYLIB, the debugging version q^myfuncO in MYFUNC.OBJ is used.

Section II: Programming in the MS-DOS Environment 705

Part E: Programming Tools

ModuleA

CallC

ModuleB

ModuleC

CallB

ModuleMAIN

Call A

LIB1.LIB Lro2.LIB MYPROG.OBJ

ModuleMAIN

ModuleA

ModuleC

ModuleB

Start of

program

MYPROG.EXE

Figure 20-6. Library search order. Modules are incorporated into the executablefile as LINK extracts them
from the libraries to resolve external references.

The example in Figure 20-6 demonstrates this search strategy. Library LIBl.LIB contains
object modules A and B, library LIB2.LIB contains object module C, and the object file
MYPROG.OBJ contains the object module MAIN\ modules MAIN, A, and C each contain
an external reference to a symbol declared in another module. When this program is
linked with

OLINK MYPROG, , ,LIB1+LIB2 <Enter>

LINK starts by incorporating the object module MAIN into the executable program. It
then searches the input libraries until it resolves all the external references:

1. Process MYPROG.OBJ, find unresolved external reference to A.
2. Search LIBl.LIB, extract A, find unresolved external reference to Q

3. Search LIBl.LIB again; reference to Cremains unresolved.
4. Search LIB2.LIB, extract Q find unresolved external reference to B.

5. Search LIB2.LIB again; reference to B remains unresolved.
6. Search LIBl.LIB again, extract i5.
7. No more unresolved external references, so end library search.

The order in which the modules appear in the executable file thus reflects the order in
which LINK resolves the external references; this, in turn, depends on which modules
were contained in the libraries and on the order in which the libraries are input to LINK.

Name of the executable file

If no filename is specified in the command line or in response to the Run File prompt,
LINK derives the name of the executable file from the name of the first object file it pro
cesses. For example, if the object files PROGl.OBJ and PR0G2.0BJ are linked with the
command

OLINK PR0G1+PR0G2; <Enter>

the resulting executable file, PROGl.EXE, takes its name from the first object file pro
cessed by LINK.

706 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Segment Order and Segment Combinations

LINK builds segments into the executable file by applying the following sequence of rules:

1. Segments appear in the executable file in the order in which their SEGDEF declara
tions first appear in the input object modules.

2. Segments in different object modules are combined if they have the same name and
class and a public, memory, stack, or common combine type. All address references
within the combined segments are relocated relative to the start of the combined
segment.

- Segments with the same name and either the public or the memory combine type
are combined in the order in which they are processed by LINK. The size of the
resulting segment equals the total size of the combined segments.

- Segments with the same name and the stack combine type are overlapped so that
the data in each of the overlapped segments ends at the same address. The size of
the resulting segment equals the total size of the combined segments. The resulting
segment is always paragraph aligned.

- Segments with the same name and the common combine type are overlapped so
that the data in each of the overlapped segments starts at the same address. The
size of the resulting segment equals the size of the largest of the overlapped
segments.

3. Segments with the same class name are concatenated.
4. If the /DOSSEG switch is used, the segments are rearranged in conjunction with

DGROUP. See Using the /DOSSEG Switch below.

These rules allow the programmer to control the organization of segments in the execut
able file by ordering SEGMENT declarations in an assembly-language source module,
which produces the same order of SEGDEF records in the corresponding object module,
and by placing this object module first in the order in which LINK processes its input files.

A typical MS-DOS program is constructed by declaring all executable code and data seg
ments with the public combine type, thus enabling the programmer to compile the pro
gram's source code from separate source-code modules into separate object modules.
When these object modules are linked, LINK combines the segments from the object
modules according to the above rules to create logically unified code and data segments
in the executable file.

Segment classes

LINK concatenates segments with the same class name after it combines segments with
the same segment name and class. For example. Figure 20-7 shows the following compiling
and linking:

OMASM MYPR0G1 ; <Enter>

OMASM MYPR0G2; <Enter>

OLINK MYPR0G1+MYPR0G2; <Enter>

Section II: Programming in the MS-DOS Environment 707

_TEXT SEGMENT public 'CODE'

FAR_TEXT SEGMENT public 'CODE'

_DATA SEGMENT public 'DATA'

MYPROG1.ASM

SEGDEFfor_TEXT

SEGDEE for FAR_TEXT

SEGDEFfor DATA

MYPROGl.OBJ

segment

FAR_TEXT

segment ^

_TEXT SEGMENT public 'CODE'

FAR_TEXT SEGMENT public 'CODE'

MYPROG2.ASM

SEGDEFfor_TEXT

SEGDEF for FAR_TEXT

MYPR0G2.0BJ

segment

Imyprogeexe

Figure 20-7. Segment order and concatenation by LINK. The start ofeachfile, corresponding to the lowest
address, is at the top.

After MYPROGl.ASM and MYPROG2.ASM have been compiled, LINK builds the _TEXT
and FAR_TEXT segments by combining segments with the same name from the different
object modules. Then, _TEXT and EAR_TEXT are concatenated because they have the
same class name ('CODE')- —TEXT appears before EAR—TEXT in the executable file
because LINK encounters the SEGDEF record for —TEXT before it finds the SEGDEF

record for EAR-TEXT

Segment alignment

LINK aligns the starting address of each segment it processes according to the alignment
specified in each SEGDEF record. It adjusts the alignment of each segment it encounters
regardless of how that segment is combined with other segments of the same name or
class. (The one exception is stack segments, which always start on a paragraph
boundary.)

_DATA SEGMENT byte public _DATA SEGMENT word public _DATA SEGMENT para public
35H bytes 35H bytes 35H bytes

Module 1 Module2 Module3

70IIP'*"*

Module 1

Module2

Module3

35H bytes (byte aligned)

35H bytes (word aligned)

35H bytes (paragraph aligned)

Resulting _DATA segment in .EXE file

Figure 20-8. Alignment of combined segments. LINK enforces segment alignment by padding combined
segments with uninitialized data bytes.

708 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Segment alignment is particularly important when public segments with the same name
and class are combined from different object modules. Note what happens in Figure 20-8,
where the three concatenated ̂ DATA segments have different alignments. To enforce the
word alignment and paragraph alignment of the ̂ DATA segments in Module2 and
Modules, LINK inserts one or more bytes of padding between the segments.

Segment groups

A segment group establishes a logical segment address to which all offsets in a group of
segments can refer. That is, all addresses in all segments in the group can be expressed as
offsets relative to the segment value associated with the group (Figure 20-9). Declaring
segments in a group does not affect their positions in the executable file; the segments in
a group may or may not be contiguous and can appear in any order as long as all address
references to the group fall within 64 KB of each other.

DataSegl,DataSeg2

byte public 'CODE'

OSiCodeSeg

ax,offset DataSeg2:TestData

ax,offset DataGroup;TestData

DataGroup GROUP

CodeSeg SEGMENT

ASSUME

mov

mov

para public 'DATA'

lOOh dup(?)

para public 'DATA'

Figure 20-9. Example of group addressing. The first MOV loads the value OOH into AX (the offset of TestData
relative to DataSeg2^; the second MOV loads the value lOOH into AX (the offset of TestData relative to the group
DataGroup^.

CodeSeg ENDS

DataSegl SEGMENT

DB

DataSegl ENDS

DataSeg2 SEGMENT

TestData DB

DataSeg2 ENDS

END

LINK reserves one group name, DGROUP, for use by Microsoft language translators.
DGROUP is used to group compiler-generated data segments and a default stack segment.
See DGROUP below.

LINK Internals

Many programmers use LINK as a "black box" program that transforms object modules
into executable files. Nevertheless, it is helpful to observe how LINK processes object
records to accomplish this task.

Section II: Programming in the MS-DOS Environment 709

Part E: Programming Tools

LINK is a two-pass linker; that is, it reads all its input object modules twice. On Pass 1,
LINK builds an address map of the segments and symbols in the object modules. On Pass
2, it extracts the executable code and program data from the object modules and builds
a memory image—an exact replica—of the executable file.

The reason LINK builds an image of the executable file in memory, instead of simply
copying code and data from object modules into the executable file, is that it organizes the
executable file by segments and not by the order in which it processes object modules.
The most efficient way to concatenate, combine, and relocate the code and data is to build
a map of the executable file in memory during Pass 1 and then fill in the map with code
and data during Pass 2.

In versions 3-52 and later, whenever the /I (/INFORMATION) switch is specified in the
command line, LINK displays status messages at the start of each pass and as it processes
each object module. If the /M (/MAP) switch is used in addition to the /I switch, LINK also
displays the total length of each segment declared in the object modules. This information
is helpful in determining how the structure of an executable file corresponds to the con
tents of the object modules processed by LINK.

Passl

During Pass 1, LINK processes the LNAMES, SEGDEF, GRPDEF, COMDEF, EXTDEF, and
PUBDEF records in each input object module and uses the information in these object
records to construct a symbol table and an address map of segments and segment groups.

Symbol table

As each object module is processed, LINK uses the symbol table to resolve external
references (declared in EXTDEF and COMDEF records) to public symbols. If LINK pro
cesses all the object files without resolving all the external references in the symbol table,
it searches the input libraries for public symbols that match the unresolved external
references. LINK continues to search each library until all the external references in the
symbol table are resolved.

Segments and groups

LINK processes each SEGDEF record according to the segment name, class name, and
attributes specified in the record. LINK constructs a table of named segments and updates
it as it concatenates or combines segments. This allows LINK to associate each public sym
bol in the symbol table with an offset into the segment in which the symbol is declared.

LINK also generates default segments into which it places communal variables declared
in COMDEF records. Near communal variables are placed in one paragraph-aligned public
segment named c_common, with class name BSS (block storage space) and group

710 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

DGROUP. Far communal variables are placed in a paragraph-aligned segment named
FAR_3SS, with class name FAR^BSS. The combine type of each far communal variable's
FARJ3SS segment is private (that is, not public, memory, common, or stack). As many
FARJBSS segments as necessary are generated.

After all the object files have been read and all the external references in the symbol table
have been resolved, LINK has a complete map of the addresses of all segments and sym
bols in the program. If a .MAP file has been requested, LINK creates the file and writes
the address map to it. Then LINK initiates Pass 2.

Pass 2

In Pass 2, LINK extracts executable code and program data from the LEDATA and LIDATA
records in the object modules. It builds the code and data into a memory image of the
executable file. During Pass 2, LINK also carries out all the address relocations and fixups
related to segment relocation, segment grouping, and resolution of external references, as
well as any other address fixups specified explicitly in object module FDCUPP records.

If it determines during Pass 2 that not enough RAM is available to contain the entire image,
LINK creates a temporary file in the current directory on the default disk drive. (LINK ver
sions 3.60 and later use the environment variable TMP to find the directory for the tempo
rary scratch file.) LINK then uses this file in addition to all the available RAM to construct
the image of the executable file. (In versions of MS-DOS earlier than 3.0, the temporary file
is named VM.TMP; in versions 3.0 and later, LINK uses Interrupt 21H Function 5AH to
create the file.)

LINK reads each of the input object modules in the same order as it did in Pass 1. This time
it copies the information from each object module's LEDATA and LIDATA records into the
memory image of each segment in the proper sequence. This is when LINK expands the
iterated data in each LIDATA record it processes.

LINK processes each LEDATA and LIDATA record along with the corresponding FDCUPP
record, if one exists. LINK processes the FDCUPP record, performs the address calculations
required for relocation, segment grouping, and resolving external references, and then
stores binary data from the LEDATA or LIDATA record, including the results of the address
calculations, in the proper segment in the memory image. The only exception to this
process occurs when a FDCUPP record refers to a segment address. In this case, LINK adds
the address of the fixup to a table of segment fixups; this table is used later to generate the
segment relocation table in the .EXE header.

when all the data has been extracted from the object modules and all the fixups have
been carried out, the memory image is complete. LINK now has all the information it
needs to build the .EXE header (Table 20-1). At this point, therefore, LINK creates the
executable file and writes the header and all segments into it.

Section II: Programming in the MS-DOS Environment 711

Part E: Programming Tools

Table 20-1. How LINK BuUds a.EXEFUe Header.

Offeet Contents Comments

OOH 'MZ'

02H Length of executable
image MOD 512

04H Length of executable image in
512-byte pages, including last
partial page (if any)

06H Number of run-time segment
relocations

08H Size of the .EXE header in 16-byte
paragraphs

OAH MINALLOC: Minimum amount of

RAM to be allocated above end of

the loaded program (in 16-byte
paragraphs)

OCH MAXALLOC: Maximum amount of

RAM to be allocated above end

of the loaded program (in 16-byte
paragraphs)

OEH Stack segment (initial value for SS
register); relocated by MS-DOS
when program is loaded

lOH Stack pointer (initial value for
register SP)

12H Checksum

14H Entry point offset (initial value for
register IP)

16H Entry point segment (initial value
for register CS); relocated by
MS-DOS when program is loaded,

18H Offset of start of segment relocation
table relative to start of .EXE

header

1 AH Overlay number

ICR Reserved

1

.EXE file signature

Total size of all segments plus .EXE
file header

Number of segment fixups

Size of segment relocation table

Size of uninitialized data and/or stack

segments at end of program (0 if /HI
switch is used)

0 if /HI switch is used; value specified
with /CP switch; FFFFH if/CP and
/HI switches are not used

Address of stack segment relative to
start of executable image

Size of stack segment in bytes

One's complement of sum of all words
in file, excluding checksum itself

MODEND object record that specifies
program start address

0 for resident segments; >0 for overlay
segments

712 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Using LINK to Organize Memory

By using LINK to rearrange and combine segments, a programmer can generate an exe
cutable file in which segment order and addressing serve specific purposes. As the follow
ing examples demonstrate, careful use of LINK leads to more efficient use of memory and
simpler, more efficient programs.

Segment order for a TSR

In a terminate-and-stay-resident (TSR) program, LINK must be used carefully to generate
segments in the executable file in the proper order. A typical TSR program consists of a
resident portion, in which the TSR application is implemented, and a transient portion,
which executes only once to initialize the resident portion. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Customizing ms-dos: Terminate-and-Stay-Resident Utilities.

Because the transient portion of the TSR program is executed only once, the memory
it occupies should be freed after the resident portion has been initialized. To allow the
MS-DOS Terminate and Stay Resident function (Interrupt 21H Function 31H) to free this
memory when it leaves the resident portion of the TSR program in memory, the TSR pro
gram must have its resident portion at lower addresses than its transient portion.

Low Memory ResidentCodeSeg

ResidentCodeSeg

ResidentDataSeg

ResidentDataSeg

StackSeg

StackSeg

TransientCodeSeg

TransientCodeSeg

TransientDataSeg

High Memory TransientDataSeg

SEGMENT para

.(executable code)

ENDS

SEGMENT word

.(program data)

ENDS

SEGMENT para

.(stack)

ENDS

SEGMENT para

.(executable code)

ENDS

SEGMENT word

. (program data)

ENDS

V Resident

portion

V Transient

portion

J

Figure 20-10. Segment orderfor a terminate-and-stay-resident program.

Section II: Programming in the MS-DOS Environment 713

Part E: Programming Tools

In Figure 2040, the segments containing the resident code and data are declared before
the segments that represent the transient portion of the program. Because LINK preserves
this segment order, the executable program has the desired structure, with resident code
and data at lower addresses than transient code and data. Moreover, the number of para
graphs in the resident portion of the program, which must be computed before Interrupt
21H Function 31H is called, is easy to derive from the segment structure: This value is the
difference between the segment address of the program segment prefix, which immedi
ately precedes the first segment in the resident portion, and the address of the first seg
ment in the transient portion of the program.

Groups for unified segment addressing

In some programs it is desirable to maintain executable code and data in separate logical
segments but to address both code and data with the same segment register. For example,
in a hardware interrupt handler, using the CS register to address program data is generally
simpler than using DS or ES.

In the routine in Figure 20-11, code and data are maintained in separate segments for pro
gram clarity, yet both can be addressed using the CS register because both code and data
segments are included in the same group. (The SNAP.ASM listing in the Terminate-and-
Stay-Resident Utilities article is another example of this use of a group to unify segment
addressing.)

ISRgroup GROUP CodeSeg,DataSeg

CodeSeg SEGMENT byte public 'CODE'

ASSUME OS:ISRgroup

mov ax,offset ISRgroup:CodeLabel

CodeLabel: mov bx,ISRgroup:DataLabel

CodeSeg ENDS

DataSeg SEGMENT para public 'DATA'

DataLabel DW 7

DataSeg ENDS

END

Figure 20-11. Code and data included in the same group. In this example, addresses within both CodeSeg
and DataSeg are referenced relative to the CS register by grouping the segments (using the assembler GROUP
directive) and addressing the group through CS (using the assembler ASSUME directive).

Uninitialized data segments

A segment that contains only uninitialized data can be processed by LINK in two ways,
depending on the position of the segment in the program. If the segment is not at the end
of the program, LINK generates a block of bytes initialized to zero to represent the seg
ment in the executable file. If the segment appears at the end of the program, however,
LINK does not generate a block of zeroed bytes. Instead, it increases the minimum run
time memory allocation by increasing MINALLOC (specified at offset OAH in the .EXE
header) by the amount of memory required for the segment.

714 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Therefore, if it is necessary to reserve a large amount of uninitialized memory in a seg
ment, the size of the .EXE file can be decreased by building the segment at the end of a
program (Figure 20-12). This is why, for example, Microsoft high-level-language translators
always build BSS and STACK segments at the end of compiled programs. (The loader does
not fill these segments with zeros; a program must still initialize them with appropriate
values.)

(a) CodeSeg SEGMENT byte public 'CODE'

(b)

ASSUME OS:CodeSeg,ds;DataSeg

ret

CodeSeg ENDS

DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

END

DataSeg SEGMENT word public 'DATA'

BigBuffer DB 10000 dup(?)

DataSeg ENDS

CodeSeg SEGMENT byte public 'CODE'

ASSUME cs:CodeSeg,ds:DataSeg

ret

CodeSeg ENDS

END

Figure 20-12. LINK processing of uninitialized data segments, (a) When DataSeg, which contains only
uninitialized data, is placed at the end of this program, the size of the .EXEfile is only 513 bytes, (b) When
DataSeg is notplaced at the end ofthe program, the size ofthe .EXEfile is 10513 bytes.

Overlays

If a program contains two or more subroutines that are mutually independent—that is,
subroutines that do not transfer control to each other—LINK can be instructed to build

each subroutine into a separately loaded portion of the executable file. (This instruction
is indicated in the command line when LINK is executed by enclosing each overlay sub
routine or group of subroutines in parentheses.) Each of the subroutines can then be over
laid as it is needed in the same area of memory (Figure 20-13). The amount of memory
required to run a program that uses overlays is, therefore, less than the amount required
to run the same program without overlays.

A program that uses overlays must include the Microsoft run-time overlay manager. The
overlay manager is responsible for copying overlay code from the executable file into
memory whenever the program attempts to transfer control to code in an overlay. A pro
gram that uses overlays runs slower than a program that does not use them, because it
takes longer to extract overlays separately from the .EXE file than it does to read the entire
.EXE file into memory at once.

Section II: Programming in the MS-DOS Environment 715

Part E: Programming Tools

(a)

Overlay

area'
CallEOCalico

CallBO

Call DO

CallBO

Call DO

Calico

CallEO

LINKA+B+C+D+E; LINKA+(B+C)+(D+E);

Figure 20-15. Memory use in a program linked (a) without overlays and (b) with overlays. In (b), either
modules (B+C) or modules (D+E) can be loaded into the overlay area at run time.

The default object libraries that accompany Microsoft high-level-language compilers con
tain object modules that support the Microsoft run-time overlay manager. The following
description of LINK'S relationship to the run-time overlay manager applies to versions
3.00 through 3.60 of LINK; implementation details may vary in future versions.

Overlay format in a .EXE file

An executable file that contains overlays has a .EXE header preceding each overlay (Figure
20-14). The overlays are numbered in sequence, starting at 0; the overlay number is stored
in the word at offset lAH in each overlay's .EXE header. When the contents of the .EXE file
are loaded into memory for execution, only the resident, nonoverlaid part of the program
is copied into memory. The overlays must be read into memory from the .EXE file by the
run-time overlay manager.

Start of file

End of file

.EXE header

Overlay segments

.EXE header

B

C

.EXE header

D

E

Overlay number 0

Overlay number 1

Overlay number 2

Figure 20-14. .EXEfile structure produced by LINK A + (B+C) + (D+E).

716 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

Segments for overlays

When LINK produces an executable file that contains overlays, it adds three segments
to those defined in the object modules: OVERLAY-AREA, OVERLAY-END, and
OVERLAY_DATA. LINK assigns the segment class name 'CODE' to OVERLAY_AREA
and OVERLAY-END and includes OVERLAY_DATA in the default group DGROUR

OVERLAY_AREA is a reserved segment into which the run-time overlay manager is
expected to load each overlay as it is needed. Therefore, LINK sets the size of
OVERLAY_AREA to fit the largest overlay in the program. The OVERLAY_END seg
ment is declared immediately after OVERLAY_AREA, so a program can determine the
size of the OVERLAY-AREA segment by subtracting its segment address from that of
OVERL AY_END. The OVERLAY_DATA segment is initialized by LINK with information
about the executable file, the number of overlays, and other data useful to the run-time
overlay manager.

LINK requires the executable code used in overlays to be contained in segments whose
class names end in CODE and whose segment names differ from those of the segments
used in the resident (nonoverlaid) portion of the program. In assembly language, this is
accomplished by using the SEGMENT directive; in high-level languages, the technique of
ensuring unique segment names depends on the compiler. In Microsoft C, for example, the
/A switch in the command line selects the memory model and thus the segment naming
defaults used by the compiler; in medium, large, and huge memory models, the compiler
generates a unique segment name for each C function in the source code. In Microsoft
FORTRAN, on the other hand, the compiler always generates a uniquely named segment
for each SUBROUTINE and FUNCTION in the source code, so no special programming
is required.

LINK substitutes all far CALL instructions from root to overlay or from overlay to
overlay with a software interrupt followed by an overlay number and an offset into the
overlay segment (Figure 20-15). The interrupt number can be specified with LINK'S
/OVERLAYINTERRUPT switch; if the switch is omitted, LINK uses Interrupt 3FH by
default. By replacing calls to overlay code with a software interrupt, LINK provides a
mechanism for the run-time overlay manager to take control, load a specified overlay
into memory, and transfer control to a specified offset within the overlay.

(a) EXTRN OverlayEntryPoint:far

call OverlayEntryPoint ; far CALL

DB OverlayNumber

DW OverlayEntry

IntNo ; interrupt number

specified with /OVERLAYINTERRUPT

switch (default 3FH)

overlay number

offset of overlay entry point

(the address to which '

the overlay manager transfers

control)

Figure 20-15. Executable code modification by LINKfor accessing overlays, (a) Code as written, (b) Code as
modified by LINK.

Section II: Programming in the MS-DOS Environment 717

Part E: Programming Tools

Run-time processing of overlays

The resident (nonoverlaid) portion of a program that uses overlays initializes the overlay
interrupt vector specified by LINK with the address of the run-time overlay manager. (The
OVERLAY_DATA segment contains the interrupt number.) The overlay manager then
takes control wherever LINK has substituted a software interrupt for a far call in the exe
cutable code.

Each time the overlay manager executes, its first task is to determine which overlay is
being called. It does this by using the return address left on the stack by the INT instruc
tion that invoked the overlay manager; this address points to the overlay number stored in
the byte after the interrupt instruction that just executed. The overlay manager then deter
mines whether the destination overlay is already resident and loads it only if necessary.
Next, the overlay manager opens the .EXE file, using the filename in the OVERLAY-DATA
segment. It locates the start of the specified overlay in the file by examining the length
(offset 02H and offset 04H) and overlay number (offset lAH) in each overlay's .EXE
header.

The overlay manager can then read the overlay from the .EXE file into the
OVERLAY_AREA segment. It uses the overlay's segment relocation table to fbc up any seg
ment references in the overlay. The overlay manager transfers control to the overlay with a
far call to the OVERLAY_AREA segment, using the offset stored by LINK 1 byte after the
interrupt instruction (see Figure 20-15).

Interrupt 21H Function 4BH

LINK'S protocol for implementing overlays is not recognized by Interrupt 21H Function
4BH (Load and Execute Program). This MS-DOS function, when called with AL = 03H,
loads an overlay from a .EXE file into a specified location in memory. See SYSTEM CALLS:
Interrupt 21h: Function 4BH. However, Function 4BH does not use an overlay number, so
it cannot find overlays in a .EXE file formatted by LINK with multiple .EXE headers.

DGROUP

LINK always includes DGROUP in its internal table of segment groups. In object modules
generated by Microsoft high-level-language translators, DGROUP contains both the default
data segment and the stack segment. LINK'S /DOSSEG and /DSALLOCATE switches both
affect the way LINK treats DGROUP. Changing the way LINK manages DGROUP ulti
mately affects segment order and addressing in the executable file.

Using the /DOSSEG switch

The /DOSSEG switch causes LINK to arrange segments in the default order used by
Microsoft high-level-language translators:

1. All segments with a class name ending in CODE. These segments contain executable
code.

2. All other segments outside DGROUP. These segments typically contain far data items.

718 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

3. DGROUP segments. These are a program's near data and stack segments. The order
in which segments appear in DGROUP is
- Any segments of class BEGDATA. (This class name is reserved for Microsoft use.)
- Any segments not of class BEGDATA, BSS, or STACK.
- Segments of class BSS.
- Segments of class STACK.

This segment order is necessary if programs compiled by Microsoft translators are to run
properly. The /DOSSEG switch can be used whenever an object module produced by an
assembler is linked ahead of object modules generated by a Microsoft compiler, to ensure
that segments in the executable file are ordered as in the preceding list regardless of the
order of segments in the assembled object module.

When the /DOSSEG switch is in effect, LINK always places DGROUP at the end of the
executable program, with all uninitalized data segments at the end of the group. As dis
cussed above, this placement helps to minimize the size of the executable file. The
/DOSSEG switch also causes LINK to restructure the executable program to support
certain conventions used by Microsoft language translators:

• Compiler-generated segments with the class name BEGDATA are placed at the begin
ning of DGROUP.

• The public symbols _edata and _end are generated to point to the beginning of the
BSS and STACK segments.

• Sixteen bytes of zero are inserted in front of the _TEXT segment.

Microsoft compilers that rely on /DOSSEG conventions generate a special COMENT object
record that sets the /DOSSEG switch when the record is processed by LINK.

Using the /HIGH and /DSALLOCATE switches

When a program has been linked without using LINK'S /HIGH switch, MS-DOS loads
program code and data segments from the .EXE file at the lowest address in the first avail
able block of RAM large enough to contain the program (Figure 20-16). The value in the
.EXE header at offset OCH specifies the maximum amount of extra RAM MS-DOS must
allocate to the program above what is loaded from the .EXE file. Above that, all unused
RAM is managed by MS-DOS. With this memory allocation strategy, a program can use
Interrupt 21H Functions 48H (Allocate Memory Block) and 4AH (Resize Memory Block)
to increase or decrease the amount of RAM allocated to it.

When a program is linked with LINK'S /HIGH switch, LINK zeros the words it stores in
the .EXE header at offset OAH and OCH. Setting the words at OAH and OCH to zero indi
cates that the program is to be loaded into RAM at the highest address possible (Figure
20-16). With this memory layout, however, a program can no longer change its memory
allocation dynamically because all available RAM is allocated to the program when it is
loaded and the uninitialized RAM between the program segment prefix and the program
itself cannot be freed.

Section II: Programming in the MS-DOS Environment 719

Part E: Programming Tools

FFFFFH

OOOOOH

System ROM, etc.

(Unused)

Uninitialized

program RAM

Environment, PSP

Resident portion of
MS-DOS

Specified in
.EXE header

Program code and
• data segments

copied from .EXE Ele

System ROM, etc.

} Program code and
data segments
copied from .EXE file

Uninitialized program
RAM

Environment, PSP

Resident portion of
MS-DOS

FFFFFH

OOOOOH

(a) (b)

Figure 20-16. Effect of the/HIGH switch on run-time memory use. (a) The program is linked without the
/HIGH switch, (b) The program is linked with the/HIGH switch.

The only reason to load a program with this type of memory allocation is to allow a pro
gram data structure to be dynamically extended toward lower memory addresses. For
example, both stacks and heaps can be implemented in this way. If a program's stack
segment is the first segment in its memory map, the stack can grow downward without
colliding with other program data.

To facilitate addressing in such a segment, LINK provides the /DSALLOCATE switch.
When a program is linked using this switch, all addresses within DGROUP are relocated in
such a way that the last byte in the group has offset FFFFH. For example, if the program in
Figure 20-17 is linked without the /DSALLOCATE and /HIGH switches, the value of offset
DGROUP:DataItem would be OGH; if these switches are used, the linker adjusts the seg
ment value of DGROUP downward so that the offset of Dataltem within DGROUP

becomes FFFOH.

Early versions of Microsoft Pascal (before version 3.30) and Microsoft FORTRAN (before
version 3.30) generated object code that had to be linked with the /DSALLOCATE switch.
For this reason, LINK sets the /DSALLOCATE switch by default if it processes an object
module containing a COMENT record generated by one of these compilers. (Such a
COMENT record contains the string MS PASCAL or FORTRAN 77. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: Programming Tools: Object Modules.) Apart from this
special requirement of certain language translators, however, the use of /DSALLOCATE
and /HIGH should probably be avoided because of the limitations they place on run-time
memory allocation.

720 The MS-DOS Encyclopedia

Article 20: The Microsoft Object Linker

DGROUP GROUP -DATA

-DATA SEGMENT word public 'DATA'

Dataltem DB 10h dup (?)

-DATA ENDS

-TEXT SEGMENT byte public 'CODE'

ASSUME cs;—TEXT,ds::DGROUP

mov bx,offset DGROUP:Dataltem

-TEXT ENDS

END

Figure 20-17. The vaiue ofoffset DGROUP:DataItem in this program is FFFOH ifthe program is linked with
the/DSALLOCATE switch or OOH iftheprograrn is linked without using the switch.

Summary

LINK'S characteristic support for segment ordering, for run-time memory management,
and for dynamic overlays has an impact in many different situations. Programmers who
write their own language translators must bear in mind the special conventions followed
by LINK in support of Microsoft language translators. Application programmers must be
familiar with LINK'S capabilities when they use assembly language or link assembly-lan
guage programs with object modules generated by Microsoft compilers. LINK is a power
ful program development tool and understanding its special capabilities can lead
to more efficient programs.

Richard Wilton

Section II: Programming in the MS-DOS Environment 721

^SlSSiSi|-rv£:,

^^iiiii^wmii
iMMiiiliiMlSsiiili

^i¥WK¥S

'^6i^miii86^6iiiii
ii^^iSiBiiMpliip^ipiiil
|P#iiii|lillllii^*ifci|:

.■V':!.-:? ', "

■ ■ ■- .
;:2»«S«S1 ? .rxm y

^^p^S^WMPiiip^MllSiilli
■ " f'i--: ,lr;.i... - •• :

wmaimmtm

Wss^\ 2 -'-■■ ■;■ = ■-■-2:
^x\;.- ' xyVx^Ar:.- ' ■ --
psisesjiii-iiiil:
*iiiii^^iise^^^*ssi^^M*iiiie*iiieiiee*iiiiie

msmrnimimmmsmi' ̂ .ggria-g'y-' aaa^K ̂

SSPf 5/i|S5i;25;,i4 • :•

'-'■ " j, r-™,-:: -'"•Sv.V^^V..''

User Commands Introduction

Introduction

This section of The MS-DOS Encyclopedia describes the standard internal and external
MS-DOS commands available to the user who is running MS-DOS (versions 1.0 through
3.2). System configuration options, special batch-file directives, the line editor (EDLIN),
and the installable device drivers normally included with MS-DOS are also covered.

Entries are arranged alphabetically by the name of the command or driver. The config
uration, batch-file, and line-editor directives appear alphabetically under the headings
CONFIG.SYS, BATCH, and EDLIN, respectively. Each entry includes

• Command name

• Version dependencies and network information
• Command purpose
• Prototype command and summary of options
• Detailed description of command
• One or more examples of command use

Return codes (where applicable)
Informational and error messages

The experienced user can find information with a quick glance at the first part of a com
mand entry; a less experienced user can refer to the detailed explanation and examples in
a more leisurely fashion. The next two pages contain an example of a typical entry from
the User Commands section, with explanations of each component. This example is
followed by listings of the commands by functional group.

The following terms are used for command-line variables in the sample syntax:

drive a letter in the range A-Z, followed by a colon, indicating a logical disk
drive.

path a specific location in a disk's hierarchical directory structure; can include
the special directory names . and ..; elements are separated by backslash
characters (\).

pathname a file specification that can include a path and/or drive and/or filename
extension.

filename the name of a file, generally with its extension; cannot include a drive or
path.

Note: PC-DOS, though not an official product name, is used in this section to indicate
IBM's version of the disk operating system originally provided by Microsoft. Commands
sometimes have slightly different options or appear for the first time in different versions
of MS-DOS and PC-DOS. When a command appears only in the IBM versions, the abbre
viation IBM appears in the heading area. Significant differences between MS-DOS and
PC-DOS versions of a command are indicated in the Syntax and Description portions
of the entry.

Section III: User Commands 725

User Commands Introduction/Key

HEADING

The command name as

the user would enter it

or as it would be used

in a batch or system-
configuration file.

ICON-1

MS-DOS version

dependency.

ICON-2

Whether the command

is internal (built into

COMMAND.COM) or

external (loaded from a

disk file when needed).

ICON-3

The abbreviation IBM if

the command is present
only in PC-DOS and the
warning No Net if the
command cannot be

used across a network.

PURPOSE

An abstract of command

purpose and usage.

SYNTAX

A prototype command
line, with variable names

in italic and optional
parameters in square

brackets. The various

elements of the com

mand line should be

entered in the order

shown. Any punctuation

must be used exactly as
shown; in commands
that use commas as

separators, the comma
usually must be included
as a placeholder even if
the parameter is omit
ted. Except where noted,
commands, parameters,
and switches can be

entered in either upper
case or lowercase. With

MS-DOS versions 3.0

and later, external com
mands can be preceded
by a drive and/or path.

REPLACE

update Files

3.2

y/Exiernal

IL—I

^ Purpose

Selectively adds or replaces files on a disk.

SyntaxJ REPLACE {drive:]pathname IdriveMpath] [/All/D]I/Pil/RH/Sl[/Wl
where:

pathname

drive-.path

/A

/P

/R

/S

is the name and location of the source files transferred, optionally
preceded by a drive, wildcard characters ajuf^rmitted in the filename,
is the destination for the file being trans^ed; filenames are not permit
ted in the destination parameter,
transfers only those source files th^^o not exist at the destination (cannot
be used with /S or /D).

transfers only those source fijd^ svith a more recent date than their destina
tion counterparts (cannot^ua d with /K).
prompts the user for cg^rmatu n before each file is transferred.
allows REPLACE to

searches all subdp^tories of th
the source filej^<!^not be used
causes REPpdCE to wait for the
files.

:rwrite de

Description

param«er (the source) specifies the name and^cation of the files to be
optionally preceded by a drive); wildcards are^rmitted in the filename. The

iplei dy,r,

parameter (the destination) specifies the
sist of a drive, a path, or both. If only a dra
imes the current directory of the disl^ tha

914 TheMS-DOSl leyclopedia

stination read-only files.
destination directory for a match with
with A).

lisk to be changed before transferring

The REPLACE utility allows files to be updated
examines the source and destination directories

the command line, selectively updates matchin{
on the .source di.sk hut not the destination disk

The pathnc
transferred

drive-.path
and can cor

REPLACE

ted com]
REPLACE t(

replaced.

The /A, /D, ind /P switches allow sel^ve replacement c f
When the A. switch is used, REPLA(2E transfers only thos
not exist in he destination direct^. When the /D switd

< asily to mo

io

REPLACE assumes the current ̂
also search all subdirectories of d

and < i
m

re recent versions. REPLACE
and, depending on th^^tches used in
files or copies only dtroe files that exist

n of the files to be replaced
; specified as the destination,
drive. If the destination is omit-

rectory. The /S switch causes
 directory for files to be

files on the destination disk,

files on the source disk that do

is used, REPLACE transfers only

BELOW WHERE

A brief explanation of

each command parame
ter and switch. Drives,

paths, and filenames are
always listed first, fol
lowed by the switches in
alphabetic order. Any
special position required
for a filename or switch

is shown in the syntax
line and noted in the

explanation.

DESCRIPTION

A detailed description of
the command, including

a full explanation of
MS-DOS version depen
dencies, default values,

possible interactions of
command parameters
and options, useful
background information,
and any applicable
warnings.

726 The MS-DOS Encyclopedia

User Commands Introduction/Key

those source files that match t

their destination counterparts
REPLACE.) The /P switch caiu

each file is transferred

le destination filenames but have a more recent date than

(The /D switch is not available with the PC-DOS version of
REPLACE to prompt the user for confirmation before

lCEThe /W switch causes REPLAi

b^inning the transfer of files,
with no Hxed disk and in thos :

neither the source nor the des

Return Codes

0

1

2

3

5

T

The /R switch allows the repls :ement of read-only as well as normal files. If the /R switch
is not used and one of the di» ii
read-only, the REPLACE progi a
used to update hidden or sysU m fi

ination files

;ipm terminati
flies.)

t be leplan srfccd-

s with an error message. (REPLACE cannot be

to pause a

This allows

cases when

ination disk.

id wait for tlie user to press any key before
1 le user to change disl« in floppy-disk systems
the REPLACE program itself is present on

15

Other

Examples

he REPLACE ope ration
An error was foun lindi^REPL
No matching files v^foundtc
The source or d^^ation path
One of the be replaced
not include^ the c(»nmand 11
Memoryw^ insufficient to rtin
An inv^d drive was specified

d MS-DOS error codes (ei

cc

11 le

OREPLACE A:*.» \SOURCE /D <Enter>

To transfer from the disk in drive A

rent directory, type

OREPLACE A:*.> /A <EnCec>

essful.

^CE command line,

retrace.
vas invalid or does not exist.

T ras marked read-only and the /R switch was
.

he REPLACE command.

Uhe command line.

itumed on a failed Interrupt 21H file-function

To replace the files in the directory \SOUR(E on t^ current drive with all matching files
on the disk in drive A that have a more rece it dsde, type

files tha are not already present in the cur-

itFlleCs) added
After the replacement operation is completed, if tfie /A
line, REPLACE displays the toul number of fil^ added
n FlleCs) replaced
After the replacement operation is completed, REPl

smtclye^ used in the command

displays the total number of files

Section Hh User Commands 915

- RETURN CODES

Exit codes returned by
the command (if any)
that can be tested in a

batch file or by another
program.

- EXAMPLES

One or more examples
of the command at work,
including examples of
the resulting output
where appropriate. User
entry appears in color;

do not type the prompt,
which appears in black.
Press the Enter key
(labeled Return on some

keyboards) as directed
at the end of each

command line.

- MESSAGES

An alphabetic list of
messages that may be
displayed when the
command is used in

MS-DOS version 3.2

(may vary slightly in
earlier versions). Both

messages generated by
the command itself and

applicable messages gen
erated by MS-DOS are
included. Following each
message is a brief
explanation of the con
dition that produces the
message and, where
appropriate, any action

that should be taken.

Section III: User Commands 727

User Commands Introduction

Contents by Functional Group

The MS-DOS commands can be divided into several distinct groups according to the func
tions they perform. These are listed on the following pages.

Command Action

System Configuration and Control
BREAK

COMMAND

DATE

EXIT

PROMPT

SELECT

SET

SHARE

TIME

VER

Set Control-C check.

Install secondary copy of command processor.
Set date.

Terminate command processor.
Define system prompt.
Configure system disk for a specific country.
Set environment variable.

Install file-sharing support.
Set system time.
Display version.

Character-Device Management
CIS

CTTY

GRAFTABL

GRAPHICS

KEYBjcx

MODE

PRINT

Clear screen.

Assign standard input/output.
Load graphics character set.
Print graphics screen-dump program.
Define keyboard.
Configure device.
Print file (background print spooler).

File Management
ATTRIB

BACKUP

COMP

COPY

DEL/ERASE

EDLIN

EC

RECOVER

RENAME

REPLACE

RESTORE

TYPE

XCOPY

Change file attributes.
Back up files.
Compare files.
Copy file or device.
Delete file.

Create or modify text file (see also commands below).
Compare files.
Recover files.

Change filename.
Update files.
Restore backup files.
Display file.
Copy files.

(more)

728 The MS-DOS Encyclopedia

User Commands Introduction

Command Action

FUters

FIND

MORE

SORT

Find string.
Display by screenful.
Sort file or character stream alphabetically.

Directory Management
APPEND Set data-file search path.
CHDIR Change current directory.
DIR Display directory.
MKDIR Make directory.
PATH Define command search path.
RMDIR Remove directory.
TREE Display directory structure.

Disk Management
ASSIGN

CHKDSK

DISKCOMP

DISKCOPY

FORMAT

FDISK

JOIN

LABEL

SUBST

SYS

VERIFY

VOL

Assign drive alias.
Check disk status.

Compare floppy disks.
Copy floppy disks.
Initialize disk.

Configure fixed disk.
Join disk to directory.
Display volume label.
Substitute drive for subdirectory.
Transfer system files.
Set verify flag.
Display disk name.

Installable Device Drivers

ANSl.SYS ANSI console driver.

DR1VER.SYS Configurable external-disk-drive driver.
RAMDRIVE.SYS Virtual disk.

VD1SK.SYS Virtual disk.

System-Configuration File Directives
BREAK

BUFFERS

COUNTRY

DEVICE

DRIVPARM

FCBS

Configure Control-C checking.
Configure internal disk buffers.
Set country code.
Install device driver.

Set block-device parameters.
Set maximum open files using File Control Blocks (FCBs).

(more)

Section III: User Commands 729

User Commands Introduction

Command Action

System-Configuration File Directives (continued)
FILES Set maximum open files using handles.
LASTDRIVE Set highest logical drive.
SHELL Specify command processor.
STACKS Configure internal stacks.

Batch-File Directives

AUTOEXEC.BAT System startup batch file.
ECHO Display text.
FOR Execute command on file set.

GOTO Jump to label.
IF Perform conditional execution.

PAUSE Suspend batch-file execution.
REM Include comment line.

SHIFT Shift replaceable parameters.

EDLIN Commands

linenumber

A

C

D

E

I

L

M

P

Q
R

S

T

W

Edit line.

Append lines from disk.
Copy lines.
Delete lines.

End editing session.
Insert lines.

List lines.

Move lines.

Display in pages.
Quit.

Replace text.
Search for text.

Transfer another file.

Write lines to disk.

730 The MS-DOS Encyclopedia

ANSI.SYS

ANSLSYS 2.0 and later

ANSI Console Driver External

Purpose

Allows the user to employ a subset of the American National Standards Institute (ANSI)
standard escape sequences for control of the console.

Syntax

DEVlCE=[clrive^[path]ANSl.SYS

where:

drive.path is the drive and/or path to search for ANSI.SYS if it is not in the root direc
tory of the startup disk.

Description

The ANSI.SYS file contains an installable character-device driver that supersedes the
system's default driver for the console device (video display and keyboard). After
ANSI.SYS is installed by means of a DEVICE=ANSLSYS command in the CONFIG.SYS file
of the disk used to start the system, programs can use a subset of the ANSI 3.64-1979 stan
dard escape sequences to erase the display, set the display mode and attributes, and con
trol the cursor in a hardware-independent fashion. (A supplementary set of escape
sequences that are not part of the ANSI standard allows reprogramming of the keyboard.)

Programs that use ANSI.SYS for control of the screen can run on any MS-DOS machine
without modification, regardless of its hardware configuration. However, most popular ap
plication programs for the IBM PC and compatibles circumvent ANSI.SYS and manipulate
the video controller and its video buffer directly to achieve maximum performance.

The ANSI.SYS device driver detects ANSI escape sequences in a character stream and
interprets them as commands to control the keyboard and display. An ANSI escape se
quence is a sequence of ASCII characters, the first two of which must be the Escape char
acter (IBH) and the left-bracket character (5BH). The characters following the Escape and
left-bracket characters vary with the type of control function being performed; most con
sist of an alphanumeric code followed by a letter. In some cases this code is a single char
acter; in others it is more than one character or a two-part string separated by a semicolon.
Each ANSI escape sequence ends in a unique letter character that identifies the sequence;
case is significant for these letters. The escape sequences supported by the ANSI.SYS
driver are summarized in the tables on the following pages.

An escape sequence cannot be entered directly at the system prompt because each ANSI
escape sequence must begin with an Escape character, and pressing the Esc key (or Alt-27
on the numeric keypad) causes MS-DOS to cancel the command line. There are three
methods of executing ANSI escape sequences that do not require writing a program:

Section III: User Commands 731

ANSI.SYS

• Include the escape sequences in a PROMPT command.
• Enter the escape sequences into a word processor or text editor, save the file as an

ASCII text file, and then execute the file by using the TYPE or COPY command (spec
ifying CON as the destination for COPY) from the MS-DOS system prompt.
(If the escape sequences are echoed on the screen when the file is executed, a
DEVICE=ANSI.SYS command was not included in the CONFIG.SYS file when the

system was turned on.)
• Place the escape sequences in a batch (.BAT) file as part of an ECHO command.

When the batch file is executed, the sequences are sent to the console.

When escape sequences are entered using the PROMPT command, the Escape character
is entered as $e. When escape sequences are entered using a word processor to create an
ASCII text or batch file, the Escape character is usually entered by pressing the Esc key or
by holding down the Alt key while typing 27 on the numeric keypad. (See the documenta
tion provided with the word-processor for specific instructions.) In most cases, the escape
character will appear in the word processor or text editor as a back-arrow character (<—)
or a caret-left bracket combination (^[).

Note: When the escape character is represented as (as it is in EDLIN, for example), an
additional left-bracket character must still be added to properly begin an ANSI escape se
quence. Thus, the beginning of a valid ANSI escape sequence in EDLIN appears as ̂[[.

The tables in this section use the abbreviation ESC to show where the ASCII escape char
acter 27 (IBH) appears in the string.

Note: Case is significant for the terminal character in the string.

The following escape sequences control cursor movement:

Operation Escape Sequence Effect

Cursor Up

Cursor Down

Cursor Right

Cursor Left

Position Cursor

YSC[numberK

YSC[numberB

ESC[numberC

ESC[numberD

ESC[rot^;; columnH

Moves the cursor up number rows (1-24,
default = 1). Has no effect if cursor is on

the top row.
Moves the cursor down number rows

(1-24, default = 1). Has no effect if cursor
is on the bottom row.

Moves the cursor right number rows (1-79,
default = 1). Has no effect if cursor is in

the far right column.
Moves the cursor left number rows (1-79,

default = 1). Has no effect if cursor is in

the far left column.

Moves the cursor to the specified row
(1-25, default = 1) and column (1-80,
default = 1). If row is omitted, the semi

colon before column must be specified.

(more)

732 The MS-DOS Encyclopedia

ANSI.SYS

Operation Escape Sequence Effect

Position Cursor ^SC[row\columni
Save Cursor Position ESC [s

Restore Cursor

Position

ESC[u

Same as above.

Stores the current row and column position
of the cursor. Cursor can be restored to

this position later with a Restore Cursor
Position escape sequence.

Moves the cursor to the position of the
most recent Save Cursor Position escape
sequence.

The following two escape sequences are used to erase all or part of the display:

Operation Escape Sequence Effect

Erase Display

Erase Line

ESC12J

ESCIK

Clears the screen and places the cursor at
the home position.

Erases from the cursor position to the end
of the same row.

The following escape sequences control the width and the color capability of the display.
The use of any of these sequences clears the screen.

Operation

Set Mode

Escape Sequence Effect

ESChOh

ESC[=lh

ESC[=2h

ESC[=3h

ESC[=4h

ESC[=5h

ESC[=6h

Sets display to 40 x 25 monochrome (text).
Sets display to 40 x 25 color (text).
Sets display to 80 x 25 monochrome (text).
Sets display to 80 x 25 color (text).
Sets display to 320 x 200 4-color (graphics).
Sets display to 320 x 200 4-color (graphics,
color burst disabled).

Sets display to 640 x 200 2-color (graphics).

The following escape sequences control whether characters will wrap around to the first
column of the next row after the rightmost column in the current row has been filled:

Operation Escape Sequence Effect

Enable Character

Wrap

Disable Character

Wrap

ESC[=7h

ESC[=71

Sets character wrap.

Disables character wrap. (Note that the
terminating letter is a lowercase L.)

Section III: User Commands 733

ANSI.SYS

The following escape sequence controls specific graphics attributes such as intensity,
blinking, superscript, and subscript, as well as the foreground and background colors:

ESC[attrib\... ;attribm

where:

attrib is one or more of the following values. Multiple values must be separated by
semicolons.

Value Attribute Value Foreground
Color

Value Background
Color

0 All attributes off 30 Black 40 Black

1 High intensity (bold) 31 Red 41 Red

2 Normal intensity 32 Green 42 Green

4 Underline (mono

chrome only) 33 Yellow 43 Yellow

5 Blink 34 Blue 44 Blue

7 Reverse video 35 Magenta 45 Magenta

8 Concealed (invisible) 36 Cyan 46 Cyan

37 White 47 White

Note: Values 30 through 47 meet the ISO 6429 standard.

The following escape sequence allows redefinition of keyboard keys to a specified string-.

^SC[code-,string-,... p

where:

code is one or more of the following values that represent keyboard keys.
Semicolons shown in this table must be entered in addition to the required
semicolons in the command line.

string is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A.

Key Code

Alone Shift- Ctrl- Alt-

F1 0;59 0;84 0;94 0;104

F2 0;60 0;85 0;95 0;105

F3 0;6l 0;86 0;96 0;106
F4 0;62 0;87 0;97 0;107

F5 0;63 0;88 0;98 0;108

F6 0;64 0;89 0;99 0;109

(more)

134 The MS-DOS Encyclopedia

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

F7 0;65 0;90 0;100 0;110

F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112

FIO 0;68 0;93 0;103 0;113
Home 0;71 55 0;119 -

Up Arrow 0;72 56 - -

PgUp 0;73 57 0;132 -

Left Arrow 0;75 52 0;115 -

Down Arrow 0;77 54 0;116 -

End 0;79 49 0;117 -

Down Arrow 0;80 50 - -

Pg Dn 0;81 51 0;118 -

Ins 0;82 48 - -

Del 0;83 46 - -

PrtSc - - 0;114 -

A 97 65 1 0;30

B 98 66 2 0;48
C 99 67 3 0;46
D 100 68 4 0;32

E 101 69 5 0;18

F 102 70 6 0;33
G 103 71 7 0;34
H 104 72 8 0;35
I 105 73 9 0;23

J 106 74 10 0;36
K 107 75 11 0;37

L 108 76 12 0;38

M 109 77 13 0;50

N 110 78 14 0;49
O 111 79 15 0;24
P 112 80 16 0;25

Q 113 81 17 0;16
R 114 82 18 0;19
S 115 83 19 0;31
T 116 84 20 0;20

U 117 85 21 0;22

V 118 86 22 0;47
w 119 87 23 0;17

X 120 88 24 0;45

(more)

Section III: User Commands 735

ANSI.SYS

Key Code

Alone Shift- Ctrl- Alt-

Y 121 89 25 0;21

Z 122 90 26 0;44
1 49 33 - 0;120

2 50 64 - 0;121

3 51 35 - 0;122

4 52 36 - 0;123

5 53 37 - 0;124
6 54 94 - 0;125

7 55 38 - 0;126
8 56 42 - 0;127

9 57 40 - 0;128

0 48 41 - 0;129
- 45 95 - 0;130
= 61 43 - 0;131
Tab 9 0;15 - -

Null 0;3 - - -

Examples

The following examples use ESC or $e to show where the ASCII escape character 27 (IBH)
appears in the string. The PROMPT examples can be typed as shown, but for the examples
that use ESC to denote the escape character, the actual escape character should be typed in
its place.

To move the cursor to row 10, column 30 and display the string Main Menu, use the escape
sequence

ESC[10;30fMain Menu

or

ESC[10;30HMain Menu

To move the cursor to row 5, column 10 and display the letter A iESC[5;10fA), move the
cursor down one row (^ESC[B), move the cursor back one space and display the letter B
iESClDE), move the cursor down one row iESC[B), and move the cursor back one space
and display the letter C iESC[DC), use the escape sequence

ESC[5;10 fAESC[BESC[DBESC[BESC[DC

To use ANSI escape sequences with the PROMPT command to save the current cursor
position i$e[s), move the cursor to row 1, column 69 i$e[l;69fX display the current time
using the PROMPT command's $t function, restore the cursor position i$e[ii), and then

736 The MS-DOS Encyclopedia

ANSI.SYS

display the current path using the PROMPT command's $p function and display a greater-
than sign using the PROMPT command's $g function, use the escape sequence

C>PROMPT $e[s$e[1;69fte[upg <Enter>

To erase the display iESC[2J), then move the cursor to row 10, column 30 and display the
string Main Menu iESC[10;30fMain Menu), use the escape sequence

ESC[2JESC[10;30fMain Menu

To move the cursor to row 5, column 40 iESC[5;40f) and erase the remainder of the row
starting at the current cursor position iESC[K), use the escape sequence

ESC[5;40fESC[K

To move the cursor to row 3 iESCf3;/), erase the entire row (ESC[K), move the cursor
down one row (ESC[B), erase that entire row (ESCfK), move the cursor down one row and
erase that entire row, use the escape sequence

ESC[3;fESC[KESC[BESC[KESC[BESC[K

To set the display mode to 25 rows of 80 columns in color CESCf=3h) and disable character
wrap iESC[= 7/), use the escape sequence

ESC[=3hESC[=71

Note that ESC[=3h will also clear the screen.

To enable character wrap, use the escape sequence

ESC[=7h

To set the foreground color to black and the background color to blue CESC[30;44m), clear
the display i,ESC[2J), then position the cursor at row 10, column 30 and display the string
Main Menu iESC[10;30fMain Menu), use the escape sequence

ESC[30;44mESC[2JESC[10;30fMain Menu

To (effectively) exchange the backslash and question-mark keys using literal strings to
denote the keys, use the escape sequence

ESC["\";"?"pESC["?";"\"p

To exchange the backslash and question-mark keys using each key's ASCII value to denote
the key, use the escape sequence

ESC[92;63pESC[63;92p

To restore the backslash and question-mark keys to their original meanings, use the escape
sequence

ESC["\";"\"pESC["?";"?"p

or

ESC[92;92pESC[63;63p

Section III: User Commands 737

ANSI.SYS

To redefine the Alt-F9 key combination CESCfO;ll2) so that it issues a CIS command
C;"CLS'0 plus a carriage return (;i3) to execute the CIS command, then issues a DIR com
mand piped through the SORT filter starting at column 24 (; "DIR 1 SORT/■i-24'0 followed
by another carriage return, use the escape sequence

ESC[0;112;"CLS";13;"DIR 1 SORT /+24";13p

To restore the Alt-F9 key combination to its original meaning, use the escape sequence

ESC[0;112;0;112p

738 The MS-DOS Encyclopedia

APPEND

APPEND 32

Set Data-File Search Path External

Purpose

Specifies a search path for open operations on data files. (Also supported with some
implementations of version 3.1, for use with networks.)

Syntax

APPEND [[drive]path] ['\drive]path ...]

or

APPEND;

where:

path is the name of a valid directory, optionally preceded by a drive.

Description

APPEND is a terminate-and-stay-resident program that is used to specify a path or paths to
be searched for data files (in contrast with the PATH command, which specifies a path to
be searched for executable or batch files). The search path can include a network drive. If
a program attempts to open a file and the file is not found in the current or specified direc
tory, each path given in the APPEND command is searched.

If the APPEND command is entered with a path consisting of only a semicolon character
(;), a "null" search path for data files is set; that is, no directory other than the current or
specified directory is searched. This effectively cancels any search paths previously set
with an APPEND command but does not free the memory used by APPEND.

An APPEND command without any parameters displays the current search path(s) for data
files.

Note that a program cannot detect whether an opened file was found where it was ex
pected (in the current or specified directory) or in some other directory specified in the
APPEND command.

Warning: When an assigned drive is to be part of the search path, the ASSIGN command
must be used before the APPEND command. Use of the ASSIGN command should be

avoided whenever possible because it hides drive characteristics from those programs that
require detailed knowledge of the drive size and format.

Section III: User Commands 739

APPEND

Examples

To cause the directories C:\SYSTEM and C:\SOURCE to be searched for a file during an
open operation if the file is not found in the current or specified directory, type

C>APPEND C:\SYSTEM;C:\SOURCE <Enter>

To display the current search path for data files, type

C>APPEND <Enter>

MS-DOS then displays

APPEND=C:\SYSTEM;C:\SOURCE

To ensure that no directories other than the current or specified directory are searched
during a file open operation, type

C>APPEND ; <Enter>

Messages

APPEND / ASSIGN Conflict

APPEND was used before ASSIGN.

Incorrect DOS version

The version of APPEND is not compatible with the version of MS-DOS that is running.

No appended directories
The APPEND command had no parameters and no APPEND search path is active.

740 The MS-DOS Encyclopedia

ASSIGN

ASSIGN 3.0 and later

Assign Drive Alias External

Purpose

Redirects requests for disk operations on one drive to a different drive. (Available with
PC-DOS beginning with version 2.0.)

Syntax

ASSIGN[Ar=y [...]]

where:

X is a valid designator (A, B, C, etc.) for a disk drive that physically exists in the
system.

y is a valid designator for the drive to be accessed by references to x.

Description

ASSIGN is a terminate-and-stay-resident program that redirects all references to drive jcor
files on drive x to drive y. The ASSIGN command is intended for use with application pro
grams that require files to reside on drive A or B and have no provision within the pro
gram for changing those drives.

Multiple drive assignments can be requested in the same ASSIGN command line; the drive
pairs must be separated with spaces, commas, or semicolons. Unlike the form in most
other MS-DOS commands, the drive letters are not followed by colon characters (:). When
a single drive is assigned, the equal sign is optional.

ASSIGN commands are not incremental. Each new ASSIGN command replaces assign
ments made with the previous ASSIGN command and cancels any assignments not specifi
cally replaced. Entering ASSIGN with no parameters cancels all current drive assignments.

Warning: Use of the ASSIGN command should be avoided whenever possible because it
hides drive characteristics from those programs that require detailed knowledge of the
drive size and format; in particular, drives redirected with an ASSIGN statement should
never be used with a BACKUP, RESTORE, LABEL, JOIN, SUBST, or PRINT command.
ASSIGN can also defeat the checking performed by the COPY command to prevent a file
from being copied onto itself. The FORMAT, SYS, DISKCOPY, and DISKCOMP commands
ignore any drive reassignments made with ASSIGN.

With MS-DOS versions 3.1 and later, the SUBST command should be used instead of
ASSIGN. For example, the command

C>ASSIGN A=C <Enter>

9

should be replaced with the command

C>SUBST A: C:\ <Enter>

Section III: User Commands 741

ASSIGN

Examples

To redirect all requests for drive A to drive C, type

C>ASSIGN A=C <Enter>

To redirect all requests for drives A and B to drive C, type

C>ASSIGN A=C B=C <Enter>

To cancel all drive redirections currently in effect, type

C>ASSIGN <Enter>

Messages

Incorrect DOS version

The version of ASSIGN is not compatible with the version of MS-DOS that is running.

Invalid parameter
One of the specified drive designators refers to a drive that does not exist in the system.

742 The MS-DOS Encyclopedia

ATTRIB

ATXRIB 3.0 and later
Change File Attributes External

Purpose

Sets, removes, or displays a file's read-only and/or archive attributes.

Syntax

ATTRIB (+R1 -R] [+A1-A] [drive]pathname

where:

+R marks the file read-only.
-R removes the read-only attribute.
+A sets the file's archive flag (version 3.2).
-A removes the file's archive flag (version 3.2).
pathname is the name and location, optionally preceded by a drive, of the file whose

attributes are to be changed or displayed; wildcard characters are permitted in
the filename.

Description

Each file has an entry in the disk's directory that contains its name, location, and size; the
date and time it was created or last modified; and an attribute byte. For normal files, bits 0,
1,2, and 5 in the attribute byte designate, respectively, whether the file is read-only, hid
den, or system and whether it has been changed since it was last backed up.

The ATTRIB command provides a way to alter the read-only and archive bits from the
MS-DOS command level. If a file is marked read-only, it cannot be deleted or modified;
thus, crucial programs or data can be protected from accidental erasure. A file's archive
flag can be used together with the /M switch of the BACKUP command or the /M or /A
switch of the XCOPY command to allow an incremental or selective backup of files from
one disk to another.

If the ATTRIB command is entered with only a pathname, the current attributes of the
selected file are displayed. An R is displayed next to the name of a file that is marked read
only and an A is displayed if the file has the archive flag set.

Examples

To make the file MENUMGR.C in the current directory of the current drive a read-only file,
type

C>ATTRIB +R MENUMGR.C <Enter>

To display the attributes of the file LETTER.DOC in the directory \ SOURCE on the disk in
drive D, type

C>ATTRIB D:\SOURCE\LETTER.DOC <Enter>

Section III: User Commands 743

ATTRIB

MS-DOS then displays

R A D:\SOURCE\LETTER.DOC

to indicate that the file is marked read-only and the archive flag has been set.

To set the archive flag on all files in the directory \ SYSTEM on drive C and mark them as
read-only, type

OATTRIB +A +R C:\SYSTEM*.* <Enter>

Messages

Access denied

ATTRIB cannot be used to alter or replace the attributes of a file in use across a network.

DOS 2.0 or later required
ATTRIB does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of ATTRIB is not compatible with the version of MS-DOS that is running.

Invalid number of parameters
More than two attributes were used before the pathname.

Invalid path or file not found
The file named in the command line or one of the directories in the given path does not
exist.

Syntax error

An invalid attribute was supplied or the attribute was not properly placed before the path
name in the command line.

744 The MS-DOS Encyclopedia

BACKUP

BACKUP 2.0 and later

Back Up Files External

Purpose

Creates backup copies of files, along with the associated directory information necessary
to restore the files to their original locations.

Syntax

BACKUP source destination [/K] [/T>\date] [/L: filename] [/M] [/?] [/S] [/l:time]

where:

source is the location (drive and/or path) and, optionally, the name of the files to
be backed up; wildcard characters are permitted in the filename.

destination is the drive to receive the backup files.
/A adds the files to existing files on the destination disk without erasing the

destination disk.

/D: date backs up only those files modified on or after date.
/U filename creates a log file with the specified name in the root directory of the

disk being backed up. If filename is not specified, BACKUP creates a
file named BACKUP.LOG and places the log entries there. Use of the
/L: filename switch may cause loss of IBM compatibility.

/M backs up only those files modified since the last backup.
/P packs the destination disk with as many files as possible, creating sub

directories, if necessary, to hold some of the files. Use of the /P switch
causes loss of IBM compatibility.

/S backs up the contents of all subdirectories of the source directory.
/T: time backs up only those files modified on or after time.

Note: Not all switches are supported by all implementations of MS-DOS.

Description

The BACKUP command creates a backup copy of the specified file or files, transferring
them from either a floppy disk or a fixed disk to another removable or fixed disk. The
backup file is in a special format that includes information about the original file's location
in the directory structure. Files created by BACKUP can be restored to their original form
only with the RESTORE command.

BACKUP can back up a single file or many files in the same operation. If only a drive letter
is given as the source, all the files in the current directory of that disk are backed up. If
only a path is given as the source, all the files in the specified directory are backed up. If
the /S switch is used, all the files in the current or specified directory are backed up, and

Section III: User Commands 745

BACKUP

the files in ail its subdirectories as well. If both a path and a filename are entered as the
source, the specified file or files in the named directory are backed up.

If the source file is marked read-only, the resulting backup file will also be marked read
only. If the source file's archive bit is set, it will be cleared for both the source and the des
tination files. BACKUP also backs up hidden files; the files will remain hidden on the desti
nation disk.

If the destination disk is a floppy disk, its previous contents are erased as part of the
backup operation (unless the /A switch is included in the command line and the destina
tion disk has already been used as a backup disk—that is, the disk contains a valid
BACKUPID.@@@ file). If the files being backed up do not fit onto a single floppy disk, the
user will be prompted to insert additional disks tmtil the backup operation is complete.

If the destination disk is a fixed disk, the backed-up files are placed in a directory named
\BACKUP. If a \BACKUP directory already exists on the fixed disk, any files previously
contained in it are erased as part of the backup operation (unless the /A switch is included
in the command line and the destination disk has already been used as a backup disk—
that is, the \BACKUP directory contains a valid BACKUPID.@@@ file). Other files on the
destination fixed disk are not disturbed.

A control file named BACKUPID.@@@ is placed on every floppy disk onto which files are
backed up or in the /BACKUP directory if the files are backed up onto a fixed disk. The
BACKUPID.@@@ file has the following format:

Byte Value Use

OOH OOorFFH Not last floppy disk/last floppy disk
01-02H nn Floppy disk number in low-byte/high-byte decimal format
03-04H nnnn Full year in low-byte/high-byte order
05H 1-31 Day of the month
06H 1-12 Month of the year
07-0AH nnnn Standard MS-DOS system time if the /T: time switch was used;

otherwise 0

0B-7FH 00 Not used

Each backed-up file also has a 128-byte header added to it when it is created. The header
has the following format:

Byte Value Use

OOH 00 or FFH Not last floppy disk/last floppy disk on which this file resides
OIH nn Floppy disk number
02-04H 00 Not used

(more)

746 The MS-DOS Encyclopedia

BACKUP

Byte Value Use

05-44H nn File's full pathname, except for drive designator
45-52H 00 Not used

53H nn Length of the file's pathname plus one
54-7FH 00 Not used

The /T'Jime, /T>:date, and /M switches allow incremental or partial backups. The /T.time
switch excludes files modified or created before a certain time and should be used in the

form of the COUNTRY command in effect. For the USA, the format is /T: hh.mm.ss. (The
/^\time switch is not supported in all implementations of BACKUP.) The /T>:dateswitch
excludes files modified or created before a certain date and should be used in the form

of the COUNTRY command in effect. For the USA, the format is /D: mm-dd-yy. The /M
switch selects only those files that have been modified since the last backup operation.

The /L: filename switch causes a log file to be created on the source disk. This file
includes the name of each file backed up, the time and date, and the number of the des
tination disk that received that backup file. If filename is omitted, the name defaults to
BACKUP.LOG. Use of the /L: filename switch can cause compatibility problems between
MS-DOS and PC-DOS because the backup log file may match the search pattern and be
backed up, too, resulting in an extra file on the backup disk.

The /P switch causes backup files to be packed as densely as possible on the destination
disk. When many short files are being backed up to floppy disks, the number of files that
fit on the destination disk may exceed the number of entries that will fit in the destina
tion's root directory. If the /P switch is included in the command line, subdirectories are
created on the destination disk as needed to use the disk space more effectively. The /P
switch is not supported under PC-DOS; backup disks created with the /P switch will not
be compatible with IBM's BACKUP and RESTORE commands.

Warning: BACKUP should not be used on disk directories or drives that have been
redirected with an ASSIGN, JOIN, or SUBST command.

Return Codes

0 Backup operation was successful.
1 No files were found to back up.
2 Some files were not backed up because of sharing conflicts (versions 3.0 and later).
3 Backup operation was terminated by user.
4 Backup operation was terminated because of error.

Examples

To back up the file REPORT.TXT in the current directory on the current drive, placing the
backup file on the disk in drive A, type

OBACKUP REPORT.TXT A: <Enter>

Section III: User Commands 747

BACKUP

To back up all the files in the subdirectory B:\V2\SOURCE, placing the backup files on the
disk in drive A, type

OBACKUP B:\V2\S0URCE A; <Enter>

To back up all the files with extension .C in the directory \V2\SOURCE on the current
drive, placing the backup files on the disk in drive A, type

OBACKUP \V2\S0URCE* .C A: <Enter>

To back up all the files with the extension .ASM from the current directory on the current
drive and from all its subdirectories, placing the backup files on the disk in drive A, type

OBACKUP *.ASM A: /S <Enter>

To back up all the files that have been modified since the last backup from all the sub
directories on drive C, placing the backup files on the disk in drive A, type

OBACKUP C:\ A: /S /M <Enter>

To back up all the files with the extension .C from the directory C:\V2\SOURCE that were
modified on or after October l6,1985, placing the backup files on the disk in drive A, type

OBACKUP C:\V2\S0URCE* .C A: /D: 10-1 6-85 <Enter>

Messages

mBacking upfilestodriveX: »♦»
Diskette Number: n
This informational message informs the user of the progress of the BACKUP command.
**«Last file not backed up
The destination drive does not have enough space to back up the last file.

***Not able to back up file ♦♦♦
One of the system calls used by BACKUP failed unexpectedly; for example, a file could not
be opened, read, or written.

Cannot create Subdirectory BACKUP on drive JIT:
Drive X is full or its root directory is full.

DOS 2.0 or later required
BACKUP does not work with versions of MS-DOS earlier than 2.0.

Error trying to open backup log file
Continuing without making log entries
The /L switch was used and BACKUP is unable to create the backup log file.

748 The MS-DOS Encyclopedia

BACKUP

Files cannot be added to this diskette

unless the PACK (/P) switch is used

Set the switch (Y/N)?

The root directory of the destination disk is full and a subdirectory must be created to hold
the remaining files. Respond with V to cause BACKUP to create a subdirectory and con
tinue backing up files into it; respond with N to return to MS-DOS.

Incorrect DOS version

The version of BACKUP is not compatible with the version of MS-DOS that is running.

Insert backup diskette in drive Y:
Strike any key when ready
This message prompts the user to insert a disk to receive the backup files into the speci
fied destination drive.

Insert backup diskette n in drive Y:
Strike any key when ready
The files being backed up will not fit onto a single floppy disk; this message prompts the
user to insert the next floppy disk. Multiple-floppy-disk backup disks should be labeled
and numbered to match the number displayed in this message.

Insert backup source diskette in drive Y:
Strike any key when ready
This message prompts the user to insert the floppy disk to be backed up into the specified
source drive.

Insert last backup diskette in drive Y:
Strike any key when ready
This message prompts the user to insert the final disk that will receive the backup files
into the specified destination drive.

Insufficient memory
Available system memory is insufficient to run the BACKUP program.

Invalid argument
One of the switches specified in the command line is invalid or is not supported in the ver
sion of BACKUP being used.

Invalid Date/Time

An invalid date or time was given with the /T>'.date or /T.time switch.

Invalid drive specification
The source or destination drive specified in the command line is not available or is not
valid.

Invalid number of parameters
At least two parameters, the source and the destination, must be specified in the com
mand line; a maximum of seven switches can be specified after the source and
destination.

Section III: User Commands 749

BACKUP

Invalid parameter
One of the switches supplied in the command line is invalid.

Invalid path
The path specified as the source is invalid or does not exist.

Last backup diskette not inserted
Insert last backup diskette in drive X:
Strike any key when ready
The backup disk inserted as the last backup disk was not the correct disk. Insert the cor
rect disk.

No space left on device
The destination disk is full.

No such file or directory
The source specified is invalid or does not exist.

Source and target drives are the same
The disks specified as the source and destination disks are identical.

Source disk is Non-removable

The disk containing the files to be backed up is a fixed disk.

Target can not be used for backup
The disk specified as the destination disk is damaged or the /A switch was used in the
command line and the disk does not contain a valid BACKUPID.@@@ file.

Target disk is Non-removable
The disk that will contain the backed-up files is a fixed disk.

Target is a floppy disk

or

Target is a bard disk
This informational message indicates which type of disk was specified as the destination
disk.

Too many open files
Too many files are open. Increase the value of the FILES command in the CONFIG.SYS
file.

Unable to erase filename
BACKUP is unable to erase an older version of a backed-up file because the file is read
only or is in use by another program.

750 The MS-DOS Encyclopedia

BACKUP

Warning! Files in the target drive
X: \ root directory will be erased
Strike any key when ready
The destination is a floppy-disk drive and this message warns the user that all files in its
root directory will be erased before the backup operation.

Warning! Files in the target drive
C:\BACKIJP directory will be erased
Strike any key when ready
BACKUP is ready to begin backing up files to the \BACKUP directory on drive C. All exist
ing files in the \BACKUP directory will be deleted. Press Crtl-Break to terminate the
backup operation or press any key to continue.

Warning! No files were found to backup
No files were found on the source disk in the current or specified directory or no files were
found matching the filename supplied.

Section III: User Commands 751

BATCH

BATCH 1.0 and later

System Batch-File Interpreter Internal

Purpose

Sequentially executes commands stored in a batch file (a text-only file with a .BAT
extension).

Syntax

filename [[parameterl [parameter2 [...]]]]

where:

filename is the name of the batch file to be executed, without the .BAT extension.
(The filename is always %0 in the list of replaceable parameters.)

parameterl is the filename, switch, or string that is the value of the first replaceable
parameter (%1).

parameter2 is the filename, switch, or string that is the value of the second replaceable
parameter (%2). As many additional replaceable parameters can be speci
fied as the command line will hold.

Description

A batch file is an ASCII text file that contains one or more MS-DOS commands. It is a use

ful way to perform sequences of frequently used commands without having to type them
all each time they are needed. When a batch file is invoked by entering its name, the com
mands it contains are carried out in sequence by a special batch-file interpreter built into
COMMAND.COM. Additional information entered in the batch-file command line can be

passed to other programs by means of replaceable parameters isee below).

A batch file must always have the extension .BAT. The file can contain any number of lines
of ASCII text; each line can contain a maximum of 128 characters. Batch files can be cre
ated with EDLIN or another text editor or with a word processor in nondocument mode.
(Formatted document files cannot be used as batch files because they contain special con
trol codes or escape sequences that cannot be processed by the batch-file interpreter.)
Batch files can also be created with the MS-DOS COPY command by specifying the CON
device (keyboard) as the source file and the desired batch-file name as the destination file.
For example, after the command

C>COPY CON MYFILE.BAT <Enter>

each line that is typed will be placed into MYFILE.BAT. This form of the COPY command
is terminated by pressing Ctrl-2 or the F6 key, followed by the Enter key.

The commands in a batch file can be any combination of internal MS-DOS commands
(such as DIR or COPY), external MS-DOS commands (such as CHKDSK or BACKUP), the
names of other programs or batch files, or the following special batch-file directives:

752 The MS-DOS Encyclopedia

BATCH

Command Action

ECHO

FOR

GOTO

IF

PAUSE

REM

SHIFT

Displays a message on standard output (versions 2.0 and later).
Executes a command on each of a set of files (versions 2.0 and

later).

Transfers control to another point in a batch file (versions 2.0
and later).

Conditionally executes a command based on the existence of a
file, the equality of two strings, or the return code of a previously
run program (versions 2.0 and later).

Waits for the user to press a key before executing the remainder of
the batch file.

Allows comment lines to be placed in batch files for internal
documentation.

Provides access to more than 10 command-line parameters (ver
sions 2.0 and later).

These special batch commands are discussed individually, with examples, in the following
pages.

A batch file is executed by entering its name, without the .BAT extension, in response to
the MS-DOS prompt. The system's command processor, COMMAND.COM, searches the
current directory and then each directory named in the PATH environment variable for a
file with the specified name and the extension .COM, .EXE, or .BAT, in that order. If a
.COM or .EXE file is found, it is loaded into memory and receives control; if a .BAT file is
found, it is assumed to be a text file and is passed to the batch-file interpreter. (If two files
with the same name exist in the same, directory, one with a .COM or .EXE extension and
the other with a .BAT extension, it is not possible to execute the .BAT file—the .COM or
.EXE file is always loaded instead.)

If the disk that contains a batch file is removed before all the commands in the batch file

are executed, COMMAND.COM will prompt the user to replace the disk so that the batch
file can be completed. Execution of a batch file can be terminated by pressing Ctrl-C or
Ctrl-Break, causing COMMAND.COM to issue the message Terminate batch job? (Y/N). If
the user responds with Y, the batch file is abandoned and COMMAND.COM displays its
usual prompt.

The input redirection (<), output redirection (> or »), and piping (1) characters have no
effect when they are used in a command line that invokes a batch file. However, they can
be used in individual command lines within the file.

Ordinarily, if a batch file includes the name of another batch file, control passes to the sec
ond batch file and never returns. That is, when the commands in the second batch file are

completed, the batch-file interpreter terminates and any remaining commands in the first

Section III: User Commands 753

BATCH

batch file are not processed. However, a batch file can execute another batch file without
itself being terminated by first loading a secondary copy of the system's command pro
cessor. To accomplish this, the first batch file must contain a command of the form

COMMAND /C batch2

where batch2 is the name of the second batch file. When all the commands in the second

batch file have been processed, the secondary copy of COMMAND.COM exits and the
first batch file continues where it left off. iSee USER COMMANDS: command for details on

the use of the /C switch with COMMAND.COM.)

A batch file can be made more flexible by including replaceable parameters inside the file.
A replaceable parameter takes the form %n, where w is a numeral in the range 0 through 9.
Replaceable parameters simply hold places in the batch file for filenames or other informa
tion that the user will supply in the command line when the batch file is invoked.

When a batch file is interpreted and a command containing a replaceable parameter is
encountered, the corresponding value specified in the batch-file command line is substi
tuted for the replaceable parameter and the command is then executed. The %0 replace
able parameter is replaced by the name of the batch file itself; parameters %1 through %9
are replaced sequentially with the remaining values specified in the command line. If a
replaceable parameter references a command-line entry that does not exist, the parameter
is replaced with a null (zero-length) string.

For example, if the batch file MYBATCH.BAT contains the single line

COPY %1.C0M %2.SAV

and is executed by entry of

C>MYBATCH FILE1 FILE2 <Enter>

the actual command that is carried out is

COPY FILE1.COM FILE2.SAV

(The SHIFT batch command makes it possible to use more than 10 replaceable parame
ters. See USER COMMANDS: batch:shift)

An environment variable is a special case of a replaceable parameter. If the SET command
is used in the form

SET name^value

to add an environment variable to the system's environment block, the string value will be
substituted for the string %name% wherever the latter is encountered during the inter
pretation of a batch file. This capability is available only in versions 2.x, 3.1, and 3.2.

754 The MS-DOS Encyclopedia

BATCH: AUTOEXEC.BAT

BATCH: AUTOEXEC.BAT 1.0 and later

System Startup Batch File

Description

The AUTOEXEC.BAT file is an optional batch file containing a series of MS-DOS com
mands that automatically execute when the system is turned on or restarted.

When the system's default command processor, COMMAND.COM, is first loaded, it
looks in the root directory of the current drive for a file named AUTOEXEC.BAT. If
AUTOEXEC.BAT is not found, COMMAND.COM prompts the user to enter the current
time and date and then displays the MS-DOS copyright notice and command prompt. If
AUTOEXEC.BAT is found, COMMAND.COM sequentially executes the commands within
the file. No prompts to enter the time and date are issued unless the TIME and DATE
commands are explicitly included in the batch file; no copyright notice is displayed.

Typical uses of the AUTOEXEC.BAT file include

• Running a program to set the system time and date from a real-time clock/calendar
located on a multipurpose expansion board (IBM PC, PC/XT, or compatibles only)

• Using the MODE command to configure a serial port or to redirect printing
• Executing SET commands to configure environment variables
• Setting display colors on a color monitor (if the command DEVICE=ANSLSYSh3iS

been included in the CONFIG.SYS file)

• Installing terminate-and-stay-resident (TSR) utilities
Using the PATH command to tell COMMAND.COM where to find executable pro
gram files if they are not in the current drive and/or directory
Defining a custom prompt using the PROMPT command
Invoking an application program such as a database, spreadsheet, or word processor

A secondary copy of the command processor can also be loaded from within the
AUTOEXEC.BAT file. If this copy of COMMAND.COM is loaded with the /P switch, it too
searches for an AUTOEXEC.BAT file on the current drive and processes the file if it is
found. This feature can be useful for performing special operations. For example, on very
old PCs that are unable to start from a fixed disk, a secondary copy of the command pro
cessor can be used to make the fixed disk's copy of COMMAND.COM the copy used by
the system from that point on (at the expense of some system memory). If the
AUTOEXEC.BAT file containing the lines

C:

COMMAND C:\ /P

is stored on the floppy disk in drive A when the system is turned on or restarted, the
first line of the file causes drive C to become the current drive; then the second line

Section III: User Commands 155

BATCH: AUTOEXEC.BAT

permanently loads a secondary copy of COMMAND.COM from drive C and instructs
COMMAND.COM to reload its transient portion from the root directory of drive C when
necessary. This in turn triggers the execution of the AUTOEXEC.BAT file on the fixed
disk to perform the actual system configuration. Because the transient part of
COMMAND.COM will be reloaded from the fixed disk when necessary, rather than
from the floppy disk, system performance is improved considerably.

Example

The following example illustrates several common uses of the AUTOEXEC.BAT file to con
figure the MS-DOS system at startup time. (The line numbers are included for reference
and are not part of the actual file.)

1 ECHO OFF

2 SETCLOCK

3 PROMPT pg

4 MD D:\BIN

5 COPY C:\SYSTEM*.* D:\BIN > NUL

6 PATH=D:\BIN;C:\WP\WORD;C:\MSC\BIN;C:\ASM

7 APPEND D:\BIN/C:\WP\WORD;C:\ASM

8 SET INCLUDE=C:\MSC\INCLUDE

9 SET LIB=C:\MSC\LIB

10 SET TMP=C:\TEMP

11 MODE C0M1:9600,n,8,1,p

12 MODE LPT1:=C0M1:

Line 1 causes the batch-file processor to operate silently; that is, the commands in the
batch file are not displayed on the screen as they are executed.

Line 2 runs a utility program called SETCLOCK, which reads the current time and date
from a real-time clock chip on a multifunction board and sets the system time and date
accordingly.

Line 3 configures COMMAND.COM's user prompt so that it displays the current drive and
directory.

Line 4 creates a directory named \BIN on drive D, which in this case is a RAMdisk that
was created by an entry in the system's CONFIG.SYS file.

Line 5 copies all the programs in the \ SYSTEM directory on drive C to the \BIN directory
on drive D. The normal output of this COPY command is redirected to the NUL device—
in effect, the output is thrown away—to avoid cluttering the screen.

Line 6 sets the search path for executable files and line 7 sets the search path for data files.
Note that the RAMdisk directory D:\BIN is specified as the first directory in the PATH
command; therefore, if the name of a program is entered and it cannot be found in the cur
rent directory, COMMAND.COM will look next in the directory D:\BIN. This strategy
allows commonly used programs (in this example, the programs in the \ SYSTEM direc
tory that were copied into D:\BIN) to be located and loaded quickly.

756 The MS-DOS Encyclopedia

BATCH: AUTOEXEC.BAT

Lines 8 through 10 add the environment variables INCLUDE, LIB, and TMP to the system's
environment. These variables are used by the Microsoft C Compiler and the Microsoft
Object Linker.

Line 11 configures the first serial communications port (COMl) and line 12 causes program
output to the system's first parallel port (LPTl) to be redirected to the first serial port. This
pair of commands allows a serial-interface Hewlett Packard LaserJet printer to be used as
the system list device.

Note: Depending on the version of MS-DOS in use, some commands in this example may
not be available or may support different options. See the individual command entries for
more detailed information.

Section III: User Commands 757

BATCH: ECHO

BAXCH: EOHO 2.0 and later

Display Text Internal

Purpose

Displays a message during the execution of a batch file and controls whether or not batch-
file commands are listed on the screen as they are executed.

Syntax

ECHO [ON 1 OFF! message]

where:

ON enables the display of all subsequent batch-file commands as they are
executed.

OFF disables the display of all subsequent batch-file commands as they are
executed.

message is a text string to be displayed on standard output.

Description

Each command line of a batch file is ordinarily displayed on the screen as it is executed.
The ECHO command has a dual usage: to control the display of these commands and to
display a message to the user.

ECHO is used with ON or OFF to enable or disable the display of commands during
batch-file processing. If the ECHO command is used with no parameter, the current status
of the batch processor's ECHO flag is displayed. Note that the ECHO flag is always forced
on at the start of any batch-file processing, even if that batch file was invoked by another
batch file.

The ECHO command is not limited to batch files; an ECHO command can also be issued
at the command prompt. ECHO OFF entered at the command prompt prevents the
prompt from subsequently being displayed. ECHO ON entered interactively restores the
display. If ECHO is entered interactively without a parameter, the current status of the
ECHO flag is displayed.

ECHO can also be followed by a message to be sent to standard output regardless of the
status of the ECHO flag (on or off). Note that if ECHO is on, two copies of the message
are actually displayed, the first copy preceded by the word ECHO. ECHO message is fre
quently used to display prompts and informative text during the execution of a batch file
because text following REM or PAUSE commands is not displayed if ECHO is off.

ECHO message can also be used to build lists or other batch files dynamically while the
batch file is executing. For example, the messages in the following ECHO commands are
used to build the file STARTUP.BAT:

ECHO CHKDSK > STARTUP.BAT

ECHO DIR /W » STARTUP.BAT

ECHO PROMPT pg » STARTUP.BAT

758 The MS-DOS Encyclopedia

BATCH: ECHO

The first ECHO command causes the message CHKDSK to be redirected to the file
STARTUP.BAT. The second and third ECHO commands cause the messages DIR/W and
PROMPT pg to be appended to the existing contents of STARTUP.BAT. The completed
STARTUP.BAT file contains the following:

CHKDSK

DIR /W

PROMPT pg

Note: When the pipe symbol (1) is used in message, the symbol and any characters follow
ing it are ignored until a redirection symbol (<, >, or ») is encountered, at which point the
redirection symbol and the remaining characters are recognized. For example, if the line

ECHO DIR ! SORT > STARTUP.BAT

was placed in a batch file and subsequently executed, the only characters echoed to the
file STARTUP.BAT would be DIR\ the pipe symbol and the characters between it and the
redirection symbol > would be ignored.

Examples

To disable the display of each batch-file command as it is executed, include the following
line as the first line in the batch file:

ECHO OFF

To display the message Nowformatting disk on standard output, include the following
line in the batch file:

ECHO Now formatting disk

To display the current status of the ECHO flag, include the following line in the batch file:

ECHO

If the ECHO flag is currently off, MS-DOS displays:

ECHO is off

To echo a blank line to the screen with versions 2.x, type a space after the ECHO com
mand and press Enter. To echo a blank line with versions 3.x, type the ECHO command
and a space, then hold down Alt and type 255 on the numeric keypad; finally, release the
Alt key and press Enter.

Messages

ECHO is off

or

ECHO is on

If the ECHO command is entered without a parameter, one of these lines is displayed to
give the current status of the batch processor's ECHO flag.

Section III: User Commands 759

BATCH: FOR

BATCH: FOR 2.0 and later

Execute Command on File Set internal

Purpose

Executes a command or program for each file in a set of files.

Syntax

FOR %%variable IN iset) DO command (batch processing)

or

FOR %variable IN (,sei) DO command (interactive processing)

where:

variable is a variable name that can be any single character except the numerals 0
through 9, the redirection symbols (<, >, and »), and the pipe symbol (1);
case is significant.

set is one or more filenames, pathnames, character strings, or metacharacters,
separated by spaces, commas, or semicolons; wildcard characters are per
mitted in filenames.

command is any MS-DOS command or program except the FOR command; the vari
able name %%variable (or %variable in interactive mode) can be part of
the command.

Description

The FOR command allows sequential execution of the same command or program on
each member of a set of files.

The set parameter can contain multiple filenames (including wildcards), pathnames, char
acter strings, or metacharacters such as the replaceable parameters %0 through %9. Each of
the following lines is an example of a valid set:

(FILEI.TXT %1 %2 B:\PR0G\LISTING7.TXT)

(A:\%1 A:\%2 C:\LETTERS*.TXT C:MEMO?.*)

(%PATH%)

Each filename from set is assigned in turn to %variable and then the specified command
or program is executed. (When the FOR command line is executed in a batch file, the
leading percent sign of %%variable is removed, leaving %variable.^ If a filename in set
contains wildcards, each matching file is used before the batch processor goes on to the
next member of set.

760 The MS-DOS Encyclopedia

BATCH: FOR

Note: In versions 2.x, set can consist only of a list of single filenames, a single filename
with wildcard characters, or a combination of single filenames and metacharacters. In ver
sions 3.x, however, all combinations of these are allowed in the same set.

The FOR command can also be used interactively at the MS-DOS prompt to perform a
single command on several files without entering the same command for each file. When
FOR is used in this manner, only one percent sign (%) should be used before the dummy
alphabetic variable; in this case, the percent sign is not removed during processing. When
the FOR command is used interactively, environment variables such as %PATH% cannot
be used as part of the filename set.

Examples

To view all the files with the extension .TXT in the current directory, include the following
line in the batch file:

FOR %%X IN (*.TXT) DO TYPE %%X

To perform the same function interactively, type

OFOR %X IN (*.TXT) DO TYPE %X <Enter>

To copy up to nine files to the disk in drive A, specifying the names of the files in the
batch-file command line, include the following line in the batch file:

FOR %%Y IN (%1 %2 %3 %4 %5 %6 %7 %8 %9) DO COPY %%Y A:

(Recall that %0 is the name of the batch file.)

To execute successive batch files under the control of one batch file, use the /C switch with
COMMAND, as in the following batch-file line:

FOR %%Z IN (BAT1 BAT2 BAT3) DO COMMAND /C %%Z

Message

FOR cannot be nested

The command or program performed by a FOR command cannot be another FOR
command.

Section III: User Commands 76l

BATCH: GOTO

BAXCH: GOTO 2.0 and later

Jump to Label Internal

Purpose

Transfers program control to the batch-file line following the specified label.

Syntax

GOTO name

where:

name is a batch-file label declared elsewhere in the file in the form .name.

Description

The GOTO command causes the batch-file processor to transfer its point of execution to
the line following the specified label. If the label does not exist in the file, execution of the
batch file is terminated with the message Label not found.

A batch-file label is defined as a line with a colon character (:) in the first column, followed
by any text (including spaces but not other separator characters such as semicolons or
equal signs). Only the first eight characters following the colon are significant; spaces are
not counted in the eight characters.

Examples

The GOTO command is frequently used in combination with the IF and SHIFT batch
commands to perform some action based on the return code from a program. For exam
ple, the following batch file will back up a variable number of files or directories, whose
names are specified in the batch-file command line, to a floppy disk in drive A. The batch
file accomplishes this by executing the BACKUP program with successive pathnames
specified in the command line until BACKUP returns a nonzero (error) code. Control is
then transferred to the label .DONE, and the batch file is terminated.

1 ECHO OFF

2 :START

3 BACKUP %1 A:

4 IF ERRORLEVEL 1 GOTO DONE

5 SHIFT

6 GOTO START

7 :DONE

Note that the batch file includes two labels, . START and .DONE, in lines 2 and 7, respec
tively. It also includes two GOTO commands, in lines 4 and 6. (The line numbers in the
listing above are included only for reference and are not present in the actual batch file.) If
the condition in line 4 is true (the BACKUP program returned an exit code of 1 or higher),
the remainder of line 4 is executed and program control passes to the . DONE label in

762 The MS-DOS Encyclopedia

BATCH: GOTO

line 7. If the condition is false, program control passes to line 5, the SHIFT command is
executed, and program control goes to line 6, where the GOTO statement returns pro
gram control to line 2.

Message

Label not found

The specified label does not exist in the batch file.

Section III: User Commands 763

BATCH: IF

BATCH: IF

Perform Conditional Execution

2.0 and later

Internal

Purpose

Tests a condition and executes a command or program if the condition is met.

Syntax

IF [NOT] condition command

where:

condition is one of the following:

ERRORLEVEL number

The condition is true if the exit code of the program last executed by
COMMAND.COM was equal to or greater than number Note that not all
MS-DOS commands return explicit exit codes.

string 1==string2
The condition is true if stringl and string23iQ identical after parameter
substitution; case is significant. The strings cannot contain separator char
acters such as commas, semicolons, equal signs, or spaces.

EXIST pathname
The condition is true if the specified file exists. The pathname can include
metacharacters.

command is the command or program to be executed if the condition is true.

Description

The IF command provides conditional execution of a command or program in a batch file.
When condition is true, IF executes the specified command, which can be another IF
command, any other MS-DOS internal command, or a program. When condition is not
true, MS-DOS ignores command and proceeds to the next line in the batch file. The sense
of any condition can be reversed by preceding the test or expression with NOT.

Examples

To branch to the label :ERROR if the file LEDGER.DAT does not exist, include the follow
ing line in the batch file:

IF NOT EXIST LEDGER.DAT GOTO ERROR

764 The MS-DOS Encyclopedia

BATCH: IF

To branch to the label :ONEPAR if the batch-file command line does not contain at least

two parameters, include the following line in the batch file:

IF "%2"==""G0T0 ONEPAR

or

IF %2~==~ GOTO ONEPAR

Note that the existence of a replaceable parameter can be determined by concatenating it
to another string. In the first example, quotation marks are concatenated on either side of
the replaceable parameter; if %2 doesn't exist, "%2"== "" evaluates to ""== which is true
and will allow GOTO ONEPAR to be executed. In the second example, a tilde character is
concatenated to the end of the replaceable parameter; if %2 doesn't exist, the argument
becomes ~==~.

To copy the file specified by the first replaceable batch-file parameter to drive A only if it
does not already exist on the disk in drive A, include the following line in the batch file:

IF NOT EXIST A:%1 COPY %1 A:

To branch to the label :DONE if the first replaceable batch-file parameter exists in the
\PROG directory on drive C and in the \BACKUP directory on drive C, include the follow
ing line in the batch file:

IF EXIST C;\PR0G\%1 IF EXIST C:\BACKUP\%1. GOTO DONE

Messages

Bad command or filename

The command following the condition in the IF statement was misspelled, does not exist,
or was represented by a replaceable parameter that was not supplied in the command line
that invoked the batch file.

Syntax error

The condition specified in the IF statement cannot be tested.

Section III: User Commands 765

BATCH: PAUSE

BATCH: PAUSE l.o and later

Suspend Batch-File Execution Internal

Purpose

Displays a message, suspends execution of a batch file, and waits for the user to press a
key.

Syntax

PAUSE [message]

where:

message is a text string to be displayed on standard output.

Description

The PAUSE command displays the message Strike a key when ready... and suspends
execution of a batch file until the user presses a key. This command can be used to allow
time for the operator to change disks, change the type of forms on the printer, or take
some other action that is necessary before the batch file can continue.

If the batch processor's ECHO flag is on when the PAUSE command is executed, the entire
line containing the PAUSE statement is displayed on the screen so that the optional mes
sage is visible to the user. The message Strike a key when ready... is then displayed on a
new line and the system waits. Note that Strike a key when ready... is always displayed,
even if the ECHO flag is off. When the user presses a key, execution of the batch file
resumes.

Note: Redirection symbols should not be used within message. They prevent the message
Strike a key when ready... from being displayed on the screen.

If the user presses Ctrl-C or Ctrl-Break while a PAUSE command is waiting for a key to be
pressed, a prompt is displayed that gives the user the opportunity to terminate the execu
tion of the batch file. This same message is displayed whenever the user presses Ctrl-C or
Ctrl-Break during the execution of a batch file; however, using PAUSE commands supple
mented by appropriate ECHO commands at strategic points within a batch file provides
the user with clearly defined breakpoints for terminating the file.

Examples

To display the message Put an empty disk in drive A and then wait until the user has
pressed a key, include the following line in the batch file:

PAUSE Put an empty disk in drive A

766 The MS-DOS Encyclopedia

BATCH: PAUSE

when this line of the batch file is executed, if the ECHO flag is on, the user sees the fol
lowing messages on the screen:

OPAUSE Put an empty disk in drive A

Strike a key when ready . . .

If the ECHO flag is off, only the message Strike a key when ready... appears.

To display the message without the prompt and command, the PAUSE command can be
used immediately after an ECHO command, as follows:

ECHO OFF

CLS

ECHO Put an empty disk in drive A

PAUSE

This batch file will display the following message on the screen:

Put an empty disk in drive A

Strike a key when ready . . .

Note that the message must be included in an ECHO command. With ECHO off, a PAUSE
message is not displayed.

Section III: User Commands l(>7

BATCH: REM

BATCH: REM 1.0 and later

Include Comment Line internal

Purpose

Designates a remark, or comment, line in a batch file.

Syntax

REM [message]

where:

message is any text.

Description

The REM command allows inclusion of remarks, or comments, within a batch file.
Remarks are often used to document the purpose of other commands within the file for
the benefit of those who may wish to modify the file later.

If the ECHO flag is on, remarks are displayed on the screen during the execution of a
batch file. Thus, remarks can also be used to provide information, guidance, or prompts to
the user; however, the ECHO and PAUSE commands are more suitable for these purposes.

REM can also be used alone to insert blank lines in a batch file to improve readability. (If
ECHO is on, the word REM will still be displayed.)

Note: The redirection symbols (<, >, and ») and piping character (1) produce no mean
ingful results with the REM command and should not be used.

Example

To document a batch file's revision history with the internal comment This batch file last
modified on 6/18/87, include the following line in the batch file:

REM This batch file last modified on 6/18/87

768 The MS-DOS Encyclopedia

BATCH: SHIFT

BAXCH: SHIFT 2.0 and later

Shift Replaceable Parameters Internal

Purpose

Changes the position of the replaceable parameters in a batch-file command line, thereby
allowing more than 10 replaceable parameters.

Syntax

SHIFT

Description

Ordinarily only 10 replaceable parameters (%0 through %9, where %0 is the name of the
batch file) can be referenced within a batch file. The SHIFT command allows access to ad

ditional parameters specified in the command line by shifting the contents of each of the
previously assigned parameters to a lower number (%1 becomes %0, %2 becomes %1, and
so on). The previous contents of %0 are lost and are not recoverable. The eleventh param
eter in the batch-file command line is then moved into %9. This allows more than 10

parameters to be specified in the batch-file command line and subsequently processed
in the batch file.

Example

The following batch file will copy a variable number of files, whose names are entered in
the batch-file command line, to the disk in drive A:

ECHO OFF

:NEXT

IF "%i"=="" GOTO DONE

COPY %1 A:

SHIFT

GOTO NEXT

:DONE

Section III: User Commands 769

BREAK

BREAK 2.0 and later

Set Control-C Check Internal

Purpose

Sets or clears MS-DOS's internal flag for Control-C checking.

Syntax

BREAK [ONIOFF]

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro
gram, unless the program itself contains instructions that disable MS-DOS's Control-C han
dling. As a rule, MS-DOS checks the keyboard for a Control-C only when a character is
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executes for long periods without performing such character I/O,
detection of the user's entry of a Control-C may be delayed. The BREAK ON command
causes MS-DOS to also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK OFF command disables such extended
Control-C checking. The default setting for BREAK is off.

If the BREAK command is entered alone, the current status of MS-DOS's internal BREAK
flag is displayed.

Examples

To display the current status of the MS-DOS internal flag for extended Control-C checking,
type

OBREAK <Enter>

MS-DOS displays

BREAK is off

or

BREAK is on

depending on the status of the BREAK flag.

To enable extended checking for Control-C during disk operations, type

OBREAK ON <Enter>

770 The MS-DOS Encyclopedia

BREAK

Messages

BREAKison

or

BREAKisoff

Extended Control-C checking is enabled or disabled, respectively. These messages occur
in response to a BREAK status check.

Must specify ON or OFF
An invalid parameter was supplied in a BREAK command.

Section III; User Commands 771

CHDIRorCD

CHDIRorCD 2.0 and later

Change Current Directory internal

Purpose

Changes the current directory or displays the current path of the specified or default disk
drive.

Syntax

CHDIR [drive'][pat}i\

or

CT>[drive\\[patli\

where:

drive is the letter of the drive for which the current directory will be changed or
displayed, followed by a colon. Note that use of the drive parameter does not
change the currently active drive.

path is one or more directory names, separated by backslash characters (\), that
define an existing path.

Description

The CHDIR command, when followed by an existing path, is used to set the working
directory for the default or specified disk drive.

The path parameter consists of the name of an existing directory, optionally followed by
the names of existing subdirectories, each separated from the next by a backslash charac
ter. If path begins with a'backslash, CHDIR assumes that the first named directory is a sub
directory of the root directory; otherwise, CHDIR assumes that the first named directory is
a subdirectory of the current directory. The special directory name ••, which is an alias for
the parent directory of the current directory, can be used as the path.

When CHDIR is entered alone or with only a drive letter followed by a colon, the full path
of the current directory for the default or specified drive is displayed.

CD is simply an alias for CHDIR; the two commands are identical.

Examples

To change the current directory for the current (default) disk drive to the path
\V2\SOURCE, type

C>CD \V2\S0URCE <Enter>

772 The MS-DOS Encyclopedia

CHDIRorCD

To display the name of the current directory for the disk in drive D, type

C>CD D: <Enter>

To return to the parent directory of the current directory, type

C>CD .. <Enter>

Messages

Invalid directory
One of the directories in the specified path does not exist.

Invalid drive specification
An invalid drive letter was given or the named drive does not exist in the system.

Section III: User Commands 773

CHKDSK

CHKDSK 1.0 and later

Check Disk Status External

Purpose

Analyzes the allocation of storage space on a disk and displays a summary report of the
space occupied by files and directories.

Syntax

CHKDSK [drive'][pathname] [/¥] [/V]

where:

drive is the letter of the drive containing the disk to be analyzed, followed by a
colon.

pathname is the location and, optionally, the name of the file(s) to be checked for
fragmentation; wildcard characters are permitted in the filename.

/F repairs errors (versions 2.0 and later).
/V "verbose mode," reports the name of each file as it is checked (versions

2.0 and later).

Description

The CHKDSK command analyzes the disk directory and file allocation table for consis
tency and reports any errors. If the /V switch is included in the command line, the name of
each file processed is displayed as the disk is being analyzed.

After analyzing the disk, CHKDSK displays a summary of the disk and RAM space used
and available. The disk-space report includes

• Total disk space in bytes
• Number of bytes allocated to hidden files
• Number of bytes contained in directories
• Number of bytes contained in user files
• Number of bytes contained in bad (unusable) sectors
• Number of available bytes on the disk

(Hidden files are files that do not appear in a directory listing. A bootable MS-DOS or
PC-DOS disk always contains two hidden files—MSDOS.SYS and lO.SYS or IBMDOS.COM
and IBMBIO.COM, respectively—that contain the operating system. A volume label, if
present, counts as a hidden file. In addition, some application programs create hidden files
for copy protection or other purposes.)

Directory errors detected by CHKDSK include

• Invalid pointers to data areas
• Bad file attributes in directory entries

774 The MS-DOS Encyclopedia

CHKDSK

• Damage to a portion of the directory that makes it impossible to check one or more
paths

• Damage to an entire directory that makes the files contained in that directory
inaccessible

File allocation table (FAT) errors detected by CHKDSK include

• Defective disk sectors in the FAT

• Invalid cluster (disk allocation unit) numbers in the FAT

• Lost clusters

• Cross-linking of files on the same cluster

If the /F switch is included in the command line, CHKDSK will attempt to repair errors in
disk allocation and recover as much data as possible. Because repairs usually involve
changes to the disk's file allocation table that may cause a loss of information, the user is
prompted for confirmation. Lost clusters are collected into files in the root directory with
names of the form FILEwwww.CHK.

If the command line contains a file specification, CHKDSK will examine all files that
match the specification and report on their fragmentation—that is, on whether or not
their sectors are contiguous on the disk. (Fragmented files can degrade the performance of
the system because of the time required to move the drive head back and forth across the
disk to reach the various parts of the file.) Files on a floppy disk can be collected into con
tiguous sectors by copying them to an empty floppy disk. Files on a fixed disk can be col
lected into contiguous sectors by backing them all up to floppy disks, erasing all files and
subdirectories on the fixed disk, and then restoring the files from the floppy disk.

Warning: CHKDSK should not be used on a network drive or on a drive created or
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To check the disk in the current drive, type

C> CHKDSK <Enter>

If CHKDSK finds no errors, a report such as the following is displayed:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space

38912 bytes in 3 hidden files

116736 bytes in 53 directories

17055744 bytes in 715 user files

20480 bytes in bad sectors

3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

Section III: User Commands 775

CHKDSK

Note that the line containing the volume name and creation date does not appear if the
disk has not been assigned a volume name.

If CHKDSK finds errors, a message such as the following is displayed:

Errors found, F parameter not specified.

Corrections will not be written to disk.

10 lost clusters found in 3 chains.

Convert lost chains to files (Y/N)?

A V response at this point does not convert the lost chains to files; to do this, enter the
CHKDSK command again with the /F switch specified.

To correct any allocation errors found by the CHKDSK command, type

OCHKDSK /F <Enter>

In this example, CHKDSK displays its usual report, followed by an error message:

Volume HARDDISK created Jun 8, 1986 9:34a

21204992 bytes total disk space

38912 bytes in 3 hidden files

116736 bytes in 53 directories

17055744 bytes in 715 user files

20480 bytes in bad sectors

3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

10 lost clusters found in 3 chains.

Convert lost chains to files (Y/N) ?

A V response causes CHKDSK to recover the lost chains of clusters into files in the root
directory, giving the files the names FILEOOOO.CHK, FILE0001.CHK, FILE0002.CHK, and
so on. An response causes CHKDSK to free the lost chains of clusters without saving the
contents to files.

To check all files in the directory CASYSTEM with the extension .COM for fragmentation,
type

OCHKDSK C:\SYSTEM*.COM <Enter>

776 The MS-DOS Encyclopedia

CHKDSK

CHKDSK displays its usual report, followed by a list of fragmented files:

Volume HARDDISK created Jun 8,

21204992 bytes total disk space

38912 bytes in 3 hidden files

116736 bytes in 53 directories

17055744 bytes in 715 user files

20480 bytes in bad sectors

3973120 bytes available on disk

655360 bytes total memory

566576 bytes free

C:\SYSTEM\ALUSQ.COM

Contains 2 non-contiguous blocks.

C:\SYSTEM\EJECT.COM

Contains 4 non-contiguous blocks.

Messages

.Does not exist.

or

.. Does not exist.

The. (alias for the current directory) or the.. (alias for the parent directory) entry is
missing.

filename Is cross linked on clustern
Two or more files have been assigned the same cluster. Make a copy of both files on
another disk and then delete them from the disk containing the error. One or both of the
resulting files may contain information belonging to the other file.

X lost clusters found in^ chains.
Convert lost chains to files (Y/N)?
Clusters have been identified that are not assigned to any existing file. If the /F switch was
included in the original command line, respond with Y to convert the lost clusters to files
in the root directory of the disk with names of the form FILEnnnn.CHK. If desired, the
recovered clusters can then be returned to the free-disk-space pool by erasing the .CHK
files.

Allocation error, size adjusted.
The size of the file indicated in the disk directory is not consistent with the number of
clusters allocated to the file. If the /F switch was included in the command line, the file is
truncated to the size indicated in the disk directory.

All specified file(s) are contiguous.
The clusters belonging to the specified file(s) are allocated contiguously (without
fragmentation).

Section III: User Commands 111

CHKDSK

Cannot CHDIR to pathname
tree past this point not processed.
The tree directory structure of the disk being checked cannot be traveled to the specified
directory. This message indicates severe damage to the disk's directories or files.

Cannot CHDIR to root

Processing cannot continue.
In traversing the tree directory structure of the disk being checked, CHKDSK was unable
to return to the root directory. This message indicates severe damage to the disk's directo
ries or files.

Cannot CHKDSK a Network drive

The drive containing the disk to be checked has been assigned to a network.

Cannot CHKDSK a SUBSTed or ASSIGNed drive

The drive containing the disk to be checked has been substituted or assigned.

Cannot recover. entry, processing continued.
The special directory entry. (alias for the current directory) is defective.

Cannot recover.. entry.

Entry has a had attribute

or

Cannot recover.. entry.

Entry has a bad link

or

Cannot recover.. entry.

Entry has a had size
The special directory entry.. (alias for the parent directory of the current directory) is
defective due to a bad attribute, link, or size.

CHDHi.. failed, trying alternate method.
While checking the tree structure, CHKDSK was unable to return to the parent directory
of the current directory. It will attempt to return to that directory by starting over at the
root directory and searching again.

Contains n non-contiguous blocks.
The clusters assigned to the specified file are not allocated contiguously on the disk.

Directory is joined
CHKDSK cannot process directories that have been joined using the JOIN command. Use
the JOIN /D command to unjoin the directories, then run CHKDSK again.

Directory is totally empty, no. or..
The specified directory does not contain the usual aliases for the current and parent direc
tories. This message indicates severe damage to the disk's directories or files. Delete the
directory and recreate it.

778 The MS-DOS Encyclopedia

CHKDSK

Disk error reading FAT n

or

Disk error writing FAT n
One of the file allocation tables for the disk being checked contains a defective sector.
MS-DOS will use the alternate FAT if one is available. It is advisable to copy all the files on
the disk containing the defective sector to another disk.

Errors found, F parameter not specified.
Corrections will not be written to disk.

Errors were found on the disk being checked, but the /F switch was not included in the
command line.

File allocation table bad drive X:

The disk is not an MS-DOS disk. Repeat CHKDSK with the /F option; if this message is
displayed again, reformat the disk.

File not found.

CHKDSK was unable to find the specified file.

First cluster number is invalid, entry truncated.
The directory entry for the specified file contains an invalid pointer to the disk's data area.
If the /F switch was included in the command line, the file is truncated to a zero-length
file.

General Failure error reading drive JIT:
The format of the disk being checked is not compatible with MS-DOS or the disk has not
been formatted for use by MS-DOS.

Has invalid cluster, file truncated.
The file directory contains an invalid pointer to the disk's data area. If the /F switch was
included in the command line, the file is truncated to a zero-length file.

Incorrect DOS version

The version of CHKDSK is not compatible with the version of MS-DOS that is running.

Insufficient memory
Processing cannot continue.
The computer does not have enough memory to contain the tables necessary for CHKDSK
to process the specified disk.

Insufficient room in root directory.
Erase files in root and repeat CHKDSK.
The root directory is full and does not have room for the entries for recovered files. Delete
some files from the root directory of the disk being checked and rerun the CHKDSK
program.

Section III: User Commands 779

CHKDSK

Invalid current directory
Processing cannot continue.
The directory structure of the disk is so badly damaged that the disk is unusable.

Invalid drive specification
The CHKDSK command contained an invalid disk drive.

Invalid parameter
One of the switches in the command line is invalid.

Invalid sub-directory entry.
The directory name specified in the command line does not exist or is invalid.

Path not found.

One of the directories in the path specified in the command line does not exist or is
invalid.

Probable non-DOS disk

Continue (Y/N)?

The disk being checked was not formatted by MS-DOS or the file allocation table has been
severely damaged or destroyed.

Unrecoverable error in directory.
Convert directory to file (Y/N)?
The specified directory is damaged and unusable. If the /F switch was included in the
original command line, respond with Y to convert the damaged directory to a file in the
root directory of the disk with a name of the form FILEnnn«.CHK. If desired, the .CHK file
can then be deleted. Any files that were previously reached through the damaged direc
tory will be lost.

780 The MS-DOS Encyclopedia

CLS

CLS 2.0 and later

Clear Screen Internal

Purpose

Clears the video display.

Syntax

CLS

Description

The CLS command clears the video display and displays the current prompt.

In some implementations of MS-DOS, proper operation of the CLS command may require
installation of the ANSI.SYS console driver with a DEVICE=ANSI.SYS commznd in the

CONFIG.SYS file.

Examples

To clear the screen, type

C>CLS <Enter>

To save the ANSI escape sequence used by the CLS command (ESC[2J) into a file named
CLEAR.TXT, type

C>CLS > CLEAR.TXT <Enter>

Section III: User Commands 781

COMMAND

COMMAND 1.0 and later

Command Processor External

Purpose

Loads a secondary copy of the MS-DOS default command processor.

Syntax

COMMAND [drive:[[path] [device] [/E:«] [/P] [/C string]

where:

path is the name of the directory to be searched for COMMAND.COM when the
transient portion needs to be reloaded; a drive letter can be included with ver
sions 2.0 and later.

device is the name of a character device to be used instead of CON for the command

processor's input and output (versions 2.0 and later).
/E: n is the initial size, in bytes, of the command processor's environment block

(160-32768, default = 160) (version 3.2).
/P fixes the newly loaded command processor permanently in memory (versions

2.0 and later).

/C string causes the command processor to behave as a transient program and execute
the command or program specified by (versions 2.0 and later).

Description

The command processor is the module of the operating system that is responsible for
issuing prompts to the user, interpreting commands, loading and executing transient appli
cation programs, and interpreting batch files. The file COMMAND.COM contains the
MS-DOS default command processor, or shell. It is ordinarily loaded from the root direc
tory of the system disk when the system is turned on or restarted, unless the SHELL com
mand is used in the CONFIG.SYS file to specify another command processor or an
alternate location for COMMAND.COM.

With versions 1.x, COMMAND.COM is invoked by the COMMAND command in re
sponse to a shell prompt or within a batch file. A second copy of the resident portion of
COMMAND.COM is loaded and the memory occupied by the original resident portion is
lost. The second copy of the transient portion simply overlays the original transient por
tion. (Versions 1.x of COMMAND support no switches or other parameters and any speci
fied in the command line are ignored.) With versions 2.0 and later, the new copy of
COMMAND.COM is loaded in addition to the parent command processor and serves
as a secondary command processor.

782 The MS-DOS Encyclopedia

COMMAND

The path parameter specifies the location of the COMMAND.COM file that is used to
reload the transient part of the command processor if it is overlaid by application pro
grams. If absent, path defaults to the root directory of the system (startup) disk.

The device parameter allows a character device other than CON to be used by the com
mand processor for input and output. For example, use of AUX as the device parameter
allows a personal computer to be controlled from a terminal attached to a serial port,
instead of from the usual built-in keyboard and memory-mapped video display.

The secondary copy of COMMAND.COM ordinarily remains in memory and serves as the
active command processor until an EXIT command is entered. If a /P switch is used with
the COMMAND command, the new copy of COMMAND.COM is fixed in memory and the
EXIT command is disabled. In such cases, the memory occupied by previously loaded
copies of COMMAND.COM is simply lost.

The /E: n switch controls the size of the environment block initially allocated for the
command processor. The default size of the block is l60 bytes, but the /E: n switch allows
the initial allocation to be as large as 32768 bytes. This switch is frequently used when
COMMAND.COM is included in the SHELL command in the CONFIG.SYS file.

When the /C string switch is included in the command line, followed by a string desig
nating a command or program name, the new copy of COMMAND.COM carries out the
operation specified by string and then exits, returning control to its parent command pro
cessor or other program. This option allows a batch file to invoke another batch file and
then resume its own execution. (If a batch file names another batch file directly without
using COMMAND /C string as an intermediary, the first batch file is terminated.) Note
that when the /C string switch is used in combination with other switches, it must be
the last switch in the command line.

A secondary copy of COMMAND.COM always inherits a copy of the environment of
the command processor or other program that loaded it. Changes made to the new
COMMAND.COM's environment with a SET, PROMPT, or PATH command do not affect

the environment of any previously loaded program or command processor.

Examples

To execute the batch file MENU2.BAT from the batch file MENU1.BAT and then resume

execution of MENU1.BAT, include the following line in MENU1.BAT:

COMMAND /C MENU2

To cause COMMAND.COM to be loaded from the directory \ SYSTEM on drive C rather
than from the root directory and to allocate an initial environment block of 1024 bytes,
include the following line in the CONFIG.SYS file:

SHELL=C:\SYSTEM\COMMAND.COM C:\SYSTEM /P /E:1024

Section III: User Commands 783

COMMAND

Messages

Bad or missing command interpreter
The file COMMAND.COM is not present in the root directory of the system disk and no
SHELL command is present to specify an alternate command processor file or location, or
the location specified for COMMAND.COM in a SHELL command is not correct. This mes
sage may also be seen if COMMAND.COM is moved from its original location after the
system is booted.

Invalid device

The character device specified in the command line is not valid or does not exist.

Invalid environment size specified
The value supplied with the /E: n switch was less than l60 bytes or greater than 32768
bytes.

784 The MS-DOS Encyclopedia

COMP

COMP IBM

Compare Files External

Purpose

Compares two files or sets of files. This command is available only with PC-DOS.

Syntax

COM? [primary] [secondary]

where:

primary is the name of the file to be compared against and can be preceded by a
drive and/or path; wildcard characters are permitted in the filename.

secondary is the name of the file to be compared with primary and can be preceded
by a drive and/or path; wildcard characters are permitted in the filename.

Description

The COMP command compares one file or set of files with another. As each pair of files is
compared, the program reports whether the files are identical, different in size, or the
same size but different in content.

The primary and secondary parameters can be any combination of drive, path, and file
name, optionally including wildcards to allow sets of files to be compared. (With versions
1.x, using wildcards does not cause multiple file comparisons—only the first secondary
file whose name matches the first primary filename is compared.) The primary parameter
generally designates the specific files to be compared; the secondary parameter is usually
only a drive and/or path, except when the files being compared have different names or
extensions.

liholhprimary and secondary are omitted from the command line, the COMP program
prompts for them interactively. If primary is given as a drive or path only, COMP assumes
».♦ to be the primary file. If secondary is given as a drive or path only, COMP compares all
files on that drive or path whose filenames match those of the primary files.

The COMP command is included only with PC-DOS. MS-DOS versions 2.0 and later
provide a similar function in the PC command, which also displays the differences be
tween files.

Examples
To compare the file MYFILE.DAT on the disk in drive A with the file LEDGER.DAT on the
disk in drive B, type

C>COMP A:MYFILE.DAT B:LEDGER.DAT <Enter>

Section III: User Commands 785

COMP

To compare all the files in the current directory of the disk in drive A with the
corresponding files in the current directory of the disk in drive D, type

OCOMP A:*.* D: <Enter>

To compare all the files with the extension .ASM in the directory C:\SOURCE with the
corresponding files with extension .BAK on the disk in drive B, type

OcOMP C:\SOURCE*.ASM B:*.BAK <Enter>

Messages

10 mismatches - ending compare
The primary and secondary files are the same size but have more than 10 internal differ
ences. The compare operation on this pair of files is aborted and COMP proceeds to the
next pair of files, if any.

filename andfilename
This informational message shows the full filenames of the two files currently being
compared.

Access Denied

An attempt was made to compare a locked file.

Cannot compare file to itself
An attempt was made to compare a file with itself.

Compare error at OFFSET tm
Filel=»«

File 2 ̂itn

This informational message itemizes the first 10 differences in data between the two files
being compared (if the files are the same size), displaying the file offset and the differing
bytes from each file as hexadecimal values.

Compare more files (Y/N)?
After all specified pairs of files have been compared, the COMP program allows the entry
of another pair of file specifications. Respond with Y or press Enter to continue; respond
with N to terminate the COMP program.

Enter 2nd file name or drive id

If the secondary filename was not specified in the COMP command, this message prompts
the user to enter it (or a path, if the secondary file has the same name as the primary file).

Enter primary file name
If no parameter was entered after COMP, this message prompts the user to enter the pri
mary filename. If a drive or path is specified, COMP assumes •.• for the primary filename.

EOF mark not found

The last byte at the logical end of the file was not a Control-Z character (!^Z, or lAH). This
message is commonly seen during comparison of two files that are not ASCII text files,
such as executable program files.

786 The MS-DOS Encyclopedia

COMP

Files compare OK
The files being compared were the same length and contained identical data.

File not found

The specified filename was invalid or the file does not exist.

Files are different sizes

The two files being compared have different sizes recorded in the directory. No com
parison on the data within the files is attempted.

File sharing conflict
COMP is unable to compare the two current files because one of the files is in use by
another process.

Incorrect DOS version

The version of COMP is not compatible with the version of PC-DOS that is running.

Insufficient memory
The available system memory is insufficient to run the COMP program.

Invalid drive specification
The drive specification in primary or secondary is invalid or does not exist.

Invalid path
The path or directory in primary or secondary is invalid or does not exist.

Too many files open
No more system file handles are available. Increase the value of the FILES command in the
CONFIG.SYS file and restart the system.

Section III: User Commands 787

CONFIG.SYS

CONFIG.SYS 2.0 and later

System Configuration File

Purpose

Allows the user to configure the operating system.

Description

The CONFIG.SYS file is an ASCII text file that MS-DOS processes during initialization
(when the system is turned on or restarted). It allows the user to configure certain aspects
of the operating system, such as the number of internal disk buffers allocated, the number
of files that can be open at one time, the formats for date and currency, and the name and
location of the executable file containing the command processor. CONFIG.SYS can also
contain commands that extend the system with installable device drivers for terminal
emulation, virtual disks or RAMdisks, extended or expanded memory, and other special
peripheral devices.

The CONFIG.SYS file can be created or modified with EDLIN or with any other editor or
word processor that can produce ordinary ASCII text files (nondocument files) and save
them to disk. The CONFIG.SYS file must be in the root directory of the disk that is used to
start the operating system in order for it to be processed during system initialization.
When changes are made to the CONFIG.SYS file, they do not take effect until the system
is restarted.

Commands in the CONFIG.SYS file take the form

command [=] value

(Note that the equal sign is optional; any other valid MS-DOS separator [semicolon, tab, or
space] can be used instead.) The commands supported are

Command Action

BREAK Controls extended checking for Control-C.
BUFFERS . Specifies the number of internal disk-sector buffers available for use by

MS-DOS when reading from or writing to a disk.
COUNTRY Controls date, time, and currency formatting.
DEVICE Specifies the filename of an installable device driver.
DRIVPARM Redefines the default characteristics of the resident MS-DOS block

device(s) (version 3.2).

FCBS Specifies the maximum number of simultaneously open file control blocks
(versions 3.0 and later).

(more)

788 The MS-DOS Encyclopedia

CONFIG.SYS

Command Action

FILES Specifies the maximum number of simultaneously open files controlled by
handles.

LASTDRIVE Sets the highest valid drive letter (versions 3.0 and later).
SHELL Specifies the filename (and optionally the drive and/or path) of the system

command processor.
STACKS Sets the number and size of stack frames for the system.

Each of these commands is discussed in detail on the following pages.

Message

Unrecognized command in CONFIG.SYS
A command in the CONFIG.SYS file was misspelled, an invalid parameter was used, or a
command was included that is not compatible with the version of MS-DOS that is running.
Correct the CONFIG.SYS file and restart the system.

Section III: User Commands 789

CONFIG.SYS; BREAK

CONFIG.SYS: BREAK 2 0 and later

Configure Control-C Checking

Purpose

Sets or clears MS-DOS's internal flag for Control-C checking.

Syntax

BREAK=ON I OFF

Description

Pressing Ctrl-C or Ctrl-Break while a program is running ordinarily terminates the pro
gram, unless the program itself contains instructions that disable MS-DOS's Control-C
handling. As a rule, MS-DOS checks the keyboard for a Control-C only when a character is
read from or written to a character device (keyboard, screen, printer, or auxiliary port).
Therefore, if a program executes for long periods without performing such character I/O,
detection of the user's entry of a Control-C may be delayed. The BREAK=ON command
causes MS-DOS to also check the keyboard for a Control-C at the time of each system call
(which slows the system somewhat); the BREAK=OFF command disables such extended
Control-C checking. The default setting for BREAK is off.

Extended Control-C checking can also be enabled or disabled at the command prompt
with the interactive form of the BREAK command whenever the system is running.

Example

To enable extended Control-C checking during MS-DOS disk operations, insert the line

BREAK=ON

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
The setting supplied for the BREAK command was not ON or OFF. Correct the
CONFIG.SYS file and restart the system.

790 The MS-DOS Encyclopedia

CONFIG.SYS: BUFFERS

CONFIG.SYS: BUFFERS 2.0 and later

Configure Internal Disk Buffers

Purpose

Sets the number of MS-DOS's internal disk buffers.

Syntax

BUFFERS=nn

where:

nn is the number of buffers (1-99, default = 2; default = 3 for IBM PC/AT and
compatibles).

Description

MS-DOS maintains a set of internal buffers (sometimes referred to as a disk cache) in
which it keeps copies of the sectors most recently read from or written to the disk. When
ever a program requests a disk read, MS-DOS first searches the disk buffers to determine
whether a copy of the disk sector containing the required data is already present in RAM.
If the sector is found, the actual disk access is bypassed. This technique can significantly
improve the overall performance of the disk operating system.

By using the BUFFERS command in the CONFIG.SYS file, the user can control the number
of buffers in MS-DOS's disk cache. The default number of buffers is 2 for an IBM PC,
PC/XT, or compatible and 3 for an IBM PC/AT or compatible. The optimum number of
buffers varies, depending in part on the characteristics and types of the system disk drives,
the types of application programs used on the system, the number and levels of subdirec
tories in the file structure, and the amount of RAM in the system.

If the system has only floppy-disk drives, the default setting of 2 buffers is sufficient. If the
system includes a fixed disk, increasing the number of buffers to 10 or so typically speeds
up overall system operation. Configuring the system for too many buffers, however, can
actually degrade the performance of the system.

Increases in the number of buffers should be tailored to the type of application most fre
quently used. For example, allocation of extra disk buffers will not improve the perfor
mance of programs that use primarily sequential file access but may considerably enhance
the execution times of programs that perform random access on a relatively small number
of disk records (such as the index for a database file). In addition, if the system has many
subdirectories organized in several levels, increasing the number of buffers can signifi
cantly increase the speed of disk operations.

The ideal number of buffers for a given system is difficult to predict because of the interac
tions between the access time of the disk, the speed of the central processing unit, and the

Section III: User Commands 791

CONFIG.SYS: BUFFERS

RAM requirements and disk access behavior of the mix of application programs. However,
a reasonably optimal number of buffers can be quickly estimated experimentally by in
creasing the number of buffers in increments of five or so, restarting the system, perform
ing some simple timing tests on the most frequently used application programs, and
observing at what number of buffers system performance begins to degrade.

Example

To allocate 20 internal disk buffers, insert the line

BUFFERS=20

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
The value supplied for the BUFFERS command was not a number in the range 1 through
99.

792 The MS-DOS Encyclopedia

CONFIG.SYS: COUNTRY

CONFIG.SYS: COUNTRY 2.1 and later

Set Country Code

Purpose

Configures MS-DOS's internationalization support for a specific country.

Syntax

COUNTRY=Mnn

where:

nnn is the international telephone dialing prefix for the country (001-999, default =
001):

Australia 06l
Belgium 032
Denmark 045

Finland 358

France 033

Israel 972

Italy 039
Netherlands 031

Norway 047
Spain 034
Sweden 046
Switzerland 041

United Kingdom 044
USA 001

West Germany 049

Note: In versions 2.x (except 2.0), nnn is 01 through 99. Individual computer manufactur
ers determine the specific codes supported by their versions of MS-DOS.

Description

The COUNTRY command enables the user to tailor MS-DOS's date, time, and currency
displays for a specific country. This capability, termed internationalization support, is
achieved through use of a country code that controls the contents of the table MS-DOS
uses to format these displays (including numeric separators). (The internationalization
table is made available to application programs through Interrupt 21H Function 38H.)
Beginning with version 3.0, PC-DOS also supports the COUNTRY command.

Section III: User Commands 793

CONFIG.SYS: COUNTRY

Example

In West Germany, the format for the date is dd.mm.yy. To configure MS-DOS to use this
date format, insert the line

COUNTRY=049

into the CONFIG.SYS file and restart the system.

Message

Invalid country code
The specified country code is not supported by the version of MS-DOS that is running.

794 The MS-DOS Encyclopedia

CONFIG.SYS; DEVICE

CONFIG.SYS: DEVICE 2.0 and later

Install Device Driver

Purpose

Loads and links an installable device driver into the operating system during initialization.

Syntax

\yEYlCE=[driw\[path]filename [options]

where:

filename is the name of the device-driver file, optionally preceded by a drive and/or
path.

options specifies any switches or other parameters needed by the device driver; the
DEVICE command itself has no switches.

Description

Device drivers are the modules of the operating system that control the interface between
the operating system and peripheral devices such as disk drives, magnetic-tape drives,
CRT terminals, and printers.

As supplied, MS-DOS already contains device drivers for the keyboard, video display, serial
port, printer, real-time clock, and disk devices. Device drivers for additional peripheral
devices can be linked into the operating system by adding a DEVICE command to the
CONFIG.SYS file, placing the file containing the device driver on the system startup disk
(or at the location specified by the drive-, and/or path parameter), and restarting the
computer.

If a drive other than the one containing the system disk is named as the location of the
device driver, that drive must either be accessible via the system's default disk driver or be
a drive configured with a previous DEVICE command.

Most OEM implementations of version 3.2 provide three installable device drivers:
ANSI.SYS, which allows the video display and keyboard to be controlled by ANSI standard
escape sequences; DRIVER.SYS, which supports external disk drives; and RAMDRIVE.SYS
(VDISK.SYS with PC-DOS), which uses a portion of the machine's RAM to emulate a disk
drive. See USER COMMANDS: ansi.sys; driver.sys; ramdrive.sys; vdisk.sys.

Many manufacturers of add-on products for MS-DOS machines (such as network interfaces
or Lotus/Intel/Microsoft Expanded Memory boards) also supply installable device drivers
for use with their hardware. For information concerning these drivers, see the product
manufacturer's user's manual.

Section III: User Commands 795

CONFIG.SYS: DEVICE

Examples

To load the ANSI standard console driver, insert the line

DEVICE=ANSI.SYS

into the CONFIG.SYS file, place the file ANSI.SYS in the root directory of the system disk,
and restart the system.

To load the RAMDRIVE.SYS driver located in the \DRIVERS directory on the disk in drive
A, configuring it for 1024 KB in extended memory, insert the line

DEVICE=A:\DRIVERS\RAMDRIVE.SYS 1024 /E

into the CONFIG.SYS file and restart the system.

Messages

Bad or missing filename
The filename specified in the DEVICE command is invalid or does not exist or the file
does not contain a valid MS-DOS installable device driver.

Sector size toolarge in file filename
The specified installable device driver uses a sector size that is larger than the sector size
used by any of the system's default disk drivers. Such a driver cannot be used because
MS-DOS's internal disk buffers will not be large enough to hold a sector read from the
device.

796 The MS-DOS Encyclopedia

CONFIG.SYS: DRIVPARM

CONFIG.SYS: DRIVPARM 32

Set Block-Device Parameters

Purpose

Alters the system's list of characteristics for an existing block device.

Syntax

DRIVPARM=/D:n[/C] l/¥:n] [/H:n] [/N] [/S:n] [/Tin]

where:

/D: n is the drive number (0-255; 0 = A, 1 = B, etc.) and must always be the first
switch in the command line.

/C indicates that the device provides door-lock-status support.
/F: n is a form-factor index from the following table (default = 2 if the DRIVPARM

command is present but this switch is omitted):

0 320 KB or 360 KB

1 1.2 MB

2 720 KB

3 8-inch single-density floppy disk
4 8-inch double-density floppy disk
5 Fixed disk

6 Tape drive
7 Other

/H: n is the number of read/write heads (1-99).

/N indicates that the block device is not removable.

/S: n is the number of sectors per track (1-99).
/T: n is the number of tracks per side (1-999).

Note: The DRIVPARM command must not be used to specify device characteristics that
the device driver is not capable of supporting.

Description

Whenever the device driver for a block device such as a disk drive or magnetic-tape drive
performs input or output, it refers to an internal table of characteristics for the device that
allows it to convert logical addresses to physical addresses. The DRIVPARM command
modifies the default MS-DOS values in the table of characteristics for a particular block
device during system initialization (when the computer is turned on or restarted). Multiple
DRIVPARM commands, each modifying the characteristics of a different block device, can
be included in the same CONFIG.SYS file. Any characteristics not specifically altered in

Section III: User Commands 797

CONFIG.SYS: DRIVPARM

the DRIVPARM command for a particular device retain their original values, except for
/F:«, which defaults to 2.

DRIVPARM commands that alter the characteristics for block devices controlled by install
able device drivers must follow the DEVICE command that loads the device driver itself.

Example

Assume that drive B is a floppy-disk drive originally configured for 40 tracks with 8 sectors
per track. To reconfigure the drive to read or write 80 tracks of 9 sectors each, insert the
line

DRIVPARM=/D:1 /S:9 /T:80

into the CONFIG.SYS file and restart the system. For this command to be valid the drive
must be capable of supporting these parameters.

Message

Unrecognized command in CONF1G.SYS
An invalid parameter was specified in a DRIVPARM command.

798 The MS-DOS Encyclopedia

CONFIG.SYS: FCBS

CONFIG.SYS: FCBS 3.0 and later

Set Maximum Open Files Using File Control Blocks (FCBs)

Purpose

Configures the maximum number of files that can be open concurrently using file control
blocks (FCBs). This command has no practical effect unless either the file-sharing support
module SHARE.EXE or networking support has been loaded.

Syntax

FCBS=m,p

where:

m is the maximum number of files that can be open concurrently using FCBs (1-255,
default = 4).

p is the number of files opened with FCBs that are protected against automatic closure
(0-m, default = 0).

Description

MS-DOS supports two methods of file access: file control blocks and file handles. A file
control block is a data structure that stores information about an open file. It resides inside
an application program's memory space and is accessed by both MS-DOS and the applica
tion. iSee USER COMMANDS: config.sys: files for information on file handles.)

In a network environment, a large number of active FCBs or improper use of FCBs by
an application can seriously degrade the performance of the network as a whole. Conse
quently, MS-DOS versions 3.0 and later provide the FCBS command to enable the user to
limit the number of files that can be open concurrently using FCBs if either the file-sharing
support module SHARE.EXE isee USER COMMANDS: share) or network support has
been loaded. If an application program attempts to exceed the specified number of files,
MS-DOS closes the file with the least recently used FCB.

The p parameter in the FCBS command line allows the user to protect files from unilateral
closure by MS-DOS. The value of p is the number of files, counting from the first file
opened using an FCB, that cannot be closed automatically.

If the current value of FCBS is 4,0 (the default) when the file-sharing module SHARE.EXE
or network support is loaded, MS-DOS automatically increases the maximum number of
files that can be open concurrently to l6 and the number of files protected against automa
tic closure to 8. (When multiple FCBs refer to the same file, the file is counted only once.)

Section III: User Commands 799

CONFIG.SYS: FOBS

Examples

To set the maximum number of files that can be concurrently open using FCBs to 10 and
protect none of the FCBopened files against automatic closure by MS-DOS, insert the line

FCBS=10,0

into the CONFIG.SYS file and restart the system.

To set the maximum number of files that can be concurrently open using FCBs to 8 but
protect the first 4 FCB-opened files against automatic closure by MS-DOS, insert the line

FCBS=8,4

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified as one of the parameters in the FCBS command.

800 The MS-DOS Encyclopedia

CONFIG.SYS: FILES

CONFIG.SYS: FILES 2.0 and later

Set Maximum Open Files Using Handles

Purpose

Configures the maximum number of files and/or devices that can be open concurrently
using file handles.

Syntax

FILES=«

where:

n is the maximum number of files and devices that can be open concurrently using file
handles (8-255, default = 8).

Description

MS-DOS supports two methods of file access: file handles and file control blocks (FCBs).
During initialization, MS-DOS allocates a data structure that holds information about files
and/or devices opened with the handle, or extended-file-management, function calls. This
structure resides inside the operating system's memory space and is accessed only by
MS-DOS. {See USER COMMANDS: config.sys: fobs.) The default size of this data structure

allows 8 files and/or devices to be open concurrently using the file-handle functions. The
FILES command enables the user to change the size of the data structure. (Note that in
creasing the size of the data structure decreases the amount of RAM available to applica
tion programs.)

The FILES command controls the maximum number of files and/or devices opened with
handles for all active processes in the system combined. The limit on the number of files
and/or devices opened for a single process using handles is 20 or the number of entries in
the allocated data structure, whichever is less. Five of the 20 possible handles for a given
process are automatically assigned to standard input, standard output, standard error, stan
dard auxiliary, and standard list. However, since standard input, standard output, and
standard error all default to the same device (CON), only three of the allocated data-
structure entries are actually expended. In addition, the preassigned standard device
handles for a process can be closed and reused for other files and devices, if necessary.

Section III: User Commands 801

CONFIG.SYS: FILES

Example

To set the maximum number of files and/or devices that can be concurrently open using
the handle functions to 20, insert the line

FILES=20

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified in the FILES command.

802 The MS-DOS Encyclopedia

CONFIG.SYS: LASTDRIVE

CONFIG.SYS: LASTDRIVE 3.0 and later

Set Highest Logical Drive

Purpose

Defines the highest letter that MS-DOS will recognize as a disk-drive code.

Syntax

L ASTDRI VE= drive

where:

drive is a single letter (A-Z).

Description

MS-DOS block devices (floppy-disk drives, fixed-disk drives, and magnetic-tape drives)
are referred to by logical drive codes consisting of a single letter from A through Z. In most
MS-DOS systems, drives A and B are floppy-disk drives, drive C is a fixed disk, and drives
D and above are such devices as additional fixed disks, RAMdisks, or network volumes. In
some cases, a single physical drive (such as a very large fixed disk) is partitioned into two
or more logical drives, each of which is assigned a drive letter.

MS-DOS validates the drive code in a command or filename before carrying out a com
mand. In the default case, MS-DOS recognizes a maximum of five drives (A-E), depend
ing on the total number of default devices and devices incorporated into the system using
installable device drivers. (MS-DOS does not consider a drive letter valid unless it refers to

a physical or logical device.) The LASTDRIVE command configures MS-DOS to accept
additional drive codes, to a total of 26 (A-Z). This also makes it possible to use fictitious
drive letters with the SUBST command to assign a drive letter to a subdirectory.

If the letter code for a LASTDRIVE command specifies fewer drives than are physically
present in the system (including installed device drivers), MS-DOS uses the actual number
of physical drives.

Example

To configure MS-DOS to recognize a maximum of eight logical disk drives, insert the line

LASTDRIVE=H

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An illegal value was specified in the LASTDRIVE command.

Section III: User Commands 803

CONFIG.SYS: SHELL

CONFIG.SYS; SHELL 2.0 and later

Specify Command Processor

Purpose

Defines the name and, optionally, the location of the file that contains the operating
system's command processor.

Syntax

S}:YElL^[drive'][path]filename [options]

where:

filename is the name of the file containing the command processor, optionally pre
ceded by a drive and/or path.

options specifies any switches and other parameters needed by the designated com
mand processor; the SHELL command itself has no switches.

Description

The command processor, or shell, is the user's interface to the operating system. It is
responsible for parsing and carrying out the user's commands, including the loading and
execution of other programs from the disk. MS-DOS uses the SHELL command in the
CONFIG.SYS file to locate and load the command interpreter for the system during its
initialization process.

The default shell for MS-DOS is the file COMMAND.COM. This file is loaded by MS-DOS
from the root directory of the system disk if no SHELL command is found in the
CONFIG.SYS file or if no CONFIG.SYS file exists.

The most common use of the SHELL command is simply to advise MS-DOS that
COMMAND.COM is stored in a location other than the root directory; MS-DOS then sets
the COMSPEC variable in the environment block to COMMAND.COM, preceded by the
location specified in the SHELL command. (This can be verified by typing the SET com
mand at the command prompt.) Another common use of SHELL is to specify switches or
other parameters for COMMAND.COM itself isee USER COMMANDS: command).

Example

To specify the file VISUAL.COM in the root directory of drive C as the system's command
processor, insert the line

SHELL=C: WISUAL. COM

into the CONFIG.SYS file and restart the system.

Message

Bad or missing command interpreter
The path or filename in the SHELL command is invalid or the file does not exist.

804 The MS-DOS Encyclopedia

CONFIG.SYS: STACK

CONFIG.SYS: STACKS 32

Configure Internal Stacks

Purpose

Defines the number and size of stacks for system interrupt handlers.

Syntax

STACKS= number,size

where:

number is the number of stacks allocated for use by interrupt handlers (8-64, default =
9).

size is the size of each stack in bytes (32-512, default = 128).

Description

Each time certain hardware interrupts occur (02H, 08-0EH, 70H, and 72-77H), MS-DOS
version 3.2 switches to an internal stack before transferring control to the handler that will
service the interrupt. In the case of nested interrupts, MS-DOS checks to ensure that both
interrupts do not get the same stack. After the interrupt has been processed, the stack is
released. This protects the stacks owned by application programs or system device drivers
from overflowing when several interrupts occur in rapid succession.

The STACKS command configures the number and size of internal stacks available for
interrupt handling and thus controls the number of interrupts that can exist only partially
processed while still allowing another interrupt to occur.

The number parameter sets the number of internal stacks to be allocated; number must
be in the range 8 through 64. The size parameter is the number of bytes allocated per
stack frame; size must be in the range 32 through 512.

If too many interrupts occur too quickly and the pool of internal stack frames is exhausted,
the system halts with the message Internal Stack Overflow. Increasing the number
parameter in the STACKS command usually corrects the problem.

Example

To configure 10 stacks of 256 bytes each for use by interrupt handlers, insert the line

STACKS=10,256

into the CONFIG.SYS file and restart the system.

Message

Unrecognized command in CONFIG.SYS
An invalid number was specified in the STACKS command.

Section III: User Commands 805

COPY

COPY 1.0 and later

Copy File or Device Internal

Purpose

Copies one or more files from one disk, directory, or filename to another. Can also copy
files to or from character devices.

Syntax

COPY source[/A\ [/B] [-^sourceUl^ [/B]...] [destination] [/K] [/B] [/V]
\

where: \
\

source is the names of the file(s) to be copied, optionally preceded by a drive
and/or path; wildcard characters are permitted in filenames. The source
can also be a device.

destination is the location and, optionally, the name(s) for the copied file(s) and can
be preceded by a drive; wildcard characters are permitted in the filename.
The destination can also be a device.

/A indicates that the previous file is an ASCII text file.
/B indicates that the previous file is a binary file.
/V performs read-after-write verification of destination file(s).

Description

The COPY command copies one or more source files to one or more destination files.
When multiple files are copied, the name of each source file is displayed as it is processed.
The COPY command can also be used to send the contents of a file to a character device

or to copy input from a character device into a file.

The source parameter identifies the file or files to be copied. It can consist of any combina
tion of drive, path, and filename or it can be a device name. If a path without a filename is
specified, all files in the named directory are copied. Several source files can be concate
nated into a single destination file by placing a + operator between their names; if the
source filename contains a wildcard but the destination name does not, all the source files
are concatenated into the specified destination.

Warning: When multiple source files are concatenated into a destination file with the
same name as one of the source files, that filename should be specified as \hc first source
file. Otherwise, the contents of the source file will be destroyed before the file is copied.

When a device is specified as the source, it is usually the console (CON), for copying key
board input to a file or another device. Keyboard input is terminated by pressing Ctrl-Z or
F6 (on IBM PCs or compatibles) and then the Enter key.

806 The MS-DOS Encyclopedia

COPY

The destination parameter also can consist of any combination of drive, path, and file
name or be a device name. Unless the source files are being renamed as part of the opera
tion, destination is usually simply a drive and/or path specifying where to place the
copied files. If no destination is specified, the source file is copied to a file with the same
name in the current directory of the default disk drive; if the source file in this case is itself
in the current directory of the current drive, an error message is displayed and the copy
operation is aborted. If files are being concatenated and no destination is specified, the
source files are copied sequentially into one file in the current directory with the same
name as the first source file. If the first source file already exists, the second file and any
additional specified files are appended sequentially to the first source file.

The A and /B switches control the manner in which the COPY command operates on a
file. Both switches affect the file specification immediately preceding them and any subse
quent file specifications in the command until another A or /B switch is encountered, at
which point the new A or /B switch takes effect for the file immediately preceding it and
for any subsequent files.

The A switch indicates that a file is an ASCII text file. When the A switch is applied to a
source file, the file is copied up to, but not including, the first Control-Z (^Z) character in
the file. When the A switch is applied to a destination file, a Control-Z character is ap
pended by the COPY command as the last character of the new file.

The /B switch indicates a binary file. When /B is applied to a source file, the exact number
of bytes in the original file are copied without regard to Control-Z or any other control
characters. When the /B switch is applied to a destination file, no Control-Z character is
appended to the newly created file.

The default values for the A and /B switches for file-to-file copies are A when source files
are being concatenated and /B otherwise. When a file is being copied to or from a charac
ter device, the A switch is the default.

The /V switch causes a read-after-write verification of each block of the destination file. Its

effect is equivalent to that of the VERIFY ON command. No comparison is made between
the source and destination files—the /V switch simply causes MS-DOS to verify that the
destination file has been written correctly.

Examples

To copy the file REPORT.TXT from the root directory of the disk in drive B to a file named
FINAL.RPT in the \WP\DOCS directory on the current drive, type

C>COPY B:\REPORT.TXT \WP\DOCS\FINAL.RPT <Enter>

To make a copy of the file A: \V2\SOURCE\MENUMGR.C in the current directory of the
current drive, type

C>COPY A:\V2\S0URCE\MENUMGR.C <Enter>

Section III: User Commands 807

COPY

To copy all files with the extension .DOC in the current directory of the disk in drive A to
files with the same filenames but a .TXT extension in the current directory of the current
drive, type

C>COPY A:*.DOC *.TXT <Enter>

To combine the files PROLOG.C, MENUMGR.C, and EPILOG.C in the current directory of
the current drive into a single file named VISUAL.C in the current directory of the current
drive, type

OCOPY PROLOG.C+MENUMGR.C+EPILOG.C VISUAL.C <Enter>

To append the files MENUMGR.C and EPILOG.C to an existing file named PROLOG.C in
the current directory of the current drive, type

C>COPY PROLOG.C+MENUMGR.C+EPILOG.C <Enter>

To copy the file MENIJMGR.MAP in the current directory of the current drive to the system
printer, type

OCOPY MENUMGR.MAP PRN <Enter>

To copy input from the keyboard (CON) to a file named MENU.BAT in the current direc
tory of the current drive, type

C>COPY CON MENU.BAT <Enter>

Text subsequently entered from the keyboard is placed into the file MENU.BAT until a
Ctrl-Z or F6 is pressed.

To copy all files in the \MEMOS directory on the current drive to the \ARCHIVE directory
on the disk in drive B, type

OCOPY \MEMOS*.* B:\ARCHIVE <Enter>

or

OCOPY \MEMOS B:\ARCHIVE <Enter>

Messages

n File(s) copied
This informational message is displayed at the completion of a COPY command and indi
cates the total number of source files processed.

Cannot do binary reads from a device
The COPY command specified a copy from a character device in binary mode. Reenter
the command without a /B switch.

Content of destination lost before copy
One of the source files specified as a destination file was overwritten prior to completion
of the copy. When the destination name is the same as one of the source names, that file
should be specified as the first source file.

808 The MS-DOS Encyclopedia

COPY

File cannot be copied onto itself
The source directory and filename of a file being copied are the same as the destination
directory and filename.

File not found

A file specified in the COPY command is invalid or does not exist.

Invalid directory
A directory specified in the COPY command is invalid or does not exist.

Section III: User Commands 809

CTTY

CTTY 2.0 and later

Assign Standard Input/Output Device Internal

Purpose

Specifies the character device to be used as standard input and output.

Syntax

CTTY device

where:

device is the logical character-device name.

Description

MS-DOS ordinarily uses the computer's built-in keyboard and screen (CON) as standard
input and output. The CTTY command allows another character device to be assigned
instead.

CTTY allows MS-DOS commands to be issued from a terminal attached to the computer's
serial port or from another custom device with a screen and keyboard. Although PRN and
NUL are valid MS-DOS device names, they should not be used with this command, as they
have no input capability.

Programs that do not use MS-DOS function calls to perform their input and output will not
be affected by the CTTY command. Microsoft BASIC is an example of such a program.

Examples

To use a terminal connected to the serial port as standard input and output for programs,
type

C>CTTY AUX <Enter>

To reinstate the normal keyboard and video display (CON) as standard input and output
for programs, type

C>CTTY CON <Enter>

on the currently assigned console device.

Message

Invalid device

The specified device is not a legal character-device name or does not exist in the system.

810 The MS-DOS Encyclopedia

DATE

DATE 1.0 and later

Set Date internal

Purpose

Sets or displays the system date.

Syntax

DATE mm-dd-yy

or

DATE mm/dd/yy

or

DATE mm.dd.yy (versions 3.0 and later)

where:

mm is the month (1-12).

dd is the day (1-31).
yy is the year (80-99 or 1980-1999; 80-79 or 1980-2079 with versions 3.0 and

later).

Description

All computers that run MS-DOS have as part of their hardware configuration a timer, or
clock, that maintains the current system date and time. Among other uses, the current date
and time are inserted into a file's directory entry when the file is created or modified.

The DATE command allows the user to display or modify the current date that is being
maintained by the system's real-time clock. The command is executed automatically by
MS-DOS when the system is initialized, unless there is an AUTOEXEC.BAT file on the sys
tem disk, in which case DATE is executed only if it is included in the file.

A date entered using the DATE command does not permanently change the system date;
the newly entered date will be lost when the system is turned off or reset. On IBM PC/ATs
and compatibles, which have a built-in battery-backed clock/calendar, the system setup
program (found on the Diagnostics for IBM Personal Computer AT disk or equivalent) must
be used to permanently alter the date stored in the machine. On IBM PCs, PC/XTs, and
compatibles equipped with add-on cards containing battery-backed clock/calendar cir
cuitry, it is generally necessary to run a time/date installation program (included with
the card) when the system is turned on to set the system date and time from the clock/
calendar on the card. The DATE command usually has no effect on these card-mounted
clock/calendars.

Section III: User Commands 811

DATE

The order of the day, month, and year in the DATE command depends on the country
code, which is set with the COUNTRY command in the CONFIG.SYS file. The format
shown here is for the USA.

Examples

To set the system date to October 15,1987, type

ODATE 10-15-87 <Enter>

or

ODATE 10/15/87 <Enter>

or

ODATE 10.15.87 <Enter>

To display the current system date, type

ODATE <Enter>

and MS-DOS will respond in the form

Current date is Thu 10-15-1987

Enter new date (mm-dd-yy):

To leave the date unchanged, press the Enter key.

Messages

Current date is day mm-dd-yyyy
Enter new date (mm-dd-yy):
This informational message and prompt are displayed when MS-DOS is started and there
is no AUTOEXEC.BAT file on the system disk, when the DATE command is entered alone,
or when the DATE command is included in the AUTOEXEC.BAT file.

Invalid date

Enter new date (mm-dd-yy):
The date entered in the command line or in response to the prompt from the DATE com
mand was not formatted properly or was invalid.

812 The MS-DOS Encyclopedia

DEL or ERASE

DEL or ERASE 1.0 and later

Delete File internal

Purpose

Deletes a file or set of files. DEL and ERASE are synonymous.

Syntax

DEL [drive][patH\filename

or

ERASE [drive][path[fileruime

where:

filename is the name of the file(s) to be deleted, optionally preceded by a drive and/or
path; wildcard characters are permitted in the filename.

Description

The DEL command marks the directory entry for the specified file as deleted and frees the
disk sectors occupied by the file. If the command line ends with •.• or a directory name
(including the special directory names. and MS-DOS prompts the user for confirma
tion before deleting all the files in the current or specified directory. Note that in the case
of a directory name, the directory itself is not removed; only the files within it are deleted.

Warning: If the filename specification begins with an»wildcard and the extension is
also • (for example, »xyz.»), DEL interprets the specification as ♦.♦ and prompts the user for
confirmation before deleting all files from the current or specified directory.

Examples

To delete the file HELLO.C from the current directory on the current drive, type

ODEL HELLO.C <Enter>

To delete ail files with the extension .OBJ from the \SOURCE directory on the disk in drive
D, type

ODEL D:\SOURCE*.OBJ <Enter>

To delete all files from the current directory on the current drive, type

ODEL * . * <Enter>

or

ODEL . <Enter>

In this case, MS-DOS will prompt for confirmation that all files should be deleted.

Section III: User Commands 813

DEL or ERASE

To delete all files from the directory \WORD\ LETTERS on the current drive, type

C>DEL \WORD\LETTERS <Enter>

Again, MS-DOS will prompt for confirmation that all files should be deleted.

Messages

Access denied

The specified file is read-only. Use the ATTRIB command with the -R switch to remove
the file's read-only status.

Are you sure (Y/N)?
This message prompts the user for confirmation if the command would delete all files in
a directory (if the command line ends with a directory name or ».»). Respond with V to
delete all files in the directory; respond with N to terminate the command.

File not found

The filename in the command is invalid or the file does not exist in the specified directory.

Invalid directory
One of the directories named in the file specification is invalid or does not exist.

Invalid drive specification
The drive code in the file specification is invalid or the named drive does not exist in the
system.

814 The MS-DOS Encyclopedia

DIR

DIR

Display Directory

1.0 and later

Internal

Purpose

Displays a list of a directory's files and subdirectories.

Syntax

DIR [drive'][path\[filename] [/P] [/W]

where:

filename is the name of the file, optionally preceded by a drive and/or path, whose
directory entry is to be displayed; wildcard characters are permitted.

/? causes a pause after each screen page of display.
/W causes a wide display of filenames formatted five across.

Description

The DIR command displays information about the files in a directory. It also displays infor
mation about the volume name of the disk that contains the directory, the total number of
files and subdirectories in the directory, and the amount of free space remaining on the
disk.

The normal format of the DIR command's output is

Volume in drive C is HARDDISK

Directory of C:\ASM

. <DIR> 9-19-85 7:09p,

<DIR> 9-19-85 7:09p

LIB <DIR> 9-17-86 11:31p

SOURCE <DIR> 9-17-86 11:31p

AT86 EXE 41146 5-13-85 5:18p

CREF EXE 15028 10-16-85 4:00a

DEBUG COM 15552 3-07-85 1 :43p

EXE2BIN EXE 2816 3-07-85 1 :43p

EXEMOD EXE 11034 10-16-85 4:00a

EXEPACK EXE 10848 10-16-85 4:00a

LIB EXE 28716 10-16-85 4:00a

LINK EXE 43988 10-16-85 4:00a

MAKE EXE 24300 10-16-85 4:00a

MAPSYM EXE 18026 10-16-85 4:00a

MASM EXE 85566 10-16-85 4:00a

SYMDEB EXE 37021 10-16-85 4:00a

T86 EXE 49024 12-06-84 4:03p

17 File(s) 4022272 bytes free

The first line shows the volume label of the disk that contains the directory being dis
played; the second line gives the full pathname of the directory. The subsequent lines are

Section III: User Commands 815

DIR

the names of the files and subdirectories within the current or specified directory. Each
entry includes the time and date the file or subdirectory was created or last modified.

Files are shown with their exact size in bytes; directories are shown with the symbol
<DIR>. If the directory being listed is not the root directory of the disk, it always contains
the two special directory entries. andwhich are aliases for the current directory and the
parent directory, respectively. These aliases are included in the total file count in the last
line of the display.

Subsets of the files and subdirectories in the current or specified directory of the current
or specified drive can be listed by including a filename with wildcards in the command
line. For example, the filename ».DOC will cause DIR to list only the files with a .DOC
extension.

If the command line ends with a drive or path, DIR automatically appends an ».♦, causing
all files and subdirectories in the current or specified directory of the current or specified
drive to be listed. If a filename is included but no extension is given, DIR appends a.»to
the filename, causing all files with that name to be listed, regardless of their extension. If a
filename ending with a. is included, nothing is appended and all matching subdirectories
and filenames without extensions are listed.

The /P switch causes a pause in the display after each screen page (23 lines plus a mes
sage). The listing resumes when the user presses a key.

The / W switch causes the list to be in a more compact format by omitting size and date/
time information and by displaying the filenames five across:

Volume in drive C is HARDDISK

Directory of C:\ASM
LIB SOURCE AT86 EXE

CREF EXE DEBUG COM EXE2BIN EXE EXEMOD EXE EXEPACK EXE

LIB EXE LINK EXE MAKE EXE MAPSYM EXE MASM EXE

SYMDEB EXE T86 EXE

17 File(s) 4022272 bytes free

When the / W form of the listing is displayed, subdirectories are not easily distinguished
from files because the <DIR> symbol is not shown.

Examples
To list all files in the current directory on the current drive, type

ODIR <Enter>

To list all files in the current directory on the disk in drive B, type

ODIR B: <Enter>

or

ODIR B:*.* <Enter>

8l6 The MS-DOS Encyclopedia

DIR

To list all files in the directory \ SOURCE on the current drive, type

ODIR \SOURCE <Enter>

or

ODIR \SOURCE\».* <Enter>

To list all files with the extension .OBJ in the \LIB directory on the disk in drive D, type

ODIR D:\LIB*.OBJ <Enter>

To list all files in the parent directory of the current directory on the current drive, type

ODIR . . <Enter>

To list all files in the current directory on the current drive, sorted by filename and exten
sion, type

ODIR ! SORT <Enter>

To list all files in the current directory on the current drive, sorted by extension, type

ODIR ! SORT / + 10 <Enter>

The /-hlO instructs SORT to sort the directory entries starting at the tenth column, which is
the first column of the filename extension.

To list the subdirectories and files without extensions in the current directory, type

ODIR *. <Enter>

To print the directory on an attached printer instead of displaying it on the screen, type

ODIR > PRN <Enter>

To make a copy of the directory in a file called FILES.TXT, type

ODIR > FILES.TXT <Enter>

Messages

File not found

A filename was included in the command line and no matching files were found.

Invalid directory
An element of the path included in the command line does not exist.

Invalid drive specification
The specified drive is invalid or is not present in the system.

Strike a key when ready...
If the DIR command includes the /P switch, the display is suspended after each 23 lines
and this message prompts the user to press a key to see the next screenful of entries.

Section III: User Commands 817

DISKCOMP

DISKCOMP 32

Compare Floppy Disks External

Purpose

Compares two entire floppy disks on a sector-by-sector basis and reports any differences.
This command was included with PC-DOS beginning with version 1.0. To compare indi
vidual files, see USER COMMANDS: com?; fc.

Syntax

DISKCOMP [drivel] [drive2] 1/1] 1/8]

where:

drivel is the drive containing the first disk to be compared.
drive2 is the drive containing the second disk to be compared.
/I compares only the first sides of the disks.
/8 compares only the first eight sectors of each track.

Description

The DISKCOMP command compares the physical sectors of one floppy disk with those
of another. The drivel and drive2 parameters designate the drives holding the two disks
to be compared; the drives should always be of the same type. If drive2 is omitted,
DISKCOMP uses the current drive. If both drivel and drive2 are omitted or are identical,

DISKCOMP performs the comparison using a single drive, prompting the user to swap
disks as required.

Ordinarily, DISKCOMP determines the disk format by inspecting the disk in drivel. The /I
and /8 switches override this check so that only one side of the disks or only the first eight
sectors of each track are compared, regardless of the actual format of the disks.

If all the sectors on all the tracks are identical, DISKCOMP displays the message Compare
OK. If differences are found, DISKCOMP reports them by issuing a message that includes
the numbers of the track and disk side (read/write head) where the differences occur.

Because DISKCOMP works at the level of the disks' physical sectors and is ignorant of the
control areas and file structures imposed on a disk by MS-DOS, it also reports as errors bad
sectors that were marked during the FORMAT process.

When DISKCOMP finishes comparing two disks, it displays a prompt that allows the user
to choose between comparing another pair of disks and returning to the MS-DOS com
mand level.

DISKCOMP cannot be used with a network drive or with a drive created or affected by an
ASSIGN, JOIN, or SUBST command, nor can it be used with fixed disks.

818 The MS-DOS Encyclopedia

DISKCOMP

Return Codes

0 Compared disks were identical.
1 Differences were found between the compared disks.
2 DISKCOMP was terminated with a Control-C.

3 Bad sector was found on one of the disks being compared.
4 Initialization error was encountered: not enough memory, syntax error in command

line, or invalid drive specified in command line.

Note: Return codes are not present in the PC-DOS version of DISKCOMP.

Examples

To compare the disk in drive A with the disk in drive B, type

C>.DISKCOMP A: B: <Enter>

To compare two disks using only drive A, type

C>DISKCOMP A: A: <Enter>

To compare only the first side of the disk in drive A with the first side of the disk in drive
B,type

C>DISKCOMP A: B; /I <Enter>

To compare only the first eight sectors of each track on one side of one disk with the first
eight sectors of each track on one side of another disk using only drive A, type

C>DISKCOMP A; A: /I /8 <Enter>

Messages

Cannot DISKCOMP to or from

an ASSIGNed or SUBSTed drive

One of the specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOMP to or from

a network drive

One of the specified drives is a network device.

Compare another diskette (Y/N) ?
This prompt allows comparison of another pair of disks. Respond with Y to cause
DISKCOMP to prompt for insertion of the next pair of disks to be compared; respond with
N to exit to MS-DOS.

Compare error on side if, track n
A difference was detected between the two disks being compared.

Compare OK

The two disks being compared are identical.

Section III: User Commands 819

DISKCOMP

Compare process ended
The disk comparison was terminated as the result of a fatal error.

Comparing n tracks,
If sectors per track, n side(s)
This informational message specifies the format of the two disks being compared.

DEVICE Support Not Present

The disk drive does not support MS-DOS 3.2 device control.

Drive JT not ready
Make sure a diskette is inserted into

the drive and the door is closed

DISKCOMP was unable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be compared with double-sided disks, nor high-density disks
with double-density disks.

FIRST diskette bad or incompatible
DISKCOMP is unable to determine the format of the first disk.

Incorrect DOS version

The version of DISKCOMP is not compatible with the version of MS-DOS that is running.

Insert diskette with directory that contains
COMMAND.COM in drive and strike any key when ready
If the system was booted from a floppy disk and the system disk was then removed in
order to use DISKCOMP, the user must replace the system disk after the compare opera
tion is complete.

Insert FIRST diskette in dri\eX:

Press any key when ready...
This message prompts the user to insert the first disk of a pair to be compared.

Insert SECOND diskette in drive X:

Press any key when ready...
This message prompts the user to insert the second disk of a pair to be compared.

Insufficient memory
The available system memory is insufficient to load and execute the DISKCOMP program.

Invalid drive specification
Specified drive does not exist
or is non-removable

One of the drives specified in the command line is invalid or does not exist.

820 The MS-DOS Encyclopedia

DISKCOMP

Invalid parameter
Do not specifjr filename(s)
Command format: DISKCOMP d: d: [/l][/8]

A syntax error was detected in the command line, usually caused by an incorrect switch.

SECOND diskette bad or incompatible
The second disk of a pair to be compared does not have the same format as the first disk or
has bad sectors preventing DISKCOMP from determining its format.

Unrecoverable read error on drive X:

The disk in the specified drive contains an unreadable sector.

Section III: User Commands 821

DISKCOPY

DISKCOPY 2.0 and later

Copy Floppy Disks External

Purpose

Performs a sector-by-sector copy of one entire floppy disk to another floppy disk. This
command was included with PC-DOS beginning with version 1.0. To copy individual files,
see USER COMMANDS: copy.

Syntax

DISKCOPY [drivel] [drive2] [/I]

where:

drivel is the drive containing the disk to be copied.
drive2 is the drive containing the disk that will become the copy.
/I copies only the first side of the disk in drivel (MS-DOS version 3.2).

Description

The DISKCOPY command duplicates a floppy disk, performing the copy on a physical
sector-by-sector basis. The drivel parameter specifies the location of the disk to be copied
(the source disk). The drive2 parameter specifies the location of the disk that will become
the copy (the destination disk). If drive2 is omitted, the current drive is used as the desti
nation drive; if both drivel and drive2 parameters are omitted or are the same, DISKCOPY
performs the copy operation using a single drive, prompting the user to swap the disks as
necessary.

DISKCOPY examines the destination disk before writing any information and terminates
with an error message if it does not have the same format as the source disk. If the destina
tion disk is not formatted, DISKCOPY formats it with the same format as the source disk, as
part of the DISKCOPY operation.

Note: With MS-DOS versions 2.0 through 3.1, the destination disk must be formatted using
the FORMAT command before DISKCOPY can be used. All PC-DOS versions of

DISKCOPY will automatically format the destination disk, if necessary.

When DISKCOPY finishes copying a disk, it displays a prompt that allows the user to
choose between copying another disk and returning to the MS-DOS command level.

Because DISKCOPY creates an exact duplicate of the source disk, any file fragmentation
present on the source disk is also present on the destination disk after the DISKCOPY
process is complete. To eliminate fragmentation of the source files, they should be copied
to the destination disk individually using COPY or XCOPY.

The DISKCOPY command cannot be used with a network drive or with a drive created or

affected by an ASSIGN, JOIN, or SUBST command, nor can it be used with fixed disks.

822 The MS-DOS Encyclopedia

DISKCOPY

Return Codes

0 Disk was copied successfully.
1 Nonfatal but unrecoverable read or write error occurred (no Interrupt 24H generated).
2 DISKCOPY was terminated with a Control-C.

3 Fatal error was encountered: unreadable source disk or unformattable destination

disk.

4 Initialization error was encountered: not enough memory, syntax error in command
line, or invalid drive specified in command line.

Note: Return codes are not present in the PC-DOS version of DISKCOPY.

Examples

To copy the contents of the disk in drive A to the disk in drive B, type

ODISKCOPY A: B: <Enter>

To copy the contents of the disk in drive A using only one drive, type

ODISKCOPY A: A: <Enter>

To copy only the first side of the disk in drive A to the first side of the disk in drive B, type

ODISKCOPY A: B: /I <Enter>

Messages

Cannot DISKCOPY to or from

an ASSIGNed or SUBSTed drive

One of the specified drives has been affected by an ASSIGN or SUBST command.

Cannot DISKCOPY to or from

a network drive

One of the specified drives is a network device.

Copy another diskette (Y/N) ?
This prompt allows copying of another disk. Respond with Y to cause DISKCOPY to
prompt for insertion of the next set of disks; respond with N to exit to MS-DOS.

Copying it tracks
If sectors per track, n side(s)
This informational message specifies the format of the source disk being copied.

Copy process ended
The DISKCOPY process has been successfully completed or has been terminated by a fatal
error. In the latter case, this message is preceded by another message explaining the error.

DEVICE Support Not Present
The disk drive does not support MS-DOS version 3.2 device control.

Section III: User Commands 823

DISKCOPY

Disk error while reading drive JT:
Abort, Retry, Ignore?
A bad sector was detected on the source disk. This does not necessarily invalidate the disk
copy; the bad sector may originally have been detected and flagged by the FORMAT pro
gram and therefore not included in any file. One solution is to copy the files individually
using the COPY command.

Drive X: not ready
Make sure a diskette is inserted into

the drive and the door is closed

DISKCOPY was unable to read the disk in the specified drive.

Drive types or diskette types
not compatible
Single-sided disks cannot be copied to or from double-sided disks, nor high-density disks
to or from double-density disks.

Formatting while copying
The destination disk was not previously formatted. It is given the same format as the
source disk as part of the DISKCOPY operation (MS-DOS version 3.2).

Incorrect DOS version

The version of DISKCOPY is not compatible with the version of MS-DOS that is running.

Insert diskette with directory that contains
COMMAND.COM in driveX and strike any key when ready
If the system was booted from a floppy disk and the system disk was then removed in
order to use DISKCOPY, the user must replace the system disk after the copy operation is
complete.

Insert SOURCE diskette in drive X:

Press any key when ready...

or

Insert TARGET diskette in drive JT:

Press any key when ready...
These messages prompt the user to insert the source and destination disks before begin
ning the copy operation.

Insufficient memory
The available system memory is insufficient to load and execute the DISKCOPY program.

Invalid drive specification
Specified drive does not exist,
or is non-removable

One of the drives specified in the command line is invalid or does not exist. A fixed disk
cannot be the source or destination disk for a DISKCOPY operation.

824 The MS-DOS Encyclopedia

DISKCOPY

Invalid parameter
Do not specify filename(s)
Command Format: DISKCOPY d: d: [/I]

A syntax error was detected in the command line, usually caused by an incorrect switch or
by the use of a filename instead of (or in addition to) a disk drive.

SOURCE diskette bad or incompatible

or

TARGET diskette bad or incompatible
The source disk could not be read or the destination disk could not be formatted.

Target diskette is write protected
The destination disk has a write-protect tab on it.

Target diskette may be unusable
Unrecoverable read or write errors were encountered while copying the source disk to the
destination disk. The newly copied disk may not be an accurate copy.

Unrecoverable read error on diive.X':

side If, track If

or

Unrecoverable write error on drive

side If, track If

The disk in the specified drive contained a sector that could not be successfully read or
written.

Section III: User Commands 825

DRIVER.SYS

DRIVER.SYS

Configurable Externai-Disk-Drive Driver

3.2

External

Purpose

Installs and configures external disk drives or assigns logical drive letters to existing
floppy-disk drives.

Syntax

DEVICE=DRIVER.SYS /D: n [/C] [/F: n] l/H: n] [/N] [/S: n] [/T: n]

where:

/D:n

/C

/¥:n

/H:n

/N

/S:n

/Tin

Description

is the drive number (0-127 for floppy disks, 128-255 for fixed disks) and must
always be the first switch in the command line,
specifies that door-lock-status support is available,
is the form-factor index for the device (default = 2):

0 320/360 KB

1 1.2 MB

2 720 KB

3 8" single-density floppy disk
4 8" double-density floppy disk
5 fixed disk

6 magnetic-tape drive
7 other

is the number of heads supported by the disk drive (1-99).
specifies a nonremovable block device,
is the number of sectors per track (1-40).
is the tracks per read/write head (1-999).

When the computer is turned on or restarted, MS-DOS assigns numbers to all existing in
ternal disk drives. The DRIVER.SYS file—an installable, configurable block-device driver
for external disk drives and other mass-storage devices—allows installation of peripheral
devices that are not supported by the resident drivers in the MS-DOS BIOS module.
DRIVER.SYS can also assign a logical drive letter to an existing disk drive, thus giving the
device two drive letters. (This allows such activities as copying files between like media—
for example, copying files from one 1.2 MB 5.25-inch disk to another—using the same
drive.)

826 The MS-DOS Encyclopedia

DRIVER.SYS

The /D: n switch assigns a unit number to the additional disk drive or specifies the number
of the existing disk drive that is to be assigned a logical drive letter. (Floppy-disk unit num
bers begin at 0; fixed-disk numbers begin at 80H.) For example, if the system contains two
floppy-disk drives (0 and 1), an external floppy-disk drive requiring DRIVER.SYS would
be assigned the value 2; MS-DOS would then assign that drive the next available drive let
ter. If the number used with the /D:n switch references an existing drive (for example, 0,
the first floppy-disk drive), MS-DOS assigns the drive the next available drive letter, allow
ing the one drive unit to be referenced by two drive letters. The /D: n switch is not op
tional and must precede all other switches in the command line.

The /C, /F:«, and /N switches describe characteristics of the disk drive that is being se
lected for use with DRIVER.SYS. The /C switch is included only if the device has a status
line indicating whether the disk in the drive has been changed. (This information is used
by the driver to optimize disk accesses to the directory and file allocation table.) If the
device does not have a status line, /C will have no effect. The /F: n option describes the
form-factor index used by the device. The permissible values for n are given in the pre
ceding table; the default type is a 720 KB disk. The /N switch indicates that the block
device is nonremovable. Access to such devices is more efficient than access to removable

media because MS-DOS can eliminate calls to the driver for a media-change check.

The /H: w, /S:«, and /T: n switches describe the physical layout of the recording medium.
/H: n specifies the number of recording surfaces, or read-write heads, supported by the
drive (1-99). /S: n is the number of sectors per track (1-40) and /Tin is the tracks per side
(1-999). (The total number of physical sectors on a given disk is found by multiplying the
number of heads by the tracks per side and the sectors per track.)

Note: The values used with these switches must be supported by the device being in
stalled. If DRIVER.SYS is used to assign a logical drive letter to an existing physical device,
the values used with the switches must be identical to the characteristics imposed by the
default device driver.

Examples

To install a driver for an external 720 KB disk drive in a system that already has two
5.25-inch floppy-disk drives, insert the line

DEVICE=DRIVER.SYS /D:02

into the CONFIG.SYS file and restart the system.

Assume that an IBM PC/AT or compatible has three disk drives installed: Drive A is a 1.2
MB 5.25-inch floppy-disk drive; drive B is a 360 KB 5.25-inch floppy-disk drive; drive C is
a 30 MB fixed-disk drive. To assign the logical drive letter D to the existing drive A, effec
tively giving the one drive two drive letters, insert the line

DEVICE=DRIVER.SYS /D:0 /F:1 /H:2 /S:15 /T:80 /C

into the CONFIG.SYS file and restart the system.

Section III: User Commands 827

DRIVER.SYS

Messages

Bad or missing DRIVER.SYS
The file DRIVER.SYS could not be found in the root or specified directory or has been
damaged.

ERROR - Incorrect DOS version

The version of DRIVER.SYS is not compatible with the version of MS-DOS that is running.

ERROR - No drive specified
The /D: n switch was not included in the command line.

Loaded External Disk Driver for Drive JIT

The device driver has been successfully installed and this message informs the user of the
drive letter assigned to the device.

Sector size too large in file DRIVER.SYS
DRIVER.SYS uses a sector size that is larger than the sector size used by any of the system's
default disk drivers. The driver cannot be used because MS-DOS's internal disk buffers will

not be large enough to hold a sector read from the device.

828 The MS-DOS Encyclopedia

EDLIN

EDLIN 1.0 and later

Line Editor External

Purpose

Creates and changes ASCII text files.

Syntax

EDLIN [drive{\[path\ filename [/B]

where:

filename is the name of an ASCII text file to be created or edited, optionally preceded
by a drive and/or path.

/B causes logical end-of-file marks within the file to be ignored (versions 2.0 and
later).

Description

The EDLIN program is a simple line-oriented editor that can be used to create or maintain
short text files. The user references and edits text by line number; EDLIN displays these
numbers for convenience but they do not become part of the file. Each line of the file
being edited can be a maximum of 253 characters.

The filename parameter specifies a plain ASCII text file; if the file does not already exist,
EDLIN creates it. (EDLIN cannot be used on most files created by word-processing pro
grams because such document files have embedded formatting codes and other format
ting information that EDLIN cannot interpret.) EDLIN does not assume any extensions; the
user must type the complete filename. (EDLIN does not permit editing of a .BAK file.)

If filename is a previously existing text file, EDLIN loads lines from the file into memory
until the editing buffer is 75 percent full or until a logical end-of-file mark or the physical
end of the file is reached. The /B switch forces EDLIN to ignore any bgical end-of-file
marks (lAH, or Control-Z) the file may contain. If the file is too large for the edit buffer, the
Write Lines to Disk (W) and Append Lines from Disk (A) commands are used during the
edit session to process the remaining portions of the file.

Once the file is created or loaded into the editing buffer, EDLIN displays its asterisk
prompt (♦) and the user can begin entering editing commands.

EDLIN commands consist of a single character, in either uppercase or lowercase, usually
preceded by one or more line numbers. More than one command can be entered on a
single line by separating the commands with semicolons. EDLIN does not execute a com
mand until the Enter key is pressed.

Section III: User Commands 829

EDLIN

The EDLIN commands are

Command Action

linenumber Edit line.

A Append lines from disk.
C Copy lines (versions 2.0 and later).
D Delete lines.

E End editing session.
I Insert lines.

L List lines.

M Move lines (versions 2.0 and later).

P Display in pages (versions 2.0 and later).
Q Quit without saving changes.
R Replace text.
S Search for text.

T Transfer another file into the edit buffer (versions 2.0 and later).

W Write lines to disk.

Each of these commands is discussed in detail in the following pages.

All EDLIN commands that accept a line number or range of line numbers can also recog
nize the following symbolic references:

Symbol Meaning

The line after the last line in the edit buffer

The current line

+w or -w A line number relative to the current line

(for example, +5 = five lines past the current line)

When the user terminates the editing session with the E command, EDLIN gives the new
file the same name as the original file and renames the original (unchanged) file with the
extension .BAK. Any previous file with the same name and the extension .BAK is lost.
When the user terminates the editing session with the Q command, the original filename
remains unchanged.

Example

To edit the file AUTOEXEC.BAT in the root directory of the current drive, type

OEDLIN \AUTOEXEC.BAT <Enter>

Messages

Cannot edit .BAK file—rename file

Files with the extension .BAK cannot be edited with EDLIN. Rename the file or copy it to a
file with the same name but a different extension.

830 The MS-DOS Encyclopedia

EDLIN

End of input file
The entire file has been read into memory.

File is READ-ONLY

Files marked with the read-only attribute cannot be edited. Remove the read-only attribute
with the ATTRIB command or copy the file to a file with a different name.

File name must be specified
The command line did not include a filename.

File not found

The file named in the command line could not be found or does not exist.

Incorrect DOS version

The version of EDLIN is not compatible with the version of MS-DOS that is running.

Insufficient memory
Not enough memory is available to carry out the requested command.

Invalid drive or file name

The command line included a drive that is invalid or does not exist in the system or the
filename is not valid.

Invalid Parameter

The command line contained an illegal switch or other invalid parameter.

New file

The file named in the command line did not previously exist. The file is created and the
edit buffer is emptied.

Read error in: filename
MS-DOS was unable to read the entire file. Run CHKDSK to determine whether the file or

disk has been damaged.

Section III: User Commands 831

EDLIN: linenumber

EDLIN: linenumber 1.0 and later

Edit Line

Purpose

Selects a line of text for editing.

Syntax

linenumber

where:

linenumber is the number assigned by EDLIN to the text line to be edited (1-65534).

Description

The command to edit a particular line of text is simply the line's number or one of the spe
cial symbols or expressions that evaluate to a line number, followed by the Enter key.
EDLIN displays the current contents of the specified line and copies them to a special edit
ing buffer called the template, then moves the cursor to a new line and displays a prompt
in the form of the line number followed by a colon and an asterisk. If a line number is not
specified (that is, if the Enter key alone is pressed in response to the EDLIN prompt),
EDLIN displays the line following the current line and makes it the current line.

The user can change the text of the specified line by simply entering new text followed by
a press of the Enter key, leave the text unchanged by pressing Enter alone, or modify the
text by using special editing keys to change a portion of the text that has been placed in
the template. These editing keys and their actions are

Key Action

F1 Copies one character from the template to the new line.
V2char Copies all characters up to the specified character from the template to the

new line.

F3 Copies all remaining characters in the template to the new line.
Del Does not copy (skips over) one character.
YAchar Does not copy (skips over) all characters up to the specified character.
Esc Restarts editing for the current line, leaving the template unchanged.
Ins Enters/exits character-insert mode.

F5 Makes the newly edited line the new template.
—> Copies one character from the template to the new line.

Deletes one character from the new line.

Backspace Deletes one character from the new line.

Note: Computers that are not IBM-compatible may use a different set of editing keys to
perform these actions.

832 The MS-DOS Encyclopedia

EDLIN: linenumher

Control characters (those characters with ASCII codes in the range 0-lFH) cannot be in
serted into text with the usual Control-key combinations. Instead, the user must press the
sequence Ctrl-V, followed by an uppercase character or symbol. For example, Ctrl-C (ASCII
code 03H) is entered into text by pressing Ctrl-V followed by a capital C; the Escape char
acter (ASCII code IBH) is generated by pressing Ctrl-V followed by a left square-bracket
character ([).

Examples

To edit line 4, type

♦4 <Enter>

To edit the line two lines ahead of the current line, type

»+2 <Enter>

Section III: User Commands 833

EDLIN: A

EDLIN: A 1.0 and later

Append Lines from Disk

Purpose

Reads lines from the file being edited into the edit buffer.

Syntax

ln]A

where:

n is the number of lines to be read from the file.

Description

If the file being edited is too large to fit into the edit buffer, EDLIN ordinarily reads only
enough text to fill 75 percent of the buffer when it opens the file, reserving 25 percent of
the buffer for additions and changes to the text. The user must then employ the Write Lines
to Disk (W) and Append Lines from Disk (A) commands to write and read successive
blocks of text until the entire file has passed through the edit buffer.

The A command alone has no effect if the edit buffer is 75 percent or more full. The W
command must be used to write lines to the output file and delete them from the buffer;
then the A command can read new lines from the input file and append them to the end of
the text remaining in the buffer.

The n parameter specifies the number of lines to be read from the file. If n is omitted or
is too large, EDLIN reads only enough lines to fill the editing buffer to 75 percent of its
capacity.

Examples

To append 200 lines from the disk file to the edit buffer, type

*200A <Enter>

To append as many lines from the file as possible (until the edit buffer is 75 percent full),
type

*A <Enter>

Message

End of input file
The last section of the file being edited has been read into the edit buffer.

834 The MS-DOS Encyclopedia

EDLIN: C

EDLIN: C 2.0 and later

Copy Lines

Purpose

Copies one or more lines from one location in the edit buffer to another.

Syntax

[first]Xlast],destination[,count]C

where:

first is the number of the first line to be copied.
last is the number of the last line to be copied.
destination is the number of the line before which the copied lines are to appear.
count is the number of times to execute the copy operation.

Description

The Copy Lines (C) command copies one or more text lines, inserting the copied lines at
another location in the edit buffer. The original lines that were copied are unchanged.
EDLIN then renumbers the edit buffer and makes the first copied line at the destination
the new current line.

The first znd last line-number parameters define the block of lines to be copied. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line number is used), but the
commas must still be entered as placeholders. The destination parameter specifies the
line before which the copied lines are to be inserted; it is not optional and must not fall
within the range of line numbers specified by first znA last One of the special symbols
. (current line) or # (end of buffer) or an expression relative to the current line number
(+« or -ri) can be used instead of absolute line numbers.

To replicate the line or lines multiple times, the copy operation can be repeated automat
ically with the optional parameter count. The default value for count is one.

Examples

If the current line is line 10, to copy lines 10 through 15 and place the copied lines before
line 5, type

*10,15,5C <Enter>

or

*,15,50 <Enter>

or

*,+5,-50 <Enter>

Section III: User Commands 835

EDLIN: C

If the current line is line 10, to place three copies of lines 10 through 15 before line 1, type

*10,15,1,30 <Enter>

or

*,15,1,30 <Enter>

or

*,+5,1,30 <Enter>

Messages

Entry error

The command line contained an error such as a first line number that was greater than the
last line number or a destination line number that fell within the range first,last.

Insufficient memory
The edit buffer does not have sufficient room for EDLIN to carry out the specified
command.

Must specify destination line number
No destination line number was specified in the command line; therefore, no changes
were made to the edit buffer.

836 The MS-DOS Encyclopedia

EDLIN: D

EDLIN: D 1.0 and later

Delete Lines

Purpose

Deletes one or more lines from the edit buffer.

Syntax

[first][,last]D

where:

first is the number of the first line to delete.
last is the number of the last line to delete.

Description

The Delete Lines (D) command removes one or more text lines from the edit buffer. The

line after the last line deleted becomes the new current line.

The first and last line-number parameters define the block of lines to be deleted. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line number is used), but a
leading comma is required as a placeholder if first is omitted when last is present. One of
the special symbols. (current line) or # (end of buffer) or an expression relative to the cur
rent line number (+w or -w) can be used instead of absolute line numbers.

Examples

If the current line is line 10, to delete the current line, type

*1OD <Enter>

or

*D <Enter>

If the current line is line 10, to delete lines 10 through 15, type

»10,15D <Enter>

or

15D <Enter>

or

*,+5D <Enter>

Section III: User Commands 837

EDLIN: D

If the current line is line 10, to delete all lines from the current line to the end of the buffer,
type

*10,#D <Enter>

or

♦,#D <Enter>

Message

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

838 The MS-DOS Encyclopedia

EDLIN: E

EDLIN: E 1.0 and later

End Editing Session

Purpose

Saves the edited file to disk and exits from EDLIN.

Syntax

E

Description

The End Editing Session (E) command writes the contents of the edit buffer to the current
directory of the disk in the current drive. If a previously existing file was being edited and
there is any text remaining in the original file that has not yet passed through the edit
buffer, EDLIN copies this text to the output file. EDLIN gives the newly edited file the same
name as the original file and renames the original (unchanged) file with the extension
.BAK. Any previous file with the same name and the extension .BAK is lost. EDLIN then
returns to MS-DOS.

If the disk does not have enough space to hold the edited file in addition to the original
file, EDLIN writes as much of the edited file as possible into a file with the extension .$$$;
the remainder of the edited text is lost. The name and contents of the original file are left
unchanged.

Example

To end an editing session, type

»E <Enter>

Messages

Disk full. Edits lost.

The disk does not contain enough free space for the edited file. A partial file may have
been created with the extension .$$$.

File Creation Error

The .BAK file is marked read-only, the root directory is full or cannot contain any more
files, or the filename is the same as a volume label or directory name.

No room in directory for file
The file could not be saved because its destination was the root directory and the root
directory is full.

Too many files open
MS-DOS was unable to open the .BAK file due to a lack of available system file handles.
Increase the value of the FILES command in the CONFIG.SYS file.

Section III: User Commands 839

EDLIN: I

EDLIN: I 1.0 and later

Insert Lines

Purpose

Inserts new lines into the edit buffer.

Syntax

[destinationW

where:

destination is the number of the line before which text is to be inserted.

Description

The Insert Lines (I) command enables insert mode and allows new text to be placed be
tween previously existing lines of text. When insert mode is terminated, the first line fol
lowing the inserted lines becomes the new current line.

EDLIN places the new text before the line specified by the destination parameter. If
destination is omitted, EDLIN assumes the current line; if destination is larger than the
number of lines in the edit buffer, EDLIN simply appends the new text after the actual last
line. One of the special symbols. (current line) or # (end of buffer) or an expression rela
tive to the current line number (+« or —«) can be used instead of an absolute line number.

After an I command, EDLIN issues a prompt consisting of the line number for the inserted
text followed by a colon and an asterisk and continues to issue such prompts each time the
Enter key is pressed until the user terminates insert mode by pressing Ctrl-C or Ctrl-Break.

Examples

If the current line is line 10, to insert text before line 7, type

*71 <Enter>

or

»-3l <Enter>

To insert lines at the beginning of the buffer, type

*11 <Enter>

To insert lines at the end of the buffer, type

*#I <Enter>

Message

Insufficient memory
The edit buffer does not have sufficient room for EDLIN to complete the specified
command.

840 The MS-DOS Encyclopedia

EDLIN: L

EDLIN: L 1.0 and later

List Lines

Purpose

Displays one or more lines from the edit buffer.

Syntax

[first][,last]L

where:

first is the number of the first line to be displayed.
last is the number of the last line to be displayed.

Description

The List Lines (L) command displays text lines on standard output. If the current line lies
within the range of lines listed, EDLIN displays an asterisk next to its number. The current
line is not changed.

The //rs/and last line-number parameters define the block of lines to be listed. (Note that
the first line number must be less than or equal to the last line number.) Either or both of
these numbers can be omitted, but a leading comma is required as a placeholder iffirst is
omitted when last is present. One of the special symbols. (current line) and # (end of
buffer) or an expression relative to the current line number (+w or -ri) can be used instead
of absolute line numbers.

If only the first line number is specified, EDLIN displays text in 23-line increments starting
with that number. If only the last line number is specified, EDLIN displays text beginning
11 lines before the current line and continuing to the specified last line. If no line numbers
are specified in the command, EDLIN lists the 23 lines centered around the current line; if
the current line number is less than 13, EDLIN lists the first 23 lines in the buffer.

Examples

To display lines 20 through 30, type

♦20,30L <Enter>

If the current line is 20, to display the 23 lines centered around the current line, type

*L <Enter>

EDLIN displays lines 9 through 31.

Message

Entry error
The command line contained an error such as a first line number that was greater than the
last line number.

Section III: User Commands 841

EDLIN: M

EDLIN: M 2.0 and later

Move Lines

Purpose

Moves lines from one place in the edit buffer to another.

Syntax

[first]Xlast\destinationM

where;

first is the number of the first line to be moved.
last is the number of the last line to be moved.

destination is the number of the line before which the moved lines are to be inserted.

Description

The Move Lines (M) command transfers one or more text lines from one location in the
edit buffer to another. EDLIN then deletes the original lines and renumbers the edit buffer.
The first moved line becomes the new current line.

The first and last line-number parameters define the block of lines to be moved. (Note
that the first line number must be less than or equal to the last line number.) Either or both
of these numbers can be omitted (in which case the current line number is used), but the

commas must still be entered as placeholders. The destination parameter specifies the
line before which the moved lines are to be inserted; it is not optional and must not fall
within the range of line numbers specified by//r5/and last One of the special symbols
. (current line) or # (end of buffer) or an expression relative to the current line number
(+w or -«) can be used instead of absolute line numbers.

Example

If the current line is line 10, to move lines 10 through 15 and place them before line 5, type

*10,15,5M <Enter>

or

*,15,5M <Enter>

or

*,+5,-5M <Enter>

842 The MS-DOS EncycU^ia

EDLIN: M

Messages

Entry error

The command line contained an error such as a first line number that was greater than the
last line number or a destination line number that fell within the range first,last.

Must specify destination line number
No destination line number was specified in the command line; therefore, no changes
were made to the edit buffer.

Section III: User Commands 843

EDLIN: P

EDLIN: P 2.0 and later

Display in Pages

Purpose

Displays lines for viewing in successive screenfuls (pages).

Syntax

[first][,last]?

where:

first is the number of the first line to be displayed.
last is the number of the last line to be displayed.

Description

The Display in Pages (?) command displays text lines on standard output one screenful
at a time. Unlike the List Lines (L) command, which has no effect on the current line, P
causes the last line displayed to become the new current line. Thus, although the edit
buffer is not actually organized into pages, the user can employ repeated P commands to
sequentially view successive groups of lines.

The first and last line-number parameters define the block of lines to be listed; the dis
play starts with the line specified by first. (Note that the first line number must be less
than or equal to the last line number.) Either or both of these numbers can be omitted, but
a leading comma is required as a placeholder if first is omitted when last is present. If
omitted, first defaults to the line after the current line and last defaults to the line 23 lines
after the current line. One of the special symbols. (current line) or # (end of buffer) or an
expression relative to the current line number (+w or -n) can be used instead of absolute
line numbers.

Examples

If the current line is 20, to view the next page of lines in the edit buffer, type

*P <Enter>

EDLIN displays 23 lines, beginning with line 21, and changes the current line to line 43.

To view successive pages of 23 lines, repeatedly type

*P <Enter>

Message

Entry error

The command line contained an error such as a first line number that was greater than the
last line number.

844 The MS-DOS Encyclopedia

EDLIN: Q

EDLIN: Q 1.0 and later
Quit

Purpose

Terminates the editing session without saving the revised file.

Syntax

Q

Description

The Quit (Q) command causes EDLIN to exit without saving any of the changes made to
the edited file during the session. The original file's name and contents are left unchanged
and no new file is created.

To reduce the danger of accidentally losing the contents of the edit buffer, EDLIN prompts
the user for confirmation before carrying out the Q command.

Example

To quit an editing session, type

*Q <Enter>

EDLIN issues a prompt for confirmation and, if the response from the user is Vy exits to
MS-DOS without saving any changes made to the file during the session.

Message

Abort edit (Y/N)?

This prompt is displayed in response to the Q command. Respond with V to exit to
MS-DOS without saving changes made to the file; respond with N to continue the editing
session.

Section III: User Commands 845

EDLIN: R

EDLIN: R 1.0 and later

Replace Text

Puipose

Replaces one string in the edit buffer with another.

Syntax

[first] [,last] \3!\K[stringl] [^Zstring2]

where:

first is the number of the first line to be searched.
last is the number of the last line to be searched.

? causes the user to be prompted for confirmation before each replacement is
made.

stringl is the sequence of characters to be searched for.
^2 is a Control-Z character.

string2 is the sequence of characters to be substituted for stringl.

Note: The character limit for the Replace Text command is 127 characters, including both
strings and all other parameters.

Description

The Replace Text (R) command substitutes one character string for another within a speci
fied range of lines. The last line in which a replacement occurs becomes the new current
line.

The first and last line-number parameters define the range of lines to be searched for
strings to replace. (Note that the first line number must be less than or equal to the last line
number.) Either or both of these numbers can be omitted, but a leading comma is required
as a placeholder if first is omitted when last is present. If omitted, first defaults to the
line after the current line and last defaults to the last line in the buffer. One of the special
symbols. (current line) or # (end of buffer) or an expression relative to the current line
number (+n or -n) can be used instead of absolute line numbers.

If stringl is omitted, EDLIN uses the stringl from the preceding R command; if there was
no preceding R command, EDLIN displays an error message. If string2 is omitted, EDLIN
deletes all occurrences of stringl. stringl must be separated from string2 by a Control-Z
(^Z) character. If stringl is omitted, a Control-Z character must still be included to mark
the beginning of string2, but if string2 is omitted when stringl is present, the Control-Z
character has no effect and is therefore optional. (The Control-Z character is entered by
pressing Ctrl-Z or the F6 key.)

846 The MS-DOS Encyclopedia

EDLIN: R

If the ? option is not included in the command line, EDLIN displays each line that contains
a match after the replacement is carried out. If the ? option is used, EDLIN displays each
line containing a match as it is found and prompts the user for confirmation before the
string is replaced.

The matching operation is case sensitive; EDLIN carries out the substitution only on
sequences of characters that match stringl exactly. Wildcards are not permitted.

Examples

If the current line is line 10, to replace all occurrences of the string logical with the string
bitwise in lines 11 through 20, type

*11, 20Rlogical'^Zbitwise <Enter>

or

20Rlogical''Zbitwise <Enter>

To cause EDLIN to prompt for confirmation before replacing each string, type

*11, 20?Rlogical'^Zbitwise <Enter>

or

*, 20?Rlogical''Zbitwise <Enter>

To delete all occurrences of the string OOH in line 20, type

*20,20R00H'^Z <Enter>

Messages

Entry error

The command line contained an error such as a first line number that was greater than the
last line number.

Insufficient memory
The edit buffer has insufficient room for EDLIN to carry out the specified Replace Text
command.

Line too long
The replacement would cause the line being edited to expand beyond 253 characters.

Not found

No occurrence or further occurrences of the string to be replaced were found in the speci
fied range of lines.

O.K.?

If the ? option is used in the command line, this prompt is displayed each time a matching
string is found. Respond with Y or press the Enter key to replace the string and continue
searching; press any other key to leave the string unchanged and continue searching.

Section III: User Commands 847

EDLIN: S

EDLIN: S 1.0 and later

Search for Text

Purpose

Searches the edit buffer for a character string.

Syntax

[first] [.last] U]S[string]

where:

first is the number of the first line to be searched.
last is the number of the last line to be searched.

? causes the user to be prompted for confirmation before the search is
terminated.

string is the sequence of characters to be searched for (maximum 126 characters).

Description

The Search for Text (S) command searches for a character string within a specified range
of lines. When a match is found, EDLIN displays the line containing the match and that
line becomes the new current line. If no lines containing the specified string are found,
EDLIN displays the message Notfound and the current line number remains unchanged.

The first and last line-number parameters define the block of lines to be searched for
strings. (Note that the first line number must be less than or equal to the last line number.)
Either or both of these numbers can be omitted, but a leading comma is required as a
placeholder if first is omitted when last is present. If omitted, first defaults to the line
after the current line and last defaults to the last line in the buffer. One of the special
symbols. (current line) or # (end of buffer) or an expression relative to the current line
number (+n or -ri) can be used instead of absolute line numbers.

If string is omitted, EDLIN uses the string from the last S command or stringl from the
last Replace Text (R) command instead.

If the ? option is not included in the command line, EDLIN displays the first line that con
tains a match for string, makes this the new current line, and terminates the search. If the
? option is used, EDLIN displays each line containing a match for string as it is found, fol
lowed by an O.K.? prompt. If the user responds with Y or presses the Enter key, EDLIN ter
minates the search; if the user presses any other key, the search continues.

The matching operation is case sensitive; EDLIN reports only sequences of characters that
match string exactly. Wildcards are not permitted.

848 The MS-DOS Encyclopedia

EDLIN: S

Examples

If the current line is line 10, to find the first occurrence of the string xyz in lines 11 through
20, type

*11,20Sxyz <Enter>

or

*,20Sxyz <Enter>

To find a particular occurrence of proc in the edit buffer, type

*1,#?Sproc <Enter>

EDLIN displays the first line containing proc and prompts with

O.K.?

Type Y or press Enter to stop the search; press any other key to continue the search.

Messages

Entry error

The command line contained an error such as a first line number that was greater than the
last line number.

Not found

No match or no further matches for string were found in the specified range of lines.

O.K.?

If the ? option is used in the command line, this prompt is displayed each time a matching
string is found. Respond with Yor press the Enter key to stop searching; press any other
key to continue searching.

Section III: User Commands 849

EDLIN: T

EDLIN: T 2.0 and later

Transfer Another File

Purpose

Merges the contents of another file with the file in the edit buffer.

Syntax

[destination\l[drive'][path]filename

where:

destination is the number of the line before which the text from filename is to be
inserted.

path is the location of the file to be merged (versions 3.0 and later).
filename is the name of the disk file from which text is to be merged.

Description

The Transfer Another File (T) command merges the contents of a text file with the current
contents of the edit buffer and then renumbers the contents of the edit buffer. The first line

of the merged text becomes the current line.

The destination parameter specifies the line before which the transferred lines are to be
inserted. If omitted, destination defaults to the current line. One of the special symbols
. (current line) or # (end of buffer) or an expression relative to the current line number
(+w or -ri) can be used instead of an absolute line number.

The filename parameter specifies the file from which text is to be merged and can include
a drive and, in versions 3.0 and later, a path. If a drive or path is not specified, the file to
be merged into the edit buffer with the T command must be in the current directory of the
current drive.

Example

If the current line is line 10, to merge the contents of the file named KEYDEFS.C before
line 10 of the edit buffer, type

*1OTkeydefs.c <Enter>

or

♦Tkeydefs.c <Enter>

850 The MS-DOS Encyclopedia

EDLIN: T

Messages

File not found

The specified filename does not exist in the current or specified location.

Not enough room to merge the entire file
The space available in the edit buffer is not sufficient to hold the entire file named in the T
command. Use the Write Lines to Disk (W) command to partially empty the edit buffer.

Section III: User Commands 851

EDLIN: W

EDLIN: W 1.0 and later

Write Lines to Disk

Purpose

Writes lines from the edit buffer to the disk.

Syntax

[w]W

where:

n is the number of lines to be written to the file.

Description

If the file being edited is too large to fit into the edit buffer, EDLIN ordinarily reads only
enough text to fill 75 percent of the buffer when it opens the file, reserving 25 percent of
the buffer for changes and additions to the text. The user must then employ the Write Lines
to Disk (W) command and the Append Lines from Disk (A) command to transfer succes
sive blocks of text from the disk until the entire file has passed through the edit buffer. The
W command causes EDLIN to write lines to the disk file and delete them from the buffer;

then the A command can read new lines from the input file, placing them after the end of
the text remaining in the buffer.

The n parameter specifies the number of lines to be written to the output file; if n is omit
ted or is larger than the number of lines in the edit buffer, EDLIN writes only enough lines
to leave the edit buffer about 25 percent full. EDLIN then renumbers the lines remaining in
the edit buffer so that the first remaining line becomes line number one.

Examples

To write 200 lines from the edit buffer to disk (effectively deleting those lines from the
buffer), type

♦200W <Enter>

To write lines from the edit buffer to the disk until the edit buffer is only 25 percent full,
type

*W <Enter>

852 The MS-DOS Encyclopedia

EXIT

EXIT 2.0 and later

Terminate Command Processor internal

Purpose

Terminates a secondary copy of the command processor.

Syntax

EXIT

Description

Many communications programs, word processors, database managers, and other applica
tion programs load and execute a secondary copy of the system's command processor
(COMMAND.COM) to let the user carry out MS-DOS commands without losing the context
of the work in progress. Secondary copies of the command processor are also commonly
used to execute one batch file under the control of another. (For more information about

secondary copies of the command processor, see USER COMMANDS: command.)

The EXIT command cancels a secondary command processor. The terminating processor
displays no message and control returns directly to the parent program or command
processor.

EXIT has no effect on the currently executing command processor if it was loaded with
the /P (permanent) switch or if it is the original command processor (the one loaded dur
ing system initialization, when the computer was turned on or restarted).

The EXIT command also allows the user to choose Close from the system menu if a
COMMAND window is open under Microsoft Windows.

Example

To terminate the currently executing command processor, type

OEXIT <Enter>

Message

Bad command or filename

The EXIT command did not exist in versions earlier than 2.0, so MS-DOS attempted to
execute a nonexistent program named EXIT instead.

Section III: User Commands 853

FC

FC

Compare Files

2.0 and later

External

Purpose

Compares two files and lists the differences on standard output.

Syntax

FC [/A] [/C] [/L] [/LBn] [/N] [/nnnn] l/T] [/W] [drive']pathnamel [drive']pathname2

or

FC [/B] [drive']pathnamel [drive^pathname2

where:

pathnamel is the name and location of the first file to be compared, optionally pre
ceded by a drive; wildcard characters are not permitted.

pathname2 is the name and location of the second file to be compared, optionally pre
ceded by a drive; wildcard characters are not permitted.

/A causes FC to abbreviate the output when comparing ASCII text files
(version 3.2).

/B causes a byte-by-byte (binary) comparison; may not be used with any
other switch (default when file extension is .EXE, .COM, .SYS, .OBJ, .LIB,
or .BIN).

/C causes FC to ignore case when comparing alphabetic characters.
/L causes a line-by-line comparison of two ASCII text files (default when file

extension is not .EXE, .COM, .SYS, .OBJ, .LIB, or .BIN) (version 3.2).
/LBw sets the size of the internal line buffer to n lines (default = 100)

(version 3.2).

/N includes line numbers on the output of an ASCII file comparison
(version 3.2).

I nnnn is the number of lines that must match to resynchronize during an ASCII
file comparison (default = 2; in versions 2.0 through 3.1, range = 1-9,
default = 3).

/T causes FC to compare tabs in text files literally (default = tabs expanded to
spaces, with stops at each eighth character position) (version 3.2).

/W causes FC to ignore spaces, tabs, and blank lines in text files.

Description

The FC utility compares two text files containing lines of ASCII text delimited by new-line
characters or two binary files containing data of any type (such as executable programs).

854 The MS-DOS Encyclopedia

FC

The differences between the two files are listed on standard output, which defaults to the
video display but can be redirected to another character device or a file or can be piped to
another program.

The FC program first examines the extensions of the two files being compared and, in
most cases, selects the appropriate type of comparison automatically. However, the /B
switch can be used to force a binary, or byte-by-byte, comparison of the two files named;
the /L switch can be used to force a line-by-line comparison. When the /B switch is
present, use of the /L, /N, and /nnnn switches causes an error message to be displayed;
any other switches in the command line are ignored.

When comparing ASCII text files, FC loads a buffer with sequential sets of lines from each
file and compares the two sets. The size of this buffer defaults to 100 lines but can be modi
fied by including the /LBw switch in the command line. If differences are found, the name
of the first file, the last matched line, and any mismatched lines from that file are dis
played, followed by the first rematched line; then the name of the second file, the last
matched line, and any mismatched lines are displayed, followed by the first rematched
line from that file. The number of consecutive matching lines that must be detected in
order for FC to consider the files resynchronized is controlled with the I nnnn switch; the
default is 2.

If no lines match, if no lines match after the first mismatch, or if the number of mis
matched lines exceeds the size of the line buffer, FC displays the message Resynchfailed.
Files are too different (or ***Files are different*** in versions 2.x and 3.0) and terminates.

The /C, /T, and / W switches modify the way in which two text files are compared. The
/C switch causes FC to ignore case when comparing alphabetic characters. The /T switch
causes FC to compare tab characters (ASCII code 09H) literally, rather than expand them
to spaces before comparing corresponding lines. Finally, the /W, or whitespace, switch
causes FC to ignore spaces, tabs, and blank lines during the comparison.

The /A and /N switches control the format of the listing of differences between the two
text files. The /A switch causes FC to compress the listing of each mismatched set of lines
to the first and last lines of each set, separated by ellipsis points. The /N switch causes FC
to include the line numbers of the mismatched lines in the display.

During a binary comparison of two files, FC's buffer is reloaded as many times as is neces
sary to compare the complete files. Unlike the procedure with text-file comparisons, no at
tempt is made to resynchronize the data if a mismatch is detected and, regardless of the
number of mismatches, the comparison process is not terminated. Any differences are dis
played with the offset from the start of the file and the actual data from each file. If one file
is shorter than the other, FC also displays a warning message at the end of the comparison.

The FC command is present only in MS-DOS. PC-DOS versions 1.0 and later provide a
similar function in the COM? command.

Section III: User Commands 855

FC

Examples

Assume that FILE1.TXT and FILE2.TXT are in the current directory on the disk in the cur
rent drive and that they contain the following lines:

FILE1.TXT FILE2.TXT

First line. First line.

Second line. Second line.

Third line. Third line.

Fourth line. Fourth line.

Fifth line. Sixth line.

Sixth line. Fifth line.

Seventh line. Seventh line.

Eighth line. Eighth line.

Ninth line. Ninth line.

Tenth line. Tenth line.

To compare these files line by line, type

OFC FILE1.TXT FILE2.TXT <Enter>

This will result in the following display:

***** fiie1.txt

Fourth line.

Fifth line.

Sixth line.

Seventh line.

***** file2.txt

Fourth line.

Sixth line.

Fifth line.

Seventh line.

4c****

To compare the same two files and produce an abbreviated listing of differences that in
cludes line numbers, type

OFC /A /N FILE1.TXT FILE2.TXT <Enter>

This will result in the following display:

***** file1.txt

4: Fourth line.

7: Seventh line.

***** file2.txt

4: Fourth line.

7: Seventh line.

4c4c***

856 The MS-DOS Encyclopedia

FC

Assume that two binary files, FILE1.BIN and FILE2.BIN, are the same length and contain
only the following three differences:

offset FILE1.BIN FILE2.BIN

1 9H 04H 03H

33H 4AH 4BH

42H 52H 51H

To compare these two binary files, type

OFC /B FILE1.BIN FILE2.BIN <Enter>

This will result in the following display:

00000019: 04 03

00000033: 4A 4B

00000042: 52 51

Note: The use of the /B switch in this example is optional; binary comparison is the
default when .BIN files are compared.

Messages

filename longer ihsin filename
After all the corresponding data in the two files was compared, data remained in one of
the files.

cannot open filename - No such file or directory
The specified file cannot be found or does not exist.

DOS 2.0 or later required
FC does not work with versions of MS-DOS earlier than 2.0.

Incompatible switches
The /B switch was used in combination with one or more of the other switches.

Incorrect DOS version

The version of FC is not compatible with the version of MS-DOS that is running.

no differences encountered

The two files being compared are identical.

out of memory
The available memory in the transient program area is insufficient to compare the two
files.

Resynch failed. Files are too different
The number of mismatched lines in an ASCII file comparison exceeded the number of
lines that can be loaded into FCs comparison buffer (which by default is 100 lines). Rerun
the comparison using the /LBn switch to allocate a larger buffer.

usage: fc [/a] [/b] [/c] [/l] [/IbNN] [/w] [/t] [/n] [/NNNN] fUel fUe2
The command line included an invalid switch or FC was entered without any switches or
other parameters.

Section III: User Commands 857

FDISK

FDISK 32

Configure Fixed Disk External No Net

Purpose

Configures an MS-DOS partition on a fixed disk. This command is included with PC-DOS
beginning with version 2.0.

Syntax

FDISK

Description

A fixed disk can be divided into areas of contiguous tracks, or partitions, that are used by
different operating systems. A master control record (partition table) on the disk specifies
the ID number and the starting and ending disk tracks for each partition. Each fixed disk
can have as many as four partitions, but only one partition can be active (bootable) at any
given time.

The FDISK utility is a menu-driven program that adds or deletes an MS-DOS partition on a
fixed disk, selects one partition as active, and displays the size and status of all partitions.
With most implementations of MS-DOS, each fixed disk can contain only one MS-DOS
partition.

After an MS-DOS partition is created, the FORMAT command must be used to initialize the
partition's directory structure. To make it possible to start the computer from the MS-DOS
partition on the fixed-disk drive, the /S switch must be used with FORMAT to transfer the
operating-system files and the MS-DOS partition must be the active partition.

Warning: If the MS-DOS partition is deleted, any files stored in the partition are irretriev
ably lost.

Examples

To display the current partitioning of the fixed disk, type

OFDISK <Enter>

858 The MS-DOS Encyclopedia

FDISK

The FDISK utility then displays the following menu:

Fixed Disk Setup Program Version 0.02

(C) Copyright Microsoft, 1985.

FDISK Options

Choose one of the following:

1 . Create DOS Partition

2. Change Active Partition

3. Delete DOS Partition

4. Display Partition Data

Enter choice:[1]

Press ESC to return to DOS

N(ae: A fifth option, Select Next Fixed Drive, will appear if more than one fixed disk is in
stalled in the system.

Choose option 4 (.Display Partition Data). FDISK then displays the partition data for the
disk in the following form:

Display Partition Information

Partition Status Type Start End Size

1 A DOS 0 613 614

Total disk space is 614 cylinders.

Press ESC to return to FDISK Options

Assume that the low-level (hardware) formatting for fixed-disk drive C has just been com
pleted by using the drive manufacturer's setup utility. To establish a bootable MS-DOS par
tition on the disk, type

A>FDISK <Enter>

When the menu is displayed, press Enter to choose option 1 (Create DOS Partition). FDISK
responds with the following message:

Create DOS Partition

Do you wish to use the entire fixed

disk for DOS (Y/N) ?[Y]

Press ESC to return to FDISK Options

To partition the entire fixed disk for MS-DOS, press Enter to select Y (the default). When
the FDISK main menu is again displayed, choose option 4 ̂Display Partition Data) to
verify that the MS-DOS partition has in fact been established on the fixed disk.

Section III: User Commands 859

FDISK

Messages

If is not achoice. PleaseenterYorN.

The response to an FDISK prompt requiring a yes or no answer was not F or

If is not a choice. Please enter a choice

The response to an FDISK prompt requiring a number was not in the proper range or was
not a number.

DOS partition created
A new MS-DOS partition has been established on the fixed disk. Use the FORMAT utility
to create a directory structure in that partition.

DOS partition deleted
The previously existing MS-DOS partition on the fixed disk has been deleted. Any files
contained in the partition are irretrievably lost.

DOS 2.0 or later required
FDISK does not work with versions of MS-DOS earlier than 2.0.

Do you wish to use the entire fixed
disk for DOS (Y/N) ?[Y]
Option 1, Create DOS Partition, has been chosen from the main menu. Respond with Y or
press Enter to use all available cylinders for a single DOS partition; respond with N to
specify that only part of the fixed disk should be used.

Enter starting cylinder number..: [if]
Option 1, Create DOS Partition, has been chosen from the main menu and the user has re

sponded N to the Do you wish to use the entire fixed diskfor DOS? prompt. This message
then prompts for the starting cylinder number of the DOS partition being created.

Enter the number of the partition you
want to make active :[if]
Option 2, Change Active Partition, has been chosen from the main menu and this message
prompts the user to enter the number of the partition that will become the active partition.

Error loading operating system
An error occurred while attempting to start the system from the fixed disk. Attempt to
restart the system. If that fails, start the system from a floppy disk and use the SYS com
mand to copy a new set of the operating-system files to the fixed disk.

Error reading fixed disk
An unrecoverable hardware error was encountered while FDISK was reading data from
the fixed disk. The disk may require a low-level (hardware) formatting operation before
FDISK can be used; this is usually performed with a special utility program provided by
the drive manufacturer.

860 The MS-DOS Encyclopedia

FDISK

Error writing fixed disk
An unrecoverable hardware error was encountered while FDISK was writing the new par
tition control record to the fixed disk. Test the fixed disk with hardware diagnostics before
further use.

Fixed disk already has a DOS partition.
The specified fixed disk already contains an MS-DOS partition. Be sure that the correct
fixed disk has been selected before proceeding.

Incorrect DOS version

The version of FDISK is not compatible with the version of MS-DOS that is running.

Invalid partition table
The fixed disk's partition table is invalid and the operating system could not be loaded
from the fixed disk during system initialization. Restart the computer using a floppy disk
and rerun FDISK to determine and correct the problem.

Missing operating system
The DOS partition is the active partition, but it does not contain the operating system.
(This message occurs only during system startup.) Use the SYS command to install the
operating system.

No DOS partition to delete.
The fixed disk does not contain an MS-DOS partition.

No fixed disks present
FDISK cannot detect a fixed disk in the system. This may reflect a hardware problem with
the fixed disk or its controller.

No partitions defined.
This informational message is displayed after the user has chosen option 4, Display
Partition Data, to indicate that no partitions are currently defined.

No partitions to make active
The fixed disk has not been previously partitioned using FDISK; therefore, an active parti
tion cannot be selected.

No space for anifif cylinder partition.
The fixed disk does not have enough free cylinders to create the desired partition.

No space to create a DOS partition.
The fixed disk does not have enough free cylinders to create an MS-DOS partition.

Partition n is already active
The selected partition is already active (bootable); therefore, no action was taken.

Partition If made active

This informational message indicates that the selected partition has been made the active
partition.

Section III: User Commands 86l

FDISK

System will now restart
Insert DOS diskette in drive A:

Press any key when ready...
The DOS partition has successfully been created. Strike any key and the system will restart
from the disk in drive A.

The current active partition is if.
This informational message indicates which partition is currently bootable.

The table partition can't be made active.
The master partition record cannot be made bootable.

Total disk space is nnn cylinders.
This informational message indicates the total number of cylinders on the fixed disk.

Total disk space is nnn cylinders.
Maximum available space is nnn
cylinders atn.
The user has responded N to the Do you wish to use the entire fixed diskfor DOS? prompt
and this informational message indicates how much space is available for the DOS
partition.

Warning: Data in the DOS partition
will be lost. Do you wish to
continue ?[N]

If the MS-DOS partition is deleted, all files within the partition are lost. Be sure that the
files are backed up to another disk before proceeding. Respond with N to return to the
FDISK main menu; respond with Y to delete the DOS partition and lose any files within it.

862 The MS-DOS Encyclopedia

FIND

FIND 2.0 and later

Find Character String External

Purpose

Searches the character stream from a file or from standard input for a string and displays
any lines that contain the string on standard output.

Syntax

FIND [/C] [/N] [/V] ''string' [[drive'][pat]i\filenaine] [[drive'][path]filename...]

where:

string is the character string to be searched for, always enclosed in quotation marks;
case is significant.

filename is the name of the file to be searched, optionally preceded by a drive and/or
path; wildcard characters are not permitted.

/C displays only the count of the lines containing string.
/N includes the relative line number with each line.

/V displays only those lines that do not contain string.

Description

The FIND command searches for all occurrences of a specified string in one or more files
(or from standard input). Normally, FIND copies each line in which the string is found to
standard output, which defaults to the video display but can be redirected to a file or
another character device or can be piped to another program.

The string to be searched for must be enclosed in quotation marks. If the search string it
self contains sets of quotation marks, each of those sets of quotation marks must be sur
rounded by an additional set of quotation marks. FIND's string search is case sensitive.

The search string can be followed by the names of one or more source files; these file
names cannot include wildcards. If no filename is supplied, FIND reads lines from stan
dard input; unless input has been redirected from a file or from the output of another
program, this means that FIND reads input from the keyboard. (Keyboard input is termi
nated by pressing Ctrl-Z or F6 followed by Enter.)

The /C switch counts the total number of lines in which the string appears and sends the
count, rather than the lines themselves, to standard output. If the /C switch is used with /V,
only the total count of lines that do not contain the specified search string is displayed. If
both /C and /N are included in the same FIND command, the /N is ignored.

The /N switch includes a relative line number with each line sent to standard output. This
is especially helpful when the output of FIND is to be used as a guide to editing the files.

The /V switch reverses the action of FIND so that it copies to standard output all lines that
do not include the specified string.

Section III: User Commands 863

FIND

Examples

To find and display all lines in the files BREAK.ASM, TALK.ASM, and SHELL.ASM that con
tain the string es:, type

OFIND "es:" BREAK.ASM TALK.ASM SHELL.ASM <Enter>

To find and display all lines in the file STORY.TXT that contain the string he said "no'\
type

OFIND "he said ""no""" STORY.TXT <Enter>

To search the file \SOURCE\MENUMGR.ASM on the current drive and display all lines
that do not contain the string Error, type

OFIND /V "Error" \SOURCE\MENUMGR.ASM <Enter>

To obtain a listing on the printer of the lines in the file SHELL.ASM in the current directory
of the current drive that contain the string proc, including line numbers, type

OFIND /N "proc" SHELL.ASM > PRN <Enter>

To search for all lines that contain two strings, pipe the output of one FIND command to
be the input of another. For example, to find only those lines in the file MENUMGR.ASM in
the current directory of the current drive that contain both the strings MOV and AX, type

OFIND "MOV" MENUMGR.ASM 1 FIND "AX" <Enter>

Messages

filename

This informational message gives the name of the file that is currently being searched.

FIND: Access denied

The specified file is locked or being accessed by another application.

FIND: File not found filename
The specified file does not exist or the path or drive is not correct.

FIND: Invalid number of parameters
The command line did not include a search string.

FIND: Invalid Parameter opt/dif
The command line included an invalid switch.

FIND: Read error in filename
A disk error occurred during processing of the specified file.

FIND: Syntax error

The command line included an invalid search string. The string must be enclosed in
quotation marks.

Incorrect DOS version

The version of FIND is not compatible with the version of MS-DOS that is running.

864 The MS-DOS Encyclopedia

FORMAT

FORMAT 1.0 and later

Initialize Disk External No Net

Purpose

Prepares a disk for use by initializing the directory and file allocation table (FAT).

Syntax

FORMAT [drive-] [/S] (versions 1.x)

or

FORMAT [drive] [/O] [/V] [/S] (versions 2.0-3.1)

or

FORMAT drive: [/I] [/4] [/8] [/N:n] [/T-.n] [/V] [/S] (version 3.2)

or

FORMAT drive: [/I] [/B] [/N: n] [/T: n] (version 3.2)

where:

drive is the location of the disk to be formatted.

/I formats a single-sided disk in a double-sided disk drive.
/4 formats a standard double-sided, double-density disk (360 KB) on a quad-

density disk drive.
/8 formats a disk with 8 sectors per track.
/B formats a disk with 8 sectors per track and preallocates space for the hidden

operating-system files.
/N: n formats a disk with n sectors per track.
/O formats a disk that is compatible with PC-DOS versions 1 .x.
/S creates a system (bootable) disk; for most implementations of FORMAT, this

must be the last switch in the command line.

/T: n formats a disk with n tracks.

/V allows a volume label to be assigned to the disk after formatting.

Note: Each OEM determines which switches will be supported by the FORMAT utility in
cluded with the versions of MS-DOS sold with its computers.

Description

The FORMAT command effectively erases any existing data on a disk and creates a new
root directory and file allocation table. Each sector of the disk is checked for defects and
unusable sectors are marked so that they will not be assigned to files.

Section III: User Commands 865

FORMAT

If the drive parameter is not supplied, the current or default drive is formatted. (A drive
letter must be specified with version 3.2.) With versions 3.0 and later, the FORMAT pro
gram displays a warning if the drive to be formatted is a fixed disk and asks for confirma
tion before continuing.

When the formatting operation is complete, FORMAT displays the total amount of disk
space, the number of bytes lost to defective sectors, the space reserved for or occupied by
the hidden operating-system files (if the /B or /S switch was used), and the remaining free
disk space. If a floppy disk was formatted, FORMAT then prompts the user to select be
tween formatting another disk and returning to MS-DOS.

Normally, the type of disk drive determines the format that is given to a disk. For example,
if a disk is formatted in a standard double-sided, double-density drive, the format defaults
to double-sided, 40 tracks per side, 9 sectors per track. The version-specific default formats
are 9 or 15 sectors per track with versions 3.0 and later, depending on the drive type; 9 sec
tors per track with versions 2.x; and 8 sectors per track with versions 1.x. The /I, /4, /8,
/N: w, and /T: n switches can be used to override the default format in some cases. (Not all
combinations of /N: w and /T: n are supported on all hardware.)

Note: A disk formatted with the /4 switch might not be reliably read on a single- or double-
sided double-density drive.

The /S switch creates a system (bootable) disk that contains a copy of the operating
system. After the format operation is complete, the two hidden files lO.SYS and
MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS) and the nonhidden file

COMMAND.COM are copied to the newly formatted disk. Most implementations of
FORMAT require that the /S switch, if used, be the last switch in the command line.

The /V switch allows a volume label to be assigned to the new disk. After formatting is
complete, FORMAT prompts the user for a volume name, which can be as many as 11 char
acters. (The characters *?/!.,;: + = <>[] and tab are not permitted in a volume label.)
Volume labels are displayed by the DIR, CHKDSK, TREE, and VOL commands and, with
MS-DOS versions 3.1 and later and PC-DOS versions 3.0 and later, can be modified with the

LABEL command after the disk has been formatted.

The /O switch causes FORMAT to write an 0E5H byte at the start of each directory entry so
that the resulting disk is compatible with MS-DOS and PC-DOS versions 1.x.

The /B switch formats a disk for 8 sectors per track and reserves room on the disk for the
operating-system files. The operating system can then be transferred to the disk with the
SYS command to make the disk bootable. The /B switch cannot be used in the same

FORMAT command line as the /V or /S switch.

Warning: Disks in drives affected by an ASSIGN, JOIN, or SUBST command should not be
formatted. Disks cannot be formatted over a network.

866 The MS-DOS Encyclopedia

FORMAT

Return Codes

0 The FORMAT operation was successful.
3 The program was terminated by entry of a Ctrl-C or Ctrl-Break.
4 The program was terminated because of a fatal system error (any error other than 0,3,

or 5).

5 The program was terminated by an N response to the fixed-disk prompt Proceed with
FORMAT(Y/N)?

Note: Return codes are available with MS-DOS version 3.2.

Examples

To format the disk in drive B, type

OFORMAT B: <Enter>

In response, FORMAT displays the following message:

Insert new diskette for drive B:

and strike ENTER when ready

With versions earlier than 3.2, FORMAT then displays the message

Formatting . . .

after the Enter key is pressed, to show that the formatting operation is in progress. With
version 3.2, FORMAT displays the message

Head: n Cylinder: nn

instead, to show the progress of the formatting operation. With all versions, FORMAT dis
plays the following messages if the formatting operation is successful:

Format complete

362496 bytes total disk space

362496 bytes available on disk

Format another (Y/N)?

The byte values may vary depending on the drive type or the switches used in the com
mand line. If bad sectors were encountered during the format operation, FORMAT also
displays the number of bytes in bad sectors.

Note: The Format complete message overwrites the head/cylinder status line but is ap
pended to the Formatting ... status line.

To format and assign a volume label to the disk in drive B, type

OFORMAT B: /V <Enter>

After the usual formatting messages, FORMAT prompts as follows:

Volume label (11 characters, ENTER for none) ?

Section III: User Commands 867

FORMAT

The user can then enter a volume name of as many as 11 characters (except »?/!.,;: + =
<> [] or tab), followed by a press of the Enter key.

To format the disk in drive B and make it a system (bootable) disk, type

OFORMAT B: /S <Enter>

FORMAT initializes the disk in the usual manner and then copies the two files containing
the operating system (lO.SYS and MSDOS.SYS or IBMBIO.COM and IBMDOS.COM) and
the file COMMAND.COM onto the disk. When the formatting operation is completed on a
360 KB floppy disk, the following messages appear:

Format complete

System transferred

362496 bytes total disk space

62464 bytes used by system

300032 bytes available on disk

Format another (Y/N)?

The number of bytes used by the system will vary with the version of MS-DOS in use.

Messages

n bytes total disk space
If bytes used by system
If bytes in bad sectors
If bytes available on disk
When formatting is complete, FORMAT displays this message with information about
space available on the disk. The bytes used by system line will not appear if the /S switch
was not specified; the bytes in bad sectors line will not appear if no bad sectors were
found.

Attempted write-protect violation
The disk to be formatted is write protected. Remove the write-protect tab and respond
with a F to the Format another (Y/N)? prompt.

Cannot find System Files
The /S switch was used and FORMAT was unable to find the necessary system files in the
default drive or in drive A.

Cannot FORMAT a Network drive

An attempt was made to format a disk in a drive that has been assigned to a network.

Cannot format an ASSIGNed or SUBSTed drive.

An attempt was made to format a disk in a drive affected by an ASSIGN or SUBST
command.

Disk unsuitable for system disk
Defective sectors were detected on the tracks where the operating-system files would nor
mally reside on a bootable disk. Such a disk should be used only for data files, if at all.

868 The MS-DOS Encyclopedia

FORMAT

Drive letter must be specified
A drive letter must be specified when using version 3.2.

Drive not ready
The floppy-disk drive is empty or the drive door is not closed.

Enter current Volume Label for drive X:

The specified drive is a fixed disk, so FORMAT prompts the user to enter the current
volume label for verification.

Error in lOCTL call

An internal system error occurred when a pre-version-3.2 block-device driver was used
with version 3.2 of FORMAT.

Error reading partition table
FORMAT was unable to read the fixed disk's partition table. Use FDISK on the fixed disk
and then try the FORMAT command again.

Error writing directory
FORMAT was unable to create a directory on the disk it is attempting to format. The disk is
defective.

Error writing FAT
FORMAT was unable to create the FAT on the disk it is attempting to format. The disk is
defective.

Error writing partition table
FORMAT was unable to write the fixed disk's partition table. Use FDISK on the fixed disk
and then try the FORMAT command again.

Format another (Y/N)?

At the end of a successful formatting operation or after a nonfatal error, this prompt offers
the user the opportunity to format another disk using the same switches specified in the
original FORMAT command. Respond with Y to format another disk; respond with N to
return to MS-DOS.

Format complete
The formatting operation has ended. This message contains a number of space characters
after it and is printed over the top of the head/cylinder status message, effectively erasing
it.

Format failure

The formatting operation was not successful. (This message is usually preceded by
another message telling the user why the format failed.) This message contains a number
of space characters after it and is printed over the top of the head/cylinder status message,
effectively erasing it.

Format not supported on drive Y:
Device parameters that the computer cannot support were specified in the FORMAT com
mand line.

Section III: User Commands 869

FORMAT

Formatting...
This informational message indicates that the FORMAT operation is in progress (versions
1.0 through 3.1).

Head: n Cylinder: nn
This informational message indicates the progress of the FORMAT command during the
formatting operation (version 3.2).

Incorrect DOS version

The version of FORMAT is not compatible with the version of MS-DOS that is running.

Insert DOS disk in drive JT:

and strike ENTER when ready
The /S switch was specified in the FORMAT command line and the disk containing the
FORMAT command does not also contain the hidden system files.

Insert new diskette for drive X:

and strike ENTER when ready
This prompt allows the user to change disks before the FORMAT operation continues.

Insufficient memory for system transfer
The command line included the /S switch, but available RAM is insufficient to hold the

system files during the FORMAT operation.

Invalid characters in volume label

Certain characters (♦?/! . , ; : + = <>[] and tab) are not allowed in a volume name.

Invalid device parameters from device driver
The DEVICE or DRIVPARM device-driver parameters in the CONFIG.SYS file were incor
rectly set or the fixed disk specified in the command line was formatted using MS-DOS
versions 2.x without first running FDISK. FORMAT displays this message when the number
of hidden sectors is not evenly divisible by the number of sectors per track (meaning that
the partition does not start on a track boundary).

Invalid drive specification
The drive specified after the FORMAT command is not a valid drive.

Invalid media or Track 0 bad - disk unusable

One of the switches supplied in the command line is not valid for the drive containing the
disk to be formatted (for example, the /8 switch for a quad-density floppy disk) or track 0
of the disk being formatted is unusable to the point that FORMAT is unable to create a
directory or file allocation table (FAT).

Invalid parameter
One of the switches supplied in the command line is not valid or is not supported by the
version of FORMAT being used.

Invalid volume ID

The volume label entered in response to the Enter current Volume Label for drive X:
prompt was not the same as the current volume label. Use the VOL command to determine
the current volume label.

870 The MS-DOS Encyclopedia

FORMAT

Non-System disk or disk error
Replace and strike any key when ready
The command line contained a /S or /B switch, but the source disk does not contain the

operating-system files.

Not a block device

The drive containing the disk to be formatted is not recognized by MS-DOS as a valid
block device.

Parameters not compatible
Switches that cannot be used together were specified in the command line.

Parameters not compatible with fixed disk
One of the switches specified in the command line is not compatible with the specified
drive.

Parameters not supported
One of the parameters specified in the command line is not supported by the version of
FORMAT being used.

Parameters not Supported by Drive
The device driver for the specified drive does not support generic lOCTL function
requests.

Re-insert diskette for drive JIT:

This message prompts the user to reinsert the disk being formatted into the specified
drive.

System transferred
The system files lO.SYS and MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS)
and the file COMMAND.COM have been successfully transferred to the newly formatted
disk.

Too many open files
FORMAT was unable to write the volume label because insufficient system file handles
were available. Increase the value of FILES in the CONFIG.SYS file.

Volume label (11 characters, ENTER for none)?
After formatting a disk with the /V option, FORMAT offers the user the opportunity to en
ter a volume label for the disk.

Unable to write BOOT

The first track of the disk or MS-DOS partition is bad and cannot be made bootable.

WARNING, ALL DATA ON NON-REMOVABLE DISK

DRIVE JIT: WILL BE LOST!

Proceed with Format (Y/N)?

If a fixed disk is specified as the disk to be formatted, FORMAT warns the user and gives
the opportunity to cancel the FORMAT command (versions 3.0 and later).

Section III: User Commands 871

GRAFTABL

GRAFTABL 3.0 and later

Load Graphics Character Set External

Purpose

Installs a RAM-resident table of bitmaps that defines the screen appearance of character
codes 128 through 255 in graphics mode.

Syntax

GRAFTABL

Description

On IBM PCs and compatibles in graphics display modes, the video-display BIOS routines
(Interrupt lOH) display characters by writing bitmapped matrices of dots to the display.
The dot pattern of each screen character's matrix is defined by an entry in a table of bit
maps. The table of bitmaps for the regular ASCII characters, coded 0 through 7FH (0-127),
is permanently located in ROM and is always available for use by the system's video driver.
The GRAFTABL utility contains a similar table of bitmaps for the upper (extended) charac
ters, coded BOH through OFFH (128-255). The GRAFTABL command loads this table into
RAM and places the address of the table in the vector for Interrupt IFH.

The GRAFTABL command is not needed for the IBM PCjr or for an enhanced graphics
adapter; their ROM BIOS already contains tables of bitmaps for the extended character set.

GRAFTABL is a terminate-and-stay-resident (TSR) program; therefore, its installation
reduces the amount of RAM available for use by application programs.

The GRAFTABL command can be executed only once after the computer has been turned
on or restarted. An attempt to execute it again will result in an informational message stat
ing that the graphics characters are already loaded.

Example

To load the table of bitmaps for characters BOH through OFFH (128-255) for use in graphics
mode, type

OGRAFTABL <Enter>

Messages

DOS 2.0 or later required
GRAFTABL does not work with versions of MS-DOS earlier than 2.0.

Graphics characters already loaded
The GRAFTABL command has already been executed since the system was turned on or
restarted.

872 The MS-DOS Encyclopedia

GRAFTABL

Graphics characters loaded
The table of bitmaps has been successfully loaded into RAM and the interrupt vector that
points to the table has been initialized.

Incorrect DOS version

The version of GRAFTABL is not compatible with the version of MS-DOS that is running.

Section III: User Commands 873

GRAPHICS

GRAPHICS

Load Graphics Screen-Dump Program

3.2

External

Purpose

Installs a resident program that can dump screen contents to the printer in graphics mode.
This command is also available with PC-DOS versions 2.0 and later.

Syntax

GRAPHICS

or

(PC-DOS 2.x)

(PC-DOS 3.0 and above)GRAPHICS [printer] [/B] [/R]

or

GRAPHICS [printer] [/B] [/C] [/F] [/P port] [/R] (MS-DOS 3.2)

where:

printer is the type of printer to be supported, from the following list:

IBM Personal Computer Color Printer with black ribbon
IBM Personal Computer Color Printer with red-green-blue-
black (RGB) ribbon

IBM Personal Computer Color Printer with cyan-magenta-
yellow-black (CMY) ribbon

IBM Personal Computer Compact Printer
IBM Personal Computer Graphics Printer or compatible
(the default)

COLORl

COLOR4

COLORS

COMPACT

GRAPHICS

/B prints the background in color; valid only with the COLOR4 and COLORS
printers.

/C centers the printout on the page.
/F flips (rotates) the printout 90 degrees.
/Pport specifies which port the printer is attached to (1-3, where 1 = LPTl, 2 = LPT2,

and 3 = LPT3).

/R prints the image as it appears on the screen (white characters on a black back
ground) rather than reversed (the default, black characters on a white
background).

Description

The default system routine for dumping the screen to the printer (invoked by Shift-PrtSc)
cannot interpret the display in graphics modes. The GRAPHICS command loads a more

S74 The MS-DOS Encyclopedia

GRAPHICS

sophisticated routine that can dump CGA-compatible graphics displays to several models
of IBM graphics printers or compatibles.The GRAPHICS command is not compatible with
the Hercules monochrome graphics card or with an enhanced graphics adapter in its en
hanced display modes.

If the display is in 640 x 200 graphics mode, the screen dump is printed sideways (rotated
90 degrees). A 320 x 200 graphic can be rotated manually by specifying the /F switch in
the command line; however, the image will be elongated horizontally. A rotated image is
printed along the left side of the page, which is actually the top of the page in terms of im
age orientation. The /C option can be used to center a rotated 320 x 200 image on the
page.

When used with a printer with a black ribbon, GRAPHICS produces screen dumps with as
many as four shades of gray to represent the colors. When used with a printer with a color
ribbon (type COLOR4 or COLORS), GRAPHICS prints all the colors except the background
color. With printer types COLOR4 and COLORS, the /B switch can be used to print the
background color also.

Ordinarily, the screen image being dumped is reversed from its appearance on the screen;
that is, the light areas on the screen are dark on the printed output and vice versa. The /R
switch produces a screen dump that is not reversed in this manner.

If the printer parameter is not included in the command line, the GRAPHICS program
assumes an IBM Personal Computer Graphics Printer or compatible.

If two or more printers are attached to the system, the /P switch can be used to specify
which printer GRAPHICS should use.

The GRAPHICS command is a terminate-and-stay-resident (TSR) program; therefore, its
installation reduces the amount of RAM available for use by application programs.

Examples

To load the graphics printing program for use with an IBM Personal Computer Graphics
Printer or compatible connected to LPT2, type

OGRAPHICS /P 2 <Enter>

Note: A tab, a semicolon character (;), or an equal sign (=) can be used between the /P and
the port number instead of a space.

To load the graphics printing program for use with the IBM Personal Computer Color Prin
ter with an RGB ribbon and specify that the background color be printed, type

C>'GRAPHICS C0L0R4 /B <Enter>

To load the graphics printing program for use with the IBM Personal Computer Compact
Printer and specify that the images be printed sideways and centered on the page, type

C>GRAPHICS COMPACT /F /C <Enter>

Section HI: User Commands 875

GRAPHICS

Messages

DOS 2.0 or later required
GRAPHICS does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of GRAPHICS is not compatible with the version of MS-DOS that is running.

Unrecognized printer
The printer type specified in the command line is invalid or the printer is not supported.

Unrecognized printer port
The port specified with the /P switch is not a number in the range 1 through 3 or an invalid
separator character was used.

876 The MS-DOS Encyclopedia

JOIN

JOIN 3.0 and later
Join Disk to Directory External No Net

Purpose

Joins the directory structure of a disk drive to a subdirectory on another drive.

Syntax

JOIN [drivel: drive2:path\

or

JOIN drivel: /D

where:

drivel is the drive whose directory structure will be joined to a subdirectory of
another drive.

drive2:path is the drive and directory that will be used to reference files on drivel,
/D cancels the effect of a previous JOIN command on drivel.

Description

The JOIN command allows the directory structure of a disk in one drive to be joined, or
spliced, into an empty subdirectory of a disk in another drive. After a JOIN, the entire
directory structure of the disk in drivel, starting at the root, together with all the files that
it contains, appears to be the directory structure of the specified subdirectory on the disk
in drive2\ the drive letter for drivel is no longer available. If the directory at the end of the
path on drive2 already exists, it must not contain any files; if it does not exist, JOIN will
attempt to create it.

The current directory status of drivel has no effect on the JOIN operation. Regardless of
which directory or subdirectory is active when the JOIN command is entered, the entire
directory structure, including the root directory, is joined to the subdirectory on the disk in
drive2.

The /D switch cancels any previous JOIN command for a specific drive.

If the JOIN command is entered without parameters, it displays a list of all joins currently
in effect.

Warning: The JOIN command should not be used on drives affected by a SUBST or
ASSIGN command. Similarly, the BACKUP, RESTORE, FORMAT, DISKCOPY, and
DISKCOMP commands should not be used on drives affected by the JOIN command.
Drives that have been redirected over a network cannot be joined.

Section III: User Commands 877

JOIN

Examples

To join drive B to the subdirectory \ DRIVER on drive C, type

C>JOIN B: C:\DRIVEB <Enter>

A subsequent JOIN command without parameters displays

B: => C:\DRIVEB

To then list the files in the root directory of the disk in drive B, type

C>DIR C:\DRIVEB <Enter>

To cancel a previous JOIN command affecting drive B, type

C>JOIN B: /D <Enter>

Messages

Cannot JOIN a network drive
A drive assigned to a network cannot be joined to another drive.

Directory not empty
A drive cannot be joined to a directory that already contains files.

DOS 2.0 or later required
JOIN does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of JOIN is not compatible with the version of MS-DOS that is running.

Incorrect number of parameters
There were missing, extra, or incorrect parameters in the command line.

Invalid parameter
A drive cannot be joined to the root directory of any drive.

Not enough memory
The available system memory is insufficient for MS-DOS to run the JOIN command.

878 The MS-DOS Encyclopedia

KEYB;cjc

KEYB:x:x 3.2

Define Keyboard External

Purpose

Installs a table that defines the translation of keys to the extended character codes, replac
ing the default table in the ROM BIOS. This command is included with PC-DOS beginning
with version 3.0.

Syntax

KEYBxx

where:

XX is a code that selects a keyboard configuration:

DV Dvorak keyboard (MS-DOS only)
FR French

GR German

IT Italian

SP European Spanish
UK United Kingdom English

Note: KEYBxa: is hardware dependent; therefore, implementation of this command may
vary for different OEM versions of MS-DOS.

Description

The KEYBxx utility configures the keyboard for use with a language other than United
States English, making available special characters that are appropriate for the specified
country's language and currency. These special characters are represented by the ex
tended character codes (128-255) that correspond to the characters implemented on the
OEM's display adapter. (Both the KEYBxx and the GRAFTABL commands must be used
to make these characters available in graphics modes on a color/graphics adapter.)

After KEYBx;c is loaded, special accented characters not part of the language in use are
also available through the use of dead keys—keys that are pressed and released before
the letter key is pressed. The following dead keys are available on a United States English
keyboard for an IBM PC, PC/XT, PC/AT, or strict compatible:

Section III: User Commands 879

KEYBjcjc

Keyboard Dead Resulting
Program Key Accent

KEYBGR (Germany) +

KEYBFR (France)

KEYBSP (Spain)

KEYBUK (United Kingdom) Not supported
KEYBIT (Italy) Not supported

The dead-key combinations supported are

Keyboard Combinations
Program Supported

Germany aeEiouaeiou
France aAeioOiiUyaeiou
Spain aAeioOuUyaeEiou

aeiduaeiou

United Kingdom Dead key not supported
Italy Dead key not supported

On an IBM PC, PC/XT, PC/AT, or strict compatible, the key sequence Ctrl-Alt-Fl can be
used at any time to return the keyboard to the default (United States English) configura
tion; the sequence Ctrl-Alt-F2 then returns the keyboard to the selected configuration.

KEYB:x:jc should be loaded only once during an MS-DOS session; the computer should be
restarted if KEYBxx is loaded for use with a different language.

KEYBxx is a terminate-and-stay-resident (TSR) utility and therefore reduces the amount
of memory available to transient application programs (by approximately 2 KB). The only
way to reclaim this memory is to restart the system.

Example

To configure the keyboard for Germany, type

OKEYBGR <Enter>

880 The MS-DOS Encyclopedia

KEYB:x:jk:

Messages

Bad command or filename

The selected keyboard does not exist or the program that configures the keyboard is not
present on the disk.

Incorrect DOS version

The version of KEYBxx is not compatible with the version of MS-DOS that is running.

Section III: User Commands 881

LABEL

LABEL 3.1 and later

Modify Volume Label External No Net

Purpose

Adds, alters, or deletes a volume label on a disk. This command is included with PC-DOS
beginning with version 3.0.

Syntax

LABEL [drive'][label]

where:

drive is any valid disk drive.
label is a name up to 11 characters long.

Description

With MS-DOS versions 2.0 and later, each disk can have a name called a volume label,
which is implemented as a special type of entry in the disk's root directory. With MS-DOS
versions 2.x, this volume label can be assigned to a disk only at the time the disk is format
ted, using the FORMAT command's /V switch. However, with PC-DOS versions 3.0 and
later and MS-DOS versions 3.1 and later, the volume label can be added, modified, or
deleted at any time using the LABEL command. (A disk's volume label can be displayed
with the VOL command; the label is also included as part of the output from the CHKDSK,
DIR, and TREE commands.)

If a new volume name is included in the LABEL command line, the disk's label is changed
immediately. If LABEL is entered alone or with only a drive letter, a message is displayed
giving the current volume label of the disk in the specified drive (or the default drive, if no
drive letter is given) and prompting the user for a new label. (A volume label can be from 1
to 11 characters; it cannot contain any of the characters »?/ \ !.,;: + = <>[] or tab.) If no
new volume name is supplied (the user did not type a volume label before pressing Enter),
LABEL prompts the user to indicate whether the previous volume label should be deleted.
Existing files on the disk are in no way affected by the LABEL command.

The LABEL command cannot be used on a network drive. With MS-DOS version 3.2, the
LABEL command also cannot be used on a disk in a drive that is affected by an ASSIGN or
SUBST command.

Examples

To give the volume label PAYROLL to the disk in drive B, type

C>LABEL B:PAYROLL <Enter>

882 The MS-DOS Encyclopedia

LABEL

Note that LABEL immediately overwrites any existing volume label on drive B with the
new name; no warning of an existing volume label is given.

To remove the volume label LEDGER from the disk in drive A, type

OLABEL A: <Enter>

The LABEL command displays

Volume in drive A is LEDGER

Volume label (11 characters, ENTER for none)?

Press the Enter key to receive the additional prompt

Delete current volume label (Y/N)?

Then respond with Y and Enter to remove the volume label from the disk in drive A.

Messages

Cannot LABEL a Network drive

The disk drive specified in the command line cannot be a network drive.

Cannot LABEL a SUBSTed or ASSIGNed drive

The disk drive specified in the command line is currently affected by a SUBST or ASSIGN
command (MS-DOS version 3.2).

Delete current volume label (Y/N)?

No volume label was entered in response to the volume-label prompt and a volume label
already exists on the disk. Respond with Y to delete the current label; respond with N to
terminate the command.

Incorrect DOS version

The version of LABEL is not compatible with the version of MS-DOS that is running.

Invalid characters in volume label

The characters »?/ \ !.,;: + = <>[] and tab cannot be part of a volume label.

Invalid drive specification
The drive specified in the command line is not valid or does not exist in the system.

No room in root directory
The root directory of the disk in the designated drive is full and a volume label cannot be
added. Delete a file or subdirectory from the root directory to make room for the label.

Too many files open
LABEL was unable to write the volume label because no system file handles were avail
able. Increase the value of FILES in the CONFIG.SYS file.

Section III: User Commands 883

LABEL

Volume indriveX has no label

Volume label (11 characters, ENTER for none)?

or

Volume in driveX is xxxxxxxxxxx

Volume label (11 characters, ENTER for none)?
This informational message informs the user of the current volume label and prompts the
user to add, change, or delete it.

884 The MS-DOS Encyclopedia

MKDIRorMD

MKDIRorMD 2.0 and later

Make Directory Internal

Purpose

Creates a new directory.

Syntax

MKDIR [drive'][path\ new^directory

or

MD [drive'][path]new_directory

where:

new^directory is a valid directory name, optionally preceded by an existing path
and/or a disk drive.

Description

The MKDIR command creates a directory, adding a branch to the hierarchical directory
structure of the disk. If the name of the new directory is preceded by a path, indicating
that the new directory is to be a subdirectory of that path, the specified path must already
exist.

If new^directory is not preceded by an existing path or a backslash character (\), it is
presumed to be relative to the current directory. If new_directory is preceded by a back
slash alone, the directory created will be a subdirectory of the root directory, regardless of
the current directory. The length of the full path (including new^director^ must not ex
ceed 63 characters.

Warning: The MKDIR command should not be used to create new directories on drives
affected by an ASSIGN, JOIN, or SUBST command.

Examples

To create a directory named SOURCE in the current directory of the disk in the current
drive, type

OMKDIR SOURCE <Enter>

or

OMD SOURCE <Enter>

Section III: User Commands 885

MKDIRorMD

To create a directory named LETTERS in the existing directory named WORD (which is a
subdirectory of the root directory) on the disk in drive D, type

OMKDIR D:\WORD\LETTERS <Enter>

or

OMD D:\WORD\LETTERS <Enter>

Messages

Invalid drive specification
The drive specified in the command line is not valid or does not exist in the system.

Invalid number of parameters
The name of the new directory was not included in the MKDIR command line.

Unable to create directory
The specified directory cannot be created. This may be caused by a full disk (if the new
directory would cause the current directory to be extended), a full root directory (if the
new directory's parent is the root directory), the existence of a file or directory with the
same name, or an invalid new^directory name.

886 The MS-DOS Encyclopedia

MODE

MODE 3.2

Configure Device External

Purpose

The MODE command has four distinct uses:

• To reconfigure a printer attached to a parallel port (LPTl, LPT2, or LPT3) for printing
at 80 or 132 characters per line, 6 or 8 lines per inch, or both (if the printer supports
these features). In this form, MODE can also be used to select a parallel printer other
than the one attached to LPTl for use as the default printer.

• To select another display or reconfigure the current display. Reconfiguration includes
changing between 40-column and 80-column display, changing between mono
chrome and color display, centering the display on the screen, or any combination of
these.

• To configure the baud rate, parity, and number of databits and stop bits of a serial
communications port (COMl or COM2) for use with a specific printer, modem, or
other serial device.

• To redirect printer output from a parallel port to one of the serial ports, so that the
serial port becomes the system's default printer port.

Because the syntax for each of these uses of MODE is different, they are discussed
separately on the following pages.

Although each form of the MODE command can be issued at the system prompt, MODE
commands are commonly used within the AUTOEXEC.BAT file to automatically perform
any necessary reconfiguration each time the system is turned on or restarted.

The MODE command is included with PC-DOS beginning with version 1.0.

Message

Incorrect Version of MODE

The version of MODE is not compatible with the version of MS-DOS that is running.

Section III: User Commands 887

MODE

MODE 3.2

Configure Printer External

Purpose

Sets characteristics for IBM-compatible printers connected to a parallel printer port (LPTl,
LPT2, or LPT3). This form of the MODE command is included with PC-DOS beginning
with version 1.0.

Syntax

MODE LPTn[:][cp/] [,[//?/][,Pj]

where:

LPTn is the parallel printer port (« = 1, 2, or 3).
cpl is the number of characters per line (80 or 132, default = 80).
Ipi is the number of lines per inch (6 or 8, default = 6).
P causes continuous retries when the printer is not ready.

Description

This form of the MODE command configures an IBM or compatible printer connected to
parallel port n. Its effect on other printer types may vary. The command has the side effect
of canceling any redirection that was previously applied to the specified port with a
Redirect Printing MODE command.

The first parameter, LPTw, designates the parallel printer port to be configured (LPTl,
LPT2, or LPT3). All the other parameters are optional.

The cpl parameter selects between printing 80 characters on a line (the default) and 132
characters on a line. The Ipi parameter selects between 6 lines per inch (the default) and 8
lines per inch. (Note that the attached printer must be capable of printing 132 characters
per line or 8 lines per inch and of understanding IBM-compatible printer-control codes;
otherwise, specifying these values will have no effect.)

The last parameter in the command line, P, configures the system to retry output contin
uously (or until Ctrl-Break is pressed) if the printer is not ready or not on line (interpreted
by the computer as a time-out error), rather than display an error message. (Note that if P is
used and ipi is omitted, the comma preceding Ipi must be specified.) Use of the P option
causes part of the MODE program to become permanently resident in memory. (This
option is not available in PC-DOS version 1.0.)

Examples

To configure the printer on the first parallel port to print 132 characters per line, with 8
lines per inch, type

OMODE LPT 1:132,8 <Enter>

888 The MS-DOS Encyclopedia

MODE

To configure the system to continually send output to the printer on the second parallel
port if a time-out error occurs but to leave the other values at their defaults, type

OMODE LPT2:,,P <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of MODE is not compatible with the version of MS-DOS that is running.

Infinite retry of parallel printer timeout
The P option was included in the command line and the system will continuously retry to
send output to the printer attached to the specified port if it is not ready or not on line.

INTERNAL ERROR in MODE appUcation
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Invalid parameters
The command line included an incorrect parallel-port specification or one of the con
figuration parameters was not correct.

LPTif:setfor 80

The specified printer has been configured for 80 characters per line.

LPTif: set for 132

The specified printer has been configured for 132 characters per line.

Printer error

The configuration command could not be carried out because the printer is turned off, not
ready, or not on line.

Printer lines per inch set
The printer has successfully been configured for the specified 6 or 8 lines per inch.

Resident portion of MODE loaded
The P option was specified in the command line and part of the MODE command has
become permanently resident in memory, decreasing slightly the amount of memory avail
able to other programs.

Section III: User Commands 889

MODE

MODE

Set Display Mode

3.2

External

Purpose

Selects the active video adapter and its display mode or reconfigures the current display.
This form of the MODE command is included with PC-DOS beginning with version 2.0.

Syntax

MODE display

or

MODE [display\shift{,l]

where:

display is a video adapter and display mode from the following list:

40 Color/graphics adapter, 40 characters per line
80 Color/graphics adapter, 80 characters per line
BW40 Color/graphics adapter, 40 characters per line, color disabled from

composite output
BW80 Color/graphics adapter, 80 characters per line, color disabled from

composite output

CO40 Color/graphics adapter, 40 characters per line, color enabled
CO80 Color/graphics adapter, 80 characters per line, color enabled
MONO Monochrome adapter

shift

Description

is R or L, to shift the display left or right one (40-column display) or two
(80-column display) character positions.
causes a test pattern to be displayed for screen alignment.

This form of the MODE command has two uses. The first is to select the active video

adapter and its display mode (if more than one adapter is present in the system) or to
reconfigure the current adapter. The second is to shift the screen display to the left or right
to center it. In both cases, the screen is cleared as a side effect of the command.

The display parameter selects the active video adapter and mode or reconfigures the cur
rent adapter. If a display adapter that is not available is specified, MODE displays an error
message.

The shift parameter is simply the single character R or L preceded by a comma. Each shift
command causes the screen image to be shifted by two characters if the display adapter is
in 80-column mode or by one character if it is in 40-column mode. When the T option is

890 The MS-DOS Encyclopedia

MODE

also included in the command line, the screen image is shifted, a test pattern is displayed,
and the user is prompted to indicate whether the screen should be shifted again. Note that
use of shift causes part of the MODE program to become permanently resident in memory.

Examples

In a system with both a color/graphics adapter and a monochrome display adapter, to
select the monochrome display as the active display, type

C>mODE mono <Enter>

To select a color 80-column text mode on the color/graphics adapter, shift the screen image
two characters to the left, and display a test pattern, type

OmODE C080,L,T <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Do you see the leftmost 0? (Y/N)

or

Do you see the rightmost 9? (Y/N)
When the shift and T options are used together, this message allows the user to shift the
test-pattern display successive positions until it is properly centered.

Incorrect DOS version

The version of MODE is not compatible with the version of MS-DOS that is running.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Invalid parameter
The specified display adapter or mode is not available.

Requested Screen Shift out of range
The display cannot be shifted any further.

Unable to shift Screen left

The screen has already been shifted as far left as possible or the active display adapter can
not be shifted (monochrome or enhanced graphics adapter).

Unable to shift Screen right
The screen has already been shifted as far right as possible or the active display adapter
cannot be shifted (monochrome or enhanced graphics adapter).

Section III: User Commands 891

MODE

MODE 3.2

Configure Serial Port External

Purpose

Controls the configuration of the serial communications adapter. This form of the MODE
command is included with PC-DOS beginning with version 1.1.

Syntax

MO^ECOMnUbatid[,parity[,databits[,stopbits[,V]]]]

where:

COMn is the serial port (w = 1 or 2).
batid is the baud rate (110,150, 300,1200, 2400,4800, or 9600).
parity is the type of parity checking (N = none, O = odd, E = even, default = E).
databits is the number of bits per character (7 or 8, default = 7).
stopbits is the number of stop bits (1 or 2, default = 1, except with 110 baud where

default = 2).

P causes continuous retries when the output device is not ready.

Description

This form of the MODE command configures the specified serial port for communication
with an external device such as a printer, a terminal, or a modem.

The first parameter, COMn, designates the serial port to be configured (COMl or COM2).
Except for the port number and the baud rate, which are required, a parameter can be left
unchanged by entering a comma without a value in its position in the command line. (If
all optional parameters are to be left unchanged and P is not used in the command line,
no commas are required.)

The baud rate must be one of the values 110,150,300,600,1200, 2400,4800, or 9600. The
first two digits can be used as an abbreviation for the full value.

The parity parameter specifies the type of parity checking to be done on each character
and must be one of the characters N, O, or E (for none, odd, or even, respectively); the
default is even parity. The databits parameter specifies the length of a character and must
be either 7 or 8; the default is 7. The stopbits parameter is either 1 or 2. If baud is set for
110, the default number of stopbits is 2; otherwise, the default is 1.

The last parameter in the command line, P, configures the system to retry output con
tinuously (or until Ctrl-Break is pressed) if the device interfaced to the serial port is not
ready or not on line, rather than display an error message. Use of the P option causes part
of the MODE program to become permanently resident in memory.

892 The MS-DOS Encyclopedia

MODE

Consult the user's manual for the specific printer, modem, terminal, or other device to de
termine the proper settings for the MODE parameters.

If a serial printer is to be used instead of LPTl as the system's default printer, the Redirect
Printing MODE command must be specified after the Configure Serial Port MODE
command.

Example

To configure the first serial port for 9600 baud, no parity, 8 databits, and 1 stop bit, type

OMODE C0M1 : 9600,N, 8,1 <Enter>

Messages

COMif; haudy parity, databits, stopbits, timeout
After the serial port is configured successfully, MODE displays an advisory message con
firming the settings. If the P option was not used in the command line, a hyphen character
(-) is displayed for timeout, to indicate no continuous retries if the printer is not ready or is
not on line.

COM port does not exist
The serial port specified in the command line does not exist in the system.

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of MODE is not compatible with the version of MS-DOS that is running.

INTERNAL ERROR in MODE appUcation
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

Invalid baud rate specified
The baud rate included in the command line was not one of the allowed values or was ab

breviated incorrectly.

Invalid parameters
The command line specified a COM port that does not exist in the system or one of the
configuration parameters for the COM port was not valid.

No COM: ports

The computer does not have any serial ports installed.

Resident portion of MODE loaded
The P option was specified in the command line and part of the MODE command has
become permanently resident in memory, decreasing slightly the amount of memory avail
able to other programs.

Section III: User Commands 893

MODE

MODE 3.2

Redirect Printing External

Purpose

Redirects output from a parallel port to a serial communications port. This form of the
MODE command is included with PC-DOS beginning with version 1.1.

Syntax

MODE LPT«[:][=COM«[:]]

where:

LPTw is the parallel port to be redirected (w = 1, 2, or 3).
COMn is the serial port (n = 1 or 2) to be used for output instead of LPTn.

Description

This form of the MODE command redirects any output for the specified parallel port,
sending it to the specified serial communications port instead. The parallel port can be
LPTl, LPT2, or LPT3; the serial port can be either COMl or COM2. A Configure Serial Port
MODE command is required before the Redirect Printing MODE command, to configure
the serial port for the proper baud rate, parity, word length, and stop bits.

Redirection can be canceled by entering MODE LPTn alone.

Use of MODE to redirect printer output causes part of the MODE program to become
permanently resident in memory. Canceling the redirection will not remove this resident
portion from memory.

Example

To cause all output to the first parallel port (LPTl) to be redirected to the first serial port
(COMl), type

C>MODE LPTl:=C0M1: <Enter>

Messages

DOS 2.0 or later required
MODE does not work with versions of MS-DOS earlier than 2.0.

Illegal device name
Either the parallel port or the serial port specified in the command line does not exist in
the system.

894 The MS-DOS Encyclopedia

MODE

Incorrect DOS version

The version of MODE is not compatible with the version of MS-DOS that is running.

INTERNAL ERROR in MODE application
An internal error occurred in the MODE utility and the requested reconfiguration was not
carried out.

LPTii: not redirected

No serial port was specified and any previous redirection from the specified parallel port
was canceled.

LPTii: redirected to COMif:

The MODE command has successfully redirected the output for the specified parallel port
to the specified serial port.

Resident portion of MODE loaded
Part of the MODE command has become permanently resident in memory, decreasing
slightly the amount of memory available to other programs.

Section III: User Commands 895

MORE

MORE 2.0 and later

Display by Screenful External

Purpose

Displays output one screenful at a time on standard output.

Syntax

MORE

Description

The MORE filter reads lines of text from standard input and sends them to standard output
one screenful (23 lines) at a time. At the end of each screenful, MORE displays the message
— More— and then waits for any key to be pressed before it continues. (Pressing Crtl-C or
Ctrl-Break terminates the MORE filter.)

The default input device is the keyboard; the default output device is the video display.
Because standard input can be redirected, the MORE filter can also accept input from
another character device or a file or from the piped output of another program or filter.
Similarly, the output of MORE can be redirected to any character device or file or can be
piped to another program (however, the message — More - will be included with the
redirected or piped output).

Examples

To display the file SHELL.C one screenful at a time, type

C>lyiORE < SHELL.C <Enter>

To display the directory of \MASM\SOURCE in the current drive one screenful at a time,
pipe the output of the DIR command to the MORE filter by typing

ODIR XMASMXSOURCE ! MORE <Enter>

Messages

~ More "

This informational message is displayed at the end of each screenful of text. Press any key
to resume output.

MORE: Incorrect DOS version

The version of MORE is not compatible with the version of MS-DOS that is running.

896 The MS-DOS Encyclopedia

PATH

PATH 2.0 and later

Define Command Search Path Internal

Purpose

Specifies one or more additional drives and/or directories to be searched for a program or
batch file if the file cannot be found in the current or specified drive and directory.

Syntax

PATH [drive'][path] [; [drive\\[path]...]

or

PATH;

where:

drive is the drive containing the disk to be searched for the executable file.
path is the name of the directory to be searched for the executable file.

Description

When a command line is entered at the MS-DOS system prompt, the command processor
first checks to see if the specified command is one of its internal commands. If it is not,
the command processor searches the current directory of the current drive for a file with
the same name and the extension .COM, .EXE, or .BAT, in that order. If found, the file is
loaded into memory and executed (if the extension is .COM or .EXE) or interpreted by the
resident batch-file processor (if the extension is .BAT); otherwise, MS-DOS displays the
message Bad command or file name, followed by the system prompt. In versions 3.0 and
later, a path can precede the command name, causing MS-DOS to make the initial search
for a program or batch file under the specified path.

The PATH command designates one or more disk drives and/or directory paths to be
searched sequentially for a program or batch file if the file cannot be found in the current
or specified drive and directory. The drives and/or directory paths are searched in the
order they appear in the PATH command. Multiple drive-path pairs can be specified,
separated by semicolons. A copy of the PATH string is passed to each executing process as
a part of the process's environment.

If the drive parameter is specified without an associated path, MS-DOS assumes the root
directory of drive. If the PATH command is followed only by a semicolon, MS-DOS deletes
the existing path. If the PATH command is entered with no parameters, MS-DOS displays
the existing path.

Invalid or nonexistent drives and/or paths in the PATH command do not result in an error
message but are ignored when the PATH string is inspected later during a search for a pro
gram or batch file.

Section III: User Commands 897

PATH

The PATH command is generally placed in the AUTOEXEC.BAT file on the system disk so
that the search order will be defined each time the system is turned on or restarted.

Examples

To define the directory \BIN on the disk in drive A as the directory to be searched for a
program or batch file if the file is not found in the current or specified directory, type

OPATH A:\BIN <Enter>

Subsequent entry of the command

OPATH <Enter>

results in the display

PATH=A:\BIN

To define the root, \BIN, \DOS, and \DATA directories on drive C and the \UTIL directory
on the disk in drive B as the locations to be searched for a program or batch file if the file
is not found in the current or specified directory, type

OPATH C:\;C:\BIN;C:\DOS;C:\DATA;B:\UTIL <Enter>

To delete the current search path, type

OPATH ; <Enter>

Message

No Path

The PATH command was entered without parameters and no search path is currently in
effect.

898 The MS-DOS Encyclopedia

PRINT

PRINT

Print Spooler

2.0 and later

External

Purpose

Loads and configures the background print spooler or adds or deletes files from the print
spooler's queue.

Syntax

PRINT [/T>:device] [/B:w] [/M:w] [/Q:n] [/S:w] [/U:w] [[drive'][path]filenaine] [/C][/P]
[[[drive'][paMfilename] [/C][/P]...]

or

PRINT/T

where:

filename is the name of the file to be added to or deleted from the print queue,
optionally preceded by a drive (and a path with versions 3.0 and later);
wildcard characters are permitted.

/B: n sets the print-buffer size in bytes (1-32767, default = 512) (versions 3 0
and later).

/C deletes the immediately preceding file and all subsequent files from the
print queue (until a /P switch is encountered).

/D'.device is the character device to be used for printing (default = PRN); must be the
first switch, if used (versions 3.0 and later).

/M: n is the length of time in timer ticks that PRINT keeps control during each
of its time slices (1-255, default = 2) (versions 3.0 and later).

/P adds the immediately preceding file and all subsequent files to the print
queue (until a /C switch is encountered).

/Q: n is the maximum number of files allowed in the print queue (1-32, default
= 10) (versions 3.0 and later).

/S: n is the number of time slices per second that PRINT gives control to the
foreground process (1-255, default = 8) (versions 3.0 and later).

/T terminates printing and empties the print queue.
/U: n is the number of timer ticks that PRINT waits for a busy or unavailable

printer or for a disk access or MS-DOS function call to terminate before
giving up the time slice (1-255, default = 1) (versions 3.0 and later).

Section III: User Commands 899

PRINT

Description

The PRINT utility is a terminate-and-stay-resident (TSR) program that can print files from
disk while other programs are running. PRINT maintains a first-in, first-out (FIFO) queue
that can hold the names of as many as 32 files. PRINT does not attempt to interpret the
contents of a file, except to expand tab characters (ASCII code 09H) with spaces to the
next eight-column boundary and to interpret 1 AH characters as end-of-file marks. (A pro
gram such as PRINT that can transfer files to a printer without any special knowledge of
their contents or origin is called a print spooler.)

Note: The PRINT utility continues printing a file until it encounters an end-of-file charac
ter (1 AH). Therefore, if PRINT is used with nontext files, it may encounter a 1 AH character
before reaching the end of the file and terminate printing before the entire file has been
processed. In such cases, files should be printed using the COPY command, with PRN as
the destination.

The PRINT program employs a technique called time-slicing, which is based on its use of
the timer-tick interrupt and its detailed knowledge of MS-DOS. PRINT uses this interrupt,
which occurs 18.2 times per second on IBM PC-compatible machines, to divide the pro
cessor's time between an application or utility program (such as a word processor or a
spreadsheet) and the print spooler. Because the application program typically controls the
display screen and the keyboard and receives most of the CPU time, it is called the fore
ground program. The print spooler, which receives a lesser part of the CPU time and
usually operates without indicating its status or progress to the operator, is called the back
ground program.

The /B: w, /D: device, /Q: w, /M: n, /S: w, and /U:« switches configure the PRINT utility.
These switches are used only the first time the PRINT command is entered after the sys
tem has been turned on or restarted.

The /T>\device switch, which must be the first switch in the command line if used, speci
fies the peripheral device the print spooler is to use for output. This can be any legal
character-output device that is present in the system. If /T>\device is not included in the
first PRINT command, PRINT prompts the user to select an output device (default = PRN).
Once an output device has been assigned, a new device cannot be selected without restart
ing the system.

The /B: n switch sets the size of PRINT'S file buffer, which controls the amount of data that
is read from a file at one time for printing. The value of n must be between 1 and 32767
bytes (default value = 512). Large file buffers reduce the amount of extra disk activity
caused by the print spooler, but they also reduce the amount of memory available for use
by other programs. The /Q: w switch controls the size of PRINT'S queue—that is, the
number of files that can be held in the buffer pending printing. The queue can be con
figured to hold 1 to 32 files (default = 10).

The /S: n, /M:«, and /U: n switches, available only with versions 3.0 and later, control the
time-slicing behavior of PRINT The /S: n switch sets the number of time slices per
second—that is, how many times per second—PRINT will be given control; n is in the

900 The MS-DOS Encyclopedia

PRINT

range 1 through 255 (default = 8). The /M: n switch sets the length of time (in timer ticks)
that PRINT will keep control during each of its time slices; n is in the range 1 through 255
(default = 2). The /U: n switch specifies how long (in timer ticks) PRINT should wait for a
busy or unavailable printer or for a disk access or MS-DOS function call to terminate before
giving up its time slice; again, n is in the range 1 through 255 (default = 1). Unless there
are special circumstances, the default values for these switches will give acceptable
performance.

Files are added to the print queue by entering PRINT followed by one or more pathnames.
Files are printed in the order they are placed in the queue. At the end of each file, the print
spooler advances the paper to the top of the next page. If a filename containing wildcards
is used, all matching files are added to the queue in the order in which they appear in the
directory. After a file is queued for printing, it should not be renamed or erased, nor should
the disk containing the file be removed, until the printing is complete.

Note: Each print queue entry can be a maximum of 63 characters, including the drive and
path.

The /P and /C switches allow files to be added to and deleted from the print queue in the
same command line. The /P switch (the default) adds to the print queue the immediately
preceding file in the command line and all subsequent files until a /C switch is encoun
tered. Conversely, the /C switch cancels printing for the immediately preceding file in the
command line and for all subsequent files until a /P switch is encountered. If a canceled
file is currently being printed, PRINT prints the message File filename canceled by opera
tor on the listing, sounds the printer's alarm (if it has one), and advances the paper to the
top of the next page.

The /T switch terminates printing by deleting all files from the print queue. If a file is cur
rently being printed, PRINT prints the message Allfiles canceled by operator on the list
ing, sounds the printer's alarm (if it has one), and advances the paper to the top of the next
page.

If PRINT encounters a disk error while attempting to print a particular file, it cancels that
file, prints an error message on the printer, sounds the printer's alarm (if it has one), ad
vances the paper to the top of the next page, and goes to the next file in the print queue.

If the PRINT command is entered with no parameters, the contents of the print queue are
displayed.

Because PRINT is a TSR utility, it reduces the amount of memory available for use by other
programs. The only way to recover the memory occupied by PRINT, even after printing is
complete, is to restart the system.

Examples

To install and configure the PRINT program and specify the auxiliary device (AUX) as the
printing device, with a print queue that can hold as many as 32 filenames and with a buffer
size of 2048 bytes, type

OPRINT /D:AUX /Q:32 /B:2048 <Enter>

Section III: User Commands 901

PRINT

To add the file DOC.TXT in the current directory of the current drive to the print spooler's
queue, type

C>PRINT DOC.TXT <Enter>

To delete the file READY.TXT from the print queue and simultaneously add the files
FINAL.TXT and REPORTTXT to the queue, type

C>PRINT READY.TXT /C FINAL.TXT /P REPORT.TXT <Enter>

To cancel the file being printed and remove all pending files from the print queue, type

C>PRINT /T <Enter>

Messages

filename File not found
A disk was changed or the file was renamed or erased after the PRINT command was en
tered but before the file was actually printed.

filename File not in print queue
A command line with a /C switch specified a file that is not in the print queue.

filename is currently being printed
This informational message shows which file PRINT is currently printing.

filename is in queue
This informational message shows which file is in the queue waiting to be printed.

filename Pathname too long
The pathname of a file to be printed exceeded 63 characters.

Access denied

An attempt was made to print a locked file.

All files canceled by operator
The /T switch was included in the command line. PRINT terminates printing of the cur
rent file, empties the print queue, sounds the printer alarm (if it has one), and advances the
paper to the top of the next page.

Cannot use PRINT - Use NET PRINT

If network support has been installed, the NET PRINT command must be used to print
files.

Errors on list device indicate that it

may be off-line. Please check it.
The printer has been turned off or placed off line while files are still in the print queue.

File filename canceled by operator
A PRINT command was entered with the /C switch to cancel a specific file. If the specified
file is currently being printed, PRINT terminates printing of the file, sounds the printer
alarm (if it has one), advances the paper to the top of the next page, and resumes printing
with the next file in the queue.

902 The MS-DOS Encyclopedia

PRINT

Incorrect DOS version

The version of PRINT is not compatible with the version of MS-DOS that is running.

Invalid drive specification
A drive letter specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line included an invalid switch or configuration switches were used after
the first time the PRINT command was used.

List output is not assigned to a device
An invalid destination device was previously entered. Restart the system and specify a
valid device in the PRINT command.

Name of list device [PRN]:

This message is displayed in response to the first PRINT command line if the /D.device
switch was not included. Specify any valid character-output device (default = PRN).

No paper error writing device device
An out-of-paper device error was detected while printing on the specified device.

PRINT queue is empty
No files are waiting to be printed.

PRINT queue is full
No additional files can be added to the print queue until the current file is printed. To in
crease the size of the print queue, restart the system and use the /Q: n switch in the PRINT
command.

Resident part of PRINT installed
This informational message is displayed on the first entry of a PRINT command to indicate
that the PRINT utility is now resident in memory. The amount of memory available to ap
plication programs is reduced accordingly.

Section III: User Commands 903

PROMPT

PROMPT

Define System Prompt

2.0 and later

Internal

Purpose

Defines the form of the command processor's prompt. This command is included in
PC-DOS beginning with version 2.1.

Syntax

PROMPT [string]

where:

string is a combination of ordinary printable characters and the following special dis
play codes:

Code Meaning

$b 1 character

$d Current date (in the form Day mm-dd-yyy^
$e Escape character (IBH)
$g > character
$h Backspace character (erases the previous character)
$1 < character

$n Current drive

$p Current drive and path
$q = character
$t Current time (in the form hh\mm\ssMt)

$v MS-DOS version number

$_ Carriage return/linefeed pair (starts a new line)
$$ $ character

Description

The system's default command processor, COMMAND.COM, displays a prompt on the
screen whenever it is ready to accept a command from the user. The command processor
determines the format of the prompt from the PROMPT environment variable, if it exists.
Otherwise, it uses the default format, which in most OEM implementations of MS-DOS is
the letter of the current drive followed by a greater-than sign (for example, C>).

The PROMPT command allows the user to customize the system prompt. This command
is usually included in the AUTOEXEC.BAT file so that MS-DOS displays the custom prompt
when the system is turned on or restarted.

904 The MS-DOS Encyclopedia

PROMPT

The string parameter can be any combination of printable characters and the special $
control codes listed in the preceding table. The special $ codes allow certain variable in
formation, such as the date and time, to be obtained from the operating system and dis
played as part of the prompt. Such system information can be edited in the prompt with
the backspace function, which is invoked with the code $h.

Note: When the time is displayed as part of a prompt, it is updated only when the com
mand processor redisplays the prompt.

The escape character, invoked with the code $e, can be used to include standard ANSI
escape sequences in string to control the appearance of text or its position on the screen.
See USER COMMANDS: ansi.sys for further information on the ANSI escape sequences
and the ANSI device driver.

If PROMPT is entered with no parameters, the system prompt is reset to the default format.

The PROMPT command works by modifying the PROMPT environment variable. The
same result can be obtained using the SET command with PROMPT=sXx'mg as its argu
ment. See USER COMMANDS: set for further discussion of the environment block and

environment variables.

Examples

To define the system prompt as the word Command followed by a colon, type

C>PROMPT Command: <Enter>

On fixed-disk-based systems it is desirable to display the current drive and path as part of
the prompt. To define such a prompt followed by a > character, type

OPROMPT pg <Enter>

To define the system prompt to display the time, date, and current drive and path followed
by a > character, each on a separate line, type

OPROMPT t_d_pg <Enter>

The system will respond with a display in the following form:

16:07:31.56

Thu 6-18-1987

C:\BIN\DOS>

To create a prompt that displays the time without the seconds and hundredths of a second,
followed by a space and the date without the year, followed by a space and the current
drive and a > character, type

OPROMPT thhhhh$h dhhhhh ng <Enter>

The system will respond with

16:07 Thu 6-18 O

Section III: User Commands 905

PROMPT

To define a prompt that always displays the current time and date in the upper right corner
of the screen before displaying the current drive and the > character on the current line,
type

C>PROMPT $e[s$e[0;60Hthhhhh$h de[ung <Enter>

The escape sequence $e[s saves the current cursor position; the sequence $e[0;60H posi
tions the cursor at row 0, column 60; the next several codes format the date and time; the
sequence $e[u restores the original cursor position. (This example requires that the ANSI
driver be loaded to interpret the escape sequences.)

906 The MS-DOS Encyclopedia

RAMDRIVE.SYS

RAMDRIVE.SYS 32

Virtual Disk External

Purpose

Creates a virtual disk in memory.

Syntax

DEVICE =[rfr/e;e:][p<af^/^]RAMDRIVE.SYS [size] [sector] [directory] [Al/E]

where:

size is the size of the virtual disk in kilobytes (minimum = l6, default = 64).
sector is the sector size in bytes (128, 256, 512, or 1024; default = 128).
directory is the maximum number of entries in the virtual disk's root directory

(3-1024, default = 64).
A causes RAMDRIYE to use Lotus/Intel/Microsoft Expanded Memory for

storage (cannot be used with /E).
/E causes RAMDRI YE to use extended memory for storage (cannot be used

with A).

Note: Unless a A or /E switch is used, the virtual disk is created in conventional memory.

Description

The RAMDRIVE.SYS installable device driver allows the configuration of one or more
virtual disks (sometimes referred to as electronic disks or RAMdisks). A virtual disk is im

plemented by mapping a disk's structure—directory, file allocation table, and files area—
onto an area of random-access memory, rather than onto actual sectors located on a
magnetic recording medium. Access to files stored on a virtual disk is very fast, because
no moving parts are involved and the "disk" operates at the speed of the system's memory.

Warning: Because a RAMdisk resides entirely in RAM and is therefore volatile, any infor
mation stored there is irretrievably lost when the computer loses power or is restarted.

RAMDRIVE.SYS can create a virtual disk in conventional memory, extended memory, or
Lotus/Intel/Microsoft Expanded Memory. Conventional memory is the term for the up-
to-640 KB of RAM that contain MS-DOS and any application programs. Extended memory
is the term for the memory at addresses above 1 MB (lOOOOOH) that is available on 80286-
based personal computers such as the IBM PCAT. Expanded memory is the term for a sub
system of bank-switched memory boards (and a driver to manage them) that is compatible
with the Lotus/Intel/Microsoft Expanded Memory Specification (LIM EMS).

A virtual disk can be installed in conventional memory by simply inserting the line
DEVICE=RAMDRIVE.SYS into the system's CONFIG.SYS file and restarting the system. A

Section III: User Commands 907

RAMDRIVE.SYS

new "drive" then becomes available in the system, with a default size of 64 KB, 128-byte
sectors, and 64 available directory entries (assuming memory is sufficient). The virtual disk
is assigned the next available drive letter (which is displayed in RAMDRIVE's sign-on mes
sage). The drive letter assigned depends on the number of other physical and virtual disks
in the system and also on the position of the DEVICE=RAMDRIVE.SYS line in the CON
FIG.SYS file relative to other installed block devices. Available memory permitting, multi
ple virtual disks can be created by using multiple DEVICE=RAMDR1VE.SYS lines. Several
optional parameters allow the user to customize the size and configuration of the virtual
disk and to use extended memory or expanded memory if it is available.

The size parameter specifies the amount of RAM, in kilobytes, to be allocated to the virtual
disk. The default is 64 KB, but any size from 16 KB to the total amount of available memory
can be specified.

The sector parameter sets the virtual sector size used within the virtual disk. The sector
value can be 128, 256, 512, or 1024 bytes (default = 128 bytes). Selection of the smallest sec
tor size results in a minimum of wasted virtual disk space per file but also results in a
somewhat slower transfer of data. Physical disk devices on IBM PC-compatible systems
always use 512-byte sectors.

Warning: The 1024-byte sector size is not supported in most implementations of MS-DOS
and will terminate the installation of RAMDRIVE.SYS if it is used. Check the documenta

tion included with the computer to see if this value is supported.

The directory parameter sets the number of available entries in the virtual disk's root
directory. The allowed range is 3 to 1024 (default = 64). Each directory entry requires 32
bytes. RAMDRIVE rounds the number of available directory entries up, if necessary, so
that an integral number of sectors are assigned to the root directory.

The /K switch causes Lotus/Intel/Microsoft Expanded Memory to be used for the virtual
disk, rather than conventional memory; the /E switch causes extended memory to be used.
Either option allows very large virtual disks to be configured while still leaving the max
imum amount of conventional memory available for use by application programs. The /A
and /E switches cannot be used together.

Note: If RAMDRIVE uses conventional memory for virtual disk storage, the memory can
not be reclaimed except by modifying the CONFIG.SYS file and restarting the system.

Examples

To create a virtual disk drive with the default values of 64 KB disk size, 128-byte sectors,
and 64 available directory entries, include the following command

DEVICE=RAMDRIVE.SYS

in the CONFIG.SYS file and restart the system.

908 The MS-DOS Encyclopedia

RAMDRIVE.SYS

To create a 4 MB virtual disk drive in Lotus/Intel/Microsoft Expanded Memory, with
512-byte sectors and 224 available directory entries, when RAMDRIVE.SYS is located in a
directory named \ DRIVERS on drive C, include the command

DEVICE=C:\DRIVERS\RAMDRIVE.SYS 4096 512 224 /A

in the CONFIG.SYS file and restart the system.

Messages

Microsoft RAMDrive version n.nn virtual diskX:

Disk size: ifnk

Sector size: nnn bytes
Allocation unit: n sectors

Directory entries: nnn
RAMDRIVE.SYS was successfully installed and this message informs the user of the ver
sion of RAMDRIVE.SYS that created the virtual disk, the drive letter assigned to the disk,
and the characteristics of the disk.

RAMDrive: Above Board Memory Manager not present
The /A switch was used in the command line and the Lotus/Intel/Microsoft Expanded
Memory Manager is not present in the system. Place the DEVICE command that loads the
memory manager before the DEVICE=RA]^RIVESYScommand in the CONFIG.SYS
file.

RAMDrive: Above Board Memory Status shows errors
The Above Board device driver is bad or damaged or the board itself is defective. Consult
the Above Board manual or the manufacturer.

RAMDrive: Computer must be PC-AT, or PC-AT compatible.
The /E switch was used in the command line and the computer is not an 80286-based IBM
PC/AT or compatible.

RAMDrive: Incorrect DOS version

The version of RAMDRIVE.SYS is not compatible with the version of MS-DOS that is
running.

RAMDrive: Insufficient memory
Available memory is insufficient for RAMDRIVE.SYS to create a virtual drive.

RAMDrive: Invalid parameter
One of the parameters supplied in the command line is incorrect or is not supported by
the computer.

RAMDrive: I/O error accessing drive memory
The Expanded Memory Manager device driver is bad or damaged or the board itself is
defective. Consult the board's manual or contact the manufacturer.

RAMDrive: No extended memory available
The /E switch was specified but the system does not contain extended memory.

Section III: User Commands 909

RECOVER

RECOVER 2.0 and later

Recover Files External No Net

Purpose

Reconstructs files from a disk that has developed unreadable sectors or has a damaged
directory.

Syntax

RECOVER drive-.

or

RECOVER [drive'][path]filename

where:

drive is the letter of the drive holding the disk with a damaged directory.
filename is the name of the file that will be reconstructed, optionally preceded by a

drive and/or path; wildcard characters are not permitted.

Description

The RECOVER command partially rescues a file on a disk that has developed bad sectors
by deleting the bad sectors from the file. RECOVER can also reconstruct files (including
files stored in subdirectories) from a disk that has a damaged directory.

When RECOVER is used with a filename, the file is read allocation unit by allocation unit;
unreadable allocation units are marked as bad and are no longer allocated to the file. The
resulting file is usable, although the data contained in the bad allocation units is lost. (The
recovered file may or may not be reusable by the specific application that created it.) The
directory entry for filename is also adjusted to reflect the sectors that were lost and the
bad sectors are marked in the disk's file allocation table so that they are not reused for
another file.

If a disk's directory is damaged, it still may be possible to recover all the files on the disk
and build a new directory by using RECOVER with drive as the only command-line
parameter. RECOVER completely erases the previous contents of the damaged directory
and constructs new directory entries for each of the original files by inspecting the disk's
file allocation table. The recovered files receive names of the form FILEnnnw.REC, starting
with FILEOOOl.REC. Each recovered file's size is always a multiple of the disk cluster size,
so recovered files may require editing to eliminate spurious data at the ends of the files.

RECOVER restores each subdirectory as an individual file that contains the names of the
files originally stored in it. The actual files contained within those subdirectories are also
reconstructed, although they are no longer associated with the subdirectory in which they

910 The MS-DOS Encyclopedia

RECOVER

originally resided. Restored files and subdirectories, regardless of their location on the
damaged disk, are placed in the new root directory. If there are more files on the damaged
disk than can be contained in the new root directory (for example, more than 112 for a
5.25-inch, 360 KB floppy disk), the user must repeat the RECOVER command after copy
ing the already-recovered files to another disk and deleting them from the damaged disk.

Examples

To recover the file MENUMGR.C in the current directory of the current drive, type

C>RECOVER MENUMGR.C <Enter>

To recover all files on the disk in drive B, which has a damaged directory, type

C>RECOVER B: <Enter>

Messages

If file(s) recovered

When RECOVER is used on a disk with a damaged directory, this informational message
is displayed at the conclusion of processing to indicate how many files of the form
FILE«wn«.REC were constructed.

If of If bytes recovered
When RECOVER is used on a damaged file, this informational message is displayed at the
conclusion of processing to advise how many bytes of the file were recovered.

Cannot RECOVER a Network drive

Files on a drive assigned to a network cannot be recovered.

File not found

The file specified in the command line cannot be found or does not exist.

Incorrect DOS version

The version of RECOVER is not compatible with the version of MS-DOS that is running.

Invalid drive or file name

An invalid drive letter was specified or the filename contains a wildcard.

Invalid number of parameters
More than one drive letter or filename was specified in the command line.

Press any key to begin recovery of the
file(s) on driveX

This prompt message gives the user the opportunity to change disks after the RECOVER
program is loaded but before processing begins.

Warning - directory full
New directory entries for the reconstructed files cannot be created because the root direc
tory is full. Copy the recovered files to another disk, delete them from the damaged disk,
and then repeat the RECOVER command on the damaged disk.

Section III: User Commands 911

RENAME OR REN

RENAME or REN 1.0 and later

Change Filename internal

Purpose

Changes the name of a file or set of files.

Syntax

RE]^KME[drive\\[pat1i\oldname neumame

or

RE^[drive][path]oldname neumame

where:

oldname is the name of an existing file or set of files, optionally preceded by a drive
and/or path; wildcard characters are permitted.

newname is the new name to be assigned to oldname\ wildcard characters are per
mitted, but a drive and/or path cannot be specified.

Description

The RENAME command changes the name of an existing file or set of files. It does not
make copies of files or move files from one location in the disk's directory structure to
another or from one drive to another.

The oldname parameter can refer to a single file or can include wildcards to specify a set
of files; a drive and path can be included as part of oldname.

The neumame parameter specifies the new name to be given to the file or files; it cannot
include a drive or path. A wildcard in neumume causes that portion of the original file
name to be left unchanged. If the new name for a file is the same as the name of an exist
ing file, RENAME terminates with an error message.

Examples

To rename the file REVS.DOC, located in the current directory of the current drive, to
CHANGES.TXT, type

C>RENAME REVS.DOC CHANGES.TXT <Enter>

or

C>REN REVS.DOC CHANGES.TXT <Enter>

To rename all files with a .DOC extension in the \SOURCE directory on the disk in drive D
to have a .TXT extension, type

C>REN D:\SOURCE*.DOC *.TXT <Enter>

912 The MS-DOS Encyclopedia

RENAME OR REN

Messages

Duplicate file name or File not found
The new name specified for a file already exists or a file with the old name cannot be
found or does not exist.

Invalid directory
The command line included a reference to a directory that is invalid or does not exist.

Invalid drive specification
The command line included a reference to a disk drive that is invalid or does not exist in

the system.

Invalid number of parameters
The command line included too few or too many filenames.

Invalid parameter
The neumame parameter in the command line included a drive and/or path.

Section III: User Commands 913

REPLACE

REPLACE 32

Update Files External

Purpose

Selectively adds or replaces files on a disk.

Syntax

REPLACE [drive']pathname [drive-Mpath] [/A][/D][/P][/R][/S][/W]

where:

pathname is the name and location of the source files to be transferred, optionally
preceded by a drive; wildcard characters are permitted in the filename.

drive.path is the destination for the file being transferred; filenames are not permit
ted in the destination parameter.

/A transfers only those source files that do not exist at the destination (cannot
be used with /S or /D).

/D transfers only those source files with a more recent date than their destina
tion counterparts (cannot be used with /A).

/P prompts the user for confirmation before each file is transferred.
/R allows REPLACE to overwrite destination read-only files.
/S searches all subdirectories of the destination directory for a match with

the source files (cannot be used with /A).

/W causes REPLACE to wait for the disk to be changed before transferring
files.

Description

The REPLACE utility allows files to be updated easily to more recent versions. REPLACE
examines the source and destination directories and, depending on the switches used in
the command line, selectively updates matching files or copies only those files that exist
on the source disk but not the destination disk.

The pathname parameter (the source) specifies the name and location of the files to be
transferred (optionally preceded by a drive); wildcards are permitted in the filename. The
drive.path parameter (the destination) specifies the location of the files to be replaced
and can consist of a drive, a path, or both. If only a drive is specified as the destination,
REPLACE assumes the current directory of the disk in that drive. If the destination is omit
ted completely, REPLACE assumes the current drive and directory. The /S switch causes
REPLACE to also search all subdirectories of the destination directory for files to be
replaced.

The A, /D, and /P switches allow selective replacement of files on the destination disk.
When the A switch is used, REPLACE transfers only those files on the source disk that do
not exist in the destination directory. When the /D switch is used, REPLACE transfers only

914 The MS-DOS Encyclopedia

REPLACE

those source files that match the destination filenames but have a more recent date than

their destination counterparts. (The /D switch is not available with the PC-DOS version of
REPLACE.) The /P switch causes REPLACE to prompt the user for confirmation before
each file is transferred.

The /R switch allows the replacement of read-only as well as normal files. If the /R switch
is not used and one of the destination files that would otherwise be replaced is marked
read-only, the REPLACE program terminates with an error message. (REPLACE cannot be
used to update hidden or system files.)

The /W switch causes REPLACE to pause and wait for the user to press any key before
beginning the transfer of files. This allows the user to change disks in floppy-disk systems
with no fixed disk and in those cases where the REPLACE program itself is present on
neither the source nor the destination disk.

Return Codes

0 The REPLACE operation was successful.
1 An error was found in the REPLACE command line.

2 No matching files were found to replace.
3 The source or destination path was invalid or does not exist.
5 One of the files to be replaced was marked read-only and the /R switch was

not included in the command line.

8 Memory was insufficient to run the REPLACE command.
15 An invalid drive was specified in the command line.
Other Standard MS-DOS error codes (returned on a failed Interrupt 21H file-function

request).

Examples

To replace the files in the directory \ SOURCE on the current drive with all matching files
on the disk in drive A that have a more recent date, type

OREPLACE A:*.* \SOURCE /D <Enter>

To transfer from the disk in drive A only those files that are not already present in the cur
rent directory, type

OREPLACE A:*.* /A <Enter>

Messages

If File(s) added

After the replacement operation is completed, if the A switch was used in the command
line, REPLACE displays the total number of files added.

If File(s) replaced
After the replacement operation is completed, REPLACE displays the total number of files
processed.

Section III: User Commands 915

REPLACE

Access denied 'pathname'
One of the files to be replaced on the destination disk is marked read-only and the /R
switch was not included in the command line.

Add pathname^ (Y/N)
The /K and /P switches were specified in the command line and REPLACE prompts the
user for confirmation before adding each file.

Adding pathname
The A switch was specified in the command line and REPLACE displays the name of each
file it adds.

File cannot be copied onto itself pathname'
The source and destination command-line parameters specified the same file in the same
location.

Incorrect DOS Version

The version of REPLACE is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The destination disk does not have enough available space to hold the files being added or
replaced.

Insuifficient memory
The system does not have enough RAM available to process the REPLACE command.

Invalid drive specification 'Xi'
The command line specified a disk drive that is invalid or does not exist in the system.

Invalid parameter 'switch'
The command line included a switch that is not supported by the REPLACE command.

No files added

The A switch was used and the specified file(s) already exist on the destination disk.

No files found 'pathname'
The files to be added or replaced on the destination disk were not found on the source
disk.

No files replaced
The files at the destination are identical with the files on the source disk or do not meet the

criteria specified by the switches.

Parameters not compatible
The command line included two or more switches that cannot be used together.

Path not Found 'pathname'
The source or destination parameter included a nonexistent path or directory.

916 The MS-DOS Encyclopedia

REPLACE

Path too long

The source or destination parameter included a path element that is too large (probably
because of a missing backslash character [\]).

Press any key to begin adding fiie(s)
The /W and /K switches were specified in the command line and REPLACE waits for the
user to press a key before proceeding, allowing disks to be changed.

Press any key to begin replacing file(s)
The /W switch was specified in the command line and REPLACE waits for the user to
press a key before proceeding, allowing disks to be changed.

Replace pathname'^ (Y/N)
The /P switch was specified in the command line and REPLACE prompts the user for con
firmation before replacing the file.

Replacing pathname
This informational message indicates the progress of the REPLACE command by display
ing the name of each file as it is being replaced.

Source path required
Although the destination parameter can usually be omitted and defaults to the current
drive and directory, the source location for the files to be replaced must always be
specified.

Unexpected DOS Error it
This message usually indicates a bad or damaged disk. Use the CHKDSK command to de
termine the problem.

Section III: User Commands 917

RESTORE

RESTORE 2.0 and later

Restore Backup Files External

Purpose

Restores files from a disk created with the BACKUP command.

Syntax

RESTORE drivel: [drive2'][pathname] [/K\date] [/^.date] [PE-.time] [/L:^/me][/M][/N]
[/S][/P]

where:

drivel is the drive that contains the backup files created by the BACKUP
command.

drive2 is the drive to which the backup files will be restored.
pathname is the name of the file(s) to be restored from drivel\ wildcard characters

are permitted in the filename. If a path is used, a filename must be
specified.

/A: date restores files that were modified on or after date,

/E'.date restores files that were modified on or before date.
/E: time restores files modified at or before time.

/L: time restores files modified at or after time.

/M restores only files modified since the last backup.
/N restores only files that no longer exist on the destination disk.
/P prompts the user for confirmation before restoring hidden or read-only

files or before overwriting files that have changed since they were last
backed up.

/S restores all files in the subdirectories of the specified directory, in addition
to the files in the specified directory.

Note: The PC-DOS version of RESTORE supports only the /P and /S switches.

Description

The RESTORE command restores files from a backup disk or directory created with the
BACKUP command to their original location in a directory structure. Before version 3.1,
the RESTORE command could restore files only from one floppy disk to another or from a
floppy disk to a fixed disk. With later versions, RESTORE can also restore files from one
fixed disk to another or from a fixed disk to a floppy disk.

The drivel parameter specifies the source for the backed-up files. If the source disk is a
fixed disk, the backup files are always obtained from the directory \BACKUR If multiple
floppy disks were used to hold the backed-up files, RESTORE prompts the user for each
disk as it is required.

918 The MS-DOS Encyclopedia

RESTORE

The destination can be any combination of a drive, a path, and a filename; the filename
can include wildcards. If the destination drive is omitted, MS-DOS assumes the current
drive. If a path is not specified, the files are restored to the current directory. (Note that
files must be restored to the same directory they were backed up from.) If a path is speci
fied, a filename must be specified as well. If neither a path nor a filename is included in
the command line, all directories, subdirectories, and files on the backup disk(s) are
restored to the destination disk. The /S switch can be used to force restoration of the files
in all the subdirectories of a named directory.

Files are restored in the order they were backed up, regardless of their current order on the
destination disk. If files with the same name and location already exist on the destination
disk, they are replaced by the backup copies.

The RESTORE program supports a number of switches that allow selective restoration of
files from the backup disk. The /K:date, /"Q-date, /'E.-.time, and /L-.time switches allow files
to be restored based on the time and/or date they were backed up. The /M switch restores
only those files that have been changed on the destination disk since the backup disk was
created. The /P switch prompts the user before restoring a hidden or read-only file or a file
that has been changed since it was last backed up.

The MS-DOS and PC-DOS RESTORE programs are compatible except when a /k\date,
/'Q-.date, /E-.time, /Utime, /M, or/N switch is used. These switches are not supported in the
PC-DOS version.

Warning; The RESTORE command should not be used on a disk drive affected by an
ASSIGN, SUBST, or JOIN command.

Return Codes

0 The restore operation was successful.
1 No files were found to restore.

2 Some files were not restored because of a file-sharing conflict (versions 3.0 and later).
3 The restore operation was terminated by the user.
4 The program was terminated by an unrecoverable (critical) hardware error.

Examples

To restore the file named MENUMGR.C from the backup disk in drive A to the directory
named \SOURCE on the disk in drive B, type

ORESTORE A: B:\SOURCE\MENUMGR.C <Enter>

To restore all the files on the backup disk in drive A to their original locations in the direc
tory structure of drive C, type

ORESTORE A: C:*.* /S <Enter>

Section III: User Commands 919

RESTORE

To restore all the files with the extension .C from the backup disk in drive A to the directory
named \SOURCE on drive C, requesting confirmation for those files that are read-only or
hidden, type

C>RESTORE A: C:\SOURCE*.C /P <Enter>

Messages

*** Files were backed up at on **•
This informational message shows when the BACKUP command was used on the backed-
up files.

Not able to restore file »»»

The backup file or the destination disk contains an error. Use the CHKDSK command to
determine the problem.

Restoring files from driveX: »»»
Diskette: n

This informational message indicates the progress of the RESTORE command.

DOS 2.0 or later required
RESTORE does not work with versions of MS-DOS earlier than 2.0.

File creation error

The destination directory is full. This usually occurs only if the destination is the root
directory but can also happen if a file is being restored to a subdirectory and the disk itself
is full.

Incorrect DOS version

The version of RESTORE is not compatible with the version of MS-DOS that is running

Insert backup diskette n in drive JC:
Strike any key when ready
This message prompts the user to insert the next backup disk in sequence. Disks used in
multidisk backups should always be labeled and numbered during a BACKUP operation.

Insert restore target diskette in driveA":
Strike any key when ready
This prompt is displayed when files are being restored to a floppy disk.

Insufficient memory
Available memory is not sufficient for the RESTORE program to execute.

Invalid drive specification
The command line included a drive that is invalid or does not exist in the system.

Invalid number of parameters
The command line included too many or too few parameters.

Invalid parameter
The command line included an invalid switch or other parameter.

920 The MS-DOS Encyclopedia

RESTORE

Invalid path
The destination parameter included a path that is invalid or does not exist.

Restore file sequence error
Files are being restored from a multidisk set of backup disks and a floppy disk was used
out of order.

Source and target drives are the same
Files cannot be restored from a drive to the same drive.

Source does not contain hackup files
The files on the backup disk are not in the special format used by the BACKUP and
RESTORE programs.

System files restored
Target disk may not be hootahle
The backup disk included copies of the hidden operating-system files MSDOS.SYS and
lO.SYS (or IBMDOS.COM and IBMBIO.COM in PC-DOS) and these files were restored to
the destination disk. The destination disk is bootable only if these two files are the first
files on the disk and lO.SYS (or IBMBIO.COM) is written into contiguous clusters.

Target is full
The destination disk is full and no further files can be restored.

Target is Non-Removable
The disk to which files are being restored is not removable.

The last file was not restored

The destination disk is full or the last file on the backup disk was bad.

Warning! Diskette is out of sequence
Replace diskette or continue if okay
Files are being restored from a multidisk set of backup disks and a floppy disk was used
out of order.

Warning! flic filename
isahiddenfile

Replace the file (Y/N)?
The backed-up file has the same filename as a hidden file on the destination disk, which
may be overwritten. (This message appears only if the /P switch was used.) Respond with
Y to overwrite the file on the destination disk; respond with N to leave the destination file
unchanged and continue the RESTORE operation.

Warning! VHeJUename
is a read-only file
Replace the ffle (Y/N)?
The backed-up file has the same name as a read-only file on the destination disk, which
may be overwritten. (This message appears only if the /P switch was used.) Respond with

Section III: User Commands 921

RESTORE

F to overwrite the file on the destination disk; respond with N to leave the destination file
unchanged and continue the RESTORE operation.

Warning! VUefilename
was changed after it was backed up
Replace the file (Y/N)?
Data has been changed or added to the destination file since the backup disk was created
and this data will be lost if the file is restored. (This message appears only if the /P switch
was used.) Respond with Y to restore the backed-up file; respond with N to leave the des
tination file unchanged and continue the RESTORE operation.

Warning! No files were found to restore
No files were found on the backup disk that matched the destination file specification.

922 The MS-DOS Encyclopedia

RMDIRorRD

RMDIRorRD 2.0 and later

Remove Directory internal

Purpose

Removes an empty directory from the hierarchical file structure.

Syntax

RMDIR [drive-] [path]directory_name

or

RD [drive][path]directory_name

where:

directory_name is the name of the directory to be removed, optionally preceded by
a drive and/or path.

Description

The RMDIR command removes an empty directory from a disk's hierarchical file struc
ture. The directory being deleted cannot contain any files or subdirectories (except for the
special. and.. entries). The root directory or current directory of a disk cannot be deleted.

If the path parameter is used, it must specify a valid existing path. If no path is specified
and directory_name is not preceded by a backslash (\), MS-DOS assumes that the direc
tory to be removed is a subdirectory of the current directory. If no path is specified and
directory_name is preceded by a backslash, MS-DOS assumes that the directory is a sub
directory of the root directory. The length of the full path (including the drive designator
and directory name) must not exceed 63 characters.

The RMDIR command should not be used to remove subdirectories from drives affected
by an ASSIGN or JOIN command. A directory affected by the SUBST command cannot be
removed.

A/bte.* If a directory contains files marked as hidden or system, that directory cannot be
removed even though no files appear to exist when the directory contents are viewed
using the DIR command.

Example

To remove the empty directory \LIB, which is a subdirectory of the \MSC directory on the
disk in drive A, type

C>RMDIR A:\MSC\LIB <Enter>

or

Ord A:\MSC\LIB <Enter>

Section III: User Commands 923

RMDIRorRD

Message

Invalid path, not directory, or directory not empty
The named directory cannot be deleted because it does not exist, some element of the
path to the directory does not exist, or the directory contains files or subdirectories.

924 The MS-DOS Encyclopedia

SELECT

SELECT

Configure System Disk for a Specific Country

IBM

External

Purpose

Creates a system disk with time, date, and keyboard configured for a selected country. This
command is available only with PC-DOS.

Syntax

SELECT [[drivel-] drive2-{path]] country keyboard

where:

drivel is a floppy-disk drive (A or B) containing the distribution disk or, at
a minimum, the PC-DOS system files, COMMAND.COM, and the FORMAT
and XCOPY utilities (default = drive A) (version 3.2).

drive2 is the drive containing the disk to receive the PC-DOS system files and
country information and can include a path (default = drive B) (version
3.2).

country is a code from the table below that controls the time, date, and currency
formats.

keyboard is a code from the table below that controls the keyboard configuration.

Country Keyboard
Country Code Co^

Australia 061 *

Belgium 032 ♦

Canadian French 002 ♦

Denmark 045
*

Finland 358 *

France 033 FR

West Germany 049 OR

Israel 972 *

Italy 039 IT

Middle East 785
*

Netherlands 031
♦

Norway 047 *

Portugal 351
*

Spain 034 SP

Sweden 046 ♦

Switzerland 041 *

(more)

Section III: User Commands 925

SELECT

Country Keyboard
Country Code Code

United Kingdom 044 UK

United States 001 US

•Available only in version 3.2 and may be supplied on a separate floppy disk.

Description

The SELECT utility allows the user to create a bootable system disk configured for a par
ticular country's keyboard layout and date, time, and currency formats without performing
these steps separately.

Version 3.2 of SELECT uses the FORMAT command to format the disk in drive2, then uses
the XCOPY command to copy all files on the disk in drivel (including the hidden system
files) to drive2. If a country configuration other than one of the six KEYBx.x utilities sup
plied on the distribution disk is specified, SELECT prompts the user to insert the disk con
taining the appropriate file.

Versions 3.0 and 3.1 of SELECT use the DISKCOPY program to copy all files on the disk in
drive A (including the hidden system files) to the disk in drive B, formatting the disk if
necessary.

All versions then add the appropriate CONFIG.SYS and AUTOEXEC.BAT files to the new
disk to configure PC-DOS for use with the specified keyboard and country configuration.
The specified configuration does not take effect until the computer is turned on or
restarted using the new disk.

Examples

To create a PC-DOS system disk configured for West Germany using version 3.0 or 3.1,
place a copy of the original PC-DOS distribution disk in drive A and a blank disk in drive
B; then type

A>seleCT 049 GR <Enter>

During the copy operation, the usual DISKCOPY prompts and messages are displayed.
When the copy operation is complete, the two disks are compared using DISKCOMP, pro
ducing the usual DISKCOMP prompts and messages. The resulting disk includes all the
files from the distribution disk (including the hidden system files), a CONFIG.SYS file that
contains the line

COUNTRY=049

and an AUTOEXEC.BAT file that contains the following lines:

KEYBGR

ECHO OFF

CLS

DATE

TIME

VER

926 The MS-DOS Encyclopedia

SELECT

To create a PC-DOS system disk configured for West Germany using version 3.2, place a
copy of the original PC-DOS distribution disk in drive A and a blank disk in drive B; then
type

A>seleCT 049 GR <Enter>

SELECT first uses the FORMAT command to format the disk in drive B, then uses XCOPY
to copy all files on the distribution disk (including the system files), and finally creates a
CONFIG.SYS file that contains the line

COUNTRY=049

and an AUTOEXEC.BAT file that contains the following lines:

PATH \;

KEYBGR

ECHO OFF

CLS

DATE

TIME

VER

Messages

Cannot cxecuteXz fUename
One of the files needed by SELECT (FORMAT, DISKCOPY, DISKCOMP, or XCOPY) is not
on the source disk or is a version that is not compatible with the version of PC-DOS that is
running.

File creation error

The root directory of the destination disk is full or unable to contain any more files or one
of the files being created has the same name as a directory already on the destination disk.

Incorrect DOS version

The version of SELECT is not compatible with the version of PC-DOS that is running (ver
sion 3.2).

Incorrect number of parameters
Too many or too few parameters were specified in the command line or a separator char
acter was omitted between two parameters (version 3.2).

Insert DOS diskette in drive A:

Strike any key when ready
This message prompts the user to insert the distribution disk containing the system files
and COMMAND.COM into drive A (version 3.2).

Insert KEYBarar.COM diskette in drive AT:

Strike any key when ready
The user responded F to a previous prompt asking if KEYBjcjc is on another disk. This
message prompts the user to insert that disk into the specified drive (version 3.2).

Section III: User Commands 927

SELECT

Insert target diskette in drive A:
Strike any key when ready
This message prompts the user to insert the disk that will become the country-specific sys
tem disk into drive A (versions 3.0 and 3.1).

Insert target diskette in drive B:
Strike any key when ready
This message prompts the user to insert the disk that will become the country-specific sys
tem disk into drive B (version 3.2).

Invalid country code
The country code given in the command line is not supported by this version of PC-DOS
or is not a valid country code.

Invalid drive specification
One of the drives specified in the command line is invalid or does not exist in the system
(version 3.2).

Invalid keyboard code
The keyboard code given in the command line is not supported by this version of PC-DOS
or is not a valid keyboard code.

Invalid parameter
One of the parameters specified in the command line is invalid or is not supported by the
version of SELECT that is running (version 3.2).

Invalid path
The path specified for drive2 is invalid, contains invalid characters, or is longer than 63
characters (version 3.2).

Is KEYKrar.COM on another

diskette (Y/N)?
The keyboard reconfiguration file for the specified country is not on the source disk.
Respond with Y to cause SELECT to prompt for the disk containing the keyboard file after
the FORMAT operation is completed; respond with N to terminate the SELECT command
(version 3.2).

Keyboard routine not found.
The user responded to a previous prompt asking if KEYBararis on another disk
(version 3.2).

SELECT is used to install DOS the first

time. Select erases everything on the
specified target and then installs DOS.
Do you want to continue (Y/N)?
This message warns the user that the specified disk will be formatted and all files on the
source disk will be copied over. Respond with Y to continue; respond with N to terminate
the SELECT command (version 3.2).

928 The MS-DOS Encyclopedia

SELECT

Unable to copy keyboard routine
An error occurred while the KEYBatxCOM program was being copied. Use the CHKDSK
command to check the keyboard program on the source disk for damage (version 3.2).

Unable to create directory
The directory specified in the command line was not created because a directory with the
same name already exists on the destination disk, the root directory of the destination disk
is full, one of the directory names specified in the path does not exist, or a file with the
same name already exists (version 3.2).

Section III: User Commands 929

SET

SET 2.0 and later

Set Environment Variable internal

Purpose

Defines an environment variable and a string that is its value.

Syntax

SET [name'^value]

or

SET natne^

where:

name is a string of characters that defines an environment variable; lowercase letters
are automatically converted to uppercase.

value is a string of characters, a pathname, or a filename that defines the current
value of name-, no case conversion is made for value.

Description

The environment is a series of null-terminated ASCII (ASCIIZ) strings that contains envi
ronment variables and their values. (An environment variable associates a string consisting
of a filename, a pathname, or other literal data with a symbolic name that can be refer
enced by programs. The form of the association is name=value^ The original, or master,
environment belongs to the command processor and is established when the system is
turned on or restarted. When a program is subsequently executed by the command pro
cessor or by another program, the new program inherits a private copy of its parent's
environment.

The SET command enables the user to add, change, or delete an environment variable
from the command processor's environment. If value is not included in the SET com
mand, MS-DOS deletes the environment variable name from the environment. If the SET

command is issued with no parameters, MS-DOS displays the values of all the variables in
the environment.

With MS-DOS versions 2.x and 3.x, two particular variables are always found in an envi
ronment: PATH and COMSPEC. These variables are initialized during the system startup
process and tell COMMAND.COM which subdirectories to search for executable files and
where to find the transient portion of COMMAND.COM for reloading (versions 3.0 and
later). (By default, PATH is a null string and therefore searches only the current or speci
fied directory.) These special environment variables are influenced by the PATH and
SHELL commands, respectively, but can also be changed with SET commands. Note,
however, that changing the value of COMSPEC with SET will serve no useful purpose—
changing to a different command processor must be done using an appropriate SHELL

930 The MS-DOS Encyclopedia

SET

command in the CONFIG.SYS file (the system must be restarted for it to take effect). Note
also that it is not necessary to use the SET command with the PATH or PROMPT com
mands—MS-DOS will automatically add their new values to the environment if they are
changed.

The environment, which can be as large as 32 KB, can be an effective source of global con
figuration information to executing programs. For instance, the Microsoft C Compiler and
Microsoft Object Linker use environment variables to locate include and object library
files. Environment variables can also be referenced as replaceable parameters in batch
files, using the form %natn^/o.

Under normal circumstances, MS-DOS expands the environment as necessary when SET
commands are entered. However, when a batch file is being interpreted or when
terminate-and-stay-resident (TSR) utilities have been loaded, the size of the command pro
cessor's environment becomes fixed. Under these circumstances, a SET command may
result in the error message Out ofenvironment space.

With version 3 2, the initial size of the environment can be increased either by using the
COMMAND command with the /P and /E: nnnn switches at the system prompt or by in
cluding a SHELL command specifying COMMAND.COM followed by the lE.nnnn switch
in the CONFIG.SYS file. See USER COMMANDS: command; config.sys: shell.

Examples

To define the environment variable USER and set its value to FRED, type

OiSET USER=FRED <Enter>

To change the value of the environment variable USER Xo SALLY, type

OSET USER=SALLY <Enter>

To delete the environment variable USER and its value from the environment, type

OSET USER= <Enter>

To display all the environment variables, type

OSET <Enter>

The output of this command will be in the following form:

COMSPEC=C:\D0S3\C0MMAND.COM

PROMPT=p_ng

PATH=D: \BIN; C: \D0S3; C: \WP\WORD; C: \ASM; C; \MSC\BIN

INCLUDE=c: \msc\include; c: \winciows\lib

LIB=c:\msc\lib;c:\windows\lib

TMP=c:\temp

PCF32=c:\forth\pc32

PROCOMM=c:\procomm\

Section III: User Commands 931

SET

Message

Out of environment space
The command processor's environment is full and cannot be expanded (usually because
the SET command was issued from a batch file or the system has terminate-and-stay-
resident [TSR] utilities installed).

932 The MS-DOS Encyclopedia

SHARE

SHARE 3.0 and later

Install File-Sharing Support External

Purpose

Loads the resident file-sharing support module required by Microsoft Networks.

Syntax

SHARE [/F:n] [/L:n]

where:

/F: n allocates n bytes of memory to hold file-sharing information (default = 2048).
/L:« configures support for n simultaneous file-region locks (default = 20).

Description

The code that supports file sharing and locking in a networking environment is isolated in
the user-installable SHARE module. After SHARE is loaded, MS-DOS checks all read and

write requests against the file-sharing module. On personal computers that do not utilize
network services, the SHARE module need not be loaded, leaving more memory for ap
plication programs.

The /V:n switch controls the amount of buffer space allocated for file-sharing information.
Each open file requires the length of its full name, including the path, plus some overhead;
the average pathname is approximately 20 bytes long. If the /F: n switch is not included in
the command line, the buffer size defaults to 2048 bytes (sufficient for approximately 100
files with pathnames of average length).

The /L: w switch controls the number of entries to be allocated for an internal table con

taining file-locking information. Each active lock on a region of a file occupies one entry in
the table. If the /L: n switch is absent, the default is support for 20 simultaneously active
locks.

Example

To install the file-sharing support module, allocating 4096 bytes of space for file-sharing
information and 40 file-region locks, type

C>SHARE /F:4096 /L:40 <Enter>

Messages

Incorrect DOS version

The version of SHARE is not compatible with the version of MS-DOS that is running.

Incorrect parameter

The command line included an invalid switch.

Section III: User Commands 933

SHARE

Not enough memory
System memory is insufficient to load the SHARE module or to reserve the designated file-
sharing information space or file-region locks,

SHARE already installed
The SHARE command has already been executed since the system was turned on or
restarted; additional executions have no effect.

934 The MS-DOS Encyclopedia

SORT

SORT 2.0 and later

Alphabetic Sort Filter External

Purpose

Reads records from standard input, sorts them alphabetically, and writes the sorted records
to standard output.

Syntax

SORT [/R][/+co/wmn]

where:

/R specifies a reverse, or descending, alphabetic sort.
/^column specifies the first column to be used for sorting each line (default = 1).

Description

The SORT program is a filter that reads lines from standard input until an end-of-file
marker is reached, sorts the lines into alphabetic order, and writes the sorted lines to stan
dard output.

Standard input defaults to the keyboard; standard output defaults to the video display.
Because standard input can be redirected, the SORT filter can also accept input from an
other character device, a file, or the piped output of another program or filter. (The most
common use of SORT is to sort the redirected input from an ASCII text file.) Similarly, the
output of SORT can be redirected to any character device or file or can be piped to another
program.

SORT normally orders the lines of the input text stream alphabetically using the entire line,
starting with column 1 as the sort key. Tab characters are not expanded to spaces. If the
character in the sort-key column of one line is identical with the character in the sort-key
column of the next line, SORT checks the next column to the right to determine which line
will go before the other. If the second columns are also identical, the search continues to
the right until a differing column is found. The maximum amount of data that can be
sorted is 63 KB.

The /R switch causes SORT to arrange the set of lines in reverse alphabetic order. The
/+column switch lets the user specify a column other than column 1 as the first sort key.

With versions 2.x, SORT arranges the input lines based on the ASCII value of the character
in each line's sort-key column; the sort operation is therefore case sensitive. With versions
3.0 and later, SORT assigns lowercase letters the same ASCII value as uppercase letters;
hence, case is effectively ignored. Depending on the COUNTRY command in effect Csee
USER COMMANDS: CONFIG.SYS: country), versions 3.0 and later map accented characters
with ASCII codes in the range 80H through OEIH (128-225) to their unaccented equiva
lents for sorting.

Section III: User Commands 935

SORT

Warning: If the output of the SORT command is redirected to a file with the same name as
the input file, the contents of the input file may be destroyed.

Examples

The examples in this entry operate on an ASCII text file named RECORDS.TXT that con
tains the following lines:

Smith Seattle

Adams New York

Zoole Bellevue

Jones Boston

Each line of the file contains a person's surname, starting in column 1, and a city name,
starting in column 10.

To sort the file RECORDS.TXT by surname and display the sorted lines on standard output,
type

C>SORT < RECORDS.TXT <Enter>

This will result in the following display:

Adams New York

Jones Boston

Smith Seattle

Zoole Bellevue

To sort the file RECORDS.TXT by surname and write the sorted lines into the file
READY.DOC, type

OSORT < RECORDS.TXT > READY.DOC <Enter>

To sort the file RECORDS.TXT by surname in reverse alphabetic order and display the
sorted lines on standard output, type

C>SORT /R < RECORDS.TXT <Enter>

This will result in the following display:

Zoole Bellevue

Smith Seattle

Jones Boston

Adams New York

To sort the file RECORDS.TXT by city name and display the sorted lines on standard out
put, type

C>SORT /+10 < RECORDS.TXT <Enter>

This will result in the following display:

Zoole Bellevue

Jones Boston

Adams New York

Smith Seattle

936 The MS-DOS Encyclopedia

SORT

To use SORT as a filter to arrange a directory listing alphabetically, type

C>DIR ! SORT <Enter>

To use SORT as a filter to arrange a directory listing alphabetically based on the first char
acter of each file's extension, type

C>DIR ! SORT /+10 <Enter>

Messages

Invalid parameter
One of the parameters specified in the command line is invalid or the syntax is incorrect.

SORT: Incorrect DOS version

The version of SORT is not compatible with the version of MS-DOS that is running.

SORT: Insufficient disk space
The output of the SORT filter has been redirected to a file and the disk is full.

SORT: Insufficient memory
The available system memory is insufficient to run the SORT program.

Section III: User Commands 937

SUBST

SUBST 3.1 and later

Substitute Drive for Subdirectory External No Net

Purpose

Causes a drive letter to be substituted for a directory name. SUBST is present in MS-DOS to
support older application programs that do not accept pathnames.

Syntax

SUBST [drivel: \drive2'\path]

or

SUBST drivel: /D

where:

drivel is the drive letter to be used to reference the files in path.
drive2 is a drive letter other than drivel that can optionally precede the name of the

subdirectory being substituted.
path is the subdirectory to be accessed when drivel is referenced, optionally pre

ceded by drive2.
/D cancels the effect of a previous SUBST command for drivel.

Description

The SUBST command allows a drive letter to be substituted for a subdirectory name.

The drivel parameter can be any valid drive letter except the current drive or drive2.
Drive letters A through E are always available; drive letters beyond E require that an ap
propriate LASTDRIVE command be added to the CONFIG.SYS file and the system be re
started isee USER COMMANDS: config.sys: lastdrive).

After a SUBST command, the files on the disk normally referenced by drivel are no longer
accessible. However, the files in the location specified by path can still be referenced by
the usual methods (using their actual drive and path) as well as by the substituted drive
designator.

If the SUBST command is entered without parameters, MS-DOS displays the substitutions
currently in effect.

Warning: The SUBST command masks the actual disk-drive characteristics from com
mands that perform critical disk operations. Therefore, ASSIGN, BACKUP, CHKDSK,
DISKCOMP, DISKCOPY, FDISK, FORMAT, JOIN, LABEL, and RESTORE should not be used
on a drive affected by a SUBST command. CHDIR, MKDIR, RMDIR, and PATH commands
that include the affected drive should be used with caution. A network drive cannot be

named in a SUBST command.

938 The MS-DOS Encyclopedia

SUBST

Examples

To substitute drive B for the directory C:\ASM\SOURCE, type

OSUBST B: C:\ASM\SOURCE <Enter>

To display the substitutions currently in effect, type

C>SUBST <Enter>

In this case, the SUBST command displays

B: => C:\ASM\SOURCE

To cancel the effect of a previous SUBST command that substituted drive B for a subdirec
tory, type

OSUBST B: /D <Enter>

Messages

Cannot SUBST a network drive

One or both of the drive parameters in the command line referred to a drive that is
assigned to a network.

DOS 2.0 or later required
SUBST does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of SUBST is not compatible with the version of MS-DOS that is running.

Incorrect number of parameters
The command line included too many or too few parameters.

Invalid parameter
The drive named in the command line is invalid, does not exist, is the default drive, or is

the same as the drive in the path to be substituted.

Not enough memory
The available system memory is insufficient to run the SUBST command.

Path not found

An element of the path included in the command line is invalid or does not exist.

Section III: User Commands 939

SYS

SYS 1.0 and later

Transfer System Files External No Net

Purpose

Copies the hidden files that contain the operating system from the disk in the current drive
to another formatted disk.

Syntax

SYS drive:

where:

drive is the location of the disk that will receive the system files. This parameter is
required.

Description

An MS-DOS system disk must contain three files to be bootable: the two operating-system
files and the command processor. The operating system itself is contained in the files
lO.SYS and MSDOS.SYS (or IBMBIO.COM and IBMDOS.COM in PC-DOS), which must al

ways be the first two files in the disk's directory. Both have file attributes set for system
and hidden (all versions) and read-only (versions 2.0 and later). lO.SYS (or IBMBIO.COM)
contains the default set of device drivers for the system; it must occupy contiguous sectors
in the disk's files area. MSDOS.SYS (or IBMDOS.COM) contains the kernel of the operating
system proper. The third required file is the shell, or command processor, which by
default is COMMAND.COM. This is an unrestricted file and can be located anywhere on
the disk.

The SYS command transfers the two operating-system files from the default drive to the
specified destination disk. The destination disk that receives the files must meet one of the
following requirements:

• The disk is formatted but completely empty.
• The disk currently contains hidden MS-DOS system files that are large enough to

allow replacement by the new system files.
• The disk has been formatted with the /B switch to reserve room for the system files.

(Note that /B produces a disk with only eight sectors per track.)

If the disk already contains the two hidden system files, the SYS command can be used to
transfer an equivalent or later version of MS-DOS.

After the two hidden operating-system files are installed with the SYS command, the
COMMAND.COM file (or another command processor) must be transferred to the destina
tion disk with the COPY command. The resulting disk is a bootable system disk.

940 The MS-DOS Encyclopedia

SYS

Note: Because the two system files have the hidden attribute, they do not appear on a
directory listing produced by the DIR command. The CHKDSK command does report the
presence of hidden files on a disk and will list their names if the /V switch is used but will
not list such information as the file size or date and time of creation.

Example

To transfer a copy of the system files to the disk in drive B, type

OSYS B: <Enter>

Messages

Cannot SYS to a Network drive

The drive specified in the command line is currently assigned to a network.

Destination disk cannot be booted

The hidden operating-system files were transferred to the destination disk but could not
be placed in contiguous sectors.

Incompatible system size
The destination disk already contains operating-system files and they are smaller than
those being copied.

Incorrect DOS version

The version of SYS is not compatible with the version of MS-DOS that is running.

Insert destination disk in diiveX

and strike any key when ready
This message prompts the user to insert the disk onto which the operating-system files
will be copied into the specified drive.

Insert system disk in driveX
and strike any key when ready
This message prompts the user to insert a disk containing the operating-system files into
the specified drive.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line contained an invalid drive letter.

No room for system on destination disk
Contiguous space at the beginning of the destination disk is insufficient for the operating-
system files. This can occur when files already exist on the destination disk or when sec
tions of the disk are marked as unusable by the FORMAT command.

No system on default drive
The disk in the default drive does not contain the two hidden system files. Replace the disk
with a bootable system disk.

System transferred
The operating-system files have been successfully transferred to the destination disk.

Section III: User Commands 941

TIME

TIME 1.0 and later

Set System Time Internal

Purpose

Sets or displays the system time. TIME is an external command with PC-DOS version 1.0.

Syntax

TIME [hh\mm[\ss[.xx]]]

where:

hh is hours (0-23).

mm is minutes (0-59).

55 is seconds (0-59).

OCX is hundredths of a second (0-99).

Note: No spaces are allowed between any of the time parameters.

Description

All computers that run MS-DOS have as part of their hardware configuration a timer, or
clock, that maintains the current system date and time. One use of this clock, among
others, is to insert the current date and time into a file's directory entry when the file is
created or modified.

The TIME command allows the user to display or modify the current time that is being
maintained by the system's real-time clock. TIME is also executed by MS-DOS when the
system is turned on or restarted, unless an AUTOEXEC.BAT file is on the system disk, in
which case the command is executed only if it is included in the AUTOEXEC.BAT file.

On IBM PC/ATs and compatibles, the TIME command does not permanently change the
system time stored in the built-in battery-backed clock/calendar; the newly entered time is
lost when the system is turned off or restarted. On these machines, the SETUP program
(found on the Diagnostics for IBM Personal Computer AT disk or equivalent) must be used
to permanently alter the clock/calendar's current time.

On IBM PCs, PC/XTs, and compatibles equipped with add-on cards containing battery-
backed clock/calendar circuitry, it is usually necessary to run a time/date installation pro
gram (included with the card) to set the system date and time from the clock/calendar
on the card. The TIME command generally has no effect on these card-mounted
clock/calendars.

The format of times displayed by the system depends on the current country code, which
is determined by the optional COUNTRY command in the CONFIG.SYS file (^see USER
COMMANDS: CONFIG.SYS: country). The default display format is the 24-hour format
(00:00-23:59).

942 The MS-DOS Encyclopedia

TIME

Examples

To display the current time, type

OTIME <Enter>

This results in output of the following form:

Current time is 12:49:04.93

Enter new time:

To leave the time unchanged, press the Enter key.

To set the system time to 8:30 P.M., type

OTIME 20:30 <Enter>

Messages

Current time is hhifnm:ss.xx

This informational message is displayed in response to any valid TIME command.

Invalid parameter
The delimiter in the time parameter included in the command line was not a colon (:) or a
period (.).

Invalid time

Enter new time:

An invalid time, time format, or delimiter was specified in the command line or in
response to the Enter new time: prompt. Note that no spaces are allowed around
delimiters.

Section III: User Commands 943

TREE

TREE 32

Display Directory Structure External

Purpose

Displays the hierarchical directory structure of a disk and, optionally, the names of the
files in each subdirectory. This command is included with PC-DOS beginning with
version 2.0.

Syntax

TREE [drive-M/F]

where:

drive is the location of the disk whose directory structure is to be displayed.
/F displays the filenames in each directory in addition to the directory names.

Description

The TREE command displays on standard output the pathname of each directory on the
disk in the specified drive, beginning with the subdirectories of the root directory. If a disk
drive is not designated, TREE assumes the current, or default, drive. The name of each
directory is followed by a list of its subdirectories. If the /F switch is included in the com
mand line, the names of the files in each subdirectory are also displayed. (Prior to version
3.1, the PC-DOS TREE command does not list the files in the root directory if /F is used.)

The output of the TREE command can be redirected to another output device or a file or
can be piped to another program.

Examples

Assume that the root directory of the disk in drive B contains three subdirectories:
\ SOURCE, \LIBS, and \DOC. The subdirectory \SOURCE in turn contains two subdirec
tories: \ ASM and \ PASCAL. To display the directory structure of this disk, type

C>TREE B: <Enter>

The TREE command displays the following list:

944 The MS-DOS Encyclopedia

TREE

DIRECTORY PATH LISTING FOR VOLUME MYDISK

Path: B:\SOURCE

Sub-directories: ASM

PASCAL

Path: B:\SOURCE\ASM

Sub-directories: None

Path: B:\SOURCE\PASCAL

Sub-directories: None

Path: B:\LIBS

Sub-directories: None

Path: B:\DOC

Sub-directories: None

To display the directory structure of the disk in drive B and also display all files in each
directory, type

C>TREE B: /F <Enter>

To print the directory-structure listing of the disk in drive B on an attached printer, type

Otree B: > PRN <Enter>

To display the directory structure of the disk in drive B one screenful at a time, type

Otree B: ! more <Enter>

For a more compressed listing of all subdirectories on the disk in drive B, type

'C>TREE B: ! FIND "Path:" <Enter>

The output appears in the following form:

Path: B:\SOURCE

Path: B:\SOURCE\ASM

Path: B:\SOURCE\PASCAL

Path: B:\LIBS

Path: B:\DOC

Section III: User Commands 945

TREE

Messages

DOS 2.0 or later required
TREE does not work with versions of MS-DOS earlier than 2.0.

Incorrect DOS version

The version of TREE is not compatible with the version of MS-DOS that is running.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid parameter
The command line contained a path or filename in addition to a disk drive or contained an
invalid switch.

No sub-directories exist

The specified drive has no subdirectories.

946 The MS-DOS Encyclopedia

TYPE

TYPE 1.0 and later

Display File Internal

Purpose

Sends the contents of an ASCII text file to standard output.

Syntax

TYPE [drive\\[path\filename

where:

filename is the name of the text file to be displayed, optionally preceded by a drive
and/or path; wildcard characters are not permitted.

Description

The TYPE command displays the contents of a text file on standard output (usually the
video display) until it encounters an end-of-file character (ASCII code 1 AH). Tab charac
ters in the file are expanded to spaces with tab stops at each eighth character position. If a
file contains characters with ASCII values less than 32 or greater than 127, the resulting dis
play includes graphics characters and other unintelligible information.

The output of the TYPE command can be redirected to another file or character device or
can be piped to another program.

Examples

To display the file SHELL.C in the directory \SOURCE on the disk in drive A, type

OTYPE A:\SOURCE\SHELL.C <Enter>

To direct the output of the same file to the printer, type

OTYPE A:\SOURCE\SHELL.C > PRN <Enter>

The TYPE command can be used with the MORE filter to paginate output. For example, to
display the contents of the file MENU. ASM one screenful at a time, type

OTYPE MENU.ASM 1 MORE <Enter>

Messages

File not found

The file specified in the command line cannot be found or does not exist.

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Invalid path or file name
The path specified in the command line is invalid or does not exist.

Section III: User Commands 947

VDISK.SYS

VDISK.SYS IBM

Virtual Disk External

Purpose

Creates a virtual disk in memory. This installable driver is available only with PC-DOS.

Syntax

lJEVlC^=[drive'][path]WYASK.SYS [size] [sector] [directory] [/E] (version 3.0)

or

DEVICE=[rfr/t;e:] [VDISK.SYS [size] [sector] [directory] [/E [: mao^ (version 3.1)

or

DEVlCEHdrive'][path]VDlSK,SYS [comment] [size] [comment] [sector] [comment]
[directory] [/E[:max]] (version 3.2)

where:

comment is a string of ASCII characters in the range 32 through 126, excluding the
slash character (/) (version 3.2).

size is the size of the virtual disk in kilobytes (minimum = 1, default = 64).
sector is the sector size in bytes (128, 256, or 512; default = 128).
directory is the maximum number of entries in the virtual disk's root directory

(2-512, default = 64).
/E causes VDISK to use extended memory.
/E: max causes VDISK to use extended memory and sets the maximum number of

sectors (1-8, default = 8) to transfer from extended memory at one time
(versions 3.1 and later).

Note: Unless the /E switch is used, the virtual disk is created in conventional memory.

Description

The VDISK.SYS installable device driver allows the configuration of one or more virtual
disks (sometimes referred to as electronic disks or RAMdisks). A virtual disk is imple
mented by mapping a disk's structure—directory, file allocation table, and files area—
onto an area of random-access memory, rather than onto actual sectors located on a
magnetic recording medium. Access to files stored in a virtual disk is very fast, because
no moving parts are involved and the "disk" operates at the speed of the system's mem
ory. (The VDISK driver is available only with PC-DOS; a similar program named
RAMDRIVE.SYS is included with MS-DOS.)

Warning: Because a RAMdisk resides entirely in RAM and is therefore volatile, any infor
mation stored there is irretrievably lost when the computer loses power or is restarted.

948 The MS-DOS Encyclopedia

VDISK.SYS

VDISK can create a virtual disk in either conventional memory or extended memory. Con
ventional memory is the term for the up-to-640 KB of RAM that contain PC-DOS and any
application programs. Extended memory is the term for the memory at addresses above 1
MB (lOOOOOH) that is available on 80286-based personal computers such as the IBM PC/AT.

A virtual disk can be installed in conventional memory by simply inserting the line
DEVICE=VDISK.SYS into the system's CONFIG.SYS file and restarting the system. (If the
file VDISK.SYS is not in the root directory of the startup disk, it may be preceded by a
drive and/or path.) A new "drive" then becomes available in the system, with default
values of 64 KB disk size, 128-byte sectors, and 64 available directory entries (assuming
there is sufficient memory). The virtual disk is assigned the next available drive letter
(which is displayed in VDISK's sign-on message). The drive letter assigned depends on the
number of other physical and virtual disks in the system and also on the position of the
DEVICE=VDISK.SYS line in the CONFIG.SYS file relative to other installed block devices.

Available memory permitting, multiple virtual disks can be created by using multiple
DEVICE=VDISK.SYS lines. Several optional parameters allow the user to customize the
size and configuration of the virtual disk and to use extended memory if it is available.

The size parameter specifies the amount of RAM, in kilobytes, to be allocated to the virtual
disk. The default is 64 KB, but any size from 1 KB to the total amount of available memory
can be specified. If the size specified is greater than available memory or less than 1 KB,
VDISK ignores it and creates a virtual disk of 64 KB. If necessary, VDISK also adjusts the
size value to ensure that at least 64 KB of memory remain available in the system.

The sector parameter sets the virtual sector size used within the virtual disk. The sector
value may be 128, 256, or 512 bytes (default = 128 bytes). Selection of the smallest sector
size results in a minimum of wasted virtual disk space per file but also results in somewhat
slower transfer of data.

Note: Physical disk devices in IBM PC-compatible systems always use 512-byte sectors.

The directory parameter sets the number of available entries in the virtual disk's root
directory. The allowed range is 2 through 512 (default = 64). Each directory entry requires
32 bytes. VDISK rounds the number of available directory entries up, if necessary, so that
an integral number of sectors are assigned to the root directory.

The /E switch causes VDISK to use extended memory for the virtual disk, rather than con
ventional memory. This allows very large virtual disks to be configured while still leaving
the maximum amount of conventional memory available for use by application programs.
If the /E switch is used and extended memory is not present in the system, the VDISK
driver will not install itself.

When /E is used in the form /Y.max, the variable max controls how many virtual sectors
can be transferred at a time from extended memory. The value of max must be in the
range 1 through 8 (default = 8). If VDISK operation appears to conflict with the communi
cations port or other interrupt-driven peripheral devices, the max variable should be set to
a smaller number. The max option is available only with versions 3.1 and 3 2.

Section III: User Commands 949

VDISK.SYS

Note: If VDISK uses conventional memory for virtual disk storage, the memory cannot be
reclaimed except by modifying the CONFIG.SYS file and restarting the system.

Examples

To create a virtual disk drive with the default values of 64 KB disk size, 128-byte sectors,
and 64 available directory entries, include the command

DEVICE=VDISK.SYS

in the CONFIG.SYS file and restart the system.

To create a 360 KB virtual disk with 512-byte sectors and 112 available directory entries
when the file VDISK.SYS is located in a directory named \BIN on drive C, include the
command

DEVICE=C:\BIN\VDISK.SYS 360 512 112

in the CONFIG.SYS file and restart the system. The directory for this virtual disk requires
3584 bytes (112 entries»32 bytes), or 7 sectors.

With version 3.2, comments can be inserted between the values to identify them. For ex
ample, to create a 1 MB virtual disk drive in extended memory with 256-byte sectors and
128 directory entries, placing comments before the values to identify them, include the
command

DEVICE=VDISK.SYS DISK_SIZE: 1024 SECTOR_SIZE: 256 DIR_ENTRIES: 128 /E

in the CONFIG.SYS file and restart the system.

Messages

Buffer size adjusted
No size value was specified or the specified value was larger than the amount of available
memory.

Directory entries adjusted
No directory value was specified, VDISK adjusted the directory value up to the nearest
sector-size boundary, or the size value was too small to hold the file allocation table, the
directory, and two additional sectors, in which case VDISK adjusted directory downward
until these conditions were met.

Invalid switch character

A slash character (/) was included in a comment or the /E switch was entered incorrectly.

Sector size adjusted
The sector value was missing from the command line or an incorrect value was entered;
therefore, VDISK used the default value of 128 bytes.

950 The MS-DOS Encyclopedia

VDISK.SYS

Transfer size adjusted
A value outside the range 1 through 8 was specified with the /IB^.tnax switch; therefore,
VDISK used the default value of 8.

VDISK not installed - Extender Card switches

do not match the system memory size
The switch settings on the extender card are not correct or the extended memory exists in
an expansion unit, which VDISK is not capable of using.

VDISK not installed - insufficient memory
Less than 64 KB of system memory remained after attempted installation, the /E switch
was specified and the system does not contain extended memory, or the amount of avail
able extended memory was too small to support the installation of VDISK.

VDISK Version n.nn virtual disk JT:

Buffer size: nn KB

Sector size: If nil

Directory size: nnn
Transfer size: If

VDISK was successfully installed and this message informs the user of the drive letter
assigned to the virtual disk, the version of VDISK that created the disk, and the character
istics of the disk. The Transfer size: message appears only in versions 3.1 and 3.2 and only
if the /E switch was used.

Section III: User Commands 951

VER

VER 2.0 and later

Display Version internal

Purpose

Displays the MS-DOS version number.

Syntax

VER

Description

The VER command displays on standard output (usually the video display) the number of
the MS-DOS version that is running. The version number is also displayed as part of the
copyright notice when the system is turned on or restarted, unless an AUTOEXEC.BAT file
is on the system disk. (The VER command can be included in the AUTOEXEC.BAT file to
display the version number, but it will not display the copyright information.)

Examples

To display the MS-DOS version number, type

C>VER <Enter>

On a system that is running MS-DOS version 3.2, the following message is displayed:

MS-DOS Version 3.2

To print the MS-DOS version number on an attached printer instead of displaying it on the
screen, type

C>VER > PRN <Enter>

952 The MS-DOS Encyclopedia

VERIFY

VERIFY 2.0 and later

Set Verify Flag Internal

Purpose

Sets the system's internal flag controlling verification of disk writes.

Syntax

VERIFY [ON[OFF]

Description

The VERIFY command sets or clears an internal MS-DOS flag that controls verification of
data written to disks. (The actual verification process is usually carried out by the device
driver and the disk-drive controller.) The VERIFY ON command has the same effect on a

global basis as the /V switch has on COPY operations. (When VERIFY is on, use of the /V
switch with COPY has no additional effect.) VERIFY ON remains in effect until a program
turns it off with a Set Verify system call or until the user types VERIFY OFF at the com
mand prompt. The VERIFY command does not affect the operation of character devices.

When the VERIFY command is entered without an ON or OFF, MS-DOS displays the cur
rent state of the system's internal verify flag. The default setting of the verify flag is off.

Examples

To turn on verification of disk writes, type

OVERIFY ON <Enter>

To display the current status of the verify flag, type

C>VERIFY <Enter>

Messages

Must specify ON or OFF
The command line contained an invalid parameter.

VEMFYisoff

or

VERIFY is on

No setting was specified in the command line and VERIFY displays this informational
message indicating the current status of the verify flag.

Section III: User Commands 953

VOL

VOL 2.0 and later

Display Disk Name Internal

Purpose

Displays a disk's volume label if one exists.

Syntax

VOL [drive-]

where:

drive is the location of the disk whose volume label is to be displayed.

Description

The VOL command displays a disk's name, or volume label. If drive is not included in the
command line, the volume label of the disk in the current drive is displayed.

A volume label can be assigned to a disk when it is formatted by using the /V switch with
the FORMAT command. A volume label can be added, changed, or deleted after a disk
has already been formatted by using the LABEL command (PC-DOS versions 3.0 and later,
MS-DOS versions 3.1 and later). The CHKDSK, DIR, and TREE commands also display a
disk's volume label as part of their output.

Example

To display the volume label for the disk in the current drive, type

OVOL <Enter>

If the disk's name is H ARDDISK, the VOL command produces the following output:

Volume in drive C is HARDDISK

Messages

Invalid drive specification
The drive specified in the command line is invalid or does not exist in the system.

Volume indriveXhas nolabel

The disk in the current or specified drive was not previously assigned a volume label with
the FORMAT or LABEL command.

954 The MS-DOS Encyclopedia

XCOPY

XCOPY

Copy Files

3.2

External

Purpose

Copies files and directories, optionally also copying subdirectories and the files they
contain.

Syntax

XCOPY source [destinatiorAUK] [/T>:mm'dd-yy] [/B] [/M] [/?] [/S] [/V] [/W]

where:

source

destination

/A

/T>:mm-dd-yy

/E

/M

/?

/S

/V

/w

is the name of the file(s) to be copied, optionally preceded by a
drive and/or path; wildcard characters are permitted in the file
name. If the path is omitted, a drive letter must be specified; this
parameter is not optional.
is the destination location and, optionally, the name for the copied
files, and can be preceded by a drive; wildcard characters are per
mitted in the filename.

copies only those source files with the archive bit set.
copies only files modified on or after the specified date. (The date
format depends on the COUNTRY command in effect, if any.)
copies empty subdirectories; if this switch is used, the /S switch
must also be specified.
copies only those files with the archive bit set; also turns off the
archive bit of each source file after it is copied,
prompts the user for confirmation before copying each file,
copies all nonempty subdirectories of source and the files they
contain.

performs read-after-write verification of destination file(s).
waits for the user to press a key before copying any files, allowing
disks to be changed.

Description

The XCOPY command copies one or more source files to one or more destination files.
Unlike the COPY command, however, a single XCOPY command can copy all files con
tained in the entire hierarchical file structure of the source disk to the destination disk,

creating a corresponding set of directories and subdirectories at the destination to hold the
copied files.

The source parameter identifies the file or files to be copied. It can consist of any combina
tion of a drive, path, and filename (optionally including wildcards) but must include either

Section III: User Commands 955

XCOPY

a drive or a pathname. If only a drive is specified, all files in the current directory of that
drive are copied. If a path without a drive or filename is specified, all files in the named
directory are copied from the current drive.

The destination parameter can also consist of any combination of drive, path, and file
name. Unless only a single file is being copied and it is also being renamed as part of the
XCOPY operation, destination is usually simply a drive and/or path specifying where to
place the copied file. If destination includes a filename, XCOPY displays a message asking
if the specified destination is a file or a directory. Depending on the user's response,
XCOPY then either copies the source file to a destination file with the specified name or
creates a directory with the specified name and copies the source files into it. (Note that if
the user responds that the destination is to be a file and multiple source files were speci
fied in the command line, only the last source file is copied to the specified destination.) If
no destination is specified, the source file is copied to a file with the same name in the cur
rent directory of the current drive.

The /A, /D: mm-dd-yy, /M, and /P switches allow selective copying of files. The A switch
is used to copy only source files with the archive bit set; the /M switch also copies only
source files with the archive bit set but turns off each source file's archive bit after the file

is copied. The /D: mm-dd-yy switch is used to copy files that were modified on or after a
selected date; the date must be entered in one of the formats discussed in the entry for the
system's DATE command or in the format of the COUNTRY command currently in effect
isee USER COMMANDS: config.sys: country). The /P switch causes XCOPY to prompt
the user for confirmation before transferring each file.

The /E and /S switches allow an entire branch of the source disk's hierarchical directory
structure to be copied. If the /S switch is specified, XCOPY copies all nonempty subdirec
tories of source, creating equivalent destination subdirectories, if necessary, to hold the
files. If the /E switch is specified, XCOPY also duplicates empty source subdirectories in
the equivalent destination locations. If the /E switch is used, the /S switch must also be
specified.

The /V switch causes a Verify call to be issued on the destination file(s) to ensure that the
data was written correctly. Its effect is equivalent to that of the VERIFY ON command.

Finally, the / W switch causes XCOPY to wait for the user to press a key before copying any
files, thus allowing an exchange of disks before the files are transferred. This is useful in
systems without a fixed disk, because it allows XCOPY to be used when the program itself
is not on either the source or the destination disk.

Note: With MS-DOS versions of XCOPY, the related program MCOPY can be created by
simply copying the file XCOPYEXE to a file named MCOPY.EXE using the following
command:

OCOPY /B XCOPY.EXE MCOPY.EXE <Enter>

What distinguishes MCOPY from XCOPY is the program name; when either program is
loaded, it looks at the name under which it was invoked and reconfigures itself accord
ingly. MCOPY's behavior is similar to XCOPY's, except that MCOPY automatically

956 The MS-DOS Encyclopedia

XCOPY

determines whether the name specified as the destination is a file or a directory according
to the following rules:

• If the source is a directory, the specified destination is a directory.
• If the source includes multiple files, the specified destination is a directory.
• If the destination name ends with a backslash character (\), the specified destination

is a directory.

MCOPY supports all the XCOPY switches.

Not all implementations of XCOPY can be renamed to MCOPY and function accordingly.
The PC-DOS version of XCOPY, for example, does not support this feature.

Return Codes

0 No errors were detected during the copy operation.
1 No files were found to copy.
2 The copy operation was terminated by a Ctrl-C or Ctrl-Break.
4 Initialization error occurred: not enough memory, file not found, or command-line

syntax error.

5 The copy operation was terminated by an ̂ response to an Abort, Retry, Ignore?
prompt.

Examples

To copy all files in the directory C:\SOURCE to the directory C:\SOURCE\BACKlJP, type

C>XCOPY C:\SOURCE*.* C:\SOURCE\BACKUP <Enter>

To copy all files and directories on drive C to the disk in drive D, type

C>XCOPY C:*.* D: /S /E <Enter>

Messages

IfIf File(s) copied
This informational message is displayed at the completion of an XCOPY command and in
dicates the total number of source files processed.

filename File not found
The source file specified in the command line is invalid or does not exist.

Xipathname (Y/N)?
The /? switch was specified in the command line. XCOPY displays the name of each file,
preceded by a drive (and path, if one was specified), and asks for confirmation before
copying the file.

Access denied

A destination file could not be overwritten because it was marked read-only.

Section III: User Commands 957

XCOPY

Cannot COPY from a reserved device

A character device such as AUX or COMl cannot be the source of an XCOPY operation.

Cannot COPY to a reserved device

A character device such as PRN cannot be the destination of an XCOPY operation.

Cannot perform a cyclic copy
The command line included a /S switch and the destination directory is a subdirectory of
the source directory. A subdirectory cannot be copied onto itself.

Does name specify a file name
or directory name on the target
(F = file, D = directory)?
The specified destination directory does not already exist; the user is prompted to deter
mine whether it should be created. Respond with F to copy the source file to a file named
name\ respond with D to create a subdirectory named name and copy the source file
into it.

File cannot be copied onto itself
The name and location of the source file are the same as the name and location of the des

tination file.

File creation error

A destination file or directory could not be created. The destination disk may be full.

Incorrect DOS version

The version of XCOPY is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The disk does not contain enough available space to perform the specified XCOPY
operation.

Insufficient memory
The available system memory is insufficient to perform the XCOPY operation.

Invalid date

The command included a /D switch and the date was not formatted properly.

Invalid drive specification
The source or destination drive specified in the command line is not valid or does not ex
ist in the system.

Invalid number of parameters
The command line contained too many or too few filenames or other parameters.

Invalid parameter
A switch supplied in the command line is not valid.

Invalid path
A directory specified in the command line is invalid or does not exist.

958 The MS-DOS Encyclopedia

XCOPY

Lock Violation

XCOPY attempted to access a file in use by another program. Respond with A to the error-
message prompt and try XCOPY later or wait for a few minutes and respond with R

Path not found

One of the pathnames specified in the command line is invalid or does not exist.

Path too long
The path element of the source or destination parameter was longer than 63 characters.

Press any key to begin copying file(s)
The / W switch was specified in the command line and XCOPY waits for the user to press a
key before beginning the copy process.

Reading source file(s)...
This informational message is displayed during the XCOPY operation.

Sharing violation
XCOPY attempted to access a file iii use by another program. Respond with A to the error-
message prompt and try XCOPY later or wait a few minutes and respond with R

Too many open files
XCOPY failed due to a lack of available system file handles. Increase the size of the FILES
command in the CONFIG.SYS file, restart the system, and attempt the XCOPY command
again.

Unable to create directory
A destination directory cannot have the same name as an existing file in the prospective
parent directory.

Section 111: User Commands 959

1

wmi _

?r:

5i. -
S-. ■ ■

l«iW

#J?|fev'j.||. -Vl'v;;. ;'>S;

vii- -, > ■=%. ' •,•;
""iiklSiV- ""

»

»i'*3SSIfiS€ifsK!.

^^BIi||@Pppiiil^p^*iill^p^

iPili^Sii

f

£

'

life ^

'3$

iii*iliii*»

ri^Haiiiii^feiSspiPiiiisip*iPp^^S|l

l^Mte

iiil^^|i#i
fpiiilifeifii^^

^Si

^*1

Programming Utilities Introduction

Introduction

This section of The MS-DOS Encyclopedia describes the Microsoft utilities, documentation
aids, and debuggers that can be used with the Microsoft C, FORTRAN, Pascal, and BASIC
compilers and with the Microsoft Macro Assembler (MASM). Included are operating in
structions for MASM, the Macro Assembler; LIB, the Library Manager; LINK, the Microsoft
Object Linker; the DEBUG, SYMDEB, and CodeView program debuggers; MAKE, which
automates maintenance of programs; CREF, which produces a cross-reference listing of
symbols; and EXE2BIN, EXEMOD, and EXEPACK, which modify executable files.

Entries (except for the program debuggers) are arranged alphabetically by the name of the
programming utility. The three Microsoft debuggers are listed at the end of the section in
the following order: DEBUG, SYMDEB, CodeView. Individual DEBUG and SYMDEB com
mands appear alphabetically under the headings DEBUG and SYMDEB.

Each utility entry includes

• Utility name
• Utility purpose
• Prototype command line and summary of options
• Detailed description of utility
• One or more examples of utility use
• Return codes (where applicable)
• Error messages and warnings (where applicable)

The experienced user can find information with a quick glance at the first part of a utility
entry; a less experienced user can refer to the detailed explanation and examples in a more
leisurely fashion. The next two pages contain an example of a typical entry from the
Programming Utilities section, with explanations of each component.

Section IV: Programming Utilities 963

Programming Utilities Introduction/Key

HEADING

The utility name.

PURPOSE

An abstract of utility
purpose and usage plus
a statement of which

Microsoft products the
utility is supplied with
and the utility version
described in the entry.

SYNTAX

A prototype command
line, with variable names

in italic and optional
parameters in square

brackets. The various

elements of the com

mand line should be en

tered in the order shown.

Any punctuation must

be used exactly
as shown; in commands

that use commas as sep
arators, the comma

usually must be included
as a placeholder even if
the parameter is omit
ted. Except where noted,
commands, parameters,
and switches can be en

tered in either uppercase
or lowercase. Utility
names can be preceded
by a drive and/or path.

EXEPACK

Compress .EXE File

■ Purpose

Compresses an executable .EXE program file so that it requires less space on the disk.
The EXEPACK utility is supplied with the Microsoft Macro Assembler (MASM), C Compiler,
FORTRAN Compiler, and Pascal Compiler. This documentation describes EXEPACK
version 4.04.

■ Syntax

EXEPACK exe_filepacked_file

where:

is the name

is the name<s^Mthe

le executable .EXE program Tile to be compressed,
the compressed program file.

exe^file
packed^file

Description

The EXEPACK utility compresses an executable .EXE program by packing rfquences of
identical bytes and optimizing the relocation table. The EXEPACK utility^^ot compatible
with versions of MS-DOS earlier than 2.0.

The exe^file parameter specifies the name of the program file ojjdSuced by the Microsoft
Object Linker (LINK) and must contain the extension .EXE. Thfpacked^file parameter
specifies the name and extension of the resulting compress^file. EXEPACK has no
default extensions.

The name for packed^file must be different from t}y^exe^file filename. Although it is
possible to fool EXEPACK into creating a packed file with the same name by specifying a
different but equivalent pathname for the outpp^ile, the resulting packed file will proba
bly be damaged. If the packed file is to repl^ the original .EXE file, a different name
should be specified for the packed file; thim the input file should be deleted and the
packed file renamed with the name ofime original file.

When EXEPACK is used to compel an executable overlay file or a program that calls
overlays, the packed file shoul^e renamed with its original name before use to avoid
interruption by the overlay-jl(anager prompt.

The effects of EXEPAC

cessed with EXEPACRTto oc<
also load for exec^mon more
tually becom^^er after pi
EXEPACK ̂ Id be discard
under DEliUG, SYMDEB, or

976 The MS-DOS Encyclopedia

id on program characteristics. Most programs can be pro-
:< upy significantly less disk space. Programs thus compressed
quickly. Occasionally programs (particularly small ones) ac-

ir xessing with EXEPACK; in such cases the file produced by
d. Microsoft Windows programs or programs to be debugged
2odeView should not be compressed with EXEPACK.

BELOW WHERE

A brief explanation
of each command

parameter and switch.

Filenames are always
listed first, followed by
the switches in alpha
betic order. Any special
position required for a

filename or switch is

shown in the syntax
line and noted in the

explanation.

DESCRIPTION

A detailed description
of the utility, including
a full explanation of
default values, possible
interactions of command

parameters and options,
useful background infor
mation, and any applic
able warnings.

964 The MS-DOS Encyclopedia

Programming Utilities Introduction/Key

Using EXEPACK on a previou! \]
/EXEPACK switch while linkii

ly

Note: When using the EXEMC
or the /EXEPACK linker switc i,

EXEPACK utility to ensure coi

Return Codes

0 No error; the EXEPACK oj ̂ tion

 linked program is equivalent to specifying LINK'S
g that program.

D utility with packed .EXE files created with EXEPACK
I, use the EXEMOD version shipped with LINK or with the

>i ipatibiliiy.

Example

To compress the file BUILD.EXE into s named BUILDX.EXE, type

OEXEPACK BUILD.EXE BUILDX.EXE ^^er>

ivas successful.

1 An error was encounter^hat ten linated execution of the EXEPACK utility.

fatal error UllOO: out of space on output file
The destination disk has insufficient space for the output file, or the root dire

fatal error UllOl: JUename: flle not found
The .EXE file specified in the command line cannot be found.

fatal error VUOlifUename: permission denied
A file with the same name as the specified output file already

fatal error IJ1103: cannot pack flle onto Itself
The file cannot be compressed because the name s]
as the name of the source .EXE file.

fatal error U1104: usage: exepack <lnflle^
The command line contained a syntax eTTOT.anhe output filename was not specified.

OS :s and is read-only.

t packed file is the same

fatal error U1105: invaUd .EXE file; 1;
The file is not an executable file or h

[header

invalid file header.

fatal error U1106: cannot c

The file cannot be comp
allocation value are both 2

load-high program
because the minimum allocation value and the maximum

See also PROGRAMMING UTILITIES; exemod.

fatal error U1107: <

The file specified 1
Aot pack already-packed file

£lready been packed with EXEPACK.

(: invalid .EXE flle; actual length less than reported
ated in the .EXE file header does not match the size recorded in the disk

fatalet^or U1109: out of memory
Thp^EPACK utility did not have enough memory to operate.

Section IV; Programming Utilities 977

RETURN CODES

Exit codes returned by
the utility (if any) that
can be tested in a batch

file or by another
program.

EXAMPLES

One or more examples
of the utility at work,
including examples of
the resulting output
where appropriate. User
entry appears in color;
do not type the prompt,
which appears in black.
Press the Enter key
(labeled Return on some

keyboards) as directed
at the end of each com

mand line.

MESSAGES

An alphabetic list of
messages that may be
displayed when the
utility is used. Following
each message is a brief
explanation of the con
dition that produces the
message and, where
appropriate, any action

that should be taken.

Section IV: Programming Utilities 965

CREF

CREF

Generate Cross-Reference Listing

Purpose

Produces a cross-reference listing of all symbols in an assembly-language program. The
CREF utility is supplied with the Microsoft Macro Assembler (MASM). This documentation
describes CREF version 4.0.

Syntax

CREF

or

CREF crf_file[']

or

CREF crf^file,ref^file

where:

crf^file is the input file previously produced by MASM (default extension = .CRF).
ref_file is the output ASCII text file to be created (default extension = .REF).

Description

The CREF utility processes a file produced by MASM and generates an ASCII cross-
reference listing in a file on disk or directly on a character device (such as a printer). The
output file contains an alphabetic list of the symbols in the assembled program, including
the line number of each reference to the symbol and the total number of symbols in the
program. A pound sign (#) follows the line number of the reference that defines the
symbol.

The crf_file has the default extension .CRF. It is produced by providing MASM with a file
name other than NUL in the cross-reference position in the command line, by responding
to the Cross-reference: prompt, or by including the /C switch in the MASM command line
or at any MASM prompt. An assembly source listing file (.LST) must also be requested in
the MASM command line or in response to the MASM prompts in order to generate a valid
.CRF file.

If a semicolon follows the crf^file parameter in the CREF command, the resulting ref_file
containing the cross-reference listing is given the same drive and pathname as crf_file,
with a .REF extension. If the optional ref^file parameter is present, it can consist of any
pathname with an optional extension (default is .REF). The cross-reference listing can be
sent directly to a character device, rather than to a file, by specifying a valid character
device name (such as PRN) in the ref_file position.

Section IV: Programming Utilities 967

CREF

If the CREF utility is run without any parameters or with some parameters missing, the
CREF utility prompts the operator for the necessary information.

Return Codes

0 No error; the CREF operation was successful.
1 An error was encountered that terminated execution of the CREF utility.

Examples

To process the file MENUMGR.CRF (created during assembly of MENUMGR.ASM) into the
cross-reference file MENUMGR.REF, type

OCREF MENUMGR; <Enter>

To process the file MENUMGR.CRF and assign the name MENU.REF to the resulting cross-
reference file, type

OCREF MENUMGR, MENU <Enter>

To process the file MENUMGR.CRF and send the cross-reference listing directly to the
printer, type

OCREF MENUMGR, PRN <Enter>

To run the CREF program in interactive mode, type

OCREF <Enter>

The following is an example of an interactive CREF session:

OCREF <Enter>

Microsoft (R) Cross Reference Utility Version 4.00

Copyright (C) Microsoft Corp 1981, 1983, 1984, 1985. All rights reserved.

Cross-reference [.CRF]: MENUMGR <Enter>

Listing [MENUMGR.REF]: <Enter>

9 Symbols

O

The following sequence of commands produces the cross-reference listing HELLO.REF
from the assembly-language source file HELLO.ASM:

OMASM HELLO, HELLO, HELLO, HELLO <Enter>

OCREF HELLO; <Enter>

968 The MS-DOS Encyclopedia

CREF

Contents of the file HELLO. ASM:

name hello

page 55,132

title HELLO.ASM - print Hello on terminal

HELLO.COM utility to demonstrate CREF listing

cr equ Odh ;ASCII carriage return

If equ Oah /ASCII linefeed

cseg segment para public "CODE"

org lOOh

assume cs:cseg,ds:cseg,es:cseg,ss:cseg

print proc near

mov dx,offset message

mov ah,9 /print the string "Hello"

int 21h

mov ax,4c00h /exit to MS-DOS

int 21h /with "return code" of zero

print endp

message db cr,If,'Hello!',cr,If,'$'

cseg ends

end print

Contents of the file HELLO.REF:

Microsoft Cross-Reference Version 4.00 Mon Sep 07 23:31:21 1987

HELLO.ASM - print Hello on terminal

Symbol Cross-Reference (# is definition) Cref-1

CODE 10

CR 7 7# 24 25

CSEG 10 10# 14 14 14 14 27

LF 8 8# 24 25

MESSAGE 17 24 24#

PRINT 16 16# 29

6 Symbols

Section IV: Programming Utilities 969

CREF

Messages

can't open cross-reference fUe for reading
The pathname or drive specified for the input .CRF file is invalid or does not exist,

can't open listing file for writing
A write error has halted the creation of the .REF listing file. This indicates that the disk is
full or write-protected, that the specified output file is read-only, or that the specified
device is not available.

cref has no switches

A switch was specified in the command line; CREF has no optional switches.

DOS 2.0 or later required
CREF does not work with versions of MS-DOS earlier than 2.0.

extra file name ignored
More than two filenames were specified in the command line. The CREF utility generates
the cross-reference listing using the first two filenames specified.

line invalid, start again
No .CRF file was specified in the command line or at the prompt. Specify a valid .CRF file
at the prompt following this message.

out of heap space
Memory is insufficient to process the .CRF file. Remove memory-resident programs and
shells or add more memory.

premature eof
The input file specified is damaged or is not a valid .CRF file,

read error on stdin

A Control-Z was received from the keyboard or a redirected file and has halted CREF.

970 The MS-DOS Encyclopedia

EXE2BIN

EXE2BIN

Convert .EXE File to Binary-Image File

Purpose

Converts an executable file in the .EXE format to a memory-image file in binary format.
The EXE2BIN utility is supplied with the MS-DOS distribution disks.

Syntax

EXE2BIN exe_file [bin_file]

where:

exe^file is the .EXE-format file to be converted (default extension = .EXE).
bin He is the name to be given to the converted file (default extension = .BIN).

Description

The .EXE executable program files produced by the Microsoft Object Linker (LINK)
contain a special header and a relocation table as well as the program code and data. The
EXE2BIN utility can be used to convert a .EXE file to a .COM executable file, which is an
absolute memory image of the program to be executed and does not contain a special
header or relocation table. The EXE2BIN utility can also be used to convert .EXE files with
an origin of zero (such as installable MS-DOS device drivers) to pure memory-image files.
Files in memory-image format (a common format for device drivers and for programs to be
placed in ROM for execution) usually have a .BIN or .SYS extension.

To convert a .EXE program to a binary-image file, the following are required:

• The program must be a valid .EXE file produced by LINK.
• The program can contain only one segment and cannot contain a declared stack

segment.

• The program code and data portion of the .EXE file must be less than 64 KB.

To convert a .EXE program to an executable .COM file, the following are required:

• The origin of the program must be OlOOH, which must also be specified as the entry
point.

• The program code and data portion of the .EXE file must be less than 65227 bytes
(64 KB minus 256 bytes used by the program segment prefix minus 2 bytes initially
placed on the stack).

• The program must not include any FAR references.

Section IV: Programming utilities 971

EXE2BIN

Note: Many compilers cannot create programs that can be converted to .COM files. Check
the compiler documentation for specific information concerning executable .COM files.

The exe^file parameter in the command line can have any filename and can include a
drive and path; the default extension is .EXE. The optional bin_file parameter can also
contain any filename and a drive and path; the default extension is .BIN. If no path is spec
ified with the bin^file parameter, the output file is given the same drive and path as the
exe^file. If no bin__file parameter is supplied, the output file is given the same name as
the exe^file, with the extension .BIN.

If the program in the .EXE file requires segment fixups (that is, if the program contains
instructions requiring segment relocation, which would ordinarily be done by the MS-DOS
loader using the .EXE file's relocation table), EXE2BIN prompts for a base segment ad
dress. When segment fixups are necessary, the resulting program is not relocatable and
must be loaded at the given location to be executed; the MS-DOS loader cannot load the
program.

Examples

To convert the file HELLO.EXE to the file HELLO.BIN, type

OEXE2BIN HELLO <Enter>

To convert the file CLEAN.EXE, which has an origin of OlOOH and meets the requirements
for an executable .COM file, to the file CLEAN.COM, type

OEXE2BIN CLEAN.EXE CLEAN.COM <Enter>

To convert the file ASYNCH.EXE, produced by assembling and linking the device-driver
source file ASYNCH.ASM, to the installable device-driver file ASYNCH.SYS, type

OEXE2BIN ASYNCH.EXE ASYNCH.SYS <Enter>

Messages

File cannot be converted

The program to be converted has one of the following problems: The program has an
origin of OlOOH but a different entry point; the program requires segment fixups; the pro
gram code and data are larger than 64 KB; the program has more than one declared seg
ment; or the file is not a valid .EXE-format file.

File creation error

EXE2BIN cannot create the output file because a read-only file with the same name
already exists, because the specified directory is full, or because the specified disk is full,
write-protected, or unreadable.

File not found

The file does not exist or the incorrect path was given.

972 The MS-DOS Encyclopedia

EXE2BIN

Fixups needed - base segment (hex):
The .EXE-format file contains segment references that would ordinarily be relocated by
the .EXE file loader. Specify the absolute segment address at which the converted module
will be executed.

Incorrect DOS version

The version of EXE2BIN is not compatible with the version of MS-DOS that is running.

Insufficient disk space
The destination disk has insufficent space to create the memory-image output file.

Insufficient memory
Not enough memory is available to run EXE2BIN.

WARNING - Read error in EXE file.

Amount read less than size in header.

The file size given in the .EXE header is inconsistent with the actual size of the file.

Section IV: Programming Utilities 973

EXEMOD

EXEMOD

Modify .EXE File Header

Purpose

Allows inspection or modification of the fields in a .EXE file header. The EXEMOD utility
is supplied with the Microsoft Macro Assembler (MASM), C Compiler, FORTRAN Compiler,
and Pascal Compiler. This documentation describes EXEMOD version 4.02.

Syntax

EXEMOD exe^fileUlii

or

EXEMOD exe^fileUSTKCY. n] [/MAX n] [/MIN n]

where:

exe_file is the name of an executable program in .EXE format (the extension .EXE
is assumed).

/H displays the values in the file's header.
/STACK n modifies the size of the program's stack segment to n (hexadecimal)

bytes.
/MAX n sets the maximum memory allocation for the program to n (hexadecimal)

paragraphs.
/MIN n sets the minimum memory allocation for the program to n (hexadecimal)

paragraphs.

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-)
instead of a forward slash (/).

Description

Programs that are executable under MS-DOS can be in one of two file formats: .COM,
which is an absolute image of the file to be executed and limits the program size to 65227
bytes (64 KB minus 256 bytes used by the program segment prefix minus 2 bytes initially
placed on the stack); or .EXE, which allows a program of any size to be loaded and has a
special header containing information about the program's entry point, stack size, and
memory requirements, plus a relocation table.

The EXEMOD utility can be used to display or modify those fields of a .EXE program
header that control the size of the stack segment and the amount of memory allocated to
the program when MS-DOS loads the program into the transient program area for
execution.

The /STACKw switch controls the number of bytes in the program's STACK segment by
setting the initial SP to the hexadecimal value specified. The minimum paragraph alloca
tion value is adjusted if necessary. The EXEMOD /STACKw switch should be used only
with programs compiled by Microsoft C version 3.0 or later, Microsoft Pascal version 3.3

974 The MS-DOS Encyclopedia

EXEMOD

or later, or Microsoft FORTRAN version 3.0 or later. Use of the /STACKw switch with a pro
gram developed with another compiler can cause the program to fail or cause EXEMOD to
return an error message.

The /MAXw switch specifies the maximum number of additional paragraphs of memory
to allocate for use by the program. The /MINn switch specifies the minimum number of
paragraphs of memory, in addition to the size of the program itself and its stack and data
segments, that are required for the program to execute. If enough memory exists to satisfy
the minimum additional paragraphs requested but not enough exists to satisfy the max
imum, MS-DOS allocates all available memory to the program.

To display the current memory allocation and stack size values from a .EXE file's header,
the /H switch can be used or the file's name can be entered as the only parameter in the
command line.

When EXEMOD is used on a previously packed .EXE file (a file that was processed by
EXEPACK or linked with the /EXEPACK switch), the values set or displayed in the file's
header are the values that will apply after the file is expanded at load time. EXEMOD dis
plays a message advising the user that the file being modified was previously packed.

The EXEMOD switches /MAXw and /STACKw correspond to the Microsoft Object Linker's
/CPARMAXALLOC:« and/STACK: w switches, respectively. See PROGRAMMING
UTILITIES: link.

Return Codes

0 No error; EXEMOD operation was successful.
1 An error was encountered that terminated execution of the EXEMOD program.

Examples

To display the values in the file header of the DUMP. EXE program, type

C>EXEMOD DUMP.EXE <Enter>

or

C>EXEMOD DUMP.EXE /H <Enter>

The EXEMOD utility displays the following:

Microsoft (R) EXE File Header Utility Version 4.02

Copyright (C) Microsoft Corp 1985. All rights reserved.

DUMP.EXE (hex)

.EXE size (bytes) 580

Minimum load size (bytes) 383

Overlay number 0

Initial CS:IP 0000:0000

Initial SS:SP 0034:0040

Minimum allocation (para) 5

Maximum allocation (para) FFFF

Header size (para) 20

Relocation table offset 20

Relocation entries 1

(dec)

1408

899

0

64

5

65535

32

32

1

Section IV: Programming Utilities 975

EXEMOD

To change the size of the STACK segment for the DUMP.EXE program to 400H (1024)
bytes, type

C>EXEMOD DUMP.EXE /STACK 400 <Enter>

EXEMOD displays the message

EXEMOD : warning U4051: minimum allocation less than stack; correcting minimum

Messages

error U1050: usage: exemod file [Vh] [-/stack n] [-/max n] [-/min n]
An error was detected in the EXEMOD command line.

error U1051: invalid .EXE file: bad header

The file is not an executable file or has an invalid file header.

error U1052: invalid .EXE file: actual length less than reported
The file size indicated in the .EXE file header does not match the size recorded in the disk

directory.

error U1053: cannot change load-high program
The header of the file cannot be modified because the minimum allocation value and the

maximum allocation value are both zero.

error U1054: fUe not .EXE

The file specified does not have a .EXE extension.

error U1055: filename: cannot find file
The .EXE file specified in the command line cannot be found.

error UIO56: filename: permission denied
The .EXE file specified in the command line is read-only.

warning U4050: packed file
The specified file is a packed file; that is, it was previously processed with the EXEPACK
utility or was linked with the /EXEPACK switch. This is an informational message only;
EXEMOD still modifies the file. The header values displayed are the values that will apply
after the packed value is expanded at load time.

warning U4051: minimum allocation less than stack; correcting minimum
The minimum allocation value is not large enough to accommodate the stack; the
minimum allocation value is adjusted. This is an informational message only.

warning U4052: minimum allocation greater than maximum; correcting
maximum

If the minimum allocation value is greater than the maximum allocation value, the maxi
mum value is adjusted. This is an informational message only.

976 The MS-DOS Encyclopedia

EXEPACK

EXEPACK

Compress .EXE File

Purpose

Compresses an executable .EXE program file so that it requires less space on the disk.
The EXEPACK utility is supplied with the Microsoft Macro Assembler (MASM), C Compiler,
FORTRAN Compiler, and Pascal Compiler. This documentation describes EXEPACK
version 4.04.

Syntax

EXEPACK exe^file packed_file

where:

exe^ file is the name of the executable .EXE program file to be compressed.
packed^ file is the name of the compressed program file.

Description

The EXEPACK utility compresses an executable .EXE program by packing sequences of
identical bytes and optimizing the relocation table. The EXEPACK utility is not compatible
with versions of MS-DOS earlier than 2.0.

The exe^file parameter specifies the name of the program file^roduced by the Microsoft
Object Linker (LINK) and must contain the extension .EXE. The packed^ file parameter
specifies the name and extension of the resulting compressed file. EXEPACK has no
default extensions.

The name forpacked^file must be different from the exe_file filename. Although it is
possible to fool EXEPACK into creating a packed file with the same name by specifying a
different but equivalent pathname for the output file, the resulting packed file will proba
bly be damaged. If the packed file is to replace the original .EXE file, a different name
should be specified for the packed file; then the input file should be deleted and the
packed file renamed with the name of the original file.

When EXEPACK is used to compress an executable overlay file or a program that calls
overlays, the packed file should be renamed with its original name before use to avoid
interruption by the overlay-manager prompt.

The effects of EXEPACK depend on program characteristics. Most programs can be pro
cessed with EXEPACK to occupy significantly less disk space. Programs thus compressed
also load for execution more quickly. Occasionally programs (particularly small ones) ac
tually become larger after processing with EXEPACK; in such cases the file produced by
EXEPACK should be discarded. Microsoft Windows programs or programs to be debugged
under DEBUG, SYMDEB, or CodeView should not be compressed with EXEPACK.

Section IV: Programming Utilities 977

EXEPACK

Using EXEPACK on a previously linked program is equivalent to specifying LINK'S
/EXEPACK switch while linking that program.

Note: When using the EXEMOD utility with packed .EXE files created with EXEPACK
or the /EXEPACK linker switch, use the EXEMOD version shipped with LINK or with the
EXEPACK utility to ensure compatibility.

Return Codes

0 No error; the EXEPACK operation was successful.
1 An error was encountered that terminated execution of the EXEPACK utility.

Example

To compress the file BUILD.EXE into a file named BUILDX.EXE, type

C>EXEPACK BUILD.EXE BUILDX.EXE <Enter>

Messages

fatal error UllOO: out of space on output file
The destination disk has insufficient space for the output file, or the root directory is full.

fatal error UllOl: filename: file not found
The .EXE file specified in the command line cannot be found.

fatal error U1102: filename: permission denied
A file with the same name as the specified output file already exists and is read-only,

fatal error U1103^annot pack file onto itself
The file cannot be compressed because the name specified for the packed file is the same
as the name of the source .EXE file.

fatal error U1104: usage: exepack <infile> <outfile>
The command line contained a syntax error, or the output filename was not specified.

fatal error U1105: invalid .EXE file; bad header

The file is not an executable file or has an invalid file header.

fatal error UIIO6: cannot change load-high program
The file cannot be compressed because the minimum allocation value and the maximum
allocation value are both zero. See also PROGRAMMING UTILITIES: exemod.

fatal error U1107: cannot pack already-packed file
The file specified has already been packed with EXEPACK.

fatal error U1108: invalid .EXE file; actual length less than reported
The file size indicated in the .EXE file header does not match the size recorded in the disk

directory.

fatal error U1109: out of memory
The EXEPACK utility did not have enough memory to operate.

978 The MS-DOS Encyclopedia

EXEPACK

fatal error UlllO: error reading relocation table
The file cannot be compressed because the relocation table cannot be found or is invalid,

fatal error Ullll: file not suitable for packing
The file could not be packed because the packed load image of the specified file was
larger than the unpacked load image.

fatal error U1112: filename: unknown error
An unknown system error occurred while the specified file was being processed.

warning U4100: omitting debug data from output file
EXEPACK has stripped all symbolic debug information from the output file.

Section IV: Programming Utilities 979

LIB

LIB

Library Manager

Purpose

Creates or modifies an object module library file. The LIB utility is supplied with the
Microsoft Macro Assembler (MASM), C Compiler, FORTRAN Compiler, and Pascal Com
piler. This documentation describes LIB version 3.06.

Syntax

LIB

or

operation

LIB library_file[/VKGESVZE\n] [operation][Xlist_file][Xnew_library^file]]] [;]

or

LIB @ response^file

where:

library^ file is the name of the object module library file to be created or modi
fied (default extension = .LIB).

/PAGESIZE: n is the page size of the library file and must immediately follow
library^file if used; n is a power of 2 between 16 and 32768,
inclusive (default = l6). Can be abbreviated /P:n.

is one or more library manipulations to be performed. Each
operation is specified as a code followed by an object module
name (case is not significant):

+name Add object module or another library to library.
-name Delete object module from library.
-+ name Replace object module in library.
»name Copy object module from library to object file.
-*name Copy object module to object file and then delete

object module from library.

is the name of the file or character device to receive the cross-

reference listing for the library file (default = NUL device),
is the name to be assigned to the modified object module library
file. (The default name is the same as library^ file; if the default is
used, the original library^file is renamed with the extension
.BAK.)

is the name of a text file containing LIB parameters in the same
order in which they are supplied if entered interactively. The name
of the response file must be preceded by the @ symbol.

list^file

new^library^file

response_file

980 The MS-DOS Encyclopedia

LIB

Description

The Microsoft Library Manager (LIB) creates and modifies library files, checks existing
library files for consistency, and prints listings of the contents of library files. The LIB
utility does not work with versions of MS-DOS earlier than 2.0.

A library file consists of relocatable object modules that are indexed by their names and
public symbols. The Microsoft Object Linker (LINK) uses these files during the creation of
an executable (.EXE) program to resolve external references to routines and variables con
tained in other object modules.

The library^file parameter specifies the name of the object module library file to be
created or modified. This parameter is required; if it is not included, LIB prompts for it.
The default extension for a library file is .LIB.

The /PAGESIZEiw switch (abbreviated /P:w) sets the page size (in bytes) for a new library
file or changes the page size of an existing library file. The value of n must be a power of 2
between 16 and 32768, inclusive. The default is 16 for a new library file; for an existing li
brary file, the default is the current page size. Because the index to a library file is con
tained in a fixed number of pages, setting a larger page size increases the number of index
entries (and thus the number of object modules) that a library file can contain but results in
more wasted disk space (an average of half a library page per object module).

The operation parameter specifies one or more relocatable object modules to add to,
replace in, copy from, move from, or delete from library^file. Each operation is repre
sented by a code specifying the type of operation, followed by the object module name.
When an object module is copied or moved from the library file, the drive and pathname
of the object module are set to the default drive, current directory, and specified module
name, and the extension of the object module defaults to .OBJ. When an object module is
added or replaced, LIB assumes a default extension of .OBJ.

The operation -^name adds the object module in the file name.O&i to the library file. This
operation can also be used to add the contents of another entire object module library file
to the library file being updated, in which case the extension .LIB must be included in
name. The operation -name deletes the object module name from the library. The
operation —^name deletes the object module name from the library file and replaces it
with the contents of the file name.O^]. The operation copies the object module
name from the library file into the file name.OB], which LIB creates in the current direc
tory. The operation -*name also copies the object module name from the library file into
a .OBJ file but then deletes the module from the library file. (Although name must have
exactly the same spelling as the name in the library's reference listing, case is not
significant.)

Note: LIB does not actually delete object modules from the specified library file. Instead, it
marks the selected object modules for deletion, creates a new library file, and copies only

Section IV: Programming Utilities 981

LIB

the modules not marked for deletion into the new file. Thus, if LIB is terminated for any
reason, the original file is not lost. Enough space must be available on the disk for both the
original library file and the copy.

The list^file parameter specifies the file or character device to receive a reference listing
for the library file. Any valid drive, pathname, and extension or any valid character device,
such as PRN, is permitted (default = NUL). If this parameter is omitted, no listing is
generated.

The reference listing consists of two tables. The first table contains all the public symbols
in the object modules in the library, listed alphabetically, with each symbol followed by
the name of the object module in which it is referenced. The second table contains the
names of all the object modules, listed alphabetically, with each name followed by the
offset from the start of the library file, the code and data size, and an alphabetic listing of
the public symbols in that object module.

The new^library^file parameter specifies the name for the modified library file that is
created. If this parameter is omitted, LIB gives the modified library file the same name as
the original library file, and the original library file is renamed with a .BAK extension.
When a new library file is being created, this parameter is not necessary.

When the command line is used to supply LIB with filenames and switches, typing a semi
colon character (;) after any parameter (except library_fil^ causes LIB to use the default
values for the remaining parameters. If a semicolon is entered after library,^file, LIB sim
ply checks the file for consistency and usability. (This is seldom necessary, because
LIB checks each object module for consistency before adding it to the library.)

If the LIB command is entered without any parameters, LIB prompts the user for each
parameter needed. If there are too many operations to fit on one line, the line can be
ended with the ampersand character (&), causing LIB to repeat the Operations: prompt. If
any response except library^file is terminated with a semicolon character, LIB uses the
default values for the remaining filenames. When the library^///^parameter is followed
by a semicolon or a semicolon is entered at the Operations: prompt, LIB takes no action
except to verify that the contents of the specified file are consistent and usable.

The response^file parameter allows the automation of complex LIB sessions involving
many files. A response file contains ASCII text that corresponds line for line to the re
sponses that are entered in a normal interactive LIB session, in the form

library^file [/P: w]
[Y]

[operations]
[list_file]
[new^library_file] [;]

The response file name must be preceded in the command line by the at symbol (@) and
can also be preceded by a path and/or drive letter. If library^file is a new file, the letter Y

982 The MS-DOS Encyclopedia

LIB

must appear by itself on the second line of the response file to approve the creation of a
library file. The last line of the response file must end with a semicolon or a carriage re
turn. (LIB ignores any lines following a semicolon.) If all the parameters required by LIB
are not present in the response file or the response file does not end with a semicolon,
LIB prompts the user for the missing information.

Return Codes

0 No error; LIB operation was successful.
1 An error that terminated execution of the LIB utility was encountered.

Examples

To create a library file named MYLIB.LIB and insert the object files VIDEO.OBJ,
COMM.OBJ, and DOSINT.OBJ, type

OLIB MYLIB +VIDEO +COMM +DOSINT; <Enter>

To print a listing of the object modules in the library file MYLIB.LIB, type

OLIB MYLIB, PRN <Enter>

If the LIB command is entered without parameters, the user is prompted for the necessary
information. For example, if the user wanted to add the module VIDEO.OBJ to the library
file SLIBC.LIB, produce a reference listing in the file SLIBC.LST, and produce a new output
library file named SLIBC2.LIB, the following dialogue would take place:

OLIB <Enter>

Microsoft (R) Library Manager Version 3.06

Copyright (C) Microsoft Corp 1983, 1984, 1985, 1986. All rights reserved.

Library name: SLIBC <Enter>

Operations: +VIDEO <Enter>

List file: SLIBC.LST <Enter>

Output library: SLIBC2 <Enter>

Messages

filenamei cannot access file.
LIB is unable to access an object module specified in a response file, in the command line,
or at the Operations: prompt.

filenamei cannot create extract file
The object module cannot be copied or moved from the library file into a separate disk file
called filename because the root directory or disk is full or because filename already
exists and is read-only.

fUenamei cannot create listing
The list file specified in the response file, in the command line, or at the List file: prompt
cannot be created because the root directory or disk is full or because filename already
exists and is read-only.

Section IV: Programming Utilities 983

LIB

filenamei invalid format {pcxxx)\ file ignored.
The hexadecimal signature byte or word xxxx of the specified file was not one of the
following recognized types: Microsoft library, Intel library, Microsoft object, or XENIX
archive.

fUenamei invalid library header.
The input library file either is not a library file or is damaged.

filenamei invalid library header; file ignored.
The input library file is in the wrong format.

modulenamei invalid object module near location
The specified object module has an invalid format near the hexadecimal offset indicated.

modulenamei module not in library; ignored
The object module specified in the response file, in the command line, or at the
Operations: prompt is not in the specified input library file.

modulenamei module redefinition ignored
An object module was specified to be added to a library file but an object module with the
same name was already in the library file, or the same object module was specified twice
in an add operation in the command line.

numberi page size too small; ignored
The size specified with a /P:w switch must be a power of 2 between l6 and 32768 bytes,
inclusive.

symbol imodulename) i symbol redefinition ignored
The specified symbol was defined in more than one module. Only the first definition of a
symbol is accepted. All redefinitions are ignored.

cannot create new library
The root directory is full, or a library file with the same name already exists and is read
only.

cannot open response file
The specified response file cannot be found or does not exist,

cannot rename old library
The old library file cannot be renamed with a .BAK extension because such a file already
exists and is read-only.

cannot reopen library
The old library file could not be reopened after it was renamed with the .BAK extension.
This error usually indicates damage to the operating system or to the disk directory
structure.

comma or new line missing
A comma or carriage return was expected in the command line but was not found.

984 The MS-DOS Encyclopedia

LIB

Do not change diskette in drive X:
LIB may have placed important temporary files on the specified disk. Do not remove the
disk until the LIB operation is complete or these files may be lost.

error writing to cross-reference file
The disk or root directory is full.

error writing to new library
The new library file cannot be created because the disk is full,

free: not allocated

This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

insufficient memory
Not enough memory is available in the transient program area for LIB to successfully per
form the requested operations.

internal failure

This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

Library does not exist. Create?
The specified library_file does not exist on disk. Respond with Y to create the library
file; respond with N to terminate the LIB utility.

mark: not allocated

This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

option unknown
The command line included a switch other than /P:n.

output-library specification ignored
An output library file was specified in addition to a new library file. This is only a warning.
The output library file specification will be disregarded.

page size too small
The page size of an input library file was less than l6 bytes, indicating a damaged or other
wise invalid .LIB file. See LIB message number: page size too small; ignored.

syntax error

The command line included an invalid parameter or switch,

syntax error: illegal file specification
A command operator (such as ♦, or +) was given without an object module name,

syntax error: illegal input
The command line included an invalid parameter or switch.

Section IV: Programming Utilities 985

LIB

syntax error: option name missing
The command line included a forward slash (/) that was not followed by P:w.

syntax error: option value missing
The /P switch was not followed by the page size value in bytes.

terminator missing
Either a control character (such as Control-Z) was specified at the Output library: prompt
or the response file line that corresponds to LIB's Output library: prompt was not termi
nated by a carriage return or semicolon.

too many symbols
The maximum number of public symbols allowed in a library file has been exceeded. The
limit for all object modules (combined) is 4609.

unexpected end-of-file on command input
The response file did not include all the necessary LIB parameters.

write to extract file failed

The destination disk has insufficient space for the complete object module, or the root
directory is full.

write to library file failed
The destination disk has insufficient space to create the new library file, or the root direc
tory is full.

986 The MS-DOS Encyclopedia

LINK

LINK

Create .EXE File

Purpose

Combines relocatable object modules into an executable (.EXE) file. The Microsoft Object
Linker (LINK) is supplied with the Microsoft Macro Assembler (MASM), C Compiler, Pascal
Compiler, and FORTRAN Compiler. This documentation describes LINK version 3.50.

Syntax

LINK

or

LINK obj^filel+obj^file.. AUexe_.file]]lXrnap^file]][\library[-^library...]]] [options] [;]

or

LINK @response^file

where:

obj^file is the name of a file containing a relocatable object module produced by
MASM or by a high-level-language compiler (default extension = .OBJ).

exe^file is the name of the executable file to be produced by LINK (default exten
sion = .EXE).

map_file is the name of the file or character device to receive a listing of the names,
load addresses, and lengths of the segments in exe f̂ile (default = NUL
device; default extension = .MAP).

library is the name of an object module library to be searched to resolve external
references in the object file(s) (default extension = .LIB).

response^file is the name of a text file containing LINK parameters in the order in which
they are supplied during an interactive LINK session.

options specifies one or more of the following switches. Switches can be either up
percase or lowercase.
/CP: n (/CPARMAXALLOC: w) Sets the maximum number of extra

memory paragraphs required by exe_file (default = 65535).
ZDS (/DSALLOCATE) Loads the data in DGROUP at the high end

of the data segment.
/DO (/DOSSEG) Arranges segments according to the Microsoft lan

guage segment-ordering convention.
/E (/EXEPACK) Compresses repetitive sequences of bytes and

optimizes exe^file's relocation table.

(more)

Section IV: Programming Utilities 987

LINK

/HI (/HIGH) Causes exe^file to be loaded as high as possible in
memory when exe^fileis executed.

/HE (/HELP) Lists LINK options on the screen. No other switches
or filenames should be used with this switch.

/LI (/LINENUMBERS) Copies line-number information (if avail
able) from obj^file to map^file. If a map file was not speci
fied, this switch creates one.

/M (/MAP) Copies a list of all public symbols declared in obj_ file
to map^file. If a map file was not specified, this switch creates
one.

/NOD (/NODEFAULTLIBRARYSEARCH) Causes LINK to ignore any
library names inserted in the object file by the language
compiler.

/NOG (/NOGROUPASSOCIATION) Causes LINK to ignore GROUP
associations when assigning addresses.

/NOI (/NOIGNORECASE) Causes LINK to be case sensitive when

resolving external names.
/O: n (/OVERLAYINTERRUPT: n) Overrides the interrupt number

used by the overlay manager (0-255, default = 63, or 3FH).
This switch should be used only when linking with a run-time
module from a language compiler that supports overlays.

/P (/PAUSE) Causes LINK to pause and prompt the user to
change disks before writing the exe^file.

/SE: n (/SEGMENTS: n) Sets the maximum number of segments that
can be processed (1-1024, default = 128).

/ST: n (/STACK: ri) Sets the size of the exe^ file's stack segment to n
bytes (1-65535).

Description

LINK combines relocatable object modules into an executable file in the .EXE format.
LINK can be used with object files produced by any high-level-language compiler or as
sembler that supports the Microsoft object module format. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Programming Tools: Object Modules; The Microsoft Object
Linker.

The obj^file parameter, which is required, specifies one or more files containing reloca
table object modules. If multiple object files are linked, their names should be separated by
a plus operator (+) or a space. If an extension is not specified for an object file, LINK sup
plies the extension .OBJ. Some high-level-language compilers support partitioning of the
executable program into a root segment and one or more overlay segments and include a
special overlay manager in their libraries; when these compilers are used, the object mod
ules that compose each overlay segment should be surrounded with parentheses in the
LINK command line.

The exe_file parameter specifies the name of the executable file that is created by LINK.
The default is the same filename as the first object file, but with the extension .EXE.

988 The MS-DOS Encyclopedia

LINK

The map^file parameter designates the file or character device to receive LINK'S listing of
the name, load address, and length of each of exe^ file's segments. The map file also in
cludes the names and load addresses of any groups in the program, the program entry
point, and, if the /M switch is used, all public symbols and their addresses. If the /LI switch
is used and if line numbers were inserted into obj_ file by the compiler, the starting ad
dress of each obj_file program line is also copied to map^file. The default extension for a
map file is .MAP. If the /M or /LI switch is used, a map file is created using the name of the
specified .EXE file even if map^file is not specified. If neither the /M nor the /LI switch is
used and map_file is not specified, no listing is created.

The library parameter specifies the object module library or libraries that will be
searched to resolve external references after all the object files are processed. The default
extension for library files is .LIB. Multiple library names should be separated by plus
operators (+) or spaces. A maximum of l6 search paths can be specified in the LINK com
mand line. If a library name is preceded by a drive and/or path, LINK searches only the
specified location. If no drive or path precedes a library name, LINK searches for library
files in the following order:

1. Current drive and directory
2. Any other library search paths specified in the command line, in the order they were

entered

3. Directories specified in the LIB= environment variable, if one exists

In the following example, LINK searches only the \ ALTLIB directory on drive A to find the
library MATH.LIB. To find the library COMMON.LIB, LINK searches the current directory
on the current drive, then the current directory on drive B, then directory \LIB on drive D,
and finally, any directories named in the LIB environment variable.

C>LINK TEST,,TEST,A:\ALTLIB\MATH.LIB+COMMON+B:+D:\LIB\ <Enter>

If default libraries are specified within the object files through special records inserted by
certain high-level-language compilers, those libraries will be searched after the libraries
named in the command line or response file.

If the LINK command is entered without parameters, LINK prompts the user for each file
name needed. The default response for each prompt (except the obj_file prompt) is dis
played in square brackets and can be selected by pressing the Enter key. If there are too
many obj^file or library names to fit on one line, the line can be terminated by entering
a plus operator (+) and pressing the Enter key; LINK then repeats the prompt. If the user
ends any response with a semicolon character (;), LINK uses the default values for the
remaining fields.

When the command line contains filenames and switches, commas must be used to

separate the obj^file, exe^file, map^file, and library parameters. If a filename is not
supplied, a comma must be used to mark its place. If the user places a semicolon after any
parameter in the command line, LINK terminates the command line at the semicolon and
uses the default values for any remaining parameters.

Section IV: Programming Utilities 989

LINK

The user can automate complex LINK sessions involving multiple files by creating a
response file. The response_file parameter must be the name of an ASCII file that corre
sponds line for line to the responses that are entered in a normal interactive LINK session.
The last line of the response file must end with a semicolon character (;) or a carriage
return. If all parameters required by LINK are not present in the response file and the
response file does not end with a semicolon or carriage return, LINK prompts the user
for the missing information.

LINK supports many options that can be invoked by including a switch in the command
line, as part of the response to a LINK prompt, or in a response file. To simplify this
description, these switches are grouped according to their functions.

The /E, /HE, /NOD, /NOI, /P, and /SE:« switches affect LINK'S general operation. The
/E switch compresses repetitive sequences of bytes in exe^file and optimizes certain
parts of the relocation table in exe^file's header. The /E switch functions exactly like the
EXEPACK utility.

Note: The /E switch does not always save a significant amount of disk space and may even
increase file size when used with small programs that have few load-time relocations or
repeated characters. The Microsoft Symbolic Debugger (SYMDEB) utility cannot be used
with packed files.

The /HE switch displays the available options on the screen. No other switches or file
names should be specified if the /HE switch is used. The /NOD switch causes LINK to
ignore any default libraries that have been added to the object modules by the high-level-
language compiler that produced the modules, thus restricting searches to those libraries
specified in the command line or response file. The /NOI switch causes LINK to be case
sensitive when resolving external references to symbols between object modules. The
/NOI switch is typically used with object files created by high-level-language compilers
that differentiate between uppercase and lowercase letters.

The /P switch causes LINK to pause and prompt the user before writing exe^file to
disk, thus allowing the user to exchange the disk used during the linking operation for
another that has more space available. The /SE: n switch controls the number of program
segments processed by LINK. The n must be a decimal, octal, or hexadecimal number
from 1 through 1024, inclusive (default = 128). Octal numbers must have a leading zero;
hexadecimal numbers must begin with Ox.

The /M and /LI switches affect the production and contents of the optional map file.
The /M switch creates a map file with the same name as exe^file or, if exe^file is not
specified, with the same name as the first object file and the extension .MAP. The resulting
map file includes a list of all public symbols and their addresses. The /LI switch also cre
ates a map file and includes line-number information if available in the object file. (MASM
and some high-level-language compilers do not insert line-number information into object
files.)

990 The MS-DOS Encyclopedia

LINK

The /D, /DO, /NOG, and /O: n switches affect the structure of the code in exe^ file. Use of
the /D switch places the data in DGROUP at the top (highest address) of the memory seg
ment pointed to by the DS register, rather than at the bottom (the default). The /DO switch
arranges the program segments according to a convention expected by all Microsoft lan
guage compilers: All segments with the class name CODE are placed first in the execut
able file; any other segments that do not belong to DGROUP are placed immediately after
the CODE segments; all segments belonging to DGROUP are placed at the end of the file.
The /NOG switch causes LINK to ignore group associations specified in the object mod
ules when assigning addresses to data and code items; that is, segments that would or
dinarily have been collected into the same physical memory segment because of their
association within a GROUP are decoupled. The /NOG switch provides compatibility with
LINK versions 2.02 and earlier and with early versions of Microsoft language compilers.
The /O: n switch controls the interrupt number used by the resident overlay manager if the
linked program includes overlays. The number n can be any decimal, octal, or hexadeci
mal number in the range 0 through 255 (default = 63, or 3FH). Octal numbers must have
a leading zero; hexadecimal numbers must begin with Ox.

Note: MASM and many high-level-language compilers do not include overlay managers in
their libraries. Users should check their compiler documentation to determine if the /O: w
switch can be used.

Warning: Interrupt numbers that conflict with the software interrupts used to obtain
MS-DOS or ROM BIOS services or with hardware interrupts assigned to peripheral device
controllers should not be used in the /O: n switch.

The /C: w, /H, and /ST: n switches control the information in exe_file's header that affects
the behavior of the MS-DOS system loader when the file is read from the disk into RAM for
execution. The /C: n switch sets the maximum number of 16-byte paragraphs of memory
to be made available to the program when it is loaded into memory, in addition to the
memory required to hold the program's code, data, and stacks; the default is 65535, which
causes the program to be allocated all available memory. The /H switch causes the pro
gram to be loaded as high as possible in the transient program area (free memory), rather
than as low as possible (the default). The /ST:« switch sets the stack size (in bytes) to be
allocated for the program when it is loaded and overrides any stack segment size declara
tions in the original source code. The number n can be any decimal, octal, or hexadecimal
number from 1 through 65535; however n must be large enough to accommodate any ini
tialized data in the stack segment. Octal numbers must have a leading zero; hexadecimal
numbers must begin with Ox. If the /ST:« switch is not used, LINK calculates a program's
stack size, basing the size on the size of any stack segments given in the object files. The
/C: n and /ST: n values in the exe_file header can be altered after linking by using the
EXEMOD utility.

If LINK is unable to hold in RAM all the data it is processing, it creates a temporary disk
file named VM.TMP (Virtual Memory) in the current directory of the default disk drive. If a
floppy disk is in the default drive, LINK issues a warning message to prevent the user from
changing disks until the LINK session is completed. After lINK finishes processing, it
deletes the temporary file.

Section IV: Programming Utilities 991

LINK

Warning: Any file named VM.TMP that is already on the disk will be destroyed if LINK
creates the temporary disk file.

Return Codes

0 No errors or unresolved references were encountered during creation of exe_file.
1 A miscellaneous LINK error occurred that was not covered by the other return

codes.

16 A data record was too large to process.
32 No object files were specified in the command line or response file.

33 The map file could not be created.
66 A COMMON area was declared that is larger than 65535 (one segment).
96 Too many libraries were specified.
144 An invalid object module fil^ was detected.
145 Too many TYPDEFs were found in the specified object modules.
146 Too many group, segment, or class names were found in one object module.
147 Too many segments were found in all the object modules combined, or too many

segments were found in one object module.
148 Too many overlays were specified.
149 The size of a segment exceeded 65535.
150 Too many groups or GRPDEFs were found in one object module.
151 Too many external symbols were found in one object module.
177 The size of a group exceeded 65535.

Examples

The simplest use of LINK is to process a single object file to produce an executable file,
using all the default values. For example, to process the file SHELL.OBJ, create an exe
cutable file named SHELL.EXE, and search only the default libraries, type

OLINK SHELL; <Enter>

The semicolon after the filename causes LINK to use the default values for all other

parameters.

To link three object files named SHELL.OBJ, VIDEO.OBJ, and DOSINT.OBJ into an exe
cutable file named SHELL.EXE and search the library DEVLIB.LIB on drive B before
searching any default libraries, type

OLINK SHELL+VIDEO+DOSINT,,,B:DEVLIB <Enter>

If the LINK command is entered without parameters, LINK prompts the user for the
necessary information. For example, the following interactive session links the file

992 The MS-DOS Encyclopedia

LINK

MENUMGR.OBJ into the executable file MENUMGR.EXE, creates a map file named
MENUMGR.MAP, and searches the math floating-point emulator library EM.LIB before
any default libraries:

OLINK <Enter>

Microsoft (R) 8086 Object Linker Version 3.05

Copyright (C) Microsoft Corp 1983,1984,1985. All rights reserved.

Object Modules [.OBJ]: MENUMGR <Enter>

Run File [MENUMGR.EXE]: <Enter>

List File [NUL.MAP]: MENUMGR <Enter>

Libraries [.LIB]: EM <Enter>

Messages

filename is not a valid library
The file specified as an object module library either is corrupt or is not a library in the
format created by the Microsoft LIB utility.

About to generate .EXE file
Change diskette in driveX and press <ENTER>
The /P switch was used in the command line. LINK is prompting the user to change disks
before LINK creates the file containing the executable program.

Ambiguous switch error: "option"
A valid switch was not entered after a forward slash (/) in the command line.

Array element size mismatch
A EAR communal array was declared with two or more different array-element sizes (for
example, once as an array of characters and once as an array of real numbers). This error
occurs only with programs produced by the Microsoft C Compiler or other compilers that
support FAR communal arrays; it does not occur with object files produced by MASM.

Attempt to access data outside segment bounds
A data record in an object module specified data extending beyond the end of a segment.
This is a translator error. Note which compiler or assembler produced the invalid object
module and notify Microsoft Corporation.

Attempt to put segment name in more than one group in file filename
A segment was declared to be a member of two groups. Correct the source code and re
create the object modules.

Bad value for cparMaxAlloc
The value specified using the /C: n option is not in the range 1 through 65535.

Cannot create temporary file
The destination disk has insufficient space for the temporary file, or the root directory is
full.

Section IV: Programming Utilities 993

LINK

Cannot find file filename
Change diskette and press <ENTER>
The specified object file cannot be found in the current drive.

Cannot find library: filename
Enter new file spec:
The specified library file cannot be found or does not exist. Enter the correct drive letter,
check the spelling of the filename and path, or make sure that the LIB environment vari
able has been set up properly.

Cannot nest response files
A response file was named within a response file. Revise the response file to eliminate the
nested file.

Cannot open list file
The destination disk has insufficient space for the listing, or the root directory is full.

Cannot open response fUiei filename
LINK cannot find the specified response file.

Cannot open run file
The destination disk has insufficient space for the .EXE file, or the root directory is full.

Cannot open temporary file
The destination disk has insufficient space for the temporary file, or the root directory is
full.

Cannot reopen list file
The original disk was not replaced when requested. Restart LINK.

Common area longer than 65536 bytes
The program has more than 64 KB of communal variables. This error occurs only with
programs produced by the Microsoft C Compiler or other compilers that support commu
nal variables.

Data record too large
An LEDATA record (in an object module) contains more than 1024 bytes of data. This is a
symptom of an error in the compiler used to generate the object module. Document the
circumstances and contact Microsoft Corporation.

Dup record too large
An LIDATA record (in an object module) contains more than 512 bytes of data. This error
may be caused by a complex structure definition or by a series of deeply nested DUP
operators.

File not suitable for /EXEPACK, relink without

The file linked with the /E switch would haye been smaller if it had not been compressed.
Relink without the /E switch.

994 The MS-DOS Encyclopedia

LINK

FIxup overflow near number in segment name in filename offset number
A group is larger than 64 KB, the original source file contains an intersegment short jump
or intersegment short call, the name of a data item conflicts with that of a library sub
routine, or an EXTRN declaration is placed inside the wrong segment.

Incorrect DOS version, use DOS 2,0 or later

LINK uses the extended file management calls to provide path support and, thus, does not
work with versions of MS-DOS earlier than 2.0.

Insufficient stack space
Not enough memory is available to run LINK.

Interrupt number exceeds 255
The number specified in the /O: n switch is not in the range 0 through 255.

Invalid numeric switch specification
An incorrect value was entered with one of the LINK options.

Invalid object module
One of the object modules is invalid. Recompile the source file. If the error persists after
recompiling, document the circumstances and contact Microsoft Corporation.

NEAR/HUGE confUct

Conflicting NEAR and HUGE definitions were given for a communal variable. This error
occurs only with programs produced by the Microsoft C Compiler or other compilers that
support communal variables.

Nested left parentheses
An opening (left) parenthesis is needed on the left side of an overlay module.

Nested right parentheses
A closing (right) parenthesis is needed on the right side of an overlay module.

No object modules specified
No object file names were specified in the command line or response file.

Object not found
One of the object files specified in the command line was not found.

Out of space on list file
The destination disk has insufficient space for the listing.

Out of space on run file
The destination disk has insufficient space for the .EXE file.

Out of space on scratch file
The disk in the default drive has insufficient space for temporary files.

Overlay manager symbol already defined: name
A symbol name was defined that conflicts with one of the special overlay manager names.
Use another symbol name.

Section IV: Programming Utilities 995

LINK

Please replace original diskette
in driveX and press <ENTER>
The /P switch was specified in the command line and the disk to receive the .EXE file pro
duced by LINK has already been inserted. This message indicates that the .EXE file was
successfully created and that the original disk should again be placed in the drive.

Relocation table overflow

More than 32768 long calls, long jumps, or other long pointers were found in the program.
The program may need to be restructured to reduce the number of FAR references. (Pascal
and FORTRAN users should try turning off the debugging option before restructuring the
program.)

Response line too long
A line in a response file had more than 127 characters.

Segment limit set too high
The number specified in the /SE: n switch was not in the range 1 through 1024.

Segment limit too high
Not enough memory is available for LINK to allocate tables to describe the number of
segments requested (default = 128 or the number specified in the /SE: n switch). Use the
/SE: n switch to specify a smaller number of segments, or alter the system configuration
to increase the amount of free memory.

Segment size exceeds 64K
The program is a small-model program with more than 64 KB of code or data, a compact-
model program with more than 64 KB of code, or a medium-model program with more
than 64 KB of data. Selection of a different model or alteration of the program code may
be required to successfully complete the LINK process.

Stack size exceeds 65536 bytes
The size specified for the stack in the /ST: n switch was too large, or the combined length
of multiple declared stack segments exceeded 64 KB.

Symbol already defined: ''syntboV
One of the special overlay symbols required for overlay support was previously defined.

Symbol defined more than once: ''symboV in file
A symbol has been defined more than once in the object module. Remove the extra sym
bol definition.

Symbol table overflow
The program has more than 256 KB of symbolic information (publics, externals, segments,
groups, classes, files, and so on). Eliminate as many public symbols as possible, combine
modules and/or segments, and recreate the object files.

Terminated by user
Ctrl-C or Ctrl-Break was pressed, causing the LINK session to be terminated prematurely.

996 The MS-DOS Encyclopedia

LINK

Too many external symbols in one module
An object module contains more than the limit of 1023 external symbols.

Too many group-, segment-, and class-names in one module
One of the object modules for the program contains too many group, segment, and class
names. The source file for the object module may need to be divided or restructured.

Too many groups
The program defines more than nine groups (including DGROUP). Groups must be com
bined or eliminated.

Too many GRPDEFs in one module
LINK encountered more than nine group definitions (GRPDEFs) in a single object module.
Reduce the number of GRPDEFs or split the object module.

Too many libraries
More than 16 libraries were specified. Combine libraries or use object modules that require
fewer libraries.

Too many overlays
The program defines more than 63 overlays. Reduce the number of overlays.

Too many segments
The program has more than the maximum number of segments as specified by the default
of 128 or with the /SE: n switch. Use the /SE: n switch to specify a greater number of
segments.

Too many segments in one module
An object module has more than 255 segments. Split the module or combine segments.

Too many TYPDEFs
An object module contains too many TYPDEF records (these records describe communal
variables). This error occurs only with programs produced with the Microsoft C Compiler
or other compilers that support communal variables.

Unexpected end-of-file on library
This message may indicate that the disk containing the library in use was removed
prematurely.

Unexpected end-of-file on scratch file
The disk containing VM.TMP was removed.

Unmatched left parenthesis
A syntax error was detected in the specification of an overlay structure. Refer to the lan
guage compiler manual for instructions on specifying overlays to LINK.

Unmatched right parenthesis
A syntax error was detected in the specification of an overlay structure. Refer to the lan
guage compiler manual for instructions on specifying overlays to LINK.

Section IV: Programming Utilities 997

LINK

Unrecognized switch error: ̂^option^^
An unrecognized character was entered after a forward slash (/) in the command line.

Unresolved COMDEF; Microsoft internal error
This is a serious problem. Note the circumstances of the failure and contact Microsoft
Corporation.

Unresolved externals: list

A symbol was declared external (EXTRN) in one object module but was not declared
PUBLIC in the object module in which it was defined, or a necessary library specification
was omitted from the command line or response file.

VM.TMP is an illegal file name
and has been ignored
VM.TMP was specified as an object file name. If an object file named VM.TMP exists,
rename it.

Warning: load-high disables exepack
The /H and /E switches cannot be used at the same time.

Warning: no stack segment
The program contains no segment with the STACK combine type. This message can be
ignored if there is a specific reason for not defining a stack (for example, if the .EXE file
will subsequently be converted to a .COM file) or for defining one without the STACK
combine type.

WARNING: Segment longer than reliable size
Although code segments can be as long as 65536 bytes, code segments longer than
65500 bytes can be unreliable on the Intel 80286 microprocessor. Reduce all code seg
ments to 65500 bytes or less.

Warning: too many public symbols
The /M switch was used to request a sorted listing of public symbols in the map file, but
there are too many symbols to sort. LINK will produce an unsorted listing instead.

998 The MS-DOS Encyclopedia

MAKE

MAKE

Maintain Programs

Purpose

Interprets a text file of commands to compare dates of files and carry out other operations
on the basis of the comparison. MAKE is customarily used to update the executable ver
sion of a program after a change to one or more of its source files. The MAKE utility is sup
plied with the Microsoft Macro Assembler (MASM), C Compiler, and FORTRAN Compiler.
This documentation describes MAKE version 4.05.

Syntax

MAKE [/D] [/I] [/N] [/S] [name^value...] filename

where:

filename is an ASCII text file that contains MAKE dependency statements, com
mands, macro definitions, and inference rules.

naine=value declares a MAKE macro, associating a specific value with the dummy
parameter name.

/D displays the last modification date of each file as it is scanned.
/I causes MAKE to ignore exit codes returned by programs called by

filename.
/N displays but does not execute the commands in filename.
/S selects "silent" mode (commands are not displayed as they are executed).

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-)
instead of a forward slash (/). Versions of MAKE earlier than 4.0 have no switches.

Description

The MAKE utility allows maintenance of complex programs to be automated. Its basic
operation is to compare the dates of files and to carry out, or not carry out, an associated
list of commands on the basis of the comparison.

The filename parameter specifies an ASCII text file often referred to as a make file. By
convention, filename is the same as the name of the executable program being main
tained, but without an extension. A make file can contain the following types of entries:

• Dependency statements
• Commands

• Macro definitions

• Inference rules

• Comments

Section IV: Programming Utilities 999

MAKE

The basic form of a make file is a dependency statement followed by one or more valid
MS-DOS command lines:

targetfile: dependentfilel [dependentfile2...]
commandl

[command2]

where targetfile designates the file that may need updating, dependent/He is a source file
or files on which targetfile depends, and commandly command2, and so forth are any
valid MS-DOS internal commands or external programs. These commands or programs
are executed only if the date and time stamps of any dependent file are more recent than
those of the target file or if the target file does not exist. Only one target file can be speci
fied. Any number of dependent files can be included; each dependent filename must be
separated from the next by at least one space. If too many dependent files are included to
fit on a single line, the line can be terminated with a backslash character (\) and the list
continued on the next line.

Any number of MS-DOS command lines can follow a dependency statement. The last
command line should be followed by a blank line to set it off from the next MAKE entry. It
is recommended that each command line include a leading space or tab character for com
patibility with future versions of MAKE and existing versions of XENIX MAKE.

A macro definition takes the form

name^value

where both name and value are any string. Whenever name is referenced in the make
file in the form %inam^, name is replaced by the string value before the statement that
contains it is evaluated or executed. Macro definitions can be nested, although very com
plex macro definitions can result in the premature termination of the MAKE process be
cause of lack of memory. If name is not defined in the file but is defined in the system
environment block by a previous SET command, %inam^ is replaced by the string follow
ing the equal sign (=) in the environment block. If the command line contains a parameter
of the form name=value, the command line overrides any definition of name in the make
file or in the environment block. Thus, the precedence for macro definitions with the
same name is

1. Command line

2. Make file

3. Environment block

MAKE contains several special macros that make it more convenient to form commands:

Macro Action

$» Substitutes as the base portion of targetfile (the filename without the
extension).

$@ Substitutes as the complete targetfile name.
$»» Substitutes as the complete dependentfile list.

1000 The MS-DOS Encyclopedia

MAKE

An inference rule specifies a series of commands to be carried out for a matching depen
dency statement that is not followed by its own list of commands. Inference rules allow a
set of commands to be applied to more than one targetfile: dependentfile description,
eliminating repetition of the same set of commands for several descriptions. An inference
rule takes the form

.dependentextension.targetextension:
commandl

[command2]

Whenever MAKE finds a dependency statement not followed by any commands, the
utility first searches the make file for an inference rule. If MAKE doesn't find an inference
rule in the make file, the utility then searches the current drive and directory (or any di
rectories specified with the MS-DOS PATH command) for the tools initialization file
(TOOLS.INI) and searches the [make]secXion ofTOOLS.INI for an inference rule that

matches the extensions of the target file and dependent files in the dependency statement.

A make file can contain any number of comment lines. If a comment is placed where
MAKE expects to find a command, the comment must be on a separate line and must have
the pound character (#) as the first character of the line. Elsewhere, a pound character and
following comment text can be placed either on a line alone or after the last dependent file
or command listed on a line. Characters appearing on a line after the pound character are
ignored during execution.

The /D, /N, and /S switches affect MAKE's output to the display while MAKE is executing.
The /D switch causes the last modification date of each file to be displayed as the file is
scanned. The /N switch causes the commands in the make file to be expanded and dis
played, but not executed; this is useful for determining the result of a specific MAKE
process without first examining the file dates and without recompiling or relinking files.
The /S switch selects "silent" mode, in which commands are not displayed as they are
executed.

The /I switch causes MAKE to ignore error codes returned by the compilers, assemblers,
linkers, or other programs called by the make file. When the /I switch is used, the MAKE
process proceeds to completion regardless of errors instead of terminating immediately as
it ordinarily would, but the resulting files may not be executable.

Return Codes

0 No error; the MAKE process was successful.
1 Processing was terminated because of a fatal error by MAKE or by one of the pro

grams called by MAKE.

Section IV: Programming Utilities 1001

MAKE

Example

Assume that the file SHELL contains the following MAKE dependency statements and
commands:

video.obj: video.asm

masm video;

shell.obj: shell.c

msc shell;

shell.exe: shell.obj video.obj

link /map shell+video,shell,shell,slibc2

The SHELL file asserts that the executable program SHELL.EXE is composed of the files
SHELL.OBJ and VIDEO.OBJ, which are in turn compiled or assembled from the source
files SHELL.C and VIDEO.ASM. To update the file SHELL.EXE if either of the source files
for its constituent modules has been changed, type

C>MAKE SHELL <Enter>

Messages

fatal error UlOOl: macro definition larger than 512
A single macro was defined to have a value string longer than the 512-byte maximum.
Rewrite the make file to use two or more short lines instead of one long line.

fatal error U1002: infinitely recursive macro
The macros defined in the make file form a circular chain.

fatal error U1003: out of memory
The make file cannot be processed because insufficent memory is available in the tran
sient program area. Split the make file into two make files or reconfigure the system to
increase available memory.

fatal error U1004: syntax error : macro name missing
A macro name is missing from the left side of the equal sign (=).

fatal error U1005: syntax error : colon missing
A line that should be a dependency statement lacks the colon that separates a target file
from its dependent files. MAKE expects any line that follows a blank line to be a depen
dency statement.

fatal error U1006: taigetffanfe : macro expansion larger than 512
A single macro expansion, plus the length of any string to which it may be concatenated,
is longer than 512 bytes. Rewrite the make file to use two or more short lines instead of one
long line.

fatal error U1007: multiple sources
An inference rule has been defined more than once in the make file.

1002 The MS-DOS Encyclopedia

MAKE

fatal error U1008: filename : cannot find file
The specified file does not exist.

fatal error U1009: command : argument list too long
A command line in the make file is longer than 128 characters (the maximum MS-DOS
allows).

fatal error UlOlO: filename : permission denied
The specified file is read-only.

fatal error UlOll: not enough memory
Memory is insufficient in the transient program area to execute a program listed in the
make file. Reconfigure the system to increase available memory, if necessary.

fatal error U1012: filename : unknown error
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

fatal eiTorU1013: cfrntmand : error retumcode
One of the programs or commands called by MAKE was not able to execute correctly.
MAKE terminates and displays the error code from the program that failed.

warning U4000: filename : target does not exist
The target file does not already exist. The dependency statement is evaluated as though
the target file exists and has a date earlier than that of any of the dependent files.

warning U4001: dependent filename does not exist;
filename not built

One of the dependent files does not exist or could not be found, so MAKE terminated
without creating a new target file.

warning U4013: command : errorretuntcode (ignored)
One of the programs or commands called by MAKE did not execute successfully and has
returned the specified return code. Because MAKE was run with the /I switch, MAKE
ignores the error and continues processing the make file.

warningU40l4: usage : make [/n][/d][/i][/s][name»value ...]file
An error was detected in the MAKE command line.

Section IV: Programming Utilities 1003

MAPSYM

MAPSYM

Create Symbol File for SYMDEB

Purpose

Processes a map file generated by the Microsoft Object Linker (LINK) to create a special
symbol file for use with SYMDEB, the symbolic debugging program. The MAPSYM utility
is supplied with the Microsoft Macro Assembler (MASM). This documentation describes
MAPSYM version 4.0.

Syntax

MAPSYM [/L] map^file

where:

map^file is a map file produced by LINK (default extension = .MAP).
/L causes information about the symbol file to be displayed as it is created.

Note: The /L switch can be either uppercase or lowercase and can be preceded by a dash
(-) instead of a forward slash (/).

Description

LINK combines relocatable object records (produced by MASM or a high-level-language
compiler) into an executable program, which is stored in a specially formatted file with a
.EXE extension. LINK can also produce an optional map file that contains information
about public symbols and addresses in the linked program. The map file is an ordinary
ASCII text file and has a default extension of .MAP.

To create a map file to use with MAPSYM, the LINK command line should include the
/MAP switch, which creates the file, and the /LINENUMBERS switch, which includes line
numbers. See PROGRAMMING UTILITIES: link.

The MAPSYM utility processes a map file into a special symbol file that can be used by
SYMDEB. A drive and pathname can be specified if the map file is not in the current direc
tory. If a file extension is not specified, .MAP is assumed.

The symbol file created by MAPSYM is placed in the current directory and has the same
name as the map file but has the extension .SYM. It can contain a maximum of 1024 seg
ments (or as many segments as can fit into available memory) and 10,000 symbols per
segment. See PROGRAMMING UTILITIES: symdeb.

When the /L switch precedes map^file in the command line, MAPSYM displays the
names of groups defined in the program described by the map and symbol files, plus the
program's starting address. The /L switch does not affect the format of the symbol file that
is generated.

1004 The MS-DOS Encyclopedia

MAPSYM

Return Codes

0 No error; the MAPSYM process was successful.
1 Processing was terminated because of a write failure, because the map file specified

does not exist, or because the symbol file could not be created.
4 Processing was terminated because an unexpected end-of-file mark was detected,

because too many segments exist in the map file, because no public symbols exist in
the map file, or because not enough memory is available to create the symbol file.

Example

To convert the file HELLO.MAP, which was produced by assembling and linking the file
HELLO.ASM, to a symbol file that can be used by SYMDEB, type

C>MAPSYM /L HELLO <Enter>

MAPSYM displays the following:

Microsoft (R) Symbol File Generator Version 4.00

Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.
Building: HELLO.SYM

HELLO.MAP

Program entry point at 0000:0100

HELLO 0 segment

The symbol file produced by MAPSYM symbol has the name HELLO.SYM.

Messages

Can't create: <JUename>
The drive specified does not exist, the current disk or directory is full, or the output file
already exists and is read-only.

Can't open MAP file: <fUenatne>
The file named in the command line does not exist.

DOS 2.0 or later required
MAPSYM does not work with versions of MS-DOS earlier than 2.0.

mapsym: out of memory
System memory is insufficient to process the map file,

mapsym: segment table (») exceeded.
More than 1024 segments have been used in the map file. The number displayed is the
total number of segments in the map file.

No public symbols
Re-link file with the /M switch!

The map file created by LINK does not include a list of public names. The .EXE file must
be relinked using the /MAP switch to generate a map file that can be used with MAPSYM.

Section IV: Programming Utilities 1005

MAPSYM

Unexpected eof reading: <filename>
The map file contains no symbols, is corrupt, or is otherwise invalid. The .EXE file must be
relinked and a new map file generated.

usage: MAPSYM [/I] mapUst
A syntax error was detected in the command line.

Write fail on: <JUename>
An error occurred during the creation of the output file.

1006 The MS-DOS Encyclopedia

MASM

MASM

Microsoft Macro Assembler

Purpose

Translates an assembly-language source program into a relocatable object module. MASM
is part of the Microsoft Macro Assembler (MASM) retail package. This documentation
describes MASM version 4.0.

Syntax

MASM

or

MASM source^file [options] [;]

where:

source^file is the name of the file containing the assembly-language source code
(default extension = .ASM).

object^file is the name of the file to receive the assembled object module (default
extension = .OBJ).

list lie is the name of the file or device to receive the assembly listing
(default = NUL). (If destination = file, default extension = .LST.)

cref^ file is the name of the cross-reference file to receive information for later
processing by the CREF utility (default = NUL). (If destination = file,
default extension = .GRP.)

options is one or more switches from the list below.

/K Writes the program segments in alphabetic order.
/B« Sets the size of the source-file buffer in kilobytes (1-63,

default = 32).

/C Creates a cross-reference (.CRF) file.

/D Adds a first-pass program listing to list_ file if a list file was
specified (default = second-pass listing only).

/Dsymbol Defines symbol as a null text string.
/E Assembles code for an 8087/80287 emulator.

/Ipath Defines a directory to be searched for include files.
/L Creates a list (.LST) file with line-number information.

/ML Preserves case sensitivity in all symbol names.

(more)

Section IV: Programming Utilities 1007

MASM

/MU Converts all lowercase names to uppercase names.
/MX Preserves lowercase in public and external names only.
/N Suppresses generation of tables of macros, structures, records,

groups, segments, and symbols at the end of the list file.
/? Checks for impure code in 80286 protected mode; has no

effect unless the .286? directive is included in the source file.

/R Assembles code for an 8087/80287 math coprocessor.
/S Arranges program segments in order of occurrence.
/T Selects terse mode, suppressing all messages generated during

assembly except error messages.
/V Selects verbose mode, displaying the number of lines and

symbols at the end of assembly.
/X Includes false conditionals in the list file.

/Z Displays source lines with errors during assembly.

Note: Switches can be either uppercase or lowercase and can be preceded by a dash (-)
instead of a forward slash (/).

Description

MASM translates assembly-language source code into relocatable object modules. The
object modules can then be placed in a library file or processed by the Microsoft Object
Linker (LINK) to create an executable program.

The source^file parameter is the only required filename. It specifies a file containing
the assembly-language source code in ASCII text. If no extension is specified, MASM
uses .ASM. If no source file is entered in the command line, MASM prompts for a source
file name.

The object_file parameter specifies the file that will contain the assembled relocatable
object code. If this parameter is not supplied, MASM uses the same filename as
source^file but substitutes the extension .OBJ.

The list_fHe parameter specifies a destination file or device for the optional program
listing. The listing contains the original source code, the assembled machine code, macro
definitions and expansions, and other useful information, formatted into pages with titles,
dates, and page numbers. If the destination of the listing is a file, the file's default exten
sion is .LST. If the file parameter is not included in the command line, MASM sends
the listing to NUL (that is, a listing is not produced).

The cref_file parameter specifies the name of a cross-reference file to receive information
to be processed by the CREF utility. If a file extension is not specified, MASM uses .CRF. If
the cref^file parameter is not included in the command line, MASM sends the file to NUL
(that is, no cross-reference file is generated).

1008 The MS-DOS Encyclopedia

MASM

If the MASM command is entered without parameters, MASM prompts the user for each
filename. The default response for each prompt (except the source file prompt) is dis
played in square brackets and can be selected by pressing the Enter key.

After the source file is specified, if MASM encounters a semicolon character (;) in the
command line or at any prompt, it uses default values for the remaining parameters. MASM
ignores any parameters specified after the semicolon.

MASM does two passes to translate the assembly-language code in the source file into
relocatable object code. Any errors detected during translation are displayed on standard
output and included in the program listing (if one is requested). Two types of errors may
be detected: warning errors and severe errors. If MASM encounters a warning error, it still
creates the object file, although the resulting file may be unusable. If MASM encounters a
severe error, it does not create the object file. After a file has been successfully assembled
without errors, the LINK utility can be used to convert the resulting object file into an
executable program file.

MASM supports a wide variety of options that can be selected by including switches in the
command line or by responding to any prompt.

The A and /S switches determine the order of segments in the resulting object module
file. The A switch places the segments into the object file in alphabetic order. The /S
switch (the default) arranges the segments in the same order they occur in the source file.

The /Bn, /T>symbol, and /Ipath switches have rather general effects on the behavior of
MASM. The /B« switch sets the size (in kilobytes) of the source file's RAM buffer; the
value of n must be between 1 and 63, inclusive (default = 32). If the RAM buffer is large
enough, the entire source file can be kept resident in memory, reducing disk activity dur
ing passes. The /Dsymbol switch defines a null text-string symbol from the command
line. This symbol can be referenced inside the program with the IFDEF directive to con
trol the conditional assembly of portions of the program. The /Ipath switch specifies a
directory that will be searched for files named in assembler INCLUDE statements if those
statements do not include an explicit directory. As many as 10 such search paths can be
specified with individual /Ipath switches.

The /E and /R switches affect the generation of code for the 8087/80287 emulator or
8087/80287 math coprocessor. (Support for the 80287 is included with MASM versions 3.0
and later.) The /E switch generates software interrupts to floating-point-processor emula
tor routines. A subprogram assembled with the /E switch can be linked to C, Pascal, and
FORTRAN programs and can use the emulator libraries. The /R switch produces in-line
machine instructions for the math coprocessor when floating-point mnemonics are used.

The /ML, /MU, and /MX switches control MASM's handling of uppercase and lowercase
names. The /ML switch makes MASM case sensitive; that is, it makes MASM differentiate a

Section IV: Programming Utilities 1009

MASM

name in uppercase letters from the same name in lowercase letters. (The /ML switch
should not be used if the source file contains 8087 instructions and MASM 4.0 is
being used to translate the file.) The /MU switch (the default) makes MASM case insensi
tive; all lowercase letters are converted to uppercase for purposes of assembly. The /MX
switch makes MASM case sensitive for public and external names only (names defined
with PUBLIC or EXTRN directives). The /MX switch is often used to process assembly-
language functions for C programs.

The /? switch checks for impure code segments that will cause problems if the assembled
program is run in 80286 protected mode. The switch checks by flagging any instruction
that will change a memory location addressed through the processor's CS register. The /?
switch has no effect unless the assembly-language source file includes the .286? directive.

The /C, /D, /L, /N, and /X switches control the contents of the program listing and other
optional files that are generated as a result of assembly. The /C switch causes the creation
of a cross-reference (.CRF) file and the addition of line numbers to the list (.LST) file (if
one exists). The /C switch should be included in the command line if the cross-reference
file will be used later with the CREF utility to produce a cross-reference listing. The /D
switch includes a listing from the first pass as well as a listing from the second pass in the
list file if a list file was specified (default = second-pass listing only). By comparing the two
listings, the user can isolate an instruction causing a phase error. (A phase error occurs
when MASM makes assumptions about addresses, values, or data types on the first pass
that are not valid in the second pass.) The /L switch creates a list file with line-number in
formation and gives it the same name as the source file, with the extension .LST. The /N
switch suppresses generation of tables—symbols, segments, groups, structures, records,
and macros—at the end of a program listing. The /X switch includes statements inside
false conditional statements in the list file, allowing conditionals that do not generate code
to be displayed. /X has no effect if the .SECOND or the .LFCOND directive is used in the
source file; if the .TFCOND directive is used, the effects of /X are reversed.

Note: The effects of /X are also reversed in MASM version 1.2. In that version, statements

within a false conditional are included in the list file by default, and /X will suppress them.

The /T, /V, and /2 switches affect MASM's display on standard output. The /T (terse)
switch suppresses messages to standard output, except for messages indicating warning
errors or severe errors. The /V (verbose) switch displays information about the number of
source lines and symbols at the end of the assembly, in addition to displaying the normal
error and symbol space information. The /Z switch displays the actual source lines pro
ducing assembly errors (rather than displaying just the error type and line number).

1010 The MS-DOS Encyclopedia

MASM

Note: Versions of MASM earlier than 4.0 always show both the source line and the error
message.

Return Codes

0 No errors were found during assembly.
1 An error was detected in one of the command-line parameters.
2 The assembly-language source file could not be opened.
3 The list file could not be created.

4 The object file could not be created.
5 The cross-reference file could not be created.

6 An include file could not be opened.
7 At least one severe error was detected during assembly. (MASM deletes the invalid

object file.)
8 The assembly was terminated because a memory allocation error occurred.
10 An error occurred in defining a symbol (with the /Dsymbol switch) from the

command line.

11 Assembly was interrupted by the user's pressing Ctrl-C or Ctrl-Break.

Examples

To assemble the source file CLEAN.ASM in the current drive and directory and place the
resulting relocatable object module in the file CLEAN.OBJ without producing a listing or a
cross-reference file, type

C>MASM CLEAN; <Enter>

The semicolon after the first parameter causes MASM to use the default values for the rest
of the parameters.

To assemble the source file CLEAN.ASM, put the object code in a file named CLEAN.OBJ,
create a list file named CLEAN.LST, and place information for later processing by the CREF
utility in the cross-reference file CLEAN.CRF, type

C>MASM CLEAN,CLEAN,CLEAN,CLEAN <Enter>

or

C>MASM CLEAN,,CLEAN,CLEAN <Enter>

To use MASM interactively, enter its name without parameters:

C>MASM <Enter>

MASM then prompts for all the necessary information. For example, the interactive session
on the next page assembles the file HELLO.ASM into the file HELLO. OBJ, producing no
listing or .CRF file.

Section IV: Programming Utilities 1011

MASM

OMASM <Enter>

Microsoft (R) Macro Assembler Version 4.00

Copyright (C) Microsoft Corp 1981, 1983, 1984, 1985. All rights reserved.

Source filename: [.ASM]: HELLO <Enter>

Object filename: [HELLO.OBJ]: <Enter>

Source listing [NUL.LST]: <Enter>

Cross-reference [NUL.CRF]: <Enter>

51004 Bytes symbol space free

0 Warning Errors

0 Severe Errors

Messages

8087 opcode can't be emulated
An 8087 opcode or the operands used with it produced an instruction the emulator cannot
support.

Already defined locally
An attempt was made to define a symbol as EXTRN that had already been defined locally.

Already had ELSE clause
An attempt was made to define an ELSE clause within an existing ELSE clause. (ELSE can
not be nested without nesting IF... ENDIF.)

Already have base register
More than one base register was specified within an operand.

Already have index register
More than one index register was specified within an operand.

Block nesting error
A segment, structure, macro, IRC, IRP, KEPT, or nested procedure was not terminated
properly.

Byte register is illegal
A byte register was used incorrectly in an instruction.

Can't override ES segment
An attempt was made to override the ES segment in an instruction in which this override is
invalid.

Can't reach with segment reg
No ASSUME directive was given to make the variable reachable.

Can't use EVEN on BYTE segment

An EVEN directive was used on a segment declared to be a byte segment.

Circular chain of EQU aliases
An alias EQU ultimately points to itself.

1012 The MS-DOS Encyclopedia

MASM

Constant was expected
A constant was expected, but an item was received that does not evaluate to a constant.

CS register illegal usage
The CS register was used incorrectly in one of the instructions.

Data emitted with no segment
Code that is not located within a segment attempted to generate data.

Directive illegal in STRUG
All statements within STRUC blocks must be either comments preceded by a semicolon
character (;) or one of the define directives (DB, DW, and so on).

Division by 0 or overflow
An expression was encountered that resulted in either a division by 0 or a number too
large to be represented.

DUP is too large for linker
Nesting of DUP operators was such that a record too large for LINK was created.

End of file, no END directive

No END statement was encountered, or a nesting error occurred.

Extra characters on line

Superfluous characters were detected on a line after sufficient information to define an
instruction was interpreted.

extra file name ignored
The command line contained more than four filename parameters.

Field cannot be overridden

An attempt was made to give a value to a field that cannot be overridden with a STRUC
initialization statement.

Forced error

An error was forced with the .ERR directive.

Forced error - expression equals 0
An error was forced with the .ERRE directive.

Forced error - expression not equal 0
An error was forced with the .ERRN2 directive.

Forced error - passl
An error was forced with the .ERRl directive.

Forced error - pass2
An error was forced with the .ERR2 directive.

Forced error - string blank
An error was forced with the .ERRB directive.

Section IV: Programming Utilities 1013

MASM

Forced error - string not blank
An error was forced with the .ERRNB directive.

Forced error - strings different
An error was forced with the .ERRDIF directive.

Forced error - strings identical
An error was forced with the .ERRIDN directive.

Forced error - symbol defined
An error was forced with the .ERRDEF directive.

Forced error - symbol not defined
An error was forced with the .ERRNDEF directive.

Forward reference is illegal
An item was referenced in the operand of an EQU or equal-sign (=) directive before it was
defined.

Illegal register value
A specified register value does not fit into the reg field (that is, the value is greater than 7).

Illegal size for item
The size of the referenced item is invalid. This error also frequently occurs when an
attempt is made to assemble source code written for assemblers with less strict type-
checking than that of the Microsoft Macro Assembler (such as early versions of the IBM
assembler). The problem can usually be solved by overriding the type of the operand with
the PTR operator.

Illegal use of external
A variable that was declared external was used incorrectly.

Illegal use of register
An attempt was made to use a register with an instruction in which a register cannot be
used.

Illegal value for DUP count
The DUP count was not a constant that evaluates to a positive integer greater than zero.

Improper operand type
An operand was used in a way that prevents opcode generation.

Improper use of segment register
An attempt was made to use a segment register in an instruction in which use of a segment
register is not permitted.

Impure memory reference
An attempt was made to store data in the code segment when the .286P directive and the
/P switch were in effect.

1014 The MS-DOS Encyclopedia

MASM

Index dispL must be constant
An index displacement was used incorrectly or did not evaluate to an absolute number or
memory address.

Internal error

An internal logic error was detected in the assembler. Etocument the circumstances and
contact Microsoft Corporation.

Label can't have seg. override
A segment override was used incorrectly.

Left operand must have segment
The content of the right operand requires that a segment be specified in the left operand,

line too long expanding symbol
A symbol defined by an EQU or equal-sign (=) directive is so long that expanding it will
cause the assembler's internal buffers to overflow. This message may indicate a recursive
text macro.

Missing data; zero assumed
An operand is missing from a statement and MASM assumes its value is zero. This is a
warning error; the object file is not deleted as it is with severe errors.

More values than defined with

Too many initial values were given when defining a variable using a REG or STRUG type.

Must be associated with code

A data-related item was used where a code-related item was expected.

Must be associated with data

A code-related item was used where a data-related item was expected.

Must be AX or AL

A register other than AX or AL was specified where only these are acceptable.

Must be in segment block
An attempt was made to generate code by instructions that were not contained within a
segment.

Must be index or base register
An instruction requires a base or index register, and some other register was specified
within square brackets ([]).

Must be record field name

A record field name was expected, but something else was encountered.

Must be record or fieldname

A record name or field name was expected, but something else was encountered.

Must be register
A register was expected as the operand, but something else was encountered.

Section IV: Programming Utilities 1015

MASM

Must be segment or group
A segment or group was expected, but something else was encountered.

Must be structure field name

A structure field name was expected, but something else was encountered.

Must be symbol type
A BYTE, WORD, DWORD, or similar designation was expected, but something else was
encountered.

Mustbe var, label or constant
A variable, label, or constant was expected, but something else was encountered.

Must have opcode after prefix
A REP, REPE, REPNE, REPZ, or REPNZ instruction was not followed by the mnemonic for a
string operation.

Near JMP/CALL to different CS
An attempt was made to do a NEAR jump or call to a location in a code segment defined
with a different ASSUME:CS.

No immediate mode

Immediate data was supplied as an operand for an instruction that cannot use immediate
data. For example, immediate data cannot be moved directly with a MOV instruction to a
segment register; it must first be moved into a general register and then copied to the seg
ment register.

No or unreachable CS

An attempt was made to jump to a label that is unreachable.

Normal type operand expected
A STRUG, BYTE, WORD, or some other invalid operand was encountered when a variable
label was expected.

Not in conditional block

An ENDIF or ELSE statement was encountered, and no previous conditional-assembly
directive was active.

Not proper align/combine type
The SEGMENT parameters are incorrect. Check the align and combine types to be sure
they are valid.

One operand must be const
The addition operator was used incorrectly.

Only initialize list legal
An attempt was made to use a STRUG name without angle brackets (<>).

Operand combination illegal
A two-operand instruction was specified and the combination specified was invalid.

1016 The MS-DOS Encyclopedia

MASM

Operand must have segment
A SEG directive was used incorrectly.

Operand must have size
An operand was encountered that needed a specified size, but none had been provided.
Often this error can be remedied by using the PTR operator to specify a size type.

Operand not in IP segment
An operand cannot be accessed because it is not in the segment last assigned to CS with an
ASSUME directive.

Operand types must match
MASM encountered different kinds or sizes of arguments in a case where they must match.

Operand was expected
MASM expected an operand, but an operator was encountered.

Operands must be same or 1 abs
The subtraction operator was used incorrectly.

Operator was expected
MASM expected an operator, but an operand was encountered.

Out of memory
System memory is insufficient to complete the assembly. If a listing (.LST) or cross-
reference (.CRF) file was being generated, retry the assembly, generating only an object
file. It may also be necessary to modify the source program to reduce the load on the sym
bol table (by shortening names or reducing the number of EQU statements or macros, for
example).

Override is of wrong type
An attempt was made to use a data item of incorrect size in a STRUG initialization
statement.

Override value is wrong length
The override value for a structure field is too large to fit in the field.

Override with DUP is illegal
An attempt was made to use DUP to override in a STRUG initialization statement.

Phase error between passes
The program has ambiguous instruction directives that caused the location of a label in
the program to change in value between the first and second passes of MASM. A common
cause is a forward reference to a typed data item in the instructions preceding the label
that generated the phase error message. Use the /D switch to produce a first-pass listing
to aid in resolving phase errors between passes.

Redefinition of symbol
This message is displayed during first pass upon the second declaration of a symbol that
has been defined in more than one place.

Section IV: Programming Utilities 1017

MASM

Reference to mult defined

The instruction references a symbol that has been defined more than once.

Register already defined
An internal error was detected. Note the circumstances of the failure and contact Microsoft

Corporation.

Relative jump out of range
A conditional jump references a label that is out of the allowed range of-128 to +127 bytes
relative to the current instruction. The problem usually can be corrected by reversing the
condition of the jump and using an unconditional jump (JMP) to the out-of-range label.

Segment parameters are changed
The list of parameters encountered for a SEGMENT was not identical to the list specified
the first time the segment was used.

Shift count is negative
A shift expression was generated that resulted in a negative shift count.

Should have been group name
A group name was expected, but something else was encountered.

Symbol already different kind
An attempt was made to redefine an already defined symbol.

Symbol has no segment
An attempt was made to use a variable with SEC that has no known segment.

Symbol is already external
An attempt was made to redefine a symbol as local that has already been defined as
external.

Symbol is multi-defined
This message is displayed during the second pass upon each declaration of a symbol that
has been defined in more than one place.

Symbol is reserved word
An attempt was made to use a reserved MASM word as a symbol.

Symbol not defined
A symbol that had not been defined was used.

Symbol type usage illegal
A PUBLIC symbol was used incorrectly.

Syntax error

The syntax of the statement does not match any recognizable syntax.

Type illegal in context
The type specified is of an unacceptable size.

1018 The MS-DOS Encyclopedia

MASM

Unable to open input file filename
The specified source file cannot be found.

unknown switch letter

The command line included an invalid switch.

Unknown symbol type
MASM does not recognize the size type specified in a label or external declaration. Rewrite
with a valid type such as BYTE, WORD, or NEAR.

Value is out of range
A value is too large for its expected use.

Wrong type of register
A directive or instruction expected one type of register, but another type was
encountered.

Section IV: Programming Utilities 1019

DEBUG

DEBUG

Program Debugger

Purpose

Allows the controlled execution of a program for debugging purposes or the alteration of
the binary contents of any file. The DEBUG utility is supplied with the MS-DOS distribu
tion disks.

Syntax

DEBUG

or

DEBUG filename [parameter...]

where:

filename is the name of the file that contains data to be modified or a program to be
debugged. If filename includes an extension, it must be specified.

parameter... is one or more filenames or switches required by a program being
debugged.

Description

The DEBUG program allows a file to be loaded, examined, and altered. If the file is not a
.EXE file or a .HEX file, it may also be written back to disk. If the file contains a program,
the program can be disassembled, modified, traced one instruction at a time, or executed
at full speed with preset breakpoints. DEBUG can also be used to read from and write to
input/output (I/O) ports and to read, modify, and write absolute disk sectors.

The command line typically includes the filename parameter, which is the name of an
executable program (with the extension .COM or .EXE) to be loaded into DEBUG's mem
ory buffer. Files with the extension .EXE are loaded in a manner compatible with the
MS-DOS loader; if necessary, the contents of the file are relocated so that the program is
ready to execute. Files with the extension .HEX are converted to binary images and loaded
at the internally specified address. All other files are assumed to be direct memory images
and are read directly into memory starting at offset lOOH.

An appropriate program segment prefix (PSP) is synthesized at the head of DEBUG's
buffer for use by the target program (the program being debugged). The PSP includes a
command tail at offset 80H and default file control blocks (FCBs) at offsets 5CH and 6CH,
constructed from the optional parameters following filename.

After DEBUG is loaded and the first file named in the command line is also located and

loaded, DEBUG displays its special prompt character, a hyphen (-), and awaits a com
mand. DEBUG commands consist of a single letter, usually followed by one or more

1020 The MS-DOS Encyclopedia

DEBUG

parameters. Uppercase and lowercase characters are treated the same except when they
are contained in strings enclosed within single or double quotation marks. All commands
are executed by pressing the Enter key.

The DEBUG commands are

Command Action

A Assemble machine instructions (versions 2.0 and later).

C Compare memory areas.
D Display memory.
E Enter data.

F Fill memory.
G Go execute program.
H Perform hexadecimal arithmetic.

I Input from port.
L Load file or sectors.

M Move (copy) data.
N Name file or command-tail parameters.
O Output to port.
P Proceed through loop or subroutine (versions 3.0 and later).
Q Quit debugger.
R Display or modify registers.
S Search memory.
T Trace program execution.
U Disassemble (unassemble) program.
W Write file or sectors.

The parameters for a DEBUG command include addresses, ranges, 8-bit or l6-bit hexa
decimal values, and lists. Multiple parameters can be separated by spaces, tabs, or
commas, but separators are required only between hexadecimal values.

An address can be a simple offset or a complete address in the form segment.offset. The
offset is always a hexadecimal number in the range OGH through FFFFH; the segment can
be either a hexadecimal value in the same range or a two-character segment register name
(CS, DS, ES, or SS). If the segment portion of an address is absent, DEBUG uses DS unless
an A, G, L, T, U, or W command is used, in which case DEBUG uses CS.

A range specifies an area of memory and can be expressed as either two addresses or a
starting address and a length. A segment can be included only in the first element of a
range; an error message is displayed if a segment is found in the second address. A length is
represented by the letter L, followed by a hexadecimal value between OGH and FFFFH that
indicates the number of bytes following the starting address that the command should
operate on.

Note: Any length that causes an address to exceed l6 bits will generate an error.

A byte, or 8-bit, value is entered as one or two hexadecimal digits, whereas a word, or
l6-bit, value is entered as one to four hexadecimal digits. Leading zeros can be omitted.

Section IV: Programming Utilities 1G21

DEBUG

A list is composed of one or more byte values or strings, separated by spaces, commas, or
tabs. A string is one or more ASCII characters enclosed within single or double quotation
marks. Case is significant within a string. If the same type of quote character that is used to
delimit the string occurs inside the string itself, the character must be doubled inside the
string in order to be interpreted correctly. For example:

"This ""string"" is OK."

When used, a list must be the last parameter in the command line.

DEBUG responds to an invalid command by pointing to the approximate location of the
error with a caret character (^) and displaying the word Error. For example:

-D CS:0100,CS:0200 <Enter>

Error

DEBUG maintains a set of virtual CPU registers for a program being debugged. These
registers can be examined and modified with DEBUG commands. When a program is first
loaded for debugging, the virtual registers are initialized with the following values:

Register •COM Program .EXE Program

AX Valid drive error code Valid drive error code

BX Upper half of program size Upper half of program size
CX Lower half of program size Lower half of program size
DX Zero Zero

SI Zero Zero

DI Zero Zero

BP Zero Zero

SP FFFEH or top of available Size of stack segment
memory minus 2

IP lOOH Offset of entry point within target
program's code segment

CS P8P Base of target program's code segment
DS P8P PSP

ES P8P PSP

88 P8P Base of target program's stack segment

Note: DEBUG checks the first three parameters in the command line. If the second and
third parameters are filenames, DEBUG checks any drive specifications with those file
names to verify that they designate valid drives. Register AX contains one of the following
codes:

Code Meaning

OOOOH The drives specified with the second and third filenames are both valid, or
only one filename was specified in the command line.

OOFFH The drive specified with the second filename is invalid.
FFOOH The drive specified with the third filename is invalid.
FFFFH The drives specified with the second and third filenames are both invalid.

1022 The MS-DOS Encyclopedia

DEBUG

DEBUG also maintains a set of virtual flags, which may be set or cleared. The flags are

Flag Name Value If Set (1) Value If Clear (0)

Overflow OV (Overflow) NY (No Overflow)

Direction DN (Down) UP (Up)
Interrupt El (Enabled) DI (Disabled)

Sign NG (Minus) PL (Plus)

Zero ZR (Zero) NZ (Not Zero)

Aux Carry AC (Aux Carry) NA (No Aux Carry)
Parity PE (Even) PO (Odd)

Carry CY (Carry) NC (No Carry)

Before DEBUG transfers control to the target program, it saves the actual CPU registers and
then loads them with the current values of the virtual registers. Conversely, when control
reverts to DEBUG from the target program, the returned register contents are stored back
in the virtual register set for inspection and alteration by the user.

Examples

To load the file SHELL.EXE in the current directory for execution under the control of
DEBUG, type

C>DEBUG SHELL.EXE <Enter>

To use the DEBUG program to inspect or modify memory or to read, modify, and write
absolute disk sectors, simply type

C>DEBUG <Enter>

Message

File not found

The filename supplied as the first parameter in the DEBUG command line cannot be
found.

Section IV: Programming Utilities 1023

DEBUG: A

DEBUG: A

Assemble Machine Instructions

Purpose

Allows entry of assembler mnemonics and translates them into executable machine code.

Syntax

K[address]

where:

address is the starting location for the assembled machine code.

Description

The Assemble Machine Instructions (A) command accepts assembly-language statements,
rather than hexadecimal values, for the Intel 8086/8088 microprocessors and the Intel 8087
math coprocessor and then assembles each statement into executable machine code.

The address parameter specifies the location where entry of assembly-language
mnemonics will begin. If address is omitted, DEBUG uses the address following the last
instruction generated the last time the A command was used. If the A command has not
been used, DEBUG uses the current value of the target program's CSiIP registers.

After an A command is entered, DEBUG prompts for each assembly-language statement
by displaying the address, in the form of a segment and an offset, in which the assembled
code will be stored. When the Enter key is pressed, the assembly-language statement is
translated, and each byte of the resulting machine instruction is stored sequentially in
memory (overwriting existing information), beginning at the displayed address. The ad
dress following the last byte of the machine instruction is then displayed so that the user
can enter the next assembly-language statement. Pressing the Enter key alone in response
to the address prompt terminates the A command.

The syntax of assembly-language statements accepted by the DEBUG A command differs
slightly from that of the usual Microsoft Macro Assembler programming statements. The
differences can be summarized as follows:

• All numbers are assumed to be hexadecimal integers and should be entered without a
trailing H character.

• Segment overrides must be specified by preceding the entire instruction with CS:,
DS:, ES:, or SS:.

• File control directives (NAME, PAGE, TITLE, and so forth), macro definitions, record

structures, and conditional assembly directives are not supported by DEBUG.
• Specific hexadecimal values, rather than program labels, must be included.

1024 The MS-DOS Encyclopedia

DEBUG: A

• When the data type (word or byte) is not implicit in the instruction, the type must be
specified by preceding the operand with BYTE PTR (or BY) or WORD PTR (or WO).

• The size of the string in a string operation must be specified by adding a B (byte) or
W (word) to the string instruction mnemonic (for example, LODSB or LODSW).

• The DB and DW instructions accept a parameter of the type list and assemble byte
and word values directly.

• The WAIT or FWAIT opcodes for 8087 assembler statements are not generated by
default, so they must be coded explicitly.

• Memory locations are differentiated from immediate operands by enclosing memory
addresses in square brackets.

• Repeat prefixes, such as REP, REP2, or REPN2, can be entered either alone on the line
preceding the statement they affect or immediately preceding the statement on the
same line.

• Although the assembler generates the optimal form (SHORT, NEAR, or FAR) for jumps
or calls, depending on the destination address, these designations can be overridden
by preceding the operand with a NEAR (or NE) or FAR (no abbreviation) prefix.

• The mnemonic for a EAR RETURN is RETF.

Examples

To begin assembling code at address CSiOlOOH, type

-A 100 <Enter>

To assemble the instruction sequence

LODS WORD PTR [SI]

XCHG BX,AX

JMP [BX]

beginning at address CSiOlOOH, the following dialogue would take place:

-A 100 <Enter>

1983:0100 LODSW <Enter>

1983:0101 XCHG BX,AX <Enter>

1983:0103 JMP [BX] <Enter>

1983:0105 <Enter>

To continue assembling at the location following the last instruction generated by a pre
vious A command, type

-A <Enter>

Section IV: Programming Utilities 1025

DEBUG: C

DEBUG: C

Compare Memory Areas

Purpose

Compares two areas of memory and reports any differences.

Syntax

C range address

where:

range is the starting and ending addresses or the starting address and length of the
first area of memory to be compared.

address is the starting address of the second area of memory to be compared.

Description

The Compare Memory Areas (C) command compares the contents of two areas of mem
ory. The location and contents of any differing bytes are displayed in the following format:

addressl bytel byte2 address2

If no differences are found, the DEBUG prompt returns.

The range parameter specifies the starting and ending addresses or the starting address
and length in bytes of the first area of memory to be compared. The address parameter
specifies the beginning address of the second area of memory to be compared. If a
segment is not included in range or address, DEBUG uses DS.

Example

To compare the 64 bytes beginning at CS:CEOOH with the 64 bytes beginning at
CS:CFOAH, type

-C CS:CEOO CE3F CSrCFOA <Enter>

or

-C CSrCEOO L40 CSrCFOA <Enter>

If any differences are found, DEBUG displays them in the following format:

2124:CE06 00 FF 2124:CF10

1026 The MS-DOS Encyclopedia

DEBUG: D

DEBUG: D

Display Memory

Purpose

Displays the contents of an area of memory in hexadecimal and ASCII format.

Syntax

D [range]

where:

range is the starting and ending addresses or the starting address and length of the
area to be displayed.

Description

The Display Memory (D), or Dump, command displays the contents of a specified range of
memory addresses in hexadecimal and ASCII format.

The range parameter gives the starting and ending addresses or the starting address and
length in bytes of the memory to be displayed. If range does not include a segment,
DEBUG uses DS.

If range is omitted the first time the D command is used, the display starts at the target
program's CS:IP registers. If range was specified in a preceding D command, the memory
address following the last address displayed by that command is used. If a length is not ex
plicitly stated in a D command, 128 bytes are displayed.

Each line displays a segment and offset, followed by the contents of 16 bytes of memory
represented as hexadecimal values and separated by spaces (except the eighth and ninth
values, which are separated by a dash), followed by the ASCII character equivalents (if
any) of the same 16 bytes. In the ASCII portion, nonprinting characters are displayed as
periods.

Examples

To display the contents of the 128 bytes of memory beginning at 7F00:0100H, type

-D 7F00:0100 <Enter>

The contents of the memory addresses are displayed in the following format:

7F00:01 00 20 64 65 76 69 63 65 OD-OA GO 60 39 OD OA 00 7C device...'9... i

7FOO:O110 39 08 20 08 00 81 39 04-1B 5B 32 4A 42 BD 11 44 9. ...9..[2JB=.D

7F00:0120 2E 26 45 AF 11 47 B3 11-48 A5 11 40 B8 11 4E D3 .&E/.G3.H%.L8.NS

7F00:0130 11 50 DF 11 51 AB 11 54-DF IE 56 37 11 5F 9F 16 .P_.Q+.T_.V7

7F00:0140 24 CO 11 00 03 4E 4F 54-01 07 OA 45 52 52 4F 52 $0...NOTA..ERROR

7FOO:O150 40 45 56 45 40 85 08 05-45 58 49 53 54 18 08 00 LEVEL...EXIST...

7F00:01 60 03 44 49 52 03 91 OO 06-52 45 4E 41 4D 45 01 OO .DIR RENAME.©

7F00:0170 OF 03 52 45 4E 01 OO OF-05 45 52 41 53 45 01 68 ..REN.6..ERASE.h

Section IV: Programming Utilities 1027

DEBUG: D

To view the next 128 by tes of memory, type

-D <Enter>

In this case, the contents of memory addresses 7F00:0180H through 7F00:01FFH are
displayed.

1028 The MS-DOS Encyclopedia

DEBUG: E

DEBUG: E

Enter Data

Purpose

Enters data into memory.

Syntax

E address [list]

where:

address is the first memory location for data entry.
list specifies the data to be entered into successive bytes of memory, starting at

address.

Description

The Enter Data (E) command allows data to be entered into successive memory locations.
The data can be entered in either hexadecimal or ASCII format. Data previously stored in
the specified locations is lost.

The address parameter specifies the first byte to be modified. If address does not include
a segment, DEBUG uses DS. The address is incremented for each byte of data stored.

The list parameter is one or more hexadecimal byte values and/or strings, separated by
spaces, commas, or tab characters. Strings must be enclosed within single or double quota
tion marks, and case is significant within a string.

If list is included in the command line, the changes to memory are made unless an error is
detected in the command line, in which case an error message is displayed and the E com
mand is terminated. If list is omitted from the command line, the user is prompted byte
by byte for data to be entered into memory, starting at address. The current contents of a
byte are displayed, followed by a period. A new value for that byte can be entered as one
or two hexadecimal digits (extra characters are ignored) or the contents can be left un
changed. Pressing the spacebar displays the contents of the next byte. Entering a minus
sign or hyphen character (-) instead of pressing the spacebar displays the contents of the
previous byte. A maximum of 8 bytes can be entered on each input line; a new line is
begun each time an 8-byte boundary is crossed. Pressing the Enter key without pressing
the spacebar or entering any data terminates data entry.

Text strings can be entered only by using the list parameter; they cannot be entered in
response to an address prompt.

Section IV: Programming Utilities 1029

DEBUG: E

Examples

To store the byte values OOH, ODH, and OAH in the three bytes beginning at DS:1FB3H,
type

-E 1FB3 00 OD OA <Enter>

To store the string MAIN MENU into memory beginning at address ES:0C14H, type

-E ES:C14 "MAIN MENU" <Enter>

1030 The MS-DOS Encyclopedia

DEBUG: F

DEBUG: F

Fill Memory

Purpose

Stores a repetitive data pattern in an area of memory.

Syntax

F range list

where:

range is the starting and ending addresses or starting address and length of the mem
ory to be filled.

list is the data to be entered.

Description

The Fill Memory (F) command fills an area of memory with the data from a list. The data
can be entered in either hexadecimal or ASCII format. Any data previously stored at the
specified locations is lost. If an error message is displayed, the original values in memory
remain unchanged.

The range parameter specifies the starting and ending addresses or the starting address
and hexadecimal length in bytes of the area of memory to be filled. If range does not
specify a segment, DEBUG uses DS.

The list parameter specifies one or more hexadecimal byte values and/or strings, sepa
rated by spaces, commas, or tab characters. Strings must be enclosed in single or double
quotation marks, and case is significant within a string.

If the area to be filled is larger than the data list, the list is repeated as often as necessary to
fill the area. If the data list is longer than the area of memory to be filled, it is truncated to
fit into the area.

Examples

To fill the area of memory from DSiOBlOH through DS:0B4FH with the value 0E8H, type

-F BIO B4F E8 <Enter>

or

-F BIO L40 E8 <Enter>

Section IV: Programming Utilities 1031

DEBUG: F

To fill the 16 bytes of memory beginning at address CSilFAOH by replicating the 2-byte
sequence ODH OAH, type

-F CSrIFAO 1FAF OD OA <Enter>

or

-F CS:1FA0 LI 0 OD OA <Enter>

To fill the area of memory from ESrOBOOH through ES:OBFFH by replicating the text string
BUFFER, type

-F ESrBOO BFF "BUFFER" <Enter>

or

-F ESiBOO LI 00 "BUFFER" <Enter>

1032 The MS-DOS Encyclopedia

DEBUG: G

DEBUG: G

Go

Purpose

Transfers control from DEBUG to the program being debugged.

Syntax

G headdress] [breakO [... break9]]

where:

address is the location DEBUG begins execution.
breakO... break9 specify from 1 to 10 temporary breakpoints.

Description

The Go (G) command transfers control from DEBUG to the program being debugged. If
no breakpoints are set, the program executes until it crashes or finishes, in which latter
case the message Program terminated normally is displayed and control returns to
DEBUG. (After this message is displayed, the program may need to be reloaded before it
can be executed again.)

The address parameter can specify any location in memory. If no segment is specified,
DEBUG uses the target program's CS register. If address is omitted, DEBUG transfers to
the current address in the target program's CS:IP registers. An equal sign (=) must precede
address to distinguish it from the breakpoints breakO... break9.

The parameters breakO... break9 are addresses that represent from 1 to 10 temporary
breakpoints that can be set as part of the G command. A breakpoint is an address at which
execution stops. Breakpoints can be placed in any order, because execution stops at the
first breakpoint address encountered, regardless of the position of that breakpoint in the
list. Each breakpoint address must contain the first byte of an 8086 opcode. DEBUG in
stalls breakpoints by replacing the first byte of the machine instruction at each breakpoint
address with an INT 03H instruction (opcode OCCH). If the program encounters a break
point, execution is suspended and control returns to DEBUG. DEBUG then restores the
original machine code to the breakpoint addresses; displays the contents of the registers,
the status of the flags, and the instruction pointed to by CS:IP; and displays the DEBUG
prompt. If the program executes to completion without encountering any of the break
points or stops for any reason other than because it encountered a breakpoint, DEBUG
does not replace the INT 03H instructions with the original machine code, and the Load
File or Sectors (L) command must be used to reload the original program.

The G command requires that the target program's SSrSP registers point to a valid stack
that has at least 6 bytes of stack space available. When the G command is executed, it

Section IV: Programming Utilities 1033

DEBUG: G

pushes the target program's flags and CS and IP registers onto the stack and then transfers
control to the target program with an IRET instruction. Thus, if the target program's stack
is not valid or is too small, the system may crash.

Examples

To begin execution of the program in DEBUG's buffer at location CSdlOAH and set break
points at CS:12FCH and CS:1303H, type

-G =11 OA 12FC 1303 <Enter>

To resume execution of the program after a breakpoint has been encountered and control
has been returned to DEBUG, type

-G <Enter>

Messages

bp Error
More than 10 breakpoints were specified in a G command. The command must be entered
again with 10 or fewer breakpoints.

Program terminated normally
No breakpoints were encountered and the target program executed to completion. If
breakpoints were set, the original program should be restored with the L command.

1034 The MS-DOS Encyclopedia

DEBUG: H

DEBUG: H

Perform Hexadecimal Arithmetic

Purpose

Displays the sum and difference of two hexadecimal numbers.

Syntax

H valuel value2

where:

valuel and value2 are any two hexadecimal numbers from 0 through FFFFH.

Description

The Perform Hexad^imal Arithmetic (H) command displays the sum and the difference
of two l6-bit hexadecimal numbers—that is, the result of the operations valuel^value2
and valuel-mlue2. If value2 is greater than valuel, the difference of the two values is dis
played as a two's complement number. This command is convenient for quickly calculat
ing addresses and other values during an interactive debugging session.

Examples

To display the sum and the difference of the values 4B03H and 104H, type

-H 4B03 104 <Enter>

This produces the following display:

4C07 49FF

If the addition produces an overflow, the four least significant digits are displayed. For
example, the command line

-H FFFF 2 <Enter>

produces the following display:

0001 FFFD

If the second number is bigger than the first, the difference is displayed in two's comple
ment form. For example, the command line

-H 1 2 <Enter>

produces the following display:

0003 FFFF

Section IV: Programming Utilities 1035

DEBUG: I

DEBUG: I

Input from Port

Purpose

Reads and displays 1 byte from an input/output (I/O) port.

Syntax

I port

where:

port is an I/O port address from 0 through FFFFH.

Description

The Input from Port (I) command reads the specified I/O port address and displays the
data as a two-digit hexadecimal number.

Warning: The I command should be used with caution because it directly accesses the
computer hardware and no error checking is performed. Input operations directed to the
ports assigned to some peripheral device controllers may interfere with the proper opera
tion of the system. If no device has been assigned to the specified I/O port or if the port is
write-only, the value displayed by an I command is unreliable.

Example

To read and display the contents of I/O port lOAH, type

-I 10A <Enter>

An example of the output of this command is

FF

1036 The MS-DOS Encyclopedia

DEBUG: L

DEBUG: L

Load File or Sectors

Purpose

Loads a file or individual sectors from a disk into DEBUG's memory.

Syntax

L [address]

or

L address drive start number

where:

address is the memory location for the data to be read from the disk.
drive is the number of the disk drive to read (0 = drive A, 1 = drive B, 2 = drive C,

and so on).

start is the hexadecimal number of the first logical sector to load (0-FFFFH).
number is the hexadecimal number of consecutive sectors to load (0-FFFFH).

Description

The Load File or Sectors (L) command loads a file or individual sectors from a disk. When

the L command is entered without parameters or with only an address, the file specified in
the DEBUG command line or the one in the most recent Name File or Command-Tail

Parameters (N) command line is loaded from the disk into memory. If no segment is speci
fied in address, DEBUG uses CS. If the file's extension is .EXE, the file is placed in
DEBUG's target program buffer at the load address specified in the .EXE file's header. If
the file's extension is .COM, the file is loaded at offset lOOH. (If for some reason an address
other than lOOH is entered for a .EXE or .COM file, an error message is displayed; if the ad
dress is lOOH, the specification is ignored.) The length of the file or, in the case of a .EXE
file, the actual length of the program (the length of the file minus the header) is placed in
the target program's BX and CX registers, with the most significant 16 bits in register BX.

The L command can also be used to bypass the MS-DOS file system and directly access
logical sectors on the disk. The memory address iaddres^, disk drive number idriv^,
starting logical sector number istart), and number of sectors to load (^number) must all be
specified in the command line.

Note: The L command should not be used to access logical sectors on network drives.

Examples

To load the file specified in the DEBUG command line or in the most recent N command
into DEBUG's target program buffer, type

-L <Enter>

Section IV: Programming Utilities 1037

DEBUG: L

To load eight sectors from drive B, starting at logical sector 0, to memory location
CS:0100H, type

-L 100 1 08 <Enter>

Messages

Disk error reading driveX
The specified drive does not exist or the disk in the specified drive is defective.

File not found

The file specified in the most recent N command cannot be found.

1038 The MS-DOS Encyclopedia

DEBUG: M

DEBUG: M

Move (Copy) Data

Purpose

Copies the contents of one area of memory to another.

Syntax

M range address

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be copied.

address is the first byte in which the copied data will be placed.

Description

The Move (Copy) Data (M) command copies data from one memory location to another
without altering the data in the original location. If the source and destination areas over
lap, the data is copied so that the resulting copy is correct; the data in the original location
is changed where the two areas overlap.

The range parameter specifies either the starting and ending addresses or the starting
address and length of the memory to be copied. The address parameter is the first byte in
which the copy will be placed. If range does not contain an explicit segment, DEBUG uses
DS; if address does not contain a segment, DEBUG uses the segment used for range.

Example

To copy the data in locations DS:0800H through DS:08FFH to locations DS:0900H through
DS:09FFH, type

-M 800 8FF 900 <Enter>

or

-M 800 LI 00 900 <Enter>

Section IV: Programming Utilities 1039

DEBUG: N

DEBUG: N

Name File or Command-Tail Parameters

Purpose

Inserts filenames and/or switches into the simulated program segment prefix (PSP).

Syntax

Nparameter [parameter...]

where:

parameter is one or more filenames or switches to be placed in the simulated PSP.

Description

The Name File or Command-Tail Parameters (N) command is used to enter one or more

parameters into the simulated PSP that is built at the base of the buffer holding the pro
gram to be debugged. The N command can also be used before the Load File or Sectors (L)
and Write File or Sectors (W) commands to name the file to be read from or written to a

disk.

The count of the characters following the N command is placed at DS:0080H in the simu
lated PSP, and the characters themselves are copied into the PSP starting at offset 81H. The
string is terminated by a carriage return (ODH), which is not included in the count. If the
first and second parameters follow the naming conventions for MS-DOS files, they are
parsed into the default file control blocks (FCBs) in the simulated PSP at offsets 5CH and
6CH, respectively. (Switches specified as parameters are stored in the PSP starting at offset
81H along with the rest of the command line but are not included in the FCBs.)

If the N command line contains only one filename, any parameters placed in the default
FCBs by a previous N command are destroyed. If the drive specified with the first filename
parameter is invalid, the AL register is set to OFFH. If the drive specified with the second
filename parameter is invalid, the AH register is set to OFFH. The existence of a file speci
fied with the N command is not verified until it is loaded with the L command.

Examples

Assume that DEBUG was started without specifying the name of a target program in the
command line. To load the program CLEAN.COM for execution under the control of
DEBUG, use the N and L commands together as follows:

-N CLEAN.COM <Enter>

-L <Enter>

Then, to place the parameter MYFILE.DAT in the simulated PSP's command tail and
parse MYFILE.DAT into the first default FCB, type

-N MYFILE.DAT <Enter>

1040 The MS-DOS Encyclopedia

DEBUG: N

Finally, to execute the program CLEAN.COM, type

-G <Enter>

The result is the same as if the CLEAN.COM program had been run from the MS-DOS
command level with the entry

C>CLEAN MYFILE.DAT <Enter>

except that the program is executing under the control of DEBUG and within DEBUOs
memory buffer.

Section IV: Programming Utilities 1041

DEBUG: O

DEBUG; O

Output to Port

Purpose

Writes 1 byte to an input/output (I/O) port.

Syntax

O port byte

where:

port is an I/O port address from 0 through FFFFH.
byte is a value from 0 through OFFH to be written to the I/O port.

Description

The Output to Port (O) command writes 1 byte of data to the specified I/O port address.
The data value must be in the range OOH through OFFH.

Warning: The O command should be used with caution because it directly accesses the
computer hardware and no error checking is performed. Attempts to write to some port
addresses, such as those for ports connected to peripheral device controllers, tillers, or the
system's interrupt controller, may cause the system to crash or damage data stored on disk.

Example

To write the value C8H to I/O port lOAH, type

-0 10A C8 <Enter>

1042 The MS-DOS Encyclopedia

DEBUG: P

DEBUG: P

Proceed Through Loop or Subroutine

Purpose

Executes a loop, repeated string instruction, software interrupt, or subroutine call
to completion.

Syntax

P [=address] [number]

where:

address is the location of the first instruction to be executed.

number is the number of instructions to execute.

Description

The Proceed Through Loop or Subroutine (P) command transfers control from DEBUG
to the target program. The program executes without interruption until the loop, repeated
string instruction, software interrupt, or subroutine call at address is completed or until
the specified number of machine instructions have been executed. Control then returns
to DEBUG, and the contents of the target program's registers and the status of the flags are
displayed.

If the address parameter does not include an explicit segment, DEBUG uses the target pro
gram's CS register; if address is omitted entirely, execution begins at the address specified
by the target's CS:IP registers. The address parameter must be preceded by an equal sign
(=) to distinguish it from number.

If the instruction at address is not a loop, repeated string instruction, software interrupt,
or subroutine call, the P command functions just like the Trace Program Execution (T)
command. The optional number parameter specifies the number of instructions to be
executed before control returns to DEBUG. If number is omitted, DEBUG executes only
one instruction. After each instruction is executed, DEBUG displays the contents of the
target program's registers, the status of the flags, and the next instruction to be executed.

Warning: The P command cannot be used to trace through ROM.

Example

Assume that the target program's location CS:143FH contains a CALL instruction. To
execute the subroutine that is the destination of CALL and then return control to

DEBUG, type

~P =143F <Enter>

Section IV: Programming Utilities 1043

DEBUG: Q

DEBUG: Q
Quit

Purpose

Ends a DEBUG session.

Syntax

Q

Description

The Quit (Q) command terminates the DEBUG program and returns control to MS-DOS or
the command shell that invoked DEBUG. Any changes to a program or other file that were
not saved on disk with the Write File or Sectors (W) command are lost.

Example

To exit DEBUG, type

-Q <Enter>

1044 The MS-DOS Encyclopedia

DEBUG: R

DEBUG: R

Display or Modify Registers

Purpose

Displays the contents of one or all registers and the status of the CPU flags and allows
them to be modified.

Syntax

R [register]

where:

register is the two-character name of an Intel 8086/8088 register from the following
list:

AX BX CX DX SP BP SI DI

DS ES 88 C8 IP PC

or the character F, which specifies the CPU flags.

Description

The Display or Modify Registers (R) command displays the target program's register con
tents and the status of the CPU flags and allows them to be modified.

If R is entered without a register parameter, the contents of all registers and the status of
the CPU flags are displayed, followed by a disassembly of the machine instruction cur
rently pointed to by the target program's CS:IP registers.

If register is included in the R command line, the contents of the specified register are dis
played; then DEBUG prompts with a colon character (:) for a new value. The value is en
tered by typing one to four hexadecimal digits and then pressing the Enter key. Pressing
the Enter key without entering any values leaves the register contents unchanged.

Note: The register name PC is not fully supported in some versions of DEBUG, so the
register name IP should be used instead.

Specifying the character F instead of a register name causes DEBUG to display the status of
the program's CPU flags as two-character codes from the following list:

Flag Name Value If Set (1) Value If Clear (0)

Overflow

Direction

Interrupt

OV (Overflow)

DN (Etown)

El (Enabled)

NY (No Overflow)

UP (Up)
DI (Disabled)

(more)

Section IV: Programming Utilities 1045

DEBUG: R

Flag Name Value If Set (1) Value If Clear (0)

Sign
Zero

Aux Cany

Parity

Carry

NG (Minus)

ZR (Zero)

AC (Aux Carry)
PE (Even)

CY (Carry)

PL (Plus)

NZ (Not Zero)

NA (No Aux Carry)
PO (Odd)

NC (No Carry)

After displaying the flag values, DEBUG displays a hyphen (-) prompt on the same line.
Any or all flags can then be altered by typing one or more codes (in any order and op
tionally separated by spaces) from the list above and pressing the Enter key. Pressing the
Enter key without entering any codes leaves the status of the flags unchanged.

Examples

To display the contents of the target program's CPU registers and the status of the CPU
flags, followed by the disassembled mnemonic for the next instruction to be executed
(pointed to by CS:IP), type

-R <Enter>

This produces a display in the following format:

AX=0000 BX=0000 CX=00A1 DX=0000 SP=FFFE BP=0000 81=0000 DI=0000

DS=19A5 ES=19A5 88=19A5 C8=19A5 IP=0100 NV UP El PL NZ NA PO NC

19A5:0100 BF8000 MOV DI,0080

To display the value of the target program's BX register, type

-R BX <Enter>

If BX contains 0200H, for example, DEBUG displays that value and then issues a prompt in
the form of a colon:

BX 0200

The contents of BX can then be altered by typing a new value and pressing the Enter key
or left unchanged by pressing the Enter key alone.

To set the direction and carry flags, first type

-R F <Enter>

DEBUG displays the flag values, followed by a hyphen (-) prompt:

NV UP El PL NZ NA PO NC -

The direction and carry flags can then be set by entering

-DN CY <Enter>

1046 The MS-DOS Encyclopedia

DEBUG: R

Messages

bf Error

Bad flag: An invalid code for a CPU flag was entered,

br Error

Bad register: An invalid register name was entered,

df Error

Double flag: Two values for the same CPU flag were entered in the same command.

Section IV: Programming Utilities 1047

DEBUG: S

DEBUG: S

Search Memory

Purpose

Searches memory for a pattern of 1 or more bytes.

Syntax

S range list

where:

range specifies the starting and ending addresses or the starting address and length
of the area to be searched.

list is 1 or more consecutive byte values and/or a string to be searched for.

Description

The Search Memory (S) command searches a designated range of memory for a specified
list of consecutive byte values and/or a text string. The starting address of each set of
matching bytes is displayed. The contents of the searched area are not altered.

The range parameter specifies the starting and ending addresses or the starting address
and length in bytes of the area to be searched. If a segment is not included in range,
DEBUG uses DS. If a segment is specified for the starting address, DEBUG uses the same
segment for the ending address. If a starting address and length in bytes is specified, the
starting address plus the length minus 1 cannot exceed FFFFH.

The list parameter specifies one or more consecutive hexadecimal byte values and/or a
string to be searched for, separated by spaces, commas, or tab characters. Strings must be
enclosed within single or double quotation marks, and case is significant within a string.

Examples

To search for the string Copyright in the area of memory from DSiOOOOH through
DSilFFFH, type

-S 0 1FFF 'Copyright' <Enter>

or

-S 0 L2000 "Copyright" <Enter>

If matches are found, DEBUG displays the starting address of each:

20A8:0910

20A8:094F

20A8:097C

1048 The MS-DOS Encyclopedia

DEBUG: S

To search for the byte sequence 3BH06H in the area of memory from CS:0100H through
CS:12A0H, type

-S CS:100 12A0 3B 06 <Enter>

or

-S CS:100 L11A1 3B 06 <Enter>

Section IV: Programming Utilities 1049

DEBUG: T

DEBUG: T

Trace Program Execution

Purpose

Executes one or more instructions, displaying the CPU status after each instruction.

Syntax

T [=address] [number]

where:

address is the location of the first instruction to be executed.

number is the number of machine instructions to be executed.

Description

The Trace Program Execution (T) command executes one or more instructions, starting at
the specified address, and after each instruction displays the contents of the CPU registers,
the status of the flags, and the instruction pointed to by CS:IP.

Warning: The T command should not be used to execute any instructions that change
the contents of the Intel 8259 interrupt mask (ports 20H and 21H on the IBM PC and com
patibles) or to trace calls made to MS-DOS through Interrupt 21H. The Go (G) command
should be used instead.

The address parameter points to the first instruction to be executed. If address does not
include a segment, DEBUG uses the target program's CS register; if address is omitted en
tirely, execution begins at the address specified by the target program's CS:IP registers. If
address is included, it must be preceded by an equal sign (=) to distinguish it from
number.

The number parameter specifies the hexadecimal number of instructions to be executed
before the DEBUG prompt is redisplayed (default = 1). Pressing Ctrl-C or Ctrl-Break inter
rupts execution of a sequence of T instructions. Consecutive instructions can then be exe
cuted individually by entering T commands with no parameters. Pressing Ctrl-S suspends
execution and pressing any key then resumes the trace.

Note: The T command can be used to trace through ROM.

Example

To execute one instruction at location CSilAOOH and then return control to DEBUG, dis
playing the contents of the CPU registers and the status of the flags, type

-T =1A00 <Enter>

1050 The MS-DOS Encyclopedia

DEBUG: U

DEBUG: U

Disassemble (Unassemble) Program

Purpose

Disassembles machine instructions into assembly-language mnemonics.

Syntax

U [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the machine code to be disassembled.

Description

The Disassemble (Unassemble) Program (U) command translates machine instructions
into assembly-language mnemonics.

The range parameter specifies the starting and ending addresses or starting address and
length in bytes of the machine instructions to be disassembled. If range does not specify a
segment, DEBUG uses CS. Note that if the starting address does not fall on an 8086 instruc
tion boundary, the disassembly will be incorrect.

If range does not include a length or ending address, 32 (20H) bytes of memory are dis
assembled beginning at the specified starting address. If range is omitted, 32 bytes of
memory are disassembled, starting at the address following the last instruction dis
assembled by the previous U command. If a U command has not been used before
and range is omitted, disassembly begins at the address specified by the target
program's CS:IP registers.

NtOe: The actual number of bytes displayed may vary slightly from the amount specified
in range or from the default of 32 bytes because the length of instructions may vary. Also,
the U command does not imderstand instructions specific to the 80186,80286, and 80386
microprocessors. It displays such instructions as DBs.

Successive 32-byte fragments of code can be disassembled by entering additional U com
mands without parameters.

Example

To disassemble 8 bytes of machine instructions starting at CS:0100H, type

-U 100 107 <Enter>

or

-U 100 L8 <Enter>

Section IV: Programming Utilities 1051

DEBUG: W

DEBUG; W

Write File or Sectors

Purpose

Writes a file or individual sectors to disk.

Syntax

W [address]

or

W address drive start number

where:

address is the first memory location of the data to be written.
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive

C, and so on).

start is the number of the first logical sector to write (0-FFFFH).
number is the number of consecutive sectors to be written (0-FFFFH).

Description

The Write File or Sectors (W) command transfers a file or individual sectors from memory
to the disk.

When the W command is entered without parameters or with only an address, the number
of bytes specified by the contents of registers BX:CX is written from memory into the file
named in the most recently used Name File or Command-Tail Parameters (N) command or
the first file specified in the DEBUG command line if the N command has not been used.
Files with a .EXE or .HEX extension cannot be written with the DEBUG W command.

Note: If a Trace Program Execution (T), Go (G), or Proceed Through Loop or Subroutine
(P) command has been used or the contents of the BX or CX registers have been changed,
the contents of BX:CX must be restored before the W command is used.

When address is not included in the command line, the target program's CS:0100H is
assumed.

The W command can also be used to bypass the MS-DOS file system and directly access
logical sectors on the disk. The memory address (.address), disk drive number (drive),
starting logical sector number (start), and number of sectors to be written (number) must
all be provided in the command line in hexadecimal format. The W command should not
be used to write sectors on network drives.

Warning; Extreme caution must be used with the W command. The disk's file structure
can easily be damaged if the wrong parameters are entered.

1052 The MS-DOS Encyclopedia

DEBUG: W

Example

Assume that the interactive Assemble Machine Instructions (A) command was used to

create a program in DEBUG's memory buffer that is 32 (20H) bytes long, beginning at
offset OlOOH. This program can be written to the file QUICK.COM by using the DEBUG
Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write
File or Sectors (W) commands sequentially. First, use the N command to specify the name
of the file to be written:

-N QUICK.COM <Enter>

Next, use the R command to set registers BX and CX to the length to be written. Register
BX contains the upper, or most significant half, of the length, whereas register CX contains
the lower, or least significant half. Type

-R CX <Enter>

DEBUG displays the contents of register CX and prompts with a colon (:). Enter the
length after the prompt:

:20 <Enter>

To use the R command again to set register BX to zero, type

-R BX <Enter>

followed by

:0 <Enter>

Finally, to create the disk file QUICK.COM and write the program into it, type

-W <Enter>

DEBUG responds:

Writing 0020 bytes

Messages

EXE and HEX files cannot be written

Files with a .EXE or .HEX extension cannot be written to disk with the W command.

Writing nnnn bytes
After a successful write operation, DEBUG displays in hexadecimal format the number of
bytes written to disk.

Section IV: Programming Utilities 1053

SYMDEB

SYMDEB

Symbolic Debugger

Purpose

The Symbolic Debugger (SYMDEB) allows a file to be loaded, examined, altered, and writ
ten back to disk. If the file contains a program, the program can be disassembled, modi
fied, traced one instruction at a time, or executed at full speed with breakpoints. SYMDEB
can also be used to read, modify, and write absolute disk sectors.

The SYMDEB utility is supplied with the Microsoft Macro Assembler (MASM) versions 4.0
and earlier. This documentation describes SYMDEB version 4.0.

Syntax

SYMDEB

or

SYMDEB [options] \symfile[symfile...]] [filename[parameter...]]

where:

symfile

filename
parameter

options

is the name of a symbol file created with the MAPSYM utility
(extension = .SYM).

is the name of the binary or executable program file to be debugged,
is a command-line parameter required by the program being debugged,
is one or more of the following switches. Switches can be either upper
case or lowercase and can be preceded by a dash (-) instead of a forward
slash (/).

/I (IBM) specifies that the computer is IBM compatible.
/K enables the interactive breakpoint key (Scroll Lock).
/N enables the use of nonmaskable interrupt break sys

tems on IBM-compatible computers (requires special
hardware).

/S enables the Screen Swap (\) command on IBM-com
patible computers (the /I switch is also required),

/"commands" specifies one or more SYMDEB commands, separated
by semicolons and enclosed in quotation marks.

Description

The SYMDEB commands and capabilities are a superset of those in DEBUG. SYMDEB is
also able to load and interpret special symbol files that correlate line numbers, symbols,
and memory addresses. With the aid of such files, SYMDEB enables the user to specify

1054 The MS-DOS Encyclopedia

SYMDEB

addresses with labels, variable names, and expressions, rather than only with absolute
hexadecimal addresses. SYMDEB's command repertoire also includes I/O redirection
commands, floating-point number entry and display commands, and source-code display
capabilities that are not present in DEBUG.

The SYMDEB command line typically includes the filename parameter, which is the
name of an executable program (with the extension .COM or .EXE) to be loaded into
SYMDEB's memory buffer. Files with the extension .EXE are loaded in a manner compat
ible with the MS-DOS loader. Files with the extension .HEX are converted to binary images
and loaded at the internally specified address. All other files are assumed to be direct
memory images and are read directly into memory starting at offset lOOH. If SYMDEB is
entered by itself, no file information is read into memory. An appropriate program seg
ment prefix (PSP) is synthesized at the head of SYMDEB's buffer for use by the target pro
gram; the PSP includes a command tail at offset 80H and default file control blocks (FCBs)
at offsets 5CH and 6CH, constructed from the optional parameters following filename. If
necessary, contents of the file are relocated so that the file is ready to execute.

The command line can also contain the names of one or more symfiles, symbol files that
contain symbol and line-number information for the object modules that constitute the
program being debugged. A symbol file is created with the MAPSYM utility from a map
file produced by the Microsoft Object Linker (LINK). A symbol file always has the exten
sion .SYM. See PROGRAMMING UTILITIES: mapsym; link.

The four command-line switches /I, /K, /N, and /S provide SYMDEB with information
about the computer on which the utility is running. The /I switch is used when the com
puter is IBM compatible; this causes SYMDEB to take full advantage of special hardware
features such as the 8259 Programmable Interrupt Controller or the memory-mapped
video display. The /K switch enables the interactive breakpoint key (Scroll Lock), which
can then be pressed at any time to interrupt a program that is being traced under the con
trol of SYMDEB.

Note: The /K switch is not necessary on an IBM PC/AT, because the Sys Req key is always
active as an interactive break key.

The /N switch enables the use of the nonmaskable interrupt as a breakpoint signal on
IBM-corripatible computers; this interrupt is triggered by hardware-assisted debugging
packages such as Periscope and Atron Corporation's Software Probe. The /S switch en
ables the Screen Swap (\) command, which allows the output from the program being
traced to be maintained and displayed on demand on a virtual screen separate from the
SYMDEB commands and messages.

Note: The /I, /N, and /S switches are unnecessary on personal computers built by IBM
Corporation; SYMDEB automatically enables the capabilities provided by those switches
when SYMDEB finds the IBM copyright notice in the machine's ROM.

After SYMDEB and any files named in the command line are loaded, SYMDEB displays its
special prompt character, a hyphen (-), and awaits a command. SYMDEB commands con
sist of one or two letters, usually followed by one or more parameters. SYMDEB treats

Section IV: Programming Utilities 1055

SYMDEB

uppercase and lowercase characters equivalently except when they are contained in
strings enclosed within single or double quotation marks. SYMDEB does not execute
commands until the Enter key is pressed.

The SYMDEB commands discussed in this section are

Command Action

A Assemble machine instructions.

BC Clear breakpoints.
BD Disable breakpoints.
BE Enable breakpoints.
BL List breakpoints.
BP Set breakpoints.
C Compare memory areas.
D Display memory.
DA Display ASCII.
DB Display bytes.
DD Display doublewords.
DL Display long reals.
DS Display short reals.
DT Display 10-byte reals.
DW Display words.
E Enter data.

EA Enter ASCII string.
EB Enter bytes.
ED Enter doublewords.

EL Enter long reals.
ES Enter short reals.

ET Enter 10-byte reals.
EW Enter words.

F Fill memory.
G Go execute program.
H Perform hexadecimal arithmetic.

I Input from port.
K Perform stack trace.

L Load file or sectors.

M Move (copy) data.
N Name file or command-tail parameters.
0 Output to port.
P Proceed through loop or subroutine.

Q Quit debugger.
R Display or modify registers.
S Search memory.

(more)

1056 The MS-DOS Encyclopedia

SYMDEB

Command Action

S+ Enable source display mode.
S- Disable source display mode.
S& Enable source and machine code display mode.
T Trace program execution.
U Disassemble (unassemble) program.
V View source code.

W Write file or sectors.

X Examine symbol map.
XO Open symbol map.
Z Set symbol value.
< Redirect SYMDEB input.
> Redirect SYMDEB output.

Redirect SYMDEB input and output.
{ Redirect target program input.
} Redirect target program output.
~ Redirect target program input and output.
\ Swap screen.

Display source line.
? Help or evaluate expression.
! Escape to shell.
» Enter comment.

One or more SYMDEB commands, separated by semicolons and enclosed in double
quotation marks, can be included in the original SYMDEB command line in the form
/^^command^^ (for example, /"r;d;q"). These commands, which must precede the filename
of the program being debugged, are carried out immediately when SYMDEB is loaded.
(This is a convenient way to invoke SYMDEB and execute a series of batch commands.)

The parameters for a SYMDEB command include symbols; line numbers; addresses;
ranges; and 8-bit, l6-bit, 32-bit, or floating-point values, expressions, and lists. Multiple
parameters can be separated by spaces, tabs, or commas.

A symbol is a name that represents a register, an absolute value, a segment address, or a
segment offset. A symbol consists of one or more characters but always begins with a let
ter, an underscore (_), a question mark (?), an at sign (@), or a dollar sign ($). The names
of the various 8086/8088/80286 registers and CPU flags are built into SYMDEB and can be
used at any time. Other symbols can be used only when one or more symbol files have
been loaded in conjunction with the program to be debugged.

Note: SYMDEB regards symbols whose spellings differ only in case as the same symbol.
A unique symbol name that does not conflict with programming instructions, register
names, or hexadecimal numbers should always be used.

In MASM programs, symbols must be declared PUBLIC in the source code in order to be
accessible during debugging (except for segment and group names, which are PUBLIC by
default). In programs compiled with the current versions of Microsoft C, FORTRAN,

Section IV: Programming Utilities 1057

SYMDEB

and Pascal, all symbols are passed through for debugging if the proper compilation switch
is used; however, familiarity with the compiler's particular naming conventions is neces
sary (for example, the Microsoft C Compiler adds an underscore character to the beginning
of every symbol).

A line number is a combination of decimal numbers, filenames, and symbols that specifies
a unique line of text in a program source file. Line numbers always start with a dot charac
ter (.) and take one of the following forms:

. [filename-] linenumber
.•^displacement
.-displacement
.symbol[-^ displacement]
.symbol[-displacement]

The second and third variations specify a line relative to the current line number; the
fourth and fifth specify a line number relative to a designated symbol. Line numbers can
be used only with programs developed with compilers that generate line-number informa
tion. Programs developed with MASM or an incompatible compiler cannot generate line
numbers.

An address identifies a unique location in memory. An address can be a simple offset or a
complete address consisting of two l6-bit values in the form segmentioffset. Each compo
nent can be a valid symbol (including CS, DS, ES, or SS, in the case of segments), a l6-bit
hexadecimal number in the range 0 through FFFFH, or a symbol plus or minus a displace
ment. When the segment portion of an address is absent, the segment specified in the
previous instance of the same command is used; if no segment was previously specified,
SYMDEB uses DS unless an A, G, L, P, T, U, or W command is used, in which case SYMDEB
uses CS.

A range specifies an area of memory or a number of data items and can be expressed as
either two addresses or a starting address and a length. A length is represented by the letter
L followed by a hexadecimal value in the range 0 through FFFFH. The meaning of the
length varies with the SYMDEB command used: The length can signify a number of bytes,
words, doublewords, real numbers, machine instructions, or source-code lines. If a com
mand requires a range and the ending address is not supplied, SYMDEB usually assumes
128 bytes.

A value represents an integral number and is a combination of one or more digits. The
default base for values is hexadecimal, except in the case of floating-point numbers, but
other bases can be used by appending a radix character (Y for binary, O or Q for octal, T
for decimal, H for hexadecimal) in either uppercase or lowercase. For example, the follow
ing values are equivalent:

0040 OlOOQ
0040H OlOOO

0064t lOOOOOOY

1058 The MS-DOS Encyclopedia

SYMDEB

Doubleword (32-bit) values are entered as two hexadecimal integers separated by a colon
character (:). Real numbers are always entered in decimal radix, with or without a decimal
point or exponent. Leading zeros can be omitted.

An expression is a combination of symbols, numeric constants, and operators that evalu
ates to an 8-, 16-, or 32-bit value. An expression can be used in place of a simple value in
any command. Unary address operators use DS as the default segment for addresses. Ex
pressions are evaluated in order of operator precedence; operators with equal precedence
are evaluated from left to right. Parentheses can be used to override the normal operator
precedence.

The available unary operators, listed in order of precedence from highest to lowest, are

Operator Meaning

+ Unary plus
- Unary minus

NOT One's (bitwise) complement
SEG Segment address of operand
OFF Offset of operand
BY Low-order byte from specified address
WO Low-order word from specified address
DW Doubleword from specified address
POI Pointer from specified address (same as DW)
PORT Byte input from specified port
WPORT Word input from specified port

The available binary operators, listed in order of precedence from highest to lowest, are

Operator Meaning

» Multiplication
/ Integer division
MOD Modulus

: Segment override
+ Addition

- Subtraction

AND Bitwise Boolean AND

XOR Bitwise Boolean Exclusive OR

OR Bitwise Boolean Inclusive OR

A list is composed of one or more values, expressions, or strings, separated by spaces or
commas. A string is one or more ASCII characters, enclosed within single or double quota
tion marks. Case is significant within a string. If the same type of quote character that is
used to delimit the string occurs inside the string, the character must be doubled inside the
string in order to be interpreted correctly (for example,"A ""quoted"" word").

Section IV: Programming Utilities 1059

SYMDEB

In a few cases, SYMDEB displays a specific and informative error message in response to
an invalid command. In general, though, SYMDEB responds in a generic fashion, pointing
to the approximate location of the error with a caret character (^), followed by the word
Error. For example:

-D CS:100,CS:80 <Enter>

Error

SYMDEB maintains a set of virtual CPU registers and flags for a program being debugged.
These registers can be examined and modified with SYMDEB commands. When a pro
gram is first loaded for debugging, the virtual registers are initialized with the following
values:

Register •COM Program •EXE Program

AX Valid drive code Valid drive code

BX Upper half of program size Upper half of program size
CX Lower half of program size Lower half of program size
DX Zero Zero

SI Zero Zero

DI Zero Zero

BP Zero Zero

SP FFFEH or top of available Size of stack segment
memory minus 2

IP lOOH Offset of entry point within target
program's code segment

CS PSP Base of target program's code segment
DS PSP PSP

ES PSP PSP

ss PSP Base of target program's stack segment

Note: SYMDEB checks the first three parameters in the command line. If the second and
third parameters are filenames, SYMDEB checks any drive specifications with those file
names to verify that they designate valid drives. Register AX contains one of the following
codes:

Code Meaning

OOOOH The drives specified with the second and third filenames are both valid, or
only one filename was specified in the command line.

OOFFH The drive specified with the second filename is invalid.
FFOOH The drive specified with the third filename is invalid.
FFFFH The drives specified with the second and third filenames are both invalid.

1060 The MS-DOS Encyclopedia

SYMDEB

Before SYMDEB transfers control to the target program, it saves the actual CPU registers
and then loads them with the current values of the virtual registers; conversely, when con
trol reverts to SYMDEB from the target program, the returned register contents are stored
back into the virtual register set for inspection and alteration by the SYMDEB user.

Examples

To prepare the program CLEAN.ASM for debugging with SYMDEB, declare all vital labels,
procedures, and variable names in the source program PUBLIC. To assemble the program,
type

OMASM CLEAN; <Enter>

This produces the relocatable object module CLEAN.OBJ. Then, to link the object module,
type

OLINK /MAP CLEAN; <Enter>

This results in the executable program file CLEAN.EXE and the map file CLEAN.MAP.

Note: The /MAP switch must be used even if a map file is specified in the command line.
Finally, to create the symbol information file required by SYMDEB, type

OMAPSYM CLEAN <Enter>

At this point, begin symbolic debugging by typing

OSYMDEB CLEAN.SYM CLEAN.EXE <Enter>

Any run-time command-line parameters required by the CLEAN program may be placed
in the SYMDEB command line after the filename CLEAN.EXE.

To prepare the program SHELL.C for debugging with SYMDEB, first compile the program
with the switches that disable optimization and cause line-number information to be writ
ten to the relocatable object module:

OMSC /Zd /Od SHELL; <Enter>

Next, to convert the object module to an executable program and create a map file with
line-number information, type

OLINK /MAP /LI SHELL; <Enter>

To create the symbol information file required by SYMDEB for symbolic debugging, type

OMAPSYM SHELL <Enter>

To begin debugging, type

OSYMDEB SHELL.SYM SHELL.EXE <Enter>

Section IV: Programming Utilities IO6I

SYMDEB

To use the SYMDEB utility to inspect or modify memory or to read, modify, and write
absolute disk sectors, type

OSYMDEB <Enter>

Message

File not found

The filename supplied as the first parameter in the SYMDEB command line cannot be
found.

1062 The MS-DOS Encyclopedia

SYMDEB: A

SYMDEB: A

Assemble Machine Instructions

Purpose

Allows entry of assembler mnemonics and translates them into executable machine code.

Syntax

A [address]

where:

address is the starting location for the assembled machine code.

Description

The Assemble Machine Instructions (A) command accepts assembly-language statements,
rather than hexadecimal values, for the Intel 8086/8088,80186, and 80286 (running in real
mode) microprocessors and the Intel 8087 and 80287 math coprocessors and assembles
each statement into executable machine language.

The address parameter specifies the location where entry of assembly-language mne
monics will begin. If address is omitted, SYMDEB uses the last address generated by the
previous A command; if there was no previous A command, SYMDEB uses the current
value of the target program's CSiIP registers.

After the user enters an A command, SYMDEB prompts for each assembly-language state
ment by displaying the address (a segment and an offset) in which the assembled code will
be stored. When the user presses the Enter key, SYMDEB translates the assembly-language
statement and stores each byte of the resulting machine instruction sequentially in mem
ory (overwriting any existing information), beginning at the displayed address. SYMDEB
then displays the address following the last byte of the machine instruction to prompt the
user to enter the next assembled instruction. The user can terminate assembly mode by
pressing the Enter key in response to the address prompt.

The assembly-language statements accepted by the SYMDEB A command have some
slight syntactic differences and restrictions compared with the Microsoft Macro Assembler
programming statements. These differences can be summarized as follows:

• All numbers are assumed to be hexadecimal integers unless otherwise specified with
a radix character suffix.

• Segment overrides must be specified by preceding the entire instruction with CS:,
DS:,ES:,orSS:.

• File control directives (NAME, PAGE, TITLE, and so forth), macro definitions, record
structures, and conditional assembly directives are not supported by SYMDEB.

Section IV: Programming Utilities 1063

SYMDEB: A

• When the data type (word or byte) is not implicit in the instruction, the type must be
specified by preceding the operand with BYTE PTR (or BY), WORD PTR (or WO),
DWORD PTR (or DW), QWORD PTR (or QW), or TBYTE PTR (or TB).

• In a string operation, the size of the string must be specified with a B (byte) or W
(word) added to the string instruction mnemonic (for example, LODSB or LODSW).

• The DB and DW instructions accept a parameter of the type list and assemble byte
and word values directly into memory.

• The W\IT or FWA.IT opcodes for 8087/80287 assembler statements are not generated
by the system and must be coded explicitly. (Note: 8087/80287 instructions can be as
sembled if the system is not equipped with a math coprocessor, but the system will
crash if an attempt is made to execute them.)

• Addresses must be enclosed in square brackets to be differentiated from immediate
operands.

• Repeat prefixes such as REP, REPZ, and REPNZ can be entered either alone on a line
preceding the statement they affect or on the same line immediately preceding the
statement.

• The assembler will generate the optimal form (SHORT, NEAR, or FAR) for jumps or
calls, depending on the destination address, but these can be overridden if the
operand is preceded with a NEAR (or NE) or FAR prefix.

• The mnemonic for a FAR RETURN is RETF.

Examples

To begin assembling code at address CSiOlOOH, type

-A 100 <Enter>

To assemble the instruction sequence

LODS WORD PTR [SI]

XCHG BX,AX

JMP [BX]

beginning at address CSrOlOOH, the following dialogue would take place:

-A 100 <Enter>

1983:0100 LODSW <Enter>

1983:0101 XCHG BX,AX <Enter>

1983:0103 JMP [BX] <Enter>

1983:0105 <Enter>

To continue assembling at the last address generated by a previous A command
(1983:0105H in the preceding example), type

-A <Enter>

1064 The MS-DOS Encyclopedia

SYMDEB: BC

SYMDEB: BC

Clear Breakpoints

Purpose

Permanently removes sticky breakpoints.

Syntax

BC*

or

BC list

where:

♦ represents all sticky breakpoints.
list is one or more integers (sticky breakpoint numbers) in the range 0 through 9.

Description

The Clear Breakpoints (BC) command permanently clears the sticky breakpoints pre
viously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in mem
ory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command,
which remains in effect only while the G command executes.

If an asterisk character (♦) follows the BC command, SYMDEB deletes all sticky break
points. If a list parameter containing one or more sticky breakpoint numbers in the range
0 through 9 follows the BC command, SYMDEB selectively deletes sticky breakpoints.
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP
command. The List Breakpoints (BL) command can be used to display all current sticky
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces.

Sticky breakpoints can be temporarily disabled with the Disable Breakpoints (BD) com
mand and subsequently re-enabled with the Enable Breakpoints (BE) command.

Examples

To clear sticky breakpoints 0,4, and 8, type

-BC 048 <Enter>

To clear all sticky breakpoints, type

-EC * <Enter>

Section IV: Programming Utilities 1065

SYMDEB: BC

Messages

Bad breakpoint number! (0-9)
A sticky breakpoint number in the command line was not an integer in the range 0
through 9.

Breakpoint list or **' expected!
The BC command was entered without parameters.

1066 The MS-DOS Encyclopedia

SYMDEB: BD

SYMDEB: BD

Disable Breakpoints

Purpose

Temporarily disables sticky breakpoints.

Syntax

BD*

or

BD list

where:

♦ represents all sticky breakpoints.
list is one or more integers (sticky breakpoint numbers) in the range 0 through 9.

Description

The Disable Breakpoints (BD) command temporarily disables the sticky breakpoints
previously set with the Set Breakpoints (BP) command. A sticky breakpoint remains in
memory throughout a SYMDEB session, unlike a breakpoint set with the Go (G) com
mand, which remains in effect only while the G command executes.

If an asterisk character (♦) follows the BD command, SYMDEB disables all sticky break
points. If a list parameter containing one or more sticky breakpoint numbers in the range
0 through 9 follows the BD command, SYMDEB selectively disables sticky breakpoints.
Each sticky breakpoint is assigned a number when the breakpoint is created with the BP
command. The List Breakpoints (BL) command can be used to display all current sticky
breakpoint locations and numbers. Breakpoint numbers should be separated by spaces.

Sticky breakpoints disabled with the BD command can be re-enabled with the Enable
Breakpoints (BE) command. The Clear Breakpoints (BC) command can be used to per
manently delete a sticky breakpoint.

Examples

To disable sticky breakpoints 0,4, and 8, type

-BD 048 <Enter>

To disable all sticky breakpoints, type

-BD * <Enter>

Section IV: Programming Utilities 1067

SYMDEB: BD

Messages

Bad breakpoint number! (0-9)
A sticky breakpoint number in the command line was not an integer in the range 0
through 9.

Breakpoint list or expected!
The BD command was entered without parameters.

1068 The MS-DOS Encyclopedia

SYMDEB: BE

SYMDEB: BE

Enable Breakpoints

Purpose

Enables disabled sticky breakpoints.

Syntax

BE*

or

BE list

where:

♦ represents all sticky breakpoints.
list is one or more integers (sticky breakpoint numbers) in the range 0 through 9.

Description

The Enable Breakpoints (BE) command enables the sticky breakpoints disabled with the
Disable Breakpoints (BD) command. A sticky breakpoint remains in memory throughout
a SYMDEB session, unlike a breakpoint set with the Go (G) command, which remains in
effect only while the G command executes.

If an asterisk (») character follows the BE command, SYMDEB enables all sticky break
points. If a list parameter containing one or more sticky breakpoint numbers in the range
0 through 9 follows the BE command, SYMDEB selectively enables sticky breakpoints.
Each sticky breakpoint is assigned a number when the breakpoint is created with the Set
Breakpoints (BP) command. The List Breakpoints (BL) command can be used to display
all current sticky breakpoint locations and numbers. Breakpoint numbers should be sepa
rated by spaces.

Examples

To enable sticky breakpoints 0,4, and 8, type

-BE 048 <Enter>

To enable all sticky breakpoints, type

-BE * <Enter>

Section IV: Programming Utilities 1069

SYMDEB: BE

Messages

Bad breakpoint number! (0 - 9)
A sticky breakpoint number in the command line was not an integer in the range 0
through 9.

Breakpoint list or **' expected!
The BE command was entered without parameters.

1070 The MS-DOS Encyclopedia

SYMDEB: BL

SYMDEB: BL

List Breakpoints

Purpose

Displays information about all sticky breakpoints.

Syntax

BL

Description

The List Breakpoints (BL) command lists the current status of each sticky breakpoint
created with the Set Breakpoints (BP) command. A sticky breakpoint remains in memory
throughout a SYMDEB session, unlike a breakpoint set with the Go (G) command, which
remains in effect only while the G command executes.

The BL command lists each sticky breakpoint number, its status code, its address in the
target program, the number of passes remaining, and the initial number of passes speci
fied with the BP command (in parentheses). If source display mode was selected with the
Enable Source Display Mode (8+) command, SYMDEB also displays the source-file name
and the line number that corresponds to each breakpoint location. Breakpoint status
codes are

e Enabled

d Disabled

V Virtual

(A virtual breakpoint is a sticky breakpoint set at a symbol contained in a .EXE file that has
not yet been loaded into SYMDEB.)

Example

To view the current status of all breakpoints, type

-BL <Enter>

If the BP commands

-BPO _TEXT:_main <Enter>

-BPl _TEXT:_printf <Enter>

were previously entered, the BL command displays

0 e 456E:0010 [_TEXT:_main] dump.0:32

1 e 456E:0612 [_TEXT:_printf]

Section IV: Programming Utilities 1071

SYMDEB: BP

SYMDEB: BP

Set Breakpoints

Purpose

Sets sticky breakpoint locations within the program being debugged.

Syntax

BP[w] address[passcount\ ["commands"]

where:

n is the sticky breakpoint number (0-9).
address is the location of the breakpoint in the target program.
passcount is the number of times the instruction at address should be executed

before the breakpoint is taken.
"commands" is one or more SYMDEB commands, separated by semicolons. The entire

list must be enclosed in double quotation marks. (Limit = 30 characters.)

Description

The Set Breakpoints (BP) command sets a sticky breakpoint in the program being
debugged. A sticky breakpoint remains in memory throughout a SYMDEB session, unlike
a breakpoint set with the Go (G) command, which remains in effect only while the G
command executes. When the target program reaches the breakpoint, execution of the
program is suspended and control returns to SYMDEB. SYMDEB displays the contents of
the registers and flags, followed by a prompt so that the user can enter more commands.

The optional n parameter associates an integer in the range 0 through 9, called the break
point number, with the sticky breakpoint location. If n is omitted, the next available
breakpoint number is used. No space is allowed between BP and n.

The address parameter must point to the first byte of a machine instruction in the pro
gram. This parameter may be a symbol, a literal address, or a source-code line number. If
a segment is not included, SYMDEB uses the target program's CS register.

The optional passcount parameter is the number of times execution should pass through
the specified location before the break is taken and control is returned to SYMDEB. The
value of passcount must be a hexadecimal number in the range 0 through FFFFH
(default = 0).

The optional "commands" parameter is one or more SYMDEB commands with their
associated parameters. Each command must be separated from the others by a semicolon
character (;) and the entire list enclosed in double quotation marks ("). A maximum of 30
characters can be specified within the quotation marks. The commands are executed
whenever the break is taken.

1072 The MS-DOS Encyclopedia

SYMDEB: BP

Examples

To set a sticky breakpoint at location next^file in the target program and dump the con
tents of memory locations DS:OOOOH through DS:OOFFH when the breakpoint is reached,
type

-BP NEXT_FILE "DB DS:0 LI 00" <Enter>

To associate the breakpoint number 4 with the location CS:4230H in the program being
debugged and pass the breakpoint 16 (lOH) times before suspending execution of the pro
gram, type

-BP4 CS:4230 10 <Enter>

Messages

Bad breakpoint number! (0-9)
A sticky breakpoint number in the command line was not an integer in the range 0
through 9.

Breakpoint command too long!
The ̂^commands^^ parameter exceeded 30 characters.

Breakpoint error!
The BP command was entered without an address parameter.

Breakpoint redefined!
A new address was assigned to an existing breakpoint number, or an attempt was made to
create a breakpoint with the same address as an existing breakpoint.

Duplicate breakpoint ignored!
An attempt was made to change an existing breakpoint to a breakpoint already specified
in the breakpoint list.

Too many breakpoints!
No more sticky breakpoints are available.

Section IV: Programming Utilities 1073

SYMDEB: C

SYMDEB: C

Compare Memory Areas

Purpose

Compares two areas of memory and reports any differences.

Syntax

C range address

where:

range specifies the starting and ending addresses or the starting address and length
of the first area of memory to be compared.

address points to the beginning of the second area of memory to be compared.

Description

The Compare Memory Areas (C) command compares the contents of two areas of mem
ory. The location and contents of any differing bytes are listed in the following form:

addressl bytel byte2 address2

If no differences are found, the SYMDEB prompt returns.

The range parameter specifies the first through last addresses or the starting address and
length in bytes of the first area of memory to be compared.

The address parameter points to the beginning of the second area of memory to be com
pared, which is the same size as range. If a segment is not included in either range or
address, SYMDEB uses DS.

Example

To compare the 64 bytes beginning at CS:CEOOH with the 64 bytes beginning at
CS:CFOAH, type

-C CS:CE00,CE3F CS:CFOA <Enter>

or

-C CSzCEOO L40 CS:CFOA <Enter>

If any differences are found, SYMDEB displays them in the following format:

2124:CE06 00 FF 2124:CF10

1074 The MS-DOS Encyclopedia

SYMDEB: D

SYMDEB: D

Display Memory

Purpose

Displays the contents of an area of memory.

Syntax

D [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Memory (D) command displays the contents of a specified range of memory
addresses in the same format used in the most recent Display command (DA, DB, DD, DL,
DS, DT, or DW). If no Display command has previously been entered, the memory is dis
played in hexadecimal bytes and their ASCII equivalents (the DB format).

The range parameter specifies the starting and ending addresses of the memory area to
be displayed or the starting address followed by the length of the area, expressed by an L
and the hexadecimal number of data items to be displayed. When range does not include
a segment, SYMDEB uses DS.

The size in bytes of each item and the default value for the length depend on the type of
Display command used: the Display Byte (DB), Display Doubleword (DD), and Display
Word (DW) commands default to a length of 128 (BOH) bytes; Display ASCII (DA) displays
128 bytes or up to a null byte, whichever is smaller; Display Short Reals (DS), Display Long
Reals (DL), and Display 10-Byte Reals (DT) default to the display of one floating-point
number.

If a Display command has not previously been used and range is omitted from a D com
mand, the display starts at the address specified in the target program's CS:IP registers. If a
Display command has previously been used and range is omitted from a D command, the
display starts at the memory address following the last address displayed by the most re
cent Display command.

Examples

Assume that the only Display commands used during this SYMDEB session are D and DB.
To display the contents of the 128 bytes of memory beginning at offset lOOH in the pro
gram's DGROUP, type

-D DGROUP:0100 <Enter>

Section IV: Programming Utilities 1075

SYMDEB: D

SYMDEB displays the contents of the range of memory addresses in the following format:

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device...'9.. . !

7F00:0110 39 08 20 08 00 81 39 04-1B 5B 32 4A 42 BD 11 44 9. ...9..[2JB=.D

7F00:0120 2E 26 45 AF 11 47 B3 11-48 A5 11 4C B8 1 1 4E D3 .&E/.G3.H%.L8.NS

7F00:0130 11 50 DF 11 51 AB 11 54-DF IE 56 37 1 1 5F 9F 16 .P_.Q+.T_.V7

7F00:0140 24 CO 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $0. ..NOTA..ERROR

7F00:0150 4C 45 56 45 40 85 08 05-45 58 49 53 54 18 08 00 LEVEL...EXIST...

7F00:0160 03 44 49 52 03 91 OC 06-52 45 4E 41 4D 45 01 CO .DIR RENAME. 0

7F00:0170 OF 03 52 45 4E 01 CO OF-05 45 52 41 53 45 01 68 ..REN.0..ERASE.h

To view the next 128 bytes of memory, type

-D <Enter>

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH.

1076 The MS-DOS Encyclopedia

SYMDEB: DA

SYMDEB: DA

Display ASCII

Purpose

Displays the contents of memory in ASCII format.

Syntax

DA [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display ASCII (DA) command displays the contents of a specified range of memory
addresses in ASCII format.

The range parameter specifies the starting and ending addresses of the memory area to
be displayed in ASCII format or the starting address followed by the length of the area, ex
pressed by an L and a hexadecimal number of bytes. When range does not include a
segment, SYMDEB uses DS.

If a Display command has not previously been used and range is omitted from a DA com
mand, the display starts at the address specified in the target program's CS:IP registers. If a
Display command has previously been used and range is omitted from a DA command,
the display starts at the memory address following the last address displayed by the most
recent Display command.

When a range is not explicit in a DA command, the display terminates after 128 bytes or
when a null (zero) byte is encountered. If a range is specified, the entire range is dis
played, including any null bytes, with nonprinting characters displayed as period (.)
characters.

Each line of the display is formatted as a segment and offset, followed by the contents of
16 bytes of memory (or less if a null byte was encountered) represented as an ASCII string.

See also PROGRAMMING UTILITIES: symdeb:ea.

Examples

If memory beginning at location 7F00:0100H contains the characters This is a test string
followed by a null (zero) byte, the command

-DA 7F00:0100 <Enter>

Section IV: Programming Utilities 1077

SYMDEB: DA

produces the following display:

7F00:0100 This is a test string

To view additional memory in the same format, type

-D <Enter>

1078 The MS-DOS Encyclopedia

SYMDEB: DB

SYMDEB: DB

Display Bytes

Purpose

Displays the contents of memory as hexadecimal bytes and their equivalent ASCII
characters.

Syntax

DB [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Bytes (DB) command displays the contents of a specified range of memory
addresses as hexadecimal bytes and their ASCII character equivalents. This is the default
format for the Display Memory (D) command.

The range parameter specifies the starting and ending addresses of the memory area to
be displayed or the starting address followed by the length of the area, expressed by an L
and a hexadecimal number of bytes. When range does not include a segment, SYMDEB
uses DS.

If a Display command has not previously been used and range is omitted from a DB com
mand, the display starts at the address specified in the target program's CSrIP registers. If a
Display command has previously been used and range is omitted from a DB command,
the display starts at the memory address following the last address displayed by the most
recent Display command. When a range is not explicit in a DB command, the display ter
minates after 128 bytes.

Each line of the display is formatted as a segment and offset, followed by the contents of
16 bytes of memory represented as hexadecimal values separated by spaces (except the
eighth and ninth values, which are separated by a dash), followed by their ASCII character
equivalents (if any). In the ASCII section, nonprinting characters are displayed as periods.

PROGRAMMING UTILITIES: symdeb:eb.

Examples

To display the contents of the 128 bytes of memory beginning at 7F00:0100H, type

-DB 7F00:0100 <Enter>

Section IV: Programming Utilities 1079

SYMDEB: DB

The contents of the range of memory addresses are displayed in the following format:

7F00:0100 20 64 65 76 69 63 65 OD-OA 00 60 39 OD OA 00 7C device...'9.. . I

7F00:0110 39 08 20 08 00 81 39 04-1B 5B 32 4A 42 BD 11 44 9. ...9..[2JB=.D

7F00:0120 2E 26 45 AF 11 47 B3 1 1-48 A5 11 4C B8 11 4E D3 .&E/.G3.H%.L8.NS

7F00:0130 11 50 DF 11 51 AB 11 54-DF IE 56 37 11 5F 9F 16 .P_.Q+.T_.V7

7F00:0140 24 CO 11 00 03 4E 4F 54-C1 07 OA 45 52 52 4F 52 $6 . ..NOTA..ERROR

7F00:0150 4C 45 56 45 40 85 08 05-45 58 49 53 54 18 08 00 LEVEL...EXIST...

7F00:0160 03 44 49 52 03 91 OC 06-52 45 4E 41 4D 45 01 CO .DIR RENAME. 0

7F00:0170 OF 03 52 45 4E 01 CO OF-05 45 52 41 53 45 01 68 ..REN.0..ERASE.h

To view the next 128 bytes of memory, type

-D <Enter>

SYMDEB displays the contents of memory addresses 7F00:0180H through 7F00:01FFH.

1080 The MS-DOS Encyclopedia

SYMDEB: DD

SYMDEB: DD

Display Doublewords

Purpose

Displays the contents of memory in hexadecimal doubleword format.

Syntax

DD \rang(^

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Doublewords (DD) command displays the contents of a specified range of
memory addresses 4 bytes at a time, as if they were FAR memory pointers (offset followed
by segment in reverse byte order).

The range parameter specifies the starting and ending addresses of the memory to be dis
played or the starting address followed by the length of the area, expressed by an L and a
hexadecimal number of doublewords. When range do^s not include a segment, SYMDEB
uses DS.

If a Display command has not previously been used and range is omitted from a DD com
mand, the display starts at the address specified in the target program's CS:IP registers. If a
Display command has previously been used and range is omitted from a DD command,
the display starts at the memory address following the last address displayed by the most
recent Display command. When a range is not explicit in a DD command, 32 doublewords
(128 bytes) are displayed.

Each line of the display is formatted as a segment and offset, followed by the contents of
16 bytes of memory represented as 4 paired l6-bit segments and offsets. The 4 bytes that
make up the segment and offset of each doubleword pointer are displayed in reverse order
from their actual storage in memory.

See also PROGRAMMING UTILITIES: symdeb:ed.

Examples

To see how DD represents the 4 bytes that make up a doubleword, first type

-DB 100 <Enter>

Section IV: Programming Utilities 1081

SYMDEB: DD

This produces the following output:

3929:0100 CF OB 9D OD 33 OE 03 0E-F2 OE 06 OF 39 OF 49 OF 0 . . . 3.C.r...9.1.

Then type

-DD 100 <Enter>

This produces the following output:

3929:0100 0D9D:0BCF 0EC3:0E33 0F06:0EF2 0F49:0F39

Notice that DD switches the order of the first 2 bytes in a 4-byte set and designates them as
the offset; then it switches the order of the second 2 bytes in the 4-byte set and designates
them as the segment address.

To display the contents of the first 128 (BOH) bytes of the system interrupt vector table,
which is based at address 0000:0000H, type

-DD 0:0 <Enter>

This produces the following output:

0000:0000 2075:03D2 0070:01F0 16F3:2C1B 0070:01F0

0000:0010 0070:01F0 F000:FF54 F000:9805 F000:9805

0000:0020 0AE3:O395 16F3:2BAD F000:9805 F000:9805

0000:0030 0972:0B40 F000:9805 F000:EF57 0070:01F0

0000:0040 0AE3:03D6 F000:F84D F000:F841 0070:0D43

0000:0050 F000:E739 F000:F859 F000:E82E F000:EFD2

0000:0060 F000:E76C 0070:0ADD F000:FE6E 1078:3BEC

0000:0070 F000:FF53 F000:F0E4 0000:0522 F000:0000

To view the next 128 bytes of memory in the same format, type

-D <Enter>

SYMDEB displays the contents of memory addresses 0000:0080H through 0000:00FFH.

1082 The MS-DOS Encyclopedia

SYMDEB: DL

SYMDEB: DL

Display Long Reals

Purpose

Displays the contents of memory as long (64-bit) floating-point numbers.

Syntax

DL [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Long Reals (DL) command displays the contents of a specified range of mem
ory addresses 8 bytes at a time, as hexadecimal values and their decimal equivalents. The
hexadecimal values are formatted as 64-bit floating-point numbers. The decimal values
have the form

+1-0 .decimaldigitsE-^ \'-'inantissa

The sign of the number (+ or -) is followed by a zero, a decimal point, and a maximum of
16 decimaldigits, this, in turn, is followed by the designator of the mantissa (E) and the
mantissa's sign (+ or -) and digits.

The range parameter specifies the starting and ending addresses of the memory to be dis
played or the starting address followed by the length of the area, expressed by an L and a
hexadecimal number of 8-byte values. When range does not include a segment, SYMDEB
uses DS.

If a Display command has not previously been used and range is omitted from a DL
command, the display starts at the address specified in the target program's CSiIP regis
ters. If a Display command has previously been used and range is omitted from a DL com
mand, the display starts at the memory address following the last address displayed
by the most recent Display command. When a range is not explicit in a DL command,
one 64-bit floating-point number is displayed.

Each line of the display is formatted as a segment and offset, followed by the contents of
8 bytes of memory represented as a hexadecimal value, followed by its decimal floating
point equivalent.

See also PROGRAMMING UTILITIES: symdeb:el.

Section IV: Programming Utilities 1083

SYMDEB: DL

Examples

Assume that the memory beginning at location DS;0100H contains the value 6.624 *10^27
(Planck's constant, in erg-seconds) as a 64-bit floating-point number. The command

-DL 100 <Enter>

produces the following output:

43E8:0100 5F A2 20 73 75 66 80 3A +0.6624E-26

To view the next 8 bytes of memory in the same format, type

-D <Enter>

1084 The MS-DOS Encyclopedia

SYMDEB: DS

SYMDEB: DS

Display Short Reals

Purpose

Displays the contents of memory as short (32-bit) floating-point numbers.

Syntax

DS [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Short Reals (DS) command displays the contents of a specified range of mem
ory addresses 4 bytes at a time, as hexadecimal values and their decimal equivalents. The
hexadecimal values are formatted as 32-bit floating-point numbers. The decimal values
have the form

+\-0.deciinaldigits^+ {-mantissa

The sign of the number (+ or -) is followed by a zero, a decimal point, and a maximum
of 16 decimaldigits (only the first 7 digits are significant); this, in turn, is followed by the
designator of the mantissa (E) and the mantissa's sign (+ or -) and digits.

The range parameter specifies the starting and ending addresses of the area of memory to
be displayed or the starting address followed by the length of the area, expressed by an L
and a hexadecimal number of 4-byte values. When range does not include a segment,
SYMDEB uses DS.

If a Display command has not previously been used and range is omitted from a DS
command, the display starts at the address specified in the target program's CS:IP regis
ters. If a Display command has previously been used and range is omitted from a DS com
mand, the display starts at the memory address following the last address displayed
by the most recent Display command. When a range is not explicit in a DS command, one
32-bit floating-point number is displayed.

Each line of the display is formatted as a segment and offset, followed by the contents of
4 bytes of memory represented as a hexadecimal value, followed by its decimal floating
point equivalent.

See also PROGRAMMING UTILITIES: symdeb:es.

Section IV: Programming Utilities 1085

SYMDEB: DS

Examples

Assume that the memory beginning at location 43E8:0100H contains the value 6.02 ♦10+23
(Avogadro's number) as a 32-bit floating-point number. The command

-DS 43E8:100 <Enter>

produces the following output:

43E8:0100 F9 F4 FE 66 +0.6020000172718952E+24

To view the next 4 bytes of memory in the same format, type

-D <Enter>

1086 The MS-DOS Encyclopedia

SYMDEB: DT

SYMDEB: DT

Display 10-Byte Reals

Purpose

Displays the contents of memory as 10-byte (80-bit) floating-point numbers.

Syntax

DT [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display 10-Byte Reals (DT) command displays the contents of a specified range of
memory addresses 10 bytes at a time, as hexadecimal values and their decimal equivalents.
The hexadecimal values are formatted as 80-bit floating-point numbers. (This format is
ordinarily used by the Intel 8087 math coprocessor only for intermediate results during
chained floating-point calculations.) The decimal value has the form

+\-0.decimaldigitsE+ {-mantissa

The sign of the number (+ or -) is followed by a zero, a decimal point, and a maximum of
16 decimaldigits; this, in turn, is followed by the designator of the mantissa (E) and the
mantissa's sign (+ or -) and digits.

The range parameter specifies the starting and ending addresses of the area of memory to
be displayed or the starting address followed by the length of the area, expressed by an L
and a hexadecimal number of 10-byte values. When range does not include a segment,
SYMDEB uses DS.

If a Display command has not previously been used and range is omitted from a DT
command, the display starts at the address specified in the target program's CS:IP regis
ters. If a Display command has previously been used and range is omitted from a DT com
mand, the display starts at the memory address following the last address displayed
by the most recent Display command. When a range is not explicit in a DT command, one
10-byte floating-point number is displayed.

Each line of the display is formatted as a segment and offset, followed by the contents of
10 bytes of memory represented as a hexadecimal value, followed by its decimal floating
point equivalent.

See also PROGRAMMING UTILITIES: symdeb:et.

Section IV: Programming Utilities 1087

SYMDEB: DT

Examples

Assume that the memory beginning at location DSiOlOOH contains the value 2.99
(the speed of light in centimeters per second) as an 80-bit floating-point number. The
command

-DT 100 <Enter>

produces the following output:

43E8:0100 00 GO GO GG 6G B9 C5 DE 21 4G +G.299E+11

To view the next 10 bytes of memory in the same format, type

-D <Enter>

1088 The MS-DOS Encyclopedia

SYMDEB: DW

SYlVfDEB: DW

Display Words

Purpose

Displays the contents of memory as 2-byte (l6-bit) words.

Syntax

DW [range]

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be displayed.

Description

The Display Word (DW) command displays the contents of a specified range of memory
addresses 2 bytes at a time, as l6-bit hexadecimal integers.

The range parameter specifies the starting and ending addresses of the area of memory to
be displayed or the starting address followed by the length of the area, expressed by an L
and a hexadecimal number of words of memory to be displayed. When range does not in
clude a segment, SYMDEB uses DS.

If a Display command has not previously been used and range is omitted from a DW com
mand, the display starts at the address specified in the target program's CSrIP registers. If a
Display command has previously been used and range is omitted from a DW command,
the display starts at the memory address following the last address displayed by the most
recent Display command. When a range is not explicit in a DW command, 64 words
are displayed.

Each line of the display is formatted as a segment and offset, followed by the contents of 16
bytes of memory represented as eight 4-digit hexadecimal numbers. The 2 bytes that make
up each word are displayed in reverse order from their actual storage in memory. That is,
the first byte in a 2-byte word is displayed after the second byte.

See also PROGRAMMING UTILITIES: symdeb:ew.

Examples

To display the contents of the 64 words of memory beginning at DS:0080H in word format,
type

-DW 80 <Enter>

Section IV: Programming Utilities 1089

SYMDEB: DW

This produces the following output:

1 FEE:0080 6977 64 6E 776F 5073 6960 0062 4940 3D42

1 FEE:0090 3A63 6D5C 6373 6050 6269 633B 50 3A 6977

1FEE:00A0 646E 776F 5073 6960 0062 4D54 3D50 3A63

1FEE:00B0 745C 6D65 0070 4554 504D 633D 503A 6574

1FEE:00C0 706D 4400 4149 3D40 3A63 6450 6169 00 60

1FEE:00D0 4350 3346 3D32 3A63 6650 726F 6874 7050

1FEE:00E0 3363 0032 4350 3350 3D32 3A63 6650 726F

1FEE:00F0 6874 705C 7560 3373 0032 5255 3146 3D30

To view the next 64 words of memory in the same format, type

-D <Enter>

SYMDEB displays the contents of memory addresses 1FEE:0100H through 1FEE:017FH.

1090 The MS-DOS Encyclopedia

SYMDEB: E

SYMDEB: E

Enter Data

Purpose

Enters data into memory.

Syntax

E addressUist]

where:

address is the first memory location for storage.
list is the data to be placed into successive bytes of memory, starting at address.

Description

The Enter Data (E) command enters into memory one or more data items, using the same
format as the most recent Enter command (EA, EB, ED, EL, ES, ET, or EW). If no Enter
command has previously been used, the data can be entered as either hexadecimal values
or ASCII strings (the EA or EB format). Any data previously stored at the specified loca
tions is lost. If SYMDEB displays an error message, no changes are made.

The address parameter specifies the first byte to be modified. If address does not include
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data
stored.

The list parameter must meet the requirements of the last Enter command used. All
SYMDEB Enter commands are described in alphabetic order on the following pages. If list
is included in the command line, the changes are made unless an error is detected in the
command line. If list is omitted from the command line, the current contents of address

are displayed, followed by a period (.), and the user is prompted for new data. If no value
is entered and the Enter key is pressed, the original value remains unchanged and the En
ter command is terminated.

Examples

The following two examples assume that no previous Enter commands have been used or
that the most recent Enter command was EA or EB.

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:1FB3H, type

-E 1FB3 00 OD OA <Enter>

Section IV: Programming Utilities 1091

SYMDEB: E

If the command

-E 2C3 ABC <Eri.ter>

is entered and the last Enter command used was E A or EB, the value BCH is stored at
DS:2C3H, and the leading 'A' character on the hexadecimal number ABC is ignored.

1092 The MS-DOS Encyclopedia

SYMDEB: EA

SYMDEB: EA

Enter ASCII String

Purpose

Enters an ASCII string or hexadecimal byte values into memory.

Syntax

EA addressUist]

where:

address is the first memory location for storage.
list is one or more ASCII strings or hexadecimal byte values.

Description

The Enter ASCII String (EA) command enters data into successive memory bytes. The data
can be entered as either hexadecimal byte values or ASCII strings. Any data previously
stored at the specified locations is lost. If SYMDEB displays an error message, no changes
are made. The EA command functions exactly like the Enter Bytes (EB) command.

The address parameter specifies the first byte to be modified. If address does not include
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data
stored.

The list parameter is one or more ASCII strings and/or hexadecimal byte values, separated
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must
be enclosed within single or double quotation marks, and case is significant within a
string.

If list is included in the command line, the changes are made unless an error is detected in
the command line. If list is omitted from the command line, the user is prompted byte by
byte for new data, starting at address. The current contents of a byte are displayed, fol
lowed by a period. A new value for that byte can be entered as one or two hexadecimal
digits (extra characters are ignored), or the contents can be left unchanged. To display the
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac
ter (-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing
the spacebar or entering any data.

Text strings can be used only as part of the list parameter in an EA command line; they
cannot be entered in response to an address prompt.

Section IV: Programming Utilities 1093

SYMDEB: EA

Example

To store the string MAINMENU into memory beginning at address ES:0Cl4H, type

-EA ES:C14 "MAIN MENU" <Enter>

1094 The MS-DOS Encyclopedia

SYMDEB: EB

SYMDEB: EB

Enter Bytes

Purpose

Enters hexadecimal byte values or ASCII strings into memory.

Syntax

EB addressUist]

where:

address is the first memory location for storage.
list is one or more hexadecimal byte values or ASCII strings.

Description

The Enter Bytes (EB) command enters data into successive memory bytes. The data can
be entered as either hexadecimal byte values or ASCII strings. Any data previously stored
at the specified locations is lost. If SYMDEB displays an error message, no changes are
made. The EB command functions exactly like the Enter ASCII String (EA) command.

The address parameter specifies the first byte to be modified. If address does not include
a segment, SYMDEB uses DS. SYMDEB increments the address for each byte of data
stored.

The list parameter is one or more hexadecimal byte values and/or ASCII strings, separated
by spaces, commas, or tab characters. Extra or trailing characters are ignored. Strings must
be enclosed within single or double quotation marks, and case is significant within a
string.

If list is included in the command line, the changes are made unless an error is detected in
the command line. If list is omitted from the command line, the user is prompted byte by
byte for new data, starting at address. The current contents of a byte are displayed, fol
lowed by a period. A new value for the byte can be entered as one or two hexadecimal
digits (extra characters are ignored), or the contents can be left unchanged. To display the
next byte, the user presses the spacebar. If the user enters a minus sign, or hyphen charac
ter (-), instead of pressing the spacebar, SYMDEB backs up to the previous byte. A maxi
mum of 8 bytes can be entered on each input line; a new line is begun each time an 8-byte
boundary is crossed. Data entry is terminated by pressing the Enter key without pressing
the spacebar or entering any data.

Text strings can be used only as part of the list parameter in an EB command line; they
cannot be entered in response to an address prompt.

Section IV: Programming Utilities 1095

SYMDEB: EE

Examples

To store the byte values OOH, ODH, and OAH into the 3 bytes beginning at DS:1FB3H, type

-EB 1FB3 00 OD OA <Enter>

To store the string MAIN MENU into memory beginning at address ES:0C14H, type

-EB ES:C14 "MAIN MENU" <Enter>

1096 The MS-DOS Encyclopedia

SYMDEB: ED

SYMDEB: ED

Enter Doublewords

Purpose

Enters hexadecimal doubleword values into memory.

Syntax

ED address[value]

where:

address is the first memory location for storage.
value is a doubleword (32-bit) hexadecimal value.

Description

The Enter Doublewords (ED) command enters into memory 32-bit hexadecimal double-
word values in the form of FAR memory pointers (offset followed by segments in reverse
byte order). Any data previously stored at the specified locations is lost. If SYMDEB dis
plays an error message, no changes are made.

The address parameter specifies the first memory location to be modified. If address does
not include a segment, SYMDEB uses DS.

The value parameter is one doubleword value, entered as two l6-bit hexadecimal words
separated by a colon character (:). Each value is entered in the form segmentioffset. The
offset portion is stored at address, and the segment portion is stored at address+2, both in
reverse byte order. For example, a value of AABB:CCDDH would be stored in memory as
DDH, CCH, BBH, and AAH, starting at address. Multiple values cannot be used in an ED
command line; SYMDEB ignores any values after the first value.

If value is omitted from the command line, SYMDEB prompts the user for new data, start
ing at address. The current contents of the location are displayed, followed by a period.
The user can then enter a new doubleword value and press the Enter key or leave the con
tents unchanged by pressing the Enter key alone, which also terminates the ED command.
If a new value is entered, SYMDEB increments address and displays the next doubleword
value.

Example

To store the doubleword value F000:1392H at the address DS:0200H, type

-ED 200 F000:1392 <Enter>

Section IV: Programming Utilities 1097

SYMDEB: EL

SYMDEB: EL

Enter Long Reals

Purpose

Enters 64-bit floating-point numbers into memory.

Syntax

EL address[value]

where:

address is the first memory location for storage.
value is a 64-bit floating-point decimal number.

Description

The Enter Long Reals (EL) command enters into memory 64-bit floating-point numbers
in decimal format. Any data previously stored at the specified memory locations is lost. If
SYMDEB displays an error message, no changes are made.

The address parameter specifies the first byte to be modified. If address does not include
a segment, SYMDEB uses DS.

The value parameter is a floating-point number entered in decimal radix, with or without
a decimal point and/or exponent. Multiple values cannot be used in an EL command line;
SYMDEB ignores any values after the first value.

The 64-bit floating-point decimal value must be entered in the form

[+ \-]decimaldigits[^[+1 -]mantissa]

where:

+1 - is the sign of the long floating-point value or the mantissa.
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits

before and after a decimal point.
E denotes the beginning of the mantissa.
mantissa is the decimal mantissa value.

If value is omitted from the command line, SYMDEB prompts the user for new data, start
ing at address. The current contents of the location are displayed. The user can enter a
new value and press the Enter key or leave the contents unchanged by pressing the Enter
key alone, which also terminates the EL command. If a new value is entered and the Enter
key is pressed, SYMDEB increments address and displays the next long real number.

1098 The MS-DOS Encyclopedia

SYMDEB: EL

Example

To store an approximation of the value pi (n) in the form of a 64-bit floating-point number
at address DS:0020H, type

-EL 20 +0.3141592653589793E+1 <Enter>

or

-EL 20 3.141592653589793 <Enter>

Section IV: Programming Utilities 1099

SYMDEB: ES

SYMDEB: ES

Enter Short Reals

Purpose

Enters 32-bit floating-point numbers into memory.

Syntax

ES address [value]

where:

address is the first memory location for storage.
value is a 32-bit floating-point decimal number.

Description

The Enter Short Reals (ES) command enters into memory 32-bit floating-point numbers
in decimal format. Any data previously stored at the specified locations is lost. If SYMDEB
displays an error message, no changes are made.

The address parameter specifies the first byte to be modified. If address does not include
a segment, SYMDEB uses DS.

The value parameter is a floating-point number entered in decimal radix, with or without
a decimal point and/or exponent. Multiple values cannot be used in an ES command line;
SYMDEB ignores any values after the first value.

The 32-bit floating-point decimal value must be entered in the form

[+ \'-]deciinaldigits[^[+ \-]mantissa]

where:

+! - is the sign of the short floating-point value or the mantissa.
decimaldigits is a decimal number. A maximum of l6 digits is allowed, including digits

before and after a decimal point.
E denotes the beginning of the mantissa.
mantissa is the decimal mantissa value.

Note: For short floating-point values, the last nine decimaldigits are not significant. This
can be demonstrated by using the Display Short Reals (DS) command to check the new
value in memory.

If value is omitted from the command line, SYMDEB prompts the user for new data, start
ing at address. The current contents of the location are displayed. The user can then enter
a new value and press the Enter key or leave the contents unchanged by pressing the

1100 The MS-DOS Encyclopedia

SYMDEB: ES

Enter key alone, which also terminates the ES command. If a new value is entered and the
Enter key is pressed, SYMDEB increments address and displays the next short floating
point number.

Example

To store an approximation of the value pi (tc) in the form of a 32-bit floating-point number
at address DS:0020H, type

-ES 20 +0.31415927E+1 <Enter>

or

-ES 20 3.1415927 <Enter>

Section IV: Programming Utilities 1101

SYMDEB: ET

SYMDEB: ET

Enter 10-Byte Reals

Purpose

Enters 10-byte (80-bit) floating-point numbers into memory.

Syntax

ET address[value]

where:

address is the first memory location for storage.
value is an 80-bit floating-point decimal number.

Description

The Enter 10-Byte Reals (ET) command enters into memory 10-byte (80-bit) floating-point
numbers in decimal format. Any data previously stored at the specified locations is lost. If
SYMDEB displays an error message, no changes are made. (This 10-byte format is ordinar
ily used by the Intel 8087 math coprocessor only for intermediate results during chained
floating-point calculations.)

The address parameter specifies the first memory location to be modified. If address does
not include a segment, SYMDEB uses DS.

The value parameter is a floating-point number entered in decimal radix, with or without
a decimal point and/or exponent. Multiple values cannot be used in an ET command line;
SYMDEB ignores any values after the first value.

The 10-byte floating-point decimal value must be entered in the form

[+ \-]decimaldigits[E[^\-]mantissa]

where:

+1 - is the sign of the 10-byte floating-point value or the mantissa.
decimaldigits is a decimal number. A maximum of 16 digits is allowed, including digits

before and after a decimal point.
E denotes the beginning of the mantissa.
mantissa is the decimal mantissa value.

If value is omitted from the command, SYMDEB prompts the user for new data, starting at
address. The current contents are displayed. The user can enter a new value and press the
Enter key or leave the contents unchanged by pressing the Enter key alone, which also ter
minates the ET command. If a new value is entered and the Enter key is pressed, SYMDEB
increments address and displays the next 10-byte floating-point number.

1102 The MS-DOS Encyclopedia

SYMDEB: ET

Example

To store an approximation of the value pi (n) in the form of an 80-bit floating-point num
ber at address DS:0020H, type

-ET 20 +0.31415926535897932384E+1 <Enter>

or

-ET 20 3.1415926535897932384 <Enter>

Section IV: Programming Utilities 1103

SYMDEB: EW

SYMDEB: EW

Enter Words

Purpose

Enters word values into memory.

Syntax

EW address[value]

where:

address is the first memory location for storage.
value is a word (l6-bit) hexadecimal value.

Description

The Enter Words (EW) command enters into memory l6-bit hexadecimal word values.
Any data previously stored at the specified locations is lost. If SYMDEB displays an error
message, no changes are made.

The address parameter specifies the first memory location to be modified. If address does
not include a segment, SYMDEB uses DS.

The value parameter is one word value in the range 0 through FFFFH. The value is stored
in reverse byte order. For example, a value of AABBH would be stored in memory as BBH
and AAH, starting at address. Multiple values cannot be used in an EW command line;
SYMDEB ignores any values after the first value.

If value is omitted from the command line, SYMDEB prompts the user word by word for
new data, starting at address. The current contents are displayed, followed by a period.
The user can enter a new word value as one to four hexadecimal digits and press the Enter
key or leave the contents unchanged by pressing the Enter key alone, which also termi
nates the EW command. If a new value is entered, SYMDEB increments address and dis
plays the next word value.

Example

To store the word value 1355H at the address DS:1C00H, type

-EW ICOO 1355 <Enter>

1104 The MS-DOS Encyclopedia

SYMDEB: F

SYMDEB: F

Fill Memory

Purpose

Stores a repetitive data pattern into an area of memory.

Syntax

F range list

where:

range specifies the starting and ending addresses or the starting address and length
of memory to be filled.

list is the data to be used to fill memory.

Description

The Fill Memory (F) command fills an area of memory with the data from a list. The data
can be entered in either hexadecimal or ASCII format. Any data previously stored at the
specified locations is lost. If SYMDEB displays an error message, no changes are made.

The range parameter specifies the starting and ending addresses or the starting address
and hexadecimal length in bytes of the area of memory to be filled. If range does not in
clude an explicit segment, SYMDEB uses DS.

The list parameter is one or more hexadecimal byte values and/or strings, separated by
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation
marks, and case is significant within a string.

If the area to be filled is larger than the data list, the list is repeated as often as necessary to
fill the area. If the data list is longer than the area of memory to be filled, the list is trun
cated to fit.

Examples

To fill the area of memory from DSiOBlOH through DS:0B4FH with the value 0E8H, type

-F BIO B4F E8 <Enter>

or

-F BIO L40 E8 <Enter>

To fill the 16 bytes of memory beginning at address CS:1FA0H by replicating the 2-byte
sequence ODH OAH, type

-F CSrIFAO 1FAF OD OA <Enter>

or

-F CSilFAO LIO OD OA <Enter>

Section IV: Programming Utilities 1105

SYMDEB: F

To fill the area of memory from ESiOBOOH through ESiOBFFH by replicating the text string
BUFFER, type

-F ESrBOO BFF "BUFFER" <Enter>

or

-F ES:BOO L100 "BUFFER" <Enter>

1106 The MS-DOS Encyclopedia

SYMDEB: G

SYIdDEB: G

Go

Purpose

Transfers execution control from SYMDEB to the target program being debugged.

Syntax

G[=address] [breakO[... break9]]

where:

address is the location at which to begin execution.
breakO ... break9 specify from 1 to 10 breakpoints.

Description

The Go (G) command transfers control from SYMDEB to the target program. If no break
points are set, the program will execute until it crashes or until it reaches a normal ter
mination, in which case the message Program terminated normally is displayed and
control returns to SYMDEB. (After this message has been displayed, it may be necessary
to reload the program before it can be executed again.)

The address parameter can be any location in memory. If no segment is specified,
SYMDEB uses the target program's CS register. If address is omitted, SYMDEB transfers to
the current address in the target program's CS:IP registers. An equal sign (=) must precede
address to distinguish it from the breakpoints breakO ... break9.

The parameters breakO ... break9 specify from 1 to 10 breakpoints that can be set as part
of the G command. Breakpoints can be placed in any order, because execution stops at the
first breakpoint address encountered, regardless of the position of that breakpoint in the
list. Each of the breakpoint addresses must contain the first byte of an 8086 opcode.
SYMDEB installs breakpoints by replacing the first byte of the machine instruction at each
breakpoint address with an Interrupt 03H instruction (opcode OCCH). If the program en
counters a breakpoint, program execution is suspended and control returns to SYMDEB.
SYMDEB then restores the original machine code in the breakpoint locations, displays the
contents of the current registers and flags and the instruction pointed to by CS:IP, and
issues the standard SYMDEB prompt. If the target program executes to completion and ter
minates without encountering any of the breakpoints or is halted by some means other
than a breakpoint, the Interrupt 03H instructions are not replaced with the original
machine code and the Load File or Sectors (L) command must be used to reload the origi
nal program.

The G command requires that the target program's SS:SP registers point to a valid stack
that has at least 6 bytes of stack space available. When the G command is executed, it

Section IV: Programming Utilities 1107

SYMDEB: G

pushes the target program's flags and CS and IP registers onto the stack and then transfers
control to the program with an IRET instruction. Thus, if the target program's stack is not
valid or is too small, the system may crash.

The G command also recognizes any sticky breakpoints set with the Set Breakpoint (BP)
command. These sticky breakpoints are not counted as part of the transient breakpoints
specified in the G command line and are not removed after a breakpoint has been
encountered.

Examples

To begin execution of the program in SYMDEB's buffer at location CS:110AH, setting
breakpoints at CS:12FCH and CS:1303H, type

-G =11 OA 12FC 1303 <Enter>

To resume execution of the program following a breakpoint, type

-Q <Enter>

To begin execution at the label main, setting breakpoints at the procedures fopenO and
printfO, type

-G =_main _fopen _printf <Enter>

Messages

Program terminated normally
The program being debugged executed successfully without encountering any break
points and performed a normal termination with Interrupt 20H, Interrupt 21H Function
OOH, or Interrupt 21H Function 4CH. If any breakpoints were set, the original program
should be reloaded with the Load File or Sectors (L) command.

Too many breakpoints!
More than 10 breakpoints were specified in a Go (G) command. Enter the command again
with 10 or fewer breakpoints.

1108 The MS-DOS Encyclopedia

SYMDEB: H

SYMDEB: H

Perform Hexadecimal Arithmetic

Purpose

Displays the sum and difference of two hexadecimal numbers.

Syntax

H valuel value2

where:

valuel and value2 are any two hexadecimal numbers in the range 0 through FFFFH.

Description

The Perform Hexadecimal Arithmetic (H) command displays the sum and difference of
two l6-bit hexadecimal numbers—that is, the result of the operations valuel+value2 and
valuel-value2. If value2 is greater than valuel, SYMDEB displays their difference as a
two's complement hexadecimal number. This command is convenient for performing
quick calculations of addresses and other values during an interactive debugging session.

Examples

To display the sum and difference of the values 4B03H and 104H, type

_H 4B03 104 <Enter>

This produces the following display:

4C07 49FF

If the addition produces an overflow, the four least significant digits are displayed. For
example, the command line

_H FFFF 2 <Enter>

produces the following display:

0001 FFFD

If value2 is greater than valuel, the difference is displayed in two's complement form. For
example, the command line

-H 1 2 <Enter>

produces the following display:

0003 FFFF

Section IV: Programming Utilities 1109

SYMDEB: I

SYMDEB: I

Input from Port

Purpose

Reads and displays 1 byte from an input/output (I/O) port.

Syntax

I port

where:

port is a l6-bit I/O port address in the range 0 through FFFFH.

Description

The Input from Port (I) command performs a read operation on the specified I/O port
address and displays the data as a two-digit hexadecimal number.

Warning: This command must be used with caution because it involves direct access to
the computer hardware and no error checking is performed. Input operations directed to
the ports assigned to some peripheral device controllers may interfere with the proper
operation of the system. If no device has been assigned to the specified I/O port or if the
port is write-only, the value that will be displayed by an I command is unpredictable.

Example

To read and display the contents of I/O port lOAH, type

-I 10A <Enter>

An example of the result of this command is

FF

1110 The MS-DOS Encyclopedia

SYMDEB: K

SYMDEB: K

Perform Stack Trace

Purpose

Displays the current stack frame.

Syntax

K [number]

where;

number is the number of parameters supplied to the current procedure.

Description

The Perform Stack Trace (K) command displays the contents of the current stack frame.
The first line of the display shows the name of the current procedure, parameters to the
procedure, and the filename and line number of the call to the procedure. The subsequent
lines trace the flow of execution that led to the current procedure.

In cases where SYMDEB cannot determine the number of parameters for a procedure by
inspection of the stack frame (for example, if the number of parameters sent to a proce
dure varies), the number option can be used in the command to force the display of one
or more parameters.

The K command can be used only on procedures that follow the calling conventions used
by Microsoft high-level-language compilers.

Examples

Assume that a breakpoint has been set within the C library printfO routine, that the
breakpoint has been reached, and that the SYMDEB prompt has reappeared. The
command

-K <Enter>

produces the following output:

_TEXT:_printf(00D4,0000, 0000) from .dump.C:108

_TEXT:_dump_para(0000, 0000,0FB8) from .dump.C:92

_TEXT:_dump_rec(0FB8, 0001 , 0000,0000) from .dump.C:61

_TEXT:_jnain (?)

In this example, the breakpointed procedure printfO was called by the routine
dump_paraO with three parameters. Dump_para() was called by dump_rec(X which in
turn was called by mainQ. Because SYMDEB cannot determine the depth of the stack

Section IV: Programming Utilities 1111

SYMDEB: K

frame for the routine main(X it displays no parameters for it. The display of at least two
parameters for every procedure can be forced by the command

-K 2 <Enter>

which produces the following example display:

__TEXT:_printf (00D4, 0000, 0000) from .dump.C:108

_TEXT:_dump_para(0000,0000,0FB8) from .dump.C:92

_TEXT:_dump_rec(0FB8, 0001 , 0000,0000) from .dump.0:61

_TEXT:_main(0002,1044)

From a knowledge of C conventions, it follows that the first parameter for mainO is urge,
or the number of tokens in the command line that invoked the program being debugged;
the second parameter is the offset within DGROUP of argv, or an array of pointers to
each token.

1112 The MS-DOS Encyclopedia

SYMDEB: L

SYMDEB: L

Load File or Sectors

Purpose

Loads a file or individual sectors from a disk.

Syntax

L [address]

or

L address drive start number

where:

address is the starting address in memory that data read from a disk is placed into.
drive is the decimal number (0-3) of the disk to read (0 = drive A, 1 = drive B,

2 = drive C, 3= drive D).
start is the hexadecimal number of the first sector to load (0-FFFFH).

number is the hexadecimal number of consecutive sectors to load (0-FFFFH).

Description

The Load File or Sectors (L) command loads a file or individual sectors from a disk.

When the L command is entered without parameters or with an address alone, the file
specified in the SYMDEB command line or with the most recent Name File or Command-
Tail Parameters (N) command is loaded from the disk into memory. If no segment is speci
fied in address, SYMDEB uses CS. If the file's extension is .EXE, the file is placed in
SYMDEB's target program buffer at the load address specified in the .EXE file's header; if
the file's extension is .COM, the file is loaded at offset lOOH. (If for some reason an address
is entered for a .EXE or .COM file and the address is anything but lOOH, an error message is
displayed; if the address is lOOH, it will be ignored.) If the file has a .HEX extension, the
.HEX file's starting address is added to address before loading the file. If address is not
specified, the .HEX file is placed at its own starting address. The length of the file or, in
the case of a .EXE file, the actual length of the program (the length of the file minus the
header) is placed in the target program's BX and CX registers, with the most significant l6
bits in register BX.

The L command can also be used to bypass the MS-DOS file system and obtain direct
access to logical sectors on the disk. The memory address {address), disk drive number
(drive), starting logical sector number (start), and number of sectors to read (number)
must all be specified in the command line.

Note: The L command should not be used to access logical sectors on network drives.

Section IV: Programming Utilities 1113

SYMDEB; L

Examples

To load the file specified in the SYMDEB command line or in the most recent N command
into SYMDEB's target program buffer, type

-L <Enter>

To load eight sectors from drive B, starting at logical sector 0, to memory location CS:0100H
in SYMDEB's memory buffer, type

-L 100 1 08 <Enter>

Messages

Disk error reading disk X
A hardware-related disk error, such as a checksum error or seek incomplete, was encoun
tered during the execution of an L command.

File not found

The file specified in the most recent N command cannot be found.

1114 The MS-DOS Encyclopedia

SYMDEB: M

SYMDEB: M

Move (Copy) Data

Purpose

Copies the contents of one area of memory to another.

Syntax

M range address

where:

range specifies the starting and ending addresses or the starting address and length
of the area of memory to be copied.

address is the first byte of the destination of the copy operation.

Description

The Move (Copy) Data (M) command copies data from one location in memory to another
without altering the data in the original location. If the source and destination areas over
lap, the data is copied in the correct order so that the resulting copy is correct; the data in
the original location is changed only when the two areas overlap.

The range parameter specifies the starting and ending addresses or the starting address
and length of the memory to be copied. The address parameter is the first byte in which
the copy will be placed. If range does not contain an explicit segment, SYMDEB uses DS;
if address does not contain a segment, SYMDEB uses the same segment used for range.

Example

To copy the data in locations DS:0800H through DS:08FFH to locations DS:0900H through
DS:09FFH, type

-M 800 8FF 900 <Enter>

or

-M 800 LI 00 900 <Enter>

Section IV: Programming Utilities 1115

SYMDEB: N

SYMDEB: N

Name File or Command-Tail Parameters

Purpose

Inserts parameters into the simulated program segment prefix (PSP).

Syntax

N paranteter[parameter...]

where:

parameter is a filename or switch to be placed into the simulated PSP.

Description

The Name File or Command-Tail Parameters (N) command is used to enter one or more
parameters into the simulated PSP that is built at the base of the buffer holding the pro
gram to be debugged. The N command can also be used before the Load File or Sectors (L)
and Write File or Sectors (W) commands to name a file to be read from a disk or written
to a disk.

The count of the characters following the N command is placed at DS:0080H in the simu
lated PSP and the characters themselves are copied into the PSP starting at DS:0081H. The
string is terminated by a carriage return (ODH), which is not included in the count. If the
second and third parameters follow the naming conventions for MS-DOS files, they are
parsed into the default file control blocks (FCBs) in the simulated PSP, at offset 5CH and
offset 6CH, respectively. Note that this is different from the N command in DEBUG, which
loads the first and second parameters into the default FCBs. (Switches and other filenames
specified as parameters are stored in the PSP starting at offset 81H along with the rest of
the command line but are not parsed into the default FCBs.)

If the N command line contains only one filename, any parameters placed in the default
FCBs by a previous N command are destroyed. If the drive included with the second file
name parameter is invalid, the AL register is set to OFFH. If the drive included with the
third filename parameter is invalid, the AH register is set to OFFH. The existence of a file
specified with the N command is not verified until it is loaded with the L command.

The filename at DS:0081H specifies the file that is read or written by a subsequent L or W
command.

Example

Assume that SYMDEB was started without specifying the name of a target program in the
command line. To load the program CLEAN.COM for execution under the control of

1116 The MS-DOS Encyclopedia

SYMDEB: N

SYMDEB and include the parameter MYFILE.DAT in the simulated PSP's command tail
and FCB, use the N and L commands together as follows:

-N CLEAN.COM MYFILE.DAT <Enter>

-L <Enter>

To execute the program CLEAN.COM, type

-G <Enter>

The net effect is the same as if the CLEAN.COM program had been run from the MS-DOS
command level with the command line

OCLEAN MYFILE.DAT <Enter>

except that the program is executing under the control of SYMDEB and within SYMDEB's
memory buffer.

Section IV: Programming Utilities 1117

SYMDEB: O

SYMDEB: O

Output to Port

Purpose

Writes 1 byte to an input/output (I/O) port.

Syntax

O port byte

where:

port is a l6-bit I/O port address in the range 0 through FFFFH.
byte is a value to be written to the I/O port (O-OFFH).

Description

The Output to Port (O) command writes 1 byte of data to the specified I/O port address.
The data value must be in the range OOH through OFFH.

Warning: This command must be used with caution because it involves direct access to
the computer hardware and no error checking is performed. Attempts to write to some
port addresses, such as those for ports connected to peripheral device controllers, timers,
or the system's interrupt controller, may cause the system to crash or may even result in
damage to data stored on disk.

Example

To write the value C8H to I/O port lOAH, type

-0 10A 08 <Enter>

1118 The MS-DOS Encyclopedia

SYMDEB: P

SYMDEB: P

Proceed Through Loop or Subroutine

Purpose

Executes a loop, string instruction, software interrupt, or subroutine to completion.

Syntax

V[^address] [number]

where:

address is the location of the first instruction to be executed.

number is the number of instructions to execute.

Description

The Proceed Through Loop or Subroutine (?) command transfers control to the target pro
gram. The program executes without interruption until the loop, repeated string instruc
tion, software interrupt, or subroutine call at address is completed or until the specified
number of machine instructions have been executed. Control then returns to SYMDEB

and the current contents of the target program's registers and flags are displayed.

Warning: The P command should not be used to execute any instruction that changes the
contents of the Intel 8259 interrupt mask (ports 20H and 21H on the IBM PC and compat
ibles) and cannot be used to trace through ROM. Use the Go (G) command instead.

If the address parameter does not contain a segment, SYMDEB uses the target program's
CS register; if address is omitted, execution begins at the current address specified by the
target's CS:IP registers. The address parameter must be preceded by an equal sign (=) to
distinguish it from number.

The number parameter specifies the number of instructions to be executed before control
returns to SYMDEB. If number is omitted, one instruction is executed.

When the Enable Source Display Mode (S+) command is selected, the P command oper
ates directly on source-code lines, passing over function or procedure calls. (The S+ com
mand can be used only with programs created by high-level-language compilers that
insert line-number information into object modules.)

When source display mode is disabled with the S- command or when the program being
debugged does not have a .SYM file or has been created with the Microsoft Macro Assem
bler (MASM) or with a compiler that does not support line numbers in relocatable object
modules, the P command behaves like the Trace Program Execution (T) command except
that when P encounters a loop, repeated string instruction, software interrupt, or sub
routine call, it executes it to completion and then returns to the instruction following the

Section IV: Programming Utilities 1119

SYMDEB: P

call. For example, if the user wants to trace the first three instructions in a program and if
the second instruction is a subroutine call, a P3 command executes the first instruction,
goes to the second instruction, identifies it as a CALL instruction, jumps to the subroutine
and executes the entire subroutine, comes back and executes the third instruction, and
then stops. A T3 command, on the other hand, executes the first instruction, executes the
second, executes the first instruction of the subroutine as its third instruction, and then
stops. If the instruction at address is not a loop, repeated string instruction, software inter
rupt, or subroutine call, the P command functions just like the T command. After each
instruction is executed, SYMDEB displays the current contents of the target program's
registers and flags and the next instruction to be executed.

Examples

Assume that the program being debugged was compiled with Microsoft C, a .SYM file was
loaded with the executable program to provide line-number information, and source-code
display has been enabled with the S+ command. To execute the machine instructions cor
responding to the next four lines of source code, type

-P 4 <Enter>

Assume that the target program was created with MASM and location CS:143FH contains a
CALL instruction. To execute the subroutine that is the destination of CALL at full speed
and then return control to SYMDEB, type

-P =143F <Enter>

1120 The MS-DOS Encyclopedia

SYMDEB: Q

SYMDEB: Q
Quit

Purpose

Ends a SYMDEB session.

Syntax

Q

Description

The Quit (Q) command terminates the SYMDEB program and returns control to MS-DOS
or the command shell that invoked SYMDEB. Any changes made to a program or other file
that were not previously saved to disk with the Write File or Sectors (W) command are lost
when the Q command is used.

Example

To exit SYMDEB, type

-Q <Enter>

Section IV: Programming Utilities 1121

SYMDEB: R

SYMDEB: R

Display or Modify Registers

Purpose

Displays one or all registers and allows a register to be modified.

Syntax

R

or

R registerll^"] value]

where:

register is the two-character name of an Intel 8086/8088 register from the following
list:

AX BX CX DX SP BP SI DI

DS ES 33 C3 IP PC

or the character F, to indicate the CPU flags.

is an optional equal sign preceding value,
value is a l6-bit integer (0-FFFFH) that will be assigned to the specified register.

Description

The Display or Modify Registers (R) command allows the target program's register con
tents and CPU flags to be displayed and modified.

If R is entered without a register parameter, the current contents of all registers and CPU
flags are displayed, followed by a disassembly of the machine instruction currently
pointed to by the target program's CS:IP registers.

A register can be assigned a new value in a single command by entering both register and
value parameters, optionally separated by an equal sign (=). If a register is named but no
value is supplied, SYMDEB displays the current contents of the specified register and then
prompts with a colon character (:) for a new value to be placed in the register. The user
can enter the value in any valid radix or as an expression and then press the Enter key. If
no radix is appended to the new value, hexadecimal is assumed. If the user presses the En
ter key alone in response to the prompt, no changes are made to the register contents.

Note: The PC register name is not supported properly in some versions of SYMDEB, so the
IP register name should always be used instead.

1122 The MS-DOS Encyclopedia

SYMDEB: R

FlagName ValuelfSet(l) Value If Clear (0)

Overflow

Direction

Interrupt

Sign
Zero

Aux Carry

Parity

Carry

OV (Overflow)

DN (Down)

El (Enabled)

NG (Minus)

ZR (Zero)

AC (Aux Carry)
PE(Even)

CY (Carry)

NY (No Overflow)

UP (Up)
DI (Disabled)

PL (Plus)

NZ (Not Zero)

NA (No Aux Carry)
PO (Odd)

NC (No Carry)

After displaying the current flag values, SYMDEB again displays its prompt (-). Any or all
of the individual flags can then be altered by typing one or more two-character flag codes
(in any order and optionally separated by spaces) from the list above and then pressing
the Enter key. If the user responds to the prompt by pressing the Enter key without enter
ing any codes, no changes are made to the status of the flags.

Examples

To display the current contents of the target program's CPU registers and flags, followed
by the disassembled mnemonic for the next instruction to be executed (pointed to by
CS:IP), type

-R <Enter>

This produces the following display:

AX=0000 BX=0000 CX=00A1 DX=0000 SP=FFFE BP=0000 31=0000 DI=0000

DS=19A5 ES=19A5 SS=19A5 CS=19A5 IP=0100 NV UP El PL NZ NA PO NC

19A5:0100 BF8000 MOV DI,0080

If the source display mode is enabled, the R command displays the following:

AX=0000 BX=1044 CX=0000 DX=0102 SP=103C BP=0000 SI=OOEA DI=115E

DS=2143 ES=2143 58=2143 CS=1F6E IP=0010 NV UP El PL ZR NA PE NC

32: int argc;

_TEXT:_jnain:

1F6E:0010 55 PUSH BP ;BRO

This format includes the source code that corresponds to the next instruction to be
executed.

To set the contents of register AX to FFFFH without displaying its current value, type

-R AX=FFFF <Enter>

or

-R AX -1 <Enter>

Section IV: Programming Utilities 1123

SYMDEB: R

To display the current value of the target program's BX register, type

_R BX <Enter>

If BX contains 200H, for example, SYMDEB displays that value and then issues a prompt in
the form of a colon:

BX 0200

The contents of BX can then be altered by typing a new value and pressing the Enter key,
or the contents can be left unchanged by pressing the Enter key alone.

To set the direction and carry flags, first type

_R F <Enter>

SYMDEB displays the current flag values, followed by a prompt in the form of a hyphen
character (-). For example:

NV UP El PL NZ NA PO NO -

The direction and carry flags can then be set by entering

_DN CY <Enter>

on the same line as the prompt.

Messages

Bad Flag!
An invalid code for a CPU flag was entered.

Bad Register!
An invalid register name was entered.

Double Flag!
Two values for the same CPU flag were entered in the same command.

1124 The MS-DOS Encyclopedia

SYMDEB: S

SYMDEB: S

Search Memory

Purpose

Searches memory for a pattern of one or more bytes.

Syntax

S range list

where:

range is the starting and ending address or the starting address and length in bytes of
the area to be searched.

list is one or more byte values or a string to be searched for.

Description

The Search Memory (S) command searches a designated range of memory for a sequence
of byte values or text strings and displays the starting address of each set of matching
bytes. The contents of the searched area are not altered.

The range parameter specifies the starting and ending address or the starting address and
length in bytes of the area to be searched. If a segment is not included in range, SYMDEB
uses DS. If a segment is specified only for the starting address, SYMDEB uses the same seg
ment for the ending address. If a starting address and length in bytes are specified, the
starting address plus the length less 1 cannot exceed FFFFH.

The list parameter is one or more hexadecimal byte values and/or strings separated by
spaces, commas, or tab characters. Strings must be enclosed in single or double quotation
marks, and case is significant within a string.

Examples

To search for the string Copyright in the area of memory from DSrOOOOH through
DSrlFFFH, type

~S 0 1FFF 'Copyright' <Enter>

or

~S 0 L2000 "Copyright" <Enter>

If a match is found, SYMDEB displays the address of each occurrence:

20A8:0910

20A8:094F

20A8:097C

Section IV: Programming Utilities 1125

SYMDEB: S

To search for the byte sequence 3BH 06H in the area of memory from CSrOlOOH through
CS:12A0H, type

-S CS:100 12A0 3B 06 <Enter>

or

-S 03:100 L11A1 3B 06 <Enter>

1126 The MS-DOS Encyclopedia

SYMDEB: S+

SYMDEB: S+

Enable Source Display Mode

Purpose

Displays source-code lines, rather than machine instructions.

Syntax

s+

Description

The Enable Source Display Mode (S+) command affects the display format of certain
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution
(T), and Display or Modify Registers (R). The S+ command causes source code, rather than
disassembled machine instructions, to be displayed by those commands.

The S+ command is useful only if the program being debugged was created with a high-
level-language compiler capable of placing line-number information into the relocatable
object modules processed by the Microsoft Object Linker (LINK). When debugging
Microsoft Macro Assembler (MASM) programs or programs generated by language com
pilers that do not pass line-number information to LINK, the S+ command has no effect.

Example

To enable the display of source-code statements during debugging, type

-3+ <Enter>

Section IV: Programming Utilities 1127

SYMDEB: S-

SYMDEB: S-

Disable Source Display Mode

Purpose

Displays disassembled machine instructions, rather than source-code lines.

Syntax

s-

Desctiption

The Disable Source Display Mode (S-) command affects the display format of certain
SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace Program Execution
(T), and Display or Modify Registers (R). The S- command causes disassembled machine
instructions, rather than source code, to be displayed by those commands. By default,
SYMDEB displays disassembled machine instructions when debugging Microsoft Macro
Assembler (MASM) programs or programs generated by language compilers that do not
pass line-number information to the Microsoft Object Linker (LINK).

Example

To disable the display of source-code statements during debugging, type

-S- <Enter>

1128 The MS-DOS Encyclopedia

SYMDEB: S&

SYMDEB: S&

Enable Source and Machine Code Display Mode

Purpose

Displays both source-code lines and disassembled machine instructions.

Syntax

s&

Description

The Enable Source and Machine Code Display Mode (S&) command affects the display
format of certain SYMDEB commands: Proceed Through Loop or Subroutine (P), Trace
Program Execution (T), and Display or Modify Registers (R). The S& command causes
both the disassembled machine instructions and the corresponding source-code lines to
be displayed by those commands.

The S& command is useful only if the program being debugged was created with a high-
level-language compiler capable of placing line-number information into the relocatable
object modules processed by the Microsoft Object Linker (LINK). When debugging
Microsoft Macro Assembler (MASM) programs or programs generated by language com
pilers that do not pass line-number information to LINK, the S& command has no effect.

Example

To enable the display of both source-code statements and disassembled machine-code
statements during debugging, type

-S& <Enter>

Section IV: Programming Utilities 1129

SYMDEB: T

SYMDEB: T

Trace Program Execution

Purpose

Executes one or more machine instructions in single-step mode.

Syntax

Tl'^address] [number]

where:

address is the location of the first instruction to be executed.

number is the number of machine instructions to be executed.

Description

The Trace Program Execution (T) command executes one or more machine instructions,
starting at the specified address. If source display mode has been enabled with the S+
command, each trace operation executes the machine code corresponding to one source
statement and displays the lines from the source code. If source display mode has been
disabled with the S- command, each trace operation executes an individual machine in
struction and displays the contents of the CPU registers and flags after execution.

Warning: The T command should not be used to execute any instruction that changes the
contents of the Intel 8259 interrupt mask (ports 20H and 21H on the IBM PC and compat
ibles). Use the Go (G) command instead.

The address parameter points to the first instruction to be executed. If address does not
include a segment, SYMDEB uses the target program's CS register; if address is omitted
entirely, execution is begun at the current address specified by the target program's CS:IP
registers. The address parameter must be preceded by an equal sign (=) to distinguish it
from number.

The number parameter specifies the hexadecimal number of source-code statements
or machine instructions to be executed before the SYMDEB prompt is displayed again
(default = 1). If source display mode is enabled, the number parameter is required. Execu
tion of a sequence of instructions using the T command can be interrupted at any time by
pressing Ctrl-C or Ctrl-Break and can be paused by pressing Ctrl-S (pressing any key
resumes the trace).

Examples

To execute one instruction at location CSrlAOOH and then return control to SYMDEB,

displaying the contents of the CPU registers and flags, type

-T =1A00 <Enter>

1130 The MS-DOS Encyclopedia

SYMDEB: T

Consecutive instructions can then be executed by entering repeated T commands with no
parameters.

If source display mode has been enabled with a previous S+ command, to begin execution
at the label main and continue through the machine code corresponding to four source-
code statements, type

-T =_main 4 <Enter>

Section IV: Programming Utilities 1131

SYMDEB: U

SYMDEB: U

Disassemble (Unassemble) Program

Purpose

Disassembles machine instructions into assembly-language mnemonics.

Syntax

U [range]

where:

range specifies the starting and ending addresses or the starting address and the
number of instructions of the machine code to be disassembled.

Description

The Disassemble (Unassemble) Program (U) command translates machine instructions
into their assembly-language mnemonics.

The range parameter specifies the starting and ending addresses or the starting address
and number of machine instructions to be disassembled. If range does not include an
explicit segment, SYMDEB uses CS. Note that the resulting disassembly will be incorrect if
the starting address does not fall on an 8086 instruction boundary.

If range does not include the number of machine instructions to be executed or an ending
address, eight instructions are disassembled. If range is omitted completely, eight instruc
tions are disassembled starting at the address following the last instruction disassembled
by the previous U command, if a U command has been used; if no U command has been
used, eight instructions are disassembled starting at the address specified by the current
value of the target program's CS:IP registers.

The display format for the U command depends on the current source display mode set
ting and on whether the program was developed with a compatible high-level-language
compiler. If the source display mode setting is S- or the program was developed with the
Microsoft Macro Assembler (MASM) or a noncompatible high-level-language compiler, the
display contains only the address and the disassembled equivalent of each instruction
within range. (For 8-bit immediate operands, SYMDEB also displays the ASCII equivalent
as a comment following a semicolon.) If the setting is S+ or S& and a compatible symbol
file containing line-number information was loaded with the program being debugged,
the display contains both the source-code lines and their corresponding disassembled
machine instructions.

Note: The 80286 instructions that are considered privileged when the microprocessor is
running in protected mode are not supported by SYMDEB's disassembler.

1132 The MS-DOS Encyclopedia

SYMDEB: U

Examples

To disassemble four machine instructions starting at CS:0100H, type

-U 100 L4 <Enter>

This produces the following display:

44DC:0100 EC

44DC:0101 B80200

44DC:0104 E86102

44DC:0107 57

IN AL,DX

MOV AX,0002

CALL 0368

PUSH DI

Successive eight-instruction fragments of machine code can be disassembled by entering
additional U commands without parameters.

When a program is being debugged with a symbol file that contains line-number informa
tion and source display mode has been enabled, disassembled machine code is accom
panied by the corresponding source code:

43:

28A5:

28A5:

28A5:

44:

28A5:

28A5:

28A5;

28A5:

28A5:

28A5:

45:

28A5:

28A5;

if (argc !=

837E0402

7503

2)

0031

0035

0037 E91400

CMP Word Ptr [BP+04],+02

JNZ _jnain+2A (003A)

JMP _main+3E (004E)

fprintf{stderr,"\ndump: wrong number of parametersXn")
003A B83600

003D 50

003E B8F600

0041 50

0042 E8AC04

0045 83C404

0048 B80100

004B E9AA00

MOV

PUSH

MOV

PUSH

CALL

ADD

return(1);

MOV

JMP

AX,0036

AX

AX,00F6

AX

_fprintf

SP,+04

AX,0001

_main+E8 (OOFS)

Section IV: Programming Utilities 1133

SYMDEB; V

SYMDEB: V

View Source Code

Purpose

Displays lines from the source-code file for the program being debugged.

Syntax

V addressUength]

or

V [.sourcefile-. linenumber]

where:

address is the location of an executable instruction in the target program.
length is an ending address or the number of source-code lines.
.sourcefile is the base name of the source file of the program being debugged, pre

ceded by a period (.).
linenumber is the first literal line number of .sourcefile to be displayed.

Description

The View Source Code (V) command displays lines of source code for the program being
debugged, beginning at the location specified by address. If address does not include a
segment, SYMDEB uses the target program's CS register.

The optional length parameter can be an ending address or an L followed by a hexadeci
mal number of source-code lines. If length is not specified, eight lines of source code are
displayed.

If the .sourcefile parameter is specified, followed by a colon character (:) and a line num
ber, eight lines of source code are displayed, starting at linenumber. If the V command is
entered without parameters after the .sourcefile.linenumber parameter has been speci
fied, eight lines are displayed from the current source file, beginning with the line after the
last line displayed with the V command. The .sourcefile parameter must be the name of a
high-level-language source file in the current directory. Pathnames and extensions are not
supported. The length option cannot be used with the .sourcefile parameter.

Warning: Specifying a file that does not exist in the current directory may cause the sys
tem to crash.

The V command can be used only with programs created by a high-level-language com
piler that is capable of placing line-number information into the relocatable object modules
processed by the Microsoft Object Linker (LINK). The current source display mode setting
(S-, S+, or S&) has no effect on the V command.

^1134 The MS-DOS Encyclopedia

SYMDEB: V

Examples

Assume that the program DUMREXE is being debugged with the aid of the symbol file
DUMRSYM and that the source file DUMRC is available in the current directory. To display
eight lines of source code beginning at the label type

-V _main <Enter>

This produces the following output:

32 int argc;

33 char *argv[];

34

35 { FILE *dfile; /* control block for input file */

36 int status = 0; /* status returned from file read */

37 int file_rec = 0; /* file record number being dumped */

38 long file_ptr = OL; /* file byte offset for current rec */

39 char filejDuf[REC_SIZE] ; /* data block from file */

To view eight lines of source code from the file DUMRC, beginning with line 20, type

-V .DUMP:20 <Enter>

Message

Source file for filename (cr for none)?
The current directory does not contain the source file specified with the .source/He
parameter. Enter the correct filename or press Enter to indicate no source file.

Section IV: Programming Utilities 1135

SYMDEB: W

SYMDEB: W

Write File or Sectors

Purpose

Writes a file or individual sectors to disk.

Syntax

W [address]

or

W address drive start number

where:

address is the first location in memory of the data to be written.
drive is the number of the destination disk drive (0 = drive A, 1 = drive B, 2 = drive

C, 3 = drive D).
start is the number of the first logical sjector to be written (0 - FFFFH).
number is the number of consecutive sectors to be written (0 - FFFFH).

Description

The Write File or Sectors (W) command transfers a file or individual sectors from memory
to disk.

When the W command is entered without parameters or with an address alone, the num
ber of bytes specified by the contents of registers BXiCX are written from memory to the
file named by the most recent Name File or Command-Tail Parameters (N) command or to
the first file specified in the SYMDEB command line if the N command has not been used.

Note: If a Go (G), Proceed Through Loop or Subroutine (P), or Trace Program Execution
(T) command was previously used or the contents of the BX or CX registers were changed,
BX:CX must be restored before the W command is used.

When address is not included in the command line, SYMDEB uses the target program's
CS:0100H. Files with a .EXE or .HEX extension cannot be written with the W command.

The W command can also be used to bypass the MS-DOS file system and obtain direct
access to logical sectors on the disk. To use the W command in this way, the memory
address {address), disk unit number {driv^, starting logical sector number {start), and
number of sectors to be written {number) must all be provided in the command line in
hexadecimal format.

Warning: Extreme caution should be used with the W command. The disk's file structure
can easily be damaged if the command is entered incorrectly. The W command should not
be used to write logical sectors to network drives.

1136 The MS-DOS Encyclopedia

SYMDEB: W

Example

Assume that the interactive Assemble Machine Instructions (A) command was used to

create a program in SYMDEB's memory buffer that is 32 (20H) bytes long, beginning at
offset lOOH. This program can be written into the file QUICK.COM by sequential use of
the Name File or Command-Tail Parameters (N), Display or Modify Registers (R), and Write
File or Sectors (W) commands. First, use the N command to specify the name of the file to
be written:

-N QUICK.COM <Enter>

Next, use the R command to set registers BX and CX to the length to be written. Register
BX contains the upper half or most significant part of the length; register CX contains the
lower half or least significant part. Type

^ CX <Enter>

SYMDEB displays the current contents of register CX and issues a colon character (:)
prompt. Enter the length after the prompt:

:20 <Enter>

To use the R command again to set the BX register to zero, type

-R BX <Enter>

Then type

•0 <Enter>

To create the disk file QUICK.COM and write the program into it, type

-W <Enter>

SYMDEB responds:

Writing 0020 bytes

Messages

EXE and HEX flies cannot be written

Files with a .EXE or .HEX extension cannot be written to disk with the W command.

Writing If Ififif bytes
After a successful write operation, SYMDEB displays in hexadecimal format the number of
bytes written to disk.

Section IV: Programming Utilities 1137

SYMDEB: X

SYMDEB: X

Examine Symbol Map

Purpose

Displays names and addresses in the symbol maps.

Syntax

x[*]

or

X? [mapA [segment] [symbol]

where:

map\ is the name of a symbol file, without the .SYM extension, followed by an
exclamation point (!).

segment: is the name of a segment within the currently open or specified map, followed
by a colon character (:).

symbol is a symbol name within the specified segment.

Description

The Examine Symbol Map (X) command displays the addresses and names of symbols in
the currently open symbol maps. (SYMDEB maintains a symbol map for each symbol file
specified in the SYMDEB command line.)

If the X command is followed by the asterisk wildcard character (*), the map names,
segment names, and segment addresses for all currently loaded symbol maps are dis
played. If X is entered alone, the information is displayed only for the active symbol map.

Information from the symbol maps can be displayed selectively by following the X? com
mand with the map\, segment:, and symbol parameters. The three parameters may be
used individually or in combination, but at least one parameter must be specified.

The map\ parameter must be terminated by an exclamation point and consists of the
name, without the extension, of a previously loaded symbol file. If map\ is omitted,
SYMDEB uses the currently open symbol map. If more than one .SYM file is specified
in the command line, the one with the same name as the program being debugged is
opened first.

The segment: parameter must be terminated with a colon; it is the name of a segment
declared within the specified or currently open symbol map.

The symbol parameter is the name of a label, variable, or other object within the specified
segment.

Any or all parameters can consist of or include the asterisk wildcard character. For exam
ple, X?« displays everything in the current map.

1138 The MS-DOS Encyclopedia

SYMDEBrX

Examples

Assume that the program DUMP.EXE is being debugged with the symbol file DUMRSYM.
If the following is typed

-X <Enter>

SYMDEB displays:

[456E DUMP]

[456E _TEXT]

4743 DGROUP

This indicates that the program contains one executable code segment (named __TEXT),
which is loaded at segment 456EH, and one NEAR DATA group and segment (named
DGROUP), which is loaded at segment 4743H.

To display the addresses of all procedures in the same example program whose names
begin with the character/ type

-X? _TEXT:_F* <Enter>

This produces the following listing:

_TEXT: (456E)

0428 _fclose 04CB _fopen 04F1 _fprintf

0528 _fread OACB _fflush 0BC2 _free

19AD _flushall

Note: Unlike the Microsoft C Compiler, SYMDEB is not case sensitive.

Section IV: Programming Utilities 1139

SYMDEB: XO

SYMDEBrXO

open Symbol Map

Purpose

Selects the active symbol map and/or segment.

Syntax

XO {mapi\ [segment]

where:

map\ is the name of a symbol file, without the .SYM extension, followed by an
exclamation point (!).

segment is the name of the segment that will become the active segment in the current
symbol map.

Description

The Open Symbol Map (XO) command selects the active symbol map and/or the active
segment within the current symbol map to be used during debugging.

The optional map\ parameter must be terminated by an exclamation point and must be
the name, without the extension, of a symbol file specified in the original SYMDEB com
mand line. If map\ is omitted, no changes are made to the active symbol map.

The optional segment parameter must be the name of a segment within the current or
specified symbol map. All segments in the active symbol map are accessible; the active
segment is searched first for symbols specified in other SYMDEB commands. If segment is
omitted and a new active symbol map is specified, the segment with the smallest address
in the new active symbol map will become the active segment.

Examples

Assume that the program SHELL.EXE has been loaded with the two symbol files
SHELL.SYM and VIDEO.SYM. To use the information loaded from VIDEO.SYM as the

active symbol map for debugging, type

_X0 VIDEO! <Enter>

Subsequent entry of the command

_X0 _TEXT <Enter>

causes the segment _TEXT within the symbol map VIDEO to be searched first for symbol
names.

Message

Symbol not found
The specified symbol map or segment does not exist.

1140 The MS-DOS Encyclopedia

SYMDEB: 2

SYMDEB: Z

Set Symbol Value

Purpose

Assigns a value to a symbol.

Syntax

Z [map\\ symbol value

where:

map\ is the name of a symbol file, without the .SYM extension, followed by an ex
clamation point (!).

symbol is an existing symbol name in the active symbol map or in the symbol map
specified by map\.

value is the new address of symbol (0 - FFFFH).

Description

The Set Symbol Value (Z) command allows the address associated with a name in one of
the loaded symbol maps to be overridden by a new value.

Note that altering the address of a symbol at debugging time will not affect other addresses
or values that were derived from the value of the same symbol at compilation or assembly
time.

The optional map\ parameter must be terminated by an exclamation point and must be
the name, without the extension, of a symbol file specified in the original SYMDEB com
mand line. If map\ is omitted, SYMDEB uses the active symbol map.

The symbol parameter specifies the name of a label, variable, or other object in map\ or
the active symbol map.

The value parameter specifies a new address to be associated with symbol

To debug programs created with older versions of FORTRAN and Pascal (Microsoft ver
sions earlier than 3.3 or IBM versions earlier than 2.0), the user must start SYMDEB, locate
the first procedure of the program being debugged, and then use the Z command to set
the address of DGROUP to the current value of the DS register. (Later versions of
FORTRAN and Pascal do this by default.)

Section IV: Programming Utilities 1 l4l

SYMDEB: Z

Examples

To change the segment address for the symbol DGROUP to 5000H, type

-Z DGROUP 5000 <Enter>

The actual data associated with the label DGROUP must be moved to the new address

before debugging can continue.

To change the segment address for the symbol CODE in the inactive symbol map COUNT
to OFOOH, type

-Z COUNT! CODE FOO <Enter>

1142 The MS-DOS Encyclopedia

SYMDEB: <

SYMDEB: <

Redirect SYMDEB Input

Purpose

Redirects input to SYMDEB.

Syntax

< device

where:

device is the name of any MS-DOS device or file.

Description

The Redirect SYMDEB Input (<) command causes SYMDEB to read its commands from
the specified text file or character device, rather than from the keyboard (CON).

The device parameter specifies the name of any MS-DOS device or file from which com
mands will be read. If the device parameter is a filename, the file must be an ASCII text
file and each command in the file must be on a separate line.

If input will be taken from a terminal attached to one of the serial communications ports
(AUX, COMl, or COM2), the port must be properly configured with the MODE command
before the SYMDEB session is started.

When SYMDEB commands are redirected from a file, the last entry in the file must be
either the < CON command, which restores the keyboard as the input device, or the Quit
(Q) command. Otherwise, SYMDEB will lock and the system will have to be restarted.

Examples

Assume that the text file FILL.TXT contains the following SYMDEB commands:

F 08:0100 L100 00

D 03:0100 L100

R

Q

To process FILL.TXT during a SYMDEB session (which in turn exits SYMDEB with the
Quit [Q] command), type

-< FILL.TXT <Enter>

Section IV: Programming Utilities 1143

SYMDEB: <

Assume that the text file SEARCH.TXT contains the following SYMDEB commands:

S BUFFER L2000 "error"

< CON

To process SEARCH.TXT during a SYMDEB session and return control to the console, type

-< SEARCH.TXT <Enter>

1144 The MS-DOS Encyclopedia

SYMDEB: >

SYMDEB: >

Redirect SYMDEB Output

Purpose

Redirects SYMDEB's output to a device or file.

Syntax

> device

where:

device is the name of any MS-DOS device or file.

Description

The Redirect SYMDEB Output (>) command causes SYMDEB to send all its messages to
the specified device or file, rather than to the video display (CON). This is useful for creat
ing a record of a debugging session that can be viewed later with an editor or listed on a
printer.

After SYMDEB output is redirected, commands typed on the keyboard are not echoed to
the video display. Therefore, the user must know in advance which commands to use and
which parameters to supply.

The device parameter specifies the name of an MS-DOS device or file to receive
SYMDEB's output. If output will be redirected to one of the serial communications ports
(AUX, COMl, or COM2), the port must be properly configured with the MODE command
before the SYMDEB session is started.

Output can be restored to the video display by entering the > CON command or by ter
minating SYMDEB with the Quit (Q) command.

Examples

To cause SYMDEB to send all prompts and messages to the file SESSION.TXT, type

-> SESSION.TXT <Enter>

After this command, new commands are still accepted by SYMDEB, but the keypresses
are not echoed to the screen until the command

-> CON <Enter>

is entered or SYMDEB is terminated with the Quit (Q) command.

To cause SYMDEB to send all its prompts and messages to the standard printing device,
PRN, type

-> PRN <Enter>

Section IV: Programming Utilities 1145

SYMDEB: =

SYMDEB: =

Redirect SYMDEB Input and Output

Purpose

Redirects both input and output for SYMDEB.

Syntax

= device

where:

device is the name of any MS-DOS device.

Description

The Redirect SYMDEB Input and Output (=) command causes SYMDEB to read its
commands from and send its output to the specified device, rather than reading from the
keyboard and sending output to the video display (CON). This command is especially use
ful for debugging programs that run in graphics mode; the SYMDEB commands can be en
tered on a terminal attached to the computer's serial port while the graphics program has
the full use of the system's video display.

The device parameter specifies the name of any MS-DOS device. If input and output will
be redirected to one of the serial communications ports (AUX, COMl, or COM2), the port
must be properly configured with the MODE command before the SYMDEB session is
started.

Input and output can be restored to the standard settings with the = CON command.

Example

To redirect SYMDEB's input and output to the first serial communications port (COMl),
type

-= COMl <Enter>

1146 The MS-DOS Encyclopedia

SYMDEB:

SYMDEB: {
Redirect Target Program Input

Purpose

Redirects input to the program being debugged.

Syntax

{device

where:

device is the name of any MS-DOS device or file.

Description

The Redirect Target Program Input ({) command causes read operations by the program
being debugged to be taken from the specified file or device when the program is exe
cuted, rather than from the keyboard (CON).

The device parameter specifies the name of an MS-DOS device or file from which the
target program will read. If the device parameter is a filename, the file must be an ASCII
text file and each command in the file must be on a separate line.

If input will be taken from a terminal attached to one of the serial communications ports
(AUX, COMl, or COM2), the port must be properly configured with the MODE command
before the SYMDEB session is started.

Example

To cause input for the program being debugged to be taken from the file TEST.TXT, type

-{ TEST.TXT <Enter>

Section IV: Programming Utilities 1147

SYMDEB:]

SYMDEB:}
Redirect Target Program Output

Purpose

Redirects the output of the program being debugged.

Syntax

) device

where:

device is the name of any MS-DOS device or file.

Description

The Redirect Target Program Output ()) command causes write operations by the pro
gram being debugged to be redirected to the specified device or file when the program is
executed, rather than to the video display (CON). This is useful for capturing the output of
a program in a file for later listing on a printer.

The device parameter specifies the name of an MS-DOS device or file to receive the target
program's output. If output will be redirected to one of the serial communications ports
(AUX, COMl, or COM2), the port must be properly configured with the MODE command
before the SYMDEB session is started.

Example

To send the output from the program being debugged to the file SESSION.TXT, type

-} SESSION.TXT <Enter>

1148 The MS-DOS Encyclopedia

SYMDEB:

SYMDEB:

Redirect Target Program Input and Output

Purpose

Redirects both input and output for the program being debugged.

Syntax

~ device

where:

device is the name of any MS-DOS device.

Description

The Redirect Target Program Input and Output (~) command causes all read and write
operations by the program being debugged to be redirected to the specified character
device.

The device parameter specifies the name of an MS-DOS device that the target program
will read from and write to. If input and output are redirected to one of the serial commu
nications ports (AIJX, COMl, or COM2), the port must be properly configured with the
MODE command before the SYMDEB session is started.

Example

To redirect input and output for the program being debugged to the first serial communi
cations port (COMl), type

COMl <Enter>

Section IV: Programming Utilities 1149

SYMDEB; \

SYMDEB: \

Swap Screen

Purpose

Exchanges the SYMDEB display for the target program's display.

Syntax

\

Description

The Swap Screen (\) command causes the SYMDEB status display to be exchanged for the
virtual screen used by the program being debugged. After the program's output has been
inspected on the virtual screen, the SYMDEB display can be restored by pressing any key.
This command is useful for debugging programs that perform direct screen access or run
in graphics mode.

Note: Any information on the display when SYMDEB was invoked will also appear on the
virtual screen. When SYMDEB is terminated, the current display is set to match the virtual
screen.

The Swap Screen command is available only if the /S switch (or the /I switch, if the com
puter is IBM compatible) preceded the names of the symbol and program files in the origi
nal SYMDEB command line.

Example

To exchange the SYMDEB status display for the virtual screen of the program being
debugged, type

-\ <Enter>

To restore the SYMDEB display, press any key.

1150 The MS-DOS Encyclopedia

SYMDEB:

SYMDEB:.

Display Source Line

Purpose

Displays the current source-code line.

Syntax

Description

The Display Source Line (.) command displays the line from the source-code file that
corresponds to the machine instruction currently pointed to by the target program's CS:IP
registers.

The. command is independent of the current Source Display Mode status (S+, S-, or S&).
However, if the program being debugged was not created with a high-level-language com
piler that inserts line numbers into the object modules, the. command has no effect.

Example

To display the source-code line corresponding to the next instruction to be executed, type

<Enter>

This produces output in the following form:

56: printf('\nDump of file: %s argv[1]);

Section IV: Programming Utilities 1151

SYMDEB: ?

SYMDEB; ?

Help or Evaluate Expression

Purpose

Displays the help screen or the value of an expression.

Syntax

? [expression]

where:

expression is any valid combination of symbols, addresses, numbers, and operators.

Description

When ? is entered alone, a help screen summarizing all valid SYMDEB commands, opera
tors, and types is displayed.

When ? is followed by the expression parameter, expression is evaluated and the value is
displayed. The expression parameter can include any valid combination of symbols, ad
dresses, numbers, and operators.

The form and content of the resulting display depends on the type of expression entered.
If expression is a symbol or an address (optionally including operators), the value is
shown first as a FAR address pointer in the form segment:offset, then as a 32-bit hexadeci
mal number representing the value's physical location in memory (followed by its decimal
equivalent in parentheses), and finally as the physical location's ASCII character equiva
lents displayed as a string enclosed in quotation marks (which have no practical value if
expression is an address or symbol).

If expression includes numbers (interpreted as signed hexadecimal values unless a radix is
specified) and operators, the resulting value is shown first as a l6-bit hexadecimal value,
then as a 32-bit hexadecimal value (followed by its decimal equivalent in parentheses),
and finally as the value's ASCII character equivalents displayed as a string enclosed in
quotation marks.

(The ASCII characters within the string are displayed as dots if their value is less than 20H
[32] or greater than 7EH [126].)

Examples

Assume that the pointer array argv in the program DUMP.C is located at address
4743:029CH. The command

- ? _argv+4 <Enter>

produces the following display:

4743:02A0h 000476D0 (292560)

1152 The MS-DOS Encyclopedia

SYMDEB: ?

To display the result of an exclusive OR operation between the values OFCH and 14H, type

-? FC XOR 14 <Enter>.

SYMDEB displays

OOESh OOOOOOE8 (232)

Section IV: Programming Utilities 1153

SYMDEB:!

SYMDEB:!

Escape to Shell

Purpose

Invokes the MS-DOS command processor.

Syntax

! [command]

where:

command is the name of any MS-DOS command, program, or batch file and its re
quired parameters.

Description

The Escape to Shell (!) command loads a copy of the system's command processor
(COMMAND.COM), optionally passing it the name of a program or batch file to be exe
cuted. This allows MS-DOS functions such as listing or copying files to be carried out
without losing the context of the debugging session.

If the 1 command is entered alone, an additional copy of COMMAND.COM gains control
and displays the system prompt. Control can be returned to SYMDEB by leaving the new
shell with the EXIT command.

If the 1 character is followed by a command parameter that specifies any valid MS-DOS
command, program name, or batch-file name, the specified command is executed imme
diately and control returns directly to SYMDEB.

The SYMDEB statement connector (;) cannot be used on the same line as the I command;
all text encountered after this command is passed to COMMAND.COM and is interpreted
as an MS-DOS command line.

Example

To list the files in the current directory, type

-! DIR /W <Enter>

1154 The MS-DOS Encyclopedia

SYMDEB:!

Messages

COMMAND.COM not found!

SYMDEB could not find COMMAND.COM because it was not present in the directory
location specified in the environment block's COMSPEC variable.

Not enough memory!
Free memory in the transient program area (TPA) is insufficient to execute the requested
command or program. This is a common occurrence when debugging a large program
with symbol files.

Section IV: Programming Utilities 1155

SYMDEB: ̂

SYMDEB: *

Enter Comment

Purpose

Allows insertion of a comment that will be ignored by SYMDEB's command interpreter.

Syntax

*text

where:

text is any ASCII text up to and including a carriage return.

Description

The Enter Comment (») command causes the remainder of the text on that line to be

ignored, thereby providing a means of commenting a SYMDEB debugging session.
SYMDEB echoes any text following the asterisk to the screen or redirected output device,
providing the user with a convenient way to comment program output redirected to a file
or a printer. A maximum of 78 characters can be included on each comment line. Com
ment lines are also useful for documenting lines within a text file that SYMDEB will use as
redirected input for the program being debugged.

Example

To echo the reminder Errors in program output start here: to the screen or redirected out
put device, type

~ *Errors in program output start here: <Enter>

A line in a text file that will be used by SYMDEB for redirected input to the program being
debugged may be "commented out" by inserting an asterisk at the beginning of the line.
For example:

*EB OS:1200 90

1156 The MS-DOS Encyclopedia

CodeView

CodeView

Window-Oriented Debugger

Purpose

Allows the controlled execution of an assembly-language program or high-level-language
program for debugging purposes. Both source code and the corresponding unassembled
machine code can be displayed as program execution is traced. In addition, watch vari
ables, CPU registers and flags, and program output can be examined in separate debug
ging windows. CodeView is supplied with the Microsoft Macro Assembler (MASM), C
Compiler, Pascal Compiler, and FORTRAN Compiler. This documentation describes
CodeView version 2.0.

Syntax

ON [option^ exe_file [parameter^

where:

exe^file is the name of the executable file containing the program to be debugged
(default extension = .EXE).

parameters is one or more filenames or switches required by the program being
debugged.

options is one or more switches from the following list. Switches can be either
uppercase or lowercase and can be preceded by a dash (-) instead of a
forward slash (/).

/2

/43

/B

/Qcommands

/D

Allows the use of two video displays for debugging.
Enables 43-line display mode. (An IBM-compatible
computer with an enhanced graphics adapter [EGA]
and an enhanced color display is required for this
option.)
Forces the attached monitor to use two shades of color

when displaying information.
Executes the specified list of startup commands when
CodeView is invoked. If the list of startup commands
contains any spaces, the entire list must be enclosed in
double quotation marks ("). Commands in the list must
be separated by a semicolon character (;).
Turns off nonmaskable interrupt trapping and Intel
8259 interrupt trapping. (This switch prevents system
crashes on some IBM-compatible machines that do
not support certain IBM-specific interrupt trapping
functions.)

(more)

Section IV: Programming Utilities 1157

CodeView

/E Stores the symbolic information of the program in
expanded memory.

/F Enables the screen-flipping method of switching
between the debugging display and the virtual output
display. Screen flipping is the default method for
IBM-compatible computers with color/graphics
adapters.

/I Enables nonmaskable interrupt trapping and Intel

8259 interrupt trapping on computers that are not
IBM-compatible.

/M Disables mouse support within CodeView.
/P Enables palette register restore mode, which allows

non-IBM EGAs to restore the proper colors upon return
from the virtual output screen.

/R Enables Intel 80386 debugging registers.
/S Enables the screen-swapping method of switching

between the debugging display and the virtual output
display. Screen swapping is the default method for
IBM-compatible computers with monochrome
adapters.

/T Disables window mode. This switch is necessary for
some non-IBM computers or when a sequential debug
ging session is desired.

/W Enables window mode. This switch allows CodeView

to operate in multiple windows on the same screen.
(This option is not the default for some computers.)

Description

CodeView is a window-oriented menu-driven debugger that allows tracing and debugging
of high-level-language programs and assembly-language programs. In general, any valid C,
FORTRAN, BASIC, Pascal, or MASM source code can be debugged with CodeView.

To prepare a program for debugging under CodeView, the program must be compiled and
linked so that the resulting executable file has the extension .EXE and contains line-
number information, a symbol table, and executable code. (To a limited extent, text files
and .COM files can also be examined under CodeView.) During the debugging session,
the program source file must remain in the current directory if source-code display is
desired.

The CodeView screen contains four windows that display information about the pro
gram being debugged: the display window, which contains program source code and (if
requested) the unassembled machine code corresponding to the source code; the dialog
window, where line-oriented commands similar (and in some cases identical) to SYMDEB
can be entered and viewed Csee PROGRAMMING UTILITIES: symdeb); the register win
dow (optional), which contains the current status of the microprocessor's registers and
flags; and the watch window (optional), which contains program variables or memory

1158 The MS-DOS Encyclopedia

locations to be examined during program execution. CodeView also provides a virtual
output screen (stored internally) that contains all display output generated during the
CodeView session.

A typical CodeView debugging screen looks like this:

Watch window Pull-down menu

Display
window

Next^

executable

program

line

SEGnENI byte
aSSUnE cs:ca

dXiOFFSET pponpt

dXiOFFSET nanebuf

dosint BAh

nov siidx

AX = FFEE

BX = 0000ICX = 0080
BX = 0000

SP = 0100

SI = 0000

Load data segnent ad DI = 0000
BS = FFEE

Load address of pron ES = 547D

Load address for fit CS = 5521
Get file nane string IF = 0014
Set SI to start of f

Put the number of by NU UP

Register

window

blfBVTE PTR [si-^l] I Put the number of byl
BVTE PIR Csi^bx+EliB/ Put 0 at end to makel

i (0 overrides CR fr|dlj0Ah ; Load linefeed chara^

Microsoft (R) CodeUieu (R> Mersion 2.00
|(C) Copyright Kicrosoft Corp. 1986, 198?. All rights reserved.

Dialog window

The CodeView display.

Scroll bars

Display window commands

Commands that control the display window are available in nine pull-down menus whose
names appear in a menu bar near the top of the screen. Commands can be selected with
the keyboard or the mouse. Commands are selected with the keyboard by pressing the Alt
key, pressing the first letter in the menu name, and then pressing the first letter of the com
mand. Commands are selected with the mouse by pulling down the menu with the mouse
pointer, highlighting the command, and then releasing the mouse button. Commands with
small double arrows to the left of the command name are currently active. The CodeView
menus and commands are described below.

File menu

The File menu includes commands that manipulate the current source or program file. To
select the File menu with the keyboard, press Alt-F.

Command Action

Open... Opens the specified source file, include file, or text file in the display
window.

DOS Shell Exits to the shell temporarily. Type exit to return to CodeView.
Exit Ends the current CodeView session.

Section IV: Programming Utilities 1159

CodeView

View menu

The View menu includes commands that select source or assembly modes and commands
that select the debugging screen or the virtual output screen. To select the View menu with
the keyboard, press Alt-V.

Command Action

Source Displays only the high-level-language or assembly-language source code
corresponding to the program being debugged.

Mixed Displays both the unassembled machine code and the source code
corresponding to the program being debugged.

Assembly Displays only the unassembled machine code corresponding to the
program being debugged.

Registers Displays or removes the optional register window.
Output Replaces the debugging screen with the virtual output screen. Press any

key to return to the debugging screen.

Search menu

The Search menu includes commands that search through text files for text strings and
through executable code for labels. To select the Search menu with the keyboard, press
Alt-S.

Command Action

Find...

Next

Previous

Label...

Searches the current source file or other text file for the specified
expression.

Searches forward through the file for the next match of the last
expression specified with the Find... command.

Searches backward through the file for the next match of the last
expression specified with the Find... command.

Searches the executable code for the specified procedure name or
program label.

Run menu

The Run menu includes commands that run the program being debugged. To select the
Run menu with the keyboard, press Alt-R.

Command Action

Start

Restart

Execute

Clear Breakpoints

Runs the program at full speed from the first instruction.
Reloads the program and moves to the first instruction.
Runs the program at reduced speed from the current instruction.
Clears all breakpoints.

1160 The MS-DOS Encyclopedia

CcxIeView

Watch menu

The Watch menu includes commands that add watch statements to and delete watch state

ments from the watch window. Watch statements describe expressions or areas of memory
to be examined during program execution. To select the Watch menu with the keyboard,
press Alt-W.

Command Action

Add Watch...

Watchpoint...

Tracepoint...

Delete Watch...

Delete All Watch

Adds the specified watch-expression statement to the watch
window.

Adds the specified watchpoint statement to the watch window. A
watchpoint is a conditional breakpoint that is taken when the
expression becomes nonzero (true).

Adds the specified tracepoint statement to the watch window. A
tracepoint is a conditional breakpoint that is taken when a given
expression or range of memory changes.

Deletes the specified statement from the watch window.
Deletes all statements from the watch window.

Options menu
The Options menu contains commands that affect the general behavior of CodeView. To
select the Options menu with the keyboard, press Alt-O.

Command Action

Flip/Swap When on (the default), enables screen swapping or screen flipping
(whichever option CodeView was started with); when off, disables
swapping or flipping. Either method can be used to display the
CodeView virtual output screen.

Bytes Coded When on (the default), displays the instructions, instruction addresses,
and the bytes for each instruction; when off, displays only the
instructions.

Case Sense When on, causes CodeView to assume that symbol names are case sensi
tive; when off, causes CodeView to assume that symbol names are not
case sensitive. This option is on by default for C programs and off by
default for FORTRAN, BASIC, and assembly programs.

386 When on, allows instructions that reference 32-bit instructions to be as
sembled and executed and the register window to display 32-bit values.
When off, does not allow Intel 80386 instructions and registers to be
supported.

Language menu

The Language menu contains commands that select the language-dependent expression
evaluator or instruct CodeView to select it for you. To select the Language menu with the
keyboard, press Alt-L.

Section IV: Programming Utilities 1 l6l

CodeView

Command Action

Forces CodeView to select the expression evaluator of the source file
being loaded, based on the extension of the source file.

Uses a BASIC expression evaluator to determine the value of source-level
expressions.

Uses a C expression evaluator to determine the value of source-level
expressions.

Uses a FORTRAN expression evaluator to determine the value of source-
level expressions.

Auto

Basic

Fortran

Calls menu

The Calls menu is different from other menus in that its contents vary depending on the
status of the program. The Calls menu lists the names of specific routines that will be dis
played on the screen when that routine name is selected. Routine names in the Calls menu
can be selected by typing the number displayed immediately to the left of a routine name.
The cursor will move to the line at which the selected routine was last executing.

The current value of each parameter, if any, is shown in parentheses following the name
of the routine in the Calls menu. The menu expands to accommodate the parameters of
the widest line. Parameters are shown in the current radix (default = decimal). If the
program contains more active routines than will fit on the screen or if the routine parame
ters are too wide, the menu expands to the left and right.

To select the Calls menu with the keyboard, press Alt-C.

Help menu
The Help menu lists the major topics in the CodeView "linked-list" help system. For help,
pull down the Help menu and then select the topic of interest. To select the Help menu
with the keyboard, press Alt-H.

Command Action

Intro to Help
Keyboard/Mouse
Run commands

Display cmds.
Watch/Break

Memory Ops
System cmds.
About CodeView

Displays information about the "linked-list" help system.
Displays information about keyboard and mouse commands.
Displays information about Run commands.
Displays information about Display commands.
Displays information about setting, listing, and deleting watch-
points and breakpoints.

Displays information about viewing and modifying memory.
Displays information about system and environment commands.
Displays information about the current CodeView version, time,
and date.

1162 The MS-DOS Encyclopedia

CodeView

Key commands

CodeView supports a variety of function keys and key combinations that modify the active
window.

Key Action

F1 Displays the introductory help screen.
F2 Displays or removes the register window.

F3 Changes the display in the display window to source, mixed, or assembly
mode.

F4 Displays the virtual output screen (press any key to return).
F5 Executes to the next breakpoint or to the end of the program if no break

point is encountered.
F6 Toggles between the display window and the dialog window.
F7 Sets a temporary breakpoint on the line containing the cursor and exe

cutes to that line (or the next breakpoint).
F8 Executes a trace command, stepping through program calls if present.
F9 Sets or clears a breakpoint on the line containing the cursor.
FIO Executes the next source line (in source mode) or the next instruction

(in assembly mode), stepping over program calls if present.
Ctrl+G Increases the size of the display window or the dialog window, whichever

is active.

Ctrl+T Decreases the size of the display window or the dialog window, whichever
is active.

Dialog window commands

After CodeView and the specified executable file are loaded, CodeView displays its special
prompt character (>) at the bottom of the dialog window and awaits a dialog command.
CodeView dialog commands consist of one, two, or three characters, usually followed by
one or more parameters. CodeView treats uppercase and lowercase characters the same
except when they are contained in strings enclosed within single or double quotation
marks. The default radix for dialog command parameters is 10 (decimal). Dialog com
mands are executed when the Enter key is pressed.

A detailed explanation of CodeView dialog commands and parameters is not presented
in this entry. CodeView dialog commands and parameters are similar to SYMDEB com
mands and parameters. See PROGRAMMING UTILITIES: symdeb. Additional information
about using CodeView dialog commands and parameters can be found in the CodeView
documentation supplied with the Microsoft Macro Assembler (MASM), C Compiler, Pascal
Compiler, and FORTRAN Compiler. A sample debugging session using CodeView dialog
commands and window commands is documented in this book. See PROGRAMMING IN

THE MS-DOS ENVIRONMENT: Programming Tools: Debugging in the MS-DOS
Environment.

Section IV: Programming Utilities 1163

CodeView

The dialog commands available with CodeView are as follows:

Command Syntax

/

7

>

?

@

A

BC

BD

BE

BL

BP

C

D

DA

DB

DD

DI

DL

DS

DT

DU

DW

E

EA

EB

ED

El

EL

ES

ET

Action

! [command]
II

"f^number

* comment

/[searchtext]

1

< device

= device

[T] > [>] device

? expression[Jormat\
@

A [addres^

BC [*] [list]

BD [♦] [list]
BE [♦] [list]
BL

BP [address [passcount]
["cmrfs"]]

C range address
D [range]
DA [range]
DB [range]
DD [range]
DI [range]
DL [range]
DS [range]
DT [range]
DU [range]
DW [range]
E address [list]

EA address [list]

EB address [list]

ED address [valve]

El address [list]

EL address [value]

ES address [value]

ET address [value]

Escape to shell.
Pause redirected file execution.

Set display window tabs.
Echo comment to output device.
Display current source line.
Search for regular expression.
Display 8087 registers.
Delay redirected file execution.
Redirect dialog window input.
Redirect dialog window input and output.
Redirect dialog window output.
Evaluate expression.
Redraw screen.

Assemble machine instructions.

Clear breakpoints.
Disable breakpoints.
Enable breakpoints.
List breakpoints.
Set breakpoints.

Compare memory areas.

Display (dump) memory.
Display ASCII.
Display bytes.
Display doublewords.
Display integers.
Display long reals.
Display short reals.
Display 10-byte reals.
Display unsigned integers.
Display words.
Enter data.

Enter ASCII string.
Enter bytes.
Enter doublewords.

Enter integers.

Enter long reals.
Enter short reals.

Enter 10-byte reals.

(more)

ll64 The MS-DOS Encyclopedia

CodeView

Command Syntax Action

EU EU address [valtte] Enter unsigned integers.
EW EW address [value] Enter words.

F F range list Fill memory.
G G [breakpoint] Go execute program.
H H Display help screen.
I I port Input from port.
K K [number] Perform stack trace.

L L [parameters] Reload program.
M M range address Move (copy) data.
N N [radix] Change current radix.
O 0 port byte Output to port.
O 0 Display all options.
03 031+1-] Toggle Intel 80386 option.
OB OB[+!-] Toggle bytes coded option.
OC OC[+l-] Toggle case-sense option.
OF OF[+!-] Toggle flip/swap option.
P P [count] Step through program (over calls).

Q Q Quit debugger.
R R [register [value]] Display or modify registers.
RF RF [flags] Display or modify flags.
S S range list Search memory.
S S Display current display mode.
s+ 8+ Display source code.
s- S- Display assembly language.
s& S& Display source code and assembly

language.
T T [count] Trace program execution (through calls).
TP TP [type] range Set memory-tracepoint statement.
TP? TP? expression[,format] Set tracepoint-expression statement.
U U [range] Disassemble (unassemble) program.
USE USE [language] Switch expression evaluators.
V V [.[filename.]linenumber] View source code.

W W List watchpoints and tracepoints.
W W [type] range Set memory-watch statement.
W? W? expression[, format] Set watch-expression statement.
WP? WP? expression[, format] Setwatchpoint.
X X[?[morfwfe!] Examine program symbols.

[routine]symbol 1 ♦]
Y Y [»] [list] Delete watch statements.

\ \ Display virtual output screen.

Section IV: Programming Utilities 1165

CodeView

Examples

To prepare the source file SHELL.C for debugging with CodeView, first compile the source
file with the switches that disable optimization and cause symbol-table and line-number
information to be written to the relocatable object module:

C>MSC /Zi /Od SHELL; <Enter>

Next, to convert the object module to an executable program and prepare it for CodeView,
type

OlINK /CO SHELL; <Enter> .

To begin debugging, type

C>cv SHELL <Enter>

To start CodeView in 43-line mode with TEST.EXE as the executable file and INFO.DAT as
the command-tail parameter, type

C>cv /43 TEST INFO.DAT <Enter>

In both examples the source file corresponding to the specified executable file must be in
the current directory if source-code display is desired.

Messages

Argument to IMAG/DIMAG must be simple type
An invalid parameter to an IMAG or DIMAG function, such as an array with no subscripts,
was specified.

Array must have subscript
An array without any subscripts was specified in an expression, such as IARRAY+2. A
correct example is IARRAY[l]-h2.

Bad address

An invalid address was specified. For example, an address containing hexadecimal char
acters might have been specified when the radix is decimal.

Bad breakpoint command
An invalid breakpoint number was specified with the BC, BD, or BE dialog command. The
breakpoint number must be in the range 0 through 19.

Bad flag
An invalid flag mnemonic was specified with the RF dialog command.

Bad format string
An invalid format specifier was used following an expression. Expressions used with the
?, W?, WP?, and TP? dialog commands can have format specifiers set off from the expres
sion by a comma. The valid format specifiers are c, d, e, E, f, g, G, i, o, s, u, x, and X. Some
format specifiers can be preceded by the prefix h (to specify a 2-byte integer) or 1 (to spec
ify a 4-byte integer).

1166 The MS-DOS Encyclopedia

CodeView

%

Bad integer or real constant
An invalid numeric constant was specified in an expression.

Bad intrinsic function

An invalid intrinsic function name was specified in an expression.

Badly formed type
The type information in the symbol table of the file being debugged is incorrect. This is a
serious problem. Note the circumstances of the failure and notify Microsoft Corporation.

Bad radix (use 8,10, or 16)
An invalid radix was specified with the N dialog command. Use an octal, decimal, or
hexadecimal radix.

Bad register
An invalid register name was specified with the R dialog command. Use AX, BX, CX, DX,
SP, BP, SI, DI, DS, ES, 55,05, or IP. If your machine is equipped with an Intel 80386 micro
processor, use EAX, EBX, ECX, EDX, ESP, EBP, E5I, EDI, D5, E5, F5, G5,55,05, or IP.

Bad subscript
An invalid subscript expression was specified for an array, such as lARRAY(33) or
I ARRAY ((33))' The correct expression for this example (in BASIC or FORTRAN) is
lARRAY (33)'

Bad type cast
Incompatible types of operands were specified in an expression.

BadtypeCuse one of ABDBLSTUWO
An invalid type was used in a Display (D, DA, DB, DF, DU, DW, DD, D5, DL, or DT) dialog
command. The valid types are ASCII (A), byte (B), integer (I), unsigned (U), word (W),
doubleword (D), short real (5), long real (L), and 10-byte real (T).

Breakpoint # or expected
The BC, BD, or BE dialog command was entered without a parameter.

Cannot cast complex constant component into REAL
An incompatible real or imaginary component was specified in a COMPLEX constant.
Both real and imaginary components must be compatible with type REAL.

Cannot cast IMAG/DIMAG argument to COMPLEX
An invalid parameter was specified with an IMAG or DIMAG function. IMAG and DIMAG
parameters must be simple numeric types.

Cannot use struct or union as scalar

A struct or union variable was used as a scalar value in a C expression. 5uch variables must
be followed by a file specifier or preceded by the address-of (&) operator.

Can't find filename
CodeView could not find the executable file specified in the command line.

Section IV: Programming Utilities 1167

CodeView

Character constant too long
A character constant that is too long for the FORTRAN expression evaluator was specified.
The limit is 126 bytes.

Character too big for current radix
A radix that is larger than the current CodeView radix was specified in a constant. Use the
N dialog command to change the radix.

Constant too big
An unsigned constant number larger than 4,294,967,295 (FFFFFFFFH) was specified.

CPU not an 80386

The 386 option was selected but a machine without an Intel 80386 microprocessor is
being used.

Divide by zero
An expression in a parameter of a dialog command attempted to divide by zero.

EMM error

CodeView failed to use the Expanded Memory Manager (EMM) correctly. This is a serious
problem. Note the circumstances of the failure and notify Microsoft Corporation.

EMM hardware error

The Expanded Memory Manager (EMM) routines reported a hardware error. Check your
expanded memory board for defects.

EMM memory not found
The /E option was used but expanded memory has not been installed. Install software
that accesses the memory according to the Lotus/Intel/Microsoft Expanded Memory
Specification (LIM EMS).

EMM software error

The Expanded Memory Manager (EMM) routines reported a software error. Reinstall the
EMM software.

Expression too complex
An expression given as a dialog-command parameter is too complex.

Extra input ignored
Too many parameters were specified with a command. CodeView evaluates the valid
parameters and ignores the rest. In this situation, CodeView often does not evaluate the
parameters as intended.

Flip/Swap option off — application output lost
The program being debugged is writing to the screen, but the output cannot be displayed
because the flip/swap option has been disabled.

Floating point error
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

1168 The MS-DOS Encyclopedia

CodeView

Illegal instruction
This message usually indicates that a machine instruction attempted to divide by zero.

Index out of bound

A subscript value was specified that is outside the bounds declared for the array.

Insufficient EMM memory
Expanded memory is insufficient to hold the program's symbol table.

Internal debugger error
This is a serious problem. Note the circumstances of the failure and notify Microsoft
Corporation.

Invalid argument
An invalid CodeView expression was specified as a parameter.

Invalid executable file format—please relink
The executable file was not linked with the version of LINK released with this version of

the CodeView debugger. Relink with the appropriate version of LINK.

Invalid option
An invalid switch was specified with the O command.

Missing'"*
A string specified as a parameter to a dialog command did not have a closing double
quotation mark.

Missing'('
A parameter to a dialog command was specified as an expression containing a right
parenthesis but no left parenthesis.

Missing')'
A parameter to a dialog command was specified as an expression containing a left
parenthesis but no right parenthesis.

Missing']'
A parameter to a dialog command was specified as an expression containing a left bracket
but no right bracket, or a regular expression was specified with a right bracket but no left
bracket.

Missing'(' in complex constant
An opening parenthesis of a complex constant in an expression was expected but was not
found.

Missing')' in complex constant
A closing parenthesis of a complex constant in an expression was expected but was not
found.

Missing')' in substring
A closing parenthesis of a substring expression was expected but was not found.

Section IV: Programming Utilities 1169

CodeView

Missing'(' to intrinsic
An opening parenthesis for an intrinsic function was expected but was not found.

Missing')' to intrinsic
A closing parenthesis for an intrinsic function was expected but was not found.

No closing single quote
A character was specified in an expression used as a dialog-command parameter, but the
closing single quotation mark is missing.

No code at this line number

A breakpoint was set on a source line that does not correspond to machine code. (In other
words, the source line does not contain an executable statement.) For example, the line
might be a data declaration or a comment.

No free EMM memory handles
CodeView could not find an available EMM handle. Expanded Memory Manager (EMM)
software allocates a fixed number of memory handles (usually 256) to be used for specific
tasks.

No match of regular expression
No match was found for the regular expression specified with the Search (S) dialog com
mand or with the Find... command from the Search menu.

No previous regular expression
The Previous command was selected from the Search menu, but CodeView found no
previous match for the last regular expression specified.

No source lines at this address

The address specified as a parameter for the V dialog command does not have any source
lines. For example, it could be an address in a library routine or an assembly-language
module.

No such file/directory
The specified file or directory does not exist.

No symbolic information
The executable file specified is not in the CodeView format. The program cannot be
debugged in source mode unless the file is created in the CodeView format. The program
can be debugged in assembly mode.

Not an executable file

The file specified to be debugged when CodeView started is not an executable file with a
.EXE or .COM extension.

Notatextfile

An attempt was made to load a file with the Open... command from the File menu or
with the V dialog command, but the file is not a text file. CodeView determines if a file is a
text file by checking the first 128 bytes for characters that are not in the ASCII ranges 9
through 13 and 20 through 126.

1170 The MS-DOS Encyclopedia

CodeView

Not enough space
The! dialog command or the DOS Shell command from the File menu was chosen, but
free memory is insufficient to execute COMMAND.COM. Because memory is released by
code in the FORTRAN startup routines, this error always occurs if the! command is used
before executing any code. Use any of the code-execution dialog commands (T, P, or G) to
execute the FORTRAN startup code; then try the! command again. This message also
occurs with assembly-language programs that do not specifically release memory.

Object too big
A TP? dialog command was entered with a data object (such as an array) that is larger than
128 bytes.

Operand types incorrect for this operation
An operand in a FORTRAN expression had a type incompatible with the operation
applied to it. For example, if P is declared as CHARACTER P (10), then ?P+5 would pro
duce this error, because a character array cannot be an operand of an arithmetic operator.

Operator must bave a struct/union type
One of the C member-selection operators (-, >, or.) was used in an expression that does
not reference an element of a structure or union.

Operator needs lvalue
An expression was specified that does not evaluate to a memory location in an operation
that requires one. (An lvalue is an expression that refers to a memory location.) For exam
ple, buffer (count) is correct; it represents a symbol in memory. However, / .EQV. 10
is invalid because it evaluates to TRUE or FALSE instead of to a single memory location.

Overlay not resident
An attempt was made to unassemble machine code from a function that is currently not in
memory.

Program terminated normally (exitcode^
The program terminated execution normally. The number displayed in parentheses is the
exit code returned to MS-DOS by the program.

Radix must be between 2 and 36 inclusive

A radix that is outside the allowable range was specified.

Register variable out of scope
An attempt was made to specify a register variable by using the period (.) operator and a
routine name.

Regular expression too complex
The regular expression specified is too complex for CodeView to evaluate.

Regular expression too long
The regular expression specified is too long for CodeView to evaluate.

Restart program to debug
The program being debugged has executed to the end.

Section IV: Programming Utilities 1171

CodeView

Simple variable cannot have argument
A parameter to a simple variable was specified in an expression. For example, given the
declaration INTEGER NUMy the expression NUM(I) is not allowed.

Substring range out of bound
A character expression exceeded the length specified in the CHARACTER statement.

Syntax error

An invalid command line was specified for a dialog command, or an invalid assembly-
language instruction was entered with the A dialog command.

Too few array bounds given
The bounds specified in an array subscript do not match the array declaration. For exam
ple, given the array declaration INTEGER IARRAY(3,4), the expression lARRAYQ) would
produce this error message.

Too many array bounds given
The bounds specified in an array subscript do not match the array declaration. For exam
ple, given the array declaration INTEGER IARRAY(3,4), the expression I ARRAY (I,3J)
would produce this error message.

Too many breakpoints
An attempt was made to specify more than 20 breakpoints; CodeView permits only 20.

Too many files
Too few file handles were specified for CodeView to operate correctly. Specify more files
in your CONFIG.SYS file.

Type clash in function argument
The type of an actual parameter does not match the corresponding formal parameter, or a
subroutine that uses alternate returns was called and the values of the return labels in the

actual parameter list are not 0.

Type conversion too complex
An attempt was made to typecast an element of an expression in a type other than the sim
ple types or with more than one level of indirection. An example of a complex type would
be typecasting to a struct or union type. An example of two levels of indirection is char**.

Unable to open file
A file specified in a command parameter or in response to a prompt cannot be opened.

Unknown symbol
An identifier that is not in CodeView's symbol table was specified, or a local variable was
used in a parameter when not in the routine where the variable is defined, or a subroutine
that uses alternate returns was called and the values of the return labels in the parameter
list are not 0.

Unrecognized option o/y^/on
VaUd options: /B /C<command> /D /E /F /I /M /P /R /S /T / W /43 /2
An invalid switch was entered when starting CodeView.

1172 The MS-DOS Encyclopedia

CodeView

Usage: cv [options] file [arguments]
An executable file was not specified when starting CodeView.

Video mode changed without /S option
The program changed video modes (either to or from graphics modes) when screen
swapping was not specified. Use the /S option to specify screen swapping when debug
ging graphics programs. Debugging can be continued after receiving this message, but the
output screen of the debugged program may be damaged.

Warning: packed file
CodeView was started with a packed file as the executable file. The program cannot be
debugged in source mode because all symbolic information is stripped from a file when it
is packed with LINK'S /EXEPACK option or the EXEPACK utility. Try to debug the pro
gram in assembly mode. (The packing routines at the start of the program might make
this difficult.)

Wrong number of function arguments
An incorrect number of parameters was specified when evaluating a function in a
CodeView expression.

Section IV: Programming Utilities 1173

^p
•■pi

Blil®S
li^lS^S

iSi^B®

l^RI

?IS-if#M|fiP

ij//'/ i°''^

i^lB

M S®
m

^l?SSEi=%i6?S'
—

iW8^

mm,
Hii

1 ^S
■

ipfi^-^v

l;#.'
s

'SSSS

wi .

ST.'^-

^Sl

i^Mlii^^p
iiii

. ■« " tr vj ,

,i, ,1 J^. ._ .^JS. >' >..,.

I^W

Bliiipliill

iiS

Mil
sill

^fetV ;-^v' ■> ^ - ^ • r- i-

®ll

^^ii|psiil^^*iiPP^Ii»Sp®i^t«i^w(^^

■

iiliii^liii^»p^«liiiilili^^

;'MS'tgimssm$i9mis&Mm^M

Section V

... Ki»:!iia;ii^l*

■■

I^Sli

r- <;. V'- ''a?: -c: ̂

-■ ■ ■ avr''>3!yaxa:a\v ■

" ' ' '" -f^"" Vr'Y'";S'Ar' A'.A^'^'~^At
' , -'■ ^ ■/-" V '•'% •/ 4 - f ?%-- 4-; ;> f »

■ .:--^ ,-: ;--r-aa;a'.:;a.;:;:.'\.,:.]

- . . .N "v?'
' : ;a ~

iilMi

7^^ ~_.777 4x'T " „ /_ f
'7 7 A:-^

J^ 77,^ ,-. .^xvy-. ..\^.t.« <r -t- .v^ „ '^ .L.y,.

*
gfti«gig|

SB SliWlipP^#
iiSli

i^lii

■f—'
SM

18

Bil

Ii6ii|ipii

li|p®^ii|iiSpiii^^^Bpli|i

ilBBIIliffiililiW^Kiii

System Calls Introduction

Introduction

All versions of MS-DOS include operating-system services that provide the programmer
with hardware-independent tools for handling such tasks as file management, device input
and output, memory allocation, and getting and setting system-management information
such as the date and time. The majority of these services, collectively called the MS-DOS
system calls, are invoked through Interrupt 21H. A few others are called using Interrupts
20H through 27H and 2FH. This section includes descriptions of these system-management
services, with details relevant to all releases of MS-DOS through version 3.2.

Use of the Interrupt 21H system calls, rather than hardware-specific routines, helps ensure
that a program will run on any computer running an appropriate version of MS-DOS.
Likewise, because new releases of MS-DOS attempt to maintain compatibility with earlier
versions, use of the calls increases the likelihood that a program will remain usable for
more than a single major or minor release of the operating system.

The MS-DOS Interrupt 21H system calls are invoked as follows:

AH = function number

AL = subfunction code (if required)
Other registers = additional function-specific information
Execute Interrupt 21H

Version Differences

With MS-DOS versions 2.0 and later, considerable overlap occurs in the way in which
many system services, such as file and character device I/O, can be carried out. This over
lap is a result of the manner in which MS-DOS has developed since it was first released.

The earliest version of MS-DOS, 1.0, included a relatively small set of Interrupt 21H system
calls designed primarily for CP/M compatibility. These calls, numbered OOH through 2DH,
relied on the use of file control blocks (FCBs) in an application's memory space for infor
mation on open files. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Program
ming FOR MS-DOS: File and Record Management; Appendix G: File Control Block (FCB)
Structure. The FCB-based system calls in MS-DOS do not support hierarchical file struc
tures, nor do they support redirection of input and output. As a result, many of these sys
tem calls have been superseded in later releases of MS-DOS. The CP/M-style calls are no
longer recommended and should not be used unless program compatibility with versions
1.x is required.

Beginning with version 2.0, MS-DOS introduced the concept of handles—l6-bit numbers
returned by the operating system after a successful open or create call. The handles can

Section V: System Calls 1177

System Calls Introduction

subsequently be used by an application program to reference an open file or device,
eliminating redundancy and unnecessary overhead. These handles are also used inter
nally by MS-DOS to keep track of open files and devices. The operating system keeps all
such handle-related information in its own memory space. Handles offer full support for
the hierarchical file system introduced in version 2.0 of MS-DOS and thus allow the pro
grammer to access any file stored in any directory or subdirectory on a block device.
Because of the increased flexibility offered by the handle-related system function calls,
these services are recommended over the earlier FCB-based calls, which perform similar
tasks but for the current directory only. See PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Programming for ms-dos: File and Record Management.

Another advantage of using the system calls introduced in versions 2.0 and later is that
these calls set the carry flag when an operational error occurs and return an error code in
AX that indicates the nature of the error; the error can then be investigated further by call
ing Function 59H (Get Extended Error Information). The earlier system calls (OGH through
2DH) generally simply return OFFH (255) in AL to indicate an error or OGH to indicate that
the call was completed successfully.

Format of Entries

Entries in this section are arranged in hexadecimal order, with decimal equivalents in
parentheses. Each entry is organized as follows:

• Hexadecimal interrupt and/or function number (decimal equivalent in parentheses)
• Interrupt or function name (similar to, but not always the same as, the name used in

MS-DOS documentation)

• Version dependencies
• Interrupt or function purpose
• Register contents needed to call
• Register contents on return
• Notes for programmers
• Related functions

• Program example

The format of these entries is designed to give programmers ready reference to specific
information, such as register contents, as well as more detailed notes on the use and appli
cation of each system call. For further information on the use of the system calls, see
PROGRAMMING IN THE MS-DOS ENVIRONMENT.

The assembly-language examples in this section use the Cmacros capability introduced
with the Windows Software Development Kit. Cmacros, a set of assembly-language macros
defined in the file CMACROS.INC, are useful because they provide a simplified interface to
the function and segment conventions of high-level languages such as Microsoft C and
Microsoft Pascal.

1178 The MS-DOS Encyclopedia

System Calls Introduction

Advantages to using Cmacros for assembly-language programming include transparent
support for memory models and symbolic names for function arguments and local vari
ables. Cmacros exist for code and data segment declarations isBegin and sEnd), storage
allocation (staticX, globalX, externX, and labelX}, function declarations icProc, parmX,
localX, cBegin and cEnd^, function calls (^cCall, Save, and Arg), special definitions
iDefX, RegPtr, and FarPtr), and error control ierrnz and errn$\ Of these, only sBegin,
sEnd, cProc, parrriX, localX, cBegin, and cEnd are used in the examples in this section.

Two additional macros that support functions not found in CMACROS.INC are loadCP and
loadDP. These macros, included in the file CMACROSX.INC listed below, allow pointers
previously declared with staticX, globalX, parmX, DefX and localX to be loaded into
registers without regard to the memory model in use—loadCP and loadDP generate
code to load either the offset portion or the full segment:offset of the address, depending
on the memory model.

CMACROSX.INC

This file includes supplemental macros for two macros included

in CMACROS.INC: parmCP and parmDP. When these macros are used,

CMACROS.INC allocates either 1 or 2 words to the variables

. associated with these macros, depending on the memory model in

use. However, parmCP and parmDP provide no support for automatically

adjusting for different memory models —additional program code

needs to be written to compensate for this. The loadCP and loadDP

macros included in this file can be used to provide additional

flexibility for overcoming this limit.

For example, "parmDP pointer" will make space (1 word in small

and middle models and 2 words in compact, large, and huge models)

for the data pointer named "pointer". The statement

"loadDP ds,bx,pointer" can then be used to dynamically place the

value of "pointer" into DSrBX, depending on the memory model.

In small-model programs, this macro would generate the instruction

"mov dx,pointer" (it is assumed that DS already has the right

segment value); in large-model programs, this macro would generate

the statements "mov ds,SEG_pointer" and "mov dx,OFF_pointer".

checkDS macro segmt

diffcount = 0

irp d,<ds,DS,Ds,dS> ; Allow for all spellings

ifdif <segmt>,<d> ; of "ds".

diffcount = diffcount+1

endif

endm

if diffcount EQ 4

it_is_DS = 0

else

it_is_DS = 1

endif

endm

(more)

Section V: System Calls 1179

System Calls Introduction

checkES macro segmt

diffcount = 0

irp d,<es,ES,Es,eS>

i fdi f <segmt>,<d>

diffcount = diffcount+1

endif

endm

if diffcount EQ 4

it_is_ES = 0

else

it_is_ES = 1

endif

endm

Allow for all spellings

of "es".

loadDP macro segmt,offst,dptr

checkDS segmt

if sizeD

if it_is_DS

Ids offst,dptr

else

checkES segmt

if it_is_ES

les offst,dptr

else

mov offSt,OFF_&dptr

mov segmt,SEG_&dptr

endif

endif

else

mov offst,dptr

if it_is_DS EQ 0

push ds

pop segmt

endif

endif

endm

Large data model

; <— Small data model

; If "segmt" is not DS,

; move ds to segmt.

loadCP macro segmt,offst,cptr

if sizeC

checkDS segmt

if it_is_DS

Ids offst,cptr

else

checkES

if it_is_ES

les offst,cptr

else

mov segmt,SEG_&cptr

mov offst,OFF_&cptr

endif

endif

else

<— Large code model

(more)

1180 The MS-DOS Encyclopedia

System Calls Intrcxiuction

push cs

pop segmt

mov offst,cptr

endif

; <— Small code model

endm

The following example program demonstrates the use of Cmacros in an assembly-
language program:

memS

?PLM

?WIN

/Small memory model

;C calling conventions

/Disable Windows support

include cmacros.inc

include cmacrosx.inc

sBegin CODE

assumes CS,CODE

/Start of code segment

/Required by MASM

Microsoft C function syntax:

int addnums(firstnum, secondnum)

int firstnum, secondnum/

Returns firstnum + secondnum

/Start of addnums functions

/Declare parameters

cProc addnums,PUBLIC

parmW firstnum

parmW secondnum

cBegin

mov ax,firstnum

add ax,secondnum

cEnd

sEnd CODE

end

A simple C program to call this function would be

main ()

{

printf("The sum is %d",addnums(12,33))/

Contents by Functional Group

Although distinguishing between FCB-based and handle-based system calls provides a
broad and very generalized means of categorizing these services, the more common and
useful approach is to group the calls by the type of task they perform. The following list
groups the Interrupt 21H system calls and Interrupts 20H, 22H through 27H, and 2FH by
type of service.

Section V: System Calls 1181

System Calls Introduction

Function Purpose

Character Input
OIH Character Input with Echo
03H Auxiliary Input
06H Direct Console I/O

07H Unfiltered Character Input Without Echo
08H Character Input Without Echo
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard

Character Output
02H Character Output
04H Auxiliary Output
05H Print Character

06H Direct Console I/O

09H Display String

Disk Management
ODH Disk Reset

OEH Select Disk

19H Get Current Disk

IBH Get Default Drive Data

ICH Get Drive Data

2EH Set/Reset Verify Flag
36H Get Disk Free Space
54H Get Verify Flag

File Management
OFH Open File with FCB
lOH Close File with FCB

IIH Find First File

12H Find Next File

13H Delete File

16H Create File with FCB

17H Rename File

lAH Set DTA Address

23H Get File Size

2FH Get DTA Address

3CH Create File with Handle

3DH Open File with Handle
3EH Close File

(more)

1182 The MS-DOS Encyclopedia

System Calls Introduction

Function Purpose

File Management (continued)
41H Delete File

43H Get/Set File Attributes

45H Duplicate File Handle
46H Force Duplicate File Handle
4EH Find First File

4FH Find Next File

56H Rename File

57H Get/Set Date/Time of File

5AH Create Temporary File
5BH Create New File

5CH Lock/Unlock File Region

Information Management
14H Sequential Read
15H Sequential Write
21H Random Read

22H Random Write

24H Set Relative Record

27H Random Block Read

28H Random Block Write

3FH Read File or Device

40H Write File or Device

42H Move File Pointer

Interrupt 25H Absolute Disk Read
Interrupt 26H Absolute Disk Write

Directory Management
39H Create Directory

3AH Remove Directory

3BH Change Current Directory
47H Get Current Directory

Process Management

OOH Terminate Process

31H Terminate and Stay Resident
4BH Load and Execute Program (EXEC)
4CH Terminate Process with Return Code

4DH Get Return Code of Child Process

59H Get Extended Error Information

Interrupt 20H . Terminate Program
Interrupt 27H Terminate and Stay Resident

(more)

Section V: System Calls 1183

System Calls Introduction

Function Purpose

Memory Management
48H

49H

4AH

58H

Allocate Memory Block
Free Memory Block
Resize Memory Block
Get/Set Allocation Strategy

Miscellaneous System Management
25H Set Interrupt Vector
26H Create New Program Segment Prefix
29H Parse Filename

2AH Get Date

2BH Set Date

2CH Get Time

2DH Set Time

30H Get MS-DOS Version Number

33H Get/Set Control-C Check Flag
34H Ret urn Address of InDOS Flag
35H Get Interrupt Vector
38H Get/Set Current Country
44H lOCTL

5EH Network Machine Name/Printer Setup
5FH Get/Make Assign List Entry
62H Get Program Segment Prefix Address
63H Get Lead Byte Table (version 2.25 only)
Interrupt 22H Terminate Routine Address

Interrupt 23H Control-C Handler Address
Interrupt 24H Critical Error Handler Address
Interrupt 2FH Multiplex Interrupt

1184 The MS-DOS Encyclopedia

Interrupt 20H

Interrupt 20H (32) 1.0 and later
Terminate Program

Interrupt 20H is one of several methods that a program can use to perform a final exit. It
informs the operating system that the program is completely finished and that the memory
the program occupied can be released.

ToCaU

CS = segment address of program segment prefix (PS?)

Returns

Nothing

Programmer's Notes

• In response to an Interrupt 20H call, MS-DOS takes the following actions:
- Restores the termination handler vector (Interrupt 22H) from PSP:OOOAH.
- Restores the Control-C vector (Interrupt 23H) from PSPiOOOEH.
- With MS-DOS versions 2.0 and later, restores the critical error handler vector (Inter

rupt 24H) from PSP:0012H.
- Flushes the file buffers.

- Transfers to the termination handler address.

The termination handler releases all memory blocks allocated to the program, includ
ing its environment block and any dynamically allocated blocks that were not pre
viously explicitly released; closes any files opened with handles that were not
previously closed; and returns control to the parent process (usually
COMMAND.COM).

• If the program is returning to COMMAND.COM, control transfers first to
COMMAND.COM's resident portion, which reloads COMMAND.COM's transient
portion (if necessary) and passes control to it. If a batch file is in progress, the next
line of the batch file is then fetched and interpreted; otherwise, a prompt is issued for
the next user command.

• Any files that have been written by the program using FCBs should be closed before
using Interrupt 20H; otherwise, data may be lost.

• For those programmers who have been with MS-DOS since its earliest incarnations.
Interrupt 20H is the traditional way to exit from an application program. However,
under versions 2.0 and later, the preferred methods of termination are Interrupt 21H
Function 31H (Terminate and Stay Resident) and Interrupt 21H Function 4CH (Termi
nate Process with Return Code).

Section V: System Calls 1185

Interrupt 20H

Example

Perform a final exit,

int 20H ; Transfer to MS-DOS.

1186 The MS-DOS Encyclopedia

Interrupt 21H Function OOH

Interrupt 21H (33) 1.0 and later
Function OOH (0)
Terminate Process

Function OOH flushes all file buffers to disk, terminates the current process, and releases
the memory used by the process.

ToCaU

AH = OOH

CS = segment of program's program segment prefix (PS?)

Returns

Nothing

Programmer's Notes

• The following interrupt vectors are restored from the PS? of the terminated program:

PSP Offset Vector for Interrupt

OAH Interrupt 22H (terminate routine)
OEH Interrupt 23H (Control-C handler)
12H Interrupt 24H (critical error handler) (versions 2.0 and later.)

• All file buffers are written to disk and all handles are closed. Control is then trans

ferred to Interrupt 22H (Terminate Routine Address).
• Any file that has changed in length and was opened with an FCB should be closed

before Function OOH is called. If such a file is not closed, its length, date, and time are
not recorded correctly in the directory.

• With versions 3.x of MS-DOS, restoring the default memory-allocation strategy used
by MS-DOS is advisable if that strategy has been changed with Function 58H (Get/Set
Allocation Strategy). Any global flags, such as the break and verify flags, that affect
system behavior and that have been changed by the process should also be restored
to their original values.

• Function OOH performs exactly the same processing as Interrupt 20H (Terminate
Program).

• Function OOH is obsolete with MS-DOS versions 2.0 and later. Function 31H (Termi

nate and Stay Resident) and Function 4CH (Terminate Process with Return Code) are
preferred; both enable the terminating process to pass a return code to the calling
process and do not require that CS contain the PSP address.

Section V: System Calls 1187

Interrupt 21H Function OOH

Related Functions

31H (Terminate and Stay Resident)
4CH (Terminate Process with Return Code)

Example

None

1188 The MS-DOS Encyclopedia

Interrupt 21H Function OIH

Interrupt 21H (33) 1.0 and later
Function OIH (1)
Character Input with Echo

Function OIH waits for a character from standard input, echoes it to standard output, and
returns the character in the AL register.

ToCaU

AH = OIH

Returns

AL = 8-bit character code

Programmer's Notes

• With versions 1.x of MS-DOS, Function OIH reads input from the keyboard. With
versions 2.0 and later. Function OIH reads a character from standard input, which
defaults to the keyboard but can be redirected to another device or to a file. Whether
or not input has been redirected, the character is echoed to standard output.

• Function OIH waits for input if a character is not available. A wait can be avoided by
calling Function OBH (Check Keyboard Status), which checks whether a character is
available from standard input, and then calling Function OIH if a character is ready.

• On IBM PCs and compatibles, extended characters, such as those produced by the
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended
character; the second byte completes the key code. To read these characters. Function
OIH must be called twice.

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value
OOH can also represent a null character from a file and, in that case, might not repre
sent valid data. A program can use Function 44H (lOCTL) Subfunction OOH (Get
Device Data) to determine whether standard input has been redirected.

• The carriage-return character (ODH) echoes a carriage return but not a linefeed.
Likewise, the linefeed character (OAH) does not echo a carriage return.

• With MS-DOS versions 2.0 and later. Function OIH cannot detect an end-of-file condi

tion if input has been redirected.
• Interrupt 23H (Control-C Handler Address) is called if Control-C (03H) is the input

character and (with versions 2.0 and later) input is not redirected.
• With MS-DOS version 2.0 and later, if standard input has been redirected to come

from a file. Break must be enabled for Interrupt 23H to be called when Control-C
(03H) is the input character.

• Alternative character input functions are 06H (Direct Console I/O), 07H (Unfiltered
Character Input Without Echo), and 08H (Character Input Without Echo). The four
functions are related as follows:

Section V: System Calls 1189

Interrupt 21H Function OIH

Waits Echoes to Acts on
Function for Input Std Output Control-C

OIH

06H

07H

08H

yes

no

yes

yes

yes

no

no

no

yes

no

no

yes

Depending on whether Control-C needs to be filtered, Function 06H, 07H, or 08H can
be used to handle character display separately from character input.

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be
used in preference to Function OIH.

Related Functions

06H (Direct Console I/O)
07H (Unfiltered Character Input Without Echo)
08H (Character Input Without Echo)
OAH (Buffered Keyboard Input)
OCH (Flush Buffer, Read Keyboard)
3FH (Read File or Device)

Example

Function OIH: Character Input with Echo

int read_kbd_echo()

Returns a character from standard input

after sending it to standard output.

cProc read_kbd_echo,PUBLIC

cBegin

mov

int

mov

cEnd

ah,01h

21h

ah, 0

; Set function code.

; Wait for character.

; Character is in AL, so clear high

; byte.

1190 The MS-DOS Encyclopedia

Interrupt 21H Function 02H

Interrapt21H(33)
Function 02H (2)
Character Output

1.0 and later

Function 02H sends a character to standard output.

ToCaU

AH = 02H

DL = 8-bit code for character to be output

Returns

Nothing

Programmer's Notes

• With versions 1.x of MS-DOS, Function 02H sends a character to the active display.
With MS-DOS versions 2.0 and later, Function 02H sends the character to standard

output. By default, the output is sent to the active display, but it can be redirected to
another device or to a file.

• With all versions of MS-DOS, displaying a backspace (08H) moves the cursor back
one position but does not erase the character at the new position.

• If a Control-C is detected after the character is sent. Interrupt 23H (Control-C Handler
Address) is called.

• With MS-DOS versions 2.0 and later. Function 40H (Write File or Device) should be

used in preference to Function 02H.

Related Functions

06H (Direct Console I/O)

09H (Display String)
40H (Write File or Device)

Example

Function 02H: Character Output

int disp_ch(c)

char c;

Returns 0.

(more)

Section V: System Calls 1191

Interrupt 21H Function 02H

cProc disp_ch,PUBLIC

parmB c

cBegin

mov dl,c ; Get character into DL.

mov ah,02h ; Set function code,

int 21h ; Send character,

xor ax,ax ; Return 0.

cEnd

1192 The MS-DOS Encyclopedia

Interrupt 21H Function 03H

IntCimpt 21H (33) 1.0 and later
Function 03H (3)
Auxiliary Input

Function 03H waits for a character from the standard auxiliary device and returns the
character in the AL register.

ToCaU

AH = 03H

Returns

AL = 8-bit character code

Programmer's Notes

• With versions 1.x of MS-DOS, Function 03H reads a character from the first serial port.
With versions 2.0 and later, Function 03H reads from the standard auxiliary device
(AUX), which defaults to COMl.

• Function 03H waits for input until a character is available from the standard auxiliary
device.

• Function 03H is not interrupt driven and does not buffer characters received from the
standard auxiliary device. As a result, it may not be fast enough for some telecom
munications applications and data may be lost.

• A program cannot perform error detection using Function 03H. On IBM PCs and com
patibles, error detection is available through the ROM BIOS Interrupt 14H. Another
option is to drive the communications controller directly.

• Function 03H does not ensure that auxiliary input is connected and working, nor does
it perform any error checking or set up the auxiliary input device. On IBM PCs and
compatibles, the standard auxiliary device, normally COMl, is set to 2400 baud, no
parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with the
MS-DOS MODE command.

• Some auxiliary input devices do not support 8-bit data transmission. This transmission
parameter is a characteristic of the device and the communication parameters to
which it is set; it is independent of Function 03H.

• If a Control-C is detected at the console. Interrupt 23H (Control-C Handler Address)
is called.

• With MS-DOS versions 2.0 and later. Function 3FH (Read File or Device), which han
dles strings as well as single characters, should be used in preference to Function 03H.

Related Functions

04H (Auxiliary Output)
3FH (Read File or Device)

Section V: System Calls 1193

Interrupt 21H Function 03H

Example

**

Function 03H: Auxiliary Input

int aux_in()

Returns next character from AUX device.

Hi ********** *******

cProc aux_in,PUBLIC

cBegin

mov ah,03h

int 21h

mov ah,0

cEnd

Set function code.

Wait for character from AUX.

Character is in AL

so clear high byte.

1194 The MS-DOS Encyclopedia

Interrupt 21H Function 04H

Interrupt 21H (33) 1.0 and later
Function 04H (4)
Auxiliary Output

Function 04H sends a character to the standard auxiliary device.

ToCaU

AH = 04H

DL = 8-bit code for character to be output

Returns

Nothing

Programmer's Notes

• With versions 1.x of MS-DOS, Function 04H sends a character to the first serial port.
With versions 2.0 and later, Function 04H sends the character to the standard auxiliary
device (AUX), which defaults to COMl.

• Function 04H does not ensure that auxiliary output is connected and working, nor
does it perform any error checking or set up the auxiliary output device. On IBM PCs
and compatibles, the standard auxiliary device, normally COMl, is set to 2400 baud,
no parity, 1 stop bit, and 8 databits at startup. These parameters can be changed with
the MS-DOS MODE command.

• Function 04H does not return the status of auxiliary output, nor does it return an error
code if the auxiliary output device is not ready for data. If the device is busy. Function
04H waits until it is available.

• Interrupt 23H (Control-C Handler Address) is called if a Control-C is detected at
the console.

• With MS-DOS versions 2.0 and later. Function 40H (Write File or Device), which man
ages strings as well as single characters, should be used in preference to Function
04H.

Related Functions

03H (Auxiliary Input)
40H (Write File or Device)

Section V: System Calls 1195

Interrupt 21H Function 04H

Example

Function 04H: Auxiliary Output

int aux_out(c)

char c;

Returns 0.

cProc aux_out,PUBLIC

parmB c

cBegin

mov dl,c

mov ah,04h

int 21h

xor ax,ax

cEnd

Get character into DL.

Set function code.

Write character to AUX.

Return 0.

1196 The MS-DOS Encyclopedia

Interrupt 21H Function 05H

Interrupt 21H (33)
Function 05H (5)
Print Character

1.0 and later

Function 05H sends a character to the standard printer.

ToCaU

AH = 05H

DL = 8-bit code for character to be output

Returns

Nothing

Programmer's Notes

With versions 1.x of MS-DOS, Function 05H sends a character to the first parallel port
(LPTl). With versions 2.0 and later, Function 05H sends the character to the standard
printer (PRN), which defaults to LPTl unless LPTl has been reassigned with the MS-
DOS MODE command. If redirection is in effect, calls to this function send output to
the device currently assigned to LPTl.
Function 05H does not return the status of the standard printer, nor does it return an
error code if the standard printer is not ready for characters. If the printer is busy or off
line. Function 05H waits until it is available. MS-DOS does, however, perform error
checking during the print operation and send any error messages to the standard error
device (normally the display).
If a Control-C is detected at the console. Interrupt 23H (Control-C Handler Address)
is called.

With MS-DOS versions 2.0 and later. Function 40H (Write File or Device) should be
used in preference to Function 05H.

Related Function

40H (Write File or Device)

Example

**

Function 05H: Print Character

int print_ch(c)

char c;

Returns 0.

*:(:**

(more)

Section V: System Calls 1197

Interrupt 21H Function 05H

cProc print_ch,PUBLIC

parmB c

cBegin

mov dl,c ; Get character into DL.

mov ah,05h ; Set function code.

int 21h ; Write character to standard printer,

xor ax,ax ; Return 0.

cEnd

1198 The MS-DOS Encyclopedia

Interrupt 21H Function 06H

Interrupt 21H (33) 1.0 and later
Function 06H (6)
Direct Console I/O

Function 06H reads a character from standard input or writes a character to standard
output.

ToCaU

AH = 06H

For character input:

DL =FFH

For character output:

DL = 00-FEH (8-bit character code)

Returns

If DL was OFFH on call and a character was ready:

Zero flag is clear.

AL = 8-bit character code

If DL was OFFH on call and no character was ready:

Zero flag is set.

Programmer's Notes

• With MS-DOS versions 1.x, Function 06H reads a character from the keyboard or
sends a character to the display. With versions 2.0 and later, input and output can be
redirected; Function 06H reads from the device currently assigned to standard input
or sends to the device currently assigned to standard output.

• Function 06H allows all possible characters and control codes with values between
OOH and OFEH to be read or written with standard input and output and with no filter
ing by the operating system. The rubout character (OFFH, 255 decimal), however,
cannot be output with Function 06H; Function 02H (Character Output) should be used
instead.

• On IBM PCs and compatibles, extended characters, such as those produced by the
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended
character; the second byte completes the key code. To read these characters. Function
06H must be called twice.

Section V: System Calls 1199

Interrupt 21H Function 06H

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value
OGH can also represent a null character from a file and, in that case, might not repre
sent valid data. A program can use Function 44H (lOCTL) Subfiinction OGH (Get
Device Data) to determine whether standard input has been redirected.

• If Function G6H is an input request and a Control-C is read, the character is returned
as any other character would be. Interrupt 23H (Control-C Handler Address) is not
called.

• With MS-DOS versions 2.G and later. Function 3FH (Read File or Device) and Function

4GH (Write File or Device) should be used in preference to Function G6H.

Related Functions

GIH (Character Input with Echo)
G2H (Character Output)
G7H (Unfiltered Character Input Without Echo)
G8H (Character Input Without Echo)
G9H (Display String)
GAH (Buffered Keyboard Input)
GCH (Flush Buffer, Read Keyboard)
3FH (Read File or Device)

4GH (Write File or Device)

Example

**

Function 06H: Direct Console I/O

int con_io(c)

char c;

Returns meaningless data if c is not OFFH,

otherwise returns next character from

standard input.

**

cProc con_io,PUBLIC

parmB c

cBegin

mov dl,c

mov ah,06h

int 21h

mov ah,0

; Get character into DL.

; Set function code.

; This function does NOT wait in

; input case (c = OFFH)!

; Return the contents of AL.

cEnd

1200 The MS-DOS Encyclopedia

Interrupt 21H Function 07H

Interrupt 21H (33) 1.0 and later
Function 07H (7)
Unfiltered Character Input Without Echo

Function 07H waits for a character from standard input. It does not echo the character to
standard output, and it ignores Control-C characters.

ToCaU

AH =07H

Returns

AL = 8-bit character code

Programmer's Notes

• With versions 1.x of MS-DOS, Function 07H reads input from the keyboard. With
versions 2.0 and later. Function 07H reads a character from standard input. Standard
input defaults to the keyboard but can be redirected to another device or to a file.

• Function 07H waits for input if a character is not available. A wait can be avoided by
calling Function OBH (Check Keyboard Status), which checks whether a character is
available from standard input, and then calling Function 07H if a character is ready.

• On IBM PCs and compatibles, extended characters, such as those produced by the
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended
character; the second byte completes the key code. To read these characters. Function
07H must be called twice.

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value
OOH can also represent a null character from a file and, in that case, might not repre
sent valid data. A program can use Function 44H (lOCTL) Subfunction OOH (Get
Device Data) to determine whether standard input has been redirected.

• Interrupt 23H (Control-C Handler Address) is not called if a Control-C is read. Func
tion 07H simply passes the character back through the AL register. If Control-C check
ing is required. Function 08H (Character Input Without Echo) should be used instead.

• With MS-DOS versions 2.0 and later. Function 3FH (Read File or Device) should be
used in preference to Function 07H.

Related Functions

OIH (Character Input with Echo)
06H (Direct Console I/O)
08H (Character Input Without Echo)
OAH (Buffered Keyboard Input)
OCH (Flush Buffer, Read Keyboard)
3FH (Read File or Device)

Section V: System Calls 1201

Interrupt 21H Function 07H

Example

4: 4: H: * * * * * * 4: * 4: 4: 4: * 4: 4c 4: * * 4: H: * !i« * * * * H: 4c H(He 4: 4: * 4: * * * * * * * * * 4; 4: 4: 4: 4: 4: 4: * 4: * * * * *

Function 07H: Unfiltered Character Input

Without Echo

int con_in()

Returns next character from standard input.

4c4e4e4c4:4c4c4c4c4c4c4c4c4c4e4c

cProc con_in,PUBLIC

cBegin

mov ah,07h

int 21h

mov ah,0

cEnd

; Set function code.

; Wait for character, no echo.

; Clear high byte.

1202 The MS-DOS Encyclopedia

Interrupt 21H Function 08H

Interrupt 21H (33) 1.0 and later
Function 08H (8)
Character Input Without Echo

Function 08H waits for a character from standard input. The character is not echoed to
standard output.

ToCaU

AH = 08H

Returns

AL = 8-bit character code

Programmer's Notes

• With versions 1.x of MS-DOS, Function 08H reads input from the keyboard. With
versions 2.0 and later, Function 08H reads a character from standard input. Standard
input defaults to the keyboard but can be redirected to another device or to a file.

• Function 08H waits for input if a character is not available. A wait can be avoided by
calling Function OBH (Check Keyboard Status), which checks whether a character is
available, and then calling Function 08H if a character is ready.

• On IBM PCs and compatibles, extended characters, such as those produced by the
Alt-O and F8 keys, are returned as 2 bytes. The first byte, OOH, signals an extended
character; the second byte completes the key code. To read these characters. Function
08H must be called twice.

With MS-DOS versions 2.0 and later, if standard input has been redirected, the value
OOH can also represent a null character from a file and, in that case, might not repre
sent valid data. A process can use Function 44H (lOCTL) Subfunction OOH (Get
Device Data) to determine whether standard input has been redirected.

• If a Control-C is read and (with versions 2.0 and later) input has not been redirected.
Interrupt 23H (Control-C Handler Address) is called. To read the Control-C character
as data. Function 07H (Unfiltered Character Input Without Echo) should be used.

• Interrupt 23H (Control-C Handler Address) is called if Control-C is the input character.
Break is enabled, and (with versions 2.0 and later) standard input has been redirected
to come from a file.

• With MS-DOS versions 2.0 and later. Function 3FH (Read File or Device) should be

used in preference to Function 08H.

Related Functions

OIH (Character Input with Echo)
06H (Direct Console I/O)

07H (Unfiltered Character Input Without Echo)
OAH (Buffered Keyboard Input)
OCH (Flush Buffer, Read Keyboard)
3FH (Read File or Device)

Section V: System Calls 1203

Interrupt 21H Function 08H

Example

Function 08H: Unfiltered Character Input Without Echo

int reacL_kbd()

Returns next character from standard input.

cProc read_kbd,PUBLIC

cBegin

mov ah,08h

int 21h

mov ah,0

cEnd

; Set function code.

; Wait for character, no echo.

; Clear high byte.

1204 The MS-DOS Encyclopedia

Interrupt 21H Function 09H

Interrupt 21H (33) 1.0 and later
Function 09H (9)
Display String

Function 09H sends a string of characters to standard output. The string must end with the
dollar-sign character ($). All characters up to, but not including, the $ are displayed.

ToCaU

AH =09H

DS:DX = segmentioffset of string to display

Returns

Nothing

Programmer's Notes

• With MS-DOS versions 1.x, Function 09H sends the string to the display. With versions
2.0 and later, the string is written to standard output. By default, standard output is
sent to the display, but it can be redirected to another device or to a file.

• The string can include any valid ASCII characters, including control codes. Sending a
dollar sign with this function, however, is not possible.

• Depending on the device currently serving as standard output, characters other than
the normally displayable ASCII characters (20H to 7FH) may or may not be displayed.
On IBM PCs and most compatibles, extensions to the displayable ASCII character set
(character codes 80H to FFH) appear as foreign or graphics characters.

• Display begins at the current cursor position on standard output. After the string is
completely displayed, the cursor position is updated to the location immediately
following the string.

On IBM PCs and compatibles, if the end of a line is reached before the string is com
pletely displayed, a carriage return and linefeed are issued and the next character is
displayed in the first position of the following line. If the cursor reaches the bottom
right corner of the display before the complete string has been sent, the display is
scrolled up one line.

• Control characters are often included in the string to be sent. The following sample
fragment of code contains carriage returns and linefeeds:

msg db 'Resident part of TSR.COM installed'

db Odh, Oah

db 'Copyright (c) 19xx Foo Software, Inc.'

db Odh, Oah, Oah, Oah

db '$'

• If a Control-C is detected. Interrupt 23H (Control-C Handler Address) is called.

Section V: System Calls 1205

Interrupt 21H Function 09H

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be

used in preference to Function 09H.

Related Functions

02H (Character Output)
06H (Direct Console I/O)

40H (Write File or Device)

Example

Function 09H: Display String

int disp_str(pstr)

char *pstr;

Returns 0.

cProc disp_str,PUBLIC,<ds,di>

parmDP pstr

cBegin

loadDP ds,dx,pstr

mov ax,0900h

push

pop

mov

mov

ds

es

di, dx

cx,Offffh

repne scasb

dec di

mov byte ptr [di],'$

int 21h

mov [di],al

xor ax,ax

DS:DX = pointer to string.

Prepare to write dollar-terminated

string to standard output, but

first replace the 0 at the end of

the string with '$'.

Set ES equal to DS.

(MS-C does not require ES to be

saved.)

ES:DI points at string.

Allow string to be 64KB long.

Look for 0 at end of string.

Scasb search always goes 1 byte too

far.

; Replace 0 with dollar sign.

Have MS-DOS print string.

Restore 0 terminator.

Return 0.

cEnd

1206 The MS-DOS Encyclopedia

Interrupt 21H Function OAH

Interrupt 21H (33) 1.0 and later
Function OAH (10)
Buffered Keyboard Input

Function OAH collects characters from standard input and places them in a user-specified
memory buffer. Input is accepted until either a carriage return (ODH) is encountered or the
buffer is filled to one character less than its capacity. The characters are echoed to stan
dard output.

ToCaU

AH = OAH

DS:DX = segmentioffset of input buffer

Returns

Nothing

Programmer's Notes

• With MS-DOS versions 1.x, Function OAH reads a string from the keyboard. With
versions 2.0 and later, calls to this function read a string from standard input, which
defaults to the keyboard but can be redirected to another device or to a file. The
MS-DOS editing keys are active during input with this function.

• The buffer pointed to by DS:DX must have the following format:

Byte Contents

0 Maximum number of characters to read (1-255); this value must be set

by the process before Function OAH is called.
1 Count of characters read (does not include the carriage return);

this value is set by Function OAH before returning to the process.
2-(w+2) Actual string of characters read, including the carriage return; n =

number of bytes read.

• The first byte of the buffer must contain the maximum number of characters the
program will accept, including the carriage return at the end. Because the last byte
must be a carriage return, the maximum number of bytes this function will actually
read is 254. The carriage return is not included in the character count returned by
MS-DOS in the second byte of the buffer.

• If the buffer fills to 1 byte less than its capacity, succeeding characters are ignored and
a beep is sounded for each keypress until a carriage return is received.

• If a Control-C is detected and (with versions 2.0 and later) input has not been redi
rected, Interrupt 23H (Control-C Handler Address) is called.

• With versions 2.0 and later, if standard input has been redirected to come from a file.
Break must be enabled for Interrupt 23H (Control-C Handler Address) to be called
when Control-C is the input character.

Section V: System Calls 1207

Interrupt 21H Function OAH

• With MS-DOS versions 2.0 and later, if input is redirected, an end-of-fiie condition
goes undetected by Function OAH.

Related Functions

OIH (Character Input with Echo)
06H (Direct Console I/O)
07H (Unfiltered Character Input Without Echo)
08H (Character Input Without Echo)
OCH (Flush Buffer, Read Keyboard)
3FH (Read File or Device)

Example

Function OAH; Buffered Keyboard Input

int read_str(pbuf, len)

char *pbuf;

int len;

Returns number of bytes read into buffer.

Note: pbuf must be at least len+3 bytes long.

cBegin

read_str,PUBLIC, <ds, <

pbuf

len

loadDP ds,dx,pbuf

mov al,len

inc al

mov di, dx

mov [di],al

mov ah,Oah

int 21h

mov al,[di+1]

mov ah, 0

mov bx, ax

mov [bx+di+2],ah

; DS:DX = pointer to buffer.

; AL = len.

; Add 1 to allow for OR in buf.

; Store max length into buffer.

; Set function code.

; Ask MS-DOS to read string.

; Return number of characters read.

; Store 0 at end of buffer.

cEnd

1208 The MS-DOS Encyclopedia

Interrupt 21H Function OBH

Interrupt 21H (33)
Function OBH (11)
Check Keyboard Status

1.0 and later

Function OBH returns a value in AL that indicates whether a character is available from

standard input.

ToCaU

AH = OBH

Returns

AL =00H

FFH

no character available

one or more characters available

Programmer's Notes

• With MS-DOS versions 1.x, Function OBH checks the type-ahead buffer for a char
acter. With versions 2.0 and later, if input has been redirected. Function OBH checks
standard input for a character. If input has not been redirected, the function checks
the type-ahead buffer.

• Function OBH does not indicate how many characters are available; it merely indicates
whether at least one character is available.

• If the available character is Control-C, Interrupt 23H (Control-C Handler Address) is
called.

• Function OBH does not remove characters from standard input. Thus, if a character is
present, repeated calls return OFFH in AL until all characters in the buffer are read,
either with one of the character-input functions (OIH, 06H, 07H, 08H, or OAH) or with
Function 3FH (Read File or Device) using the handle for standard input (0).

Related Functions

06H (Direct Console I/O)

44H Subfunction 06H (lOCTL; Check Input Status)

Example

**

Function OBH: Check Keyboard Status

int key_ready()

Returns 1 if key is ready, 0 if not.

**

(more)

Section V: System Calls 1209

Interrupt 21H Function OBH

cProc key_ready,PUBLIC

cBegin

mov ah,Obh ; Set function code.

int 21h ; Ask MS-DOS if key is available.

and ax,0001h ; Keep least significant bit only.

cEnd

1210 The MS-DOS Encyclopedia

Interrupt 21H Function OCH

Interrupt 21H (33) 1.0 and later
Function OCH (12)
Flush Buffer, Read Keyboard

Function OCH clears the standard-input buffer and then performs one of the other
keyboard input functions (OIH, 06H, 07H, 08H, OAH).

ToCaU

AH = OCH

AL = input function number to execute

IfAL is 06H:

DL = FFH

IfAL is OAH:

DSiDX = segment:offset of buffer to receive input

Returns

If AL was OIH, 06H, 07H, or 08H on call:

AL = 8-bit ASCII character from standard input

If AL was OAH on call:

Nothing

Programmer's Notes

• With versions 1.x of MS-DOS, Function OCH empties the type-ahead buffer before
executing the input function specified in AL. With versions 2.0 and later, if input has
been redirected to a file. Function OCH does nothing before carrying out the input
function specified in AL; if input was not redirected, the type-ahead buffer is flushed.

• A function number other than OIH, 06H, 07H, 08H, or OAH in AL simply flushes the
standard-input buffer and returns control to the calling program.

• If AL contains OAH, DS:DX must point to the buffer in which MS-DOS is to place the
string read from the keyboard.

• Because the buffer is flushed before the input function is carried out, any Control-C
characters pending in the buffer are discarded. If subsequent input is a Control-C,
however. Interrupt 23H (Control-C Handler Address) is called if (in versions 2.0 and
later) standard input has not been redirected to come from a file.

• With versions 2.0 and later, if standard input has been redirected to come from a file
and, after the buffer is flushed, subsequent input is a Control-C character. Interrupt
23H (Control-C handler address) is called only if Break is enabled.

• This function exists to defeat the type-ahead feature if necessary—for example, to
obtain input at a critical prompt the user may not have anticipated.

Section V: System Calls 1211

Interrupt 21H Function OCH

Related Functions

OIH (Character Input with Echo)
06H (Direct Console I/O)
07H (Unfiltered Character Input Without Echo)
08H (Character Input Without Echo)
OAH (Buffered Keyboard Input)
3FH (Read File or Device)

Example

Function OCH: Flush Buffer, Read Keyboard

int flush_kbd()

Returns 0.

cProc flush_kbd,PUBLIC

cBegin

mov ax,OcOOh

int 21h

xor ax, ax

cEnd

; Just flush type-ahead buffer.

; Call MS-DOS.

; Return 0.

1212 The MS-DOS Encyclopedia

Interrupt 21H Function ODH

Interrupt 21H (33)
Function ODH (13)
Disk Reset

1.0 and later

Function ODH writes to disk all internal MS-DOS file buffers in memory that have been
modified since the last write. All buffers are then marked as "free."

ToCaU

AH = ODH

Returns

Nothing

Programmer's Notes

• Function ODH ensures that the information stored on disk matches changes made by
write requests to file buffers in memory.

• Function ODH does not update the disk directory. The application must issue Func
tion lOH (Close File with FCB) or Function 3EH (Close File) to update directory infor
mation correctly.

• Function ODH should be part of Control-C interrupt-handling routines so that the
system is left in a known state when an application is terminated.

• Disk Reset calls can be issued after particularly important disk write calls, such as
transactions in an accounting application. Repeated use of this function, however,
degrades system performance by defeating the MS-DOS buffering scheme.

Related Functions

lOH (Close File with FCB)

3EH (Close File)

Example

Function ODH: Disk Reset

int reset—disk 0

Returns 0.

(more)

Section V: System Calls 1213

Interrupt 21H Function ODH

cProc reset—disk,PUBLIC

cBegin

mov ah,Odh ; Set function code.

int 21h ; Ask MS-DOS to write all dirty file

; buffers to the disk,

xor ax,ax ; Return 0.

cEnd

1214 The MS-DOS Encyclopedia

Interrupt 21H Function OEH

Interrupt 21H (33) 1.0 and later
Function OEH (14)
Select Disk

Function OEH sets the default disk drive to the drive specified in the DL register. The
default is the disk drive MS-DOS chooses for file access when a filename is specified
without a drive designator. A successful call to this function returns the number of logical
(not physical) drives in the system.

ToCaU

AH = OEH

DL = drive number (0 = drive A, 1 = drive B, 2 = drive C, and so on)

Returns

AL = number of logical drives in the system

Programmer's Notes

• The value used as a drive number is the ASCII value of the uppercase drive letter
minus the ASCII value of the uppercase letter A (4lH); thus, 0 = drive A, 1 = drive B,
and so on.

• A logical drive is defined as any block-oriented device; this category includes floppy-
disk drives, RAMdisks, tape devices, fixed disks (which can be partitioned into more
than one logical drive), and network drives.

• The maximum numbers of drive designators available for each MS-DOS version are as
follows:

MS-DOS Version Number of Designators Values

1 .X 16 0 through OEH
2.x 63 0 through 3FH
3.x 26 0 through 19H

Drive letters should be limited to A through P (0 through OEH) to ensure that an
application runs on all versions of MS-DOS.

• With versions of MS-DOS earlier than 3.0 running on IBM PCs and compatibles with
one floppy-disk drive. Function OEH returns 02H as the drive count, because the
single physical drive is equivalent to the two logical drives A and B. MS-DOS versions
3.0 and later return a minimum value of 05H in AL.

• On IBM PCs and compatibles, the number of physical floppy-disk drives in a system
can be obtained from the ROM BIOS with Interrupt IIH (Equipment Determination).

Section V: System Calls 1215

Interrupt 21H Function OEH

Related Function

19H (Get Current Disk)

Example

Function OEH: Select Disk

int select—drive{drive_ltr)

char drive_ltr;

Returns number of logical drives present in system.

**

cProc select—drive,PUBLIC

parmB drive—Itr

cBegin

mov

and

sub

mov

int

cbw

dl,drive—Itr

dl,not 20h

dl,'A'

ah,Oeh

21h

r Get new drive letter.

Make sure letter is uppercase.

Convert drive letter to number,

'A' = 0, 'B' = 1, etc.

Set function code.

Ask MS-DOS to set default drive.

Clear high byte of return value.

cEnd

1216 The MS-DOS Encyclopedia

Interrupt 21H Function OFH

Interrupt 21H (33) 1.0 and later
Function OFH (15)
open File with FCB

Function OFH opens the file named in the file control block (FCB) pointed to by DS:DX.

ToCaU

AH = OFH

DS:DX = segment:offset of an unopened FCB

Returns

If function is successful:

AL = OOH

If function is not successful:

AL = FFH

Programmer's Notes

• MS-DOS provides several types of file services: FCB file services, which are relatively
compatible with the CP/M methods of file handling; extended FCB file services, which
take advantage of both CP/M compatibility and MS-DOS extensions; and handle, or
"stream-oriented," file services, which are more compatible with UNIX/XENIX and
support pathnames (MS-DOS versions 2.0 and later).

• Function OFH does not support pathnames and so is capable of opening files only in
the current directory of the specified drive.

• Function OFH does not create a new file if the specified file does not already exist.
Function 16H (Create File with FCB) is used to create new files with FCBs.

• Function OFH must use an unopened FCB—that is, one in which all but the drive-
designator, filename, and extension fields are zero. If the call is successful, the func
tion fills in the file size and date fields from the file's directory entry. In MS-DOS
versions 2.0 and later, the function also fills in the time field.

• If the file is opened on the default drive (the drive number in the FCB is set to 0),
MS-DOS fills in the actual drive code. Thus, at some later point in processing, the
default drive can be changed and MS-DOS will still have the drive number in the FCB
for use in accessing the file. It will therefore continue to use the correct drive.

• If Function OFH is successful, MS-DOS sets the current-block field to 0; that is, the file
pointer is at the beginning of the file. It also sets the record size to 128 bytes (the
system default).

• If a record size other than 128 is needed, the record size field of the FCB should be
changed after the file is successfully opened and before attempting any I/O.

Section V: System Calls 1217

Interrupt 21H Function OFH

In a network running under MS-DOS version 3.1 or later, files are opened by Function
OFH with the share code set to compatibility mode and the access code set to read/
write.

If Function OFH returns an error code (OFFH) in the AL register, the attempt to open
the file was not successful. Possible causes for the failure are

- File was not found.

- File has the hidden or system attribute and a properly formatted extended FCB was
not used.

- Filename was improperly specified in the FCB.
- SHARE is loaded and the file is already open by another process in a mode other

than compatibility mode.
With MS-DOS versions 3.0 and later. Function 59H (Get Extended Error Information)
can be used to determine why the attempt to open the file failed.
MS-DOS passes the first two command-tail parameters into default FCBs located at
offsets 5CH and 6CH in the program segment prefix (PSP). Many applications
designed to run as .COM files take advantage of one or both of these default FCBs.
With MS-DOS versions 2.0 and later. Function 3DH (Open File with Handle) should be
used in preference to Function OFH.

Related Functions

lOH (Close File with FCB)

16H (Create File with FCB)

3CH (Create File with Handle)

3DH (Open File with Handle)
3EH (Close File)

59H (Get Extended Error Information)

5AH (Create Temporary File)
5BH (Create New File)

Example

Function OFH: Open File, FCB-based

int FCB_open(uXFCB,recsize)

char *uXFCB;

int recsize;

Returns 0 if file opened OK, otherwise returns -1.

Note: uXFCB must have the drive and filename

fields (bytes 07H through 12H) and the extension

flag (byte OGH) set before the call to FCB_open

(see Function 29H).

(more)

1218 The MS-DOS Encyclopedia

Interrupt 21H Function OFH

cProc FCB_open,PUBLIC,ds

parmDP

parmW

cBegin

puXFCB

recsize

loadDP

mov

int

add

mov

mov

mov

xor

mov

mov

mov

cbw

ds,dx,puXFCB

ah,Ofh

21h

dx,7

bx, dx

dx,recsize

[bx+Oeh],dx

dx, dx

[bx+20h],dl

[bx+21h],dx

[bx+23h],dx

Pointer to unopened extended FOB.

Ask MS-DOS to open an existing file.

Advance pointer to start of regular

FOB.

BX = FOB pointer.

Get record size parameter.

Store record size in FOB.

Set current-record

and relative-record

fields to 0.

Set return value to 0 or -1 .

cEnd

Section V: System Calls 1219

Interrupt 21H Function lOH

Interrupt 21H (33) 1.0 and later
Function lOH (16)
Close File with FCB

Function lOH flushes file-related information to disk, closes the file named in the file con
trol block (FCB) pointed to by DS:DX, and updates the file's directory entry.

To Call

AH = lOH

DS:DX = segment:offset of previously opened FCB

Returns

If function is successful:

AL = OOH

If function is not successful:

AL = FFH

Programmer's Notes

• A successful call to Function lOH flushes to disk all MS-DOS internal buffers associ

ated with the file and updates the directory entry and file allocation table (FAT). The
function thus ensures that correct information is contained in the copy of the file on
disk.

• Because MS-DOS versions 1.x and 2.x do not always detect a disk change, an error
can occur if the user changes disks between the time the file is opened and the time
it is closed. In the worst case, the FAT and the directory of the newly inserted disk
may be damaged.

• With MS-DOS versions 2.0 and later. Function 3EH (Close File) should be used in
preference to Function lOH.

Related Functions

OFH (Open File with FCB)
3EH (Close File)

1220 The MS-DOS Encyclopedia

Interrupt 21H Function lOH

Example

Function 10H: Close file, FCB-based

int FCB_close(oXFCB)

char *oXFCB;

Returns 0 if file closed OK, otherwise

returns -1.

cProc FCB_close,PUBLIC, ds

parmDP poXFCB

cBegin

loadDP ds,dx,poXFCB

mov ah,1 Oh

int 21h

cbw

cEnd

Pointer to opened extended FCB.

Ask MS-DOS to close file.

Set return value to 0 or -1.

Section V: System Calls 1221

Interrupt 21H Function IIH

Interrupt 21H (33) 1.0 and later
Function IIH (17)
Find First File

Function IIH searches the current directory for the first file that matches a specified name
and extension.

ToCaU

AH = IIH

DS:DX = segmentioffset of unopened file control block (FCB)

Returns

If function is successful:

AL = OGH

Disk transfer area (DTA) contains unopened FCB of same type (normal or extended) as
search FCB.

If function is not successful:

AL = FFH

Programmer's Notes

• If necessary, Function lAH (Set DTA Address) should be used before Function IIH is
called, to set the location of the DTA in which the results of the search will be placed.

• With MS-DOS versions 1.0 and later, the wildcard character ? is allowed in the

filename. With MS-DOS versions 3 0 and later, both wildcard characters (? and ») are

allowed in filenames. Pathnames are not supported.
• With MS-DOS versions 2.0 and later, the attribute field of an extended FCB can be

used to search for files with the hidden, system, subdirectory, or volume-label attri
butes. In such a search, specifying either the normal (OOH) or volume-label (08H)
attribute restricts MS-DOS to files with the given attribute. Specifying any combina
tion of the hidden (02H), system (04H), and subdirectory (lOH) attributes, however,
causes MS-DOS to search both for normal files and for those that match the specified
attributes.

• For a normal FCB, Function IIH places the drive number in the first byte of the DTA
and fills the succeeding 32 bytes with the directory entry.

For an extended FCB, Function IIH fills in the first 7 bytes of the DTA as follows: the
first byte contains OFFH, indicating an extended FCB; the second through sixth bytes
contain OOH, as required by MS-DOS; the seventh byte contains the value of the at
tribute byte in the search FCB. The next 33 bytes contain the drive number and direc
tory information, as for a normal FCB.

1222 The MS-DOS Encyclopedia

Interrupt 21H Function IIH

• As with other FCB functions, the number 0 can be used to indicate the default drive.
MS-DOS fills in the actual drive number and continues to use that drive for calls to

Function 12H (Find Next File) that use the same FCB, regardless of any subsequent
selection of a different default drive.

• The FCB with the initial file specifications must remain unmodified if Function 12H is
used to continue the search.

• Error reporting in Function IIH is incomplete. An error return (OFFH in the AL regis
ter) does not always mean that the file does not exist. Other possibilities include
- Filename in the FCB was improperly specified.
- If an extended FCB was used, no files match the attributes given.

With MS-DOS versions 3.0 and later. Function 59H (Get Extended Error Information)
can be used to obtain additional information about the error.

• With MS-DOS versions 2.0 and later. Functions 4EH (Find First File) and 4FH (Find
Next File) should be used in preference to Functions IIH and 12H.

Related Functions

12H (Find Next File)

lAH (Set DTA Address)

4EH (Find First File)

4FH (Find Next File)

Example

Function IIH; Find First File, FCB-based

int FCB_first{puXFCB,attrib)

char *puXFCB;

char attrib;

Returns 0 if match found, otherwise returns -1.

Note: The FCB must have the drive and

filename fields (bytes 07H through 12H) and

the extension flag (byte OOH) set before

the call to FCB_first (see Function 29H).

(more)

Section V: System Calls 1223

Interrupt 21H Function IIH

cProc FCB_first,PUBLIC,ds

parmDP

parmB

cBegin

puXFCB

attrib

loadDP

mov

mov

mov

mov

mov

int

cbw

ds,dx,puXFCB ; Pointer to unopened extended FOB.

bx,dx ; BX points at FOB, too.

al,attrib ; Get search attribute.

[bx+6],al ; Put attribute into extended FOB

; area.

byte ptr [bx],Offh ; Set flag for extended FOB.

ah,11h

21h

Ask MS-DOS to find 1st matching

file in current directory.

If match found, directory entry can

be found at DTA address.

Set return value to 0 or -1.

cEnd"

1224 The MS-DOS Encyclopedia

Interrupt 21H Function 12H

IntelTlipt 21H C33) l.O and later
Function 12H (18)
Find Next File

Function 12H searches the current directory for the next file that matches a specified
filename and extension. The function assumes a previous successful call to Function IIH
(Find First File) with the same file control block (FCB).

To Call

AH = 12H

DS:DX = segment:offset of search FCB

Returns

If function is successful:

AL = OOH

Disk transfer area (DTA) contains unopened FCB of same type (normal or extended) as
search FCB.

If function is not successful:

AL = FFH

Programmer's Notes

• Function 12H assvimes that a successful call to Function llH'(Find First File) has been
completed with the same FCB. The FCB specifies the search pattern. This function
also assumes that the wildcard character ? appears at least once in the filename or
extension specified.

• An error (indicated by OFFH returned in register AL) does not necessarily mean that
a file matching the file specification does not exist in the current directory. MS-DOS
relies on certain information that appears in the search FCB initialized by Function
IIH, so it is important not to alter that FCB either between calls to Functions IIH and
12H or between subsequent calls to Function 12H.

• If drive code 0 (the default drive) was used in the call to Function IIH, MS-DOS has
already filled in the actual drive number for the current directory. MS-DOS continues
to use that drive for all calls to Function 12H that use the same FCB, regardless of the
default drive in effect at the time of the call.

• With MS-DOS versions 2.0 and later, Functions 4EH (Find First File) and 4FH (Find
Next File) should be used in preference to Functions IIH and 12H.

Section V: System Calls 1225

Interrupt 21H Function 12H

Related Functions

IIH (Find First File)

lAH (Set DTA Address)

4EH (Find First File)

4FH (Find Next File)

Example
**

Function 12H: Find Next File, FCB-based

int FCB_next(puXFCB)

char *puXFCB;

Returns 0 if match found, otherwise returns -1.

Note: The FCB must have the drive and

filename fields (bytes 07H through 12H) and

the extension flag (byte OOH) set before

the call to FCB_next (see Function 29H).

**

cProc FCB_next,PUBLIC,ds

parmDP puXFCB

cBegin

loadDP ds,dx,puXFCB

mov ah,12h

int

cbw

21h

Pointer to unopened extended FCB.

Ask MS-DOS to find next matching

file in current directory.

If match found, directory entry can

be found at DTA address.

Set return value to 0 or -1.

cEnd

1226 The MS-DOS Encyclopedia

Interrupt 21H Function 13H

Interrupt 21H (33) 1.0 and later
Function 13H (19)
Delete File

Function 13H deletes all files matching a specified name and extension from the current
directory.

ToCaU

AH = 13H

DS:DX = segment:offset of an unopened file control block (FCB)

Returns

If function is successful:

AL = OGH

If function is not successful:

AL = FFH

Programmer's Notes

• The wildcard character ? can be used to match any character or sequence of charac
ters in specifying the filename and extension.

• Open files must not be deleted.
• Function 13H does not support pathnames.
• An error (indicated by OFFH returned in register AL) does not necessarily mean that

the filename specified does not exist in the current directory. Other possible causes
for an error include

- Filename in the FCB is improperly specified.
- File is a read-only, hidden, or system file and an extended FCB with the appropri

ate attribute byte was not used.
- Program attempted to delete a volume label and the label does not exist or a prop

erly formatted extended FCB was not used.
- In networking environments, file is locked or access rights are insufficient for

deletion.

• MS-DOS removes file allocation table (FAT) mapping for the file or files deleted by
this function and flushes the FAT to disk to ensure that the disk contains a correct

table. The first character of the filename in the directory entry is replaced by the value
0E5H, indicating a deleted file.

• Because the function does not physically erase data, use of Function 13H alone is not
sufficient in security-critical applications that strictly prohibit viewing the data.

Section V: System Calls 1227

Interrupt 21H Function 13H

• On networks running under MS-DOS versions 3.1 and later, the user must have Create
access rights to the directory containing the file to be deleted.

• Because Function 13H deletes all files matching a given file specification, a conser
vative approach is to use a combination of Functions IIH (Find First File) and 12H
(Find Next File) to build a list of files matching the file specification and then obtain
confirmation from the user before deleting the files in the list.

• With MS-DOS versions 2.0 and later. Function 41H (Delete File) should be used in
preference to Function 13H.

Related Function

41H (Delete File)

Example

**

Function 13H: Delete File(s), FCB-based

int FCB—delete(uXFCB)

char *uXFCB;

Returns 0 if file(s) were deleted OK, otherwise

returns -1.

Note: uXFCB must have the drive and

filename fields (bytes 07H through 12H) and

the extension flag (byte OOH) set before

the call to FCB_delete (see Function 29H).

**

cProc FCB_delete,PUBLIC,ds

parmDP puXFCB

cBegin

loadDP ds,dx,puXFCB

mov ah,13h

cEnd

int

cbw

21h

; Pointer to unopened extended FOB.

; Ask MS-DOS to delete file(s).

; Return value of 0 or -1 .

1228 The MS-DOS Encyclopedia

Interrupt 21H Function 14H

Interrupt 21H (33) 1.0 and later
Function 14H (20)
Sequential Read

Function 14H reads the next sequential block of data from a file and places the data in the
current disk transfer area (DTA).

ToCaU

AH = 14H

DS:DX = segmentroffset of a previously opened file control block (FCB)

Returns

AL = OGH read successful

OIH end of file encountered; no data in record
02H DTA too small (segment wrap error); read canceled
03H end of file; partial record read

IfAL = 00Hor03H:

DTA contains data read from file.

Programmer's Notes

• If necessary, Function lAH (Set DTA Address) should be used to set the base address
of the DTA before Function 14H is called. The default DTA is 128 bytes and is located
at offset BOH of the program segment prefix (PSP). If record sizes larger than 128 bytes
will be used, the program must change the DTA address to point to a buffer of ade
quate size.

• The read process begins at the current position in the file. When the read is complete.
Function 14H increments the current-block and current-record fields of the FCB.

• The size of the record loaded into the DTA is specified in the record size field of the
FCB. The default is 128 bytes, set by Function OFH (Open File with FCB) or Function
16H (Create File with FCB). If the record size is not 128 bytes, the application must set
the record size correctly before issuing any reads.

• Function OFH does not fill in the current-record field of the FCB when opening a file,
so this field must be explicitly set (usually to zero) before the first call to Function
14H. The record pointer, which includes the current-block and current-record fields of
the FCB, is incremented when Function 14H is successfully completed.

• Function 14H deals with fixed-length records only. Buffering logic must be added to
an application if variable-length records are to be manipulated.

• The block of data to be read can be chosen by changing the current-block and
current-record fields of the FCB.

Section V: System Calls 1229

Interrupt 21H Function 14H

• Partial records read at the end of a file are padded with zeros to the requested record
length.

• On networks running under MS-DOS version 3.1 or later, the user must have Read
access rights to the directory containing the file to be read.

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be
used in preference to Function 14H.

Related Functioiis

15H (Sequential Write)
lAH (Set DTA Address)

21H (Random Read)

27H (Random Block Read)

3FH (Read File or Device)

Example
**

Function 14H: Sequential Read, FCB-based

int FCB_sread(oXFCB)

char *oXFCB;

Returns 0 if record read OK, otherwise

returns error code 1, 2, or 3.

**

cProc FCB_sread,PUBLIC,ds

parmDP poXFCB

cBegin

loadDP ds,dx,poXFCB

mov ah,14h

cEnd

int

cbw

21h

; Pointer to opened extended FOB.

; Ask MS-DOS to read next record,

; placing it at DTA.

; Clear high byte for return value.

1230 The MS-DOS Encyclopedia

Interrupt 21H Function 15H

Interrupt 21H (33) 1.0 and later
Function 15H (21)

Sequential Write

Function 15H writes the next sequential block of data from the disk transfer area (DTA) to
a specified file.

ToCaU

AH = 15H

DS:DX = segment:offset of a previously opened file control block (FCB)

DTA contains data to write.

Returns

AL = OGH block written successfully
OIH disk full; write canceled

02H DTA too small (segment wrap error); write canceled

Programmer's Notes

If necessary, the calling process should set the DTA address with Function lAH (Set
DTA Address) to point to the data to be written before issuing a call to Function 15H,
The default address of the DTA is offset 80H in the program segment prefix (PSP).
The FCB must already have been filled in by a call to Function OFH (Open File with
FCB) before Function 15H is called.

The location of the block to be written is given by the current-block and current-
record fields of the FCB. If the write is successful, Function 15H increments the
current-block and current-record fields.

The size of the record written by Function 15H is determined by the value in the
record size field of the FCB. The default value is 128, set by Function OFH (Open File
with FCB) or Function 16H (Create File with FCB). A process must set the record size
in the FCB correctly before issuing any writes.
Function 15H deals with fixed-length records only. Buffering logic must be added to
an application if variable-length records are to be manipulated.
Function 15H performs a logical, but not necessarily physical, write operation. If less
than one sector is being written, MS-DOS moves the record from the DTA to an appro
priate MS-DOS internal buffer. When a full sector of data has been buffered, MS-DOS
flushes the buffer to disk. Function ODH (Disk Reset) or Function lOH (Close File with

FCB) can be used to flush data to disk before a full sector is buffered.

On networks running under MS-DOS versions 3.1 and later, the user must have Write
access to the directory containing the file to be written to.
With MS-DOS versions 2.0 and later. Function 40H (Write File or Device) should be

used in preference to Function 15H.

Section V: System Calls 1231

Interrupt 21H Function 15H

Related Functions

14H (Sequential Read)
lAH (Set DTA Address)

22H (Random Write)

28H (Random Block Write)

40H (Write File or Device)

Example

Function 15H: Sequential Write, FCB-based

int FCB_swrite(oXFCB)

char *oXFCB;

Returns 0 if record read OK, otherwise

returns error code 1 or 2.

cProc FCB_swrite,PUBLIC,ds

parmDP poXFCB

cBegin

loadDP ds,dx,poXFCB

mov ah,15h

int

cbw

21h

cEnd

; Pointer to opened extended FOB.

; Ask MS-DOS to write next record

; from DTA to disk file.

; Clear high byte for return value.

1232 The MS-DOS Encyclopedia

Interrupt 21H Function 16H

Interrupt 21H (33) 1.0 and later
Function 16H (22)
Create File with FCB

Function 16H creates a directory entry in the current directory for a specified file and
opens the file for use. If the file already exists, it is opened and truncated to zero length.

ToCaU

AH = 16H

DS:DX = segmentioffset of an unopened file control block (FCB)

Returns

If function is successful:

AL = OGH

If function is not successful:

AL = FFH

Programmer's Notes

• Before creating a new directory entry for the specified file, Function 16H searches
the current directory for a matching filename. If a match is found, the existing file is
opened, but its length is set to 0. In effect, this action erases an existing file and
replaces it with a new, empty file of the same name.

If a matching filename is not found and the directory has room for a new entry, the
file is created and opened, and its length is set to 0.

• An extended file control block (FCB) can be used to create a file with a special
attribute, such as hidden. Before the Create File call is issued, the attribute byte must
be set appropriately.

• A value of OFFH returned in the AL register can indicate one of several errors:
- Filename was improperly specified in the FCB.
- File with the same name exists but is a read-only, hidden, system, or (in MS-DOS

versions 3.x and networks) locked file.

- Disk is full.

- Current working directory is the root directory, and it is full.
- User does not have the appropriate access rights to create a file in this directory

(in MS-DOS versions 3.x and networks).

With MS-DOS versions 3.0 and later. Function 59H (Get Extended Error Information)

can be used to obtain additional information about an error.

• Upon successful completion of Function 16H, MS-DOS has
- Created and opened the file specified in the FCB.

Section V: System Calls 1233

Interrupt 21H Function 16H

- Filled in the date and time fields of the FCB with the current date and time.

- Set file size to zero.

All other changes made to the FCB are similar to those made by Function OFH (Open
File with FCB).

• Pathnames and wildcard characters (? and •) are not supported by Function 16H.
• With MS-DOS versions 2.0 and later, Function 16H has been superseded by Functions

3CH (Create File with Handle), 5AH (Create Temporary File), and 5BH (Create New
File).

Related Functions

OFH (Open File with FCB)
3CH (Create File with Handle)

3DH (Open File with Handle)
5AH (Create Temporary File)
5BH (Create New File)

Example

Function 16H: Create File, FCB-based

int FCB_create(uXFCB,recsize)

char *uXFCB;

int recsize;

Returns 0 if file created OK, otherwise

returns -1.

Note: uXFCB must have the drive and filename

fields (bytes 07H through 12H) and the

extension flag (byte OOH) set before the

call to FCB_create (see Function 29H).

**

cProc FCB_create,PUBLIC,ds

parmDP puXFCB

parmW recsize

cBegin

loadDP ds,dx,puXFCB ; Pointer to unopened extended FCB.

mov ah,16h ; Ask MS-DOS to create file.

int 21h

add dx,7 ; Advance pointer to start of

; FCB.

mov bx, dx ; BX = FCB pointer.

mov dx,recsize ; Get record size parameter.

mov [bx+Oeh],dx ; Store record size in FCB.

xor dx,dx

mov [bx+20h],dl ; Set current-record

mov [bx+21h] ,dx ; and relative-record

mov [bx+23h] ,dx ; fields to 0.

cbw ; Set return value to 0 or -1

cEnd

1234 The MS-DOS Encyclopedia

Interrupt 21H Function 17H

Interrupt 21H (33)
Function X7H (23)

1.0 and later

Rename File

Function 17H renames one or more files in the current directory.

ToCaU

AH = 17H

DS:DX = segmentioffset of modified file control block (FCB) in the following nonstan-
dard format:

Byte(s) Contents

OGH

01-08H

09-0BH

OCH-IOH

IIH-ISH

19H-1BH

11CH-24H

Returns

If function is successful:

AL = OGH

If function is not successful:

Drive number

Old filename (padded with blanks, if necessary)
Old file extension (padded with blanks, if necessary)
Zeroed out

New filename (padded with blanks, if necessary)
New file extension (padded with blanks, if necessary)
Zeroed out

AL = FFH

Programmer's Notes

The wildcard character ? can be used in specifying both the old and the new file
names, but its meaning differs in each case. A wildcard character in the old filename
matches any single character or sequence of characters in the directory entry. A
wildcard character in the new filename, however, indicates that the corresponding
character or characters in the original filename are not to change.
With MS-DOS versions 2.G and later. Function 17H views subdirectory entries as files.
These subdirectory entries can be renamed using this function and an extended FCB
with the appropriate attribute byte.
A value of GFFH returned in the AL register can indicate one of several errors:
- Old filename is improperly specified in the FCB.
- File with the new filename already exists in the current directory.

Section V: System Calls 1235

Interrupt 21H Function 17H

- Old file is a read-only file.
- With MS-DOS versions 3.1 and later in a networking environment, the user has in

sufficient access rights to the directory.

With MS-DOS versions 3.0 and later, Function 59H (Get Extended Error Information)
can be used to obtain additional information about the cause of an error.

• With MS-DOS versions 2.0 and later. Function 56H (Rename File) should be used in
preference to Function 17H.

Related Function

56H (Rename File)

Example

Function 17H: Rename File(s), FCB-based

int FCB_rename(uXFCBold,uXFCBnew)

char *uXFCBold,*uXFCBnew;

Returns 0 if file(s) renamed OK, otherwise

returns -1 .

Note: Both uXFCB's must have the drive and

filename fields (bytes 07H through 12H) and

the extension flag (byte OOH) set before

the call to FCB_rename (see Function 29H).

cProc FCB_rename,PUBLIC,<ds,si,di>

parmDP puXFCBold

parmDP puXFCBnew

cBegin

loadDP es,di,puXFCBold ES:DI = Pointer to uXFCBold.

mov dx, di Save offset in DX.

add di,7 Advance pointer to start of regular

FCBold.

loadDP ds,si,puXFCBnew DSrSI = Pointer to uXFCBnew.

add si, 8 Advance pointer to filename field

FCBnew.

Copy name from FCBnew into FCBold

at offset 11H:

add di,11h DI points 11H bytes into old FCB.

mov cx,Obh Copy OBH bytes, moving new

rep movsb name into old FCB.

push es Set DS to segment of FCBold.

pop ds

mov ah,17h ? Ask MS-DOS to rename old

int 21h ; file(s) to new name(s).

cbw ; Set return flag to 0 or -1.

cEnd

1236 The MS-DOS Encyclopedia

Interrupt 21H Function 19H

Interrupt 21H (33)
Function 19H (25)
Get Current Disk

1.0 and later

Function 19H returns the code for the current disk drive.

ToCaU

AH = 19H

Returns

AL = drive code (0 = drive A, 1 = drive B, 2 = drive C, and so on)

Programmer's Note

• The drive code returned by Function 19H is zero-based, meaning that drive A = 0,
drive B = 1, and so on. This value is unlike the drive code used in file control blocks

(FCBs) and in some other MS-DOS functions, such as ICH (Get Drive Data) and 36H
(Get Disk Free Space), in which 0 indicates the default rather than the current drive.

Related Function

GEH (Select Disk)

Example

Function 19H: Get Current Disk

int cur_drive()

Returns letter of current "logged" disk.

cProc cur_drive,PUBLIC

cBegin

cEnd

mov ah,19h

int 21h

add al, 'A'

cbw

; Set function code.

; Get number of logged disk.

; Convert number to letter.

; Clear the high byte of return value.

Section V: System Calls 1237

Interrupt 21H Function lAH

Interrupt 21H (33) 1.0 and later
Function lAH (26)
Set DTA Address

Function lAH specifies the location of the disk transfer area (DTA) to be used for file con
trol block (FCB) disk I/O operations.

ToCaU

AH = lAH

DS:DX = segment:offset of DTA

Returns

Nothing

Programmer's Notes

• If an application does not specify a disk transfer area, MS-DOS uses a default buffer at
offset 80H in the program segment prefix (PSP).

• The DTA specified must be large enough to accommodate the amount of data to be
transferred in a single block. The default record size for FCB file operations is 128
bytes; this value can be changed after a file is successfully opened or created by alter
ing the record size field in the FCB. If the DTA is too small for the record size used by
the program, other code or data may be damaged.

• The location of the DTA must be far enough from the top of the segment that contains
it to avoid errors caused by segment wrap (data wrapping from the end of the segment
to the beginning), which will cause the disk transfer to be terminated. Thus, for exam
ple, if records of 128 bytes are to be read, the highest location acceptable for the DTA
is DS:FF80H.

• The DTA is used by all FCB-based read and write functions. In addition, any applica
tion using the following functions must also set up a DTA for use as a scratch area in
directory searches:
- IIH (Find First File)

- 12H (Find Next File)

- 4EH (Find First File)

- 4FH (Find Next File)

Related Function

2FH (Get DTA Address)

1238 The MS-DOS Encyclopedia

Interrupt 21H Function lAH

Example

Function 1AH: Set DTA Address

int set_DTA(pDTAbuffer)

char far *pDTAbuffer;

Returns 0.

cProc set_DTA,PUBLIC,ds

parmD pDTAbuffer

cBegin

Ids dx,pDTAbuffer ; DS:DX = pointer to buffer,

mov ah,1ah Set function code.

int 21h

xor ax,ax

cEnd

Ask MS-DOS to change DTA address.

Return 0.

Section V: System Calls 1239

Interrupt 21H Function IBH

Interrupt 21H (33) 1.0 and later
Function IBH (27)
Get Default Drive Data

Function IBH returns information about the disk in the default drive.

ToCaU

AH = IBH

Returns

If function is successful:

AL = number of sectors per cluster (allocation unit)
CX = number of bytes per sector
DX = number of clusters

DS:BX = segment:offset of the file allocation table (FAT) identification byte

If function is not successful:

AL = FFH

Programmer's Notes

• If Function IBH returns OFFH in the AL register, the current drive was invalid or a disk
error occurred. The most likely causes of the latter are
- Drive door was open.
- Disk was not ready.
- Medium was bad.

- Disk was unformatted.

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter
rupt 24H has not been revectored to a critical error handler controlled by the program
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error
code OFFH is returned to the program. An application should check the AL register
for a value of OFFH before assuming it has information on the default drive.

• Possible values of the FAT ID byte (for IBM-compatible media) are the following:

Value Medium

OFFH Double-sided, 8 sectors/track, 40 tracks/side
OFEH Single-sided, 8 sectors/track, 40 tracks/side
OFDH Double-sided, 9 sectors/track, 40 tracks/side
OFCH Single-sided, 9 sectors/track, 40 tracks/side

(more)

1240 The MS-DOS Encyclopedia

Interrupt 21H Function IBH

Value Medium

0F9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/
track, 80 tracks/side

0F8H Fixed disk

OFOH Others

With MS-DOS versions 1.x, Function IBH returns a pointer in DS:BX for the actual
memory image of the FAT. In MS-DOS versions 2.0 and later, the function returns a
pointer in DS:BX for a copy of the FAT identification byte; the contents of memory
beyond the identification byte are not necessarily the FAT memory image. If access
to the FAT is necessary. Interrupt 25H (Absolute Disk Read) can be used to read it
into memory.

The FAT ID byte is not enough to identify a drive completely in MS-DOS versions 2.0
and later. In these versions of MS-DOS, Function 36H (Get Disk Free Space) should be
used in preference to Function IBH to avoid the ambiguity caused by the FAT iden
tification byte.
With MS-DOS versions 3.2 and later, additional drive information can be obtained by
inspecting the BIOS parameter block (BPB) obtained with Function 44H (lOCTL)
Subfunction ODH (Generic I/O Control for Block Devices) minor code 60H (Get

Device Parameters).

With MS-DOS versions 2.0 and later. Function ICH (Get Drive Data) provides the same
types of information as Function IBH, but for a disk in a drive other than the default
drive.

Related Functions

ICH (Get Drive Data)

36H (Get Disk Free Space)
44H (lOCTL)

Example

See SYSTEM CALLS: Interrupt 21h: Function ICH.

Section V: System Calls 1241

Interrupt 21H Function ICH

Interrupt 2m (33) 2.0 and later
Function ICH (28)
Get Drive Data

Function ICH returns information about the disk in a specified drive.

ToCaU

AH = ICH

DL = drive code (0 = default drive, 1 = drive A, 2 = drive B,

3 = drive C, and so on)

Returns

If function is successful:

AL = number of sectors per cluster (allocation unit)
CX = number of bytes per sector
DX = number of clusters

DS:BX = segmentroffset of the file allocation table (FAT) identification byte

If function is not successful:

AL = FFH

Programmer's Notes

• Function ICH is not available with MS-DOS versions 1.x.

• If the function returns OFFH in the AL register, the drive code was invalid or a disk
error occurred. The most likely causes of the latter are
- Drive door was open.
- Disk was not ready.
- Medium was bad.

- Disk was unformatted.

If any of these situations arises, MS-DOS issues Interrupt 24H (critical error). If Inter
rupt 24H has not been revectored to a critical error handler controlled by the program
and the user responds Ignore to the MS-DOS Abort, Retry, Ignore? message, the error
code OFFH is returned to the program. An application should check the AL register
for a value of OFFH before assuming it has information on the specified drive.

• Possible values of the FAT ID byte (for IBM-compatible media) are the following:

Value Medium

OFFH Double-sided, 8 sectors/track, 40 tracks/side

OFEH Single-sided, 8 sectors/track, 40 tracks/side

(more)

1242 The MS-DOS Encyclopedia

Value

Interrupt 21H Function ICH

Medium

OFDH Double-sided, 9 sectors/track, 40 tracks/side
OFCH Single-sided, 9 sectors/track, 40 tracks/side
0F9H Double-sided, 15 sectors/track, 40 tracks/side or double-sided, 9 sectors/

track, 80 tracks/side
0F8H Fixed disk

OFOH Others

• The contents of memory beyond the identification byte pointed to by DS:BX are not
necessarily the FAT memory image. If access to the FAT is necessary. Interrupt 25H
(Absolute Disk Read) can be used to read it into memory.

• The FAT ID byte is not enough to identify a drive completely. To avoid the ambiguity
caused by the FAT identification byte. Function 36H (Get Disk Free Space) should be
used in preference to Function ICH.

• With MS-DOS versions 3.2 and later, additional drive information can be obtained by
inspecting the BIOS parameter block (BPB) obtained with Function 44H (lOCTL)
Subfunction ODH (Generic I/O Control for Block Devices) minor code 60H (Get
Device Parameters).

Related Functions

IBH (Get Default Drive Data)

36H (Get Disk Free Space)
44H (lOCTL)

Example

Function ICH: Get Drive Data

Get information about the disk in the specified

drive. Set drive_ltr to binary 0 for default drive info.

int get_drive_data{drive_ltr,

pbyt e s_pe r_sect or,

psectors_per_cluster,

pclusters_per_drive)

int drive_ltr;

int *pbytes_per_sector;

int *psectors_per_cluster;

int *pclusters_per_drive;

Returns -1 for invalid drive, otherwise returns

the disk's type (from the 1st byte of the FAT).

(more)

Section V: System Calls 1243

Interrupt 21H Function ICH

cProc

parmB

parmDP

parmDP

parmDP

cBegin

gdd:

get_drive_data,PUBLIC,<ds,si>

drive_ltr

pbytes_per_sector

psectors_per_cluster

pclusters_per_drive

mov

mov

or

jz

and

sub

mov

int

cbw

cmp

je
mov

mov

loadDP

mov

loadDP

mov

mov

loadDP

mov

mov

si, ds

dl, drive_ltr

dl,dl

gdd

dl,not 20h

dl,'A'-1

Save DS in SI to use later.

Get drive letter.

Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' =

'B' = 2, etc.

1,

ah,1ch ; Set function code.

21h ; Ask MS-DOS for data.

; Extend AL into AH.

al,Offh ; Bad drive letter?

gddx ; If so, exit with error code -1 ,

bl, [bx] ; Get FAT ID byte from DS:BX.

ds,si ; Get back original DS.

ds,si,pbytes_per_sector

[si],cx ; Return bytes per sector,

ds,si,psectors_per_cluster

ah, 0

[si],ax ; Return sectors per cluster,

ds,si,pclusters_per_drive

[si],dx ; Return clusters per drive.

al,bl ; Return FAT ID byte.

gddx:

cEnd

1244 The MS-DOS Encyclopedia

Interrupt 21H Function 21H

Interrupt 21H (33) 1.0 and later
Function 21H (33)
Random Read

Function 21H reads a selected record from disk into memory.

To Call

AH = 21H

DS:DX = segmentroffset of previously opened file control block (FCB)

Returns

AL = OGH record read successfully
OIH end of file; no record read

02H DTA too small (segment wrap error); read canceled
03H end of file; partial record transferred

IfAL = 00Hor03H:

DTA contains data read from file.

Programmer's Notes

• Function 21H reads the record into the current disk transfer area (DTA). Unless the

128-byte default DTA (at offset 80H in the program segment prefix) is adequate, Func
tion lAH (Set DTA Address) should be used to set the DTA address before Function

21H is called. The program must ensure that the buffer pointed to by the DTA address
is large enough to hold the records to be transferred.

• The relative-record field in the FCB must be set to the record number to be read. Num

bering begins with record OGH; thus, the value G6H in the relative-record field would
indicate the seventh record, not the sixth.

• Function 21H sets the current-block and current-record fields to match the relative-

record field before transferring the data to the DTA.
• Unlike Function 27H (Random Block Read), Function 21H does not increment the

current-block, current-record, or relative-record fields.
• The record length read is determined by the record size field of the FCB.
• If a partial record is read and the end of file is encountered, the remainder of the

record is filled out to the requested length with zero bytes.
• On networks running under MS-DOS version 3.1 or later, the user must have Read

access rights to the directory containing the file to be read.
• With MS-DOS versions 2.G and later. Function 3FH (Read File or Device) should be

used in preference to Function 21H.

Section V: System Calls 1245

Interrupt 21H Function 21H

Related Functions

14H (Sequential Read)
lAH (Set DTA Address)

22H (Random Write)

24H (Set Relative Record)

27H (Random Block Read)

3FH (Read File or Device)

Example

**

Function 21H: Random File Read, FCB-based

int FCB_rread(oXFCB,recnum)

char *oXFCB;

long recnum;

Returns 0 if record read OK, otherwise

returns error code 1, 2, or 3.

**

cProc FCB_rread,PUBLIC,ds

parmDP poXFCB

parmD recnum

cBegin

loadDP ds,dx,poXFCB ; Pointer to opened extended FOB.

mov bx, dx ; BX points at FOB, too.

mov ax,word ptr (recnum) ; Get low 16 bits of record

mov [bx+28h],ax ; number and store in FCB.

mov ax,word ptr (recnum+2) ; Get high 16 bits of record

mov [bx+2ah],ax ; number and store in FCB.

mov ah,21h ; Ask MS-DOS to read recnum'th

; record, placing it at DTA.

int 21h

cbw ; Clear high byte of return value.

cEnd

1246 The MS-DOS Encyclopedia

Interrupt 21H Function 22H

Interrupt 21H (33) 1.0 and later
Function 22H (34)
Random Write

Function 22H writes data from the current disk transfer area (DTA) to a specified record
location in a file.

ToCaU

AH = 22H

DS:DX = segmentioffset of previously opened file control block (FCB)

DTA contains data to write.

Returns

AL = OGH record written successfully
OIH disk full

02H DTA too small (segment wrap error); write canceled

Programmer's Notes

• Before calling Function 22H, the program must set the disk transfer area (DTA) ad
dress appropriately with a call to Function lAH (Set DTA Address), if necessary, and
place the data to be written in the DTA.

• The relative-record field in the FCB must be set to the record number that is to be writ

ten. Numbering begins with record OGH; thus, the value G6H in the relative-record
field would indicate the seventh record, not the sixth.

• Function 22H sets the current-block and current-record fields to match the relative-

record field before writing the data from the DTA.
• Unlike Function 28H (Random Block Write), Function 22H does not increment the

current-block, current-record, or relative-record fields.
• The record size field determines the record length written by the function.
• If a record is written beyond the current end of file, the data between the old end of

file and the beginning of the new record is uninitialized.
• The file that is written to cannot have the read-only attribute.
• Information is written logically, but not always physically, to disk at the time Function

22H is called. The contents of the DTA are written immediately to disk only if they
constitute a sector's worth of information. If less than a sector is written, it is trans
ferred from the DTA to an MS-DOS buffer and is not physically written to disk until
one of the following occurs:
- A full sector of information is ready.
- The file is closed.

- Function GDH (Disk Reset) is issued.

Section V: System Calls 1247

Interrupt 21H Function 22H

• On networks running under MS-DOS version 3.1 or later, the user must have Write
access rights to the directory containing the file to be written to.

• With MS-DOS versions 2.0 and later, Function 40H (Write File or Device) should be
used in preference to Function 22H.

Related Functions

15H (Sequential Write)
lAH (Set DTA Address)

21H (Random Read)

24H (Set Relative Record)

28H (Random Block Write)

40H (Write File or Device)

Example

Function 22H: Random File Write, FCB-based

int FCB_rwrite(oXFCB,recnum)

char *oXFCB;

long recnum;

Returns 0 if record read OK, otherwise

returns error code 1 or 2.

cProc FCB_rwrite,PUBLIC,ds

parmDP poXFCB

parmD recnum

cBegin

loadDP ds,dx,poXFCB ; Pointer to opened extended FOB.

mov bx,dx ; BX points at FOB, too.

mov ax,word ptr (recnum) ; Get low 16 bits of record

mov [bx+28h],ax ; number and store in FOB.

mov ax,word ptr (recnum+2) ; Get high 16 bits of record

mov [bx+2ah],ax ; number and store in FOB.

mov ah,22h ; Ask MS-DOS to write DTA to

int 21h ; recnum'th record of file,

cbw ; Clear high byte for return value.

cEnd

1248 The MS-DOS Encyclcpedia

Interrupt 21H Function 23H

Interrupt 21H (33) 1.0 and later
Function 23H (35)
Get File Size

Function 23H searches the current directory for a specified file and returns the size of the
file in records.

ToCaU

AH = 23H

DS:DX = segmentioffset of unopened file control block (FCB) with record size field set
appropriately

Returns

If function is successful:

AL = OGH

FCB relative-record field contains number of records, rounded upward if necessary.

If function is not successful:

AL = FFH

Programmer's Notes

• The record size field in the FCB can be set to 1 to find the number of bytes in the file.
• The number of records is the file size divided by the record size. If there is a remain

der, the record count is rounded upward. The result stored in the relative-record field
may, therefore, contain a value that is 1 larger than the number of complete records in
the file.

• Because record numbers are zero based and this function returns the number of

records in a file in the relative-record field of the FCB, Function 23H can be used to
position the file pointer to the end of file.

• With MS-DOS versions 2.0 and later. Function 42H (Move File Pointer) should be used
in preference to Function 23H.

Related Function

42H (Move File Pointer)

Section V: System Calls 1249

Interrupt 21H Function 23H

Example

**

Function 23H: Get File Size, FCB-based

long FCB_nrecs(uXFCB,recsize)

char *uXFCB;

int recsize;

Returns a long -1 if file not found, otherwise

returns the number of records of size recsize.

Note: uXFCB must have the drive and

filename fields (bytes 07H through 12H) and

the extension flag (byte OOH) set before

the call to FCB_nrecs (see Function 29H).

♦ ale**

cProc

parmDP

parmW

cBegin

FCB_nrecs,PUBLIC,ds

puXFCB

recsize

loadDP ds,dx,puXFCB

mov bx,dx

mov ax,recsize

mov [bx+15h],ax

mov ah,23h

int

cbw

cwd

or

js

mov

mov

mov

21h

dx, dx

nr_exit

[bx+2bh],al

ax,[bx+28h]

dx,[bx+2ah]

; Pointer to unopened extended FOB.

; Copy FCB pointer into BX.

; Get record size

; and store it in FCB.

; Ask MS-DOS for file size (in

; records).

If AL = OFFH, set AX to -1.

Extend to long.

Is DX negative?

If so, exit with error flag.

Only low 24 bits of the relative-

record field are used, so clear the

top 8 bits.

Return file length in DX:AX.

nr_exit:

cEnd

1250 The MS-DOS Encyclopedia

Interrupt 21H Function 24H

IntelTlipt 2UE1 C33) 1.0 and later
Function 24H (36)
Set Relative Record

Function 24H sets the relative-record field of a file control block (FCB) to match the file
position indicated by the current-block and current-record fields of the same FCB.

ToCaU

AH = 24H

DS:DX = segment:offset of previously opened FCB

Returns

AL = OOH

Relative-record field is modified in FCB.

Programmer's Notes

• The AL register is always set to OOH by Function 24H. Thus, any preexisting informa
tion in the AL register is lost.

• Before Function 24H is called, the program must open the FCB with Function OFH
(Open File with FCB) or with Function 16H (Create File with FCB).

• The entire relative-record field (4 bytes) of the FCB must be initialized to zeros before
calling Function 24H. If this is not done, any value in the high-order byte of the high-
order word remaining from previous reads or writes might not be overwritten and the
resulting relative-record number will be invalid.

• Function 24H is normally used in changing from sequential to random I/O. Sequential
I/O, performed by Functions 14H (Sequential Read) and 15H (Sequential Write), sets
the current-block and current-record fields of the FCB. Random I/O uses the relative-
record field, which is set by Function 24H to match the current file position as
recorded in the current-block and current-record fields.

After the file pointer is set, any of the following functions can be used to access data at
the record pointed to by the relative-record field:
- 21H (Random Read)

- 22H (Random Write)

- 27H (Random Block Read)

- 28H (Random Block Write)

• With MS-DOS versions 2.0 and later. Function 42H (Move File Pointer) should be used
in preference to Function 24H.

Related Function

42H (Move File Pointer)

Section V: System Calls 1251

Interrupt 21H Function 24H

Example

Function 24H: Set Relative Record

int FCB_set_rrec(oXFCB)

char *oXFCB;

Returns 0.

**

cProc FCB_set_rrec,PUBLIC,ds

parmDP poXFCB

cBegin

loadDP ds,dx,poXFCB ; Pointer to opened extended FOB.

mov bx,dx ; BX points at FOB, too.

mov byte ptr [bx+2bh],0 ; Zero high byte of high word of

; relative-record field.

int

xor

ah,24h

21h

ax, ax

Ask MS-DOS to set relative record

to current record.

Return 0.

cEnd

1252 The MS-DOS Encyclopedia

Interrupt 21H Function 25H

Interrupt 21H (33)
Function 25H (37)
Set Interrupt Vector

1.0 and later

Function 25H sets an address in the interrupt vector table to point to a specified interrupt
handler.

ToCaU

AH

AL

DS:DX

= 25H

= interrupt number
= segment:offset of interrupt handler

Returns

Nothing

Programmer's Notes

• When Function 25H is called, the 4-byte address in DS:DX is placed in the correct
position in the interrupt vector table.

• Function 25H is the recommended method for initializing or changing an interrupt
vector. A vector in the interrupt vector table should never be changed directly.

• Before Function 25H is used to change an interrupt vector, the address of the current
interrupt handler should be read with Function 35H (Get Interrupt Vector) and then
saved for restoration before the program terminates.

Related Function

35H (Get Interrupt Vector)

Example

Function 25H: Set Interrupt Vector

typedef void (far *FCP)();

int set—vector(intnum,vector)

int intnum;

FOP vectors-

Returns 0.

(more)

Section V: System Calls 1253

Interrupt 21H Function 25H

cProc

parmB

parmD

cBegin

set_vector,PUBLIC,ds

intnum

vector

Ids

mov

mov

int

xor

dx,vector

al,intnum

ah,25h

21h

ax, ax

Get vector segment:offset into

DS:DX.

Get interrupt number into AL.

Select "set vector" function.

Ask MS-DOS to change vector.

Return 0.

cEnd

1254 The MS-DOS Encyclopedia

Interrupt 21H Function 26H

Interrupt 21H (33)
Function 26H (38)
Create New Program Segment Prefix

1.0 and later

Function 26H creates a new program segment prefix (PSP) at a specified segment address.

ToCaU

AH = 26H

DX = segment address of the PSP to create

Returns

Nothing

Programmer's Notes

• Function 26H copies the current PSP to the address indicated by DX. Note that DX
contains a segment address, not an absolute address.

• After the copy is made, the memory size information located at offset 06H in the new
PSP is adjusted to match the amount of memory available to the new PSP. In addition,
the current contents of the interrupt vectors for Interrupt 22H (Terminate Routine Ad
dress), Interrupt 23H (Control-C Handler Address), and Interrupt 24H (Critical Error
Handler Address) are saved starting at offset OAH of the new PSP.

• A .COM file can be loaded into memory immediately after the new PSP and execu
tion can begin at that location. A .EXE file cannot be loaded and executed in this
manner.

• With MS-DOS versions 2.0 and later. Function 4BH (Load and Execute Program)
should be used in preference to Function 26H. Function 4BH can be used to load
.COM files, .EXE files, or overlays.

Related Function

4BH (Load and Execute Program)

Example

Function 26H: Create New Program Segment Prefix

int create_psp(pspseg)

int pspseg;

Returns 0.

(more)

Section V: System Calls 1255

Interrupt 21H Function 26H

cProc

parmW

cBegin

cEnd

create_psp,PUBLIC

pspseg

mov

mov

int

xor

dx,pspseg

ah,26h

21h

ax, ax

Get segment address of new PSP.

Set function code.

Ask MS-DOS to create new PSP.

Return 0.

1256 The MS-DOS Encyclopedia

Interrupt 21H Function 27H

Interrupt 21H (33) 10 and later
Function 27H (39)
Random Block Read

Function 27H reads one or more records into memory, placing the records in the current
disk transfer area (DTA).

ToCaU

AH = 27H

CX = number of records to read

DS:DX = segment:offset of previously opened file control block (FOB)

Returns

AL = OOH read successful

OIH end of file; no record read
02H DTA too small (segment wrap error); no record read
03H end of file; partial record read

IfALis00Hor03H:

CX = number of records read

DTA contains data read from file.

Programmer's Notes

• The DTA address should be set with Function lAH (Set DTA Address) before Function
27H is called. If the DTA address has not been set, MS-DOS uses a default 128-byte
DTA at offset 80H in the program segment prefix (PSP).

• Function 27H reads the number of records specified in CX sequentially, starting at
the file location indicated by the relative-record and record size fields in the FCB. If
CX = 0, no records are read.

• The record length used by Function 27H is the value in the record size field of the
FCB. Unless a new value is placed in this field after a file is opened or created,
MS-DOS uses a default record length of 128 bytes.

• Function 27H is similar to Function 21H (Random Read); however. Function 27H can
read more than one record at a time and updates the relative-record field of the FCB
after each call. Successive calls to this function thus read sequential groups of records
from a file, whereas successive calls to Function 21H repeatedly read the same record.

• Possible alternative causes for end-of-file (OIH) errors include
- Disk removed from drive since file was opened.
- Previous open failed.

With MS-DOS versions 3.0 and later, more detailed information on the error can be
obtained by calling Function 59H (Get Extended Error Information).

Section V: System Calls 1257

Interrupt 21H Function 27H

• On networks running under MS-DOS version 3.1 or later, the user must have Read
access rights to the directory containing the file to be read.

• With MS-DOS versions 2.0 and later, Function 3FH (Read File or Device) should be
used in preference to Function 27H.

Related Functions

14H (Sequential Read)
lAH (Set DTA Address)

21H (Random Read)

24H (Set Relative Record)

28H (Random Block Write)

3FH (Read File or Device)

Example

********************* *******

Function 27H: Random File Block Read, FCB-based

int FCB_rblock(oXFCB,nrequest,nactual,start)

char *oXFCB;

int nrequest;

int *nactual;

long start;

Returns read status 0, 1, 2, or 3 and sets

nactual to number of records actually read.

If start is -1, the relative-record field is

not changed, causing the block to be read starting

at the current record.

cProc

parmDP

parmW

parmDP

parmD

cBegin

FCB_rblock,PUBLIC,<ds,di>

poXFCB

nrequest

pnactual

start

loadDP ds,dx,poXFCB ; Pointer to opened extended FOB.

mov di, dx ; DI points at FOB, too.

mov ax,word ptr (start) ; Get long value of start.

mov bx,word ptr (start+2)

mov cx, ax ; Is start = -1?

and cx,bx

inc cx

jcxz rb_skip ; If so, don't change relative-record

; field.

mov [di+28h],ax ; Otherwise, seek to start record.

(more)

1258 The MS-DOS Encyclopedia

Interrupt 21H Function 27H

rb_skip:

mov

mov

int

loadDP

mov

cbw

[di+2ah],bx

cx,nrequest

ah,27h

21h

ds,bx,pnactual

[bx],cx

CX = number of records to read.

Get MS-DOS to read CX records,

placing them at DTA.

DS:BX = address of nactual.

Return number of records read.

Clear high byte.

cEnd

Section V: System Calls 1259

Interrupt 21H Function 28H

Interrupt 21H (33) 1.0 and later
Function 28H (40)
Random Block Write

Function 28H writes one or more records from the current disk transfer area (DTA)
to a file.

ToCaU

AH = 28H

CK = number of records to write

DS:DX = segment:offset of previously opened file control block (FCB)

DTA contains data to write.

Returns

AL = OGH write successful

OIH disk full

02H DTA too small (segment wrap error); write canceled

IfALis OGH or OIH:

CX = number of records written

Programmer's Notes

• Data to be written must be placed in the DTA before Function 28H is called. Unless
the DTA address has been set with Function lAH (Set DTA Address), MS-DOS uses a

default 128-byte DTA at offset 8GH in the program segment prefix (PSP).
• Function 28H writes the number of records indicated in CX, beginning at the location

specified in the relative-record field of the file control block (FCB). If Function 28H is
called with OX = 0, the file is truncated or extended to the size indicated by the record-
size and relative-record fields of the FCB.

• The record length used by Function 28H is the value in the record size field of the
FCB. Unless a new value is assigned after a file is opened or created, MS-DOS uses a
default record length of 128 bytes.

• Function 28H is similar to Function 22H (Random Write); however. Function 28H can

write more than one record at a time and updates the relative-record field of the FCB
after each call. Successive calls to this function thus write sequential groups of records
to a file, whereas successive calls to Function 22H repeatedly write the same record.

126G The MS-DOS Encyclopedia

Interrupt 21H Function 28H

• Possible alternative causes for disk full (OIH) errors include

- Disk removed from drive since file was opened.
- Previous open failed.

In MS-DOS versions 3.0 and later, more detailed information on the error can be
obtained by calling Function 59H (Get Extended Error Information).

• Information is written logically, but not always physically, to disk at the time Function
28H is called. The contents of the DTA are written immediately to disk only if they
constitute a full sector of information. If less than a sector is written, it is transferred
from the DTA to an MS-DOS buffer and is not physically written to disk until one of
the following occurs:
- A full sector of information is ready.
- The file is closed.

- Function ODH (Disk Reset) is issued.

• On networks running under MS-DOS version 3.1 or later, the user must have Write
access rights to the directory containing the file to be written to.

• With MS-DOS versions 2.0 and later. Function 40H (Write File or Device) should be
used in preference to Function 28H.

Related Functions

15H (Sequential Write)
lAH (Set DTA Address)

22H (Random Write)

24H (Set Relative Record)

27H (Random Block Read)

40H (Write File or Device)

Example

**

Function 28H: Random File Block Write, FCB-based

int FCB_wblock(oXFCB,nrequest,nactual,start)

char *oXFCB;

int nrequest;

int *nactual;

long start;

Returns write status of 0, 1, or 2 and sets

nactual to number of records actually written.

If start is -1, the relative-record field is

not changed, causing the block to be written

starting at the current record.

:^*

(more)

Section V: System Calls 126l

Interrupt 21H Function 28H

cProc

parmDP

parmW

parmDP

parmD

cBegin

FCB_wblock,PUBLIC, <ds,di>

poXFCB

nrequest

pnactual

start

loadDP

mov

mov

mov

mov

and

inc

jcxz

mov

mov

wb_skip:

ds,dx,poXFCB ; Pointer to opened extended FOB.
di,dx ; DI points at FCB, too.

ax,word ptr (start) ; Get long value of start.

bx,word ptr (start+2)

cx,ax ; Is start = -1?

cx,bx

cx

wb_skip If so, don't change relative-re

[di+28h],ax

[di+2ah],bx

cord

field.

Otherwise, seek to start record.

mov cx,nrequest ; CX = number of records to write.

mov ah,28h ; Get MS-DOS to write CX records

int 21h ; from DTA to file.

loadDP ds,bx,pnactual ; DS:BX = address of nactual.

mov ds:[bx],cx ; Return number of records written

cbw ; Clear high byte.

cEnd

1262 The MS-DOS Encyclopedia

Interrupt 21H Function 29H

Interrupt 21H (33)
Function 29H(4l)
Parse Filename

1.0 and later

Function 29H examines a string for a valid filename in the form drive:filename.ext. If
the string represents a valid filename, the function creates an unopened file control block
(FCB)forit.

ToCaU

AH = 29H

AL = code to control parsing, as follows (bits 0-3 only):

Bit Value Meaning

0 0 Stop parsing if file separator is found.
1 Ignore leading separators (parse off white space).

1 0 Set drive number field in FCB to 0 (current drive) if

string does not include a drive identifier.
1 Set drive as specified in the string; leave unaltered if

string does not include a drive identifier.
2 0 Set filename field in the FCB to blanks (20H) if string

does not include a filename.

1 Leave filename field unaltered if string does not
include a filename.

3 0 Set extension field in FCB to blanks (20H) if string
does not include a filename extension.

1 Leave extension field unaltered if string does not
include a filename extension.

DS:SI = segmentioffset of string to parse
ES:DI = segment:offset of buffer for unopened FCB

Returns

AL = OOH string does not contain wildcard characters
OIH string contains wildcard characters
FFH drive specifier invalid

DS:SI = segment:offset of first byte following the parsed string
ESiDI = segment:offset of unopened FCB

Section V: System Calls 1263

Interrupt 21H Function 29H

Programmer's Notes

• Bits 0 through 3 of the byte in the AL register control the way the text string is parsed;
bits 4 through 7 are not used and must be 0.

• After MS-DOS parses the string, DS:SI points to the first byte following the parsed
string. If DS:SI points to an earlier byte, MS-DOS did not parse the entire string.

• If Function 29H encounters the MS-DOS wildcard character»(match all remaining
characters) in a filename or extension, the remaining bytes in the corresponding FCB
field are set to the wildcard character ? (match one character). For example, the string
DOS».D^ would be converted to DOS????? in the filename field and D?? in the exten

sion field of the FCB.

• With MS-DOS versions 1.x, the following characters are filename separators:

+ space tab /" []

With MS-DOS versions 2.0 and later, the following characters are filename separators:

:.;, = + space tab

• The following characters are filename terminators:

/"[]<>!

All filename separators
Any control character

• If the string does not contain a valid filename, ES:DI+1 points to an ASCII blank
character (20H).

• Function 29H cannot parse pathnames.

Related Functions

None

Example

Function 29H: Parse Filename into FCB

int FCB_parse(uXFCB,name,Ctrl)

char *uXFCB;

char *name;

int Ctrl;

Returns -1 if error,

0 if no wildcards found,

1 if wildcards found.

(more)

1264 The MS-DOS Encyclopedia

Interrupt 21H Function 29H

cProc

parmDP

parmDP

parmB

cBegin

FCB_parse, PUBLIC, <cis, si,di>

puXFCB

pname

Ctrl

loadDP

push

xor

eld

mov

rep

pop

mov

add

es,di,puXFCB

di

ax, ax

cx,22d

stosw

di

byte ptr [di],

di,7

loadDP ds,si,pname

mov

mov

int

cbw

al,Ctrl

ah,29h

21h

; Pointer to unopened extended FOB.

; Save DI.

; Fill all 22 (decimal) words of the

; extended FOB with zeros.

; Make sure direction flag says UP.

; Recover DI.

Offh ; Set flag byte to mark this as an

; extended FOB.

; Advance pointer to start of regular

; FOB.

; Get pointer to filename into DS:SI.

; Get parse control byte.

; Parse filename, please.

Set return parameter.

cEnd

Section V: System Calls 1265

Interrupt 21H Function 2AH

Interrupt 21H (33)
Function 2AH (42)
Get Date

1.0 and later

Function 2AH returns the current system date—year, month, day, and day of the week—
in binary form.

ToCaU

AH =2AH

Returns

AL = day of the week (0 = Sunday, 1 = Monday, 2 = Tuesday, and so on;
MS-DOS versions 1.10 and later)

CX = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)

Programmer's Note

• Years outside the range 1980-2099 cannot be returned by Function 2AH.

Related Functions

2BH (Set Date)

2CH (Get Time)

2DH (Set Time)

Example

Function 2AH: Get Date

long get_date(pdow,pmonth,pday,pyear)

char *pdow,*pmonth,*pday;

int *pyear;

Returns the date packed into a long:

low byte = day of month

next byte = month

next word = year.

'if* ***************

(more)

1266 The MS-DOS Encyclopedia

Interrupt 21H Function 2AH

cProc

parmDP

parmDP

parmDP

parmDP

cBegin

get_date,PUBLIC, ds

pdow

pmonth

pday

pyear

mov

int

loadDP

mov

loadDP

mov

loadDP

mov

loadDP

mov

mov

mov

ah,2ah

21h

ds,bx,pdow

[bx],al

ds,bx,pmonth

[bx],dh

ds,bx,pday

[bx],dl

ds,bx,pyear

[bx],cx

ax, dx

dx, cx

Set function code.

Get date info from MS-DOS.

DS:BX = pointer to dow.

Return dow.

DS:BX = pointer to month.

Return month.

DS:BX = pointer to day.

Return day.

DS:BX = pointer to year.

Return year.

Pack day, month, . . .

... and year into return value.

cEnd

Section V: System Calls 1267

Interrupt 21H Function 2BH

Interrupt 21H (33)
Function 2BH (43)
Set Date

1.0 and later

Function 2BH accepts binary values for the year, month, and day of the month and stores
them in the system's date counter as the number of days since January 1,1980.

ToCaU

AH = 2BH

CX = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)

Returns

AL =00H

FFH

system date updated
invalid date specified

Programmer's Note

• The year must be a l6-bit value in the range 1980 through 2099. Values outside this
range are not accepted. In addition, supplying only the last two digits of the year
causes an error.

Related Functions

2AH (Get Date)

2CH (Get Time)

2DH (Set Time)

Example

Function 2BH: Set Date

int set—date(month,day, year)

char month,day;

int year;

Returns 0 if date was OK, -1 if not.

(more)

1268 The MS-DOS Encyclopedia

Interrupt 21H Function 2BH

cProc set—date,PUBLIC

parmB

parmB

parmW

cBegin

month

day

year

mov

mov

mov

mov

int

cbw

dh,month

dl,day

cx,year

ah,2bh

21h

Get new month.

Get new day.

Get new year.

Set function code.

Ask MS-DOS to change date.

Return 0 or -1.

cEnd

Section V: System Calls 1269

Interrupt 21H Function 2CH

Interrupt 21H (33)
Function 2CH (44)

1.0 and later

Get Time

Function 2CH reports the current system time—hours (based on a 24-hour clock),
minutes, seconds, and hundredths of a second—in binary form.

To Call

AH = 2CH

Returns

CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of second (0 through 99)

Programmer's Note

• The accuracy of the time returned by Function 2CH depends on the accuracy of the
system's timekeeping hardware. On systems unable to resolve time to the himdredth
of a second, the DL register may contain either OOH or an approximate value calcu
lated by an MS-DOS algorithm.

Related Functions

2AH (Get Date)

2BH (Set Date)

2DH (Set Time)

Example

Function 2CH: Get Time

long get—time(phour,pmin,psec,phund)

char *phour,*pmin,*psec,*phund;

Returns the time packed into a long:

low byte = hundredths

next byte = seconds

next byte = minutes

next byte = hours.

(more)

1270 The MS-DOS Encyclopedia

Interrupt 21H Function 2CH

cProc

parmDP

parmDP

parmDP

parmDP

cBegin

get—time,PUBLIC,ds

phour

pmin

psec

phund

mov

int

loadDP

mov

loadDP

mov

loadDP

mov

loadDP

mov

mov

mov

cEnd

ah,2ch

21h

ds,bx,phour

[bx],ch

ds,bx,pmin

[bx],cl

ds,bx,psec

[bx],dh

ds,bx,phund

[bx],dl

ax, dx

dx, ex

Set function code.

Get time from MS-DOS.

DSiBX = pointer to hour.

Return hour.

DS:BX = pointer to min.

Return min.

DS:BX = pointer to sec.

Return sec.

DS:BX = pointer to hund.

Return hund.

Pack seconds, hundredths, .

... minutes, and hour into

return value.

Section V: System Calls 1271

Interrupt 21H Function 2DH

Interrupt 21H (33)
Function 2DH (45)
Set Time

1.0 and later

Function 2DH accepts binary values for the hour (based on a 24-hour clock), minute,
second, and hundredths of a second and stores them in the operating system's time
counter.

ToCaU

AH = 2DH

CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of second (0 through 99)

Returns

AL = OOH time successfully updated
FFH invalid time specified

Programmer's Note

• On systems that are unable to resolve the time to the hundredth of a second, the DL
register should be set to OOH before Function 2DH is called.

Related Functions

2AH (Get Date)

2BH (Set Date)

2CH (Get Time)

Example

Function 2DH: Set Time

int set—time(hour,min,sec,hund)

char hour,min,sec,hund;

Returns 0 if time was OK, -1 if not.

(more)

1272 The MS-DOS Encyclopedia

Interrupt 21H Function 2DH

cProc

parmB

parmB

parmB

parmB

cBegin

set_time,PUBLIC

hour

min

sec

hund

mov

mov

mov

mov

mov

int

cbw

ch,hour

cl,min

dh,sec

dl,hund

ah,2dh

21h

Get new hour.

Get new minutes.

Get new seconds.

Get new hundredths.

Set function code.

Ask MS-DOS to change time.

Return 0 or -1.

cEnd

Section V: System Calls 1273

Interrupt 21H Function 2EH

Interrupt 21H (33)
Function 2EH (46)
Set/Reset Verify Flag

1.0 and later

Function 2EH turns the internal MS-DOS verify flag on or off, thus determining whether
MS-DOS verifies disk write operations.

ToCaU

AH = 2EH

AL = OGH turn verify off
OIH turn verify on

DL = OGH (MS-DOS versions 1.x and 2.x only)

Returns

Nothing

Programmer's Notes

• If the verify flag is on, MS-DOS requests any block-device driver to verify each sector
written. If the driver does not support read-after-write verification, the verify flag has
no effect.

• Function 54H ((let Verify Flag) can be used to check the current setting of the verify
flag.

• Verifying data slows disk access during write operations. Because disk errors are rare,
the default setting of the verify flag is off.

• Verification can be controlled at the user level with the MS-DOS VERIFY command.

Related Function

54H (Get Verify Flag)

Example

Function 2EH: Set/Reset Verify Flag

int set—verify(newvflag)

char newvflag;

Returns 0.

*****^1*** *********

(more)

1274 The MS-DOS Encyclopedia

Interrupt 21H Function 2EH

cProc

parmB

cBegin

cEnd

set_verify,PUBLIC

newvflag

mov

mov

int

xor

al,newvflag

ah,2eh

21h

ax, ax

Get new value of verify flag.

Set function code.

Ask MS-DOS to store flag.

Return 0.

Section V: System Calls 1275

Interrupt 21H Function 2FH

Interrupt 21H (33)
Function 2FH (47)
Get DTA Address

2.0 and later

Function 2FH returns the current disk transfer area (DTA) address.

ToCaU

AH = 2FH

Returns

ES:BX = segment:offset of current DTA address

Programmer's Notes

• Function 2FH returns the base address of the current DTA. MS-DOS has no way of
knowing the size of the buffer at that address; the program must ensure that the buffer
pointed to by the DTA address is large enough to hold any records transferred to it.

• The current DTA address can be set with Function lAH (Set DTA Address). If the DTA

address is not set, MS-DOS uses a default buffer of 128 bytes located at offset BOH in
the program segment prefix (PSP).

Related Function

lAH (Set DTA Address)

Example

Function 2FH: Get DTA Address

char far *get_DTA()

Returns a far pointer to the DTA buffer.

cProc get_DTA,PUBLIC

cBegin

cEnd

mov ah,2fh

int 21h

mov ax, bx

mov dx, es

; Set function code.

; Ask MS-DOS for current DTA address.

; Return offset in AX.

; Return segment in DX.

1276 The MS-DOS Encyclopedia

Interrupt 21H Function 30H

Interrupt 21H (33) 2.0 and later
Function 30H (48)
Get MS-DOS Version Number

Function 30H returns the major and minor version numbers for MS-DOS versions 2.0 and
later.

ToCaU

AH = 30H

AL = OOH

Returns

AL = major version number (for example, 3 for MS-DOS version 3.x)
AH = minor version number (for example, OAH for MS-DOS version x. 10)
BH = original equipment manufacturer's (OEM's) serial number (OEM

dependent—usually OOH for PC-DOS, OFFH or other values for MS-DOS)
BL:CX = 24-bit user serial number (optional; OEM dependent)

Programmer's Notes

• With MS-DOS versions 1.x, Function 30H returns OOH in the AL register; the value
returned in AH is variable and not representative of the actual 1.x minor version
number.

• Function 30H supplies the MS-DOS version number to an application program that
might require features of the operating system that are not available in all versions. If
an application attempts to use such features with the wrong version of MS-DOS, the
results are unpredictable.

Applications requiring MS-DOS version 2.0 or later should use Function 30H to check
for versions 1.x. Because versions 1.x do not contain predefined handles for displaying
error messages. Function 02H (Character Output) or Function 09H (Display String)
must be used with those versions. Similarly, applications running under versions 1.x
cannot terminate through a call to Function 4CH (Terminate Process with Return
Code).

Related Functions

None

Section V: System Calls 1277

Interrupt 21H Function 30H

Example

Function 30H: Get MS-DOS Version Number

int DOS_version0

Returns number of MS-DOS version, with

major version in high byte,

minor version in low byte.

cProc DOS_version,PUBLIC

cBegin

mov

int

cEnd

ax,3000H

21h

xchg al,ah

Set function code and clear AL.

Ask MS-DOS for version number.

Swap major and minor numbers.

1278 The MS-DOS Encyclopedia

Interrupt 21H Function 31H

Interrupt 21H (33) 2.0 and later
Function 31H (49)
Terminate and Stay Resident

Function 31H terminates a program and returns control to the parent process (usually
COMMAND.COM) but keeps the terminated program resident in memory.

To Call

AH = 31H

AL = return code

DX = number of paragraphs of memory to be reserved for current process

Returns

Nothing

Programmer's Notes

• The following interrupt vectors are restored from the program segment prefix (PSP)
of the terminated program:

PSP Offset Vector for Interrupt

OAH Interrupt 22H (terminate routine)
OEH Interrupt 23H (Control-C handler)
12H Interrupt 24H (critical error handler) (versions 2.0 and later.)

• The minimum amount of memory a process can reserve is 6 paragraphs (60H bytes),
which constitutes the initial portion of the process's PSP (including the reserved
areas).

• The amount of memory required by the program is not necessarily the same as the
size of the file that holds the program on disk. The program must allow for its PSP and
stack in the amount of memory reserved; on the other hand,the memory occupied by
code and data used only during program initialization frequently can be discarded as
a side effect of the Function 31H call.

Before Function 31H is called, memory allocated to the terminating process's environ
ment block should be released by loading ES with the segment value at offset 2CH in
the PSP (the segment address of the environment) and calling Function 49H (Free
Memory Block).

• The terminating process should return a completion code in the AL register. If the
program terminates normally, the return code should be OOH. A return code of OIH or
greater usually indicates that termination was caused by an error encountered by
the process.

Section V: System Calls 1279

Interrupt 21H Function 31H

The parent process can retrieve the return code with Function 4DH (Get Return Code
of Child Process). If control returns to COMMAND.COM, the return code can be
tested with an ERRORLEVEL statement in a batch file.

• After terminating the current process, MS-DOS attempts to set the program's memory
allocation to the amount specified in DX.

• Function 31H is most often used for memory-resident utilities and subroutine libraries
that can be accessed using interrupts.

• This function is preferable to Interrupt 27H (Terminate and Stay Resident) because it
allows programs that are larger than 64 KB to remain resident, allows the terminating
program to pass a return code to the parent process, and does not require that the CS
register contain the PS? address.

Related Functions

48H (Allocate Memory Block)
49H (Free Memory Block)
4AH (Resize Memory Block)
4BH (Load and Execute Program)
4CH (Terminate Process with Return Code)

4DH (Get Return Code of Child Process)

Example

Function 31H: Terminate and Stay Resident

void keep_process(exit_code,nparas)

int exit—Code,nparas;

Does NOT return!

cProc keep_process, PUBLIC

parmB exit_code

parmW nparas

cBegin

mov

mov

mov

int

al, exit—code

dx,nparas

ah,31h

21h

; Get return code.

; Set DX to number of paragraphs the

; program wants to keep.

; Set function code.

; Ask MS-DOS to keep process.

cEnd

1280 The MS-DOS Encyclopedia

Interrupt 21H Function 33H

Interrupt 21H (33) 2.0 and later
Function 33H (51)
Get/Set Control-C Check Flag

Function 33H gets or sets the status of the Control-C check flag.

ToCaU

AH = 33H

AL = OOH get current Control-C check flag
OIH set Control-C check flag to value in DL

IfALis OIH:

DL =00H set Control-C check flag to off
OIH set Control-C check flag to on

Returns

AL = OOH flag set successfully
FFH code in AL on call not OOH or OIH

IfAL was OOH on call:

DL =00H Control-C check flag off
OIH Control-C check flag on

Programmer's Notes

• If the Control-C check flag is off, MS-DOS checks for a Control-C entered at the key
board only during servicing of the character I/O functions, OIH through OCH. If the
Control-C check flag is on, MS-DOS also checks for user entry of a Control-C during
servicing of other functions, such as file and record operations.

• The state of the Control-C check flag affects all programs. If a program needs to
change the state of Control-C checking, it should save the original flag and restore it
before terminating.

Related Functions

None

Section V: System Calls 1281

Interrupt 21H Function 33H

Example

Function 33H: Get/Set Control-C Check Flag

int controlC(func,state)

int func,state;

Returns current state of Control-C flag.

cProc controlC,PUBLIC

parmB func

parmB state

cBegin

mbv al,func ; Get set/reset function.

mov dl,state ; Get new value if present-.

mov ah,33h ; MS-DOS '^C check function.

int 21h ; Call MS-DOS.

mov al,dl ; Return current state.

cbw ; Clear high byte of return

cEnd

1282 The MS-DOS Encyclopedia

Interrupt 21H Function 34H

Interrupt 21H (33)
Function 34H(52)
Return Address of InDOS Flag

2.0 and later

Function 34H returns the address of the InDOS flag, which reflects the current state of
Interrupt 21H function processing.

Note: Microsoft cannot guarantee that the information in this entry will be valid for future
versions of MS-DOS.

= 34H

ToCaU

AH

Returns

ES:BX = segmentioffset of InDOS flag

Programmer's Notes

• The InDOS flag is a byte within the MS-DOS kernel. The value in InDOS is incre
mented when MS-DOS begins execution of an Interrupt 21H function and decre
mented when MS-DOS's processing of that function is completed. Thus, the value
of InDOS is zero only when no Interrupt 21H processing is occurring.

• The InDOS flag is one of the elements used in terminate-and-stay-resident (TSR) pro
grams to determine when the TSR can be executed safely.

Related Functions

None

Example

Function 34H: Get Return Address of InDOS Flag

char far *inDOS_ptr()

Returns a far pointer to the MS-DOS inDOS flag.

cProc inDOS_ptr,PUBLIC

cBegin

cEnd

mov ah,34h ; InDOS flag function.

int 21h ; Call MS-DOS.

mov ax,bx ; Return offset in AX.

mov dx, es ; Return segment in DX

Section V: System Calls 1283

Interrupt 21H Function 35H

Interrupt 21H (33)
Function 35H (53)
Get Interrupt Vector

2.0 and later

Function 35H returns the address stored in the interrupt vector table for the handler
associated with the specified interrupt.

ToCaU

AH = 35H

AL = interrupt number

Returns

ES:BX = segment:offset of handler for interrupt specified in AL

Programmer's Note

• Interrupt vectors should always be read with Function 35H and set with Function 25H
(Set Interrupt Vector). Programs should never attempt to read or change interrupt
vectors directly in memory.

Related Fimction

25H (Set Interrupt Vector)

Example

Function 35H; Get Interrupt Vector

typedef void (far *FCP)();

FCP get_vector(intnum)

int intnum;

Returns a far code pointer that is the

segment:offset of the interrupt vector.

cProc get_vector,PUBLIC

parmB intnum

cBegin

mov al,intnum

mov ah,35h

int 21h

mov ax,bx

mov dx, es

; Get interrupt number into AL.

; Select "get vector" function.

; Call MS-DOS.

; Return vector offset.

; Return vector segment.

cEnd

1284 The MS-DOS Encyclopedia

Interrupt 21H Function 36H

InterrU 2U1 C33) 2.0 and later
Function 36H (54)
Get Disk Free Space

Function 36H returns disk-storage information for the specified drive.

ToCaU

AH = 36H

DL = drive specification (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

AX = number of sectors per cluster
BX = number of clusters available

CX = number of bytes per sector
DX = number of clusters on drive

If function is not successful:

AX =FFFFH invalid drive number in DL

Programmer's Notes

• The AX register should be checked for a value of FFFFH (error) before information
returned by this function is used.

• The number of bytes of free storage remaining on the disk can be calculated by
multiplying available clusters times sectors per cluster times bytes per sector (BX •
AX*CX).

• Function 36H regards "lost" clusters (clusters that are allocated in the file allocation
table [FATl but do not belong to a file) as being in use and subtracts them from the
amount of available storage, exactly as if they were allocated to a file.

• With MS-DOS versions 2.0 and later. Function 36H should be used in preference to the
FCB Functions IBH (Cjet Default Drive Data) and ICR (Get Drive Data).

Related Functions

IBH (Get Default Drive Data)

ICR (Get Drive Data)

Section V: System Calls 1285

Interrupt 21H Function 36H

Example

Function 36H; Get Disk Free Space

long free_space(drive_ltr)

char drive_ltr;

Returns the number of bytes free as

a long integer.

cProc free_space,PUBLIC

parmB drive_ltr

cBegin

fsp:

cEnd

mov

or

jz

and

sub

mov

int

mul

mul

dl,drive_ltr

dl,dl

fsp

dl,not 2Oh

dl,'A'-1

ah,36h

21h

cx

bx

; Get drive letter.

; Leave 0 alone.

; Convert letter to uppercase.

; Convert to drive number: 'A' = 1,

; 'B* =2, etc.

; Set function code.

; Ask MS-DOS to get disk information.

; Bytes/sector * sectors/cluster

; * free clusters.

1286 The MS-DOS Encyclopedia

Interrupt 21H Function 38H

ItttCtnipt 2m (33) 2,0 and later
Function 38H (56)
Get/Set Current Country: Get Current Country

Function 38H includes two subfunctions that either get or set country data, depending on
the value in the DX register when the function is called.

With MS-DOS versions 2.0 and later, if DX contains any value other than FFFFH, the Get
Current Country subfunction is invoked. Information on date, currency, and other country-
specific formats is then returned in a buffer specified by the calling program. The country
code is usually the same as the country's international telephone prefix.

ToCaU

AH = 38H

With MS-DOS versions 2.x:

AL =00H current country
DSiDX = segmentioffset of 32-byte buffer

With MS-DOS versions 3.x:

AL = OOH current country
01 -FEH country code between 1 and 254
FFH country code of 255 or greater, specified in BX

BX = country code if AL = FFH
DS:DX = segment:offset of 34-byte buffer

Returns

If function is successful:

Carry flag is clear.

BX = country code (MS-DOS version 3.x only)
DS:DX = segment:offset of buffer containing country information

If function is not successful:

Carry flag is set.

AX = error code:

02H invalid country code

Section V: System Calls 1287

Interrupt 21H Function 38H

Programmer's Notes

• With MS-DOS versions 2.x, the Get Current Country subfunction returns the following
information for the current country in the 32-byte country-data buffer (ASCIIZ format
is an ASCII character string ending in a zero byte):

Offset Type Description

OOH Word Date format:

0 = United States (m/d/y)
1 = Europe (d/m/y)
2 = Japan (y/m/d)

02H ASCIIZ Currency symbol
04H ASCIIZ Character used as thousands separator
06H ASCIIZ Character used as decimal separator
08H 24 bytes Reserved

With MS-DOS versions 3.x, the Get Current Country subfunction returns the following
information for the specified country in the 34-byte country-data buffer:

Offset Type E>escription

OOH Word Date format:

0 = United States (m/d/y)
1 = Europe (d/m/y)
2 = Japan (y/m/d)

02H ASCIIZ Currency symbol (5 bytes, as opposed to 2 in versions 2.x
of MS-DOS)

07H ASCIIZ Character used as thousands separator
09H ASCIIZ Character used as decimal separator
OBH ASCIIZ Character used as date separator
ODH ASCIIZ Character used as time separator
OFH Byte Position of currency symbol; possible values are

OOH Currency symbol precedes value with
no space

OIH Currency symbol follows value with
no space

02H Currency symbol precedes value with
one space

03H Currency symbol follows value with
one space

lOH Byte Number of decimal places in currency

(more)

1288 The MS-DOS Encyclopedia

Interrupt 21H Function 38H

Offset Type Description

IIH Byte Time format (OOH = 12-hour clock; OIH = 24-hour clock)
12H Dword Case-mapping call address (JSee Programmer's Notes

below.)

16H ASCIIZ Character used as separator in data lists
18H 10 bytes Reserved

• The case-mapping call address (MS-DOS versions 3.x only) is the segment:offset
of a FAR procedure that performs country-specific mapping on ASCII characters in
the range 80H through OFFH. The character to be mapped must be placed in the AL
register before the call is made. If the character has an uppercase value, that value is
returned in AL. If the character has no such value, AL is unchanged.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

38H (Set Current Country subfunction)

Example

Function 38H: Get/Set Current Country Data

int country_info(country,pbuffer)

char country,*pbuffer;

Returns -1 if the "country" code is invalid.

cProc

parmB

parmDP

cBegin

country_info,PUBLIC, ds

country

pbuffer

mov al,country

loadDP ds,dx,pbuffer

mov ah,38h

int 21h

jnb cc_ok

mov ax,-1

cc_ok:

cEnd

Get country code.

Get buffer pointer (or -1) .

Set function code.

Ask MS-DOS to get country

information.

Branch if country code OK.

Else return -1.

Section V: System Calls 1289

Interrupt 21H Function 38H

Interrupt 21H (33) 3.0 and later
Function 38H (56)
Get/Set Current Country: Set Current Country

Function 38H includes two subfunctions that either get or set country data, depending
on the value in the DX register when the function is called.

With MS-DOS versions 3.0 and later, the Set Current Country subfunction is invoked if
Function 38H is called with DX = FFFFH (-1). This subfunction selects the country for
which subsequent calls to Get Current Country will return information. The country code
used with this function is usually the same as the country's international telephone prefix.

ToCaU

AH = 38H

AL = country code for a code less than 255
FFH for country code of 255 or greater, specified in BX

BX = country code if AL = FFH
DX = FFFFH (-1)

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

02H invalid country code

Programmer's Notes

• MS-DOS normally uses the country code associated with the current KEYBxx
keyboard driver file, if any. Otherwise, the default country code is OEM dependent.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

38H (Get Current Country subfunction)

Example

See Function 38H Subfunction Get Current Country for example.

1290 The MS-DOS Encyclopedia

Interrupt 21H Function 39H

Interrupt 21H (33) 2 0 and later
Function 39H (57)
Create Directory

Function 39H creates a subdirectory using the specified path.

ToCaU

AH = 39H

DS:DX = segment:offset of ASCIIZ path

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found
05H access denied

Programmer's Notes

The path must be a null-terminated ASCII string (ASCIIZ).
MS-DOS places the current directory (.) and parent directory (..) entries in all new
directories.

Function 39H returns error code 05H (access denied) in the following cases:
- File or directory with the same name already exists in the specified path.
- Parent directory is the root directory and the root directory is full.
- Path specifies a device.
- Program is running on a network under MS-DOS version 3.1 or later and the user

does not have Create access to the parent directory.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3AH (Remove Directory)
3BH (Change Current Directory)
47H (Get Current Directory)

Section V: System Calls 1291

Interrupt 21H Function 39H

Example

Function 39H: Create Directory

int make_dir(pdirpath)

char *pdirpath;

Returns 0 if directory created OK,

otherwise returns error code.

cProc make_dir,PUBLIC,ds

parmDP pdirpath

cBegin

loadDP ds,dx,pdirpath ; Get pointer to pathname.

mov

int

jb

xor

ah,39h

21h

md_err

ax, ax

md_err:

cEnd

Set function code.

Ask MS-DOS to make new subdirectory.

Branch on error.

Else return 0.

1292 The MS-DOS Encyclopedia

Interrupt 21H Function 3AH

Inteimpt 2XH C33) 2.0 and later
Function 3AH (58)
Remove Directory

Function 3AH removes (deletes) the specified subdirectory.

ToCaU

AH = 3AH

DS:DX = segmentioffset of ASCIIZ path

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found
05H access denied

lOH current directory was specified

Programmer's Notes

• The path must be a null-terminated ASCII string (ASCIIZ).
• Function 3AH returns error code 05H (access denied) in the following cases:

- Directory is not empty.

- Root directory was specified.
- Current directory was specified.
- Path does not specify a valid directory.
- Directory is malformed (. and.. not first two entries).
- User has insufficient access rights on a network running under MS-DOS version 3.1

or later.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

39H (Create Directory)
3BH (Change Current Directory)
47H (Get Current Directory)

Section V: System Calls 1293

Interrupt 21H Function 3AH

Example

Function 3AH: Remove Directory

int remove_dir(pdirpath)

char *pdirpath;

Returns 0 if directory was removed,

otherwise returns error code.

cProc remove_dir,PUBLIC,ds

parmDP pdirpath

cBegin

loadDP ds,dx,pdirpath

mov ah,3ah

int

jb

xor

21h

rd_err

ax,ax

rd_err:

cEnd

Get pointer to pathname.

Set function code.

Ask MS-DOS to delete subdirectory.

Branch on error.

Else return 0.

1294 The MS-DOS Encyclopedia

Interrupt 21H Function 3BH

Interrupt 21H (33) 2.0 and later
Function 3BH (59)
Change Current Directory

Function 3BH changes the current directory to the specified path.

To Call

AH = 3BH

DS:DX = segmentioffset of ASCIIZ path

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found

Programmer's Notes

• The path must be a null-terminated ASCII string (ASCIIZ).
• Before a call to Function 3BH, Function 47H (Get Current Directory) can be used

to determine the current directory so that the original directory can be restored later
(for example, on termination of the program).

• Function 3BH can be used with programs that rely on either FCB-based or handle-
based calls. It is the only method of changing the current directory that is supported
by MS-DOS.

• The path string is limited to a total of 64 characters, including separators.
• Function 59H (Get Extended Error Information) provides further information on any

error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

39H (Create Directory)
3AH (Remove Directory)
47H (Get Current Directory)

Section V: System Calls 1295

Interrupt 21H Function 3BH

Example

Function 3BH: Change Current Directory

int change_dir(pdirpath)

char *pdirpath;

Returns 0 if directory was changed,

otherwise returns error code.

cProc change_dir,PUBLIC,ds

parmDP pdirpath

cBegin

loadDP ds,dx,pdirpath ; Get pointer to pathname,

mov ah,3bh ; Ask MS-DOS to move to

int 21h ; different directory,

jb cd_err ; Branch on error,

xor ax,ax ; Else return 0.

cd_err:

cEnd

1296 The MS-DOS Encyclopedia

Interrupt 21H Function 3CH

IntelTUpt 21H C33) 2.0 and later
Function 3CH (60)
Create File with Handle

Function 3CH creates a file, assigns it the attributes specified, and returns a l6-bit handle
for the file. If the named file already exists. Function 3CH opens it and truncates it to zero
length.

ToCaU

AH = 3CH

CX = attribute

DS:DX = segment:offset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

AX = handle number

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found
04H too many open files
05H access denied

Programmer's Notes

• Function 3CH is preferable to Function 16H (Create File with FCB) for creating a file
because it supports full pathnames. Function 16H should be used only if compatibility
with versions 1.x of MS-DOS is required.

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• Bits 0 through 2 of the 2-byte file attribute in CX determine whether the file is normal,

read-only, hidden, or system. The attribute codes are
- OOH normal file

- OIH read-only file
- 02H hidden file

- 04H system file
Bits 3 through 5 are associated with volume labels, subdirectories, and archive files.
The volume and subdirectory bits are invalid for Function 3CH and must be set to 0.
Bits 6 through 15 should be set to 0 to ensure future compatibility.

Section V: System Calls 1297

Interrupt 21H Function 3CH

Values can be combined to set several file attributes. For example, if Function 3CH is
called with CX = 0003H, the file created is a read-only hidden file.
Because Function 3CH truncates an existing file to zero length, any information pre
viously in the file is lost. Alternative functions that protect against such loss include
the following:
- Function 3DH (Open File with Handle) or Function 4EH (Find First File), which

can be used to check for the previous existence of the file before Function 3CH is
called

- Function 5AH (Create Temporary File), which creates a file in the specified sub
directory and gives it a unique name assigned by MS-DOS

- Function 5BH (Create New File), which is similar to Function 3CH but fails if it
finds a file that matches the specified pathname

After creating a file. Function 3CH sets the position of the file pointer to 0. Thus, the
next read or write operation takes place at the beginning of the file.
Function 3CH returns error code 04H (too many open files) if no handle is currently
available. With MS-DOS versions 3.2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Error code 05H (access denied) is returned if the file is to be created in the root direc

tory and the root is full or if a read-only file with the same name already exists in the
specified subdirectory.
On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file specified.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FCB)

43H (Get/Set File Attributes)

5AH (Create Temporary File)
5BH (Create New File)

Example

Function 3CH: Create File with Handle

int create(pfilepath,attr)

char *pfilepath;

int attr;

Returns -1 if file was not created,

otherwise returns file handle.

(more)

1298 The MS-DOS Encyclopedia

Interrupt 21H Function 3CH

cProc

parmDP

parmW

cBegin

create,PUBLIC,ds

pfilepath

attr

loadDP ds,dx,pfilepath

mov cx,attr

mov ah,3ch

int 21h

jnb cr_ok

mov ax,-1

Get pointer to pathname.

Get new file's attribute.

Ask MS-DOS to make a new file.

Branch if MS-DOS returned handle.

Else return -1.

cr_ok:

cEnd

Section V: System Calls 1299

Interrupt 21H Function 3DH

Interrupt 21H (33)
Function 3DH (61)
Open File with Handle

2.0 and later

Function 3DH opens the specified file and returns a l6-bit handle number for subsequent
access to the file.

ToCaU

AH = 3DH

With versions 2.x of MS-DOS:

AL = file-access code:

Bits Value Meaning

3-7

0-2

00000

000

001

010

Reserved

Read-only access
Write-only access
Read/write access

DS:DX = segment:offset of ASCIIZ pathname

With versions 3.x of MS-DOS:

AL = file-access, file-sharing, and inheritance codes:

Bits Value Meaning

7 (inherit bit) 0 Child process inherits file
1 Child process does not inherit

file

4-6 (sharing mode; 000 Compatibility mode
file access granted 001 Deny read/write access
to other processes) 010 Deny write access

oil Deny read access
100 Deny none

3 0 Reserved

0-2 (access code; 000 Read-only access
file usage) 001 Write-only access

010 Read/write access

DS:DX = segment:offset of ASCIIZ pathname

1300 The MS-DOS Encyclopedia

Interrupt 21H Function 3DH

Returns

If function is successful:

Carry flag is clear.

AX = handle number

If function is not successful:

Carry flag is set.

AX = error code:

02H file not found

03H path not found
04H too many open files
05H access denied

OCH invalid access code

Programmer's Notes

• Function 3DH is preferable to Function OFH (Open File with FCB) because it allows
the use of pathnames. Function OFH should be used only if compatibility with ver
sions 1.x of MS-DOS is required.

• Function 3DH opens any file matching the pathname in DS:DX, including hidden and
system files.

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• Function 3DH returns error code 04H (too many open files) if no handle is currently

available. With MS-DOS versions 3-2 and earlier, a single process can have no more
than 20 files open at one time, 5 of which are normally assigned to the standard
devices.

Function 3DH returns error code 05H (access denied) if the pathname specifies a
directory or volume label or if read/write access was requested for a read-only file.

Function 3DH returns error code OCH (invalid access code) if bits 0-2 in AL contain

any value other than 000,001, or 010.
• With MS-DOS versions 2.x, only bits 0-2 of the byte in AL are meaningful; they should

contain the type of access allowed for the file. Bits 3-7 should always be zero.

With MS-DOS versions 3.0 and later, networking capabilities require bits 4-7, as well
as 0-2, to be set. (Bit 3 is reserved and should be 0.)

Bit 7, the inherit bit, should be set to indicate whether child processes created by the
current process with Function 4BH (Load and Execute Program) either can (0) or can
not (1) inherit the file. When a process inherits a file, it also inherits the access and
sharing modes.

Section V: System Calls 1301

Interrupt 21H Function 3DH

Bits 4-6 are called the "sharing code"; they indicate the type of access other users on
the network can have to the file. The five sharing modes and the conditions under
which they pertain are as follows:
- mode 000 (compatibility). Allows other programs running on the same machine

unlimited access to the file. Programs running on other machines cannot access
the file across the network unless it has the read-only attribute. An attempt to open
the file in compatibility mode fails if the file has already been opened with any
other sharing mode.

- 001 (deny read and write access). Provides exclusive access to the file. Any subse
quent attempts by others (including the current process) to open the file fail. This
mode fails if the file has already been opened in compatibility mode or for read or
write access, even by the current process.

- 010 (deny write access). Allows other processes to open the file for read-only ac
cess. This mode fails if the file has already been opened in compatibility mode or
for write access by any other process.

- Oil (deny read access). Allows other processes to open the file for write-only ac
cess. This mode fails if the file has already been opened in compatibility mode or
for read access by any other process.

- 100 (deny none). Similar to compatibility mode, but does not allow other processes
to open the file in compatibility mode. This mode fails if the file has already been
opened in compatibility mode by any other process.

• When the file is opened, the position of the file pointer is set to 0. Function 42H
(Move File Pointer) can be used to change its position.

• With MS-DOS versions 3.0 and later, if this function fails because of a file-sharing
error, the operating system issues an Interrupt 24H (Critical Error Handler Address)
with error code 02H (drive not ready). Function 59H (Get Extended Error Informa
tion) must be used to find the extended error code specifying the type of sharing
violation that occurred.

Related Functions

OFH (Open File with FCB)
3EH (Close File)

3FH (Read File or Device)

40H (Write File or Device)

42H (Move File Pointer)

43H (Get/Set File Attributes)
57H (Get/Set Date/Time of File)

1302 The MS-DOS Encyclopedia

Interrupt 21H Function 3DH

Example

Function 3DH: Open File with Handle

int open(pfilepath,mode)

char *pfilepath; int mode;

Modes:

0: Read

1: Write

2: Read/Write

Returns -1 if file was not opened,

otherwise returns file handle.

cProc

parmDP

parmB

cBegin

open,PUBLIC,ds

pfilepath

mode

loadDP ds,dx,pfilepath ; Get pointer to pathname,

mov al,mode ; Get read/write mode,

mov ah,3dh ; Request MS-DOS to open the

int 21h ; existing file.

jnb op_ok ; Branch if MS-DOS returned handle,

mov ax,-1 ; Else return -1.

op_ok:

cEnd

Section V: System Calls 1303

Interrupt 21H Function 3EH

Interrupt 21H (33) 2.0 and later
Function 3EH (62)
Close File

Function 3EH closes the file referenced by the specified handle.

ToCaU

AH = 3EH

BX = handle number

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

06H invalid handle number

Programmer's Notes

The handle in BX must be one that was returned by a successful call to one of the
following functions:
- 3CH (Create File with Handle)

- 3DH (Open File with Handle)
- 5AH (Create Temporary File)
- 5BH (Create New File)

If the file has been modified, truncated, or extended. Function 3EH updates the cur
rent date, time, and file size in the directory entry.
All internal MS-DOS buffers for the file, including directory and file allocation table
(FAT) buffers, are flushed to disk.
With MS-DOS versions 3.0 and later, a program must remove all file locks in effect
before it closes a file. The result of closing a file with active locks is unpredictable.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

1304 The MS-DOS Encyclopedia

Interrupt 21H Function 3EH

Related Functions

lOH (Close File with FOB)

3CH (Create File with Handle)

3DH (Open File with Handle)
5AH (Create Temporary File)
5BH (Create New File)

Example

Function 3EH: Close File

int close(handle)

int handle;

Returns -1 if file was not closed,

otherwise returns 0.

cProc close,PUBLIC

parmW handle

cBegin

cl_ok:

cEnd

mov bx,handle ; Get handle.

mov ah,3eh ; Set function codes.

int 21h ; Ask MS-DOS to close

mov al,0

jnb

1—1
o

; Branch if no error.

mov al,-1 ; Else return -1 .

cbw ; Extend result.

Section V: System Calls 1305

Interrupt 21H Function 3FH

Interrupt 21H (33) 2.0 and later
Function 3FH (63)
Read File or Device

Function 3FH reads from the file or device referenced by a handle.

ToCaU

AH = 3FH

BX = handle number

CX = number of bytes to read
DS:DX = segment:offset of data buffer

Returns

If function is successful:

Carry flag is clear.

AX = number of bytes read from file
DS:DX = segmentioffset of data read from file

If function is not successful:

Carry flag is set.

AX = error code:

05H access denied

06H invalid handle

Programmer's Notes

Data is read from the file beginning at the current location of the file pointer. After a
successful read, the file pointer is updated to point to the byte following the last byte
read.

If Function 3FH returns OOH in the AX register, the function attempted to read when
the file pointer was at the end of the file. If AX is less than CX, a partial record at the
end of the file was read.

Function 3FH can be used with all handles, including standard input (normally the
keyboard). When reading from standard input, this function normally reads charac
ters only to the first carriage-return character. Thus, the number of bytes read in AX
will not necessarily match the length requested in CX.
On networks running under MS-DOS version 3.1 or later, the user must have Read
access to the directory and file containing the information to be read.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

1306 The MS-DOS Encyclopedia

Interrupt 21H Function 3FH

Related Functions

40H (Write File or Device)

42H (Move File Pointer)
59H (Get Extended Error Information)

Example
**

Function 3FH: Read File or Device

int read(handle,pbuffer,nbytes)

int handle,nbytes;

char *pbuffer;

Returns -1 if there was a read error,

otherwise returns number of bytes read.

**

cProc

parmW

parmDP

parmW

cBegin

read,PUBLIC,ds

handle

pbuffer

nbytes

mov bx,handle Get handle.

loadDP ds,dx,pbuffer Get pointer to buffer.

mov cx,nbytes Get number of bytes to read

mov ah,3fh Set function code.

int 21h Ask MS-DOS to read CX bytes

jnb rd_ok Branch if read worked.

mov ax, -1 Else return -1.

rd_ok:

cEnd

Section V: System Calls 1307

Interrupt 21H Function 40H

Intemipt 2111 (33) 2.0 and later
Function 40H (64)
Write File or Device

Function 40H writes the specified number of bytes to a file or device referenced by a
handle.

ToCaU

AH =40H

BX = handle

CX = number of bytes to write
DS:DX = segment:offset of data buffer

Returns

If function is successful:

Carry flag is clear.

AX = number of bytes written to file or device

If function is not successful:

Carry flag is set.

AX = error code:

05H access denied

06H invalid handle

Programmer's Notes

Data is written to the file or device beginning at the current location of the file
pointer. After writing the specified data, Function 40H updates the position of the
file pointer and returns the actual number of bytes written in AX.
Function 40H returns error code 05H (access denied) if the file was opened as read
only with Function 3CH (Create File with Handle), 3DH (Open File with Handle),
5AH (Create Temporary File), or 5BH (Create New File). On networks running under
MS-DOS version 3.1 or later, access is also denied if the file or record has been locked
by another process.
The handle number in BX must be one of the predefined device handles (0 through 4)
or a handle obtained through a previous call to open or create a file (such as Function
3CH, 3DH, 5AH, or 5BH).

If CX = 0, the file is truncated or extended to the current file pointer location. Clusters
are allocated or released in the file allocation table (FAT) as required to fulfill the
request.

1308 The MS-DOS Encyclopedia

Interrupt 21H Function 40H

If the handle parameter for Function 40H refers to a disk file and the number of bytes
written (returned in AX) is less than the number requested in CX, the destination disk
is full. The carry flag is not set in this situation.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3FH (Read File or Device)

42H (Move File Pointer)

Example

**

Function 40H: Write File or Device

int write(handle,pbuffer,nbytes)

int handle,nbytes;

char *pbuffer;

Returns -1 if there was a write error,

otherwise returns number of bytes written.

:ic:ic:ic*:^*3lc:)c:]c4:**

cProc

parmW

parmDP

parmW

cBegin

write,PUBLIC,ds

handle

pbuffer

nbytes

mov bx,handle

loadDP ds,dx,pbuffer

mov CX,nbytes

mov ah,4Oh

int 21h

jnb wr_ok

mov ax, -1

wr_ok:

cEnd

Get handle.

Get pointer to buffer.

Get number of bytes to write.

Set function code.

Ask MS-DOS to write CX bytes.

Branch if write successful.

Else return -1.

Section V: System Calls 1309

Interrupt 21H Function 41H

Interrupt 21H (33) 2.0 and later
Function 41H (65)
Delete File

Function 4lH deletes the directory entry of the specified file.

ToCaU

AH = 41H

DS:DX = segment:offset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

02H file not found

03H path not found
05H access denied

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ). Unlike Function 13H
(Delete File), Function 41H does not allow wildcard characters in the pathname.

• Because Function 41H supports the use of full pathnames, it is preferable to Function
13H.

• Function 41H returns error code 05H (access denied) and fails if the file has either a

directory or volume attribute or if it is a read-only file.

A directory can be deleted (if it is empty) with Function 3AH (Remove Directory). A
read-only file can be deleted if its attribute is changed to normal with Function 43H
(Get/Set File Attributes) before Function 41H is called.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file to be deleted.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3AH (Remove Directory)
43H (Get/Set File Attributes)

1310 The MS-DOS Encyclopedia

Interrupt 21H Function 4lH

Example

**

Function 41H; Delete File

int delete(pfilepath)

char *pfilepath;

Returns 0 if file deleted,

otherwise returns error code.

cProc delete,PUBLIC,ds

paritiDP pfilepath

cBegin

loadDP ds,dx,pfilepath ; Get pointer to pathname,

mov ah,41h

int 21h

jb dl_err

Set function code.

Ask MS-DOS to delete fil

ax, ax

dl_err:

cEnd

e.

Branch if MS-DOS could not delete

file.

Else return 0.

Section V: System Calls 1311

Interrupt 21H Function 42H

Interrupt 21H (33) 2.0 and later
Function 42H (66)
Move File Pointer

Function 42H sets the position of the file pointer (for the next read/write operation) for
the file associated with the specified handle.

ToCaU

AH = 42H

AL = method code:

OGH byte offset from beginning of file
OIH byte offset from current location of file pointer
02H byte offset from end of file

BX = handle number

CXiDX = offset value to move pointer:
CX most significant half of a doubleword value
DX least significant half of a doubleword value

Returns

If function is successful:

Carry flag is clear.

DX:AX = new file pointer position (absolute byte offset from beginning of file)

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL not OOH, OIH, or 02H)
06H invalid handle

Programmer's Notes

• The value in CX:DX is an offset specifying how far the file pointer is to be moved.
With method code OOH, the value in CX:DX is always interpreted as a positive 32-bit
integer, meaning the file pointer is always set relative to the beginning of the file.

With method codes OIH and 02H, the value in CX:DX can be either a positive or nega
tive 32-bit integer. Thus, method 1 can move the file pointer either forward or back
ward from its current position; method 2 can move the file pointer either forward or
backward from the end of the file.

1312 The MS-DOS Encyclopedia

Interrupt 21H Function 42H

Specifying method code OOH with an offset of 0 positions the file pointer at the begin
ning of the file. Similarly, specifying method code 02H with an offeet of 0 conve
niently positions the file pointer at the end of the file. With method code 02H offset 0,
the size of the file can also be determined by examining the pointer position returned
by the function.
Depending on the offset specified in CX:DX, methods 1 and 2 may move the file
pointer to a position before the start of the file. Function 42H does not return an error
code if this happens, but later attempts to read from or write to the file will produce
unexpected errors.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

3FH (Read File or Device)

40H (Write File or Device)

Example

Function 42H: Move File Pointer

long seek(handle,distance,mode)

int handle,mode;

long distance;

Modes:

0; from beginning of file

1: from the current position

2: from the end of the file

Returns -1 if there was a seek error,

otherwise returns long pointer position.

cProc seek,PUBLIC

parmW handle

parmD distance

parmB mode

cBegin

mov

les

mov

mov

mov

bx,handle

dx,distance

cx, es

a1,mode

ah,42h

; Get handle.

; Get distance into ES:DX.

; Put high word of distance into CX.

; Get move method code.

; Set function code.

(more)

Section V: System Calls 1313

Interrupt 21H Function 42H

int

jnb

mov

cwd

sk_ok:

cEnd

21h

sk_ok

ax, -1

Ask MS-DOS to move file pointer.

Branch if seek successful.

Else return -1.

1314 The MS-DOS Encyclopedia

Interrupt 21H Function 43H

Interrupt 21H (33) 2.0 and later
Function 43H (67)
Get/Set File Attributes

Function 43H gets or sets the attributes of the specified file.

ToCaU

AH = 43H

To get file attributes:

AL = OGH

DS'.DX = segmentioffset of ASCIIZ pathname

To set file attributes:

AL = OIH

CX = attributes to set:

Bit Attribute

0 Read-only file
1 Hidden file

2 System file
5 Archive

DS:DX = segment:offset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

CX = attribute

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL not OOH or OIH)

02H file not found

03H path not found
05H access denied

Section V: System Calls 1315

Interrupt 21H Function 43H

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• Function 43H cannot be used to set or change either a volume-label or directory at

tribute (bits 3 and 4 of the attribute byte). With MS-DOS versions 3.x, Function 43H
can be used to make a directory hidden or read-only.

• On networks running under MS-DOS version 3.1 or later, the user must have Create
access to the directory containing the file in order to change the read-only, hidden, or
system attribute. The archive bit, however, can be changed regardless of access rights.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

Function 43H: Get/Set File Attributes

int file_attr(pfilepath,func,attr)

char *pfilepath;

int func,attr;

Returns -1 for all errors,

otherwise returns file attribute.

cProc

parrtiDP

parmB

parmW

cBegin

file_attr,PUBLIC, ds

pfilepath

func

attr

fa_ok:

loadDP ds,dx,pfilepath Get pointer to pathname.

mov al,func Get/set flag into AL.

mov cx,attr Get new attr (if present)

mov ah,43h Set code function.

int 21h Call MS-DOS.

jnb fa_ok Branch if no error.

mov cx, -1 Else return -1.

mov ax,cx ,? Return this value.

cEnd

1316 The MS-DOS Encyclopedia

Interrupt 21H Function 44H

Interrupt 21H (33)
Function 44H (68)
lOCTL

2.0 and later

Function 44H is a collection of subfunctions that provide a process a direct path of com
munication with a device driver. As such, this function is the most flexible means of gain
ing access to the full capabilities of an installed device.

An lOCTL subfunction is called with 44H in AH and the value for the subfunction in AL. If

a subfunction has minor functions, those values are specified in CL. Otherwise, the BX,
CX, and DX registers are used for such information as handles, drive identifiers, buffer ad
dresses, and so on.

The subfunctions and the versions of MS-DOS with which they are available are

Subfunction Name

MS-DOS

Versions

OOH Get Device Data 2.0 and later

OIH Set Device Data 2.0 and later

02H Receive Control Data from Character Device 2.0 and later

03H Send Control Data to Character Device 2.0 and later

04H Receive Control Data from Block Device 2.0 and later

05H Send Control Data to Block Device 2.0 and later

06H Check Input Status 2.0 and later

07H Check Output Status 2.0 and later

08H Check If Block Device Is Removable 3.0 and later

09H Check If Block Device Is Remote 3.1 and later
OAR Check If Handle Is Remote 3.1 and later

OBH Change Sharing Retry Count 3.1 and later

OCR Generic I/O Control for Randies 3.2

ODH

Minor Code 45H: Set Iteration Count

Minor Code 65H: Get Iteration Count

Generic I/O Control for Block Devices

Minor Code 40H: Set Device Parameters

Minor Code 60H: Get Device Parameters

Minor Code 4lH: Write Track on Logical Drive
Minor Code 6lH: Read Track on Logical Drive
Minor Code 42H: Format and Verify Track

on Logical Drive
Minor Code 62H: Verify Track on Logical Drive

3.2

(more)

Section V: System Calls 1317

Interrupt 21H Function 44H

MS-DOS

Subfunction Name Versions

OEH Get Logical Drive Map 3.2
OFH Set Logical Drive Map 3.2

These subfunctions are documented, either individually or in related pairs, in the entries
that follow.

I3I8 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OOH

Interrupt 21H (33) 2.0 and later
Function 44H (68) Subfunction OOH
lOCTL: Get Device Data

Function 44H Subfunction OOH gets information about a character device or file referenced
by a handle.

ToCaU

AH =44H

AL =00H

BX = handle number

Returns

If function is successful:

Carry flag is clear.

DX contains information on file or device:

Bit Value Meaning

For a file (bit 7 = 0):

8-15 0 Reserved.

7 0 Handle refers to a file.

6 0 File has been written.

0-5 Drive number (0 = A, 1 = B, 2 = C, and so on).

For a device (bit 7 =1):

15 0 Reserved.

14 1 Processes control strings transferred by lOCTL Subfunctions 02H
(Receive Control Data from Character Device) and 03H (Send

Control Data to Character Device), set by MS-DOS.
8-13 0 Reserved.

7 1 Handle refers to a device.

6 0 End of file on input.
5 0 Checks for control characters (cooked mode).

1 Does not check for control characters (raw mode).

(more)

Section V: System Calls 1319

Interrupt 21H Function 44H Subfunction OOH

Bit Value Meaning

4 0 Reserved.

3 1 Clock device.

2 1 Null device.

1 1 Standard output device.
0 1 Standard input device.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid lOCTL subfunction

05H access denied

06H invalid handle

Programmer's Notes

• Bits 8-15 of DX correspond to the upper 8 bits of the device-driver attribute word.
• The handle in BX must reference an open device or file.
• Bit 5 of the device data word for character-device handles defines whether that han

dle is in raw mode or cooked mode. In cooked mode, MS-DOS checks for Control-C,
Control-P, Control-S, and Control-Z characters and transfers control to the Control-C
exception handler (whose address is saved in the vector for Interrupt 23H) when a
Control-C is detected. In raw mode, MS-DOS does not check for such characters when

I/O is performed to the handle; however, it will still check for a Control-C entered at
the keyboard on other function calls unless such checking has been turned off with
Function 33H, the BREAK=OFF directive in CONFIG.SYS, or a BREAK OFF com

mand at the MS-DOS prompt.
• Function 59H (Get Extended Error Information) provides further information on any

error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

33H (Get/Set Control-C Check Flag)
3CH (Create File with Handle)

3DH (Open File with Handle)

1320 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OOH

Example

Function 44H, Subfunctions OOH,01H:

Get/Set lOCTL Device Data

int ioctl_char_flags(setflag,handle,newflags)

int setflag;

int handle;

int newflags;

Set setflag = 0 to get flags, 1 to set flags.

Returns -1 for error, else returns flags.

cProc

parmB

parmW

parmW

cBegin

ioctl_char_flags,PUBLIC

setflag

handle

newflags

mov

and

mov

mov

mov

int

mov

jnc

mov

iocfx:

cEnd

al,setflag

al, 1

bx,handle

dx,newflags

ah,44h

21h

ax, dx

iocfx

ax, -1

Get setflag.

Save only Isb.

Get handle to character device.

Get new flags (they are used only

by "set" option).

Set function code.

Call MS-DOS.

Assume success - prepare to return

flags.

Branch if no error.

Else return error flag.

Section V: System Calls 1321

Interrupt 21H Function 44H Subfunction OIH

Interrupt 21H (33)
Function 44H (68) Subfunction OIH
lOCTL: Set Device Data

2.0 and later

Function 44H Subfunction OIH, the complement of lOCTL Subfunction OOH, sets informa
tion about a character device—but not a file—referenced by a handle.

ToCaU

AH = 44H

AL =01H

BX = handle number

DX = device data word:

Bit Value Meaning

8-15 0 Reserved.

7 1 Handle refers to a device.

6 0 End of file on input.

5 0 Check for control characters

(cooked mode).

1 Do not check for control characters

(raw mode).

4 0 Reserved.

3 1 Clock device.

2 1 Null device.

1 1 Standard output device.
0 1 Standard input device.

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid lOCTL subfunction

05H access denied

06H invalid handle

1322 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OIH

Programmer's Notes

• The handle in BX must reference an open device.
• DH must be OOH. If it is not, the carry flag is set and error code OIH (invalid function)

is returned.

• Bit 5 of the device data word for character-device handles selects raw mode or cooked

mode for the handle. In cooked mode, MS-DOS checks for Control-C, Control-P,
Control-S, and Control-Z characters and transfers control to the Control-C exception
handler (whose address is saved in the vector for Interrupt 23H) when a Control-C is
detected. In raw mode, MS-DOS does not check for such characters when I/O is per
formed to the handle; however, it will still check for a Control-C entered at the key
board on other function calls unless such checking has been turned off with Function
33H, the BREAK=OFF directive in CONFIG.SYS, or a BREAK OFF command at the

MS-DOS prompt.
• Function 59H (Get Extended Error Information) provides further information on any

error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

33H (Get/Set Control-C Check Flag)
3CH (Create File with Handle)

3DH (Open File with Handle)

Example

See SYSTEM CALLS: Interrupt 21h: Function 44H Subfunction OOH.

Section V: System Calls 1323

Interrupt 21H Function 44H Subfunctions 02H and 03H

Interrupt 21H (33) 2.0 and later
Function 44H (68) Subfunctions 02H and 03H
lOCTL: Receive Control Data from Character Device; Send Control Data to
Character Device

Function 44H Subfunctions 02H and 03H respectively receive and send control strings
from and to a character-oriented device driver.

ToCaU

AH = 44H

AL = 02H receive control strings
03H send control strings

BX = handle number

CX = number of bytes to transfer
DS:DX = segmentroffset of data buffer

Returns

If function is successful:

Carry flag is clear.

AX = number of bytes transferred

If AL was 02H on call:

Buffer atpS:DX contains data read from device driver.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

05H access denied

06H invalid handle

ODH invalid data (bad control string)

Programmer's Notes

• Subfunctions 02H and 03H provide a means of transferring control information of any
type or length between an application program and a character-device driver. They
do not necessarily result in any input to or output from the physical device itself.

• Subfunction 02H can be used to read control information about such features as

device status, availability, and current output location. Subfunction 03H is often used
to configure the driver or device for subsequent I/O; for example, it may be used to set
the baud rate, word length, and parity for a serial communications adapter or to initial
ize a printer for a specific font, page length, and so on. The format of the control data
passed by these subfunctions is driver specific and does not follow any standard.

1324 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunctions 02H and 03H

• Character-device drivers are not required to support lOCTL Subfunctions 02H and
03H. Therefore, Subfunction OOH (Get Device Data) should be called before either
Subfunction 02H or 03H to determine whether a device can process control strings.
If bit 14 of the device data word returned by Subfunction OOH is set, the device driver
supports lOCTL Subfunctions 02H and 03H.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

44H Subfunction OOH (Get Device Data)

44H Subfunction 04H (Receive Control Data from Block Device)
44H Subfunction 05H (Send Control Data to Block Device)

Example

Function 44H, Subfunctions 02H,03H:

lOCTL Character Device Control

int ioctl_char_ctrl(recvflag,handle,pbuffer,nbytes)

int recvflag;

int handle;

char *pbuffer;

int nbytes;

Set recvflag = 0 to receive info, 1 to send.

Returns -1 for error, otherwise returns number of

bytes sent or received.

cProc

parmB

parmW

parmDP

parmW

cBegin

ioctl_char_ctrl,PUBLIC,<ds>

recvflag

handle

pbuffer

nbytes

mov al,recvflag

and al,1

add al,2

mov bx,handle

mov cx,nbytes

loadDP ds,dx,pbuffer

mov ah,44h

int 21h

jnc iccx

mov ax,-1

Get recvflag.

Keep only Isb.

AL = 02H for receive, 03H for send.

Get character-device handle.

Get number of bytes to receive/send.

Get pointer to buffer.

Set function code.

Call MS-DOS.

Branch if no error.

Return -1 for all errors.

iccx:

cEnd

Section V: System Calls 1325

Interrupt 21H Function 44H Subfunctions 04H and 05H

Interrupt 21H (33) 2.0 and later
Function 44H (68) Subfunctions 04H and 05H
lOCTL: Receive Control Data from Block Device; Send Control Data to Block
Device

Function 44H Subfunctions 04H and 05H respectively receive and send control strings
from and to a block-oriented device driver.

To Call

AH =44H

AL = 04H receive block-device data

05H send block-device data

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CX = number of bytes to transfer
DS:DX = segmentioffset of data buffer

Returns

If function is successful:

Carry flag is clear.

AX = number of bytes transferred

If AL was 04H on call:

Buffer at DS:DX contains control data read from device driver.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

05H access denied

06H invalid handle

ODH invalid data (bad control string)

Programmer's Notes

• Subfunctions 04H and 05H provide a means of transferring control information of any
type or length between an application program and a block-device driver. They do
not necessarily result in any input to or output from the physical device itself.

• Control strings can be used to request driver operations that are not file oriented, such
as tape rewind or disk eject (if hardware supported). The contents of such control
strings are specific to individual device drivers and do not follow any standard format.

1326 The MS-DOS Encyclopedia

Inteitrupt 21H Function 44H Subfunctions 04H and 05H

• Subfunction 04H can be used to obtain a code from the driver indicating device avail
ability or status. Block devices that might use this subfunction include magnetic tape
or tape cassette, CD ROM, and Small Computer Standard Interface (SCSI) devices.

• Block-device drivers are not required to support lOCTL Subfunctions 04H and 05H. If
the driver does not support these subfunctions, error code OIH (Invalid Function) is
returned.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

44H Subfunction OOH (Get Device Data)

44H Subfunction 02H (Receive Control Data from Character Device)

44H Subfunction 03H (Send Control Data to Character Device)

Example

Function 44H, Subfunctions 04H,05H:

lOCTL Block Device Control

int ioctl_block_ctrl(recvflag,drive_ltr,pbuffer,nbytes)

int recvflag;

int drive_ltr;

char *pbuffer;

int nbytes;

Set recvflag = 0 to receive info, 1 to send.

Returns -1 for error, otherwise returns number of

bytes sent or received.

cProc ioctl_block_ctrl,PUBLIC,<ds>

parmB recvflag

parmB drive_ltr

parmDP pbuffer

parmW nbytes

cBegin

mov al,recvflag ; Get recvflag.

and al,1 ; Keep only Isb.

add al,4 ; AL = 04H for receive, 05H for send,

mov bl,drive_ltr ; Get drive letter,

or bl,bl ; Leave 0 alone,

jz ibc

and bl,not 20h ; Convert letter to uppercase,

sub bl,'A'-1 ; Convert to drive number: 'A' = 1,

; 'B' =2, etc.

(more)

Section V: System Calls 1327

Interrupt 21H Function 44H Subfunctions 04H and 05H

ibc;

mov

loadDP

mov

int

jnc

mov

cx,nbytes

ds,dx,pbuffer

ah,44h

21h

ibex

ax, -1

ibex:

cEnd

Get number of bytes to receive/send.

Get pointer to buffer.

Set function code.

Call MS-DOS.

Branch if no error.

Return -1 for all errors.

1328 The MS-^DOS Encyclopedia

Interrupt 21H Function 44H Subfunctions 06H and 07H

Interrupt 21H (33) 2.0 and later
Function 44H (68) Subfunctions 06H and 07H
lOCTL: Check Input Status; Check Output Status

Function 44H Subfunctions 06H and 07H respectively determine whether a device or file
associated with a handle is ready for input or output.

ToCaU

AH = 44H

AL =06H get input status
07H get output status

BX = handle number

Returns

If function is successful:

Carry flag is clear.

AL = input or output status:

OGH not ready
FFH ready

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

05H access denied

06H invalid handle

ODH invalid data (bad control string)

Programmer's Notes

• The status returned in AL has the following meanings:

Status Device Input File Output File

OGH Not ready Pointer at EOF Ready
GFFH Ready Ready Ready

Section V: System Calls 1329

Interrupt 21H Function 44H Subfunctions 06H and 07H

Output files always return a ready condition, even if the disk is full or no disk is in the
drive.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

Function 44H, Subfunctions 06H,07H:

lOCTL Input/Output Status

int ioctl_char_status(outputflag,handle)

int outputflag;

int handle;

Set outputflag = 0 for input status, 1 for output status.

Returns -1 for all errors, 0 for not ready,

and 1 for ready.

cProc

parmB

parmW

cBegin

ioctl_char_status, PUBLIC

outputflag

handle

mov

and

add

mov

mov

int

jnc

mov

jmp

al,outputflag

al,1

al,6

bx,handle

ah,44h

21h

isnoerr

ax, -1

short isx

Get outputflag.

Keep only Isb.

AL = 06H for input status, 07H for output

status.

Get handle.

Set function code.

Call MS-DOS.

Branch if no error.

Return error code.

and

isx;

cEnd

ax, 1 Keep only Isb for return value.

1330 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction 08H

Interrupt 21H (33) 3.0 and later
Function 44H (68) Subfunction 08H
lOCTL: Check If Block Device Is Removable

Function 44H Subfunction 08H checks whether the specified block device contains a
removable storage medium, such as a floppy disk.

To CaU

AH =44H

AL = 08H

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

AX =00H storage medium removable
OIH storage medium not removable

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

OFH invalid drive

Programmer's Notes

• This subfunction exists to allow an application to check for a removable disk so that
the user can be prompted to change disks if a required file is not found.

• When the carry flag is set, error code OIH normally means that MS-DOS did not recog
nize the function call. However, this error can also mean that the device driver does

not support Subfunction 08H. In this case, MS-DOS assumes that the storage medium
is not removable.

• Function 59H ((Set Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V: System Calls 1331

Interrupt 21H Function 44H Subfunction 08H

Example

Function 44H, Subfunction 08H:

lOCTL Removable Block Device Query

int ioctl—block-fixed(drive_ltr)

int drive_ltr;

Returns -1 for all errors, 1 if disk is fixed (not

removable), 0 if disk is not fixed.

cProc ioctl_block_fixed,PUBLIC

parmB drive_ltr

cBegin

mov bl,drive_ltr

or bl,bl

jz ibch

and bl,not 20h

sub bl,'A'-1

ibch:

mov

int

jnc

cmp

je

mov

ax,4408h

21h

ibchx

ax, 1

ibchx

ax, -1

Get drive letter.

Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' = 1,

•B' = 2, etc.

Set function code, Subfunction 08H.

Call MS-DOS.

Branch if no error, AX = 0 or 1 .

Treat error code of 1 as "disk is

fixed."

Return -1 for other errors.

ibchx:

cEnd

1332 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction 09H

Interrupt 21H (33) 3.1 and later
Function 44H (68) Subfunction 09H
lOCTL: Check If Block Device Is Remote

Function 44H Subfunction 09H checks whether the specified block device is local
(attached to the computer running the program) or remote (redirected to a network
server).

ToCaU

AH =44H

AL =09H

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

DX = device attribute word:

bit 12 = 1 drive is remote

bit 12 = 0 drive is local

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

OFH invalid drive

Programmer's Notes

• This subfunction should be avoided. Application programs should not distinguish be
tween files on local and remote devices.

• When the carry flag is set, error code OIH can mean either that the function number is
invalid or that the network has not been started.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V: System Calls 1333

Interrupt 21H Function 44H Subfunction 09H

Example

**

Function 44H, Subfunction 09H:

lOCTL Remote Block Device Query

int ioctl_block_redir{drive_ltr)

int drive_ltr;

Returns -1 for all errors, 1 if disk is remote

(redirected), 0 if disk is local.

cProc ioctl_block_redir,PUBLIC

parmB drive_ltr

cBegin

ibr:

mov

or

jz
and

sub

mov

int

mov

jc

inc

test

jz

inc

bl,drive_ltr

bl,bl

ibr

bl,not 20h

bl,'A'-l

ax,4409h

21h

ax, -1

ibrx

ax

dh,10h

ibrx

ax

Get drive letter.

Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' = 1,

•B' = 2, etc.

Set function code, Subfunction 09H.

Call MS-DOS.

Assume error.

Branch if error, returning -1.

Set AX = 0.

Is bit 12 set?

If not, disk is local: Return 0.

Return 1 for remote disk.

ibrx:

cEnd

1334 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OAH

Interrupt 21H (33) 3.1 and later
Function 44H (68) Subfunction OAH
lOCTL: Check If Handle Is Remote

Function 44H Subfunction OAH checks whether the handle in BX refers to a file or device

that is local (on the computer running the program) or remote (redirected to a network
server).

ToCaU

AH =44H

AL =OAH

BX = handle

Returns

If function is successful:

Carry flag is clear.

DX = attribute word for file or device:

bit 15 = 1 remote

bit 15 = 0 local

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

06H invalid handle

Programmer's Notes

• Application programs should not distinguish between files on local and remote
devices.

• When the carry flag is set, error code OIH can mean either that the function number is
invalid or that the network has not been started.

Related Functions

None

Section V: System Calls 1335

Interrupt 21H Function 44H Subfunction OAH

Example

Function 44H, Subfunction OAH:

lOCTL Remote Handle Query

int ioctl_char_redir(handle)

int handle;

Returns -1 for all errors, 1 if device/file is remote

(redirected), 0 if it is local.

cProc ioctl_char_redir,PUBLIC

parmW handle

cBegin

mov

mov

int

mov

jc

inc

test

jz

bx,handle

ax,440ah

21h

ax, -1

icrx

ax

dh,80h

icrx

Get handle.

Set function code, Subfunction OAH.

Call MS-DOS.

Assume error.

Branch on error, returning -1.

Set AX = 0.

Is bit 15 set?

If not, device/file is local:

Return 0.

Return 1 for remote.

icrx:

cEnd

1336 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OBH

Interrupt 21H (33) 3.1 and later
Function 44H (68) Subfunction OBH
lOCTL: Change Sharing Retry Count

Function 44H Subfunction OBH sets the number of times MS-DOS retries a disk operation
after a failure caused by a file-sharing violation before it returns an error to the requesting
process.

ToCaU

AH = 44H

AL = OBH

CX = pause between retries
DX = number of retries

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

Programmer's Notes

• The pause between retries is a machine-dependent value determined by the CPU
and CPU clock speed. MS-DOS performs a delay loop that consists of 65,536 machine
instructions for each iteration specified by the value in CX. The actual code is as
follows:

xor cx,cx

loop $

The default number of retries is 3, with a pause of one loop between retries—
equivalent to calling this subfunction with DX = 3 and CX = 1.

• When the carry flag is set, error code OIH indicates either that the function code is in
valid or that file sharing (SHARE.EXE) is not loaded.

• Subfunction OBH can be used to tune the system if file-contention problems are likely
to arise with shared files but are expected to last only a short while.

• If file contention is expected and if some applications will lock regions of the file for
an appreciable period of time, the user may need to be informed. The best procedure
is to set an initial small number of retries with a short pause period. After notifying
the user, the application can wait a reasonable amount of time for file access by adjust
ing the retry or pause-period values.

Section V: System Calls 1337

Interrupt 21H Function 44H Subfunction OBH .

If a process uses this subfunction, it should restore the original default values for the
pause and number of retries before terminating, to avoid unwanted effects on the
behavior of subsequent processes.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

Function 44H, Subfunction OBH:

lOCTL Change Sharing Retry Count

int ioctl_set_retry(num_retries,wait—time)

int num_retries;

int wait—time;

Returns 0 for success, otherwise returns error code.

cProc

parmW

parmW

cBegin

ioctl—set—retry,PUBLIC,<ds,si>

num—retries

wait—time

mov dx,num—retries ; Get parameters.

mov cx,wait—time

mov ax,440bh ; Set function code.

int 21h ; Call MS-DOS.

jc isrx ; Branch on error.

xor ax, ax

isrx:

cEnd

1338 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction OCH

Interrupt 21H (33) 3.2
Function 44H (68) Subfunction OCH
lOCTL: Generic I/O Control for Handles

Function 44H Subfunction OCH sets or gets the output iteration count for character-
oriented devices. See also Appendix A: MS-DOS Version 3.3.

To Call

AH = 44H

AL = OCH

BX = handle

CH = category code:
05H printer

CL = function (minor) code:

45H set iteration count

65H get iteration count
DS:DX = segment:offset of 2-byte buffer receiving or containing iteration-count word

Returns

If function is successful:

Carry flag is clear.

If CL was 65H on call:

DS:DX = segment:offset of iteration-count word

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

06H invalid handle

Programmer's Notes

• The iteration count controls the number of times the device driver tries to send output
to the printer before assuming that the device is busy.

• With MS-DOS version 3.2, only category code 05H (printer) is supported by this
subfunction.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Section V: System Calls 1339

Interrupt 21H Function 44H Subfunction OCH

Example

Function 44H, Subfunction OCH:

Generic lOCTL for Handles

int ioctl_char_generic(handle,category,function,pbuffer)

int handle;

int category;

int function;

int *pbuffer;

Returns 0 for success, otherwise returns error code.

cProc

parmW

parmB

parmB

parmDP

cBegin

icgx:

cEnd

ioctl_char_generic,PUBLIC, <ds>

handle

category

function

pbuffer

mov bx,handle ; Get device handle.

mov ch,category ; Get category

mov cl,function ; and function.

loadDP ds,dx,pbuffer ; Get pointer to data buffer.

mov ax,440ch ; Set function code, Subfunction OCH

int 21h ; Call MS-DOS.

jc icgx ; Branch on error.

xor ax, ax

1340 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH

Interrupt 21H (33) 3.2
Function 44H (68) Subfunction ODH
lOCTL: Generic I/O Control for Block Devices

Function 44H Subfunction ODH includes six input/output tasks, or minor functions, related
to block-oriented devices. The tasks perform the following operations: set or get device
parameters; write, read, format and verify, or verify tracks on a logical drive.

This entry covers general information on Subfunction ODH. Details on each minor code
are presented in subsequent entries.

ToCaU

AH = 44H

AL = ODH

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CH = category code:

08H disk drive

CL = function (minor) code:

40H set parameters for block device
41H write track on logical drive
42H format and verify track on logical drive
6OH get parameters for block device
6IH read track on logical drive
62H verify track on logical drive

DS:DX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

If CL was 60H or 6IH on call:

DS:DX = segment:offset of parameter block

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

02H invalid drive

Programmer's Notes

• Set Device Parameters (minor code 40H) must be used before an attempt to write,
read, format, or verify a track on a logical drive. In general, the following sequence
applies to any of these operations:

Section V: System Calls 1341

Interrupt 21H Function 44H Subfunction ODH

1. Get the current parameters (minor code 60H). Examine and save them.
2. Set the new parameters (minor code 40H).
3. Perform the task.

4. Retrieve the original parameters and restore them (minor code 40H).
With version 3.2 of MS-DOS, only category code 08H is supported by this subfunction.
Parameter blocks in the data buffer vary with the task being performed.

Related Functions

None

Example

Function 44H, Subfunction ODH:

Generic lOCTL for Block Devices

int ioctl_block_generic(drv_ltr,category,func,pbuffer)

int drv_ltr;

int category;

int func;

char *pbuffer;

Returns 0 for success, otherwise returns error code.

cProc

parmB

parmB

parmB

parmDP

cBegin

ibg:

ibgx:

cEnd

ioctl_block_generic,PUBLIC,<ds>

drv_ltr

category

func

pbuffer

mov

or

jz

and

sub

bl,drv_ltr

bl,bl

ibg

bl,not 20h

bl,'A'-1

mov ch,category

mov cl,func

loadDP ds,dx,pbuffer

mov ax,440dh

int 21h

jc ibgx

xor ax,ax

; Get drive letter.

; Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' = 1,

'B' = 2, etc.

Get category

and function.

Get pointer to data buffer.

Set function code, Subfunction ODH.

Call MS-DOS.

Branch on error.

1342 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Code 40H

lOCTL: Generic I/O Control for Block Devices: Set Device Parameters

Function 44H Subfunction ODH minor code 40H sets device parameters in the parameter
block pointed to by DS:DX.

To Call

AH = 44H

AL = ODH

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CH = category code:

08H disk drive

CL = 40H

DS:DX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Special-functions field: offeet OOH, length 1 byte

Bit Value Meaning

0 0 Device BIOS parameter block (BPB) field contains a new
default BPB.

1 Use current BPB.

1 0 Use all fields in parameter block.
1 Use track layout field only.

(more)

Section V: System Calls 1343

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Special-functions field: offset OOH, length 1 byte (continued)

Bit Value Meaning

2 0 Sectors in track may be different sizes. (This setting should not
be used.)

1 Sectors in track are all same size; sector numbers range from 1
to the total number of sectors in the track. (This setting
should always be used.)

3-7 0 Reserved.

Device type field: offset OIH, length 1 byte

Value Meaning

OOH 320/360 KB 5.25-inch disk

OIH 1.2 MB 5.25-inch disk

02H 720 KB 3.5-inch disk

03H Single-density 8-inch disk
04H Double-density 8-inch disk
05H Fixed disk

06H Tape drive
07H Other type of block device

Device attributes field: offset 02H, length 1 word

Bit Value Meaning

0 0 Removable storage medium
1 Nonremovable storage medium

1 0 Door lock not supported
1 Door lock supported

2-15 0 Reserved

Number of cylinders field: offset 04H, length 1 word

Meaning: Maximum number of cylinders supported; set by device driver

Media type field: offset 06H, length 1 byte

Value Meaning

OOH (default) 1.2 MB 5.25-inch disk

OIH 320/360 KB 5.25-inch disk

1344 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

Device BPB field: ofGset 07H, length 31 bytes.

Meaning: See Programmer's Note below.

If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.

If bit 0 = 1 in special-functions field, BPB in this field is returned by the device driver
in response to subsequent Build BPB requests.

Track layout field: offset 26H, variable-length table

Length Meaning

Word Number of sectors in track

Word Number of first sector in track *

Word Size of first sector in track *

Word Number of last sector in track

Word Size of last sector in track

•Sector number and sector size fields are repeated for each sector on the track. If bit 2 of the
special-functions field is set, all sector sizes in the track layout field must be the same.

• The device BPB field is a 31-byte data structure. Information contained in the device
BPB field describes the current disk and disk control areas. The device BPB field is

formatted as follows:

Byte Meaning

OO-OIH Number of bytes per sector
02H Number of sectors per allocation unit
03-04H Number of sectors reserved, beginning at sector 0
05H Number of file allocation tables (FATs)

06-07H Maximum number of root-directory entries
08-09H Total number of sectors

OAH Media descriptor
OB-OCH Number of sectors per FAT
OD -OEH Number of sectors per track
OF - lOH Number of heads

11 - 14H Number of hidden sectors

15-lFH Reserved

Section V: System Calls 1345

Interrupt 21H Function 44H Subfunction ODH Minor Code 40H

• When Set Device Parameters (minor code 40H) is used, the number of cylinders
should not be reset—some or ail of the volume may become inaccessible.

• Subfunction ODH minor code 60H performs the complementary action, Get Device
Parameters.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

1346 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Code 60H

lOCTL: Generic I/O Control for Block Devices: Get Device Parameters

Function 44H Subfunction ODH minor code 60H gets device parameters in the parameter
block pointed to by DS:DX.

ToCaU

AH = 44H

AL = ODH

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CH = category code:

08H disk drive

CL =60H

DSrDX = segmentroffset of parameter block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Special-functions field: offset OOH, length 1 byte

Bit Value Meaning

0 0 Returns default BIOS parameter block (BPB) for the device.
1 Returns BPB that the Build BPB device driver call would

return.

1-7 0 Reserved (must be zero).

Section V: System Calls 1347

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Device type field: offset OIH, lengthlbyte

Value Meaning

OOH 320/360 KB 5.25-inch disk

OIH 1.2 MB 5.25-inch disk

02H 720 KB 3.5-inch disk

03H Single-density 8-inch disk
04H Double-density 8-inch disk
05H Fixed disk

06H Tape drive
07H Other type of block device

Device attributes field: offiset 02H, length 1 word

Bit Value Meaning

0 0 Removable storage medium
1 Nonremovable storage medium

1 0 Door lock not supported
1 Door lock supported

2-15 0 Reserved

Number of cylinders field: offset 04H, length 1 word

Meaning: Maximum number of cylinders supported; set by device driver

Media type field: offset 06H, length 1 byte

Value Meaning

OOH (default) 1.2 MB 5.25-inch disk

OIH 320/360 KB 5.25-inch disk

Device BPB field: offset 07H, length 31 bytes

Meaning: See Programmer's Note below.

If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.

If bit 0 = 1 in special-functions field, BPB in this field is returned by the device driver
in response to subsequent Build BPB requests.

1348 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Code 60H

Track layout field: offset 26H

Unused

• The device BPB field is a 31-byte data structure. Information contained in the device
BPB field describes the current disk and disk control areas. The device BPB field is

formatted as follows:

Byte Meaning

OO-OIH Number of bytes per sector
02H Number of sectors per allocation unit
03-04H Number of sectors reserved, beginning at sector 0
05H Number of file allocation tables (FATs)

06-07H Maximum number of root-directory entries
08-09H Total number of sectors

OAH Media descriptor
OB-OCH Number of sectors per FAT
OD-OEH Number of sectors per track
OF- lOH Number of heads

11- 14H Number of hidden sectors

15-lFH Reserved

Subfunction ODH minor code 40H performs the complementary action, Set Device
Parameters.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V: System Calls 1349

Interrupt 21H Function 44H Subfunction ODH Minor Codes 41H and 6lH

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Codes 4lH and 6lH

lOCTL: Generic I/O Control for Block Devices: Write Track on Logical Drive;
Read Track on Logical Drive

Function 44H Subfunction ODH minor code 41H writes a track on the logical drive speci
fied in BL and minor code 6lH reads a track on the logical drive specified in BL, using in
formation in the parameter block pointed to by DS:DX.

ToCaU

AH = 44H

AL = ODH

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CH = category code:

08H disk drive

CL = function (minor) code:

41H write a track

6lH read a track

DS:DX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

02H invalid drive

1350 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Codes 41H and 6lH

Programmer's Notes

• The parameter block is formatted as follows:

OfEset Size Meaning

OOH Byte Special-functions field; must be 0.
OIH Word Head field; contains number of disk head used for read/write.
03H Word Cylinder field; contains number of disk cylinder used for read/

write.

05H Word First-sector field; contains number of first sector to read or
write (first sector on track = sector 0).

07H Word Number-of-sectors field; contains number of sectors to
transfer.

09H Dword Transfer address field; contains address of buffer to use for
data transfer.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V: System Calls 1351

Interrupt 21H Function 44H Subfunction ODH Minor Codes 42H and 62H

Interrupt 21H (33)
Function 44H (68) Subfunction ODH
Minor Codes 42H and 62H

lOCTL: Generic I/O Control for Block Devices: Format and Verify Track on
Logical Drive; Verify Track on Logical Drive

Function 44H Subfunction ODH minor code 42H formats and verifies a track on the speci
fied logical drive and minor code 62H verifies a track on the specified logical drive, using
information in the parameter block pointed to by DS:DX.

ToCaU

AH =44H

AL = ODH

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
CH = category code:

08H disk drive

CL = function (minor) code:

42H format and verify
62H verify

DS:DX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

02H invalid drive

Programmer's Notes

• The parameter block is formatted as follows:

Offset Size Meaning

OOH Byte Special-functions field; must be 0.
OIH Word Head field; contains number of disk head used for format/

verify.
03H Word Cylinder field; contains number of cylinder used for format/

verify.

1352 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunction ODH Minor Codes 42H and 62H

• This driver subfunction allows the writing of generic formatting programs that are
minimally hardware dependent.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

None

Section V: System Calls 1353

Interrupt 21H Function 44H Subfunctions OEH and OFH

Interrupt 21H (33) 3.2
Function 44H (68) Subfunctions OEH and OFH
lOCTL: Get Logical Drive Map; Set Logical Drive Map

Function 44H Subfunction OEH allows a process to determine whether more than one logi
cal drive is assigned to a block device. Subfunction OFH sets the next logical drive number
that will be used to reference a block device.

To Call

AH =44H

AL = OEH get logical drive map
OFH set logical drive map

BL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)

Returns

If function is successful:

Carry flag is clear.

AL = mapping code:
OOH only one letter assigned to the block device
01 - lAH logical drive letter (A through Z) mapped to block device

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

OFH invalid drive

Programmer's Notes

• If a drive has not been assigned a logical mapping with Function 44H Subfunction
OFH, the logical and physical drive references are the same. (The default is that logical
drive A and physical drive A both refer to physical drive A.)

• If this function is used to map logical drives to physical drives, the result is similar to
MS-DOS's treatment of a single physical drive as both A and B on a system with one
floppy-disk drive. With MS-DOS version 3.2, however, the installable device driver
DRIVER.SYS extends this type of physical/logical referencing to other drives. There
fore, processes can prompt for disks themselves, instead of using the prompt provided
by MS-DOS.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

1354 The MS-DOS Encyclopedia

Interrupt 21H Function 44H Subfunctions OEH and OFH

Related Functions

None

Example

if!******************************#****************************

Function 44H, Subfunctions OEH, OFH:

lOCTL Get/Set Logical Drive Map

int ioctl_drive_owner(setflag, drv_ltr)

int setflag;

int drv_ltr;

Set setflag = 1 to change drive's map, 0 to get

current map.

Returns -1 for all errors, otherwise returns

the block device's current logical drive letter.

cProc

parmB

parmB

cBegin

ido:

idox:

cEnd

ioctl_drive_owner,PUBLIC

setflag

drv_ltr

mov

and

add

mov

or

jz
and

sub

mov

mov

int

mov

jnc

mov

add

al,setflag

al, 1

al,Oeh

bl,drv_ltr

bl,bl

ido

bl,not 20h

bl,'A'-1

bh,0

ah,44h

21h

ah,0

idox

ax,-1-'A'

ax,'A'

; Load setflag.

; Keep only Isb.

; AL = OEH for get, OFH for set.

; Get drive letter.

; Leave 0 alone.

Convert letter to uppercase.

Convert to drive number: 'A' = 1,

'B' = 2, etc.

; Set function code.

; Call MS-DOS.

; Clear high byte.

; Branch if no error.

; Return -1 for errors.

; Return drive letter.

Section V: System Calls 1355

Interrupt 21H Function 45H

Interrupt 21H (33) 2.0 and later
Function 45H (69)
Duplicate File Handle

Function 45H obtains an additional handle for a currently open file or device.

ToCaU

AH = 45H

BX = handle for open file or device

Returns

If function is successful:

Carry flag is clear.

AX = new handle number

If function is not successful:

Carry flag is set.

AX = error code:

04H too many open files
06H invalid handle

Programmer's Notes

• The file pointer for the new handle is set to the same position as the pointer for the
original handle. Any subsequent changes to the file are reflected in both handles.
Thus, using either handle for a read or write operation moves the file pointer associ
ated with both.

• Function 45H is often used to duplicate the handle assigned to standard input (0) or
standard output (1) before a call to Function 46H (Force Duplicate File Handle). The
handle forced by Function 46H can then be used for redirected input or output from
or to a file or device.

• Another use for Function 45H is to keep a file open while its directory entry is being
updated to reflect a change in length. If a new handle is obtained with Function 45H
and then closed with Function 3EH (Close File), the directory and FAT entries for the
file are updated. At the same time, because the original handle remains open, the file
need not be reopened for additional read or write operations.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

1356 The MS-DOS Encyclopedia

Interrupt 21H Function 45H

Related Function

46H (Force Duplicate File Handle)

Example

Function 45H: Duplicate File Handle

int dup_handle(handle)

int handle;

Returns -1 for errors,

otherwise returns new handle.

cProc dup_handle,PUBLIC

parmW handle

cBegin

mov

mov

int

jnb

mov

dup_ok:

cEnd

bx,handle

ah,45h

21h

dup_ok

ax, -1

Get handle to copy.

Set function code.

Ask MS-DOS to duplicate handle.

Branch if copy was successful.

Else return -1.

Section V: System Calls 1357

Interrupt 21H Function 46H

Interrupt 21H (33) 2.0 and later
Function 46H (70)
Force Duplicate File Handle

Function 46H forces the open handle specified in CX to track the same file or device speci
fied by the handle in BX.

ToCaU

AH = 46H

BX = open handle to be duplicated
CX = open handle to be forced

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

04H too many open files
06H invalid handle

Programmer's Notes

• The handle in BX must refer either to an open file or to any of the five standard han
dles reserved by MS-DOS: standard input, standard output, standard error, standard
auxiliary, or standard printer.

• If the handle in CX refers to an open file, the file is closed.
• The file pointer for the duplicate handle is set to the same position as the pointer for

the original handle. Changing the position of either file pointer moves the pointer
associated with the other handle as well.

• When used with Function 45H (Duplicate File Handle), Function 46H can be used to
redirect input and output as follows:

1. Duplicate the handle from which input or output will be redirected with Func
tion 45H (Duplicate File Handle). Save the duplicated handle for later reference
(Step 3).

2. Call Function 46H, with the handle to be redirected from in the CX register and
the handle to be redirected to in the BX register.

3. To restore I/O redirection to its original state, call Function 46H again, with the
redirected file handle from Step 2 in the CX register and the duplicated file han
dle from Step 1 in the BX register.

1358 The MS-DOS Encyclopedia

Interrupt 21H Function 46H

This procedure is normally used to redirect a standard device, but it can redirect any
device referenced by handles.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

45H (Duplicate File Handle)

Example

Function 46H: Force Duplicate File Handle

int dup_handle2(existhandle, newhandle)

int existhandle,newhandle;

Returns -1 for errors,

otherwise returns newhandle unchanged.

cProc

parmW

parmW

cBegin

dup_handle2,PUBLIC

existhandle

newhandle

mov bx,existhandle ; Get handle of existing file.

mov cx,newhandle ; Get handle to copy into.

mov ah,46h ; Close handle CX and then

int 21h ; duplicate BX's handle into CX.

mov ax,newhandle ; Prepare return value.

jnb dup2_ok ; Branch if close/copy was successful

mov ax, -1 ; Else return -1.

dup2_ok:

cEnd

Section V: System Calls 1359

Interrupt 21H Function 47H

Interrapt 21H (33) 2.0 and later
Function 47H (71)
Get Current Directory

Function 47H returns the path, excluding the drive and leading backslash, of the current
directory for the specified drive.

ToCaU

AH =47H

DL = drive number (0 = default drive, 1 = drive A, 2 = drive B, and so on)
DS:SI - segmentioffset of 64-byte buffer

Returns

If function is successful:

Carry flag is clear.

Buffer is filled in with ASCIIZ pathname.

If function is not successful:

Carry flag is set.

AX = error code:

OFH invalid drive

Programmer's Notes

• The string representing the pathname is returned as a null-terminated ASCII string
(ASCIIZ).

• This function does not return an error if the buffer is too small or is incorrectly iden
tified. MS-DOS pathnames can be as long as 64 characters; if the buffer is less than 64
bytes, MS-DOS can overwrite sections of memory outside the buffer.

• The path returned by Function 47H starts at the root directory and fully specifies the
path to the current directory but does not include a drive code or a leading backslash
(\) character.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

3BH (Change Current Directory)

1360 The MS-DOS Encyclopedia

Interrupt 21H Function 47H

Example

Function 47H: Get Current Directory

int get_dir(drive_ltr,pbuffer)

int drive_ltr;

char *pbuffer;

Returns -1 for bad drive,

otherwise returns pointer to pbuffer.

cProc

parmB

parmOP

cBegin

gdir:

gd_ok:

cEnd

get_dir,PUBLIC,<ds,si>

drive_ltr

pbuffer

loadDP ds,si,pbuffer

mov

or

jz

and

sub

mov

int

mov

jnb

mov

dl,drive_ltr

dl,dl

gdir

dl,not 20h

dl,'A'-l

ah,47h

21h

ax, si

gd_ok

ax, -1

Get pointer to buffer.

Get drive number.

Leave 0 alone.

Convert letter to uppercase

Convert to drive number: 'A' = 1,

'B' = 2, etc.

Set function code.

Call MS-DOS.

Return pointer to buffer . . .

. . . unless an error occurred.

Section V: System Calls 1361

Interrupt 21H Function 48H

Interrupt 21H (33) 2.0 and later
Function 48H(72)
Allocate Memory Block

Function 48H allocates a block of memory, in paragraphs (1 paragraph = l6 bytes), to the
requesting process.

ToCaU

AH = 48H

BX = number of paragraphs to allocate

Returns

If function is successful:

Carry flag is clear.

AX = segment address of base of allocated block

If function is not successful:

Carry flag is set.

AX = error code:

07H memory control blocks damaged
08H insufficient memory to allocate as requested

BX = size of largest available block (paragraphs)

Programmer's Notes

• If the allocation succeeds, the address returned in AX is the segment of the base of the
block. This address would be copied to a segment register (usually DS or ES) to access
the memory within the block.

• If the amount of memory requested is greater than the amount in any available con
tiguous block of memory, the number of paragraphs in the largest available memory
block is returned in the BX register.

• The default memory-management strategy in MS-DOS is to choose the first con
tiguous block of memory that fits the request, no matter how good the fit. With MS-
DOS versions 3.0 and later, however, the memory-management strategy can be altered
with Function 58H (Get/Set Allocation Strategy).

• If a process actively allocates and frees blocks of memory, the transient program area
(TPA) can become fragmented—that is, small blocks of memory can be orphaned
because the memory-management strategy seeks contiguous blocks of memory.

• If a process writes to memory outside the limits of the allocated block, it can destroy
control structures for other memory blocks. This could result in failure of subsequent
memory-management functions, and it will cause MS-DOS to print an error message
and halt when the process terminates.

1362 The MS-DOS Encyclopedia

Interrupt 21H Function 48H

• Initially, the MS-DOS loader allocates all available memory to .COM programs. Func
tion 4AH (Resize Memory Block) can free memory for dynamic reallocation by a
process or by its children.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

49H (Free Memory Block)
4AH (Resize Memory Block)
58H (Get/Set Allocation Strategy)

Example

* * ************************* ̂ Hfi Hf ilf ilfiilit if: ̂ Ht i): 4s ifi

Function 48H: Allocate Memory Block

int get—block(nparas,pblocksegp,pmaxparas)

int nparas,♦pblockseg,*pmaxparas;

Returns 0 if nparas are allocated OK and
pblockseg has segment address of block,
otherwise returns error code with pmaxparas
set to maximum block size available.

cProc

parmW
parmDP
parmDP

cBegin

get_block,PUBLIC,ds
nparas

pblockseg
pmaxparas

bx,nparas ; Get size request.
ah,48h ; Set function code.
21h ; Ask MS-DOS for memory.
cx,bx ; Save BX.

loadDP ds,bx,pmaxparas
mov [bx],cx ; Return result, assuming failure,
jb gb_err ; Exit if error, leaving error code

; in AX.

loadDP ds,bx,pblockseg

mov

mov

int

mov

mov

xor

[bx],ax
ax, ax

; No error, so store address of block.

; Return 0.

gb—err:
cEnd

Section V: System Calls 1363

Interrupt 21H Function 49H

Interrupt 21H (33) 2.0 and later
Function 49H (73)
Free Memory Block

Function 49H releases a block of memory previously allocated with Function 48H (Allo
cate Memory Block).

ToCaU

AH = 49H

ES = segment address of memory block to release

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

07H memory control blocks damaged
09H incorrect memory segment specified

Programmer's Notes

• The memory segment pointed to by ES:OOOOH must have been allocated by Function
48H (Allocate Memory Block).

• If a program has inadvertently damaged any of the system's memory control blocks
by writing outside an allocated block, an attempt to free allocated memory results in
error code 07H (memory control blocks damaged).

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

48H (Allocate Memory Block)
4AH (Resize Memory Block)
58H (Get/Set Allocation Strategy)

1364 The MS-DOS Encyclopedia

Interrupt 21H Function 49H

Example

Function 49H: Free Memory Block

int free—block(blockseg)

int blockseg;

Returns 0 if block freed OK,

otherwise returns error code.

cProc free—block,PUBLIC

parmW blockseg

cBegin

mov es,blockseg

mov

int

jb

xor

fb—err:

cEnd

ah,49h

21h

fb—err

ax, ax

Get block address.

Set function code.

Ask MS-DOS to free memory.

Branch on error.

Return 0 if successful.

Section V: System Calls 1365

Interrupt 21H Function 4AH

Interrupt 21H (33) 2.0 and later
Function 4AH (74)
Resize Memory Block

Function 4AH adjusts the size of a previously allocated block of memory.

ToCaU

AH = 4AH

BX = new size of memory block, in paragraphs
ES = segment address of previously allocated memory block

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

07H memory control blocks damaged
08H insufficient memory to allocate as requested
09H incorrect memory segment specified

BX = maximum number of paragraphs available (if an increase was requested)

Programmer's Notes

• Function 4AH can be used to change the size of a memory block previously allocated
with Function 48H (Allocate Memory Block) or to modify the amount of memory
originally allocated to a process by MS-DOS.

• If a process is denied an increase in the amount of memory it has been allocated, MS-
DOS places the size of the largest contiguous block available in the BX register. The
process can then notify the user of the problem and exit, or it can continue to operate
in a reduced memory environment.

• Because the MS-DOS loader allocates all available memory to .COM programs, such a
program should use Function 4AH immediately (with the segment address of its pro
gram segment prefix, or PSP) to release any memory that is not needed. This is man
datory if the .COM program will either allocate memory dynamically or use Function
4BH (Load and Execute Program) to load a child process or overlay.

In addition, if Function 4AH is used to adjust the amount of memory allocated to a
.COM program, the stack pointer must be adjusted so that it is within the limits of the
program's revised memory allocation.

1366 The MS-DOS Encyclopedia

Interrupt 21H Function 4AH

• If this function is used to shrink an allocated block, any memory above the new limit
is not owned by the process and should never be used. If this function is used to ex
pand an allocated block, the contents of memory above the old boundary are unpre
dictable and the memory should be initialized before use.

• Although it is not possible to predict how much memory-resident software and how
many installable device drivers will be used on a computer system. Function 4AH can
reliably determine the amount of memory available to an application.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

48H (Allocate Memory Block)
49H (Free Memory Block)
58H (Get/Set Allocation Strategy)

Example

Function 4AH: Resize Memory Block

int modify—block(nparas,blockseg,pmaxparas)

int nparaSfblockseg,*pmaxparas;

Returns 0 if modification was a success,

otherwise returns error code with pmaxparas

set to max number of paragraphs available.

cProc

parmW

parmW

parmDP

cBegin

modify—block,PUBLIC,ds

nparas

blockseg

pmaxparas

mov es,blockseg

mov bx,nparas

mov ah,4ah

int 21h

mov cx,bx

loadDP ds,bx,pmaxparas

mov [bx],cx

jb mb—exit

xor ax,ax

mb—exit:

cEnd

; Get block address.

; Get nparas.

; Set function code.

; Ask MS-DOS to change block size.

; Save BX.

; Set pmaxparas, assuming failure.

; Branch if size change error.

; Return 0 if successful.

Section V: System Calls 1367

Interrupt 21H Function 4BH

Interrupt 21H (33) 2.0 and later
Function 4BH (75)
Load and Execute Program (EXEC)

Function 4BH, often called EXEC, loads a program file into memory and, optionally, ex
ecutes the program. This function can also be used to load a program overlay.

ToCaU

AH = 4BH

AL = OOH load and execute program
03H load overlay

DS:DX = segment:offset of ASCIIZ pathname for an executable program file
ES:BX = segment:offset of parameter block

Returns

If function is successful:

Carry flag is clear.

With MS-DOS versions 2.x, all registers except CS and IP can be destroyed; with MS-DOS
versions 3.x, registers are preserved.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL did not contain OOH or 03H)

02H file not found

03H path not found
05H access denied

08H insufficient memory
OAH bad environment

OBH bad format (AL = OOH only)

Programmer's Notes

The pathname must be a null-terminated ASCII string (ASCIIZ).
The handles for any files opened by the parent process before the call to Function
4BH are inherited by the child process, unless the parent specified otherwise in call
ing Function 3DH (Open File with Handle).

All standard devices also remain open and available to the child process. Thus, the
parent process can control the files used by the child process and control redirection
for the child process.

1368 The MS-DOS Encyclopedia

Interrupt 21H Function 4BH

• If AL = OOH, the parameter block is 14 bytes long and formatted in four parts, as
follows:

Offset Length Meaning

OOH Word

02H Dword

06H Dword

OAH Dword

Segment address of environment to be passed; OOH indi
cates child program inherits environment of the current
process.

Segmentioffset address of command tail for the new pro
gram segment prefix (PSP). Command tail must be 128
bytes or fewer and formatted as a count byte followed by
an ASCII string and terminated by a carriage return, as
follows:

db 7,'a:mydoc',ODh

The carriage return is not included in the count; the
command tail is placed at offset BOH in the new
process's PSP.

Segment:offset address of an FCB to be copied to the
default FCB position at offset 5CH in the new process's
PSP.

Segment:offset address of an FCB to be copied to the
default FCB position at offset 6CH in the new process's
PSP.

If AL = 03H, the parameter block is 4 bytes long and formatted in two parts, as
follows:

Offset Length Meaning

OOH

02H

Word

Word

Segment address where the overlay is to be loaded.
Relocation factor to be applied to the code image (.EXE
files only); not needed if the file is a .COM program or is
data.

• The first 2 bytes of the parameter block for Function 4BH Subfunction OOH contain
either the segment address for an environment block to be passed to the new process
or zero. If the value is zero, the child process inherits an exact copy of the parent
process's environment.

The environment block must be aligned on a paragraph boundary (a multiple of 16
bytes). It can be as large as 32 KB, and it consists of a block of ASCIIZ strings, each in
the following form:

Section V: System Calls 1369

Interrupt 21H Function 4BH

paraineter=value

For example:

db •VERIFY=ON',0

The final string in the environment block is followed by a second zero byte. With
MS-DOS versions 3.0 and later, the second zero is followed by a word containing a
count and an ASCIIZ string containing the drive and pathname of the program file.

The environment passed to the child process allows the parent process to send it mes
sages regarding the system state or control parameters. The pathname included with
MS-DOS versions 3 0 and later enables the child process to determine where it was
loaded from.

If AL = OOH, MS-DOS creates a PSP for the new process and sets the terminate and
Control-C addresses to the instruction in the parent process that follows the call to
Function 4BH. If AL = 03H, no PSP is created.
Before AL = OOH is used to load and execute a process, the system must contain
enough free memory to accommodate the new process. Function 4AH (Resize Mem
ory Block) should be used, if necessary, to reduce the amount of memory allocated to
the parent process. If the parent is a .COM program, allocated memory mmt be
reduced, because a .COM program is given ownership of all available memory when
it is executed.

If Function 4BH is called with AL = 03H, free memory is not a factor, because MS-DOS
assumes the new process is being loaded into the calling process's own address space.
If Function 4BH is called with AL = OOH, the child process remains in control until it
executes an exit request, such as Function 4CH (Terminate Process with Return
Code), or until Control-C or Control-Break is received or a critical error occurs and the
user responds Abort to the Abort, Retry, Ignore? message.
With MS-DOS versions 2.x, SS and SP must be saved in the current code segment
before Function 4BH is invoked with AL = OOH. When the parent process regains con
trol, all registers other than CS:IP and the stack will most likely have been changed by
loading and executing the child process.
Function 4BH with AL = 03H is useful for loading program overlays or for loading data
to be used by the parent process (if that data requires relocation).
If the child process that is executed attempts to remain resident through either Inter
rupt 27H or Interrupt 21H Function 31H (Terminate and Stay Resident), system mem
ory becomes permanently fragmented and subsequent processes can fail because of
lack of memory.
The EXEC function (with AL = OOH) is commonly used to load a new copy of
COMMAND.COM and then execute an MS-DOS command from within another

program.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

1370 The MS-DOS Encyclopedia

Interrupt 21H Function 4BH

Related Functions

31H (Terminate and Stay Resident)
4CH (Terminate Process with Return Code)
4DH (Get Return Code of Child Process)

Examples

**

Function 4BH: Load and Execute Program

int execute(pprogname,pcmdtail)

char *pprogname,*pcmdtail;

Returns 0 if program loaded, ran, and

terminated successfully, otherwise returns

error code.

**

sBegin

$cmdlen

$cmd

data

db

126

$cmdlen+2 dup (?) ; Make space for command line, plus

; 2 extra bytes for length and

; carriage return.

$fcb db

db

db

'dummy fcb'

0,0,0,0

; Make dummy FCB.

$epb

sEnd

sBegin

dw

dw

dw

dw

dw

dw

dw

data

code

; Here's the EXEC parameter block:

0 ; 0 means inherit environment.

dataOFFSET $cmd ; Pointer to cmd line,

seg dgroup

dataOFFSET $fcb ; Pointer to FCB #1.

seg dgroup

dataOFFSET $fcb ; Pointer to FCB #2.

seg dgroup

$sp

$ss

dw

dw

; Allocate space in code seg

; for saving SS and SP.

Assumes ES,dgroup

cProc

parmDP

parmDP

cBegin

execute,PUBLIC,<ds,si,di>

pprogname

pcmdtail

mov cx,$cmdlen ; Allow command line this long.

loadDP ds,si,pcmdtail ; DS:SI = pointer to cmdtail string.

(more)

Section V: System Calls 1371

Interrupt 21H Function 4BH

mov

mov

mov

copycmd:

endcopy:

lodsb

or

jz

stosb

loop

mov

stosb

neg

add

ax,seg dgroup:$cmd

es, ax

di,dataOFFSET $cmd+

Set ES = data segment.

al, al

endcopy

copycmd

al, 13

cl

cl,$cmdlen

es:$cmd,cl

1 ; ES:DI = pointer to 2nd byte of

; our command-line buffer.

; Get next character.

; Found end of command tail?

; Exit loop if so.

; Copy to command buffer.

Store carriage return at

end of command.

CL = length of command tail.

Store length in command-tail buffer.

loadDP ds,dx,pprogname ; DS:DX = pointer to program name,

mov bx,dataOFFSET $epb ; ES:BX = pointer to parameter

; block.

mov

mov

mov

int

cli

mov

mov

sti

jb

xor

ex_err:

cEnd

sEnd code

cs:$ss,ss

cs:$sp,sp

ax,4b00h

21h

ss,cs:$ss

sp,cs:$sp

ex_err

ax, ax

Save current stack SS:SP (because

EXEC function destroys stack).

Set function code.

Ask MS-DOS to load and execute

program.

Disable interrupts.

Restore stack.

Enable interrupts.

Branch on error.

Return 0 if no error.

Function 4BH: Load an Overlay Program

int load_overlay(pfilename,loadseg)

char *pfilename;

int loadseg;

Returns 0 if program has been loaded OK,

otherwise returns error code.

To call an overlay function after it has been

loaded by load_overlay(), you can use

a far indirect call:

(more)

1372 The MS-DOS Encyclopedia

Interrupt 21H Function 4BH

1. FTYPE (far *ovlptr)();

2. *((unsigned *)&ovlptr + 1) = loadseg;

3. *((unsigned *)&ovlptr) = offset;

4. (*ovlptr)(argl,arg2,argS,...);

Line 1 declares a far pointer to a

function with return type FTYPE.

Line 2 stores loadseg into the segment

portion (high word) of the far pointer.

Line 3 stores offset into the offset

portion (low word) of the far pointer.

Line 4 does a far call to offset

bytes into the segment loadseg

passing the arguments listed.

To return correctly, the overlay must end with a far

return instruction. If the overlay is

written in Microsoft C, this can be done by

declaring the overlay function with the

keyword "far".

**

sBegin data

$lob

sEnd

dw

dw

data

The overlay parameter block:

space for load segment;

space for fixup segment.

sBegin code

cProc

parmDP

parmW

cBegin

load—Overlay,PUBLIC,<ds,si,di>

pfilename

loadseg

loadDP ds,dx,pfilename ; DS:DX = pointer to program name,

mov ax,seg dgroup:$lob ; Set ES = data segment,

mov es,ax

mov bx,dataOFFSET $lob ; ESzBX = pointer to parameter

; block.

ax,loadseg ; Get load segment parameter.

es:[bx],ax ; Set both the load and fixup

es:[bx+2],ax ; segments to that segment.

mov

mov

mov

mov

mov

mov

int

cli

cs: $ss,ss

cs:$sp,sp

ax,4b03h

21h

Save current stack SSrSP (because

EXEC function destroys stack).

Set function code.

Ask MS-DOS to load the overlay.

Disable interrupts.

(more)

Section V: System Calls 1373

Interrupt 21H Function 4BH

mov

mov

sti

jb

xor

lo_err:

cEnd

sEnd

ss,cs;$ss

sp,cs:$sp

lo_err

ax, ax

Restore stack.

Enable interrupts.

Branch on error.

Return 0 if no error.

code

1374 The MS-DOS Encyclopedia

Interrupt 21H Function 4CH

Interrupt 21H (33) 2.0 and later
Function 4CH (76)
Terminate Process with Return Code

Function 4CH terminates the current process with a return code and returns control to the
calling (parent) process.

ToCaU

AH = 4CH

AL = return code

Returns

Nothing

Programmer's Notes

• When a process is terminated with Function 4CH, MS-DOS restores the termination-
handler (Interrupt 22H), Control-C handler (Interrupt 23H), and critical error handler
(Interrupt 24H) addresses from the program segment prefix, or PSP (offsets CAR,
GEH, and 12H). MS-DOS also flushes the file buffers to disk, updates the disk direc
tory, closes all files with open handles belonging to the terminated process, and then
transfers control to the termination-handler address.

• On termination with Function 4CH, all memory owned by the process is freed.
• Function 4CH is the recommended method for terminating all processes—par

ticularly sizable .EXE files—that do not stay resident. This function should be used in
preference to the other termination methods (Interrupt 20H, Interrupt 21H Function
OGH, near RET for .COM files, or a jump to PSPiGGGGH^ Memory-resident programs
should be terminated with Function 31H (Terminate and Stay Resident).

• A return code of GGH is customarily used to indicate that the process executed suc
cessfully; a nonzero return code is used to indicate that the process terminated
because of an error or lack of resources—for example, the file could not be opened,
the process could not be allocated sufficient memory, and so on.

• If the terminated process was invoked by a command line or batch file, control
returns to COMMAND.COM and the transient portion of the command interpreter is
reloaded, if necessary. If a batch file was in progress, execution continues with the
next line of the file and the return code can be tested with an IF ERRORLEVEL state

ment. Otherwise, the command prompt is issued.

If the terminated process was loaded by a process other than COMMAND.COM, the
parent process can retrieve the child's return code with Function 4DH (Get Return
Code of Child Process).

• In a networking environment running under MS-DOS version 3.1 or later, all file locks
should be removed by the process before it calls Function 4CH to terminate.

Section V: System Calls 1375

Interrupt 21H Function 4CH

Related Functions

OOH (Terminate Process)

31H (Terminate and Stay Resident)
4DH (Get Return Code of Child Process)

Example

Function 4CH: Terminate Process with Return Code

int terminate(returncode)

int returncode;

Does NOT return at all!

**

cProc terminate,PUBLIC

parmB returncode

cBegin

mov al,returncode ; Set return code.

mov ah,4ch ; Set function code.

int 21h ; Call MS-DOS to terminate process.

cEnd

1376 The MS-DOS Encyclopedia

Interrupt 21H Function 4DH

Interrupt 21H (33) 2.0 and later
Function 4DH (77)
Get Return Code of Child Process

Function 4DH retrieves the return code of a child process that was invoked with Function
4BH (Load and Execute Program) and terminated with either Function 31H (Terminate
and Stay Resident) or Function 4CH (Terminate Process with Return Code).

ToCaU

AH = 4DH

Returns

AH = termination method;

OOH normal termination (Interrupt 20H, or Interrupt 21H Function OOH or
Function 4CH)

OIH terminated by entry of Control-C
02H terminated by critical error handler (for example, user responded Abort to

Abort, Retry, Ignore? prompt)
03H terminated and stayed resident (Interrupt 27H or Interrupt 21H Function

31H)

AL = return code passed by child process

If terminated with Interrupt 20H, Interrupt 21H Function OOH, or Interrupt 27H:

AL =00H

Programmer's Notes

• Function 4DH can be used only once to retrieve the return code of a terminated
process. Subsequent calls do not yield meaningful results.

• Function 4DH does not set the carry flag to indicate an error. If no previous child
process exists, the information returned in AH and AL is undefined.

Related Functions

31H (Terminate and Stay Resident)
4CH (Terminate Process with Return Code)

Section V: System Calls 1377

Interrupt 21H Function 4DH

Example

Function 4DH; Get Return Code of Child Process

int child_ret_code0

Returns the return code of the last

child process.

cProc child_ret_code,PUBLIC

cBegin

mov

int

cbw

cEnd

ah,4dh

21h

; Set function code.

; Ask MS-DOS to return code.

; Convert AL to a word.

1378 The MS-DOS Encyclopedia

Interrupt 21H Function 4EH

Interrupt 21H (33)
Function 4EH (78)

2.0 and later

Find First File

Function 4EH searches the specified directory for the first matching entry.

ToCaU

AH = 4EH

CX = attribute word

DS:DX = segmentioffset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

Current disk transfer area (DTA) contains the following information about the file:

Offset Length (bytes) Value

OGH

15H

16H

18H

lAH

ICR

lEH

21

1

2

2

2

2

13

Reserved for use by MS-DOS in subsequent call to
Function 4FH (Find Next File)

File attribute

Time of last write

Date of last write

Low word of file size

High word of file size
Filename and extension in ASCIIZ form with blanks

removed and period inserted between filename and
extension

If function is not successful:

Carry flag is set.

AX = error code:

02H file not found

03H path not found
12H no more files; no match found

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).

Section V: System Calls 1379

Interrupt 21H Function 4EH

The filename and extension portions of the pathname can contain the MS-DOS wild
cards ? (match any character) and » (match all remaining characters).
The DTA should be set with Function lAH (Set DTA Address) before Function 4EH is

called. If no DTA address is set, MS-DOS uses a default 128-byte buffer at offset 80H in
the program segment prefix (PSP).
The attribute word in CX controls the search as follows:

- If the attribute word is OOH, only normal files are included in the search.
- If the attribute word has any combination of bits 1, 2, and 4 (hidden, system, and

subdirectory bits) set, the search includes normal files as well as files with any of
the attributes specified.

- If the attribute word has bit 3 set (volume-label bit), only a matching volume label
is returned.

- Bits 0 and 5 (read-only and archive bits) are ignored by Function 4EH.
If Function 4FH (Find Next File) is used in conjunction with Function 4EH, the DTA
must be preserved, because the first 21 bytes contain information needed by Function
4FH.

The time at which the file was last written is returned as a binary value in a word for
matted as follows:

Bits Meaning

0-4 Number of seconds divided by 2
5-10 Minutes (0 through 59)
11-15 Hours, based on a 24-hour clock (0 through 23).

The date on which the file was last written is returned as a binary value in a word for
matted as follows:

Bits Meaning

0-4 Day of the month
5-8 Month (1 = January, 2 = February, 3 = March, and so on)
9-15 Number of the year minus 1980

Function 4EH is preferred to Function IIH (Find First File) because it fully supports
pathnames.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

IIH (Find First File)

12H (Find Next File)

lAH (Set DTA Address)

4FH (Find Next File)

1380 The MS-DOS Encyclopedia

Interrupt 21H Function 4EH

Example

Function 4EH: Find First File

int finci_first (ppathname, attr)

char *ppathname;

int attr;

Returns 0 if a match was found,

otherwise returns error code.

4c***

cProc

parmDP

parmW

cBegin

find-first,PUBLIC,ds

ppathname

attr

loadDP ds,dx,ppathname ,? Get pointer to pathname.

mov cx,attr ; Get search attributes.

mov ah,4eh ,? Set function code.

int 21h ; Ask MS-DOS to look for a

jb ff_err ,; Branch on error.

xor ax,ax ;; Return 0 if no error.

f f_err:

cEnd

Section V: System Calls 1381

Interrupt 21H Function 4FH

Interrupt 21H (33) 2.0 and later
Function 4FH (79)
Find Next File

Function 4FH continues a search initiated by a previously successful call to Function 4EH
(Find First File). The search is based on the pathname and attributes specified in the call to
Function 4EH and uses information left in the current disk transfer area (DTA) by the call
to Function 4EH or by a preceding call to Function 4FH.

ToCaU

AH = 4FH

DTA contains information from prior search with Function 4EH or Function 4FH.

Returns

If function is successful:

Carry flag is clear.

DTA is filled in as for a call to Function 4EH:

Offeet Length (bytes) Value

OOH 21 Reserved for use by MS-DOS in subsequent call to
Function 4FH

15H 1 File attribute

16H 2 Time of last write

18H 2 Date of last write

1 AH 2 Low word of file size

ICH 2 High word of file size
lEH 13 Filename and extension in ASCIIZ form with blanks

removed and period inserted between filename and
extension

If function is not successful:

Carry flag is set.

AX = error code:

12H no more files, no match found, or no previous call to Function 4EH

1382 The MS-DOS Encyclopedia

Interrupt 21H Function 4FH

Programmer's Notes

• If multiple calls to Function 4FH are used to find more than one matching file, the
DTA setting (Function lAH) and contents must be preserved because they provide in
formation needed for continuing the search.

• The time at which the file was last written is returned as a binary value in a word for
matted as follows:

Bits Meaning

0-4 Number of seconds divided by 2
5-10 Minutes (0 through 59)
11-15 Hours, based on a 24-hour clock (0 through 23).

• The date on which the file was last written is returned as a binary value in a word for
matted as follows:

Bits Meaning

0-4 Day of the month
5-8 Month (1 = January, 2 = February, 3 = March, and so on)
9-15 Number of the year minus 1980

Function 4FH is preferred to Function 12H (Find Next File) because it fully supports
pathnames.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

IIH (Find First File)

12H (Find Next File)

lAH (Set DTA Address)

4EH (Find First File)

Example

Function 4FH: Find Next File

int find—next 0

Returns 0 if a match was found,

otherwise returns error code.

(more)

Section V: System Calls 1383

Interrupt 21H Function 4FH

cProc

cBegin

find_next,PUBLIC

mov

int

jb

xor

f n_err;

cEnd

ah,4fh

21h

fn_err

ax, ax

Set function code.

Ask MS-DOS to look for the next

matching file.

Branch on error.

Return 0 if no error.

1384 The MS-DOS Encyclopedia

Interrupt 21H Function 54H

Interrupt 21H (33)
Function 54H (84)
Get Verify Flag

2.0 andlater

Function 54H returns the current value of the MS-DOS verify flag.

ToCaU

AH = 54H

Returns

AL = verify flag:
OGH verify off; no read after write operation
OIH verify on; read after write operation

Programmer's Notes

• The default state of the verify flag is OGH (off).
• The state of the verify flag can be changed either through a call to Function 2EH

(Set/Reset Verify Fla^ or by the user with the VERIFY ON and VERIFY OFF
commands.

Related Function

Function 2EH (Set/Reset Verify Flag)

Example

**

Function 54H: Get Verify Flag

int get_verify{)

Returns current value of verify flag.

**

cProc get_verify,PUBLIC

cBegin

mov ah,54h

int 21h

cbw

cEnd

; Set function code.

; Read flag from MS-DOS.

; Clear high byte of return value.

Section V: System Calls 1385

Interrupt 21H Function 56H

Interrupt 21H (33) 2.0 and later
Function 56H (86)
Rename File

Function 56H renames a file and/or moves it to a new location in the hierarchical directory
structure.

ToCaU

AH = 56H

DS:DX = segmentioffset of existing ASCIIZ pathname for file
ES:DI = segment:offset of new ASCIIZ pathname for file

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

02H file not found

03H path not found
05H access denied

1IH not the same device

Programmer's Notes

• The pathnames must be null-terminated ASCII strings (ASCIIZ).
• The directory paths specified in DS:DX and ES:DI need not be identical. Thus, speci

fying different directory paths effectively moves a file from one directory to another.
• Function 56H cannot be used to move a file to a different drive. Both the existing

pathname and the new one must either contain the same drive identifier or default to
the same drive.

• If Function 56H returns error code 05H, the cause can be any of the following:
- The new pathname would move the file to the root directory, but the root directory

is full.

- A file with the new pathname already exists.
- The user is on a network and has insufficient access to either the existing file or the

new subdirectory.
• Unlike Function 17H (Rename File), Function 56H does not support the use of MS-

DOS wildcard characters (? and ♦).

1386 The MS-DOS Encyclopedia

Interrupt 21H Function 56H

Function 56H should not be used to rename open files. An open file should be closed
with Function lOH (Close File with FCB) or 3EH (Close File) before Function 56H is

called to rename it.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

17H (Rename File)

Example

Function 56H: Rename File

int rename(poldpath,pnewpath)

char *poldpath,*pnewpath;

Returns 0 if file moved OK,

otherwise returns error code.

cProc rename,PUBLIC,<ds,di>

parmDP poldpath

parmDP pnewpath

cBegin

loadDP es,di,pnewpath

loadDP ds,dx,poldpath

mov ah,56h

int

jb

xor

rn_err:

cEnd

21h

rn_err

ax, ax

ES:DI = pointer to newpath.

DS:DX = pointer to oldpath.

Set function code.

Ask MS-DOS to rename file.

Branch on error.

Return 0 if no error.

Section V: System Calls 1387

Interrupt 21H Function 57H

Interrupt 21H (33) 2.0 and later
Function 57H (87)
Get/Set Date/Time of File

Function 57H retrieves or sets the date and time of a file's directory entry.

ToCaU

AH = 57H

AL =00H get date and time
OIH set date and time

BX = handle number

If AL = OIH:

CX = time; binary value formatted as follows:

Bits Meaning

0-4 Number of seconds divided by 2
5-10 Minutes (0 through 59)
11-15 Hours, based on a 24-hour clock (0 through 23)

DX = date; binary value formatted as follows:

Bits Meaning

0-4 Day of the month (1 through 31)
5-8 Month (1 = January, 2 = February, 3 = March, and so on)
9-15 Year minus 1980

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

CX = time file was last modified; format as described above

DX = date file was last modified; format as described above

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL not OOH or OIH)

06H invalid handle

1388 The MS-DOS Encyclopedia

Interrupt 21H Function 57H

Programmer's Notes

Before the date and time in a file's directory entry can be retrieved or changed with
Function 57H, a handle must be obtained by opening or creating the file using one of
the following functions:
- 3CH (Create File with Handle)

- 3DH (Open File with Handle)
- 5AH (Create Temporary File)
- 5BH (Create New File)

Use of Function 57H to retrieve the date and time of a file is preferable to examining
the fields of an open FCB directly.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

2AH (Get Date)

2BH (Set Date)

2CH (Get Time)

2DH (Set Time)

Example

Function 57H: Get/Set Date/Time of File

long file_date_time(handle,func,packdate,packtime)

int handle,func,packdate,packtime;

Returns a long -1 for all errors, otherwise packs

date and time into a long integer,

date in high word, time in low word.

cProc file_date_time, PUBLIC

parmW handle

parmB func

parmW packdate

parmW packtime

cBegin

mov

mov

mov

mov

mov

int

bx,handle

al,func

dx,packdate

cx,packtime

ah,57h

21h

Get handle.

Get function: 0 = read, 1 = write.

Get date (if present).

Get time (if present).

Set function code.

Call MS-DOS.

(more)

Section V: System Calls 1389

Interrupt 21H Function 57H

mov

jnb

mov

cwd

dt_ok

ax, -1

Set DX:AX = date/time, assuming no

error.

Branch if no error.

Return -1 for errors.

Extend the -1 into DX.

dt_ok:

cEnd

1390 The MS-DOS Encyclopedia

Interrupt 21H Function 58H

Interrupt 21H (33) 3 0 and later
Function 58H (88)
Get/Set Allocation Strategy

Function 58H retrieves or sets the method MS-DOS uses to allocate memory blocks for a
process that issues a memory-allocation request.

ToCaU

AH = 58H

AL = OOH get allocation strategy
OIH set allocation strategy

If AL = OIH:

BX = allocation strategy:
OOH use first (lowest available) block that fits

OIH use block that fits best

02H use last (highest available) block that fits

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

AX = allocation-strategy code:
OOH first fit

OIH best fit

02H last fit

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL not OOH or OIH)

Programmer's Notes

• Allocation strategies determine how MS-DOS finds and allocates a block of memory
to an application that issues a memory-allocation request with either Function 48H
(Allocate Memory Block) or Function 4AH (Resize Memory Block).

The three strategies are carried out as follows:
- First fit (the default): MS-DOS works upward from the lowest available block and

allocates the first block it encounters that is large enough to satisfy the request for
memory. This strategy is followed consistently, even if the block allocated is much
larger than required.

Section V: System Calls 1391

Interrupt 21H Function 58H

- Best fit: MS-DOS searches all available memory blocks and then allocates the
smallest block that satisfies the request, regardless of its location in the empty-
block chain. This strategy maximizes the use of dynamically allocated memory at
a slight cost in speed of allocation.

- Last fit (the reverse of first fit): MS-DOS works downward from the highest avail
able block and allocates the first block it encounters that is large enough to satisfy
the request for memory. This strategy is followed consistently, even if the block
allocated is much larger than required.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

48H (Allocate Memory Block)
4AH (Resize Memory Block)

Example

Function 58H: Get/Set Allocation Strategy

int alloc—strategy(func,strategy)

int func,strategy;

Strategies:

0: First fit

1: Best fit

2; Last fit

Returns -1 for all errors, otherwise

returns the current strategy.

cProc

parmB

parmW

cBegin

alloc—strategy,PUBLIC

func

strategy

mov

mov

mov

int

jnb

mov

no_err:

cEnd

al,func

bx,strategy

ah,58h

21h

no_err

ax, -1

AL = get/set selector.

BX = new strategy (for AL = 01H).

Set function code.

Call MS-DOS.

Branch if no error.

Return -1 for all errors.

1392 The MS-DOS Encyclopedia

Interrupt 21H Function 59H

Interrupt 21H (33) 3.0 and later
Function 59H (89)
Get Extended Error Information

Function 59H returns extended error information, including a suggested response, for the
function call immediately preceding it.

ToCaU

AH = 59H

BX =00H

Returns

AX = extended error code:

OGH no error encountered

OIH invalid function number

02H file not found

03H path not found
04H too many files open; no handles available
05H access denied

06H invalid handle

07H memory control blocks destroyed
08H insufficient memory
09H invalid memory-block address
OAH invalid environment

OBH invalid format

OCH invalid access code

ODH invalid data

GEH reserved

GFH invalid disk drive

IGH attempt to remove current directory
IIH device not the same

12H no more files

13H write-protected disk
14H unknown unit

15H drive not ready
16H invalid command

17H data error based on cyclic riedundancy check (CRC)
18H length of request structure invalid
19H seek error

lAH non-MS-DOS disk

IBH sector not found

Section V: System Calls 1393

Interrupt 21H Function 59H

ICH printer out of paper
IDH write fault

lEH read fault

IFH general failure
20H sharing violation
21H lock violation

22H invalid disk change
23H FCB unavailable

24H sharing buffer exceeded
25-31H reserved

32H unsupported network request
33H remote machine not listening
34H duplicate name on network
35H network name not found

36H network busy
37H device no longer exists on network
38H net BIOS command limit exceeded

39H error in network adapter hardware
3AH incorrect response from network
3BH unexpected network error
3CH remote adapt incompatible
3DH print queue full
3EH queue not full
3FH not enough room for print file
40H network name deleted

41H access denied

42H incorrect network device type
43H network name not found

44H network name limit exceeded

45H net BIOS session limit exceeded

46H temporary pause

47H network request not accepted
48H print or disk redirection paused
49-4FH reserved

50H file already exists
51H reserved

52H cannot make directory
53H failure on Interrupt 24H (critical error)
54H out of structures

55H already assigned
56H invalid password
57H invalid parameter
58H net write fault

1394 The MS-DOS Encyclopedia

Interrupt 21H Function 59H

BH = error class:

OIH out of resource (such as storage)
02H temporary situation, expected to end; not an error
03H authorization problem
04H internal error in system software
05H hardware failure

06H system-software failure, such as missing or incorrect
configuration files; not the fault of the active process

07H application-program error
08H file or item not found

09H file or item of invalid format or type or otherwise unsuitable
OAH file or item interlocked

OBH drive contains wrong disk, disk has bad spot, or other problem
with storage medium

OCH already exists
ODH unknown

BL = suggested action:
OIH perform a reasonable number of retries before prompting user to

choose Abort or Ignore in response to error message
02H perform a reasonable number of retries, with pauses between,

before prompting user to choose Abort or Ignore in response to
error message

03H prompt user to enter corrected information, such as drive letter or
filename

04H clean up and exit application
05H exit immediately without cleanup
06H ignore; informational error
07H prompt user to remove cause of error (for example, change disks)

and then retry
CH = location of error:

OIH unknown

02H block device

03H network

04H serial device

05H memory related

Programmer's Notes

The extended error codes returned by Function 59H correspond to the error values
returned in AX by functions in MS-DOS versions 2.0 and later that set the carry flag on
error. Versions 2.x of MS-DOS, however, provide a smaller set of error codes (OIH
through 12H) than do later versions.

Thus, although Function 59H itself is not available in versions of MS-DOS earlier than
3.0, the matching of error codes to earlier versions helps ensure downward com
patibility. Function 59H was also designed to be open-ended so that additional error
codes could be incorporated as needed. As a result, processes should remain flexible

Section V: System Calls 1395

Interrupt 21H Function 59H

in their use of this function and should not rely on a fixed set of code numbers for
error detection.

Function 59H is useful in the following situations:
- When MS-DOS encounters a hardware-related error condition and shifts control to

an Interrupt 24H handler that has been created by the programmer
- When a handle-related function sets the carry flag to indicate an error or when an

FCB-related function indicates an error by returning OFFH in the AL register
If a function call results in an error, Function 59H returns meaningful information
only if it is the next call to MS-DOS. An intervening call to another MS-DOS function,
whether explicit or indirect, causes the error value for the unsuccessful function to
be lost.

Unlike most MS-DOS functions. Function 59H alters some registers that are not used
to return results: CL, DX, SI, DI, ES, and DS. These registers must be preserved before
a call to Function 59H if their contents are needed later.

Related Functions

None

Example

Function 59H: Get Extended Error Information

int extended—error(err,class,action,locus)

int *err;

char *class,*action,*locus;

Return value is same as err.

cProc

parmDP

parmDP

parmDP

parmDP

cBegin

extended—error,PUBLIC,<ds,si,di>

perr

pclass

paction

plocus

push ds ;: Save DS.

xor bx, bx

mov ah,59h Set function code.

int 21h Request error info from MS-DOS

pop ds Restore DS.

loadDP ds,si,perr Get pointer to err.

mov [si],ax Store err.

loadDP ds,si,pclass Get pointer to class.

mov [si],bh Store class.

loadDP ds,si,paction Get pointer to action.

mov [si],bl Store action.

loadDP ds,si,plocus Get pointer to locus.

mov [si],ch Store locus.

cEnd

1396 The MS-DOS Encyclopedia

Interrupt 21H Function 5AH

Interrupt 21H (33) 3.0 and later
Function 5AH (90)
Create Temporary File

Function 5AH uses the system clock to create a unique filename, appends the filename to
the specified path, opens the temporary file, and returns a file handle that can be used for
subsequent file operations.

ToCaU

AH = 5AH

CX = file attribute:

OGH normal file

OIH read-only file
02H hidden file

04H system file
DS:DX = segment:offset of ASCIIZ path, ending with a backslash character (\) and

followed by 13 bytes of memory (to receive the generated filename)

Returns

If function is successful:

Carry flag is clear.

AX = handle

DS:DX = segment:offset of full pathname for temporary file

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found
04H too many open files; no handle available
05H access denied

Programmer's Notes

• Only the drive and path to use for the new file should be specified in the buffer
pointed to by DS:DX. The function appends an eight-character filename that is gener
ated from the system time.

• Function 5AH is valuable in such situations as print spooling on a network, where
temporary files are created by many users.

• The input string representing the path for the temporary file must be a null-termi
nated ASCII string (ASCIIZ).

• In networking environments running under MS-DOS version 3.1 or later, MS-DOS
opens the temporary file in compatibility mode.

Section V: System Calls 1397

Interrupt 21H Function 5AH

• MS-DOS does not delete temporary files; applications must do this for themselves.
• Function 59H (Get Extended Error Information) provides further information on any

error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FCB)
3CH (Create File with Handle)

5BH (Create New File)

Example

Function 5AH: Create Temporary File

int create_temp(ppathname,attr)

char *ppathname;

int attr;

Returns -1 if file was not created,

otherwise returns file handle.

cProc

parmDP

parmW

cBegin

create_temp,PUBLIC, ds

ppathname

attr

loadDP ds,dx,ppathname ; Get pointer to pathname,

mov cx,attr ; Set function code.

mov ah,5ah ; Ask MS-DOS to make a new file with

; a unique name,

int 21h ; Ask MS-DOS to make a tmp file,

jnb ct_ok ; Branch if MS-DOS returned handle,

mov ax,-1 ; Else return -1.

ct_ok:

cEnd

1398 The MS-DOS Encyclopedia

Interrupt 21H Function 5BH

Interrupt 21H (33) 3.0 and later
Function 5BH (91)
Create New File

Function 5BH creates a new file with the specified pathname. This function operates like
Function 3CH (Create File with Handle) but fails if the pathname references a file that
already exists.

ToCaU

AH = 5BH

CX = file attribute:

OGH normal file

OIH read-only file
02H hidden file

04H system file
DS:DX = segmentroffset of ASCIIZ pathname

Returns

If function is successful:

Carry flag is clear.

AX = handle

If function is not successful:

Carry flag is set.

AX = error code:

03H path not found
04H too many open files; no handle available
05H access denied

50H file already exists

Programmer's Notes

• The pathname must be a null-terminated ASCII string (ASCIIZ).
• In networking environments running under MS-DOS version 3.1 or later, the file is

opened in compatibility mode. Function 5BH fails, however, if the user does not have
Create access to the directory that is to contain the file.

• Function 5BH can be used to implement semaphores in the form of files across a local
area network or in a multitasking environment. If the function succeeds, the
semaphore has been acquired. To release the semaphore, the application simply
deletes the file.

Section V: System Calls 1399

Interrupt 21H Function 5BH

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

16H (Create File with FOB)
3CH (Create File with Handle)

5AH (Create Temporary File)

Example

Function 5BH: Create New File -

int create_new(ppathname,attr)

char *ppathname;

int attr;

Returns -2 if file already exists,

-1 for all other errors,

otherwise returns file handle.

cProc

parmDP

parmW

cBegin

create_new,PUBLIC,ds

ppathname

attr

loadDP ds,dx,ppathname ; Get pointer to pathname.

mov cx,attr ; Get new file's attribute.

mov ah,5bh ; Set function code.

int 21h ; Ask MS-DOS to make a new file.

jnb cn_ok ; Branch if MS-DOS returned handle

mov bx,-2

cmp al,80 ; Did file already exist?

jz ae_err ; Branch if so.

inc bx ; Change -2 to -1.

mov ax,bx ; Return error code.

cn_ok:

cEnd

1400 The MS-DOS Encyclopedia

Interrupt 21H Function 5CH

Interrupt 21H (33) 3.0 and later
Function 5CH (92)
Lock/Unlock File Region

Function 5CH enables a process running in a networking or multitasking environment to
lock or unlock a range of bytes in an open file.

ToCaU

AH = 5CH

AL = OOH lock region
OIH unlock region

BX = handle

CX:DX = 4-byte integer specifying beginning of region to be locked or unlocked
(offset in bytes from beginning of file)

SI:DI = 4-byte integer specifying length of region (measured in bytes)

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function (AL not OOH or OIH or file sharing not loaded)
06H invalid handle

21H lock violation

24H sharing buffer exceeded

Programmer's Notes

• A process that either closes a file containing a locked region or terminates with the
file open leaves the file in an undefined state. Under either condition, MS-DOS might
handle the file erratically. If the process can be terminated by Interrupt 23H (Control-
C) or 24H (critical error), these interrupts should be trapped so that any locked
regions in files can be unlocked before the process terminates.

• Locking a portion of a file with Function 5CH denies all other processes both read
and write access to the specified region of the file. This restriction also applies when
open file handles are passed to a child process with Function 4BH (Load and Execute
Program). Duplicate file handles created with Function 45H (Duplicate File Handle)
and 46H (Force Duplicate File Handle), however, are allowed access to locked regions
of a file within the current process.

• Locking a region that goes beyond the end of a file does not cause an error.

Section V: System Calls 1401

Interrupt 21H Function 5CH

Function 5CH is useful primarily in ensuring that competing programs or processes
do not interfere while a record is being updated. Locking at the file level is provided
by the sharing parameter in Function 3DH (Open File with Handle).
Function 5CH can also be used to check the lock status of a file. If an attempt to lock a
needed portion of a file fails and error code 21H is returned in the AX register, the
region is already locked by another process.
Any region locked with a call to Function 5CH must also be unlocked, and the same
4-byte integer values must be used for each operation. Two adjacent regions of a file
cannot be locked separately and then be unlocked with a single unlock call. If the
region to unlock does not correspond exactly to a locked region. Function 5CH
returns error code 21H.

The length of time needed to hold locks can be minimized with the transaction-
oriented programming model. This concept requires defining and performing an up
date in a uniform manner: Assert lock, read data, change data, remove lock.
If file sharing is not loaded, an application receives a OIH (function number invalid)
error status when it attempts to lock a file. An immediate call to Function 59H returns
the error locus as an unknown or a serial device.

Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

45H (Duplicate File Handle)
46H (Force Duplicate File Handle)
4BH (Load and Execute Program) [EXEC]

Example

Function 5CH: Lock/Unlock File Region

int locks(handle,onoff,start,length)

int handle,onoff;

long start,length;

Returns 0 if operation was successful,

otherwise returns error code.

cProc locks,PUBLIC,<si,di>

parmW handle

parmB onoff

parmD start

parmD length

(more)

1402 The MS-DOS Encyclopedia

Interrupt 21H Function 5CH

cBegin

mov

mov

les

mov

les

mov

mov

int

jb

xor

al,onoff

bx,handle

dx,start

cx, es

di,length

si, es

ah,5ch

21h

lk_err

ax, ax

Get lock/unlock flag.

Get file handle.

Get low word of start.

Get high word of start.

Get low word of length.

Get high word of length.

Set function code.

Make lock/unlock request.

Branch on error.

Return 0 if no error.

lk_err:

cEnd

Section V: System Calls 1403

Interrupt 21H Function 5EH Subfunction OOH

Interrupt 21H (33) 3.1 and later
Function 5EH (94) Subfunction OOH
Network Machine Name/Printer Setup: Get Machine Name

If Microsoft Networks is running, Function 5EH Subfunction OOH retrieves the network
name of the local computer.

ToCaU

AH = 5EH

AL = OOH

DS:DX = segment:offset of 16-byte buffer

Returns

If function is successful:

Carry flag is clear.

CH = validity of machine name:
OOH invalid

nonzero valid

CL = NETBIOS number assigned to machine name
DS:DX = segment:offset of ASCIIZ machine name

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function; Microsoft Networks not running

Programmer's Notes

• The NETBIOS number in CL and the name at DS:DX are valid only if the value
returned in CH is nonzero.

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5FH (Get/Make Assign List Entry)

Example

None

1404 The MS-DOS Encyclopedia

Interrupt 21H Function 5EH Subfunctions 02H and 03H

Interrupt 21H (33) 3.1 and later
Function 5EH (94) Subfunctions 02H and 03H
Network Machine Name/Printer Setup: Set Printer Setup;
Get Printer Setup

Function 5EH Subfunctions 02H and 03H respectively set and get the setup string that MS-
DOS adds to the beginning of a file sent to a network printer.

ToCaU

AH = 5EH

AL = 02H set printer setup string
03H get printer setup string

BX = assign-list index number (obtained with Function 5FH Subfunction 02H)

IfAL = 02H:

CX = length of setup string in bytes (64 bytes maximum)
DS:SI = segment:offset of ASCII setup string

IfAL = 03H:

ES:DI = segmentioffset of 64-byte buffer to receive string

Returns

If function is successful:

Carry flag is clear.

IfALwas03Honcall:

CX = length of printer setup string in bytes
ESiDI = segmentroffset of ASCII printer setup string

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid subfunction

Programmer's Notes

• Function 5EH Subfunctions 02H and 03H enable multiple users on a network to con
figure a shared printer as required. The assign-list number is an index to a table that
identifies the printer as a device on the network. A process can determine the assign-
list number for the printer by using Function 5FH Subfunction 02H (Get Assign-List
Entry).

• Error code OIH in the AX register may indicate either that Microsoft Networks is not
running or that an invalid subfunction was selected.

Section V: System Calls 1405

Interrupt 21H Function 5EH Subfunctions 02H and 03H

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5FH (Get/Make Assign-List Entry)

Example

Function 5EH Subfunction 02H;

Set Printer Setup

int printer_setup(index,pstring,len)

int index;

char *pstring;

int len;

Returns 0, otherwise returns -1 for all errors.

cProc

parmW

parmDP

parmW

cBegin

printer_setup,PUBLIC, <ds, si>

index

pstring

len

ps_ok:

cEnd

mov bx,index

loadDP ds,si,pstring

mov cx,len

mov ax,5e02h

int 21h

mov al,0

jnb ps_ok

mov al,-1

cbw

BX = index of a net printer.

DS:SI = pointer to string.

CX = length of string.

Set function code.

Set printer prefix string.

Assume no error.

Branch if no error.

Else return -1.

1406 The MS-DOS Encyclopedia

Interrupt 21H Function 5FH Subfunction 02H

Interrupt 21H (33) 3.1 and later
Function 5FH (95) Subfunction 02H
Get/Make Assign-List Entry: Get Assign-List Entry

Function 5FH Subfunction 02H obtains the local and remote (network) names of a device.

To find the names, MS-DOS uses the device's user-assigned index number (set with Func
tion 5FH Subfunction 03H) to search a table of redirected devices on the network.

Microsoft Networks must be running with file sharing loaded for this subfunction to oper
ate successfully.

ToCaU

AH = 5FH

AL = 02H

BX = assign-list index number
DS:SI = segmentioffset of 16-byte buffer for local (device) name
ES:DI = segment:offset of 128-byte buffer to receive remote (network) name

Returns

If function is successful:

Carry flag is clear.

BH = device status:

OOH valid device

OIH invalid device

BL = device type:
03H printer

04H drive

CX = user data

DS:SI = segment:offset of ASCIIZ string representing local device name
ES:DI = segment:offset of ASCIIZ string representing network name

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function or Microsoft Networks not running
12H no more files

Programmer's Notes

• All strings returned by this subfunction are null-terminated ASCII strings (ASCIIZ).
• A successful call to this subfunction destroys the contents of the DX and BP registers.

Section V: System Calls 1407

Interrupt 21H Function 5FH Subfunction 02H

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

Function 5FH Subfunction 02H:

Get Assign-List Entry

int get_alist_entry(index,

plocalname,premotename,

puservalue,ptype)

int index;

char *plocalname;

char *premotename;

int *puservalue;

int *ptype;

Returns 0 if the requested assign-list entry is found,

otherwise returns error code.

cProc

parmW

parmDP

parmDP

parmDP

parmDP

cBegin

get_alist_entry,PUBLIC,<ds,si,di>

index

plocalname

premotename

puservalue

ptype

mov bx,index ; Get list index.

loadDP ds,si,plocalname ; DS:SI = pointer to local name

; buffer.

loadDP es,di,premotename ; ES:DI = pointer to remote name

; buffer.

ax,5f02h ; Set function code.

21h ; Get assign-list entry.

ga_err ; Exit on error,

ax,ax ; Else return 0.

mov

int

jb

xor

loadDP ds,si,puservalue ; Get address of uservalue.

; Store user value.

; Get address of type.

; Store device type to type.

mov [si],cx

loadDP ds,si,ptype

mov bh,0

mov [si],bx

ga_err:

cEnd

1408 The MS-DOS Encyclopedia

Interrupt 21H Function 5FH Subfunction 03H

Interrupt 21H (33)
Function 5FH (95) Subfunction 03H
Get/Make Assign-List Entry: Make Assign-List Entry

3.1 and later

Function 5FH Subfunction 03H redirects a local printer or disk drive to a network device
and establishes an assign-list index number for the redirected device. Microsoft Networks
must be running with file sharing loaded for this subfunction to operate successfully.

ToCaU

AH = 5FH

AL = 03H

BL = device type:
03H printer
04H drive

CX = user data

DS.SI = segment:offset of 16-byte ASCIIZ local device name
ES:DI = segmentioffset of 128-byte ASCIIZ remote (network) device name

and password in the form

machine name\pathnaine,null,passwordynull

For example:

string db '\\mymach\wp',0,'blibbet',0

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function or Microsoft Networks not running
03H path not found
05H access denied

08H insufficient memory
OFH redirection paused on server
12H no more files

Programmer's Notes

• The strings used by this subfunction must be null-terminated ASCII strings (ASCIIZ).
The ASCIIZ string pointed to by ES:DI (the destination, or remote, device) cannot be
more than 128 bytes including the password, which can be a maximum of 8 charac
ters. If the password is omitted, the pathname must be followed by 2 null bytes.

Section V: System Calls 1409

Interrupt 21H Function 5FH Subfunction 03H

If BL = 03H, the string pointed to by DS:SI must be one of the following printer names:
PRN, LPTl, LPT2, or LPT3. If the call is successful, output is redirected to a network
print spooler, which must be named in the destination string. For printer redirection,
MS-NET intercepts Interrupt 17H (BIOS Printer I/O). When redirection for a printer is
canceled, all printing is sent to the first local printer (LPTl).

If BL = 04H, the string pointed to by DS:SI can be a drive letter followed by a colon,
such as E:, or it can be a null string. If the string represents a valid drive, a successful
call redirects drive requests to the network directory named in the destination string.
If DS:SI points to a null string, MS-DOS attempts to provide access to the network
directory named in the destination string without redirecting any device.
Only printer and disk devices are supported in MS-DOS versions 3.1 and later. COMl
and COM2 are not supported for network redirection, nor are the standard output or
standard error devices supported.
Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

Function 5FH Subfunction 03H:

Make Assign-List Entry

int add—alist_entry(psrcname,pdestname,uservalue,type)

char »psrcname,*pdestname;

int uservalue,type;

Returns 0 if new assign-list entry is made, otherwise

returns error code.

cProc add_alist_entry,PUBLIC,<ds,si,di>

parmDP

parmDP

parmW

parmW

cBegin

psrename

pdestname

uservalue

type

mov bx,type

mov cx,uservalue

loadDP ds,si,psrcname

loadDP es,di,pdestname

mov ax,5f03h

int 21 h

jb aa_err

xor ax,ax

aa—err:

cEnd

Get device type.

Get uservalue.

DS:SI = pointer to source name.

ES:DI = pointer to destination name.

Set function code.

Make assign-list entry.

Exit if there was some error.

Else return 0.

1410 The MS-DOS Encyclopedia

Interrupt 21H Function 5FH (95) Subfunction 04H

Int 21H (33) 3.1 and later
Function 5FH (95) Subfunction 04H
Get/Make Assign-List Entry: Cancel Assign-List Entry

Function 5FH Subfunction 04H cancels the redirection of a local device to a network

device previously established with Function 5FH Subfunction 03H (Make Assign-List
Entry). Microsoft Networks must be running with file sharing loaded for this subfunc
tion to operate successfully.

ToCaU

AH =5FH

AL = 04H

DS:SI = segmentioffset of ASCIIZ device name or path

Returns

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function or Microsoft Networks not running
03H path not found
05H access denied

08H insufficient memory
OFH redirection paused on server
12H no more files

Programmer's Notes

The string pointed to by DS:SI must be a null-terminated ASCII string (ASCIIZ). This
string can be any one of the following:
- The letter, followed by a colon, of a redirected local drive. This function restores

the drive letter to its original, physical meaning.
- The name of a redirected printer: PRN, LPTl, LPT2, LPT3, or its machine-specific

equivalent. This function restores the printer name to its original, physical meaning
at the local workstation.

- A string, beginning with two backslashes (\ \) followed by the name of a network
directory. This function terminates the connection between the local workstation
and the directory specified in the string.

Section V: System Calls l4l 1

Interrupt 21H Function 5FH Subfunction 04H

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Function

5EH Subfunction OOH (Get Machine Name)

Example

********** ******* ***********

Function 5FH Subfunction 04H:

Cancel Assign-List Entry

int cancel_alist_entry(psrcname)

char *psrcname;

Returns 0 if assignment is canceled, otherwise returns

error code.

cProc cancel_alist_entry,PUBLIC, <ds, si>

parmDP psrcname

cBegin

loadDP ds,si,psrcname ; DS:SI = pointer to source name.

mov ax,5f04h

int 21h

jb ca_err

xor ax,ax

ca_err:

cEnd

; Set function code.

; Cancel assign-list entry.

; Exit on error.

; Else return 0.

1412 The MS-DOS Encyclopedia

Interrupt 21H Function 62H

Interrupt 21H (33)
Function 62H (98)
Get Program Segment Prefix Address

3.0 and later

Function 62H gets the segment address of the program segment prefix (PS?) for the cur
rent process.

To CaU

AH = 62H

Returns

BX = segment address of PS? for current process

Programmer's Notes

• The PSP is constructed by MS-DOS at the base of the memory allocated for a .COM
or .EXE program being loaded into memory by the EXEC function, 4BH (Load and
Execute Program). The PSP is lOOH bytes and contains information useful to an ex
ecuting program, including
- The command tail

- Default file control blocks (FCBs)

- A pointer to the program's environment block
- Previous addresses for MS-DOS Control-C, critical error, and terminate handlers

• Function 59H (Get Extended Error Information) provides further information on any
error—in particular, the code, class, recommended corrective action, and locus of
the error.

Related Functions

None

Example

Function 62H: Get Program Segment Prefix Address

int get_psp()

Returns PSP segment.

(more)

Section V: System Calls 1413

Interrupt 21H Function 62H

cProc get_psp,PUBLIC

cBegin

mov ah,62h ; Set function code,

int 21h ; Get PSP address,

mov ax,bx ; Return it in AX.

cEnd

I4l4 The MS-DOS Encyclopedia

Interrupt 21H Function 63H

Interrupt 21H (33) 2 25
Function 63H (99)
Get Lead Byte Table

Function 63H, available only in MS-DOS version 2.25, includes three subfunctions that
support 2-byte-per-character alphabets such as Kanji and Hangeul (Japanese and Korean
characters sets). Subfunction OOH obtains the address of the legal lead byte ranges for the
character sets; Subfunctions OIH and 02H set or obtain the value of the interim console
flag, which determines whether interim characters are returned by certain console system
calls.

ToCaU

AH = 63H

AL = OOH get lead byte table address
OIH set or clear interim console flag
02H get interim console flag

If AL = OIH:

DL = interim console flag:
OOH clear

OIH set

Returns

If function is successful:

Carry flag is clear.

If AL was OOH on call:

DS:SI = segment:offset of lead byte table

If AL was 02H on call:

DL = value of interim console flag

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function

Programmer's Notes

• Function 63H does not necessarily preserve any registers other than SS:SP, so register
values should be saved before a call to this function. To avoid saving registers repeat
edly, a process can either copy the table or save the pointer to the table for later use.

Section V: System Calls 1415

Interrupt 21H Function 63H

• The lead byte table contains pairs of bytes that represent the inclusive boundary
values for the lead bytes of the specified alphabet. Because of the way bytes are or
dered by the 8086 microprocessor family, the values must be read as byte values, not
as word values.

• If the interim console flag is set (DL = OIH) by a program through a call to Function
63H, the following functions return interim character information on request:
- 07H (Character Input Without Echo)
- 08H (Unfiltered Character Input Without Echo)
- OBH (Check Keyboard Status)
- OCH (Flush Buffer, Read Keyboard), if Function 07H or 08H is requested in AL

Related Functions

None

Example

Function 63H: Get Lead Byte Table

char far *get—lead byte_table()

Returns far pointer to table of lead bytes for multibyte

characters. Will work only in MS-DOS 2.25!

**

cProc get—lead byte—table,PUBLIC,<ds,si>

cBegin

cEnd

mov ax,6300h ; Set function code.

int 21h ; Get lead byte table.

mov dx, ds ; Return far pointer in DX:AX

mov ax, si

I4l6 The MS-DOS Encyclopedia

Interrupt 22H

Interrupt 22H (34) 1.0 and later
Terminate Routine Address

The machine interrupt vector for Interrupt 22H (memory locations 0000;0088H through
0000:008BH) contains the address of the routine that receives control when the currently
executing program terminates by means of Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function OGH, 31H, or 4CH.

ToCaU

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Note

• The address in this vector is copied into offsets OAH through ODH of the program
segment prefix (PSP) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part of
MS-DOS's termination handling.

Example

None

Section V: System Calls 1417

Interrupt 23H

Interrupt 23H (35) 1.0 and later
Control-C Handler Address

The machine interrupt vector for Interrupt 23H (memory locations 0000:008CH through
0000:008FH) contains the address of the routine that receives control when a Control-C
(also Control-Break on IBM PC compatibles) is detected during any character I/O function
and, if the Break flag is on, during most other MS-DOS function calls.

To Call

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Notes

• The address in this vector is copied into offsets OEH through IIH of the program
segment prefix (PS?) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part of
MS-DOS's termination handling.

• The initialization code for an application can use Interrupt 21H Function 25H (Set
Interrupt Vector) to reset the Interrupt 23H vector to point to its own routine for
Control-C handling. By installing its own Control-C handler, the program can avoid
being terminated as a result of keyboard entry of a Control-C or Control-Break.

• When a Control-C is detected and the program's Interrupt 23H handler receives con
trol, MS-DOS sets all registers to the original values they had when the function call
that is being interrupted was made. The program's interrupt handler can then do any
of the following:
- Set a local flag for later inspection by the application (or take any other appropriate

action) and then perform a return from interrupt (IRET) to return control to MS-
DOS. (All registers must be preserved.) The MS-DOS function in progress is then
restarted and proceeds to completion, and control finally returns to the application
in the normal manner.

- Take appropriate action and then perform a far return (RET FAR) to give control
back to MS-DOS. MS-DOS uses the state of the carry flag to determine what action
to take: If the carry flag is set, the application is terminated; if the carry flag is clear,
the application continues in the normal manner.

- Retain control by transferring to an error-handling routine within the application
and then resume execution or take other appropriate action, never performing a
RET FAR or IRET to end the interrupt-handling sequence. This option causes no
harm to the system.

• Any MS-DOS function call can be used within the body of an Interrupt 23H handler.

Example

None

1418 The MS-DOS Encyclopedia

Interrupt 24H

Interrupt 24H (36) 1.0 and later
Critical Error Handler Address

The machine interrupt vector for Interrupt 24H (memory locations 0000:0090H through
0000:0093H) contains the address of the routine that receives control when a critical error

(usually a hardware error) is detected.

To Call

This interrupt should never be issued directly.

Returns

Nothing

Programmer's Notes

• The address of this vector is copied into offsets 12H through 15H of the program
segment prefix (PSP) when a program is loaded but before it begins executing. The
address is restored from the PSP (in case it was modified by the application) as part
of MS-DOS's termination handling.

• On entry to the critical error interrupt handler, bit 7 of register AH is clear (0) if the
error was a disk I/O error; otherwise, it is set (1). BP:SI contains the address of a

device-header control block from which additional information can be obtained.

Interrupts are disabled. MS-DOS sets up the registers for a retry operation and one
of the following error codes is in the lower byte of the DI register (the upper byte
is undefined):

Code Meaning

OOH Write-protect error
OIH Unknown unit

02H Drive not ready
03H Unknown command

04H Data error (bad CRC)

05H Bad request structure length
06H Seek error

07H Unknown media type
08H Sector not found

09H Printer out of paper
OAH Write fault

OBH Read fault

OCR General failure

OFH Invalid disk change

These are the same error codes returned by the device drivers in the request header.

Section V: System Calls 1419

Interrupt 24H

• On a disk error, MS-DOS retries the operation three times before transferring to the
Interrupt 24H handler.

• On entry to the Interrupt 24H handler, the stack is set up as follows:

CS

IP

ES

DS

BP

DI

SI

DX

CX

BX

AX

CS

IP

V Flags and CSiIP pushed on stack
f by originalIntemipt21Hcall

• SP on entry to Interrupt 21H handler

Registers at point of
original Interrupt 21H call

>
Return address from

Interrupt 24H handler

SP on entry to Interrupt 24H handler

Interrupt 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and DX registers.
Only Interrupt 21H Functions OIH through OCH, 30H, and 59H can be used by an
Interrupt 24H handler; other calls will destroy the MS-DOS stack and its ability to re
try or ignore an error.

1420 The MS-DOS Encyclopedia

Interrupt 24H

Before issuing a RETURN FROM INTERRUPT (IRET), the Interrupt 24H handler
should place an action code in AL that will be interpreted by MS-DOS as follows:

Code Meaning

OOH Ignore error.
OIH Retry operation.
02H Terminate program through Interrupt 23H.
03H Fail system call in progress (versions 3.1 and later).

If an Interrupt 24H routine returns to the user program rather than to MS-DOS, it
must restore the user program's registers, removing all but the last three words from
the stack, and issue an IRET. Control returns to the instruction immediately following
the Interrupt 21H function call that resulted in an error. This leaves MS-DOS in an
unstable state until a call is made to an Interrupt 21H function higher than OCH.

Example

None

Section V: System Calls 1421

Interrupt 25H

Interrupt 25H (37) 1.0 and later
Absolute Disk Read

Interrupt 25H provides direct linkage to the MS-DOS BIOS module to read data from a logi
cal disk sector into a specified memory location.

To Call

AL = drive number (0 = drive A, 1 = drive B, and so on)
CX = number of sectors to read

DX = starting relative (logical) sector number
DS:BX = segmentioffset of disk transfer area (DTA)

Returns

If operation is successful:

Carry flag is clear.

If operation is not successful:

Carry flag is set.

AX = error code

Programmer's Notes

• Interrupt 25H might destroy all registers except the segment registers.
• When Interrupt 25H returns, the CPU flags originally pushed onto the stack by the

INT 25H instruction are still on the stack. The stack must be cleared by a POPF or
ADD SP,2 instruction to prevent uncontrolled stack growth and to make accessible
any other values that were pushed onto the stack before the call to Interrupt 25H.

• Logical sector numbers are zero based and are obtained by numbering each disk
sector sequentially from track 0, head 0, sector 1 and continuing until the last sector
on the disk is counted. The head number is incremented before the track number.

Because of interleaving, logically adjacent sectors might not be physically adjacent for
some types of disks.

• The lower byte of the error code (AL) is the same error code that is returned in the
lower byte of DI when an Interrupt 24H is issued. The upper byte (AH) contains one
of the following codes:

Code Meaning

80H Device failed to respond
40H Seek operation failure
20H Controller failure

(more)

1422 The MS-DOS Encyclopedia

Interrupt 25K

Code Meaning

lOH Data error (bad CRC)

08H Direct memory access (DMA) failure
04H Requested sector not found
03H Write-protect fault
02H Bad address mark

OIH Bad command

• Warning: Interrupt 25H bypasses the MS-DOS file system. This function must be
used with caution to avoid damaging the disk structure.

Example

Interrupt 25H: Absolute Disk Read

Read logical sector 1 of drive A into the memory area

named buff. (On most MS-DOS floppy disks, this sector

contains the beginning of the file allocation table.)

; Drive A.

; Number of sectors.

; Beginning sector number.

; Address of buffer.

mov al,0

mov cx,1

mov dx, 1

mov bx,seg buff

mov ds,bx

mov bx,offset buff

int 25h ; Request disk read,

jc error ; Jump if read failed,

add sp, 2 ; Clear stack.

; Error routine goes here.

buff db 512 dup (?)

Section V: System Calls 1423

i6h

.emipt 26H (38) 1.0 and later
Absolute Disk Write

Interrupt 26H provides direct linkage to the MS-DOS BIOS module to write data from a
specified memory buffer to a logical disk sector.

To Call ^ ^ ^
AL = drive number (0 ̂̂ s^drive A, 1 = driv^, and so on)
CX = number of sectors to write

px = starting relative (logical) sector number
D^:BX = segmentioffset of disk transfer area (DTA)

Returns

If operation is successful:

Carry flag is clear.

If operation is not successful:

Carry flag is set.

AX = error code

Programmer's Notes

• when Interrupt 26H returns, the CPU flags originally pushed onto the stack by the
INT 26H instruction are still on the stack. The stack must be cleared by a POPF or
ADD SP,2 instruction to prevent uncontrolled stack growth and to make accessible
any other values that were pushed on the stack before the call to Interrupt 26H.

• Logical sector numbers are zero based and are obtained by numbering each disk sec
tor sequentially from track 0, head 0, sector 1 and continuing until the last sector on
the disk is counted. The head number is incremented before the track number.

Because of interleaving, logically adjacent sectors might not be physically adjacent for
some types of disks.

• The lower byte of the error code (AL) is the same error code that is returned in the
lower byte of DI when an Interrupt 24H is issued. The upper byte (AH) contains one
of the following codes:

Code Meaning

80H Device failed to respond
40H Seek operation failure
20H Controller failure

lOH Data error (bad CRC)

(more)

1424 The MS-DOS Encyclopedia

Interrupt 26H

Code Meaning

08H Direct memory access (DMA) failure
04H Requested sector not found
03H Write-protect fault
02H Bad address mark

OIH Bad command

Warning: Interrupt 26H bypasses the MS-DOS file system. This function must be
used with caution to avoid damaging the disk structure.

Example

Interrupt 26H: Absolute Disk Write

Write the contents of the memory area named buff

into logical sector 3 of drive C.

WARNING; Verbatim use of this code could damage

the file structure of the fixed disk. It is meant

only as a general guide. There is, unfortunately,

no way to give a really safe example of this interrupt.

mov

mov

mov

mov

mov

mov

int

jc

add

al,2

cx, 1

dx, 3

bx,seg buff

ds,bx

bx,offset buff

26h

error

sp,2

Drive C.

Number of sectors.

Beginning sector number.

Address of buffer.

Request disk write.

Jump if write failed.

Clear stack.

; Error routine goes here.

buff db 512 dup (?) ; Data to be written to disk.

Section V: System Calls 1425

Interrupt 27H

Interrupt 27H (39) 1.0 and later
Terminate and Stay Resident

Interrupt 27H terminates execution of the currently executing program but reserves part
or all of its memory so that it will not be overlaid by the next transient program to be
loaded.

To Call

DX = offset of last byte plus 1 (relative to the program segment prefix, or PSP) of program
to be protected

CS = segment address of PSP

Returns

Nothing

Programmer's Notes

• In response to an Interrupt 27H call, MS-DOS takes the following actions:
- Restores the termination vector (Interrupt 22H) from PSP:OOOAH.
- Restores the Control-C vector (Interrupt 23H) from PSPrOOOEH.
- With MS-DOS versions 2.0 and later, restores the critical error handler vector (Inter

rupt 24H) from PSP:0012H.
- Transfers to the termination handler address.

• If the program is returning to COMMAND.COM rather than to another program,
control transfers first to COMMAND.COM's resident portion, which reloads
COMMAND.COM's transient portion (if necessary) and passes it control. If a batch
file is in progress, the next line of the file is then fetched and interpreted; otherwise,
a prompt is issued for the next user command.

• This interrupt is typically used to allow user-written drivers or interrupt handlers to
be loaded as ordinary .COM or .EXE programs and then remain resident. Subsequent
entrance to the code is by means of a hardware or software interrupt.

• The maximum amount of memory that can be reserved with this interrupt is 64 KB.
Therefore, Interrupt 27H should be used only for applications that must run under
MS-DOS versions 1.x.

With versions 2.0 and later, the preferred method to terminate and stay resident is
to use Interrupt 21H Function 31H, which allows the program to reserve more than
64 KB of memory and does not require CS to contain the PSP address.

• Interrupt 27H should not be called by .EXE programs that are loaded into the high
end of memory (that is, linked with the /HIGH switch), because this would reserve
the memory that is ordinarily used by the transient portion of COMMAND.COM. If
COMMAND.COM cannot be reloaded, the system will fail.

1426 The MS-DOS Encyclopedia

Interrupt 27H

Because execution of Interrupt 27H results in the restoration of the terminate routine
(Interrupt 22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors,
it cannot be used to permanently install a user-written critical error handler.
Interrupt 27H does not work correctly when DX contains values in the range FFFIH
through FFFFH. In this case, MS-DOS discards the high bit of the contents of DX,
resulting in 32 KB less resident memory than was actually requested by the program.

Example

Interrupt 27H: Terminate and Stay Resident

Exit and stay resident, reserving enough memory

to protect the program's code and data.

HeHeHe**HeHeHeHeHeHeHeH:HeHeH:HeHeHeHeHeHeH:HeHeHeH!H:H:HeH:H:HeHeHeHeH:HeHeHe*HeH:H:HeHeHeHeHeH:HeHeHeHeHeHe*HeHeHeHeHe*

Start:

mov dx,offset pgm_end ; DX = bytes to reserve,

int 27h ; Terminate, stay resident.

pgm_end equ $

end start

Section V: System Calls 1427

Interrupt 2FH

Interrupt 2FH (47) 2.0 and later
Multiplex Interrupt

Interrupt 2FH with AH = OIH submits a file to the print spooler, removes a file from the
print spooler's queue of pending files, or obtains the status of the printer. Other values for
AH are used by various MS-DOS extensions, such as APPEND.

ToCaU

AH = OIH print spooler call
AL = OOH get installed status

OIH submit file to be printed
02H remove file from print queue
03H cancel all files in queue
04H hold print jobs for status read
05H end hold for status read

IfAL is OIH:

DS:DX = segmentioffset of packet address

IfALis02H:

DS:DX = segmentioffset of ASCIIZ file specification

Returns

If operation is successful:

Carry flag is clear.

If AL was OOH on call:

AL = status:

OOH not installed, OK to install

OIH not installed, not OK to install
FFH installed

If AL was 04H on call:

DX = error count

DSiSI = segmentioffset of print queue

If operation is not successful:

Carry flag is set.

AX = error code:

OIH function invalid

02H file not found

03H path not found

(more)

1428 The MS-DOS Encyclopedia

Interrupt 2FH

04H too many open files
05H access denied

08H queue full
09H spooler busy
OCH name too long
OFH drive invalid

Programmer's Notes

For Subfunction OIH, the packet consists of 5 bytes. The first byte contains the level
(must be zero), the next 4 bytes contain the doubleword address (segment and offset)
of an ASCIIZ file specification. (The filename cannot contain wildcard characters.)
If the file exists, it is added to the end of the print queue.
For Subfunction 02H, wildcard characters (»and ?) are allowed in the file specification,
making it possible to delete multiple files from the print queue with one call.
For Subfunction 04H, the address returned for the print queue points to a series of
filename entries. Each entry in the queue is 64 bytes and contains an ASCIIZ file
specification. The first file specification in the queue is the one currently being
printed. The last slot in the queue has a null (zero) in the first byte.

Example

None

Section V: System Calls 1429

r-

liii®ii«^SlSiliiW|i;s

|flsi^!i||ii||i||

Ifii

■■I

iiiiiiiiiiililiipli
^IBilllB

iiiiiiiBiiiiBiillilBlii®

SiHiiiiii

BliSi

im
PSIiSB^Iiil

- ri-i-K't '

^'p'

, '" ■ '' ' '^■pV,^^fp^i::;,:■
. -^ "■ ^ ■ ■ "ii-S

„ - < -r<, : L->v. f

Si^wfS

ii^i®il^^i6^^^*Siil

i®fS?S^itil*SlP

^ r, . vji '' ' 't
.-:;.p.>?K£l_■ rv'V '■'. '-^i.^ir.tlt.-i-;. -...Ikv;^'lyp^^:s?,"'-{jpi.I'Z,

•, • ■5..- : .-j^i ... I, , ■ v.v.?;,>v.ic-&Ma

|iaiE@E«WSliSi^E

r ̂1-
lliilllP^^Wi«liM^^iii|ip*M

i^5#sS

Appendix A: MS-DOS Version 3 3

Appendix A
MS-DOS Version 3-3

For the MS-DOS user, version 3.3 incorporates some long-awaited capabilities, runs faster
in places, and requires about 9 KB more memory than version 3.2. Its most apparent
changes, however, relate to a new, more flexible method of supporting different national
languages. For the MS-DOS programmer, version 3.3 offers several enhancements in the
areas of file management and internationalization support. This appendix offers an over
view of these new features.

Version 3.3 User Considerations

MS-DOS version 3.3 has introduced several changes at the user level. A new external com
mand, FASTOPEN, speeds up the filing system by keeping file locations in memory. A new
batch command, CALL, lets a batch file call another batch file and, when that file termi
nates, continue execution with the next command in the original batch file rather than
return to MS-DOS as in previous versions. Two commands previously present only in
PC-DOS, COMP and SELECT, have been added to MS-DOS. Five commands have addi
tional capabilities: APPEND, ATTRIB, BACKUP, FDISK, and MODE. In addition, the TIME
and DATE commands automatically set the CMOS clock-calendar on the IBM PC/AT and
PS/2 machines, making use of the separate SETUP program unnecessary for these func
tions. Changes to the national language support involve four new commands, three new
options to the MODE command, two new or modified system information files, and two
new device drivers. Each of these new or modified commands is discussed individually
below.

The FASTOPEN command

when MS-DOS searches for a program file, it searches each directory specified in the
PATH search path. A lengthy path that has to search many levels of a directory structure
can make this a slow process. The FASTOPEN command loads a terminate-and-stay-
resident (TSR) program that caches the locations of the most recently accessed directories
and files on one or more fixed disks in the system. The number of files and directories to
be cached is under the user's control; the default is 10. When it needs a file, MS-DOS looks
first in the FASTOPEN list; if the file is found in the list, MS-DOS can bypass inspection of
the search path specified by PATH. When the FASTOPEN list is filled and a new file is
opened, the new file replaces the least recently used file on the FASTOPEN list.

The improvement in file-system performance depends on the number of open files and
the frequency of file access. The FASTOPEN command can be entered only once during a
session and, if desired, can be placed in the AUTOEXEC.BAT file.

Appendixes 1433

Appendix A: MS-DOS Version 3.3

The FASTOPEN command has two parameters:

FASTOPEN drive'X=entries][...]

The drive parameter is the drive letter, followed by a colon, of a fixed disk for which
FASTOPEN is to keep track of the most recently accessed directories and files. More than
one drive can be specified by separating the drive identifiers with spaces; the maximum is
four drives. A drive associated with a JOIN, SUBST, or ASSIGN command cannot be speci
fied, nor can a drive assigned to a network.

The optional entries parameter is the number of directory entries FASTOPEN is to keep in
memory. The value of entries can be from 10 through 999; the default is 34. If more than
one entries value is specified, their sum cannot exceed 999. Each entry subtracts 40 bytes
from the RAM normally available to run application programs.

Examples: The following command tells MS-DOS to keep track of the last 50 directories
and files on drive C:

OFASTOPEN C:=50 <Enter>

The next command tells MS-DOS to keep track of the last 34 files on drives C and D:

OFASTOPEN C: D: <Enter>

Changes to batch-file processing

Batch-file processing also gains power in MS-DOS version 3.3. The user can now suppress
the echo of all batch commands and call one batch file from another without terminating
the first batch file.

With MS-DOS version 3.3, any line in a batch file preceded by @ is not echoed to the
screen when the batch file is executed.

CALL

A batch file no longer needs to load an additional copy of COMMAND.COM in order to
execute another batch file and return control to the calling batch file. The CALL command
executes a batch file and returns to the next command in the calling batch file.

CALL commands can be nested. If an exit condition is provided, a batch file can even call
itself; however, the input or output of a called batch file cannot be redirected or piped.

The CALL command has two parameters:

CALL batch-file [parameters]

The batch-file parameter is the name of the batch file to be executed. The file must be in
the current drive and directory or in a drive and/or directory specified in the command
path.

1434 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

The optional parameters parameter represents any parameters that may be required by
batch-file.

Example: Suppose the batch file SORTFILE.BAT accepts one parameter. The following
command calls SORTFILE.BAT, specifying NAMES.TXT as the parameter:

CALL SORTFILE NAMES.TXT

If NAMES.TXT was specified as a command-line parameter to the calling batch file, the
CALL command could be

CALL SORTFILE %1

Commands from PC-DOS

Two commands have been added to MS-DOS from earlier versions of PC-DOS: COM?,

present in PC-DOS version 1.0, and SELECT, present in PC-DOS version 2.0.

COMP

The COMP command compares two files or sets of files and reports any differences
encountered. EC, a similar file-comparison command present in MS-DOS versions 2.0 and
later, is still included with MS-DOS 3-3. See USER COMMANDS: comp; fc.

Syntax for the COMP command is

COMP [drive'][filenamel] [driveMfilename2]

The optional drive parameter is the drive letter, followed by a colon, of the drive contain
ing the file to be compared. The filenamel parameter is the name and location of the file
to compare to filename^, filename2 is the name and location of the file to be compared
against. Both filenames can be preceded by a path; wildcard characters are permitted in
either filename.

Example: The following command tells MS-DOS to compare the file NEWFILE.TXT in the
current drive and directory to the file OLDFILE.TXT in the \ ARCHIVE directory on drive
D and report any differences encountered:

. C>COMP NEWFILE.TXT D:\ARCHIVE\OLDFILE.TXT <Enter>

SELECT

The SELECT command creates a system disk with the time format, date format, and key
board layout configured for a selected country. The syntax for SELECT is

SELECT [[drivel-] [drive2][path]] [country\[keyboard]

The optional drivel parameter is the drive containing a disk with the MS-DOS operating-
system files, the FORMAT program, and the country configuration files. The drive2
parameter is the drive containing the disk to be formatted with the country-specific infor
mation; this drive specifier can be followed by a path. The country parameter is a code

Appendixes 1435

Appendix A: MS-DOS Version 3 3

that selects the date and time format; the information is taken from the COUNTRY.SYS
system file. The keyboard parameter is a code that selects the desired keyboard layout.
See KEYB below.

The SELECT command

• Formats the target disk.
• Creates CONFIG.SYS and AUTOEXEC.BAT files on the target disk.
• Copies the contents of the source disk to the destination disk.

Example: The following command, which assumes drive A contains a valid system disk
and drive B contains the disk to be formatted, creates a bootable system disk that includes
country-specific information and keyboard layout for Germany:

OSELECT A: B: 049 GR <Enter>

Enhanced commands

Several existing MS-DOS user commands have been given expanded capabilities in
version 3-3. These are presented alphabetically in the next few pages. See USER COM
MANDS: APPEND; ATTRIB; BACKUP; FDISK; MODE.

APPEND

The APPEND command specifies a search path for data files—files whose extensions are
neither .COM, .EXE, nor .BAT—similar to the command path specified by the PATH com
mand, which searches only for executable files with those extensions. APPEND has three
forms, depending on whether it is being entered for the first time. When it is entered the
first time, the APPEND command now has two optional switches:

APPEND [/E] [/X]

The /E switch makes the data path part of the environment, like the command path. The
data path can then be displayed or changed with both the SET and APPEND commands
and is inherited by child processes. (However, any changes made to the data path by the
child process are lost when the child returns to its parent process.)

The /X switch causes calls to the Find First File functions (Interrupt 21H Functions IIH and
4EH) and the EXEC function (Interrupt 21H Function 4BH) to search the data path. If/X is
not specified, only Interrupt 21H Function OFH (Open File with FCB), Interrupt 21H Func
tion 23H (Get File Size), and Interrupt 21H Function 3DH (Open File with Handle) system
calls search the data path.

If either /X or /E is specified the first time APPEND is entered, a pathname cannot be
included.

Subsequent uses of the command must take the form

APPEND [[drive']path] [\[drive{\path ...]

or

APPEND;

1436 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

The path parameter is the name of a directory that is to be made part of the data path. The
user can specify as many directory names as will fit in the 128 characters of the command
line. Entries must be separated by semicolons. If APPEND is followed only by a semicolon,
any previous APPEND paths are deleted.

Example: The following two APPEND commands make the data path part of the environ
ment and put the directories C:\WORD\PROPOSAL, C:\WORD\REPORTS, and
C:\123\BUDGET in the data path:

OAPPEND /E <Enter>

C>APPEND C:\WORD\PROPOSAL;C:\WORD\REPORTS;C:\123\BUDGET <Enter>

Because the data path usually involves frequently used directories, the APPEND command
ordinarily is placed in the AUTOEXEC.BAT file.

Note: APPEND is a new command in PC-DOS version 3.3.

ATTRIB

The /S switch has been added to the ATTRIB command so that any attribute changes can
be applied to all files in subdirectories contained in the specified directory.

Example: The following command sets the read-only attribute of all files in the directory
C: \ DOS and in all its subdirectories:

OATTRIB +R C:/DOS /S <Enter>

BACKUP

A formatting parameter has been added to the BACKUP command in MS-DOS version 3.3.
The /F switch tells MS-DOS to format the backup diskette if it hasn't been formatted. The
/F switch formats the backup diskette to the maximum capacity of the backup drive, so a
disk of lower capacity, such as a 360 KB diskette in a 1.2M drive, should not be used. If this
switch is used, FORMAT.COM must be available in the current drive and directory or in
one of the directories named in the environment's PATH string.

Performance of the BACKUP command has also been improved. Instead of storing each
file separately on the backup disk, BACKUP stores only two files: BACKUP, nnw, which
contains all the backed-up files, and CONTROL, nwn, which contains the pathnames of the
backed-up files.

FDISK

FDISK can now create a new type of MS-DOS partition called an extended partition on a
fixed disk. An extended partition can contain multiple logical drives and allows the use of
very large fixed disks. Each logical drive is still limited to 32 MB.

An extended partition is not bootable. In order for the fixed disk to be bootable, it must
also contain a primary MS-DOS partition that has been formatted using the FORMAT com
mand with the /S switch so that it contains a system boot record and the operating-system
files.

Appendixes 1437

Appendix A: MS-E)OS Version 3.3

MODE

The MODE command now supports two additional serial ports (COM3 and COM4) and
increases the maximum serial transmission rate to 19,200 baud.

Some additional options have been added to MODE to support code-page switching. See
MODE Command Changes below.

New national language support

The new national language support in MS-DOS version 3.3 replaces the methods used in
previous versions to change the keyboard layout and the display and printer character sets
so that more than one language could be used. These changes are extensive: four new or
modified system files, three new commands, four new options for the MODE command, a
new parameter for the GRAFTABL command, and a new parameter for the COUNTRY and
DEVICE configuration commands.

Code pages and code-page switching

The key element of the new national language support is the code page, a table of 256
character correspondence codes. MS-DOS recognizes both a hardware code page, which is
the character correspondence table built into a device, and a prepared code page, which is
an alternate character correspondence table available through MS-DOS. The current code
page is the code page most recently selected.

The hardware code page for a device is determined by the country for which the device
was manufactured. The user selects a prepared code page, from a list of five included with
MS-DOS version 3-3, by using the new CP PREPARE option of the MODE command. See
MODE Command Changes below.

The new national language support is often referred to as code-page switching because,
after the devices and code pages required by the system have been defined, the only com
mands the user must deal with simply switch from one code page to another. In order to
use the new national language support, device drivers must support code-page switching
and the devices must be able to display the full character sets.

Code pages are numbered. The identifying numbers have no relationship to the country
code introduced with previous versions of MS-DOS and used by the COUNTRY configura
tion command. Five code pages are included with version 3.3:

Page Number Configuration

437 United States

850 Multilingual
860 Portugal
863 Canadian French
865 Norway/Denmark

1438 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3-3

Code page 437 is the character correspondence table used in previous versions of
MS-DOS. Its character set supports United States English and includes many accented
characters used in other languages. It is the hardware code page for most countries.

Code page 850 replaces two of the four box-drawing sets and some of the mathematical
symbols in code page 437 with additional accented characters. It supports English and
most Latin-based European languages.

Code page 860 is for Portuguese, code page 863 is for Canadian French, and code page 865
is for Norwegian/Danish. These pages are the hardware code pages for the specified
countries.

Setting up the system for code-page switching

Although several commands are required to manage national language support, the
process is fairly straightforward. Setting up the system requires the following:

• A DEVICE configuration command in CONFIG.SYS to load a driver for each device
that supports code-page switching.

• An NLSFUNC command in AUTOEXEC.BAT to load the memory-resident national
language support functions.

• A MODE CP PREPARE command in AUTOEXEC.BAT to prepare code pages for each
device that supports code-page switching.

• A CHCP command in AUTOEXEC.BAT to select the initial code page.
• Optionally, a KEYB command in AUTOEXEC.BAT to select the initial keyboard

layout.

After starting the system with these commands in CONFIG.SYS and AUTOEXEC.BAT, only
a MODE CP SELECT command is required to change to a different language during an
MS-DOS session.

The COUNTRY configuration command is still used to control country-specific charac
teristics such as the time and date format and currency symbol. An added parameter in the
COUNTRY command lets the user also specify a code page. See Modified National Lan
guage Support Commands below.

The system files

MS-DOS version 3.3 includes four system files that support the national language functions:
two device drivers and two system information files.

The device drivers are PRINTER.SYS and DISPLAY.SYS. These drivers implement code-
page switching for the IBM Proprinter Model 4201 and Quietwriter III Model 5202 printers
and for the EGA, PC Convertible LCD, and PS/2 display adapters. They also support all
display adapters compatible with the EGA.

The information files are COUNTRYSYS, which contains information such as time and
date formats and currency symbols, and KEYBOARD.SYS, which contains the scan-code-
to-ASCII translation tables for the various keyboard layouts.

Appendixes 1439

Appendix A: MS-DOS Version 3 3

The new support commands

The new national language support in MS-DOS version 3.3 adds three MS-DOS com
mands: Change Code Page (CHCP), Keyboard (KEYB), and National Language Support
Functions (NLSFUNC).

CHCP

The Change Code Page (CHCP) command tells MS-DOS which code page to use for all
devices that support code-page switching.

The NLSFUNC command must be executed before the CHCP command can be used.

CHCP is a system-wide command: It specifies the code page used by MS-DOS and each
device attached to the system that supports code-page switching. The CP SELECT option
of the MODE command, on the other hand, specifies the code page for a single device.

If the code page specified with CHCP is not compatible with a device, CHCP responds

Code page nnn not prepared for all devices

If the code page specified with CHCP was not first identified with the CP PREPARE option
of the MODE command, CHCP responds

Code page nnn not prepared for system

The CHCP command has one optional parameter:

CHCP [code-page]

The code-page parameter is the three-digit number that specifies the code page MS-DOS
is to use. If code-page is omitted, CHCP displays the current MS-DOS code page.

Examples: The following command changes the system code page to 850:

C>CHCP 850 <Enter>

If the current code page is 850 and CHCP is entered without parameters, MS-DOS
responds:

Active code page: 850

KEYB

The Keyboard (KEYB) command selects a keyboard layout by changing the scan-code-to-
ASCII translation table used by the keyboard driver. It replaces the KEYBxx commands
used in earlier versions of MS-DOS to select keyboard layouts.

The first time KEYB is executed, it loads the memory-resident keyboard driver and the
translation table, thereby increasing the size of MS-DOS by slightly more than 7 KB. Subse
quent executions simply load a different translation table, which replaces the previously
loaded translation table and accommodates a different country-specific keyboard layout.

The KEYB command has three optional parameters:

KEYB [country[Xcode-page\kbdfile]]

1440 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3 3

The country parameter is one of the following two-character country codes:

Country Code Country Code

Australia US Netherlands NL

Belgium BE Norway NO

Canada Portugal PO

English US Spain SP

French CF Sweden sv

Denmark DK Switzerland

Finland SU French SF

France FR German SG

Germany GR United Kingdom UK

Italy IT United States US

Latin America LA

The code-page parameter is the three-digit number that specifies the code page defining
the character set that MS-DOS is to use.

If the specified country code and code page aren't compatible, KEYB responds:

Code page requested nnn is not valid for given keyboard code

If KEYB is entered with no parameters, MS-DOS displays the currently active keyboard
country code, keyboard code page, and console device code page.

Examples: The following command selects the French keyboard layout, code page 850,
and the keyboard definition file named C:\DOS\KEYBOARD.SYS:

OKEYB FR, 850, C:\DOS\KEYBOARD.SYS <Enter>

If the code page is omitted but the keyboard definition file is specified, the comma must
be included to show the missing parameter:

OKEYB FR,, C:\DOS\KEYBOARD.SYS <Enter>

NLSFUNC

The National Language Support Function (NLSFUNC) command loads a memory-resident
program that implements code-page switching. It also allows the user to name the file that
contains country-specific information—such as date format, time format, and currency
symbol— if there is no COUNTRY configuration command in CONFIG.SYS. NLSFUNC
must be used before the Change Code Page (CHCP) command.

If national language support is needed for every session, NLSFUNC should be placed in the
AUTOEXEC.BAT file.

The NLSFUNC command has one optional parameter:

NLSFUNC [country-file]

Appendixes l44l

Appendix A: MS-DOS Version 33

The country-file parameter is the name of the country information file (in most imple
mentations of MS-DOS, COUNTRY.SYS). If country-file is omitted, MS-DOS defaults to the
name of the country information file specified in the COUNTRY configuration command
in CONFIG.SYS; if there is no COUNTRY configuration command in CONFIG.SYS,
MS-DOS looks for a file named COUNTRY.SYS in the root directory of the current drive.

Example: The following command loads the NLSFUNC program and specifies
C:\DOS\COUNTRY.SYS as the country information file:

ONLSFUNC C:\DOS\COUNTRY.SYS <Enter>

The modified support commands

The new national language support changes two configuration commands—COUNTRY
and DEVICE—and two general MS-DOS commands—GRAFTABL and MODE.

COUNTRY

The COUNTRY configuration command now has three parameters:

COU^T¥Y=country-codeXcode-page]Xcountry-file]

The country-code parameter is one of the following three-digit country codes (identical to
the specified country's international telephone prefix):

Country Code Country Code

Arabia 785 Latin America 003

Australia 061 Netherlands 031

Belgium 032 Norway 047

Canada Portugal 351

English 001 Spain 034

French 002 Sweden 046

Denmark 045 Switzerland

Finland 358 French 041

France 033 German 041

Germany 049 United Kingdom 044

Israel 972 United States 001

Italy 039

The code-page parameter is the three-digit number that specifies the code page defining
the character set that MS-DOS is to use.

The country-file parameter is the name of the file that contains the country-specific
information; the name of the file can be preceded by a drive and/or path. If country-file is
omitted, MS-DOS defaults to the file COUNTRY.SYS, which it looks for in the root direc
tory of the current drive.

1442 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

The COUNTRY command is not required; if it is not included in CONFIG.SYS, MS-DOS
defaults to country 001 (US), code page 437, and country information file COUNTRYSYS in
the root directory of the current drive.

Example: The following CONFIG.SYS command specifies the French country code, code
page 850, and C:\DOS\COUNTRY.SYS as the country information file:

COUNTRY=033,850,C:\DOS\COUNTRY.SYS

DEVICE

Two options have been added to the DEVICE configuration command that allow the user
to specify the display and printer drivers that support code-page switching.

The display driver that supports code-page switching is DISPLAY.SYS. It supports the IBM
Enhanced Graphics Adapter (EGA), the IBM Personal System/2 display adapter, and all dis
play adapters compatible with either of these. The Monochrome Display Adapter (MDA)
and the Color/Graphics Adapter (CGA) do not support code-page switching.

If the ANSI.SYS display driver is also used, the DEVICE command that defines it must pre
cede the DEVICE command that defines DISPLAY.SYS.

When used to specify the display driver, the DEVICE command has five parameters:

Y^ENKE^driver CO^^itypelXhwcjAl^prepcpl.sub-foritsW)

The driver parameter is the name of the file that contains the display driver; the filename
can be preceded by a drive and/or path. If driver is omitted, MS-DOS defaults to the file
DISPLAY.SYS, which it looks for in the root directory of the current drive.

The type parameter defines the type of display adapter attached to the system. It must be
one of the following:

Code Adapter

MONO Monochrome display/printer adapter
CGA Color/graphics adapter
EGA Enhanced graphics adapter or IBM Personal System/2 display adapter
LCD IBM PC Convertible liquid crystal display

The hwcp parameter is the three-digit number that specifies the hardware code page
supported by the display adapter:

Code Configuration

437 United States (default)

850 Multilingual
860 Portugal
863 Canadian French
865 Norway/Denmark

Appendixes 1443

Appendix A: MS-DOS Version 3.3

The prepcp parameter is the number of additional code pages the display can support.
These are referred to as prepared code pages and must be defined by the CP PREPARE
option of the MODE command. If type is either MONO or CGA, prepcp must be 0; the
default is 0. If type is either EGA or LCD, prepcp can be any value from 1 through 12; the
default is 1. If hwcp is 437, prepcp should be allowed to default to 1; if hwcp is not 437,
prepcp should be set to 2.

The sub-fonts parameter is the number of subfonts supported for each code page. If type
is either MONO or CGA, sub-fonts must be 0; the default is 0. If type is EGA, sub-fonts can
be 1 or 2; the default is 2. If type is LCD, sub-fonts can be 1 or 2; the default is 1.

Example: The following CONFIG.SYS command specifies C:\DOS\DISPLAY.SYS as the
display driver for an EGA whose hardware code page is 437. The parameter for prepared
code pages is allowed to default to 1 and the parameter for subfonts is allowed to default
to 2.

DEVICE=C:\DOS\DISPLAY.SYS CON=(EGA,437)

The printer driver that supports code-page switching is PRINTER.SYS. It supports the IBM
Proprinter Model 4201, the IBM Quietwriter III Printer Model 5202, and all printers com
patible with either of these.

When used to specify the printer driver, the DEVICE configuration command has five
parameters:

iyEWlCE= driver port^(jype[Xhwc]^[,prepcp]])

The driver parameter is the name of the file that contains the printer driver; the filename
can be preceded by a drive and/or path. If driver is omitted, MS-DOS defaults to the file
PRINTER.SYS, which it looks for in the root directory of the current drive.

The port parameter is the MS-DOS device name of the printer port being defined: LPTl
(or PRN), LPT2, or LPT3. A different set of type, hwcp, and prepcp parameters can be spec
ified for each of the three printer ports.

The type parameter defines the type of printer attached to the printer port. It must be one
of the following:

Code Printer

4201 IBM Proprinter Model 4201
5202 IBM Quietwriter III Printer Model 5202

The hwcp parameter is a three-digit number that specifies the hardware code page sup
ported by the hardware:

1444 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

Code Configuration

437 United States (default)

850 Multilingual
860 Portugal
863 Canadian French

865 Norway/Denmark

If type is 5202, two hardware code-page numbers can be specified, enclosed in paren
theses and separated by a comma. If two hardware code pages are specified, prepcp must
be 0.

The prepcp parameter is the number of additional code pages (referred to as prepared
code pages) for which MS-DOS must reserve buffer space; its value can be from 0 through
12. These additional code pages must be defined by the CP PREPARE option of the MODE
command. If hwcp is 437, prepcp should be set to 1; if hwcp is not 437 and only one hwcp
value is specified, prepcp should be set to 2.

Examples: The following CONFIG.SYS command defines C:\DOS\PRINTER.SYS as the
printer driver for the PRN device. The printer is an IBM Proprinter Model 4201 whose hard
ware code page is 437, and MS-DOS is instructed to allow for one prepared code page:

DEVICE=C:\DOS\PRINTER.SYS PRN=(4201,437,1)

The next CONFIG.SYS command defines C:\DOS\PRINTER.SYS as the printer driver for
ports LPTl and LPT2. The printer attached to LPTl is the same as in the previous com
mand; the printer attached to LPT2 is an IBM Quietwriter III Printer Model 5202 with two
hardware code pages (437 and 850). For the second printer, MS-DOS is instructed to allow
for no prepared code pages.

DEVICE=C:\DOS\PRINTER.SYS LPTl=(4201,437,1) LPT2=(5202,(437,850),0)

GRAFTABL

The GRAFTABL command now has two forms:

GRAFTABL [code-page]

or

GRAFTABL /STATUS

The first form of the command loads a code page for the color/graphics adapter (CGA) so
that its character set matches that used by MS-DOS and other devices when displaying the
upper 128 characters. The code-page parameter is the three-digit number that specifies the
code page defining the character set that GRAFTABL is to use.

The /STATUS switch causes GRAFTABL to display the name of the graphics character set
table currently in use.

Appendixes 1445

Appendix A: MS-DOS Version 3.3

MODE

National language support adds four options to the MODE command:

Option Action

CODEPAGE Displays the code pages available and active.
CODEPAGE PREPARE Defines the code pages selected for use.
CODEPAGE REFRESH Restores code-page contents damaged by hardware error or

other causes.

CODEPAGE SELECT Selects a code page for a particular device.

(CODEPAGE can be abbreviated to CP in the command line.)

When used to display the status of the code pages, the MODE command has one
parameter:

MODE device CP

The device parameter is the name of the device whose code-page status is to be dis
played. It can be CON, PRN, LPTl, LPT2, or LPT3.

Example: The following command displays the status of the console device:

OMODE CON CP <Enter>

When used to define the code page or pages to be used with a device, the MODE com
mand has three parameters:

MODE device CP YREPKRE^icode-pagefont-fil^

The device parameter is the name of the device for which the code page or pages are to be
prepared. It can be CON, PRN, LPTl, LPT2, or LPT3.

The code-page parameter is one or more of the three-digit numbers, enclosed in parenthe
ses, that specify the code page to be used with device. If more than one code-page number
is specified, the numbers must be separated with spaces.

The font-file parameter is the name of the code-page file that contains the font informa
tion for device. The files provided for IBM devices include

File Device

EGA.CPI IBM Enhanced Graphics Adapter (EGA) and EGA-compatible display
adapters

4201.CPI IBM Proprinter Model 4201
5202.CPI IBM Quietwriter III Printer Model 5202
LCD.CPI IBM Convertible liquid crystal display

1446 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

Example: Assume the display is attached to an EGA. The following command prepares
code pages 437 and 850 for the console, specifying C:\DOS\EGA.CPI as the code-page
information file:

OMODE CON CP PREPARE= ((437 850) C:\DOS\EGA.CPI) <Enter>

When used to select a code page for a device, the MODE command has two parameters:

MODE device CP SE1ECT= code-page

The device parameter is the name of the device for which the code page is to be selected.
Permissible values are CON, PRN, LPTl, LPT2, and LPT3.

The code-page parameter is the three-digit number that specifies the code page to be used
with device.

Example: The following command selects code page 850 for the console:

OMODE CON CP SELECT=850 <Enter>

Setting up code-page switching for an EGA-only system

Figure A-1 shows the commands required to implement the new national language support
for a system that includes only a display attached to an EGA or EGA-compatible adapter.
The hardware code page of the EGA is 437 (United States English) and the system is set up
to handle code pages 437 and 850. All MS-DOS files are assumed to be in the directory
\DOS on the disk in drive C. If the ANSI.SYS driver is not used, the configuration com
mand DEVICE=C:\DOS\ ANSI.SYS should be omitted from CONFIG.SYS; if ANSI.SYS is
used, however, the DEVICE configuration command that defines it must precede the
DEVICE configuration command that defines DISPLAY.SYS.

Commands in CONFIG.SYS:

COUNTRY=001,437,C:\DOS\COUNTRY.SYS

DEVICE=C:\DOS\ANSI.SYS

DEVICE=C:\DISPLAY.SYS CON=(EGA,437,1)

Commands in AUTOEXEC.BAT:

NLSFUNC C;\DOS\COUNTRY.SYS

MODE CON CP PREPARE=((437 850) C;\DOS\EGA.CPI)

MODE CON CP SELECT=437

KEYB US,437,C:\DOS\KEYBOARD.SYS

Figure A-1. Setup commands for a system with an EGA only.

When the system is started, code page 437 is selected for MS-DOS, the display, and the
keyboard. To change to code page 850 during the session, simply type

OCHCP 850 <Enter>

Appendixes 1447

Appendix A: MS-DOS Version 3 3

Setting up code-page switching for a PS/2 and printer

Figure A-2 shows the commands required to implement the new national language sup
port for an IBM Personal System/2 or compatible system that includes both a PS/2, EGA, or
EGA-compatible display adapter and an IBM Proprinter Model 4201. The hardware code
page of both devices is 437 (United States English) and the system is set up to handle code
pages 437 and 850.

Conunands in CONFIG.SYS:

COUNTRY=0 01 ,437,0:\DOS\COUNTRY.SYS

DEVICE=C:\DOS\ANSI.SYS

DEVICE=C:\DISPLAY.SYS CON=(EGA,437,1)

DEVICE=C:\DOS\PRINTER.SYS PRN=(4201,437,1)

Commands in AUTOEXEC.BAT:

NLSFUNC C:\DOS\COUNTRY.SYS

MODE CON CP PREPARE=((437 850) C:\DOS\EGA.CPI)

MODE PRN CP PREPARE=((437 850) C:\DOS\4202.CPI)

MODE CON CP SELECT=850

MODE PRN CP SELECT=850

KEYB US,850,C:\DOS\KEYBOARD.SYS

Figure A-2. Setup commandsfor a PS/2 with display andprinter.

Again, all MS-DOS files are assumed to be in the directory \DOS on the disk in drive C. If
the ANSI.SYS driver is not used, the configuration command DEVICE=C:\DOS\ ANSI.SYS
should be omitted from CONFIG.SYS; if ANSI.SYS is used, however, the DEVICE configur
ation command that defines it must precede the DEVICE configuration command that
defines DISPLAY.SYS.

Version 3.3 Programming Considerations

The changes introduced in MS-DOS version 3.3 that are of primary interest to the pro
grammer include

• New Interrupt 21H function calls for file management and internationalization support
• An extension to the definition of the MS-DOS lOCTL function for code-page switch

ing, plus the addition of the underlying device-driver support
• Support for extended MS-DOS partitions on fixed disks

Each of these areas is discussed in detail below.

New file-management functions

MS-DOS version 3.3 includes two new Interrupt 21H file-management functions: Set Han
dle Count (Function 67H) and Commit File (Function 68H).

1448 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

Set Handle Count

The Set Handle Count function (Interrupt 21H Function 67H) allows a single process
to have more than 20 handles for files or devices open simultaneously. Function 67H is
invoked by issuing a software Interrupt 21H with

AH =67H

BX = number of desired handles

On return,

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code

For each process, the operating system maintains a table that relates handle numbers for
the process to MS-DOS's internal global table for all open files in the system. In MS-DOS
versions 3 0 and later, the per-process table is ordinarily stored within the reserved area of
the program segment prefix (PSP) and has only enough room for 20 handle entries. If 20 or
fewer handles are requested in register BX, Function 67H takes no action and returns a
success signal. If more than 20 handles are requested, however. Function 67H allocates on
behalf of the calling program a new block of memory that is large enough to hold the
expanded table of handle numbers and then copies the process's old handle table to the
new table. Because the function will fail if the system does not have sufficient free memory
to allocate the new block, most programs need to make a call to Interrupt 21H Function
4AH (Resize Memory Block) to "shrink" their initial memory block allocations before call
ing Function 67H.

Function 67H does not fail if the number requested is larger than the available entries in
the system's global table for file and device handles. However, a subsequent attempt to
open a file or device or to create a new file will fail if all the entries in the system's global
file table are in use, even if the requesting process has not used up all its own handles.
(The size of the global table is controlled by the FILES entry in the CONFIG.SYS file. See
USER COMMANDS: config.sys: files; PROGRAMMING IN THE MS-DOS ENVIRON
MENT: Programming for ms-dos: File and Record Management.)

Example: Set the maximum handle count for the current process to 30, so that the process
can have as many as 25 files or devices open simultaneously (5 of the handles are already
expended by the MS-DOS standard devices when the process starts up). Note that a
FILES=30 (or greater value) entry in the CONFIG.SYS file also is required for the process
to successfully open 30 files or devices.

Appendixes 1449

Appendix A: MS-DOS Version 3.3

mov ah,67h ; Function 67H = set handle count

mov bx,30 ; Maximum number of handles.

int 21h ; Transfer to MS-DOS.

jc error ; Jump if function failed.

Commit File

The Commit File function (Interrupt 21H Function 68H) forces all data in MS-DOS's inter
nal buffers that is associated with a given handle to be written to disk and forces the corre
sponding disk directory and file allocation table (FAT) information to be updated. By
calling this function at appropriate points within its execution, a program can ensure that
newly entered data will not be lost if there is a power failure, if the program crashes, or if
the user fails to terminate the program properly before turning off the machine. Function
68H is called by issuing a software Interrupt 21H with

AH =68H

BX = handle for previously opened file.

On return.

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code

The effect of Function 68H is equivalent to closing and reopening the file or to duplicating
a file handle with Interrupt 21H Function 45H (Duplicate File Handle) and then closing the
duplicate. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming for
MS-DOS: File and Record Management. However, Function 68H has the advantages that the
application will not lose control of the file (as could happen with the close-open sequence
in a networking environment) and that it will not fail because of a lack of handles (as the
duplicate handle method might).

Note: Function 68H operations requested on a handle associated with a character device
return a success flag but have no effect.

Example: Assume that the file MYFILE.DAT has been opened previously and that the han
dle for the file is stored in the variable fhandle. Call Function 68H to ensure that any data
in MS-DOS's internal buffers associated with the handle is written out to disk and that the

directory and FAT are up-to-date.

1450 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3 3

fname db

fhandle dw

mov

mov

int

jc

'MYFILE.DAT',0

ah,68h

bx,fhandle

21h

error

ASCIIZ filename.

Handle from Open operation.

Function 68H = commit file.

Handle from previous open.

Transfer to MS-DOS.

Jump if function failed.

New internationalization support functions

MS-DOS version 3.3 includes two new Interrupt 21H internationalization support func
tions: Get Extended Country Information (Function 65H) and Select Code Page (Function
66H).

Get Extended Country Information

The Get Extended Country Information function (Interrupt 21H Function 65H) returns a
superset of the internationalization information obtained with Interrupt 21H Function 38H
(Get/Set Current Country). Function 65H is called by issuing a software Interrupt 21H with

AH = 65H

AL = information ID code:

OIH get general internationalization information
02H get pointer to uppercase table
04H get pointer to filename uppercase table
06H get pointer to collating sequence table

BX = code page of interest (active CON device = -1)
CX = length of buffer to receive information (error returned if less than 5)
DX = country ID (default = -1)
ES:DI = address of buffer to receive information

On return,

If function is successful:

Carry flag is clear.

Requested data is in calling program's buffer.

If function is not successful:

Carry flag is set.

AX = error code

Function 65H may fail if either the country code or the code-page number is invalid or if
the code page does not match the country code. If the buffer to receive the information is
at least 5 bytes but is too short for the requested information, the data is truncated and no
error is returned.

Appendixes 1451

Appendix A: MS-DOS Version 3-3

The format of the data returned by Subfunction OIH in the calling program's buffer is

Field Size

Information ID code (OIH) Byte

Length of following buffer (38 or less) Word

Country ID Word

Code-page number Word

Date format Word

Currency symbol 5 bytes
Thousands separator Word

Decimal separator Word

Date separator Word

Time separator Word

Currency format flags Byte

Digits in currency Byte

Time format Byte

Monocase routine entry point Doubleword

Data list separator Word

Reserved 10 bytes

See SYSTEM CALLS: Interrupt 21h: Function38H.

The format of the data returned by Subfunctions 02H, 04H, and 06H is

Field Size

Information ID code (02H, 04H, or 06H) Byte
Pointer to table Doubleword

The uppercase and filename uppercase tables are 130 bytes. The first 2 bytes contain the
size of the table; the subsequent 128 bytes contain the uppercase equivalents, if any, for
character codes BOH through OFFH. The main use of these tables is to map accented or
otherwise modified vowels to their plain vowel equivalents. Text translated using these
tables can be sent to devices that do not support the IBM graphics character set or can be
used to create filenames that do not require a special keyboard configuration for entry.

The collating table is 258 bytes. The first 2 bytes contain the table length and the next 256
bytes contain the values to be used for the corresponding character codes (O-OFFH) dur
ing a sort operation. Among other things, this table maps uppercase and lowercase ASCII
characters to the same collating codes (so that sorts will be case insensitive) and maps
accented vowels to their plain vowel equivalents.

1452 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

Note: In some cases, a truncated translation table might be presented to the program by
MS-DOS. Applications should always check the length specified at the beginning of the
table to be sure the table contains a translation code for the character of interest.

Example: Obtain the extended country information associated with the default country
and code page 437.

buffer db 41 dup (0) Receives country information

mov ax,6501h ; Function = get extended info

mov bx,437 Code page.

mov cx,41 ; Length of buffer.

mov dx,-1 ; Default country.

mov di,seg buffer ; ES:DI = buffer address.

mov es, di

mov di,offset buffer

int 21h Transfer to MS-DOS.

jc error ; Jump if function failed.

In this case, MS-DOS fills the following extended country information:

buffer db 1 Information ID code

dw 38 Length of following buffer

dw 1 Country ID (USA)

dw 437 Code-page number

dw 0 Date format

db

o

o

o

o

0<-

Currency symbol

db Thousands separator

db '.',0 Decimal separator

db •-',0 Date separator

db •:',0 Time separator

db 0 Currency format flags

db 2 Digits in currency

db 0 Time format

dd 026ah:176ch Monocase routine entry point

db '/ 'rO Data list separator

db 10 dup (0) Reserved

Example: Obtain the pointer to the uppercase table associated with the default country
and code page 437.

buffer db 5 dup (0) Receives pointer information.

ax,6502h Function = get pointer to

uppercase table.

(more)

Appendixes 1453

Appendix A: MS-DOS Version 3-3

mov bx,437 Code page.

mov cx,5 ; Length of buffer.

mov dx,-1 ; Default country.

mov di,seg buffer ; ES:DI = buffer address.

mov as, di

mov di,offset buffer

int 21h Transfer to MS-DOS.

jc error ; Jump if function failed

In this case, MS-DOS fills the following values into the buffer:

buffer db

dw

dw

2

0204h

1140h

Information ID code

Offset of uppercase table

Segment of uppercase table

The table at 1140:0204H contains the following data:

0 1 2 3 4 5 6 7 8 9 A B C D E F 01234567B9ABCDEF

1140:0200 80 00 80 9A 45 41 BE 41 BF 80 45 45 EA.A..EE

1140:0210 45 49 49 49 BE 8F 90 92 92 4F 99 4F 55 55 59 99 EIII O.OUUY.

1140:0220 9A 93 9C 9D 9E 9F 41 49 4F 55 A5 A5 A6 A7 AB A9

1140:0230 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 BB B9

1140:0240 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 CB C9

1140:0250 CA CB CC CD CE CF DO DI D2 D3 D4 D5 D6 D7 DB D9

1140:0260 DA DB DC DD DE DF EO El E2 E3 E4 E5 E6 E7 EB E9

1140:0270 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 FB F9

1140:0280 FA FB FC FD FE FF

Select Code Page

The Select Code Page function (Interrupt 21H Function 66H) queries or selects the current
code page. Function 66H is called by issuing a software Interrupt 21H with

AH = 66H

AL = subfunction:

OIH get code page
02H select code page

BX = code page to select if AL = 02H

On return,

If function is successful:

Carry flag is clear.

If AL was OIH on call:

BX = active code page
DX = default code page

1454 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3-3

If function is not successful:

Carry flag is set.

AX = error code

When Subfunction 02H is used, MS-DOS gets the new code page from the COUNTRY.SYS
file. The device must be previously prepared for code-page switching by including the
appropriate DEVICE command in the CONFIG.SYS file and by issuing the NLSFUNC and
MODE CP PREPARE commands (usually by placing them in the AUTOEXEC.BAT file).

Example: Force the active code page to be the same as the system's default code page—
that is, return to the code page that was active when the system was first booted.

mov ax,6601h ; Function = get code page.

int 21h ; Transfer to MS-DOS.

jc error ; Jump if function failed.

mov bx, dx ; Force active page = default

mov ax,6602h ; Function = set code page.

int 21h ; Transfer to MS-DOS.

jc error ; Jump if function failed.

Extension of lOCTL

The MS-DOS lOCTL service (Interrupt 21H Function 44H) and its device-driver under
pinnings have been extended to support code-page switching by the interactive CHCP and
MODE commands or by application programs. The relevant lOCTL subfunction is OCH
(Generic lOCTL for Handles). An MS-DOS utility or application program gains access to
this subfunction by executing a software Interrupt 21H with

AH = 44H

AL = OCH

BX = handle for character device

CH = category code:
OCH unknown

OIH COMl, COM2, COM3, or COM4

03H CON (keyboard and video display)
05H LPTl,LPT2,orLPT3

(more)

Appendixes 1455

Appendix A: MS-DOS Version 3.3

CL = function (minor) code:

4AH select code page
4CH start code-page preparation
4DH end code-page preparation
6AH query selected code page
6BH query prepare list

DS:DX == pointer to Generic lOCTL parameter block

On return,

If function is successful:

Carry flag is clear.

If function is not successful:

Carry flag is set.

AX = error code:

OIH invalid function number

19H bad data read from font file

22H unknown command

26H code page not prepared or selected
27H code page conflict or device or code page not found in file
29H device error

31H file contents not a valid font or no previous "start code-page
preparation" call

Additional information about the cause of the error can be obtained with a call to Interrupt
21H Function 59H (Get Extended Error Information).

The parameter blocks for minor codes 4AH, 4DH, and 6AH have the following format:

Field Size

Length of following data Word
Code page ID Word

The parameter block for minor code 4CH has the following format:

Field Size

Flags Word
Length of remainder of parameter Word
block (2[w+l])

Number of code pages in the Word
following list («)

(more)

1456 The MS-DOS Encyclopedia

Appendix A: MS-DOS Version 3.3

Field Size

Code page 1
Code page 2

Word

Word

Code page n Word

The parameter block for minor code 6BH has the following format, assuming n hardware
code pages and m prepared code pages (« <= 12, m <= 12):

Field Size

Length of following data (2[n+m+2]) Word
Number of hardware code pages (w) Word
Hardware code page 1 Word
Hardware code page 2 Word

Hardware code page n Word
Number of prepared code pages (m) Word
Prepared code page 1
Prepared code page 2

Word

Word

Prepared code page m Word

After a Start Code-Page Preparation (minor code 4CH) call, the program must write the
data defining the code-page font to the driver using one or more lOCTL Send Control Data
to Character Device (Interrupt 21H Function 44H Subfunction 03H) calls. The format of the
data is both device-specific and driver-specific. After the font data has been written to the
driver, the program must issue an End Code-Page Preparation (minor code 4DH) call. If no
data is written to the driver between the start and end calls, the driver interprets the newly
prepared code pages as hardware code pages.

A special variation of Start Code-Page Preparation, called "refresh," is required to actually
load the peripheral device with the prepared code pages. The refresh operation is ob
tained by calling minor code 4CH with each code-page position in the parameter block set
to -1 and then immediately calling minor code 4DH.

Appendixes 1457

Appendix A: MS-DOS Version 3-3

The device-driver support that corresponds to lOCTL Subfunction OCH is invoked by the
MS-DOS kernel via the Generic lOCTL function (driver command code 19). The category
(major) and function (minor) codes described above, along with a pointer to the parame
ter block, are passed to the driver in the request header. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Customizing ms-dos: Installable Device Drivers.

Extended MS-DOS partitions

An extended MS-DOS partition is indicated by a system indicator byte value of 05 in
the partition table of the fixed disk's master boot record. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: Structure of ms-dos: MS-DOS Storage Devices. An extended
partition is not bootable and can be created on a bootable fixed-disk drive only if that
drive already contains a primary MS-DOS partition (system indicator type 01 or 04). Fixed
disks that are not bootable can contain an extended partition without a primary partition.

An extended partition is subdivided into extended logical disk volumes, each consisting
of an extended boot record and a logical block device. The extended boot record is analo
gous in structure to the partition table for the fixed disk as a whole; it contains a logical
drive table describing the volume and a pointer to the next extended logical volume. The
logical block device is an image of a normal MS-DOS disk, including a master block (logi
cal sector 0 containing the BPB describing the device), root directory, FAT, and files area.
Each extended volume must start and end on a cylinder boundary.

Van Wolverton

Ray Duncan

1458 The MS-DOS Encyclopedia

Appendix B: Critical Error Codes

Appendix B
Critical Error Codes

Critical errors are returned via Interrupt 24H. If register AL bit 7 is 0, then the error was a
disk error; if register AL bit 7 is 1, then the error was a nondisk error. The upper half of DI
is undefined; the lower half of DI contains one of the following error-condition codes:

Code Description

OOH Attempt to write on write-protected disk
OIH Unknown drive or unit

02H Drive not ready
03H Invalid command

04H Data error (CRC failed)

05H Bad request structure length
06H Seek error

07H Unknown media type
08H Sector not found

09H Printer out of paper
OAH Write fault

OBH Read fault

OCR General failure

OFH Invalid disk change

Appendixes 1459

Appendix C: Extended Error Codes

Appendix C
Extended Error Codes

The extended error codes used by Interrupt 21H functions consist of four separate codes
in the AX, BH, BL, and CH registers. These codes give as much detail as possible about the
error and suggest how the issuing program should respond.

AX—Extended Error Code

If an error condition occurs in response to an Interrupt 21H function call, the carry flag is
set and one of the following error codes is returned in AX:

Error Description Error Description

OIH Invalid function code 16H Invalid disk command

02H File not found 17H CRC error

03H Path not found 18H Invalid length (disk operation)
04H Too many open files (no 19H Seek error

handles left) lAH Not an MS-DOS disk

05H Access denied IBH Sector not found

06H Invalid handle ICH Out of paper
07H Memory control blocks IDH Write fault

destroyed lEH Read fault

08H Insufficient memory IFH General failure

09H Invalid memory block address 20H Sharing violation
OAH Invalid environment 21H Lock violation

OBH Invalid format 22H Wrong disk
OCH Invalid access code 23H FCB unavailable

ODH Invalid data 24H Sharing buffer overflow
OEH Reserved 25-31H Reserved

OFH Invalid drive 32H Network request not supported
lOH Attempt to remove the current 33H Remote computer not listening

directory 34H Duplicate name on network
IIH Not same device 35H Network path not found
12H No more files 36H Network busy
13H Disk is write-protected 37H Network device no longer exists
14H Bad disk unit 38H Net BIOS command limit

15H Drive not ready exceeded

(more)

Appendixes l46l

Appendix C; Extended Error Codes

Error Description Error Description

39H Network adapter hardware 45H
error

3AH Incorrect response from 46H
network 47H

3BH Unexpected network error 48H
3CH Incompatible remote adapter 49-4FH
3DH Print queue full 50H
3EH Print queue not full 51H
3FH Print file was canceled (not 52H

enough space) 53H
40H Network name was deleted 54H

41H Access denied 55H

42H Network device type incorrect 56H
43H Network name not found 57H

44H Network name limit exceeded 58H

Net BIOS session limit

exceeded

Sharing temporarily paused
Network request not accepted
Print or disk redirection paused
Reserved

File exists

Reserved

Cannot make directory entry
Fail on Interrupt 24H
Out of network structures

Device already assigned
Invalid password
Invalid parameter
Network data fault

BH—Error Class

BH returns a code that describes the class of error that occurred:

Class Description

OIH Out of a resource, such as storage or channels
02H Not an error, but a temporary situation (such as a locked region in a file) that

can be expected to end
03H Authorization problem
04H An internal error in system software
05H Hardware failure

06H a system software failure not the fault of the active process (could be caused
by missing or incorrect configuration files, for example)

07H Application program error
08H File or item not found

09H File or item of invalid format or type or otherwise invalid or unsuitable
OAH File or item interlocked

OBH Wrong disk in drive, bad spot on disk, or other problem with storage medium
OCH Other error

1462 The MS-DOS Encyclopedia

Appendix C: Extended Error Codes

BL—Suggested Action

BL returns a code that suggests how the program should respond to the error:

Action Description

OIH Retry, then prompt user.
02H Retry after a pause.
03H If the user entered data such as a drive letter or filename, prompt for it again.
04H Terminate with cleanup.
05H Terminate immediately. The system is so unhealthy that the program should

exit as soon as possible without taking the time to close files and update
indexes.

06H Error is informational.

07H Prompt the user to perform some action, such as changing disks, then retry the
operation.

CH—Locus

CH returns a code that provides additional information to help locate the area involved in
the failure. This code is particularly useful for hardware failures (BH = 05H).

Locus Description

OIH Unknown

02H Related to random-access block devices, such as a disk drive

03H Related to network

04H Related to serial-access character devices, such as a printer
05H Related to random-access memory

Procedure

Programs should handle errors by noting the error returned in AX from the original system
call and then invoking Interrupt 21H Function 59H to get the extended error information.
If no extended error information is provided, the program should respond to the original
error code.

The Function 59H system call is available during Interrupt 24H.

Appendixes 1463

Appendix D: ASCII Character Set and IBM Extended Character Set

Appendix D
ASCn Character Set and

IBM Extended Character Set

Number

Char Dec Hex Control

Number

Char Dec Hex Control

0 00 NUL (Null) # 35 23

© 1 01 SOH (Start of heading) $ 36 24

e 2 02 STX (Start of text) % 37 25

¥ 3 03 ETX (End of text) & 38 26

♦ 4 04 EOT (End of ' 39 27

transmission) (40 28

5 05 ENQ (Enquiry)) 41 29

♦ 6 06 ACK (Acknowledge) • 42 2A

• 7 07 BEL (Bell) + 43 2B

□ 8 08 BS (Backspace) > 44 2C

o 9 09 HT (Horizontal tab) - 45 2D

m 10 OA IF (Linefeed) 46 2E

CS 11 OB VT (Vertical tab) / 47 2F

9 12 OC FF (Formfeed) 0 48 30

13 OD CR (Carriage return) 1 49 31
14 OE SO (Shift out) 2 50 32

if 15 OF SI (Shift in) 3 51 33
► 16 10 DLE (Data link escape) 4 52 34

17 11 DCl (Device control 1) 5 53 35
t 18 12 DC2 (Device control 2) 6 54 36
II 19 13 DC3 (Device control 3) 7 55 37

20 14 DC4 (Device control 4) 8 56 38

§ 21 15 NAK (Negative 9 57 39
acknowledge) 58 3A

- 22 16 SYN (Synchronous idle) ; 59 3B

23 17 ETB (End transmission < 60 3C

block) = 61 3D

t 24 18 CAN (Cancel) > 62 3E

25 19 EM (End of medium) ? 63 3F

26 lA SUB (Substitute) @ 64 40
•«- 27 IB ESC (Escape) A 65 41

•- 28 IC FS (File separator) B 66 42
4+ 29 ID GS (Group separator) C 67 43
A 30 IE RS (Record separator) D 68 44
T 31 IF US (Unit separator) E 69 45
<space> 32 20 F 70 46
! 33 21 G 71 47

34 22 H 72 48

(more)

Appendixes 1465

Appendix D: ASCII Character Set and IBM Extended Character Set

Number

Char Dec Hex

Number

Char Dec Hex Control

Number

Char Dec Hex

I 73 49 z 122 7A 1 171 AB

J 74 4A { 123 7B
1

? 172 AC

K 75 4B
1
1 124 7C i 173 AD

L 76 4C I 125 7D « 174 AE

M 77 4D 126 7E » 175 AF

N 78 4E L 127 7F DEL 176 BO

O 79 4F ? 128 80 1 177 B1

P 80 50 ii 129 81 i 178 B2

Q 81 51 e 130 82 1 179 B3

R 82 52 a 131 83 180 B4

S 83 53 a 132 84 =1 181 B5

T 84 54 a 133 85 ^1 182 B6

U 85 55 a 134 86 11 183 B7

V 86 56 ? 135 87 =1 184 B8

w 87 57 e 136 88 il 185 B9

X 88 58 e 137 89 II 186 BA

Y 89 59 e 138 8A Tl 187 BB

Z 90 5A i 139 8B J] 188 BC

[91 5B i 140 8C JJ 189 BD

\ 92 5C i 141 8D J 190 BE

] 93 5D A 142 8E 1 191 BF

A 94 5E A 143 8F L 192 CO

95 5F E 144 90 193 C1

- 96 60 ae 145 91 T 194 C2

a 97 61 H 146 92 h 195 C3

b 98 62 6 147 93 - 196 C4

c 99 63 6 148 94 + 197 C5

d 100 64 6 149 95 h 198 C6

e 101 65 u 150 96 Ih 199 C7

f 102 66 u 151 97 [L 200 C8

8 103 67 y 151 98 ff 201 C9

h 104 68 6 152 99 A 202 CA

i 105 69 ii 154 9A if 203 CB

j 106 6a 155 9B 1^ 204 CC

k 107 6B £ 156 9C = 205 CD

1 108 6C ¥ 157 9D
JL
ir 206 CE

m 109 6D I? 158 9E j_ 207 CF

n 110 6E f 159 9F JL 208 DO

o 111 6F a 160 AO T 209 D1

P 112 70 i 161 A1 T 210 D2

q 113 71 6 162 A2 IL 211 D3

r 114 72 u 163 A3 1= 212 D4

s 115 73 h 164 A4 r 213 D5

t 116 74 N 165 A5 fT 214 D6

u 117 75 a 166 A6 I 215 D7

V 118 76 fi 167 A7 + 216 D8

w 119 77 L 168 A8 J 217 D9

X 120 78 r- 169 A9 r 218 DA

y 121 79 - 170 AA 1 219 DB

(more)

1466 The MS-DOS Encyclopedia

Appendix D: ASCII Character Set and IBM Extended Character Set

Niunber Number Number

Char Dec Hex Char Dec Hex Char Dec Hex

■ 220 DC $ 232 E8 f 244 F4

1 221 DO 0 233 E9 j 245 F5

1 222 DE n 234 EA 246 F6

■ 223 OF 6 235 EB « 247 F7

a 224 EO 00 236 EC 0 248 F8

P 225 El 237 ED • 249 F9

r 226 E2 e 238 EE

y
250 FA

ir 227 E3 n 239 EE 251 FB

S 228 E4 = 240 FO T1 252 FC

a 229 E5 + 241 F1
2

253 FD

230 E6 > 242 F2 ■ 254 FE

T 231 E7 < 243 F3 255 FF

Appendixes 1467

Appendix E: EBCDIC Character Set

Appendix E
EBCDIC Character Set

Number Number Number

Char Dec Hex Char Dec Hex Char Dec Hex

NUL 0 00 41 29 82 52

SOH 1 01 SM 42 2A 83 53

STX 2 02 CU2 43 2B 84 54

ETX 3 03 44 2C 85 55

PF 4 04 ENQ 45 2D 86 56

HT 5 05 ACK 46 2E 87 57

LC 6 06 BEL 47 2F 88 58

DEL 7 07 48 30 89 59

GE 8 08 49 31 ! 90 5A

RLE 9 09 SYN 50 32 $ 91 5B

SMM 10 OA 51 33 * 92 5C

VT 11 OB PN 52 34) 93 5D

FF 12 OC RS 53 35 >
94 5E

CR 13 OD UC 54 36 —1 95 5F

SO 14 OE EOT 55 37 - 96 60

SI 15 OF 56 38 / 97 61

DIE 16 10 57 39 98 62

DCl 17 11 58 3A 99 63

DC2 18 12 CU3 59 3B 100 64

TM 19 13 DC4 60 3C 101 65

RES 20 14 NAK 61 3D 102 66

NL 21 15 62 3E 103 67

BS 22 16 SUB 63 3F 104 68

IL 23 17 Sp 64 40 105 69

CAN 24 18 65 41
1
1 106 6A

EM 25 19 66 42 107 6B

CC 26 lA 67 43 % 108 6C

CUl 27 IB 68 44 109 6D

IFS 28 IC 69 45 > 110 6E

ICS 29 ID 70 46 111 6F

IRS 30 IE 71 47 112 70

lUS 31 IF 72 48 113 71

DS 32 20 73 49 114 72

SOS 33 21 74 4A 115 73

FS 34 22 75 4B 116 74

35 23 < 76 4C 117 75

BY? 36 24 (77 4D 118 76

LF 37 25 + 78 4E 119 77

ETB 38 26 1 79 4F 120 78

ESC 39 27 & 80 50 121 79

40 28 81 51 122 7A

Appendixes 1469

Appendix E: EBCDIC Character Set

Number Number Number

Char Dec Hex Char Dec Hex Char Dec Hex

123 7B y 168 A8 N 213 D5

@ 124 7C z 169 A9 O 214 D6

1
125 7D 170 AA P 215 D7

= 126 7E 171 AB Q 216 D8

tl
127 7F 172 AC R 217 D9

128 80 173 AD 218 DA

a 129 81 174 AE 219 DB

b 130 82 175 AF 220 DC

c 131 83 176 BO 221 DD

d 132 84 177 B1 222 DE

e 133 85 178 B2 223 DF

f 134 86 179 B3 \ 224 EO

g 135 87 180 B4 225 El

h 136 88 181 B5 S 226 E2

i 137 89 182 B6 T 227 E3

138 8A 183 B7 U 228 E4

139 8B 184 B8 V 229 E5

140 8C 185 B9 w 230 E6

141 8D 186 BA X 231 E7

142 8E 187 BB Y 232 E8

143 8F 188 BC Z 233 E9

144 90 189 BD 234 EA

j 145 91 190 BE 235 EB

k 146 92 191 BE H 236 EC

1 147 93 { 192 CO 237 ED

m 148 94 A 193 C1 238 EE

n 149 95 B 194 C2 239 EF

o 150 96 C 195 C3 0 240 FO

P 151 97 D 196 C4 1 241 F1

q 152 98 E 197 C5 2 242 F2

r 153 99 F 198 C6 3 243 F3

154 9A G 199 C7 4 244 F4

155 9B H 200 C8 5 245 F5

156 9C I 201 C9 6 246 F6

157 9D 202 CA 7 247 F7

158 9E 203 CB 8 248 F8

159 9F J' 204 CC 9 249 F9

160 AO 205 CD 1 250 FA

161 A1 V 206 CE 251 FB

s 162 A2 207 CF 252 FC

t 163 A3 } 208 DO 253 FD

u 164 A4 J 209 D1 254 FE

V 165 A5 K 210 D2 EO 255 FF

w 166 a6 L 211 D3

X 167 A7 M 212 D4

1470 The MS-DOS Encyclopedia

Appendix F: ANSI.SYS Key and Extended Key Codes

Appendix F
ANSI.SYS Key and Extended Key Codes

The following escape sequence allows redefinition of keyboard keys to a specified string:

lESC[code\string\... p

where:

string is either the ASCII code for a single character or a string contained in quotation
marks. For example, both 65 and "A" can be used to represent an uppercase A.

code is one or more of the following values that represent keyboard keys. Semi
colons shown in this table must be entered in addition to the required semi
colons in the command line.

Key Code

Alone Shift Ctri- Ait-

F1 0;59 0;84 0;94 0;104
F2 0;60 0;85 0;95 0;105

F3 0;6l 0;86 0;96 0;106
F4 0;62 0;87 0;97 0;107

F5 0;63 0;88 0;98 0;108
F6 0;64 0;89 0;99 0;109
F7 0;65 0;90 0;100 0;110
F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112

FIO 0;68 0;93 0;103 0;113
Home 0;71 55 0;119 —

Up Arrow 0;72 56 - -

PgUp 0;73 57 0;132 -

Left Arrow 0;75 52 0;115 —

Down Arrow 0;77 54 0;116 —

End 0;79 49 0;117 -

Down Arrow 0;80 50 — —

PgDn 0;81 51 0;118 —

Ins 0;82 48 — —

Del 0;83 46 - —

PrtSc - — 0;114 —

A 97 65 1 0;30

(more)

Appendixes 1471

Appendix F: ANSI.SYS Key and Extended Key Codes

Key Code

Alone Shift- Ctrl- Alt-

B 98 66 2 0;48

C 99 67 3 0;46
D 100 68 4 0;32

E 101 69 5 0;18

F 102 70 6 0;33

G 103 71 7 0;34

H 104 72 8 0;35

I 105 73 9 0;23

J 106 74 10 0;36
K 107 75 11 0;37

L 108 76 12 0;38

M 109 77 13 0;50

N 110 78 14 0;49
O 111 79 15 0;24
P 112 80 16 0;25

Q 113 81 17 0;16
R 114 82 18 0;19

S 115 83 19 0;31

T 116 84 20 0;20

U 117 85 21 0;22

V 118 86 22 0;47
w 119 87 23 0;17

X 120 88 24 0;45
Y 121 89 25 0;21

Z 122 90 26 0;44

1 49 33 - 0;120

2 50 64 - 0;121

3 51 35 - 0;122

4 52 36 - 0;123

5 53 37 - 0;124
6 54 94 - 0;125

7 55 38 - 0;126
8 56 42 - 0;127

9 57 40 - 0;128

0 48 41 - 0;129
- 45 95 - 0;130
= 61 43 - 0;131

Tab 9 0;15 - -

Null 0;3 - - -

1472 The MS-DOS Encyclopedia

Appendix G: File Control Block (FCB) Structure

Appendix G
File Control Block (FCB) Structure

Figures G-1 and G-2 (memory block diagrams) and Tables G-1 and G-2 describe the struc
ture of normal and extended file control blocks (FCBs).

Offset

OOH

OIH

09H

OCR

GEH

lOH

14H

16H

18H

20H

21H

Drive identiBer

Filename

File extension

Current block number

Record size (bytes)

File size (bytes)

Date stamp

Time stamp

Reserved

Current record number

Random record number

Figure G-1. Structure of a normalfile
control block.

Appendixes 1473

Appendix G: File Control Block (PGR) Structure

Table G-1. Elements of a Normal File Control Block.

Element

Maintained

by Comments

Drive identifier Program

Filename Program

File extension

Current block

number

Record size

File size

Date stamp

Program

Program

Program

MS-DOS

MS-DOS

Time stamp MS-DOS

Designates the drive on which the file to be
opened or created resides (0 = default drive, 1 =
drive A, 2 = drive B, and so on). If the application
supplies a zero in this byte, MS-DOS alters the
byte during the open or create operation to
reflect the actual drive used.

Standard eight-character filename; must be left
justified and must be padded with blanks if fewer
than eight characters. A device name (for exam
ple, PRN) can be used; there is no colon after a
device name.

Three-character file extension; must be left justi
fied and must be padded with blanks if fewer
than three characters.

Zero when the file is opened; the current block
number and the current record number com

bined make up the record pointer during sequen
tial file access.

Set to 128 when the file is opened or created; the
program can modify the field afterward to any
desired record size.*

The size of the file in bytes; the first 2 bytes of this
4-byte field are the least significant bytes of the
file size.

The date of the last write operation on the file; fol
lows the same format used by Interrupt 21H file
handle Function 57H (Get/Set Time and Date):

Bits

9-15

5-8

0-4

Contents

Year (relative to 1980)

Month (1-12)

Day of month (1-31)

The time of the last write operation on the file; fol
lows the same format used by Interrupt 21H file
handle Function 57H (Get/Set Time and Date):

Bits Contents

11-15 Hours (0-23)

5-10 Minutes (0-59)

0-4 Number of 2-second

increments (0-29)

(more)

1474 The MS-DOS Encyclopedia

Appendix G: File Control Block (FOB) Structure

Table G-1. Continued.

Element
Maintained

by Comments

Current record Program Limited to the range 0 through 127; there are
number 128 records per block. The beginning of a file is

record 0 of block 0. Together with the current
block number, this field constitutes the record
pointer used during sequential read and write
operations. MS-DOS does not automatically
initialize this field when a file is opened.

Random record Program Identifies the record to be transferred by the Inter-
pointer rupt 21H random record functions 21H, 22H,

27H, and 28H; if the record size is 64 bytes or
larger, only the first 3 bytes of this field are used.
MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but

not after random record reads and writes

(Functions 21H and 22H).

* If the record size is made larger than 128 bytes, the default data transfer area (DTA) in the program segment
prefix (PSP) cannot be used because it will collide with the program's own code or data.

Table G-2. Additional Elements of an Extended File Control Block.

Element
Maintained

by Comments

Extended FCB flag

File attribute byte

Program OFFH tells MS-DOS this is an extended (44-byte)
FCB.

Program Must be initialized by the application when an
extended FCB is used to open or create a file.
The bits of this field have the following
significance:

Bit Meaning
0 Read-only
1 Hidden

2 System

3 Volume label

4 Directory

5 Archive

6 Reserved

7 Reserved

Appendixes 1475

Appendix G: File Control Block (FCB) Structure

Offset

OOH

OIH

06H

07H

08H

lOH

13H

15H

17H

IBH

IDH

IFH

27H

28H

Extended FCB flag (OFFH)

Reserved

File attribute byte

Drive identifier

Filename

File extension

Current block number

Record size (bytes)

File size (bytes)

Date stamp

Time stamp

Reserved

Current record number

- Random record number

Figure G-2. Structure ofan extendedfile
control block.

1476 The MS-DOS Encyclopedia

Appendix H: Program Segment Prefix (PSP) Structure

Appendix H
Program Segment Prefix (PSP) Structure

Offset

OOH (0)

02H (2)

04H (4)

05H (5)

OAH (10)

OEH (14)

12H (18)

16H (22)

Size

(in
bytes) Contents

22

2CH (44) 2

2EH (46) 34

50H (80) 3

53H (83) 9

5CH (92) 16

6CH (108) 20

80H (128) 127

FFH (255)

INT 20H instruction

Address of last segment
allocated to program

Reserved; normally 0

Long call to MS-DOS function dispatcher

Terminate program interrupt vector
(Interrupt 22H)

Ctrl-C handler interrupt vector
(Interrupt 23H)

Critical error handler interrupt vector
(Interrupt 24H)

Reserved

Segment address of environment

Reserved

INT 21H, RETF instructions

Reserved

Default file control block 1

Default Ele control block 2

(overlaid if FCB 1 opened)

Command tail and default DTA

Figure H-1 (memory block diagram)
illustrates the structure of the pro
gram segment prefix (PSP).

Figure H-1. Structure ofthe program segment prefix.

Appendixes 1477

Appendix I: 8086/8088/80286/80386 Instruction Sets

Appendix I
8086/8088/80286/80386 Instruction Sets

The 8086/8088 Instruction Set

Mnemonic Description Mnemonic Description

AAA ASCII adjust after addition JB Jump on below

AAD ASCII adjust before division JBE Jump on below or equal

AAM ASCII adjust after multiplication JC Jump on carry

AAS ASCII adjust after subtraction JCXZ Jump on CX zero

ADC Add with carry JE Jump on equal

ADD Add JG Jump on greater

AND Logical AND JGE Jump on greater or equal

CALL Call procedure JL Jump on less than

CBW Convert byte to word JLE Jump on less than or equal

CLC Clear carry flag JMP Jump unconditionally

CLD Clear direction flag JNA Jump on not above

CLI Clear interrupt flag JNAE Jump on not above or equal

CMC Complement carry flag JNB Jump on not below

CMP Compare JNBE Jump on not below or equal

CMPS Compare string JNC Jump on no carry

CMPSB Compare byte string JNE Jump on not equal

CMPSW Compare word string JNG Jump on not greater

CWD Convert word to doubleword JNGE Jump on not greater or equal

DAA Decimal adjust for addition JNL Jump on not less than

DAS Decimal adjust for subtraction JNLE Jump on not less than or equal

DEC Decrement by 1 JNO Jump on not overflow

DIV Unsigned divide JNP Jump on not parity

BSC Escape JNS Jump on not sign

HLT Halt JNZ Jump on not zero

IDIV Integer divide JO Jump on overflow

IMUL Integer multiply JP Jump on parity

IN Input from port JPE Jump on parity even

INC Increment by 1 JPO Jump on parity odd

INT Call to interrupt procedure JS Jump on sign

INTO Interrupt on overflow JZ Jump on zero

IRET Interrupt on return LAHF Load AH with flags

JA Jump on above LDS Load pointer into DS

JAE Jump on above or equal LEA Load effective address

(more)

Appendixes 1479

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

LES Load pointer into ES REPNE Repeat while not equal

LOCK Lock the bus REPNZ Repeat while not zero

LCDS Load string REPZ Repeat while zero

LODSB Load byte (string) RET Return

LODSW Load word (string) ROL Rotate left

LOOP Loop ROR Rotate right

LOOPE Loop while equal SAHF Store AH into flags

LOOPNE Loop while not equal SAL Shift arithmetic left

LOOPNZ Loop while not zero SAR Shift arithmetic right

LOOPZ Loop while zero SBB Subtract with borrow

MOV Move data SCAS Scan string

MOVS Move data from string to string SCASB Scan byte (string)

MOVSB Move byte (string) SCASW Scan word (string)

MOVSW Move word (string) SHL Shift logical left

MUL Multiply SHR Shift logical right

NEC Negate STC Set carry flag

NOP No operation STD Set direction flag

NOT Logical NOT STI Set interrupt flag

OR Logical OR STOS Store string

OUT Output to port STOSB Store byte (string)

POP Pop top of stack STOSW Store word (string)

POPE Pop stack into flags SUB Subtract

PUSH Push onto stack TEST Logical compare

PUSH? Push flags onto stack WAIT Enter wait state

RCL Rotate through carry left XCHG Exchange

RCR Rotate through carry right XLAT Translate

REP Repeat XOR Exclusive OR

REPE Repeat while equal

The 80286 Instruction Set

Mnemonic Description Mnemonic Description

AAA ASCII adjust after addition AND Logical AND

AAD ASCII adjust before division ARPL Adjust RPL field of selector

AAM ASCII adjust after multiplication BOUND Check array index against bounds

AAS ASCII adjust after subtraction CALL Call procedure

ADC Add with carry CBW Convert byte to word

ADD Add CLC Clear carry flag

(more)

1480 The MS-DOS Encyclopedia

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

CLD Clear direction flag JNE Jump on not equal

CLI Clear interrupt flag JNG Jump on not greater

CUTS Clear task switched flag JNGE Jump on not greater or equal

CMC Complement carry flag JNL Jump on not less than

CMP Compare JNLE Jump on not less than or equal

CMPS Compare string JNO Jump on not overflow

CMPSB Compare byte string JNP Jump on not parity

CMPSW Compare word string JNS Jump on not sign

CWD Convert word to doubleword JNZ Jump on not zero

DAA Decimal adjust for addition JO Jump on overflow

DAS Decimal adjust for subtraction JP Jump on parity

DEC Decrement by 1 JPE Jump on parity even

DIV Unsigned divide JPO Jump on parity odd

ENTER Make stack frame JS Jump on sign

(for procedure parameters) JZ Jump on zero

ESC Escape LAHF Load AH with flags

HLT Halt LAR Load access-rights byte

IDIV Integer divide IDS Load pointer into DS

IMUL Integer multiply LEA Load effective address

IN Input from port LEAVE High-level procedure exit

INC Increment by 1 LES Load pointer into ES

INS Input string from port LGDT Load global descriptor table

INT Call to interrupt procedure LIDT Load interrupt descriptor table

INTO Interrupt on overflow LLDT Load local descriptor table

IRET Interrupt on return LMSW Load machine status word

JA Jump on above LOCK Lock the bus

JAE Jump on above or equal LCDS Load string

JB Jump on below LODSB Load byte (string)

JBE Jump on below or equal LODSW Load word (string)

JC Jump on carry LOOP Loop

JCXZ Jump on CX zero LOOPE Loop while equal

JE Jump on equal LOOPNE Loop while not equal

JG Jump on greater LOOPNZ Loop while not zero

JGE Jump on greater or equal LOOPZ Loop while zero

JL Jump on less than LSL Load segment limit

JLE Jump on less than or equal LTR Load task roister

JMP Jump unconditionally MOV Move data

JNA Jump on not above MOVS Move data from string to string

JNAE Jump on not above or equal MOVSB Move byte (string)

JNB Jump on not below MOVSW Move word (string)

JNBE Jump on not below or equal MUL Multiply

JNC Jump on no carry NEG Negate

(more)

Appendixes 1481

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

NOP No operation SCAS Scan string

NOT Logical NOT SCASB Scan byte (string)

OR Logical OR SCASW Scan word (string)

OUT Output to port SGDT Store global descriptor table

OUTS Output string to port SHL Shift logical left

POP Pop top of stack SHR Shift logical right

POPA Pop eight l6-bit registers SIDT Store interrupt descriptor table

POPF Pop stack into flags SLOT Store local descriptor table

PUSH Push onto stack SMSW Store machine status word

PUSHA Push eight l6-bit registers STC Set carry flag

PUSHF Push flags onto stack STD Set direction flag

RCL Rotate through carry left STI Set interrupt flag

RCR Rotate through carry right STOS Store string

REP Repeat STOSB Store byte (string)

REPE Repeat while equal STOSW Store word (string)

REPNE Repeat while not equal STR Store task register

REPNZ Repeat while not zero SUB Subtract

REPZ Repeat while zero TEST Logical compare

RET Return VERR Verify a segment for reading

ROL Rotate left VERW Verify a segment for writing

ROR Rotate right WAIT Enter wait state

SAHF Store AH into flags XCHG Exchange

SAL Shift arithmetic left XLAT Translate

SAR Shift arithmetic right XOR Exclusive OR

SBB Subtract with borrow

The 80386 Instruction Set

Mnemonic Description Mnemonic Description

AAA ASCII adjust after addition BSF Bit scan forward

AAD ASCII adjust before division BSR Bit scan reverse

AAM ASCII adjust after multiplication BT Bit test

AAS ASCII adjust after subtraction BTC Bit test and complement

ADC Add with carry BTR Bit test and reset

ADD Add BTS Bit test and set

AND Logical AND CALL Call procedure

ARPL Adjust RPL field of selector CBW Convert byte to word

BOUND Check array index against bounds CDQ Convert doubleword to quad word

(more)

1482 The MS-DOS Encyclopedia

Appendix 1: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

CLC Clear carry flag JMP Jump unconditionally

CLD Clear direction flag JNA Jump on not above

CLI Clear interrupt flag JNAE Jump on not above or equal

CLTS Clear task switched flag JNB Jump on not below

CMC Complement carry flag JNBE Jump on not below or equal

CMP Compare JNC Jump on no carry

CMPS Compare string JNE Jump on not equal

CMPSB Compare byte string JNG Jump on not greater

CMPSD Compare doubleword string JNGE Jump on not greater or equal

CMPSW Compare word string JNL Jump on not less than

CWD Convert word to doubleword JNLE Jump on not less than or equal

DAA Decimal adjust for addition JNO Jump on not overflow

DAS Decimal adjust for subtraction JNP Jump on not parity

DEC Decrement by 1 JNS Jump on not sign

DIV Unsigned divide JNZ Jump on not zero

ENTER Make stack frame JO Jump on overflow

(for procedure parameters) JP Jump on parity

ESC Escape JPE Jump on parity even

HLT Halt JPO Jump on parity odd

IDIV Integer divide JS Jump on sign

IMUL Integer multiply JZ Jump on zero

IN Input from port LAHF Load AH with flags

INC Increment by 1 LAR Load access-rights byte

INS Input string from port IDS Load pointer into DS

INSD Input doubleword from port LEA Load effective address

INT Call to interrupt procedure LEAVE High-level procedure exit

INTO Interrupt on overflow LES Load pointer into ES

IRET Interrupt on return LFS Load pointer into PS

IRETD Interrupt return to LGDT Load global descriptor table

virtual 8086 mode LGS Load pointer into GS

JA Jump on above LIDT Load interrupt descriptor table

JAE Jump on above or equal LLDT Load local descriptor table

JB Jump on below LMSW Load machine status word

JBE Jump on below or equal LOCK Lock the bus

JC Jump on carry LCDS Load string

JCXZ Jump on CX zero LODSB Load byte (string)

JE Jump on equal LODSD Load doubleword (string)

JECXZ Jump on ECX zero LODSW Load word (string)

JG Jump on greater LOOP Loop

JOE Jump on greater or equal LOOPE Loop while equal

JL Jump on less than LOOPNE Loop while not equal

JLE Jump on less than or equal LOOPNZ Loop while not zero

(more)

Appendixes 1483

Appendix I: 8086/8088/80286/80386 Instruction Sets

Mnemonic Description Mnemonic Description

LOOPZ Loop while zero ROL Rotate left

LSL Load segment limit ROR Rotate right

LSS Load pointer into SS SAHF Store AH into flags

LTR Load task register SAL Shift arithmetic left

MOV Move data SAR Shift arithmetic right

MOVS Move data from string to string SBB Subtract with borrow

MOVSB Move byte (string) SCAS Scan string

MOVSD Move doubleword (string) SCASB Scan byte (string)

MOVSW Move word (string) SCASD Scan doubleword (string)

MOVSX Move with sign extend SCASW Scan word (string)

MOVZX Move with zero extend SET Byte set on condition

MUL Multiply SGDT Store global descriptor table

NEG Negate SHL Shift logical left

NOP No operation SHLD Double precision shift left

NOT Logical NOT SHR Shift logical right

OR Logical OR SHRD Double precision shift right

OUT Output to port SIDT Store interrupt descriptor table

OUTS Output string to port SLOT Store local descriptor table

POP Pop top of stack SMSW Store machine status word

POPA Pop eight l6-bit registers STC Set carry flag

POPAD Pop eight 32-bit registers STD Set direction flag

POPF Pop stack into flags STI Set interrupt flag

POPFD Loads doubleword into EFLAGS STOS Store string

PUSH Push onto stack STOSB Store byte (string)

PUSHA Push eight l6-bit registers STOSD Store doubleword (string)

PUSHAD Push eight 32-bit registers STOSW Store word (string)

PUSHED Push EFLAGS STR Store task register

PUSHF Push flags onto stack SUB Subtract

RCL Rotate through carry left TEST Logical compare

RCR Rotate through carry right VERR Verify a segment for reading

REP Repeat VERW Verify a s^ment for writing

REPE Repeat while equal WAIT Enter wait state

REPNE Repeat while not equal XCHG Exchange

REPNZ Repeat while not zero XLAT Translate

REPZ Repeat while zero XOR Exclusive OR

RET Return

1484 The MS-DOS Encyclopedia

Appendix J; Common MS-DOS Filename Extensions

AppendixJ
Common MS-DOS Filename Extensions

The Microsoft systems programs and language products commonly use the following file
name extensions:

Extension Program/System Description

.@@@ MS-DOS Backup ID file

.$$$ EDLIN Backup filename if out of disk space; error
condition

.ASC Generic ASCII text file

.ASM MASM Assembly-language source code

.BAK Generic Backup file

.BAS BASIC BASIC language source code

.BAT MS-DOS Batch file (contains MS-DOS command lines)

.BIN Generic Binary file

.C C C language source code

.GAL Windows Calendar file

.COB COBOL COBOL language source code

.COD Generic Object listing file

.COM MS-DOS Executable program file

.CRD Windows Cardfile file

.CRF MASM Cross-reference file

.DAT Generic Data file

.DBG COBOL Debug file

.DEF Windows Module definition file

.DOC Generic Documentation or document file

.DRV Generic Driver file

.ERR Generic Error file

.EXE MS-DOS Executable program file

.FNT Generic Font file

.FON Generic Font file

.FOR FORTRAN FORTRAN language source code

.GRB Windows Grab file (snapshot)

.H C Include file

.HEX MS-DOS INTEL hexadecimal format file

.HLP Generic Help file

.INC Generic Include file

.INI Windows Initialization file

(more)

Appendixes 1485

Appendix J: Common MS-DOS Filename Extensions

Extension Program/System Description

.INT COBOL Object file

.LIB Generic Library file

.LST Generic List file

.MAP Generic Address map file

.MOD Generic Module file

.MSG COBOL Message file

.MS? Windows Windows Paint file

•OBJ Generic Relocatable object module
.OVL Generic Overlay file

.OVR COBOL Compiler overlay file

.PAS PASCAL PASCAL language source code

.PIF Windows Program information file

.QLB Generic Library file for Microsoft's Quick products

.RC Windows Resource script file

.REF CREF Cross-reference listing file

.RES Windows Compiled resource file

.SCR Generic Script file

.SYM Generic Symbol file

.SYS Generic System file or device driver

.TMP Generic Temporary file

.TRM Windows Terminal file

.TXT Generic Text file or Windows Notepad file

.WRI Windows Write file

1486 The MS-DOS Encyclopedia

Appendix K: Segmented (New) .EXE File Header Format

Appendix K
Segmented (New) .EXE File Header Format

Microsoft Windows requires much more information about a program than is available in
the format of the .EXE executable file supported by MS-DOS. For example, Windows needs
to identify the various segments of a program as code Segments or data segments, to iden
tify exported and imported functions, and to store the program's resources (such as icons,
cursors, menus, and dialog-box templates). Windows must also support dynamically link
able library modules containing routines that programs and other library modules can call.
For this reason, Windows programs use an expanded .EXE header format called the New
Executable file header format. This format is used for Windows programs, Windows li
brary modules, and resource-only files such as the Windows font resource files.

The Old Executable Header

The New Executable file header format incorporates the existing MS-DOS executable file
header format. In fact, the beginning of a New Executable file is simply a normal MS-DOS
.EXE header. The 4 bytes at offset 3CH are a pointer to the beginning of the New Execut
able header. (Offsets are from the beginning of the Old Executable header.)

Length
Offset (bytes) Contents

OOH 1 Signature byte M
OIH 1 Signature byte Z
3CH 4 Offset of New Executable header from beginning of file

This normal MS-DOS .EXE header can contain size and relocation information for a non-

Windows MS-DOS program that is contained within the .EXE file along with the Windows
program. This program is run when the .EXE file is executed from the MS-DOS command
line. Most Windows programmers use a standard program that simply prints the message
This program requires Microsoft Windows.

Appendixes 1487

Appendix K: Segmented (New) .EXE File Header Format

The New Executable Header

The beginning of the New Executable file header contains information about the location
and size of various tables within the header. (Offsets are from the beginning of the New
Executable header.)

Length
Offiset (bytes) Contents

OOH 1 Signature byte N
OIH 1 Signature byte E
02H 1 LINK version number

03H 1 LINK revision number

04H 2 Offset of beginning of entry table relative to beginning
of New Executable header

06H 2 Length of entry table
08H 4 32-bit checksum of entire contents of file, using zero

for these 4 bytes
OCH 2 Module flag word isee below)
OEH 2 Segment number of automatic data segment (0 if

neither SINGLEDATA nor MULTIPLEDATA flag is set
in flag word)

lOH 2 Initial size of local heap to be added to automatic data
segment (0 if there is no local heap)

12H 2 Initial size of stack to be added to automatic data seg
ment (0 for library modules)

14H 2 Initial value of instruction pointer (IP) register on entry
to program

16H 2 Initial segment number for setting code segment (CS)
register on entry to program

18H 2 Initial value of stack pointer (SP) register on entry to
program (0 if stack segment is automatic data seg
ment; stack should be set above static data area and
below local heap in automatic data segment)

(more)

1488 The MS-DOS Encyciopedia

Appendix K: Segmented (New) .EXE File Header Format

Length
Offset (bytes) Contents

lAH 2 Segment number for setting stack segment (SS) register
on entry to program (0 for library modules)

ICH 2 Number of entries in segment table
lEH 2 Number of entries in module reference table

20H 2 Number of bytes in nonresident names table
22H 2 Offset of beginning of segment table relative to begin

ning of New Executable header
24H 2 Offset of beginning of resource table relative to begin

ning of New Executable header
26H 2 Offset of beginning of resident names table relative to

beginning of New Executable header
28H 2 Offset of beginning of module reference table relative

to beginning of New Executable header
2AH 2 Offset of beginning of imported names table relative to

beginning of New Executable header
2CH 4 Offset of nonresident names table relative to beginning

of file

30H 2 Number of movable entry points listed in entry table
32H 2 Alignment shift count (0 is equivalent to 9)
34H 12 Reserved for expansion

The module flag word at offset OCH in the New Executable header is defined as shown in
Figure K-1.

• 1 if SINGLED AT A (library module)
0 if NOAUTODATA (library module)

1 if MULTIPLEDATA (program module)

1 if module runs in real mode

1 if module runs in protected mode

1 if module is nonconforming
(valid stack is not maintained)

1 if library module
0 if program module

Figure K-1. The moduleflag word.

Appendixes 1489

Appendix K: Segmented (New) .EXE File Header Format

The segment table

This table contains one 8-byte record for every code and data segment in the program or
library module. Each segment has an ordinal number associated with it. For example, the
first segment has an ordinal number of 1. These segment numbers are used to reference
the segments in other sections of the New Executable file. (Offsets are from the beginning
of the record.)

onset

Length
(bytes) Contents

OOH

02H

04H

06H

Offset of segment relative to beginning of file after
shifting value left by alignment shift count

Length of segment (OOOOH for segment of 65536 bytes)
Segment flag word {jsee below)
Minimum allocation size for segment; that is, amount of
space Windows reserves in memory for segment
(OOOOH for minimum allocation size of 65536 bytes)

The segment flag word is defined as shown in Figure K-2.

I,if DATA

0 if CODE

1 if segment data is ITERATED

1 if segment is MOVABLE
0 if segment is FIXED

1 if segment is PURE or SHAREABLE
0 if segment is IMPURE or NONSHAREABLE

■ 1 if segment is PRELOAD
0 if segment is LOADONCALL

■ 1 if code segment and EXECUTEONLY
0 if data segment and READONLY

• 1 if segment has relocation information

■ 1 if segment has debugging information
• Reserved for protected mode

descriptor privilege level

■ Priority level for discarding

Figure K-2. The segment flag word.

1490 The MS-DOS Encyclopedia

Appendix K: Segmented (New) .EXE File Header Format

The resource table

Resources are segments that contain data but are not included in a program's normal data
segments. Resources are commonly used in Windows programs to store menus, dialog-box
templates, icons, cursors, and text strings, but they can also be used for any type of read
only data. Each resource has a type and a name, both of which can be represented by
either a number or an ASCII name.

The resource table begins with a resource shift count used for adjusting other values in the
table. (Offsets are from the beginning of the table.)

Length
Offset (bytes) Contents

OOH 2 Resource shift count

This is followed by one or more resource groups, each defining one or more resources.
(Offsets are from the beginning of the group.)

Length
Offset (bytes) Contents

OOH 2 Resource type (0 if end of table)
If high bit set, type represented by predetermined
number (high bit not shown):

1 Cursor

2 Bitmap

3 Icon

4 Menu template
5 Dialog-box template
6 String table
7 Font directory
8 Font

9 Keyboard-accelerator table
If high bit not set, type is ASCII text string and this
value is offset from beginning of resource table,
pointing to 1-byte value with number of bytes in
string followed by string itself.

02H 2 Number of resources of this type
04H 4 Reserved for run-time use

08H 12 each Resource description

Each resource description requires 12 bytes. (Offsets are from the beginning of the
description.)

Appendixes 1491

Appendix K: Segmented (New) .EXE File Header Format

Offset

Length
(bytes) Contents

OOH

02H

04H

06H

08H

Offset of resource relative to beginning of file after
shifting left by resource shift count

Length of resource after shifting left by resource shift
count

Resource flag word (^see below)
Resource name

If high bit set, represented by a number; otherwise,
type is ASCII text string and this value is offset from
beginning of resource table, pointing to 1-byte value
with number of bytes in string followed by string
itself.

Reserved for run-time use

The resource flag word is defined as shown in Figure K-3.

F E D C B A 9 8 7 6 5 4 3 2 1 0

• 1 if resource is MOVABLE

0 if resource is FIXED

■ 1 if resource is PURE or SHAREABLE

0 if resource is IMPURE or NONSHAREABLE

■ 1 if resource is PRELOAD

0 if resource is LOADONCALL

■ Priority level for discarding

Figure K-3. The resource flag word.

The resident names table

This table contains a list of ASCII strings. The first string is the module name given in the
module definition file. The other strings are the names of all exported functions listed in
the module definition file that were not given explicit ordinal numbers or that were ex
plicitly specified in the file as resident names. (Exported functions with explicit ordinal
numbers in the module definition file are listed in the nonresident names table.)

Each string is prefaced by a single byte indicating the number of characters in the string
and is followed by a word (2 bytes) referencing an element in the entry table, beginning at
1. The word that follows the module name is 0. (Offsets are from the beginning of the
record.)

1492 The MS-DOS Encyclopedia

Appendix K: Segmented (New) .EXE File Header Format

Length
Offset (bytes) Contents

OOH 1 Number of bytes in string (0 if end of table)
OIH n ASCII string, not null-terminated
w +1 2 Index into entry table

The module reference table

The module reference table contains 2 bytes for every external module the program uses.
These 2 bytes are an offset into the imported names table.

The imported names table

The imported names table contains a list of ASCII strings. These strings are the names of
all other modules that are referenced through imported functions. The strings are prefaced
with a single byte indicating the length of the string.

For most Windows programs, the imported names table includes KERNEL, USER, and GDI,
but it can also include names of other modules, such as KEYBOARD and SOUND. (Offsets
are from the beginning of the record.)

Length
Offset (bytes) Contents

OOH 1 Number of bytes in name string
OIH n ASCII name string, not null-terminated

These strings do not necessarily start at the beginning of the imported names table; the
names are referenced by offsets specified in the module reference table.

The entry table

This table contains one member for every entry point in the program or library module.
(Every public EAR function or procedure in a module is an entry point.) The members in
the entry table have ordinal numbers beginning at 1. These ordinal numbers are refer
enced by the resident names table and the nonresident names table.

LINK versions 4.0 and later bundle the members of the entry table. Each bundle begins
with the following information. (Offsets are from the beginning of the bundle.)

Length
Offset (bytes) Contents

OOH 1 Number of entry points in bundle (0 if end of table)
OIH 1 Segment number of entry points if entry points in bun

dle are in single fixed segment; OFFH if entry points
in bundle are in movable segments

Appendixes 1493

Appendix K: Segmented (New) .EXE File Header Format

For a bundle containing entry points in fixed segments, each entry point requires 3 bytes.
(Offsets are from the beginning of the entry description.)

Length
Offset (bytes) Contents

OOH 1 Entry-point flag byte (see below)
OIH 2 Offset of entry point in segment

For bundles containing entry points in movable segments, each entry point requires 6
bytes. (Offsets are from the beginning of the entry description.)

Length
Offset (bytes) Contents

OOH 1 Entry-point flag byte (see below)
OIH 2 Interrupt 3FH instruction: CDH 3FH

03H 1 Segment number of entry point
04H 2 Offset of entry-point segment

The entry-point flag byte is defined as shown in Figure K-4.

7 6 5 4 3 2 1 0

J
i if entry is exported

-1 if entry uses single data
(library module)

- Number of parameter words

Figure K-4. The entry-pointflag.

The nonresident names table

This table contains a list of ASCII strings. The first string is the module description from
the module definition file. The other strings are the names of all exported functions listed
in the module definition file that have ordinal numbers associated with them. (Exported
functions without ordinal numbers in the module definition file are listed in the resident

names table.)

Each string is prefaced by a single byte indicating the number of characters in the string
and is followed by a word (2 bytes) referencing a member of the entry table, beginning at
1. The word that follows the module description string is 0. (Offsets are from the beginning
of the table.)

1494 The MS-DOS Encyclopedia

Appendix K: Segmented (New) .EXE File Header Format

Offset

OOH

OIH

n+1

Length
(bytes)

1

n

2

Contents

Number of bytes in string (0 if end of table)
ASCII string, not null-terminated
Index into entry table

The code and data segment

Following the various tables in the New Executable file header are the code and data seg
ments of the program or library module.

If the code or data segment is flagged in the segment flag word as ITERATED, the segment
is organized as follows. (Offsets are from the beginning of the segment.)

Offset

Length
(bytes) Contents

OOH

02H

04H

2

2

n

Number of iterations of data

Number of bytes of data
Data

Otherwise, the size of the segment data is given by the length of the segment field in the
segment table.

If the segment is flagged in the segment flag word as containing relocation information,
then the relocation table begins immediately after the segment data. Windows uses the
relocation table to resolve references within the segments to functions in other segments
in the same module and to imported functions in other modules. (Offsets are from the
beginning of the table.)

Offset

Length
(bytes) Contents

OOH Number of relocation items

Each relocation item requires 8 bytes. (Offsets are from the beginning of the relocation
item.)

Offset

Length
(bytes) Contents

OOH Type of address to insert in segment:
OIH Offset only
02H Segment only
03H Segment and offset

(more)

Appendixes 1495

Appendix K: Segmented (New) .EXE File Header Format

Length
Offset (bytes) Contents

OIH 1 Relocation type:
OOH Internal reference

OIH Imported ordinal
02H Imported name
If bit 2 set, relocation type is additive isee below)

02H 2 Offset of relocation item within segment

The next 4 bytes depend on the relocation type. If the relocation type is an internal refer
ence to a segment in the same module, these bytes are defined as follows. (Offsets are
from the beginning of the relocation item.)

Length
Offset (bytes) Contents

04H 1 Segment number for fixed segment; OFFH for movable
segment

05H 1 0

06H 2 If MOVABLE segment, ordinal number referenced in
entry table; if FIXED segment, offset into segment

If the relocation type is an imported ordinal to another module, then these bytes are
defined as follows. (Offsets are from the beginning of the relocation item.)

Length
Offset (bytes) Contents

04H 2 Index into module reference table

06H 2 Function ordinal number

Finally, if the relocation type is an imported name of a function in another module, these
bytes are defined as follows. (Offsets are from the beginning of the relocation item.)

Length
Offset (bytes) Contents

04H 2 Index into module reference table

06H 2 Offset within imported names table to name of im
ported function

1496 The MS-DOS Encyclopedia

Appendix K: Segmented (New) .EXE File Header Format

If the ADDITIVE flag of the relocation type is set, the address of the external function is
added to the contents of the address in the target segment. If the ADDITIVE flag is not set,
then the target contains an offset to another target within the same segment that requires
the same relocation address. This defines a chain of target addresses that get the same ad
dress. The chain is terminated with a -1 entry.

Charles Petzold

Appendixes 1497

Appendix L: Intel Hexadecimal Object File Format

Appendix L
Intel Hexadecimal Object File Format

The MCS-86 hexadecimal object file format provides a means of recording a program's
binary (compiled or assembled) image in a text-only (printable) file format. This format
makes it easy to transfer the program between computers over telephone lines without
using special communications software. More important, it provides a ready means of
transferring programs between computers and the various types of laboratory equipment
typically used during the development of specialized programs.

The MCS-86 hexadecimal file format is a superset of Intel's older Intellec-8 hexadecimal
object file format. Intel originally designed the Intellec-8 format for use with its 8-bit
microprocessor line. The format rapidly gained acceptance among other microprocessor
manufacturers. When Intel subsequently developed the MCS-86 microprocessor family, it
also expanded the Intellec-8 hexadecimal file format into the MCS-86 hexadecimal file
format to support the new microprocessors' extended addressing capabilities.

The MCS-86 hexadecimal object file format should not be confused with the object (.OBJ)
files produced by the Microsoft Macro Assembler (MASM) and language compilers. The
MCS-86 hexadecimal object file format is referred to as an absolute object file format
because the code contained within the file has been completely linked and all address ref
erences have already been resolved. The object modules produced by the assembler and
compilers (.OBJ files) are referred to as relocatable object modules because they contain
the information necessary to relocate the enclosed code to any memory address for
execution.

The MCS-86 hexadecimal object file format consists of four types of ASCII text records:

• Data record

• End-of-file record

• Extended-address record

• Start-address record

All records begin with a record mark consisting of a single ASCII colon character (:).
The remainder of the record consists of a variable number of ASCII hexadecimal digit
pairs (OO-OFH), each representing an unsigned byte value (0-255 decimal). The first digit
represents the value of the high nibble (bits 7-4) of the byte; the second digit represents
the value of the low nibble (bits 3-0). These digit pairs begin immediately after the record
mark and continue through the end of the record without any separation between them.

All records have the following fields, in the order listed:

• A fixed-length record length field
• A fixed-length address field (optional)
• A fixed-length record type field

Appendixes 1499

Appendix L: Intel Hexadecimal Object File Format

• A fixed-length or variable-length data field
• A fixed-length checksum field

The fixed-length record length field consists of the first digit pair following the record
mark and gives the length of the record-type-dependent variable-length data field.

The optional fixed-length address field consists of the second and third digit pairs follow
ing the record mark. The first digit pair of this field (second digit pair of the record) gives
the high byte of a word address value (bits 15-8); the second digit pair (third digit pair of
the record) gives the low byte of a word address value (bits 7-0). If the record type does
not use the address field, then the field contains a fill-in value consisting of the four-
character ASCII string 0000.

The fixed-length record type field consists of the fourth digit pair of the record and indi
cates the type of data the record contains. The valid record-type values are

Value Typ^

OGH Data record

OIH End-of-file record

02H Extended-address record

03H Start-address record

All records end with a fixed-length checksum field. This field contains the negative of
the sum of all byte values represented by the digit pairs in the record, from the record
length field through the last digit pair before the checksum field. The checksum field is
used to determine whether an error occurred during the transmission of a record between
computers or other pieces of equipment.

(The receiving equipment can easily perform this error checking as each record is
received. It only has to add all digit pairs of the record, including the checksum, and
ignore any overflow beyond 8 bits. The total should be OGH, because the checksum is the
negative of the summation of all preceding digit pairs.)

The variable-length data field of the data record contains the actual data bytes of the pro
gram's image. In data records, the record length field indicates the number of bytes, each
represented as a digit pair, contained within the data field; the address field gives the off
set within the current memory segment at which to load the record's data into memory.

The fixed-length data field of the extended-address record establishes the memory seg
ment into which subsequent data records are to be loaded. In extended-address records,
the data field consists of a single field identical to the address field. The address field of an
extended-address record always contains the ASCII GGGG filler, and the record length field
always contains ASCII G2, which reflects the fixed length of the data field. The memory
segment (also known as the memory frame) established by an extended-address record
remains in effect until the next extended-address record is encountered; thus, all data

15GG The MS-DOS Encyclopedia

Appendix L: Intel Hexadecimal Object File Format

records following the most recent extended-address record are loaded in the established
memory segment. See PROGRAMMING IN MS-DOS: Programming Tools: The Microsoft
Object Linker.

Figures L-1 and L-2 show how the extended-address record and the data record combine to
load the byte values OFDH, 0B9H, 75H, 31H, OECH, 0A8H, 64H, and 20H into memory start
ing at address 9A6EH:429FH.

0 2 0 0 0 0 0 2 9 A 6 E F 4

checksum

data = segment address

record type = extended-address record

address (filler)

record length

record mark

Figure L-1. The extended-address record.

00

o

4 2 9 F 0 0
1 1 1 i 1 1 1

FDB97 5 3 1 ECA8 6420
I I I I I I

A 3

checksum

— data

record type = data record

address

record length

record mark

Figure L-2. The data record.

The start-address record provides the CS and IP register values at which program execu
tion begins. This record contains the register values within the fixed-length data field. The
address field of a start-address record always contains the ASCII 0000 filler, and the record
length field always contains ASCII 04, which reflects the fixed length of the data field. The
example in Figure L-3 shows a CS:IP setting (program entry point) of F924H:E69AH.

The end-of-file record marks the end of an MCS-86 hexadecimal file. Under the MCS-86

hexadecimal file definition, the end-of-file record does not contain any variable-value
fields; the record always appears as shown in Figure L-4.

Appendixes 1501

Appendix L: Intel Hexadecimal Object File Format

0 4 0 0 0 0 0 4
1

F9 24E6 9A

«

5 B

i:checksum

data:

IP

CS

record type = start-address record

address (filler)

record length

record mark

Figure L-3. The start-address record.

0 0 0 0 0 0 0 1 F F

— checksum

- record type = end-of-file record

- address (filler)

- record length

- record mark

Figure L-4. The end-of-file record.

Traditionally, development equipment and programs that accept the MCS-86 hexadecimal
file format as input also recognize an alternate end-of-file record. The alternate record con
sists of a data record that contains no data; therefore, its record length field contains 00.
Figure L-5 shows this alternate end-of-file record.

DEBUG is the only program supplied with MS-DOS that accepts the MCS-86 hexadecimal
file format. Even then, DEBUG only loads hexadecimal files into memory; it does not save
a program back to disk as a hexadecimal file. (The same applies for SYMDEB and for
CodeView.)

0 0 0 0 0 0 0 0 0 0

checksum

record type = data record

address (filler)

record length

record mark

Figure L-5. The alternate end-of-file record.

1502 The MS-DOS Encyclopedia

Appendix L: Intel Hexadecimal Object File Format

While loading a hexadecimal file, DEBUG actually processes only data records and end-of-
file records; it ignores both start-address records and any extended-address records. Thus,
DEBUG actually supports only the older Intellec-8 hexadecimal file format but will not
reject the file if it also contains the newer MCS-86 hexadecimal file records.

DEBUG does not support MCS-86 records because it must operate within the MS-DOS
environment and MS-DOS does not support the loading of programs into absolute memory
locations—a restriction imposed by most general-purpose operating systems. Because
DEBUG cannot load the data records into the absolute segments indicated by the
extended-address records, it simply loads the program image contained within the data
records in a manner similar to that in which a .COM program is loaded. See PROGRAM
MING IN THE MS-DOS ENVIRONMENT: Programming for ms-dos: Structure of an Appli
cation Program. DEBUG uses the address field for the data records as the offset into the
.COM program segment at which to load the contents of the records.

The sample QuickBASIC (versions 3.0 and later) program shown in Figure L-6 converts
binary files, including .COM files, into limited MCS-86 hexadecimal files that DEBUG can
load. Examining this program can provide additional understanding of the structure of
Intel hexadecimal files.

'Binary-to-Hex file conversion utility.

'Requires Microsoft QuickBASIC version 3.0 or later.

DEFINT A-Z

CONST FALSE = 0

CONST TRUE = NOT FALSE

All variables are integers

unless otherwise declared.

Value of logical FALSE.

Value of logical TRUE.

DEF FNHXB$(X) = RIGHT$(HEX$(&H100 + X), 2)

DEF FNHXW$(X!) = RIGHT$("000" + HEX$(X!), 4)

DEF FNMOD(X, Y) = X! - INT(X!/Y) * Y

CONST SRCCNL = 1

CONST TGTCNL = 2

Return 2-digit hex value for X.

Return 4-digit hex value for X!.

X! MOD Y (the MOD operation is

only for integers).

Source (.BIN) file channel.

Target (.HEX) file channel.

LINE INPUT "Enter full name of source .BIN file : ";SRCFIL$

OPEN SCRCFIL$ FOR INPUT AS SRCCNL ' Test for source (.BIN) file.

SRCSIZ! = LOF(SRCCNL) ' Save file's size.

CLOSE SRCCNL

IF (SRCSIZ! > 65536) THEN ' Reject if file exceeds 64 KB.

PRINT "Cannot convert file larger than 64 KB."

END

END IF

LINE INPUT "Enter full name of target .HEX file : ";TGTFIL$

OPEN TGTFIL$ FOR OUTPUT AS TGTCNL ' Test target (.HEX) filename.

CLOSE TGTCNL

Figure L-6. QuickBASIC binary-to-hexadecimal file conversion utility. (more)

Appendixes 1503

Appendix L: Intel Hexadecimal Object File Format

DO

LINE INPUT "Enter starting address of .BIN file in HEX : ";L$

ADRBGN! = VAL("&H" + L$)

IF (ADRBGN! < 0) THEN

ADRBGN! = 65536 + ADRBGN!

END IF

ADREND! = ADRBGN! + SRCSIZ!

IF (ADREND! > 65535) THEN

• Convert ASCII HEX address value

' to binary value.

' HEX values 8000-FFFFH convert

' to negative values.

1 ' Calculate resulting end address.

' Reject if address exceeds FFFFH.

PRINT "Entered start address causes end address to exceed FFFFH."

END IF

LOOP UNTIL (ADRFLD! >= 0) AND (ADRFLD! <= 65535) AND (ADREND! <= 65535)

DO

LINE INPUT "Enter byte count for each record in HEX ";L$

SRCRLN = VAL{"&H" + L$)

IF (SRCRLN < 0) THEN

SRCRLN = 65536 + SRCRLN

END IF

LOOP UNTIL (SRCRLN > 0) AND (SRCRLN < 256)

OPEN SRCFIL$ AS SRCCNL LEN = SRCRLN

FIELD#SRCCNL,SRCRLN AS SRCBLK$

OPEN TGTFIL$ FOR OUTPUT AS TGTCNL

SRCREC = 0

Convert ASCII HEX max record

length value to binary value.

HEX values 8000-FFFFH convert

to negative values.

Ask again if not 1-255.

Reopen source for block I/O.

Reopen target for text output.

Starting source block # minus 1.

FOR ADRFLD! = ADRBGN! TO ADREND! STEP SRCRLN

SRCREC = SRCREC + 1

GET SRCCNL,SRCREC

IF (ADRFLD! + SRCRLN > ADREND!) THEN

BLK$=LEFT$(SRCBLK$,ADREND!-ADRFLD!+1)

ELSE

BLK$ = SRCBLK$

END IF

Convert one block per loop.

Next source block.

Read the source block.

If last block less than full

size: trim it.

Else:

Use full block.

PRINT#TGTCNL, Write record mark.

PRINT#TGTCNL, FNHXB$(LEN(BLK$));

CHKSUM = LEN(BLK$)

PRINT#TGTCNL,FNHXW$(ADRFLD!);

Write data field size.

Initialize checksum accumulate

with first value.

Write record's load address.

' The following "AND &HFF" operations limit CHKSUM to a byte value.

CHKSUM = CHKSUM + INT(ADRFLD!/256) AND &HFF ' Add hi byte of adrs to csum.

CHKSUM = CHKSUM + FNMOD(ADRFLD!,256) AND &HFF ' Add lo byte of adrs to csum.

PRINT#TGTCNL,FNHXB$(0);

Figure L-6. Continued.

' Write record type.

(more)

1504 The MS-DOS Encyclopedia

Appendix L: Intel Hexadecimal Object File Format

' Don't bother to add record type byte to checksum since it's 0.

FOR IDX = 1 TO LEN(BLK$) ' Write all bytes.

PRINT#TGTCNL,FNHXB$(ASC(MID${BLK$,IDX, 1))); ' Write next byte.

CHKSUM = CHKSUM + ASC(MID$(BLK$,IDX,1)) AND &HFF ' Incl byte in csum.

NEXT IDX

CHKSUM = 0 - CHKSUM AND &HFF

PRINT #TGTCNL,FNHXB$(CHKSUM)

NEXT ADRFLD!

PRINT#TGTCNL, 00000001FF"

CLOSE TGTCNL

CLOSE SRCCNL

END

Figure L-6. Continued.

' Negate checksum then limit

' to byte value.

' End record with checksum.

' Write end-of-file record.

' Close target file.

' Close source file.

Keith Burgoyne

Appendixes 1505

Appendix M: 8086/8088 Software Compatibility Issues

Appendix M
8086/8088 Software Compatibility Issues

In general, the Intel 80286 microprocessor running in real mode executes 8086/8088 soft
ware correctly. The following is a list of the actions to take to compensate for the minor
differences between the 8086/8088 and real mode of the 80286.

• Do not rely on 8086/8088 instruction clock counts. The 80286 takes fewer clocks
for most instructions than the 8086/8088. The areas to look into are delays between
I/O operations and assumed delays when the 8086/8088 is operating in parallel
with an 8087 coprocessor.

• Note that divide exceptions point to the DIV instruction. Any interrupt on the 80286
always leaves the saved CS:IP value pointing to the instruction that failed. On the
8086/8088, the CS:IP value saved for a divide exception points to the next instruction.

• Set up numeric exception handlers to allow prefixes. The saved CS:IP value in the
NPX environment save area points to any ESC instruction prefixes. On 8086/8088
systems, this value points only to the ESC instruction.

• Do not attempt undefined 8086/8088 operations. 8086/8088 instructions like POP CS
or MOV CS,op either invoke exception 06H (Invalid Opcode) or perform a protection
setup operation like LIDT on the 80286. Undefined bit encodings for bits 5-3 of the
second byte of POP MEM or PUSH MEM invoke exception 13H on the 80286.

• Do not rely on the value written by PUSH SP. The 80286 pushes a different value on
the stack for PUSH SP than does the 8086/8088. If the value pushed is important,
replace PUSH SP instructions with the following instructions:

PUSH BP

MOV BP,SP

XCHG BP,[BP]

This code functions like the 8086/8088 PUSH SP instruction on the 80286.

• Do not shift or rotate by more than 31 bits. The 80286 masks all SHIFT/ROTATE
counts to the low 5 bits. This MOD 32 operation limits the count to a maximum of 31
bits. With this change, the longest SHIFT/ROTATE instruction is 39 clocks. Without
this change, the longest SHIFT/ROTATE instruction is 264 clocks, which delays
interrupt response until the instruction completes execution.

• Do not duplicate prefixes. The 80286 sets an instruction-length limit of 10 bytes. The
only way to exceed this limit is to include the same prefix two or more times before
an instruction. Exception 06H occurs if the instruction-length limit is violated. The
8086/8088 has no instruction-length limit.

• Do not rely on odd 8086/8088LOCK characteristics. The LOCK prefix and its corre
sponding output signal should be used only to prevent other bus masters from inter
rupting a data movement operation. The 80286 always asserts LOCK during an XCHG
instruction with memory (even if the LOCK prefix was not used). LOCK should be

Appendixes 1507

Appendix M: 8086/8088 Software Compatibility Issues

used only with the XCHG, MOV, MOVS, INS, and OUTS instructions. The 80286
LOCK signal will not go active during an instruction prefetch.

• Do not rely on IDIVexceptions for quotients of 80H or8000H. The 80286 can gener
ate the largest negative number as a quotient for IDIV instructions. The 8086/8088
generates exception OOH (Divide by Zero) instead.

• Do not rely on address space wraparound.
• Do not use I/O ports 0F8—0FFH. These are reserved for controlling the 80287 and

future microprocessor extensions.

1508 The MS-DOS Encyclopedia

Appendix N: An Object Module Dump Utility

Appendix N
An Object Module Dump Utility

The program OBJDUMP.C displays the contents of an object file as individual object
records. It can be used to study the structure of object modules as well as to verify the
output of a language translator. The program recognizes all of the object record types
discussed in PROGRAMMING IN THE MS-DOS ENVIRONMENT: Programming Tools:

Object Modules.

OBJDUMP.C should be executed with the following syntax:

OBJDUMP filename

where filename is a complete filename specification. For example, to dump the contents
of the object file MYPROG.OBJ, the user would type

OOBJDUMP MYPROG.OBJ <Enter>

The following is a typical object record as displayed by OBJDUMP:

Record 9; 96h LNAMES

96 002Eh 00 06 44 47 52 4F 55 50 05 5F 54 45 58 54 04 43 ..DGROUP._TEXT.C

4F 44 45 05 5F 44 41 54 41 04 44 41 54 41 05 43 ODE._DATA.DATA.C

4F 4E 53 54 04 5F 42 53 53 03 42 53 53 3F ONST._BSS.BSS?

This sample LNAMES record defines a null name and eight names used in subsequent
SEGDEF and GRPDEF records. The first 3 bytes of the record (the identifying byte and the
2-byte record length) are displayed to the left of the hexadecimal and ASCII listings of
the contents of the record.

* *

* OBJDUMP.C — display contents of an object file *

* *

* *

* Compile: msc objdump; (Microsoft C version 4.0 or later) *

* Link: link objdump; *

* Execute: objdump <filename> *

* *

#include <fcntl.h>

#define TRUE 1

#define FALSE - 0

(more)

Appendixes 1509

Appendix N: An Object Module Dump Utility

main(argc, argv)

int argc;

char **argv;

int

int

int

int

char

char

char

char

/* length of output line */

unsigned char CurrentByte;

int ObjFileHandle;

CurrentLineLength;

ObjRecordNumber = 0;

ObjRecordLength;

ObjRecordOffset =0; /* offset into current object record */

ASCIIEquiv[17];

FormatString[24];

*0bjRecordName();

♦memset();

/* open the object file */

ObjFileHandle = open(argv[1],0_BINARY);

if(ObjFileHandle == -1)

{
printf ("\nCan't open object file\n");
exit(1);

}

/* process the object file character by character */

while(read(ObjFileHandle, &CurrentByte, 1))
{

switch(ObjRecordOffset) /* action depends on offset into record */
{

case(O) : /* start of object record */
printf("\n\nRecord %d: %02Xh %s",

++0bjRecordNumber, CurrentByte, ObjRecordName(CurrentByte));
printf("\n%02X ", CurrentByte);
++0bjRecordOffset ;
break;

case (1) :

ObjRecordLength = CurrentByte;
++0bjRecordOffset;
break;

/* first byte of length field */

case(2) : /* second byte of length field */
ObjRecordLength += CurrentByte « 8; /* compute record length */
printf("%04Xh ", ObjRecordLength);
CurrentLineLength = 0;
memset(ASCIIEquiv, '\0' , 17);
++0bjRecordOffset ;
break;

/* show length */

/* zero this string */

(more)

1510 The MS-DOS Encyclopedia

Appendix N: An Object Module Dump Utility

default: /* remaining bytes in object record */

printf("%02X CurrentByte); /* hex */

if{ CurrentByte < 0x20 ! 1 CurrentByte > 0x7F)

CurrentByte = '.';

ASCIIEquiv[CurrentLineLength++] = CurrentByte;

/* ASCII */

if (CurrentLineLength == 16 I I /* if end of output line ... */

ObjRecordOffset == ObjRecordLength+2)

{ /* ... display it */

sprintf(FormatString, "%%%ds%%s\n

3*(16-CurrentLineLength)+2);

printf(FormatString, " ASCIIEquiv);

memset(ASCIIEquiv, '\0*, 17);

CurrentLineLength = 0;

if(++0bjRecordOffset == ObjRecordLength+3) /* if done ... */

ObjRecordOffset =0; /* ... process another record */

break;

if(CurrentLineLength) /* display remainder of last output line */

printf(" %s", ASCIIEquiv);

close (ObjFileHandle);

printf("\n%d object records\n", ObjRecordNumber);

return (0);

char *0bjRecordName(n

int n;

/* return object record name */

/* n = record type */

int

int

char

RecordNumber;

*RecordName;

RecordStruct[] =

{

0x80,"THEADR",

0x88,"COMENT",

0x8A,"MODEND",

0x8C,"EXTDEF",

0x8E,"TYPDEF",

0x90,"PUBDEF",

(more)

Appendixes 1511

Appendix N: An Object Module Dump Utility

0x94,"LINNUM",

0x96,"LNAMES",

0x98,"SEGDEF",

Ox9A,"GRPDEF",

0x9C,"FIXUPP",

OxAO,"LEDATA",

0xA2,"LIDATA",

OxBO,"COMDEF",

0x00, '•******"

};

RecordTableSize = sizeof(RecordStruct)/sizeof(RecordStruct[0]) ;

for(i=0; i<RecordTableSize-1; i++) /* scan table for name */

if (RecordStruct[i].RecordNumber == n)

break;

return(RecordStruct[i].RecordName

Richard Wilton

1512 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Appendix O
IBM PC ROM BIOS Calls

To invoke an IBM PC BIOS routine, set register AH to the desired function and execute the
software interrupt (INT) for the desired routine.

Graphics pixel coordinates and cursor row and column coordinates are always zero based.

Interrupt lOH: Video Services

Function OOH: Set Video Mode

To call:

AH

AL

= 00H

= mode:

OOH l6-shade gray text 40 by 25 B000:8000H

EGA: 64-color

OIH l6/8-color text 40 by 25 B000:8000H

EGA: 64-color

02H l6-shade gray text 80 by 25 B000:8000H

EGA: 64-color

03H l6/8-color text 80 by 25 B000:8000H

EGA: 64-color

04H 4-color graphics 320 by 200 B000:8000H

05H 4-shade gray graphics 320 by 200 B000:8000H

06H 2-shade gray graphics 640 by 200 B000:8000H

07H monochrome text 80 by 25 BOOO:OOOOH

08H l6-color graphics 160 by 200 BOOO:OOOOH

09H l6-color graphics 320 by 200 BOOO:OOOOH

OAH 4-color graphics 640 by 200 BOOO:OOOOH

OBH Reserved

OCH Reserved

ODH l6-color graphics 320 by 200 AOOO:OOOOH

OEH l6-color graphics 640 by 200 AOOO:OOOOH

OFH monochrome graphics 640 by 350 AOOO:OOOOH

lOH l6/64-color graphics 640 by 350 AOOO:OOOOH

Returns:

Nothing

Appendixes 1513

Appendix O: IBM PC ROM BIOS Calls

Function OIH: Set Cursor Size and Shape

To call:

AH = OIH

CH = starting scan line
CL = ending scan line

Note: CH < CL gives normal one-part cursor; CH > CL gives two-part cursor; CH = 20H
gives no cursor.

Returns:

Nothing

Function 02H: Set Cursor Position

To call:

AH = 02H

BH = display page (0 in graphics)
DH = row number

DL = line number

Returns:

Nothing

Function 03H: Read Cursor Position, Size, and Shape

TocaU:

AH

BH

Returns:

CH

CL

DH

DL

= 03H

= display page

' starting scan line
' ending scan line
= row number

' column number

Function 04H: Read light-Pen Position

TocaU:

AH =04H

1514 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Returns:

AH = status:

OIH pen triggered
OOH not triggered

BX = pixel column number
CH = pixel line number
CX = pixel line number for some EGA modes
DH = character row number

DL = character column number

Function 05H: Select Active Page

To call:

AH = 05H

AL = page number:
00-07H 40-column text modes

00-03H 80-column text modes

varies EGA graphics modes

Note: Each page = 2 KB in 40-column text mode, 4 KB in 80-column text mode.

Returns:

Nothing

Function 06H: Scroll Window Up
Function 07H: Scroll Window Down

To call:

AH =06H scroll up
= 07H scroll down

AL = number of lines to scroll (OOH blanks screen)

BH = display attributes for blank lines
CH = row number of upper left corner
CL = column number of upper left corner
DH = row number of lower right corner
DL = column number of lower right corner

Returns:

Nothing

Function 08H: Read Chai^ter and Attribute at Cursor

To call:

AH = 08H

BH = display page (for text mode only)

Appendixes 1515

Appendix O: IBM PC ROM BIOS Calls

Returns:

If text mode:

AH = color attributes of character

AL = ASCII character from current location

If graphics mode:

AL = ASCII character (OOH if unmatched)

Function 09H: Write Character and Attribute

To call:

AH = 09H

AL = ASCII character to write

BH = display page
BL = text attribute or graphics foreground color
CX = number of times to write character (must be > 0)

Returns:

Nothing

Note: Cursor position unchanged.

Function OAH: Write Character Only

To call:

AH = OAH

AL = ASCII character to write

BH = display page
BL = graphics foreground color (unused in text modes)
CX = number of times to write character (must be > 0)

Returns:

Nothing

Note: Cursor position unchanged.

Function OBH: Select Color Palette

To call:

AH = OBH

BH = palette color ID
BL = color or palette value

Returns:

Nothing

1516 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Function OCH: Write Pixel Dot

To call:

AH = OCH

AL = color attribute of pixel
CX = pixel column number
DX = pixel raster line number

Returns:

Nothing

Function ODH: Read Pixel Dot

Tocall:

AH

CX

DX

Returns:

AL

= ODH

= pixel column number (0-based)
= pixel raster line number (0-based)

= pixel color attribute

Function OEH: Write Character as TTY

= OEH

= ASCII character

= display page
= foreground color of character (unused in text mode)

Tocall:

AH

AL

BH

BL

Returns:

Nothing

Note: Cursor position advanced; beep, backspace, linefeed, and carriage return active; all
other characters displayed.

Function OFH: Get Current Video Mode

Tocall:

AH = OFH

Returns:

AH = characters per line (20, 40, or 80)
AL = current video mode isee Interrupt lOH Function OOH)
BH = active display page

Appendixes 1517

Appendix O: IBM PC ROM BIOS Calls

Function 13H: Write Character String

To call:

AH = 13H

AL = subfunction number:

OOH string shares attribute in BL, cursor unchanged
OIH string shares attribute in BL, cursor advanced
02H each character has attribute, cursor unchanged
03H each character has attribute, cursor advanced

BH = active display page
BL = string attribute (for AL = OOH or OIH only)
CX = length of character string
DH = starting row number
DL = starting column number
ESiBP = address of string to be displayed

Note: For AL = OOH or OIH, string = ichar, char, char, ...). For AL = 02H or 03H, string =
ichar, attr, char, attr, ...).

Returns:

Nothing

Note: For AL = OIH or 03H, cursor position set to location following last character output.

Interrupt IIH: Get Peripheral Equipment List

Returns:

AX = equipment list code word (bit settings PPMURRRUFFWUUCI):
PP number of printers installed
M 1 if internal modem installed

RRR number of RS-232 ports installed
U unused

FF number of floppy-disk drives minus 1(0 = one drive)
W initial video mode:

00 = reserved

01 = 40-by-25 color
10 = 80-by-25 color
11 = 80-by-25 monochrome

U unused

C 1 if math coprocessor installed
I 1 if IPL (Initial Program Load) diskette installed

1518 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Interrupt 12H: Get Usable Memory Size (KB)

Returns:

AX = available memory size in KB

Interrupt 13H: Disk Services

Function OOH: Reset Disk System

To call:

AH

AL

Returns:

CF

AH

= 00H

= drive number:

00-7FH floppy disk
80-FFH fixed disk

= 0 no error

1 error

= error code (see Interrupt 13H Function OIH)

Function OIH: Get Disk Status

To call:

AH = OIH

Returns:

AH

AL

= 00H

= disk status of previous disk operation:
OOH no error

OIH invalid command

02H address mark not found

03H write attempt on write-protected disk (F)
04H sector not found

05H reset failed (H)

06H floppy disk removed (F)
07H bad parameter table (H)
08H DMA overflow (F)

09H DMA crossed 64 KB boundary
OAH bad sector flag (H)
lOH uncorrectable CRC or ECC data error

IIH ECC corrected data error (H)

20H controller failed

(more)

Appendixes 1519

Appendix O: IBM PC ROM BIOS Calls

40H seek failed

BOH time out

AAH drive not ready (H)
BBH undefined error (H)

CCH write fault (H)

EOH status error (H)

Note: H = fixed disk only, F = floppy disk only.

Function 02H: Read Disk Sectors
Function 03H: Write Disk Sectors
Function 04H: Verify Disk Sectors
Function 05H: Format Disk Tracks

To call:

AH = 02H read disk sectors

03H write disk sectors

04H verify disk sectors
05H format disk track

AL = number of sectors

CH = cylinder number
CL = sector number (unused if AH = 05H)

DH = head number

DL = drive number

ES:BX = buffer address (unused if AH = 04H)

Returns:

CP =0 no error

1 error

AH = error code isee Interrupt 13H Function OIH)

IfAHwas05Honcall:

ES:BX = 4-byte address field entries, 1 per sector:
byte 0 cylinder number
byte 1 head number
byte 2 sector number
byte 3 sector-size code:

OOH 128 bytes per sector
OIH 256 bytes per sector
02H 512 bytes per sector (standard)
03H 1024 bytes per sector

Function 08H: Get Current Drive Parameters

To call:

AH = OBH

DL = drive number

1520 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Returns:

AX = OOH

BH = OOH

BL = drive type
CH = low-order 8 bits of 10-bit maximum number of cylinders
CL = bits 7 and 6 high-order 2 bits of 10-bit maximum number of cylinders

bits 5-0 maximum number of sectors/track
DH = maximum head number

DL = number of drives installed

ES:DI = address of floppy-disk-drive parameter table

Function 09H: Initialize Hard-Disk Parameter Table

To call:

AH = 09H

Returns:

Nothing

Function OAH: Read Long

Reads 512-byte sector plus 4-byte ECC code.

To call:

See Interrupt 13H Function 02H.

Returns:

See Interrupt 13H Function 02H.

Function OBH: Write Long

Writes 512-byte sector plus 4-byte ECC code.

To call:

See Interrupt 13H Function 03H.

Returns:

See Interrupt 13H Function 03H.

Function OCH: Seek to Head

Positions head but does not transfer data.

To call:

See Interrupt 13H Functions 02H and 03H.

Returns:

See Interrupt 13H Functions 02H and 03H.

Appendixes 1521

Appendix O: IBM PC ROM BIOS Calls

Function ODH: Alternate Disk Reset

To call:

AH

DL

= ODH

= drive number

Returns:

Nothing

Function lOH: Test for Drive Ready

To call:

AH

DL

Returns:

AH

= 10H

= drive number

= status

Function IIH: Recalibrate Drive

To call:

AH

DL

Returns:

AH

= 11H

= drive number

= status

Function 14H: Controller Diagnostic

To call:

AH = 14H

Returns:

AH = status

Function 15H: Get Disk Type

To call:

AH

DL

Returns:

AH

= 15H

= drive number

= drive type code:
OOH no drive present
OIH cannot sense when floppy disk is changed

(more)

1522 The MiS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

02H can sense when floppy disk is changed
03H fixed disk

If AH = 03H:

CX:DX = number of sectors

Function 16H: Check for Change of Floppy Disk Status

To call:

AH = 16H

DL = drive number to check

Returns:

AH = OOH no change
06H floppy-disk change

Function 17H: Set Disk Type

To call:

AH = 17H

DL = drive number

AL = floppy-disk type code

Returns:

Nothing

Interrupt 14H: Serial Port Services

Function OOH: Initialize Port Parameters

To call:

AH = OOH

AL = serial port parameters (bit settings BBBPPSCC):
BBB baud rate:

000 110 baud

001 150 baud

010 300 baud

Oil 600 baud

100 1200 baud

101 2400 baud

110 4800 baud

111 9600 baud

(more)

Appendixes 1523

Appendix O: IBM PC ROM BIOS Calls

PP parity code:
00 none

01 odd

10 none

11 even

S number of stop bits code:
0 one stop bit
1 two stop bits

CC character size:

00 unused

01 unused

10 7-bit character size

11 8-bit character size

DX = serial port number (0 = first port)

Returns:

Nothing

Function OIH: Send One Character

To call:

AH = OIH

AL = character to send

DX = serial port number (0 = first port)

Returns:

AH = error status Csee Interrupt 14H Function 03H):
OOH no error

Function 02H: Receive One Character

To call:

AH = 02H

DX = serial port number (0 = first port)

Returns:

AL = character received

AH = error status Qsee Interrupt 14H Function 03H):
OOH no error

Function 03H: Get Port Status

To call:

AH = 03H

DX = serial port number (0 = first port)

1524 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Returns:

AX = serial port status:
8000H time out

4000H transfer shift register empty
2000H transfer holding register empty
lOOOH break detect

0800H framing error
0400H parity error
0200H overrun error

OlOOH data ready
0080H received line signal detect
0040H ring indicator
0020H data set ready
OOlOH clear to send

0008H delta receive line signal detect
0004H trailing edge ring detector
0002H delta data set ready
OOOIH delta clear to send

Note: Multiple conditions can be active simultaneously.

Interrupt 15H: Miscellaneous System Services

Function OOH: Turn On Cassette Motor

Function OIH: Turn Off Cassette Motor

To calk

AH = OOH turn on cassette motor

OIH turn off cassette motor

Returns:

Nothing

Function 02H: Read Data from Cassette

To call:

AH = 02H

CX = number of bytes to read
ESiBX = buffer address

Appendixes 1525

Appendix O: IBM PC ROM BIOS Calls

Returns:

CF =0 no error

1 error

AH = error status (if needed):

OIH CRC error

02H bit signals scrambled
03H no data found

DX = number of bytes read
ES:BX = location following last byte read

Function 03H: Write Data to Cassette

To call:

AH = 03H

CX = number of bytes to write
ES:BX = buffer address

Note: Blocking factor = 256 bytes/block.

Returns:

CX =00H

ESiBX = location following last byte written

Interrupt 16H: Keyboard Services

Function OOH: Read Next Character

Tocali:

AH = OOH

Returns:

If ASCII characters:

AH = standard PC keyboard scan code
AL = ASCII character

If extended ASCII codes:

AH = extended ASCII code

AL = OOH

Note: Does not return until character is read; removes character from keyboard buffer.

1526 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Function OIH: Report If Character Ready

To call:

AH

Returns:

ZF

AH

AL

= 01H

= 0 character ready
1 character not ready

= see Interrupt 16H Function OOH
= see Interrupt 16H Function OOH

Note: Returns immediately; does not remove character from keyboard buffer.

Function 02H: Get Shift Status

To call:

AH = 02H

Returns:

AL = shift status:

OIH right shift active
02H left shift active

04H Ctrl active

08H Alt active

lOH Scroll Lock active

20H Num Lock active

40H Caps Lock active
80H insert state active

Note: Multiple states can be active simultaneously.

Interrupt 17H: Printer Services

Function OOH: Send Byte to Printer

To call:

AH

AL

DX

Returns:

AH

= 00H

= character to be printed
= printer number

= status {.see Interrupt 17H Function 02H)

Appendixes 1527

Appendix O: IBM PC ROM BIOS Calls

Function OIH: Initialize Printer

To call:

AH

DX

Returns:

AH

= 01H

= printer number

= status (see Interrupt 17H Function 02H)

Function 02H: Get Printer Status

To call:

AH

DX

Returns:

AH

= 02H

= printer number

= status:

OIH time out

02H unused

04H unused

08H I/O error

lOH printer selected
20H out of paper
40H printer acknowledgment
80H printer not busy (bit off, 0, = busy)

Note: Multiple states can be active simultaneously.

Interrupt 18H: Transfer Control to ROM-BASIC

Interrupt 19H: Reboot Computer (Warm Start)

Interrupt lAH: Get/Set Time/Date

Faction OOH: Read Current Clock Count

To call:

AH = OOH

1528 The MS-DOS Encyclopedia

Appendix O: IBM PC ROM BIOS Calls

Returns:

AL = midnight signal
CX = high-order word of tick count
DX = low-order word of tick count

Function OIH; Set Current Clock Count

To call:

AH = 01H

CX = high-order word of tick count
DX = low-order word of tick count

Returns:

Nothing

Function 02H:Read Real-Time Clock

To call:

AH = 02H

Returns:

CF = 0 clock running
1 clock stopped

CH = hours in BCD

CL = minutes in BCD

DH = seconds in BCD

Function 03H:Set Real-Time Clock

To call:

AH = 03H

CH = hours in BCD

CL = minutes in BCD

DH = seconds in BCD

DL = OOH standard time

OIH daylight saving time

Returns:

Nothing

Function 04H:Read Date from Real-Time Clock

To call:

AH = 04H

Appendixes 1529

Appendix O: IBM PC ROM BIOS Calls

Returns:

CF

CH

CL

DH

DL

= 0 clock running
1 clock stopped

= century in BCD (19 or 20)
= year in BCD
= month in BCD

= day in BCD

Function 05H: Set Date in Real-Time Clock

To call:

= 05H

= century in BCD (19 or 20)
= year in BCD

= month in BCD

= day in BCD

AH

CH

CL

DH

DL

Returns:

Nothing

Function 06H: Set Alarm

To call:

AH

CH

CL

DH

Returns:

CF

= 06H

= hours in BCD

= minutes in BCD

= seconds in BCD

= status:

0

1

operation successful
alarm already set or, clock stopped

Function 07H: Reset Alarm (Turn Alarm OfO

To call:

AH =07H

Returns:

Nothing

1530 The MS-DOS Encyclopedia

Indexes

Subject

Subject

Symbols and Numerals

! (exclamation point)

SYMDEB1154-55

(number sign). See also EDLIN commands
CREF967

•(asterisk)

EDLIN 829,832

SYMDEB 1156

wildcard 813

- (hyphen)
DEBUG prompt 1020-21,1046
SYMDEB prompt 1055

. (period). See also EDLIN commands
SYMDEB 1151

. and.. (directory aliases) 103, 282, 283
/(slash)

directories 280, 284

SYMDEB 1150

: (colon)

EDLIN 832

hexadecimal object file format 1499
SYMDEB 1059

; (semicolon), APPEND 739

<, >, and » (redirection symbols) 67,753

ECHO 759

filters and 430

PAUSE 766

REM768

SYMDEB 1143-45

= (equal sign), SYMDEB 1146
? (question mark)

PROMPT 904,905

SYMDEB 1152-53

@ (at sign) 1434
\ (backslash)

directories 284

{ } (braces), SYMDEB 1147-48
1 (piping character) 67,753

ECHO 759

REM768

- (tilde), SYMDEB 1149

86-DOS operating system 12-13, 27
as basis for MS-DOS 15-19

4004. See Intel 4004 chip
8008. See Intel 8008 chip
8080. See Intel 8080 chip
8086. See Intel 8086 chip
8250. See INS8250 Universal Asynchronous

Receiver Transmitter (UART)

8259. See Intel 8259A Programmable Interrupt
Controller (PIC)

80186. See Intel 80186 chip
80188. See Intel 80188 chip
80286. See Intel 80286 chip
80386. See Intel 80386 chip

Absolute Disk Read. See Interrupt 25H
Absolute Disk Write. See Interrupt 26H
Address, defined 1058

Advanced run length limited (ARLL) encoding 87
align type parameters 125-27
Allen, Paul 8(fig.), l6(fig.)

in the development of early BASIC 3-8
in the development of MS-DOS 14-15, 30,34

Allocate Memory Block. See Interrupt 21H
Function 48H

Alphabetic Sort Filter (SORT) 935-37
Altair computer, and BASIC language 3-8
Alternate Disk Reset. See Interrupt 13H Function ODH
ANSI Console Driver. See ANSI.SYS

ANSI.SYS 152,731-38

AUTOEXEC.BAT and 755

controlling the screen with 158-59
key and extended key codes 1471-72

APPEND command 739-40

MS-DOS version 3-31436-37

Append Lines from Disk (EDLIN A) 834
Application programs

structure of 107-48

.COM programs 142-48

.EXE programs 107-42
as transient 447

writing for upward compatibility 489-97
hardware issues 489-92

operating-system issues 492-97
Applications Program Interface. See Family API
Arithmetic, hexadecimal 1035

ASCII format 872

character set 1465-67

cross-reference listing 967
display content of memory in 1077-78
display lookup table 629-40
entering strings 1093-96
escape sequences 731

Indexes 1533

Subject

ASCII format (continued)

make files, and MAKE utility 999-1003
strings with environmental variables 930
text files 752,788,829,935,947

ASCIIZ strings 65
ASCTBL.C program 545

correct code 639(fig.)
correction of 631-39

expected output 630(fig.)
incorrect code 630-31

Assemble Machine Instructions

DEBUG A1024-25

SYMDEB A1063-64

Assembly-language programs
acceptance/translation of 1024,1063
active TSR (video buffer dump) 360-80
block-device driver 478-85

character-device driver 471-77

character-oriented filter 431-33

communications device driver 182-200

communications port monitor 558-63
disassembling machine instructions into

1051,1132

filter as child process 442-46
handler for UART interrupts 216-21
line-oriented fi Iter 434-35

lowercase filter 437-39

message program 651
modem engine 207-8
MS-DOS shell substitute 81-83

parent and child examples 329-34
passive TSR (pop-up) 357-59
replacement Interrupt OOH handler 420- 24
replacement Interrupt 24H handler 395-98
root and overlay examples 337-42
support files for terminal emulator 223-30
symbol cross-referencing in, with CREF 967
test program for communications port monitor

580-81

translation into relocatable object module (^see
Microsoft Macro Assembler)

volume label updating program 292-96
ASSIGN command 741-42

APPEND and 739

BACKUP and 747

CHKDSKand775

DISKCOMP and 818

DISKCOPYand822

JOIN and 877

LABEL and 882

MKDIR/MD885

Assign Drive Alias (ASSIGN) 741-42
Assign Standard Input/Output Device (CTTY) 810
Asynchronous, defined 171-72

AT address parameter 128
AT Probe hardware debugging aid 641
ATTRIB command 743-44

MS-DOS version 3-31437

AUTOEXEC.BAT file (BATCH) 755-57

environments and 65

MODE and 887

VERand952

AUX (auxiliary input/output) 22, 59,62,151. See also
COMl; Serial communications ports

filters and 429

implementing modem engine with MS-DOS
functions 168-70

I/O 161-62

opening 76
Auxiliary Input. See Interrupt 21H Function 03H
Auxiliary Output. See Interrupt 21H Function 04H

B

Background program 900
BACKUP command 745-51

ASSIGN and 741

ATTRIB and 743

JOIN and 877
MS-DOS version 3.31437

RESTORE and 918

Back Up Files (BACKUP) 745-51
BACKUPID.@@@ control file 746-47

BADSCOP. ASM program 544
correction of 593-600

incorrect version of 587-93

. BASIC (language), role of, in development of
MS-DOS 3-8,12,14

Batch file(s) 26

AUTOEXEC.BAT 755-57

COMMAND.COM and 64,66-67,78,753,755
directives 730,752-69,1434
@ command 1434

CALL command 1434-35

ECHO command 758-59

FOR command 760-61

GOTO command 762-63

IF command 764-65

PAUSE command 766-77

REM command 768

SHIFT command 769

executing commands stored in 752
MS-DOS version 3.31434-35

suspend execution of 766
.BAT file. See Batch file(s)

Baud rate 170,222,892

1534 The MS-DOS Encyclopedia

Subject

BDOS (Basic Disk Operating System), CP/M10
Bebic, Mark 39

Binary operators, SYMDEB1059

Binary-to-hexadecimal file conversion utility
program 1503-5

BIOS (Basic Input/Output System)
CP/M 10

MS-DOS 52-53, 61-62
ROM 62 isee also Interrupts lOH through lAH)

BIOS parameter block (BPB) 70,71(fig.), 93
build function, in device drivers 459-60
format 460(table)

Bit bucket. See NUL device

Bit parity 222

Bit rate divisor table for 8250 IBM UART chip
175(table)

Bits per second (bps) 170
Block device(s) 57,62. See also Fixed disk; Floppy

disk; RAMdisk

critical error handling 392-93
drivers 450-52

file system and 54-55
layout of a physical 86-90
partition layout 90-92
setting highest logical 803
setting parameters 797-98

Bootable devices, loading 70,71(fig.)
Boot sector 94-96

hexadecimal dump of 96(fig.)
map of 95(fig.)

Bootstrapping, operating system 52,68-72
BOUND Range Exceeded exception. See

Interrupt 05H

BREAK command 770-71

BREAK command (CONFIG.SYS) 788, 790

BREAK condition 172

Breakpoints 1033
clearing 1065-66
DEBUG use of 578-79, 584-85

disabling 1067-68
enabling 1069-70
hardware 640,641
listing 1071
setting 1072-73

SYMDEB use of 608-9

trapping 400
Breakpoint Trap exception. See Interrupt 03H
Brock, Rod 12,15

Buffered Keyboard Input. See Interrupt 21H
Function OAH

BUFFERS command (CONFIG.SYS) 788, 791

Byte(s)
displaying 1079-80

Byte(s) (continued)
entering 1095-96

BYTE alignment 125-26

CALL command (BATCH) 1434-35

Calls menu (CodeView) 1162

Cancel Assign-List Entry 1411-12
Cassette/Network Service. See Interrupt 15H
CAV (constant angular velocity) disks 87
C Compiler, Microsoft

environmental variables in 931,980

general structure of C program 139(fig.)
memory model use with 137-40
utilities supplied with 974,977,987,999

CCP (Console Command Processor), CP/M 10

CD command. See CHDIR/CD command

CD ROM storage 103

CDVUTL.C communications driver-status

utility 209-15
code 209-14

program functions 2l4(tabie)
Central processing unit (CPU), speed of, and

compatibility issues 491
CHI.ASM program 215-22

exception handler module 223-24
module functions 221(table)

set-mdm() parameter coding 222(table)
CH2.ASM program 225-30

Change Code Page (CHCP) 1440
Change Current Directory. See Interrupt 21H

Function 3BH

Change Current Directory (CHDIR or CD) 772-73
Change File Attributes (ATTRIB) 743-44
Change Filename (RENAME or REN) 912-13
Change Sharing Retry Count 1337-38
Character-device input/output 149-66. See also

Display output; Graphics; Input/output
(I/O); Parallel port; Printer; Screen;
Serial communications ports

accessing character devices 150-51
background information on 149-50
basic MS-DOS devices 151

display 157-61
keyboard 154-57
parallel port and printer 163-64
raw versus cooked mode 153-54

serial communications ports 161-62
standard devices 152-53

Indexes 1535

Subject

Character-device input/output (continued)
basic MS-DOS devices (continued)

standard devices as support for filters
429-30

copying files 806-9
critical error handling 393
defined keyboard 879
device drivers 448-50

lOCTL subfunctions 164-66

screen dump in graphics mode to printer
874-76

specify for standard input/output 810
system calls for 1182

Character-device management commands 728
CLS781

CTTY810

GRAFTABL 872-73
KEYBjo: 879-81

MODE 887-95

PRINT 899-903

Character Input with Echo. See Interrupt 21H
Function OIH

Character Input Without Echo. See Interrupt 21H
Function 08H

Character Output. See Interrupt 21H Function 02H
Character string, finding 863-64
CHCP command 1440

CHDIR/CD command 281, 772-73
Check Disk Status (CHKDSK) 774-80

Check for Change of Floppy Disk Status. See
Interrupt 13H Function 16H

Check If Block Device Is Remote. See Interrupt 21H
Function 44H Subfunction 09H

Check If Block Device Is Removable. See Interrupt
21H Function 44H Subfunction 08H

Check If Handle Is Remote. See Interrupt 21H
Function 44H Subfunction OAK

Check Input Status. See Interrupt 21H Function 44H
Subfunction 06H

Check Keyboard Status. See Interrupt 21H
Function OBH

Check Output Status. See Interrupt 21H Function 44H
Subfunction 07H

CHILD. ASM program 334-35
Child programCs)

filters used as 441-46

using EXEC to load/run 321

examining return codes 328

parent and child program example 329-35
preparing parameters for 323-26
running child programs 327

CHKDSK command 101, 774-80, 941
C language programs

ASCII lookup program 639

C language programs (continued)
attribute listing program 291-92
character-oriented filter 433
control program for communications port

monitor 565-66

debugging with SYMDEB 600-618
demonstration Windows program 513-15
driver-status utility 209-14
line-oriented filter 436

lowercase filter 438-39

new FIND filter program 439-41
object module dump utility 1509-12
terminal emulator 230-41

class type parameters 128-30
Clear Breakpoints (SYMDEB BC) 1065-66

Clear Screen (CIS) 781

Clipboard (Windows) 537-38
Clock

setting date 811

setting system time 942

CLOCKS 57, 59,62,151
Closed-loop servomechanism 89
Close File. See Interrupt 21H Function 3EH
Close File with FCB. See Interrupt 21H Function lOH
CLPBRD utility (Windows) 506
CLS command 781

Clusters, file data 94

CLV (constant linear velocity) disks 87
Cmacros 1178-81

CMACROSX.INC 1179-81

COBOL (language) 14
Code-page switching 1438-48,1451-58
CodeView utility 573, 619-40,1157-73

description 1158-59
dialog window commands 1163-65
display window commands 1159-62

Calls menu 1162

File menu 1159

Help menu 1162
Language menu ll6l
Options menu ll6l
Run menu ll60

Search menu ll60

View menu 1160

Watch menu ll6l

instrumentation debugging with 619-29
key commands 1163
messages 1166-73
screen 1159(fig.)
screen output debugging with 629-40

Cold boot 68

Color capabilities, of display 733
Color/Graphics Adapter (CGA) 157

1536 The MS-DOS Encyclopedia

Subject

COMl (first serial communications port) 151,161-62
COM2 (second serial communications port) 151,

161-62

combine type parameters 127-28
COMDEF Communal Names object record 651,

698-700

COMDVR. ASM communications device driver

182-206

buffering 203
code 182-200

debugging techniques 205-6
definitions 200-201

headers and structure tables 201

Initialization Request routine 204-5
interrupt service routine 203-4
Start-output routine 204
strategy and request routines 180
using 205

COMENT Comment object record 651,658-60
Command(s) 725-30. See individual command

names

defining command search path 897
execution of, with COMMAND.COM 64-65

by functional group 728-30
internal, external, and batch 76-79
interpreting text file of, with MAKE 999
PC-DOS, added to MS-DOS version 3 3

1435-36

COMMAND.COM 20,63-68,782-84
batch files and 64,66-67,78,753,755-56
command execution with 64-65

define prompt 904
escape to 1154-55
EXEC use with 329-30

I/O redirection in 67-68

loading 76-79
MS-DOS environments and 65-66

parts of 76
specifying/replacing, with SHELL 79-83,804
split personality of 64
SYSand940

terminating 853

transient/resident portions of 24
COMMAND command 782-84. See also

COMMAND.COM

Command processor. See COMMAND.COM; SHELL
command

Command Processor (COMMAND) 782-84

Command tail

in child program execution 327
DEBUG initializing of 582-83
FCB functions and 267-68

name parameters 1040,1116

COMMDUMP.BAS program 543-44, 569-72
Comment line

including with REM 768
in make files 1001

SYMDEB1156

Commit File 1450-51

COMMON parameter 128

COMMSCMD.BAS program 543, 567-69
COMMSCMD.C program 543

as a .COD file for SYMDEB debugging 601-6
correction of 606-18

stopping a trace in 565-66
COMMSCOP.ASM program 542-43, 558-63
Communications, interrupt-driven 167-246,412

device driver 180

hardware for 170-80

8250 UART architecture 172-80

modem 170-71

serial port 171-72
memory-resident device driver 182 - 215

COMDRV.ASM 182-206

driver-status utility CDVUTL.C 209-15
modem engine 206-9
vs traditional method 181

program, purpose of 167-68
traditional device driver 215-46

exception handler module 223-25

hardware ISR module 215-22

smart terminal emulator CTERM.C 230-46

video display module 225-30
using simple MS-DOS functions 168-70

Compact memory model 138
COMPAQ-DOS operating system 27
Compare Files (COMP) 785-87

Compare Files (FC) 854-57

Compare Floppy Disks (DISKCOMP) 818-21
Compare Memory Areas

DEBUG C1026

SYMDEB C1074

Compatibility issues
8086/8088 and 802861507-8
MS-DOS and MS OS/2 489-97

hardware 489-92

operating system 492-97
COMP command 785-87

MS-DOS version 3-31435

Compress .EXE File (EXEPACK) 977-79

.COM program files 23,64,142-47,974
converting .EXE programs to executable

971-72

creating 144-46
vs .EXE programs 147-48
giving control to 143

Indexes 1537

Subject

.COM program files (continued)
memory allocated for 142,300-302
memory map with register pointers l43(fig.)
patching using DEBUG 146
terminating 144

COMSPEC variable 930

CON (console input/output) 22, 59, 62,151,157. See

also Display output; Screen
batch commands for 66-67

filter and 429

opening 76
Conditional execution, using IF to perform 764-65
CONFIG.SYS system configuration 63,448,788-89

configuring Control-C checking 790
configuring internal disk buffers 791-92
configuring internal stacks 805
environments and 65

installing device drivers 149,795-96
setting block-device parameters 797-98
setting country code 793-94
setting highest logical drive 803
setting maximum open files with FCBs 799-800
setting maximum open files with handles 801-2
specifying command processor 804

Configurable External-Disk-Drive Driver
(DRIVER.SYS) 826-28

Configure Control-C Checking (BREAK) 790
Configure Device (MODE) 887
Configure Fixed Disk (FDISK) 858-62
Configure Internal Disk Buffers (BUFFERS) 791
Configure Internal Stacks (STACKS) 805
Configure Printer (MODE) 888-89
Configure Serial Port (MODE) 892-93
Configure System Disk for a Specific Country

(SELECT) 925-29
Console. See Keyboard; Screen
Control-Break, exception handling 385,386,387, 389
Control-Break (user defined). See Interrupt IBH
Control-C

configuring check 790
setting check 770

Control-C exception handler 385,386-89
customizing 387-89

processing Control-C 389
Control-C Handler Address. See Interrupt 23H
Controller Diagnostics. See Interrupt 13H

Function 14H

CONTROL Panel (Windows) 507

Control-2 in EDLIN commands 846

Conventional memory 297-305,907
block move from extended memory to 318-19
functions to support 299(table)
using functions in 300-305

Convert .EXE File to Binary-Image File (EXE2BIN)

971-73

Cooked versus raw mode 153-54

Coprocessor Error exception. See Interrupt lOH

Coprocessor Not Available exception. See
Interrupt 07H

Coprocessor Segment Overrun exception. See

Interrupt 09H

COPY command 806-9

ASSIGN and 741

batch files and 752

DISKCOPYand822

escape sequences using 732

Copy File or Device (COPY) 806-9
Copy Files (XCOPY) 955-59
Copy Floppy Disk (DISKCOPY) 822
Copy Lines (EDLIN C) 835-36
Country, configure disk for a specific 925-29
COUNTRY command (CONFIG.SYS) 788, 793-94

BACKUP and 747

development of 36
MS-DOS version 3-31442-43

setting date 812
setting time 942

CP/M operating system 8,9-10, 56,142
compatibility with 63
competition with MS-DOS 27-29
file management 30-31

Create Directory. See Interrupt 21H Function 39H

Create .EXE File (LINK) 987-98

Create File with FCB. See Interrupt 21H Function l6H
Create File with Handle. See Interrupt 21H

Function 3CH

Create New File. See Interrupt 21H
Function 5BH

Create New Program Segment Prefix. See Interrupt
21H Function 26H

Create Symbol File for SYMDEB (MAPSYM) 1004-6
Create Temporary File. See Interrupt 21H

Function 5AH

CREF utility 967-70
Critical error handler 390-98

customized 394-98

mechanics of 392-93

processing 393-94
in TSR programs 353-55

Critical Error Handler Address. See Interrupt 24H
CTERM.C terminal emulator program 230-46

functions 242-43(table)

prototype file CTERM.H 243-44(fig.)
Ctrl-Break. See Control-Break

Ctrl-C. See Control-C

Ctrl-Z. See Control-Z in EDLIN commands

1538 The MS-DOS Encyclopedia

Subject

CTTY command 810

Cursor movement, escape sequences to

control 732-33

Cylinder, disk 88

D

Data

entering into memory 1029,1091

moving (copying) 1039,1115
sharing/exchange in Windows 537-38

Data area, DEBUG initializing 582
Data files, setting a search path for. See APPEND

command

DATE command 811-12

Debugging in MS-DOS 541-642
art of 546

communications device driver 205-6

hardware debugging aids 640-42
inspection and observation 546-49
instrumentation

external 555-72

internal 549-55

software debugging monitors 573-640
CodeView 573,619-40 isee also CodeView

utility)
DEBUG 573, 574-86 {see also DEBUG

utility)
SYMDEB 573, 586-618 {see also SYMDEB

utility)

summary of example programs to illustrate

541-45

DEBUG utility 113, 573, 574-86,1020-53
A command 141, 577,1021,1024-25

basic techniques 574-81
breakpoints 578-79, 584-85
C command 1021,1026
D command 1021,1027-28

E command l4l, 1021,1029-30

establishing initial conditions 581-83
F command 1021,1031-32

G command 577, 584-85,1021,1033-34

H command 1021,1035

I command 1021,1036

L command 1021,1037-38

M command 577,1021,1039

N command 1021,1040-41,1052

O command 1021,1042

patching .COM programs with 146
patching .EXE programs with 585-86,141-42
P command 580,1021,1043

DEBUG utility (continued)
Q command 142,1021,1044

R command 142, 576,1021,1045-47
S command 1021,1048-49

T command 576,1021,1050

U command 577,1021,1051

using Write commands 585-86
W command 141, 577, 585-86,1021,1052-53

Define Command Search Path (PATH) 897-98

Define Keyboard (KEYBa:.x) 879-81
Define System Prompt (PROMPT) 904-6
DEL/ERASE command 813-14

Delete File. See Interrupt 21H Function 13H; Interrupt
21H Function 41H

Delete File (DEL or ERASE) 813-14

Delete Lines (EDLIN D) 837-38

Desk-checking 547
Development of MS-DOS 3-45

before MS-DOS 3-15
creating MS-DOS 15-19

future of MS-DOS 45

hardware and 27-28

international market and 35-37

software and 38

versions 1.x 20-29

versions 2.x 30-38

versions 3.x 39-44

DEVICE command (CONFIG.SYS) 149-50, 788,

795-96

MS-DOS version 3.31443-45

Device driver(s) 52-53, 57

Device driver(s), installable 180,447-86. See also

ANSI.SYS; Block device(s); Character-

device input/output; RAMDRIVE.SYS;
VDISK.SYS

development of, in MS-DOS version 2.0

32-33

loading/initializing 74,75(fig.)
processing of a typical I/O request 468-69
relationship to resident 448-50
structure of 450-68

device header 450-52

interrupt routine 453-68
strategy routine 452-53

writing 469-86
TEMPLATE example 471-78
TINYDISK example 478-86

Device driver, installable communications package
180,182-215

memory-resident generic

CDVUTL.C utility 209-15
COMDVR. ASM device driver 182-206

modem engine 206-9

Indexes 1539

Subject

Device driver, installable communications package
(continued)

memory-resident generic (continued)
vs traditional method 181

traditional 215-46

exception-handler module 223-25
hardware ISR module 215-22

terminal emulator CTERM.C 230-46

video display module 225-30
Device driver(s), resident 62

relationship to installable device drivers 448-50
Device header 450-52

device attribute word in 452(table)

DGROUP 718-21

Dialog boxes (Windows) 504-5
Dialog window commands (CodeView) 1163-65
Digital Equipment Corporation (DEC) 28
Digital Research, development of CP/M 9-10,12, 28
DIR. ASM program 288-90
DIR command 815-17

DIRDUMP.C program 291-92
Direct Console I/O. See Interrupt 21H Function 06H
Direct memory access. See DMA (direct memory

access) controller

Directory 101-3, 279-96. See also Subdirectory;
Volume label(s)

alias 103, 282, 283

analyzing for errors 774
attribute field 282(fig.)
changing current 772
copying 955

current 281, 288

date/time fields 283(fig.)
displaying 815
displaying structure 944
format 281-83

functional support for 284-96
creating/deleting 287
examining/modifying 287
MS-DOS functions for accessing

284-86(table)

programming examples 288-92
searching 286
specifying current 288
wildcard characters 286-87

hexadecimal dump of 102(fig.)
initializing 865
joining to disk 877
making 885
removing 923

root isee Root directory)
structure 32, 54, 279(fig.), 280-81

Directory (continued)
system calls for 1183

Directory management commands 729

APPEND 739-40

CHDIR/CD 772-73

MKDIR/MD 885-86

PATH 897-98

RMDIR/RD 923-24

TREE 944-46

Disable Breakpoints (SYMDEB BD) 1067-68
Disable Source Display Mode (SYMDEB S -) 1128
Disassemble (Unassemble) Program

DEBUG U1051

SYMDEB U1132-33

Disk

checking status of 774
configuring for a specific country 925
configuring internal buffer 791
directories {see Directory)

displaying volume label 944-45
fixed isee Fixed disk)

floppy isee Floppy disk)
initialize 865

joining to directory 877
name {.see Volume labells])

recovering files from damaged 910
structure of 85-103

virtual 907,948

writing file/sectors to 1052
Disk cache, configure 791
Disk Parameter Pointer. See Interrupt lEH
DISKCOMP command 818-21

ASSIGN and 741

JOIN and 877
DISKCOPY command 822-25

ASSIGN and 741

JOIN and 877

Disk management commands 729
ASSIGN 741-42

DISKCOMP 818-21

DISKCOPY 822-25

FORMAT 865-71

LABEL 882-84

SUBST 938-39

SYS 940-41

VERIFY 953

VOL 954

Disk management system calls 1182
Disk Reset 1213-14

Disk Services. See Interrupt 13H
Disk transfer area (DTA)

default 267-68

1540 The MS-DOS Encyclopedia

Subject

Disk transfer area (continued)

getting address isee Interrupt 21H
Function 2FH)

setting address isee Interrupt 21H
Function lAH)

TSR programs 353

Display 10-Byte Reals (SYMDEB DT) 1087-88
Display ASCII (SYMDEB DA) 1077-78
Display by Screenful (MORE) 896
Display Bytes (SYMDEB DB) 1079-80
Display Directory (DIR) 815-17
Display Directory Structure (TREE) 944-46
Display Disk Name (VOL) 954
Display Doublewords (SYMDEB DD) 1081-82
Display File (TYPE) 947
Display in Pages (EDLIN P) 844
Display Long Reals (SYMDEB DL) 1083-84
Display Memory

DEBUG D1027-28

SYMDEB D1075-76

Display Memory Areas 1075-76
Display or Modify Registers

DEBUG R1045-47

SYMDEB R1122-24

Display output 157-60. See also Character-device
input/output; CON; Screen

of batch-file execution 758

CH2.ASM communications module 225-30

color capability of 733
controlling the screen 158-59
cursor movement control 732-33

debugging with CodeView 629-40
erasing 733

graphics attributes 734
in pages 844
programming examples l60
role of ROM BIOS in 159

by screenful 896
setting mode 890-91

width 733

wrap around 733
Display Short Reals (SYMDEB DS) 1085-86
Display Source Line (SYMDEB.) 1151
Display String. See Interrupt 21H Function 09H
Display Text (ECHO) 758
Display Version (VER) 952

Display window commands (CodeView) 1159-62
Display Words (SYMDEB DW) 1089-90
Divide by Zero exception. See Interrupt OOH
DIVZERO.ASM program 419,420-24
DMA (direct memory access) controller 69
/DOSSEG switch, LINK use of 718-19

Double-Fault Exception. See Interrupt 08H

Doublewords

displaying 1081
entering 1097

Drive(s)

assigning aliases 741-42
substituting for subdirectory 938

DRIVER.SYS 826-28

DRIVPARM command (CONFIG.SYS) 788,797-98

/DSALLOCATE switch, LINK use of 719-21

Dump. See Display Memory
Duplicate File Handle. See Interrupt 21H

Function 45H

Dynamic Data Exchange (DDE) 538

EBCDIC character set 1469-70

ECHO command (BATCH) 66,753; 758-59

and PAUSE 766

Edit Line (EDLIN linenumber) 832-33

EDLIN commands 730,829-52

A command 834

C command 835-36

D command 837-38

E command 839

escape character in 732
I command 840

L command 841

linenumber command 832-33

M command 842-43

P command 844

Q command 845
R command 846-47

S command 848-49

T command 850-51

W command 852

Enable Breakpoints (SYMDEB BE) 1069-70
Enable Source and Machine Code Display Mode

(SYMDEB S&) 1129

Enable Source Display Mode (SYMDEB S+) 1127
End Editing Session (EDLIN E) 839
ENGINE. ASM program 207-8

Enhanced Graphics Adapter (EGA) 157
MS-DOS version 3.3 code-page switching 1447

Enter 10-Byte Reals (SYMDEB ET) 1102-3
Enter ASCII String (SYMDEB EA) 1093-94
Enter Bytes (SYMDEB EB) 1095-96
Enter Comment (SYMDEB *) 1156

Enter Data

DEBUG E1029-30

SYMDEB E1091-92

Indexes 1541

Subject

Enter Doublewords (SYMDEB ED) 1097

Enter Long Reals (SYMDEB EL) 1098-99
Enter Short Reals (SYMDEB ES) 1100-1101

Enter Words (SYMDEB EW) 1104

Environment(s)

in child program execution 326-27
MS-DOS operating 51-52,65-66

Environment variable, set 930

Equipment Information. See Interrupt IIH
ERASE. See DEL/ERASE command

Error codes

device-driver 454(table)

extended, in MS-DOS version 3 31461-63
MS-DOS, MS OS/2 compatibility 495

Error handling. See also Critical error handler;
Extended error information

file control block 269

file handle function 250-51

Error messages 24-25
Escape (Esc) characters 731

in CTERM.C terminal emulator 244-45

Escape sequences, controlling screen display with
731-36

Escape to Shell (SYMDEB!) 1154-55
Evans, Eric 37,39

Examine Symbol Map (SYMDEB X) 1138-39
Exception handler(s) 385-408

communications device driver 223-25

Control-C handler 386-89

critical error handler 390-98

extended error information 401-8

hardware-generated exception interrupts
398-400

overview of 385-86

EXE2BIN utility 144,971-73
EXEC function 321-43. See also Interrupt 21H

Function 4BH

functioning of 322-23
loading external commmands with 79
loading overlays with 336-41

loading and executing 336-37
making memory available 335-36
preparing parameters 336
program example 337-42

loading programs with 323-35
making memory available 323
parent and child program example 329-33
preparing parameters 323-26
running child programs 327-29
using COMMAND.COM with 328-29

loading shell program with 328
running SORT as a child process with 442-46

EXECSORT ASM program 442-46

Execute Command on File Set (FOR) 760-61

EXEMOD utility 974-76
EXEPACK utility 977-79
.EXE program files 23,64,107-42

compressing 977

vs .COM programs 147-48
controlling the structure of

MASM GROUP directive 131-32

MASM SEGMENT directive 125-30

sample program 132-37
converting to binary memory-image and .COM

files 971

creating with LINK 643-44(fig.) isee also
Object Linker)

giving control to 108-15
preallocated memory 112-13
program segment prefix 108-11
registers 113-15

stacks 111-12

loading 124-25
memory allocated to 300,302-3
memory diagram 137(fig.)
memory map report 136-37(fig.)
memory map segments {see Memory segments)
memory models and 137-40
modifying file header with EXEMOD 140-41,

974-76

patching with DEBUG 141-42, 585-86
structure of 119-24

file header 119-24

load module 124

terminating 115-19

RET instruction 118-19

Terminate Process function 119

Terminate Process with Return Code

function 115-17

Terminate Program interrupt 117

terminating and staying resident 119
Warm Boot/Terminate vector 117-18

Windows construction of 518-20

EXIT command 853

Expanded memory 907-8,305-16
checking for 307-9
manager 305-6
relationship to conventional memory 306(fig.)
using the manager 309-16

error codes 313-l4(table)

program skeleton 3l4-15(fig.)
software interface to application programs

provided by 310-12(table)
Expanded Memory Specification (EMS) 305
EXP.BAS programs 542

corrected code 554-55

1542 The MS-DOS Encyclopedia

Subject

EXP.BAS programs (continued)
incorrect code 550-51

EXTDEF External Names Definition object record

651,663-64
Extended error information 401-8

Function 59H and newer system calls 406-8
Function 59H and older system calls 405-6
MS-DOS version 3 31461-63

MS-DOS versions 2.0 and 3.0 401-5

TSR set/get functions 352
Extended memory 316-19,907

block move descriptor table format 317(table)
PC/AT ROM BIOS Interrupt 15H functions

316-17,3l6-17(tables)
program transferring data from, to conventional

memory 318-19

External disk drive, configurable driver for 826

Family API 489-90

FASTOPEN command 1433-34

FCBS command (CONFIG.SYS) 44, 788, 799-800
FC command 785,854-57

FDISK command 92,858-62

MS-DOS version 3 31437

File allocation table (FAT) 54,97-101
analyze for errors 774, 775
assembly-language routine to access 12-bit and

l6-bit 100(figs.)
development of 8,13, 23
initialize 865

relationship to file data area 98,99(fig.)
space allocation 98(fig.)

File(s) and file/record management 247-78. See also
Batch file(s); .COM program files; .EXE
program files

attribute getting/setting 261-62
backing up 745-51
changing name 912
changing read-only/archive attributes 743
closing

with FCBs 271

with handles 255-56

comparing 785-87,854-57
copying 806,955
creating

with FCBs 269

with handles 251-53

date/time getting and setting 262
date/time stamping of 25

File(s) and file/record management (continued)
delete/erase command and 813

deleting

with FCBs 276-77

with handles 260-61

displaying 947
duplicating/redirecting handles 262-63
error handling

with FCBs 269

with handles 250-51

file control block isee File control blocks)
finding size of, and testing for existence 277
getting/setting file attributes 261-62
getting/setting file date and time 262
handles isee File handles)

hidden 774,940-41

historical perspective 247-48

loading 1037,1113
MS-DOS version 3.3 changes 1433-35,1448-51
names isee Filenames)

opening existing

with FCBs 270-71

with handles 253 - 55

positioning the read/write pointer 258-59
reading and writing

with FCBs 271-75

with handles 256-58

recovering 910

renaming

with FCBs 275-76

with handles 260

restoring backup 918
setting maximum open 799-800,801-2
system calls for 1182-83

transferring system 940
transferring with EDLINT 850
updating 914
writing file or sectors 1052,1136

File control blocks (FCBs) 22, 32, 38,44, 247, 263-77
closing files 271
compatibility issues 494
creating files 269
DEBUG initializing 582-83
default, in executing child programs 327
deleting files 276-77
error handling and 269
extended 266-67

finding file size and testing for existence 277
opening files 270-71
parsing filenames 268-69
program segment prefixes and 267-68
reading/writing files 271-75
renaming files 275-76

Indexes 1543

Subject

File control blocks (continued)

setting maximum open files using 799-800
structure of 264-67

extended 1475(table), I476(fig.)
normal 1473(fig.), l474-75(table)

File data area 103

relationship to FAT 98,99
File handles 32, 38, 56,801-2, 247-63

closing a file 255-56
creating a file 251-53
deleting a file 260-61
duplicating and redirecting handles 262-63
error handling 250-51
getting/setting date and time 262
getting/setting file attributes 261-62
opening an existing file 253-55
positioning the read/write pointer 258-59
reading and writing with 256-58
renaming a file 260

File header 119-24

modify with EXEMOD 974-76
segmented (new) .EXE format 1487-97

File management commands 728
ATTRIB 743-44

BACKUP 745-51

COM? 785-87

COPY 806-9
DEL/ERASE 813-14

EDLIN 829-52

EC 854-57

RECOVER 910-11

RENAME/REN 912-13

REPLACE 914-17

RESTORE 918-22

TYPE 947

XCOPY 955-59

File management system, MS-DOS
networking and 44
versions 2.x 30-32

File menu (CodeView) 1159

Filenames 101

common extensions for 1485-86

compatibility issues 492-93
parameters 1040,1116
parsing 268-69

FILES command (CONFIG.SYS) 250, 789,801-2

File set, execute command or program on a 760
File sharing support, installing 933
File system

block device layout of 93-103
boot sector 94-96

file allocation table 97-101

file area 103

File system (continued)
block device layout (continued)

root directory 101-3
MS-DOS kernel 54-55

Fill Memory
DEBUG F1031-32

SYMDEBF1105-6

Filter(s) 429-46

building 431-41
how filters work 430-31

system support for 429-30
used as child process 441-46

Filter commands 729,863,896,935
Find Character String (FIND) 863-64
FIND command 863-64

FIND.C program 439-41
Find First File. See Interrupt 21H Function IIH;

Interrupt 21H Function 4EH
Find Next File. See Interrupt 21H Function 12H;

Interrupt 21H Function 4FH
Fixed disk

configuring 858-62
interleaving 90(fig.)
layout of 86-87
partitions 90-92,858

sectors 88-89

FDCUPP Fixup object record 651,682-93
examples 686-93
fixup field 684-86
FRAME fixup methods 683
location 686

TARGET fixup methods 684
thread field ̂ 2-84

Flags
display with DEBUG 1045-47
maintained by DEBUG 1023
maintained by SYMDEB1060

Floating-point numbers
display

10-byte 1087-88
long (64-bit) 1083-84
short (32-bit) 1085-86

enter

10-byte 1102-03
long (64-bit) 1098-99
short (32-bit) 1100-1101

Floppy disk
comparing 818-21

copying 822-26
layout of 86-87
sectors 88-89

Flow control l68, 204

1544 The MS-DOS Encyclopedia

Subject

Flush Buffer, Read Keyboard. See Interrupt 21H
Function OCH

Flux reversal 86

Force Duplicate File Handle. See Interrupt 21H
Function 46H

FOR command (BATCH) 66, 753, 760-6l

Foreground program 900
Format and Verify Track on Logical Drive. See

Interrupt 21H Function 44H

Subfunction ODH

FORMAT command 44,865-71

ASSIGN and 741

directory format 281-83
DISKCOPYand 822

FDISKand858

JOIN and 877-78

Format Disk Tracks. See Interrupt 13H Function 05H
FORTRAN (language) 8,14
FORTRAN Compiler, Microsoft

memory models using 137-40
utilities with 974,977,980,987,999

Free Memory Block. See Interrupt 21H Function 49H
Frequency modulation (FM) recording 86
Function calls. See System calls

Gates, Bill8(fig.), l6(fig.)
in the development of early BASIC 3-8,11
in the development of MS-DOS 14-15,20

General Protection exception. See Interrupt ODH
Generate Cross-Reference Listing (CREF) 967-70
Generic I/O Control for Block Devices. See Interrupt

21H Function 44H Subfunction ODH

Generic I/O Control for Handles. See Interrupt 21H
Function 44H Subfunction OCH

Get and Set Time. See Interrupt lAH
Get Assign-List Entry. See Interrupt 21H Function

5FH Subfunction 02H

Get Current Country. See Interrupt 21H Function 38H
Get Current Directory. See Interrupt 21H

Function 47H

Get Current Disk. See Interrupt 21H Function 19H
Get Current Drive Parameters. See Interrupt 13H

Function 08H

Get Current Video Mode. See Interrupt lOH
Function OFH

Get Date. See Interrupt 21H Function 2AH
Get Default Drive Data. See Interrupt 21H

Function IBH

Get Device Data. See Interrupt 21H Function 44H
Subfunction OOH

Get Disk Free Space. See Interrupt 21H Function 36H
Get Disk Status. See Interrupt 13H Function OIH
Get Disk Type. See Interrupt 13H Function 15H
Get Drive Data. See Interrupt 21H Function ICH
Get DTA Address. See Interrupt 21H Function 2FH
Get Extended Country Information. See Interrupt

21H Function 65H

Get Extended Error Information. See Interrupt 21H
Function 59H

Get File Size. See Interrupt 21H Function 23H
Get Interrupt Vector. See Interrupt 21H Function 35H
Get Lead Byte Table. See Interrupt 21H Function 63H
Get Logical Drive Map. See Interrupt 21H Function

44H Subfunction OEH

Get Machine Name. See Interrupt 21H Function 5EH
Subfunction OOH

Get MS-DOS Version Number. See Interrupt 21H
Function 30H

Get Peripheral Equipment List. See Interrupt IIH
Get Port Status. See Interrupt 14H Function 03H
Get Printer Setup. See Interrupt 21H Function 5EH

Subfunction 03H

Get Printer Status. See Interrupt 17H Function 02H
Get Program Segment Prefix Address. See Interrupt

21H Function 51H; Interrupt 21H
Function 62H

Get Return Code of the Child Process. See Interrupt
21H Function 4DH

Get/Set Allocation Strategy. See Interrupt 21H
Function 58H

Get/Set Control-C Check Flag. See Interrupt 21H
Function 33H

Get/Set Date/Time of File. See Interrupt 21H
Function 57H

Get/Set File Attributes. See Interrupt 21H
Function 43H

Get Shift Status. See Interrupt 16H Function 02H
Get Time. See Interrupt 21H Function 2CH
Get/Set Time/Date. See Interrupt LAH
<3et Usable Memory Size (KB). See Interrupt 12H
Get Verify Flag. See Interrupt 21H Function 54H
Gilbert, Paul 5-6

Global descriptor table (GDT) 317
Go

DEBUG G 584-85,1033-34

SYMDEBG1107-8

GOTO command (BATCH) 67,753,762-63

GRAFTABL command 872-73

MS-DOS version 3 31445

Graphics
loading character set 872-73
loading screen-dump program 874-76
screen-display attributes 734

Graphics Character Table. See Interrupt IFH

Indexes 1545

Subject

GRAPHICS command 874-76

Graphics Device Interface (GDI), Windows 529-37
bit-block transfers 535-36

device context 530

device-context attributes 531

device-independent programming 530-31
drawing functions 533
mapping modes 531-32
metafiles 536-37

raster operations for pens 534-35
text and fonts 536

Greenberg, Bob 8(fig.)
GROUP directive (MASM), controlling .EXE

programs with 131-32
sample .EXE program using 132-37

GRPDEF Group Definition object record 651,680-81

H

Handle-type function calls, for accessing character
devices 150,152-53.155,158, l6l, 163

Hangeul characters 37
Hard disk. See Fixed disk

Hardware

breakpoints 640,641,642
for communications 170-80

compatibility issues, with MS OS/2 489-92
BIOS 491

CPU speed 491
family API 489-90
linear vs segmented memory 490-91
program timing 491
protected mode 489

debugging aids 640-42
developers of, and MS-DOS 27-29,35-37
MS-DOS requirements for

memory 58

microprocessor 57-58
peripheral devices 59
ROM BIOS 59-60

Hardware instrumentation 555-56

Hardware interrupts 398-400,409-27
categories 411-12
characteristics of maskable interrupts 412-13
handling maskable interrupts 413-19
IBM interrupt usage 4lO(table)
Intel reserved exception 398(table),

409-10(table)

programming for 419-27
sample replacement handler 419-24
supplementary handlers 424-26

Hardware IRQO (timer tick). See Interrupt 08H
Hardware IRQl (keyboard). See Interrupt 09H
Hardware IRQ2 (reserved). See Interrupt OAH
Hardware IRQ3 (COM2). See Interrupt OBH
Hardware IRQ4 (COMl). See Interrupt OCH
Hardware IRQ5 (fixed disk). See Interrupt ODH
Hardware IRQ6 (floppy disk). See Interrupt OEH
Hardware IRQ7 (printer). See Interrupt OFH
Heads, read/write 86,88
HELLO.ASM program 357-59

as typical object module 651-54
Help menu (CodeView) 1162
Help or Evaluate Expression (SYMDEB ?) 1152-53
Hercules Graphics Card 157
Hewlett Packard HP150 computer 34
Hexadecimal arithmetic 1035,1109

binary-to-hexadecimal file conversion

utility 1503-5
Hexadecimal bytes

displaying contents of memory as 1079-80
entering into memory 1095-96

Hexadecimal object file format 1499-1505
.HEX files, and DEBUG 585-86,1020,1052
/HIGH switch, LINK use of 719-21
Hooks, MS-DOS 53

Hot-key sequence 348, 382
Huge memory model 139

IBMBIO.COM 20, 33, 52,448,774,940
IBM Corporation computers

interrupt usage 410(table)
PC (Personal Computer) 19(fig.), 20, 21(fig.),

26, 34(fig.)
PC/AT computer 39-43,417-18
PCjr computer 35,36,37
PC/XT computer 30, 34(fig.)
Personal System/2, MS-DOS version 3-3

1448

role in the development of MS-DOS 14-15, 26
IBMDOS.COM 20,447,774,940

loading 52
IBM extended character set 1465-67

IBM Professional Debug Utility 641
Idle Interrupt. See Interrupt 28H
IF command (BATCH) 67,753,764-65

with GOTO 762

Include Comment Line (REM) 768

InDOS flag 355-56
Inference rule, and MAKE utility 1001
Information management system calls, list 1183

1546 The MS-DOS Encyclopedia

Subject

Initialization. See Interrupt 14H Function OOH
Initialize Disk (FORMAT) 865-71

Initialize Hard-Disk Parameter Table. See Interrupt
13H Function 09H

Initialize Port Parameters. See Interrupt 14H
Function OOH

Initialize Printer. See Interrupt 17H Function OIH
Initial SP value field (.EXE file header) 122

modifying 140
Input from Port

DEBUG 11036

SYMDEBIlllO

Input/output (I/O). See also Character-device
input/output

input port 1036,1110
output port 1042,1118
redirection 67-68

redirection and filters 429-30

SYMDEB redirection 1143-49

INS8250 Universal Asynchronous Receiver
Transmitter (UART) 171-72

architecture 172-79

bit rate divisor table 175(table)

control circuits 173,174-77

interrupt enable register constants
177(table)

interrupt identification and causes 178(table)
line control register bit values 175-76(table)
line status register bit values 177(table)
modem control register bit values 176(table)
port offset from base address 174(table)
programming interface 173-74
receiver 172

status circuits 173,177-79

transmitter 172-73

programming 179-80

Insert Lines (EDLIN I) 840

Inspection-and-observation debugging 547-49
Install Device Driver (DEVICE) 795-96

Install File-Sharing Support (SHARE) 933-34
Instruction sets

8086/80881479-80

802861480-82

803861482-84

Instrumentation debugging
external 555-72

internal 549-55

INT24. ASM critical error handling program 394,
395-98

Intel 4004 chip 5(fig.)

Intel 8008 chip 5(fig.)
Intel 8080 chip 5(fig.), 10
Intel 8086 chip ll(fig.), 12, 58

compatibility issues 1507-8

Intel 8086 chip (continued)
exception interrupts 398(table), 409-10(table)

instruction set 1479-80

interrupt priorities 411
Intel 8088 chip 58

compatibility issues 1507-8
instruction set 1479-80

Intel 8259A Programmable Interrupt Controller (PIC)
349,411,4l4(fig.), 415,4l6(fig.). See also
Maskable interrupts

Intel 80186 chip 58
Intel 80188 chip 58
Intel 80286 chip 42(fig.), 58

compatibility issues 489-92
instruction set 1481-82

Intel 80386 chip 42(fig.), 58
compatibility issues 489
instruction set 1483-84

Interleaving, disk 89-90
Internal disk buffers, configure 791-92
Internal stacks

configuring 805
at entry to a critical error exception handler

391(fig.)
in .EXE programs 111-12

performing stack trace 1111-12
in TSR programs 353,354-55(fig.)

Internationalization

MS-DOS and 32-33,35-37

MS-DOS version 2.251415-16

new national language support, MS-DOS

version 3.31438-48,1451-55
support 793

Windows 538

Interrupt(s)

configure internal stacks for 805
daisy-chaining handlers 557
hardware {see Hardware interrupts)
manual 640,641
TSR processing of hardware 349

Interrupt OOH, Divide by Zero 398,399,409
demonstration handler 419-24

Interrupt OIH, Single Step 398, 399,409
Interrupt 02H, Nonmaskable Interrupt (NMI) 398,

399,409,411
Interrupt 03H, Breakpoint Trap 400,409
Interrupt 04H, Overflow Trap 398,400,409
Interrupt 05H

IBM, Print Screen 410

Intel, BOUND Range Exceeded 398,400,409
Interrupt 06H

IBM, Unused 410

Intel, Invalid Opcode 398,400,409

Indexes 1547

Subject

Interrupt 07H

IBM, Unused 410

Intel, Coprocessor Not Available 398,409
Interrupt 08H

IBM, Hardware IRQO/ (Time Tick) 382, 383,410,
425-26

Intel, Double-Fault Exception 398,409
Interrupt 09H

IBM, Hardware IRQl (Keyboard) 348,382,410
Intel, Coprocessor Segment Overrun 398,409

Interrupt OAH

IBM, Hardware IRQ2 (Reserved) 410
Intel, Invalid Task State Segment (TSS) 398,409

Interrupt OBH

IBM, Hardware IRQ3 (COM2) 410
Intel, Segment Not Present 398,409

Interrupt OCH

IBM, Hardware IRQ4 (COMl) 410
Intel, Stack Exception 398,409

Interrupt ODH

IBM, Hardware IRQ5 (Fixed Disk) 410
Intel, General Protection Exception 398,409

Interrupt OEH

IBM, Hardware IRQ6 (Floppy Disk) 410
Intel, Page Fault 398,409

Interrupt OFH

IBM, Hardware IRQ7 (Printer) 410
Intel, Reserved 398,410

Interrupt lOH

IBM, PC ROM BIOS video driver 159,410,872,

1513-18

Function OOH, Set Video Mode 1513

Function OIH, Set Cursor Size and Shape 1514
Function 02H, Set Cursor Position 1514

Function 03H, Read Cursor Position, Size,

and Shape 1514
Function 04H, Read Light-Pen Position

1514-15

Function 05H, Select Active Page 1515
Function 06H, Scroll Window Up 1515
Function 07H, Scroll Window Down 1515

Function 08H, Read Character and Attribute

at Cursor 1515-16

Function 09H, Write Character and Attribute

1516

Function OAH, Write Character Only 1516
Function OBH, Select Color Palette 1516
Function OCH, Write Pixel Dot 1517

Function ODH, Read Pixel Dot 1517

Function OEH, Write Character as TTY1517

Function OFH, Get Current Video Mode 1517
Function 13H, Write Character String 1518

Intel, Coprocessor Error 398,410
Interrupt IIH, Get Peripheral Equipment List 1518

Interrupt 12H, Get Usable Memory Size (KB) 1519
Interrupt 13H, Disk Services 1519-23

Function OOH, Reset Disk System 1519
Function OIH, Get Disk Status 1519-20

Function 02H, Read Disk Sectors 1520

Function 03H, Write Disk Sectors 1520

Function 04H, Verify Disk Sectors 1520
Function 05H, Format Disk Tracks 1520

Function 08H, Get Current Drive Parameters

1520-21

Function 09H, Initialize Hard-Disk Parameter

Table 1521

Function OAH, Read Long 1521
Function OBH, Write Long 1521

Function OCH, Seek to Head 1521

Function ODH, Alternate Disk Reset 1522

Function lOH, Test for Drive Ready 1522
Function IIH, Recalibrate Drive 1522

Function 14H, Controller Diagnostic 1522
Function 15H, Get Disk Type 1522-23
Function 16H, Check for Change of Floppy Disk

Status 1523

Function 17H, Set Disk Type 1523
Interrupt 14H, Serial Port Services l6l, 1523-25

debugging and 556-57
Function OOH, Initialize Port Parameters 222,

1523-24

Function OIH, Send One Character 1524
Function 02H, Receive One Character 1524

Function 03H, Get Port Status 1524-25

Interrupt 15H, Miscellaneous System Services
1525-26

access to extended memory functions
3l6-17(table)

block move descriptor table format 317(table)
Function 02H, Read Data from Cassette 1525-26
Function 03H, Write Data to Cassette 1526
Function 87H, Move Extended Memory Block

316-17

Function 88H, Obtain Size of Extended Memory
3l6(table)

Interrupt 16H, Keyboard Services 1526-27
Function OOH, Read Next Character 1526
Function OIH, Report If Character Ready 1527
Function 02H, Get Shift Status 1527

Interrupt 17H, Printer Services 1527-28
Function OOH, Send Byte to Printer 1527
Function OIH, Initialize Printer 1528

Function 02H, Get Printer Status 1528

Interrupt 18H, Transfer Control to ROM-BASIC 1528
Interrupt 19H, Reboot Computer (Warm Start) 1528
Interrupt lAH, Get/Set Time/Date 1528-30

Function OOH, Read Current Clock Count

1528-29

1548 The MS-DOS Encyclopedia

Subject

Interrupt lAH (continued)
Function OIH, Set Current Clock Count 1529

Function 02H, Read Real-Time Clock 1529

Function 03H, Set Real-Time Clock 1529

Function 04H, Read Date from Real-Time Clock

1529-30

Function 05H, Set Date in Real-Time Clock 1530

Function 06H, Set Alarm 1530
Function 07H, Reset Alarm (Turn Alarm Off)

1530

Interrupt IBH, Control-Break (user defined) 387-89,

410

Interrupt ICH, Timer Tick (user defined) 410
Interrupt IDH, Video Parameter Pointer 410
Interrupt lEH, Disk Parameter Pointer 410
Interrupt IFH, Graphics Character Table 872-73
Interrupt 20H, Terminate Program 63,108,1185-86

terminating .EXE programs 117,118

Interrupt 21H, MS-DOS system calls 63,110,1050
for accessing directories 284-86(table)
compatibility, with MS OS/2 493-94
error information 401,402
for file and record management 248(table)
Function OOH, Terminate Process 1187-88

Function OIH, Character Input with Echo 154,
1189-90

Function 02H, Character Output 158,1191-92

Function 03H, Auxiliary Input l6l, l69,1193-94
Function 04H, Auxiliary Output l6l, 1195-96
Function 05H, Print Character 163,1197-98
Function 06H, Direct Console I/O 154,158,

1199-1200

Function 07H, Unfiltered Character Input
Without Echo 154,1201-2

Function 08H, Character Input Without Echo
154,169,1203-4

Function 09H, Display String 158,1205-6
Function OAH, Buffered Keyboard Input 154,

155,1207-8

Function OBH, Check Keyboard Status 154,155,

169,1209-10
Function OCH, Flush Buffer, Read Keyboard 154,

155,1211-12

Function ODH, Disk Reset 1213-14

Function OEH, Select Disk 1215-16

Function OFH, Open File with FCB 270,

1217-19

Function lOH, Close File with FCB 271,1220-21

Function IIH, Find First File 277, 286, 287,

1222-24

Function 12H, Find Next File 286, 287,1225-26

Function 13H, Delete File 276-77,1227-28

Function 14H, Sequential Read 272,1229-30
Function 15H, Sequential Write 272,1231-32

Interrupt 21H (continued)
Function 16H, Create File with FCB 156, 269,

1233-34

Function 17H, Rename File 275,287,1235-36
Function 19H, Get Current Disk 1237

Function lAH, Set DTA Address 268,353,

1238-39

Function IBH, Get Default Drive Data 1240-41

Function ICH, Get Drive Data 1242-44

Function 21H, Random Read 272,1245-46
Function 22H, Random Write 273,1247-48
Function 23H, Get File Size 277,1249-50

Function 24H, Set Relative Record 1251-52

Function 25H, Set Interrupt Vector 352,419,
1253-54

Function 26H, Create New Program Segment
Prefix 1255-56

Function 27H, Random Block Read 273,

1257-59

Function 28H, Random Block Write 273-75,

1260-62

Function 29H, Parse Filename 268,1263-65
Function 2AH, Get Date 1266-67
Function 2BH, Set Date 1268-69

Function 2CH, Get Time 1270-71

Function 2DH, Set Time 1272-73

Function 2EH, Set/Reset Verify Flag 1274-75
Function 2FH, Get DTA Address 268,353,1276
Function 30H, Get MS-DOS Version Number

1277-78

Function 31H, Terminate and Stay Resident 351,
381,1279-80 iseealso Terminate-and-

stay-resident utilities)
Function 33H, Get/Set Control-C Check Flag

1281-82

Function 34H, Return Address of InDOS Flag
355-56,1283

Function 35H, Get Interrupt Vector 307,315, 352,

419,1284
Function 36H, Get Disk Free Space 1285-86
Function 38H, Get/Set Current Country 793,

1451

Get Current Country 1287-89
Set Current Country 1290

Function 39H, Create Directory 287,1291-92
Function 3AH, Remove Directory 287,1293-94
Function 3BH, Change Current Directory 281,

288,1295-96
Function 3CH, Create File with Handle 251, 287,

1297-99

Function 3DH, Open File with Handle 155,158,
161,163,253,282,307,315,1300-1303

Function 3EH, Close File 255,307,1304-5

Function 3FH, Read File or Device 154,155, l6l,
256,431,1306-7

Indexes 1549

Subject

Interrupt HH'(continued)
Function 40H, Write File or Device 158, l6l, 163,

256,431,1308-9
Function 41H, Delete File 260, 287,1310-11
Function 42H, Move File Pointer 258,1312-14
Function 43H, Get/Set File Attributes 261-62,

287,1315-16
Function 44H, lOCTL 164-66,203,315,

1317-18

extended MS-DOS version 3 31455-58

Subfunction OOH, Get Device Data 164, l65,
307,1319-21

Subfunction OIH, Set Device Data l64, l65,
1322-23

Subfunction 02H, Receive Control Data from
Character Device 164-65,1324-25

Subfunction 03H, Send Control Data to

Character Device 165,1324-25

Subfunction 04H, Receive Control Data from
Block Device 1326-28

Subfunction 05H, Send Control Data to

Block Device 1326-28

Subfunction 06H, Check Input Status 155,
165,1329-30

Subfunction 07H, Check Output Status l65,
1329-30

Subfunction 08H, Check If Block Device Is

Removable 1331-32

Subfunction 09H, Check If Block Device Is

Remote 1333-34

Subfunction OAH, Check If Handle Is
Remote l65,1335-36

Subfunction OBH, Change Sharing Retry
Count 1337-38

Subfunction OCH, Generic I/O Control for
Handles 165,1339-40,1455-58

Subfunction ODH, Generic I/O Control for
Block Devices 1341-42

Subfunction ODH, minor code 40H, Set

Device Parameters 1343-46

Subfunction ODH, minor code 41H, Write

Track on Logical Drive 1350-51
Subfunction ODH, minor code 42H, Format

and Verify Track on Logical Drive
1352-53

Subfunction ODH, minor code 60H, Get
Device Parameters 1347-49

Subfunction ODH, minor code 6lH, Read
Track on Logical Drive 1350-51

Subfunction ODH, minor code 62H, Verify
Track on Logical Drive 1352-53

Subfunction OEH, Get Logical Drive Map

1354-55

Interrupt 21H (continued)
Function 44H, lOCTL (continued)

Subfunction OFH, Set Logical Drive Map

1354-55

Function 45H, Duplicate File Handle 67, 262,
1356-57

Function 46H, Force Duplicate File Handle 67,
263,1358-59

Function 47H, Get Current Directory 288,

1360-61

Function 48H, Allocate Memory Block 299,303,
352,1362-63

Function 49H, Free Memory Block 299,303,352,

1364-65

Function 4AH, Resize Memory Block 299,323,
1366-67

Function 4BH, Load and Execute Program
(EXEC) 64,718,1368-74. isee also
EXEC function)

Function 4CH, Terminate Process with Return
Code 115-17,144,1375-76

Function 4DH, Get Return Code of Child

Process 328,1377-78

Function 4EH, Find First File 285, 286,287,
288-90,1379-81

Function 4FH, Find Next File 285, 286,287,
288-90,1382-84

Function 50H, Set Program Segment Prefix
Address 352,383

Function 51H, Get Program Segment Prefix
Address 352,383

Function 54H, Get Verify Flag 1385
Function 56H, Rename File 260, 287,1386-87
Function 57H, Get/Set Date/Time of File 262,

265, 287,1388-90
Function 58H, Get/Set Allocation Strategy

1391-92

Function 59H, Get Extended Error Information

269,327,383-84,1393-96
and newer system calls 406-8
and older system calls 405-6

Function 5AH, Create Temporary File 251, 252,
1397-98

Function 5BH, Create New File 251, 252,
1399-1400

Function 5CH, Lock/Unlock File Region

1401-3

Function 5DH, Set Extended Error Information
352

Function 5EH, Network Machine Name/Printer

Setup

Subfunction OOH, Get Machine Name 1404
Subfunction 02H, Set Printer Setup 1405-6
Subfunction 03H, Get Printer Setup 1405-6

1550 The MS-DOS Encyclopedia

Subject

Interrupt 21H (continued)

Function 5FH, Get/Make Assign-List Entry
Subfunction 02H, Get Assign-List Entry

1407-8

Subfunction 03H, Make Assign-List Entry
1409-10

Subfunction 04H, Cancel Assign-List Entry
1411-12

Function 62H, Get Program Segment Prefix
Address 1413-14

Function 63H, Get Lead Byte Table 1415-16
Function 65H, Get Extended Country

Information 1451-54

Function 66H, Select Code Page 1454-55
Function 67H, Set Handle Count 1448-50

Function 68H, Commit File 1448,1450-51
for terminate-and-stay-resident programs

350-53

Interrupt 22H, Terminate Routine Address 63,110,

1417

Interrupt 23H, Control-C Handler Address 63,110,

386-89,1418
Interrupt 24H, Critical Error Handler Address 63, HO,

354,390-98,1419-21

MS-DOS versions 2.0 and later 402-3

Interrupt 25H, Absolute Disk Read 63,1422-23
Interrupt 26H, Absolute Disk Write 63,1424-25
Interrupt 27H, Terminate and Stay Resident 63, 266,

351,1426-27. See also Terminate-and-
stay-resident utilities

Interrupt 28H, Idle Interrupt 63, 266, 353
Interrupt 2FH, Multiplex Interrupt 63,356-57,381,

1428-29

Interrupt 30H 63
Interrupt 60H 565,600
Interrupt 67H 306, 307, 309,315
Interrupt enable register constants, INS8250 UART

chip 177(table)
Interrupt identification and causes, INS8250 UART

chip 178(table)
Interrupt request lines (IRQ) 414,416-19

l6-level designs 417-19
cascade effect 417,4l8(fig.)
eight-level designs 4l7(table)

Interrupt routine (/w^r), device driver 453-68
Build BIOS Parameter Block function 459-60

command-code functions 454-55

Device Open/Close functions 464-65
Flush Input/Output Buffer functions 463-64
Generic lOCTL function 466

Get/Set Logical Device functions 467-68
Init (Initialization) function 455-57

Input/Output Status functions 463
lOCTL Read/Write functions 464

Interrupt routine (continued)

Media Check function 457-59

Nondestructive Read function 462

Output Until Busy function 466
Read, Write, and Write with Verify functions

461-62

Removable Media function 465-66

Interrupt service routine (ISR) 180, 203-4,412
in COMDVR. ASM 196-98,203-4
hardware module 215-22

Interrupt vector functions, in TSR programs 352
Interrupt vector table 58

in conventional memory 297-98
initializing 69,70(fig.)

Invalid Opcode exception. See Interrupt 06H
Invalid Task State Segment (TSS) exception. See

Interrupt OAH
lOCTL. See Interrupt 21H Function 44H
lO.SYS 33,448,774,940

BIOS and 61-62

loading 52,72(fig.)
modules 73

ISO Open System Interconnect 42
ISR. See Interrupt service routine

JOIN command 877-78

ASSIGN and 741

BACKUP and 747

CHKDSKand775

DISKCOMP and 818

DISKCOPYand822

FORMAT and 866

MKDIR/MDand885

Join Disk to Directory (JOIN) 877-78
Jump to Label (GOTO) 762-63

Kanji characters 37(fig.)
Kernel. See MS-DOS kernel

KEYB command 1440-41

Keyboard 154-57

ANSI.SYS key and extended key codes 1471-72
character input functions 154(table)
defining 879,1440-41
redefining to a specific string 734-36
sample input programs 156-57
TSR input isee Hot-key sequence)

Indexes 1551

Subject

Keyboard (KEYB) 1440-41
Keyboard Services. See Interrupt 16H
KEYBatjc command 879-81

Key commands (CodeView) ll63
Kildall, Gary 10

Loop or Subroutine, Proceed Through 1043
LPTl (first parallel printer port) 151,163
LPT2 (second parallel printer port) 151,163
LPT3 (third parallel printer port) 151,163

Label(s)

displaying volume 954
jumping to batch-file line following specified

label 762-63
modify volume 882

LABEL command 882-84

ASSIGN and 741

Lane, Jim 8(fig.)
Language menu (CodeView) 1161-62
Large memory model 139
LASTDRIVE command (CONFIG.SYS) 789,803

LC. ASM lowercase filter program 437-39
LEDATA Logical Enumerated Data object record 651,

694-95
Letwin, Gordon 8(fig.)
Lewis, Andrea 8(fig.)
Library Manager. See LIB utility
LIB utility 701-2, 980-86
LIDATA Logical Iterated Data object record 651,

696-97

Lifeboat Associates 12, 27

Line control register bit values 175(table)
Line Editor (EDLIN) 829-31

Line number, defined 1058

Line Status Register bit values 177(table)
LINK. See Object Linker
LINNUM Line Number object record 651,672-73
List Breakpoints (SYMDEB BL) 1071
List Lines (EDLIN L) 841

LNAMES List of Names object record 651,674-75
Load and Execute Program. See EXEC function;

Interrupt 21H Function 4BH
Loader, operating system 52,72
Load File or Sectors

DEBUG L1037-38

SYMDEB L1113-14

Load Graphics Character Set (GRAFTABL) 872-73
Load Graphics Screen-Dump Program (GRAPHICS)

874-76

Loading MS-DOS 68-83
COMMAND.COM shell 76-83

ROM BIOS, POST and bootstrapping 68-72
system initialization 73-76

Lock/Unlock File Region 1401-3

M

McDonald, Marc 8 (fig.), 9
Machine Code Display Mode, Enable 1129
Machine language

assembling 1024,1063
disassembling programs in 1051,1132

Macro(s), in MAKE utility 1000-1001
Macro Assembler, Microsoft See Microsoft Macro

Assembler

Maintain Programs (MAKE) 999-1003
Make Assign-List Entry 1409-10
Make Directory (MKDIR or MD) 885-86
MAKE utility 999-1003
Map files, processed to create symbol files 1004
MAPSYM utility 593,1004-6
MARK condition 172

Maskable interrupts 412-19
characteristics of 412-13

general interrupt sequence 4l3(fig.)
handling 413-19

8259A Programmable Interrupt Controller
(PIC)4l5,4l6(fig.)

IRQ levels 416-19
MASM. See Microsoft Macro Assembler

MAXALLOC field 121,124,322

.EXE memory 300-301

modifying 140
MCOPY program 956-57
MD command. See MKDIR/MD command

M-DOS, development of 8-9,12,15-19
Medium memory model 138
Memory 297-319

allocated to .COM and .EXE programs 142,

300-305

comparing areas of 1026,1074
conventional (.see Conventional memory)
displaying 1027,1075-90
entering data into 1029,1091-1104
expanded (see Expanded memory)
extended (see Extended memory)

filling 1031,1105
linear vs segmented 490-91
making available with EXEC 323,336-37
management

with MS-DOS kernel 53-54

with Windows 510-11

1552 The MS-DOS Encyclopedia

Subject

Memory (continued)

moving area contents 1039

MS-DOS requirements 58

preailocated, in .EXE programs 112-13
searching 1048,1125
segments isee Memory segments)
system calls for 1184
transient use of, by COMMAND.COM 24
TSR RAM management 351-52

virtual disk in 907

Memory arena 298

Memory-image files, converting .EXE files to 971
Memory models, for .EXE programs 137-40
MEMORY parameter 128

Memory segments

absolute segments 647
alignment of 647,708-9
classes of 707-8

concatenated segments 647-48
creating values 490-91
DGROUP 718-21

fixups 648,649(fig.)
frames 646

groups for unified addressing 714
groups of segments 648-49,709
vs linear memory 490
logical segments 646
order and combinations 707-9

overlays 715-18
relocatable segments 646-47
TSR programs 713-14
uninitialized data 714-15

Memory Size. See Interrupt 12H

MEMO.TXT program 252

Messaging system, Windows 522-29
Metafiles (Windows) 556-57

Micro Instrumentation Telemetry Systems (MITS) 4,

7(fig.)
Microprocessor, MS-DOS requirements for 57-58. See

also specific chips
Microsoft Corporation

8086 chip technology and 11-13
BASIC development 3-8,14
competition with CP/M 9-10, 27-29
M-DOS development 8-9,15-19
MS-DOS isee Development of MS-DOS; MS-DOS

operating system; MS-DOS versions 1.x

throughvetsion 3.3)
OS/2 iseeMS OS/2)

personnel in 1978 8(fig.)
Microsoft Macro Assembler (MASM)

description 1007-11
messages 1012-19

sample program structuring with SEGMENT
and GROUP 132-36

Microsoft Macro Assembler (continued)

using GROUP to control .EXE programs 131-32
using SEGMENT to control .EXE programs

125-37

utilities with 967, 974,977,980,987,1004,
1054,1157

Microsoft Networks 43-44,933. See also Networking
Microsoft Object Linker (LINK). See Object Linker
Microsoft Windows. See Windows

MINALLOC field 121,124

.EXE memory 300

modifying 140
Miscellaneous System Services. See Interrupt 15H
Mitsubishi Corporation 35
MKDIR/MD command 885-86

Mode(s), real vs protected operating 58,316
MODE command 887

AUTOEXEC.BAT and 755,887

code-page options 1446-47
display 890-91
MS-DOS version 3.31438,1446-47

printer 888-89

redirect printing 894-95
serial port 892-93

Modem 170-71

Modem Control Register bit values 176(table)
Modem engine 168, 206-9

code 207-8

implementing with MS-DOS functions 168-70
Modem Status Register bit values 178(table)
MODEND Module End object record 651, 661-62
Modified frequency modulation (MEM) 86
Modify .EXE File Header (EXEMOD) 974-76
Modify Volume Label (LABEL) 882-84
MODULE-A program 132-34
MODULE_B program 134-35

MODULE_C program 135-36
Monochrome Display Adapter (MDA) 157
MORE command 896

Move (Copy) Data

DEBUG M1039

SYMDEBM1115

Move Extended Memory Block. See Interrupt 15H
Function 87H

Move File Pointer. See Interrupt 21H Function 42H
Move Lines (EDLIN M) 842-43

MS-DOS Executive (Windows) 505-6(fig.)
MS-DOS kernel 53-55,62-63,447. See also

MSDOS.SYS

file system 54-55
initializing 73,74
memory management 53-54

peripheral support 54
process control 53

Indexes 1553

Subject

MS-DOS operating system 51-60. See also BIOS;
COMMAND.COM; MS-DOS kernel

basic character devices 151-64

basic requirements for 57-60
compatibility with OS/2 489-97

hardware issues 489-92

operating-system issues 492-97
development of {see Development of MS-DOS)
displaying version 952
loading 68-83
major elements of 61-68
system components 52-57
system initialization isee SYSINIT)
three operating system types 51(table)
user interface 55 {see also COMMAND.COM;

SHELL comand)

versions 55-57. See also names of individual
versions, e.g., MS-DOS versions 1.x

MSDOS.SYS 62,447, 774,940. See also MS-DOS
kernel

loading 52,72(fig.)
moving to begin initialization 73,74(fig.)

MS-DOS system calls. See System calls, MS-DOS
MS-DOS versions 1.x

development of 20-29
MS-DOS versions 2.x

development of 30-38
internal stack use in TSR programs 353, 354-55

MS-DOS version 3.0

development of 39-44
extended error information 401-8

internal stack use in TSR programs 343,354-55
MS-DOS version 31

development of 43-44
extended error information 401-8

MS-DOS version 3.2

development of 44
extended error information 401-8

MS-DOS version 3-31433-59

critical error handling 390
new national language support 1438-48
programming considerations 1448-58

extension of lOCTL 1455-58

file management 1448-51
internationalization support 1451-55
MS-DOS partitions extension 1458

user considerations 1433-48

batch-file processing 1434-35
enhanced commands 1436-38

FASTOPEN command 1433-34

PC-DOS commands 1435-36

MS OS/2 operating system, programming for
compatibility 489-97

hardware 489-92

operating-system issues 492-97
Multi-Color Graphics Array (MCGA) 157
Multiplex Interrupt. See Interrupt 2FH
Multitasking 53

compatibility issues in 496-97
Windows 529

MYFILE.DAT program 257-58, 274-75

N

Name File or Command-Tail Parameters

DEBUG N1040-41,1052

SYMDEB N1116-17

National language support, MS-DOS version 3 3
1438-48. See also COUNTRY

command

code pages and code-page switching 1438-39
for EGA-only systems 1447
for PS/2 and printer 1448

modified support commands 1442-47
new support commands 1440-42
system files 1439

National Language Support Function (NLSFUNC)
command, MS-DOS 1441-42

Network Adapter card, IBM 42,43
Networking

installing file-sharing support 933
MS-DOS versions 3.x 35,39-44

Network Machine Name/Printer Setup. See Interrupt
21H Function 5EH

New Executable file header format 1487-97

code and data segment 1495-97
entry table 1493-94
imported names table 1493
module reference table 1493

nonresident names tables 1494-95

vs old 1487

resident names table 1492-93

resource table 1491-92

segment table 1490
Nishi, Kay 14-15
NLSFUNC command 1441-42

Nonmaskable interrupt (NMI) 399,411,640. See also
Interrupt 02H

NOTEPAD display (Windows) 501-4(fig.)
NUL device 59,151

andCTTY810

1554 The MS-DOS Encyclopedia

Subject

OBJDUMP.C program 1509-12
Object files 701-2

hexadecimal files format 1499-1505

Object Linker (LINK) 701-21,757,981,993-98,1004
building a .EXE file header 712(table)
combine parameters 127-28
converting .EXE files produced by, with

EXE2BIN 971-73

creating .EXE files 620-21
creating map files with 1004
description of 988-92
environmental variables in 931

functions of 703
LINK intervals 709-12

messages 993-98

object files, object libraries, and LIB 701-2
object module order 703-6
operating in .EXE program 111, 113

organizing memory with 713-21

return codes 992-93

segment order/combinations 707-9
Object moduleCs) 643-700

contents of 645-46

dump utility 1509-12
linking isee Object Linker)
object record formats 655-56
object records listed 657-700
order of 703-6

structure of 650-55

object record order 651
references between records 654-55

terminology 646-49
translation of assembly programs into

relocatable isee Microsoft Macro

Assembler)

types of 650,651(fig.)
typical 651-54
use of 643-44

Object module library file 701-2
creating/modifying 980-86

Object records

formats 655-56

listed 657-700

order 651

references between 654-55

types 650,651(fig.)
Obtain Size of Extended Memory. See Interrupt 15H

Function 88H

OFFSET operator (MASM), using on labels in
grouped segments 131-32

Open File with FCB. See Interrupt 21H Function OFH
Open File with Handle. See Interrupt 21H

Function 3DH

Open-loop servomechanism 89
Open Symbol Map (SYMDEB XO) 1140
Operating system

compatibility issues, MS-DOS and MS OS/2
492-97

error codes 495

filenames 492-93

MS-DOS function calls 493-94

multitasking concerns 496-97
seeks 495

in conventional memory 298
three types of 51(table), 52
transfer 940

Operating-system loader 52,72
Options menu (CodeView) ll6l

O'Rear, Bob 8(fig.), 15-19
OS/2 operating system. See MS OS/2 operating

system

Output to Port

DEBUG 01042

SYMDEB 01118

Overflow Trap exception. See Interrupt 04H
OVERLAY. ASM program 342
Overlays, program 122-23

EXEC function and 321, 322-23,335-43
example program 337-42
loading and executing 336-37
making memory available 335-36
preparing parameters 336-37

LINK memory organization using 715-18

PAGE alignment 126-27
Page Fault exception. See Interrupt OEH
Fanners, Nancy 34
PARA alignment 126
Parallel port, input/output 163
PARENT. ASM program 330-34
Parent program, use of EXEC by 321

sample program 330-36
Parity parameters 892

Parse Filename. See Interrupt 21H Function 29H
PartitionCs)

block device 90-92,858

extended, in MS-DOS version 3 31458
Partition table 91, 92

Pascal (language) 14

Indexes 1555

Subject

Pascal Compiler, Microsoft, utilities with 974, 977,
980,987,1157

Paterson, Tim 6,12-13, l6

PATH commmand 739,897-98

AUTOEXEC.BAT and 65, 755
COMMAND.COM and 65, 783

SET and 930,931
PATH variable 930

PAUSE command (BATCH) 67, 753, 766-67
PC-DOS xix, 27, 55-57, 725

basic character devices 151-64

commands from, included in MS-DOS version

3.31435-36

commands only in 725,785,925,948
loading 52
memory requirements 58

versions 55-57

PC Probe hardware debugging aid 641
PC ROM BIOS function calls 1513-30. See also

Interrupt lOH through lAH
Perform Conditional Execution (IF) 764-65

Perform Hexadecimal Arithmetic

DEBUG H1035

SYMDEB H1109

Perform Stack Trace (SYMDEB K) 1111-12

Peripheral devices supported by MS-DOS 59
Peripheral support, with MS-DOS kernel 54
Periscope hardware debugging aid 641
Peters, Chris 33-34, 39

PIFEDIT (Windows) 507

Pipes 53

I/O redirection through 67
POST (power-on self test), and loading MS-DOS

68-72

Print Character. See Interrupt 21H Function 05H
PRINT command 33,899-903

ASSIGN and 741

Printer. See also PRN

configuring 888
input/output 163-64
redirecting output 894-95

Printer Services. See Interrupt 17H

Print Screen. See Interrupt 05H

Print Spooler (PRINT) 899-903

development in MS-DOS 33
PRN (printer output) 22, 59,62,151,163-64. See also

LPTl; LPT2; LPT3

CTTYand810

filters and 429

opening 76

Proceed Through Loop or Subroutine

DEBUG P1043

SYMDEB P1119-20

Process control, with MS-DOS kernel 53

Process management system calls 1183
Program(s). See also .COM program files; .EXE

program files
assembling machine instructions for 1024
crash protection for 640
debugger 1020-23
disassembling 1051

go execute 1033,1107

loading (^see EXEC function)
overlays (.see Overlays, program)
timing of 491
trace execution of 1050,1130-31

Program Debugger (DEBUG) 1020-23. See also
Debugging in MS-DOS; DEBUG utility

Program Information File (PIF) 500
Programmable Interrupt Controller. See Intel 8259A

Programmable Interrupt Controller
(PIC); Maskable interrupts

Program segment(s)
controlling .EXE programs with MASM GROUP

131-32

controlling .EXE programs with MASM
SEGMENT 125-30

size reduction of 130

Program segment prefix (PSP) 1020
.EXE programs 108-11

file control block functions and 267-68

get/set address functions in TSR programs 352
inserting filenames/switches into

simulated 1040

structure 1477

warm boot/terminate vector 117-18

PROMPT command 904-6

AUTOEXEC.BAT and 65, 755
COMMAND.COM and 65,783

escape sequences in 732

SET and 931

Protected mode

compatibility issues 489
vs real mode 58, 316

PROTOC. ASM character filter program 431-33
PROTOC.C character filter program 433
PROTOL. ASM line filter program 434-35
PROTOL.C line filter program 436
p-System operating system 26
PUBDEF Public Names Definition object record 651,

669-71

PUBLIC parameter 127

1556 The MS-DOS Encyclopedia

Subject

QDOS operating system 12,27

QuickBASIC programs 550-55, 567-69, 569-72,
1503-5

Quit DEBUG (DEBUG Q) 1044
Quit EDLIN (EDLIN Q) 845
Quit SYMDEB (SYMDEB Q) 1121

RAMciisk86

RAMDRIVE.SYS 907-9

Random Block Read. See Interrupt 21H Function 27H
Random Block Write. See Interrupt 21H Function 28H
Random Read. See Interrupt 21H Function 21H
Random Write. See Interrupt 21H Function 22H
Range, defined 1058
Raster operation codes (Windows) 534, 535-36
Raw versus cooked mode 153-54

RD command. See RMDIR/RD command

Read Character and Attribute at Cursor. See Interrupt
lOH Function 08H

Read Current Clock Count. See Interrupt lAH
Function OOH

Read Cursor Position, Size, and Shape. See Interrupt
lOH Function 03H

Read Data from Cassette. See Interrupt 15H
Function 02H

Read Date from Real-Time Clock. See Interrupt lAH
Function 04H

Read Disk Sectors. See Interrupt 13H Function 02H
Read File or Device. See Interrupt 21H Function 3FH
Read Light-Pen Position. See Interrupt lOH

Function 04H

Read Long. See Interrupt 13H Function OAH
Read Next Character. See Interrupt 16H Function OOH
Read Pixel Dot. See Interrupt lOH Function ODH
Read Real-Time Clock. See Interrupt lAH

Function 02H

Read Track on Logical Drive, See Interrupt 21H
Function 44H Subfunction ODH

Read/write multiple sectors 24
Real mode 58, 316
Reboot Computer (Warm Start). See Interrupt 19H

Recalibrate Drive. See Interrupt 13H Function IIH
Receive Control Data from Block Device. See

Interrupt 21H Function 44H
Subfunction 04H

Receive Control Data from Character Device. See

Interrupt 21H Function 44H
Subfunction 02H

Receive One Character. See Interrupt 14H
Function 02H

RECOVER command 910-11

Recover Files (RECOVER) 910-11

Redirectable I/O, and filter operation 429-30
Redirect Printing (MODE) 894-95
Redirect SYMDEB Input (SYMDEB <) 1143-44
Redirect SYMDEB Input and Output

(SYMDEB =) 1146

Redirect SYMDEB Output (SYMDEB >) 1145
Redirect Target Program Input (SYMDEB {) 1147
Redirect Target Program Input and Output

(SYMDEB ~) 1149

Redirect Target Program Output (Symdeb}) 1148
Registers

AX-extended error code, MS-DOS version 3-3

1461-62

BH-error class, MS-DOS version 3 31462

BL-suggested action, MS-DOS version 3.31463
child program execution 328-
CH-locus, MS-DOS version 3.31463

critical error handling 394-98
DEBUG initialization 582

displaying or modifying 1045,1122
.EXE program settings 113-15

expanded memory 310-12
extended error information 401-2,404-5

extended memory 316-19
INS8250 UART chip 171-80
maintained by DEBUG 1022
maintained by SYMDEB IO6O-6I
overlay execution 337

PC 1045

Relocation pointer table, in .EXE file headers 123
REM command (BATCH) 67, 753, 768
Remove Directory. See Interrupt 21H Function 3AH

Remove Directory (RMDIR or RD) 923-24
Rename File (RENAME or REN). See Interrupt 21H

Function 17H; Interrupt 21H

Function 56H

RENAME/REN command 912-13

REPLACE command 914-17

Replace Text (EDLIN R) 846-47
Report If Character Ready. See Interrupt I6H

Function OIH

Request header, device driver 452-53(fig.)
device open/close 464(fig.)
flush input/output status 463(fig.)
generic lOCTL 466-67(fig.)
get/set logical device 467-68(fig.)
initialization 456(fig.)
input/output status 463(fig.)
lOCTL Read, Write, Write with Verify 46l(fig.)
media check 458(fig.)

Indexes 1557

Subject

Request header (continued)
nondestructive read 462

removable media 464(fig.), 464-66
status word 454(table)

Reset Alarm (Turn Alarm Off). See Interrupt lAH
Function 07H

Reset Disk System. See Interrupt 13H Function OOH
Resize Memory Block. See Interrupt 21H

Function 4AH

Restart System. See Interrupt 19H

Restore Backup Files (RESTORE) 918-22
RESTORE command 918-22

ASSIGN and 741

BACKUP and 745,918

JOIN and 877
RET instruction, terminating .EXE programs

with 118-19

Return Address of InDOS Flag. See Interrupt 21H
Function 34H

Reynolds, Aaron, in development of MS-DOS 30, 34,

35,39,43
RMDIR/RD command 923-24

ROM BASIC. See Interrupt 18H

ROM BIOS 20, 59-60
loading MS-DOS and 68-72
location in memory 69(fig.)
role in display I/O 159
role in keyboard I/O 156
system calls 1513-30 isee also Interrupts lOH

through lAB)
tables 69,70(fig.)
TSR interrupt processing 349

ROM monitor operating system 51

ROOT. ASM program 338-42
Root directory 101-3
RS232C signals 170,171(table)
Run length limited (RLL) encoding 87
Run menu (CodeView) 1160

SAMPLE.C program (Windows) 512-17
display 512(fig.)
.EXE file construction 518-20

header 5l6(fig.)
make file 517(fig.)
message processing 527-29

module-definition file 5l6-17(fig.)
program initialization 520-21

resource script 516
source code 513-15

Sams, Jack 14

Screen. See also Display output
ANSI.SYS escape sequences to control 731-38
clearing 781
controlling 158-59
graphics mode isee Graphics)
screen output debugging with CodeView

629-40

swap 1055,1150

Scroll Window Down. See Interrupt lOH
Function 07H

Scroll Window Up. See Interrupt lOH Function 06H
Search for Text (EDLIN S) 848-49

Search Memory
DEBUG S1048-49

SYMDEBS1125-26

Search menu (CodeView) ll60

Search path
defining command 897
setting with APPEND 739

Seattle Computer Products, and 86-DOS12-13,15
Sector, disk 88-89

loading 1037,1113
writing 1052,1136

Seeks, compatibility issues 495
Seek to Head. See Interrupt 13H Function OCH
SEGDEF Segment Definition object record 651,

Segment. See Memory segments; Program

segment(s); Program segment prefix
(PSP); SEGMENT directive

SEGMENT directive (MASM), to structure .EXE

programs 125-30

align type parameter 125-27

class type parameter 128-30
combine type parameter 127-28
ordering segments to shrink .EXE files 130
sample .EXE program using 132-37

Segment Not Present exception. See Interrupt OBH

Select Active Page. See Interrupt lOH Function 05H
Select Code Page function 1454-55
Select Color Palette. See Interrupt lOH Function OBH
SELECT command 925-29

MS-DOS version 3.31435-36

Select Disk. See Interrupt 21H Function OEH
Send Byte to Printer. See Interrupt 17H Function OOH
Send Control Data to Block Device. See Interrupt 21H

Function 44H Subfunction 05H

Send Control Data to Character Device. See Interrupt
21H Function 44H Subfunction 03H

Send One Character. See Interrupt 14H Function OIH
Sequential Read. See Interrupt 21H Function 14H
Sequential Write. See Interrupt 21H Function 15H
Serial communications monitoring 556-57

debugging program 587-600
demonstration program 557-72

1558 The MS-DOS Encyclopedia

Subject

Serial communications ports 161-62
configuring 892-93
hardware 171-80

programming examples l62
Serial Port Services. See Interrupt 14H
Servomechanism, open vs closed loop 89
Set Alarm 1530

Set Block-Device Parameters (DRIVPARM) 797-98

Set Breakpoints (SYMDEB BP) 1072-73
SET command 930-32

AUTOEXEC.BAT and 65,755

COMMAND.COM and 65,66,783
Set Control-C Check (BREAK) 770-71

Set Country Code (COUNTRY) 793-94
Set Current Clock Count. See Interrupt lAH

Function OIH

Set Current Country. See Interrupt 21H Function 38H
Set Cursor Position. See Interrupt lOH Function 02H

Set Cursor Size and Shape. See Interrupt lOH
Function OIH

Set Data-File Search Path (APPEND) 739-40

Set Date (DATE) 811-12,1268-69
Set Date in Real-Time Clock. See Interrupt lAH

Function 05H

Set Device Data, See Interrupt 21H Function 44H
Subfunction OIH

Set Device Parameters. See Interrupt 21H Function

44H Subfunction ODH

Set Disk Type. See Interrupt 13H Function 17H
Set Display Mode (MODE) 890-91
Set DTA Address. See Interrupt 21H Function lAH

Set Environment Variable (SET) 930-32

Set Extended Error Information. See Interrupt 21H
Function 5DH

Set Handle Count Function 1449-50

Set Highest Logical Drive (LASTDRIVE) 803
Set Interrupt Vector. See Interrupt 21H Function 25H
Set Logical Drive Map. See Interrupt 21H Function

44H Subfunction OFH

Set Maximum Open Files
using file control blocks (FCBs) 799-800
using handles (FILES) 801-2

set-mdmO parameter coding 222(table)
Set Printer Setup. See Interrupt 21H Function 5EH

Subfunction 02H

Set Program Segment Prefix Address. See Interrupt
21H Function 50H

Set Real-Time Clock. See Interrupt lAH Function 03H
Set Relative Record. See Interrupt 21H Function 24H
Set/Reset Verify Flag. See Interrupt 21H

Function 2EH

Set Symbol Value (SYMDEB Z) 1141-42
Set System Time (TIME) 942-43
Set Time. See Interrupt 21H Function 2DH

SETUP program 942
Set Verify Flag (VERIFY) 953
Set Video Mode. See Interrupt lOH Function OOH

SHARE command 799,933-34

Shell 55,63-68,76-83. See also COMMAND.COM
custom 79-83

escape to 1154-55
SHELL. ASM program 81-83

SHELL command (CONFIG.SYS) 789,804

COMMAND.COM and 65-66

replacing COMMAND.COM with a custom shell

79-83

SET and 930,931
SHIFT command (BATCH) 67,753,754,769

with GOTO 762

Shift Replaceable Parameters (SHIFT) 769
Single Step exception. See Interrupt OIH
Small memory model 138
SNAP. ASM program 359-84

activating the application 382-83
block structure of 381(fig.)
code 360-80

detecting a hot key 382
executing 383-84
installing 381-82

Softcard 11

SofTech Microsystems 26
Software. See also Application programs; Operating

system; Program(s)
in the development of MS-DOS 38
instrumentation debugging 555-72
three layers of 447-48

Software Bus 86 operating system 27
Software Development Kit (Windows) 511-12
SORT command 935-37

SORT.EXE program 442-46
Source code

displaying mode
disabling 1128

enabling 1127,1129
displaying source line 1151
viewing 1134-35

SPACE signal 172

Special characters 879-81
Kanji and Hangeul 37

Specify Command Processor (SHELL) 804
SPOOLER (Windows) 507

Stack(s). See Internal stacks

Stack exception. See Interrupt OCH
STACK parameter 127-28

STACKS command (CONFIG.SYS) 805

Stand-alone Disk BASIC 3,8,12

Stop bits 892
Storage devices 85-103. See also Block device(s)

Indexes 1559

Subject

Storage devices (continued)
block device layout 86-90
file system layout 93-103
partition layout 90-92

Strategy routine iStrat^, in device drivers 452-53
Subdirectory 282

copying 955

substituting drive for 938
Subroutine, proceed through 1043
SUBST command 938-39

ASSIGN and 741

BACKUP and 747

CHKDSKand775

DISKCOMP and 818

DISKCOPYand822

FORMAT and 866

JOIN and 877

LABEL and 882

MKDIR/MD and 885

RMDIR/RD and 923

Substitute Drive for Subdirectory (SUBST) 938-39
Suspend Batch-File Execution (PAUSE) 766-67
Swap Screen (SYMDEB \) 1055,1150
Symbol

defined 1057

set value 1141-42

Symbol file, for use with with SYMDEB 1004-6
Symbolic Debugger (SYMDEB). 1054-62 See also

Debugging in MS-DOS; SYMDEB utility
Symbol map

examining 1138-39

opening 1140
SYMDEB utility 573, 586-618,115,1054-62

A command 1063-64

BC command 1065-66

BD command 1067-68

BE command 1069-70

binary operators 1059
BL command 597-98, 608,1071
BP command 597,608,1072-73
C command 1074

commands and actions 1056-57(table)

creating symbol file for 1004
D command 1075-76

DA command 1077-78

DB command 1079-80

DD command 595, 599,1081-82

debugging C programs with 600-618
debugging TSRs with 587-600
description 1054-61
DL command 1083-84

DS command 1085-86

DT command 1087-88

DW command 1089-90

SYMDEB utility (continued)
E command 1091-92

EA command 1093-94

EB command 1095-96

ED command 1097

EL command 1098-99

ES command 1100-1101

ET command 1102-3

EW command 1104

examples 1061-62
F command 1105-6

G command 595,1107-8

H command 1109

I command 1110

K command 1111-12

L command 1113-14

MAPSYM and 1004-5

M command 1115

N command 6l4,1116-17,1136
O command 1118

P command 1119-20

Q command 595,1121

R command 593, 596,606,1122-24
registers and flags 1060
S command 1125-26

S+ command 1127

S- command 1128

S& command 1129

T command 594,598,1130-31

U command 1132-33

unary operators 1059
V command 1134-35

W command 1136-37

X command 594, 596, 598-99,606,607,6l3,6l4,

1138-39

XO command 598,612,1140
Z command 598,612,1141-42
< command 1143-44

> command 1145

= command 1146

(command 1147

} command 1148

~ command 1149

\ command 1150

. command 1151

? command 1152-53

! command 1154-55

* command 1156

SYS command 940-41

ASSIGN and 741

SYSINIT 61,73-76
System batch-file interpreter (BATCH) 752-69
System calls, MS-DOS 1177-84. See also Interrupts

imthroughim

1560 The MS-DOS Encyclopedia

Subject

System calls (continued)
arranged by functional group 1181-84
format 1178-81

PC ROM BIOS 1513-30

version differences 1177-78

System configuration and control commands 728
BREAK 770-71

COMMAND 782-84

DATE 811-12

EXIT 853

PROMPT 904-6

SELECT 925-29

SET 930-32

SHARE 933-34

TIME 942-43

VER952

System Configuration File (CONFIG.SYS) 788-89
System configuration file directives 729-30,788-89

BREAK 790

BUFFERS 791-92

COUNTRY 793-94

DEVICE 795-96

DRIVPARM 797-98

FCBS 799-800

FILES 801-2

LASTDRIVE803

SHELL 804

STACKS 805

System Startup Batch File (AUTOEXEC.BAT) 755-57

Tandy 2000 computer 34
Tape drive storage 103
Template, editing buffer 832
TEMPLATE.ASM character-device driver 471-78

TERMINAL dialog box (Windows) 505(fig.)
Terminal emulator CTERM.C 230-46

Terminate and Stay Resident. See Interrupt 21H
Function 31H; Interrupt 27H

Terminate-and-stay-resident utilities 347-84. See
also Interrupt 21H Function 31H;
Interrupt 27H

APPEND command 739-40

building instrumentation software for
debugging with 556-72

determining MS-DOS status 353-56
multiplex interrupt 356-57
organization in memory 348(fig.)
programming examples 357-81

HELLO. ASM 357-59

SNAP. ASM 359-81

segment order for 713-14

Terminate-and-stay-resident utilities (continued)
structure of 275-349

system calls for 350-53
using SYMDEB to debug 587-600

Terminate Command Processor (EXIT) 853

Terminate Process. See Interrupt 21H Function OOH

Terminate Process with Return Code. See Interrupt
21H Function 4CH

Terminate Program. See Interrupt 20H
Terminate Routine Address. See Interrupt 22H
TESTCOMM. ASM programs 544

corrected code 580-81

incorrect code 574-75

Test for Drive Ready. See Interrupt 13H Function lOH
Text and files (Windows) 536

Text editor, escape sequences in 732. See also EDLIN
commands

THEADR Translator Header object record 651,657
TIME command 942-43

Timer

setting date 811
setting time 942

Timer Tick (user defined). See Interrupt ICH
Time-slicing 900
TINYDISK. ASM block-device driver 478-86

Torode, John 10
Trace Program Execution

DEBUG T1050

SYMDEB T1130-31

Tracks, disk 87,88(fig.)
Traf-O-Data machine 5-6

Transfer Another File (EDLIN T) 850-51

Transfer Control to ROM-BASIC. See Interrupt 18H
Transfer System Files (SYS) 940-41
Transient program area (TPA) 79

in conventional memory 298-99
TREE command 944-46

TSR. See Terminate-and-stay-resident utilities
TYPDEF Type Definition object record 651,665-68
TYPE command 947

escape sequences using 732

u

UART. See INS8250 Universal Asynchronous Receiver
Transmitter (UART)

Ulloa,Mani34,37

Unary operators, SYMDEB 1059

Unfiltered Character Input Without Echo. See
Interrupt 21H Function 07H

UNIX operating system 68
directories 284

file management 30

Indexes 1561

Subject

Update Files (REPLACE) 914-17
UPPERCAS.C programs 545

correct code 629(fig.)
correction of 620-29

incorrect 620(fig.)

VDISK.SYS 948-51

VER command 952

VERIFY command 953

Verify Disk Sectors. See Interrupt 13H Function 04H
Verify flag, set 953
Verify Track on Logical Drive. See Interrupt 21H

Function 44H Subfunction ODH

Version, display 952
Victor Corporation 35

Video. See Character-device input/output; Display
output; Screen

Video Graphics Array (VGA) 157
Video Parameter Pointer. See Interrupt IDH
Video Services. See Interrupt lOH
View menu (CodeView) 1160

View Source Code (SYMDEB V) 1134-35

Virtual Disk (RAMDRIVE.SYS) 907-9

Virtual Disk (VDISK.SYS) 948-51

VOL command 954

Volume labeKs) 103, 283-84

displaying 954
modifying 882
program example for updating 292-96

w

Wallace, Bob 8(fig.)
Warm boot 68

Warm Boot/Terminate vector 117-18

Watch menu (CodeView) ll6l

Watchpoints 619
Wildcard(s)

COPY 806

DEL/ERASE 813

DIR816

directory searches 286-87
REPLACE 914

RESTORE 918

Window-Oriented Debugger (CodeView). 1157-73
See also CodeView utility; Debugging
in MS-DOS

Windows 499-538

application and utility programs in 506-7
data sharing/data exchange

Clipboard 537-38
dynamic data exchange 538

display 500-505
dialog boxes 504-5
parts of the window 501-4

graphics device interface 529-37
internationalization 538

memory management 510-11

MS-DOS Executive 505, 506(fig.)
multitasking 529
new executable header 1487-97

program categories 499-500
structure of 507-10

libraries and programs 509-10
modules 507-9

structure of a program 511-29
message processing 525-26
message processing example 527-29
messages 524-25
messaging system 522-24
program components 512-17

program construction 518-20

program initialization 520-21
software development kit 511-12

Wood, Maria 8(fig.)
Wood, Steve 8(fig.)
Word(s), 16-bit 172, 222

displaying 1089-90
entering 1104

WORD alignment 126
Wrap around, screen display 733
Write Character and Attribute. See Interrupt lOH

Function 09H

Write Character as TTY. See Interrupt lOH
Function OEH

Write Character Only. See Interrupt lOH
Function OAH

Write Character String. See Interrupt lOH
Function 13H

Write Data to Cassette. See Interrupt 15H
Function 03H

Write Disk Sectors. See Interrupt 13H Function 03H
Write File or Device. See Interrupt 21H

Function 40H

Write File or Sectors

DEBUG W 586-87,1052-53
SYMDEB W1136-37

Write Lines to Disk (EDLIN W) 852

Write Long. See Interrupt 13H Function OBH

Write Pixel Dot. See Interrupt lOH Function OCH
Write Track on Logical Drive. See Interrupt 21H

Function 44H Subfunction ODH

1562 The MS-DOS Encyclopedia

Subject

XCOPY command 955 - 59 Zbikowski, Mark, in the development of MS-DOS 30,
ATTRIB and 743 34,35,37,39,43

DISKCOPY and 822 Z-DOS operating system 27
XENIX operating system 30,31,68

directories 284

XON/XOFF168

Indexes 1563

Commands and System Calls

Commands and System Calls
This index lists onlyprimary command and system call entries. Please use the Subject Indexfor related entries.

SYMBOLS

@ (BATCH) 1434

ANSI.SYS 731-38

APPEND 739-40,1436-37

ASSIGN 741-42

ATTRIB 743-44,1437
AUTOEXEC.BAT (BATCH) 755-57

B

BACKUP 745-51,1437
BATCH 752-69,1434-35
BREAK 770-71

BREAK (CONFIG.SYS) 790

BUFFERS (CONFIG.SYS) 791-92

CALL (BATCH) 1434-35

CD 772-73

CHCP1440

CHDIR 772-73

CHKDSK 774-80

CLS781

CodeView utility 1157-73
COMMAND 782-84

COMP 785-87,1435

CONFIG.SYS 788-805

COPY 806-9

COUNTRY (CONFIG.SYS) 793-94,1442-43

CREF utility 967-70
CTTY810

DATE 811-12

DEBUG, general 1020-23

DEBUG utility 1020-53
A command 1024-25

C command 1026

D command 1027-28

E command 1029-30

F command 1031-32

G command 1033-34

H command 1035

I command 1036

L command 1037-38

M command 1039

N command 1040-41

O command 1042

P command 1043

Q command 1044

R command 1045-47

S command 1048-49

T command 1050

U command 1051

W command 1052-53

DELETE 813-14

DEVICE (CONFIG.SYS) 795-96,1443-45
DIR 815-17

DISKCOMP 818-21

DISKCOPY 822-25

DRIVER.SYS 826-28

DRIVPARM (CONFIG.SYS) 797-98

ECHO (BATCH) 758-59

EDLIN, general 829-31
EDLIN line editor 829-52

A command 834

C command 835-36

D command 837-38

E command 839

Indexes 1565

Commands and System Calls

EDLIN line editor (continued)

I command 840

L command 841

linenumber command 832-33

M command 842-43

P command 844

Q command 845
R command SA6-A1

S command 848-49

T command 850-51

W command 852

ERASE 813-14

EXE2BIN utility 971-73

EXEMOD utility 974-76
EXEPACK utility 977-79

EXIT 853

FASTOPEN1433-34

PC 854-57

FCBS (CONFIG.SYS) 799-800

FDISK 858-62,1437

FILES (CONFIG.SYS) 801-2

FIND 863-64

FOR (BATCH) 760-61

FORMAT 865-71

GOTO (BATCH) 762-63

GRAFTABL 872-73,1445

GRAPHICS 874-76

IF (BATCH) 764-65

Interrupt lOH, Video Services 1513-18
Function OOH, Set Video Mode 1513

Function OIH, Set Cursor Size and Shape 1514
Function 02H, Set Cursor Position 1514

Function 03H, Read Cursor Position, Size, and

Shape 1514
Function 04H, Read Light-Pen Position 1514-15
Function 05H, Select Active Page 1515

Function 06H, Scroll Window Up 1515
Function 07H, Scroll Window Down 1515

Interrupt lOH (continued)
Function 08H, Read Character and Attribute at

Cursor 1515-16

Function 09H, Write Character and Attribute

1516

Function OAH, Write Character Only 1516
Function OBH, Select Color Palette 1516
Function OCH, Write Pixel Dot 1517

Function ODH, Read Pixel Dot 1517

Function OEH, Write Character as TTY1517

Function OFH, Get Current Video Mode 1517

Function 13H, Write Character String 1518
Interrupt IIH, Get Peripheral Equipment List 1518
Interrupt 12H, Get Usable Memory Size (KB) 1519
Interrupt 13H, Disk Services 1519-23

Function OOH, Reset Disk System 1519
Function OIH, Get Disk Status 1519-20

Function 02H, Read Disk Sectors 1520

Function 03H, Write Disk Sectors 1520

Function 04H, Verify Disk Sectors 1520
Function 05H, Format Disk Tracks 1520

Function 08H, Get Current Drive Parameters

1520-21

Function 09H, Initialize Hard-Disk Parameter

Table 1521

Function OAH, Read Long 1521
Function OBH, Write Long 1521

Function OCH, Seek to Head 1521

Function ODH, Alternate Disk Reset 1522

Function lOH, Test for Drive Ready 1522
Function IIH, Recalibrate Drive 1522

Function 14H, Controller Diagnostic 1522

Function 15H, (Set Disk Type 1522-23
Function 16H, Check for Change of Floppy-Disk

Status 1523

Function 17H, Set Disk Type 1523

Interrupt 14H, Serial Port Services 1523-25
Function OOH, Initialize Port Parameters

1523-24

Function OIH, Send One Character 1524

Function 02H, Receive One Character 1524

Function 03H, (Set Port Status 1524-25

Interrupt 15H, Miscellaneous System Services
1525-26

Function OOH, Turn On Cassette Motor 1525

Function OIH, Turn Off Cassette Motor 1525

Function 02H, Read Data from Cassette 1525-26
Function 03H, Write Data to Cassette 1526

Interrupt 16H, Keyboard Services 1526-27
Function OOH, Read Next Character 1526
Function OIH, Report If Character Ready 1527
Function 02H, Get Shift Status 1527

Interrupt 17H, Printer Services 1527-28

1566 The MS-DOS Encyclopedia

Commands and System Calls

Interrupt 17H (continued)
Function OOH, Send Byte to Printer 1527
Function OIH, Initialize Printer 1528

Function 02H, Get Printer Status 1528

Interrupt 18H, Transfer Control to ROM-BASIC 1528
Interrupt 19H, Reboot Computer (Warm Start) 1528
Interrupt lAH, Get and Set Time 1528-30

Function OOH, Read Current Clock Count

1528-29

Function OIH, Set Current Clock Count 1529

Function 02H, Read Real-Time Clock 1529

Function 03H, Set Real-Time Clock 1529

Function 04H, Read Date from Real-Time Clock

1529-30

Function 05H, Set Date in Real-Time Clock 1530

Function 06H, Set Alarm 1530
Function 07H, Reset Alarm (Turn Alarm Off)

1530

Interrupt 20H, Terminate Program 1185-86
Interrupt 21H, MS-DOS function calls 1187-1416

Function OOH, Terminate Process 1187-88

Function OIH, Character Input with Echo
1189-90

Function 02H, Character Output 1191-92
Function 03H, Auxiliary Input 1193-94
Function 04H, Auxiliary Output 1195-96
Function 05H, Print Character 1197-98

Function 06H, Direct Console I/O 1199-1200
Function 07H, Unfiltered Character Input

Without Echo 1201-2

Function 08H, Character Input Without Echo
1203-4

Function 09H, Display String 1205-6
Function OAH, Buffered Keyboard Input 1207-8
Function OBH, Check Keyboard Status 1209-10
Function OCH, Flush Buffer, Read Keyboard

1211-12

Function ODH, Disk Reset 1213-14

Function OEH, Select Disk 1215-16
Function OFH, Open File with FCB1217-19
Function lOH, Close File with FCB 1220-21

Function IIH, Find First File 1222-24

Function 12H, Find Next File 1225-26

Function 13H, Delete File 1227-28

Function 14H, Sequential Read 1229-30
Function 15H, Sequential Write 1231-32
Function 16H, Create File with FCB 1233-34
Function 17H, Rename File 1235-36

Function 19H, Get Current Disk 1237

Function lAH, Set DTA Address 1238-39

Function IBH, Get Default Drive Data 1240-41

Function ICH, Get Drive Data 1242-44

Function 21H, Random Read 1245-46
Function 22H, Random Write 1247-48

Interrupt 21H (continued)

Function 23H, Get File Size 1249-50

Function 24H, Set Relative Record 1251-52

Function 25H, Set Interrupt Vector 1253-54
Function 26H, Create New Program S^ment

Prefix 1255-56

Function 27H, Random Block Read 1257-59

Function 28H, Random Block Write 1260-62

Function 29H, Parse Filename 1263-65

Function 2AH, Get Date 1266-67
Function 2BH, Set Date 1268-69
Function 2CH, Get Time 1270-71

Function 2DH, Set Time 1272-73

Function 2EH, Set/Reset Verify Flag 1274-75
Function 2FH, Get DTA Address 1276

Function 30H, Get MS-DOS Version Number

1277-78

Function 31H, Terminate and Stay Resident
1279-80

Function 33H, Get/Set Control-C Check Flag
1281-82

Function 34H, Return Address of InDOS Flag
1283

Function 35H, Get Interrupt Vector 1284
Function 36H, Get Disk Free Space 1285-86
Function 38H, Get/Set Current Country 1287-90

Get Current Country 1287-89
Set Current Country 1290

Function 39H, Create Directory 1291-92
Function 3AH, Remove Directory 1293-94
Function 3BH, Change Current Directory

1295-96

Function 3CH, Create File with Handle 1297-99

Function 3DH, Open File with Handle

1300-1303

Function 3EH, Close File 1304-5

Function 3FH, Read File or Device 1306-7

Function 40H, Write File or Device 1308-9

Function 41H, Delete File 1310-11

Function 42H, Move File Pointer 1312-14
Function 43H, Get/Set File Attributes 1315-16

Function 44H, lOCTL 1317-18

Subfunction OOH, Get Device Data 1319-21

Subfunction OIH, Set Device Data 1322-23

Subfunction 02H, Receive Control Data from

Character Device 1324-25

Subfunction 03H, Send Control Data to

Character Device 1324-25

Subfunction 04H, Receive Control Data from

Block Device 1326-28

Subfunction 05H, Send Control Data to

Block Device 1326-28

Subfunction 06H, Check Input Status
1329-30

Indexes 1567

Commands and System Calls

Interrupt 21H (continued)
Function 44H (continued)

Subfunction 07H, Check Output Status
1329-30

Subfunction 08H, Check If Block Device Is

Removable 1331-32

Subfunction 09H, Check If Block Device Is

Remote 1333-34

Subfunction OAH, Check If Handle Is

Remote 1335-36

Subfunction OBH, Change Sharing Retry
Count 1337-38

Subfunction OCR, Generic I/O Control for
Handles 1339-40,1455-58

Subfunction ODH, Generic I/O Control for
Block Devices 1341-42

Subfunction ODH, minor code 40H, Set

Device Parameters 1343-46

Subfunction ODH, minor code 41H, Write

Track on Logical Drive 1350-51
Subfunction ODH, minor code 42H, Format

and Verify Track on Logical Drive

1352-53

Subfunction ODH, minor code 60H, Get
Device Parameters 1347-49

Subfunction ODH, minor code 6lH, Read
Track on Logical Drive 1350-51

Subfunction ODH, minor code 62H, Verify
Track on Logical Drive 1352-53

Subfunction OEH, Get Logical Drive Map

1354-55

Subfunction OFH, Set Logical Drive Map

1354-55

Function 45H, Duplicate File Handle 1356-57
Function 46H, Force Duplicate File Handle

1358-59

Function 47H, Get Current Directory 1360-61
Function 48H, Allocate Memory Block 1362-63
Function 49H, Free Memory Block 1364-65
Function 4AH, Resize Memory Block 1366-67
Function 4BH, Load and Execute Program

(EXEC) 1368-74

Function 4CH, Terminate Process with Return

Code 1375-76

Function 4DH, Get Return Code of Child

Process 1377-78

Function 4EH, Find First File 1379-81

Function 4FH, Find Next File 1382-84
Function 54H, Get Verify Flag 1385
Function 56H, Rename File 1386-87
Function 57H, Get/Set Date/Time of File

1388-90

Function 58H, Get/Set Allocation Strategy

1391-92

Interrupt 21H (continued)
Function 59H, Get Extended Error Information

1393-96

Function 5AH, Create Temporary File 1397-98
Function 5BH, Create New File 1399-1400

Function 5CH, Lock/Unlock File Region

1401-3

Function 5EH, Network Machine Name/Printer

Setup 1404-6
Subfunction OOH, Get Machine Name 1404

Subfunction 02H, Set Printer Setup 1405-6
Subfunction 03H, Get Printer Setup 1405-6

Function 5FH, Get/Make Assign-List Entry
1407-12

Subfunction 02H, Get Assign-List Entry
1407-8

Subfunction 03H, Make Assign-List Entry
1409-10

Subfunction 04H, Cancel Assign-List Entry
1411-12

Function 62H, Get Program Segment Prefix
Address 1413-14

Function 63H, Get Lead Byte Table 1415-16
Function 65H, Get Extended Country

In formation 1451 - 54

Function 66H, Select Code Page 1454-55
Function 67H, Set Handle Count 1449-50
Function 68H, Commit File Function 1450-51

Interrupt 22H, Terminate Routine Address 1417
Interrupt 23H, Control-C Handler Address 1418
Interrupt 24H, Critical Error Handler Address 1419-21
Interrupt 25H, Absolute Disk Read 1422-23
Interrupt 26H, Absolute Disk Write 1424-25
Interrupt 27H, Terminate and Stay Resident 1426-27
Interrupt 2FH, Multiplex Interrupt 1428-29

J,k,l

JOIN 877-78

KEYB1440-41

KEYBx* 879-81

LABEL 882-84

LASTDRIVE (CONFIG.SYS) 803

LIB utility 980-86
LINK utility 987-98

M

MAKE utility 999-1003
MAPSYM utility 1004-6

1568 The MS-DOS Encyclopedia

Commands and System Calls

MASM utility 1007-19
MD 885-86

MKDIR 885-86

MODE 887-95,1446-47
MORE 896

N,P

NLSFUNC1441-42

PATH 897-98

PAUSE (BATCH) 766-67

PRINT 899-903

Programming Utilities (Introduction) 963-65
PROMPT 904-6

RAMDRIVE.SYS 907-9

RD 923-24

RECOVER 910-11

REM (BATCH) 768

REN 912-13

RENAME 912-13

REPLACE 914-17

RESTORE 918-22

RMDIR 923-24

SELECT 925-29,1435-36
SET 930-32

SHARE 933-34

SHELL (CONFIG.SYS) 804

SHIFT (BATCH) 769

SORT 935-37

STACKS (CONFIG.SYS) 805

SUBST 938-39

SYMDEB, general 1054-62
SYMDEB utility 1054-1156

A command 1063-64

BC command 1065-66

BD command 1067-68

BE command 1069-70

BL command 1071

BP command 1072-73

C command 1074

D command 1075-76

SYMDEB utility (continued)
DA command 1077-78

DB command 1079-80

DD command 1081-82

DL command 1083-84

DS command 1085-86

DT command 1087-88

DW command 1089-90

E command 1091-92

EA command 1093-94

EB command 1095-96

ED command 1097

EL command 1098-99

ES command 1100-1101

ET command 1102-3

EW command 1104

F command 1105-6

G command 1107-8

H command 1109

I command 1110

K command 1111-12

L command 1113-14

M command 1115

N command 1116-17

0 command 1118

P command 1119-20

Q command 1121

R command 1122-24

S command 1125-26

S+ command 1127

S- command 1128

S& command 1129

T command 1130-31

U command 1132-33

V command 1134-35

W command 1136-37

X command 1138-39

XO command 1140

Z command 1141-42

< command 1143-44

> command 1145

= command 1146

{command 1147

1 command 1148

~ command 1149

\ command 1150

. command 1151

? command 1152-53

! command 1154-55

• command 1156

SYS 940-41

System Calls (Introduction) 1177-84

format of entries 1178-81

Indexes 1569

Commands and System Calls

System Calls (continued)
by functional group 1181-84
version differences 1177-78

T,U

TIME 942-43

TREE 944-46

TYPE 947

User Commands (Introduction) 725-30

by fimctional group 728-30
key to entries 726-27

V,x

VDISK.SYS 948-51

VER952

VERIFY 953

VOL 954

XCGPY 955-59

1570 The MS-DOS Encyclopedia

Book Design by The NBBJ Group, Seattle, Washington

Cover Design by Greg Hickman

Principal Typography by Carol L. Luke

The manuscript for this book was prepared and submitted to Microsoft Press in electronic
form. Text files were processed and formatted using Microsoft Word.

Text composition by Microsoft Press in Garamond with display in Garamond Bold using
the Magna composition system and the Linotronic 300 laser imagesetter.

Special Companion Disk Offer
In addition to the comprehensive technical information presented
throughout The MS-DOS Encyclopedia, you'll find a wealth of pro
gramming examples, handy code fragments, and complete utilities
that you'll turn to again and again—literally thousands of lines of
code written to make your MS-DOS programming more efficient
and more reliable. Included on the companion disks are:

■ a complete serial-communications program ■ two working TSR
utilities ■ examples for each of the more than 100 system function
calls ■ instructive debugging exercises ■ installable device drivers
■ two complete skeleton filters ■ replacement interrupt handlers
■ hundreds of working code fragments ■ a .OBJ Module Format
Utility ■ and much, much more.

Save time, avoid those inevitable typing errors, and start using the
code immediately. The disks are available in 5.25" or 3.5" format. To
order, fill out the postpaid order card below. If the order card has
already been used, refer to the ordering instructions on page xvi.

ORDERCARD

YES... please send me The MS-DOS Encyclopedia Companion Disks indicated below:
set(s) of 5.25" disks at $49.95 per set $ _

set(s) of 3.5" disks at $49.95 per set $_

Sales Tax (If applicable) $_
California - 5% (plus local option tax); Connecticut -7.5%; Florida - 6%; Massachusetts - 5%;
Minnesota - 6%; Missouri - 4.225%; New York - 4% (plus local option tax); Washington - 7.8%

Postage and Handling Charges. $5.50 per set for domestic postage and handling;
$8.00 per set for international postage and handling $ _

TOTAL (U.S. fund.sonly) $ _

Name_
Please Print

Address
(Please no p.o. boxes)

Daytime Phone #: ()

City State ZIP

Payment: CH Check/Money Order CH VISA LH MasterCard □ American Express
(13 or 16 numbers)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CreditCardNo. [] [) [)[] [][] [) [)[) [)(] [] [| [](] []Exp.Date_

Signature
All domestic orders shipped 2nd day air

n Please send me information on receiving updates to The MS-DOS Encyclopedia,

updates to The MS-DOS Encyclopedia
Periodically, the staff of The MS-DOS Encyclopedia will publish up
dates containing clarifications or corrections to the information
presented in this current edition. If you would like information about
receiving these updates, please check the appropriate box on the
other side of this card when ordering your companion disks, or send
your name and address to; MS-DOS Encyclopedia Update Informa
tion, c/o Microsoft Press, I6OIINE 36th Way, Box 97017, Redmond,
WA 98073-9717.

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMITN0.108 BELLEVUE.WA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT PRESS

Attn: MS-DOS ENCYCLOPEDIA

Companion Disk Offer
16011 NE 36th Way
Box 97017

Redmond, WA 98073-9717

Praise for

The MS-DOS® Encyclopedia:
"A superb, nearly inexhaustible ref
erence work Anyone serious
about programming for MS-DOS
will not want to be without [THE
MS-DOS ENCYCLOPEDIA]."

Online Today

"The ultimate authority."
Reference & Research Book News

"A splendid volume."
Dr. Dobb's Journal of Software Tools

"For those with any technical in
volvement in the PC industry, this is
the one and the only volume worth
reading." PC week

"If you like the idea of a one-stop
DOS reference book, then this book
is for you." PC Magazine

"There's no doubting that this is a
superb reference work on MS-DOS."

EXE magazine

Here, from Microsoft Press, is the ultimate resource for writing, maintaining,
and upgrading well-behaved, efficient, reliable, and robust MS-DOS programs.
Covering all MS-DOS releases through version 3.2, with a special section on
version 3.3, this encyclopedia is the standard reference for the working com
munity of MS-DOS programmers and for anyone making strategic decisions
about MS-DOS implementation. Included are version-specific technical data
and descriptions for:

■ More than 100 system calls—each accompanied by C-callable
assembly-language routines and programmer's notes

■ More than 90 user commands — the most comprehensive version-
specific analysis ever assembled

■ Key MS-DOS programming utilities and debuggers

THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and
thousands of lines of great sample code plus in-depth articles on debugging,
writing filters, installable device drivers, TSRs, Windows, memory manage
ment, the future of MS-DOS, and much more. There are also more than a dozen

appendixes, an index to commands and system calls, and a subject index. THE
MS-DOS ENCYCLOPEDIA was researched and written by a team of MS-DOS
experts — many involved in the creation and development of MS-DOS — so you
know it's accurate and authoritative.

U.S.A.

U.K.

Austral.

$69.95

£48.95

$104.95
(recommended)

ISBN l-SSblS-174-fl

5 699 5

9 781556 151743

	2020_07_24_18_00_32
	2020_07_24_18_20_41
	2020_07_24_18_33_26
	2020_07_24_18_42_38

