

Starter Kit for the
IBM iSeries and AS/400

To obtain updated CD content for this book, go to
iSeriesNetwork.com/store/code/StarterKit.zip

29th Street Press • (800) 650-1804 • (970) 663-4700
(Peel this label and affix to inside cover of book.)

NEWS/400 Books TM is a division of

DUKE COMMUNICATIONS INTERNATIONAL
A subsidiary of Penton Media, Inc.

221 E. 29th Street • Loveland, CO 80538 USA
(800) 650-1804 • (970) 663-4700 • www.as400networkstore.com

Library of Congress Cataloging-in-Publication Data

Guthrie, Gary, 1953-
Starter kit for the IBM iSeries and AS/400 I by Gary Guthrie and

Wayne Madden.
p. cm.

Includes index.
ISBN 1-58304-084-6

1. IBM AS/400 (Computer)--Programming. 2. Linux. I. Madden, Wayne,
1960- II. Title.

QA76.8.125919 G88 2001
005.4'445--dc21

2001001776

'" NEWS/400 Books™ is a division of

~llinton
Penton Media, Inc.

DUKE COMMUNICATIONS INTERNATIONAL
A subsidiary of Penton Media, Inc.
Loveland, Colorado USA

© 200 I by Gary Guthrie and Wayne Madden

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

It is the reader's responsibility to ensure procedures and techniques used
from this book are accurate and appropriate for the user's installation. No
warranty is implied or expressed.

This book was printed and bound in Canada

ISBN 1-58304-084-6

2003 2002 2001 WL 10 9 8 7 6 5 4 3 2 1

To my family,

Karen Sue, Josh, and Shannon.

I love you dearly.

- Gary Guthrie

To my beautiful children,

Rachel and Andrew.

- Wayne Madden

Acknowledgments
I'm humbled to be friend to the many people who made this book - the latest
incarnation of Wayne Madden's classic Starter Kit for the AS/400- possible. I'd like to
thank Wayne for the opportunity to work on this edition of the book and for entrusting
me with the project. Over the years, he has afforded me numerous opportunities for
which I am truly grateful.

Bryan Meyers and Debbie Saugen contributed material for the book. Bryan also
reviewed the manuscript and provided helpful comments, as did Mel Beckman on the
TCP/IP material. Editor Katie M. Tipton has always added a luster to my works, and this
book is no exception. She is exceptionally talented and a true pleasure to work with, and
her review of and revisions to the material have been invaluable. Martha Nichols worked
on the production of the book. Kathy Wong provided administrative assistance. Matt
Wiebe designed the engaging cover. Although Dale Agger didn't work directly on the
book, she is largely responsible for getting me started in the v.Titing business. Her
encouragement and support throughout my tenure with NEWS/400 are greatly
appreciated, as are the many opportunities with which she has presented me.

Others not directly involved in production of the book deseive recognition as well.
Closest of friends and industry expert, Don Kracke was always there to provide feedback.
Other close friends Mark Marksbary, Charlie Sanchez, and Spiro Barouxis helped with their
commentary and by providing various pieces of requested reference material. I want to
extend a very special thanks to Dean Wagoner who, more than twenty years ago, took a
chance by hiring a young man who knew virtually nothing about computers and introduced
me to the industry. His mentoring and faith have been instrumental to my success.

My best friend and sweetheart, Karen Sue Nielsen, sacrificed much so that I could
complete this project. She took over many responsibilities, giving me time to devote to
the book. Her constant support and encouragement were welcome pillars throughout the
process, and her cheers upon completion of each chapter kept me motivated. My children,
Josh and Shannon, not only helped with several small tasks but also made things easier
for me while I was busy with the book by maintaining their status as honor students
through their own initiative.

I am in good company.
Gary Guthrie

About the Authors
Gary Guthrie is a NEWS/400 technical editor and a technical support consultant with
more than 20 years of progressive IT experience. He has written numerous articles for
NEWS/400, is a frequent contributor to the magazine's Tech Comer department, and
moderates the RPG Programmer and SQL/400 & Database communities at The AS400
Network. He also served as editor of the newsletter Tbe RPG Source. Among Gary's many
areas of expertise are problem determination and resolution, customer support, operating
systems, languages, utilities, database, application development, operations integration,
system migration, configuration, performance, security, work management, internals, and
Client Access.

Wayne Madden is vice president and group publisher at Duke Communications Inter
national in Loveland, Colorado. He is also the editor-in-chief and publisher of NEWS/400,
Selling eServer Solutions, and Group Computing magazines and The AS400 Network.
Wayne is a well-known author and speaker in the IBM technology marketplace, has
written more than 200 articles, and has authored three books, including the original
Starter Kit for the AS/400. He has worked in the IBM midrange industry for more than
18 years as a programmer, manager, consultant, author, and speaker.

About the Contributing Authors
Bryan Meyers is vice president of PowerTech Group and head of the company's The
400 School division. He has served as a technical editor and writer for NEWS/400 for
many years. Bryan is also an accomplished author and sought-after speaker. His books
include RPG IV jump Start, Tbird Edition and VisualAge for RPG lry &le (NEWS/ 400
Books) and the textbooks Programming in RPG Iv, Second Edition and Control wnguage
Programming for the AS/400 (29th Street Press).

Debbie Saugen is the technical owner of iSeries 400 and AS/ 400 Backup and Recovery
in IBM's Rochester, Minnesota, Development Lab. She is also a senior recovery specialist
with IBM Business Continuity and Recovery Services. Debbie enjoys sharing her knowledge
by speaking at COMMON, iSeries 400 and AS/400e Technical Conferences, and Business
Continuity and Recovery Services Conferences and writing for various iSeries and AS/ 400e
magazines and Web sites.

Table of Contents at a Glance
Introduction .. xxi
Chapter 1 Before the Power Is On • • • 1
Chapter 2 That Important First Session . • • • • . . . 19
Chapter 3 Access Made Easy • • 33
Chapter 4 Public Authorities • . 69
Chapter 5 Installing a New Release • . 77
Chapter 6 An Introduction to PI'Fs • • 93
Chapter 7 Getting Your Message Across: User-to-User 103
Chapter 8 Secrets of a Message Shortstop •..............•..............••. 111
Chapter 9 Printer Files, Job Logs, and Print Direction•................. 123
Chapter 10 Understanding Output Queues•................. 143
Chapter 11 A Plug-and-Play Output Queue Monitor 157
Chapter 12 Disk Storage Cleanup•................. 213
Chapter 13 All Aboard the OS/400 Job Scheduler!•..•...•.•........ 229
Chapter 14 Keeping Up with the Past•................. 247
Chapter 15 Backup Basics•..............•.. 253
Chapter 16 Backup, Recovery and Media Services (BRMS) Overview 279
Chapter 17 Defining a Subsystem 295
Chapter 18 Where Jobs Come From•................. 305
Chapter 19 Demystifying Routing•................. 315
Chapter 20 File Structures ... 329
Chapter 21 So You Think You Understand File Overrides 337
Chapter 22 Logical Files .. 361
Chapter 23 File Sharing ... 371
Chapter 24 CL Programming: You're Stylin' Now! 387
Chapter 25 Extend CL's Reach with APis 403
Chapter 26 CL Programs and Database Files 427
Chapter 27 CL Programs and Display Files•....................... 441
Chapter 28 OpnQryF Fundamentals 453
Chapter 29 Teaching Programs to Talk ..•..............•................. 465
Chapter 30 Just Between Us Programs 485
Chapter 31 Hello, Any Messages? 497
Chapter 32 OS/400 Commands ... 511
Chapter 33 It's Gotta Be TCP/IP, ff You Wanna Talk with Me•......... 519
Chapter 34 Operations Navigator• 541
Further Reading ... 557
Index ..•.•............•.. 561

ix

Table of Contents
[Italic type indicates a sidebar.}

SETUP
Chapter 1 Before the Power Is On 1

A Note About Names . 1
An Installation Checklist . 1
Before You Install Your System . 3

Develop an Installation Plan . 3
Plan Education . 5
Develop a Migration Plan . 5
Develop a Security Plan . 6

System Security Level . 7
Security Level 10 . 7
Security Level 20 . 7
Security Level 30 . 8
Security Level 40 . 8
Security Level 50 . 8

Password Format Rules . 9
Identifying System Users . 10
Wizardry and Advice . 12

Develop a Backup and Recovery Plan . 12
Establish Naming Conventions . 15

Device Names . 15
User Profile Names . 16

What Next? . 18

Chapter 2 That Important First Session . 19

Establish User ASPs . 19
Verify Software and PTF Levels . 20
Signing On for the First Time . 20

Set the Security Level . 20
Set the Password Format Control System Values . 20
Change the System-Supplied User Profile Passwords . 21
Enable/Disable Autoconfiguration . 23
Set General System Values . 23

Establishing Your Work Environment . 25
Establish Your Subsystems . 26
Retrieve and Modify the Start-up Program . 28

Now What? . 31

x Starter Kit for the IBM iSeries and AS/400

Chapter 3 Access Made Easy . 33

What Is a User Profile? . 33
Creating User Profiles . 35

UsrPif (User Profile) . 35
Password (User Password) . 35
PwdExp (Set Password to Expired) . 36
Status (Status) . 36
UsrCls (User Class) and SpcAut (Special Authority) . 36
Initial Sign-On Options . 39
System Value Overrides . 41
Group Profiles . 42
]obD (Job Description) . 43
Message Handling . 44
Printed Output Handling . 44
Text (Text Description) . 45

Plan Your Profiles . 45
Maintaining User Profiles . 46

Changing a User Password . 47
Deleting a User Profile . 47

Integrity: The CpyUsr and CrtUsr Commands . 50
Making User Profiles Work for You . 67

Chapter 4 Public Authorities . 69

What Are Public Authorities? . 70
Creating Public Authority by Default . 72
Limiting Public Authority . 74

Public Authority by Design . 74
Object-Level Public Authority . 75

Chapter 5 Installing a New Release . 77

Planning Is Preventive Medicine . 77
The Planning Checklist . 78

Pre-Installation-Day Tasks . 78
Step 1: Is Your Order Complete? . 79
Step 2: Manual or Automatic? . 81
Step 3: Permanently Apply PTFs . 82
Step 4: Clean Up Your System . 82
Step 5: Is There Enough Room? . 83
Step 6: Document System Changes . 84
Step 7: Get the Latest Fixes . 84
Step 8: Save Your System . 84

Contents xi

Installation-Day Tasks . 85
Step 9: Resolve Pending Operations . 85
Step 10: Shut Down the INS/IXS . 85

lnstallingfmm Tape? . 86
Step 11: Verify System Integrity . 86
Step 12: Check System Values . 87

Ready, Set, Go! . 87
Final Advice . 91

Chapter 6 An Introduction to PfFs . 93

When Do You Need a PTF? .. 93
How Do You Order a PTF? . 94

SndPTFOrd Basics . 94
Ordering PTFs on the Internet . 96

How Do You Install and Apply a PTF? . 96
PTFs and Logical Partitioning (IP AR) . 97

Installing Licensed Internal Code PTFs . 98
Installing Licensed Program Product PTFs . 99
Verifying Your PTI Installation . 99

How Current Are You? ... 100
Developing a Proactive PTF Management Strategy 100

Preventive Service Planning 100
Preventive Service ... 101
Corrective Service . 102

OPERATIONS
Chapter 7 Getting Your Message Across: User-to-User 103

Sending Messages 101 . 103
Sending Messages into History . 105

Message Delivery ·with SndMsg . 105
I Break for Messages ... 106
Messaging with Operational Assistant . 107
Casting Network Messages . 108

Chapter 8 Secrets of a Message Shortstop .. 111

Return Reply Requested . 111
A Table of Matches . 113

Give Me a Break Message . 117
Take a Break .. 117

It's Your Own Default 121

xii Starter Kit for the IBM iSeries and AS/400

Chapter 9 Printer Files, Job Logs, and Print Direction 123

How Do You Make It Print Like This? . 123
Controlling When a Report Is Printed . 126

Controlling Your Job Logs ... 127
Controlling Where the Printed Output Is Directed 128
Deciding to Generate a Printed Job Log for Normally Completed Jobs 130
Determining How Much Information to Include in Job Logs 132

Where Have All the Reports Gone? . 133
Tailoring Print Direction . 134

*Job .. 134
*JobD ... 135
•current .. 135
•usrPrf .. 136
•wrkStn . 136
•sys Val .. 137
*Dev .. 137

Charting the Print Path . 138
Job QPrtJob and Print Direction . 140
Ready for Action . 142

Chapter 10 Understanding Output Queues 143

What Is an Output Queue? ... 143
How to Create Output Queues .. 145

Procedural Parameters . 147
Configuration Parameters . 148
Security Parameters . 148

Who Should Create Output Queues? . 149
How Spooled Files Get on the Queue 150
How Spooled Files Are Printed from the Queue 151
A Different View of Spooled Files . 153
How to Organize Output Queues .. 155

Chapter 11 A Plug-and-Play Output Queue Monitor 157

Setting the Stage .. 158
The Output Queue Monitor Utility 160

Configuring the Output Queue Monitor . 162
Using the Output Queue Monitor . 163
Monitoring Program OutQMon .. 164

Installing the Output Queue Monitor Utility 165

Chapter 12 Disk Storage Cleanup 213

Automatic Cleanup Procedures . 213
Manual Cleanup Procedures .. 216

Detach, Save, and Clean Up Security Audit Journal Receivers 217

Contents xiii

Reclaim Spool File Storage ... 217
Reclaim Storage and Clean Up Recoveiy Areas 218

How RclStg Deals with Lost Objects 218
Recovering After RclStg . 220

Commands Used in Recovery Area Cleanup . 220
Remove Unused Licensed Program Products . 222
Permanently Apply PTFs as Necessaiy . 222
Detach, Save, and Clean Up Journal Receivers . 222
Reset User Message Queue Size . 222
Clean Up Spooled Files . 223
Clear or Delete Unneeded Save Files . 223
Delete Unused Objects . 223
Reorganize Document Libraiy Objects . 225
Purge and Reorganize Physical Files 225
Clean Up OfficeVision for AS/400 Objects 225
Clean Up Hardware Configuration . 226

Enhancing Your Manual Procedures . 226

Chapter 13 All Aboard the OS/ 400 Job Scheduler! 229

Arriving on Time . 229
Running on a Strict Schedule . 230
Two Trains on the Same Track . 235
Derailment Dangers . 242

Job Schedule Entries and the LDA 243
SbmJob vs. the Job Scheduler .. 243
A Matter of Timing . 244
System Date and Time Changes . 244
Detecting the Completion of Other Jobs 245

Chapter 14 Keeping Up with the Past 247

The Histoiy Log . 247
System Message Show and Tell 247
Histoiy Log Housekeeping . 249

Inside Information . 251

SYSTEM MANAGEMENT
Chapter 15 Backup Basics . 253

Designing and Implementing a Backup Strategy . 253
Availability Options . 255

Implementing a Simple Backup Strategy 258
Implementing a Medium Backup Strategy . 259

Saving Changed Objects . 259

xiv Starter Kit for the IBM iSeries and AS/400

Journaling Objects and Saving the Journal Receivers 260
Saving Groups of User Libraries, Folders, or Directories 261

Implementing a Complex Backup Strategy 261
Saving Data Concurrently Using Multiple Tape Devices 261
Saving Data in Parallel Using Multiple Tape Devices . 262
Save-While-Active ... 262

An Alternative Backup Strategy .. 262
The Inner Workings of Menu SA VE 262

Entire System (Option 21) ... 263
System Data Only (Option 22) . 264
All User Data (Option 23) ... 264
Setting Save Option Defaults . 265
Printing System Information . 266

Saving Data Concurrently Using Multiple Tape Devices . 267
Concurrent Saves of Libraries and Objects . 267
Concurrent Saves of DLOs (Folders) 268
Concurrent Saves of Objects in Directories . 269

Save-While-Active ... 269
How Does Save-While-Active Work? 269

Synchronization . 269
Save Commands That Support the Save-While-Active Option 271

Backing Up Spooled Files . 271
Recovering Your System . 272
Preparing and Managing Your Backup Media . 273

Chapter 16 Backup, Recovery and Media Services (BRMS) Overview 279

An Introduction to BRMS . 279
Getting Started with BRMS . 280
Saving Data in Parallel with BRMS . 282
Online Backup of Lotus Notes Servers with BRMS . 282
Restricted-State Saves Using BRMS . 283
Backing Up Spooled Files with BRMS . 283

Including Spooled File Entries in a Backup List . 284
Restoring Spooled Files Saved Using BRMS . 285

The BRMS Operations Navigator Interface . 285
Terminology Differences . 286
Functional Differences . 286

Backup and Recovery with BRMS OpsNav . 287
Backup Policies . 287
Creating a BRMS Backup Policy . 287
Backing Up Individual Items . 288

Contents xv

Restoring Individual Items . 288
Scheduling Unattended Backup and Restore Operations . 288

System Recovery Report . 289
BRIV1S Security Functions . 289

Security Options for BR\IIS Functions, Components, and Items 290
Media Management . 292
BRMS Housekeeping . 292
Check It Out . 293

Chapter 17 Defining a Subsystem 295

Getting Oriented . 295
Defining a Subsystem . 297
Main Storage and Subsystem Pool Definitions . 298
Starting a Subsystem . 301
The Next Step . 303

Chapter 18 Where Jobs Come From 305

Types of Work Entries .. 305
Workstation Entries .. 306

Using Workstation Entries ... 307
Conflicting Workstation Entries 308

Job Queue Entries . 309
Communications Entries 311
PrestartJob Entries .. 312
Autostart Job Entries 313

Where Jobs Go 313

Chapter 19 Demystifying Routing . 315

The Importance of Routing Data ... 315
Routing Entry Attributes . 317

Runtime Attributes 318
Routing Data for Interactive Jobs .. 319
Routing Data for Batch Jobs . 320
Routing Data for Autostart, Communications, and Prestart Jobs . 322
Is There More Than One Way to Get There? . 322
Do-It-Yourself Routing .. 322

FILE BASICS
Chapter 20 File Structures . 329

Structure Fundamentals . 329
Data Members ... 331

xvi Starter Kit for the IBM iSeries and AS/400

iSeries File Types . 334
Database Files . 334
Source Files . 334
Device Files . 335
DDM Files .. 336
Save Files . 336

Chapter 21 So You Think You Understand File Overrides 337

What Do Overrides Do? . 337
Prerequisites . 339

The Call Stack and Job Call Levels . 339
Activation Groups . 340

Override Rules ... 341
Scoping an Override ... 341
Overriding the Same File Multiple Times . 342
The Order of Applying Overrides . 344
Protecting an Override . 353
Explicitly Removing an Override . 354
Miscellanea . 355

Important Additional Override Information . 356
Overriding the Scope of Open Files . 356
Non-File Overrides . 356
Overrides and Multithreaded Jobs . 357
File Redirection ... 357

Is All This Really Necessary? . 357
Ovenides and System Commands . 358

Chapter 22 Logical Files . 361

Record Format Definition/Physical File Selection 361

Key Fields . 364

Select/Omit Logic . 365
Using Select/Omit Statements ... 366
Dynamic Selection with Select/Omit . 368

Multiple Logical File Members . 369
Keys to the iSeries Database . 370

Chapter 23 File Sharing ... 371

Sharing Fundamentals . 371

Sharing Examples . 373
Shared Database File Example . 373
Shared Printer File Example . 376
How Sharing ODPs Can Help . 381

Share and Enhance Program Performance . 381

Contents xvii

BASIC CL PROGRAMMING
Chapter 24 CL Programming: You're Stylin' Now! 387

Apples and Oranges .. , , , , , , . . 387
Developing Stylistic Standards . 390

1.0 Comments . 397
2.0 Statement Alignment . 398
3.0 Variable Names and Case . 399
4.0 Shortcut Dos and Don'ts .. 400
5.0 Miscellaneous Suggestions .. 400

Start Stylin'! . 401
CL Coding Suggestions . 401

Chapter 25 Extend CL's Reach with APis 403

Know Your Limitations ... 403
Reporting Errors with APis . 405

Handling API Errors . 407
Retrieve an IP Address .. 412

Displaying IP Addresses , 416
EndPgm . , .. , , . 426

Chapter 26 CL Programs and Database Files 427

Why CL? . 427
I DCLarel . 427
Extracting Field Definitions . 428
Reading the Database File 430
File Positioning . 432
Rules for Database File Processing in CL . 433
What About Record Output? . 434
A Useful Example . 435

Chapter 27 CL Programs and Display Files 441

CL Display File Basics .. 441
CL Display File Examples , .. , .. 445

Using a Message Subfile . 449
Using an Error Subfile . 450

Considerations ... 452

Chapter 28 OpnQryF Fundamentals 453

First Things First . 453
The Conunand . 454
Start with a File and a Fonnat . 454

xviii Starter Kit for the IBM iSeries and AS/400

Record Selection . 457
QrySlt Guidelines . 458

QrySlt and Constants . 458
QrySlt and Variables ... 459
Differentiate Between Upper- and Lowercase Data 462

Key Fields . 462
Mapping Virtual Fields . 463
OpnQryF Conunand Perfonnance . 464

Chapter 29 Teaching Programs to Talk 465

Putting SndUsrMsg to Work .. 465
Send Break Messages to a User with SndBrkMsgU . 471

Knowing When to Speak . 484

Chapter 30 Just Between Us Programs 485

Call Message Queues . 485
Understanding job Logs . 487
The SndPgmMsg Conunand . 488

Message Types . 491
The Receiving End . 493

Program Message Uses . 493

Chapter 31 Hello, Any Messages? 497

Receiving the Right Message . 497
RcvMsg and the MsgType and MsgKey Parameters . 500

Receiving the Right Values ... 501
Retrieving Message Sender Data 501
Retrieving the Message Return Type . 502

Monitoring for a Message . 504
Conunand-Level Message Monitoring . 506
Global Message Monitoring . 506
Message Processing in Action . 508

What Else Can You Do with Messages? . 510

Chapter 32 OS/ 400 Commands 511

Commands: The Heart of the System . 511
Tips for Entering Commands . 514
Customizing Commands ... 516

Changing Default Values .. 517

Contents xix

THE NEW FACE OF THE SYSTEM
Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 519

Networks and Intemetworks . 520
IP Addressing . 524

Classful IP Addressing .
Classless Addressing and Subnetworks . 526

Peaceful Coexistence . 529
A Simple iSeries Configuration .. 530

Starting TCP/IP ... 535
TCP/IP Administration and Configuration options . 536
Identifying Other Hosts in Your Network 538
The RC'a! World . 540

Chapter 34 Operations Navigator ... 541

OpsNav Components
Basic Operations .
Job Management . 549
Configuration and Service . 549
Network . 550
Security . 550
Users and Groups ... 551
Database ... 551
File Systems . 551
Multimedia . 552
Backup . 552
Application Development . 552
Management Central . 552
Application Administration ... 553

Plug-in Support ... 553
More Than Just a Pretty Face ..
1\1ore About Dps1Vav ..

Further Reading .. 557

Index .. 561

xxi

Introduction
Whether you're a programmer or a system operator, you'll find essential information in
this book to help you understand some of the basic concepts and nuances of the iSeries
and AS/400 information that will make your job easier and increase your comfort
working on these systems.

1be strong suit of the iSeries and AS/400 is their operating system, OS/400. Compared
with other operating systems in the industry, OS/ 400 delivers an unmatched level of function
ality. However, with these many integrated functions also comes a complexity that you
must learn and manage. We've written the chapters of this book to expose some of those
complexities and help you learn how to manage them.

1be book is arranged in logical order from basic system setup information - such as
how to plan for installation, suggested actions to perform during installation, how to establish
a basic work environment, how to create user profiles, and how to establish default public
authorities - through some of the more important areas you need to understand to operate,
program, and manage your system. At the same time, each section and chapter is tightly
focused, so you can go directly to a particular topic and learn what you need to know
without reading the entire book.

1be book is divided into six sections. Following the chapters on sy1>tem setup, we
address the area of operations. 'Ibis section offers you insight into basic system operation
functions such as message handling, working with printer files and output queues, disk
management, and job scheduling. You'll learn how to communicate with users on the
system using messages; how to use OS/400 functions to automatically monitor for and
answer specific messages; how to locate, work with, and secure spooled files on output
queues; and how to move toward unattended operations using OS/400's job scheduler.

1be next section focuses on system management and is tied closely to system operations
with two chapters devoted to save and restore features and strategies. Anyone involved in
system operation and application development need<; to understand these concept<> to take
advantage of the save and restore capabilities that the iSeries and AS/ 400 offer. 1bese
chapters teach you both the technology and the strategies you'll fmd helpful as you plan
and implement an effective backup and recovery approach for your systems.

1be next three chapters of this section present practical help concerning iSeries and
AS/400 work-management objects and functions. 1be concept of work management
includes many object<> job descriptions, user profiles, subsystem descriptions, routing
entries, and job queue entries - and the many relationships these objects share to process
work through your system in a managed and efficient work environment. 1bese chapters
introduce you to both the key objects and those relationships. 1bis complete description
of work-management objects, together with sample work-management configurations, will
give you a good taste for this often-feared area of the system while spurring your confidence
and curiosity to learn more.

1be section covering file basics tackles one of the most troublesome areas for those
new to the iSeries and AS/400 architecture: file structure. Because of your previous

xxii Starter Kit for the IBM iSeries and AS/400

experiences, the definition and administration of the OSI 400 integrated database is some
thing new and foreign to many of you. But you must master defining and using files on
the system to ensure that your applications take advantage of OS/400's database functions.
We've devoted several chapters to building your knowledge of iSeries and AS/400 files
and how you can manipulate those files to use them effectively in your applications.

We've dedicated an entire section to basic CL programming tasks. This material, which
covers everything from CL style, to using CL programs with display files and database files,
to teaching programs to talk to each other, to using commands will certainly give you a
firm foundation on which you can build your CL programming skills.

The final section of the book address two of the newer and increasingly used features
of the system: TCP/IP connectivity and Operations Navigator. TCP/IP is the de facto
standard in connectivity today, and we give you a basic understanding of the protocol.
Operations Navigator offers you a graphical interface to iSeries and AS/400 operations;
we introduce you to its functions as well.

The information presented in these 34 chapters will help you develop a basic working
knowledge of some of the key concepts and functions you'll encounter on the iSeries and
AS/400. With this foundation, you'll be solidly prepared to explore each subject in depth
using the manuals and other resources mentioned in the Further Reading recommendations.

If this book makes you feel more comfortable with your new system, serves as a useful
reference tool, and inspires you to further explore the iSeries and AS/ 400 systems, it will
have served its purpose.

Chapter 1

Before the Power Is On
From its birth combining the power of the System/38 with the ease of use of the System/36
through today's race for seiver prominence, IBM's AS/400 - now reincarnated as the IBM
eSeiver iSeries 400 - has sported a robust array of productivity features. Highly developed
menu functions, extensive help text, and electronic customer support are just a few of the
features that contribute to this system's user-friendliness.

Nevertheless, the system's ease of use stops short of "plug-and-go" installation. OS/400's
complex structure of system objects - used to support security, work environment, per
formance tuning, backup, recovery, and a host of other functions - lets you configure a
finely tuned and productive machine. However, these objects don't readily lend themselves
to education on the fly. As a result, the iSeries and AS/400 require thought, foresight,
planning, and preparation to ensure a successful installation.

Believe us, we know. We've experienced this planning and installation process as
both customers and vendors, and we'd like to share what we've learned by suggesting a
step-by-step approach for planning, installing, and configuring your system. First, we
discuss the steps you can and should take before your system arrives. In subsequent
chapters, we take you through your first session on the machine, address how to establish
your work environment, and show you how to customize your system.

A Note About Names
In October 2000, IBM relaunched its AS/400 product line with the debut of its eSeiver
family of e-business seivers. The 270 and Sxx models introduced earlier that year -
systems featuring IBM's silicon-on-insulator and copper processor technologies - were
rechristened with the iSeries 400 name. The iSeries line now also includes IBM's
Dedicated Seiver for Domino and the iSeries 400 model SB2/SB3.

Although IBM will continue to sell systems known as "AS/ 400s" through at least the
end of 2001, the new name of the computer family that is the focus of this book is
"iSeries." Throughout the book, therefore, we use the name iSeries to refer to both groups
of systems (unless otherwise noted).

An Installation Checklist
The iSeries setup checklist in Figure 1.1 outlines the installation process. You might want
to use this checklist as the cover page to a notebook you put together to keep track of
your iSeries installation.

2 Starter Kit for the IBM iSeries and AS/400

Action

Before

Develop overall installation plan

Plan and schedule education

Develop a migration plan

Develop a security plan

FIGURE 1.1
iSeries Setup Checklist

Develop an effective backup and recovery plan

Establish a naming convention for devices and user profiles

Establish user ASPs

Verify software and PTF levels

Set the security level

Set the password format control system values

Change the system-supplied user profile passwords

Enable/disable autoconfiguration

Set general system values

~st~~~~~i11gxo_u.~_w._o_~~~!i~o11_~e_n!. ··- .. -··---· . --·---·-- _____ _
QMchPool - Machine pool size

QBasPool - Minimum size of base storage pool

QBasActLvl - Base pool activity level

QMaxActlvl - Maximum activity level of the system

QActJob - Active jobs for which to allocate storage

QTotJob - Initial total number of jobs for which to allocate storage

QAdlActJ - Additional number of active jobs to add

QAdlTotJ - Additional number of jobs to add

QCtlSbsD - Controlling subsystem

Establish your subsystems

Retrieve and modify the start-up program

Creat!11g_11~.l'~o_fi!e_s__ t~a!~~~----- _ _
Understanding user profile parameters

User profile creation strategy

User profile sign-on strategy

Date completed

Chapter 1 Before the Power Is On 3

Before You Install Your System
The first step in implementing anything complex especially a computer system - is
thorough planning. A successful iSeries installation begins long before your system rolls in
the door. The first section of the setup checklist in Figure 1.1 lists tasks you should com
plete before you install your system - preferably even before it arrives.

These items may seem like a lot of work to do before you ever see your system, but
this effort will save you and your company time and trouble when you finally begin
installing, configuring, securing, and using your new system. Let's look at each item in this
section of the checklist.

Develop an Installation Plan
A good installation plan serves as a road map. It guides you and your staff and keeps you
focused on the work ahead. Figure 1.2 (page 4) shows a sample installation plan that list<>
installation detail<> and lets you identify the person responsible for each task and track the
schedule.

6 Note
Although the installation plan includes important considerations about the
physical installation - such as electrical, space, and cooling requirements -
these requirements are well documented by IBM, and we don't discuss
them here.

An overall installation plan helps you put the necessary steps for a successful iSeries
setup in writing and tailor these steps to your organization's specific need5. The plan
also helps you identify and involve the right people and gives you a schedule with which
to work.

Identifying and involving the right people is critical to creating an atmosphere that
ensures a smooth transition to your new system. Management must commit itself to the
installation process and must understand and agree to the project's priority. Other pending
IT projects should be examined and assigned a priority based on staff availability in light
of the iSeries installation schedule. Management and the departments you serve must
understand and agree on these scheduling changes.

On the IT side, your staff must commit to learning about the iSeries in preparation for
installation. Your staff must also commit itself to completing all assigned tasks, many of
which (e.g., verifying any conversion of programs and data) may require extra hours.

The time frame outlined in your installation plan will probably change as the delivery
date nears. However, even as the schedule changes and is refined, it provides a frame of
reference for the total time you'll need to install, configure, and move to the new system.

4 Starter Kit for the IBM iSeries and AS/400

FIGURE 1.2
Sample Installation Plan

Action

General
Verify expected delivery date

Determine education requirements and scheduling

Physical relJUirements
Plan physical location

Complete electrical work

Install UPS system

Install additional cooling if required

Set installation date {delivery may change)

Arrange physical installation with vendor

Verify with vendor what system or program product
software will be preloaded on the system

Arrange with vendor or in-house personnel for
installation of non-preloaded software

P!!'R".aI!l/_~f.a_llJ_ig_l'iJ~ (if applic;ablel
Establish migration plan

Contact appropriate personnel about involvement
in migration, planning, work, and testing

Identify and document objects to be migrated

Identify and plan tests to test successful migration

Develop security plan

Develop backup and recovery plan

Develop strategy for creating appropriate user
profiles

Establish memory pools for the appropriate
subsystems

Determine how users will gain access to the system
and the software they need to perform their
tasks, and develop an initial sign-on program

Person
Start Completion
date date

Chapter 1 Before the Power Is On 5

As part of your plan, you must also answer an important question: Can you run the
old and new systems parallel for a period of time? If you can run parallel, you can greatly
reduce the time needed for the installation process. Running parallel also reduces the risk
factor involved in your conversion process.

Plan Education
We can hear you now: "We don't have time for classes! We're too busy to commit our
people to any education." We're sure this will be your response to the suggestion that you
plan for training now. We're also sure those statements are absolutely true. But education
is a vital part of a successful iSeries installation. Realistically, then, you must schedule key
personnel for education.

What key groups of personnel need training? The end users, for one. Their education
should focus on the products with which they'll work, such as Client Access. You, your
operations people, and your programming staff will also need some training. You must
learn such things as security concepts, how to modify your work environment to improve
perfonnance, and how to control printer output. Training in relational database design and
implementation will improve the applications you install or write, and learning something
about the system's fast-path commands will help you feel more at home and productive.

If all this sounds complicated, you're getting the point: You need system-specific
education for a smooth transition to the new system. Where can you get such education?
Start by asking your vendor for educational offerings. If you buy from a third party,
training support will vary from vendor to vendor. You can also arrange to attend courses
at certain IBM locations.

In addition, you can find a variety of educational offerings in seminars, automated
courses, srudy guides, one-on-one training sessions, and classroom training courses. The
key to successful education is matching education to the user. Matching ensures
productive use of the time that employees spend away from their daily duties.

Develop a Migration Plan
The next step in pre-installation planning is to develop a migration plan. It's almost certain
that, at a minimum, you'll need to migrate data to your new system. If you're migrating to
the iSeries from some other type of system, it's also a safe bet that this data will need to
be refonnatted for your new applications. A well-prepared plan can greatly reduce the
time required to get your applications up and running, and it can increase the odds that
your applications and data won't suffer from integrity problems.

Running parallel for a while greatly reduces the risk involved. You can migrate your
applications in stages, testing and verifying each program as you go. If you can't run
parallel, you must complete your migration process on the first try - a much trickier
proposition. If you take this route, we recommend you seek an experienced outside
source for help in the migration and conversion process.

If you decide to begin conversion immediately, be sure you know what you're getting
into. Depending on your current system, conversion could involve one week to six months
of work for your staff. Again, a good outside consultant, used in a way that provides

6 Starter Kit for the IBM iSeries and AS/400

educational benefits for your staff, could be an inunense help. True, you could simply pay
a consultant to convert your database and programs for you, but that approach doesn't
educate your staff about the new system. Also, let us offer you a warning:

~Caution
If you plan to replace your existing system and completely remove it before
installing your iSeries, you are absolutely asking for trouble! If you find
yourself forced into such a scenario, get help. Hire a consultant who has

successfully migrated systems to the iSeries or the AS/400.

Develop a Security Plan
We can't overstate the importance of a sound security plan. You want to ensure system
integrity, and implementing a robust security scheme from the outset is crucial to this
endeavor. Figure 1.3 shows a basic security plan.

FIGURE 1.3
Sample Security Plan

Before iSeries installation:

1. Select security level (a minimum of 30 is

recommended, with 40 suggested).

2. Determine password format rules.

3. Identify all system users.

4. List user roles (i.e., security groups, such as

programmers, accounts receivable, accounts

payable, operations).

5. Place users into role categories for user class and

special authorities.

6. Examine application software (e.g., accounting

packages, inventory packages) for specific

security provisions, and determine whether users

need specific authorities for these objects.

Document methodologies for using application

security provisions to ensure they fit with the

system security plans you've developed.

After iSeries installation:

7. Set QSecurity system value to chosen level (10,

20, 30, 40, or 50).

8. IPL the system to activate chosen QSecurity level.

9. Change passwords of system-supplied profiles.

10. Set password format system values.

11. Create role (group) profiles (these should have no

password assigned so that they can't be used

when signing on to the system).

12. Create individual users' profiles, specifying the

proper group profile where appropriate. Grant

authority for group profiles to access objects on

the system needed to perform tasks.

13. Grant or revoke specific individual user

authorities as necessary.

Chapter 1 Before the Power Is On 7

System level
1he first and most significant step in planning your security is deciding which security
level you need. 'Ibe iSeries provides five levels of security: 10, 20, 30, 40, and 50.

'""""''"'" level 10
System security level 10 might more aptly be called security level zero, or "physical
security only." At level 10, the physical security measures you take, such as locking the
door to the computer room, are all you have. If a user has access to a workstation with a
sign-on screen, he or she can simply press Enter and the system will create a user profile
for the session and let the user proceed. 1he profile the system creates in this case has
*AllObj (all object) special authority, which is sufficient for the user to change or delete
any object on the system.

Although user profiles aren't required at level 10, you could still create and assign
them and ask each user to enter his or her assigned user profile name at sign-on. You
could then tailor the profiles to have the appropriate special authorities - you could even
grant or revoke authorities to objects. However, level 10 provides no way to enforce the
use of those assigned profiles and, thus, no way to enforce restricted special authorities or
actual resource security.

Simply stated, level 10 provides no security. In fact, beginning with Version 4, Release 3
(V4R3) of OS/400, you can no longer set the security level to 10. (Level 10 was the default
security level value shipped with earlier releases of OS/400.) If, however, your system is at
security level 10 and you upgrade to V4R3 or a later release, the system will remain at
security level 10. If you then change the security level to some other value, you won't be
able to change it back to level 10.

Security Level 20
Security level 20 adds password security. At level 20, a user must have a user profile and
a valid password to gain access to the system. Level 20 institutes minimum security by
requiring users to know a user profile and password, thus deterring unauthorized access.
However, as with level 10, the default special authorities for each user class include
*Al!Obj special authority; therefore, resource St.>curity is, by default, bypassed.

At security level 20, only a security officer or a user with security administrator
authority can create user profiles. Also, the limit capabilities feature is honored.

Although you e<m tailor the user profiles, the inherent weakness of level 20 remains:
By default, resource security is not implemented. 1he *AllObj special authority assigned by
default to every user profile bypasses any form of resource security. To implement
resource security at level 20, you must remove the *AllObj special authority from any
profiles that don't absolutely require it (only the security officer and the security
administrator need *AllObj special authority). You then must remember to remove this
special authority each time you create a new user profile.

1his method of systematically removing *AllObj authority is pointless bec.ause, by
default, level 30 security does this for you. On a production system, you must be able to

8 Starter Kit for the IBM iSeries and AS/400

explicitly authorize or deny user authority to specific objects. Therefore, level 20 security is
inadequate in the initial configuration, requiring you to make significant changes to mimic
what level 30 provides automatically.

Security Level 30
Level 30 supports resource security (users do not receive *AllObj authority by default).
Resource security lets objects be accessed only by users who have authority to them. The
authority to work with, create, modify, or delete objects must be either specifically granted
or received as a result of existing default public authority.

All production systems should be set at security level 30 or higher (level 40 or 50).
Production machines require resource security to effectively safeguard corporate data,
programs, and other production objects and to prevent unintentional data loss or
modification.

Security Level 40
Although security level 30 provides resource security, it's possible for programs to
circumvent security in some instances. To address this shortcoming, level 40 adds a level
of operating system integrity security. System integrity security strengthens level 30 security
in four ways:

• by providing program states and object domains

• by preventing use of restricted machine interface (MI) instructions

• by validating job initiation authority

• by preventing restoration of invalid or modified programs

Level 40 provides the security necessary to prevent a vendor or an individual from
creating or restoring programs on the system that might threaten system integrity at the MI
level. This protection ensures an additional level of confidence when you work with
products created by outside sources. Yet if the need arises to create a program that
infringes on system integrity security, you can explicitly change the security level to 30.
The advantage of using level 40 is that you control that decision.

e Note
Some packaged software (e.g., some system tools) may require access to

restricted MI instructions and will fail at level 40. In these cases, you can ask
the vendor when the product will be compatible with level 40 and decide
what to do based on the response.

Security Level 50
The primary purpose of security level 50 is to comply with the U.S. Department of
Defense (DOD) CZ security requirements. IBM added specific features to OS/400 to

Chapter 1 Before the Power Is On 9

comply with DOD C2 security, as well as to further enhance the system integrity security
introduced in level 40. In addition to all the security features and functions found at all
lower OS/400 security levels (e.g., 30, 40), level 50 adds

• restrictions for user domain object types - •usrSpc (user space), •usridx (user index),
and *UsrQ (user queue)

• parameter validation

• restriction of message handling between user and system state programs

• prevention of modifications to internal control blocks

• provisions to make the QTemp library a temporary object

Because of the additional checking that the system performs at level 50, you may
experience some performance degradation.

Those whose shops require DOD C2 compliance can find more information about
security level 50 and other OS/400 security features (e.g., auditing capabilities) in the IBM
manual Security- Enabling for C2 (SC41-5303).

Password format Rules
Your next task in security planning is to determine rules for passwords. In other words,
what format restrictions should you apply for passwords? Without format requirements,
you're likely to end up with passwords such as "joe," "sue," "xxx," and "12345." But are
these passwords secret? Will they safeguard your system?

You can strengthen your security plan's foundation by instituting some rules that
encourage users to create passwords that are secret, hard to guess, and regularly changed.
However, know that "hard to guess" sometimes translates into "hard to remember" - and
when that happens, users simply write down their passwords so they won't forget them.
The following password rules will help establish a good starting point for controlling
password formats.

Rule 1 says passwords must be a minimum of seven characters and a maximum of 10
characters. This rule deters users who lack the energy to think past three characters when
conjuring up that secret, unguessable password.

Rule 2 builds on Rule 1: Passwords must have at least one digit. This rule ensures that
passwords are more than just a familiar name, word, or place.

Rule 3 can deter those users who think they can remember only one or two characters
and thus make their password something like "XXXXX6" or "XIX." Rule 3 simply states
that passwords can't use the same character more than once or can't use the same character
consecutively.

On a similar note, Rule 4 states that passwords can't use adjacent digits. This
restriction prevents users from creating password5 such as "1111," "1234," or even their
social security number.

With these four rules in place, you can feel more confident that only sound pass
words will be used on the system. You can enhance your password security still further
with one additional rule. Rule 5 says you should assign passwords a time interval for

10 Starter Kit for the I BM iSeries and AS/400

expiration. You can set this interval to let a password remain effective for from one to 366
days, thus ensuring that users change their passwords regularly.

Pas.swords are a part of user pro.files, which you'll create to define the users to the system.
Laying the groundwork for these user profiles is the next concern of your security plan.

Identifying System Users
Before you install the new machine, you should identify the people who will use the
system. Obtain each user's full name and department and the basic applications he or she
will require on the system. Some users, such as operators and programmers, will need to
control jobs and execute save/restore functions on the system. Other users, such as
accounts receivable personnel, need only to manipulate spooled files and execute
applications from menus.

Once you identify the users and determine which system functions they need access
to, you can assign each user to one of the following classes:

• •secOfr - security officer

• *SecAdm - security administrator

• *Pgmr - programmer

• *SysOpr - system operator

• *User - user

To better understand these user classes, let's examine the special authorities you can
assign to users. Figure 1.4 shows the default special authorities for each user class.

FIGURE 1.4
Default Special Authorities

Default special authorities

User class *AllObj *Audit *IOSysCfg *JobCtl *SavSys *SecAdm *Service *Sp/Ct/

*SecOfr ,/ ,/ ,/ ,/ ,/ ,/ ,/ ,/

*SecAdm ,/1 ,/1 ,/1 ,/

*Pgmr ,/1 ,/1 ,/1

*SysOpr ,/1 ,/ ,/

*User ,/1 ,/1

1 Security levels 10 and 20 only

Special authorities let users perform certain system functions. Without the appropriate
special authorities, these functions are unavailable to a user. The iSeries provides eight
special authorities:

Chapter 1 Before the Power Is On 11

• •All Obj (all object) authority, as you've seen, lets users access any system object. This
authority alone, however, doesn't let users create, modify, or delete user profiles.

• •Audit (audit) authority lets users start and stop security auditing and control security
auditing characteristics.

• •1osysCfg (system configuration) authority lets users change system configuration
information. For example, they can configure 1/0 devices, work with TCP/IP servers,
and configure communications.

•
0]obCtl (job control) authority lets users change, display, hold, release, cancel, and
clear all jobs on the system. Users can also control spooled files in output queues for
which OprCtl("Yes) is specified.

• •savSys (save system) authority lets users save, restore, and free storage for all objects.

• •secAdm (security administrator) authority lets users create, change, and delete user
profiles.

• •service (service) authority lets users perform functions from the System Service Tools,
a group of executable programs used for various service functions (e.g., line traces,
diagnostics).

• •splCtl (spool control) authority lets users delete, display, hold, and release their own
spooled files and spooled files owned by other users.

Keep in mind that the functions mentioned above are only a primary subset of the functions
that special authorities permit.

Your IT staff members normally will be in either the •pgmr or the •sysOpr class. Your
end users should all reside in the •user class. Typically, the •user class carries no special
authorities (as Figure 1.4 shows), which is appropriate for most users. These users can
work within their own job and work with their own spooled files.

M1cau6on
One rule of thumb when assigning classes is that you should never set up
your system so that a user perfonns regular work with the "SecOfr class.
The iSeries has a special QSecOfr user profile; when the security officer
must perform a duty, the person responsible should sign on using this
profile to perform the needed task. Using security officer authority to
perform normal work is like playing with a loaded gun.

When you create user profiles, you can use the special authorities parameter to over
ride the authorities granted by the user class. Doing so lets you tailor authorities as appro
priate for specific users. For instance, a user profile might have a user class of •sysOpr,
which grants the user special authorities for job control and save/restore functions. By
entering only •savSys for the special authorities parameter, you can instruct the system to
grant only this special authority, ignoring the normal defaults for the •sysOpr user class.

12 Starter Kit for the IBM iSeries and AS/400

In addition to considering special authorities, you must plan specific authorities,
which control the objects a user can work with (e.g., job descriptions, data files,
programs, menus). Going through the remainder of the pre-installation security planning
process - checking your applications for security provisions - will help you decide
which users need which specific authorities and will help you finish laying the
groundwork for user profiles on your new system.

Of course, that's not the end of your security planning. You'll also need to address
such issues as Internet- and TCP/IP-related concerns. You can find useful information
about these topics in the following IBM documentation:

• ASl400 Internet Security: Protecting Your ASl400 from HARM on the Internet (SG24-4929)

• An Implementation Guide for AS/400 Security and Auditing: Including C2,
Cryptography, Communications, and PC Connectivity (GG24-4200)

• Tips and Tools for Securing Your AS/400 (SC41-5300)

Wizardry and Advice
To help with your security configuration, IBM provides automated assistance with two
helpful tools: Security Wizard and Security Advisor. We suggest you take advantage of
these options.

Security Wizard asks a series of questions, using the responses to generate reports
with various security configuration suggestions. You can optionally apply the suggestions
to your system's configuration automatically.

To use the wizard, you must connect to the iSeries using Client Access and a user
profile with *AllObj, *Audit, *IOSysCfg, and *SecAdm special authorities. To begin using
the wizard, take these steps:

1. In Client Access, open Operations Navigator.

2. If necessary, expand the tree for the system with which you want to work.

3. Right-dick the Security folder, and select Configure.

Then simply follow the prompts to complete your session with Security Wizard.
If you're not using Operations Navigator, you can take advantage of Security Advisor.

Security Advisor is a Web-based version of Security Wizard. Unlike the wizard, however, the
advisor won't automatically configure your system (although it will create a CL program
you can cut and paste onto the iSeries to do the task). You can access Security Advisor by
pointing your browser to http://www.as400.ibm.com/tstudio/secure1/index_av.htm on the
Internet. Simply answer the questions, and then click Calculate Recommendations.

Develop a Backup and Recovery Plan
Although it may seem premature to plan for backup and recovery on your as-yet
undelivered iSeries, we assure you it isn't. First, you shouldn't assume that the backup and
recovery plan for your existing system will still work with the new system. Second, the
iSeries has a variety of powerful backup and recovery options with which you may not be

Chapter 1 Before the Power Is On 13

familiar. Some of these options are difficult and time-consuming to install if you wait until
you've installed your applications and data on the new system.

The single-level storage of the iSeries minimizes disk-head contention and eliminates
the need to track and manage the Volume Table of Contents. However, single-level
storage can also create recovery problems. Because single-level storage fragments objects
randomly among all the system's disks, the loss of any one disk can result in damage to
every object on the system.

An auxiliary storage pool (ASP) is one of those features that are much easier to
implement when you install your system rather than later. An ASP is a group of disk units.
Your iSeries will be delivered with only the system ASP (ASP 1) installed. Figure 1.SA
shows auxiliary storage configured only as the system ASP. The system ASP holds all
system programs and most user data.

FIGURE 1.5A
Disk Configuration wiih Only a System ASP

Disk Unit Disk Unit Disk Unit

Arm #1 Arm#l Arm #1
Arm#2 Arm #2 Arm#2

Normal system and user data

Disk Unit Disk Unit Disk Unit

Arm #1 Arm #1 Arm#1
Arm #2 Arm#2 Arm #2

You can customize your disk storage configuration by partitioning some auxiliary
storage into one or more user ASPs (Figure 1.SB).

14 Starter Kit for the IBM iSeries and AS/400

FIGURE 1.58
Disk Configuration Including User ASPs

Disk Unit Disk Unit Disk Unit

Arm #1 Arm#1 Arm#1
Arm#2 Arm #2 Arm#2

Normal system and user data

User ASP #2 User ASP #3

Disk Unit Disk Unit

Arm#1 Arm #1
Arm#2 Arm#2

User ASPs provide protection from disk failures by segregating specific user data or
backup data. Thus, if you lose a disk unit in the system ASP, your restore time is reduced
to the minimum time of restoring the operating system and the objects in the system ASP,
while data residing in the user ASPs will be available without any restore .. If you lose a
disk unit in a user ASP, your restore time will include only the time it takes to restore the
user data in that user ASP.

You can use user ASPs for journaling and to hold save files. Journaling automatically
creates a separate copy of file changes as they occur, thus letting you recover every
change made to journaled files up to the instant of the failure. If you have online data
entry - such as orders taken over the telephone - that lacks backup files for the
entered data, you should strongly consider using journaling as part of your backup and
recovery plan. Although you don't need user ASPs to implement journaling, they do make
recovery (which is difficult under the best of circumstances) easier. If you don't journal to
a user ASP, you should save your journal receivers (i.e., the objects that hold all file
changes recorded by journaling) to media regularly and frequently.

User ASPs also protect save files from disk failures. A save file is a special type of
physical file to which you can target your backup operation. Save files have two major
advantages over backing up to media. The first is that you can back up "unanended"
because you don't have to mount and dismount media. The second advantage is that
backing up to disk is often much faster than backing up to tape or diskette. The major
(and probably obvious) disadvantage is that save files require additional disk storage.
Nevertheless, save files are worthwhile in many cases, and when used, isolating save files
in a user ASP provides that extra measure of protection.

Chapter 1 Before the Power Is On 15

Two methods for safeguarding against disk failures and data loss are mirrored protec
tion and device parity protection. Although there's an initial investment with either of these
methods, the level of protection is significant for companies that rely on providing 24-hour
service.

Mirrored protection is a software function designed to prevent data loss. It does so by
using duplicates of disk-related hardware components. Should one of the components fail,
your system remains available with no loss of data. Different levels of mirrored protection
are available, depending on the hardware you duplicate. You can duplicate the following:

• disk units

• disk controllers

• disk I/0 processors

• a bus

Like mirrored protection, device parity protection is designed to prevent data loss and
to keep your system available in the case of a disk failure. Unlike mirrored protection,
though, device parity protection is a hardware function. Device parity protection is similar
to Rl\ID-5 technolof,>y. Parity information is created and, for performance reasons, is
spread across multiple units. When a disk failure occurs, the disk subsystem controller
automatically reconstructs the data using the active units in the disk unit subsystem.

The point of this discussion is that you need to plan ahead and decide which type of
disk protection you'll employ so you can be ready to implement your plan when the
system is delivered, when the disk drives aren't yet full of information you'd have to save
before making any storage configuration changes.

For more information about iSeries backup and recovery, see Chapters 15 and 16.

Establish Naming Conventions
Naming conventions vary greatly from one IT department to the next. The conventions
you choose should result in names that are syntactically correct and consistent yet also
easily remembered and understood by end users and programmers alike. A good standard
does more than simply help you name files, programs, and other object'>; it also helps you
efficiently locate and identify objects and devices on your system. If your naming
conventions are in place before you install your system, they'll help installation go
smoothly and quickly.

Device Names
The naming convention you choose should be meaningful and should allow for grmvth of
your enterprise. Let's look at an example:

• You have three locations for order entry: Montgomery, Alabama; Orlando, Florida;
and Atlanta, Georgia.

• You have five order entry clerks at each location.

• You have one printer at each location.

16 Starter Kit for the IBM iSeries and AS/400

You could let the system automatically configure all your workstations and printers,
which would result in names such as DSP02, DSP03, and PRT02. But by configuring the
devices yourself and assigning meaningful names, you could give your devices names
such as ALDspOl, ALDsp02, FLDspOl, FLDsp02, and GAPrtOl. Because these names
contain a two-letter abbreviation for the state, they are more meaningful and useful than
the names the iSeries would assign automatically. However, this convention would pose a
problem if you had two offices in the same state. To allow for growth of the enterprise,
you might instead incorporate the branch-office number into the names, resulting in
names such as C01Dsp01 to identify a control unit for branch office 01, display station 01.
Such a naming convention would help your operations personnel locate and control
devices in multiple locations.

User Profile Names
You'll also need a standard for naming user profiles. There are those who believe a user
profile name should be as similar as possible to the name of the person to whom it
belongs (e.g., WMadden, MJones, MaryM, JohnZ). This approach can work well when
there are only a few end users. This strategy lets operations personnel identify employees
by their user profiles. The drawback to this method is that it results in profiles that are
easily guessed and thus provides a door for unauthorized access, leaving only the
password to figure out. For example, one of us once had a friend and co-worker, in a
shop with such a strategy, whose Italian ancestry was of particular importance to her. It
took only a few tries to sign on to the system under her user profile. Next, the focus
shifted to the password. Let's see ... TORTEllINI, CAPELLINI, RIGATONI - ah, there's the
password! Good guess? No. Bad profile and password. There are only so many Italian
pasta names.

Another opinion holds that user profile names should be completely meaningless
(e.g., 2LR50M3ZT4, Q83S@06Y7B, SYS23431) and should be maintained in some type of
user information file. The use of meaningless names makes profiles difficult to guess and
doesn't link a name to a department or location that might change as the employee
moves in the company. The user information file documents security-related information,
such as the individual to whom the profile belongs and the department in which the user
works. This naming method is the most secure, but it often meets with resistance from the
users, who find their profiles difficult to remember.

A third approach is to use a naming standard that aids system administration. Under
this strategy, each user profile name identifies the user's location and perhaps function to
sharpen the ability to audit the system security plan. For instance, if you monitor the
history log or use the security journal for auditing, this approach enables you to quickly
identify users and the jobs they're doing.

To implement this strategy, your naming convention should incorporate the user's
location or department and a unique identifier for the user's name. For example, if John
E. Smith works as one of the order entry clerks at the Georgia location, you might assign
one of the following profiles:

Chapter 1 Before the Power Is On 17

• GAJSmith - In this profile, the first two letters represent the location (GA for Georgia),
and the remainder consists of the first letter of the user's first name followed by as
much of the last name as will fit in the remaining seven characters.

• GAOEJES - This example is similar, but the location code is followed by the depart
ment (OE for order entry) and the user's initials. This method provides more depart
mental information while reducing the unique name identifier to initials.

• B120EJES - This example is identical to the second, but the Georgia branch is iden
tified by its branch number, Bl2.

When profile names provide this type of information, programs in your system that
supply user menus or functions can resolve them at run time based on location, depart
ment, or group. As a result, both your security plan and your initial program drivers can
be dynamic, flexible, and easily maintained. In addition, auditing is more effective because
you can easily spot departmental trends. And user profile organization and maintenance
tasks are enhanced by having a naming standard to follow. However, such profiles are
less secure than meaningless profiles because they're easy to guess once someone
understands the naming scheme. This leaves only the password to guess, thus rendering
the system less secure.

As you'll discover in Chapter 3, we believe in maintaining user profiles in a user
information file. Such a file makes it easy to maintain up-to-date user profile information,
such as initial menu, initial values for programs (e.g., initial branch number, department
number), and the user's full name formatted for use in outgoing invoices or order
confirmations. When a user transfers to another location or moves to a new department,
you should deactivate the old profile and assign a new one to maintain a security history.
A user information file helps you keep what amounts to a user profile audit trail.
Furthermore, your applications can retrieve information from the file and use it to
establish the work environment, library list, and initial menu for a user.

A final consideration in choosing a naming convention for user profiles is whether
your users will have access to multiple systems. If they will, you can simplify functions by
using the same name for each user's profile on all systems. To do this, you must consider
any limitations the other systems in the network place on user profile names and apply
those limitations in creating the user profiles for your system. For instance, another
platform in your network may limit the number of characters allowed for user profile
names. To enable your user profiles to be valid across the network, you'll have to abide
by that limitation.

You need to determine what user profile naming convention will work best for your
environment. For the most secure environment, a meaningless profile name is best. User
profiles that consist of the end user's name are the least secure and are often used in
small shops where everyone knows (and is on good terms with) everyone else. A
convention that incorporates the user's location and function is a compromise between
security and system management and implementation that suits many shops.

18 Starter Kit for the IBM iSeries and AS/400

What Next?
Okay, you've made it this far! You've planned and prepared, and then planned some
more. You've planned education, scheduled classes, and started to prepare your users for
things to expect with the iSeries. You've planned for security and for backup and
recovery, and you know how you'll name the objects on your system. You feel ready to
start the installation. But after your vendor helps you install the hardware, how do you
implement all your carefully made plans? In the next chapter, we discuss what happens
once the power is on.

Chapter 2

That Important First Session
Up to this point (if you've done your homework), you have committed, planned, and
planned some more for your new iSeries system. Planning is a significant portion of the
total installation process, but now the system is up and running! The microcode is all
there, the operating system is installed, all your program products are loaded on the
system, and the vendor is packing up the tools.

Once the power is on, it's time to take some immediate steps to put your carefully
made plans into action. Figure 2.1 lists the steps you'll need to take once your system is
installed.

FIGURE 2.1

First Steps After Installation

Siun!~!I(l[lt~ th~iSelj~ for the first ti'me_ ... :

Establish user ASPs
Verify softi.vare and PTF levels
Set the security level
Set the password format control system values
Change the system-supplied user profile

passwords
Enable/disable autoconfiguration
Set general system values

Establish User ASPs

Set system values for work-management objects:
QMchPool Machine pool size
QBasPool Minimum size of base

QBasActlvl
QMaxActlvl

QActJob

QTotJob

QAdlActJ

QAdlTotj

storage pool
Base pool activity level
Maximum activity level of
the system
Active jobs for which to
allocate storage
Initial total number of jobs
for which to allocate
storage
Additional number of
active jobs to add
Additional number of jobs
to add

Establish your subsystems
Retrieve and modify the start-up program

19

First, examine your backup and recovery plan to see whether you've decided to use
auxiliary storage pools (ASPs). If you have, work with the installation team to remove disk
units from the system ASP and configure them for a user ASP.

Allocate plenty of time for this process. It may take a long time to remove the units
because the system must copy their contents to other units in the system ASP. If ASPs are
part of your backup plans, you can begin breathing easier once this work is done,
knowing that you're already better prepared for disasters.

20 Starter Kit for the IBM iSeries and AS/400

Verify Software and PTF Levels
Next, verify that the program products you ordered are installed on the system. 1be vendor
should help you load these products if they aren't already preloaded on the system. (If
you don't have your program products and manuals, make sure you follow up on their
deliveiy.)

Next, determine whether the latest available cumulative program temporaiy fix (PTF)
package, as well as the appropriate group PTF packages, are installed on your system.
1be vendor should know the latest PTF level available and can help you determine
whether that level exi5t:s on your system. If you don't have the latest PTFs, order them
now so you can apply them before you move your iSeries into the production phase of
installation.

For more information about PTFs and installing P'fFs, see Chapter 6.

Signing On for the First Time
With ASPs configured and the latest PTFs installed, you're ready to sign on to your iSeries.
Use the user profile QSecOfr to sign on, and enter QSECOFR - the preset password for
that profile. Don't start playing with your new system yet, though! You have some
important chores to do during your first session.

Set the Security Level
Your iSeries is shipped with the security level set at 40. We suggest you operate at least at
this level. If you desire some level other than level 40, you need to reset the security level
as the first step in implementing your security plan.

You can change the security level now by keying in the ChgSysVal (Change System
Value) command:

ChgSysVal SysVal(QSecurity) Value(nn)

where nn is 20, 30, 40, or 50. 1be change will take effect when you petform an initial
program load (IPL) of the system.

Because you must perform IPLs to implement several settings on your iSeries, you
might as well practice one now to put the chosen security level into action. On the
system panel, select a normal IPL from the B source, and then power down the system
>vith an automatic restart by keying in

PwrDwnSys OptionC*Immed) RestartC*Yes>

When the IPL is completed, your new security level will be in effect.

Set the Password Format Control System Values
The next important step in implementing your security plan is setting the system values
that control password selection. You should have decided already on the password rules.
Changing the system values to enforce those rules is relatively easy.

Chapter 2 That Important First Session 21

In Chapter 1, we recommended five rules to guarantee the use of secure passwords
on your system. To implement Rule 1, that passwords must be at least seven characters
and at most 10 characters, enter the commands

ChgSysVal SysVal(QPwdMinLen) Value(7)
ChgSysVal SysVal(QPwdMaxLen) Value<1ID>

The system value QPudMinLen (Minimum password length) sets the minimum lenf,>th of
passwords used on the system. System value QPwdMaxlen (Maximum password length)
specifies the maximum length of passwords used on the system.

To implement Rule 2, that passwords must contain at least one digit, enter

ChgSysVal SysVal(QPwdRqdDgt) Value('1')

Setting system value QPwdRqdDgt (Required digit in password) to 1 requires all
passwords to include at least one digit.

For Rule 3, passwords cannot use the same character more than once or the same
character consecutively, enter either

ChgSysVal SysVal(QPwdLmtRep) Value('1')

or

ChgSysVal SysVal(QPwdLmtRep) Value('2')

respectively. Setting system value QPwdLmtRep (Limit repeating characters in password) to
1 prevents characters from repeating at all. A value of 2 prevents characters from repeating
consecutively.

For Rule 4, passwords cannot use adjacent digits, enter

ChgSysVal SysVal(QPwdLmtAjc) Value<'1 ')

System value Q.PwdLmtAjc (Limit adjacent digits in password) prevents users from creating
passwords with numbers next to each other, such as a social security number or a
telephone number.

Rule 5 states that passwords should be assigned a time frame for expiration. You
implement this rule by entering a ChgSysVal command such as

ChgSysVal SysVal(QPwdExpitv) Value<6ID>

System value QPwdE~Itv (Password expiration interval) specifies the length of time, in
days, that a user's password remains valid before the system instructs the user to change
passwords. The value can range from 1 to 366. You also can set the password expiration
interval individually for user profiles by using the PwdExpitv parameter of the user profile.
This option is helpful because certain profiles, such as the QSecOfr profile, are particularly
sensitive and should require a password change more often for additional security.

Change the System-Supplied User Profile Passwords
OS/400 provides several user profiles that serve various system functions. Some of these
profiles, such as default-owner user profile QDftOwn, have no password, which means

22 Starter Kit for the IBM iSeries and AS/400

you can't sign on using that user profile. However, every iSeries is shipped with pas.swords
for the system-supplied profiles listed below, and these passwords are preset to the profile
name. For example, the preset password for the QSecOfr profile is QSecOfr. Therefore,
one of your first steps should be to change the pas.swords for these profiles:

• QSecOfr (security officer)

• QSysOpr (system operator)

• QPgmr (programmer)

• QUser (user)

• QSrv (service representative)

• QSrvBas (basic service representative)

To enter the new passwords, sign on as the QSecOfr profile and execute the following
conunand for each user profile listed above:

ChgUsrPrf UsrPrf(UserProfile) PasswordCNewPassword)

You can accomplish these changes more easily using the SETIJP menu provided in
OS/400. Type Go Setup, and then select option 11, "Change passwords for IBM-supplied
users" to work with the panel shown in Figure 2.2.

FIGURE 2.2
Change Passwords for IBM-Supplied Users Panel

Change Passwords for IBM-Supplied Users
System: AS400

Type new password below for IBM-supplied user, type password again to verify
change, then press Enter.

New security officer (QSECOFR) password
New password (to verify)

New system operator (QSYSOPR) password
New password (to verify) .••

New programmer (QPGMR) password
New password (to verify)

New user (QUSER) password
New password (to verify)

New service (QSRV) password
New password (to verify) •

F1=Help F3=Exit F5=Refresh F12=Cancel
More •.•

You can assign a password of •None (for any of the above profiles except QSecOfr),
or you can assign new passwords that conform to the password rules you've just

Chapter 2 That Important First Session 23

implemented. Once you change the passwords for the system-supplied profiles, write
down the new passwords and store them in a secure place for future reference.

Enable/Disable Autoconfiguration
After you've taken steps to secure your system, the next important action concerns system
value QAutoCfg (Automatic device configuration), which controls device autoconfiguration
and helps you establish your naming convention.

When QAutoCfg is set to the value 1 (the shipped default), devices are configured
automatically and are named according to the standard specified in system value
QDevNaming (Device naming convention). The possible values for QDevNaming are
*Normal, *S36, and *DevAdr. If QDevNaming is set to *Normal, the system assigns device
names according to its own standard (e.g., DSPOl and DSP02 for workstations, PRTOl and
PRT02 for printers). If the option •s36 is specified, the system automatically names devices
according to System/36 naming conventions (e.g., Wl and W2 for workstations, Pl and P2
for printers). When QDevNaming's value is *DevAdr, device names are derived from their
addresses (e.g., DSP010207, PRT010218).

Although automatic configuration gives you an easy way to configure new devices
(you can plug in a new terminal, attach the cable, and - poof! - the system configures
it), it can frustrate your efforts to establish a helpful naming convention for your new
machine. Therefore, after the system has been IPLed and the initial configuration is
complete, you should set the value of QAutoCfg to 0, which instructs the system not to
autoconfigure devices. You can reset autoconfiguration by executing the command

ChgSysVal SysValCQAutoCfg) ValueC'0'>

This change takes effect when you IPL the system. (If you haven't done so already, you
should IPL the system now to put into effect the changes you've made for security level,
password rules, and autoconfiguration.) You must now configure devices yourself when
needed.

Admittedly, configuring devices is much more of a pain than letting the system
configure them for you. However, we recommend this approach because it usually
requires more planning, better logic, better structure, a better naming convention, and
better documentation. At times, you may want to enable autoconfiguration temporarily to
create a configuration object automatically and then disable autoconfiguration again.
Configuring devices is beyond the scope of this chapter, but you can find more
information about it in Basic System operation, Administration, and Problem Handling
(SC41-5206).

Set General System Values
Several times now, you've set system values. The iSeries provides many such values to
control basic system functions. To further familiarize you with your new system, let's take
a look at a few of the most significant system values. (You can use the WrkSysVal, or
Work with System Values, command to examine and change system values.)

24 Starter Kit for the IBM iSeries and AS/400

System value QAbnonnSw (Previous end of system indicator) isn't a value that you
modify; the system itself maintains the proper value. When the system is IPLed, this
&ystem value contains a 0 if the previous end of system was normal (meaning you
powered down the system and no error occurred). However, if the previous end of
system was abnormal (meaning a power outage caused system failure, a hardware error
stopped the system, or some other abnormal termination of the system occurred),
QAbnormSw will be 1. The benefit of system value QAbnonnSw is that during IPL, your
initial start-up program can check this value. If the value is 1, meaning the previous end
of system was abnormal, you might want to handle the IPL differently, such as in the
start-up of the user subsystems.

System value QCmnRcylmt (Communications recovery limits) controls the limits for
automatic communications recovery. This system value is composed of two numbers. The
first number controls how many times the system will try to recover from an error. The
second indicates how many minutes will expire between attempts at recovery. The initial
setting is '0' '0'. This setting instruct'> the system to perform no error recovery when a
communications line or control unit fails. If left in this mode, the system prompts the
operator with a system message asking whether to attempt error recovery. The value '5' '5'
would instruct the system to attempt recovery five times and to wait five minutes between
those attempts. Only if recovery had not been established at the end of those attempts
would the system prompt the operator with a system message.

e Note
A word about the use of QCmnRcyl.mt: If you decide to use the system error
recovery by setting this system value, you'll add some work overhead to
your system because error recovery has a high priority on the iSeries. In

other words, if a comm.unicatlons line or a control unit falls and error
recovery kicks in, you may see a spike in your response time. If you
experience severe communications difficulties, reset QCmnRcyl.mt to the
initial value of '0' '0' and respond manually to the failure messages.

System value QMaxSign (Maximum sign-on attempts allowed) specifies the number of
invalid sign-on attempts to allow before the action specified in system value QMaxSgnAcn
(Action to take for failed sign-on attempts) is taken. We recommend a QMaxSign value of
3 for reasonable security. Setting QMaxSign to 3 means that after a user tries
unsuccessfully three times to sign on to the system (because of using an invalid user
profile or password), the system will disable the device, the user profile being used, or
both (the action performed depends on the value of QMaxSgnAcn). You'll have to re
enable the device or user profile to make it available again.

System value QPrtDev (Printer device description) specifies which printer device is the
default system printer. The initial value is PRTOl; however, you can change this value to
specify a printer device of your choice.

Chapter 2 That Important First Session 25

These are just a few of the system values available on the iSeries. For a complete list
of system values and their initial values, consult OS/400 Work Management (SC41-5306).
It's worth your time to read about each of these values and determine which ones need
to be modified for your installation.

Establishing Your Work Environment
Okay, you've covered a lot of ground so far. You've made the system secure, reset the
autoconfiguration value, and looked at some general system values. However, it's not time
for fun and games yet. Kow, you should establish your work environment.

When the system is shipped, your work environment is simple. Memory is divided
into a few basic storage pools. For instance, the machine pool provides storage for system
jobs. 1ne base storage pool contains storage that's not assigned to any other pool. In the
simplest of environments, dividing storage between the machine pool, a storage pool for
spool writers, and the base storage pcx>l is adequate. Your interaaive and batch jobs share
the main storage from the base storage pool.

For many environments, this arrangement may be functional, but it's neither effective
nor efficient. For example, if the system value that sets the machine pool size is too low,
performance is slow; if the value is too high, you waste main storage. Thus, you need to
tune your .-,ystem for optimal performance.

Performance tuning, because of its complexities, usually evolves over time. You
typically work to achieve a reasonably adequate performance model and then fine-tune as
you go. It's beyond the scope of this chapter to teach you to tune your system. For that,
we suggest you employ the help of performance experts, but we can introduce you to
some important work-management system values that govern performance charaaeristics.
You can learn more about these values in OS/400 Work Management.

QMchPool (Machine pool size) is the system value that specifies the amount of
memory allocated to the machine (*Machine) pool. OS/400 Work Management provides a
formula for calculating the ~mount of storage to reserve for the machine pool. You should
consider performing the calculations and comparing your results with system value
QMchPool.

QBasPool (Minimum size of base storage pool) specifies the minimum size of the
base (*Base) storage pool. Memory not allocated to any other storage pool stays in the
base storage pool. This pool is shared among many subsystems, and it supports system
jobs (e.g., QSpHvlaint, QSysArb, QSysWrk, Scpf, and subsystem monitors) as well as
system transients (e.g., file open/close operations). Enter the WrkSysSts (Work with System
Status) command to see the amount of storage the machine has reserved for these
functions.

QBasActLvl (Base pool activity level) sets the maximum activity level of the base
storage pool. This value indicates how many system and user threads can concurrently
compete for the base storage pool's storage.

Q.MaxActLvl (Maximum activity level of the system) sets the maximum activity level of
the system by specifying the number of threads that can compete at the same time for
main storage and processor resources. By examining each subsystem, you can establish

26 Starter Kit for the IBM iSeries and AS/400

the total number of activity levels; QMaxActLvl's value must at least equal that number or
be set higher. We suggest you set QMaxActLvl to a value five above the total number of
activity levels allowed in all subsystems. 1his setting will let you increase activity levels for
individual subsystems for tuning purposes without having to increase QMaxActLvl.
However, if the number of subsystem activity levels exceeds the value in QMaxActLvl, the
system executes only the number of levels specified in QMaxActLvl, resulting in
unnecessary waiting for your users. Therefore, if you increase the total number of activity
levels in your subsystems or if you add subsystems, you must increase QMaxActLvl.

QActjob (Active jobs for which to allocate storage) is the system value that specifies
the initial number of active jobs for which the system should allocate storage during IPL.
This value should reflect the estimated number of jobs active during a period of typical
heavy usage. We suggest you set this number to approximately 10 percent above this
estimated number of active jobs. For example, if you have an average of 50 active jobs,
set QAct]ob to 55. Setting QAct]ob and QTotJob (covered next) to values that closely
match your requirements helps the iSeries correctly allocate resources for your users at
system start-up time instead of continually having to allocate more work space (e.g., for
jobs or workstations). It also provides more efficient performance.

QTotjob (Initial total number of jobs for which to allocate storage) specifies the initial
number of jobs for which the system should allocate auxiliary storage during IPL. The
number of jobs is the total possible number of jobs on the system at any one time (e.g.,
jobs in the job queue, active jobs, and jobs having spooled output in an output queue).

QAdlActj (Additional number of active jobs to add) specifies the additional number of
active jobs for which the system should allocate storage when the number of active jobs
specified by system value QActJob is exceeded. Setting this value too low may result in
delays if your system needs additional jobs; setting it too high increases the time needed
to add the additional jobs.

QAdlTotj (Additional number of jobs to add) specifies the additional number of jobs
for which the system should allocate auxiliary storage when the initial value in QTot]ob is
exceeded. As with QAdlActj", setting this value too low may result in delays and
interruptions when your system needs additional jobs; setting it too high slows the system
when new jobs are added. We recommend keeping the IBM-supplied default value.

You'll need to document changes you make to any of these system values. We
suggest you record any commands that change the work-management system values (or
any other IBM-supplied objects) by keying the same commands into a CL program that
can be run each time you load a new release of the operating system. This ensures that
your system's configuration remains consistent.

Establish Your Subsystems
The next task in establishing your work environment is selecting your controlling
subsystem. A subsystem, defined by a subsystem description, is where the system brings
together the resources needed to process work. IBM ships two complete subsystem
configurations: QBase and QCtl. System value QCtlSbsD (Controlling subsystem
description) determines which of these two configurations the system uses when you IPL.

Chapter 2 That Important First Session 27

When the iSeries is shipped, the controlling subsystem for operations is QBase. This
configuration consists of the following subsystems:

• QBase - This is the controlling subsystem. It supports interactive, batch, and commu
nications jobs. An autostart job starts subsystem QSpl.

• QSpl - This is the spool subsystem, supporting reader and writer jobs.

• QSysWrk This is the system monitor subsystem. It contains jobs that support
system functions started automatically at IPL time and when the system exits restricted
state.

• QUsrWrk - This is the user work subsystem. Its jobs are started by servers to do
work on behalf of users.

• QServer - This is the file server subsystem.

The QBase configuration is a simple configuration, with most main storage shared
among subsystems. However, we recommend implementing separate subsystems for each
type of job to provide separate memory pools for each activity. One memory pool can
support all activities, but when long-running batch jobs run with interactive workstations
that compete for the same memory, system petlormance is poor and the fight for activity
levels and priority becomes hard to manage. Our experience with iSeries and AS/ 400
systems has taught us that establishing separate subsystems for batch, interactive,
communications, and server jobs gives you much more control. Using QCtl as the
controlling subsystem establishes separate subsystem; for these types of jobs and can be
the basis for various customized subsystems.

Use the following command to change the controlling subsystem from QBase to QCtl:

ChgSysVal SysVal(QCtlSbsD) Value('QCTL QGPL')

You can also use the WrkSysVal command to change the system value. The new value
will take effect after the next IPL.

The QCtl configuration consists of the following subsystems:

• QCtl This is the controlling subsystem. As shipped, QCtl supports sign-0n only at
the console. An autostart job starts subsystems Qinter, QBatch, QCmn, and QSpl.

• Qinter - This subsystem supports all interactive jobs, with the exception of the console.

• QBatch - This subsystem supports all batch jobs.

• QCmn This subsystem supports all communications jobs.

• QSpl This is the spool subsystem, supporting reader and writer jobs.

• QSNADS - This is the SNA Distribution Services (SNADS) subsystem. It supports jobs
controlling the functions of the SNADS network, as well as IBM-supplied transaction
programs such as document interchange and object distribution.

• QSysWrk This is the ~ystem monitor subsystem. It contains jobs that support system
functions started automatically at IPL time and when the system exits restricted state.

28 Starter Kit for the IBM iSeries and AS/400

• QUsrWrk This is the user work subsystem. Its jobs are started by seivers to do
work on behalf of users.

• QSeiver - This is the file seiver subsystem.

The QCtl configuration enables more granular control of your system. For instance,
you can easily prevent users from signing on over the weekend yet permit batch jobs to
continue to run by ending subsystem Qinter and leaving subsystem QBatch active.

One advantage the QCtl configuration offers is the ability to allocate memory to each
subsystem based on the need for each type of job and to set appropriate activity levels for
each subsystem. No system values control the memory pools and activity levels for
individual subsystems, but the subsystem description contains the parameters that control
these functions. For example, when you create a subsystem description with the CrtSbsD
(Create Subsystem Description) command, you specify the memory allocation and the
number of activity levels. You can find more information about subsystem descriptions in
Chapters 17, 18, and 19 and in OS/400 Work Management.

The QCtl configuration v-rill also help if you decide to create your own subsystems.
For instance, if your system supports many remote and local users, you may want to
further divide the Qinter subsystem into one subsystem for remote interactive jobs and
another for local interactive jobs. Thus, you can establish appropriate execution priorities,
time slices, and memory allocations for each type of job and greatly improve performance
consistency.

Retrieve and Modify the Start-up Program
When you IPL your system, the controlling subsystem (QBase or QCtl, whichever you
decide to use) submits an autostart job that runs the program specified in system value
QStrUpPgm (Start-up program). The IBM-shipped default start-up program is QStrUp in
library QSys. This program perfonns functions such as starting the appropriate subsystems
and starting the print writers on your system.

However, you may want to modify the start-up program to perform custom functions.
For instance, you may have created additional subsystems that need to be started at IPL,
or you may want to run a job that checks the QAbnormSw system value each time the
system is started. To retrieve the CL source code for QStrUp, execute the command

RtvCLSrc Pgm(QSys/QStrUp) SrcFile<YourLib/QCLSrc) SrcMbr(YourHember>

Notice that we suggest you retrieve the QStrUp source into a different member name.
Because the new start-up program will be user created, it should have a name without the
look of an IBM name.

Figure 2.3 shows the source code for program QStrUp.

Chapter 2 That Important First Session 29

FIGURE 2.3
CL Source Code for Start-up Program QStrUp

/**/
I*
I* 5769SS1 V4R4M0 990521
I*

RTVCLSRC Output
*I

07/13/00 10:42:48 */
*I

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Program name .
Library name .
Original source file
Library name
Original source member
Source file change

date/time
Patch option
User profile
Text . . . :
Owner
Patch change ID
Patch APAR ID
User mod flag

QSTRUP PN*/
QSYS PL*/

SN*/
SL*/
SM*/

*I
SC*/

NOPATCH PO/
USER UP/

TX*/
QSYS OW*/

PC*/
PA*/

NO UM/
ED*/

/**!
PGM
DCL VARC&STRWTRS) TYPE(*CHAR) LENC1)
DCL VARC&CTLSBSD) TYPE(*CHAR) LENC20)
DCL VARC&CPYR) TYPE(*CHAR) LENC90) VALUE('5769-SS1 (C) COPYRIGHT-

IBM CORP 1980, 1999. LICENSED MATERIAL - PROGRAM PROPERTY OF IBM')
QSYS/STRSBS SBSD(QSPL)
MONMSG MSGID(CPF0000>
QSYS/STRSBS SBSD(QSERVER)
MONMSG MSGIDCCPF0000>
QSYS/STRSBS SBSD(QUSRWRK)
MONMSG MSGID(CPF0000>
QSYS/RLSJOBQ JOBQ(QGPL/QS36MRT>
MONMSG MSGIDCCPF0000>
QSYS/RLSJOBQ JOBQ(QGPL/QS36EVOKE)
MONMSG MSGIDCCPF0000>
QSYS/STRCLNUP
MONMSG MSGIDCCPF0000>
QSYS/RTVSYSVAL SYSVAL(QCTLSBSD)
IF CONDCC&CTLSBSD *NE 'QCTL

RTNVARC&CTLSBSD)
QSYS ') *AND C&CTLSBSD *NE-

'QCTL QGPL ')) THENCGOTO CMDLBLCDONE))

DONE:

QSYS/STRSBS SBSD(QINTER)
MONMSG MSGIDCCPF0000>
QSYS/STRSBS SBSDCQBATCH)
MONMSG MSGIDCCPF0000>
QSYS/STRSBS SBSD(QCMN)
MONMSG MSGID(CPF0000>

QSYS/RTVSYSVAL SYSVAL(QSTRPRTWTR) RTNVARC&STRWTRS)
IF CONDC&STRWTRS = '0') THENCGOTO CMDLBL(NOWTRS))
CALL PGM(QSYS/QWCSWTRS)
MONMSG MSGID(CPF0000>

NOWTRS:
RETURN
CHGVAR VARC&CPYR) VALUEC&CPYR)
ENDPGM

30 Starter Kit for the IBM iSeries and AS/400

After retrieving the source, you can modify it to petform additional functions. Figure 2.4
shows a sample user-modified start-up program you might use when QCtl is the
controlling subsystem, with the addition of subsystems QPgmr, QRemote, and QLocal.
The sample program also checks the status of the QAbnormSw system value and starts
the subsystems only if the system previously ended in a normal fashion.

I*
I*
I*
I*
I*

FIGURE 2.4
User-Modified Start-up Program

===
= Program StartSys =

Source type ..• CLP =
Description ..• System start-up =

===
Pgm

I*
I*
I*

===
= Variable declarations =
===

Del
Del

&StrWtrs
&AbnormSw

*Char
*Char

*I
*I
*I
*I
*I

*I
*I
*I

I* === *I
I* Global error trapper */
I* === *I

I*
I*
I*

I*
I*
I*

I*
I*
I*

Monl°'lsg (CPF0000 MCH0000)

===
= Start basic subsystems =
===

StrSbs
StrSbs
StrSbs

QSpl
QServer
QUsrWrk

===
Start Operational Assistant cleanup operations =

===
StrClnUp

===
= If system previously ended normally, start subsystems =
===

RtvSysVal QAbnormSw < &AbnormSw)

*I
*I
*I

*I
*I
*I

*I
*I
*I

continued

If
Do

StrSbs
StrSbs
StrSbs
StrSbs
StrSbs
StrSbs

End Do

Chapter 2 That Important First Session 31

FIGURE 2.4 CONTINUED

&AbnormSw *Eq '0')

Qinter
QBatch
QCmn
QPgmr
QR emote
Qlocal

+

I* === *I
I* = Start writers if indicated */
I* === *I

RtvSysVal
If

Call

QStrPrtWtr < &StrWtrs)
(&StrWtrs *Eq '1')

QSys/QWCSWtrs
+

I* === *I
I* Exit program */
I* === *I

Return

EndPgm

Once you've modified your new start-up program, recompile it into a user-created
libraiy. Before you change system value QStrUpPgm so that it reflects the fact that your
new program is to be the system start-up program, be sure your program includes good
error-handling techniques and that you test it well.

Now What?
You've made the most of your first session. You've secured your system, set the
autoconfiguration values, customized your work environment, established the controlling
subsystem, and modified the start-up program. Now, you need to create user profiles for
your users and further customize your system. We'll tell you how in Chapter 3.

33

Chapter 3

Access Made Easy
If you've followed our recommendations about iSeries setup to this point, you planned
carefully for installation, education, migration, security, backup, and recovery before you
even received your system. You created consistent and meaningful naming conventions
for system objects, and you established your work environment. Now that you've
powered on the iSeries, it's time to start thinking about putting it to work. Your next step
is to set up user profiles.

IBM supplies a few user profiles with which to maintain the iSeries, such as QDftOwn
(default owner), QSecOfr (security officer), and QSIY (service, used by the customer
engineer). In addition to these profiles, you need profiles for your users so they can sign
on to the system and access their programs and data. For this aspect of setting up your
iSeries, you first need to understand user profiles and their attributes. With that
knowledge, you can, if you like, tum over to a program the job of creating profiles for
your users.

What Is a User Profile?
To the iSeries, a user profile is an object. Although the object's name (e.g., Pgmr0234,
WDavis) is what you normally think of as the user profile, a user profile is much more
than a name. The attributes of a user profile object define the user to the system, enabling
the system to establish a custom initial session (i.e., job) for that user at sign-on. To make
the best use of user profiles, you must understand these attributes and how they can help
you control access to your system.

You create a user profile using the CrtUsrPrf (Create User Profile) command. Only the
security officer profile (QSecOfr) or another profile that has •SecAdm (security
administrator) special authority can create, change, or delete user profiles. You should
restrict authority to the CrtUsrPrf, ChgUsrPrf (Change User Profile), and DltUsrPrf (Delete
User Profile) commands to those users responsible for creating and maintaining user
profiles on your system.

The CrtUsrPrf and ChgUsrPrf commands have a parameter for each user profile
attribute. If you prompt the CrtUsrPrf command and then press FIO, the system displays
the command's parameters (Figure 3.1).

34 Starter Kit for the IBM iSeries and AS/400

FIGURE 3.1

CrtUsrPr:f Command Prompt

Create User Profile CCRTUSRPRF)

Type choices, press Enter.

User profile
User password
Set password to expired
Status ..
User class ...
Assistance Level
Current Library
Initial program to call

Library
Initial menu ...

Library
Limit capabilities
Text 'description'

Special authority
+ for more values

Special environment
Display sign-on information
Password expiration interval
Limit device sessions
Keyboard buffering
Maximum allowed storage
Highest schedule priority
Job description

Library
Group profile
Owner
Group authority
Group authority type
Supplemental groups

+ for more values
Accounting code
Document password
Message queue

Library
Delivery•
Severity code filter
Print device
Output queue . . .

Library
Attention program

Library
Sort sequence

Library
Language ID
Country ID .
Coded character set ID
Character identifier control
Locale job attributes

Locale

User options

User ID number
Group ID number
Home directory

Authority

+ for more values

+ for more values

*USRPRF
*NO_ --
*ENABLED
*USER_ -
*SYS VAL_
*CRTDFT
*NONE-=

Name
Name, *USRPRF, *NONE
*NO, *YES
*ENABLED, *DISABLED
*USER, *SYSOPR, *PGMR ...
*SYSVAL, *BASIC, *INTERMED ...
Name, *CRTDFT
Name, *NONE
Name, *LIBL, *CURLIB

MAIN___ Name, *SIGNOFF
*LIBL Name, *LIBL, *CURLIB

*NO --- *NO, *PARTIAL, *YES
*BLANK·------------------~

*USRCLS_

*SYS VAL
*SYS VAL
*SYSVAL
*SYSVAL
*SYSVAL
*NOMAX-=-
3
QDFTJOBD

*LIBL -
*NONE--=
*USRPR F
*NONE __
*PRIVATE
*NONE __ _

*USRCLS, *NONE, *ALLOBJ ...

*SYSVAL, *NONE, *S36
*SYSVAL, *NO, *YES
1-366, *SYSVAL, *NOMAX
*SYSVAL, *YES, *NO
*SYSVAL, *NO, *TYPEAHEAD ...
Kilobytes, *NOMAX
0-9
Name
Name, *LIBL, *CURLIB
Name, *NONE
*USRPRF, *GRPPRF
*NONE, *ALL, *CHANGE, *USE ...
*PRIVATE, *PGP
Name, *NONE

*BLANK. _____ _
*NONE__ Name, *NONE
*USRPRF__ Name, *USRPRF

*NOTIFY
0 __
*WR KS TN __
*WRKSTN __

*SYSVAL __

*SYSVAL __

*SYSVAL
*SYSVAL
*SYSVAL
*SYSVAL=
*SYSVAL

Name, *LIBL, *CURLIB
*NOTIFY, *BREAK, *HOLD, *OFT
0-99
Name, *WRKSTN, *SYSVAL
Name, *WRKSTN, *DEV
Name, *LIBL, *CURLIB
Name, *NONE, *SYSVAL, *ASSIST
Name, *LIBL, *CURLIB
Name, *SYSVAL, *HEX ...
Name, *LIBL, *CURLIB
*SYSVAL. ..
*SYSVAL. ..
*SYSVAL, *HEX ...
*SYSVAL, *DEVD, *JOBCCSID
*SYSVAL, *NONE, *CCSID ...

*SYSVAL __________________ _

*NONE __

*GEN ___ _
*NONE ___ _

*NONE, *CLKWD, *EXPERT .••

1-4294967294, *GEN
1-4294967294, *NONE, *GEN

*USRPRF __________________ _

*EXCLUDE_ *ALL, *CHANGE, *USE, *EXCLUDE

Chapter 3 Access Made Easy 35

Before you create any user profiles, you should first decide how to name them. In
Chapter 1, we stressed the importance of developing a strategic naming convention for
user profiles. Once you've performed this task, you're ready to create a user profile for
each person who needs access to your system.

Creating User Profiles
Figure 3.1 shows all the available parameters for creating a user profile. Except for the
user profile name parameter, each parameter has a default value that will be used unless
you supply a specific value to override the default. Following are the key user profile
parameters that you'll frequently change to customize a user profile.

UsrPrf (User Profile)
The first parameter, UsrPrf, specifies the user profile name on which you decided. This is
a required parameter; you enter the name of the user profile you're creating.

Password (User Password)
As we mentioned in Chapter 1, passwords should be secret, hard to guess, and regularly
changed. You can't ensure that users keep their passwords secret, but you can help make
passwords hard to guess by controlling password format, and you can make sure users
change their passwords regularly.

This discussion assumes you let users select and maintain their own passwords. No one
in fT needs to know user passwords. The iSeries doesn't let even the security officer view
existing passwords. This would violate the first rule of passwords - that they be secret!

The CrtUsrPrf command's Password parameter lets you specify a value of *None, a
value of *UsrPrf, or the password itself. *None, which means that the user profile can't
sign on to the system, is recommended for group profiles, profiles of users who are on
vacation and don't need access for a period of time, users who've been terminated but
can't be deleted at the time of termination, and other situations in which you want to
ensure that a profile isn't used. The default value, *UsrPrf, dictates that the password be
the same as the user profile name.

~Caution
You shouldn't use Password(-UsrPrf). If you do, you forfeit the layer of
security that's provided by having a password that differs from the user
profile name.

You can control the format of passwords by using one or more of the password
related system values discussed in Chapter 2 or by creating your own password validation
program. For details about how to create such a program, see the discussion of system
value QPwdVldPgm (Password validation program) in OS/400 Security- Reference
(SC41-5302).

36 Starter Kit for the IBM iSeries and AS/400

The password format you impose should encourage users to create hard-to-guess
passwords but shouldn't result in passwords that are so cryptic that users can't remember
them without writing them down within arm's reach of the keyboard. As we said in
Chapter 1, we suggest the following guidelines:

• Enforce a minimum length of at least seven characters (use the QPwdMinLen system
value).

• Require at least one digit (use the QPwdRqdDgt system value).

• Don't allow an alphabetic character to be repeated in a password (use the
QPwdLmtRep system value).

• Don't allow adjacent numbers in a password (use the QPwdLmtAjc system value).

To ensure that users change their passwords regularly, use system value QPwdExpltv
to specify the maximum number of days a password will remain valid before requiring a
change. A good value for QPwdExpitv is 60 days or 90 days, which would require all
users system-wide to change passwords every two or three months. You can specify a
different password expiration interval for selected individual profiles using CrtUsrPrf's (or
ChgUsrPrf's) PwdExpltv parameter, which we discuss later in this chapter.

PwdExp (Set Password to Expired)
The PwdExp parameter lets you set the password for a specific user profile to the expired
state. When you create new user profiles, you may want to specify PwdExp(*Yes) to
prompt new users to choose a secret password the first time they sign on. The same is
true when you reset passwords for users who forget theirs.

Status (Status)
Parameter Status specifies whether a user profile is enabled or disabled for sign-on. When
the value of Status is •Enabled, the system lets the user sign on to the system. When the
value is •Disabled, the system doesn't let the user sign on until an authorized user re
enables the user profile (i.e., changes the Status value to *Enabled).

The primary use of this parameter is with the QMaxSgnAcn system value. If
QMaxSgnAcn is set to 2 or 3, the system will disable a profile that exceeds the maximum
number of invalid sign-on attempts (system value QMaxSign determines the maximum
number of sign-on attempts allowed). When a profile is disabled, the system changes the
value of Status to 0 Disabled. An authorized user must then reset the value to *Enabled
before the user profile can be used again.

UsrCls (User Class) and SpcAut (Special Authority)
These two parameters work together to specify the special authorities granted to the user.
Special authorities let users petform certain system functions, such as save/restore
functions, job manipulation, spool file manipulation, and user profile administration. (For
more information about user profile administration, see the discussion of user classes and
special authorities in Chapter 1.)

Chapter 3 Access Made Easy 37

Parameter UsrCls lets you classify users by type. Figure 3.2 (repeated from Chapter 1)

shows the five classes of users recognized on the iSeries - *SecOfr, *SecAdm, *Pgmr,
•sysOpr, and •user - and their default special authorities.

FIGURE 3.2
Default Special Authorities

Defaults ial authorities

User class •AI/Obj *Audit *IOSysCfg •JobCtl *Sa\/Sys *Sec:Adm *Service *SplCtl

*SecOfr ,/ ,/ ,/ ,/ ,/ ,/ ,/ ,/

*SecAdm ,/1 ,/1 ,/1 ,/

*Pgmr .fl .fl ,/1

*SysOpr ,/1 ,/ ,/

*User ,/1 ,/1

1 Security levels 10 and 20 only

These classes represent the groups of users that are typical for an installation. By specifying
a user class for each user profile, you can classify users based on their role on the system.

When you assign a user profile to a class, the profile inherits the special authorities
associated with the class. Although you can override these special authorities using the
SpcAut parameter, the default authorities are often sufficient.

The default value for the SpcAut parameter is *UsrCls, which instructs the system to
refer to the UsrCls parameter and assign the predetermined set of special authorities that
appears in Figure 3.2. You can override this default by typing from one to eight individual
special authorities that you want to assign to the user profile. After sending a message that
the special authorities assigned don't match the user class, the system creates the user
profile as you requested.

Consider this example:

CrtUsrPrf UsrPrf(NielsenKar) +
Password(Password) +
UsrCls(*SysOpr)

Once this CrtUsrPrf command is executed, user profile NielsenK.ar will have *JobCtl and
*SavSys special authorities. The command

CrtUsrPrf UsrPrf(NielsenKar) +
Password(Password) +
UsrCls(*SysOpr) +
SpcAut(*None)

creates user profile NielsenK.ar in the *SysOpr class but with no special authorities.
Figure 3.3 lists the allowed values for the SpcAut parameter and what each value

means.

38 Starter Kit for the IBM iSeries and AS/400

Special authority value
*UsrCls

*None

*AllObj

*Audit

*IOSysCfg

*JobCtl

*SavSys

*SecAdm

*Service

*SplCtl

FIGURE 3.3
SpcAut Parameter Values

Description
The default special authorities are based on the value specified for the UsrCls
parameter.

No special authorities are assigned.

All object authority. Lets users access any system object. This authority alone, how
ever, doesn't let users create, change, or delete user profiles.

Audit authority. Lets users start and stop security auditing and control security
auditing characteristics.

System configuration authority. Lets users change system configuration information.
For example, users can configure 1/0 devices, work with TCP/IP servers, and con
figure communications.

Job control authority. Lets users change, display, hold, release, cancel, and clear all
jobs on the system. Users can also control spooled files in output queues for which
OprCtl(*Yes) is specified.

Save system authority. Lets users save, restore, and free storage for all objects.

Security administrator authority. Lets users create, change, and delete user profiles.

Service authority. Lets users perform functions from the System Service Tools, a
group of executable programs used for various service functions (e.g., line traces,
diagnostics).

Spool control authority. Lets users delete, display, hold, and release their own
spooled files and spooled files owned by other users.

Special authorities should be given to only a limited number of user profiles because
some of the functions provided are powerful and exceed normal object authority. For
instance, *AllObj special authority gives the user unlimited access to and control over any
object on the system - a user with • AllObj special authority can perform virtually any
function on virtually any object on your system. The danger in letting that power get into
the wrong hands is clear.

Generally speaking, no profile other than QSecOfr should have *AllObj authority. This
is why the security level of any development or production machine should be at least 30,
where you can control resource security and *AllObj special authority with confidence.

Your security implementation should be designed so that it doesn't require •AJ]Obj
authority to administer most functions. Reserve this special authority for user profile
QSecOfr, and use that profile to make any changes that require that level of authority.

The •secAdm special authority is helpful in designing a security system that gives
users no more authority than they need to do their jobs. *SecAdm special authority
enables a user profile to create and maintain the system user profiles. Using *SecAdm, you
can assign an individual to perform these functions Vvithout having to assign that person's
profile to the *SecOfr user class.

Chapter 3 Access Made Easy 39

The •savSys special authority lets a user profile perform save/restore operations on
any object on the system without having the authority to access or manipulate those
objects. •savSys shows clearly how the iSeries lets you grant only the authority a user
needs to do a job. What would it do to your system security if your operations staff
needed *AllObj special authority to perform save/restore operations? If that were the case,
system operators could access such sensitive information as payroll and master files.
*SavSys avoids that authorization problem while giving operators the functional authority
to perform save/restore operations. (Be aware, though, that the ability to display
information from the save media still makes it possible to view sensitive information.)

Special authority *SplCtl provides access to all spooled files on the system. Spooled
files containing confidential information can't be protected from access by a user with
*SplCtl special authority, so you'll want to be particularly careful when assigning this
special authority to users.

*Service is another special authority that should be guarded. *Service special authority
enables a user profile to use the System Service Tools. These tools provide the capability
to trace data on communications lines and to actually view user profiles and passwords
being transferred down the line when someone signs on to the system. The tools also
provide the capability to display or alter any object on your system. So be stingy with
*Service special authority. The QSrv and QSecOfr profiles provided with OS/400 have
*Service authority. You should change the password to *None for system profile QSrv and
assign a password only when a customer engineer needs to use the profile.

You should also carefully control *Audit special authority. OS/400 provides security
related auditing functions, and a user with *Audit special authority can start and stop this
auditing and change the auditing characteristics. These abilities pose an obvious risk in
environments that rely on security auditing functions.

To guard against changes to system configuration, you need to control special
authority *IOSysCfg. This special authority gives a user the ability to change such things as
the communications configuration, TCP /IP server characteristics, and the HTTP server.

Initial Sign-On Options
CurLib (Current library)
InlPgm (Initial program to call)
InlMnu (Initial menu)
LmtCpb (Limit capabilities)

Three user profile parameters work together to determine a user's initial sign-on options.
The CurLib, InlPgm, and InlMnu parameters determine the user profile's current library,
initial program, and initial menu, respectively. Why are these parameters significant to
security? They establish how the user interacts with the system initially, and the menu or
program executed at sign-on determines the menus and programs available to that user.
Let's look at a couple of examples.

40 Starter Kit for the IBM iSeries and AS/400

Consider the user profile User, which has the following values:

Current library • . • . CURLIB IC LIB __
Initial program to call INLPGM *NONE __

Library ••
Initial menu

Library .•••••.
INLMNU ICMENU __

IC LIB __

When User signs on to the system, the current libraiy is set to ICLib, and the user receives
menu ICMenu in libraiy ICLib. Any other menus or programs that can be accessed
through ICMenu and to which User is authorized are also available.

Here's another example:

Current library
Initial program

Library •••
Initial menu

Library •.•

to call
CUR LIB
IN LP GM

INLMNU

IC LIB __
ICU SE RON_

SYS LIB __
*SIGNOFF_

With these values, when User signs on to the system, ICLib is the current libraiy in the
library list, and program ICUserOn in library SysLib is executed. Again, any other menus
or programs accessible through ICUserOn and to which User is authorized are also
available.

The value of *SignOff for the InlMnu parameter is worth some discussion. When a
user signs on, OS/400 executes the program, if any, specified in the InlPgm parameter. If
the user or user program hasn't actually executed the SignOff command when the initial
program ends, the system executes the menu, if any, specified in parameter InlMnu. Thus,
if the default value Main were given for InlMnu and program SysLib/ICUserOn were to
end without signing off the user, the system would present the main menu. When
*SignOff is the value for InlMnu, OS/ 400 signs off the user from the system when the
initial program ends.

Parameters CurLib, InlPgm, and Inllvfnu are significant to security because users can
change these parameter values at sign-on. Users can also execute OS/400 commands from
the command line provided on iSeries menus. Obviously, allowing all users these
capabilities is a bad idea from a security standpoint, and this is where parameter LmtCpb
enters the picture. LmtCpb controls the user's ability to

• define (using the ChgUsrPrf command) or change (at sign-on) his or her own
initial program

• define (using the ChgUsrPrf command) or change (at sign-on) his or her own
initial menu

• define (using the ChgUsrPrf command) or change (at sign-on) his or her own
current libraiy

• define (using the ChgUsrPrf command) or change (at sign-on) his or her own
attention key program

• execute OS/400 or user-defined commands from the command line on iSeries
native menus

Chapter 3 Access Made Easy 41

Figure 3.4 shows the effects of the possible values for the LmtCpb parameter.

FIGURE 3.4
LmtCpb Parameter Values

Functions allowed with LmtCpb

lmtCpb
value

Change initial
. P'!'!f'a.m

Change initial
menu

Change current
librarr ...

Change attention
keypf0£~

Enter
commands

*No

*Partial
*Yes

.I .I .I
.I

.I .I

.I
,/1

1 Users can execute only commands that allow limited-capabili!y users. 05/400 is shipped with the following commands that allow limited
capabili!y users: Dsp)ob (Display Job), Dsp)oblog (Display Job Log), DspMsg (Display Messages), SignOff (Sign Off), SndMsg (Send Message),
StrPCO (Start PC Organizer), and WrkMsg (Work with Messages).

Notice that LmtCpb("'Yes) prevents changing any of these values or executing any
commands other than those that explicitly allow limited-capability users.

Production systems usually enforce LmtCpb(*Yes) for most user profiles. The profiles
that typically need LmtCpb(*No) are IT personnel who frequently use the command line
from OS/400 menus. You can still secure these user profiles from sensitive data by using
resource security. Although you could specify LmtCpb(*Partial) for such IT personnel and
thus ensure that they can't change their initial program, they could still change their initial
menu, which would be executed at the conclusion of the initial program.

System Value Overrides
DspSgninf (Display sign-on information)
PwdExpltv (Password expiration interval)
LmtDevSsn (Limit device sessions)

You can override the system values QDspSgninf (Display sign-on information),
QPwdExpitv, and QLmtDevSsn (Limit device sessions) through three user profile
parameters that control these functions: DspSgnlnf, PwdExpltv, and LmtDevSsn. You'll
notice (in Figure 3.1) that each of these parameters has a default value of •sysVal. The
default lets the system value control these functions. To override a system value, you
specify the desired value in the user profile parameter. The available choices are the same
as those for the system values themselves.

DspSgninf controls whether the system displays the Sign-on Information panel after
tl1e user signs on. This panel shows

• the last sign-on date

• the number of invalid sign-on attempts

• the number of days until the password expires if it expires within seven days

42 Starter Kit for the IBM iSeries and AS/400

The parameter can have the following values:

• 0 - Do not display sign-on information.

• 1 - Display sign-on information.

The Sign-on Information panel lets users monitor attempted uses of their profile and
reminds users when a new password is about to be required.

PwdExpltv lets you specify, for each user, the number of days a password remains
active before requiring a change. We suggest you set system value QPwdExpltv to a
reasonable value that would apply to most of your users (for instance, 60 to 90 days).
Then, for profiles with special considerations, such as increased security concerns, use
parameter PwdExpltv in the profile itself to override the system value.

The LmtDevSsn parameter controls whether a user can sign on to more than one
device at a time. As with PwdExpitv, you should assign system value QLmtDevSsn so that
it applies to most users and use LmtDevSsn in the profile for special cases.

Group Profiles
GrpPrf (Group profile)
Owner (Owner)
GrpAut (Group authority)
SupGrpPrf (Supplemental groups)

All the parameters discussed up to this point are used to define profiles for individual
users. The GrpPrf, Owner, and GrpAut parameters let you associate an individual with a
group (or with several groups, using parameter SupGrpPrf) of user profiles via a group
profile. When you authorize a group profile to objects on the system, the authorization
applies to all profiles in the group.

How is this accomplished? You create a user profile for the group. The group profile
should specify Password(*None) to prevent it from actually being used to sign on to the
system - all members of the group should sign on using their own individual profiles.
For instance, you might create a profile called DevPgrnr to be the group profile for your
programming staff. Then, for each user profile belonging to a member of the
programming staff, use the ChgUsrPrf command and the GrpPrf, Owner, and GrpAut
parameters to place the user in the DevPgmr group.

Parameter GrpPrf names the group profile with which the user profile will be
associated. If you created the group profile DevPgmr, you'd specify DevPgrnr as the
GrpPrf value for the user profiles you put into that group.

Parameter Owner specifies who owns the objects created by the group profile. The
parameter value determines whether the user profile or the group profile will own the
objects created by profiles that belong to the group. There is an advantage to having the
group profile own all objects created by its constituent user profiles: When the group
profile owns the objects, every member of the group has •All authority to the objects. This
arrangement is helpful, for instance, in a programming environment in which more than
one programmer works on the same projects. However, there's a way to provide authority

Chapter 3 Access Made Easy 43

to group members without giving them *All authority. If you specify Owne!{*UsrPrt),
individual user profiles own the objects they create. If a user profile owns an object, the
group profile and other members in the group have only the authority specified in the
GrpAut parameter to the object.

Parameter GrpAut specifies the authority to be granted to the group profile and to
members of the group when •usrPrf is specified as the owner of the objects created. Valid
values are *All, •change, *Use, *Exclude, and *None. The first four of these values are
authority classes, each of which represents a set of specific object and data authorities that
will be granted. Chapter 4 discusses these values in detail as part of the discussion of
specific authorities. If you specify one of the authority class values for GrpAut, the
individual user profile that creates an object owns it, and the other members of the group,
including the group profile, have the specified set of authorities to the object.

*None is the value required for GrpAut when *GrpPrf is specified as the owner of
objects created by the user. Because the group profile automatically owns the object, all
members of the group will share that authority.

You can assign a user to multiple group profiles using the SupGrpPrf parameter. The
user then receives authorities to objects from the group profile as well as from all
supplemental groups. To specify SupGrpPrf, you must also specify GrpPrf.

JobD (Job Description)
The JobD parameter on the CrtUsrPrf command determines the job description associated
with the user profile. The job description specifies a set of attributes that determine how
the system will process the job. Not only is the job description you specify used (as the
default) when the user profile submits a batch job to the system, but values in the job
description also determine the attributes of the user profile's workstation session. For
instance, the initial library list that you specify for the job description becomes the user
portion of the library list for the workstation session. If you don't specify a particular job
description for the user profile on the JobD parameter, the system defaults to
JobD(QDftJobD), an IBM-supplied job description that uses the QUsrLibL (User library list)
system value to determine the user portion of the library list. The JobD parameter affects
no other portion of the library list. After the user profile signs on, the initial program can
manipulate the library list.

One way to manage the user portion of the library list is to use system value
QUsrLibL to establish all user libraries. Then, when someone signs on to the system,
QUsrLibL supplies all possible libraries, and users can always find the programs and data
they need. However, this approach disregards security because it lets all users access all
libraries, even those they don't need.

Another approach to setting up user libraries is to create a job description for each
user type on the system. Then, when you create the user profile, you can specify the
appropriate job description for the JobD parameter, and that job description's library list
becomes the user library list when that profile signs on to the system.

The approach we recommend is to specify only general-purpose user libraries in
QUsrLibL. These libraries should contain only general utility programs (e.g., date routines,

44 Starter Kit for the IBM iSeries and AS/400

extended math functions, a random number generator). Each profile's job description (and
potentially initial program) should specify only the application libraries needed by that
particular user profile. You can use department name or some other trigger kept in a
database file to determine library needs.

Message Handling
MsgQ (Message queue)
Dlvry (Delivery)
Sev (Severity code filter)

When you create a user profile, the system automatically creates a message queue of the
same name in library QUsrSys. The user receives job completion messages, system
messages, and messages from other system users via this message queue. Three CrtUsrPrf
parameters relate to handling user messages.

The MsgQ parameter specifies the message queue for the user. Except in very unusual
cirmmstances, you should use the default value, *UsrPrf, for this parameter. If you
the message queue name the same as the user profi1e name, system operators and other
users can more easily remember the message queue name when sending messages.

The Dlvry parameter specifies how the system should deliver messages to the user.
The value *Break specifies that the message will interrupt the user's job upon arrival. This
interruption may annoy users, but it does help to ensure that they notice messages. The
value *Hold causes the queue to hold messages until a user or program requests them.
The value *Notify specifies that the system will notify the job of a message by sounding
the alarm and displaying the message-waiting light. The user can then view messages at
his or her convenience. The value •nft specifies that the system will answer with the
default reply any message that requires a response; informational messages are ignored.

The last parameter of the message group, Sev, specifies the lowest severity code of a
message that the system will deliver when the message queue is in *Break or *Notify
mode. Messages of lower severity are delivered to the user profile's message queue but
don't interrupt the user or sound the alarm and tum on the message-waiting light. The
default severity code is 0, meaning that the user will receive all messages. You should
usually leave the Sev value at 0. But if you don't want certain users - because of their
operational responsibilities, for instance - to be bothered by a lot of low-severity
messages, you can assign another value (up to 99).

Printed Output Handling
PrtDev (Print device)
OutQ (Output queue)

Print direaion on the iSeries is complex enough to be confusing to many. In Chapter 9,
we unravel the chain of possibilities for print direction in detail. One of the links in that
chain is the PrtDev and OutQ parameter pair found in the user profile. For the time
being, simply know that the print device and output queue from the user profile are used
when the printer file specifies that the job's attributes are to be used to determine print

Chapter 3 Access Made Easy 45

direction (the OutQ parameter value in the printer file is *Job) and the job description
also specifies that the user profile should be used in deriving the print direction (the
OutQ par-ameter value is •usrPrf). Let's see how the system uses these values to further
direct print.

PrtDev specifies the name of the printer (actually an output queue with the same
name as the printer) to which output is directed. The PrtDev parameter allows the
following values:

• *WrkStn -The printer assigned to the user's workstation (found in the device
description) is used. This is the default value.

• •sysVal - The default system printer specified in system value QPrtDev is used.

• PrintDeviceNarne - If this device does not exist when referenced, the ~]'stem directs
print to the default system printer specified in system value QPrtDev.

Note that parameter PrtDev is used only when the OutQ parameter value is *Dev.
The OutQ parameter specifies the qualified name of the output queue to which

output is directed. You can use the following values for OutQ:

• *WrkStn -The printer assigned to the user's workstation (found in the device
description) is used. This is the default value.

• *Dev - The system directs output to an output queue with the same name as the
value specified in the PrtDev parameter.

• OutputQueueName - The system directs output to the output queue herein named.

In our experience, print direction is typically derived from the OutQ information rather
than from that found in PrtDev. For more in-depth information about print direction, refer
to Chapter 9.

Text (Text Description)
The last parameter we'll look at on the CrtUsrPrf command is Text. Text gives you 50
characters in which to meaningfully describe the user profile. The information you
include, as well as its format, should be consistent for each user profile to ensure
readability and usability. You can retrieve, print, or display this text to identify who
requests a report or uses a program.

Plan Your Profiles
Before you actually create any user profiles, consider each parameter and develop a plan
to best use it. On<--e you determine your company's needs, devise standards for creating
your user profiles. The CrtUsrPrf conunand shown in Figure 3.5 creates a sample user
profile for an order entry clerk at branch location 01.

46 Starter Kit for the IBM iSeries and AS/400

FIGURE 3.5
A Sample CrtUsrPrf Command

CrtUsrPrf UsrPrf(NielsenKar) +
Password(*UsrPrf) +
PwdExp(*Yes) +
UsrCLs(*User) +
CurLib(*CrtDft) +
InlPgm(QGPL/UserlnlPgm +
InlMnu(*SignOff) +
LmtCpb(*Yes) +
Text('Karen Nielsen, Branch 01, Order Entry') +
SpcAut(*UsrCLs) +
JobD(QGPL/OEJobD +
GrpPrf (OEGroup) +
Owner(*GrpPrf) +
GrpAut(*None) +
MsgQ(*UsrPrf) +
Dlvry(*Break) +
PrtDev(*SysVal) +
OutQ(QUsrSys/B010EOutQ

It often helps to chart the various profile types and the parameter values you'll use
when creating user profiles. Figure 3.6 shows a sample table that lists values you could
use if your company had order entry, inventory control, accounting, personnel, IT
operations, and IT programming departments. Such a table can seive as part of your
security strategy and as a reference document for creating user profiles.

FIGURE 3.6
Sample Parameter Values for User Departments

User department UsrCls Curlib lnlPgm LmtCpb GrpPrf OutQ

Order entry *User QGPL UserlnlPgm *Yes OEGroup BnnOEOutQ

Inventory control *User QGPL UserlnlPgm *Yes ICGroup BnnlCOutQ

Accounting *User QGPL UserlnlPgm *Yes AcGroup BnnAcOutQ

Personnel *User QGPL UserlnlPgm *Yes PsGroup BnnPsOutQ

IT operations *SysOpr Userlib ITlnlPgm *No OpGroup UserOutQ

IT programming *Pgmr Userlib ITlnlPgm *No PgGroup UserOutQ
nn = Location (e.g., 01 =Orlando, 02 = New York)
UserLib = Personal library with same name as user profile
UserOutQ = Personal output queue with same name as user profile

Maintaining User Profiles
After you've set up your user profiles, you'll need to maintain them as users come and go
or as their responsibilities change. You can change a user profile with the ChgUsrPrf
command. As with CrtUsrPrf, you must have *SecAdm special authority to use ChgUsrPrf.
The ChgUsrPrf command is the same as the CrtUsrPrf command except that ChgUsrPrf has
no Aut (Authority) parameter, and the parameter default values for ChgUsrPrf are the
parameter values you assigned when you executed the CrtUsrPrf command.

Chapter 3 Access Made Easy 47

Changing a User Password
Typically, you might employ ChgUsrPrf when a user forgets a password. Because the
system won't display a password, you'd need to use ChgUsrPrf to change the forgetful
user's password temporarily and require the user to choose a new password at the next
sign-on. To accomplish this, execute the command

ChgUsrPrf UsrPrf(ProfileName) +
Password(Password) +
PwdExp(*Yes)

This command resets the password to a known value and sets the password expiration
value to *Yes so that the system will prompt the user to choose a new secret password at
the next sign-on.

Deleting a User Profile
Another user profile maintenance task you'll perform from time to time is deleting a user
profile. For example, when an employee leaves, the security administrator should promptly
remove the employee's profile from the system or at least set the password to *None.

Here are a few rules you should know:

• You can't delete a user profile that owns objects. You must first delete the objects or
transfer their ownership to another profile.

• You can't delete a user profile if it's the primary group for any objects. You must first
change or remove the primary group for objects.

• If the profile is a group profile, you can't delete it when it has members. You must
first remove each member from the group by changing each member's GrpPrf or
SupGrpPrf value.

The DltUsrPrf command has parameters that let you handle the objects owned by the
profile as well as the objects for which the profile is the primary group, letting you address
rules 1 and 2 above. For rule 3, you can list the members of a group profile using this
DspUsrPrf (Display User Profile) command:

DspUsrPrf GroupProfileName *GrpMbr

DltUsrPrf's parameter OwnObjOpt (Owned object option) tells the system how to
handle any objects owned by the user profile being deleted. The parameter can have one
of three values:

• *NoD!t - The profile is not deleted if it owns objects.

• *Dlt - The owned objects and the profile are deleted.

• •chgOwn - The owned objects are transferred to a new owner, and the profile is
deleted.

Avoid the *Dlt option unless you've used the DspUsrPrf command to identify the owned
objects and are sure you want to delete them. Remember, a backup of these objects is an
easy way to protect yourself in case of error.

48 Starter Kit for the IBM iSeries and AS/400

If you specify *ChgOwn for parameter OwnObjOpt, you must specify the new owner
of these objects in the second part of the parameter. For instance, if a programmer owns
some objects privately and you want to delete that programmer's profile, you might
specify

DltUsrPrf UsrPrf(ProfileName) OwnObjOptC*ChgOwn IT)

to transfer ownership of the objects to your IT group profile.
If you want to handle the owned objects individually, you can use command

WrkObjOwn (Work with Objects by Owner). You can then selectively delete objects as
well as change their ownership. This option makes it possible to specify different owners
for different objects, if you so desire.

DltUsrPrl's PGpOpt (Primary group option) parameter tells the system how to handle
objects for which the profile is the primary group. The parameter can have one of two
values:

• •NoChg - The profile is not deleted if it is the primary group for objects.

• *ChgPGp - The objects for which the profile is the primary group are transferred to
a newly specified primary group.

If you want to handle objects for which the profile is the primary group individually, you
can use the WrkObjPGp (Work with Objects by Primary Group) command.

If you write a program to help you maintain user profiles, you may find the RtvUsrPrf
(Retrieve User Profile) command helpful. You can use RtvUsrPrf to retrieve into a CL
variable one or more of the parameter values associated with a user profile. For details
about this command's parameters, see OS/400 CL Reference- Part 4 (SC41-5726). You can
also prompt this command on your screen and then use the help text to learn more about
each variable you can retrieve.

Figure 3.7 shows the prompt screen for command RtvUsrPrf.

FIGURE 3.7
RtvUsrPrf Command Prompt

Retrieve User Profile CRTVUSRPRF)

Type choices, press Enter.

User profile . > *CURRENT - Name, *CURRENT
CL var for RTNUSRPRF c 10) Character value
CL var for SPCAUT c 100> Character value
CL var for MAXSTG c 11 0> Number
CL var for STGUSED C15 0> Number
CL var for PTYLMT c 1) Character value
CL var for INLPGM c 10) Character value
CL var for INLPGMLIB c 10) Character value
CL var for JOBD c 10) Character value
CL var for JOBDLIB c 10) Character value
CL var for GRPPRF c 10) Character value

continued

Chapter 3 Access Made Easy 49

FIGURE 3.7 CONTINUED

CL var for OWNER (1f)) Character value
CL var for GRPAUT (1f)) Character value
CL var for ACGCDE (15) Character value
CL var for MSGQ (1f)) Character value
CL var for MSGQLIB (1f)) Character value
CL var for OUTQ (10) Character value
CL var for OUTQLIB (10) Character value
CL var for TEXT <50) Character value
CL var for PWDCHGDAT (6) Character value
CL var for USRCLS (10) Character value
CL var for ASTLVL (10) Character value
CL var for SPCENV (10) Character value
CL var for CUR LIB (1(1) Character value
CL var for INLMNU (10) Character value
CL var for INLMNULIB (10) Character value
CL var for LMTCPB (10) Character value
CL var for DLVRY (10) Character value
CL var for SEV (2 0) Number
CL var for PRTDEV (10) Character value
CL var for ATNPGM (10) Character value
CL var for ATNPGMLIB C10) Character value
CL var for USROPT (240) Character value
CL var for DSPSGNINF (7) Character value
CL var for PWDEXPITV (5 0) Number
CL var for PWDEXP (4) Character value
CL var for STATUS (10) Character value
CL var for PRVSIGN (13) Character value
CL var for NOTVLDSIGN (11 0) Number
CL var for LMTDEVSSN (7) Character value
CL var for KBDBUF (10) Character value
CL var for LANG ID (10) Character value
CL var for CNTRYID <HD Character value
CL var for CC SID (5 0> Number
CL var for SRTSEQ C10) Character value
CL var for SRTSEQLIB (10) Character value
CL var for OBJ AUD {1()} Character value
CL var for AUDLVL {640> Character value
CL var for GRPAUTTYP (10> Character value
CL var for SUPGRPPRF (150> Character value
CL var for UID C10 0> Number
CL var for GID (10 0) Number
CL var for SET JOBATR (160> Character value
CL var for CHRIDCTL { 10> Character value

The prompt lists the length of each variable next to the parameter whose value is
retrieved in that variable. The RtvUsrPrf command is valid only within a CL program
because the parameters actually return variables to the program, and return variables can't
be accepted when you enter a command from an interactive command line. You might
use this command to retrieve specific user information and use this information to make
application decisions. For example, the code segment in Figure 3.8 retrieves into variable
&GrpPrf the group profile for the current user and tests to see whether it is OEGROUP.

50 Starter Kit for the IBM iSeries and AS/400

When this condition is met, the code might display a certain menu or determine which
applkation libraries to put in the user's library list.

RtvUsrPrf UsrPrf(*Current)
GrpPrf(&GrpPrf >

FIGURE 3.8
RtvUsrPrf Example

If (&GrpPrf *Eq 'OEGROUP'
Do

End Do

Integrity: The CpyUsr and CrtUsr Commands

+

+

An important characteristic of system administration is consistency. Consistency in both the
apprmch to and the results of a task is key to shaping overall system integrity.

The automation of administrative tasks is a powerful approach to effective system
administration. Not only does a programming solution effect consistency, but it also saves
time and money and user profile maintenance is a prime target for automation.

In planning your user profiles, you'll see that your users fall into one of a few general
categories (such as those depicted in Figure 3.6) and that users within each group share
the same geneml attributes. With the WrkUsrPtl (Work with User Profiles) command, you
can use the copy option to duplicate user profiles. However, this approach requires
manual interaction, relies on a person to supply valid and consistent input, and lacks the
full control and flexibility of an automated process. Therefore, the first step in a
programming solution to user profile maintenance is the creation of a routine to copy user
profiles.

We've created user-defined command CpyUsr as a sample on which you can base
your own command. Figure 3.9A shows the command source.

I*
I*
I*
I*
I*

Cmd

FIGURE 3.9A
CpyUsr Command Source

===
Command....... CpyUsr

= CPP •••.••..... CpyUsr001
=Description ... Copy user

=
=
=

;:===
Prompt('Copy User'

Parm Kwd(FromUsrPrf
Type(*SName >
Len(10 >
Min(1)
Prompt('From user'

*I
*I
*I
*I
*I

+
+
+
+

continued

Chapter 3 Access Made Easy 51

Parm

Pa rm

FIGURE 3.9A CONTINUED

Kwd(ToUsrPrf)
Type(*SName)
Len(HI)
Min(1)
Prompt('To user')

Kwd(Text)
Type(*Char
Len(50)
Min(1)
Case< *Mixed
Prompt('Text description'

The command accepts three input parameters:

• a user profile to be copied

• a user profile to be created

• a text description for the newly created user profile

+
+
+
+

+
+
+
+
+

With the exception of the text description, the newly created user profile's attributes are
taken from the user profile being copied.

I*
I*
I*
I*
I*

Pgm

Figure 3.9B shows CpyUsr's CL command processing program, CpyUsrOOl.

FIGURE 3.98
CpyUsr001 CUE Source

===
=Program ...•••• CpyUsr001
=Description ••• Copy user

Command processing program for CpyUsr

=

=
===

Parm<
&FromUser
&ToUser
&Text

*I
*I
*I
*I
*I

+
+
+
+

I* === *I
I* = Variable definitions */
I* === *I

I* --- *I
I* - Input parameters */
I* --- *I

Del
Del
Del

&FromUser
&ToUser
&Text

*Char
*Char
*Char

(
(

(

10
10
50

continued

52 Starter Kit for the IBM iSeries and AS/400

FIGURE 3.98 CONTINUED

I* --- *I
I* - Work variables *I
I* --- *I

Del &TextA *Char 52)

Del &Cmd *Char 3000)

Del &CmdLen *Dec 15 5) (3000)

Del &Counter *Dec 5 0)

Del &FromOffset *Dec 5 0)

Del &ToOffset *Dec 5 0)

I* --- *I
I* - Retrieved user profile variables and their work variables *I
I* --- *I

Del &SpcAut *Char (100)

Del &SpcAutA *Char (120)

Del &MaxStg *Dec (11 0)

Del &MaxStgA *Char (11)

Del &PtyLmt *Char (1)

Del &InlPgm *Char (HI)

Del &InlPgmLib *Char (10)

Del &InlPgmA *Char (21)

Del &JobD *Char (10)

Del &JobDLib *Char (10)

Del &JobDA *Char (21)

Del &GrpPrf *Char (10)

Del &Owner *Char (10)

Del &GrpAut *Char (10)

Del &AcgCde *Char (15)

Del &OutQ *Char (10)

Del &OutQLib *Char (10)

Del &Out QA *Char (21)

Del &UsrCls *Char (10)

Del &AstLvl *Char (10)

Del &SpcEnv *Char (10)

Del &CurLib *Char (10)

Del &InlMnu *Char (10)

Del &InlMnuLib *Char (10)

Del &InlMnuA *Char (21)

Del &LmtCpb *Char (10)

Del &Dlvry *Char (10)

Del &Sev *Dec (2 0)

Del &SevA *Char (2)

Del &PrtDev *Char (10)

Del &AtnPgm *Char (10)

Del &AtnPgmLib *Char (10)

Del &AtnPgmA *Char (21)

Del &UsrOpt *Char (240)

Del &usroptA *Char (270)

Del &DspSgninf *Char (7)

Del &PwdExpitv *Dec (5 0)

Del &PwdExpitvA *Char (7)

Del &LmtDevSsn *Char (7)

continued

I*
I*
I*

I*
I*
I*

I*
I*
I*

Chapter 3 Access Made Easy 53

FIGURE 3.98 CONnNum

Del &KbdBuf *Char (10)

Del &Lang ID *Char (10)

Del &CntryID *Char (10)

Del &CCSID *Dec (5 0)

Del &CC SIDA *Char (7)

Del &SrtSeq *Char (10)

Del &SrtSeqLib *Char (10)

Del &SrtSeqA *Char (21)

Del &Obj Aud *Char (10)

Del &AudLvl *Char (640)

Del &GrpAutTyp *Char (10)

Del &SupGrpPrf *Char (150)

Del &SupGrpPrf A *Char (170)

Del &ChrIDCtl *Char (10)

=== = Global error trap =
===

MonMsg
GoTo Error

CPF0000 MCH0000) Exec(
)

===
Put apostrophes around text =

===
ChgVar &TextA C '' ' 1 *TCat &Text *TCat • 1

'
1

)

===
=Retrieve existing user profile information =
===

RtvUsrPrf UsrPrf C &FromUser
SpcAut(&SpcAut)
MaxStg(&MaxStg)
PtyLmt(&PtyLmt)
InlPgmC &InlPgm)
InlPgmLib(&InlPgmLib
JobDC &JobD)
JobDLib(&JobDLib
GrpPrf(&GrpPrf)
Owner(&Owner)
GrpAut(&GrpAut
AcgCdeC &AcgCde
OutQ(&OutQ)
OutQLibC &OutQLib
UsrCLs(&UsrCLs)
AstLvl(&AstLvl)
SpcEnvC &SpcEnv)
CurLibC &CurLib)
InLMnuC &InlMnu)
InlMnuLibC &InlMnuLib
LmtCpbC &LmtCpb)
Dlvry(&Dlvry)

*I
*I
*I

+

*I
*I
*I

*I
*I
*I

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

continued

54 Starter Kit for the IBM iSeries and AS/400

FIGURE 3.98 CONTINUED

Sev(&Sev >
PrtDev(&PrtDev >
AtnPgmC &AtnPgm >
AtnPgmlibC &AtnPgmlib
UsrOpt(&UsrOpt >
DspSgnlnf(&DspSgnlnf
PwdExpltvC &PwdExpitv
LmtDevSsn< &LmtDevSsn
KbdBufC &KbdBuf)
LangIDC &LangID)
CntryIDC &CntrylD
CCSIDC &CCSID)
SrtSeqC &SrtSeq)
SrtSeqlibC &SrtSeqLib
ObjAudC &ObjAud)
AudlvLC &Audlvl)
GrpAutTypC &GrpAutTyp
SupGrpPrf(&SupGrpPrf
ChrIDCtl(&ChrIDCtl)

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I* === *I
I* = Extract and construct special case parameters *I
I* === *I

I* --- *I
I* - Extract elements from list parameters and construct blank */
I* - separated list */

I* --- *I

ChgVar

SpcAutBeg:

ChgVar
ChgVar

If

Do
ChgVar

ChgVar

Go To
End Do

ChgVar

UsrOptBeg:

ChgVar
Chg Var

&Counter

&FromOffset
&ToOffset

(1)

&Counter - 1
&Counter - 1

&Counter *LE 10) *And

* 10
* 11

+ 1
+ 1

%Sst(&SpcAut &FromOffset 10 > *NE • •)

%SstC &SpcAutA &ToOffset 10)
(%Sst(&SpcAut &FromOffset 10) >
&Counter
(&Counter + 1)
SpcAutBeg

&Counter

&FromOff set
&ToOf f set

1)

(&Counter -
(&Counter -

* 10
* 11

+
+

+
+
+
+

+

+

continued

If

Do
ChgVar

ChgVar

Go To
End Do

Chg Var

SupGrpBeg:

ChgVar
Chg Var

If

Do
ChgVar

ChgVar

Go To
End Do

Chapter 3 Access Made Easy 55

FIGURE 3.98 CONTINUED

&Counter *LE 24) *And
%Sst(&UsrOpt &FromOffset 10) *NE • •)

%Sst(&UsrOptA &ToOffset 10)
C %Sst(&UsrOpt &FromOffset 10))
&Counter
(&Counter + 1)
UsrOptBeg

&Counter

&FromOff set
&ToOffset

(1)

&Counter -
&Counter -

&Counter *LE 15) *And

* 10
* 11

+ 1
+ 1

%Sst< &SupGrpPrf &FromOffset 10) *NE • •)

%Sst< &SupGrpPrfA &ToOffset 10)
(%Sst(&SupGrpPrf &FromOffset 10))
&Counter
(&Counter + 1)
SupGrpBeg

+
+
+
+

+

+

+
+
+
+

+

+

I* --- *I
I* - Convert special case parameters to appropriate values *I
I* --- *I

If
ChgVar

Else
ChgVar

If
ChgVar

If
ChgVar

If

ChgVar

&MaxStg *Eq -1)
&MaxStgA (• *NOMAX •

&MaxStgA &MaxStg)

&PwdExpitv *Eq 0)
&PwdExpitvA ('*SYSVAL'

&PwdExpitv *Eq -1)
&PwdExpitvA (• *NOMAX •

(&PwdExpitv *NE 0) *And
(&PwdExpitv *NE -1)

&PwdExpitvA (&PwdExpitv

+

+

+

+

+
+
+
+

continued

56 Starter Kit for the IBM iSeries and AS/400

If
ChgVar

Else
ChgVar

FIGURE 3.98 CONTINUED

&CCSID *Eq -2
&CC SIDA (I *SYSVAL I

&CC SIDA CCSID)

+

+

I* --- *I
I* - Construct qualified parameters */
I* --- *I

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

&InlPgmLib *NE • •) +
&InlPgmA C &InlPgmLib *TCat '/' *TCat &InlPgm)

+
&InlPgmA &InlPgm)

&InlMnuLib *NE • •) +
&InlMnuA C &InlMnuLib *TCat '/' *TCat &InlMnu)

+
&InlMnuA &InlMnu)

&OutQLib *NE I I) +
&Out QA (&OutQLib *TCat I/ 1 *TCat &OutQ)

+
&Out QA (&OutQ)

&JobDLib *NE I I) +
&JobDA (&JobDLib *TCat I/ 1 *TCat &JobD)

+
&Job DA (&JobD)

&AtnPgmLib *NE • •) +
&AtnPgmA C &AtnPgmLib *TCat '/' *TCat &AtnPgm)

+
&AtnPgmA C &AtnPgm)

&SrtSeqLib *NE ' •) +
&SrtSeqA C &SrtSeqLib *TCat '/' *TCat &SrtSeq)

+
&SrtSeqA C &SrtSeq)

I* --- *I
I* - Convert numeric parameters to alpha */
I* --- *I

ChgVar &SevA C &Sev)
continued

Chapter 3 Access Made Easy 57

FIGURE 3.98 CONTINUED

I* === *I
I* = Create user profile = *I
I* === *I

Chg Var &Cmd +
1 CRTUSRPRF 1 *BC at +
1 USRPRFC 1 *TCat &ToUser *TC at I) J +
*BC at +
'PASSWORD(' *TC at J *USRPRF I *TC at I) I +
*BCat +
'PWDEXP(' *TCat '*YES' *TC at I) I +
*BC at +
'USRCLS(' *TCat &UsrCls *TCat I) I +
*BC at +
I ASTLVLC I *TC at &AstLvl *TC at I) I +
*BC at +
1 CURLIBC 1 *TCat &CurLib *TC at I) 1 +
*BC at +
I INLPGM(. *TC at &InlPgmA *TC at I) I +
*BC at +
'INLMNUC' *Teat &InlMnuA *TC at I) I +
*BCat +
I LMTCPB(I *TCat &LmtCpb *TCat I) I +
*BC at +
'TEXT(' *TC at &TextA *TC at I) I +
*BC at +
I SPCAUTC I *TC at &SpcAutA *TC at I) I +
*BC at +
'SPCENV(' *TC at &SpcEnv *TC at I) I +
*BC at +
'DSPSGNINFC' *TC at &DspSgnlnf *TCat I) I +
*BCat +
'PWDEXPITVC' *TC at &PwdExpltvA *TC at I) I +
*BC at +
I LMTDEVSSN (I *TC at &LmtDevSsn *TCat I) I +
*BC at +
'KBDBUFC' *TCat &KbdBuf *TCat I) I +
*BC at +
'MAXSTGC' *TC at &MaxStgA *TC at I) I +
*BC at +
I PTYLMTC I *TC at &PtyLmt *TC at I) I +
*BC at +
'JOBDC' *TC at &JobDA *TCat I) I +
*BC at +
'GRPPRF(' *TC at &GrpPrf *TCat I) I +
*BC at +
'OWNER(' *TCat &Owner *TCat r)' +
*BC at +
'GRPAUT(I *TC at &GrpAut *TCat I) I +
*BC at +
'GRPAUTTYP(' *TC at &GrpAutTyp *TC at I) I +
*BC at +
'SUPGRPPRF(' *TC at &SupGrpPrfA *TCat I) I +

continued

58 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*

FIGURE 3.98 CON11NUED

*BC at
'ACGCDE(' *TC at &AcgCde *TC at I) I

*BC at
'MSGQC' *TC at '*USRPRF' *TCat I) I

*BCat
'DLVRYC' *TCat &Dlvry *TCat I) I

*BC at
1 SEV< 1 *TCat &SevA *TC at I) I

*BC at
'PRTDEVC' *TC at &PrtDev *TC at I) I

*BC at
'OUTQC• *TC at &OutQA *TCat I) I

*BCat
'ATNPGMC' *TCat &AtnPgmA *TCat I) l

*BCat
'SRTSEQ(' *TC at &SrtSeqA *TCat I) I

*BC at
I LANG ID(I *TCat &Lang ID *TC at I) I

*BC at
I CNTRYIDC I *TC at &CntryID *TCat I) I

*BC at
'CCSID(' *TC at &CCSIDA *TCat ') l

*BCat
'CHRIDCTLC' *TCat &ChrlDCtl *TCat I) I

*BC at
'USROPTC' *TC at &UsrOptA *TCat f) I

Call PgmC QCmdExc
Parm(

&Cmd
&Cmdlen

)

===
= Exit program =
===

Return

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+

*I
*I
*I

I* === *I
I* = Error handler */
I* === *I

Error:

SndPgmMsg MsgIDC CPF9897)
MsgF(QCPFMsg)
MsgDta('Error in CPYUSRPRF.' *BCat

'See job log for details.')
MsgTypeC *Escape)

MonMsg C CPF0000 MCH0000)

EndPgm

+
+
+
+

Chapter 3 Access Made Easy 59

The program is quite simple. It performs the following basic tasks:

1. Format the text parameter.

2. Retrieve user profile information for the profile to be copied.

3. Format the retrieved parameters.

4. Construct the CrtUsrPrf command string.

5. Execute program QCmdExc (Execute Command) to create the new user profile.

CpyUsrOOl implements global error trapping; if an error occurs, the program exits by
sending an escape message up the program stack.

The CpyUsr command serves as a framework around which you can build a robust
user profile maintenance application. For instance, you may decide that you want to
maintain a database of past and current user profiles. In addition to serving as an audit
trail, the contents of the database let you perform such tasks as set an initial environment
when a user signs on to the system.

Figure 3.10 shows sample DDS for file Userlnfo. With this file's information, you
might provide the correct branch location in an inquiry program or identify the user
requesting printed output by placing the user's name and department on the report.

A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A

FIGURE 3.10
DDS for File Userlnfo

* ==
* File .•.......• Userinfo =
* =Description •.. User information for user profile audit
* and creation
* ==

UNIQUE
R USERINFOR

USRPRF HlA COLHDGC'User' +
'Profile')

AUTDATE L COLHDGC'Authorization' +
'Date')

FIRSTNAME 15A COLHDGC'First' +
'Name')

LASTNAME 15A COLHDGC 'Last' +
'Name')

LOCATION 2A COLHDGC'User' +
'Location')

DEPARTMENT 2A COLHDGC'User' +
'Department')

K USRPRF
K AUTDATE DESCEND

The UsrPrf and AutDate fields together serve as the primary key for the file. As a result,
you can maintain a history for each user should a change occur, such as transferring to a

60 Starter Kit for the IBM iSeries and AS/400

new location. The sample assumes you don't need to maintain multiple records with the
same date for a user. Note also that the AutDate key is in descending sequence. This
order makes it easier for your applications to access the current (most recent) information
for a user.

One good strategy for consistent user profile creation involves the use of a set of
model user profiles that you copy. Consider the six user categories depicted in Figure 3.6
(page 46). For each of these categories, you can create a shell profile with parameter
values set appropriately. The sole function of these shell profiles is to provide parameter
values to a user profile creation application. These shell profiles should have their
password set to *None so they can't be used. You should develop a naming scheme for
the shell profiles that facilitates application development. For example, the categories
shown in Figure 3.6 might result in the following user profiles:

• OECpy - order entry shell profile

• ICCpy - inventory control shell profile

• AcCpy - accounting shell profile

• PsCpy - personnel shell profile

• OpCpy - IT operations shell profile

• PgCpy - IT programming shell profile

Notice that each of these shell profiles has a name constructed by appending Cpy to a
two-character department ID. It's now a simple task to create a command that uses a
department ID to create a new user profile.

Figure 3.llA shows the source for such a user-defined command, CrtUsr.

FIGURE 3.11 A
CrtUsr Command Source

I* === *I
I* =Command CrtUsr = *I
I* = CPP CrtUsr001 */
I* =Description ... Create user profile and Log to file Userlnfo = *I
I* === *I

Cmd

Parm

Parm

Prompt('Create User'

Kwd(FirstName
Type(*Char)
Len(15)
Min(1)
Case< *Mixed)
Prompt('First name'

KwdC LastName
Type(*Char)
Len(15)
Min(1)
Case(*Mixed)
Prompt('Last name'

+
+
+
+
+

+
+
+
+
+

continued

Chapter 3 Access Made Easy 61

Parm

Parm

Parm

Parm

Kwd(Location
Type(*Char)
Len (2)
Min(1)

FIGURE 3.11 A CONTINUED

Prompt('User Location'

Kwd(Department
Type(*Char)
Len(2)
Min(1)
Rstd(*Yes)
SpcVaLC C ORDER OE)

(INVENTORY IC)
(ACCOUNTING AC)
(PERSONNEL PS)
(OPERATOR OP)
(PROGRAMMER PG)

Prompt ('User department'

Kwd(UsrPrf)
Type(*SName)
Len(10)
Dft(*GEN)
SpcValC (*GEN))
Prompt('User profile'

Kwd(Password)
Type(*SName)
Len(10)
Dft(*USRPRF)
SpcValC (*USRPRF))
Prompt ('User password'

The command accepts the following parameters as input:

• user's first name

• user's last name

• location code

• department code

• user profile name (optional)

• password (optional)

With this information and the shell profiles you've created, you can create your user
profiles.

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+

+
+
+
+
+

A closer look at CrtUsr's optional user profile name parameter reveals that you can
supply a user profile name or accept its default special value, *Gen. This special value
instructs the utility to generate the user profile name using the user's name (up to the first
seven characters of the last name followed by up to the first three characters of the first
name). You should let the utility generate the profile name whenever possible. In those
cases when the result would duplicate an existing profile name, you should supply a user
profile name based on some alternate naming scheme. For instance, you could replace
the last character of the profile name with a number.

62 Starter Kit for the IBM iSeries and AS/400

The password parameter is also optional; its default value of •usrPrf instructs the system
to set the password to the same value as the user profile name. The utility sets the password
to an expired status so that the user must change the password at the next sign-on, but if
this approach presents a security concern, you can supply a password to be used.

I*
I*
I*
I*
I*

Pgm

Figure 3.llB shows CrtUsr's CL command processing program, CrtUsr()Ol.

FIGURE 3.118
CrtUsrOO 1 GILE Source

===
Program•. CrtUsr001 =

= Description ... Create user
= Command processing program for CrtUsr =
===

Parm<
&FirstName
&Last Name
&Location
&Department
&UsrPrf
&Password

*I
*I
*I
*I
*I

+
+
+
+
+
+
+

I* === *I
I* = Variable definitions */
I* === *I

/* --- *I I* - Input parameters */
I* --- *I

Del &FirstName *Char 15
Del &LastName *Char 15
Del &Location *Char 2
Del &Department *Char 2
Del &Text *Char 50
Del &UsrPrf *Char 10
Del &Password *Char 10

I* --- *I
I* - Work variables */
I* --- *I

I*
I*
I*

Del
Del
Del

&CpyPrf
&Text
&OutQ

*Char
*Char
*Char

10
50
10

===
= Global error trap =
===

MonMsg
GoTo Error

CPF0000 MCH0000) Exec(
)

*I
*I
*I

+

continued

I*
I*
I*

If

Chapter 3 Access Made Easy 63

FIGURE 3.11 B CONrlNUED

===
=Generate user profile name when requested =
===

Chg Var
&UsrPrf *Eq '*GEN'
&UsrPrf
(

%Sst< &LastName 1 7 > *TCat
%Sst< &FirstName 1 3 >

*I
*I
*I

+
+
+
+
+

I* === *I
I* = Generate text description */
I* === *I

I*
I*
I*

I*
I*
I*

I*
I*
I*

ChgVar &Text
&FirstName *BCat
&LastName *TCat

, *BC at
'Loe.' *BCat
&Location *TCat

, *BC at
'Dept.' *BCat
&Department

===
= Copy user profile based on department =
===

ChgVar &CpyPrf < &Department *TCat 'CPY'

CpyUsr FromUsrPrf C &CpyPrf
ToUsrPrf(&UsrPrf)
Text{ &Text)

If

===
= Set output queue =
===

- If member of IT, create and set personal output queue

Do
CrtOutQ

MonMsg
ChgVar

End Do

&Department *Eq 'PG'
&Department *Eq 'OP'

OutQ(QUsrSys/&UsrPrf)

*Or

Text('Personal output queue'
(CPF0000 MCH0000)
&OutQ (&UsrPrf }

+
+
+
+
+
+
+
+
+

*I
*I
*I

+
+

*I
*I
*I

*I
*I
*I

+
+
+
+

+

continued

64 Starter Kit for the IBM iSeries and AS/400

FIGURE 3.11 B COMJNUED

I* --- *I
I* - If not a member of IT, set location/department output queue - *I
I* --- *I

If

Do
ChgVar

End Do

&Department *NE 'PG'
&Department *NE 'OP'

*And

&OutQ
'B'
&Location
&Department
'OUTQ'

*TCat
*Teat
*Teat

+
+
+
+

+
+
+
+
+

I* --- *I I* - Change user profile's output queue *I
I* --- *I

I*
I*
I*

I*
I*
I*

I*
I*
I*

ChgUsrPrf UsrPrf(&UsrPrf)
OutQ(QUsrSys/&OutQ

MonMsg (CPf 0000 MCH0000)

===
= Log information to audit file Userlnfo =
===

Call Pgm(CrtUsr002)
Parm<

&FirstName
&LastName
&Location
&Department
&UsrPrf

=== = Exit program =
===

Return

=== = Error handler =
===

Error:

SndPgmMsg MsgIDC CPF9897)
Msgf(QCPFMsg)
MsgDtaC 'Error in CPYUSRPRF. • *BCat

'See job log for details.'
MsgType(*Escape)

MonMsg C CPF0000 MCH0000)

EndPgm

+

*I
*I
*I

+
+
+
+
+
+
+

*I
*I
*I

*I
*I
*I

+
+
+
+

Chapter 3 Access Made Easy 65

CrtUsrOOl petforms the following basic tasks:

1. Generate user profile name when necessary.

2. Generate text description consisting of user name, location, and department.

3. Copy the departmental shell u5er profile.

4. Petform a special processing routine to set output queue.

5. Log the user profile to audit file Userlnfo.

You can tailor this program as necessary. For instance, the special processing section
described in step 4 is a likely candidate for enhancements. Like CpyUsrOOl, CrtUsrOOl
implements global error trapping; when an error occurs, it exits by sending an escape
message up the program stack.

Logging the user profile is accomplished by RPG IV program CrtUsr002, shown in
Figure 3.llC. Jbis program simply sets the authorization date (field AutDate) to the system
date and updates the Userinfo file. Figure 3.12 shows creation information for the CpyUsr
and CrtlJsr commands.

FIGURE 3.11 C
CrlUsr002 RPGLE Source

* ===
* =Module ••.....• CrtUsr002
* =Description ... Log user profile information to audit file =
* = Userinfo =
* ===
* ===
* = Files =
* ===
*
*
*

- User information audit file

FUserinfo UF A E K Disk

* ===
* = Definitions =
* ===
*
*
*

- Entry parameters

D EntryParms
D pfirstName
D pLastName
D plocation
D pDepartment
D pUsrPrf

PR
15
15

2
2

10

ExtPgm('CRTUSR002')

continued

66 Starter Kit for the IBM iSeries and AS/400

D EntryParms
D FirstName
D LastName
D Location
D Department
D UsrPrf

PI

*
*
*

- Work variables

D AutDate
D

s

FIGURE 3.11 c CONTINUW

15
15

2
2

HI

[) DatFmt(*ISO
Inz(*Sys)

* ===
* = Key lists =
* ===

c
c
c

UserinfoKey Klist
KFld
KFld

UsrPrf
AutDate

* ===
* = Mainline =
* ===

c UserlnfoKey Chain(E) Userinfo

c
c
c
c
c

c

CrtPF

CrtBndCL

CrtCmd

If
Update
Else
Write
Endif

Eval

%Found(Userlnfo
UserinfoR

UserinfoR

*InLR = *On

FIGURE 3.12
Creating the CpyUsr and CrtUsr Objects

File(YourPgmLib/Userinfo) +
SrcFile< YourSrcLib/YourSrcFile

Pgm(YourPgmLib/CpyUsr001 > +
SrcFile(YourSrcLfb/YourSrcFile) +
DftActGrp(*No) +
ActGrp(*Caller >

Cmd(YourCmdLib/CpyUsr > +
Pgm(YourPgmLib/CpyUsr001) +
SrcFile< YourSrcLfb/YourSrcFile > +

continued

FIGURE 3.12 CONTINUED

CrtBndCL Pgm(YourPgmLib/CrtUsr001) +
SrcFile(YourSrcLib/YourSrcFile) +
DftActGrp(*No) +
ActGrp(*Caller)

CrtCmd Cmd(YourCmdLib/CrtUsr) +
Pgm(YourPgmLib/CrtUsrllllll1 +
SrcFile(YourSrcLib/YourSrcFile

CrtBndRPG Pgm(YourPgmLib/CrtUsr002) +
SrcFi Le(YourSrcL ib/ YourSrcFi le) +
DftActGrp(*No) +
ActGrp(*Caller)

Chapter 3 Access Made Easy 67

With these examples, you should be able to develop a fully functional user profile
maintenance application (with create, change, and delete features) that implements your
rules. Should a rule change with time, requiring a change to one of the parameter values
in a departmental shell profile, it's a snap to update all user profiles for the department.
Simply include in your user profile maintenance application an UpdUsr command that
retrieves the new user profile information from the shell profile, selects current users for
the department from file Userlnfo, and updates each of the selected profiles.

Keep in mind that there will be exceptions you'll need to handle individually. You
should usually use these commands to create and maintain user profiles. Only in an
exceptional case should you directly use the OS/400-supplied commands.

Making User Profiles Work for You
Whether you create user profiles with CL commands or employ user-written commands,
planning is important. Careful planning will save literally hundreds of hours over your
system's lifetime. Maintaining a database file such as Userlnfo with the appropriate user
information provides essential historical data for auditing and a way to extract significant
information about the user profiles. You'll have a consistent method for creating and
maintaining user profiles, and you can easily train others to create and maintain user
profiles for their departments. Moreover, you'll be able to retrieve information from file
Userlnfo using a high-level language program, and you can use that information in appli
cations to establish the work environment, library list, and initial menu for a user profile.

When you set up your iSeries, take the time to examine your current standards for
establishing user profiles, and make your user profiles work for you!

69

Chapter 4

Public Authorities
High among the many strengths of the iSeries is a robust resource security mechanism.
Resource security defines users' authority to objects. There are three categories of authority
to an object:

• Object authority defines the operations that can be performed on an object. Figure 4. lA
describes object authorities.

• Data authority defines the operations that can be performed on the object's contents.
Figure 4. lB describes data authorities.

• Field authority defines the operations that can be petlormed on data fields. Figure 4.lC
describes field authorities.

FIGURE 4.lA
Object Authorities

Autlio_rity --·· . {)~cr!pt!'!!1 Allowed_ oeera!i~ns
*ObjOpr Object operational • Examine object description

• Use object as determined by data authorities

*ObjMgt Object management • Specify security for object
• Move or rename object
• All operations allowed by *ObjAlter and *ObjRef

*Obj Exist Object existence • Delete object
• Free storage for object
• Save and restore object
• Transfer object ownership

*ObjAlter Object alter • Add, clear, initialize, and reorganize database file
members

• Alter and add database file attributes
• Add and remove triggers
• Change SQL package attributes

Object reference • Specify referential constraint parent *Obj Ref

*AutLMgt Authorization list management • Add and remove users and their authorities from
authorization I ists

70 Starter Kit for the IBM iSeries and AS/400

FIGURE 4.18
Data Authorities

~~- ------~J''iot! ... ·--- ·---- ··--·--·~!!l!.l!:f!'o~~ti~-·------·-··---····--·---···-~-
*Read

*Add

*Upd

*Dlt

*Execute

Read

Add

Update

Delete

Execute

• Display object's contents

• Add entries to object

• Modify object's entries

• Remove object's entries

• Run a program, service program, or SQL package
• Locate object in library or directory

FIGURE 4.1C
Field Authorities

~'!!_hority ________ IJesc1'iJ'!i<!!f ___ . ________________ _ AJlo_~!1~~°'!5 _____ ···-- ·-· . -------·----------- ..
*Mgt Management • Specify field's security

*Alter Alter • Change field's attributes

*Ref Reference • Specify field as part of parent key in referential
constraint

*Read Read • Access field's contents

*Add Add • Add entries to data

*Update Update • Modify field's existing entries

Because of the number of options available, resource security is reasonably complex.
It's important to examine the potential risks as well as the benefits - of resource
security's default public authority to ensure you maintain a secure production
environment.

What Are Public Authorities?
Public authority to an object is that default authority given to users who have no specific,
or private, authority to the object. That is, the users have no specific authority granted for
their user profiles, are not on an authorization list that supplies specific authority, and are
not part of a group profile with specific authority.

When you create an object, either by restoring an object to the system or by using one
of the many Crt.XXx (Create) commands, public authorities are established. If an object is
restored to the system, the public authorities stored with that object are the ones granted
to the object. If a Crt.xxx command is used to create an object, the Aut (Authority) param
eter of that command establishes the public authorities that will be granted to the object.

Public authority is granted to users in one of several standard authority sets described
by the special values *All, *Change, •use, and *Exclude. Following is a description of each
of these values:

Chapter 4 Public Authorities 71

• •All The user can perform all operations on the object except those limited to the
owner or controlled by authorization list management authority. The user can control
the object's existence, grant and revoke authorities for the object, change the object,
and use the object. However, unless the user is also the owner of the object, he or
she can't transfer ownership of the object.

• *Change - The user can perform all operations on the object except those limited to
the owner or controlled by object management authority, object existence authority,
object alter authority, and object reference authority. The user can perform basic func
tions on the object; however, he or she cannot change the attributes of the object.
Change authority provides object operational authority and all data authority when the
object has associated data.

• *Use The user can perform basic operations on the object (e.g., open a file, read
the records, and execute a program). However, although the user can read data
records or entries, he or she will be prevented from adding, updating, or deleting
data records or entries. This authority provides object operational authority, read data
authority, and execute data authority.

• *Exclude The user is specifically denied any access to the object.

Figure 4.2A shows the individual object authorities defined by the above authority sets.
Figure 4.2B shows the individual data authorities.

FIGURE 4.2A
Individual Object Authorities

Object authorities
Authority set *ObjOpr *ObjMgt •Objfxist *ObjAlter •ObjRef
*All .! .! .! .! .!
*Change .!
*Use .!
*Exclude

FIGURE 4.28
Individual Data Authorities

Data authorities
Authority set •Read ·Add •upd *Dlt •fxecute

*All .! .! .! .! .!

*Change .! .! .! .! .!

*Use .! .!

*Exclude

72 Starter Kit for the IBM iSeries and AS/400

Creating Public Authority by Default
When your system arrives, OS/400 offers a means of creating public authorities. This
default implementation uses the QCrtAut (Create default public authority) system value,
the CrtAut (Create authority) attribute of each library, and the Aut (Public authority)
parameter on each of the Crt:XXx commands that exist in OS/400.

System value QCrtAut provides a vehicle for system-wide default public authority. It
can have the value *All, *Change, *Use, or *Exclude. *Change is the default for system
value QCrtAut when OS/400 is loaded onto your iSeries. QCrtAut alone, though, doesn't
control the public authority of objects created on your system.

The library attribute CrtAut found on the CrtLib (Create Library) and ChgLib (Change
Library) commands defines the default public authority for all objects created in that
library. Although the possible values for CrtAut include *All, *Change, *Use, *Exclude, and
AuthorizationlistName, the default for CrtAut is *SysVal, which references the value
specified in system value QCrtAut. Therefore, when you create a library and don't specify
a value for parameter CrtAut, the system uses the default value *SysVal. The value found
in system value QCrtAut is then used to set the default public authority for objects created
in the library. You should note, however, that the CrtAut value of the library isn't used
when you create a duplicate object or move or restore an object in the library. Instead,
the public authority of the existing object is used.

The Aut parameter of the Crt:XXx commands accepts the values *All, *Change, •use,
*Exclude, and AuthorizationlistName, as well as the special value *LibCrtAut, which is the
default value for most of the Crt:XXx commands. *LibCrtAut instructs OS/400 to use the
default public authority defined by the CrtAut attribute of the library in which the object
will exist. In tum, the CrtAut attribute might have a specific value defined at the library
level, or it might simply reference system value QCrtAut to get the value.

Figure 4.3 shows the effect of the new default values provided for the CrtAut library
attribute and the Aut object attribute. The lines and arrows on the right show how each
object's Aut attribute references, by default, the CrtAut attribute of the library in which the
object exists. The lines and arrows on the left show how each CrtAut attribute references,
by default, the QCrtAut system value.

The values specified in Figure 4.3 for the QCrtAut system value, the CrtAut library
attribute, and the Aut parameter are the shipped default values. Unless you change those
defaults, every object you create on the system with the default value of Aut(*LibCrtAut)
will automatically grant *Change authority to the public. (If you use the Replace(*Y es)
parameter on the Crt:XXx command, the authority of the existing object is used rather than
the CrtAut value of the library.)

If you look closely at Figure 4.3, you'll see that although this method may seem to
make object authority easier to manage, it's a little tricky to grasp. First of all, consider that
all libraries are defined by a library description that resides in library QSys (even the
description of library QSys itself must reside in library QSys). Therefore, the QSys
definition of the CrtAut attribute controls the default public authority for every library on

Chapter 4 Public Authorities 73

FIGURE 4.3
Effect of Data Values for CrtAut and Aut

h - System va ue QCrtAut(*C ange)
J

QSys/QSys library description
CrtAut(*SysVal) -- • Aut(*LibCrtAut)

QSys/MyLib library description

CrtAut(*SysVal) ~ -
Aut(*LibCrtAut) '. J '"

Mylib/Pgm1 object description

ObjType(*Pgm)

Aut(*LibCrtAut)

Mylib/File1 object description

ObjType(*File)

Aut(*LibCrtAut)

Mylib/Cmd1 object description
ObjType(*CmdJ
Aut(*LibCrtAut)

the system (not the objects in the libraries, just the library objects themselves) as long as
each library uses the default value Aut(*LibCrtAut).

Executing the command

DspLibD QSys

displays the library description of QSys, which reveals that *SysVal is the value for CrtAut.
Therefore, if you create a new library using the CrtLib command and specify
Aut(*LibCrtAut), users will have the default public authority defined originally in the
QCrtAut system value. Remember, at this point the Aut parameter on the CrtLib command
is defining only the public authority to the library object.

As you can see in Figure 4.3, for each new object created in a library, the
Aut(*LibCrtAut) value tells the system to use the default public authority defined by the
CrtAut attribute of the library in which the object will exist.

74 Starter Kit for the IBM iSeries and AS/400

When implementing default public authorities, consider these facts:

• You can use the CrtAut library attribute to determine the default public authority for
any object created in a given library, provided the object being created specifies
0LlbCrtAut as the value for the Aut parameter of the CrtXx:x command.

• You can elect to override the *LibCrtAut value on the CrtXx:x command and still define
the public authority using •AJl, *Change, *Use, *Exclude, or AuthorizationlistName.

• The default value for the CrtAut library attribute for new libraries will be •sysVal,
instructing the system to use the value found in system value QCrtAut (in effect,
controlling new object default public authority at the system level).

• You can choose to replace the default value •sysVal with a specific default public authority
value for that library (i.e., •Afl, •change, •use, •Exclude, or AuthorizationlistName).

Limiting Public Authority
The fact that public authority can be created by certain default values brings us to an
interesting point. The existence of default values indicates that they are the "suggested" or
"normal" values for parameters. In terms of security, you may want to look at default
values differently. Default values that define the public authority for objects created on
your system are effective only if planned as part of your overall security implementation.

Your first inclination may be to change QCrtAut to *Use or even *Exclude to reduce
the amount of public authority given to new libraries and objects. However, let us warn
you that doing so could cause problems with some IBM-supplied functions.

Another tendency might be to change this system value to *All, hoping that every
system object can then be "easily" accessed. Unfortunately, this would be like opening
Pandora's box!

Let us make a few suggestions for effectively planning and implementing object
security for your libraries and the objects in those libraries.

Public Authority by Design
The most significant threat of OS/400's default public authority implementation is the
possible misuse of the QCrtAut system value. There is no doubt that changing this system
value to •All would simplify security, but doing so would simply eliminate security for
new libraries and objects - an unacceptable situation for any production machine.
Therefore, leave this system value as •change.

The first step in effectively implementing public authorities is to examine your user
defined libraries and determine whether the current public authorities are appropriate for
the libraries and the objects within those libraries.

Then, modify the CrtAut attribute of your libraries to reflect the default public
authority that should be used for objects created in each library. By doing so, you're
providing the public authority at the library level instead of using the CrtAut(*SysVal)
default, which references the QCrtAut system value. As a general rule, use the level of

Chapter 4 Public Authorities 75

public authority given to the library object (the Aut library attribute) as the default value
for the Crt.Aut library attribute. This is a good starting point for that library.

Consider this example. Perhaps a library contains only utility program objects that are
used by various applications on your system (e.g., date-conversion programs, a binary-to
decimal conversion program, a check object or check authority program). Because all the
programs should be available for execution, it's logical that the Crt.Aut attribute of this
library be set to *Use so that any new objects created in the library will have *Use default
public authority.

Suppose the library you're working with contains all the payroll and employee data
files. You probably want to restrict access to this library and secure it by user profile,
group profile, or an authorization list. Any new objects created in this library should
probably also have *Exclude public authority unless the program or person creating the
object specifically selects a public authority by using the object's Aut attribute. In this case,
you would change the CrtAut attribute to *Exclude.

The point is this: Public authority at the library level and public authority for objects
created in that library must be specifically planned and implemented - not just
implemented by default via the QCrt.Aut system value.

Object-Level Public Authority
If you follow the suggestions above concerning the QCrt.Aut system value and the Crt.Aut
library attribute, Aut(*LibCrt.Aut) will work well as the default for each object you create.
In many cases, the level of public authority at the object level coincides with the public
authorities established at the library level. However, it's important to plan this rather than
simply use the default value to save time.

We hope you now recognize the significance of public authorities and understand the
process of establishing them. If you've already installed OS/400, examine your user
defined libraries and objects to determine which, if any, changes to public authority are
needed.

77

Chapter 5

Installing a New Release
One task you'll perform at some time on your system is installing a new release of
OS/400 and your IBM licensed program products. The good news is that this process is a
"piece of cake" today compared with the effort it required back when IBM first
announced and delivered the AS/400 product family. No longer must you IPL the system
more than a dozen times to complete the installation. When you load a new operating
system release today, you can have the system perform an automatic installation or you
can perform a manual installation - and either method normally requires only one
machine IPL.

To prepare you for today's approach, this chapter provides a step-by-step guide to
planning for and installing a new release of OS/ 400 and new IBM licensed program
products. We cover the essential planning tasks you should accomplish before the
installation, as well as the installation process itself.

Planning Is Preventive Medicine
Just as planning is important when you install your iSeries system the first time (as we
covered in Chapter 1), planning for the installation of a new release offers the benefits of
any preventive medicine - and it's painless! You'll no doubt be on a tight upgrade
schedule, with little time for unexpected problems. By planning ahead and following the
suggestions in this chapter, you can avoid having to tell your manager that the system will
be down longer than expected while you recover the operating system because a missing
or damaged item prevented completing the installation.

Before we describe the specific steps that will ensure a successful system upgrade,
there's one other important preventive measure to note:

~Cau6on
Unless it's impossible, don't perform a hardware upgrade and a software
upgrade at the same time. If a new system model requires a particular
release of OS/ 400 and that release is compatible with your older hardware,
first install the new release on your older hardware, and then upgrade your
hardware at another time to avoid compounding any problems you might
encounter.

78 Starter Kit for the IBM iSeries and AS/400

The Planning Checklist
Eveiy good plan needs a checklist, and in this case the list of steps in Figure 5.1 is your
guide. You can find a similar list in the manual Software Installation (SC41-5120).

FIGURE 5.1
Installation Planning Checklist

Step 1 When you receive the new release, verify your order (make sure you have the correct
release, the right products on the media, and software keys for any locked licensed
programs), and review the installation documents shipped with the release. If these
documents weren't shipped with the release, you should order them; they may detail
additional items you'll need to order before the installation.

Step 2 Determine whether you'll perform the automatic or the manual installation.

Step 3 Permanently apply any temporarily applied PTFs.

Step 4 A few days before installing the new release, remove unused objects from the system.

Step 5 Verify disk storage requirements.

Step 6 A few days before installation, document or save changes to IBM-supplied objects.

Step 7 A few days before installation, order the latest cumulative PTF package if you don't
have it. You should also order the latest appropriate group packages, particularly the
HIPER PTF group package.

Step 8 A day before or on the same day as the installation, save the system.

tasks
Step 9 If your system participates in a network, resolve any pending database resynchroniza

tions. If your system uses a 3995 optical library, check for and resolve any held
optical files.

Step 10 If your system has an active Integrated Netfinity Server or Integrated xSeries Server,
deactivate the server.

Step 11 Verify the integrity of system objects (user profiles QSecOfr and QLPlnstall and the
database cross-reference files).

Step 12 Verify and set appropriate system values.

Because IBM makes minor changes and improvements to the installation process for
each release of OS/ 400, each new release means a new edition of the Software Installation
manual. To ensure that you have the latest information about installing a new release, you
should read this chapter in conjunction with the manual. Read the chapter entirely to get
a complete overview of the process before petforming the items on the checklist. If IBM's
instructions conflict with those given here, follow IBM's instructions.

Pre-Installation-Day Tasks
The first group of tasks in Figure 5.1 (steps 1 through 8) should be accomplished before
the day of the installation. By attending carefully to these items ahead of time, you'll be
on firm footing when the time comes to pe1form the installation itself.

Chapter 5 Installing a New Release 79

Step 1: Is Your Order Complete?
One of the first things you'll do is check the materials IBM shipped to you to make sure
you have all the pieces you need for the installation. As of this writing, you should
receive these items:

• distribution media (normally CD-ROM)

• Media Distribution Report

• Read This First

• Memo to Users for OS/400

• PTF Shipping Information Letter

• individual product documentation

• Software Installation

Don't underestimate the importance of each of these pieces.
Examine the CD-ROMs to make sure they're not physically damaged, and then use

the Media Distribution Report to determine whether all listed volumes are actually present.
For each item on the CD-ROMs, the Media Distribution Report identifies the version,
release, and modification level; licensed program name; feature number (e.g., 5769SS1,
5769RG1); and language feature code. For V4R5, you'll find the version number listed as
V 4 (Version 4) in the product name; the release number and modification level are
represented as ROSMOO (Release 5, Modification Level O) on the report.

Note that the Media Distribution Report lists only priced features. Some features, such
as licensed internal code and base OS/400, are shipped with no additional charge. The
report contains no entries for these items, nor does it contain entries for locked products.

The Read This First document is just what it sound"> like: a document IBM wants you
to read before you install the release, and preferably as soon as possible. This document
contains any last-minute information that may not have been available for publication in
the Memo to Users for OSI 400 or in any manual.

The Memo to Users for OS/ 400 describes any significant changes in the new release
that could affect your programs or system operations. You can use this memo to prepare
for changes in the relea.se. You'll find a specific section pertaining to licensed programs
you have installed or plan to install on your system.

You'll want to read the PTF Shipping Information Letter for instructions about
applying the cumulative PTF package. You also may receive additional documentation for
some individual products; if you do, review those documents as well they may contain
information unique to a product that could affect its installation.

In addition to reviewing the deliverables listed above, you may want to review
pertinent information found in the Preventive Service Planning Information document. This
document lists additional preventive service planning documents you may want to order.
To obtain it, order PTF SF98vnn, where v = version, r = release, and m = modification
level for the new release. (For information about PTF ordering options, see Chapter 6.)

80 Starter Kit for the IBM iSeries and AS/400

After reviewing this information, you should verify not only that you can read the
CD-ROMs but also that they contain all necessary features. An automated procedure called
Prepare for Install (available through an option on the Work with Licensed Programs
panel) greatly simplifies this verification process compared with earlier releases, which
involved considerable manual effort.

The panel in Figure 5.2 shows the installation-preparation procedures supported by
Prepare for Install.

Type option, press Enter.
1=Select

Opt Description

FIGURE 5.2
Prepare for Install Panel

Prepare for Install

Work with user profiles
Work with licensed programs for target release
Display licensed programs for target release
Work with Licensed programs to delete
List licensed programs not found on media
Verify system objects
Estimated storage requirements for system ASP

F3=Exit F9=Command Line F10=Display job Log F12=Cancel

System: AS400

Bottom

One of the panel's options compares the programs installed on your system with those on
the CD-ROMs, generating a list of preselected programs that •vill be replaced during
installation. You can inspect this list to determine whether you have all the necessary
features.

To perform this verification, take these steps:

1. Arrange the CD-ROMs in the proper order. Chapter 3 of Software Installation contains
a table specifying the correct order. You should refer to this table not only for
sequencing information but also for any potential special instructions.

2. From the command line, execute the following ChgMsgQ (Change Message Queue)
command to put the system operator's message queue in break mode:

ChgMsgQ QSysOpr *Break SevC95)

3. From the command line, enter the command

Go LicPgm

Chapter 5 Installing a New Release 81

4. You'll see the Work with Licensed Programs panel. Select option 5 (Prepare for
install), and press Enter.

5. Select the option "Work with licensed programs for target release," and press Enter.

6. You'll see the Work with Licensed Programs for Target Release panel. You should

a) load the first CD-ROM

b) specify 1 (Distribution media) for the Generate list from prompt

c) specify the appropriate value for the Optical device prompt

d) specify the appropriate value for the Target release prompt

e) press Enter

When the system has read the CD-ROM, you'll receive a message asking you to load
the next volume. If you have more CD-ROMs, load the next volume and reply G to
the message to continue processing; otherwise, reply X to indicate that all CD-ROMs
have been processed.

7. Once you've processed all the CD-ROMs, the Work with Licensed Programs for Target
Release panel will display a list of the licensed programs that are on the distribution
media and installed on your system. Preselected licensed programs (those with a 1 in
the option column) indicate that a product on the distribution media can replace a
product installed on your system. You can use Fll to display alternate views that pro
vide more detail and use option 5 (Display release-to-release mapping) to see what
installed products can be replaced.

8. Press Enter until the Prepare for Install panel appears.

9. Select the option "List licensed programs not found on media," and press Enter.

10. You'll see the Licensed Programs Not Found on Media panel. If no products appear
in the panel's list, you have all the media necessary to replace your existing products.
If products do appear in the list, you must determine whether they're necessary. If
they're not, you can delete them (we describe this procedure later when we talk
about deaning up your system). If the products are necessary, you must obtain them
before installation. Make sure you didn't omit any CD-ROMs during the verification
process. If you didn't omit any CD-ROMs, compare your media labels with the
product tables in Software Installation and check the Media Distribution Report to
detennine whether the products were shipped (or should have been shipped) with
your order.

11. Exit the procedure.

Step 2: Manual or Automatic?
Before installing the new release, you need to determine whether you'll perform an
automated or a manual installation. The automatic installation process is the recommended
method and the one that minimizes the time required for installation. However, if you're

82 Starter Kit for the IBM iSeries and AS/400

performing any of the following tasks, you should use the manual installation process
instead:

• adding a disk device using device parity protection, mirrored protection, or user
auxiliary storage pools (ASPs)

• changing the primary language that the operating system and programs support (e.g.,
changing from English to French)

• creating logical partitions during the installation

• using tapes created with the SavSys (Save System) command

• changing the environment (AS/400 or Systern/36), system values, or configuration
values. These changes differ from the others listed here because you can make them
either during or after the new-release installation. To simplify the installation, it's best
to automatically install the release and then manually make these changes.

The automatic installation will install the new release of the operating system and any
currently installed licensed program products.

Step 3: Permanently Apply PTFs
One step that will save you time later is to permanently apply any PTFs that remain
temporarily applied on your system. Doing so cleans up the disk space occupied by the
temporarily applied PTFs. That disk space may not be much, but now is an opportune
time to perform cleanup tasks. For more specific information about applying PTFs, see
Chapter 6.

Step 4: Clean Up Your System
In addition to permanently applying PTFs, you should complete several other cleanup
procedures. These tasks not only promote overall tidiness but also help ensure you have
enough disk space for the installation. Consider these tasks:

• Delete P1F save files and cover letters. To delete these items, you'll use command
DltPTF. Typically, you'll issue this command only for products 5769999 (licensed
internal code) and 5769SS1 (OS/400).

• Delete unnecessary spooled files, and reclaim associated storage. Check all output
queues for unnecessary spooled files. A prime candidate for housing unnecessary
spooled files is output queue QEZJobLog. After deleting these spooled files, reclaim
spool storage using command RclSplStg.

• Have each user delete any unnecessary objects he or she owns. You'd be surprised
how much storage some users can unnecessarily consume. If possible, have users
perform a bit of personal housekeeping by deleting spooled files and owned objects
they no longer need.

• Delete unnecessary licensed programs or optional parts. Some licensed programs may
be unnecessary for reasons such as lack of support at the target release. To review

Chapter 5 Installing a New Release 83

candidates for deletion, you can use the Prepare for Install panel's "Work with
licensed programs to delete" option. To reach this option, display menu LlCPGM
(type Go licPgm) and select option 5 (Prepare for install). The "Work with licensed
programs to delete" option preselects licensed programs to delete. You can use Fl 1
(Display reasons) to determine why licensed programs are selected for deletion.

We rarely see a system that doesn't contain unused licensed programs or licensed
program parts. For instance, it's not uncommon to see systems with many unused lan
guage dictionaries or unnecessaiy double-byte-character-set options. Prepare for
Install's "Work with licensed programs to delete" option won't preselect such unneces
saiy options because they're valid options. If for any reason you can't use this proce
dure to delete licensed programs, you can use option 12 (Delete licensed programs)
from menu LlCPGM.

• Delete unnecessary user profiles. It's rarely necessaiy to delete user profiles as part of
installation cleanup, but if this action is appropriate in your environment, consider
taking care of it now. The Prepare for install option on menu LlCPGM also offers pro
cedures for cleaning up user profiles.

• Use the automatic cleanup options in operational Assistant. These options provide a
general method for tidying your system on a periodic basis.

For additional information about how to make more disk storage available to your system,
see Chapter 12.

Step 5: Is There Enough Room?
Once you've cleaned up your system, you should verify that you have enough storage to
complete the installation. Like most installation-related tasks today, this one is much easier
than in earlier releases.

To determine whether you have adequate storage, perform these steps:

1. From the command line, enter Go licPgm.

2. You'll see the Work with Licensed Programs panel. Select option 5 (Prepare for
install), and press Enter.

3. Select the option "Estimated storage requirements for system ASP," and press Enter.

4. You'll see the Estimated Storage Requirements for System ASP panel. At the Additional
storage required prompt, enter storage requirements for any additional software (e.g.,
third-party vendor software) that you'll be installing. Include storage requirements only
for software that will be stored in the system ASP. Press Enter to continue.

5. You'll see the second Estimated Storage Requirements for System ASP panel. This
panel displays information you can use to determine whether enough storage is
available. Compare the value shown for "Storage required to install target release"
with the value shown for "Current supported system capacity." If the value for "Current
supported system capacity" is greater than the value for "Storage required to install
target release," you can continue with the installation. Otherwise, you must make

84 Starter Kit for the IBM iSeries and AS/400

additional storage available by removing items from your system or by adding DASD
to your system.

6. Exit the procedure.

If you make changes to your system that affect the available storage, you should repeat
these steps.

Step 6: Document System Changes
When you load a new release of the operating system, all IBM-supplied objects are
replaced on the system. The installation procedure saves any changes you've made in
libraries QUsrSys (e.g., message queues, output queues) and QGPL (e.g., subsystem
descriptions, job queue descriptions, other work-management-related objects). However,
any changes you make to objects in library QSys are lost because all those objects are
replaced.

To minimize the possible loss of modified system objects, you should document any
changes you make to these objects so that you can reimplement them after installing the
new release. We strongly suggest maintaining a CL program that contains code to reinstate
customized changes, such as command defaults; you can then execute this program with
each release update.

When possible, implement these customizations in a user-created library rather than in
QSys. Although the installation won't replace the user-created library's contents, you
should regenerate the custom objects it contains to avoid potential problems. Such
problems might occur, for example, if IBM adds a parameter to a command. Unless you
duplicate the new command and then apply your customization, you'll be operating with
an outdated command structure. In some cases, this difference could be critical. The CL
program that customizes IBM-shipped objects should therefore first duplicate each object
(when appropriate) and then change the newly created copy.

Step 7: Get the Latest Fixes
Normally, some time passes between the time you order and receive a new release and
the date when you actually install it. During this elapsed time, PTFs to the operating
system and licensed program products usually become available. To ensure you have the
latest of these PTFs during installation, order PTFs for the new release the week before
you install the release.

Obtain the latest cumulative PTF package and appropriate group packages. Of the
group packages, you should at least order the HIPER group package. (IBM releases
HIPER, or High-Impact PERvasive, PTFs regularly - often daily - as necessary to correct
high-risk problems.) For more information about ordering PTFs, see Chapter 6.

Step 8: Save Your System
Just before installing the new release (either on installation day or the day before), you
should save your system. To be safe, we recommend performing a complete system save

Chapter 5 Installing a New Release 85

(option 21 from the SA VE menu). but this isn't a requirement. We advise perronning at
least these two types of saves:

• SavSys saves OS/400 and configuration and security infonnation

• SavLib Lib(*IBM) - saves all IBM product libraries

It's also wise to schedule the installation so that it immediately follows your normally
scheduled backup of data and programs. 1his approach guarantees that you have a
current copy of all your most critical information in c"ase any problems with the new
installation require you to reinstall the old data and programs.

Installation-Day Tasks
Once you've completed step 8, you're nearly ready to start installing the new OS/400 release.
The remaining steps (9 through 12) are best performed on the day of the installation (if
they apply in your environment). They, together with the installation process itself, are the
forns of the remainder of this chapter. (If you'll be using a tape drive on installation day,
see "Installing from Tape?" on page 86 for some additional tips.)

Step 9: Resolve Pending Operations
First, if your system participates in a network and runs applications that use two-phase
commit support, you should resolve any pending database resynchronizations before
starting the installation. Two-phase commit support, used when an application updates
database files on more than one system, ensures that the databases remain synchronized.

To determine whether your system uses two-phase commit support, issue the
following WrkCmtDfn (Work with Commitment Definitions) command:

WrkCmtDfn JobC*All) Status(*Resync)

If the system responds with a message indicating that no commitment definitions are
active, you need do nothing further. Because the typical iSeries environment isn't
concerned with two-phase commit support, we don't provide details about database
resynchronization here. For this information, refer to Software Installation.

Next, if your system has a 3995 optical library, check for and resolve any held optical
files - that is, files that haven't yet been successfully written to media. Use the
Wrk:HldOptF (Work with Held Optical Files) command to check for such files and either
save or release the files.

Step 10: Shut Down the INS/IXS
If your system has an active Integrated Netfinity Server (INS) or Integrated xSeries Server
(IXS), the installation may fail. You should therefore deactivate this server before starting
the installation. To do so, access the Network Server Administration menu (enter Go
NwSAdm) and select option 3.

86 Starter Kit for the IBM iSeries and AS/400

Installing from Tape?
If you'll be using a tape drive during the new-release installation, be sure to clean the drive on
installation day. Although this task sounds rather mundane, it can save you a lot of trouble. Cleaning
the tape drive immediately before installing the release will minimize the chances of an interruption
due to a simple problem such as the inability to read a tape because the tape drive is dirty.

In addition, if your tape drive has a history of problems such as this, clean the drive before
mounting each tape during the install. Again, this step represents a small price to pay for valuable
preventive medicine.

Step 11: Verify System Integrity
You should also verify the integrity of system objects required by the installation process.
1his includes the following:

• System distribution directoty entries must exist for user profiles QSecOfr and
QLPinstall.

• Database cross-reference files can't be in error.

• User profile QSecOfr can't contain secondaty language libraries or alternate initial
menus.

To verify the integrity of these objects, you can use the Prepare for install option on
menu LICPGM. This option adds user profiles QSecOfr and QLPinstall to the system
distribution directoty if necessacy and checks for errors in the database cross-reference
files. To use the option, follow these steps:

1. From the command line, enter Go licPgm.

2. The Work with Licensed Programs panel will appear. Select option 5 (Prepare for
install), and press Enter.

3. From the resulting panel (Figure 5.2, shown on page 80), select the Verify system
objects option, and press Enter.

4. If errors exist in the database cross-reference files, the system will issue message
"CPI3DA3 Database cross-reference files are in error." Follow the instructions provided
by this message to resolve the errors before continuing.

5. Exit the procedure.

A couple of items remain to check before you're finished with this step. If you're
operating in the System/36 environment, check to see whether user profile QSecOfr has a
menu or program specified. If so, you must remove the menu or program from the user
profile before installing licensed programs.

Also, user profile QSecOfr can't have a secondaty language libraty (named QSys29xx)
at a previous release in its libraty list when you install a new release. If QSecOfr has an

Chapter 5 Installing a New Release 87

initial program, ensure that the program doesn't add a secondary language library to the
system library list.

Step 12: Check System Values
Your next step is to check and set certain system values. Remove from system values
QSysLibL (System library list) and QUsrLibL (User library list) any licensed program
libraries and any secondary language libraries CQSys29xx). Do not remove library QGPL,
QSys, QTemp, or QUsrSys from either of these system values.

In addition, set system value QAlwObjRst (Allow object restore) to •All. Once the
installation is complete, you'll need to reset the QAlv.rQbjRst value to ensure system
security.

Ready, Set, Go!
With the planning behind you, you're ready to install your new release! The rest of this
chapter provides basic instructions for the automatic installation procedure, which is the
recommended method. If you must use the manual method (based on the criteria stated
in planning step 2), see Software Installation for detailed instructions about this process.

When you perform an automatic installation of a new release of the operating system
and licensed program products, the process retains the current operating environment
(AS/400 or System/36), system values, and configuration while replacing these items:

• IBM licensed internal code

• OSI 400 operating system

• licensed programs and optional parts of licensed programs currently installed on
your system

• language feature code on the distribution media that's installed as the primary language
on the system

0 Note
If, during the installation process, the System Attention light on the control
panel appears, you should refer to Chapter S of Software Installation for a
list of system reference codes (SRCs) and instructions about how to continue.
The only exception is if the attention light comes on and the SRC begins
with A6. The A6 codes indicate that the system is waiting for you to do
something, such as reply to a message or make a device ready.

To install the new release, take the following steps.

Step 1. Arrange the CD-ROMs in the order you'll use them.

Step 2. Load the CD-ROM that contains the licensed internal code. Wait for the
CD-ROM In-Use indicator to go out.

88 Starter Kit for the IBM iSeries and AS/400

Step 3. At the control panel, set the mode to Normal.

Step 4. Execute the following PwrDwnSys (Power Down System) command:

PwrDwnSys *Immed RestartC*Yes) IPLSrc(D)

This command will start an IPL process. Note that SRC codes will continue to
appear in the display area of the control panel.

Step 5. You'll see the Licensed Internal Code - Status panel. Upon 100 percent comple
tion of the install, the display may be blank for approximately five minutes and
the IPL in Progress panel may appear. You needn't respond to any of these
panels.

Step 6. Load the next volume when prompted to do so. You'll receive this prompt sev
eral times during the installation process. After loading the volume, you must
respond to the prompt to continue processing. The response value you specify
depends on whether you have more volumes to process: A response of G
instructs the installation process to continue with the next volume, and a
response of X indicates that no more volumes exist.

Step 7. Next, the installation process loads the operating system followed by licensed
programs. During this process, you may see panels with status information. One
of these panels, Licensed Internal Code IPL in Progress, lists several IPL steps,
some of which can take a long time (two hours or more). The amount of time
needed depends on the amount of recovery your t.ystem requires. As the instal
lation process proceeds, you needn't respond to the status information panels
you see.

Once all your CD-ROMs have been read, be prepared to wait for quite some
time while the installation process continues. The process is hands-free until the
Sign On panel appears.

Step 8. When installation is complete, you'll see the Sign On panel. If you receive the
message "Automatic installation not complete," you should sign on using the
QSecOfr user profile and refer to Appendix A, "Recovery Procedures," in Software
Installation for instructions about how to proceed. If the automatic installation
process was completed normally, sign on using user profile QSecOfr and continue
by verifying the installation, loading additional products, loading PTFs, and
updating software license keys.

VeriJY the installation. To verify the installation, execute the Go LicPgm command.
On the Work with Licensed Programs display, choose option 50 (Display log for
messages). The Display Install History panel (Figure 5.3) will appear.

Press Enter on this panel, and scan the messages found on the History Log
Contents display. If any messages indicate a failure or a partially installed
product, refer to "Recovery Procedures" in Software Installation.

Next, verify the status and check the compatibility of the installed licensed pro
grams. To do so, use option 10 (Display licen5ed programs) from menu LICPGM

Chapter 5 Installing a New Release 89

FIGURE 5.3
Display Install History Panel

Type choices, press Enter.

Start date

Start time

Output ..

F3=Exit F12=Cancel

Display Install History

07/17/00

09:32:35

*

MM/DD/YY

HH:MM:SS

*, *PRINT

CC) COPYRIGHT IBM CORP. 1980, 1998.

to display the release and installed status values of the licensed programs. A
status of •COMPATIBLE indicates a licensed program is ready to use. If you see
a different status value for any licensed program, refer to the "Installed Status
Values" section of Appendix E in Software Installation.

Load additional products. You're now ready to load any additional licensed
programs and secondary languages. Return to the Work with Licensed Programs
menu, and select option 11 (Install licensed programs). You'll see the Install
Licensed Programs display that appears in Figure 5.4 (page 90).

The installation steps for loading additional products are similar to the steps
you've already taken. Select a licensed program to install, and continue. If you
don't see a desired product in the list, follow the specific instructions delivered
with the distribution media containing the new product.

Load PTFs. Next, install the cumulative PTF package (either the one that arrived
with the new release or a new one you ordered, as suggested in the planning
steps we discussed earlier). The shipping letter that accompanies the PTF tape
will have specific instructions about how to install the PTF package.

Note that to complete the installation process, you must IPL the system or install
a cumulative PTF package, which will also perform an IPL. An IPL is required to
start the Initialize System (InzSys) process. (The InzSys process can take two
hours or more on some systems, but for most systems it's completed in a few

90 Starter Kit for the IBM iSeries and AS/400

FIGURE 5.4
Install Licensed Programs Panel

Install Licensed Programs
System: AS400

Type options, press Enter.
1=Install

Licensed Installed
Option Program Status Description

5769SS1 *COMPATIBLE OS/400 - Library QGPL
5769SS1 *COMPATIBLE OS/400 - Library QUSRSYS
5769SS1 *COMPATIBLE OS/400 - Extended Base Support
5769SS1 *COMPATIBLE OS/400 - Online Information
5769SS1 *COMPATIBLE OS/400 - Extended Base Directory Support
5769SS1 OS/400 - S/36 and S/38 Migration
5769SS1 OS/400 - System/36 Environment
5769SS1 OS/400 - System/38 Environment
5769SS1 *COMPATIBLE OS/400 - Example Tools Library
5769SS1 *COMPATIBLE OS/400 - AFP Compatibility Fonts
5769SS1 *COMPATIBLE OS/400 - *PRV CL Compiler Support
5769SS1 OS/400 - S/36 Migration Assistant
5769SS1 *COMPATIBLE OS/400 - Host Servers

More ...
F3=Exit F11=Display release F12=Cancel F19=Display trademarks

(C) COPYRIGHT IBM CORP. 1980, 1998.

minutes.) In addition to installing a cumulative PTF package, you should install
any group PTFs you have - particularly the HIPER PTFs group package. (For
information about installing PTFs, see Chapter 6.)

After the cumulative PTF installation or IPL is completed, sign on as QSecOfr and
check the install history (using option 50 on menu LICPGM) for status messages
relating to the InzSys process. You should look for a message indicating that
InzSys has started or a message indicating its completion. If you see neither
message, wait a few minutes and try option 50 again. Continue checking the
install history until you see the message indicating InzSys completion. If the
message doesn't appear in a reasonable amount of time, refer to the "INZSYS
Recovery Information" section of Appendix A in Software Installation.

Update software license keys. To install software license keys, use the WrkLidnf
(Work with License Information) command. For each product, update the
license key and the usage limit to match the usage limit you ordered. The
license information is part of the upgrade media. You must install license keys
within 70 days of your release installation.

Chapter 5 Installing a New Release 91

Step 9. The installation of your new release is now complete! The only thing left to do
before restarting production activities is to perform another SavSys to save the
new release and the new IBM program products. Just think how much trouble
it would be if you had a disk crash soon after loading the new release and,
with no current SavSys, were forced to restore the old release and repeat the
installation process. To make sure you don't suffer this fate, perform the SavSys
and the SavLib Lib(*IBM) operations now.

Before starting the save, determine whether system jobs that decompress objects
are running. You should start your save only if these jobs are in an inactive
state. To make this determination, use the WrkActJob (Work with Active Jobs)
command and check the status of QDCPOBJx jobs (more than one may exist).
You can ensure these jobs are inactive by placing the system in restricted state.
Don't wony - the QDCPOBJx jobs will become active again when the system
is no longer in restricted state.

Final Advice
The only risk you take when installing a new release is not being prepared for failure. It's
rare that a new-release installation must be aborted midway through, but it does happen.
If you take the precautions mentioned in the planning suggestions in this chapter and tum
to "Recovery Procedures" in Software Installation in the event of trouble, you won't find
yourself losing anything but time should you encounter an unrecoverable error. For the
most part, installing new releases is only an inconvenience in time.

Now that we've covered all the basic steps involved in planning and installing a new
iSeries operating system release, in the next chapter we'll specifically address maintaining
and installing PTFs.

93

Chapter 6

An Introduction to PTFs
Much as we'd like to think the iSeries is invincible, from time to time even the best of
systems needs a little repair. IBM provides such assistance for the iSeries in the form of PTFs.

A PTF, or program temporary fix, is one or more objects (most often program code)
that IBM creates to correct a problem in the IBM licensed internal code, in the OS/400
operating system, or in an IBM licensed program product. In addition to issuing PTFs to
correct problems, IBM uses PTFs to add function or enhance existing function in these
products. The fixes are called "temporary" because a PTF fixes a problem or adds an
enhancement only until the next release of that code or product becomes available; at that
time, the fix becomes part of the base product itself, or "permanent."

Hardware and software service providers distribute PTFs. Your hardware maintenance
vendor is typically responsible for providing microcode PTFs, while your software service
provider furnishes system software PTFs. Because IBM is both the hardware and the
software provider for most shops, the focus here is on IBM distribution of PTFs.

In this chapter, you'll learn the necessary information to determine when PTFs are
required on your system, what PTFs you need, how to order PTFs, and how to install and
apply those PTFs.

When Do You Need a PTF?
Perhaps the most difficult hurdle to get over in understanding PTFs is knowing when you
need one. Basically, there are three ways to determine when you need one or more PTFs.
The first way is simple: You should regularly order and install the latest cumulative PTF
package, group PTFs, Client Access service pack, and necessary individual RIPER PTFs.

A cumulative PIF package is an ever-growing collection of significant PTFs. You
might wonder what criteria IBM uses to determine whether a PTF is significant. In general,
a PTF is deemed significant, and therefore included in a cumulative package, when it has
a large audience or is critical to operations. IBM releases cumulative packages on a regular
basis, and you should stay up-to-date with them, loading each package fairly soon after it
becomes available. You should also load the latest cumulative package any time you load
a new release of OS/400. To order the latest cumulative PTF package, you use the special
PTF identifier SF99vrm, where v = OS/400 version, r = release, and m = modification.

A group PIF is a logical grouping of PTFs related to a specific function, such as
database or Java. Each group has a single PTF identifier assigned to it so that you can
download all PTFs for the group by specifying only one identifier.

Client Access serotce packs are important if you access your system using Client
Access. like a group PTF, a service pack is a logical grouping of multiple PTFs available
under a single PTF identifier for easy download.

RIPER, or High-Impact PERvasive, PTFs are released regularly (often daily) as
necessary to correct high-risk problems. Ignore these important PTFs, and you chance
catastrophic consequences, such as data loss or a system outage.

94 Starter Kit for the IBM iSeries and AS/400

A second way you may discover you need a PTF is by encountering a problem. To
identify and analyze the problem, you might use the AnzPrb (Analyze Problem) command,
or you might investigate error messages issued by the system. If you report a system
problem to IBM based on your analysis, you may receive a PTF immediately if someone
else has already reported the problem and IBM has issued a PTF to resolve it.

The third way to discover you might need particular PTFs is by regularly examining the
latest Preventive Service Planning (PSP) information. You can download PSP information
by ordering special PTFs. (To learn more about PSP documents and for helpful guidelines
for managing PTFs, see the section "Developing a Proactive PTF Management Strategy" on
page 100.)

How Do You Order a PTF?
You can order individual PTFs, a set of PTFs (e.g., a cumulative PTF package, a group
PTF), and PSP information from IBM by mail, telephone, fax, or electronic communications.
Each PTF you receive has two parts: a cover letter that describes both the PTF and any
prerequisites for loading it, and the actual fix.

You have two choices when ordering PTFs electronically. You can use Electronic
Customer Support (ECS) and the CL SndPTFOrd (Send PTF Order) command, or you can
order PTFs on the Internet.

Electronically ordered PTFs are delivered electronically only when they're small
enough that they can be transmitted within a reasonable connect time. When electronic
means are not practical, IBM send the PTFs via mail on selected media, as it does for
PTFs ordered by non-electronic means.

SndPTFOrd Basics
The SndPTFOrd command is a simple command to use; however, a brief introduction
here may point out a couple of the command's finer points to simplify its use. Figure 6.1
shows the prompted SndPTFOrd command.

For parameter PTFID, you enter one, or up to 20, PTF identifiers (e.g., SF98440,
MF98440). The parameter actually has three elements or parts. First is the actual PTF
identifier, a required entry. The second element is the Product identifier, which determines
whether the PTF order is for a specific product or for all products installed on your system.
The default value you see in Figure 6.1, •onlyPrd, indicates that the order is for all products
installed or supported on your system. Instead of this value, you can enter a specific
product ID (e.g., 5769RG1, 5769PW1) to limit your order to PTFs specific to that product.

The third PTFID element, Release, determines whether the PTF order is for the
current release levels of products on your system or for a specific release level, which
may or may not be the current release level installed for your products. For example, you
might order a different release-level PTF for products you support on remote systems. A
Release value of •onlyRls indicates that the order is for the release levels of the products
installed or supported on your system. If you prefer, you can enter a specific release
identifier (e.g., V4R4MO, V4R3MO) to limit the PTF order to that release.

Chapter 6 An Introduction to PTFs 95

FIGURE 6.1
SndPIFOrd Command Prompt

Type choices, press Enter.
PTF description:

PTF identifier
Product
Release

PTF parts
Remote control point
Remote network identifier

Delivery method
Order
Reorder

Send PTF Order (SNDPTFORDJ

PTFID

+ for more values

*ONLYPRD
*ONLYRLS=

••• PTFPART *ALL
•.. RMTCPNAME *IBMSRV_
..• RMTNETID *NETADR
Additional Parameters -

.DELIVERY *LINKONLY

.ORDER *REQUIRED
... REORDER *NO_

F3=Exit F4=Prompt F5=Refresh F12=Cancel
Bottom

F13=How to use this display
F24=More keys

Two restrictions apply to the Product and Release elements of the PTFID parameter.
First, if you specify a particular product, you also must specify a particular release level.
Second, if you specify •onlyPrd for the product element, you also must specify *OnlyRls
for the release element.

From time to time, you may want to download only a cover letter to determine
whether a particular PTF is necessary for your system. The next SndPTFOrd parameter,
PTFPart (PTF parts), makes this possible. Use value •AJl to request both PTF(s) and cover
letter(s) or value •cvrLtr to request cover letter(s) only.

The next two parameters, RmtCPName (Remote control point) and RmtNetID (Remote
network identifier), identify the remote service provider and the remote service provider
network. You should change parameter RmtCPName (default value *IBMSrv) only if you
are using a service provider other than IBM or are temporarily accessing another service
provider to obtain application-specific PTFs. Parameter RmtNetID must correctly identify
the remote service provider network. The value •NetAtr causes the system to refer to the
system's network attributes to retrieve the local network identifier (you can view the
network attributes using the DspNetA, or Display Network Attributes, command). If you
change the local network identifier in the network attributes, you may then have to
override this default value when you order PTFs. Your network provider can give you
the correct RmtNetID if the default doesn't work.

SndPTFOrd's Delivery parameter determines how PTFs are delivered to you. A value
of *LinkOnly tells ECS to deliver PTFs only via the electronic link. The value *Any
specifies that the PTFs can be delivered using any available method. Most PTFs ordered

96 Starter Kit for the IBM iSeries and AS/400

using SndPTFOrd are downloaded immediately using ECS; however, P1Fs that are too
large for electronic download are instead shipped by mail.

The next parameter, Order, specifies whether only the ordered P1Fs are sent or also any
requisite P1Fs you must apply before, or along with, the PTis you're ordering. Value
*Required requests the PTFs you're ordering as well as any other required PTFs that accom
pany them. Value *P1FID specifies that only those P1Fs you're ordering are to be sent.

The last parameter, Reorder, specifies whether you want to reorder a P1F that's
currently installed or ordered. Valid values are *No and *Yes. Reorder(*Yes) is necessary if
you've previously sent for only the cover letter and now want to order the PTI itself. If
you permit Reorder to default to *No in this case, OS/400 won't order the PTI because it
thinks it's already done so, when, in fact, you've received only the cover letter.

Ordering PTFs on the Internet
IBM provides a detailed overview of the Internet PTI download process, along with
detailed instructions, at the IBM iSeries and AS/400 Technical Support Web site,
http://www.as400seroice.ibm.com. The service is free and available to all iSeries and
AS/ 400 owners.

When you visit the site, select "Fixes and Updates" and then select "Internet PTF
Downloads (iP1F)" to reach the Internet PTF Downloads page. Then simply complete the
following few steps, and you're ready to download P1Fs:

1. Register for the service.

2. Configure your system, and start the appropriate services.

3. Test your PC's Internet browser to ensure it supports the JavaScript programs used in
the download process.

4. Log on, identify the P1Fs you want to download, and begin the download.

5. After you've downloaded the PTis, you simply continue normal PTI application
procedures.

How Do You Install and Apply a PTF?
Installing a PTI includes two basic steps: loading the PTI and applying the P1F. The
process we outline here performs both the loading and the application of the PTF. Note
one caution concerning the process of loading and applying PTis: You must not intenupt
any step in this process. Interrupting a step can cause problems significant enough to require
reloading the current version of the licensed internal code or the operating system. Make
sure, for example, that your electrical power is protected with an uninterruptible power
supply (UPS). Also note that for systems with logical partitions, the PTI process differs in
some critical ways; if you have such a system, be sure to read "P1Fs and Logical
Partitioning (LP AR)" (page 97) for more information.

First, we'll look at loading and applying P1Fs for the IBM licensed internal code. Then
we'll examine the process for loading and applying P1Fs for licensed program products.

Chapter 6 An Introduction to PTFs 97

~
~Caution

Anytime you plan to add a significant number of PTFs to your system, you
should have a current baclru.p. Our preference is for a full system backup,
but if that's not possible, you should at least have a current baclru.p of
system data (you can use option 22 on menu SA VE to back up system data).
Applying even a single PfF can result in catastrophic problems that require
you to reload the system. Fortunately, PfF application rarely causes such
devastation, but if this does happen, you'll be relieved to know you have a
backup with which you can recover your system.

PTFs and Logical Partitioning (LPAR)
Although the basic steps of installing PTFs are the same for a system with logical partitions, some
important differences exist. Fail to account for these differences when you apply PTFs, and you could
find yourself with an inoperable system requiring lengthy recovery procedures. For systems with
logical partitions, heed the following warnings:

• When you load PTFs to a primary partition, shut down all secondary partitions before installing
the PTFs.

• When using the Go PTF command on the primary partition, change the automatic IPL parameter
from its default value of *Yes to *No unless the secondary partitions are powered down.

These warnings, however, are only the beginning with respect to the differences imposed by logical
partitioning. There are also partition-sensitive PTFs that apply specifically to the lowest-level code that
controls logical partitions. These PTFs have special instructions that you must follow exactly. These
instructions include the following steps:

1 . Permanently apply any PTFs superseded by the new PTFs.
2. Perform an IPL of all partitions from the A side.
3. Load the PTFs on all logical partitions using the LodPTF (Load PTFJ command. Do not use the Go

PTF command.
4. Apply the PTFs temporarily on all logical partitions using the ApyPTF (Apply PTF) command.
5. Power down all secondary partitions.
6. Perform a power down and IPL of the primary partition from side B in normal mode.
7. Perform normal-mode IPLs of all secondary partitions from side B.
8. Apply all the PTFs permanently using command ApyPTF.

When you receive partition-sensitive PTFs, always refer to any accompanying special instructions
before loading the PTFs onto your system.

98 Starter Kit for the IBM iSeries and AS/400

Installing Licensed Internal Code PTFs
Step 1. Print and review any cover letters that accompany the PTFs. Look especially for

any specific pre-installation instructions. You can do this by entering the DspPTF
(Display Program Temporary Fix) command and specifying the parameters
CoverOnly(*Yes) and either Output(") or Output(*Print), depending on whether
you want to view the cover letter on your workstation or print the cover letter.

For example, to print the cover letter for P1F MF12345, you'd enter the following
DspP1F command:

DspPTF LicPgm(5769999) +
Select(MF12345) +
CoverOnly(*Yes) +
OutputC*Print)

e Note
You can also access cover letters at the IBM Tech Support Web site by
following the "Technical Infonnatlon & Databases" link.

Step 2. Determine which storage area your machine is currently using. The system
maintains two copies of all the IBM licensed internal code on your system. This
lets your system maintain one permanent copy while you temporarily apply
changes (P1Fs) to the other area. Only when you're certain you want to keep
the changes are those changes permanently applied to the control copy of the
licensed internal code. The permanent copy is stored in system storage area A,
and the copy considered temporary is stored in system storage area B. When
the system is running, it uses the copy you selected at your last IPL. Except for
rare circumstances, such as when serious operating system problems occur, the
system should always run using storage area B.

To apply P1Fs to the B storage area, the system must actually IPL from the A
storage area and then IPL again on the B storage area to begin using those
applied P1Fs. On older releases of OS/400, you had to manually IPL to the A
side, apply P1Fs, and then manually IPL to the B side again. The system now
handles this IPL process automatically during the PTF install and apply process.

To determine which storage area you're currently using, execute the command

DspPTF 5769999

and check the IPL source field to determine which storage area is current. You
will see either ##MACH#A or ##l\ilACH#B, which tells you whether you are run
ning on storage area A or B, respectively. If you are not running on the B
storage area, execute the following PwrDwnSys (Power Down System) command
before continuing with your PTF installation

PwrDwnSys Option<*Immed) +
RestartC*Yes) +
IPLSrc(B)

Chapter 6 An Introduction to PTFs 99

Step 3. Enter Go PIF and press Enter to reach the Program Temporaty Fix (PTF) panel.
Select the "Install program temporaty fix package" option.

Step 4. Supply the correct value for the Device parameter, depending on whether you
received the P1F(s) on media or electronically. If you received the PTF(s) on
media, enter the name of the device you're using. If you received the P1F(s)
electronically, enter the value •service. Then press Enter.

Step 5. The system then perfonns the necessaty steps to temporarily apply the PTFs and
re-IPL to the B storage area. Once the IPL is complete, verify the PTF installation
(for instructions about how to do so, see "Verifying Your P1F Installation," below).

Installing Licensed Program Product PTfs
Installing P1Fs for licensed program products is almost identical to installing licensed internal
code P1Fs, except that you don't have to determine the storage area on which you're
currently running. The abbreviated process for licensed program products is as follows.

Step 1. Review any cover letters that accompany the P1Fs. Look especially for any spe
cific pre-installation instructions.

Step 2. Enter Go PIF and press Enter to reach the Program Temporaty Fix (PTF) panel.
Select the "Install program temporaty fix package" option.

Step 3. Supply the correct value for the Device parameter, depending on whether you
received the PTF(s) on media or electronically. If you received the PTF(s) on
media, enter the name of the device you're using. If you received the PTF(s)
electronically, enter the value •service. Then press Enter.

Step 4. After the IPL is complete, verify the PTF installation (see "Verifying Your PTF
Installation").

Verifying Your PTF Installation
After installing one or more PTFs, you should verify the installation process before
resuming either normal system opemtions or use of the affected product. Use the system
supplied histoiy log to verify PTF installations by executing the DspLog (Display Log)
command, specifying the time and date you want to start with in the log:

Dsplog Log(QHst) +
Period((StartTfme StartDate>>

Be sure to specify a starting time early enough to include your PTF installation
information. On the Display Log panel, look for any messages regarding PTF installation.
If you have messages that describe problems, see Basic System Operation, Administration,
and Problem Handling (SC41-5206) for more information about what to do when your
P1F installation fails.

100 Starter Kit for the IBM iSeries and AS/400

When installing a cumulative PTF package, you can also use option 50, "Display log
for messages," on the Work with Licensed Programs panel (to reach this panel, issue the
command Go LicPgm). The message log will display messages that indicate whether the
install was successful.

How Current Are You?
One last thing that will help you stay current with your PTFs is knowing what cumulative
PTF package you currently have installed. To determine your current cumulative PTF
package level, execute the command

DspPTF LicPgmC5769SS1)

The ernuing display panel shows the identifiers for PTFs on your system. The panel lists PTFs
in decreasing sequence, showing cumulative package information first, before individual
PTFs. Cumulative packages start with TC or TA and end with five digits that represent the
Julian date (in yyddd format) for the particular package. PTF identifiers that start with TC
indicate that the entire cumulative package has been applied; those starting with TA
indicate that HIPER PTFs and HIPER licensed internal code fixes have been applied.

To determine the level of licensed internal code fixes on your system, execute the
command

DspPTF LicPgmC5769999)

Identifiers beginning with the letters TL and ending with the five-digit Julian date indicate
the cumulative level. Typically, you want the levels for TC, TA, and TL packages to match.
This circumstance indicates that you've applied the cumulative package to licensed
program products as well as to licensed internal code.

Developing a Proactive PTF Management Strategy
We can't overstate the importance of developing sound PTF management processes. A
proactive PTF management strategy lessens the impact to your organization that can result
from program failures by avoiding those failures, ensuring optimal performance, and
maximizing availability.

Because environments vary, no single strategy applies to all scenarios. However, you
should be aware of certain guidelines when evaluating your environment and establishing
scheduled maintenance procedures. Your PTF maintenance strategy should include
provisions for preventive service planning, preventive service, and corrective service.

Preventive Service Planning
Planning your preventive measures is the first step to effective PTF management. To help
you with planning, IBM publishes several Preventive Service Planning documents in the
form of informational PTFs. The easiest and fastest way to obtain these documents is from
the IBM Service Web site. Following are some minimum recommendations for PSP review.

Chapter 6 An Introduction to PTFs 101

You should start with the software and hardware PSP information documents by
ordering SF98vnn (Current Cumulative PTF Package) and MF98vnn (Hardware Licensed
Internal Code Information), respectively. These documents contain service recommendations
concerning critical PTFs or PTFs that are most likely to affect your system, as well as a list
of the other PSP documents from which you can choose. You should order and review
SF98vnn and MF98vnn at least monthly.

Between releases of cumulative PTF packages, you may need to order individual PTFs
critical to sound operations. If you review no other additional PSP documents, review the
information for HIPER PTFs and Defective PTFs. These documents contain information
about critical PTFs. At a minimum, review this information weekly.

In years past, PSP documents contained enough detail to let you determine the nature
of the problems that PTFs fixed. Unfortunately, that's no longer the case. With problem
descriptions such as "Data Integrity" and "Usability of a Product's MAJOR Function," you
often must do a little more work to determine the nature of problems described in the
PSP documents by referring to PTF cover letters.

In addition to reviewing PSP documents, consider subscribing to IBM's AS/400 Alert
offering. This service notifies you weekly about HIPER problems, defective PTFs, and the
latest cumulative PTF package. You can receive this information by fax or mail. To learn
more about this service, go to http://uJW/B.ibm.com/seroices.

Preventive Service
Preventive measures are instrumental to your system's health. Remember the old adage
"An ounce of prevention ... "? Suffice it to say we've seen situations where PTFs would
have saved tens of thousands of dollars. Avoid problems, and you avoid their associated
high costs.

Preventive maintenance includes regular application of cumulative and group PTF
packages and Client Access service packs. Because all of these are collections of PTFs,
your work is actually quite easy. There's no need to wade through thousands of PTFs to
determine those you need. Instead, simply order and apply the packages.

Cumulative PTF p-ackages are your primary preventive maintenance aid. Released on
a periodic basis, they should be applied soon after they become available - usually every
three to four months. This rule of thumb is especially true if you're using the latest
hardware or software releases or making significant changes to your environment.

In conjunction with cumulative PTF packages, you should stay current with any group
PTF packages applicable to your environment, as well as with Client Access service packs
if appropriate. You can find Client Access service pack information and download service
packs by following the links at http:l!wuw.as400.ibm.com/clientaccess.

102 Starter Kit for the IBM iSeries and AS/400

Corrective Service
Even the most robust and aggressive scheduled maintenance efforts can't thwart all possible
problems. When you experience problems, you need to find the corrective PTFs.

Ferreting out of PSP information about individual problems and fixes is without a
doubt the most detailed of the tasks in managing PTFs. However, if you take the time to
learn your way around PSP information and PTF cover letters, you'll be able to find timely
resolution to your problems.

Your goal should be to minimize the corrective measures required. In doing so, your
environment will be dramatically more stable operationally. With robust preventive service
planning and preventive service measures, your corrective service issues will be minimal.

103

Chapter 7

Getting Your Message Across: User-to-User
Sooner or later, you'll want to use messages on your system. For instance, you might need
to have a program communicate with a user or a workstation to request input, report a
problem, or simply update a user or system operator about the status of the program
(e.g., "Processing today's invoices"). Another time, your application might need to com
municate with another program. Program-to-program messages can include informational,
notification, status, completion, diagnostic, escape, and request messages, each of which
aids in developing program function, problem determination, or application auditing. "File
Yourlib/YourObj not found" is an example of a diagno1>tic program-to-program message.

You or your users can also send messages to one or more users or workstations on
the spur of the moment. Sometimes called impromptu messages, user-to-user messages
aren't predefined in a message file. They might simply convey information, or they might
require a response (e.g., ':Joe, aliens have just landed and taken the programming
manager hostage. What should we do???"). User-to-user messages can serve as a good
introduction to iSeries messaging.

Sending Messages 101
To send user-to-user messages, you use one of three commands or a feature of
Operational Assistant (an OS/ 400 facility that provides menus and displays to help end
users perform common tasks). Commands SndMsg, SndBrkMsg, and SndNetMsg are
similar, yet each offers its own unique features.

SncL\1sg (Send Message) is the most commonly used message command - you can
use it even if LmtCpb(*Yes) is specified on your user profile and the easiest to learn.
Figure 7 .1 shows the SndMsg prompt screen.

To access the SndMsg command, you can

• key SndMsg on a command line

• select option 5 (Send a message) on the System Request menu

• select option 3 (Send a message) on the User Task menu

The message string you enter in the SndMsg command's Msg (Message text)
parameter can be up to 512 characters long. To specify the message destination, you enter
a user profile name in the ToUsr (To user profile) parameter. ToUsr can have any of the
following values:

• UserProfileName - to send the message to a user's message queue (which may or
may not have the same name as the user profile)

• •sysOpr to send the message to the system operator's message queue
(QSys/QSysOpr)

104 Starter Kit for the IBM iSeries and AS/400

FIGURE 7.1
Send Message (SNDMSG) Panel

Send Message CSNDMSG)

Type choices, press Enter.

Message text • . •

To user profile

To message queue
Library

Additional Parameters

+ for more values
*LIBL __

*LIBL __
*INFO
*WRKSTN_

Message type . • • • .
Message queue to get reply

Library •..
Coded character set ID . • *JOB. __ _

Name, *SYSOPR, *ALLACT •••

Name, *SYSOPR, *HSTLOG
Name, *LIBL, *CURLIB

*INFO, *INQ
Name, *WRKSTN
Name, *LIBL, *CURLIB
1-65535, *HEX, *JOB

• • AllAct - to send the message to the message queue of every user currently signed
on to the system (note that • AllAct isn't valid when MsgType(*Inq) is also specified)

• *Requester - to send the message to either the requesting user profile's message
queue (for interactive jobs) or the system operator message queue (when the command
is executed from within a batch job)

For example, say you simply want to inform John Smith, a co-worker, of a meeting.
You could enter

SndMsg Msg('John - Our meeting today will be at 4:00. Jim')+
ToUsr(JSmith)

Another way to specify the message destination is to enter up to 50 message queue
names in SndMsg's ToMsgQ (To message queue) parameter. You can specify any external
message queue on your system, including the workstation, user profile, or system history
log CQHst) message queue. (For more information about sending messages to QHst, see
"Sending Messages into History," page 105.) Specifying more than one message queue is
valid only for informational messages, with the exception that inquiry messages can
specify two message queues if one of them is *HstLog.

The MsgType (Message type) parameter lets you specify whether the message you're
sending is an informational (*Info, the default) or inquiry (*Inq) message. Like an
informational message, an inquiry message appears on the destination message queue as
text. However, an inquiry message also presents a response line to the user and waits for

Chapter 7 Getting Your Message Across: User-to-User 105

Sending Messages into History
One feature of the SndMsg (Send Message) command is its ability to send a message to the system's
history log, QHst. QHst automatically tracks high-level activities on your system, such as job starts
and completions, device status changes, system operator messages and replies, and PTF activity. (For a
more thorough description of QHst, see Chapter 14.)

Sending messages to QHst can enhance application auditing. For instance, say you want to
monitor a certain report to determine who uses it and how often. In a CL program that submits or
executes the report, you could simply add a statement such as

SndMsg MsgC'Report ABCPRINT requested by user' *BCat +
&UsrPrf> +

ToMsgQ(QHst)

where &UsrPrf is a CL variable that contains the current user profile name, which the program can
retrieve by using the RtvUsrPrf (Retrieve User Profile) command. You could then use the DspLog
(Display Log) command to display the contents of QHst.

This is just one example of the kind of tracking you can do. For instance, the SndPgmMsg (Send
Program Message) command lets you perform this function as well. Experiment with these commands,
and see how sending messages to QHst can give you insight into the way your applications are
being used.

a reply. If you wanted to schedule a meeting with John and be sure he received your
message, you could enter

SndMsg Msg('John - Will 4:00 be a good time for our meeting today? Jim') +
ToUsrCJSmith> +
MsgTypeC*Inq)

The RpyMsgQ (Message queue to get reply) parameter specifies which message queue
should receive the response to the inquiry message. Because the default for RpyMsgQ is
*Wrkstn, John's reply would be sent to your (the sender's) workstation message queue.

Message Delivery with SndMsg
As you can see, the Sn<ll\1sg command provides a simple way to send a message or
inquiry to someone else on the local system. However, it has one quirk. Although SndMsg
can send a message to a message queue, it is the message queue delivery mode attribute,
Dlvry (Delivery), that defines how the message will be received. The delivery mode can
be any of the following values:

• *Break This mode is typically used so that the user is interrupted with a message
when it is received. When you specify *Break mode for the message queue, you also
specify a program to process the message immediately upon its arrival in the message
queue. You can specify special value *DspMsg for the program attribute, in which
case the program is a system-supplied program that interrupts the user by displaying

106 Starter Kit for the IBM iSeries and AS/400

the message. Or, you can designate a user-written program to receive control when a
message arrives on the message queue. This program can perl'orm any desired pro
cessing, and, unless that processing includes a command to display the message, the
user is not interrupted. It's possible to defeat the interruption by setting the job's
Brk.Msg (Break message handling) attribute to a value other than *Normal namely,
to *Notify or *Hold. In that case, the message is processed as if the message queue
itself specified a delivery mode of *Notify or *Hold.

• *Notify - Tilis mode C'auses a workstation alarm to sound and illuminates the "message
wait" indicator on the display to alert the user to the fact that a message has arrived.

• *Hold - This mode causes the system to make no notification of the arrival of a
message. The user must display the messages on the message queue to determine
\Vhether any messages have arrived.

• *Dft - This mode causes the system to reply to messages requiring a reply with their
default reply value. No messages are added to the message queue unless the message
queue is QSysOpr.

Each of these delivery modes is appropriate for specific circumstances, and the mode you
select is largely a matter of personal preference.

I Break for Messages
With command Snch\1sg, the recipient determines the message delivery mode. The
SndBrk.Msg (Send Break Message) command, on the other hand, lets the message's sender
specify that a message should interrupt the recipient regardless of the delivery mode,
break-handling program, or severity filter specified by the recipient. This option is useful if
you must send an urgent message to another user. There's a consideration, however: The
recipient can prevent the interruption by setting his or her job's BrkMsg attribute to *Notify
or *Hold.

Figure 7.2 shows the SndBrkMsg prompt screen. Three other differences exist
between the SndBrk.Msg command and the SndMsg command. First, SndBrk.Msg provides
only the ToMsgQ (To work station message queue) parameter on which to specify a
destination (i.e., you can name only workstation message queues as destinations). Second,
SndBrkMsg lets you specify the value *AllWs (all workstations) in parameter ToMsgQ to
send a message to all workstation message queues. Third, when SndBrkMsg sends a
message to a message queue whose delivery mode is *Dft, the message is added to the
message queue.

The following is a sample message intended for all workstations on the system:

SndBrkMsg Msg('Please sign off the system immediately. The system+
will be unavailable for the next 30 minutes.') +

ToMsgQ(*AllWs)

Tilis message will go immediately to all workstation message queues and, when possible,
will be displayed on all active workstations. If a workstation isn't active, the message will

Chapter 7 Getting Your Message Across: User-to-User 107

FIGURE 7.2
Send Break Message (SNDBRKMSG) Panel

Send Break Message (SNDBRKMSG)

Type choices, press Enter.

Message text . . . • . • •

To work station message queue
Library • • ••••

+ for more values

Message type • • •
Message queue to get reply • • •

Library

*LIBL __

*LIBL __
*INFO
QSYSOPR_

*LIBL __

Additional Parameters

Coded character set ID • . *JOB __ _

Name, *ALLWS
Name, *LIBL

*INFO, *INQ
Name
Name, *LIBL

1-65535, *HEX, *JOB

simply be added to the queue and displayed when the workstation becomes active and
the message queue is allocated.

Messaging with Operational Assistant
OS/400's Operational Assistant provides perhaps the simplest user-to-user messaging
interface. You can access the messaging feature either from the ASSIST menu (enter Go
Assist and select option 4, Send messages) or by calling the menu option's system
supplied program, QEZSnd.\1g. Figure 7.3 shows the resulting Send a Message panel.

You'll probably notice right away that this option is straightforward in its use. At its
simplest, you type the message you want to send (up to 494 characters), list the users to
whom you want to send the message, and then press FlO to send it. 'ilie system sends
the message to the user message queue of each user you list.

If you require a reply to the message or you want to interrupt the users, you can
specify so. Be aware, though, that QEZSndMg sports one characteristic that's less than
straightforward: If you indicate that you want to interrupt the users, the message isn't
actually sent to the user message queue of the selected users. Instead, for each listed user,
the system sends the message to the workstation message queues of all workstations to
which that user is signed on. If a user is signed on to four sessions, he or she will receive
the message four times - once at each session. And if you've required a reply, you'll
receive four responses! If the user isn't signed on to the system when the message is sent,
the message is sent to the user message queue.

108 Starter Kit for the IBM iSeries and AS/400

FIGURE 7.3
Send a Message Panel

Send a Message

Type information below, then press F1~ to send.

Message needs reply N Y=Yes, N=No

Interrupt user N Y=Yes, N=No

Message text •

Send to Name, F4 for List

In Chapter 29, we discuss user-defined command SndBrkMsgU, which enhances the
function provided by program QEZSndMg. The enhancements are primarily for use in
programs, but you can also use SndBrkMsgU to send message to users if you prefer a
command interface to that provided by the ASSIST menu.

Casting Network Messages
The remaining command available for sending messages to other users is SndNetMsg
(Send Network Message), shown in Figure 7.4. As with SndMsg and SndBrkMsg, you can
type an impromptu message in this command's Msg (Message text) parameter. However,
with SndNetMsg, the maximum length of the message is 256 characters, rather than the
512-character limit of SndMsg and SndBrkMsg.

The distinguishing feature of the SndNetMsg command is its destination parameter,
ToUsrID (User ID). The value you specify for ToUsrID must be either a valid network user
ID or a valid distribution list name (i.e., the name of a list of network user IDs). You can
specify up to 50 user IDs to receive the message, and you can mix user IDs with distribution
lists if you like. If necessary, you can add network user IDs to the system network directory
using the WrkDir (Work with Directory) command. Each network user ID is associated
with a user profile on a local or remote system in the network.

There are two situations in which the SndNetMsg command is more appropriate than
SndMsg or SndBrkMsg. First, you might need this command if your system is in a
network, because SndMsg and SndBrkMsg can't send messages to a remote system.
Second, you can use SndNetMsg to send messages to groups of users on a network
(including users on your local system) using a distribution list. You create a distribution

Chapter 7 Getting Your Message Across: User-to-User 109

flGURf 7.4
Send Network Message (SNDNEIMSG) Panel

Send Network Message (SNDNETMSG)

Type choices, press Enter.

Message text . • . . . • •

User ID:
User ID
Address

+ for more values

Character value
Character value

list using the CrtDstL (Create Distribution List) command and add the appropriate network
user IDs to the list using the AddDstLE (Add Distribution List Entry) command.

W'hen you specify a distribution list as the message destination, the message is
distributed to the message queue of each network user in the list. For example, if
distribution list Pgmrs consists of network user IDs for Bob, Jim, Linda, and Sue, you
could send the same message to each of these users (and give them reason to remember
you on Boss's Day) by executing the following command:

SndNetMsg Msg('Thanks for your hard work on the order entry project. +
Go home early today and enjoy a little time off.') +

ToUsrid(Pgmrs)

The only requirements for this method are that user profiles have valid network user IDs
in the network directory and that SNA Distribution Services (SNADS) be active (you can
start SNADS by starting the QSNADS subsystem).

As you can see, you have more than one option when sending user-to-user messages.
You're ready now to move on to program-to-user and program-to-program messages, but
these are topics for another day. Meanwhile, this introduction to messages should get you
started and whet your appetite for learning more.

111

Chapter 8

Secrets of a Message Shortstop
by Bryan Meyers

What makes the OS/ 400 operating system tick? You could argue that messages are really
at the heart of the iSeries. The system uses messages to communicate between processes.
It sends messages noting the completion of jobs or updating the status of ongoing jobs.
Messages tell when a job needs some attention or intervention. The computer dispatches
messages to a problem log so the operator can analyze any problems the system may be
experiencing. You send requests in the form of messages to the command processor
when you execute commands. You can design screens and reports that use messages
instead of constants, thus enabling multilingual support. And, of course, users can send
impromptu messages to and receive them from other workstation users on the system.

With hundreds of messages flying around your computer at any given moment, it's
important to have some way to catch those that relate to you - and that might require
some action. IBM provides several facilities to organize and handle messages, and you can
create programs to further define how to process messages. This chapter explores three
methods of message processing:

• the system reply list

• break-handling programs

• default replies

The system reply list lets you specify that the operating system is to respond auto
matically to certain predefined inquiiy messages without requiring that the user reply to
them. A break-handling program let<> you receive messages and process them according
to their content. The reply list and the break-handling program have similar functions and
can, under some conditions, accomplish the same result. The reply list tends to be easier
to implement, while a break-handling program can be much more flexible in the way it
handles different kind<> of messages. The third message-handling technique, the default
reply, lets you predefine an action that the computer will take when it encounters a
specific message; the reply becomes a built-in part of the message description.

Return Reply Requested
The general concept of the system reply list is quite simple. The reply list primarily
consists of message identifiers and reply values for each message. There's only one reply
list on the system (hence the official name, "system reply list"). When a job using the
reply list encounters a predefined inquiiy message, OS/400 searches the reply list for an
entiy that matches the message ID (and the comparison data, covered later). When a
matching entiy exists, the system sends the listed reply without intervention from the user

112 Starter Kit for the IBM iSeries and AS/400

or the system operator. When the system finds no match, it sends the message to the user
(for interactive jobs) or to the system operator (for batch jobs).

A job doesn't automatically use the system reply list; you must specify that the reply
list will handle inquiry messages. To do so, indicate InqMsgRpy(*SysRpyL) within any of
the following commando;;:

• BchJob (Batch Job)

• SbmJob (Submit Job)

• ChgJob (Change Job)

• CrtJobD (Create Job Description)

• ChgJobD (Change Job Description)

IBM ships the iSeries with the system reply list already defined as shown in Figure 8.1.
This predefined reply list issues a "D" (job dump) reply for inquiry messages that indicate
a program failure.

FIGURE 8.1
Shipped System Reply List

Sequence Message Comparison Start Reply Dump
number (SeqNbr) identifier (MsglD) data (CmpDta) (Start) (Rpy) (Dump)
10 CPA0700 *None D *Yes

20 RPGOOOO *None D *Yes

30 CBEOOOO *None D *Yes

40 PLIOOOO *None D *Yes

Each entry in the system reply list consists of a unique sequence number (SeqNbr), a
message identifier (MsgID), optional comparison data (CmpDta) and starting position
(Start), a reply value (Rpy), and a dump attribute (Dump). Note that the reply list uses the
same convention as the MonMsg (Monitor Message) command for indicating generic
ranges of messages; for example, "RPGOOOO" matches all messages that begin with the
letters "RPG," from RPGOOOl through RPG9999.

You can modify the supplied reply list by adding your own entries using the
following commands:

• WrkRpyLE (Work with Reply List Entries)

• AddRpyLE (Add Reply List Entry)

• ChgRpyLE (Change Reply List Entry)

• RmvRpyLE (Remove Reply List Entry)

Figure 8.2 lists some possibilities to consider for your own reply list. Let's look at each
component of the system reply list individually.

Sequence Message

Chapter 8 Secrets of a Message Shortstop 113

FIGURE 8.2
Modified System Reply List

Comparison Reply Dump
number (SeqNbr) identifier (MsglD) data (CmpDta)

Start
(Start) (Rpy) (Dump}

8 CPF3773 *None I *No

9 CPF3130 *None R *No

10 CPA0700 *None D *Yes

15 CPA3394 PRT3816 41 c *No

16 CPA3394 *None *Rqd *No

17 CPA4002 PRT3816 I *No

18 CPA4002 PRTHPLASER *No

19 CPA4002 *None *Rqd *No

20 RPGOOOO *None D *Yes

30 CBEOOOO *None D *Yes

40 PLIOOOO *None D *Yes

A Table of Matches
The system searches the reply list in ascending sequence-number order. Therefore, if you
have two list entries that would satisfy a match condition, the system uses the entry with
the lowest sequence number. The message identifier can indicate a specific message (e.g.,
RPG1241) or a range of messages (e.g., RPG1200 for any RPG messages from RPG1201
through RPG1299), or you can use *Any as the message identifier for an entry that will
match any inquiry message, regardless of its identifier.

6 Note
The reply list message identifiers are independent of the message files. If
you have two message files with the message ID USR9876, for example
(rarely a good idea), the system reply list treats both messages the same.

You should use the *Any message identifier with great care. It is a catch-all entry that
ensures the system reply list handles all messages, regardless of their message identifier. If
you use this identifier, it should be at the end of your reply list, with sequence number
9999. You should also be confident that the reply in the entry will be appropriate for any
error condition that might occur. If the system reply list gets control of any message other
than the listed ones, it performs a dump and then replies to the message using the default
reply from the message description. If you don't use *Any, the system send5 unmonitored
messages to the operator.

The comparison data is an optional component of the reply list. You use comparison
values when you want to send different replies for the same message, depending on the
contents of the message data. The format of the message data is defined when you or IBM

114 Starter Kit for the IBM iSeries and AS/400

creates the message. To view the format, use the DspMsgD (Display Message Description)
command. When a reply list entry contains comparison values, the system compares the
values with the message data from the inquiry message. If you indicate a starting position
in the system reply list, the comparison begins at that position in the message data. If the
message data comparison value matches the list entry comparison value, the system uses
the list entry to reply to the message; otherwise, it continues to search the list For example,
Figure 8.2 shows three list entries for the CPA4002 (Align forms) message. When the
system encounters this message, it checks the message data for the name of the printer
device. If the device name matches either the "PRT3816" or "PRTifPLASER" comparison
data, the system automatically replies with the I (Ignore) response; otherwise, it requires
the user or the system operator to respond to the message.

You use the reply value portion of the reply list entry to indicate how the system
should handle the message in this entry. Your three choices are

• indicate a specific reply (up to 32 characters) that the system automatically returns to
the job in response to the message (e.g., I, R, D, and C in Figure 8.2)

• use *Dft (Default) to have the system send the message default reply from the message
description

• use *Rqd (Required) to require the user or system operator to respond to the message,
just as if the job were not using the reply list

The system reply list's dump attribute tells the system whether to perlorm a job dump
when it encounters a message matching this entry. Valid values are *Yes and *No. You can
request a job dump no matter what you specify for a reply value. The system dumps the
job before it replies to the message and returns control to the program that originated the
message. The dump then serves as a snapshot of the conditions that caused a particular
inquiry message to appear.

Although the reply list is a system-wide entity, you can use it with a narrower focus.
Figure 8.3 shows parts of a CL program that temporarily changes the system reply list and
then uses the changed list for message handling, checking for certain inquiry messages
and issuing replies appropriate to the program. At the end, the program returns the system
reply list to its original condition.

You should limit this approach to programs run on a dedicated or at least a fairly
quiet system. Candidates for this method include such jobs as software installation or
nightly processing.

Chapter 6 An Introduction to PTFs 95

FIGURE 6.1
SndP1FOrd Command Prompt

Type choices, press Enter.
PTF description:

PTF identifier
Product
Release

PTF parts
Remote control point
Remote network identifier

Delivery method
Order
Reorder

Send PTF Order (SNDPTFORD)

PTFID

+ for more values
. . . PT FPART
... RMTCPNAME
. . . RMTNET ID
Additional Parameters

*ONLYPRD
*ONLYRLS_

*ALL __ _
*IBMSRV_
*NETADR_

.DELIVERY *LINKONLY

.ORDER *REQUIRED
... REORDER *NO_

F3=Exit F4=Prompt FS=Refresh F12=Cancel
Bottom

F13=How to use this display
F24=More keys

Two restrictions apply to the Product and Release elements of the PTFID parameter.
First, if you specify a particular product, you also must specify a particular release level.
Second, if you specify *OnlyPrcl for the product element, you also must specify *OnlyRls
for the release element.

From time to time, you may want to download only a cover letter to determine
whether a particular PTF is necessaiy for your system. The next SndPTFOrd parameter,
PTFPart (PTF parts), makes this possible. llse value *All to request both PTF(s) and cover
letterCs) or value *CvrLtr to request cover letter(s) only.

The next two parameters, RmtCPName (Remote control point) and RmtNetID (Remote
network identifier), identify the remote service provider and the remote service provider
network. You should change parameter RmtCPName (default value *lBMSrv) only if you
are using a service provider other than IBM or are temporarily accessing another service
provider to obtain application-specific PTFs. Parameter RrntNetID must correctly identify
the remote service provider network. TI1e value *NetAtr causes the system to refer to the
system·s network attributes to retrieve the local network identifier (you can view the
network attributes using the DspNetA, or Display Network Attributes, command). If you
change the local network identifier in the network attributes, you may then have to
override this default value when you order PTFs. Your network provider can give you
the correct RrntNetID if the default doesn't work.

SndPTFOrd's Deliveiy parameter determines how PTFs are delivered to you. A value
of *Link Only tells ECS to deliver PTFs only via the electronic link. The value •Any
specifies that the PTFs can be delivered using any available method. Most PTFs ordered

96 Starter Kit for the IBM iSeries and AS/400

using SndPTFOrd are downloaded immediately using ECS; however, PTFs that are too
large for electronic download are instead shipped hy mail.

The next parameter, Order, specifies whether only the ordered P1Fs are sent or also any
requisite PTFs you must apply before, or along with, the PTFs you're ordering. Value
*Required request-; the PTI~s you're ordering as well as any other required PTFs that accom
pany them. Value *PTFID specifies that only those PTFs you're ordering are to he sent.

The last parameter, Reorder, specifies whether you want to reorder a PTF that's
CLlffently installed or ordered. Valid values are *No and *Yes. Reorder(*Yes) is necessary if
you've previously sent for only the cover letter and now want to order the PTF itself. If
you permit Reorder to default to *No in this case, OS/400 won't order the PTF because it
thinks it's already done so, when, in fact, you've received only the cover letter.

Ordering PTFs on the Internet
IBM provides a detailed overview of the Internet PTF download process, along with
detailed instructions, at the II3M iSeries and AS/400 Technical Supp01t Web site,
http://www.as400service.ihm.com. The service is free and available to all iSeries and
AS/ 400 owners.

When you visit the site, select "Fixes and Updates'' and then select "Internet PTF
Downloads (iPTF)" to reach the Internet PTF Downloads page. Then simply complete the
following few steps, and you're ready to download PTFs:

1. Register for the service.

2. Configure your system, and start the appropriate services.

3. Test your PC's Internet browser to ensure it supports the JavaScript programs used in
the download process.

4. Log on, identify the PTFs you want to download, and begin the download.

5. After you've downloaded the PTFs, you simply continue normal PTF application
procedures.

How Do You Install and Apply a PTF?
Installing a PTF includes two basic steps: loading the PTF and applying the PTF. The
process we outline here perfonns both the loading and the application of the PTF. Note
one caution concerning the process of loading and applying PTFs: You must not intenupt
any step in this process. Intem1pting a step can cause problems significant enough to require
reloading the cuffent version of the licensed internal code or the operating system. Make
sure, for example, that your electrical power is protected with an uninterruptible power
supply (UPS). Also note that for systems with logical partitions, the PTF process differs in
some critical ways; if you have such a system, be sure to read "PTFs and Logical
Partitioning (LPAR)'' (page 97) for more information.

First, we'll look at loading and applying PTFs for the IBM licensed internal code. Then
we'll examine the process for loading and applying PTFs for licensed program products.

Chapter 6 An Introduction to PTFs 97

.~JJI!;
~Caution

Anytime you plan to add a significant number of PfFs to your system, you
should have a current backup. Our preference is for a full system backup,
but if that's not possible, you should at least have a current backup of
system data (you can use option 22 on menu SA VE to back up system data).
Applying even a single PfF can result in catastrophic problems that require
you to reload the system. Fortunately, PfF application rarely causes such
devastation, but if this does happen, you'll be relieved to know you have a
backup with which you can recover your system.

PTFs and Logical Partitioning (LPAR)
Although the basic steps of installing PTFs are the same for a system with logical partitions, some

important differences exist. Fail to account for these differences when you apply PTFs, and you could

find yourself with an inoperable system requiring lengthy recovery procedures. For systems with

logical partitions, heed the following warnings:

• When you load PTFs to a primary partition, shut down all secondary partitions before installing
the PTFs.

• When using the Go PTF command on the primary partition, change the automatic IPL parameter
from its default value of *Yes to *No unless the secondary partitions are powered down.

These warnings, however, are only the beginning with respect to the differences imposed by logical

partitioning. There are also partition-sensitive PTFs that apply specifically to the lowest-level code that
controls logical partitions. These PTFs have special instructions that you must follow exactly. These

instructions include the following steps:

1 . Permanently apply any PTFs superseded by the new PTFs.

2. Perform an IPL of all partitions from the A side.

3. Load the PTFs on all logical partitions using the LodPTF (load PTF) command. Do not use the Go
PTF command.

4. Apply the PTFs temporarily on all logical partitions using the ApyPTF (Apply PTF) command.

5. Power down all secondary partitions.

6. Perform a power down and IPL of the primary partition from side B in normal mode.

7. Perform normal-mode IPLs of all secondary partitions from side B.

8. Apply all the PTFs permanently using command ApyPTF.

When you receive partition-sensitive PTFs, a/ways refer to any accompanying special instructions

before loading the PTFs onto your system.

98 Starter Kit for the IBM iSeries and AS/400

Installing Licensed Internal Code PTFs
Step 1. Print and review any cover letters that accompany the PTFs. Look especially for

any specific pre-installation instmctions. You can do this hy entering the DspPTF
(Display Program Temporary Fix) command and specifying the parameters
CoverOnly(*Yes) and either Output(*) or Output(*Print), depending on whethe:'f
you want to vie\v the cover letter on your workstation or print the cover letter.

For example, to print the cover letter for PTF MF12345, you'd enter the following
DspPTF command:

DspPTF LicPgm<5769999) +
Select<MF12345) +
CoverOnlyC*Yes) +
Output<*Print)

6 Note
You can al'>o access cover letters at the IBM Tech Support Web site by
following the "Technical Information & Databases" link.

Step 2. Detennine which storage area your machine is currently using. The system
maintains two copies of all the lBM licensed internal code on your system. This
lets your system maintain one pem1anent copy while you temporarily apply
changes (PTFs) to the other area. Only when you're ce1tain you want to keep
the changes are those changes permanently applied to the control copy of the
licensed internal code. The pennanent copy is stored in system storage area A,
and the copy considered temporary is stored in system storage area B. When
the system is running, it uses the copy you selected at your last IPL. Except for
rare circumstances, such as when serious operating system problems occur, the
system should always run using storage area B.

To apply PTFs to the B storage area, the system must acrnally IPL from the A
storage area and then IPL again on the B storage area to begin using those
applied PTFs. On older releases of OS/400, you had to manually IPL to the A
side. apply PTFs, and then manually IPL to the B side again. The system now
handles this IPL process automatically during the PTF install and apply process.

To detennine which storage area you're currently using, execute the command

DspPTF 5769999

and check the IPL source field to detennine which storage area is current. You
will see either ##MACH#A or ##MACH#B, which tells you whether you are run
ning on storage area A or B, respectively. If you are not running on the B
storage area, execute the following PwrDwnSys (Power Down System) command
before continuing with your PTF installation

PwrDwnSys Option(*Immed) +
Restart(*Yes) +
IPLSrc(B)

Chapter 6 An Introduction to PTFs 99

Step 3. Enter Go PTF and press Enter to reach the Program Tempora1y Fix (PTF) panel.
Select the "lnscall program temporary fix package" option.

Step 4. Supply the correct value for the Device parameter, depending on whether you
received the PTF(s) on rnedia or electronically. If you received the PTF(s) on
media, enter che name of the device you're using. If you received the PTF(s)
electronically, enter the value *Service. Then press Enter.

Step 5. The system then perfonDS the necessary steps to temporarily apply the PTFs and
re-IPL to the B storage area. Once the IPL is complete, verify the PTF installation
<for instructions about hmv to do so, see "Ve1ifying Your PTF Installation," below).

Installing Licensed Program Product PTFs
Instilling P'ffs for licensed program product-; is almost identical to in.;;talling licensed internal
code PTFs, except that you don't have to dete1mine the stor.ige area on which you're
currently running. The abbreviated process for licensed program products is as follows.

Step 1. Review any cover letters that accompany the PTFs. Look especially for any spe
cific pre-installation instructions.

Step 2. Enter C..o PfF and press Enter to reach the Program Tempora1y Fix (PTF) panel.
Select the ''Install program tempora1y tlx package" option.

Step 3. Supply the correct value for the Device parameter, depending on \vhether you
received the PTF(s) on media or electronically. If you receiveJ the PTHs) on
media, enter the name of the device you're using. lf you received the PTF(s)
electronically, enter the value *Service. Then press Enter.

Step 4. After the IPL is complete, verify the PTF installation (see "Verifying Your PTF
Installation").

Verifying Your PTF Installation
After installing one or more PTFs, you should verify the installation process before
resuming either normal system operations or use of the affected product. Use the system
su pplied history log to verify IYJ'F installations by executing the DspLog (Display Log)
command. specifying the time and dace you >vant to start with in the log:

DspLog Log(QHst) +
Period((StartTime StartDate))

Be sure to specify a starting time early enough to include your PTF installation
information. On the Display panel, look for any messages regarding PTF installation.
If you have messages that describe problems, see Basic 5_}:,tem Operation, Adminz'.,tration,
all(/ Prohlem Handling lSCAl-5206) for rnore infonnation about what to do when your
PTF inswllation fails.

100 Starter Kit for the IBM iSeries and AS/400

Wnen installing a cumulative PTF package, you can also use option 50, "Display log
for messages," on the \X!ork with Licensed Programs panel (to reach this panel, issue the
command Go LicPgm). The message log will display messages that indicate whether the
install \Vas successful.

How Current Are You?
One last thing that will help you stay current with your PTFs is knowing what cumulative
PTF package you cunently have installed. To detennine your current cumulative PTF
package level, execute the command

DspPTF LicPgm(5769SS1)

1he ensuing display panel shows the identifiers for IYffs on your system. lhe 1xmel list'i PTFs
in decreasing sequence, showing cumulative package information first. before individual
PTFs. Cumulative packages stat1 with TC or TA and end with five digits that represent the
Julian date (in yyddd format) for the particular package. PTF identifiers that start with TC
indicate that the entire cumulative package has been applied; those starting with TA
indicate that HIPEH PTFs and HIPER licensed internal code fixes have been applied.

To detennine the level of licensed internal code fixes on your system, execute the
command

DspPTF LicPgm(5769999)

Identifiers beginning with the letters TL and ending with the five-digit Julian date indicate
the cumulative level. Typically. you \Vant the levels for TA. and TL packages to match.
This circumstance indicates that you've applied the cumulative package to licensed
program products as well as to licensed internal code.

Developing a Proactive PTF Management Strategy
We can't overstate the importance of developing sound PTF management processes. A
proactive PTF management strategy lessens the impact to your organization that can result
from program failures by avoiding those failures. ensuring optimal perfonnance, and
maximizing availability.

Because environments vaiy, no single stratei-,ry applies to all scenarios. However, you
should be aware of cenain guidelines when evaluating your environment and establishing
scheduled maintenance procedures. Your PTF maintenance strategy should include
provisions for preventive service planning, preventive se1vice, and cotTective service.

Preventive Service Planning
Planning your preventive measures is the first step to effective PTF management. To help
you with planning, IBM publishes several Preventive Service Planning documents in the
f01m of infrmnational IYrFs. 'The easiest and fastest way to obtain these document-; is from
the IBM Service Web site. Following are some minimum recommendations for PSP review.

Chapter 6 An Introduction to PTFs 101

You should sta1t with the solhvare and hardware PSP infonnation documents by
ordering SF98vrm (Current Cumulative PTF Package) and MF98vrm (Hardware Licensed
Internal Code Infonnation), respectively. These documents conrain service recommendations
concerning critical PTFs or PTFs that are most likely to affect your system, as well as a list
of the other PSP documents from which you can choose. You should order and review
SF98unn and MF98urm at least monthly.

Between releases of cumulative PTF packages, you may need to order individual PTFs
critical to sound operations. If you review no other additional PSP documents, review the
info1mation for HIPER PTFs and Defective PTFs. These documents contain infonnation
about critical PTFs. At a minimum, review this information weekly.

In years past, PSP documents contained enough detail to let you detennine the nature
of the problems that PTFs tixed. Unfortunately, that's no longer the case. With problem
descriptions such as "Data Integrity" and .. Usability of a Product's :MAJOR Function," you
often must do a little more work to determine the nature of problems described in the
PSP document<> by referring to PTF cover letters.

In addition to reviewing PSP documents, consider subscribing to IBM's AS/ 400 Alert
offe1ing. This service notifies you weekly about HIPER problems, defective PTFs, and the
latest cumulative PTF package. You can receive this infonnation by fax or mail. To learn
more about this service, go to http://uu.111'.ihm.com/sen.'ices.

Preventive Service
Preventive measures are instrumental to your system's health. Remember the old
"An ounce of prevention ... "? Suffice it to say we've seen situations where PTFs would
have saved tens of thousands of dollars. Avoid problems, and you avoid their associated
high costs.

Preventive maintenance includes regular application of cumulative and group PTF
packages and Client Access service pacb. Because all of these are collections of PTFs,
your work is actually quite easy. There's no need to wade through thousands of PTFs to
dete1mine those you need. Instead, simply order and apply the packages.

Cumulative PTF packages are your primary preventive mainten;mce aid. Released on
a periodic basis, they should be applied soon after they become available - usually evel)'
three to four months. This rule of thumb is especially true if you're using the latest
hardware or software releases or making significant changes co your environment.

In conjunction with cumulative PTF packages, you should stay current with any group
PTF packages applicable to your environment, as well as with Client Access service packs
if appropriate. You can find Client Access service pack infom1ation and download service
packs by following the links at bttp:l/www.as400.ibm.corn/c/ientaccess.

102 Starter Kit for the IBM iSeries and AS/400

Corrective Service
Even the most robust and aggressive scheduled maintenance efforts can't thwart all possible
problems. When you experience problems, you need to find the corrective PTFs.

Ferreting out of PSP infonnation about individual problems and fixes is without a
doubt the most detailed of the tasks in managing PTFs. However, if you take the time to
learn your way around PSP information and PTP cover letters, you'll be able to find timely
resolution to your problems.

Your goal should be to minimize tl1e corrective measures required. In doing so, your
environment will be dramatically more stable operationally. Wi:h robust preventive service
planning and preventive service measures, your corrective service issues will be minimal.

103

Chapter 7

Getting Your Message Across: User-to-User
Sooner or later_ you'll \Vant to use messages on your system. For instance, you might need
to have a program communicate with a user or a workstation to request input, rep01t a
problem. or simply update a user or system operator about the status of the program
(e.g .. "Processing today's invoices"). Another time. your application might need to com
municate vvith another program. Program-to-program messages can include infrmnational.
notification. status, completion. diagnostic, escape, and request messages. each of which
aids in developing program function, problem determination, or application auditing. "File
lc>wiih/VourOhj not found" is an example of a diagnostic program-to-program message.

'You or your users can also send messages to one or more users or workstations on
the spur of the moment. Sometimes called impromptu messages, user-to-user messages
aren·t predefined in a message file. They might simply convey information, or they might
require a response (e.g., ':Joe, aliens have landed and taken the programming
manager hostage. \Vhat should we do?11"). User-to-user messages can serve as a good
introduction to iSeries messaging.

Sending Messages 101
To send user-to-user messages, you use one of three commands or a feature of
Operational Assistant (an OS/400 facility that provides menus and displays to help end
users perfonn common tasks). Commancb Snc!Msg, SndBrL'll;lsg, and SndNetMsg are
similar. yet each offers its own unique features.

SndMsg <Send is the most commonly used message command you can
use it even if LmtCph<*Yes) is specified on your user profile and the easiest to learn.
Figure 7.1 shows the Sncl1V1sg prompt screen.

To access the SnclMsg command, you can

• key SndMsg on a command line

• selel t option '5 (Send a message l on the System Requesl menu

• select option 3 (Send a message J on the User Task menu

The message string you enter in the SndJVIsg command's Msg (Message text)
parameter can he up tn 512 characters long. To specify the message destination, you enter
a user profile rnune in the Tol'sr <To user profile} parameter. TolJsr can have any of the
following values:

• Uw!rPrr!f1/eNume - to send the message to a user's message queue (which may or
may not have the same name as the user profile)

• *SysOpr - to send the message to the system operator's message queue
(QSys;QSysOpr)

104 Starter Kit for the IBM iSeries and AS/400

FIGURE 7.1
Send Message (SNDMSG) Panel

Type choices, press Enter.

Message text

To user profile

To message queue
Library

Send Message (SNDMSG)

Name, *SYSOPR, *ALLA CT ...

Additional Parameters

Name, *SYSOPR, *HSTLOG
*LIBL __ Name, *LIBL, *CURLIB

+ for more values

Message type
Message queue to get reply

Library
Coded character set ID ..

*LIBL __
*INFO
*\IRKS TN_

*JOB __ _

*INFO, *ING
Name, *WRKSTN
Name, *LIBL, *CURLIB
1-65535, *HEX, *JOB

• • AllAct - to send the message to the message queue of eveiy user currently signed
on to the system (note that *AllAct isn't valid when MsgType(*lnq) is also specified)

• *Requester - to send the message to either the requesting user profile's message
queue (for interactive jobs) or the system operator message queue (when the command
is executed from within a batch job)

For example, say you simply want to inform John Smith, a co-worker, of a meeting.
You could enter

SndMsg Msg('John - Our meeting today will be at 4:00. Jim') +
ToUsrCJSmith)

Another way to specify the message destination is to enter up to 50 message queue
names in SndMsg's ToMsgQ (To message queue) parameter. You can specify any external
message queue on your system, including the workstation, user profile, or system history
log (QHst) message queue. (For more information about sending messages to QHst, see
"Sending Messages into Histoiy," page 105.) Specifying more than one message queue is
valid only for informational messages, with the exception that inquiry messages can
specify two message queues if one of them is *HstLog.

The MsgType (Message type) parameter lets you specify whether the message you're
sending is an informational (*Info, the default) or inquiiy (*Inq) message. Like an

infom1ational message, an inquiiy message appears on the destination message queue as
text. However, an inquiiy message also present.., a response line to the user and waits for

Chapter 7 Getting Your Message Across: User-to-User 105

Sending Messages into History
One feature of the SndMsg (Send Message) command is its ability to send a message to the system's

history log, QHst. QHst automatically tracks high-level activities on your system, such as job starts

and completions, device status changes, system operator messages and replies, and PTF activity. (For a

more thorough description of QHst, see Chapter 14.)
Sending messages to QHst can enhance application auditing. For instance, say you want to

monitor a certain report to determine who uses it and how often. In a CL program that submits or

executes the report, you could simply add a statement such as

SndMsg Msg('Report ABCPRINT requested by user' *BCat +
&UsrPrf) +

ToMsgQ(QHst)

where &UsrPrf is a CL variable that contains the current user profile name, which the program can

retrieve by using the RtvUsrPrf (Retrieve User Profile) command. You could then use the DspLog

(Display Log) command to display the contents of QHst

This is just one example of the kind of tracking you can do. For instance, the SndPgmMsg (Send
Program Message) command lets you perform this function as well. Experiment with these commands,

and see how sending messages to QHst can give you insight into the way your applications are

being used.

a reply. If you \Vanted to schedule a meeting with John and be sure he received your
message, you could enter

SndMsg Msg('John - Will 4:©© be a good time for our meeting today? Jim')+
ToUsr(JSmith) +
MsgType(*Inq)

The RpyMsg<) (Message queue to get reply) pararneter specifies which message queue
;.;houlcl receiVl' the response to the inquiry message. Because the default for RpyMsgQ is
*\Vrkstn, John·s reply would he sent to your (the sender's) workstation message queue.

Message Delivery with SndMsg
As you can see, the SndMsg command provides a simple way to send a message or
inquiry to somennl' else on the local sy::;tem. However, it has one quirk. Although SndMsg
can send a message to a message queue, it is the message queue delivery mode attribute,
Dlvry (Dclive1y), that defines how the message \Vill be received. The delivery mode can
he any of the follmving values:

• *Break - This mode is typically used so that the user is intem1pted with a message
\Vhen it is received. \Vhen you specify *Break mode for the message queue, you also
specify a program to process the message immediately upon its arrival in the message
queue. You can specify spcci:d value *Dsp,Yfsg for the program attribute, in which
case the program i.<> a system-supplied program that interrupts the user by displaying

106 Starter Kit for the 1Blv1 iSeries and AS/400

the message. Or, you can designate a user-written program to receive control when a
message arrives on the message queue. This program can perform any desired pro
cessing, and, unless that processing includes a command to display the message, the
user is not interrupted. It's possible to defeat the interruption by setting the job's
BrkMsg <Break message handling) attribute to a value other than *Nonna! namely,
to *Notify or *Hold. In that case. the message is pnxessecl as if the message queue
itself specified a delivery mode of *Notify or *Hold.

• *Notify - 1his mode causes a workstation alann to sound and illuminates the
wait" indicator on the display to alert the user to the fact that a message has arrived.

• *Hold - This mode causes the system to make no notification of the arrival of a
message. The user must display the messages on the message queue to cletennine
whether any messages have arrived.

• *Dft - This mode causes the system to reply to messages requiring a reply with their
default reply value. No messages are added to the message queue unless the message
queue is QSysOpr.

Each of these delivery modes is appropriate for specific circumstances, and the mode you
select is largely a matter of personal preference.

I Break for Messages
With command SndMsg. the recipient determines the message delivery mode. The
SndBrk.Msg (Send Break command, on the other hand, lets the message's sender

that a message should interrupt the recipient of the delivery mode,
break-handling program. or filter specified by the recipient. This option is useful if
you must send an urgent message to another user. There's a consideration. however: The
recipient can prevent the interruption by setting his or her job's BrkMsg attribute to *Notify
or *Hold.

Figure 7.2 shows the SndBrkMsg prompt screen. Three other differences exist
between the SndBrkMsg command and the Sncl.Msg command. First, SndBrkMsg provides
only the ToMsgQ (To work station message queue) parameter on which to specify a
destination (i.e., you can name only workstation message queues as destinations). Second,
SndBrkMsg lets you specify the value *AllWs \all workstations) in parameter To:VtsgQ to
send a message to all workstation message queues. Third, when SndBrkMsg sends a
message to a message queue whose delivery mode is *Dft, the message is added to the
message queue.

The follmving is a sample message intended for all workstations on the system:

SndBrkMsg Msg('Please sign off the system immediately. The system+
will be unavailable for the next 30 minutes.') +

ToMsgQ(*AllWs)

This message will go immediately to all workstation message queues and, when possible,
will be displayed on all active workstations. If a workstation isn't active, the message will

Chapter 7 Getting Your Message Across: User-to-User 107

FIGURE 7.2
Send Break Message (5NTJBRKiHSG) Panel

Send Break Message (SNOBRKMSG)

Type choices, press Enter.

Message text .•• - .••

stat on message queue
Library •....

+ for more values

Message type
Message queue to get reply

Library

*INFO

Additional Parameters

Coded character set IO . . *JOB __ _

Name, *LIBL

*INFO, *INQ
Name
Name, *LIBL

1-65535, *HEX, *JOB

simply be added to the queue and displayed when the workstation becomes active and
the message queue is allocated.

Messaging with Operational Assistant
OS/400's Operational Assistant provides perhaps the simplest user-to-user messaging
interlace. You cm access the messaging feature either from the ASSIST menu (enter Go
Assist and select option 4, Send messages) or by calling the menu option's system
supplied program, QEZSndMg. Figure 7.3 shows the resulting Send a Message panel.

You'll probably notice right away that this option is straightforward in its use. At its
simplest, you type the message you want to send (up to 494 characters), list the users to
whom you want to send the message, and then press FIO to send it. The system sends
the message to the user message queue of each user you list.

If you require a reply to the message or you want to interrupt the users, you can
specify so. Be aware, though, that QEZSndMg sports one characteristic that's less than
straightfo1ward: If you indicate that you want to interrupr the u.sers, the message isn't
actually sent to the user message queue of the selected users. Instead, for each listed user,
the system sends the message to the workstation message queues of all workstations to
which that user is signed on. If a user is signed on to four sessions, he or she will receive
the message four times once at each session. And if you've required a reply, you'll
receive four responses' If the user isn't signed on to the system when the message is sent,
the message is sent to the user message queue.

108 Starter Kit for the IBM iSeries and AS/400

FIGURE 7.3
Send a Afessage Panel

Send a Message

Type information below, then press F10 to send.

Message needs reply N Y=Yes, N=No

Interrupt user N Y=Yes, N=No

Message text .

Send to Name, F4 for list

In Chapter we discuss user-defined command SndBrkMsgU, which enhances the
function provided by program QEZSndMg. The enhancements are primarily for use in
programs, but you can also use SndBrkMsgU to send message to users if you prefer a
conunand interface to that provided by the ASSIST menu.

Casting Network Messages
The remaining command available for sending messages to other users is SndNet\1sg
(Send Network Message). shown in Figure 7.4. As with SndMsg and SndBrkMsg, you can
type an impromptu message in this command's Msg (Message text) parameter. However,
with SncNetMsg, the maximum length of the message is 256 characters, rather than the
512-character limit of SndMsg and SndBrkMsg.

The distinguishing feature of the Sndt\etMsg command is it.;; destination parameter,
ToUsrlD (Cser IDl. The value you specify for ToUsrID must be either a valid network user
ID or a valid distribution list name (Le., the name of a list of network user IDs). You can
specify up to 50 user IDs to receive the message, and you can mix user IDs with di5tribution
list<; if you like. If necessary, you can add network user IDs to the system network directoiy
using the WrkDir (Work with Directory) command. Each network user ID is associated
with a user profile on a local or remote system in the network.

There are two situations in which the SndNetMsg command is more approp1iate than
SndMsg or SndBrkMsg. First, you might need this command if your system is in a
network, because SndMsg and SndBrk.Msg can·t send messages to a remote system.
Second, you can use Sndt\eh\ilsg to send messages to groups of users on a network
(including users on your local system) using a distribution list. You create a distribution

Chapter 7 Getting Your Message Across: User-to-User 109

FIGURE 7.4

Send Network Message rSNDNET111SGJ Panel

Send Network Message (SNDNETMSG)

Type choices, press Enter.

Message text ..•....

User 10:
User 10
Address

+ for more values

Character value
Character value

list using the CrtDstL (Create Distribution Listl command and add the appropriate network
user IDs to the list using the AcldDstLE (Add Distribution List Ent1yl command.

When you specify a distribution list as the message destination, the message is
distributed to the message queue of each network user in the list. For example, if
distribution list Pgrnrs consists of network user fDs for Bob, Jim, Linda, and Sue. you
could send the s:une message to each of these users (and give them reason to remember
you on Boss's Day) by executing the: following command:

SndNetMsg Msg('Thanks for your hard work on the order entry project. +
Go home early today and enjoy a little time off.') +

ToUsrld(Pgmrs)

The only requirements for this rneth<xl are that user profiles have valid network user IDs
in the net\\·ork directrny :md that SNA Distribution Services (SNADS) be active (you can
start SNADS hy sta11ing the QSNADS subsystem).

As you can see. you have more than one option when sending user-to-user messages.
You're ready nmv to move on to pmgrarn-to-user and program-to-program messages, but
these are topics for another day. Meam\.fole, this introduction to messages should get you
started and whet your appetite for learning more.

111

Chapter 8

Secrets of a Message Shortstop
by Bryan Meyers

What makes the OS/400 operating system tick? You could argue that messages are really
at the heart of the iSeries. The system uses messages to communicate between processes.
It sends messages noting the completion of jobs or updating the status of ongoing jobs.
Messages tell when a job needs some attention or intervention. The computer dispatches
messages to a problem log so the operator can analyze any problems the system may be
experiencing. You send requests in the fonn of messages to the command processor
when you execute commands. You can design screens and reports that use messages
instead of constants, thus enabling multilingual support. And, of course, users can send
impromptu messages to and receive them from other workstation users on the system.

With hundreds of messages flying around your computer at any given moment, it's
important to have some \Vay to catch those that relate to you - and that might require
some action. IB?\1 provides several facilities to organize and handle messages, and you can
create programs lo further define how to process messages. This chapter explores three
methods of message processing:

• the system reply list

• break-handling programs

• default replies

'Ihe SJ'sfem ntJlr fo:;t lets you specify that the operating system is to respond auto
matically to certain predefined inquiry messages without requiring that the user reply to
them. A hrea/..1-handling program lets you receive messages and process them according
to their content. The reply list and the break-handling program have similar functions and
can, under some conditions. accomplish the same result. The reply list tends to be easier
to implement, while a break-handling program can be much more flexible in the way it
handles different kinds of messages. The third message-handling technique, the default
replv. lets you predefine an action that the computer '\Nill take when it encounters a
specific message; the reply becomes a built-in part of the message description.

Return Reply Requested
The general concept of the system reply list is quite simple. The reply list primarily
consists of message identifiers and reply values for each message. There's only one reply
list on the system (hence the official name, "system reply list"). When a job using the
reply list encounters a predefined inqui1y message, OS/400 searches the reply list for an
enrry that matches the rnessage ID (and the comparison data, covered later). When a
marching entry· exists. the system sends the listed reply without intervention from the user

112 Starter Kit for the IBM iSeries and AS/400

or the system operator. \X7hen the system finds no match, it sends the message to the user
(for interactive or to the system operator (for batch jobs).

A job doesn't automatically use the system reply list; you must specify that the reply
list will handle inquily messages. To do so, indicate InqMsgRpy(*SysRpyL) within any of
the following commands:

• BchJoh (Batch Job)

• Sbmjub (Submit Job)

• ChgJob (Change Job)

• Crl]obD (Create Joh Description)

• ChgJobD (Change Job Description)

IBM ships the iSeries with the system reply list already defined as shown in Figure 8.L
This predefined reply list issues a "f)" (job dump) reply for inquiry messages that indicate
a program failure.

FIGURE 8.1

Shipped Svstem Rep~v List

Sequence Message Comparison Start Reply Dump
number (SeqNbr) identifier (MsglD) data (CmpDta) (Start) (Rpy) (Dump)
10 CPA0700 *None D *Yes

20 RPGOOOO *None D *Yes

30 CBEOOOO *None D *Yes

40 PLIOOOO ~None D *Yes

Each entry in the system reply list consists of a unique sequence number (SeqNhr), a
message identifier (MsgID), optional comparison data (CmpDta) and starting position
(Start), a reply value (Rpyl, and a dump attribute (Dump). Note that the reply list uses the
same convention as the MonMsg (Monitor Mes.sage) command for indicating generic
ranges of messages; for example, "HPGOOOO" matches all messages that begin with the
letters "RPG," from RPGOOOI through RPG9999.

You can modify the supplied reply list by adding your own entries using the
following command'>:

• WrkRpyLE (Work with Reply List Entries)

• AddRpyLE (Add Reply List Entry)

• ChgRpyLE (Change Reply List Entry)

• RmvRpyLE (Remove Reply List Entry)

Figure 8.2 lists some possibilities to consider for your own reply list. Let's look at each
component of the system reply list individually.

Sequence Message

Chapter 8 Secrets of a Message Shortstop 113

FIGURE 8.2
Mod!/ied System Rep~y List

Comparison Reply
number (SeqNbr) identifier (MsglD) data (CmpDta)

Start
(Start)

Dump
(Rpy) (Dump)

8 CPF3773 *None I *No

9 CPF3130 'None R *No

10 CPA0700 *None D *Yes

15 CPA3394 PRT3816 41 c *No

16 CPA3394 *None *Rqd *No

17 CPA4002 PRT3816 I *No

18 CPA4002 PRTHPLASER *,"Jo

19 CPA4002 *None *Rqd *No

20 RPGOOOO *None D *Yes

30 CBEOOOO *None D *Yes

40 PLIOOOO *None D *Yes

A Table of Matches
The system searches the reply list in ascending sequence-number order. Therefore, if you
have two list entries that would satisfy a match condition, the system uses the entry with
the lowest sequence number. The message identifier can indicate a specific message (e.g.,
HPG1241) or a range of messages (e.g., RPG1200 for any RPG messages from RPG1201

through RPG1299), or you can use *Any as the message identifier for an entry that will
match any inquhy message, regardless of its identifier.

e Note
The reply list message identifiers are independent of the m~'iage files. If
you have two message files with the message ID USR9876, for example
(rarely a good idea), the system reply list treats both messages the same.

You should use the *Any message identifier with great care. It is a catch-all entry that
ensures the system reply list handles all messages, regardless of their message identifier. If
you use this identifier, it should be at the end of your reply list, with sequence number
9999. You should also be confident that the reply in the ent1y will be appropriate for any
error condition that might occur. If the system reply list gets control of any message other
than the listed ones, it pe1fon11s a dump and then replies to the message using the default
reply from the message description. If you don"t use *Any, the system sends unmonitored
messages to the operator.

The comparison data is an optional component of the reply list. You use comparison
values when you want to send different replies for the same message, depending on the
content<; of the message data. The format of the message data is defined when you or IBM

114 Starter Kit for the IBM iSeries and AS/400

creates the message. To view the format, use the DspMsgD (Display Message Description)
command. When a reply list entry contains comparison values, the system compares the
values with the message data from the inquiry message. If you indicate a starting position
in the system reply list, the comparison hegins at that position in the message data. If the
message data comparison value matches the list entry comparison value, the system uses
the list entry to reply to the message; otherwise, it continues to search the list. For example,
Figure 8.2 shows three list entries for the CPA4002 (Align fon11S) message. When the
system encounters this message, it checks the message data for the name of the printer
device. If the device name matches either the "PRT3816" or "PRTHPLASER" comparison
data, the system automatically replies with the I (Ignore) response; otherwise, it requires
the user or the system operator to respond to the message.

You use the reply value pottion of the reply list entry to indicate how the system
should handle the message in this entry. Your three choices are

• indicate a specific reply (up to 32 characters) that the system automatically returns to
the job in response to the message (e.g., I, R, D, and C in Figure 8.2)

• use *Dft (Default) to have the system send the message default reply from the message
description

• use *Rqd (Required) to require the user or system operator to respond to the message,
just as if the job were not using the reply list

The system reply list's dump attribute tells the system whether to perfonn a job dump
when it encounters a message matching thi'S entry. Valid values are *Yes and *No. You can
request a job dump no matter what you specify for a reply value. The system dumps the
job before it replies to the message and returns control to the program that originated the
message. The dump then serves as a snapshot of the conditions that caused a particular
inquiry message to appear.

Although the reply list is a system-wide entity, you can use it with a narrower focus.
Figure 8.3 shows patts of a CL program that temporarily changes the system reply list and
then uses the changed list for message handling, checking for certain inquiry messages
and issuing replies appropriate to the program. At the end, the program returns the system
reply list to its original condition.

You should limit this approach to programs run on a dedicated or at least a fairly
quiet system. Candidates for this method include such jobs as software installation or
nightly processing.

Chapter 8 Secrets of a Shortstop 115

~lUi'
~Caution

Although thi., technique might be useful for certain conditions, it poses
risks. For example, any jobs that use the system reply list may use the

changed list while your program is active. In addition, should your program
fail before removing the temporary entries, the system reply list will

erroneously contain these entries until they're explicitly removed. When
another technique will meet your requirements, you should strongly
considt.T forgoing temporary modifications to the system reply list.

FIGURE 8.3

Temporari~}' Changing the System Rep(v List

I* === *I
I* Variable definitions */
I* === *I

I* --- *I
I* - System reply list related variables */
I* --- *I

Del
Del

&CPF313©Seq
&CPF3773Seq

*Dec
*Dec

4
4

©
©

I* === *I
I* = Add temporary system reply list entries */
I* === *I

/* --- *I
I* Add CPF313© entry */
I* --- *I

Chg Var

AddCPF3130:

AddRpyLE

MonMsg
Do

ChgVar
If

Go To
End Do

&CPF313©Seq (9)

SeqNbr(&CPF3130Seq
Msg!D(CPF313©)
Rpy(R)
(CPF2555) Exec(

)

&CPF3130Seq (&CPF3130Seq
(&CPF3130 *GT 0)

AddCPF313©

- 1)

+
+

+

+

continued

116 Starter Kit for the I BM iSeries and AS/400

FIGURE 8.3 CONTINUED

I* --- *I
I* - Add CPF3773 entry */
I* --- *I

ChgVar

AddCPF3773:

AddRpyLE

MonMsg
Do

ChgVar
If

Go To
End Do

&CPF3773Seq C &CPF3130

SeqNbrC &CPF3773Seq
MsgIDC CPF3773)
RpyC I)
C CPF2555) Exec(

)

1)

&CPF3773Seq C &CPF3773Seq
C &CPF3773 *GT 0)

AddCPF3773

- 1)

+
+

+

+

I* === *I
I* = Set job to Log CL commands and use system reply List */
I* === *I

Chg Job LogCLPgmC *Yes)
InqMsgRpyC *SysRpyL

+

I* === *I
I* = Nightly process */
I* === *I

I* === *I
I* = Remove temporary system reply List entries */
I* === *I

I* --- *I
I* - Remove CPF3130 entry */
I* --- *I

If &CPF3130 *GT 0) +
Do

RmvRpyLE
MonMsg

End Do

SeqNbrC &CPF3130Seq
C CPF2556)

I* --- *I
I* - Remove CPF3773 entry */
I* --- *I

If &CPF3773 *GT 0) +
Do

RmvRpyLE
MonMsg

End Do

SeqNbrC &CPF3773Seq
C CPF2556)

Chapter B Secrets of a Message Shortstop 117

Give Me a Break Message
Another \vay to process messages is to use a break-handling program, which processes
messages aniving at a message queue in *Break mode. IBM supplies a default break
handling program; it's the same command processing program used by the DspMsg
(Display Messages) command. If you \Vant break messages to do more than just intem1pt
your normal work vvith the Display Messages panel. you can write your own break
handling program.

Both the system reply list and a break-handling program customize your shop's method
of handling messages that arrive on a message queue, but there :ire several differences.
The system reply list handles only inquily messages, while a break handler can process
any type of message (e.g., a completion message, an infonnational message). The system
reply list has a specific pu1pose: to retum a reply to a job in response to a specific message.
'The break handler's function. on the other hand, is limited only by your programming
ability. Ir can send customized replies for inquiry messages, convert messages to status
messages, process command request messages, initiate a conversational mode of messaging
hetvveen workstations, redirect messages to another message queue it can perl.onn any
number of functions. Unlike the system reply list, the break handler intem1pts the job in
which the message occurs and processes the message; it then returns control to the job.
The interruption can, however, be transparent to the user.

like the reply list, a break handler doesn't take control of break messages unless you
first tell it to do so. To turn over control to a break-handling program, use the following
command:

ChgMsgQ MsgQ(MessageQueueName) +
Dlvry(*Break) +
Pgm<ProgramName) +
Sev(SeverityCode)

OS/400 calls the break handler if message of high enough severity reaches the message
queue. Tf you use a break handler in a job that's already using the system reply list, the
reply list will receive control of the messages first, and it will pass to the break handler
only those messages it can ·r process.

Take a Break
Figure 8.4 shows a sample break-handling program. OS/400 passes three parameters to
such programs:

• the name of the message queue

• the library containing the message queue

• the rdt'rence key of the received message

You access the referenced message with the RcvMsg (Receive Message) command.
Once you've received the message, you can do nearly anything you want with it before you
end the break handler and let the original program resume. 111e example in Figure 8.4

displays any notit\' or inquiry messages. letting you send a reply, if appropriate. In addition.

118 Starter Kit for the IBM iSeries and AS/400

it monitors for and displays messages that could indicate potentially severe conditions,
such as running out of DASD space. For any other messages, the program simply resends
the message as a status message, which appears quietly at the bottom of the user's display
without interrupting work (unless display of status messages is suppressed in the user
profile, the job, or the system value QStsMsg, or Status messages).

FIGURE 8.4
Sample Break Me:-,~)age Handler

I* === *I
/* = Sample Break Message Handler */
/* === *I

Pgm Parm(+
&MsgQ
&MsgQLib
&MsgKey

+
+
+

/* === *I
/* = Variable definitions */
I* === *I

/* --- */
I* - Input parameters */
I* --- *I

Del
Del
Del

&MsgQ
&MsgQLib
&MsgKey

*Char
*Char
*Char

10
Hl

4

/* --- *I
I* - Work variables */
/* --- *I

Del
Del
Del
Del

&Msg
&MsgID
&MsgDta
&RtnType

*Char
*Char
*Char
*Char

132
7

132
2

/* === */
/* = Global error trap */
I* === *I

MonMsg CPF0000 MCH0000) Exec(+
GoTo Error)

/* == *I
/* = Rece ve the message */
/* == */

RcvMsg MsgQC &MsgQLib/&MsgQ
MsgKeyC &MsgKey)
RmvC *No)
Msg C &Msg)
MsgIDC &MsglD)
RtnTypeC &RtnType

+
+
+
+
+

continued

Chapter 8 Secrets of a Message Shortstop 119

FIGURE 8.4 CONTINUED

I* === */
I* Display message when any of the following criteria is met: */
I* Inquiry message */
I* Notification message */
I* Serious condition message */
/* === */

If
&RtnType *Eq I (/)5 I)

&RtnType *Eq I 14 I)

&MsgID *Eq 'CPF(/)9(/)7'
&MsglD *Eq I c p I(/)92(/) I

&MsglD *Eq 'CPI(/)953'
&MsglD *Eq 'CPI(/)954'
&MsgID *Eq I c p I(/)9 5 5 I
&MsgID *Eq I c p I(/)964 I

&MsgID *Eq 'CPI(/)965'
&MsgID *Eq 'CPI(/)966'
&MsgID *Eq 'CPI(/)97(/)'
&MsgID *Eq 'CPI(/)992'
&MsgID *Eq 'CPI(/)996'
&MsgID *Eq I CPI(/)974 I

&MsglD *Eq 'CPI22(/)9'

DspMsg MsgQ(&MsgQLib/MsgQ
Else

SndPgmMsg MsgIDC CPF9897)

MsgFC QCPFMSG)

MsgDtaC &Msg)

ToPgmQ(*Ext)

MsgType(*Status

*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or
*Or

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+

I* === *I
I* = Exit program */
/* === *I

Return

I* === *I
I* = Error handler */
I* === */

Error:

SndPgmMsg MsgIDC CPF9897)
MsgF(QCPFMsg)
MsgDta('Error in break-handling program.' *BCat

'See job Log for details.')
MsgType(*Escape)

MonMsg (CPF(/)(/)(/)(/) MCH(/)(/)(/)(/))

EndPgm

+
+
+
+

120 Starter Kit for the IBM iSeries and AS/400

Figure 8. 5 shows patt of an initial program that puts a break handler into action. The
initial program first displays all messages that exist in a user's message queue and then
clears all but unanswered messages from the queue and activates the break-handling pro
gram. Note that the initial program also checks whether the user is the system operator; if
so, it activates the break handler for the system operator message queue.

FIGURE 8.5
Sample Initial Program

/* === *I
I* = Variable definitions */
/* === */

I* --- */
I* - User profile related variables */
/* --- *I

Del
Del
Del

&MsgG
&MsgGLib
&GrpPrf

*Char
*Char
*Char

HJ
HJ
HJ

I* === *I
I* = Global error trap */
I* === *I

MonMsg (CPF24©© CPF2534)

/* === *I
/* = Retrieve user attributes */
/* === *I

RtvUsrPrf MsgQ(&MsgQ)
MsgGLib(&MsgGLib
GrpPrf(&GrpPrf)

+
+

I* === *I
/* = Change message queues to *Break mode when possible */
I* === */

I* --- *I
I* - Change workstation message queue to *Break mode *I
I* --- *I

ChgMsgQ

ClrMsgQ

ChgMsgQ

MsgQ(*WrkStn
Dlvry(*Break
MsgQ(*WrkStn
Clear(*KeepUnans
MsgQ(*WrkStn)
Dlvry(*Break)
Pgm(MngBrkMsg)

+

+

+
+

continued

Chapter 8 Secrets of a Message Shortstop 121

FIGURE 8.5 CONTINUED

I* --- *I
I* - Change user profile message queue to *Break mode */
/* --- *I

ChgMsgQ

ClrMsgQ

ChgMsgQ

MsgQC &MsgQLib/&MsgQ
DlvryC *Break)
MsgQC &MsgQLib/&MsgQ
Clear(*KeepUnans)
MsgQC &MsgQLib/&MsgQ
DlvryC *Break)
PgmC MngBrkMsg)

+

+

+
+

/* --- */
/* - Change system operator message queue to *Break mode if */
/* - member of QSYSOPR group */
I* --- */

If &GrpPrf *Eq 'QSYSOPR' +
Do

ChgMsgQ

ClrMsgQ

ChgMsgQ

End Do

MsgQC QSysOpr
DlvryC *Break
MsgQC QSysOpr
Clear(*KeepUnans
MsgQC QSysOpr)
DlvryC *Break)
PgmC MngBrkMsg)

It's Your Own Default

+

+

+
+

One of the easie.st ways to process message replies automatically is also one of the most
often overlooked. The message descriptions for inqui1y or notify messages can contain
default replies. which you can tell the system to use when the system issues the message.
The default reply must be among the valid replies for the message. You specify a
message's default reply using either the AddMsgD (Add Jv1essage Description) or ChgMsgD
(Change Message Description) command. You can display a message's default reply using
the DspMsgD command. You can also use the WrkMsgD (Work with Message
Descriptions) command to manage message descriptions.

The default reply is used under the following circumstances:

• when you use the system reply list and the list ent1y's reply for the message is *Dft

• \1vhen you\·e changed the dl'iivery mode of the receiving message queue to *Dft,
using the ChgMsgQ (Change Message Queue) command

• when the job's InqMsgEpy attribute value is *Dft

No messages are put in a message queue \vhen the queue is in *[)ft delive1y mode
(unless the message queue is QSysOpr); informational messages arc ignored. Messages
\viii he logged, hovvcver. in the system histrny log (QHst).

122 Starter Kit for the IBM iSeries and AS/400

You can easily set up an unattended environment for your computer to use every night
by having your system operator execute the following command daily when signing off:

ChgMsgQ MsgQ(QSysOpr) DlvryC*Dft)

Your system will then use default replies instead of sending messages to an absent system
operator. This technique may prevent your overnight batch processing from hanging up
because of an unexpected error condition. You should take care, however, to ensure the
suitability of the default replies for any messages that might be sent to the queue. You
might also consider including the ChgMsgQ command within key CL programs, such as
unattended backup procedures or program-installation procedures, for which default
replies may be appropriate. Another good use for default replies is to have one message
queue handle all printer messages. By defining default replies to these messages and
placing that queue in *Dft delivery mode, you can have the system respond automatically
to forms-loading and alignment messages.

123

Chapter 9

Printer Files, Job Logs, and Print Direction
To make printing operations nm more smoothly, you need to understand a few basic
concepts about printer files. In this chapter, we cover three items concerning printer files:
changing printer file attributes, handling a specific type of printer file (the systern
generated job log), and controlling print direction. A basic understanding of these topics
will increase your power to customize your system by controlling output.

How Do You Make It Print Like This?
The iSeries does support direct printing that is, output directly to a printer (which ties
up a workstation or job while the printer device completes the task). However, you'll
rarely use direct printing. The system uses printerfiles to create reports, and these reports
are typically spooled to an output queue.

IBM ships the iSeries with many printer files, such as QSysPrt, which the system uses
when you compile a CL program; QPQuPrFil, which the system uses when you nm a
query; and QPSuPrtF, which the system uses when you print a listing from a source file
using Source Entry Utility (SEU). These printer files have predefined attributes that control
printing features such as lines per inch, characters per inch, form overflow line
number, and output queue.

In addition to the printer files that IBM provides, you can create two types of printer
files within your applications. TI1e first type uses the CrtPrtF (Create Printer File) command
to define a printer file that has no external definition (i.e., the printer file has a set of
defined :ittributes from the CrtP1tF command but only one record format with no details).
Any program using this type of primer file must contain output specifications that describe
the fields, positions, and edit codes used for printing.

The second type of printer file is externally described. When you use the CrtPrtF
conunand to create this type of printer file, you specify a source member that describes
the various record formats your program will use for printing. (For specifications that you
can make in Data Description Specifications, or DDS, refer to DDS &ference. viewable
online at http:!lpublib.boulder.ibm.com/pubs!html/as400/infocenter.btrn.) Whether you
create an externally described printer file or a printer file that must be used with progra1m;
that internally describe the printing, you define certain printer file attributes (e.g., those
controlling lines per inch, characters per inch, and fonn size) as part of the printer file
object definition.

Let's examine a problem that often occurs when an iSeries installation is complete. All
the IBM-supplied printer files are predefined for use with paper that's 11 inches long. If
you've been using shorter paper the 14-by-8~-inch size) and generate output (such
as that produced by the conunand DspLib Output(*Print) or a Query/400 report) with a
system-supplied printer file, the system '.Vill print the report through the page perforations.
On your previous system, the overflow worked just right, but you weren't around when

®

©

124 Starter Kit for the IBM iSeries and AS/400

someone set up that system. How do you instruct the iSeries to print correctly on the
sh01t, wide paper?

First, you need to find out what the default values for printing are. To do so, enter
the DspFD (Display File Description) command for the printer file QSysPn:

DspFD GSysPrt

When you execute this command, you see the display represented in Figure 9.1.

Fi le
Control
Find

FIGURE 9.1

Display File Description Panel

Display Spooled File
QPDSPFD Page/Line

Columns
1/36
1 - 78

* ... + 1 + 2 + 3 + 4 + •..• 5 + 6 + ...• 7 + ...
Creation date . . . ~1/18/~~

Text 'description'
Spool the data
Maximum devices ..
User specified DBCS data
Maximum file wait time
Share open data path
Record format level check
Number of record formats
User buffer length
Number of devices
Separate indicator area .
Coded character set identifier

Printer Attributes
Device
Printer device type
Page size

Length
Width .
Measurement Method

Lines per inch
Characters per inch
Front margin
Back margin .
Overflow line number
Fold records
Degree of page rotation
Hardware justification
Print on both sides .
Defer Write
Unprintable character action

Replace character .
Replacement character

Print text
Align page
Control character

TEXT
SPOOL

IGCDTA
WAIT FILE
SHARE
LVLCHK

IN DARA
CCSID

DEV
DEVTYPE
PAGESIZE

LP!
CPI
FRONTMGN
BACKMGN
OVRFLW
FOLD
PAGRTT
JUSTIFY
DUPLEX
DFRWRT
RPLUNPRT

PRTTXT
ALIGN
CT LC HAR

System non-describ
*YES

1
*NO
*IMMED
*NO
*NO

No

*JOB
*SCS

66
132

*ROW COL
6
1~
*DEVD
*FRONTMGN
6~

*NO
*AUTO

~
*NO
*YES

*YES

*JOB
*NO
*NONE

X'4~'

continued

Channel values
Fidelity ...
Printer quality
Form feed ..
Source drawer
Output bin
Font

Identifier
Point size

Character identifier
Decimal format
Font character set
Coded font
Table Reference Characters
AFP Chars ...
Page definition
Form definition
Form type ...
Pages per side
Reduce output .
Unit of measure
Front side overlay
Back side overlay .
IPDS pass through .
User resource library list
Corner staple ..
Edge stitch

Reference edge
Saddle stitch

Reference edge
Font resolution .
DBCS extension characters
DBCS character rotation .
DBCS characters per inch
DBCS SO/SI spacing
DBCS Coded font ..

Spooling Description
Spooled output queue
Max spooled output records
Spooled output schedule
Co pi es
Page range to print

Starting page
Ending page ..

Fi le separators .
Hold spooled file
Save spooled file
Output priority Con OUTQ)
User data
Spool file owner
User defined option
User defined data .

Chapter 9 Printer Files, Job Logs, and Print Direction 125

FIGURE 9.1 CONTINUED

CHLVAL *NORMAL
FIDELITY *CONTENT
PRTQL TY *STD
FORM FEED *DEVD
DRAWER 1
OU TB IN *DEVD
FONT

*CPI
*NONE

CH RID *CHRIDCTL
DECFMT *JOB
FNTCHRSET *FONT
CDEFNT *FNTCHRSET
TBLREFCHR *NO
AFPCHARS *NONE
PAGDFN *NONE
FORMDF *NONE
FORMTYPE *STD
MULTI UP 1
REDUCE *TEXT
UOM *INCH
FRONTOVL *NONE
BACKOVL *FRONTOVL
IPDSPASTHR *DEVD
USRRSCLIBL *DEVD
CORNERSTPL *NONE
EDGESTITCH

*NONE
SAD LS TITCH

*NONE
FNTRSL *DEVD
IGCEXNCHR *YES
IGCCHRRTT *NO
IGCCPI *CPI
IGCSOSI *YES
IGCCDEFNT *SYSVAL

OUTQ *JOB
MAXRCDS 1 (/)(/)(/)(/)(/)
SCHEDULE *FILEEND @
COPIES 1
PAGE RANGE

*END
FILESEP (/)

HOLD *NO ®
SAVE *NO
OUTPTY *JOB
USRDTA *SOURCE
SPLFOWN *CURUSRPRF
USRDFNOPT *NONE
USRDFNDTA *NONE

continued

126 Starter Kit for the IBM iSeries and AS/400

User defined object
Object

Library ...
Object type ..

Record Format List

Format
QSYSPRT

Text .

Fields
0

Record
Length

0

Total number of formats
Total number of fields
Total record Length

FIGURE 9.1 CONTINUED

Format Level
Identifier
0000000000000

USRDFNOBJ

1
0
0

*NONE

Notice (at A, B, and C, respectively) the Page size parameter. PageSize(66 132); the Lines
per inch parameter, LPI(6); and the Overflow line number parameter, OvrF!w(60). These
default parameter values combine to detem1ine the number of inches (i.e., 11) that the
system considers to be a single page on the system-supplied objects.

In this example, though, your paper is only 8)1 inches long, so you need to change
the fom1 size and overl1ow of each printer file (including all system-supplied printer files
and those you create yourself) that generates reports on this short-stock paper. You can
accomplish this task by identifying each printer file that needs to be modified and then
executing this ChgPrtF (Change Printer File) command for each:

ChgPrtF File(LibraryName!FileName) +
PageSize(51 132) +
OvrFLw(45)

If you need to change all printer files on the system, you can use the same
command, but place the value *All in the File parameter:

ChgPrtF File(*All/*All) +
PageSize(51 132) +
OvrFLw<45)

The page size can vary from one fom1 type to the next, but you can easily
compensate for differences by changing the appropriate printer files. Remember that
changing the lines per inch, the page length, and the overflow line number requires no
programming changes for programs that let the system check for overflow status (i.e., you
don't need to have program logic count lines to control page breaks). Such programs will
use the new attributes of the printer file at their next execution.

Controlling When a Report Is Printed
Once you've set up the page size you want and determined how a given report will be
printed, you can start thinking about controlling when that report will be printed. The two
parameters you can use to ensure that spooled data is printed at the time you designate
are Schedule (Spooled output schedule) and Hold (Hold spooled file) - shown at D and
E, respectively, in Figure 9.1.

Chapter 9 Printer Files, Job Logs, and Print Direction 127

The Schedule parameter specifies when the system should make the spooled output
file available to a writer for printing. If the system finds the *J1nrned value for Schedule,
the file is available for a writer to begin printing the data as soon as the records arrive in
the spooled file. This approach is helpful for sh01t print items, such as invoices, receipts,
or other output thafs printed 4uickly. But when you gener.ite long reports, allocating the
\>vTiter as soon as data is available can tie up a single writer for a long time.

Enteling the \'alue *FileEud for Schedule specifies that the spooled output file i.s
available to the writer as soon as the printer file is dosed in the program. This value can
be useful for long repons that you want available for printing only after the entire report
is generated.

Specifying the value "}ohEnd for Schedule makes the spooled output file available
only after the entire job (not just a program) is completed. One benefit of selecting this
value is that you can ensure that all rep<llts one job generates will be available at the
same time and therefrm: will be printed in succession (unless the operator inte1venes).

The Hold parameter works just like its name sounds. A Hold value of *Yes specifies
that when the system generates spooled output for a printer file, the output file stays on
the output queue with a status of *fik! (held) until an operator releases the file to a writer.

Selecting the *No value for Hold specifies that the system should nor hold the spooled
printer file on the output 4ueue and should make the output available to a writer at the
time the Schedule parameter indicates. For example, when a program generates a spooled
file with the attributes Scheduld*FileEncl) and Hold(*No). the spooled file is available to
the writer as soon as the file is dosed.

As with the PageSize and OvrFlw parameters, you can change the Schedule and Hold
parameter values for printer files by using the ChgPrtF command. You can also override
printer file parameters at execution time using the OvrP11F (Ovenide with Printer File)
command. In addition, you can change some printer file attributes at print time using the
ChgSplFA (Change Spooled File Attributes) command or option 2 on the Work with
Output Queue or Work with Spooled Files display. You should examine the various
attributes associated with the C1tP1tF, ChgPrtF, and OvrP1tF commands to see whether you
need to make other changes to customize your printed output needs. For more
information about these parameters. see the discussion of the CnP1tF command in OS/400
CI Reference Prut 2 (SC,H-5724).

Controlling Your Job Logs
After you have your rrinter files under control, the next step in customizing your system
can prick a nasty thorn in the flesh of iSeries newcomers: learning how to manage all
those job logs that the system generates as jobs are completed. A joh log provides a
record of job execution and contains informationaL completion, diagnostic, and other
messages. The reason these potentially useful job logs can be a pain is that the system
generates a job log for each completed job on the system.

Fortunately, you can manage job logs. The three methods for job log management are

• controlling where the printed output for job logs is directed

128 Starter Kit for the IBM iSeries and AS/400

• deciding whether to generate a printed job log for jobs that are completed nonnally
or only for jobs that are completed abnonnally

• detem1ining hmv much information to include in the job logs

When your system is shipped, it's set up so that every job (interactive sessions as well as
batch) generates a job log that records the job's activities and can vary in content
according to the particular job description. To view a job log as the system creates it
during a job's execution. you can use the DspJob (Display Job) or the DspJobLog (Display

Job Log) command.
When a job is completed. the system spools the job log. When it generates a printed

job log. the system uses printer file QSys/QPJohLog. It's typically a good idea to direct all
printed job logs to one output queue that's not attached to a writer. Doing so leaves the
job logs on the system .~o you can review or print them when necessaty. You can choose
to redirect this job log printer file in one of two ways.

The most popular redirection method is to use Operational Assistant, which not only
can redirect your job logs to a single output queue but also can clean up old job logs
automatically based on a number of retention days you supply. You can access the
system cleanup option panel in three ways:

• from the Operational Assistant main menu (type Go Assist, select option 11 to display
the SETUP menu, and then select option 2. Cleanup tasks)

• from the SETUP menu (type Go Setup, and then select option 2, Cleanup tasks)

• directly from the CLEANUP menu (type Go Cleanup)

Figure 9.2 shows the Cleanup Tasks menu.
Before sta1ting cleanup. you need to define the appropriate cleanup options by

selecting option 1 (Change cleanup options) from this menu. Figure 9.3 shows the
resulting Change Cleanup Options panel, where you can enter the retention parameters
for several automated cleanup functions and determine when you want the system to
perfonn cleanup each day.

Chapter 12 provides a complete discussion of this panel and the automated cleanup
process. For now, the key point is this: The first time you activate the automated cleanup
function (by entering a Y for the "Allow automatic cleanup" option on this panel), OS/400

changes the job log printer file so that all job logs are directed to the system-supplied
output queue QEZJobLog in libra1y QUsrSys. Even if you don't start the actual cleanup
process, or if you elect to stop the cleanup function at a later date, the job logs will
continue to accumulate in output queue QEZJobLog.

CLEANUP

Chapter 9 Printer Files, Job

FIGURE 9.2
Cleanup Tasks Menu

Cleanup Tasks

and Print Direction 129

System: AS400
To select one of the following, type its number below and press Enter:

1. Change cleanup options
2. Start cleanup at scheduled time
3. Start cleanup immediately
4. End cleanup

Type a menu option below

F1=Help F3=Ex it F9=Command line F12=Cancel

FIGURE 9.3
Change Cleanup Options Panel

Change Cleanup Options

Type choices below, then press Enter.

Allow automatic cleanup ...

Time cleanup starts each day

Number of days to keep:
User messages . . . • • •
System and workstation messages .
Job Logs and other system output
System journals and system logs .
OfficeVision for AS/400 calendar items

F1=Help F3=Exit F5=Refresh F12=Cancel

y

AS400
09/18100 10:50:02

Y=Yes, N=No

22:00:00_ 00:00:00-
23:59:59,
*SCDPWROFF,
*NONE

1-366, *KEEP
1-366, *KEEP
1-366, *KEEP
1-366, *KEEP
1-366, *KEEP

130 Starter Kit for the IBM iSeries and AS/400

The second method of redirecting printed job logs is to manually direct them to an
output queue of your choice (we suggest QEZJobLog). To manually direct printed job
logs. use the ChgPrtF command as follows:

ChgPrtF File(QPJoblog) +
OutQ(QUsrSys/QEZJobLog)

The job logs will now be redirected to the specified output queue. You might also want
to specify Hold(*Yes) on the ChgPrtF command to place the spool files on hold in the
output queue. However, unless a printer is assigned to that queue, the spool files won't
be printed. The job logs will simply remain in the queue until you print or delete them.

~Tip
When you think about managing job logs, remember that if you let job logs

accumulate, they can reduce the system's performance efficiency because of

the overhead incurred for each job on the systenL If a job log exists, the

system is maintaining information about the job. Therefore, it's important

either to use the automated cleanup options available in Operational

Assistant or to manually use the ClrOutQ (Clear Output Queue) command

regularly to clear all the job logs from an output queue.

Another concern related to the overhead involved with job logs is how to control their
content (size) and how to reduce the number of job logs the system spools. A job's
messap,e-lopging attrihutes control the creation and contents of job logs. These attributes
consist of three elements: the message level and the message severity, both of >vhich
control the number of messages the system writes to a job log, and the message text
level, which controls the level (i.e., amount) of message text written to the job log when
the first two values create an error message.

You set a job's message-logging attributes using the Log (Message logging) parameter

found on the following commands:

• BchJob (Batch Job)

• Sbm]ob (Submit Job)

• Cbgfob (Change Job)

• CrtJobD (Create Job Description)

• ChgJobD (Change Job Description)

Before discussing the three elements, we should define the tenn "message severity."
Every message generated on the iSeries has an associated seueri(y, which you can think of
as the message's priority. Messages absolutely essential to the system's operation (e.g.,
inqui1y messages that must be answered) have a severity of 99. Informational messages

Chapter 9 Printer Files, Job Logs, and Print Direction 131

(e.g., messages that tell you a function is in progress) have a severity of 00. (For a
detailed description of severity codes. refer to Appendix A. "Expanded Parameter
Descriptions," in OS/400 CL Rr{/'erence Ptllt 4, SC41-S726.)

The first message-logging element, message level, specifies one of the f()!lowing five
logging levels (note that a high-level message is one sent to the program message queue
of the program that received the request or commands being logged from a CL program):

0

2

3

4

No data is logged.

All messages sent to the job's external message queue with a severity level greater than or
equal to the specified message severity are logged. This includes the indications of job start,
job end, and job completion status.

In addition to the information at level 1 :
• Requests entered on a command line or commands being logged from a CL program that

result in a high-level message with a severity code greater than or equal to the specified
severity cause the request or command and all associated messages to be logged.

In addition to the information logged at level 1 :
• All requests entered on a command line or commands being logged from a CL program

are logged.
• Requests entered on a command line or commands being logged from a CL program that

result in a high-level message with a severity code greater than or equal to the specified
severity cause all associated messages to be logged.

The following information is logged:
• /\II requests entered on a command line or commands being logged from a CL program

and all messages with a severity code greater than or equal to the specified severity,
trace

The second elemenr of the tog parameter. message severity, detennines which
messages will be logged and which will be ignored. Messages with a severity greater than
or equal to the severity specified in this element will be logged in the job log according to

the logging levd specified in the previous elen1ent.
For the third element of the Log parameter, the message text level, a value of

instructs the system to write only first-level message text to the job log. A value of *Seclvl
instructs the system to write both the message and the hdp text of the error message to
the job log.

By serting the message text k:vd value to *Nolist, you ensure that the job does not
generate a job log if the job is completed nonnally. Jobs completed abnormally will
generate a job log containing both message and help text Eliminating job logs for jobs
that are completed nonnally can greatly reduce the number of job logs written to the
output queue.

132 Starter Kit for the IBM iSeries and AS/400

You can cause any interactive or batch job initiated with the II3M-suppliecl default job
description QDftJobD to withhold spooling of a job log if the job te1minates normally. To
do so, you simply create your user profiles using the clefault JobD (Job description)
parameter value, QDftjobD, and enter the command

ChgJobD JobDCQDf tJobD) +
Log(*Same *Same *Nolist)

Is this approach wise? Interactive jobs almost always end nonnally. Therefore,
changing the job description for such interactive sessions is effective. Do you need the
information in those job logs? If you understand how your workstation sessions run (e.g.,
which menus are used and which programs are called), you probably don't need the
information from sessions that end nomially. You might need the infonnation when effors
occur, but you can generally re-create the effors at a workstation. With this approach, you
can rest assured that jobs ending abnonnally will still generate a job log and provide
helpful diagnostic information.

6 Note
For interactive jobs, the Log parameter on the SignOff command overrides

the value you specify for the job. For instance, if a job's attribute specifies
*NoLlst in the Log parameter and the SignOff Log(*Llst) command is used to
sign off from an interactive job, the system will spool a job log.

For batch jobs, the question of eliminating job logs is more complex than it is for
interactive jobs. It's sometimes helpful to have job logs from batch jobs that encl normally,
as well as from those that end abnormally, so someone can re-create events
chronologically. For instance, when many types of batch jobs (e.g., nightly routines) run
unattended, job log infrnmation can be useful.

Remember, the job description controls job log generation, so you can use particular
job descriptions when you want the system to generate a job log regardless of how a job
ends. The job description includes the parameter LogCLPgm (Log CL program commands).
This parameter affects the job log in that a value of *Yes instructs the system to write to
the job log any candidate CL commands (which can happen only if you specify Log(*Job)
or Log(*Yes) as an attribute of the CL program being executed). A value of *No specifies
that commands in a CL program are not logged to the job log.

Job logs are a valuable infonnation source when a job fails to perform, and handling
job logs is a simple, but essential, part of managing system resources. When you neglect
to control the number of job logs on the system, the system is forced to maintain
information for an excessive number of jobs, which can hurt system performance.

Chapter 9 Printer Files, Job Logs, and Print Direction 133

Where Have All the Reports Gone?
One strength of the iSeries is ib profusion of alternatives for implementing your husiness rules.
One such area of abundant choice lies in defining the path reports can take in arriving at
their destination. From printer file to printer. the path can he a winding one, though.

A frequent source of confusion, print direction is actually easier to understand than its
complexity might first lead you to believe. To better understand print direction, you need
a map of the path that printed output may potentially travel.

Device.files are the interface between software and hardware, and printer files are the
device files the system uses to communicate with printers. The system may examine many
items to detem1ine your output's destination, but the printer file is the first.

Printer files have many attributes that detennine print characteristics. Three of these
are essential in detennining how the system directs printed output:

• Dev names the printer device to use

• OutQ defines the outpm queue to use

• Spool - detennines whether the report will be spooled to an output queue

Although Dev and OutQ define v"11ere the system directs printed output, it is the Spool
attribute that determines which of these attributes the system actually uses \Vhen resolving
a reprnfs destination:

• Spool(*No) - The system directs output to the printer device named in the Dev
attribute.

• Spool(*Yes)
attribute.

The system direct'> output to the output queue named in the OutQ

When you specify Spoo!(*No), the system print> directly to the printer. Spool(*Yes), on the
other hand, results in the system placing the report in a "holding area" known as an
output queue. From there, the report may or may not actually be printed based on user
preference.

Let's reinforce these rules with a simple example. Consider printer file Paychecks,
created with the following command:

CrtPrtF File(PayChecks) +
Dev(PayrollPrt) +
OutQ(PublicOutQ) +
Spool(*No)

In this example, because the printer file's Spool attribute value is *No, the system obtains
its print path from the Dev attribute and prints directly to the printer named PayrollPrt.

On the other hand. if you create printer file Paychecks with the command

CrtPrtf File(PayChecks) +
Dev(PayrollPrt) +
OutQ(PublicOutQ) +
SpooL<*Yes)

134 Starter Kit for the IBM iSeries and AS/400

the system selects its print path from the OutQ attribute and spools the report into output
queue PuhlicOutQ.

It's important to note that when the system examines the printer file attributes, any
overridden attributes from the OvrPrtF command take precedence over the values found
in the printer file itself. Using the Paychecks file just created, if an application issues the
command

OvrPrtF File(PayChecks) +
OutQ(PayOutQ)

before opening the printer file, the system places the report into output queue PayOutQ
rather than in PuhlicOutQ as specified in the printer file.

So far, our examples all designate a specific printer device for the Dev attribute or a
specific output queue for OutQ. Although this arrangement is simple, it's not very flexible.
You need some \vay to direct printed output based on your business needs. Fortunately,
the system lets you tailor print direction in a fashion that suits your environment.

Tailoring Print Direction
The system supports several special values you can specify for the printer device and
output queue. These values instruct the system to derive print-direction infomiation from
sorndhing other than the printer file itself. Ultimately, these special values result in
resolution to a specific printer device and output queue. Let's examine basic information
for each of seven special values:

• •Job

• *JobD

• •current

• *UsrPrf

• *WrkStn

• *SysVal

• *Dev

Typically, special value *Job is the most frequently used value within a printer file itself
because within the job attributes, you can specify a variety of values to redirect your
reports. *Job is often useful when you want your applications to have considerable control
in determining the destination of your reports.

Jobs have many associated attributes, among which are printer device and output
queue. When a job starts, the system initializes its printer device and output queue
attribute values with values from such things as the job description used in starting the job
or from commands such as BchJob and Shff].Job. Remember that after a job starts, you can
change the printer device and output queue attribute values.

Chapter 9 Printer Job Logs, and Print Direction 135

Both the printer device and the output queue attributes of a printer file accept value
*Job. This value instructs the system to derive the attribute value (or values) from the job's
attributes. Consider the following exarnple:

Job's printer device: PayPrt02

lob1s output queue: PayOutQl 7

CrtPrtF File(PayChecks) +
Oev(*Job) +
OutQ(*Job)

Because both the Dev and OutQ attributes of printer file Paychecks contain special value
*Job, both attributes derive their values from the job's attributes. In this example, the
printer device is PayPrt02, and the output queue is PayOutQl 7.

Similar to special value ~Job. ~JohD can be specified on the Bchjob and Shmjob
commands. Like *Job, *JobD provides a variety of print-direction options and can be
useful when you want applications to have considerable control over print direction.

Value *JobD results in the system deriving the printer device and output queue
information from the values found in the job description specified in the BchJob or
SbmJob command. Both the printer device and the output queue parameters on these
commands accept value *JobD. Consider the following example:

Job description PayJobD printer device: PayPrt05

)ob description PayJobD output queue: Pay0utQ33

SbmJob Cmd(Call Pgm(PrtPayChks)) +
JobDCPayJobD) +
PrtDev(*JobD) +
OutQ(*JobD)

Because both the PrtDev and OutQ parameters on the SbmJob command contain special
value *JobD, the system derives the printer device and output queue values from the job
description specified on the Shm]ob command, PayJobD. In this example, those values are
PayPrt05 and Pay0utQ33, respectively.

This value, too, exhibit-; behavior characteristic of the *Job value. You can specify *Current
on the SbmJob command. *Current is yet another value that's useful when you want your
applications to exercise control in directing printed output.

Both the printer device and output queue parameters on the Sbm]ob command
accept *Current as their value. This value instructs the system to obtain the printer device
and output queue values from the job attributes of the job the Shn!f ob conunand.

136 Starter Kit for the IBM iSeries and AS/400

To exemplify:

Printer device oi job issuing SbmJob command: PayPrt27

Output queue of job issuing SbmJob command: PayOutQ84

SbmJob Cmd(Call Pgm(PrtPayChks)) +
PrtDev(*Current) +
OutQ(*Current)

Because both the PnDev and OutQ parameters on the Sbmjob command contain special
value *Current, the system obtains the printer device and output queue values from the
job attributes of the job that issued the Sbmjob. Those values are PayP1t27 and
PayOutQ84, respectively.

With value *UsrPrf, you can customize print direction at the user profile level. This is a
reasonably popular approach to print direction because it lets you consider each user's
individual needs and preferences in determining where printed output will go.

You can specify *UsrP1f in job-related objects (job description) and job-related
commands (Bchjob, Chgfob. SbmJob). Both printer device and output queue parameters
accept this value. *llsrP1f instructs the system to examine the user profile to determine the
printer device and output queue to use. For example:

Job submitted by user profile: GuthrieGar

Printer device in user profile GuthrieGar: PayPrt15

Output queue in user profile GuthrieGar: PayOutQOS

SbmJob Cmd(Call Pgm(PrtPayChks)) +
PrtDev(*UsrPrf) +
OutQC*UsrPrf)

Because both the PnDev and OutQ parameters on the Sbn~ob command contain special
value *UsrPrf, the system retrieves the printer device and output queue values from the
user profile that submitted the job, GuthrieGar. In this example, the printer device is
PayPrtl 'i. and the output queue is PayOutQ08.

Value *WrkStn is sometimes used when your environment is one in which you print
interactively and want to direct your print based on proximity to a workstation. You can
specify *WrkStn in job descriptions and on command ChgJob for both printer device and
output queue. As a result, the job attributes contain the value *WrkStn. In addition, you
can specify *WrkStn for both printer device and output queue in the user profile.

For interactive jobs, *WrkStn instructs the system to retrieve printer device and output
queue infonnation from the device description of the workstation where the job is
running. For batch jobs, the value *WrkStn is meaningless because the job has no
allocated workstation. lf *WrkStn is encountered in a batch job, *WrkStn is replaced with

Chapter 9 Printer Files, Job Logs, and Print Direction 137

the value *SysVal for the printer device and with *Dev for the output queue. Here's an
example for an interactive job:

Printer device in display device description: PayPrt29

Output queue in display device description: Pay0utQ47

Job's printer device: *WrkStn

Job's output queue: *WrkSln

CrtPrtF File(PayChecks) +
Dev(*Job) +
OutQ(*Job)

Because both the Dev and OutQ parameters of printer file Paychecks contain special
value *Joh. both attributes derive their values from the job's attributes. In this example, the
job's attributes contain yet another special value, *WrkStn, for both the printer device and
the output queue. The system therefore examines the device description of the
workstation where the job is running and finds that the rxinter device is PayPn29 and the
output queue is PayOutQ47.

'11lis example not only demonstrates how special value •wrkStn functions but also
points out the fact that print-direction resolution may require multiple steps. In other
\vords. one special value can point to another.

Jn our experience, we've not encountered an environment in which value *SysVal was
panicularly useful. However. *SysVal is a suppotted special value, so you should be
familiar with the rules that apply to it.

You can specify *SysVal for printer device only. You can use it in any of the objects
or cornrnands that contain printer device information. *SysVal instructs the system to
retrieve the printer device value from system value QPnDev, the system-\vicle, defiwlt
printer device description. Consider the fr>llowing example:

QPrtDev system value: PayPrt52

CrtPrtF File(PayChecks) +
Dev(*SysVal) +
OutQ(PayOutQ31)

Notice that the OutQ parameter on the CttPrtF command names a specific output queue,
PayOutQ3 l. Therefrm:, the output queue will be that value. The Dev parameter, on the
other hand, specifies special value *SysVal. Thus, the system examines system value
Ql'nDev and detennines that the printer device value is PayP1t"J2.

You can specify value *Dev for output queue only, Similar to *SysVal for printer device,
*Dev can he specified in any object or command that contains output queue information.

*Dev instrucrs the system ro examine the primer device (Dev) attribute of the printer
file to detennine the spooled rne·s destination output queue. Once the system resolves a

138 Starter Kit for the IBM iSeries and AS/400

specific value for the printer device, it places the report in an output queue with the same
name as the resolved printer device name. The following example demonstrates use of
the *Dev system value.

CrtPrtF File(PayChecks) +
Dev(PayPrt21) +
OutQ(*Dev)

In this example, parameter Dev names printer device PayPrt21. The OutQ parameter
specifies special value *Dev, thereby instructing the system to resolve the printer device
name and assign it to the output queue value. In this case, the system determines that the
output queue is PayPrt21.

Charting the Print Path
Figures 9.4A, 9.4B, and 9.4C chart the path that defines plint direction. Remember that as
a first step, the system determines whether to spool the report (Figure 9.4A). When the
printer file (or override) specifies that the system should spool the report, the system
follows the output queue path shown in Figure 9.4B to detennine the spooled file's
destination. The printer file (or override) can alternatively specify that the system should
not spool the report and should instead print directly on the designated printer device. In
this case, the system uses the printer device path denoted by Figure 9.4C.

When you peruse the charts in Figures 9.413 and 9.4C, be sure to examine the
footnotes for additional inforn1ation. For instance, Figure 9.4B explains in footnote 1 that
when inspecting the printer file portion of the path, the system may derive the output
queue value from the printer file itself or as the result of a printer file override.

Whether using the output queue path or the printer device path, the system begins
the print-direction resolution process with the printer file (or override). Figures 9.4B and
9.4C imply this fact by placing the printer file at the top of each chart. Notice the arrows
pointing from the printer file to various points in the chart. These arrows point to the
possible values that the printer file's output queue attribute and printer device attribute
can contain.

Let's examine the output queue path. In Figure 9.4B, you can see that the printer file
can contain one of the following values for its output queue attribute:

• a specific output queue

• *Job

• *Dev

When the system is to derive the print-direction attributes from the printer file, the result
can be that a specific output queue is named for use, that the system is to obtain the
output queue from job attributes, or that the system is to examine the printer device
attribute in the printer file to determine the output queue.

Output
queue path
(Figure 9.4B)

Chapter 9 Printer Files, job Logs, and Print Direction 139

Yes

FIGURE 9.4A
Printer File Direction

FIGURE 9.48
Output Queue Path

No

Printer
device path
(Figure 9.4CJ

Printer file1 i----------,

1 VJlues derived from printer file description or OvrPrtF commJnd.

2 Commands BchJob ,md Sbmjob can specify 'JobD; in addition, SbmJob ran
spe{_ify *Current. In these CJSe\ the output queue values re~ult in the same
path as 'Job.

1 See Figure g.4((printer device path).

140 Starter Kit for the IBM iSeries and AS/400

FIGURE 9.4(
Printer Device Path

~---------! Printer file 1 1-------~

1 Values derived from printer file description or OvrPrtF commclnd.

2 Commands BchJob and SbmJob can specify 'JobD; in addition, Sbmjoh can
~pPcify *Currf'nt. In these cases, the printer device vJ!ues result in the sam('

pdth as 'Job.

Let's assume the output queue value specifies *Job. Follow the atTows from the *Joh
box, and you can see that the job attributes can then

• name a specific output queue

• refer resolution to the user profile (value *UsrPrfl

• refer resolution to the printer device value specified in the printer file (value *Dev)

• refer resolution to the workstation device description (value *WrkStn)

Keep in mind that any time print-path resolution contains the value *Dev, resolution
continues by examining the p1inter device attribute of the printer file, in which case you
examine the path defined by Figure 9.4C. By following the arrows through the possible
paths available in resolving a report's destination, you can see that resolving to a specific
output queue or printer device can flow through numerous points.

Job QPrt/ob and Print Direction
In addition to the seven special values we've just discussed, there's another factor you
need to consider. There are times when the system generates spooled files during a job in
which the current job's user is not the same as the user profile nmently running. For

Chapter 9 Printer Files, Job Logs, and Print Direction 141

example, suppose user GuthrieGar uses command SndNerSplF (Send Network Spooled
File) to send a spooled file to user NielsenKar. Clearly, user NielsenKar should own the
sent spooled file. However, a job running under user profile NielsenKar didn't initiate the
spooled file's creation. Instead, a system job created the spooled file. To ensure that
spooled file ownership is appropriate in such cases, the system generates a special job
named QPrtJob for the user and associates the spooled file (or files) with this job. Thus,
\vhen user NielsenKar issues the WrkSplF (Work with Spooled File) command, she'll see
the spooled file sent to her by user GuthrieGar.

A QPrtJob job can contain up to 9,999 spooled files. When a user's QPrtJob job has
reached capacity, the system automatically creates another one for the user.

The system generates QPrtJob jobs for several system functions, including

• using the SndNetSplF or SndTCPSplF (Send TCP/IP Spooled File) command to send a
spooled file to another user

• sending a spooled file from a VM or MVS system through a VM/MVS b1idge to an
iSeries system

• receiving a spooled file using TCP/IP or the line printer daemon (LPD) process

• using the QSpCrtSp (Create Spooled File) spool application progranuning interface
tAPI) to create a spooled file for another user

• using the QWTSetP (Set Profile) security API to set the user profile to a different user
and then creating a spooled me

Now that you know what QPrtJob is, lefs see how it can affect print direction.
Before V!iR4, storing a spooled file under a QPrtJob job ccmld influence the spooled

file's destination. If print direction revolved around a job-related special value •Job in
the output queue parameter of the printer file), the system obtained the output queue
attribute from the QP~Job job. The system would ignore the value in the output queue
attribute for the current job. Starting with V4R4, the output queue of the current job
controls the destination of the spooled file.

With special dara-area support, you can instruct the system to use the information
from QPrtJob rather than that from the current job. To do so, you must create a data area
named QP~Job and adhere to the following rules:

• The data area must exist in either QUsrSys or the first product library in the librnry
list of the current job.

• User profile QSpl must own the data area.

• The data area must be of type logical.

• The data area must have a value of fabe (0).

If the system cloesn·t find the data area or there are any problems with it, the print
direction values come from the current job.

142 Starter Kit for the IBM iSeries and AS/400

Some examples of problems with the data area are

• damage

• not owned by user QSpl

• incorrect type

• logical value of true (1 l

You'll likely find that you don't take advantage of this special data-area support.

Ready for Action
As you can sec, several things control the destination of printed output With the
information you've learned in this chapter, you're poised to customize settings to best fit
your environment. You'll also he able to find those reprnts when a user calls and asks,
"Where have all the rep< lits gone?"

143

Chapter 10

Understanding Output Queues
Printing. Tt"s one of the most common things any computer does, and it's relatively easy
with the iSeries. \Vhat complicates this basic task is that the system provides many
functions you can tailor for your printing ne<:ds. fn Chapter 9, we introduced you to one
such customiz;ltion: print direction. That's only the beginning, though. You can use
multiple printers to handle various types of forms. You can use printers that exist
anywhere in your configuration - whether they're attached to local or remote machines
or even on a nervmrk. You cm let users viev.:, hokL release, or cancel their own output
or you can design your system so that users' output is simply printed on a printer in their
area without any operator intervention except to change and align the forms.

The cornerstone of all this capability is the iScries output queue. TJnderstanding how
to create and use output queues can help you master iScries print operations.

What Is an Output Queue?
An output queue is an object containing a list of spooled files that you can display on a
workstation or write to a printer de\'ice. (You can also use output queues to write
spooled output to a diskette device. but this chapter doesn't cover that function.) The
iSe1ies object type identifier for output queues is *OutQ.

Figure HUA shows the display you sec on a workstation when you enter the
\VrkOutQ (\Vork with Output Queues) command for the output queue QPrint:

Wrk.OutQ QPrint

As the figure shu'>vs, the Work with Output Queue panel lists each spooled file that exists
on the queue you specify. For each spooled file, the display shows the spooled file name,
the user of the job that created the spooled file, the user dat:1 identifier, the status of the
spooled file on the queue, the number of pages in the spooled file, the number of copies
requested, the fonn type. and the spooled file's output ptiority (vv·hich is defined in the
job that generates the spooled file). You can use function key Fl1 (View 2) to view
additional information <e.g., job name and number) ahout each spooled file entry.

The status of a spooled file can he any of the following:

• HDY (Readv l The file is spooled and waiting to be p1inted when the \'-Titer is
available. You can use option 3 to hold the spooled file.

• OPN (()pen) - The file is being v .. rittcn and can·t he p1inted at this time (i.e., the
printer file's Schedule parameter value is *FileEnd or *JobEndl.

• DFR <Deferred) The file has been defenwl from printing.

• SI'\D (Sending) The file is being or has been sent to a remote system.

144 Starter Kit for the IBM iSeries and AS/400

FIGURE 10.1 A
Work with Output Queue Panel

Work with Output Queue

Queue: QPR INT Library: QGPL Status: RLS/WTR

4=Delete 5=Display
Type options, press Enter.

1=Send 2=Change 3=Hold
8=Attributes 9=Work with printing status

Opt File
QSYSPRT
PRINTKEY
QQRYPRT

User
QSYSOPR
QSYSOPR
QSECOFR

User Data

Parameters for options 1, 2, 3 or command
===>

Sts Pages
WTR 6
ROY 1
HLD 3

6=Release ?=Messages

Copies Form Type Pty
1 *STD 5
1 *STD 5
1 *STD 5

Bottom

F3=Ex_i_t--F1_1_=_V_i_e_w_2 __ F_1_2_=_C_a_n_ce_L __ F_2_0-=W-r-,-.t-e_r_s--F2_2_=_P_r_i_n_t_e_r_s------~

F24=More keys

• CLO (Closed) - The file is spooled and has been completely processed by a program
but is unavailable for printing because Schedule(*JobEnd) was specified and the job
that produced the file hasn•t finished.

• HLD (Held) - The file is spooled and on hold in the output queue. You can use
option 6 to release the spooled file for printing.

• SAV (Saved) - The file has been plinted and is now saved in the output queue,
from which it can be printed again if desired. (The spooled file attlibute Save has a
value of *Yes. In contrast, a spooled file with Save(*No) is removed from the queue
after printing.)

• \VfR (Writer) - The file is currently being printed. You can still use option 3 to hold
the spooled file and stop the printing; do so, and the spooled file status will appear
on the display as HLD.

• PND (Pending) - The file is waiting to be printed.

• PRT (Printing) - The file has been completely sent to the plinter, but the printer
hasn·t yet returned an indication of completion.

• MSGW (Message waiting) - TI1e file has a message that neecb a reply or that indicates
a necessary action.

We've mentioned two options for spooled files: option 3, which holds spooled files,
and option 6, which releases them. The panel in Figure 10. lA shows all available options.
Figure 10.IB explains each option.

l=Send

2=Change

3=Hold

4=Delete

S=Display

6=Release

7=Messages

8=Attributes

9=Work with

Chapter 10 Understanding Output Queues 145

FIGURE 10.1 B
Output Queue Options

copy of the spooled iile to someone in your network (local or remote).

some or all of the spooled file's attributes.

Hold the spooled file.

Delete the spooled file.

View the spooled file (spacing will differ from the printed version because blank
lines aren't displayed).

Release a spooled file and make ready for printing.

Work with any messages pending for the spooled file.

Display the spooled file's attributes.

status Work with the status.

How to Create Output Queues
Nmv chat you\-'e seen that output queues contain spooled files and let you perform
:1ctions on those spooled files. we can f(Jcus on creating output queues. One common
way output queues are created i.s through a printer device description. Yes, you've read
correctly! When you create a printer device desc1iption using the CrtDevPtr (Create Device
Description (Printer)) command or through automatic configurntion, the system
automatically creates an output queue in library QUsrSys of the same name as that
assigned to that printer. This output queue is the default for that printer. Tn fact, the
system places the description "Default output queue for printer Printerl\fam<J' in the
output queue·s Text attribute.

An alternative is to use the CttOutQ (Create Output Queue) command. ln this case,
the parameter values for CrtOutQ determine the :lttributes of the outprn queue. \>?hen you
use CrtOutQ, after entering the name of the output queue and library in \Vhich you want
the queue to exist, you·re presented v,ith three categories of parameters:

• procedural p:irameters

• configuration-related parametl'rs

• parameters with security implications

for a look at some of the parameters you can use, see the CrtOutQ panel in figure 10.2.

146 Starter Kit for the IBM iSeries and AS/400

FIGURE 10.2

Create Output Queue Panel

Create Output Queue (CRTOUTQ)

Type choices, press Enter.

Output queue OUTQ
Library

Maximum spooled file size: MAXPAGES
Number of pages
Starting time
Ending time

Order of files on queue
Remote system

+ for more values
SEQ

.... RMTSYS

Remote printer queue RMTPRTQ

Writers to autostart ...
Queue for writer messages

AUTOSTRWTR
MSGQ

Library
Connection type
Destination type
Host print transform
User data transform

Library

CNNTYPE
DES TTY PE

TRANSFORM
USRDTATFM

Manufacturer type and model
Workstation customizing object

MFRTYPMDL
WSCST

Library
Image configuration
Internet address ..
VM/MVS class
Forms Control Buffer
Destination options

Print separator page
User defined option

User defined object:
Object ..

Library
Object type

User driver program
Library

Spooled file ASP .
Text 'description'

IMGCFG
INTNETADR
CLASS
FCB
DESTOPT

. . . . SEPPAGE

. . . . USRDFNOPT
+ for more values

USRDFNOBJ

USRDRVPGM

SPLFASP
TEXT

*CUR LIB __

*NONE

*FIFO_

*NONE~------------~

*NONE_
QSYSOPR __

*LIBL __ _
*SNA __
*OS4illlll __
*YES
*NONE __ _

*IBM4211l11 ___ _
*NONE

*NONE

A
*NONE __

*NONE~------------~

*YES
*NONE __ _

*NONE __ _

*NONE __ _

*SYSTEM_
*BLANK.~-----------~

continued

Display any file •.
Job separators ..•
Operator controlled
Data queue •

Library
Authority to check
Authority

Procedural Parameters

Chapter 10 Understanding Output Queues 147

FIGURE 10.2 CONTINUED

Additional Parameters

DSPDTA *NO -
JOBSEP f[) __

OPRCTL *YES
DTAQ *NONE __

AUTCHK *OWNER -
AUT *USE ---

One of the C1tOutQ command's procedural parameters, Seq (Order of files on queue),
controls the order of the spooled files on the output queue. You cm choose a value of
either *FIFO (first in, first ol!l) or ~JobNbr (job number). If you select *FIFO, the system
places ne\v spooled files on the queue frlllowing all other ent1ies already on the queue
that have the same output priority as tbe new spooled files (the job description you use
during job execution determines the output priority).

Using *FIFO can be tiicky because ce11ain changes to an output queue ent1y cause
the system to reshuffle the queue's contents ~md pbce the spooled file behind all others
of equal priority:

• a change of output priority when you use the ChgToh (Change Job) or ChgSplFA
(Change Spooled File Attributes) command

• a change in status from HLD, CLO, or OPN to HDY

• a change in status from RDY back to HID, CLO, or OPN

The second possible value for the Seq parameter. ~lobNbr. specifies that the system
sort queue entries according to their priorities, using the date and timl' when the job that
created the spooled file entered the system. We recommend using ~JobNbr instead of
*FIFO because with 'JohNhr you don't have to worry about changes to an output queue
entry affecting the order of the queue's contents.

Another procedural parameter, shown under Additional Parameters in Figure 10.2
(above l, is JohSep (Job separators). You can specify a value from 0 to 9 to indicate the
number of job separators (i.e., pages) the system should pbce at the beginning of each
job's output. The job separator contains the job nan1e, the job user's name, the job number,
and the date and time when the job is run. This information can help in identifying jobs.
If you'd rather not use a Jot of paper. you can prevent job separators by selecting a
JobSep value of 0. Or, you can enter special value *Msg for this parameter. and each time
rhe end of a print job is reached, the system will send a message to the message queue
for the writer.

Don't confw;e the JobSep parameter with the FileSep (File separators) parameter,
which is an attribute of printer files. \Vhen creating or changing printer files, you can
specify a value for the FileSep parameter to control the number of file separators at the

148 Starter Kit for the IBM iSeries and AS/400

beginning of each spooled file. The infonnation on the file separators is similar to that
printed on the job separator hut includes information about the particular spooled file.

When do you need the file separator, the job separator, or both? You need file
sep;m1tors to help operators separate the various printed repotts within a single job. You
need job separators to help separate the printed output of various jobs and to quickly
identify the encl of one repo11 and the beginning of the next. Ho,vever, if you program a
header page for all your reports, job separators are probably wasteful. Another concern is
that for output queues that handle only a specific type of fon11. such as invoices, a
separator wastes an expensive frmn.

In reality, a person looking for a printed repo1t usually pays no attention to separator
pages but looks at the first page of the repo11 to identify the contents and destination of
the report. And, as you can imagine, a combination of file separators and job separators
could quickly launch a major paper-recycling campaign. Understand, we·re not saying
these separators have no function. \'Ve're saying you should think about how helpful the
separators are and explicitly choose the number you need.

Configuration Parameters
Among the several configuration-related C1tOutQ parameters are those that inukate
whether the output queue is local or remote, as well as the type of connection used. For
instance, using the RmtSys <Remote system) parameter, you can specify the system for a
remote output queue. With parameter RmtPrtQ (Remote printer queue), you can specify
the name of a remote system's output queue to associate with the local output queue
being created. Spooled files placed in the local output queue are then printed at the
specified remote location.

Other configuration parameters detennine specific functionality. For example, param
eters Transform (Host p1int transform), MfrTypMdl (Manufacturer type and model), and
WsCst (Workstation customizing object) influence actual print characteristics. such as
margins, font, and degree of rotation. Because they apply to printers that aren't "native"
to the iSeries, you'll likely have occasion to use these parameters. Most often, you must
specify these parameters for Printer Control Language (PCL) printers, such as many laser
printers.

Security Parameters
The security-related CrtOutQ command parameters help control user access to particular
output queues and particular spooled data. To appreciate th<:' importance of controlling
access, remember that you can use output queues not only to print spooled files but also
to display them. What good is it to prevent people from watching as payroll checks are
printed if they can simply display the spooled file in the output queue?

The DspDta (Display any file) parameter specifies what kind of access to the output
queue is allowed for users who have *Read authority. A value of *Yes says that any user
with *Read access to the output queue can display, copy, or send the data of any file on
the queue. *No specifies that users with *Read authority to the output queue can display,

Chapter 10 Understanding Output Queues 149

copy, or send rhe outpur <lam only of rheir own spooled files unless they have some other
special authority. (Special authorities that provide additional function are *JobCtl and *SplCtl.)

The OprCt! (Operator controlled) parameter specifies wherher a user who has *JobCtl
special authority can manage or control the files on an output queue. Allowable values
are *Yes, which pennits control of the queue and provides the ability to change queue
entries, and *No, which blocks this control for users with the ~JobCtl special authority.

One problem you might face relating to security is how to let users start, change, an<l
encl writers without having to grant them *JobCtl special authority, which also grants a
user additional job-related authorities that might not be desirable (e.g., the ability to
control any job on the system). One option is to write a program to perfom1 such writer
functions. You can specify thar the program adopt the authority of its owner, and you'd
make sure the owner has *JobCtl special authority. During program execution, the current
user adopts the special and object-specific authorities of the owner. When the program
ends, the user no longer has the adopted *JobCtl authority and ilius can't take advantage
of the functions this authority pennies.

If a user doesn't have *fobCtl special authority or doesn't adopt this special authority,
he or she must have a minimum of *Change authority to the output queue and *Use
authority to the printer device to sta1t the writer.

'D1e AutChk (Authority to check) parameter specifies whether the commands that
check the requester's authority to the output queue should check for ownership authority
(*Owner) or just for data authority (*DtaAut). When the value is *Owner, the requester
must have ownership authority to tl1e output queue to pass the output queue
authorization test. \''hen the value is *DtaAut, the requester must have *Read, *Add, and
*Delete authority to the output queue.

Last, the Aut (Authority) parameter specifies the initial level of authority allowed for
*Public users. You Gill change this authority level by using the EdtObjAut (Edit Object
Authority), GitObjAut (Grant Object Authority), or RvkObjAut (Hevoke Object Authority)
command.

As you can see, creating output queues requires more than just choosing a name and
pressing Enter. Given some appropriate attention, output queues can provide a proper
level of support for procedural (e.g., finding printer establishing the order of printer
files), configuration type of printer, customizing object), and security (e.g., who can
see what data) requirements.

Who Should Create Output Queues?
Who should create output queues? Although this seems like a simple question, it's
important for rwo reasons: First, the o'A·ner of an output queue can change the output
queue attributes and can grant and revoke authorities to the output queue, which means
the owner controls who can view and work with spooled files on that queue. Second, the
AutChk parameter checks the mvnership of the output queue w.; part of the authorization
test when an output queue is accessed. So ownership is a key to your ability to secure
output queues.

150 Starter Kit for the IBM iSeries and AS/400

Here are some suggestions. The system operator should be responsible for creating
and controlling output queues that hold c.bta considered public or non-secure. With this
ownership and the va1ious authority parameters on the CrtOutQ command, you can create
an envirorunem th<lt lets us<:rs control their own p1inter files and print on various printers in
their area of \VOtk For secure data (e.g., payroll. human resources, financial statements),
the department supervisor profile (or a similar one) should own the output queue. The
person who mvns the output queue is responsible for maintaining the security of the
output queue and can even explicitly deny access to IT personnel.

How Spooled Files Get on the Queue
Ifs important to understand that all spooled output generated on the iSeties uses a printer
file. Whether you enter the DspLib (Display Lihra1y) command using the Output(*Print)
parameter to direct your output to a reprnt, create and execute a query, or write a report
generating program. you're going to use a printer file to generace that output. A printer
file is the means to spool output to a file that can be stored on a queue and printed as
needed. Also, a printer file determines the attributes the printed output will have. This
means you can create a variety of printer files on the system to accommodate vatious
form requirements.

Another essential fac: to understand about spooling on the iSeries is that, nonnally, all
printed output is placed on an output queue to be printed. A'i we mentioned in Chapter 9,
the system is c:ipablc of bypassing the spool process to pedCJrm direct printing, but this
approach is nonnally avoided bemuse of pe1fonnance and work-management problems
that arise \vhen implementing direct printing. With that said, we can examine the spooling
process more closely.

When a job generates a spooled file. the system places the file on an output queue.
Recall from the discussion of print direction in Chapter 9 that numerous considerations
apply in detennining the output queue on which the file will be placed. A single job can
place spooled files on different output queues. Figure 10.3 demonstrates this fact.
The job pottrayed in the figure first spools the nightly corporate accounts receivable (ARl
repo1t to an output queue at the corporate office. Then the program creates a separate AR
report for each branch office and places the report on the appropriate omput queue.

Chapter 10 Understanding Output Queues 151

FIGURE 10.3
One Joh Placinp, Spooled Files on Dtf/erent Output Queues

Yes

Start job
PrtAR (CLPJ

Read branch
location

file

EOF?

I Priot::,och
i AR report(s) L _____ P_rt_R_P{_J~R (RPG)

OvrPrtF

override printer file

OvrPrtf

override printer file

How Spooled Files Are Printed from the Queue

Corporate
output queue

Branch
output queue

So how do the spooled flies get printed from the queue? The answer is no secret. You
must start (assign) a writer to an output queue. You make spooled files available to the
\\Tiler by releasing the spooled file, using option 6 on the \Vork with Output Queue or
Work with All Spooled Files panel. You then use the StrPrtWtr (Sta11 Printer Writer)
command for local printers or the StrRmtWtr (Start Remote Writer) command for remote
printers. The OutQ parameter on these commands detennines the outpUL queue to be
read by the printer.

\Vhen the writer is .sta1ted to a specific output queue and you use the WrkOutQ
command for that specific output queue, the letters WTR appear in the Status field at the
top of the Work with Output Queue display to indicate that a writer is assigned to print
<l\'ailable entries in that queue.

You can start a \vriter for any output queue. You don't have to worry about the name
of the writer matching the name of the queue. For instance, to sun printing the spooled

152 Starter Kit for the IBM iSeries and AS/400

files in output queue QPrint, you can execute the command

StrPrtWtr Writer(WriterName) +
OutQ(QPrint)

for file control are sent to the message queue defined in the printer's device
description unless you also specify the MsgQ parameter.)

When you IPL the svstern. your start-up program (specified in system value
QStrllpPgm) can control vvhether the system starts the writers on the system The IBM
supplied default start-up program (QSys/QStrUp) uses a single StrPt1Wtr command to sta11
all writers. When the start-up program starts all writers in this manner, each printer's
device description determines both its output queue and its message queue. Of course,
you can modify the start-up program so that it starts all writers, starts specific writers, or
starts no writers. In addition, these changes can explicitly specify the output queue to
assign when the system sta11s a writer. After a writer is you can redirect the writer
to another ourput queue by the ChgWtr (Change Writer) command or by ending
the writer and restarting it, assigning a different output queue.

To list the writers on your system and their assigned output queues, type Wrk.OutQ
on the command line and press Enter. You'll see a display similar to the one in
Figure 10.4.

FIGURE 10.4
\f1ork with All Output Queues Panel

Work with All Output Queues

Type options, press Enter.
2=Change 3=Hold 4=Delete 5=Work with 6=Release S=Description
9=Work with Writers 14=Clear

Opt Queue Library Files Writer Status
GRPOUTQ GUTHRIE 0 RLS
USROUTQ GUTHRIE 0 RLS
GUTHRIE GUTHRIE 3 GGPRT RLS
Qf AXOUTQ QfAX 0 RLS
QFQOUTQ QFAX 0 RLS
COMMON QGPL 0 PRT17 RLS
QDKT QGPL 0 RLS
QPR INT QGPL 34 RLS
QPRINTS QGPL 0 RLS
QPRINT2 QGPL 0 RLS
QSCAPAROQ QSC0640981 0 RLS
PRT01 QUSRSYS 17 PRT01 RLS

More ••.
Command
===>
F3=Exit F4=Prompt F5=Ref resh F12=Cancel F24=More keys

You can also use the WrkWtr (Work with Writers) command by typing WrkWtr and
Enter to see a display like the one in Figure 10.5.

Chapter 10 Understanding Output Queues 153

FIGURE 10.5
\tl()rk with All Printers Panel

Work with All Printers

Type options, press Enter.
1=Start 2=Change 3=Hold 4=End S=Work with 6=Release
7=Display messages 8=Work with output queue

Opt Device
GGPRT
KNPRT
PRHl1
PRT17

Sts Sep Form Type File
STR *FILE *ALL QPDSPJOB
END
STR *FILE *ALL QSYSPRT
STR *FILE *ALL

Parameters for options 1, 2, 3, 4, 6 or command

6 Note

User
GUTHRIE

QSECOFR

User Data

Bottom

It's important to understand that the output queue and the printer are
independent objects, so output queues can exist with no printer assigned
and can have entries. Operational Assistant illustrates some implications of
this fact. Opcr.ttional Assistant lets you create two output queues
{QUsrSys/QEZJobl.og and QUsrSys/QEZDebug) to store job logs and
problem-related output, respectively. These output queues are not default
queues for any printers. The people who manage the system can decide to
print, view, move, or delete the entries stored in these queues.

A Different View of Spooled Files
The \vrkOutQ command lets you work with all spooled files on a particular output queue.
Another helpful command is WrkSplF (Work with Spooled Files). This command lets you
work with all spooled files generated by your job, even if those spooled files are on
multiple output queues. Figure 10.6 represents the WrkSp!F command output for someone
who works at the basic OS;400 assistance level. (A user's assistance level is determined
first at the user profile level by the AstLvl paramc:rer and then at the command level.
based on the last use of the command or what the user enters for the AstLvl parameter
on the command. J

154 Starter Kit for the IBM iSeries and AS/400

FIGURE 10.6
W<>rk witb Printer Output ivrk5plF Basic Assistance Level

Work with Printer Output
System: AS400

User . • . . GUTHRIE Name, *ALL, F4 for list

Type options below, then press Enter. To work with
2=Change 3=Hold 4=Delete S=Display
9=Work with printing status 10=Start printing

nters, press F22.
lease ?=Message

11=Restart printing

Printer/
Opt Output

GGPRT
QPDSPJOB

Not Assigned
QPDSPFD
QSYSPRT

Status

Printing starting or ending (use FS)

Not assigned to printer (use Opt 10)
Not assigned to printer (use Opt 10)

F1=Help F3=Exit FS=Refresh F11=Dates/pages/forms
F20=Include system output F14=Select other printer output

Bottom
F12=Cancel
F24=More keys

Notice that one spooled file is assigned to the printer GGl'rt. while the others are
unassigned. They are definitely on an output queue, but because no writer is currently
started for any of those output queues, the spooled files are listed as unassigned. The
basic assistance level hides some of the technical details of spooled files and output
queues unless you request more infrm11ation by selecting option 9 (Work with printing
status) to display the spooled file detail information.

Figure 10.7 represents the WrkSplF command output for someone who works at the
intem1e<liate assistance level. (TI1ere is no advanced assistance level for this command, so
those at the advanced assistance level would also see this same panel.) Now, you can
dearly see which user created each spooled file, which output queue the file is assigned
to, the status, and the number of pages.

As you see, you have two method'> for working with spooled files: the WrkOutQ and
the WrkSplF commands. You'll find that you use both in your daily operations, but you'll
probably find you use WrkSplF most \vhen you're interested in a specific user's output
and use WrkOutQ most when system operations is your concern.

Chapter 10 Understanding Output Queues 155

FIGURE 10.7
Work with All Spooled Files - Wrk.Sp!F Intermediate Assistance Level

Work with All Spooled Files

Type options, press Enter.
1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
8=Attributes 9=Work with printing status

Opt File
QPDSPJOB
QPDSPFD
QSYSPRT

User
GUTHRIE
GUTHRIE
GUTHRIE

Device or
Queue
GUTHRIE
QPR INT
USROUTQ

Parameters for options 1, 2, 3 or command

User Data

How to Organize Output Queues

Sts
WTR
RDY
ROY

Total
Pages

6
4
2

Cur
Page

3
Copy

1
1
1

Bottom

The organization of your output queues should be as simple as possible. To start, you can
let the system create the default output queues for each p1inter you create. Of course, you
may want to modify ownership and some output queue attributes. At this point, though,
you can send output to an output queue and there will be a printer assigned to print from
that queue.

How can you use output queues effectively? Each installation must discover its own
answer. but we can you a few ideas. If your installation generates relatively few
reports. having one output queue per available printer is the most efficient way to use
output queues.

Installations that generate large volumes of printed output need to control when and
where these reports might be printed. For example, a staff of programmers might share a
single primer. If you spool all compiled programs to the same queue and make them
available to the writer. things could jam up fast, and important reports might get delayed
behind compile listings being printed just because they were spooled to a queue with a
writer. A better solution is to create an output queue for each programmer. Each progranuner
can then use a job description to route printed output to his or her own queue. Wnen a
programmer decides to print a spooled file, he or she moves the file to the output queue
with the shared \Vriter active. This means that the only reports printed are those specifically
wanted. Also, you can better schedule piinting of a large number of reports.

156 Starter Kit for the IBM iSeries and AS/400

What about the operations department? Is it wise to have one output queue (e.g.,
QPrint, P110ll to hold all the spooled files that nightly, daily, and monthly jobs generate?
You should probably spend a few minutes planning for a better implementation.

For some encl users. you may vvant to make the output queue invisible. You can
direct requested printed owput to an output queue with an available 'Writer in the work
area of the end user who made the request. The only things the user should have to do
are or add paper and answer occasional printer-related messages.

What a mountain of information! And we've only discussed a few concepts for
managing output queues. But this information should be enough to get you started and
on your way to mastering output queues.

157

Chapter 11

A Plug-and-Play Output Queue Monitor
In today's world, spooled files play a much larger pa1t in day-to-day operations than their
traditional role as the source of locally printed reports. For instance, rather than print a
reprnt, you now might want to fax it using host soft\vare or perhaps send it via e-maiL
t:ndoubtedly, though, not all your applications \Vere designed with an awareness that
thdr output might he used in such ways.

Although adding the necessa1y suppo1t to your applications is an obvious solution, it's
often better to integrate your applications with new, standalone programs that perlcmn the
ne\v functions. Your applications continue tu place spooled files on output queues, and
the ne\v programs process these spooled files. Not only does this approach typically limit
application changes, but its modularity also makes it easy to integrate any of your
applications with the new functions.

To implement this solution, though, you'll need some way to automaticalfv detennine
\\hen spooled files arrive on output queues, as well as a way to identify the spooled files
so your new programs can then process them. You can easily accomplish these
requirements using data queue support \X'ith this supp01t, you associate a data queue
with an output 4ueue, and as spooled files become ready, identifying information is senr
to the data queue. Add a program to await the data queue entries, and you'll have
everything you need for fully automated spooled file nunagement.

We've mentioned how this technique might he used frlr automated fax systems or for
sending a repon to :m e-mail recipient, hut there are also many ways in which this
approach can help with general spooled file management For instance, you could use
such a monitor system to automatically

• archive spooled files

• notify a user when a report is ready

• distribute copies of repo11s to users in a nr.:twork

• transfer spooled files to a user on a remote system

• duplicate and distribute reprnts to a group of users

• page personnel when a particular job generates a job log, indicating abnormal
termination

As you think about possible uses, we're sure the list will grow.

158 Starter Kit for the IBM iSeries and AS/400

Setting the Stage
up data queue support for an output queue is easy. You simply create a data

queue using the C1tDtaQ (Create Data Queuel command and then specify the data queue
name in the DtaQ (Data queue) parameter on the CrtOutQ (Create Output Queue) or
ChgOutQ (Change Output Queue) command.

The entry sent to the data queue is 128 bytes long and contains infonnation used to
identify the spooled file and its output queue. Figure 11.1 shows the layout of the data
queue entiy. ·You can use this infonnation on spooled-file-related command'i, such as
CpySplF (Copy Spooled File) and ChgSplFA (Change Spooled File Attributes), as well as
in various spooled file application programming inte1faces (APls).

Position

11

13

23

33

39

49

53

63

73

Type
Character

Character

Character

Character

Character

Character

Binary

Character

Character

Unspecified

FIGURE 11.1
Data Q11eue Lavout.for Output Queue Entries

Length Description
10

2

10

10

6

10

4

10

10

56

Function
Identifies the function that created the entry. For spooled files, the
value is *SPOOL.

Record type
Identifies the record type within the function. The only defined valid
value is '01 ', indicating a spooled file has arrived in a ready status.

Job name
Identifies the name of the job that created the spooled file.

Job user
Identifies the user that created the spooled file.

Job number
Identifies the job number of the job that created the spooled file.

Spooled tile name
Identifies the spooled file name.

Spooled tile number
Identifies the spooled file number.

Output queue name
Identifies the output queue containing the spooled file.

Output queue library
Identifies the name of the library containing the output queue.

Reserved
This is unused.

Figure 11.2 shows the prompt screen for the CrtDtaQ command. A data queue
associated with an output queue must have a MaxLen (Maximum entry length) value of at
least 128. You can specify a larger value, but the data queue entry that describes the
spooled file \vill occupy only the first 128 positions.

Figure 11..3 shows the prompt screen for the ChgOutQ conm1and.

Chapter 11 A Plug-and-Play Output Queue Monitor 159

FIGURE 11.2
CrtDtaQ Cornmand Pmn1pt

Create Data Queue (CRTDTAQ)

Type choices, press Enter.

Data queue
Library

Type •..
Maximum entry length
Force to auxiliary storage
Sequence . . . • .
Include sender ID
Text 'description'

F3=Exit F4=Prompt FS=Refresh
F13=How to use this display

> SAMPLE __
*CUR LIB

*STD --
> 1
>

*FIFO_
*NO_

Name
Name, *CUR LIB
*STD, *DOM
1-64512
*NO, *YES
*FIFO, *LIFO,
*NO, *YES

*KEYED

Sample data queue _____________ _

F10=Additional parameters
F24=More keys

Bottom
F12=Cance l

FIGURE 11.3
CbgOutQ Cornmand Prompt

Change Output Queue (CHGOUTQJ

press Enter .

Di splay any file ..
Job separators . . .
Operator controlled
Data queue .

Library
Authority to check

F3=Exit F4=Prompt
F24=More keys

• . . > QPRINT Name
*LIB_L__ Name, *LlBL, *CURLIS

Additional Parameters

FS=Refresh

*NO 0-= *YES_
SAMPLE __

OUTQMON_
*OWNER_

F12=Cancel

*SAME, *NO, *YES, *OWNER
0-9, *SAME, *MSG
*SAME, *YES, *NO
Name, *SAME, *NONE
Name, *LIBL, *CURLIB
*SAME, *OWNER, *DTAAUT

Bottom
F13=How to use this display

160 Starter Kit for the I BM iSeries and AS/400

A value of *None for this command's DtaQ parameter indicates that no data queue is
associated with the output queue. To cause OS/400 to send an entry to a data queue when

a spooled file is ready on the associated output queue, specify a data queue name. The
value *Same for the DtaQ parameter indicates no change to the existing parameter value.

Once you've created a data queue and associated it with an output queue, OS/400
will send a data queue ent1y for eve1y spooled file that arrives in ready (RDY) status on
that output queue until you execute the ChgOutQ command and specify DtaQ(*None) to
stop the function. Noteworthy is the fact that the system sends a data queue ent1y not
when the spooled file arrives on the output queue but rather when the spooled file goes
to ready status. This point is important for two reasons. lt's possible to specify that when a
spooled file is created, the system should spool it in a held (HLD) status. In such a case,
although the spooled file ~mives on the output queue, the system sends no data queue
entry because the spooled file never existed in the ready status. Consider also that after
the system sends a data queue entry for a spooled file in ready status, a user might hold

the spooled file. This action causes the spooled file to go to status HLD. Releasing the
spooled file causes it to once again go to ready status, resulting in the system sending yet

another related data queue ent1y.

The Output Queue Monitor Utility
At the heart of an output queue monitor system is a never-ending batch program that loops
endlessly, executing a call to the QRcvDtaQ (Receive Data Queue) APT. Each call of the
API causes the system to wait indefinitely for an entry to anive on the data queue. Once
an ently arrives. the program parses the ently to obtain the spooled file identification
info1mation, and processing continues accordingly.

Fortunately, you needn't concern yourself with the details of the actual monitoring
process because we've created a "plug-and-play" output queue monitor utility that handles
all monitoring functions. You need only cocle for the function you want to perfonn. The
monitor utility passes control to your program when a spooled file is ready.

Figure 11.4 contains a simple CL program, Sample, that interfaces to the output queue
monitor utility. Notice that, with the exception of the function and the record type (both
of which are unnecessary), the program's parameters correspond to the data queue infonna
tion shown in Figure 11.1. All programs that interface to the utility must use this parameter
structure. Program Sample simply executes the SndUsrMsg (Send User Message) command

to notify the user that a spooled file is ready.

Chapter 11 A Plug-and-Play Output Queue Monitor 161

W'Tip
Unless the processing of your program is trivial, such as Sample's is, it
should submit a new job to perform the actual processing. 1bis approach
lets your program exit quickly so that the monitor can continue receiving
data queue entries, thereby preventing a backlog of entries.

Pgm +
+
+
+
+
+
+
+
+

I*
I*
I*

&Job
&User
&JobNbr
&SplFName
&SplFNbr
&OutQName
&OutQLib

===
Variable declarations =

===
Del &Job *Char 10
Del &User *Char 1©
Del &JobNbr *Char 6
Del &SplFName *Char 1©
Del &SplFNbr *Dec 4 ID
Del &OutQName *Char 1©
Del &OutQLib *Char 10

*I
*I
*I

continued

162 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.4 CONTINUED

I* === *I
!* Send notification message */
I* === *I

SndUsrMsg Msg('Spooled file'
*BC at
&SplFName
*BCat

Return

'in output queue'
*BC at
&OutQLib
*TC at
I I I

*TCat
&OutQName
*BC at
'is ready. '

MsgType(*Info)
ToUsrC &User)

+
+
+
+
+
+
+
+
+
+
+
+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

Configuring the Output Queue Monitor
Before you can monitor an output queue, you must first create a program, such as
Sample, to pc1fom1 the desired function. The utility requires you to place this program in
the utility's product library. (For information about product libraries, sec "Installing the
Output Queue Monitor Utility,'' page 16S.) Next, you must configure a monitor by creating
a logical output queue monitor and defining the output queues on which this monitor is
to operate. Following are the configuration commands and the basic sequence in which
you'll use them.

This command defines a logical output queue monitor. Figure 11.SA (page 169) shows the
prompt screen for CitOutQMon. The command's single parameter, Monitor name, must be
the name of the user-\vritten program to which the utility passes control. CrtOutQMon
creates a data queue and names it using this monitor name. The utility uses this data queue
for the monitoring process.

Figures 11. SB through 11. SD (pages 169-174) show the source for the command and
its associated programs.

Chapter 11 A Plug-and-Play Output Queue Monitor 163

This command defines up to 25 output queues on which a monitor is to operate. In the
unlikely event th~tt you need to monitor more than 25 output queues \Vith one monitor,
simply execute this l'Otnmand multiple times.

Figure 11.6A {page 174) shows the prompt screen for AddOutQME. Figures 11.6B
through l l.6F (pages 175-183) show the source for the command and its associated
programs.

This command lets you remove some or all of the output queue entries assigned to a
monitor with the AddOutQiv1E command. You can specify up to 25 output queues whose
entries are to he removed, or you can specify the special value *All to remove all output
queue entries.

Figure 11.7A (page 18JJ sho\vs the prompt screen for RmvOutQME. Figures 11.78
through 11.7G <pages 184-193) show the source for the command and its associated
programs.

This command deletes a previously created output queue monitor. The command
removes all output queue entries and deletes the data queue associated with the monitor.
The command does nor delete the user-written program. Nunnally, you won·t use this
command. Howcvc.:r, it does provide a mechanism for completely ridding your system of
a monitor.

Figure 1 L8A (page 194) shows the prompt screen for DltOutQMon. Figures 11.8B
through l l.8D (pages 194--198) show the source for the command and its associated
programs.

Using the Output Queue Monitor
Once you've created your program to process spooled file entries and you've completed
the configuration steps, you can start using the monitor. The following commands start
and st< >p the monitor.

This command starrs the monitoring process by submitting a job that calls the actual
monitor program, OutQMon. CL program OutQMon, in turn, calls the user-written
program (identified by the Ivlonitor name parameter) that pt ocesses the spooled files.
(We'll look at program OutQMon in a moment.) Figure 11.9A (page 199) shows the
prompt screen for the StrOutQMon conunand.

Note that StrOutQMon submits the monitor job tu the job queue specified in job
description OutQIVlon frlllnd in the product lihra1y. lnstallation program lnstall creates this
job description and default values for all parameters. After installing the utility, you
should change the job description, specifying the preferred job queue. \Ve prefer to run
monitor programs in the controlling subsystem.

164 Starter Kit for the IBM iSeries and AS/400

Figures 11.9B through 11.9D (pages 199-204) show the source for command
StrDutQMon and its associated programs.

This command stops the monitoring process for a specific monitor. To accomplish this,
the command sends a special "shutdown'' data queue entry to the monitor's data queue.
Figure 11.lOA (page 204) shows the prompt screen for EndOutQMon.

Note that EndOutQMon may not encl the monitor immediately because other data
queue entries may exist at the time you execute the command. You should also keep in

mine! that fact that spooled file entries may arrive in the data queue after the special
shutdown ent1y arrives. In this case, the spooled file entries remain in the data queue, and
the monitor processes these entries when it is started again.

Figures 11.lOB through 11.lOD (pages 204--209) show the source for command
EndOutQMon and its associated programs.

Monitoring Program OutQMon
The source for the utility's monitoring program, OutQMon, appears in Figure 11.11
(page 209). You can see that program OutQMon accepts the monitor name (variable
&MonName) as its only parameter. The program uses this va1iable in naming both the
data queue to monitor and the user-written program to which the monitor should pass
control. Like the other programs that make up the utility, OutQMon first calls API
QUsi:JobI (Retrieve Joh Information) to retrieve the product library. The program uses
variable &PrdLib to direct object references to a specific library - the product library.

Afi:er retrieving the product library. OutQMon allocates exclusively the data queue that
the program monitors. This step yields a mechanism for preventing duplicate active
instances of a patticular output queue monitor. The program then enters the loop that calls
API QRcvDtaQ to receive data queue entries. Because variable &Wait is set to special value
-1 (negative one), the program will not continue until an ent1y arrives in the data queue.

After receiving a data queue entry, program OutQMon extracts the function information
from the entry, placing the value in variable &Action. When &Action's value is *SPOOL.
denoting a spooled file in ready status, the program parses the data queue entry into its
specific fields ancl passes control to the user-written program specified in variable
&MonName. When &Action's value is *ENDMON (the special value sent by command
EndOutQMon), the program simply exits. If &Action's value is anything other than
*SPOOL or *ENDMON, the program ignores the entry.

The utility stores infonnation about the configured output queue monitor entries in
physical file OutQMonE. In addition, the utility uses logical file OutQMonELl. Figures ll.12A

and 11.12B (page 212) contain the source for OutQMonE and OutQMonELl, respectively.
Should you want to enhance the utility by adding a WrkOutQMon (Work with Output
Queue Monitor) or a WrkOutQME (Work with Output Queue Monitor Entries) command,
you can use the infonnation in these files to build the lists the commands present.

Chapter 11 A Plug-and-Play Output Queue Monitor 165

Installing the Output Queue Monitor Utility
A fair amount of code makes up the Output Queue .Monitor Utility. To make installation easy and to
prevent errors, we've created installation program Install (Figure 11.A, page 166) for your use. Follow
the road map below, and you1ll be monitoring output queues in no time.

1. Create a product libraiy.

A product library is more than a library containing a product. Not does this library contain the
product's objects, but the product library attribute for the product's commands is also specified. When
you execute a command that has a product library specified, the system automatically places the
product library in your library list. As long as all objects required by the execution of the command
exist in the product library, the system will always find a referenced object.

The output queue monitor utility takes this arrangement a step further, though. Rather than rely on the
library list and run the risk that the system access the wrong object, the utility's programs use a system
API to retrieve the product library name from the library list. The programs then qualify references to
objects using the retrieved value. We suggest you place the utility in its own library to avoid conflict
with any existing objects.

~Tip
When using commands with their product library set, you can use the CrtDupObj
(Create Duplicate Object) command to create copies of the commands in a library
that is typically in users' library lL'!ts. This tedmique avoids the need to add the

product library to the library li'>t as well as the need to specify a library qualifier
when a user wants to use a command. Here's a good strategy for such a setup:
a) Create an alternate system library to contain the commands (as well as

modified IBM-supplied objects).
b) Place this library in !>')'Stem value QSyslibL (System part of the library list)

so that it appears before library QSys.
c) Copy the commands into the new system library.

2. Create source files.

The Install program presumes standard IBM source file names. Execute the following commands,
substituting your product library name:

CrtSrcPF File(ProductL7b/QCmdSrc)
CrtSrcPF File(ProductLib/QCLSrc)
CrtSrcPF File(ProductLib/QDDSSrc)
CrtSrcPF File(ProductLib/QRPGLESrc) Rcdlen(112)

3. Populate source files.

Place the utility's source members (as well as program Install) in the appropriate source files. (The
comment banner at the top of each member contains its source type.)

4. Compile program Install.

Compile program Install into the product library. Execute the following command, substituting your
product library name:

continued

166 Starter Kit for the IBM iSeries and AS/400

(Installing the Output Queue Monitor Utility Continued)
CrtBndCL Pgm(ProductLib/Installl +

SrcFile(ProductLib/QCLSrc) +
DftActGrp(*No) +
ActGrp(*New)

5. Execute program Install.

Compile the utility's programs by executing program Install. This program requires you to pass the
product library name as its parameter. You can avoid any potential interactive performance concerns by
submitting the job to batch. Submit the following command, substituting your product library name:

Call Pgm(ProductLib/Installl Parm(ProductLib)

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

FIGURE 11.A
Installation Program Install

Program Install
Source type ... CLLE
Description ... Create objects used by output queue

monitor utility

Parameters

&PrdLib Input Product library for utility

&Prdlib

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

I* === *I
I* Variable declarations */
I* === *I

Del &Prdlib *Char 10

I* === *I
I* Add product library to library list */
I* === *I

AddlibLE
MonMsg

&Prdlib
CPF0000

I* =================================== =========================== *I
I* Create output monitor utility ob ects *I
I* =================================== =========================== *I

DltF &PrdLib/OutQMonEL1
MonMsg CPF0000

DltF &Prdlib/OutQMonE
MonMsg CPF0000

C rt PF Fi Le< &PrdLib/OutQMonE) +
SrcFi le(&PrdLib/QDDSSrc

CrtLF Fi le (&PrdLib/OutQMonEL1 +
SrcFi le(&Prdlib/QDDSSrc

CrtJobD JobD(&Prdlib/OutQMon)

continued

CrtCmd

CrtCmd

CrtCmd

CrtCmd

CrtCmd

CrtCmd

CrtBndCL

CrtBndCL

CrtBndCL

CrtBndCL

CrtBndCL

CrtBndCL

Chapter 11 A Plug-and-Play Output Queue Monitor 167

FIGURE 11.A CONTINUED

CmdC &PrdLib/AddOutQME)
Pgm(&PrdLib/AddOutQM1A)
SrcFile(&PrdLib/QCmdSrc)
VldCkrC &PrdLib/Add0utGM2A
PrdLibC &PrdLib l

Cmd(&PrdLib/CrtOutQMon)
Pgm(&PrdLib/CrtOutQM1A)
SrcFileC &PrdLib/QCmdSrc)
VldCkrC &PrdLib/Crt0utGM2A
PrdLibC &PrdLib l

CmdC &PrdLib/DltOutQMon)
Pgm(&PrdLib/DltOutGM1A)
SrcFileC &PrdLib/QCmdSrc)
VldCkrC &PrdLib/DltOutQM2A
PrdLibC &PrdLib l

Cmd(&PrdLib/EndOutQMon)
PgmC &PrdLib/EndOutQM1A)
SrcFileC &PrdLib/GCmdSrc)
VldCkrC &PrdLib/EndOutGM2A
PrdLibC &PrdLib l

Cmd(&PrdLib/RmvOutQME)
Pgm(&PrdLib/RmvOutQM1A)
SrcFileC &PrdLib/QCmdSrc)
VldCkrC &PrdLib/Rmv0utGM2A
PrdLibC &PrdLib l

CmdC &PrdLib/StrOutQMon)
Pgm(&PrdLib/StrOutGM1A)
SrcFile(&PrdLib/QCmdSrc)
VldCkrC &PrdLib/Str0utQM2A
PrdLibC &PrdLib l

Pgm(&PrdLib/AddOutGM1A
SrcFile(&PrdLib/QCLSrc
DftActGrp(*No l
ActGrp(*New)

Pgm(&PrdLib/AddOutGM2A
SrcFileC &PrdLib/QCLSrc
Df tActGrp(*No)
ActGrp(*New)

PgmC &PrdLib/Crt0utQM1A
SrcFile(&PrdLib/QCLSrc
Df tActGrp(*No)
ActGrpC *New)

PgmC &PrdLib/Crt0utQM2A
SrcFile(&PrdLib/GCLSrc
DftActGrp(*No)
ActGrp(*New)

Pgm(&PrdLib/Dlt0utQM1A
SrcFileC &PrdLib/GCLSrc
DftActGrp(*No)
ActGrp(*New)

Pgm(&PrdLib/DltOutQM2A
SrcFileC &PrdLib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

continued

168 Starter Kit for the IBM iSeries and AS/400

(Installing the Output Queue Monitor Utility Continued)
FIGURE 11.A CONTINUED

CrtBndCL Pgm(&PrdLib/End0utQM1A
SrcFile(&PrdLib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&Prdlib/EndOutQM2A
SrcFile(&Prdlib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&Prdlib/OutQMon)
SrcFile(&Prdlib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&Prdlib/Rmv0utQM1A
SrcFile(&PrdLib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&Prdlib/Rmv0utQM2A
SrcFile(&PrdLib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&PrdLib/Str0utQM1A
SrcFile(&PrdLib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndCL Pgm(&Prdlib/StrOutQMZA
SrcFile(&Prdlib/QCLSrc
DftActGrp(*No)
ActGrp(*New)

CrtBndRPG Pgm(&Prdlib/Add0utQM1B)
SrcFile(&PrdLib/QRPGLESrc
DftActGrpC *No)
ActGrp(*Caller)

CrtBndRPG Pgm(&PrdLib/Add0utQM2B)
SrcFile(&Prdlib/QRPGLESrc
Df tActGrp(*No)
ActGrp(*Caller)

CrtBndRPG Pgm(&PrdLib/Rmv0utQM1B)
SrcFile(&PrdLib/QRPGLESrc
DftActGrp(*No)
ActGrp(*Caller)

CrtBndRPG Pgm(&PrdLib/Rmv0utQM1C)
SrcFile(&PrdLib/QRPGLESrc
DftActGrp(*No)
ActGrp(*Caller)

CrtBndRPG Pgm(&Prdlib/Rmv0utQM2B)
SrcFile(&PrdLib/QRPGLESrc
DftActGrp(*No)
ActGrp(*Caller)

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

I* === *I
I* End of program */
/* === *I

EndPgm

Chapter 11 A Plug-and-Play Output Queue Monitor 169

FIGURE 11.5A

CrlOutQMcm Panel

Create Output Queue Monitor <CRTOUTQMON)

Type choices, press Enter.

Monitor name SAMPLE __ Name

F3=Exit F4=Prompt FS=Ref resh F12=Cancel
Bottom

F13=How to use this display
F24=More keys

FIGURE 11.58

Command CJtOutQMon
/* === */
/* Command CrtOutQMon */
I* Source type ... CMD */
/* Description ... Create Output Queue Monitor */
/* */
I* CPP Crt0utQM1A */
I* VCP Crt0utQM2A */
/* === *I

Cmd

Parm

Prompt('Create Output Queue Monitor')

Kwd< MonName)
Type(*Name)
Len(HJ)
Min(1)
Prompt('Monitor name')

+
+
+
+

170 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.5C

Cl1011tQMon Command Processing Program CrtOutQMlA

I*
/*
/*
I*
I*
/*
/*
I*
/*
/*

Pgm

Program Crt0utQM1A
Source type ... CLLE
Type Command processing program for CrtOutQMon
Description ... Create output queue monitor

Parameters

&Mon Name Input Monitor name

&MonName

*/
*/
*I
*/
*/
*/
*/
*/
*/
*/

+
+

/* === */
/* Variable declarations */
I* === *I

Del &Mon Name *Char Hl
Del &RcvVar *Char 600
Del &RcvVarLen *Char 4 X'00000258')

Del &Format *Char 8 'JOBI0700')

Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 10
Del &Offset *Dec 4 0
Del &Nbr4 *Dec 4 0
Del &Msg ID *Char 7
Del &MsgDta *Char 100
Del &MsgF *Char 10
Del &MsgFLib *Char 10

I* === *I
I* Global error monitor */
I* === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retrieve product library name */
I* === *I

I*
I*
I*

Call

ChgVar
ChgVar
ChgVar

QUsrJobl
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Offset
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

Create output queue monitor data queue

CrtDtaQ DtaQ(&PrdLib/&MonName
MaxLen(128)
Force(*Yes)
SenderID(*No

+
+
+
+
+
+
+

*I
*I
*I

+
+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 171

FIGURE 11.5C CONTINUED

I* === *I
I* Send completion message and exit */
I* === *I

SndPgmMsg Msg!D(CPF9898)
MsgF(QSys/QCPFMsg

Return

MsgDta ('Output queue monitor'
*BCat
&MonName
*BC at
'created'

MsgType(*Comp)

+
+
+
+
+
+
+

I* === *I
/* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsgID(&MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

FIGURE 11.50
CrtOutQMon Validi~v-Checking Program CrtOutQM2A

I* === *I
I* Program CrtOutQM2A *I
I* Source type ... CLLE *I
I* Type Validity-checking program for CrtOutQMon *I
I* Description ... Create output queue monitor *I
I* --- *I
/* Parameters *I
I* *I
I* &Mon Name Input Monitor name *I
I* === *I

Pgm +
&MonName +

continued

172 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.50 CONTINUED

I*
I*
I*

I*
I*
I*

Variable declarations

Del &Mon Name *Char
Del &RcvVar *Char
Del &RcvVarLen *Char
Del &Format *Char
Del &QualJob *Char
Del & Int Job ID *Char
Del &PrdLib *Char
Del &Offset *Dec
Del &Nbr4 *Dec
Del &Msg *Char
Del &MsgID *Char
Del &MsgDta *Char
Del &Msg F *Char
Del &MsgFLib *Char
Del &KeyVar *Char

Global error monitor

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

10
600

4 X'00000258'
8 'JOBI0700'

26 '*')

16
10

4 0
4 0

512
7

100
10
10

4

)

)

*I
*I
*I

*I
*I
*I

+

I* === *I
I* Retrieve product Library name */
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Offset
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

+
+
+
+
+
+
+

I* === *I
I* Verify output queue monitor program existence */
I* === *I

ChkObj

MonMsg
Do

ChgVar

Go To
End Do

Obj(&PrdLib/&MonName
ObjType(*Pgm)

CPF9801

&Msg

Exec(
)

('Output queue monitor program'
*BCat
&MonName
*BC at
'does not exist in Library'
*BC at
&PrdLib
*TC at

')

SendError

+

+

+
+
+
+
+
+
+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 173

FIGURE 11.50 CONTINUED

I* === *I
I* Verify output queue monitor data queue non-existence */
I* === *I

ChkObj

MonMsg
Return

Obj(&PrdLib/&MonName
ObjType(*DtaQ)

(CPF9801) Exec(
)

+

+

I* === *I
I* Output queue monitor data queue already exists */
I* === *I

ChgVar &Msg 'Output
*BCat
&Mon Name
*BC at
'already
*TCat
' ')

Go To SendError

queue monitor'

exists'

+
+
+
+
+
+

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsgID(&MsgID)
Msg F(&Msg F)
Msgflib(&MsgFLib

C CPF0000 MCH0000

SndPgmMsg MsgID(&MsgID)
Msgf(&MsgFLib/&Msgf
MsgDta(&MsgDta)
ToPgmQ (*Same)
KeyVar(&KeyVar

MonMsg

RcvMsg

MonMsg

SendError:

(CPF0000 MCH0000

KeyVar(&KeyVar
Msg(&Msg)

C CPF0000 MCH0000

SndPgmMsg MsgID(CPD0006)
Msgf (QSys/QCPFMsg

MonMsg

MsgDta ('0000' *TC at &Msg)
ToPgmQ(*Prv)
MsgType(*Diag

(CPF0000 MCH0000

+
+
+
+

+
+
+
+

+

+
+
+
+

continued

17 4 Starter Kit for the IBM iSeries and AS/400

SndPgmMsg MsgID(CPf0002 }
MsgF(QSys/QCPFMsg
ToPgmQ(*Prv }
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

FIGURE 11.50 CONTINUED

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

FIGURE 11.6A
AddOutQME Panel

Add OutQ Monitor Entry (ADDOUTQME}

Type choices, press Enter.

Monitor name .
Output queues

Library
+ for more values

F3=Exit F4=Prompt
F24=More keys

F5=Refresh

SAMPLE__ Name
QPR INT__ Name

*LIBL___ Name, *LIBL, *CURLIS

*UBL __ _

F12=Cancel
Bottom

F13=How to use this display

Chapter 11 A Plug-and-Play Output Queue Monitor 175

FIGURE 11.68

Command AddOutQME

I* === *I
I* Command AddOutQME */
I* Source type ... CMD */
I* Description ... Add Output Queue Monitor Entry */
I* *I
I* CPP AddOutGM1A */
I* VCP AddOutQM2A *I
I* === *I

Cmd

Parm

Parm

Prompt('Add OutQ Monitor Entry')

Kwd(MonName)
Type(*Name)
Len(H'l)
Min(1)
Prompt('Monitor name')

Kwd(OutQ)
Type(QuaLOutQ
Min(1)
Max(25)
Prompt('Output queues')

+
+
+
+

+
+
+
+

QuaLOutQ: Qual Type(*Name
Len(10)

+

/*
/*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

Qual Type(*Name
Len(10)
Dft(*LibL)
SpcVa l ((*Li bl)

)

'Library')
(*Curlib

Prompt(

FIGURE 11.6C

+
+
+
+
+

AddOutQME Command Processing Program AddOutQMZA

Program AddOutGM1A
Source type ... CLLE
Type Command processing program for AddOutQME
Description ... Add OutQ monitor entry

Parameters

&Mon Name

&OutQ

&MonName
&OutQ

Input

Input

Monitor name

List of up to 25 qualified
output queue names

*/
*I
*I
*/
*I
*/
*I
*I
*I
*I
*/
*I
*I

+
+
+

I* === *I
I* = Variable declarations */
I* === *I

Del
Del
Del
Del

&MonName
&OutQ
&OutGName
&OutGLib

*Char
*Char
*Char
*Char

10
502

10
10

continued

176 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.6C CONTINUED

Del &OutQCount *Char 2
Del &OutQCountN *Dec 2 0
Del &LoopCount *Dec 3 0
Del &Off set *Dec 3 0
Del &RcvVar *Char 60©
Del &RcvVarLen *Char 4 X'00000258')

Del &Format *Char 8 'JOBI0700')

Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 1©
Del &Nbr4 *Dec 4 0
Del &Msg *Char 512
Del &MsgID *Char 7
Del &MsgF *Char Hl
Del &MsgFLib *Char Hl
Del &MsgDta *Char 101')
Del &KeyVar *Char 4

I* === *I
/* = Global error monitor */
I* === *I

MonMsg
Goto

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
!* Retrieve product Library name */
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

)

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Off set
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

+
+
+
+
+
+
+

I* === *I
I* = Parse number of output queues in List */
!* === *I

ChgVar
ChgVar

&OutQCount
&OutQCountN

%Sst(&OutQ 1 2))
%Bin(&OutQCount))

I* === *I
!* Add data queue attribute to output queue(s) and add to *I
!* control fi Le */
I* === *I

ChgVar &LoopCount (0)

Loop01:

ChgVar &LoopCount (&LoopCount + 1

If &LoopCount *GT &OutQCountN +
Go To End01

ChgVar &Offset ((&LoopCount - 1) * 20) + 3)
ChgVar &OutQName %Sst(&OutQ &Offset 10))

ChgVar &Offset &Offset + 10)
ChgVar &OutQLib %Sst(&OutQ &Off set 10

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 177

RtvObjD

ChgOutQ

Call

Go To

End01:

FIGURE 11.6C CONTINUED

Obj(&OutQLib/&OutQName
ObjType(*OutQ)
RtnLib(&OutGLib)

OutQ(&OutGLib/&OutQName
DtaQ(&PrdLib/&MonName)

&PrdLib/Add0utGM1B
(

&OutGName
&OutGLi b
&MonName

Loop01

+
+

+

+
+
+
+
+

I* === *I
I* Send completion message and exit */
I* === *I

SndPgmMsg MsglD(CPF9898)
MsgF(QSys/GCPFMsg

Return

MsgDta< 'Output queue entries added to monitor'
*BC at
&MonName

MsgType(*Comp)

+
+
+
+
+

I* === *I
I* = Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglD(&MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg MsglD(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta< &MsgDta)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === *I
I* = End of program */
I* === *I

EndPgm

178 Starter Kit ior the IBM iSeries and AS/400

*
*
*
*
*

FIGURE 11.60
AddOutQME Command Processing Program AddOutQMlB - Add Control Record

Program AddOutQM1B
Source type ... RPGLE
Description ... Add OutQ Monitor Entry - add control record

FOutQMonE UF A E K Disk

D
D
D
D
D
D
D
D
D
D

c
c
c

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

Entry parameters

EntryParms ...

Ent ryPa rms ...

OutQName
OutQLib
Mon Name

Key lists

PR

PI

OutQMonE full key

Key KList
KF ld
KFld

1 Ill
1 Ill
1 Ill

11/)
11/)
11/)

ExtPgm('ADDOUTQM1B')

OutQLib
OutQName

Add record to control file if necessary

Key

Exit program

Chain

If
Write
End If

Eval

OutQMonE

Not< %Found
ROutQMonE

*InLR = *On

Chapter 11 A Plug-and-Play Output Queue Monitor 179

FIGURE 11.6E
AddOutQME Validi(v-Checking Program AddOutQM2A

/*
/*
I*
I*
/*
/*
/*
I*
I*
/*
/*
I*
I*

Pgm

Program AddOutQM2A
Source type ... CLLE
Type Validity-checking program for AddOutQME
Description ... Add OutQ monitor entry

Parameters

&MonName

&OutQ

&MonName
&OutQ

Input

Input

Monitor name

List of up to 25 qualified
output queue names

*/
*/
*I
*I
*/
*/
*I
*/
*I
*/
*I
*I
*/

+
+
+

I* === *I
I* = Variable declarations */
/* === */

Del &MonName *Char Hl
Del &OutQ *Char 502
Del &OutQName *Char 10
Del &OutQLib *Char HI
Del &OtherMon *Char 10
Del &OutQCount *Char 2
Del &OutQCountN *Dec 2 0
Del &LoopCount *Dec 3 0
Del &Offset *Dec 3 0
Del &RcvVar *Char 600
Del &RcvVarlen *Char 4 X'00000258')
Del &Format *Char 8 'JOBI0700')

Del &QualJob *Char 26 '*')
Del &IntJobID *Char 16
Del &PrdLib *Char 10
Del &Nbr4 *Dec 4 0
Del &Msg *Char 512
Del &MsgID *Char 7
Del &MsgF *Char 10
Del &MsgFLib *Char 10
Del &MsgDta *Char 100
Del &KeyVar *Char 4

/* === */
/* = Global error monitor */
/* === */

MonMsg
Goto

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
/* Retrieve product library name */
/* === */

Call QUsrJobI
(

&RcvVar
&RcvVarlen
&Format
&QualJob
&IntJobID

+
+
+
+
+
+
+

continued

180 Starter Kit for the IBM iSeries and AS/400

ChgVar
ChgVar
ChgVar

&Nbr4
&Offset
&PrdLib

FIGURE 11.6E CONTINUED

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Off set 10))

I* === *I
/* Verify output queue monitor data queue existence */
I* === *I

ChkObj

MonMsg
Do

Chg Var

Go To
End Do

Obj(&PrdLib/&MonName
ObjType(*DtaQ)

CPF9801

&Msg

Exec(
)

('Output queue monitor'
*BC at
&Mon Name
*BCat
'does not exist in Library'
*BC at
&PrdLib
*Teat

')
SendError

+

+

+
+
+
+
+
+
+
+

I* === *I
I* = Parse number of output queues in List */
I* === *I

ChgVar
ChgVar

&OutQCount
&OutQCountN

%Sst(&OutQ 1 2 >)
%Bin(&OutQCount))

I* === *I
I* = Val date output queues in List and make sure not already */
I* = man tared by another monitor */
I* === *I

ChgVar

Loop01:

ChgVar

If
Go To

ChgVar
ChgVar
ChgVar
ChgVar

RtvObjD

MonMsg
Do

ChgVar

Go To
End Do

&LoopCount (0)

&LoopCount (&LoopCount + 1

(&LoopCount *GT &OutGCountN
End01

&Offset
&OutGName
&Offset
&OutGLib

((&LoopCount - 1) * 20) + 3)
%Sst(&OutQ &Offset 10))
&Offset + 10)
%Sst(&OutQ &Offset 10

Obj(&OutQLib/&OutQName
ObjType(*OutQ)
RtnLib(&OutQLib)

CPF9801

&Msg

Exec(
)

('Output queue'
*BC at
&OutQName
*BC at
'does not exist in Library'
*BCat
&OutQLib
*Teat

')
SendError

+

+
+

+

+
+
+
+
+
+
+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 181

FIGURE 11.6E CONTINUED

Call &PrdLib/Add0utQM28 +
(+

&OutQName +
&OutQLib +
&MonName +
&OtherMon +

If &OtherMon *NE) +
Do

ChgVar &Msg 'Output queue' +
*BCat +
&OutQLib +
*TC at +
'I' +
*Teat +
&OutQName +
*BC at +
Ii 5 assigned to monitor' +
*BC at +
&OtherMon +
*TCat +

')

Go To Send Error
End Do

Go To Looplll1

Endlll1:

I* === *I
I* Exit */
/* === *I

Return

I* === *I
I* = Error handler */
/* === */

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglD(&MsglD)
MsgF(&MsgF)
MsgFLib(&MsgFLib

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
ToPgmQ(*Same)
KeyVar(&KeyVar

MonMsg

RcvMsg

MonMsg

(CPFillillillill MCHillillillill

KeyVar(&KeyVar
Msg(&Msg)

(CPFillillillill MCHillllllllill

+
+
+
+

+
+
+
+

+

continued

182 Starter Kit for the IBM iSeries and AS/400

SendError:

SndPgmMsg MsgID(CPD0006)
MsgF(QSys/QCPFMsg

FIGURE 11.6E CONTINUED

MsgDta('0000' *TCat &Msg)
ToPgmQ(*Prv)
MsgType(*Diag

MonMsg (CPF0000 MCH0000

SndPgmMsg MsgID(CPF0002)
MsgF(QSys/QCPFMsg
ToPgmQ(*PRV)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === *I
I* = End of program */
I* === *I

EndPgm

FIGURE 11.6F
AddOutQME Validi~y-Checking Program AddOutQM2B - Cw?flrm Output Queue

* ===
*
*
*
*
*

Program Add0utGM2B
Source type ... RPGLE
Description ... Add OutQ Monitor Entry - confirm output queue

is not already being monitored

FoutQMonE IF K Disk

c
c
c

*
*
*

*
*
*

*
*
*

Entry parameters

Ent ryPa rms ...

Ent ryPa rms ...

OutQName
OutGLib
Mon Name In
OtherMon

Key lists

PR

PI

OutQMonE full key

Key KList
KF Ld
KF ld

10
10
10
10

ExtPgm('ADDOUTGM2B')

OutGLib
OutQName

continued

c

c
c
c
c
c
c

c

*
*
*
*

*
*
*

Chapter 11 A Plug-and-Play Output Queue Monitor 183

FIGURE 11.6F CONTINUED

Read record and determine if output queue is monitored by
another monitor

===
Key Chain

If

Eval
Else
Eval
End If

Ex it program

Eval

OutQMonE

(%found and
MonName <> MonNamein
OtherMon Mon Name

OtherMon *Blank

*InLR = *On

FIGURE 11.7 A
RmvOutQME Panel

Remove OutQ Monitor Entry (RMVOUTQME)

Type choices, press Enter.

Mon it or name .
Output queues

Library
+ for more values

F3=Exit f4=Prompt
F24=More keys

f 5=Refresh

SAMPLE __
*ALL __ _

*LIBL __ _

*LIBL __ _

F12=Cancel

Name
Name, *ALL
Name, *LIBL, *CURLIS

Bottom
F13=How to use this display

184 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.78
Command RmvOutQME

I* === *I
I* Command RmvOutQME */
I* Source type ... CMD *I
/* Description ... Remove Output Queue Monitor Entry */
I* *I
I* CPP•..•. Rmv0utQM1A */
I* VCP Rmv0utQM2A */
I* === *I

Cmd

Parm

Parm

QualOutQ: Qual

Qual

Prompt ('Remove OutQ Monitor Entry')

KwdC MonName)
Type(*Name l
Lene HI)
Min{ 1)
Prompt('Monitor name•)

KwdC OutQ)
Type(QualOutQ
Min(1)
Max(25)
SngVal((*All))
Prompt (•Output queues'

Type(*Name
Len C 111J l
Type(*Name
Len(10)
Dft(*LibL l
SpcValC (*LibL l

(*CurLib }
Prompt('Library')

FIGURE 11.7C

+
+
+
+

+
+
+
+
+

+

+
+
+
+
+

RmvOutQME Command Processing Program RinuOutQlv!lA

I*
I*
I*
I*
/*
I*
I*
/*
I*
I*
I*
I*
I*

Pgm

Program• RmvOutQM1A
Source type ..• CLLE
Type•• Command processing program for RmvOutlME
Description .•• Remove OutQ monitor entry

Parameters

&Mon Name

&OutQ

&Mon Name
&OutQ

Input

Input

Monitor name

List of up to 25 qualified
output queue names

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+
+

I* === *I
I* = Variable declarations */
I* === */

Del
Del
Del
Del

&MonName
&OutQ
&OutQName
&OutQLib

*Char
*Char
*Char
*Char

10
502

10
10

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 185

FIGURE 11.7(CONTINUED

Del &OutQCount *Char 2
Del &OutQCountN *Dec 2 Ul
Del &LoopCount *Dec 3 Ul
Del &Off set *Dec 3 Ul
Del &RcvVar *Char 6UlUl
Del &RcvVarLen *Char 4 X'UJUJUJUJUJ258')
Del &Format *Char 8 'JOBIUl7UlUl')
Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 1Ul
Del &Nbr4 *Dec 4 Ul
Del &Msg ID *Char 7
Del &MsgF *Char 1Ul
Del &MsgFLib *Char 1Ul
Del &MsgDta *Char 1UlUl

I* === *I
I* = Global error monitor */
I* === *I

MonMsg
Goto

CPFUJUJUJUJ MCHUJUJUJUJ) Exec(
Error)

+

/* === */
/* Retrieve product Library name */
/* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobl
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Off set
&Prdlib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 1©))

+
+
+
+
+
+
+

I* === */
/* = Remove all output queue entries */
/* === */

If
Do

Call

End Do

%Sst (&OutQ 3 4) *Eq '*ALL')

&PrdLib/RmvOutQM1C
(

&Mon Name
&OutQ

+

+
+
+
+

I* === */
I* = Parse number of output queues in List */
/* === *I

ChgVar
ChgVar

&OutQCount
&OutQCountN

%Sst(&OutQ 1 2))
%Bin(&OutQCount))

/* === *I
I* Remove output queue entries from monitor control file */
I* and remove data queue attribute from output queues */
/* === *I

ChgVar &LoopCount (Ul)

continued

186 Starter Kit for the IBM iSeries and AS/400

Loop01:

ChgVar

If
Go To

ChgVar
ChgVar
ChgVar
ChgVar

RtvObjD

ChgOutQ

Call

Go To

End01:

FIGURE 11.7C CONTINUED

&LoopCount (&LoopCount + 1

&LoopCount *GT &OutQCountN
End01

&Offset
&OutQName
&Off set
&OutQLib

((&LoopCount - 1) * 20) + 3)
%Sst(&OutQ &Offset 10))
&Offset + 10)
%Sst(&OutQ &Offset 10

Obj(&OutQLib/&OutQName
ObjType(*OutQ)
RtnLib(&OutQLib)

OutQ(&OutQLib/&OutQName
DtaQ(*None)

&PrdLib/Rmv0utQM1B
(

&OutQName
&OutQLib
&Mon Name

Loop01

+

+
+

+

+
+
+
+
+

I* ================================= ============================= *I
I* Send completion message and ex */
I* ================================= ============================= *I

SndPgmMsg MsglD(CPF9898) +
MsgF(QSys/QCPFMsg +
MsgDta('Output queue entries removed from monitor' +

*BC at +
&MonName +

MsgType(*Comp)

Return

I* === *I
I* = Error handler */
I* === *I

Error:

RcvMsg

MonMsg
SndPgmMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglD(&MsglD)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000
MsglD(&MsglD)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

(CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === *I
I* = End of program */
I* === *I

EndPgm

*
*
*
*
*

Chapter 11 A Plug-and-Play Output Queue Monitor 187

FIGURE 11.70
RmvOutQME Command Processing Program RmvOutQMlB - Update Control File

Program .•.•••• Rmv0utQM1 B
Source type ••• RPGLE
Description .•. Remove OutQ Monitor Entry - update control file

FOutQMonE UF E K Disk

D

D
D
D
D
D
D
D

c
c
c

c
c
c
c

*
*
*

*
*
*

*
*
*

Entry parameters

EntryParms .•.
PR

Ent ryPa rms ...
PI

OutQName
OutQLib
MonNamein

Key Lists

OutQMonE full key

Key KList
KFld
KFld

111l
111l
111l

111l
111l
111l

ExtPgm('RMVOUTQM1B'

OutQLib
OutQName

)

* ===
* Delete record from control file if necessary
* ===

Key Chain OutQMonE

If (%Found) and
MonName = MonNamein

Delete ROutQMonE
Endif

* ===
* Exit program
* ===

Eval *InLR = *On

188 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.7E
RmvOutQME Command Processing Program RmvOutQMJ C - Build OutQ List

*
*
*
*

Program•• Rmv0utQM1 C
Description ••• Remove OutQ Monitor Entry - build OutQ List

FOutQMonEL1IF

*
*
*

Entry parameters

D Ent ryPa rms ...
D
D
D
D
D
D
D

EntryParms ..•

Mon Name In
OutQOut

D OutQ
D OutQCount
D OutQs

*
*
*

Off set

Key Lists

PR

PI

OS

*
*
*

OutQMonEL1 full key

Key KList
KF ld

K Disk

1"J
S"12

1"J
SUJ2

ExtPgm('RMVOUTQM1 C')

SI "1 Inz(*Zero)
SUJUJ Inz(*Blank)

SI Ul

MonNamein

*
*
*

Retrieve output queue List

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

*
*
*

Key

Key

Key

Exit program

Set LL

ReadE
Dow
Eval
Eval
Eval

Eva L
Eval

ReadE
End Do

OutQMonEL1

OutQMonEL1
Not(%EOF)
OutQCount = OutQCount + 1
Offset ((OutQCount -1) *2"1) + 1
%Subst< OutQs

OutQName

Offset
1"J

Offset = Offset + 1"1
%Subst< OutQs

Offset
1"J

OutQLib
OutQMonEL1

Eval OutQOut = OutQ

Eval *InLR = *On

Chapter 11 A Plug-and-Play Output Queue Monitor 189

FIGURE 11.7f
RmvOutQME Validity-Checking Program Rmv0utQM2A

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

Program Rmv0utQM2A
Type Validity-checking program for RmvOutQME
Source type ... CLLE
Description ... Remove OutQ monitor entry

Parameters

&MonName

&OutQ

&Mon Name
&OutQ

Input

Input

Monitor name

List of up to 25 qualified
output queue names

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+
+

I* === *I
I* = Variable declarations */
I* === *I

Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del

&MonName
&OutQ
&OutQName
&OutQLib
&OtherMon
&OutQCount
&OutQCountN
&LoopCount
&Offset
&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID
&PrdLib
&Nbr4
&Msg
&MsgID
&MsgF
&MsgFLib
&MsgDta
&KeyVar

*Char
*Char
*Char
*Char
*Char
*Char
*Dec
*Dec
*Dec
*Char
*Char
*Char
*Char
*Char
*Char
*Dec
*Char
*Char
*Char
*Char
*Char
*Char

10
502

10
10
10

2
2
3
3

600
4
8

26
16
10

4
512

7
10
10

100
4

0
0
0

0

x' 00000258')
'JOBI0700')
I* I)

I* === *I
/* = Global error monitor */
I* === *I

MonMsg
Goto

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retrieve product library name *I
I* === *I

Call QUsrJobI
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

+
+
+
+
+
+
+

continued

190 Starter Kit for the IBM iSeries and AS/400

ChgVar
ChgVar
ChgVar

&Nbr4
&Offset
&PrdLib

FIGURE 11.7f CONTINUED

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 1©))

I* === *I
/* Verify output queue monitor data queue existence */
I* === *I

ChkObj

MonMsg
Do

ChgVar

Go To
End Do

Obj(&PrdLib/&MonName
ObjType(*DtaQ)

CPF98©1

&Msg

Exec(
)

('Output queue monitor'
*BC at
&MonName
*BC at
'does not exist in library'
*BC at
&PrdLib
*TC at

')

SendError

+

+

+
+
+
+
+
+
+
+

!* === *I
I* Ignore output queues when *ALL special value is chosen */
I* === */

If (%Sst(&OutQ 3 4) *Eq '*ALL') +
Return

/* === */
I* =Parse number of output queues in list */
/* === */

ChgVar
ChgVar

&OutQCount
&OutQCountN

%Sst(&OutQ 1 2))
%Bin(&OutQCount))

I* === *I
I* = Validate output queues in list and make sure monitored by */
/* = this monitor */
I* === */

ChgVar

Loop©1:

ChgVar

If
Go To

ChgVar
ChgVar
ChgVar
ChgVar

RtvObjD

MonMsg
Do

&LoopCount (©)

&LoopCount (&LoopCount + 1

&LoopCount *GT &OutQCountN
End©1

&Off set
&OutQName
&Offset
&OutQLib

((&LoopCount - 1) * 2©) + 3)
%Sst(&OutQ &Offset 1©))
&Offset + 1©)
%Sst(&OutQ &Offset 1©

Obj(&OutQLib/&OutQName
ObjType(*OutQ)
RtnLib(&OutQLib)

(CPF98©1) Exec(
)

+

+
+

+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 191

ChgVar

Go To
End Do

Call

&Msg

SendError

&Prdlib/Rmv0utll.M2B
(

&OutQName
&OutQLib
&Mon Name
&OtherMon

fJGURE 11.7f CONTINUED

'Output queue'
*BC at
&OutQName
*BCat
'does not exist in library'
*BC at
&OutQLib
*Teat

')

If &OtherMon *NE ' ')
Do

If
ChgVar

If
ChgVar

Go To
End Do

&OtherMon
&Msg

&OtherMon
&Msg

SendError

Go To Loop©1

End01:

*NE
(

*Eq
(

'*'
'Output queue'
*BC at
&OutQLib
*TC at
'/'
*TCat
&OutQName
*BCat
'is assigned to monitor'
*BCat
&OtherMon
*TCat

)

'*')

'Output queue'
*BCat
&OutQLib
*TCat
'I '
*TCat
&OutQName
*BC at
'is not assigned to monitor'
*BCat
&Mon Name
*TCat

')

+
+
+
+
+
+
+
+

+
+
+
+
+
+

+

+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+

I* === */
I* Exit */
I* === *I

Return

continued

192 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.7f CON11NUED

I* === *I
I* = Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsgID< &MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg MsgID(&MsgID)
Msgf(&MsgFLib/&MsgF
MsgDta< &MsgDta)
ToPgmQ(*Same)
KeyVar(&KeyVar

MonMsg

Rcvfl!sg

MonMsg

SendError:

(CPF0000 MCH0000

KeyVar(&KeyVar
Msg(&Msg)

(CPF0000 MCH0000

SndPgmMsg Msg!D(CPD0006)
MsgFC QSys/QCPFMsg

MonMsg

MsgDta('0000' *TCat &Msg)
ToPgmQ(*Prv)
MsgType(*Diag

(CPF0000 MCH0000

SndPgmMsg MsgID(CPF0002)
Msgf (QSys/QCPFMsg
ToPgmQ(*PRV)
MsgType(*Escape)

Monf'lsg (CPF0000 MCH0000)

+
+
+
+

+
+
+
+

+

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

*
*
*
*
*
*

Chapter 11 A Plug-and-Play Output Queue Monitor 193

FIGURE 11.7G
RmvOutQME Validi~v-Checking Program RmvOutQM2B - Confirm Output Queue

===
Program• Rmv0utQM2B
Source type ... RPGLE
Description ••. Remove OutQ Monitor Entry - confirm output

queue is being monitored
===

FoutQMonE IF K Disk

*
*
*

D
D
D
D
D
D
D
D
D
D
D
D

*
*
*
*
*
*

c
c

*
*
*
*

c

c
c
c
c
c
c
c
c
c
c

*
*
*

c

Entry parameters

EntryParms .••

EntryParms ...

OutQName
OutQLib
MonNameln
OtherMon

Key lists

PR

PI

OutQMonE full key

Key KList
KFld
KFld

HI
10
10
10

10
10
10
10

ExtPgm('RMVOUTQM2B')

OutQLi b
OutQName

Read record and determine if output queue is monitored by
this monitor

Key Chain OutQMonE

Select
When (%Found
It MonName MonNameln
Eval Other Mon *Blank
Else
Eval OtherMon MonName
End If
Other
Eval OtherMon '*'
EndSl

Exit program

Eval *InLR *On

194 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.8A

DltOutQMon Panel

Delete Output Queue Monitor (DLTOUTQMON)

Type choices, press Enter.

Monitor name SAMPLE __ Name

F3=Exit F4=Prompt FS=Ref resh F12=Cancel
Bottom

F13=How to use this display
F24=More keys

FIGURE 11.88
Command DltOutQMon

/* === *I
I* Command Dl tOutQMon */
I* Source type ... CMD */
I* Description ... Delete Output Queue Monitor */
I* *I
I* CPP Dlt0utQM1A */
I* VCP Dlt0utQM2A */
I* === *I

Cmd

Parm

Prompt('Delete Output Queue Monitor')

Kwd(MonName)
Type(*Name)
Len(1"l)
Min(1)
Prompt('Monitor name')

+
+
+
+

Chapter 11 A Plug-and-Play Output Queue Monitor 195

FIGURE 11.8C

DltOutQMon Command Processing Program DltOutQMJA
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

Program Dlt0utQM1A
Source type ... CLLE
Type ...••••... Command processing program for Dl tOutQMon
Description ..• Delete output queue monitor

Parameters

&Mon Name Input Monitor name

&Mon Name

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

I* === *I
I* Variable declarations */
I* === *I

Del &MonName *Char H'l
Del &RcvVar *Char 600
Del &RcvVarLen *Char 4 X'00000258')

Del &Format *Char 8 'JOBI0700')

Del &QualJob *Char 26 '*')

Del &Int Job ID *Char 16
Del &PrdLib *Char 10
Del &Offset *Dec 4 0
Del &Nbr4 *Dec 4 0
Del &Msg!D *Char 7
Del &MsgDta *Char 100
Del &MsgF *Char 10
Del &MsgFLib *Char 10

I* =================== === *I
I* Global error mon tor */
I* =================== === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retrieve product library name */
I* === *I

Call

Chg Var
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Offset
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

+
+
+
+
+
+
+

I* === *I
I* Delete control records */
I* === *I

RmvOutQME MonName(&MonName
OutQ(*All)

+

continued

196 Starter Kit for the IBM iSeries and ASi400

FIGURE 11.BC CONTINUED

I* === *I
I* Delete output queue monitor data queue */
I* === *I

DltDtaQ DtaQ(&PrdLib/&MonName)

I* === *I
I* Send completion message and exit */
I* === *I

SndPgmMsg MsglD(CPF9898)
Msgf(QSys/QCPFMsg

Return

MsgDta('Output queue monitor'
*BCat
&MonName
*BC at
'deleted'

MsgType(*Comp)

+
+
+
+
+
+
+

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType (*Excp l
MsgDta(&MsgDta)
MsglD(&Msg!D)
Msgf(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg Msgl[)(&Msg!D)
Msgf(&MsgFLib/&MsgF
MsgDta(&Msg[)ta)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

FIGURE 11.80
DltOutQI'vlon Validi~y-Checking Program DltOutQlv12A

Program••• DltOutQM2A
Source type ••• CLLE
Type .•...••••• Validity-checking program for DltOutQMon
Description ••• Delete output queue monitor

Parameters

&MonName Input Monitor name

I*
I*
I*
I*
I*
I*
I*
/*
I*
I* ======~==

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

Pgm
&Mon Name

+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 197

FIGURE 11.80 CONTINUED

I* ============= == *I
I* Var able declarat ons */
I* ============= == *I

Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
{)cl
Del
Del
Del

&MonName
&RcvVar
&RcvVarlen
&Format
&QualJob
&lntJobID
&Prdlib
&Offset
&Nbr4
&Msg
&MsglD
&MsgDta
&MsgF
&MsgFLib
&KeyVar

*Char
*Char
*Char
*Char
*Char
*Char
*Char
*Dec
*Dec
*char
*Char
*Char
*Char
*Char
*Char

10
600

4 X'00000258')
8 'JOBl0700')

26 '*')
16
10

4 0
4 0

512
7

100
10
10

4

/* === */
I* Global error monitor */
/* === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retr eve product Library name */
I* === *I

Cal L QUsrJobl +

ChgVar
ChgVar
ChgVar

(+
&RcvVar
&RcvVarlen
&Format
&QuaLJob
&IntJoblD

&Nbr4
&Off set
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
7.Sst(&RcvVar &Offset 10))

+
+
+
+
+

I* === */
I* Verify output queue monitor data queue existence */
I* === *I

ChkObj

MonMsg
Do

ChgVar

Go To
End Do

Obj(&PrdLib/&MonName
ObjType(*DtaQ)

CPF9801

&Msg

Exec(
)

('Output queue monitor'
*BC at
&Mon Name
*BCat
'does not exist in Library'
*BC at
&Prdli b
*Teat

')
SendError

+

+

+
+
+
+
+
+
+
+

I* === *I
I* Exit */
I* === */

Return

continued

198 Starter Kit for the IBM iSeries and AS/400

flGURE 11.80 CONTINUED

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsgID(&MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
ToPgmQ(*Same)
KeyVar(&KeyVar

MonMsg

RcvMsg

MonMsg

SendError:

(CPF0000 MCH0000

KeyVar(&KeyVar
Msg(&Msg)

(CPF0000 MCH0000

SndPgmMsg MsgID(CPD0006)
MsgF(QSys/QCPFMsg

MonMsg

MsgDta('0000' *TCat &Msg l
ToPgmQ(*Prv)
MsgTypeC *Diag

C CPF0000 MCH0000

SndPgmMsg MsgID(CPF0002 l
MsgF(QSys/QCPFMsg
ToPgmQ(*Prv)
MsgType(*Escape l

MonMsg (CPF0000 MCH0000 l

+
+
+
+

+
+
+
+

+

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

Chapter 11 A Plug-and-Play Output Queue Monitor 199

FIGURE 11.9A
StrOutQMon Panel

~- Start Output Queue Monitor (STROUTQMON)

' Type choices, press Enter.

Monitor name ...

F3=Exit F4=Prompt
keys

SAMPLE __

FS=Ref resh F12=Cance l

Name

Bottom
F13=How to use this display

FIGURE 11.98
Command StrOutQMon

I* === *I
I* Command•.. StrOutQMon */
I* Source type ... CMD *I
I* Description ••• Start Output Queue Monitor */
I* *I
I* CPP Str0utQM1A */
I* VCP• Str0utQM2A */
I* === *I

Cmd

Parm

Prompt ('Start Output Queue Monitor')

Kwd(MonName)
Type(*Name)
Len(Hl)
Min(1)
Prompt('Monitor name')

+
+
+
+

200 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.9C

StrOutQMon Command Proces·sing Program StrOutQMZA

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

Program Str0utQM1A
Source type ... CLLE
Type Command processing program for StrOutQMon
Description ... Start output queue monitor

Parameters

&MonName Input Monitor name

&Mon Name

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

I* === *I
I* Variable declarations */
I* === *I

Del &MonName *Char 10
Del &RcvVar *Char 600
Del &RcvVarlen *Char 4 X'00000258')

Del &Format *Char 8 'J 0810700')

Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 10
Del &Offset *Dec 4 0
Del &Nbr4 *Dec 4 0
Del &MsgID *Char 7
Del &MsgDta *Char 100
Del &MsgF *Char 10
Del &MsgFLib *Char 10

I* === *I
/* Global error monitor */
I* === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retrieve product Library name */
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarlen
&Format
&QualJob
&IntJobID

&Nbr4
&Offset
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

+
+
+
+
+
+
+

I* === *I
I* Start monitor job */
/* === *I

SbmJob Cmd(Call &PrdLib/OutQMon (&MonName))
Job(&MonName)
JobD(&PrdLib/OutQMon)

+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 201

FIGURE 11.9C CONTINUED

I* === *I
I* Send completion message and exit */
I* === *I

SndPgmMsg MsgID(CPF9898)
Msgf(QSys/QCPFMsg

Return

MsgDta('Output queue monitor'
*BC at
&MonName
*BCat
'started'

MsgType(*Comp)

+
+
+
+
+
+
+

I* === */
I* Error handler */
I* === */

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglD(&MsgID)
Msgf(&MsgF)
MsgFLib(&MsgFLib

(CPF©©©© MCH©©©©

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

MonMsg (CPF©©©© MCH©©©©)

+
+
+
+

+
+
+

I* === *I
I* End of program */
/* === *I

EndPgm

I*
I*
/*
/*
/*
/*
I*
/*
I*
I*

Pgm

FIGURE 11.90
StrOzttQ,!\,fon Validi~y-C'hecking Program StrOutQM2A

Program St rOutQMZA
Source type ... CLLE
Type Validity-checking program for StrOutQMon
Description ... Start output queue monitor

Parameters

&MonName Input Monitor name

&MonName

*I
*I
*I
*I
*I
*I
*I
*/
*/
*/

+
+

continued

202 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.90 CONTINUED

/* === *I
/* Variable declarations */
/* === */

Del &MonName *Char 10
Del &RcvVar *Char 600
Del &RcvVarLen *Char 4 X'00000258')

Del &Format *Char 8 'JOBI0700')

Del &GualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 10
Del &Offset *Dec 4 0
Del &Nbr4 *Dec 4 0
Del &Msg *Char 512
Del &MsgID *Char 7
Del &MsgDta *Char 100
Del &MsgF *Char 10
Del &MsgFLib *Char 10
Del &KeyVar *Char 4

/* === *I
I* Global error monitor */
I* === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

/* === */
I* Retrieve product Library name *I
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarLen
&Format
&GualJob
&IntJobID

&Nbr4
&Offset
&PrdLib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 10))

+
+
+
+
+
+
+

/* === */
/* Verify output queue monitor data queue existence */
/* === */

ChkObj

MonMsg
Do

ChgVar

Go To
End Do

Obj(&PrdLib/&MonName
ObjType(*DtaG)

CPF9801

&Msg

Exec(
)

('Output queue monitor'
*BC at
&MonName
*BC at
'does not exist in Library'
*BC at
&PrdLib
*TCat

')

SendError

+

+

+
+
+
+
+
+
+
+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 203

FIGURE 11.90 CONTINUED

I* === *I
I* Make sure output queue monitor is not already active */
I* === *I

l\lcObj

MonMsg
Do

ChgVar

Go To
End Do

DlcObj

Obj((&PrdLib/&MonName *DtaQ *Exel))
Wait(1)

CPF1011l2

&Msg

Exec(
)

('Output queue monitor'
*BC at
&MonName
*BC at
'is already active'
*TC at . .)

SendError

Obj((&PrdLib/&MonName *DtaQ *Exel))

+

+

+
+
+
+
+
+

I* === *I
I* Exit */
I* === *I

Return

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglO(&MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF11111111111l MCH11111111111l

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
ToPgmQ(*Same)
KeyVar(&KeyVar

MonMsg

RcvMsg

MonMsg

SendError:

(CPF11111111111l MCH11111111111l

KeyVar(&KeyVar
Msg(&Msg)

(CPF11111111111l MCHl/)1/)1/)111

SndPgmMsg MsglD(CPD1111111116)
MsgF(QSys/QCPFMsg

MonMsg

MsgDta('1110111111' *TCat &Msg)
ToPgmQ(*Prv)
MsgType(*Diag

(CPF111011111l MCH11111100

+
+
+
+

+
+
+
+

+

+
+
+
+

continued

204 Starter Kit for the IBM iSeries and AS/400

SndPgmMsg Msg!O(CPF©©©2)
MsgF(QSys/QCPFMsg
ToPgmQ(*Pr11)
MsgType(*Escape)

MonMsg (CPF©©©© MCH©©©©)

FIGURE 11.90 CONTINUED

+
+
+

I* === *I
I* End of program */
I* *I

EndPgm

FIGURE 11.lOA
End011tQA1on Panel

End Output Queue Monitor <ENDOUTQMON)

Type choices, press Enter.

Monitor name .•..•.. SAMPLE __ Name

F3=Exit F4=Prompt
F24=More keys

FS=Refresh F12=Cancel
Bottom

F13=How to use this display

FIGURE 11.108
Command EndOutQ!Wun

I* === *I
I* Command .••.... EndOutQMon */
!* Source type ... CMD *I
I* Description ... End Output Queue Monitor */
I* *I
/* CPP End0utQM1A */
I* VCP•••• End0utQM2A */
I* === *I

Cmd

Parm

Prompt ('End Output Queue Monitor')

Kwd (MonName)
Type(*Name)
Len(10)
Min(1)
Prompt('Monitor name')

+
+
+
+

Chapter 11 A Plug-and-Play Output Queue Monitor 205

FIGURE 11.10(
EndOutQMon Command Processing Program EndOutQMJA

I*
I*
I*
I*
/*
I*
/*
/*
/*
/*

Pgm

===
Program End0utQM1A
Source type ... CLLE
Type Command processing program for EndOutQMon
Description ... End output queue monitor

Parameters

&Mon Name Input Monitor name

&MonName

*I
*/
*I
*I
*/
*I
*I
*/
*I
*/

+
+

I* === *I
/* Variable declarations */
/* === *I

Del &Mon Name *Char
Del &RcvVar *Char
Del &RcvVarLen *Char
Del &Format *Char
Del &QualJob *Char
Del &IntJobID *Char
Del &PrdLib *Char
Del &Offset *Dec
Del &Nbr4 *Dec
Del &Data *Char
Del &Datalen *Dec
Del &MsgID *Char
Del &MsgDta *Char
Del &MsgF *Char
Del &MsgFLib *Char

Hl
600

4
8

26
16
10

4
4

128
5
7

100
10
10

0
0

0

x '00000258')
'JOBI0700')
. *.)

'*ENDMON'
128)

I* === */
I* Global error monitor */
/* === */

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* Retrieve product library name */
I* === */

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarLen
&Format
&QualJob
&IntJobID

&Nbr4
&Off set
&Prdlib

%Bin(&RcvVar 65 4))
C &Nbr4 * 11) + 81)
%SstC &RcvVar &Offset 10))

+
+
+
+
+
+
+

continued

206 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.1 OC CONTINUED

!* === *I
I* Send signal to end output queue monitor *I
I* === *I

Call QSndDtaQ
(

&Mon Name
&Prdlib
&Data Len
&Data

+
+
+
+
+
+

I* === *I
I* Send completion message and exit */
I* === *I

SndPgmMsg MsglD(CPF9898)
MsgF(QSys/QCPFMsg

Return

MsgDta ('Output queue monitor'
*BC at
&MonName
*BCat
'ended')

MsgType(*Comp)

+
+
+
+
+
+
+

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsglD(&MsglD)
MsgF(&MsgF)
MsgFLib(&MsgFLib

(CPF©©©© MCH©©©©

SndPgmMsg MsglD(&MsglD)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

MonMsg (CPF©©©© MCH©©©©)

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

Chapter 11 A Plug-and-Play Output Queue Monitor 207

FIGURE 11.100
HndOutQMon Validi~v-Cbecking Program EndOutQM2A

I* === *I
/*
I*
I*
I*
I*
/*
/*
I*

Program EndOutQM2A
Source type ... CLLE
Type Validity-checking program for EndOutQMon
Description ... End output queue monitor

Parameters

&MonName Input Monitor name

*I
*I
*I
*I
*/
*/
*/
*/

/* === */

Pgm
&Mon Name

+
+

I* === */
I* Variable declarations */
I* === */

Del &MonName *Char Hl
Del &RcvVar *Char 6©©
Del &RcvVarLen *Char 4 X'©©©©©258')

Del &Format *Char 8 'JOBI©?©©')

Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &Prdlib *Char 1©
Del &Off set *Dec 4 qi
Del &Nbr4 *Dec 4 qi
Del &Msg *Char 512
Del &MsgID *Char 7
Del &MsgDta *Char 1©©
Del &MsgF *Char 1©
Del &MsgFLib *Char 1©
Del &KeyVar *Char 4

I* === */
I* Global error monitor */
I* === *!

MonMsg
Go To

CPF©©©© MCH©©©©) Exec(
Error)

+

!* === */
I* Retrieve product Library name */
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarlen
&Format
&QualJob
&IntJobID

&Nbr4
&Offset
&Prdlib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81)
%Sst(&RcvVar &Offset 1©))

+
+
+
+
+
+
+

/* === */
!* Verify output queue monitor data queue existence */
!* === *I

Ch kO b j Obj(&PrdLib/&MonName
ObjType(*DtaQ)

+

continued

208 Starter Kit for the IBM iSeries and AS/400

MonMsg
Do

ChgVar

Go To
End Do

CPF9801

&Msg

Exec<
)

FIGURE 11.1 OD CONTINUED

('Output queue monitor'
*BC at
&MonName
*BC at
'does not exist in library'
*BC at
&Prdlib
*TCat

')

SendError

+

+
+
+
+
+
+
+
+

I* === *I
I* Make sure output queue monitor is active */
I* === *I

AlcObj

MonMsg
Return

ChgVar

DlcObj

Go To

Obj((&PrdLib/&MonName *DtaQ *Exel))
Wait(1)

(CPF1002

&Msg

Exec(
)

'Output queue monitor'
*BC at
&Mon Name
*BC at
1 is not active'
*TC at
'.')

Obj((&Prdlib/&MonName *DtaQ *Exel))

SendError

+

+

+
+
+
+
+
+

I* === *I
I* Error handler */
I* === *I

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
MsgID(&MsgID)
Msgf{ &MsgF)
MsgFLib(&MsgFLib

(CPF0000 MCH0000

SndPgmMsg MsgID(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
ToPgmQ(*Same)
KeyVar(&KeyVar

MonMsg

RcvMsg

MonMsg

SendError:

(CPF0000 MCH0000

KeyVar(&KeyVar
Msg(&Msg >

(CPF0000 MCH0000

+
+
+
+

+
+
+
+

+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 209

SndPgmMsg MsgIDC CPD0006)
MsgFC QSys/QCPFMsg

FIGURE 11.1 OD CONTINUED

MsgDta('0000' *Teat &Msg)
ToPgmQ(*Prv)
MsgType(*Diag

MonMsg (CPF0000 MCH0000

SndPgmMsg MsgIDC CPF0002)
MsgFC QSys/QCPFMsg
ToPgmQ(*Prv)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

+
+
+
+

+
+
+

I* === */
I* End of program * /
I* === *I

EndPgm

I*
I*
I*
I*
I*
I*
I*
I*
I*

Pgm

FIGURE 11.11
Output Queue Monitor Program OutQMon

Program OutQMon
Source type ... CLLE
Description ... Output queue monitor

Parameters

&MonName Input Monitor name

&MonName

*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

I* === *I
/* Variable declarations */
I* === *I

Del &Mon Name *Char 10
Del &Data *Char 128
Del &Data Len *Dec 5 0
Del &Wait *Dec 5 0 -1)

Del &RcvVar *Char 600
Del &RcvVarLen *Char 4 X'00000258')

Del &Format *Char 8 'JOBI0700')

Del &QualJob *Char 26 '*')

Del &IntJobID *Char 16
Del &PrdLib *Char 10
Del &Off set *Dec 4 0
Del &Nbr4 *Dec 4 0
Del &Action *Char 10
Del &Job *Char 10
Del &User *Char 10
Del &JobNbr *Char 6
Del &SplFName *Char 10
Del &SplFNbr *Dec 4 0
Del &OutQName *Char 10
Del &OutQLib *Char 10
Del &MsgID *Char 7
Del &MsgDta *Char 100
Del &MsgF *Char 10
Del &MsgFLib *Char 10

continued

210 Starter Kit for the IBM iSeries and AS/400

FIGURE 11.11 CONTINUED

I* === *I
I* Global error monitor */
/* === */

MonMsg
Go To

CPFllJllJllJl'l MCHllJllJllJllJ
Error

Exec(
)

+

/* === */
I* Retrieve product Library name */
I* === *I

Call

ChgVar
ChgVar
ChgVar

QUsrJobI
(

&RcvVar
&RcvVarlen
&Format
&QualJob
&IntJob!D

&Nbr4
&Off set
&Prdlib

%Bin(&RcvVar 65 4))
(&Nbr4 * 11) + 81 l
%Sst(&RcvVar &Offset 111J))

/* ===
/* Allocate output queue monitor data queue
I* ===

AlcObj

MonMsg
SndPgmMsg

Obj(C &Prdlib/&MonName *DtaQ *Exel))
Wait C 1)

CPF111JllJ2 l Exec(
MsglD(CPF9898)
MsgFC QSys/QCPFMsg
MsgDta('Output queue monitor'

*BC at
&MonName
*BC at
'is already active•

MsgTypeC *Escape))

/* ===
I* Wait for a data queue entry
/* ===
Loopl1J1 :

Call QRcvDtaQ
(

&MonName
&Prdlib
&Datalen
&Data
&Wait

I*
I*
I*

Perform requested action

If
Do

ChgVar

&Datalen *GT l1J)

&Action (%Sst(&Data 1 111J))

+
+
+
+
+
+
+

*/
*I
*I

+

+
+
+
+
+
+
+
+

*I
*I
*I

+
+
+
+
+
+
+

*I
*/
*/

+

continued

Chapter 11 A Plug-and-Play Output Queue Monitor 211

I*
I*
I*

FIGURE 11.11 CONTINUED

Spooled file arrived on output queue

If &Action *Eq '*SPOOL')

Do
ChgVar &Job %Sst(&Data 13 Hl
ChgVar &User %Sst(&Data 23 Hl
ChgVar &JobNbr %Sst(&Data 33 6
ChgVar &SplFName %Sst(&Data 39 Hl
ChgVar &SplFNbr %Bin(&Data 49 4
ChgVar &OutQName %Sst(&Data 53 1©
ChgVar &OutQLib %Sst(&Data 63 1©
Call &PrdLib/&MonName

(

&Job
&User
&JobNbr
&SplFName
&SplFNbr
&OutQName
&OutQLib

End Do

*I
*/
*/

+

+
+
+
+
+
+
+
+
+

I* --- *I
I* Request to end output queue monitor received */
I* --- *I

If
Return

EndDo

(&Action *Eq '*ENDMON')

Go To Loop©1

+

I* === *I
I* Error handler */
/* === */

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&MsgDta)
Msg ID (&MsgID)
Msgf(&MsgF)
MsgFLib(&MsgFLib

(CPF©©©© MCH©©©©

SndPgmMsg MsgID(&MsgID)
Msgf(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

MonMsg (CPF©©©© MCH©©©©)

+
+
+
+

+
+
+

I* === *I
I* End of program */
I* === *I

EndPgm

212 Starter Kit for the IBM iSeries and AS/400

A

A
A
A

A
A

A

A

*
*
*
*
*

*
*
*
*
*

Physical file. OutQMonE
Source type ... PF

FIGURE 11.12A

Control File OutQMonE

Description ..• Output Queue Monitor Entries control file

R ROUTQMONE

OUTQLIB
OUTQNAME
MONNAME

K OUTQLIB
K OUTQNAME

HI
111l
111l

FIGURE 11.128

Logical File OutQMonELl

Logical file .. OutGMonEL1
Source type •.• LF
Description ... Output Queue Monitor Entries control file

R ROUTQMONE PFILECOUTQMONE)

K MONNAME

213

Chapter 12

Disk Storage Cleanup
OS/400 is a sophisticated operating system that tracks almost everything that happens on
the system. This tracking is useful, but it results in a messy byproduct of system-supplied
database files, journal receivers, and message queues. Users add to the clutter \Vith old
messages, unused objects, out-of-date records, and unprinted spool files. If you do
nothing about this disorder, it eventually will strangle your system. However, you can
implement a few simple automated and manual procedures to keep your disk storage free
of unwanted debris.

Automatic Cleanup Procedures
Operational Assistant (OA), pat1 of OS/400. includes functions to automatically clean up
some of the daily messes the system makes. OA's cleanup is a good place to start when
you're trying to clean up your system's act.

To access the OA Cleanup Tasks menu. you can type Go Cleanup or, from the OA
main menu (Go Assistl, select option 11 (Customize your system, users, and devices) and
then option 2 (Cleanup tasks). Figure 12.1 shows the CLEANUP menu, which you can use
to staJt and stop automatic cleanup and to change cleanup parameters.

CLEANUP

FIGURE 12.1

Cleanup Tasks Menu

Cleanup Tasks
System: AS4©©

To select one of the following, type its number below and press Enter:

1. Change cleanup options
2. Start cleanup at scheduled time
3. Start cleanup immediately
4. End cleanup

Type a menu option below

F1=Help F3=Exit F9=Command line F12=Cancel

214 Starter Kit for the IBM iSeries and AS/400

Selecting option 1, '·Change cleanup options," on this menu brings up the Change
Cleanup Options display (Figure 12.2). (To bypass the menus, you can just prompt and
execute the ChgClnUp, or Change Cleanup, corrunand.)

6 Note
To change cleanup options, you must have *AllObj, *JobCtl, and *SecAdm
special authorities, as well as *Use authority to user profile QPgmr. If option
1 doesn't appear on the Cleanup Tasks menu, you don't have the proper
authorities.

FIGURE 12.2
Change Cleanup Options Panel

Change Cleanup Options

Type choices below, then press Enter.

Allow automatic cleanup ...

Time cleanup starts each day

Number of days to keep:
User messages
System and workstation messages .
Job Logs and other system output
System journals and system Logs .
OfficeVision for AS/400 calendar items

F1=Help F3=Exit FS=Refresh F12=Cancel

y

AS400
09/05/00 12:10:02

Y=Yes, N=No

22:00:00_ 00:00:00-
23: 59: 59,
*SCDPWROFF,
*NONE

7 __
4 __
7
3-0-

30=

1-366, *KEEP
1-366, *KEEP
1-366, *KEEP
1-366, *KEEP
1-366, *KEEP

Using the Change Cleanup Options screen, you can enable OA's automatic cleanup
function and specify that cleanup should run either at a specific time each day or as part
of any scheduled system power-off. To tell the system you want to enable automatic
cleanup, specify Y for the AlwClnlJp (Allow automatic cleanup) parameter. For parameter
StrTime (Time cleanup starts each day), enter a specific time (e.g., 23:00:00) for the
cleanup to start, or specify *ScdPwrOff to tell the system to run cleanup during a system
power-off that you've scheduled using OA's power-scheduling function (the cleanup won't
be run if you power off using any other method, such as the PwrDwnSys, or Power
Down System, command). Although it's ideal to run cleanup procedures when the system

Chapter 12 Disk Storage Cleanup 215

is relatively free of other tasks, it's not required, and OA's cleanup won't conflict with
application programs other than by competing for CPU cycles.

The other parameters on the Change Cleanup Options screen let you control which
objects the procedure will try to clean up. Each parameter allows a value of either *Keep,
which tells the system not to clean up the specified objects, or a number from 1 to 366
that indicates the number of days the objects or entries are allowed to stay on the system
before the cleanup procedure removes them. The table in Figure 12.3 lists the cleanup
options and the objects they automatically clean up.

Cleanup option
User messages

System and workstation messages

Job logs and other system output

System journals and system logs

OfficeVision for AS/400
calendar items

FIGURE 12.3
Automatic Cleanup Functions

Cleans up
• User message queues

• Workstation message queues
• System operator message queue (QSysOpr)

• Output queue QEZJoblog (job logs)
• Output queue QEZDebug (service and program dumps)

• Journal receivers:
QAOSDIAJRN Document Interchange Architecture (DIA) files
QDSNX Distributed Systems Node Executive (DSNX) logs
QSNADS SNA Distribution Services (SNADS) files
QSNMP Simple Network Management Protocol (SNMP)
QSXJRN Problem databases
QLYJRN Application Development Manager transactions
QPFRADJ Performance adjustment data
QX400 Open Systems Interconnection (OSI) Message

QCQJMJRN
Q01JRN
ADJ RN LO
QLYPRJLOG
QMAJRN
QZMF
QVPN
QZCAJRN
QACGJRN

• History log
• Problem log
• Alerts database
• PTF information

• Calendar entries

Services/400
Managed System Services/400
Application enabler OFC files
Application program driver files
Project logs
Order assistance requests
Mail server framework logging
Virtual private networking support
SNMP database
Job accounting data

• RgzDLO and RgzPFM for some OfficeVision files is also run

Look closely at the list of objects cleaned up by the 'Job logs and other system
output" option. When you activate this option, the system places all job logs into output
queue QUsrSys/QEZJobLog and places all dumps (e.g., system and program dumps) into

216 Starter Kit for the IBM iSeries and AS/400

output queue Q1JsrSys/QEZDehug. The cleanup procedure removes from these output
queues any spool files that remain on the system beyond the maximum number of days.

OS/400 uses a variety of database files and journals to manage operating system
functions (e.g., juh accounting, pe1fon11ance adjustment, SNA Distribution Services, the
problem log). Hegular, hands-off cleanup of these journals and logs is the single most
beneficial function of the automatic cleanup procedures. Without this automatic cleanup,
you must locate the files and journals and write your own procedures to dean them up.
This, along with the possibility that IBM could change or add to these objects in a future
release of OS/400. makes this cleanup option the most helpful.

For OfficeVision users. the "OfficeVision for AS/400 calendar items" cleanup option is
an effective way to manage the size of several OfficeVision production objects. This
option cleans up old calendar items and reorganizes essential database files and document
library objects (DLOsl to help maintain peak performance.

To enable automatic cleanup, execute option 2 (Start cleanup at scheduled time) from
menu CLEAN1 JP (Figure 12.1). If you ever want to stop the automatic daily cleanup, just
select option 4 (End cleanup) to stop all automatic cleanup until you restart it using
option 2.

Manual Cleanup Procedures
OA's automatic cleanup won't clo everything for you. Figure 12.4 lists cleanup tasks you
must handle manually. By "manually." \Ve mean you must manually execute commands
that clear entries or reorganize files or you must write a set of automated cleanup tools
you can run periodically or along with OA's daily cleanup operations.

Let's take a closer look at each of these options.

FIGURE 12.4
Suggested Manual Cleanup Operations

Cleaning up system-supplied objects:
Detach, save, and clean up security audit

journal receivers

Reclaim spool iile storage

Reel aim storage

Clean up the recovery areas

Remove unused licensed program products

Permanently apply PTFs as necessary

Cleaning up user-defined objects:
Detach, save, and clean up journal

receivers

Reset user message queue size

Clean up spooled files

Clear or delete save files no longer needed

Delete unused objects

Reorganize document library objects

Purge and reorganize physical files

Clean up OfficeVision for AS/400 objects

Clean up hardware configuration

Chapter 1 2 Disk Storage Cleanup 217

Detach, Save, and Clean Up Security Audit Journal Receivers
If you activate the security audit joumaling process, the receiver associated with the security
audit journal. QAudjm, will grow continuously as long as it's attached to QAmijm. Jn fact,
if you select all possible auditing values, this receiver will grow rapidly. As with all joumal
receivers. you're responsible for receiver maintenance. Here are our reconunendations.

First. don't place audit joumal receivers in libraty QSys CQAudJm it<;elf must he in
QSys, but recei\'ers can reside in any libra1y and in any auxilia1y storage pool). Instead,
place them in a library (e.g., one called AudLib) that you can save and maintain
separately. Then, each \\'eek, use the ChgJm (Change Journal) command to detach the old
recci\'cr from QAudJm and attach a new one.

Also, make sure your regular backup procedure saves the security journal receivers
(only detached receivers are fully saved). If you specify "System journals and system logs"
on the Change Cleanup Options panel, OA's automated cleanup operation deletes old
security audit joumal receivers that are no longer attached to journals. Your backup
strategy should include provisions for retaining several months of security joumal receivers
in case you need to track down a security problem.

Reclaim Spool File Storage
The iSeries has an operating-system-managed database in library QSpl that contains a
member for eve1y spooled file (e.g., job log, user report, Print key output) on the system.
\'V'hen you or the system creates a spooled file. OS/.100 uses an empty member in the
spool file database if one is available; otherwise, it creates a new member. Whenever a
sp(>oled file is deleted or printed. the operating system clears that file's database member,
readying it for reuse. However, even empty database members occupy a significant
amount of space. If you create many spooled files, this database can grow to the point of
wasting considerable space.

The iSeries pro\'ides a couple of methods for cleaning up these empty database
rnembers. You can use system value QRclSplStg (Reclaim spool storage) to limit the
number of days an empty member remains on the system. Valid values include whole
numbers from l to :)66: the default is eight days. When an empty member reaches the
specified limit. the system deletes the member. *None is also a valid value, but it's
impractical because it causes the system to generate a new database member for each
spooled file you create, thus overburdening the system and impacting perfom1ance. A
value of *Nrn\!lax tells the system to ignore automatic spool storage cleanup.

The RclSplStg (Reclaim Spool Storage) conunaml provides a method of on-demand
spooled file housecleaning. If you want to control spooled file cleanup yourself rather
than have the system do it, you can enter a value of *NoMax for system value QRdSplStg
and then execute the RclSplStg command whenever necessary.

218 Starter Kit for the IBM iSeries and AS/400

Reclaim Storage and Clean Up Recovery Areas
You should use the RclStg (Reclaim Storage) command periodically to reclaim wasted space
in your system's database cross-reference files. These files contain infom1ation about all
files and fields on your system. Left unchecked, these cross-reference files typically become
huge and contain a considerable amount of wasted space.

With RclStg, you can opt to run all reclaim functions, database cross-reference reclamation
only, or all functions except the database cross-reference reclamation. Typically, you'll run
only the database cross-reference portion. To do so, issue the command

RcLStg Select(*DbXRef)

If you're experiencing lost or damaged object5, you'll need to reclaim the entire system
or the entire system without the database cross-reference files portion. This process will
find damaged or lost objects and ensure that all auxiliary storage is either used properly or
available for use. Unexpected power failures, device failures, or other abnormal job
endings can create unusual conditions in storage, such as damaged object5, objects with
no owners, or even objects that exist in no library (i.e., the library name is absent). During
a reclaim of storage, the system puts any damaged or lost objects it encounters into one
of several recovery areas (detailed below) depending on the object type.

Wrip
It's wise to delete or clear the recovery areas before running the RclStg
command. If RclStg tries to place an object in the recovery area and there's
an existing object with the same name and object type, the system generates
meaningless names for the new object. The system does place the original
name in the object text, but it's far better just to avoid the confusion of
renamed objects and old objects that no longer apply. Cleaning up after a
RclStg can be tasking enough without contributing to the confusion.

Let's tum our attention to the action RclStg takes with lost objects.
If the lost object nom1ally resides in a library (i.e., in the QSys.Lib file system), the

system tries to place the object in recovery library QRcl, using the following rules:

• If a lost object with the same name and object type already exists in the recovery
library, the system renames the newly encountered object using the form
QRclnnnnrzn, where nnmznn is a unique number. To help you identify these objects,
the system places the original object name in the object's text description.

• If the lost object is a physical file for which data exists, the system tries to rebuild the
file in libra1y QRcl. The object description's text value indicates that the file has been
rebuilt. To recover the file, you can re-create the original file in the original library

Chapter 12 Disk Storage Cleanup 219

and then copy data from the recovered object in library QRcl. Be aware that the data
in the recovered file may be incomplete.

• If the lost object is a user domain object (object type *lJsrSpc, *lJsridx, or *CsrQ), it
can be placed in libra1y QRcl only if system value QAlwt:srDmn (Allow user domain
objects) is *All or contains the value QRcl. If QAlwCsrDmn prevents placing the user
domain object in library QRd, the object is deleted.

• If the object has lost its owner, the system assigns the object to an IBM-supplied user
profile based on object type. Most objects are assigned to user profile QDftOwn.

• If descriptions for objects in a library are not accessible, the system rebuilds the
library.

• If the lost object is secured by a damaged authorization list or authority holder, the
system assigns authorization list QRdAutL to the object. To determine the objects
secured by QRcLi\.utL, use command DspAutLObj (Display Authorization List Objects).

When a lost object resides in a file system other than QSys.Lib, the system petforms
recovery using the following rules:

• If the lost object was in the root file system, the object is placed in the /QReclaim
directory.

• If the lost object was in the QOpenSys file system, it is placed in the
/QOpenSys/QReclaim directory.

• If an object in a directory is damaged to the extent that it is unusable, the system
deletes it.

• If the lost object was in a user-defined file system (UDFS), it is placed in the
/QReclaim directory located in the root directory of the UDFS.

• If a lost object that was in a directory can't be placed in the appropriate /QReclaim
directory, it is placed in the rcx)t directory of a special file system within the auxiliary
storage pool (ASP) in which the object re:>ides. The file system is named
/dev/QASPnn/QReclaimFS.u<lfs, \Vhere nn is the ASP number.

• For objects in the root file system, the QOpenSys file system, or a user-defined file
system, the system takes action for issues such as duplicate names and unidentified
object owners in a fashion similar to the actions taken for objects in libraries (the
QSys.Lib file system).

220 Starter Kit for the IBM iSeries and AS/400

After storage is reclaimed, you should examine the recovery areas and perfonn any
necessary recove1y steps. The following recovery checklist can help guide you in finding
and fixing problems. (The sidebar below lists the commands used in recovery area
cleanup.)

1. Issue the DspMsg QSysOpr and DspLog commands, searching for messages about
damaged objects. Using the inf01mation located, you should

• ddete unusable objects and then restore them from backup

• re-create each necessaty physical file and use the CpyF command to copy data
from the file in library QRcl to the newly created file

2. Issue command Dsplib QRcl to display the objects in the recovery libra1y. If the
RdStg command placed no objects in this recovery area, you may receive a message
indicating the library doesn't exist. In that case, continue with the next step. Other
wise, using the infom1ation located, you should

• move user-created objects (using command MovOhj) from libraty QRcl to the cor
rect libra1y

• if library QRcl contains IBM-supplied objects, contact your sofl\vare support
provider for assistance

3. Issue command DspLnk to display directrny /QReclaim. If the RclStg command
placed no objects in this recovery area, you may receive a message indicating the
object doesn't exist. In that case, continue with the next step. Otherwise, using the
infonnation located, you should

• move objects (using command Mov) from directory /QReclaim to the correct
directory

Commands Used in Recovery Area Cleanup
AddMFS (Add Mounted File System)

CpyF (Copy File)

DspAutLObj (Display Authorization List Objects)

DspLib (Display Library)

DspLnk (Display Object Links)

DspLog (Display Log)

DspMsg (Display Messages)

Mov (Move)

MovObj (Move Object)

WrkObjOwn (Work with Objects by Owner)

Chapter 12 Disk Storage Cleanup 221

4. Issue command DspLnk to display clirect01y /QOpenSys/QReclaim. If the Rc!Stg
command placed no objects in this recove1y area, you may receive a message indi
cating the object doesn't exist In that case, continue with the next step. Otherwise,
using the infonnation located, you should

• move objects {using command Mm:) from directory ;QOpenSys/QReclaim to the
correct directo1y

5. Issue the command DspMsg QSysOpr. searching for message CPFAOD7. For each
CPFAOD7 message that contains a directory name starting with /dev/QASPnn/ (where
nn is the ASP number), perfonn the problem-resolution action. the infrim1ation
located, you should

• issue command AddMFS to mount the user-defined file system specified in the
C:PFAOD7 message over a directrny of your choice. command DspLnk,
examine the contents of the LDFS. You should see reclaimed ohject'i (beginning
with QRcl l or directrny /Qlkcbim. If you see directory /QReclaim, look therein to
find the reclaimed objects.

• move objects (using command Mov) to the correct directory. You may be able to
obtain the original object name by examining the CPFAOD7 message. If the mes
sage doesn't contain the original object name, use the Dsplnk command's Display
attributes option and try to locate the original name in the object's attributes.

6. Issue the command WrkObjOwn QDftOwn to display objects owned by user profile
QDftOwn.

• From the Work \Vith Objects by Owner display, use option 9 {Change owner) to
transfer object ownership to the correct user profile.

7. lssue the command DspAutLObj QRclAutL to examine objects whose authorization
list has been set to QRcL'\utL. If the RclStg command placed no objects in this
recovery area, you may receive a message indicating the authorization list doesn·r
exist. In that case, ignore the message. Othe1wi.se, you should

• assign the object to the correct authorization list

\Xrhen you·re comfortable that you've completed your work with the recovery areas,
vou should delete or clear them.

Keep in mind that you can execute the RdStg command only when the is m
restricted state (i.e., all subsystems must be ended). You also need to check system value
QAlwUsrDmn to make sure that its value is "All or that lihra1y QRcl is among the libraries
listed. If neither of these is the case. document the current value and then use command
ChgSysVal (Change System Value) to add library QRcl to the list of values. (He sure to
reset QAlwLisrDmn after you're finished redairning the system.)

You can use oA·s disk analysis reports, which list the space taken up by damaged
objects, ohjecl'i without owners, and objects without libraries, to detcnnine when you
need to do a RclStg. For more info1111ation about the OS 400 RclStg function, see OS/400
Backup and Recouer)' (SC41).

222 Starter Kit for the IBM iSeries and AS/400

Remove Unused Licensed Program Products
Another way to reclaim disk storage is to remove unused licensed program product-;, such
as product demos, old third-party products you no longer use, and IBM products once
you're finished with them. After saving any libraries and object-; you no longer need, delete
the unnecessary products.

To begin, use the DspSfwR-;c (Display Software Resources) command to print a list of
software resources on your system:

DspSfwRsc OutputC*Print)

On the printout, clearly mark the software products you want to delete.

~Caution
As silly as this may sound, be certain you don't need a product before you
delete it! You should seriously consider saving licensed programs before
you delete them. Do so, and you'll save yourself considerable grief should
you make a mistake.

You can use options on the LICPGM menu to save and delete unwanted licensed
programs. Be sure to refer to your printed list of software resources because some
products may not appear when using menu LICPGM. If a product doesn't appear on the
menu, you can use the SavLicPgm and DltLicPgm commands to save and delete the
licensed program, respectively.

Permanently Apply PTFs as Necessary
If disk consumption is high on your system, consider permanently applying any
temporarily applied PTFs. This action cleans up temporary object-; as well as the PTF
index. To apply the PTFs, use command ApyPTF.

Detach, Save, and Clean Up Journal Receivers
If you use journaling on your system, you need to manage the journals you create. As
with the security audit journal receivers, you should detach and save receivers as part of
your normal backup and recovery strategy. Then you can delete receivers you no longer
need. For more information about journaling and managing journals and receivers, refer
to 05/400 Backup and Recovery.

Reset User Message Queue Size
User-created messages can also add to the clutter on the system. As messages accumulate,
message queues grow to accommodate them. But queues don't become smaller as
messages are removed. Although OA's automatic cleanup clears old messages from user
and workstation message queues, it doesn't reset the message queue size.

Chapter 1 2 Disk Storage Cleanup 223

To reset a queue to its original size. you must use the ClrMsgQ (Clear Message Queue)
command to completely clear the message queue. Again, you can perfonn this task man
ually for specific message queues, or you can automate the process by writing a program.

Clean Up Spooled Files
What about user-created spooled output? OA's cleanup addresses job logs and certain
service and program dump output. But when users create sp<X)\ed files, these files also
stay on the system until the user prints or deletes them. You need to either monitor user
created output queues or have users monitor their own.

Clear or Delete Unneeded Save Files
If you frequently use save files for ad hoc or regular backups, you may want to define a

manual or automated procedure to periodically clear those save files and reclaim that
storage. After you save a save file's data to media, dear the file by executing the ClrSavF
(Clear Save File) command.

Delete Unused Objects
Old and unused objects of various kinds can accumulate on your system, unnecessarily
consuming storage and degrading perfonnance. You should evaluate objects that aren't
used regularly to detennine whether they should remain on the system. Remember to
check development and test libraries as well as production libraries.

The description of each object on the system includes a "last used" timestamp as well
as a "last used" days counter. The object description also contains "last changed" and ''last
saved'' timestamps. You can use this information to help determine whether an object is
obsolete.

To collect information about and analyze disk space utilization, you can use the
Disk Space Tasks menu (Figure 12.5). You can reach this menu directly hy typing Go
DiskTasks, or you can access it through the nuin OA menu. As you can see, the menu
options let you collect and print disk space information as well as actually work with
libraries, folders, and objects.

When you select option 1 to collect disk space infomrntion, you'll see the prompt in
Figure 12.6. You can collect disk space information at a specified date and time by
selecting option I (Date/time). Selecting option 2 (Weekly) or option 3 (Monthly) tells the
system to collect information at the specified interval.

224 Starter Kit for the IBM iSeries and AS/400

FIGURE 12.5
Disk Space Tasks Menu

DISKTASKS Disk Space Tasks
System: AS4©©

To select one of the following, type its number below and press Enter:

1. Collect disk space information
2. Print disk space information

1©. Work with Libraries
11. Work with folders
12. Work with objects by owner

Type a menu option below

F1=Help F3=Exit F9=Command Line F12=Cancel

FIGURE 12.6
0Jllect Disk Space b~fimnation Prompt

Collect Disk Space Information AS4©©

17:23:©5

Information collected

A job will be submitted to collect disk space information. This job may
take several hours to complete, depending on the size of your system.

Type choice below, then press Enter.

When to collect information

F1=Help F3=Exit F12=Cancel

1=Date/time
2=Weekly
3=Monthly

Chapter 12 Disk Storage Cleanup 225

Whichever option you choose. the system collects information about objects (e.g.,
database files, programs, commands, folders - including shared folders) and stores it in
flle QUsrSys/QAEZDisk. '{ou can then select option 2 (Print disk space information) on
the Disk Space Tasks menu to print reports that analyze disk space usage by library,
folder, owner. or specific object. You can also print a disk infom1ation system summary
repo1t. Because the data is colle<.ted in a database file, you can al.so perform ad hoc
interactive Stmctured Query Language (SQL) queries. use Query/400, or write high-level
language programs to get the infonnation you need.

Reorganize Document Library Objects
The RgzDLO (Reorganize Document Library Object) command reclaims unused space in
document library objects. This command compresses documents, removing wasted space
caused by editing changes. If your system has frequent document edit activity, reclaiming
DLOs can return a significant amount of space.

Purge and Reorganize Physical files
An active database environment can contribute to the system's sloppy habits. One
problem is files in which records accumulate forever. You should examine your database
to detennine whether any files fit this description and then design a procedure to handle
the "death" of active records.

In some situations, you can simply delete records that are no longer needed. In other
situations, you might want to archive records before you delete them. In either case, you
certainly won't want to delete or move records manually: instead, look for a public
domain or vendor-supplied file-edit utility or tool.

Deleting records doesn't increase your available disk space, though. Deleted records
continue to occupy disk space until you execute a RgzPFM (Reorganize Physical File
Member) command. You could search for files with a high percentage of deleted records
and then manually reorganize those files. Or you could go one step further and write a
custom utility that would search for those files and automatically reorganize them using
the RgzPFM command. You should note that wht:n you reorganize a file that is journaled,
you must immediately save the file to preserve integrity.

Clean Up OfficeVision for AS/400 Objects
OfficeVision for AS/400 can devour disk space unless you dean up after it religiously.
Encourage OfficeVision users to police their own document-; and mail items and to delete
items they no longer need. You can use the QryDocLib (Query Document Library)
command as a reporting tool to monitor document and folder maintenance. You might
also want to limit the auxiliary storage available to each user by using the !\.faxStg
(Maximum allowed storage) parameter on each user profile.

In addition, consider reorganizing OfficeVision tlles. Candidate files begin with the
letters QAO. Before nying to reorganize the files, be sure no users are using OfficeVision.

226 Starter Kit for the IBM iSeries and AS/400

Clean Up Hardware Configuration
It's not uncommon for a system to have configuration descriptions for objects that no

longer exist. You can save space and improve IPL pctformance by removing these
descriptions from your system. Although the steps for doing so arc documented in Basic

Svstem Operation, Administration, and Problem Handling (SC41-5206), we strongly

suggest you contact your hardware service provider for assistance with this task.

Enhancing Your Manual Procedures
You can handle many of the manual tasks we·ve mentioned by using the system's
QEZUsrClnp job to incorporate your own cleanup programs and commands into OA's

automatic cleanup function. QEZUsrClnp is essentially an empty template that gives you a
place to add your own cleanup code. Eve1y time OA's automatic cleanup function runs, it
calls QEZUsrClnp and executes your code.

To add your enhanc<.::ments to QEZUsrClnp, first use the RtvCLSrc (Retrieve CL

Source) command to retrieve the source statements for QEZUsrClnp (Figure 12.7) from
library QSys. Then, insert your cleanup commands or calls to your cleanup programs into

the QEZUsrClnp source. Be sure to add your statements berween the two SndPgmMsg
(Send Program Message) commands to ensure that when your cleanup job ends, the
system sends a completion message to the system operator message queue. While you·re

editing the source, go ahead and add some style to the layout of the code - RtvCLSrc
ce1tainly lacks it!

Last, compile your copy of QEZUsrClnp into a library that appears before library QSys
on the system library list. (You can change the system library list by editing system value
QSyslibl.) \Ve caution you against replacing the system-supplied version of the program
by compiling your copy of QEZUsrClnp into QSys. By using a different library, you can
prese1ve the original program and avoid losing your modified program the next time you
load a new release of the operating system.

In OAs automated cleanup function, the iSeries gives you the services of a maid to
solve some simple cleanup issues. Use the function. Your cleanup shouldn't stop there,

though. You also need to develop and implement procedures to maintain system-supplied
and user-defined objects, such as spool files and save files.

Chapter 12 Disk Storage Cleanup 227

FIGURE 12.7
CL Program QEZUsrG'lnp

/**/
I* *I
I* 5769SS1 V4R4M0 99(/)521 RTVCLSRC Output 01 /(/)5/(/)1 17:19:49 *I
I* *I
I* Program name QEZUSRCLNP PN*/
I* Library name QSYS PL*/
I* Original source file SN*/
I* Library name . SL*/
/* Original source member SM*/
I* Source file change *I
I* date/time SC*/
I* Patch option *NO PATCH PO*/
I* User profile *USER UP*/
I* Text . : TX*/
I* Owner QSYS OW*/
I* Patch change ID PC*/
/* Patch APAR ID PA*/
I* User mod flag *NO UM*/
I* ED*/
!**!

PGM
DCL VARC&COIBM) TYPE(*CHAR) LEN(128) VALUE(' 5738-SS1 (C) -

COPYRIGHT IBM CORP. 1980, 1991 ALL RIGHTS RESERVED. LICENSED -
MATERIALS - PROPERTY OF IBM')

QSYS/SNDPGMMSG MSGID(CPI1E91) MSGF(QCPFMSG) TOMSGQ(*SYSOPR) -
MSGTYPEC*INFO)

. Inserl your 011'11 deem up code here

QSYS/SNDPGMMSG MSGID(CPI1E92) MSGF(QCPFMSG) TOMSGQ(*SYSOPR) -
MSGTYPE(*INFO)

RETURN
COPYWRITE: +

QSYS/CHGVAR VARC&COIBM) VALUE(&COIBM)
PGM_END:

QSYS/ENDPGM

229

Chapter 13

All Aboard the OS/400 Job Scheduler!

by Bryan Meyers

How many times have you plastered the side of your workstation \vith sticky notes
containing suibbled reminders to run various jobs at various times? Or perhaps your shop
is more sophisticated and has a run-book with instructions about which jobs ro nm and
when. Although these "organizational" methods may work, they make it easy to make a
mistake or to forget to perfom1 some functions. And how many times have you missed
one of your children's soccer games or some other imprntant function because you
needed to stay a little late at the office to stan a job after everyone was gone for the day?
Sound farniliar? If so, OS/400's job-scheduling capabilities provide the relief you need.

OS/40Cfs job-scheduling function lets you schedule jobs to run at dates and times you
choose without pertc)Jming any add-on programming. You can schedule jobs in m:o ways:

• using parameters on the Sbmjob (Submit job) command

• using the job schedule object

The job schedule function - system job QJobScd - starts automatically when you
IPL the system. This job monitors scheduled job requirements and then submits and
releases scheduled jobs at the appropriate date and time.

Arriving on Time
The Shn1Job command places a job on a job queue for batch processing, apart from an
interactive workstation session. The command's ScdDate (Schedule date) and ScdTime
(Schedule time) parameters let you specify a date and time when the job should be run.
This scheduling method is a one-time shot; you use it for a job that you want to nm
only once, at a later date ancVor time. If you want a job to nm more than once, you'll
have to remember to submit the job each time (or use the job schedule object, as I
discuss later).

When you use these parameters to indicate a schedule date and/or time, the Sbmjob
command places the job on a job queue in a scheduled state (SCD) until the date and
time you specified; then the system releases the job on the job queue and processes it just
like any other submitted job. If you specify Hold(*Yes) on the Sb111Job conunand, at the
appointed time the job's status on the queue will change from scheduled/hekl (SCD HU))
to held (HLD). You can then release the job when you choose.

230 Starter Kit for the IBM iSeries and AS/400

The default value t<ir the ScdDate and Scc!Time parameters is *Current, which
indicates that you vvant to submit the job immediately. Otherwise, you'll usually specify an
exact date (in the same fonnat as the job's clatcl and an exact Lime for the job to run.
There are, however, other possible special values you may find useful for the ScdDate
parameter.

If you specify value *MonthStr for parameter ScdDate, the job will be run at the
scheduled time on the first day of the month. Value *MonthEnd specifies that the job
should be run on the last day of the month (no more "Thhty days hath September ... " or
counting on your fingers 1J. Or you can specify a ScdDate value of *Mon, *Tue, *'Xfed,
*Thu, *Fri. *Sat, or *Sun to nm the job on the specified day of the week.

During which month. on which Monday, an<l so on, will your job he run? That
depends. For example. if you've specified ScdDatd*MonthStrJ, and today is the first day of
the month, and the current time is previous to the time in the Scc!Time parameter ... the
job will be run today. Othervvise. it will wait until next month. Similar logic applies for
other ScdDate and ScdTime possibilities.

If you remove a scheduled job from a. job queue, the job won't be run, even when
the scheduled date and time arrive. You can remove a job from a queue by using the
Cli:TobQ (Clear Joh Queue) command or by using the WrkJobQ (Work with Job Queue)
command and ending the job. Holding a job queue that includes a scheduled job can
delay execution of the job, but it \von't prevent the job from running when you release
the job queue. even if tbc scheduled time has passed.

Running on a Strict Schedule
OS/400's job schedule object (type ~JohScd) is a timetable that contains descriptive entries
for jobs to be executed at a date, time, and frequency. It is most useful for
that you \Vant to nm repeatedly according to a set schedule. If a job is on the job
schedule, you needn't remember to submit it for every execution; the operating system
takes care of that chore. You can find infom1ation about job schedule entries in OS/400
\¥1ork Management (SC41-'i306).

One job schedule object exists on the system: object QDftJobScd in library QUsrSys.
Although its name indicates that this object is the default job schedule, it is in fact the only
one. 'n1e operating system offers no commands to create, change. or delete your own
customized job schedules . . . You can manipulate the entries in the job schedule using
the following CL comma mis:

• AddJobScdE (Add Job Schedule Entry)

• ChgfobScdE (Change Joh Schedule Entry)

• HldJohScdE (Ho lei Job Schedule Entry)

• RlsJobScdE (Release Job Schedule Entry)

• Rim:TobScdE (Remove Job Schedule Enny)

• WrkJobScdE (Work with Job Schedule Entries)

Chapter 13 All Aboard the OS/400 Job Scheduler! 231

Figure 13. l shows a sample list display like the one that appears when you run the
WrkJobScdE command.

FIGURE 13.1
W<Jrk witb Job Schedule Entries Panel

Work with Job Schedule Entries AS400
04/12/00 17:02:54

Type options, press Enter.
2=Change 3=Hold 4=Remove
8=Work with last submission

5=Display details 6=Release
10=Submit immediately

-----Schedule------ Recovery
Opt Job Status Date Time Frequency Action

BKPDLY SCD *ALL 21:00:00 *WEEKLY *NOSBM
QEZDKWKMTH SCD *SAT 03:00: illill *WEEKLY *NOSBM
PRTUSRINFO SCD 04/17100 01 :30: ill0 *WEEKLY *NOSBM
VKEMBOSS SCD USER DEF ill3:0ill:00 *WEEKLY *NOS BM
VKEMBOSS SCD USER DEF 03:15:00 *WEEKLY *NOS BM
VKEMBOSS SCD USER DEF 03:30:00 *WEEKLY *NOSBM

Parameters or command

Next
Submit
Date
04112/00
04/15/ill0
04/17/0ill
04/17 /0ill
04/17/00
04/17/00

Bottom

===> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F3=Exit F4=Prompt
F11=Display job queue data

F5=Refresh
F12=Cancel

F6=Add
F17=Top

F9=Retrieve
F18=Bottom

\Xlben you select option 5 (Display details) for an entry, you get a display such as the one
in Figure 13.2. 'D1is example shows the details of a job that the system runs every
weekday morning at 3:30.

Each job schedule entry is made up of many components that define the job to be
run and describe the environment in which it will run. Figure 13.3 describes those
components and lists the parameter keywords that the job-scheduling CL commands use.

232 Starter Kit for the IBM iSeries and AS/400

FIGURE 13.2
Sample Joh Schedule Entiy Details Panel

Display Job Schedule Entry Details
System:

Job: VKEMBOSS Entry number: 000006 Status: SCD

Last attempted submission:
Status Job successfully submitted.

Date .
Time •

Last successful submission:
Job

User .
Number •

Date •
Time .

Schedule day
Schedule time
Frequency
Recovery action

04/14/00
03:30:00

VKEMBOSS
GUTHRIE
004580

04/14/00
03:30:00
*MON *TUE *WED *THU *FRI
03:30:00
*WEEKLY
*SBMHLD

Next submit date•. : 04/17/00

AS400

Command • . . . CALL PGM(VKM085C) PARM('$VK' 6.00000 '*CURRE
NT' 'VALUE KARD' 'Y' 'SINCE' 'VJOBSCD003'l

Job queue
Library

Job queue status
Job description

Library
Scheduled by .
User profile .
Message queue

Library
Text

*JOBD

VJOBD
VKMLIB

GUTHRIE
QSYSOPR
QSYSOPR

QSYS
Value Kard embossing - normal run

Entry
component
Job name

Entry number

Command to run

Frequency

Schedule date

Schedule day

Schedule time

Relative day
of month

Save action

Omit date

Recovery action

Command
parameter
Job

EntryNbr

Cmd

Frq

Chapter 13 All Aboard the OS/400 Job Scheduler! 233

FIGURE 13.3
]ob Schedule Ent1y Components

Description
Specifies the name of the job schedule entry.

Specifies the unique number of the job schedule entry.

Specifies the command the submitted job will execute.

Controls how often the job will be submitted. Valid values are
• *Once Once only
• *Weekly week on the specified day(s)
• *Monthly Every month on the specified day(s)

ScdDate Controls the date the job will be submitted. Valid values are
*Current - Today

• *MonthStr - First day of month
• *MonthEnd - Last day of month
• Date - Specified date
• *None Submitted based on ScdDay parameter

ScdDay Controls the day of the week on which the job will be submitted. Valid
values are
• *All Every weekday
• *Sun Sunday
• *Mon - Monday

*Tue - Tuesday
• *Wed - Wednesday
• *Thu - Thursday
• *Fri Friday
• *Sat Saturday

*None Submitted based on ScdDate parameter

ScdTime Controls the time of day when the job will be submitted. Valid values are
• *Current - Immediately

hhmmss - Specified time

RelDayMon For Frq(*Monthly) entries submitted based on the ScdDay parameter,
controls the relative day of the month when the job will be submitted.
Valid values are

n nth occurrence in the month
• *Last - Last occurrence in the month

Save For Frq('Once) entries, controls whether the entry is saved after it is
submitted. Valid values are
• *Yes - Save entry after submission.
• *No Discard entry after submission.

OmitDate Specifies a list of up to 20 dates on which the job will not be submitted.

RcyAcn Controls the action taken if a job cannot be submitted at the scheduled
time. Valid values are
• *SbmRls - Missed job is submitted in RLS (released) status.

*SbmHld - Missed job is submitted in HLD (held) status.
• •NoSbm - Missed job is not submitted.

continued

234 Starter Kit for the IBM iSeries and AS/400

Entry
component
Job description

Job queue

User profile

Message queue

Text description

Command
parameter
JobD

JobQ

User

MsgQ

Text

FIGURE 13.3 CONTINUED

Description
Contains the qualified job description name of the job description under
which the job will be executed.

Specifies the name of the job queue to which the job will be submitted.
Valid values are
• Name - A qualified job queue name is used.
• *JobD - The job queue found in the specified job description is used.

Specifies the name of the user profile under which the job is submitted.
Valid values are

Name - The specified user profile is used.
*Current - The job is submitted using the user profile that added the
job schedule entry.

• *JobD - The user profile found in the specified job description is used.

Provides the name of the message queue to which the submitted job sends
messages. Valid values are
• Name - The specified qualified message queue name is used.

*UsrPrf - Job uses message queue found in the user profile.
• *None - Job does not send completion messages, and error messages

are sent to QSysOpr.

Text description of entry

You can print a list of your job schedule entries by entering the conu11and

WrkJobScdE Output(*Print)

For detailed infonnation about each job schedule entry on the list, use the command

WrkJobScdE Output<*Print) PrtFmt(*Full)

OS/400 gives each job schedule entry a sequence number to identify it uniquely. You
usually refer to an entry by its job name, but if multiple entries exist with the same job
name, you must also specify the sequence number to correctly refer to the entry. For
example, Figure 13.1 shows three entries named VKEMBOSS. Displaying the details for
each entry, however, would show that each has a unique sequence number.

The frequency component (Frq) of a schedule entry may seem confusing at first. It's
obvious that you can schedule a job to run *Once, *Weekly, or *Monthly, but what if
you want to schedule a daily job? In that case, you need to use an additional schedule
entry element, the schedule day (ScdDay). To run a job every day, specify Frq(*Weekly)
and ScdDay(*All). You can also run the job only on weekdays, using Frq(*Weekly) and
ScdDay(*Mon *Tue *Wed *Thu *Fri). Just Thursdays? That's easy: Frq(*Weekly) and
ScdDay(*Thu).

The schedule date component (ScdDate) of a schedule entry tells the system a specific
elate on which to run the job. If you use the ScdDay parameter, you can't use the ScdDate
parameter; the two don't make sense together. The combination of Frq(*Monthly) and
ScdDate(*MonthEnd) will run a job on the last clay of each month, regardless of how
many days each month has.

Chapter 13 All Aboard the 05/400 Job Scheduler! 235

I11c relative day of the month component (RelDayMon) gives the job schedule even
more flexibility. For instance, if you want to run a job on only the tlrst Tuesday of each
month. you indicate valL•es for three parameters: Frq(*l\1onthly), ScdDay(*Tue), and
Re!DayMon(1).

Sometimes your computer can't run a job at the scheduled time; for example, your
system may be powered off or in the restricted state at the time the job is to be
submitted. In the recove1y action component (RcyAcnl of the schedule ent1y, you can tell
the computer to take one of three actions. R<-yAcn(*SbmRls) submits the job to be run as
soon as possible. RcyAcn(*SbmHldl subrnits the job but holds it until you explicitly release
it for processing. RqAcn(*NoSbm) is the ··You snooze, you lose·· option the job
scheduler won't try to submit the job after the scheduled time passes. Notice that this
feature applies only to jobs scheduled from the job schedule, not to those you suhmit
using SbrnJob.

Two Trains on the Same Track
When setting up job schedule entries for your system, you may discover that some of the
entries you need to make are similar. You may want to copy a job schedule entry to save
yourself the drudgery of retyping long, error-prone command strings. Unfortunately, the job
schedule commands don't ofter such a function. Lucky for you, though, l provide such a
command here.

The command, CrtDupScdE (Create Duplicate Job Schedule Entty), is easy to use. You
simply supply the command with two things the job name of the existing job schedule
entry from which you want to copy and a name you \Vant to give the copy:

CrtDupScdE FromJobCJobName) NewName(NewJobName)

The l\ewName parameter defaults to special value *Fron1Job, indicating that the ne\v ent1y
should have the same name as the original: the system will give the entry a unique
sequence number.

Figure 13.4 provides the code for the CnDupScdE command. Figure 13.5 shows the
command processing program.

I*
I*
I*
I*
I*
I*
I*

FIGURE 13.4
C1tD11pScdE Command Source

===
Command ...•... CrtDupScdE
Source type ... CMD
Description ..• Create Duplicate Job Schedule Entry

CPP. ········•• CrtDupSE1A =
==========================~=============~======================

Cmd Prompt('Create Dup Schedule Entry')

*I
*I
*I
*I
*I
*I
*I

continued

236 Starter Kit for the IBM iSeries and AS/400

Parm

Parm

FIGURE 13.4 CONTINUED

KwdC FromJob)
Type(*Name)
LenC HI)
Min(1)
Prompt('From job name')

KwdC NewName)
Type(*Name)
Len(HI)
Oft(*FromJob
SpcValC C *FromJob))
Prompt('New job name'

FIGURE 13.5

CJ1DupScdE Command Proce,,:'ling Program CJ1DupSEJA

+
+
+
+

+
+
+
+
+

I*
/*
I*
I*
I*
I*
I*
I*
I*
/*
I*
I*

=== *I
*I
*I
*I
*I
*I
*I
*I
*/
*I
*I
*I

Pgm

Program CrtDupSE1A
Source type ... CLP
Type Command processing program for CrtDupScdE
Description ... Create duplicate job schedule entry

Parameters

&JobName

&NewName

&FromJob
&NewName

Input Job name of job to duplicate

Input Job name for duplicate entry

+
+
+

I* === *I
I* = Variable declarations */
I* === *I

Del &FromJob *Char HI
Del &NewName *Char 1©
Del &Cmd *Char 512
Del &CmdStr *Char 3©©©
Del &Continue *Char 16
Del &EntLen *Char 4
Del &Entry *Char 1156
Del &Frq *Char 1©
Del &Header *Char 14©
Del &JobD *Char 2©
Del &JobQ *Char 2©
Del &MsgQ *Char 2©
Del &NbrEnt *Char 4
Del &Off set *Char 4

continued

Chapter 13 All Aboard the OS/400 Job Scheduler! 237

FIGURE 13.5 CONTINUED

Del &RcyAcn *Char (H')
Del &RelDayMon *Char (50
Del &Save *Char (10
Del &ScdDate *Char (10
Del &ScdDay *Char (71/J
Del &ScdTime *Char (6
Del &StrPos *Char (4
Del &Text *Char (51/J
Del &User *Char (11/J
Del &UsrSpc *Char (21/J 'ZZSCDLl/J200QTEMP'
Del &MsglD *Char (7
Del &Msgf *Char (10
Del &MsgFLib *Char (10
Del &MsgDta *Char (100

I* === *I
I* = Global error monitor */
I* === *I

MonMsg
Goto

CPFl/Jl/Jl/J0 MCH01/Jl/Jl/J
Error

Exec(
)

+

I* === *I
/* Substitute new name when special value *FromJob specified */
I* === *I

I*
I*
I*

If
ChgVar

&NewName *Eq '*FROMJOB')
&NewName C &FromJob)

===
Create temporary user space to hold schedule entry list =

===
DltUsrSpc
MonMsg

Call

%Sst(&UsrSpc 11 11/J)/%Sst(&UsrSpc 1 10)
(CPF0001/J)

QUSCrtUS
(

&UsrSpc
'CRTDUPSCDE'
X'01/J01/J011/J0'

'*ALL'

+

*I
*I
*I

+
+
+
+
+
+
+
+

I* === *I
/* Retrieve schedule entry list to user space */
I* === *I

Call QWCLScdE +
(+

&UsrSpc +
'SCDL0200' +
&FromJob +
&Continue +
0 +

continued

238 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*

FIGURE 13.5 CONTINUED

===
Retrieve header =

===
Call QUSRtvUS

(

&UsrSpc
XI 00©1lllll001 I

x I i1li1l©0008C.
&Header

*I
*I
*I

+
+
+
+
+
+

/* === *I
I* = Exit if list is incomplete or there are no entries */
I* === *I

If (
SndPgmMsg

%Sst(&Header 104 1) *Eq •I'
MsglD(CPF9898)
MsgF(QSys/QCPFMsg)
MsgDta('Job schedule entry list is incomplete'
MsgType(*Escape)

ChgVar &NbrEnt (%Sst(&Header 133 4))

If (
SndPgmMsg

%Bin(&NbrEnt) *Eq 0
MsgIDC CPF9898)
MsgFC QSys/QCPFMsg)
MsgDtaC 'No job schedule entries exist'
MsgType(*Escape)

+
+
+
+

+
+
+
+

I* === *I
I* Get entry Length and offset from header and calculate */
I* start position based on offset */
I* === *I

ChgVar
ChgVar

ChgVar

&EntLen
&Offset

%SstC &Header 137 4
%SstC &Header 125 4

(%Bin(&StrPos)) (%Bin(&Offset) + 1)

I* === *I
I* Retrieve first entry in the List */
I* === *I

Call QUSRtvUS
(

&UsrSpc
&StrPos
&EntLen
&Entry

+
+
+
+
+
+

I* === *I
I* Extract parameters from the entry */
I* === *I

Chg Var
Chg Var

&Cmd
&Frq

%Sst(&Entry 645 512
%Sst< &Entry 108 10

continued

ChgVar
Chg Var
Chg Var
ChgVar
Chg Var
ChgVar

If
ChgVar

Else
ChgVar

If
ChgVar

Else
ChgVar

ChgVar

If
ChgVar

Else
ChgVar

Chg Var

Chapter 13 All Aboard the OS/400 Job Scheduler! 239

ftGURE 13.5 CONTINUED

&ScdDate %Sst(&Entry 22 10
&ScdDay %Sst(&Entry 32 70
&ScdTime %Sst(&Entry 102 6
&RelDayMon %Sst(&Entry 118 50
&Save
&Rey A en

%Sst(
&JobD

&JobD

%Sst(
&JobQ

&JobQ

&User

%Sst(
&MsgQ

&MsgQ

&Text

%Sst(&Entry 577 1 0
%Sst(&Entry 168 1 0

&Entry 537 10) *NE I I)
(%Sst(&Entry 537 10)

*TC at
I/'

*TC at
%Sst(&Entry 527 1 0

%Sst(&Entry 527 H'J

&Entry 208 10) *NE . f)
(%Sst(&Entry 208 H'J

*TC at
'I'
*TC at
%Sst(&Entry 198 10

%Sst(&Entry 198 HJ

%Sst< &Entry 547 10)

&Entry 567 10) *NE f .)
(%Sst(&Entry 567 10

*TC at
'I'
*TC at
%Sst(&Entry 557 10

%Sst(&Entry 557 10

'Copy of'
*BCat
&FromJob)

)

+
+
+
+
+

+
+
+
+
+

+
+
+
+
+

+
+

I* ============== === *I
I* = Bu ld command str ng to add new job schedule entry */
I* ============== === *I

Chg Var &CmdStr 'ADDJOBSCDE' +
*BCat +
I JOB(I +
*TC at +
&NewName +
*TC at +
') I +
*BC at +
'CMD(' +
*TC at +
&Cmd +
*TC at +
I) I +

continued

240 Starter Kit ior the IBM iSeries and AS/400

FIGURE 13.5 CONTINUED

*BC at +
'FRQ(' +
*TC at +
&Frq +
*TC at +
I) I +
*BCat +
'SCDDATE(' +
*TC at +
&ScdDate +
*TC at +
I) I +
*BCat +
'SCDDAY(' +
*TC at +
&ScdDay +
*TC at +
I) ' +
*BCat +
I SCDTIME(I +
*TCat +
&ScdTime +
*TCat +
I) I +
*BCat +
I RELDAYMON(. +
*TC at +
&RelDayMon +
*TC at +
I) I +
*BC at +
'SAVE(' +
*TCat +
&Save +
*TC at +
') I +
*BC at +
• RCYACN(I +
*TC at +
&RcyAcn +
*TCat +
I) I +
*BC at +
'JOBD(' +
*TC at +
&JobD +
*TC at +
I) I +
*BC at +
'JOBQ(' +
*TC at +
&JobQ +
*TC at +
I) I +

continued

Chapter 13 All Aboard the OS/400 Job Scheduler! 241

FIGURE 13.5 CONTINUED

*BC at
'USER('
*TC at
&User
*TC at
t) '

*BCat
'MSGQ('
*TC at
&MsgQ
*TC at
t) '

*BCat
'TEXT(' I I

*TC at
&Text
*TC at
I I f) J

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I* === *I
I* = Add new job schedule entry */
I* === *I

Call QCmdExc
(

&CmdStr
3000

+
+
+
+

I* === *I
I* Clean up, send completion message, and exit */
I* === *I

DltUsrSpc
MonMsg

%Sst(&UsrSpc 11 10)/%Sst(&UsrSpc 1 10)
(CPF0000)

SndPgmMsg MsgID(CPF9898)
Msgf(QSys/QCPFMsg

Return

MsgDta('New job schedule entry added for job'
*BCat
&NewName

MsgType(*Comp)

+
+
+
+
+

I* === *I
I* = Error handler */
I* === *I

Error:

DltUsrSpc
MonMsg

%Sst(&UsrSpc 11 10)/%Sst(&UsrSpc 1 10)
(CPF0000 MCH0000)

continued

242 Starter Kit for the IBM iSeries and AS/400

/*
I*
I*

RcvMsg

MonMsg

FIGURE 13.5 CONTINUED

MsgType(*Excp
MsgDta(&MsgDta)
MsglD(&MsgID)
MsgF(&MsgF)
MsgFLibC &MsgFLib

(CPF0000 MCH0000

SndPgmMsg Msg!D(&MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

===
= End of program
===

EndPgm

+
+
+
+

+
+
+

*/
*I
*I

CttDupScdE uses the TBM~supplied program QWCLScdE (List Joh Schedule Entries), a
system API that lists job schedule entries to a user space. After retrieving the ''from" job
schedule entry (which you specified in the Fron~Joh parameter), the program breaks down
the output from the API into the parameter values that describe the entry; then it uses
those values in the A<kUobScdE command to <Teare a new entry based on the
one. After that. ifs a simple matter for you to use the ChgJobScdE command to make any
minor changes the new entry needs. You can find documentation for QWCLScdE and the
user space layouts used in CrtDupScdE in OS/400 Work Management APls (SC41-5878).
The command also uses two user space APis: QUSCrtUS (Creme User Space) and
QlJSRtvUS (Retrieve User Space). (For more information about using APis in CL programs,
see Chapter 25.)

In addition to being easy to use. command CrtDupScdE is very basic. To conserve
space, it doesn't include some features that you might want to add. The command retrieves
only the first instance of a schedule entry with the name you choose, even though the job
schedule could contain multiple entries of the same name. If you have multiple same-name
entries and you wam to retrieve one other than the first, you'll need to add the code to
loop through the data structure that returns the name. Last. the command doesn't duplicate
the seldom-used OmitDate values from the original entry. lf you find you need to include
this value, you can add the appropriate support. I encourage you to experiment with
enhancing this command to suit your o\cvn needs.

Derailment Dangers
Before we finish exploring the OS/400 job schedule object, a few cautionary comments
are in order. There are a few situations for which documentation is inadequate.

Chapter 13 All Aboard the OS/400 Job Scheduler! 243

Job Schedule Entries and the LDA
Ifs important to know that a joh submitted by the job schedule won't retain the contents
of the local data area (LDA) from the job that originally added it to the job schedule.
\Vhen you submit a job with the Sbn1Toh command, however, the system passes a copy
of the LDA to the submitted job. In some shops, ifs a common practice to store variable
processing values in the LDA as a handy means of crnrununicating between jobs or
bern'een programs within a job. If your application depends on specific values in the
LDA, you may want to schedule jobs using the Sbn1Tob command instead of creating a
job schedule entry.

Th<:.'.fe's an alternate technique, hmvever, that still lets you take advantage of a job
schedule entry for recurring jobs that need the LDA: When you add the job schedule
entry, also create a unique data area that contains the proper values in the proper
locations, according to the specifications in the submitted program. It's then a simple
matter to make a minor change to the submitted program so that the program either uses
the new data area instead of the LDA or ret1ieves the new data area and copies it to the
LDA using the RtvDtaAra (Retrieve Data Area) and/or ChgDtaAra (Change Data Area)
command. The new data area should be a pennanent object on the system as long as the
dependent job schedule ent1y exists.

SbmJob vs. the Job Scheduler
As you play with the job scheduler, you might experience some seemingly odd and
confusing behavior. For instance, when you submit a job using SbmJob, it works fine.
finding all the objects it requires. Yet your job sometimes terminates abnormally when run
from the job scheduler because it can't find some of the objects it needs! You may scratch
your head for some time before realizing the nature of the problem. An understanding of
why the two methods behave differently not only will make you more effective in using
the job scheduler but also will highlight the fact that Sbn1)'ob has several benefits that the
job scheduler doesn't offer.

Let's unravel the problem in which intermittently the job scheduler can't find some of
the objects the job needs. \'V'hen you run a job from the job scheduler, the system
retrieves the library list to use from the InlLibL (Initial library list) attribute of the job
description specified in the job scheduler entiy On the other hand, when you use
ShmJob to execute your program. the system retrieves the library list to use from the
In!LibL parameter of the Sbnl)ob command itself. The default value for this parameter is
•current, which instructs the system to derive the library list from the current (submitting)
job's attributes. This may or may not match the lihra1y list specified in the job description!
All along, the problem has been that the job sometimes nms using a different library list
and all required libraries are not in that list. Of course, you could change the command
defaults for SbmJob so that the default is InlLibL(*JobD) and the two methods would
retrieve the same library list. hut that surely would introduce problems throughout the
system.

244 Starter Kit for the IBM iSeries and ASi400

Several such oddities await your discovery because SbmJoh suppo11s several more
parameters than the job scheduler does. Examine the differences between the parameters
available when adding a job scheduler entry and those shown hy the Sbmjob command,
and you'll find other areas that behave differently.

You can still use the job scheduler, avoiding the confusion and taking advantage of
the many extm benefits afforded by Sbn~Job. When adding entries to the job scheduler,
you can use SbmJob in the scheduler's Cmd parameter. Then. in SbmJob's Crnd param
eter, specify the actual command. 111e following examples demonstrate hmv the same job
can be nm from the job scheduler:

AddJobScdE Job(YourJob) Cmd(Call Pgm(YourPgm))
AddJobScdE Job(YourJob) Cmd(SbmJob Cmd(Call Pgm(YourPgm)))

In the second example. the job scheduler submits a ne\v job, and you can take advantage
of all of Sbn1Joh's benefits.

A Matter of Timing
lt's also noteworthy that, just like the railroad. the job-scheduling function may not always
run on time, whether you use SbrnJoh or the job schedule object Although you can
schedule a job to the second. the load on your system detennines \'>'hen the job actually
nms. The system submits a job schedule ent1y to a job queue or releases a scheduled job
already on a job queue approximately on time - usually within a few seconds. However,
if many jobs are wailing on the job queue ahead of the scheduled job. the scheduled job
will simply have to wait its turn.

If it's critical that a job run at a specific time, you can help by ensuring that the job's
priority (parameter JobPty) puts the job ahead of other jobs on the queue. hut the job may
still have to wait for an available activity slot before it can And. as I mentioned

if your system is down or in a restricted state at the appointed time, the job
schedule may not submit the job at all.

System Date and Time Changes
Changing your system's date or time can also affect your scheduled jobs. If you move the
date or time system values backward, the effect is fairly straightfrnv.'ard: The system won't
reschedule any job schedule entries that were run within the repeated time. For
if at three o'clock you change your system's time back to one o'clock, the job you had
scheduled to nm at two o'clock won't repeat itself. The system stores a "next submission"
date and time for each entry. \vhich it updates each time the job schedule submits a job.

Changing the system's date or time forward, however. can be tricky. If the change
causes the system to skip over a time when you had a job scheduled. the job schedule's
action depends on whether the system is in restricted state when you make the change. If
the system was not restricted, any missed job schedule entries are submitted immediately
(only one ocnmence of each missed enuy is submitted even if. for example, you've

Chapter 13 All Aboard the 05/400 Job Scheduler! 245

scheduled a job to run daily and moved the system date ahead two days). If the system is
in restricted scare when you change rhe dare or time system values, the system refers to
the RcyAcn attributes of the missed job schedule entries ro determine whether to submit
the jobs when you bring the system out of its restricted state.

Detecting the Completion of Other Jobs
Last, the job-scheduling function doesn't offer job completion dependencies, regardless
of which method you use. For example. if you use the job schedule to rnn a daily
transaction posting and then a daily closing, you can't condition the closing job to be run
only if the posting job goes through to a successful completion. Some third-party scheduling
functions offer this capability. Without a third-party product, if you need to schedule jobs
with such a completion requiremcnr, your best bet is probably to incorporate the entire
procedure into a single CL program with appropriate escape routes defined in case one
or more functions fail.

247

Chapter 14

Keeping Up with the Past
For many of you. iSeries job processing is ne\v, or at lea.st different. There can he multiple
subsystems. joh queues, output queues, and messages flying all over the place at once.
You can sign < m to the system and submit several hatch jobs for immediate processing, or
you cm submit jobs to hi.:' run at night. At the same time, the system operator can run
jobs and monitor their progress, and users at various remote sites can sign on to the
system. \Xlith so rnuch going on. you might wonder hrnv you can possibly manage and
audit such activity.

The History Log
One valuable iSeries tool at your fingertips is the hist01y log, which contains information
about the operation of the system and system st:itus. The history log tracks high-level
activities such as the sta11 and completion of jobs. device status changes, system operator
messages and replies, attempted security \'iolations, and other security-related events. It
records this information in the fonn of messages, 1vhich are stored in t11es created the
syste1n.

You can learn a lot from histo1y even your system's histrny. By maintaining an
accurate history log. you can monitor specific system activities and reconstruct events to
aid prohbn detennimtion and debugging effotts. Note that histrny logs arc different from
job logs. Whereas job logs record the sequential events of a job, the history log records
cenain operational and status mc.ssages peittining to <ill the jobs on the system. You cm
re\'ie\v the history log to find a panicular point of interest and then rder to a job log to
investigate fu11her.

System Message Show and Tell
You can display tile contents of the history
<Display Log) command:

Dsplog Log(QHst)

hy executing the following DspLog

The resulting display resembles the screen in Figure 14.1. The DspLog command lets you
look at the contents of the history log as you would messages in a message queue.
Because system events, such as job completions, invalid attempts, and line
failmcs, are listed as messages in file QHst, you can place the cursor on a pa1ticular
message and press the Help key (Fl) to display second-level help text for the message.

Sen:·ctl DspLog command parameters provide flexibility when inquiring into the
history log. To prompt for parameters, type Dspl.og and press F4:. The system displays
the screen shown in Figure 14.2.

248 Starter Kit for the IBM iSeries and AS/400

FIGURE 14.1
History Log Panel

Display History Log Contents

Job 160839/QPGMR/DCP100 released by user QPGMR.
Job 160839/QPGMR/DCP100 started on 10/09/00 at 06:00:04 in subsystem QBATCH
Receiver ACG0239 in JRNLIB never fully saved. (I Cl
c
Job 160839/QPGMR/DCP100 completed on 10/09100 at 06:02:05. 32 seconds process
Vary Configuration (VRYCFG> command completed for line EAST.
Line EAST varied on successfully.
Vary Configuration (VRYCFG) command completed for controller CHICAGO.
Vary Configuration (VRYCFG) command completed for device CHICAGO.
Job 160921/DALLMKW/DSP10 started on 10/09/00 at 06:50:23 in subsystem QINTER
Controller CHICAGO contracted on Line CHICAGO.
Communications device CHICAGO was allocated to subsystem QCMN.
Password from device DSP23 not correct for user QSECOFR.
Writer 160934/QSPLJOB/PGMRWTR started.
Load form type '*STD' device PGMRWTR writer PGMRWTR. (H CG I Rl
A parity error or stop bit error detected while communicating with device CHIC
Password from device BPC01023S1 not correct for user DALLDDW.

Press Enter to continue.

F3=Exit F10=Display all F12=Cancel

FIGURE 14.2
D:,,plog Command Prompt

Type choices, press Enter.

Log••••.
Time period for Log output:

Start time and date:
Beginning time .•
Beginning date •.
End time and date:
Ending time
Ending date

Output .

Display Log <DSPLOG)

QHST __ _

*AVAIL_
*CURRENT

*AVAIL_
*CURRENT
*

QHST

Time, *AVAIL
Date, *CURRENT, *BEGIN

Time, *AVAIL
Date, *CURRENT, *END
*, *PRINT, *PRTWRAP

More ...

More ...
F3=Exit F4=Prompt FS=Ref resh F12=Cancel F13=How to use this display
F24=More keys

Chapter 14 Keeping Up with the Past 249

The parameters for the DspLog command are as follows:

• Log - The system refers to the histrny as QHsL

• Period You can enter a specific time period or accept the defaults for the begin-
ning and ending period of time for which you want to display messages. Notice that
the default for "Beginning time·· is the earliest available time (*Avail) and the default
for "Beginning date" is the current date (*Cum:nt). To look at previous days, you
must supply a value.

• Output - You're probably familiar \Vith this parameter. The value * results in output
to the screen, and "Print results in a printed spooled file.

• Job - You use the Job parameter (not shmvn in Figure 14.2) to search for a specific
job or set of jobs. You can enter just the job name, in which case the system might
find several jobs with the same name that ran during the selected period of time. Or
you Gm enter a specific job name, user name, and job number to retrieve the hist01y
information for a patticular job.

• MsglD Like the Job parameter, parameter MsglD (not shown in Figure 14.2) helps
narrow your search. You can specify one message or multiple messages. By specify
ing 00 as the last two digits of the message ID. you can retrieve related (generic) sets
of messages. For example, if you enter the message ID CPF2200, the system retrieves
all messages from CPF2200 to CPF2299 (these are all security-related messages).

History Log Housekeeping
The history consists of a message queue and system files that store history messages.
The files belong to libraiy QSys and begin with the letters QHST, followed by a number
derived as .n·dddn, \vhere yvddd stands for the Julian date on which the log was created
and n represents a sc.cquence character appended to the Julian date (0 through 9 or A
through Z). The text description maintained by the system contains the beginning and
ending date and time frx the messages contained in the file, which is helpful for tracking
acr.ivities that occurred during a paiticular time period.

You can use the DspOhjD (Display Object Description) command to display a list of
history files. The command

DspObjD Obj(QSys/QHst*) ObjType(*File)

results in a display similar to the one shown in Figure 14.3.

250 Starter Kit for the IBM iSeries and AS/400

FIGURE 14.3

DspOhjD Panel

Display Object Description - Basic

Library: QSYS

Type options, press Enter.
5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Freed Size
QHST90278A *FILE PF NO 803328
QHST90278B *FILE PF NO 803328
QHST90281A *FILE PF NO 180736

F3=Exit F12=Cancel F17=Top F18=Bottom

Library 1 of 1

Text
0901005002917090
0901005151433090
0901008083436090

Bottom

The system creates a new file each time the existing file reaches its maximum size
limit, which the system value QHstLogSiz (Histrny log size) controls. Because the system
itself doesn't automatically delete files, it's important to develop a strategy for deleting the
log files (to save disk space) and for using the data before you delete the files.

You should maintain enough recent history on disk to be able to easily inquire into
the log to resolve problems. The best way to manage history logs on your system is to
take advantage of the automatic cleanup capabilities of Operational Assistant (OA), which
we covered in Chapter 12. The OA categ01y "System journals and system logs" lets you
specify the number of clays' worth of infonnation to keep in the history log. OA then
deletes log files olcler than the specified number of clays.

Keep in mind that OA provides no strategy for archiving the history logs to a media
that you can easily retrieve. If you activate OA cleanup procedures, make sure that once
each month you save a copy of the QHst files. If you're remiss in perfonning this save,
OA will still delete the log files.

If you choose not to use the automatic cleanup that OA offers, you can set up your
own cleanup schedule. Here's one potential scheclule:

• On the first day of each month, save all QHst files in libra1y QSys to media. For quick
reference, record on the media label the names of the beginning and ending log files.

• View the existing log files on the system. and delete any that are more than 30 clays
old. (Hint: Remember that the text description contains the beginning and ending date
and time to help you cletennine the age of the file.)

Chapter 14 Keeping Up with the Past 251

To detennine how much history log information to keep, you should consider the
disk space required to store the information and schedule your file saves accordingly. In
most cases, it's a good idea to keep 30 days of online history, although large installations
with heavy history-log activity may need to save and delete objects every 15 days.

Inside Information
Careful review of history logs can ale1t you to unusual system activity. If, for example, the
message "Password from device DSP23 not coffect for user QSECOFR" appears frequently
in the log, you might be prompted to find out who uses DSP23 and why he or she is
trying to sign on with the system security officer profile. Or you might notice the message
"Receiver ACG0239 in JRNLIB never fully saved (IC)." The second-level help text would
tell you which program was trying to delete the journal receiver. lf such events are
brought to your attention, you might be able to prevent the loss of important infom1ation.

Maintaining a history log lets you reconstruct events that have taken place on your
system. We're familiar with one company that used the history log in discovering that a
programmer had planted a system "virus." A history log can also alert you to less se1ious
occurrences (e.g., a specific sequence of jobs wasn't pe1fom1ed exactly as planned). You
can use the history log to review all completion messages to find out how many jobs are
executed on your system each day or \Vhich jobs ended abnom1ally. As you monitor the
history log, you'll soon sta1t to recognize rhe messages that are most beneficial to you.

The histo1y log is a management ((X)l mat lets you quickly analyze system activities. lt
provides a ce1tain amount of security auditing and lets you detem1ine whether and when
specific jobs were executed and how they ended. Csing and maintaining a history log isn't
difficult and could prove to he time well spent

6 Note
The security journaling capabilities that OS/400 offers using the audit journal
QAudJrn provide additional event-monitoring capabilities specifically related
to security. This journal can monitor for the security-related events recorded
in QHst as well as additional events that QHst doesn't record. For more
information about QAudJrn, see OS/400 Security -Reference (SC4I-5302).

253

Chapter 15

Backup Basics

by Debbie Saugen

The most \aluahle component of any computer system isn't the harchvarc or software
that runs the computer but, rather, the data that resides on the system. If a system failure
or disaster occurs. you can replace the computer hardware and software that runs your
business. Your company's data, however, is irreplaceable. For this reason, it's critical to
have a good backup and recovery strategy. Companies go out of business \vhen their
data can'! he recovered.

\Vhat should you he backing up? The simple answer to this question is that you
should back up eve1ything. A basic rule of backup and recove1y is that if you don't save
it, it doesn't get restored. Hmvever, you may have some noncritical data (e.g., test data)
on your system that doesn't need to he restored and can be omitted from your backup.

\'•/hen and ho\v often do you need to back up? Ideally, saving your entire system
eve1y night is the simplest and safest backup stratei-,>y. This approach also gives you the
simplest and satest srraiegy for recovery. Realistically, though, when and how you run
your backup, as well as what you back up, depend on the size of your hackup 1uindow
~the amounr of time your system can be unavailable to users while you perfonn a
backup. To simplify recove1y, you need to hack up ·when your system is at a known
point and your data isn't changing.

\vhen you design a backup stratq..,'Y, you need to balance the time it takes to save your
data with the value of the data you might lose and the amount of time it may take to
recover. Always keep your recovery strategy in mind as you design your backup stratch'Y·

If your system is so critical lo your business that you don't have a manageable backup
window, you probably can·r atl<)rd an unscheduled outage either. If this is your situation,
you should seriously evaluate the availability options of the iSeries, including dual systems.
For more information about these options, see "Availability Options" (page 255>.

Designing and Implementing a Backup Strategy
You should design your backup strategy based on the size of your backup window. At
the same time you design your backup siratcgy, you should also design your recovery
strategy to en.c;un.~ that your backup strategy meets your system recovery needs. The final
step in designing a backup strategy is to test a full system recovery. This is the only way
to verij\· that you·ve designed a good backup strategy that will meet your system recovety
needs. Your business may depend on your abiliry to recover your system. You should test
your recovery strategy at. your recovery services provider's location.

254 Starter Kit for the IBM iSeries and AS/400

When designing your backup and recovery strategy, think of it as a puzzle: The fewer
pieces you have in the puzzle, the more quickly you can put the pieces of the puzzle
together. The fewer needed in your backup strategy, the more quickly you can
recover the pieces.

Your backup strntegy will typically be one of three types:

• Simple - You have a large backup window, such as an 8- to 12-hour block of time
available daily with no system activity.

• Medium - You have a medium backup \vindow, such as a 4- to 6-hour block of
time available daily with no system activity.

• Complex - You have a shon backup '.vinclow, with little or no time of system
inactivity.

A simple way to ensure you have a good backup of your system is to use the options
provided on menu SAVE (Figure 15.1), which you can reach by typing Go Save on a
command line. This command presents you with additional menus that make it easy either
to lYack up your entire system or to split your entire system backup into two parts: system
data and user data. In the following discussion of backup strategies. the menu options I
refer to are from menu SA VE.

SAVE

Select one of the following:

Save System and User Data

FIGURE 15.1
SAVE Menu options

Save

20. Define save system and user data defaults
21. Entire system
22. System data only
23. All user data

Save Document Library Objects
30. All documents, folders, and mail

System:

31. New and changed documents, new folders all ma
32. Documents and folders
33. Mail only
34. Calendars

Selection or command

AS400

More •••

===> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

t st ant
F16=AS/400 Main Menu

Chapter 15 Backup Basics 255

Availability Options
Availability options are a complement to a backup strategy, not a replacement. These options can

significantly reduce the time it takes you to recover after a failure. In some cases, availability options

can prevent the need for recovery. To justify the cost of using availability options, you need to

understand the following:

• the value of the data on your system

• the cost of a scheduled or unscheduled outage

• your availability requirements

The following availability options can complement your backup strategy:

• journal management

• access-path protection

• auxiliary storage pools

• device parity protection

• mirrored protection

• dual systems

• clustered systems

You should compare these options and decide which are best suited to your business needs. For details

about availability options, their benefits versus costs, and how to implement them, refer to IBM's iSeries

Information Center at hltpi/publib.boulder.ibm.com/pubs;html/as400/infocenter.htm.
We'll look more closely at each availability option in a moment, but first, it's helpful to be

acquainted with the following terms, which are often used in discussing system availability:

• An outage is a period of time during which the system is unavailable to users. During a

scheduled outage, you deliberately make your system unavailable to users. You might use a

scheduled outage to run batch work, back up your system, or apply PTFs. An unscheduled
outage is usually caused by a failure of some type.

• High availability means that the system has no unscheduled outages.

• In continuous operations, the system has no scheduled outages.

• Continuous availability means that the system has neither scheduled nor unscheduled outages.

Journal Management for Backup and Recovery
You can use journal management (often referred to as journaling a file or an access path) to recover the

changes to database files (or other objects) that have occurred since your last complete backup. You use

a journal to define which files and access paths you want to protect. A journal receiver contains the

entries (called journal entries) that the system adds when events occur that are journaled, such as

changes to database files, changes to other journaled objects, or security-related events.

continued

256 Starter Kit for the IBM iSeries and AS/400

(Availability Options Continued)

You can use the remote journal function to set up journals and journal receivers on a remote iSeries

system. These journals and journal receivers are associated with journals and journal receivers on the

source system. The remote journal function lets you replicate journal entries from the source system to

the remote system.

Access-Path Protection
An access path describes the order in which the records in a database file are processed. Because

different programs may need to access the file's records in different sequences, a file can have multiple

access paths. Access paths in use at the time of a system failure are at risk of corruption. If access paths

become corrupted, the system must rebuild them before you can use the files again. This can be a very

time-consuming process.

You should consider an access-path protection plan to limit the time required to recover corrupted

access paths. The system offers two methods of access-path protection:

• system-managed access-path protection (SMAPP)

• explicit journaling of access paths

You can use these methods independently or together.

By using journal management to record changes to access paths, you can greatly reduce the amount of

time it takes to recover access paths should doing so become necessary. Using journal entries, the system

can recover access paths without the need for a complete rebuild. This can result in considerable time

savings.

With SMAPP, you can let the system determine which access paths to protect. The system makes

this determination based on access-path target recovery times that you specify. SMAPP provides a

simple way to reduce recovery time after a system failure, managing the required environment for you.

You can use explicit journaling, even when using SMAPP, to ensure that certain access paths critical

to your business are protected. The system evaluates the protected and unprotected access paths to

develop its strategy for meeting your access-path recovery targets.

Auxiliary Storage Pools
Your system may have many disk units attached to it for auxiliary storage of your data that, to your system,

look like a single unit of storage. When the system writes data to disk, it spreads the data across all of

these units.

You can divide your disk units into logical subsets known as auxiliary storage pools (ASPs) which

don't necessarily correspond to the physical arrangement of disks. You can then assign objects to

particular ASPs, isolating them on particular disk units. When the system now writes to these objects, it

spreads the information across only the units within the ASP.

ASPs provide a recovery advantage if the system experiences a disk unit failure that results in data

loss. In such a case, recovery is required only for the objects in the ASP containing the failed disk unit.

System objects and user objects in other ASPs are protected from the disk failure.
continued

Chapter 15 Backup Basics 257

Jn addition to the protection that isolating objects to particular ASPs provides, the use of ASPs
provides a certain level of flexibility. When you assign the disk units on your system to more than one
ASP, each ASP can have different strategies for availability, backup and recovery, and performance.

Device Parity Protection
Device parity protection is a hardware availability function that protects against data loss due to disk
unit failure or damage to a disk. To protect data, the disk controller or input/output processor (!OP)

calculates and saves a parity value for each bit of data. The disk controller or IOP computes the parity
value from the data at the same location on each of the other disk units in the device parity set. When a
disk failure occurs, the data can be reconstructed by using the parity value and the values of the bits in

the same locations on the other disks. The system continues to run while the data is being reconstructed.
The overall goal of device parity protection is to provide high availability and to protect data as
inexpensively as possible.

lf possible, you should protect all the disk units on your system with either device parity protection

or mirrored protection (covered next). In many cases, your system remains operational during repairs.
Device parity protection is designed to prevent system failure and to speed the recovery process for

certain types of failures, not as a substitute for a good backup and recovery strategy. Device parity
protection doesn't protect you if you have a site disaster or user error. It also doesn't protect against

system outages caused by failures in other disk-related hardware (e.g., disk controllers, disk 1/0).

Mirrorecl Protection
Mirrored protection is a software availability function that protects against data loss due to failure or
damage to a disk-related component. The system protects your data by maintaining two copies of the
data on two separate disk units. When a disk-related component fails, the system continues to operate
without interruption, using the mirrored copy of the data until repairs are complete on the failed
component.

When you start mirrored protection or add disk units to an ASP that has mirrored protection, the
system creates mirrored pairs using disk units that have identical capacities. The goal is to protect as
many disk-related components as possible. To provide maximum hardware redundancy and protection,
the system tries to pair disk units from different controllers, IOPs, and buses.

Different levels of mirrored protection are possible, depending on the duplicated hardware. For
instance, you can duplicate

• disk units
• disk controllers

• disk IOPs
• a bus

If a duplicate exists for the failing component and attached hardware components, the system remains

available during the failure.

continued

258 Starter Kit for the IBM iSeries and AS/400

(Availability Options Continued)
Remote mirroring support Jets you have one mirrored unit within a mirrored pair at the local site

and the second mirrored unit at a remote site. For some systems, standard DASD mirroring will remain

the best choice; for others, remote DASD mirroring provides important additional capabilities.

Dual Systems
System installations with very high availability requirements use a dual-systems approach, in which two

systems maintain some or all data. If the primary system fails, the secondary system can take over

critical application programs.

The most common way to maintain data on the secondary system is through journaling. The

primary system transmits journal entries to the secondary system, where a user-written program uses

them to update files and other journaled objects in order to replicate the application environments of

the primary system. Users sometimes implement this by transmitting journal entries at the application
layer. The remote journal function improves on this technique by transmitting journal entries to a

duplicate journal receiver on the secondary system at the licensed internal code layer. Several software

packages are available from independent software vendors to support dual systems.

Clustered Systems
A cluster is a collection or group of one or more systems that work together as a single system. The
cluster is identified by name and consists of one or more cluster nodes. Clustering Jet you efficiently
group your systems together to create an environment that approaches 100 percent availability.

Implementing a Simple Backup Strategy
TI1e simplest backup strategy is to save evetything daily whenever there is no system
activity. You can use SA VE menu option 21 (Entire system) to completely back up your
system (with the exception of queue entries such as spooled files). You should also
consider using this option to back up the entire system after installing a new rele-dse,
applying PTFs, or installing a new licensed program product As an alternative, you can
use SA VE menu option 22 (System data only) to save just the system data after applying
PTFs or installing a new licensed program product.

Option 21 offers the significant advantage that you can schedule the backup to run
unattended (with no operator interventioni. Keep in mind that unattended save operations
require you to have a tape device capable of holding all your data. (For more infom1ation
about backup media, see "Preparing and Managing Your Backup Media," page 273.)

Even if you don't have enough time or enough tape-device capability to perform an
unattended save using option 21, you can still implement a simple backup strategy:

Daily backup: Back up only user data that changes frequently.

Weekly backup: Back up the entire system.

Chapter 15 Backup Basics 259

A simple backup strategy may also involve SAVE menu option 2.3 (All user data). 111is
option saves user data that can change frequently. You can also schedule option 23 to tun
'Nithout operator ime1vemion.

Tf your system has a long period of inactivity on weekends, your backup strategy
might look like this:

Friday night:

Monday night:

Tuesday night:

W..:dnesday night:

Thursday night:

Friday night:

Entire system (option 2 ll

All user data (option 23)

All user data (option

All user data (option

All user data (option 23)

Entire system (option 21)

Implementing a Medium Backup Strategy
'You may not h<ive a large enough backup vvimiu\V to implement a simple backup
strategy. For example, you may have large batch jobs that take a long time to run at night
or a considerable amount of data that takes a long time to back up. If this is your
situation, you'll need to implement a backup and recovery strategy of medium complexity.

\\ihen clevdoping a medium backup strategy, keep in mind that the more often your
data changes, Lhe more often you need to back it up. You'll thercfrxe need to evaluate in
detail ho\v often your data changes.

Several methods are available to you in developing a medium backup strc1tegy:

• saving changed objects

• journaling objects and saving the journal receivers

• saving groups of user libraries, folders, or directories

You can use one or a combination of these methods.

Several commands let you save only the cbta that has changed since your last save
operation or since a pa1ticular date and time.

You can use the SavChgOhj (Save Changed Objects) command lo save only those
objects that have changed since a Jibraiy or group of libraries \vas last saved or since a
pa!ticular date and time. This approach can be useful if you have a system environment
in which program objects and data files exist in the same librmy. Typically, data files
change very frequently, while program objects change infrequently. Using the SavChgOhj
command. you can save just the data files that have changed.

The SavDLO (Save Document Library Objects) command lets you save documents
and folders that have changed since the bst save or since a palticular date and time. You
can use SavDLO to save changed documents and folders in all your user auxiliary storage
pools (ASPs) or in a specific user ASP.

260 Starter Kit for the IBM iSeries and AS/400

You can use the Sav (Save) command to save only those objects in directories that
have changed since the last save or since a particular date or time.

You can also choose to save only your changed data, using a combination of the
SavChgOhj, SavDLO, and Sav commands, if the hatch workload on your system is heavier
on specific clays of the week. For example:

Day/time Batch workload Save operation
Friday night Light Entire system (option 21)

Monday night Heavy Changed data only*

Tuesday night Light All user data (option 23)

Wednesday night Heavy Changed data only*

Thursday night Heavy Changed data onlyx

Entire 21)

If your save operations take too long because your files are large, saving changed objects
may not help in your system environment For instance, if you have a file member with
100,000 records and one record changes, the SavChgObj command saves the entire file
member. In this environment journaling your database files and saving the journal
receivers regularly may be a better solution. However, keep in mind that d1is approach
will make your recovery more complex.

When you journal a database file, the system writes a copy of every changed record
to a journal receiver. When you save a journal receiver, you're saving only the changed
records in the file, not the entire file.

If you journal your database files and have a batch workload that varies, your backup
strategy might look like this:

Day/time Batch workload Save operation
Friday night Light Entire system (option 21)

Monday night Heavy Journal receivers only

Tuesday night Light All user data (option 23)

Wednesday night Heavy Journal receivers only

Thursday night Heavy journal receivers only

Entire 21)

To take full advantage of journaling protection, you should detach and save the
journal receivers regularly. '!be frequency with which you save the journal receivers
depends on the number of journaled changes that occur on your system. Saving the
journal receivers several times during the day may be appropriate for your system
environment.

Chapter 15 Backup Basics 261

The way in \Vhich you save journal receivers depends on whether they reside in a
library \Vith other objects. Depending on your environment, you '11 use either the SavLib
(Save Library) command or the SavOhj (Save Object) command. It's best to keep your
journal receivers isolated from other objects so that your save/restore functions are
simpler. Be aware that you must save a new member of a database file before you can
apply journal entries to the file. If your applications regularly add new file members, you
should consider using the SavChgObj strategy either hy itself or in combination with
journaling.

Many applications are set up with data files and program objects in different libraries. This
design simplifies your backup and recovery procedures. Data files frequently, and,
on most systems, program objects change infrequently. If your system environment is set
up like this. you may want to save only the libraries with data files on a daily basis. You
can also save, on a daily basis, groups of folders and directories that change frequently.

Implementing a Complex Backup Strategy
If you have a very short backup windmv that requires a complex strategy for backup and
for recove1y, you can use some of the same techniques described for a medium backup
strategy, but with a greater level of detail. For example, you may need to save specific
oitical files at specific times of the day or week.

Several other meth<xls are available to you in developing a complex backup strategy.
You can use one or a combination of these methods:

• save data concurrently using multiple tape devices

• save data in parallel using multiple tape devices

• use the save-while-active process

Before you use any of these methods, you must have a complete backup of your entire
system.

You can reduce the amount of time your system is unavailable by performing save
operations on more than one tape device at a time. For example, you can save libraries to
one tape device, folders to another tape device, and directories to a third tape device. Or
you can save different sets of lihrmies, objects, folders, or directories to different
devices. tater in this chapter, I provide more infonnation about saving data concurrently
using multiple tape devices.

262 Starter Kit for the IBM iSeries and AS/400

Starting with V4R4, you can perform a parallel save using multiple tape devices. A parallel
save is intended for ve1y large objects or libraries. With this method, the system "spreads''
the data in the object or library across multiplc tape devices. <This function is implemented
with IBM's Backup, Recovery and Media Services: for more information, see Chapter 16.)

The save-while-active process can significantly reduce the time your system is unavailable
during a backup. If you choose to use save-while-active, make sure you understand the
process and monitor for any synchronization checkpoints before making your objects
available for use. I provide more details about save-while-active later.

An Alternative Backup Strategy
Another option available to help implement your backup strategy is the Backup, Recovery
and Media Services (BRNIS) licensed program product. BRMS is IBM's strategic OS/400
backup and recovery product on the iScries and AS/400.

BRMS is a comprehensive tool for managing the backup, archiving, and recove1y
environment for one or more servers in ~1 site or across a network in which data
exchange by tape is required. For more infonnation about using BRMS to implement your
backup strategy, see Chapter 16.

The Inner Workings of Menu SAVE
Menu SA VE contains many options for saving your data, hut four are primary:

• 20 - Define savc system and user data defaults

• 21 - Entire systcm

• 22 - System data only

• 23 - All user data

You can use these menu options to back up your system. Or, if your installation requires
a more complex backup strategy, you can use OS/400's save commands in a CL program
to customize your backup.

To help you make your decision, as well as to provide skeleton code that you can
use as a guideline for your own backup programs, this section provides a look at some of
the inner workings of these prima1y save options. For detailed instrnctions and a checklist
on using these options, refer to OS/400 Backup and Recoueiy (SC41-5304). Figure 15.2
illustrates the save commands and the SA VE menu options you can use to save the parts
of the system and the entire system.

Chapter 15 Backup Basics 263

FIGURE 15.2
Save Command' and Menu options

Options from
SAVE menu

23

22

21

IBM-supplied directories

OS/400 optional libraries
QHlpSys QUsrTool

Licensed program libraries
QRPG QCbl QXxxxx

User libraries
LibA LibB LibC

Commands

SavSys

Savlib
*Non Sys

I
IBM libraries with user data

QGPL QUsrSys QS36F #Library

~------
23

Entire System (Option 21)
SAVE menu Option 21 lets you perform a complete backup of all the data on your
system. with the exception of backing up spooled files (I cover spooled file backup later).
This option put<> the system into a restricted state. This means no users can access your
system while the backup is running. It's best to mn this option overnight for a small
system or during the weekend for a larger system.

264 Starter Kit for the IBM iSeries and AS/400

Option 21 runs program QMNSavc. The following program extract represents the
significant processing that option 21 perfrnms:

EndSbs Sbs(*ALL) Option(*Immed)
ChgMsgQ MsgQ(QSysOpr) +

Dlvry(*Break or *Notify)
SavSys
Savlib Lib(*NonSys) AccPth(*Yes)
SavDLO DLO(*ALL) Flr(*Any)
Sav Dev('/QSYS.LIB/TapeDevfceName.DEVD') +

Obj(('/*') +
('/QSYS.LIB' *Omit) +
('/QDLS' *Omit)) +

UpdHst(*Yes)
StrSbs SbsD(ControllingSubsystem)

6 Note
The Sav command omits the QSys.lib file system because the SavSys (Save

System) command and the Savlib lib(*NonSys) command save QSys.lib. The

Sav command also omits the QDLS file system because the SavDLO

command saves QDLS.

System Data Only (Option 22)
Option 22 saves only your system data. It does not save any user data. You should run
this option (or option 21) after applying PTFs or installing a new licensed program
product. Like option 21, option 22 puts the system into a restricted state.

Option 22 runs program QSRSavl. The following program extract represents the
significant processing that option 22 perfonns:

EndSbs Sbs(*ALL) Option(*Immed)
ChgMsgQ MsgQ(QSysOpr)

Dlvry(*Break or *Notify)
SavSys
Savlib Lib(*IBM) AccPth(*Yes)

+

Sav Dev('/QSYS.LIB/TapeDevfceName.DEVD') +
Obj(('/QIBM/ProdData') +

('/QOpenSys/QIBM/ProdData')) +
UpdHst<*Yes)

StrSbs SbsD(ControllingSubsystem)

All User Data (Option 23)
Option 23 saves all user data, including files, user-written programs, and all other user
data on the system. This option also saves user profiles, security data, and configuration
data. Like options 21 and 22, option 23 places the system in restricted state.

Option 23 runs program QSRSavU. The following program extract represents the
significant processing that option 23 perfonns:

EndSbs SbsC*All) Option(*Immed)
ChgMsgQ MsgQ(QSysOpr) +

DlvryC*Break or *Notify)
SavSecDta
SavCfg
Savlib LibC*AlLUsr) AccPthC*Yes)
SavDLO DLOC*All) FlrC*Any)
Sav DevC'/QSYS.LIB/TapeDeviceName.DEVD') +

Obj(('/*') +
('/QSYS.LIB' *Omit) +
C'/QDLS' *Omit) +
C'/QIBM/ProdData' *Omit) +
('/QOpenSys/QIBM/ProdData' *Omit))+

UpdHstC*Yes)
StrSbs SbsDCControLLingSubsystem)

6 Note

Chapter 1 5 Backup Basics 265

The Sav command omits the QSys.lib file system because the SavSys com
mand, the SavSecDta (Save Security Data) command, and the SavCfg (Save
Configuration) command save QSys.lib. The Sav command also omits the
QDLS file system because the SavDLO command saves QDLS. In addition, the
Sav command executed by option 23 omits the /QIBM and /QOpenSys/QIBM
directories because these directories contain IBM-supplied objects.

Setting Save Option Defaults
When you sa\'C information using option 21, 22, or 23, you can specify default values for
sorne of the comm;mds used by the save pmcess, Figure lS3 sho\vs the Specify Command
Defaults values used hy these options, You can use SAVE ml'.nu option 20 (Define .save
sysrem and user data defaults) to change the default values displayed on this panel for
menu options 21. 22, and 2,), Changing the defaults simplifies the task of setting up your
backups, To changt' the defaults, you must have *Change authority to both library
Ql !srSys and the QSRDflts data area in QllsrSys,

\Vhen you select option 20, the system displays the default parameter values for
options 21, 22, and 23, The first time you use option 20, the system displays the IBM
supplied default p:1rameter values, You can changl: any or all of the parameter values to
meet your needs, For example, you can specify additional rape devices or change the
me,;sage queue delivery default The system saves the new default values in data area
QSRD!1ts in lihr:1ry Ql fr)r future use <the system creates QSRDflts only after you
change the IBM-supplied defaulr values),

Once defined ne\v default values, you no longer need to wony about which,
if any, options ro change on subsequent backups, You can simply review the new default
options and then press Enter to start the backup using the new default param<:ters,

266 Starter Kit for the IBM iSeries and AS/400

FIGURE 15.3
Spec(fy Command Dqfaults Panel

Specify Command Defaults

Type choices, press Enter.

Devices TAP01 Names

Prompt tor commands y Y=Yes, N=No

Check for active files y Y=Yes, N=No

Message queue delivery *BREAK_ *BREAK, *NOTIFY

Start time ••. *CURRENT *CURRENT, time

*NONE -- *NONE, *ALL, *WINDOWSNT Vary oft network servers

Unmount tile systems .. N Y=Yes, N=No

Print system information N Y=Yes, N=No

Use system reply list N Y=Yes, N=No

Bottom
F3=Exit F12=Cancel

If you have multiple, distributed systems with the same save parameters on each
system, option 20 offers an additional benefit: You can simply define your default
parameters using option 20 on one system and then save data area QSRDflt'i in library
QUsrSys, distribute the saved data area to the other systems, and restore it.

Printing System Information
When you perfom1 save operations using option 21, 22, or 23 from menu SA VE, you can
optionally request a series of reports with system infonnation that can be useful during
system recovery. TI1e Specify Command Default'> panel presented by these options provides
a prompt for printing system information. You can also use command PrtSyslnf (Print
System Information) to print the system information. This infomution is especially useful
if you can't use your SavSys media to recover and must use your distribution media.

Printing the system infom1ation requires *Al!Obj, *IOSysCfg, and *JobCtl authority and
produces many spooled file listings. You probably don't need to print the information
every time you perfonn a backup. However, you should print it whenever important
information about your system changes.

Chapter 15 Backup Basics 267

The following lists and reports are generated when you print the system information
(the respective CL commands are noted in parentheses):

• a library backup list with information about each library in the system, including
which backup schedules include the library and when the library was last backed
up (DspBckupL *Lib)

• a folder backup list with the same information for all folders in the system
(DspBckupL *Fir)

• a list of all system values (DspSysVall

• a list of network attributes (DspNetA)

• a list of edit descriptions (DspEcltD)

• a list of PTF details (DspPTF)

• a list of reply list entries (WrkRpyLE)

• a report of access-path relationships (DspRcyAPl

• a list of service attributes (DspSvrA)

• a list of network server storage spaces (DspNwSStg)

• a repolt showing the power on/off schedule (DspPwrScd)

• a list of hardware features on your system (DspHdwRsc)

• a list of distribution queues (DspDstSrv)

• a list of all subsystems (DspSbsD)

• a list of the IBM software licenses installed on your machine (DspSfwRsc)

• a list of journal object descriptions for all journals (DspObjD)

• a report showing journal attributes for all journals (WrkJrnA)

• a report showing cleanup operations (ChgClnupl

• a list of all user profiles (DspUsrPrf)

• a report of all job descriptions (DspJohD)

Saving Data Concurrently Using Multiple Tape Devices
As I mentioned earlier, one way to reduce the amount of time required for a complex
backup strategy is to perform save operations to multiple tape devices at once. You can
save data concurrently using mulriple tape devices by saving libraries to one tape device,
folders to another tape device, and directories to a third tape device. Or, you can save
different sets of libraries, objects, folders, or directories to different tape devices.

Concurrent Saves of Libraries and Objects
You can run multiple save commands concuJTently against multiple libraries. When you run
multiple save commands, the system processes the request in several stages that overlap,
improving save performance.

268 Starter Kit for the IBM iSeries and AS/400

To perfonn concurrent save operations to different tape devices, you can use the
OmitLib (Omit libra1y) parameter with generic naming. For example:

Savlib Lib(*ALLUsr) +
Dev(FirstTapeDevice) +
Omitlib(A* B* $* #* @* •.• L*)

Savlib Lib(*ALLUsr) +
Dev<SecondTapeDevice) +
Omi tl i b(M* N* •.• Z*)

You can also save a single library concurrently to multiple tape devices by using the
SavObj or SavChgObj command. This technique lets you issue multiple save operations
using multiple tape devices to save objects from one large library. For example, you can
save generic objects from one large library to one tape device and concurrently issue
another SavObj command against the same library to save a different set of generic objects
to another tape device.

You can use generic naming on the Obj (Object) parameter while performing concurrent
SavChgObj operations to multiple tape devices against a single library. For example:

SavChgObj Obj(A* B* C* $* #* .•• L*) +
Dev<FirstTapeDevice) +
Lib(LibraryName)

SavChgObj Obj (M* N* O* •.• Z*) +
Dev (SecondTapeDevi ce) +
Lib<LibraryName)

Concurrent Saves of DLOs (Folders)
You can nm multiple SavDLO commands concurrently for DLO objects that reside in the
same ASP. This technique allows concurrent saves of DLOs to multiple tape devices.

You can use the command's Fir (Folder) parameter with generic naming to perform
concurrent save operations to different tape devices. For example:

SavDLO DLO(*All) +
Flr<DEPT*) +
Dev(FirstTapeDevice) +
OmitFLr<DEPT2*)

SavDLO DLO(*All) +
Flr(DEPT2*) +
Dev(SecondTapeDevice)

In this example, the system saves to the first tape device all folders starting with DEPT
except those that start with DEPT2. Folders that start with DEPT2 are saved to the second
tape device.

6 Note
Parameter OmitFlr is allowed only when you specify DLO(*All) or
DLO(*Chg).

Chapter 15 Backup Basics 269

Concurrent Saves of Objects in Directories
You c:m also nm multiple Sav commands concurrently against objects in directories. This
technique allows concurrent saves of objects in directories to multiple tape devices.

You can use the S<1v commamls Obj (Object) parameter with generic naming to
pe1fom1 concurrent save operations to different tape devices. For example:

Sav Dev('/QSYS.LIB/FirstTapeDevice.DEVD') +
Obj(('/DIRA*')) +
UpdHst(*Yes)

Sav Dev('/QSYS.LIB/SecondTapeDevice.DEVD') +
Obj(('/DIRB*')) +
UpdHst(*Yes)

Save-While-Active
To either reduce or eliminate the amount of time your system is unavailable for use during
a backup (your hackup outage), you can use the sa\T-whilc-activc process on particular
save operations along with your other backup and recove1y procedures. Save-while-active
lets you use the system during part or all of the backup process. Jn contrast, other save
operations pennit either no access or only read access to objects during the backup.

How Does Save-While-Adive Work?
OS/400 objects consist of units of storage called pages. W11en you use save .. while-active to
save an object, the system creates two images of the pages of the object. The first image
contains the updates to the object with which normal system activity works. The second
image is a "snapshot" of the object as it exists at :1 single point in time called a checLpoint.
The save-while-active job uses this image - called the checkpoint image - to save the
object. \\'hen an application makes changes to an object during a save-while .. active job,
the system uses one image of the object's pages to make the changes and. at the same
time, uses the other image to save the object to tape.

The system locks objects as it obtains the checkpoint images, and you can't change
objects during the checkpoint processing. After the system has obtained the checkpoint
images, applications can once ;1gain change the objects.

The image that the system saves doesn't include any changes made during the save ..
whiJe .. active job. The image on the tape is an image of the object as it existed 'A:hen the
system reached the checkpoint. Rather than maintain two complete images of the object
being saved. the system maintains l\vo images only for the pages of the objects that are
being changed as the save is peli(m11cd.

When you back up more than one object using the save-whilc .. active process, you must
choose when the objects will reach a checkpoint in relationship to each other - a
concept called svncbronization. There arc three kinds of synchronization:

• With }it!/ svncbrcmi.zutimz, the checkpoints for all the objects occur at the same time.
during a time period in \Vhich no changes can occur to the objects. It's strongly

270 Starter Kit for the IBM iSeries and AS/400

recommended that you use full synchronization, even when you're saving objects in
only one libraiy.

• With librmy synchronization, the checkpoints for all the objects in a library occur at
the same time.

• With -~vstem-dejlned -~vnchronization. the system decides when the checkpoint5 for
the object-; occur. TI1e checkpoints may occur at different times, resulting in a more
complex recovery procedure.

How you use save-while-active in your backup strategy depends on whether you
choose to reduce or eliminate the time your system is unavailable during a backup.
Reducing the backup outage is much simpler and more common than eliminating it. It's
also the recommended way to use save-while-active,

When you use save-while-active to reduce your backup outage, your system recovery
process is exactly the same as if you perfonne<l a standard backup operdtion. Also, using
save-while-active this way doesn't require you to implement journaling or commitment
control.

To use save-while-active to reduce your backup outage, you can end any applications
that change objects or end the subsystems in which these applications are run. After the
system reaches a checkpoint for those objects, you can restart t11e applications. One save
while-active option lets you have the system send a message notification when it completes
the d1eckpoint processing. Once you know checkpoint processing is completed, it's safe
to start your applications or subsystems again. Using save-while-active this way can
significantly reduce your backup outage.

Typically, when you choose to reduce your backup outage with save-while-active,
the time during which your system is unavailable for use mnges anywhere from 10 minutes
to 60 minutes. It's highly recommended that you LL'ie save-while-active to reduce your backup
outage unless you absolutely cannot have your system unavailable for this time frame.

You should use save-while-active to eliminate your backup outage only if you have
absolutely no tolerance for any backup outage. You should use this approach only to
back up objects that you're protecting with journaling or commitment control.

When you use save-while-active to eliminate your backup outage, you don't end the
applications that modif)r the objects or end the subsystems in which the applications are
run. However, this method affect5 tl1e pert(xmance and response time of your applications.

Keep in mind that eliminating your backup outage with save-while-active requires
much more complex recovery procedures. You'll need to include these prcx:edures in
your disaster recovery plans.

Chapter 15 Backup Basics 271

Save Commands That Support the Save-While-Active Option
The following save commands support the save-while-active option:

Command
Savlib

SavObj

SavChgObj

SavDLO

Sav

Function
Save library

Save object

Save changed objects

Save document library objects

Save in directories

The following parameters are available on the save commands for the save-while
active process:

Parameter

SavAct (Save-while-active)

SavActWait (Save active
wait time)

SavActMsgQ (Save active
message queue)

SavActOpt (Save-while-active

Description
You must decide whether you're going to use full synchronization, library
synchronization, or system-defined synchronization. It's highly
recommended that you use ful I synchronization in most cases.

You can specify the maximum number of seconds that the save-while-active
operation will wait to allocate an object during checkpoint processing.

You can specify whether the system sends you a message when it reaches
a checkpoint.

This parameter has values that are specific to the Sav command.

For complete details about using the save-while-active process to either reduce or
eliminate your backup outage, visit IBM's iSeries Infom1ation Cencer at http://publib.boulder
.ibm.com/pubs/ht1nl/as400/injbcente1·.htm.

Backing Up Spooled Files
When you save an output queue, its description is saved but not its contents (the spooled
files). With a combination of spooled file APis, user space APis, and list APls, you can
back up spooled files, including their associated advanced function attributes (if any).

The spooled file APis perform the real work of backing up spooled files. These APis
include

• QlJSLSpl (list Spooled Files)

• QUSRSplA (Retrieve Spooled File Attributes)

• QSpOpnSp (Open Spooled File)

• QSpCnSp (Creare Spooled File)

• QSpGetSp (Get. Spooled File Data)

• QSpPutSp (Put Spooled File Data)

• QSpCloSp (Close Spooled File)

272 Starter Kit for the IBM iSeries and AS/400

These APis let you copy spooled file infom1ation to a user SJYdce for save purposes and
copy the infom1ation back from the user space to a spooled file. Once you've copied
spooled file info1mation to user spaces, you can save the user spaces. For more
infonnation about these APis, see System API R(;(/erence (SC41-5801).

One common misconception is that you can use the CpySplF (Copy Spooled File)
commmcl to back up spooled files. This command does let you copy information from a
spooled file to a database file, but you shouldn't rely on this method for spooled file
backup. CpySplF copies only textual data and not advanced function attributes such as
graphics and variable fonts. CpySplF also does nothing to preserve print attributes such
as spacing.

IBM does offer support for saving and restoring spooled files in its BR'vlS product.
BR\1S maintains all the advanced function attributes associated with the spooled files. For
more infonnation about BRMS, see Chapter 16.

Recovering Your System
Although the iSeries is very stable and disasters are rare, there are times when some type
of recovery may be necessary. The extent of recovery required and the processes you
follow will vary greatly depending on the nature of your failure.

The sheer number of possible failures precludes a one-size-fit'l-all answer to recove1y.
Instead, you must examine the details of your failure and recover accordingly. To help
detennine the best way to recover your system, you should refer to "Selecting the Right
Recovery Strategy" in 051400 Backup and Recovery, which categorizes failures and their
associated recove1y processes and provides checklisL'i of recovery steps.

Before beginning your recovery, be sure to do the following:

• If you have to back up and recover because of some system problem. make sure
you understand how the problem occurred so you can choose the correct recovery
procedures.

• Plan your recovery.

• Make a copy of the 05/400 Backup and Recovery checklist you're using, and check
off each step as you complete it. Keep the checklist for future reference. If you need
help later, this record will be invaluable.

• If your problem requires hardware or software service, make sure you understand
exactly what the service representative does. Don't be afraid to ask questions.

Starting with V4R5, the OS/400 Backup mui Recovel)• manual includes a new appendix
called "Recovering your AS/400 system," which provides step-by-step instructions for
completely recovering your entire system to the same system (i.e., restoring to a system
with the same serial number). You can use these steps only if you saved your entire system
using either option 21 from menu SA VE or the equivalent SavSys, SavLib, SavDLO, and
Sav commands.

Chapter 15 Backup Basics 273

Continue to use the Chapter .1 checklist titled "Recovering your entire system after a
complete system loss (Checklist 17)" in OS/400 Backup and Recovety to completely
recover your system in any of the following situations:

• Your system has logical pa1titions.

• Your system uses the Alternate Installation Device Setup feature that you can define
through Dedicated Se1vice Toob (DST) for a manual IPL from tape.

• Your system has mounted user-detlned file systems before the save.

• You're recovering to a different system (a system with a different serial number).

One piece of advice warrants repeating: Test as many of the procedures in your
recovery plan as you possibly can before disaster strikes. If any surprises await you, it's far
better to uncover them in a test situation than during a disaster.

Preparing and Managing Your Backup Media

OS/400's save commands support different types of devices (including save file, tape, diskette, and

optical). For a backup strategy, you should always back up to a tape device. Choose a tape device and

tape media that has the performance capabilities and density capacity that will meet your backup
window and any requirements you have for running an unattended backup.

Preparing and managing your tape media is an important part of your backup operations. You need

to be able to easily locate the correct media to perform a successful system recovery.

You'll need to use sets of tapes and implement a rotation schedule. An important part of a good

backup strategy is to have more than one set of backup media. When you perform a system recovery,
you may need to go back to an older set of tape media if your most recent set is damaged or if you dis
cover a programming error that has affeded data on your most recent backup media.

At a minimum, you should rotate three sets of media, as follows:

Backup Media set
Backup 1 Set 1

Backup 2 Set 2

Backup 3 Set 3

Backup 4 Set 1

Backup 5 Set 2

Backup 6 Set 3

You may find that the easiest method is to have a different set of media for each day of the week. This

strategy makes it easier for the operator to know which set to mount for backup.

continued

274 Starter Kit for the IBM iSeries and AS/400

(Preparing and Managing Your Backup Media Continued)

Cleaning Your Tape Devices
It's important to clean your tape devices regularly. The read-write heads can collect dust and other

material that can cause errors when reading or writing to tape media. If you're using new tapes, it's

especially important to clean the device because new tapes tend to collect more material on the read

write heads. For specific recommendations, refer to your tape drive's manual.

Preparing Your Tapes for Use
To prepare tape media fo- use, you'll need to use the lnzTap (Initialize Tape) command. (Some tapes

come pre-initialized.) When you initialize tapes, you're required to give each tape a new-volume

identifier (using the lnz Tap command's NewVol parameter) and a density (Density parameter). The

new-volume identifier identifies the tape as a standard-labeled tape that can be used by the system for

backups. The density specifies the iormat in which to write the data on the tape based on the tape

device you're using. You can use the special value *Dev Type to easily specify that the format be based

on the type oi tape device being used.

When initializing new tapes, you should also specify Check(*No); otherwise, the system tries to read

labels from the volume on the specified tape device until the tape completely rewinds.

Here's a sample command to initialize a new tape volume:

InzTap Dev(Tap01) +
NewVolCA23001> +
CheckC*No) +
DensityC*DevType)

It's important to initialize each tape only once in its lifetime and give each
tape volwne a different volwne identifier so tape-volwne error statistics
can be tracked.

Naming and Labeling Your Tapes
Initializing each tape volume with a volume identifier helps ensure that your operators load the correct

tape for the backup. It's a good idea to choose volume-identifier names that help identify tape-volume

contents and the volume set to which each tape belongs. The iollowing table illustrates how you might

initialize your tape volumes and label them externally in a simple backup strategy. Each label has a prefix

that indicates the day oi the week (A for Monday, B for Tuesday, and so on), the backup operation

(option number from menu SAVE), and the media set with which the tape volume is associated.

continued

Chapter 15 Backup Basics 275

Volume Naming - Part of a Simple Backup Strategy
Volume name External label

B23001

B23002

B23003

E21001

E21002

E21003

Tuesday-Menu SAVE, option 23-Media set 1

Tuesday-Menu SAVE, option 23-Media set 2

Tuesday-Menu SAVE, option 23-Media set 3

Friday-Menu SAVE, option 21-Media set 1

Friday-Menu SAVE, option 21-Media set 2

Friday-Menu SAVE, option 21-Media set 3

Volume names and labels for a medium backup strategy might look like this:

Volume Naming - Part of a Medium Backup Strategy
Volume name External label

E21001

E21002

AJR001

AJR002

ASC001

ASC002

BJR001

BJR002

B23001

B23002

~Tip

Friday-Menu SAVE, option 21-Media set 1

Friday-Menu SAVE, option 21-Media set 2

Monday-Save journal receivers-Media set 1

Monday-Save journal receivers-Media set 2

Monday-Save changed data-Media set 1

Monday-Save changed data-Media set 2

Tuesday-Save journal receivers-Media set 1

Tuesday-Save journal receivers-Media set 2

Tuesday-Menu SAVE, option 23-Media set 1

Tuesday-Menu SAVE, option 23-Media set 2

If your tapes don't come prelabeled, you should put an external label on
each tape volume. The label should show the volume-identifier name and
the most recent date the tape was used for a backup. Color-coded labels
can help you locate and store your media - for exrunple, yellow for set 1,
red for set 2, and so on.

Verifying Your Tapes
Good backup procedures dictate that you verify you're using the correct tape volumes. Depending on
your system environment, you can choose to manually verify your tapes or have the system verify

your tapes:

• Manual verification - If you use the default value of *Mounted on the Vol (Volume) parameter
of the save commands, telling the system to use the currently mounted volume, the operator
must manually verify that the correct tape volumes are loaded in the correct order.

continued

276 Starter Kit for the IBM iSeries and AS/400

(Preparing and Managing Your Backup Media Continued)

• System verification - By specifying a list of volume identifiers on the save commands, you can
have the system verify that the correct tape volumes are loaded in the correct order. If the tape
volumes aren't loaded correctly, the system will send a message telling the operator to load the
correct volumes.

Another way to verify that the correct tape volumes are used is to specify expiration dates on the
media files. If you rely on your operators to verify tape volumes, you can use the ExpDate (Expiration
date) parameter and specify the value *Perm (permanent) for your save operations. This will prevent
someone from writing over a file on the tape volume by mistake. When you're ready to use the tape
volume again, specify Clear(* All) on the save operations.

If you want the system to verify your tape volumes, specify an ExpDate value that ensures you don't
use the media again too soon. For example, if you rotate five sets of media for daily saves, specify an
expiration date of the current day plus four on the save operation. Specify Clear(*None) on save
operations so the system doesn't write over unexpired files.

~Caution
It's important to try to avoid situations in which an operator must
regularly respond to (and ignore) messages such as "Unexpired files on
the media." If operators get into the habit of ignoring routine messages,
they may miss important messages.

Storing Your Tapes
An important part of any recovery strategy is storing the tape volumes in a safe but accessible location.
Ensure the tape volumes have external labels and are organized well so you can locate them easily.

To enable disaster recovery, you should store a complete set of your backups at a safe, accessible
location away from your site. Consider contracting with a vendor that will pick up and store your tapes.
When choosing off-site storage, consider how quickly you can retrieve the tapes. Also, consider
whether you'll have access to your tapes on weekends and during holidays.

A complete recovery strategy keeps one set of tapes close at hand for immediate data recovery and
keeps a duplicate set of tapes in off-site storage for disaster recovery purposes. To duplicate your tape
volumes for off-site storage, you can use the DupTap (Duplicate Tape) command.

continued

Chapter 15 Backup Basics 277

Handling Tape Media Errors
When you're saving or restoring to tape, it's normal for some tape read/write errors to occur. Tape

read/write errors fall into one of three categories:

• Recoverable errors: Some tape devices support recovering from read/write errors. The system

repositions the tape automatically and tries the save or restore operation again.

• Unrecoverable errors - processing can continue: In some instances, the system can't continue

to use the current tape but can continue processing on a new tape. The system will ask you to

load another tape. You can still use the tape with the unrecoverable error for restore operations.

• Unrecoverable errors - processing cannot continue: In some cases, an unrecoverable read/write

error will cause the system to end the save operation.

Tapes physically wear out after extended use. You can determine whether a tape is wearing

out by periodically printing the error log. Use the PrtErrlog (Print Error Log) command, and specify

Type(*VolStat). The printed output provides statistics about each tape volume. If you've used unique

volume-identifier names for your tapes and you've initialized each volume only once, you can

determine which tapes have excessive read/write errors. Refer to your tape-volume documentation to

determine the error threshold for the tape volumes you're using. You should discard any bad tape

volumes.

If you think you have a bad tape volume, you can use the DspTap (Display Tape) or the DupTap

command to check the tape's integrity. Both of these commands read the entire tape volume and will

detect any objects on the tape that the system can't read.

279

Chapter 16

Backup, Recovery and
Media Services (BRMS) Overview

by Debbie Saugen

Backup, Recove1y and Media Services (BRMS) is IBM's strategic backup and recove1y
product for the iSeries and AS/4:00. Packaged as licensed program 5769-BRl (V4R5) or
5722-BRl (V5Rl), B&'vlS is a comprehensive tool for managing the backup, archive, and
recovecy em·ironment for one or more systems in a site or across a network in which data
exchange by tape is required.

B&\1S lets you simplify and automate backups as well as manage your tape inventory.
It track of what you've saved, when you saved it, and where it is saved so that
when recove1y is necessary, BRMS restores the correct infonnation from the correct tapes
in the ccmect sequence.

In this chapter, you'll get a conceptual introduction to BR.c'v1S and some of its many
features. With this information, you can detennine whether BRMS is right for your backup
strategy.

An Introduction to BRMS
BRMS lets you easily define, and execute simple, medium, or complex backup
pr<x:e<lures. It offers full-function backup facilities, including to match the OS/400
save keyword'> (e.g., *AlllTsr, *JB;\tl); exit commands to allow processing of user-defined
routines; full, incremental, and noncumulative incremental saves; saves to save files; and
save-while-active processing. BR'vlS even provides support for backing up spooled files, a
save/restore feature sorely missing from OS/400.

You may be \vondering, "What could be simpler than backing up the entire system
every night'" Nothing is simpler, but not eve1yone cm afford the outage that this type of
save requires. BRMS is an effective solution in backing up only what's really required. BRJ\1.S
also lets you easily schedule a backup that includes a (Save System) operation,
which isn't so easy using just

In addition to these capabilities, BRMS offers step-by-step recovery infom1ation, printed
after backups are complete. no longer consists of operators clenching the desk
with white knuckles at 4:00 a.m., trying desperately to recover the system in time for the
users who'll anivc at 8:00 a.m., without any idea what's going on or how long it will take.
With native OS/400 commands, the only feedback that recovery personnel get is the
occasional change to the message line on line 25 of the screen as the recovery takes place.
BRMS changes this with full and detailed feedback during the recovery process with an
auto-refresh screen. updated as each libra1y is restored.

280 Starter Kit for the IB1'v1 iSeries and AS/400

Following are some of the features that conttibute to the robustness of BRJv1S:

• Data archive Data archive is important f()f organizations that must keep large volumes
of history data yet don't require rapid access to this information. BRl\1S can archive
data from DASO to tape and track information about objects that have been archived.
Locating data in the archives is easy. and the restore can be triggered from a work
with screen.

• Dynamic data retrieval - Dynamic retrieval for database files, document library
objects, and stream files is possible with BRMS. Once archived with BR.i.\1S, these
obji.:cts can he automatically restored upon access within user applications. No
changes are required to user applications to initiate the restore.

• Media management In a large or multisystem environment, control and
management of tape media is critical. BRMS allows cataloging of an entire tape
inventory and manages the media as they move from location to location. This
comprehensive inventory-management system provides many reports that operators
can use as instructions.

• Parallel save and restore Bfil.i1S supports parallel save and restore, reducing the
backup and recovery times of very large objects and libraries by "spreading'' data
across multiple tape drives. This method is in contrast to concurrent save and restore.
in which the user must manage the splitting of data, With parallel save and restore,
operations end at approximately the same time for all tape drives.

• Lotus Kores Servers backup BRiVIS supports backup of online Lotus Notes Se1vers,
including Domino and Quickplace Lotus Notes Servers.

• Flexible backup options You can define different backup scenarios and execute
the ones appropriate for particular circumstances.

• Spooled file backup - Unlike OS/400 save and restore functions, BRiVJS provides
support for backing up spooled files. Spooled file backup is important to a complete
backup, and BRMS lets you tailor spooled file backup to meet your needs.

• Storage alternatives - You can save to a tape device, a Media Library device, a save
file, or a Tivoli Storage Manager server (previously known as an ADSM server).

It is rhese features, and more, that make BRMS a popular solution for many installations.
Later, we'll take a closer kx)k at some of these capabilities.

Getting Started with BRMS
BIUvfS brings 'Aiith it a few new save/restore concepto; as well as some new terrninology. For
instance, you'll find repeated references to the following tenns when working with BmvIS:

• media a tape ca1tridge or save file that will hold the objects being backed up

• media identifier a name given to a physical piece of media

• media class a logical grouping of media with similar physical and/or logical
characteristics (e.g .. density)

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 281

• policy - a set of commonly used defaults (e.g., device, media class) that detemiine
how BR:VIS performs its backup

• backup control group
hack up

a grouping of items (e.g., libraries, objects, stream files) to

You're probably 1hinking that ''media'' and "media identifier'' aren't .so new. Trne, but most
people don"t think of save files as media, and media identifier is typically thought to mean
volume identifier.

Policies and backup control groups are concepts central to BRMS in that they govern
the backup process. IBM provides default values in seve1~1l policies and control groups.
You can use these defaults or define your own for use in your save/restore operations.

Policies are templates for managing backups and media management operations.
They act as a control point for defining operating characteristics. The standard BHJvJS
package provides the following policies:

• System Policy The System Policy is conceptually similar to system values. It contains
general defaults for many BR.lV1S operations.

• Backup Policy ~ The Backup Policy determines how the system perfom1s backups.
It contains defaults for backup operations.

• Recovery Policy The Recovery Policy defines how the system typically pe1forms
recovc1y operations.

• Ivledia Policies Media Policies control media-related functionality. for instance,
they determine where BRMS finds tapes needed for a backup.

• Move Policies - Move Policies define the way media moves through storage
locations from creation time through expiration.

In pre-V'iRl releases of OS/400, BRMS is shipped with t\:\.!O default backup control
groups, *SysGrp (system group} and *BkuGrp (backup group). The *SysGrp control group
hacks up all system data, and the *BkuGrp control group backs up all user data. You can
hack up your entire system using these two control groups, but doing so requires two
backup commands, one for each group. To back up your entire system using a single
control group, you can create a nev.i backup control group that includes the following
BRMS special values as backup items:

Seq Backup items
10 *SavSys

20 *IBM

30 "AllUsr

40 *AllDLO

50 *Link

The time required to hack up the system using this full backup control group is less
than that required to use a combination of the •sysGrp and *l3kuGrp backup control

282 Starter Kit for the IBM iSeries and AS/400

groups. The *SysGrp control group contains the special value *SavSys, which saves the
licensed internal code, OS/400, user profiles, security data, and configuration data. The
*RkuGrp control group contains the special values *SavSecDta and *SavCfg, which also
save user profiles, security data, and configuration data. If you use the two control groups
*SysGrp and *BkuGrp, you save the user profiles, security data, and t·onfiguration data
t\vice. This redundancy in saved data contributes to the additional backup time when
using control groups *SysGrp and *BkuGrp. Starting with V5R1, BRMS includes a new,
full-system default backup control group, *System, that combines the function of groups
*SysGrp and *BkuGrp.

e Note
Note that none of the full backup control groups discussed so far saves
spooled files. If spooled files are critical to your business, you'll need to
create a backup list of your spooled files to be included in your full backup
control group (more about how to do this later).

Saving Data in Parallel with BRMS
As I mentioned. BRl\ilS support-; parallel save/restore function. This support is intended for
use with large objects and libraries. Its goal is to reduce backup and recovety times by
evenly dividing data across multiple tape drives.

You typically define parallel resources when you work with backup control groups.
You specify both a maximum number of resources (devices) and a minimum number of
resources to be used during the backup. For example, you could specify 32 for maximum
resources and 15 for minimum resources. When the backup is submitted, the system
checks for available tape resources. If it can't find 32 available tape devices, the backup
will be nm with the minimum of 15. It's not a requirement that the number of devices
used for the backup be used on the restore. However, to reduce the number of tape
mounts, it's best to use the same number of tape devices on the restore.

Starting with V5Rl, the special values *AJIProd, *AllTest, *AlllJsr, *ASP01-*ASP99, and
*IBM are supported on BR1'v1S parallel saves, with the objects being "spread" at the libraty
level. Restores for objects saved in parallel \Vith these special values are still done in a
serial mode.

Online Backup of lotus Notes Servers with BRMS
In t<xlay's working environment, users demand 24x7 access to their mail and other Lotus
Notes databases, yet it's also critical that user data be backed up frequently and in a
timely way. BRMS Online Lotus Notes Servers Backup support meets these critical needs.

With this support, you can save Lotus Notes databases while they're in use, without
requiring users to exit the system. Prior save-while-active support required ending
applications to reach a checkpoint or the use of commitment control or journaling.

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 283

Another alternative was to invest in an addition;.il server, replicate the server data, and
perform the backup from the second server. Online Lotus :'-Jotes Servers Backup with
BRMS avoids these requirements.

Installation of BR.l'vlS automatically configures control groups and policies that hdp
you perform online backup of your Lotus Notes Servers. The Online Lotus Notes Servers
Backup process allows the collection of t\VO backups into one entity. BR\IIS and Domino
or Quickplace accomplish this using a BRf\1S concept called a package. The package is
identified by the PkgID (Package identifier) parameter on the SavBit'\1 (Save Object using
BRM) command.

Domino or Quickplace will back up the databases while they are online and in use.
When the backup is completed. a secondary filt· is backed up and associated with the first
backup using the package concept. The secondary file contains all the changes that
occurred during the online backup, such as transaction logs or journaling inf01n1ation.

When you need to recover a Lotus Notes Seiver database that was backed up using
BRMS Online Backup, BR\1S calls Domino or Quickplace through recovery exits that let
Domino or Quickplace apply any changes from the secondary file backup to the database
that was just restored. This recovery process maintains the integrity of the data.

Restricted-State Saves Using BRMS
You can use the console monitor function of BRMS to schedule unattended restricted-state
saves. This support is meaningful because with OS/400 save functions, restricted-state
saves must be run interactively from a display in the controlling subsystem.

BIUv1S's supp01t means you can run an unattended SavSys operation to save the
OS/400 licensed internal code and operating system (or orher functions you \Vant to run
in a restricted state}. You simply specify the special value *SavSys on the StrBkuBRM (Start
Backup using BRM) command or within a BR1V!S control group to perfonn a SavSys. You
can temporarily interrupt the console-monitoring function to enter OS/400 commands and
then return the console to a monitored state.

Console monitoring lets users submit the joh to the job scheduler instead of
nmning the save interactively. You can use the Submit to hatch parameter on the StrBkuBRrvI
command to enter *Console as a value, thereby perfonning your saves in batch mode.
Thus, you don't have to be nearby when the system save is processed. However, you
must issue this conunand from the system console because Blt\1S runs the job in subsystem
QCrl. If you try to stall the console monitor from your own workstation. BRMS sends a
message indicating that you're not in a co1Tect environment to stmt the console monitor.

Backing Up Spooled Files with BRMS
With RRMS, you can create a backup list that specifies the output queues you want to
save. You can then specify this backup list on your backup control groups.

284 Starter Kit for the IBM iSeries and AS/400

You create a spooled file backup list using command WrkLI3RM (Work with Lists
using BRM). You simply add a list, specifying

• ''Bku for the l Jse field

• a value for the List name (e.g., SaveSplF)

• *Spl for the Type field

When you press Enter, the Adel Spooled File List panel (Figure 16.1) is displayed. (The
figure shows the panel after backup information has been entered.)

Use ...
List name
Text

FIGURE 16.1

Add Spooled File list Panel

Add Spooled File List

*BKU
SAVESPLF
Sample to save spooled files.

Type choices, press Enter.

Seq Library Outq File Job User

10 QUSRSYS PRHl1 *ALL *ALL *ALL

F3=Exit FS=Refresh F12=Cancel

Including Spooled File Entries in a Backup List

AS4©©

*INC/
User data *EXC

*ALL *INC

Bottom

Now, you can update the backup list by adding the output queues you want to save.
Within a spooled file list, you can save multiple output queues by selecting multiple
sequence numbers. When you acid an output queue to the list, you can filter the spooled
files to save by specifying values for spooled file name, job name, user name, or user
data. For example, if you want to save only spooled files that belong to user A, you can
specify user A's name in the User field. Genetic names are also allowed.

The sample setup in Figure 16.1 saves output queue PrtOl in library QUsrSys. If you
leave the Outq field at its default value *All, BRJvlS saves all spooled files from all output
queues in library QUsrSys. To exclude an output queue. you can use the *Exe value.
Once you set up your backup list, you can add it to your daily. weekly, or monthly
backup control group as a backup item with a list type of *Sp\.

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 285

Note that BRJVIS doesn't supp01t incremental saves of spooled files. If you specify an
incremental save for a list type of *Sp!, all spooled files in the list are saved. BRMS doesn't
automatically clear the output queues after the spooled files are successfully saved.

After you've successfully saved your spooled files, you can use the WrkSplFBRJV1
(Work with Spooled Files using BRM) command to display the status of your saves. The
WrkSplFBRM panel displays your .~pooled files in the order in which they vvere created on
the system.

Restoring Spooled Files Saved Using BRMS
BR.MS doesn't automatically restore spooled files when you restore your user data during a
system recovery. To restore saved spooled files. use the WrkSplFBRM command and
select option 7 (Restore spooled file) on the resulting screen. From the Select Recovety
Items panel that appears, you can specify the spooled files you want to restore.

By default, BR.MS restores spooled file data in the output queue from which the data
was saved. If necessary. you can change any of the BRMS reowe1y defaults hy pressing
F9 on the Select Recovery Items screen.

During the save and restore operations. BRMS retains spooled file attributes, names,
user names, user data fields, and, in most cases. job names. During the restore operation,
OS/400 assigns new job numbers. system elate~. and times; the original dates and times
aren't restored.

Be aware that BRMS saves spooled files as a single folder, with multiple documents
(spooled members) within the folder. During the restore, BRIVIS searches the tape label
for the folder and restores all the documents. If your spooled file save happens to span
multiple wpe volumes, you'll be prompted to load the first tape to read the label information
before restoring the documents on the subsequent tapes. To help with recove1y, consider
saving your spooled files on a separate tape using the *Load exit in a control group, or
split your spooled file saves so you use only one tape at a time.

The BRMS Operations Navigator Interface
\Vith V"iRI, BRMS has an Operations Navigator (OpsNav) intctface that makes setting up
and managing your backup ancl recovery strategy even easier (for more information about
OpsNav, see Chapter 34). lJsing wizards, you can simplify the common operations you
need to pe1t'onn. such as creating a backup policy. adding tape media to BRMS, preparing
the tapes for use, adding items to a backup policy, and restoring backed-up items.

If you're currently using BRMS. you may not find all the functionality in OpsNav that
you have with the green-screen version. However, watch for additional features in future
releases of BR.MS Operations Navigator. You may still want to use the graphical interface
to perform some of the basic operations. If so, you'll need to be aware of some
differences between the green-screen and the OpsNav interfaces.

286 Starter Kit for the IBM iSeries and AS/400

Terminology Differences
The OpsNav version of BRMS uses some different terminology than the green-screen
BRMS. Here are some kl'y tenns:

New terminology

Backup history

Backup policy

Media pool

Definition

Information about each of the objects backed up using BRMS. The backup history
includes any items backed up using a backup policy. In the green-screen interface,
the equivalent term is media information.

Defaults that control what data is backed up, how it is backed up, and where it is
backed up. In the green-screen interface, a combination of a backup control group
and a media policy would make up a backup policy. Also, there is no system policy
in the OpsNav interface. All information needed to perform a backup is included in
the backup policy.

A group of media that has similar density and capacity characteristics. In the green
screen interface, this is known as a media class.

Functional Differences
As of this writing, the current version of BRMS Operations Navigator lets you

• nm policies shipped with BRMS

• view the backup history

• view the backup and recovery log

• create an<l run a backup policy

• hack up individual items

• restore individual items

• schedule items to be hacked up and restored

• print a system recovery report

• customize user access to BRMS functions an<l components

• run HRMS maintenance activities

• add, display, and manage tape media

Some functions unavailable in the current release of BRMS Operations Navigator but
included in the green-screen interface include

• move policies

• tape library support

• backup to save files

• backup of spooled files

• parallel backup

• networked systems support

• advanced functions, such as hierarchical storage management (HSM)

• B~'\1S Application Client for Tivoli Storage Manager

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 287

Backup and Recovery with BRMS OpsNav
BRMS Operations Navigator is actually a plug-in to OpsNav. A plug-in is a program rhat"s
created separately from OpsNav but, when installed, looks and behaves like the rest of
the graphical user interface of OpsNav.

Backup Policies
One ease-of-use advantage offered hy BRMS OpsNav is that you can create backup
policies to control your backups. A backup policy is a group of defaults that controls what
data is backed up, how it is backed up, and \Yhere ir is backed up. Once you've defined
your backup policies, you can run your backup at any time or schedule your backup to
run whenever it fits into your backup window.

Three backup policies come with BRMS:

• *System - backs up the entire system

• *SysGrp - backs up all system data

• *BkuGrp - backs up all user data

If you have a simple backup strategy, you can implement your strategy using these three
backup policies. If you have a medium or complex strategy, you create your own backup
policies.

When you back up your data using a BRMS backup policy, infonnation about each
backed-up item is stored in the backup histrny. This information includes the item name,
the type of backup, the date of the backup, and the volume on which the item is backed
up. You can specify the level of detail you want to track for each item in the prope1ties
for the policy. You can then restore items by selecting them from the backup history. You
also use the backup history information for system recoveries.

Creating a BRMS Backup Policy
You can use the New Backup Policy wizard in OpsNav to create a new BRMS backup
policy. To access the wizard:

1. Expand Backup, Recove1y and Media Services.

2. Right-click Backup policies, and select New policy.

The wizard gives you the follmving options for creating your backup policies:

Option
Back up all system and user data

Back up all user data

Back up Lotus server data online

Back up a customized set of objects

Description
Enables you to do a full system backup of IBM-supplied data and all
user data (spooled files are not included in this backup)

Enables you to back up the data that belongs to users on your system,
such as user profiles, security data, configuration data, user libraries,
folders, and objects in directories

Enables you to perform an online backup of Lotus Domino and
Quickplace servers

Enables you to choose the items you want to back up

288 Starter Kit for the IBM iSeries and AS/400

After creating a backup policy, you can choose to run the.: backup policy immediately
or schedule it to run later. If you want to change the policy later, you can do so by
editing the prope1ties of the policy. Many customization options that aren't available in the
Ne\v Backup Policy wizard are available in the properties of the policy. To access the
policy properties, right-dick the policy and select Properties.

Backing Up Individual Items
In addition to using backup policies to back up your data, you can choose to back up
individual files. libraries, or folders using the OpsNav hierarchy. You can also choose to
hack up just security or configuration data. Using OpsNav, simply right-click the item you
want to back up and sdect Backup.

Restoring Individual Items
If a file becomes corrupted or accidentally deleted, you may need to restore individual
items on your system. If you use backup policies to back up items on your system, you
can restore those items from the backup hist01y. \'I/hen you restore an item from the
backup histrny, you can view details about the item, such as \Vhen it was backed up and
how large it is. If there are several versions of the item in the backup history, you can
select which version of the item you want to restore.

You can also restore items that you backed up without using a backup policy. How
ever, for these items, you don't have the benefit of using the backup history to make your
selection. Fortunately, you can use the OpsNav Restore wizard to restore individual items
on your system, whether they were hacked up with a backup policy or not. To access the
wizard in OpsNav, right-click Backup, Recovery and Media Se1vices and select Restore.

Scheduling Unattended Backup and Restore Operations
Earlier, you saw how to schedule unattended restricted-state saves using the console
monitor and the StrBkuBRM command. Of course, you can also schedule non-restricted
state save and restore operations.

In addition, you can use OpsNav to schedule your backup. To do so, you simply use
the OpsNav New Policy wizard to create and schedule a backup. If you need to schedule
an existing backup policy, you can do so by right-clicking its entry under Backup Policies
in OpsNav and selecting Schedule. If the save operation requires a restricted-state system,
you need only follow the console monitor instructions presented by OpsNav when you
schedule the backup.

~t~~
~Tip

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 289

'When you schedule a backup policy to be run, remember that only the
items scheduled to be backed up on the day you run the policy will be
backed up. For example, say you have a backup policy that includes the
library MyUb. In the policy properties, you schedule MyUb for backup
every Thursday. lfyou schedule the policy to run on Thursday, the system
hacks up MyUb. However, if you schedule the same policy to run on any
other day, the system does not back up MyUb.

You can also schedule restore operations in much the same manner ~<s backup
operations using OpsNav. Restore operations, however, are scheduled less often than
backup operations.

System Recovery Report
BRf\IS produces a complete system recovery report that guides you through an entire
system recovery. The repo11 lets you know exactly which tape volumes are needed to
recover your system. When recovering your entire system, you should use the rep011 in
conjunction ·with OS/400 Backup and Recouery (SC41·5504l. Keep the recovery report with
your tape volumes in a secure and safe off-site location.

BRMS Security Functions
BRTv!S provides secrnity functions via the Functional Csage ModeL which lets you customize
access to selc('ted BRMS functions and functional components by user. You must use the
OpsNav interface to access the Func1ional Usage Model feature. You can let ce11ain users
use specific functions :md components whilt· letting others use and change specific func
tions and components. You can grant various types of func1ional usage to all users or to
specified users only.

Each BRMS function, functional component and specific backup and media
management item (e.g., policy, control group) has two levels of authority access:

• Access or No Access - At the first level of authority access using the Functional
Fsage Model, a user either has access to a BRIVIS function or componem or has no
access to iL If a user has access, he or she can use and view the function or compo
nent With this basic level of access, a user can process a specific item (e.g., a libra1y,
a control group) in a backup operation but can't change the item.

• Specific Change or No Change The second level of authority access lets a user
change a specific function, component, or item. For example, to change a backup list,
a user must have access to the specific backup list. Similarly, to change a media
policy. a user must have access to the specific media policy.

The Functioml Usage Model provides lists of existing items (e.g., control groups,
backup lists, media and move policies) for which you can grant specific access. With the

290 Starter Kit for the IBM iSeries and AS/400

Functional Usage l'v1odel, you can give a user both types of access (so the user can both
use and change a particular function, component, or item) or only one type of access

access to use but not change a panicular fi.mction, component, or item).

Security Options for BRMS Functions, Components, and Items
In the backup area, the following usage levels are available:

• Basic Backup Activities Users with Basic Backup Activities access can use and view
the backup policy, control groups, and backup lists. With use access, these users can
also process backups by using backup control groups (i.e., using the StrBkuBR.vl
command) or by saving libraries, objects, or folders (SavLlhBR.t\.1, SavObjBR.1\1, or
SavFlrLBRM). A user without Basic Backup Activities access can't see backup menu
options or command parameter options.

• Backup Policy - Users with Backup Policy access can change the backup policy (in
addition to using and viewing it). Users \Vithout access to the backup policy cannot
change it.

• Backup Control Groups - Users with Backup Control Groups access can change
specific backup control groups (in addition to using and viewing them). A user can
find a list of his or her existing backup control groups under the backup control
groups heading in OpsNav. You can grant a user access to any number of specific
control groups. Users without <Jccess to the backup control groups cannot change
them.

• Backup Lists - t:sers with Backup Lists access can change specific backup lists Un
addition to using and viewing them). A user can find a list of his or her existing
backup lists under the backup lists heading in OpsNav. You can grant a user access
to any number of specific backup list'>. Users without access to a backup list cannot
change it.

In the recovery area, the following usage levels are available:

• Basic Recovery Activities - Users with Basic Recovery Activities access can use and
view the recove1y policy. TI1ey can also use the WrkMedlBRM (Work with Media
Inf01mation using BRM) command to process basic recoveries, command RstObjBRM
(Restore Obiect using BRM), and command R..,tLibBR;\1 <Restore Library using BRl\!1).
Users without Basic Recovery Activities access can't see recovery menu options or
command parameter options.

• Recovery Policy Users with Recovery Policy access can change the recovery policy
(in addition to using and viewing it} Users without access to the recovery policy can't
change it.

In the area of media management, the following usage levels are available:

• Basic Media Activities Users with Basic Media Activities access can perfonn basic
media-related tasks, such as using and adding media to BR1VIS. Users with this access

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 291

can also use and view (but not change) media policies and media classes. Users
without Basic Media Activities access can't see related menu options or command
parameter options.

• Advanced Media Activities - Users with Advanced Media Activities access can
perform media-related tasks such as expiring, removing, and initializing media.

• Media Policies - Users with Media Policies access can change specific media policies
(in addition to using and viewing them). A user can find a list of his or her existing
media policies under the media policies heading in OpsNav. You can grant a user
access to any number of media policies. Users without access to a media policy
cannot change it.

• Media Classes - Users with Media Classes access can change specific media classes
(in addition to using and viewing them). A user can find a list of his or her existing
media classes under the media classes heading in OpsNav. You can grant a user
access to any number of media classes. Users without access to a media class cannot
change it.

• Media Information - Users with Media Information access can change media
information with command WrkMedIBRM (Work with Media Information).

• Basic Movement Activities - Users with Basic Movement Activities access can
manually process or display MovMedBRM (Move Media using BRM) commands, but
they can't change them.

• Move Verification - Users with Move Verification access can perform move
verification tasks.

• Move Policies - Users with Move Policies access can change specific move policies
(in addition to using and viewing them). A user can find a list of his or her existing
move policies under the move policies heading in OpsNav. You can grant a user
access to any number of move policies. Users without access to a move policy cannot
change it.

In the system area, the following usage options are available:

• Basic System-related Activities - Users with Basic System-related Activities access can
use and view device panels and commands. They can aL<>o view and display auxiliary
storage pool (ASP) panels and commands. Users with this access level can also use
and view the system policy.

• Devices - Users with Devices access can change device-related information. Users
without this access can't change device-related infonnation.

• Auxiliary Storage Pools - Users with ASP access can change information about BRMS
ASP management.

• Maintenance - Users with Maintenance access can schedule and run maintenance
operations.

• System Policy - Users with System Policy access can change system policy parameters.

292 Starter Kit for the IBM iSeries and AS/400

• Log - Users with Log access can remove log entries. Any user can display log
information, but only those with Log access can remove log entries.

• Initialize - Users with Initialize access can use the InzBRM (Initialize BRM)
command.

Media Management
BRMS makes media management simple by maintaining an inventory of your tape
media. It keeps track of what data is backed up on which tape and which tapes have
available space. When you run a backup, BRMS selects the tape to use from the available
pool of tapes. BRMS prevents a user from accidentally writing over active files or using
the wrong tape.

Before you can use any tape media with BRMS, you need to add it to the BRMS
inventory and initialize it. You can do this using OpsNav's Add media wizard (under
Media, right-dick Tape Volumes and select Add). You can also use the green-screen
BRMS command AddMedBRM (Add Media to BRM).

Once you've added tape media to the BRMS inventory, you can view the media based
on criteria you specify, such as the volume name, status, media pool, or expiration date.
This gives you the capability to manually expire a tape and make it available for use in
the BRMS media inventory.

To filter which media you see in the list, under Media, right-dick Tape Volumes and
select Include. To view infonnation about a particular tape volume or perform an action
on that volume, right-dick the volume and select the action you want to perform from
the menu.

BRMS Housekeeping
You should perform a little BRMS housekeeping on a daily basis. The BRMS maintenance
operation automatically performs BRMS cleanup on your system, updates backup
information, and runs reports. BRMS maintenance performs these functions:

• expires media

• removes media information

• removes migration information (180 days old)

• removes log entries (from beginning entry to within 90 days of current date)

• nms cleanup

• retrieves volume statistics

• audits system media

• changes journal receivers

• prints expired media report

Chapter 16 Backup, Recovery and Media Services (BMRS) Overview 293

• prints version report

• prints media infom1ation

• prints recoveiy reports

You can run BR1\1S maintenance using OpsNav (right-click Backup, Recoveiy and Media
Se1vices and select Run Maintenance) or using BRMS command StrMntBRM (Start Main
tenance for BIUv1).

Check It Out
As you can see, BRIVIS provides some powerful features for simplifying and managing many
aspects of iSeries backup and recoveiy. Keep in mind that BRIV1S isn't a replacement for
your backup and recoveiy strategy; rather, it's a tool that can help you implement and
cariy out such a stmtegy.

There's a lot more to BRMS than what's been covered here. For the complete details,
see Backup. Recovery and ;ttedia Se1Vices (SC41-5345), as well as the BRMS home page
(http:llwww.as400.ibm.com!>entice/brms.htm) and IBM's iSeries Information Center
(httjJ://publib.boulder.ibrn.com/pubs/html/as400/b!focenter.htrn).

Chapter 17

Defining a Subsystem
We've all found ourselves lost at some time or other. It's not that we're stupid. We're
simply in an unfamiliar place without the proper orientation.

295

You may have experienced a similar feeling of discomfort the first few times you
signed on to your system. Perhaps you submitted a job and then wondered, "How do I
find that job?" or ''Where did it go?" Although we're sure you've progressed beyond these
initial stages of bewilderment, you may still need a good introduction to the concepts of
work management on the iSeries.

Work management on the iSeries refers to the set of objects that define jobs and how
the system processes those jobs. With a good understanding of work-management
concepts, you can easily perform such tasks as finding a job on the system, solving
problems, improving perfonnance, and controlling job priorities. We can't imagine anyone
operating an iSeries in a production environment without having basic work-management
skills to facilitate problem solving and operations. Let us illustrate two situations in which
work management could enhance system operations.

Perhaps you're plagued with end users who complain that the system takes too long
to complete short jobs. You investigate, and you discover that, indeed, the system is
processing short jobs slowly because those jobs are spending too much time in the job
queue behind long-running end-user batch jobs, operator-submitted batch jobs, and even
program compiles. You could tell your operators not to submit jobs, or you could have
your programmers compile interactively, but these approaches are impractical and
unnecessary. The answer lies in understanding the work-management concepts of multiple
subsystems and multiple job queues.

Or perhaps when your "power users" and your programmers share a subsystem,
excessive peaks and valleys in performance occur due to the heavy interaction of these
users. Maybe you'd like to use separate storage pools (i.e., memory pools) based on user
profiles so you can place your power users in one pool, your programmers in another,
and everyone else in a third pool, thereby creating consistent performance for each user
group. You could do this if you knew the work-management concepts of memory
management.

Leaming work-management skills means learning how to maximize system resources.
Our goal for this and the next two chapters is to teach you the basic skills you need to
effectively and creatively manage all the work processed on your system.

Getting Oriented
Just as a road map gives you the information you need to find your way in an unfamiliar
city, Figure 17 .1 serves as a guide to understanding work management. It shows the basic
work-management object-; and how they relate to one another.

296 Starter Kit for the IBM iSeries and AS/400

Submit
job-batch
processing

CD

®
Job name
Job description
User profile
Routing data
Command to process
Request data
Job queue
Job queue priority

0
Job queue

Job 1 .. .
Job 2 .. .
Job 3 .. .

@
SbsD job queue

entry
Job queue name
Maximum number

of active jobs
Job queue sequence

number
Maximum number

of active jobs for a
specific priority

Key

Communications
evoke request

CD

@
SbsD

communications
entry

Remote device name
Remote location name
Job description
Maximum number of

active jobs
Default user profile
Mode name

1 = Jobs entering system
2 = Parts of the subsystem description
3 = Additional job environment attributes

FIGURE 17.1

Work-Management Objects

Autostart job
G)

@
SbsD autostart

job entry
Job name
Job description

@
SbsD routing entry

Routing entry
sequence number

Compare data
Routing program
Pool ID
Class

®
Run priority
Time slice
Purge ('Yes) (*No)
Default wait
Maximum CPU usage
Maximum temperature

storage .·

Total main storage

Workstation
job
G)

@
SbsD workstation

entry
Workstation name

or type
Job description

name
Maximum number

of active jobs
Allocate stations at

SignOn or Enter

Presta rt
job/program

CD

@
SbsD prestart

job entry
Program to execute
User profile
Prestart job name
Start with subsystem
Initial number of

jobs
Threshold
Additional jobs
Maximum prestart

jobs

Subsystem

The objects designated by a 1 in the figure represent jobs that enter the system. Those
designated by a 2 represent parts of the subsystem description. And those designated by
a 3 represent additional job environment attributes (e.g., job description, user profile) that
affect the way a job interacts with the system.

Chapter 17 Defining a Subsystem 297

In the Roman Empire, all roads led to Rome. You'll notice that all the paths in
Figure 17.1 lead to one destination: the subsystem. On the iSeries, all jobs must be
processed in a subsystem. So what better place to start our study of work management
than the subsystem?

Defining a Subsystem
A subsystem, defined by a subsystem description, is where the system brings together the
resources needed to process work. As Figure 17.2 shows, the subsystem description
contains seven parts that fall into three categories.

FIGURE 17.2
Subsystem Description Components

Subsystem attributes
Storage pool definitions

Work entries
Autostart job entries

Workstation entries

Job queue entries

Communications entries

Prestart job entries

Routing entries

Let us briefly introduce you to these components of the subsystem description.

• Subsystem attributes provide the general definition of the subsystem and control its
main storage allocations. The general definition includes the subsystem name, the
subsystem description, and the maximum number of jobs allowed in the subsystem.

o Storage pool definitions are the most significant subsystem attributes. A subsystem's
storage pool definition determines how the subsystem uses main storage to process
work. The storage pool definition lets a subsystem either share an existing pool of
main storage (e.g., *Base, *Interact) with other subsystems, establish a private pool
of main storage, or both. The storage pool definition also lets you establish the
activity level - the maximum number of jobs allowed in the subsystem - for a
particular storage pool.

• Work entries define how jobs enter the subsystem and how the subsystem processes
that work. They consist of autostart job entries, workstation entries, job queue entries,
communications entries, and prestart job entries.

o Autostarljob entries let you predefine any jobs you want the system to start auto
matically when it starts the subsystem.

0 Workstation entries define which workstations the subsystem will use to receive
work. You can use a workstation entry to initiate an interactive job when a user

298 Starter Kit for the IBM iSeries and AS/400

signs on to the system or when a user transfers an interactive job from another
subsystem. You can create workstation entries for specific workstation names (e.g.,
DsplO, OH0123), for generic names (e.g., Dsp*, DP*, OH*), or by the type of
workstations (e.g., 5251, 3476, 3477).

o job queue entries define the specific job queues from which to receive work. A job
queue, which submits jobs to the subsystem for processing, can be allocated by
only one active subsystem. A single subsystem, however, can allocate multiple job
queues, prioritize them, and specify for each a maximum number of active jobs.

o Communications entries define the communications device associated with a
remote location name from which you can receive a communications evoke
request.

o ?restart job entries define jobs that start on a local system before a remote system
sends a communications request. When a communications evoke request requires
the program running in the prestart job, the request attaches to that prestart job,
thereby eliminating all overhead associated with initiating a job and program.

• Routing entries identify which programs to call to control routing steps that will be
executed in the subsystem for a given job. Routing entries also define in which
storage pool the job will be processed and which basic execution attributes (defined
in a job class object associated with a routing entry) the job will use for processing.

All these components of the subsystem description determine how the system uses
resources to process jobs within a subsystem. We'll expand on our discussion of work
entries in Chapter 18 and on the discussion of routing entries in Chapter 19.

Now that we've covered some basic terms, let's take a closer look at subsystem
attributes and how subsystems can use main storage to process work.

Main Storage and Subsystem Pool Definitions
When the iSeries is shipped, all of main storage resides in two system pools: the machine
pool (*Machine) and the base pool (*Base). You must define the machine pool to support
your system hardware; the amount of main storage you allocate to the machine pool is
hardware dependent and varies with each system. For more information about calculating
the required machine pool size, see 05/400 Work Management (SC41-5306).

The base pool is the main storage that remains after you reserve the machine pool.
You can designate *Base as a shared pool for all subsystems to use to process work, or
you can divide it into smaller pools of shared and private main storage. A shared pool is
an allocation of main storage where multiple subsystems can process work. *Machine and
*Base are both examples of shared pools. Other shared storage pools you can define
include *Interact (for interactive jobs), *Spool (for printers), and *ShrPooll through
*ShrPool60 (for pools you can define for your own purposes).

You can control shared pool sizes by using the ChgShrPool (Change Shared Storage
Pool) or WrkShrPool (Work with Shared Pools) command. Figure 17.3 shows a
WrkShrPool screen, where you can modify the pool size or activity level simply by
changing the entries.

Chapter 17 Defining a Subsystem 299

FIGURE 17.3
Work with Shared Pools Panel

Work with Shared Pools
System: AS400

Main storage size (M) 64.00

Type changes <if allowed), press Enter.

Defined Max Allocated Pool -Paging Option--
Pool Size (M) Active Size (M) ID Defined Current
*MACHINE 3f!.62 +++++ 36.62 1 *FIXED *FIXED
*BASE 1£!. 92 __ 5 10.95 2 *FIXED *FIXED
*INTERACT 12. ~!;! __ 6 15.38 3 .:.E.llll *FIXED
*SPOOL 1.£!~ 1 1.03 4 *FIXED *FIXED
*SHRPOOL1 .£!£! ______£!. .:.E.llll
*SHRPOOL2 .£!£! ______£!. *FIXED
*SHRPOOL3 .£!£! ______£!. *FIXED
*SHRPOOL4 .£!£! ___£!. .:.E.llll
*SHRPOOL5 .£!£! ______£!. *FIXED
*SHRPOOL6 .£!£! ______£!. *FIXED

More .•.
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display tuning data
F12=Cancel

The iSeries default controlling subsystem, QBase, and the default spooling subsystem,
QSpl, are configured to take advantage of shared pools. QBase uses the •Base pool and
the •interact pool, while QSpl uses *Base and *Spool.

To see what pools a subsystem is using, you use the DspSbsD (Display Subsystem
Description) command. For instance, when you execute the command

DspSbsD QBase Output(*Print)

you'll find the following pool definitions for QBase listed (if the defaults haven't been
changed):

QBASE ((1 *BASE) C2 *INTERACT))

Parentheses group together two definitions, each of which can contain two distinct parts
(the subsystem pool number and size). In this example, the (1 *BASE) represents the
subsystem pool number 1 and a size of •Base, meaning that the system will use all of the
*Base pool as a shared pool. A third part of the pool definition, the activity level, doesn't
appear for *Base because system value QBasActlvl (Base pool activity level, covered in
Chapter 2) maintains the activity level.

The second pool definition for QBase in this example is (2 *INTERACT). Because you
can use the ChgShrPool or WrkShrPool command to change the activity level for shared
pool *Interact, the activity level isn't listed as part of the subsystem description, nor is it
specified when you use the CrtSbsD or ChgSbsD command.

Be careful not to confuse subsystem pool numbering with system pool numbering.
The two predefined system pools for the iSeries, *Machine and *Base, are defined as

300 Starter Kit for the IBM iSeries and AS/400

system pool 1 and system pool 2, respectively. Pool numbering within a subsystem is
unique to that subsystem, and only the routing entries in that subsystem use it to
determine which pool jobs will use, based en the routing data associated with each job.
As subsystems define new storage pools (shared or private) in addition to the two
predefined system pools, the system simply assigns the next available system pool number
to use as a reference on the WrkSysSts display.

For example, with the above pools for QBase and the following pools for QSpl

QSPL ((1 *BASE) (2 *SPOOL))

the system pool numbering might correspond to the subsystem pool numbering as shown
in Figure 17.4.

fJGURE 17.4
System and Subsystem Pool Numbering

System pool number
1 Machine pool
2 *Base pool
3 *Interact shared pool

4 *Spool shared pool

Subsystem pool number
QBase QSpl

2

2

A private pool is a specific allocation of main storage reserved for one subsystem. It's
common to use a private pool when the system uses the controlling subsystem QCtl instead
of QBase. If you change your controlling subsystem to QCtl, at IPL the system start-up
program starts several subsystems (Qinter, QBatch, QCmn, and QSpl) that are designed to
support specific types of work. Although using QBase as the controlling subsystem let5
you divide main storage into separate pools, using QCtl is inherently easier to manage
and administer in terms of controlling the number of jobs and performance tuning.

IBM ships the following pool definitions for the multiple-subsystem approach:

QCTL ((1 *BASE))
GINTER ((1 *BASE) (2 *INTERACT))
QBATCH ((1 *BASE))
QCMN ((1 *BASE))
QSPL ((1 *BASE) C2 *SPOOL))

As you can see, the initial configuration of these subsystems is like the initial configuration
of subsystem QBase in that shared pools reserve areas of main storage for specific types of
jobs. However, pool sharing doesn't provide optimum performance in a diverse operations
environment where various types of work are processed simultaneously. In such cases,
subsystems with private pools may be necessary to improve performance.

Look at the pool definitions in Figure 17.5, in which two interactive subsystems (Qinter
and QPgmr) provide private pools for both end users and programmers.

Chapter 17 Defining a Subsystem 301

FIGURE 17.5
Sample Subsystem Pool Definitions

Controlling subsystem
QCTL ((1 *BASE))

Interactive subsystems
GINTER ((1 *BASE) (2 20000 50))

QPGMR ((1 *BASE) (2 2000 5))

Batch subsystems
QBATCH ((1 *BASE))

DAYQ ((1 *BASE) (2 1000 2))

QPGMRB ((1 *BASE) (2 500 1))

Communications subsystem
QCMN ((1 *BASE))

Spooling subsystem
QSPL ((1 *BASE) (2 *SPOOL))

Both Qlnter and QPgmr define specific amounts of main storage to be allocated to the
subsystem instead of sharing the *Interact pool. Also, both storage definitions require a
specific activity level, whereas shared pool activity levels are maintained as part of the
shared pool definitions (using the ChgShrPool or WrkShrPool command). The private pool
configuration in this example, with private main storage and private activity levels,
prevents unwanted contention for resources between end users and programmers.

Figure 17.5 also demonstrates how you can use multiple batch subsystems. Three
batch subsystems - QBatch, DayQ, and QPgmrB - provide, respectively, for daytime
and nighttime processing of operator-submitted batch jobs, daytime end-user processing of
short jobs, and program compiles. A separate communications subsystem, QCmn, is
configured to handle any communications requests, and QSpl handles spooling.

The decision about whether to use shared pools or private pools should depend on
the storage capacity of your system. On one hand, because shared pools ensure efficient
use of main storage by letting more than one subsystem share a storage pool, it's wise to
use shared pools if you have a system with limited main storage. On the other hand,
private pools provide a reserved pool of main storage and activity levels that are
constantly available to a subsystem without contention from any other subsystem. They're
easy to manage when you're dealing with multiple subsystems. Therefore, private pools
are a wise choice for a system with ample main storage.

Starting a Subsystem
A subsystem definition is only that - a definition. To start a subsystem, you use the
StrSbs (Start Subsystem) command. Figure 17.6 outlines the steps your system takes to
activate a subsystem after you execute a StrSbs command.

302 Starter Kit for the IBM iSeries and AS/400

FIGURE 17.6
Starling a Subsystem

Execute StrSbs (Start Subsystem) command

I
Allocate storage pools

Resource: Storage pool definitions

I
Allocate workstations

Resource: Workstation entries

I

Allocate communications devices
Resource: Communications entries

I
Allocate job queues

Resource: Job queue entries

I
Start prestart jobs

Resource: Prestart job entries

I
Start autostart jobs

Resource: Autostart job entries

• Subsystem ready for processing

First, the system uses the storage pool definitions to allocate main storage for job
processing. Next, it uses the workstation entries to allocate workstation devices and present
the workstation sign-on displays. If the system finds communications entries, it uses them
to allocate the named devices. The system then allocates job queues so that when the
subsystem completes the start-up process, the subsystem can receive jobs from the job
queues. Next, the system starts any defined prestart or autostart jobs. When the system has
completed all these steps, the subsystem is finally ready to begin processing work.

Chapter 17 Defining a Subsystem 303

The Next Step
With this introduction to subsystems under your belt, look over OS/400 Work Management
and make a sketch of your system's main storage pool configuration to see how your
subsystems work. Chapter 18 examines work entries and where jobs come from, and
Chapter 19 discusses routing and where jobs go. When we're done with all that, you'll find
yourself on Easy Street - with the skills you need to implement a multiple-subsystem
work environment.

305

Chapter 18

Where Jobs Come From
One of OS/400's most elegant features is the concept of a "job" - a unit of work with a
tidy package of attributes that lets you easily identify and track work throughout your
system. The iSeries defines this unit of work with a job name, a user profile associated
with the job, and a computer-assigned job number; it is these three attributes that give a
job a unique identifier. For example, when a user signs on to a workstation, the resulting
job might be known to the system as

Job name: DSPlO

User profile: KNIELSEN

Job number: 003459

Any transaction that OS/400 completes is associated with an active job executing on the
system. But where do these jobs come from? A job can be initiated at times such as when

• you sign on to the system from a workstation

• you submit a batch job

• your system receives a communications evoke request from another system

• you submit a prestart job

• you create autostart job entries that the system automatically executes when it starts
the associated subsystem

Understanding how jobs get started on the system is crucial to grasping iSeries work
management concepts. So let's continue Chapter 17's look at the subsystem description by
focusing on work entries, the part of the description that defines how jobs gain access to
the subsystem for processing.

Types of Work Entries
There are five types of work entries:

• workstation

• job queue

• communications

• prestart job

• autostart job

Let's look more closely at each of these entry types now.

306 Starter Kit for the IBM iSeries and AS/400

Workstation Entries
The easiest work-entry type to understand is the workstation entry, which describes how a
user gains access to a particular subsystem (for interactive jobs) using a workstation. To
define a workstation entry, you use the AddWSE (Add Work Station Entry) command. A
subsystem can have as many workstation entries as you need. Each one has the following
attributes:

• WrkStnType (workstation type) or WrkStn (workstation name)

• JobD (job description name)

• MaxAct (maximum number of active workstations)

• At (when to allocate workstation)

When defining a workstation entry, you can use either the WrkStnType attribute or
the WrkStn attribute to specify which workstation(s) the system should allocate. For
instance, if you want to allocate all workstations, you specify WrkStnType(*A\l) in the
workstation entry. This entry tells the system to allocate all workstations, regardless of the
type (e.g., 5250, 5291, 3476, 3477). You can also specify a special workstation type using
WrkStnType(*Cons), WrkStnType(*ASCII), or WrkStnType(*NonASCII) to define the
console device, ASCII devices, or non-ASCII devices, respectively. Or you can use the
WrkStnType attribute in one or more workstation entries to tell the system to allocate a
specific type of workstation - for example, WrkStnType(3477).

You can also define workstation entries using the WrkStn attribute to specify that the
system allocate workstations by name. You can enter either a specific name or a generic
name. For example, an entry defining WrkStn(DspOl) tells the subsystem to allocate
device DspOl. The generic entry WrkStn(Ohio*) tells the subsystem to let any workstation
whose name begins with OHIO establish an interactive joh.

The JobD workstation entry attribute specifies the job description for the workstation
entry. You can give this attribute a value of *UsrPrf (the default) to tell the system to use
the job description named in the user profile of the person who signs on to the
workstation. Or you can specify a value of *ShsD to tell the system to use the job
description with the same name as that of the subsystem. You can also use the qualified
name of an existing job description.

Chapter 18 Where Jobs Come From 307

~Caution
For security reasons, it's wise to use the default value *UsrPrf for the work
station entry's JobD attribute so that a user profile is required to sign on to

the workstation. If you use the value *SbsD or a job description name, and
a valid user profile is associated with the job description through the job
description's User attribute, any user can simply press Enter and sign on to
the subsystem. In such a situation, the user then assumes the user ID
associated with the default job description named on the workstation entry.

There may be times when you want to define a workstation entry so that
one user profile is always used when someone accesses the system using a
particular workstation (e.g., if you wanted to disseminate public information
at a courthouse, mall, or school). In such cases, be sure to construct such
configurations so that only certain workstation entries have a job descrip
tion that provides this type of access.

The workstation entry's Max:Act attribute determines the maximum number of work
stations (using this work entry) allowed in the subsystem at one time. When this limit is
reached, the subsystem must deallocate one workstation before it can allocate another.
The value you should normally use for this attribute is the default, *NoMax, because you
typically control (i.e., you physically limit) the number of devices. In fact, supplying a
number for the Max:Act attribute could cause confusion if one day the limit is reached and
some poor soul has to figure out why certain workstations aren't functioning. It could take
days to find this seldom-used attribute and change the value.

The At attribute tells the system when to allocate the workstation. The default value,
*SignOn, tells the system to allocate the workstation (i.e., initiate a sign-on screen at the
workstation) when the subsystem is started. Value *Enter tells the system to let jobs enter
the subsystem only via the TfrJob (Transfer job) command. (Before a job can be
transferred into an interactive subsystem, a job queue and a subsystem description job
queue entry must exist.)

Now you're acquainted with the workstation entry attributes, but how can you use
workstation entries? Let's say you want to process all your interactive jobs in subsystem
Qlnter. When you look at the default workstation entries for Qinter, you see the
following:

WRKSTNTYPE
*ALL
*CONS

JOBD
*USRPRF
*USRPRF

MAXACT
*NOMAX
*NOMAX

AT
*SIGNON
*ENTER

The first set of values tells the system to allocate all workstations to subsystem Qinter
when the subsystem is started. The second set of values tells the system to let the console
transfer into the subsystem but not to allocate the device.

308 Starter Kit for the IBM iSeries and AS/400

What about a multiple-subsystem environment for interactive jobs? Let's say you want
to configure three subsystems: one for programmers (Pgmrs), one for local end-user
workstations (Local), and one for remote end-user workstations (Remote). How can you
make sure the system allocates the workstations to the correct subsystem?

Perhaps you're thinking you can create individual workstation entries for each device.
You can, but such a method would be a nightmare to maintain. Likewise, it would be
impractical to use the WrkStnType attribute because defining types doesn't necessarily
define specific locations for certain workstations.

You have only two good options for ensuring that the correct subsystem allocates the
devices. One is to name your various workstations so you can use generic WrkStn values
in the workstation entry. For example, you could allocate programmers' workstations to
the proper subsystem by first giving them names such as PgmrOl and PgrruD2 and then
creating a workstation entry that specifies WrkStn(Pgmr"). You might prefix all local end
user workstation names with Admn and Loe and then create workstation entries in the
local subsystem using WrkStn(Admn•) and WrkStn(Loc•). For the remote subsystem, you
could continue to create workstation entries using generic names such as the ones
described above, or simply specify WrkStnType(•All), which would cause the subsystem to
allocate the remaining workstations. However, you'll need to read on to learn how
subsystems allocate workstations to ensure that the workstations in the programmer and
local subsystems are allocated properly.

Your second option for ensuring that the correct subsystem allocates the devices is to
use routing entries to reroute workstation jobs to the correct subsystem. (We'll explain
how to do this in Chapter 19.)

Conflicting Workstation Entries
Can workstation entries in different subsystems conflict with each other? You bet they can!
Consider what happens when two different subsystems have workstation entries that
allocate the same device. If At(*SignOn) is specified in the workstation entry, the first
active subsystem will allocate the device, and the device will show a sign-on display.
When the system starts another subsystem with a workstation entry that applies to that
same device (with At(*SignOn) specified), the subsystem will try to allocate it. If no user is
signed on to the workstation, the second subsystem will allocate the device.

This arrangement isn't all bad. In fact, you can make it work for you. Imagine that
you want to establish an interactive environment for two subsystems: Qinter (for all end
user workstations) and QPgmr (for all programmer workstations). You supply
WrkStnType(•All) for subsystem Qinter and WrkStn(Pgmr*) for subsystem QPgmr.

To ensure that each workstation is allocated to the proper subsystem, you should start
Qinter first. As a consequence, the system will allocate all workstations to Qinter. After a
brief delay, start QPgmr, which then will allocate (from Qinter) only the workstations
whose names begin with "PGMR". Every workstation has its rightful place by simply using
the system to do the work.

What about you? Can you see how your configuration is set up to let interactive jobs
be processed? Take a few minutes to examine the workstation entries in your system's

Chapter 18 Where Jobs Come From 309

subsystems. You can use the DspSbsD (Display Subsystem Description) command to
display the work entries that are part of the subsystem description.

Job Queue Entries
job queue entries control job initiation on your system and define how jobs enter the
subsystem for processing. To submit jobs for processing, you must assign one or more job
queues to a subsystem. A job queue entry associates a job queue with a subsystem. The
attributes of a job queue entry are

•]obQ (job queue name)

• MaxAct (maximum number of active jobs from this job queue)

• SeqNbr (sequence number used to determine the order of selection among all of a
subsystem's job queues)

• MaxPtyn (maximum number of active jobs with the specified job queue priority)

The]obQ attribute, which is required, defines the name of the job queue you're
attaching to the subsystem. The subsystem will search this job queue to receive jobs for
processing. You can name only one job queue for a job queue entry, but you can define
multiple job queue entries for a subsystem.

Attribute MaxAct defines the maximum number of jobs that can be active in the
subsystem from the job queue named in this entry. This attribute controls only the
maximum number of jobs allowed into the subsystem from the named job queue. The
default MaxAct value is 1, which lets only one job at a time from this job queue be
processed in the subsystem.

~Caufion
Don't confuse the job queue entry's attribute with the MaxAct (yes, same
name) attribute of the subsystem description. The subsystem description's
MaxAct attribute controls the maximum number of jobs in the subsystem
from all entries (e.g., job queue entries and communications entries).

You can use the SeqNbr attribute to sequence multiple job queue entries associated
with the subsystem. The subsystem searches each job queue in the order specified by the
SeqNbr attribute of each job queue entry. The default for this attribute is 10, which you
can use to define only one subsystem job queue entry; however, when defining multiple
job queue entries, you should determine the appropriate sequence numbers desired to
prioritize the job queues.

The job queue entry's MaxPtyn attribute is similar to the MaxAct attribute except that
MaxPtyn controls the number of active jobs from a job queue that have the same job
queue priority (e.g., MaxPtyl defines the maximum number of jobs with job queue
priority 1, MaxPty2 defines the maximum number of jobs with job queue priority 2). The
default for MaxPtyl through MaxPty9 is *NoMax.

310 Starter Kit for the IBM iSeries and AS/400

To illustrate bow job queue entries work together to create a proper hatch environment,
Figure 18.1 shows a scheme that includes three subsystems: DaySbs, NightSbs, and BatchShs.
DayShs processes daytime, short-running end-user hatch jobs. NightSbs processes nighttime,
long-running end-user batch jobs. BatchSbs processes operator-submitted request'i and
program compiles.

FIGURE 18.1

Sample Batch Work Environment

DaySbs DayQ I,

NightSbs NightQ
I

PgmQ

BatchSbs

BatchQ

To create the batch work environment depicted in the figure, you first create the
subsystems using the following CrtShsD (Create Subsystem Description) commands:

CrtSbsD SbsD(QGPL/DaySbs) PooLCC1 *Base) (2 400 1)) MaxAct(1)
CrtSbsD SbsD(QGPL/NightSbs) Pool((1 *Base) (2 2000 2)) MaxAct(2)
CrtSbsD SbsD(QGPL/BatchSbs) PooLCC1 *Base) C2 1500 3)) MaxAct(3)

Notice that each subsystem has an established maximum number of active jobs
(Max.Act(n)). The maximum limit matches the activity level specified in the subsystem
pool definition so that each active job is assigned an activity level without having to wait
for one.

The next step is to create the appropriate job queues using the following CrtJobQ
(Create Job Queue) commands:

CrtJobQ JobQ(QGPL/DayQ)
CrtJobQ JobQ(QGPL/NightQ)
CrtJobQ JobQ(QGPL/PgmQ)
CrtJobQ JobQ(QGPL/BatchQ)

Then, use the AddJobQE (Add Joh Queue Entry) command to add the job queue
entries to associate the job queues with the subsystems:

AddJobQE SbsDCDaySbs) JobQCDayQ) MaxActC*NoMax) SeqNbrC10)
AddJobQE SbsDCNightSbs) JobQCNightQ) MaxActC*NoMax) SeqNbrC10)
AddJobQE SbsDCBatchSbs) JobQCPgmQ) MaxAct(1) SeqNbrC10)
AddJobQE SbsDCBatchSbs) JobQCBatchQ) MaxActC2) SeqNbrC20)

Now let's walk through this batch work environment. Subsystem DaySbs is a simple
configuration that lets one job queue feed jobs into the subsystem. Because the Max.Act

Chapter 18 Where Jobs Come From 311

attribute value of DaySbs is 1, only one job filters into the subsystem at a time, despite the
fact that we specified the attribute MaxAct('NoMax) for the DayQ job queue entry. Later, we
can change the subsystem pool size and activity level, along with the MaxAct subsystem
attribute, to let more jobs from the job queue be processed without having to re-create
the job queue entry to modify MaxAct.

The configuration of NightSbs is similar to the configuration of DaySbs, except that
the NightSbs configuration lets two jobs be processed at the same time. This subsystem is
inactive during the day and is started at night via the StrSbs (Start Subsystem) command.
When a subsystem is inactive, no job queues are allocated and no jobs are processed.
Therefore, application programs can send batch jobs to the NightQ job queue, where they
wait to be processed at night. When NightSbs is started, the system allocates job queue
NightQ, and jobs can be processed.

To show you how job queues can work together to feed into one subsystem, we
configured the BatchSbs subsystem with two job queue entries. Notice that BatchSbs
supports a maximum of three jobs (MaxAct(3)). Job queue entry PgmQ lets one job from
that queue be active (MaxAct(l)), while job queue entry BatchQ lets two jobs be active
(MaxAct(2)).

As with workstation entries, job queue entries can conflict if you define the same job
queue as an entry for more than one subsystem. When a subsystem is started, the job
queues defined in the job queue entries are allocated. And when a job queue is allocated
to an active subsystem, that job queue can't be allocated to another subsystem until the
first subsystem is ended. In other words, first come, first served!

Communications Entries
Workstation entries enable local workstations to start interactive jobs. You may also need to
establish entries to enable the initiation of jobs from a remote work site. After you establish
a workstation and a physical connection between remote sites, you need a communications
entry, which enables the subsystem to process the program start request. If no communica
tions entries exist, the system rejects any program start request. There's no real pizzazz to
this entry; you simply need it to link the remote system with your subsystem.

A communications entry has the following attributes:

• Dev (name or type of communications device)

• RmtLocName (remote location name)

• JobD (job description name)

• DftUsr (default user profile name)

• Mode (mode description name)

• MaxAct (maximum number of jobs active with this entry)

The Dev attribute specifies the particular device (e.g., CommDev, RemSys) or device
type (e.g., *APPC) needed for communications. The RmtLocName attribute specifies the
remote location name you define when you use the CrtDevXXx (Create Device

312 Starter Kit for the I BM iSeries and AS/400

Description (XXx)) command to create the communications device. There is no default for
the Dev or RmtLocName attribute. In addition, you must specify one attribute or the other,
but not both.

The next two attributes, JobD and DftUsr, are crucial. JobD specifies the job descrip
tion to associate with this entry. As you do with the workstation entry, you should use the
default value *UsrPrf to ensure that a user profile is used and that the system uses the job
description associated with the user making the program start request. As with workstation
entries, using a specific job description can cause a security problem if that job description
names a default user.

Attribute DftUsr defines the default user for the communications entry. You should
specify *None for this attribute to ensure that any program start request supplies a valid
user profile and password.

The Mode attribute defines specific communications boundaries and variables. For more
information about this attribute, see OS/400 Communications Configuration (SC41-5401).

The MaxAct attribute defines the maximum number of program start requests that can
be active at any time in the subsystem for this communications entry.

You can add a communications entry with the AddCmnE (Add Communications
Entry) command, as in this example:

AddCmnE SbsDCCommSbs) +
RmtLocNameCNewYork) +
JobDC*UsrPrf) +
DftUsrC*None) +
ModeC*Any) +
MaxActC*NoMax)

If you're communicating already and you want to know what entries are configured,
use the DspSbsD command to find out.

Prestart Job Entries
The prestart job entry goes hand-in-hand with the communications entry, telling the
subsystem which program to start when the subsystem itself is started. The program isn't
executed - the system simply performs all the opens, initializes the job named in the
prestart job entry, and then waits for a program start request for that particular program.
When the system receives a program start request, it starts a job by using the prestart
program that's ready and waiting, thus saving valuable time in program initialization.

For example, consider an order entry program that requires considerable initialization
time due to the need to open many files. If remote sales personnel communicate with the
system and use the order entry program to enter their orders, they'll experience much better
response time if a prestart job opens the files in advance of their requests to use the program.

The prestart job entry is the only work entry that defines an actual program and job
class to be used. (Other jobs get their initial routing program from the routing data entries
that are part of the subsystem description.) The two key attributes of the prestart job entry
are Pgm and JobD. The Pgm attribute specifies the program to use, and the]obD attribute
specifies the job description to be used.

Chapter 18 Where Jobs Come From 313

To add a prestart job entry, use an AddPJE (Add Prestart Job Entry) command similar
to the following:

AddPJE SbsD(CommSbs) +
PgmCOEPgm) +
JobD(OEJobD)

Then, when the communications entry receives a program start request (an evoke) and
processes the request, it will compare the program evoke to the prestart job program
defined. In the example above, if the program evoke is also OEPgm, the system has no
need to start a job because the prestart job is already started.

Autostart Job Entries
An autostart job entry specifies the job to be executed when the subsystem is started. For
instance, if you want to print a particular history report each time the system is IPLed, you
can use the AddAJE (Add Autostart Job Entry) command to add the following autostart job
entry to the controlling subsystem description:

AddAJE SbsD(SbsName) +
Job(History) +
JobD(YourLfb/HistJobD)

The Job and JobD attributes are the only ones the autostart job entry defines, which
means that the job descliption must use the request data or the routing data to execute a
command or a program. In the example above, job description Hist.JobD would have the
correct RqsDta (Request data) attribute to call the program that generates the history report

RqsDta('Call HistPgm')). The History job, defined in the autostart job entry, is started
each time the associated subsystem is started, ensuring that the job nms whether or not
anyone remembers to submit it.

OS/400 uses an autostart job entry to assist the IPL process. If you examine either the
QBase or QCtl subsystem description (using the DspSbsD command), you'll find that an
autostart job entry exists to submit the QStrUp]D job using the job description QSys/QStrUpJD.
This job description uses the request data to call a program used in the IPL process.

Where Jobs Go
Now you've seen where jobs come from on the iSeries but where do they go? We'll
address that question in Chapter 19 when we look at how routing entries provide the final
gateway to subsystem processing.

One reminder: If you decide to create or change the system-supplied work-management
objects, such as subsystem descriptions and job queues, you should place the new objects
in a user-defined library. When you're ready to start using the new objects, you can change
the system start-up program to use the new objects to establish your work environment.
(To change the system start-up program, you modify the CL source and recompile the
program.) Placing the new objec1s in your m"m library enables easy documentation of
any changes.

315

Chapter 19

Demystifying Routing
So far, we've explained how jobs are defined and started on the iSeries. You've seen that
jobs are processed in a subsystem, which is where the system combines all the resources
needed to process work. And you've seen how work entries control the way jobs gain
access to the subsystem. Now we need to talk about routing, which determines how jobs
are processed after they reach the subsystem.

Through the years, routing has been kept shrouded in mystery. It's almost as if routing
were some secret whose meaning only a few are meant to know. In this chapter, we
concentrate on subsystem routing entries to prove to you, once and for all, that you have
nothing to fear!

The iSeries uses routing to determine where jobs go. The system uses the following
routing concepts to process each and every job:

• routing data - a character string, up to 80 characters long, that determines the
routing entry that the subsystem will use to establish the routing step

• routing entry - a subsystem description entry, which you create, that determines the
program and the job class that the subsystem will use to establish a routing step

• routing step- the processing that starts when the routing program is executed

To understand routing, it might help to think of highway signs, which control the
flow of traffic from one place to another. A job's routing data is like the driving directions,
and the subsystem routing entries are like the highway exits. The routing step is like the
trip itself.

To be executed in a subsystem, iSeries jobs (except prestart jobs) must have routing
data. Routing data determines which routing entry the subsystem will use. For most jobs,
routing data is defined either by the RtgDta (Routing data) parameter of the job descrip
tion associated with the job or by the RtgDta parameter of the SbmJob (Submit Job)
command.

The Importance of Routing Data
When a job enters a subsystem, the subsystem looks for routing data that matches the
compare value in one or more routing entries of the subsystem description - similar to
the way you would check your written directions to see which highway exit to take. The
subsystem seeks a match to determine which program to use to establish the routing step
for that job. Routing entries, typically defined when you create a subsystem, are defined as
part of the subsystem description via the AddRtgE (Add Routing Entry) command.

Before we take a closer look at the various attributes of a routing entry, let us explain
how routing entries relate to routing data. Figure 19.1 shows how the subsystem uses
routing data for an interactive job.

316 Starter Kit for the I BM iSeries and AS/400

FIGURE 19.1

Use qf Routing Data for an Interactive.fob

User profile
UserX
lnlPgm=UserMenu

+
Job
012345/UserX/DspOl
RtgDta='QCMDI'

I
Job enters subsystem

+
Routing data is compared to routing data in routing entries.

Sequence Compare Starting Maximum
number value position Program Class active Pool ID
(SeqNbr) (CmpVal) (StrPos) (Pgm) (Class) (MaxAct) (PoollD)

10 QCMDI 1 -QSys/QCmd ~Qlnter *NoMax 2
40 525XTEST 1 QSys/QARDrive Qlnter *NoMax 2

500 QCMD38 1 QSys/QCL Qlnter *NoMax 2
9999 *Any 1 QSys/QCmd Qlnter *NoMax 2

' - Class: Qlnter -
Routing step starts RunPty(20)

- TimeSlice(2000) Program QSys/QCmd -

~
DftWait(30)

Initial Program
lnlPgm=UserMenu

When UserX signs on to workstation DspOl, the interactive job is started and the routing
data (QCMDI) is established. When the job enters the subsystem, the system compares the
routing data in the job with the routing data of each routing entry until it finds a match.
(The search is based on the starting position specified in the routing entry and the literal
specified as the compare value.)

In Figure 19.1, the compare value for the first routing entry (SeqNbr(lO)) and the
routing data for job 012345/UserX/DspOl are the same. Because the system has found a
match, it executes the program defined in the routing entry (QCmd in library QSys) to
establish the routing step for the job in the subsystem. In addition to establishing the
routing step, the routing entry provides the job with specific mntime attributes based on
the specified job class. In this case, the specified class is Qinter.

Chapter 19 Demystifying Routing 317

Jobs that require routing data (all but prestart jobs) follow this same procedure when
being started in the subsystem. Now that you have a feel for how this process works, let's
talk about routing entries and associated job classes.

Routing Entry Attributes
In Chapter 18, we said that routing entries identify which programs to call, define which
storage pool the job will be processed in, and specify the execution attributes that the job
will use for processing. As shown in Figure 19.1, a routing entty consists of several attributes:
sequence number, compare value, starting position, program, class, maximum active, and
pool ID. You define each attribute when you use the AddRtgE command to add a routing
entry to a subsystem description. It's important that you understand these attributes and
how you can use them to create the routing entries you need for your subsystems.

The sequence number is simply a basic numbering device that determines the order
in which routing entries will be compared against routing data to find a match. When
assigning a sequence number, you need to remember two rules. First, always reserve
SeqNbr(9999) for use with the compare value *Any so it will be used only when no other
match can be found. (Notice that routing entry SeqNbr(9999) in Figure 19.1 has a compare
value of •Any.) Second, when using similar compare values, use the sequence numbers to
order the values from most specific to least specific. For example, you would arrange the
values PGMR, PGMRS, and PGMRSl this way:

Sequence number
10

20

30

Compare value
PGMRSl

PGMRS
PGMR

Placing the least specific value (PGMR) first would cause a match to occur even when
the intended value (e.g., PGMRSl) is more specific.

The system uses the compare value and starting position attributes together to search
a job's routing data for a match. For example, if you specify a compare value of ROUTE
and a starting position of 5, the system searches the job's routing data beginning in
position 5 for the value ROUTE. The compare value can be any characters you want (up
to 80 characters in length). The important thing is to use a compare value that matches
some routing data that identifies a particular job or job type. W'hy go to this trouble?
Because you can use this matching routing entry to determine a lot about the way a job is
processed on the system (e.g., subsystem storage pool, run priority, time slice).

A routing entry's Pgm attribute determines which program is called to establish the
routing step for the job being processed. Remember, a routing step simply starts the
program named in the routing entry. Nonnally, this program is QCmd (the IBM CL
processor), but it can be any program. When QCmd is the routing program, it waits for
a request message to process. For an interactive job, the request message would be the
initial program or menu request; for a batch job, it would be the request data (i.e., the

318 Starter Kit for the IBM iSeries and AS/400

command or program to execute). If the routing program is a user-defined program, the
program is simply executed. The routing entry program is the first program executed in the
routing step. You can use the routing entry to make sure a specific program is executed
when certain routing data is found, regardless of the initial program or specific request
data for a job. Later in this chapter, we explain how this might he beneficial to you.

The Class (job class) object is an important performance-related object that defines the run
priority of the job as well as the time slice for the job. (The time slice is the length of
time, in CPU milliseconds, that a job will he processed before being bumped from the
activity level to wait while another job executes a time slice.) A routing entry establishes a
job's run priority and time slice much the way speed limit or yield signs control the flow
of traffic. For more infom1ation about these performance-related attributes of the Class
object, see 05/400 Work Management (SC41-5306).

In Figure 19.1, all the routing entries use class Qlnter, which is defined to represent
the run priority and time slice typical for an interactive job. Because you wouldn't want to
process a hatch job using these same values, the system also has an IBM-supplied class,
called QBatch, that defines attributes more typical for batch-job processing. If you look at
the subsystem description for QBase, you'll find the following routing entry:

Sequence number
10

Compare value
QCMDB

Program
QSys/QCmd

Class
QBatch

This entry uses program QCmd and directs the system to use class QBatch to define the
runtime attributes for jobs having routing data QCMDB. To route jobs with the correct
routing program and job class, the system-supplied routing data for the default batch job
description QBatch is QCMDB. You can use different classes to create the right
perfonnance mix.

Attribute MaxAct detennines the maximum number of active jobs that can use a par
ticular routing entry. You'll rarely need to change this attrihute's default, which is *NoMax.

The last routing entry attribute is PoolID (Subsystem storage pool ID). As we
explained in Chapter 17, the subsystem definition includes the specific storage pools the
subsystem will use. These storage pools are numbered in the subsystem, and these
numbers are used only within that particular subsystem description; they do not match the
numbering scheme of the system pools. The routing entry attribute PoolID tells the system
which subsystem storage pool to use to process this job. Look at the following pool
definition and abbreviated routing entry:

Pool definition
((1 *BASE) (2 10000 20))

Sequence number
10

Compare value
QCMDI

Pool ID

Chapter 19 Demystifying Routing 319

1his routing entry tell-; the system to use subsystem ptx)l 1 (*BASE). Considering that 10,000 K
of storage is set aside in pool 2, this routing entry is probably incorrectly specifying pool L
Beginners commonly make the mistake of leaving the default value in the routing entty
definition when creating their own subsystems and defining their own routing entries. just
remember to compare the pool definition with the routing entry definition to ensure that
the correct subsystem pool is being used.

Routing Data for Interactive Jobs
Users access to a given subsystem for interactive jobs through workstations, defined
by workstation entries. The key to determining routing data for an interactive job is the
jobD (Job description) parameter of the workstation entry that the subsystem uses to
allocate the workstation used. If the value of the jobD parameter is *UsrPrf, the
routing data defined on the job description associated with the user profile is used as the
routing data for the interactive job. If the value of the workstation entry's JobD parameter
is *SbsD (which instructs the system to use the job description of the same name as the
subs-ystem description) or an actual job description name, the routing data of the specified
job description will be used as the routing data for the interactive job. Let's consider a
couple of examples.

Let's say you create a user profile using the CrtUsrPrf (Create User Profile) conunand
and do not enter a specific job description. In that case, the system uses the default job
description, QDftJobD, for that user profile. Executing the command

DspJobD QDftJobD

reveals that the RtgDta attribute has the value QCMDL When a user on to a work-
station that uses a subsystem workstation entry whose JobD attribute is defined as *lJsrPrf,
the routing data for that interactive job is the routing data defined on the job description
associated with the user profile; in this case, the jobD value would be QDftjobD, and the
routing data would be QCMDL

Now look at 19.2, in which the workstation entry defines SpjobD as the job
description. Instead of using the job description associated with the user profile, the
subsystem uses job description SpjobD to establish job attributes, including the RtgDta
value of SPECIAL.

320 Starter Kit for the IBM iSeries and AS/400

FIGURE 19.2
Workstation Entry Using SpjobD job Description

User profile
UserX

Workstation
Dsp01

Workstation entry
JobD=SpJobD

Job
012345/UserX/Dsp01
RtgDta='SPECIAL'

Routing Data for Batch Jobs

Job description SpJobD
RtgDta='SPECIAL'

Establishing routing data for a batch job is simple: You use the RtgDta parameter of the
Sbmjob command. On this command, RtgDta has four possible values:

• *JobD - the routing data of the job description

• *RqsDta - the value specified in the RqsDta (Request data) parameter on the Sbmjob
command. (Because the request data represents the actual command or program to
process, specifying *RqsDta is practical only if specific routing entries have been
established in a subsystem to start specific routing steps based on the command or
program being executed by a job.)

• QCMDB - the default routing data used by certain IBM-supplied subsystems (e.g.,
QBase, QPgmr) to route batch jobs to the CL processor QCmd (more about this later)

• RoutingData - up to 80 characters of user-defined routing data

Keeping these values in mind, let's look at a Sbmjob command. To submit a batch
job that sends the operator the message "hi," you would enter the command

SbmJob JobCMessage) +
CmdC'SndMsg "hi" ToMsgQ(QSysOpr)')

This batch job would use the routing data of QCMDB. How do we know that? Because,
as the list above states, the value QCMDB is the default. If you submit a job using the
Sbmjob command without changing the default value for the RtgDta parameter, the

Chapter 19 Demystifying Routing 321

routing data is always QCMDB long as this default hasn't been changed via the
ChgCmdDft, or Change Command Default, command).

Now, examine another Sbmjob command:

SbmJob Job(Priority) +
Cmd('Call UserPgm') +
RtgDta('high-priority')

In this example, a routing data character string ('high-priority') is defined. By now, you're
probably wondering just how changing the routing data might change the way a job is
processed. We'll get to that in a minute.

Figure 19.3 provides an overview of how the routing data for a batch job is established.

FIGURE 19.3
Method.for Determining Batch job Routing Data

User profile
UserX

SbmJob (Submit Job) command

JobD = *UsrPrf

)obDName.

RtgDta *JobD

*RqsDta

QCMDB

'user·defined'

RqsDta xxxxx

*UsrPrf
JobDName

RqsDta=xxxx

Job description
RtgDta='QCMDI'

Job description
RtgDta=' yyyy'

A user submits a job via the SbmJob command. The RtgDta parameter of the Sbmjob
command determines the routing data, and the resulting job (012345/UserX/jobName) is
submitted to be processed in a subsystem. We can pick any of the four possible values
for the RtgDta attribute on the Sbmjob command and follow the path to see how that
value eventually determines the routing data for the submitted batch job.

If you specify RtgDta(*JobD), the system examines the JobD parameter of the Sbmjob
command and then uses either the user profile's job description or the actual job description

322 Starter Kit for the IBM iSeries and AS/400

named in the parameter. If you specify RtgDta(*RqsDta), the job uses the value specified
in the RqsDta parameter of the SbmJob command as the routing data. Last, if you define
the RtgDta parameter value as QCMDB or any user-defined routing data, that value becomes
the routing data for the job.

Routing Data for Autostart,
Communications, and Prestart Jobs
As you may recall from Chapter 18, an autostart job entry in the subsystem description
consists of just two attributes: the job name and the specific job description to be used for
processing. The routing data of a particular job description is the only source for the
routing data of an autosta1t job.

For communications jobs (communications evoke requests), the subsystem builds the
routing data from the program start request. The routing data isn't taken from a permanent
object on the system but is instead derived from the program start request that the
communications entry in the subsystem receives and processes.

Prestart jobs use no routing data. The prestart job entry attribute, Pgm, specifies the
program to be started in the subsystem. The processing of this program is the routing step
for that job.

Is There More Than One Way to Get There?
So far, we've discussed how routing data is created, how routing entries are established to
search for that routing data, and how routing entries establish a routing step for a job and
control specific runtime attributes of a job.

Now for one more hurdle A job can have more than one routing step. But why
would you want it to? One reason might be to use a new class to change the runtime
attributes of the job.

After a job is started, you can reroute it using the RrtJob (Reroute Job) command or
transfer it to another subsystem using the TfrJob (Transfer Job) command. Both commands
provide the RtgDta parameter, which lets you change the job's current routing data to
establish a new routing step.

Suppose you issue the following command during the execution of a job:

RrtJob RtgDta('FASTER') RqsDtaC*None)

Your job would be rerouted in the same subsystem but would use the value FASTER as
the value to be compared in the routing entries.

Do-It-Yourself Routing
To reinforce your understanding of routing and tie together some of the facts you've learned
about work management, consider the following example.

Let's say you want to place programmers, OfficeVision for AS/400 (OV/400) users,
and general end users in certain subsystems based on their locations or functions. You
need to do more than just separate the workstations; you need to separate the users, no

Chapter 19 Demystifying Routing 323

matter what workstation they're using at the time. Figures 19.4A through 19.4F desaibe the
objects and attributes needed to define such an environment.

Figure 19AA lists three job descriptions that have distinct routing data.

FIGURE 19.4A
Sample job Descriptions

Job descriptions
InterJobD
OfficeJobD
PgmrJobD

Routinsdata
('QINTER I)
('QOFFICE')
(I QPGMR I)

Note: Only the RtgDta parameter of the job descriptions is addressed
for the purpose of this example. You'll need to supply the
desired values for the remaining parameters on the CrtJobD
!Create Job Description: command. One easy way to establish
these job descriptions is to use the CrtDupObj (Create
Duplicate command to duplicate the QDft)obD job
description then simply change the routing entry.

lnterjobD has Qil'<IER as its routing data. OfficejobD and PgmrjobD have QOFFICE and
QPGMR specified, respectively, as their routing data. (Note that the routing data needn't
match the job description name.) To enable users to work in separate subsystems, you
first need to create or change user profiles and supply the appropriate job description
based on the subsystem in which each user should work. In our example, general end
users would have job description InterjobD, OV/400 users would have OfficejobD, and
programmers would have PgmrjobD.

Next, you must build subsystem descriptions that use the routing entries associated
with the job descriptions. Figure 19.48 shows some sample subsystem definitions. All
three subsystems use the WrkStnType (Workstation type) entiy with the value *AIL
However, only the workstation entry in Qlnter uses the At(*SignOn) entry to tell the
subsystem to allocate the workstations. This means that subsystem QJnter allocates all
workstations, and QOffice and QPgrm (both with At(*Enter)) allocate workstations only as
jobs are transferred into those subsystems. Also, notice that each workstation entry
specifies .JobD(*UsrPrl) so that the routing data from the job descriptions of the user
profiles will be the routing data for the job.

After a user signs on to a workstation in subsystem Qinter, the routing entries do all the
\.vork. The first routing entry looks for the compare value QOFFICE. When it finds
QOFFICE, program QOffice in library SysLih is called to establish the routing step. In
Figure 19.4C, program QOffice simply executes the Tfrjob command to transfer this
pa1ticular job into subsystem QOffice.

324 Starter Kit for the IBM iSeries and AS/400

flGURE 19.48
Sample Subsystem Descriptions

- General end-user

Warkstatian entries
WrkStnType(*Alll JobD(*UsrPrf) At(*SignOnl MaxAct(*NoMax)

Jab queue entries
JobQ(Qlnter) SeqNbrC10l MaxActC*NoMax)

Routing entries
SeqNbr<10l CmpVal('QOFFICE') Pgm(Syslib/QOffice) Class(Qinter)
SeqNbr<20l CmpVal('QPGMR') Pgm(Syslib/QPgmr) Class(Qlnter)
SeqNbr(30l CmpVal('QCMDI'l Pgm(QSys/QCmd) Class(Qlnter)
SeqNbr(9999) CmpValC*Any) Pgm(QSys/QCmd) Class(Qlnter)

- OfficeVision end-user

Warkstatian entries
WrkStnType(*All) JobD(*UsrPrf) At(*Enter) MaxAct(*NoMax)

Jab queue entries
JobQ(QOffice) SeqNbr(1\1)) MaxAct(*NoMax)

Routing entries
SeqNbrC10l CmpVa l ('GINTER') Pgm(SysLib/Qinter) Class(QOffice)
SeqNbrC20l CmpVal('QPGMR'} Pgm(Syslib/QPgmr} Class(QOffice)
SeqNbrC30l CmpVal('QCMDl') Pgm(QSys/QCmd) Class(QOffice)
SeqNbr(9999l CmpVal(*Any) Pgm(QSys/QCmdl Class(QOffice)

QPgmr - Programmer subsystem

Warkstatian entries
WrkStnType(*All) JobDC*UsrPrf) At(*Enter) MaxAct(*NoMax)

Jab queue entries
JobQ(QPgmr) SeqNbr<10) MaxAct(*NoMax)

R~u(ing entries
SeqNbr(10) CmpVa l ('GINTER') Pgm(Syslib/Qinter) Class(QPgmr)
SeqNbrC20) CmpVal('QOFFICE') Pgm(Syslib/QOffice) Class(QPgmr)
SeqNbr<30) CmpVal('QCMDI') Pgm(QSys/QCmd) Class(QPgmr)
SeqNbr(9999) CmpVal(*Any) Pgm(QSys/QCmd) Class(QPgmr)

Chapter 19 Demystifying Routing 325

I*
I*
I*
I*

Pgm

FIGURE 19.4(
Program QO.ffice

=== = Program QOffice =
Description ... Transfer users to QOffice subsystem =

===

*I
*I
*I
*I

I* === *I
I* = Transfer to QOffice subsystem. If error occurs, reroute to = *!
!* = current subsystem. */
I* === */

TfrJob

MonMsg
RrtJob

EndPgm

JobQ(QOffice)
RtgDta('QCMDI')
(CPF0000 MCH0000

RtgDta('QCMDI'
Exec(

)

+

+

However, if you look carefully at Figure 19.4C, you'll see that the Tfrjob command also
changes the routing data to QCMDI, so that when the job enters subsystem QOffice,
routing data QGvIDI matches the corresponding routing entiy and uses program QCmd
and class QOftke. If an error occurs on the Tfrjob command, the command

MonMsg CPF0000 Exec(RrtJob RtgDta('QCMDI'))

reroutes the job in the current subsystem. Figure 19.4D shows how dass QOffice might be
created to provide the performance differences needed for OV/400 users.

Qinter

QOffice

QPgmr

FIGURE 19.40
Sample Class Object Definitions

RunPtyC20)
TimeSliceC2000>
DftWait(30)
Text('General interactive user job class')

RunPty(21)
TimeSliceC3000>
DftWaitC30)
Text('OfficeVision user job class')

RunPtyC20)
TimeSlice(2500>
DftWaitC30)
Text('Programmer job class')

Note: These are only sample values for RunPty, TimeSlice, and DftWait. When configuring for
your system, you should research these parameters to determine the values that best suit
your environment.

326 Starter Kit for the IBM !Series and AS/400

Look again at Figure 19.4B. The next routing entry in the Qinter subsystem looks for
compare value QPGMR. When it finds QPGMR, it calls program QPgmr (Figure 19.4E) to
transfer the job into subsystem QPgmr. Routing data QCMDI calls program QCmd and
then processes the initial program or menu of the user profile. The same is true for
routing data *Any.

FIGURE 19.4E
Program QPgmr

/* === *I
I* Program •.•.•.. QPgmr */
/* Description ... Transfer users to QPgmr subsystem */
I* === *I

Pgm

I*
I*
I*
I*

===
Transfer to QPgmr subsystem. If error occurs, reroute to =
current subsystem.

===
TfrJob

MonMsg
RrtJob

JobQ(QPgmr)
RtgDta('QCMDI')
(CPF0000 MCH0000

RtgDta('QCMDI'
Exec<

)

EndPgm

*I
*I
*I
*I

+

+

In our example, subsystems QOtlke and QPgmr use similar routing entries to make
sure each job enters the correct subsystem. Notice that each of these subsystems has a
routing entry that searches for QINTER. If this compare value is found, program Qinter
(Figure 19.4F) is called to transfer the job into subsystem Qinter.

FIGURE 19.4F
Program Qlnter

I* === *I
I* = Program ..•.... Qlnter */
I* Description ... Transfer users to Ginter subsystem *I
I* === *I

Pgm

I* === *I
I* Transfer to Ginter subsystem. If error occurs, reroute to *I
I* = current subsystem. *I
I* === *I

TfrJob

MonMsg
RrtJob

EndPgm

JobQ(Qinter)
RtgDta('QCMDI')
(CPF0000 MCH0000

RtgDta ('QC MDI'
Exec<

)

+

+

Chapter 19 Demystifying Routing 327

As intimidaring as they may at first appear, routing entries are really plain and simple.
Basically, you e<m use them to intercept jobs as they enter the subsystem and then control
the jobs using various mntime variables. We strongly recommend that you take the time
to learn how your system uses routing entries. Start by studying subsystem descriprions to
learn what each routing entry controls. Once you understand entries, you'll find you can
use them as solutions to many work-management problems.

329

Chapter 20

File Structures
Getting a handle on iSeries file types can be puzzling. If you count the various types of
files the system supports, how rnany do you get? TI1e answer is five and 10.

The iSelies supports five types of files: database files, source files, device files, Distributed
Data Management (DOM) files, and save files. So if you count types, you get five. However,
if you count the file subtypes - all the objects designated as ObjType(*File) - you get
10. Still puzzled? 20.1 lists the five file types that exist on the iSeries, as well as the
10 subtypes and the specific CrtX:oF (Create Xu: File) commands used to create them.
(Keep in mind that in addition to using these CrtX:oF commands, you can create some
types of files using alternate methods, such as SQL's Create Table statement.)

File type

Database file

Source file

Device file

DDMfile

Save file

Subtype

PF
LF

PF

DSPF
PRTF
TAPF
DKTF
ICFF

DDMF

SAVF

FIGURE 20.1
iSeries File T.Jpes and Subt;rpes

File description Create command

Physical file CrtPF
Logical file CrtLF

Physical source file CrtSrcPF

Workstation display file CrtDspF
Printer file CrtPrtF
Tape file CrtTapF
Diskette file CrtDktF
lntersystem Communications Function (ICF) file CrtlCFF

Distributed Data Management (DDM) file CrtDDMF

Save file CrtSavF

Each file type (and subtype) has unique characteristics that provide unique functions
on the system. In this chapter, we discuss the various types of files and describe the way
each file type fun<.tions.

Structure Fundamentals
If there is any one iSeries concept that is the key to unlocking a basic understanding of
application development, it is the concept of iSeries file structure. It's not that this concept
is difficult to grasp; it's just that there are quite a few facts to <ligest. Let's start by looking
at how files are described.

On the all files are described at four levels, depicted in Figure 20.2.

330 Starter Kit for the IBM iSeries and AS/400

FIGURE 20.2
File Description Levels

Object description

Object library/name
Object type
Object attribute
Object size
Object text
...
. . .

File description

File-level description
File library/name
File attribute
Specific attribute-related data

Record-level description
Record format name(s)
Record length
Number of fields
Field buffer positions

Field-level description
Field name(s)
Field attributes

First is the object-level description. A file is an iSeries object whose object type is
•file. The iSeries maintains the same object description information for a file (e.g .. its
librai:y and size) as it does for any other object on the system. You can view the object
level information with the DspObjD (Display Object Description) command.

The second level of description the system maintains for •File objects is a file-level
description. The file description is created along with the file when you execute a CttXw
command. It describes the attributes or characteristics of a particular file and is embedded
within the file itself. You can display or print a file description using the DspFD (Display
File Description) command.

One of the attributes maintained as part of the file description is the file subtype. The
subtype OS/ 400 the ability to determine which commands can operate on which
types of files. For instance, the DltF (Delete File) command works for any type of file on
the system, but the AddPFM (Add Physical File Member) command works only for
physical files. OS/400 uses the description of the file to maintain and enforce each file's
object identity.

Chapter 20 File Structures 331

The third level of descriptive information the system maintains for files is the record
level description. ThL'> level describes the various (if more than one) record fonnats that
exist in the file. A record format describes a set of fields that make a record. If the fourth
level of description - field descriptions isn't used when creating the file, the record
format is described by a specific record length.

All files have at least one record format, and logical files can have multiple record
formats (we'll cover this topic in a later chapter). Applications perform I/0 by using
specific record formats. An application can further break the record format into fields
either by explicitly defining those fields within the application or by working with external
field definitions if they are defined for a record format. Although the iSeries provides the
DspObjD command and the DspFD command, there is no Display Record Description
command. To display or print a file's record-level information, you use the DspFD
command and the DspFFD (Display File Field Description) collli1und.

The final level of descriptive information that the system maintains for files is the
field-level description. Field descriptions don't exist for all types of files; tape files, diskette
files, DDM files, and save files have no field descriptions because they have no fields. For
the remaining files - physical, logical, source, display, printer, and Intersystem Communications
Function (ICF) - a description of each field and field attribute is maintained. You can use
the DspFFD command to &splay or print the field-level descriptions for a file.

Data Members
There's yet another organizational element that applies only to database and source files,
the two types of files that actually contain record<; of data: The iSeries sports the data
member. This additional element of file organization has, at times, caused even the best
application programmers to squinn.

Examine Figure 20.3, which introduces you to the concept of the file data member.
You traditionally think of a file as containing a set of records, and usually an iSeries
database file has a description and a data member that contains all the records that exist
in that database file. If you create a physical file using the CrtPF (Create Physical File)
command and accept the defaults for member name and maximum number of members
- Mbr(•File) and Maxi\ilbrs(l), respectively you'll create a file that contains only one
data member, and the name of that member will be the same name as the file itself.

So far, so good. Now comes the tricky part. Believe it or not, iSeries database and source
files can be void of data members. If you create a physical file and specify Mbr(•None),
the system creates the file without any data member in which to place records. If you try
to add records to this file, the system will issue an error stating that no data member
exists. In such a Gtse, you must use the AddPFM (Add Physical File Member) command to
create a data member in the file before you can add record<; to the file.

At the other end of the scale is the fact that you can have multiple data members in a
file. A source file offers a good example. Figure 20.4 depicts the way a source file is
organized.

332 Starter Kit for the IBM iSeries and AS/400

FIGURE 20.3
Usual Database File Organization

File name: TEST

File-level description

Record-level description

Field-level description

Data member Member name: TEST

Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

Record 8

Record 9

Record 10

Each source member is a different data member in the file. When you create a new
source member, you're actually creating another data member in this physical source file.
For instance, when you specify the name of the source member you want to work with
using Programming Development Manager (PDM), you're instructing the software to
override the file to use that particular member for its record manipulations.

Consider another example: a user application that views both current and historical
data by year. Each year represents a unique set of records. This type of application might
use a database file to store each year's records in separate data members, using the year
itself to construct the name of the data member. Figure 20.5 shows how this application
might use a single physical file to store these records. AB you can see, each year has a
unique data member, and each member has a certain number of records. All members
have the same description in terms of record format and fields, but each member contains
unique data. The applications that access this data must use the OvrDbF (Override with
Database File) command to open the correct data member for record retrieval.

Wow! One database member, no database members, multiple database members ...
Why? That's a fair question. With multiple data members, it's possible to handle data that
uses the same record format and same field descriptions while segregating groups of data
for business reasons. One set of software can be written to support the effort, but the data
can be maintained - even saved - separately.

FIGURE 20.4
Source File Organization

Source file: QRPGSrc

File-level description
Record-level description
Field-level description

Data member Member name: INL TOl

Source data record 1
Source data record 2
Source data record 3
Source data record 4
Source data record 5

Data member Member name: INL T02

Source data record 1
Source data record 2
Source data record 3
Source data record 4
Source data record 5

Data member Member name: INL T03

Source data record 1
Source data record 2
Source data record 3
Source data record 4
Source data record 5

FIGURE 20.5

Chapter 20 File Structures 333

Physical File with Multiple Data Members

File name: YEARS

File-level description
Record-level description
Field-level description

I
Data member Member name: YR1997
Number of records: 134,564

I
Data member Member name: YR1998

I Number of records: 125,000

I
Data member Member name: YR 1999

I Number of records: 142, 165

I
Data member Member name: YR2000

I Number of records: 46,243

334 Starter Kit for the IBM iSeries and AS/400

iSeries File Types
Having sorted through the structure of iSeries files and dealt with data members, let's now
look specifically at the types of files and how they're used.

Database Files
Database files are iSeries objects that actually contain data or provide access to data. Two
types of files are considered database files: physical files and logical files. A physical file,
denoted as Type(*File) and Attr(PF), has file-, record-, and field-level descriptions and can
be created with or without using externally described source specifications (or,
alternatively, SQL's Create Table instruction). Physical files - so called because they
contain your actual data (e.g., customer record<>) - can have only one record format. As

records are added, the data entered into the physical file is assigned a relative record
number based on arrival sequence. As we indicated earlier, database files can have
multiple data members, and special program considerations must be implemented to
ensure that applications work with the correct data members. You can view the data that
exists in a specific data member of a file using the DspPFM (Display Physical File
Member) command.

A logical file (or "view" in SQL parlance), denoted as Type(*File) and Attr(LF), is
created in conjunction with physical files to determine how data will be presented to the
requester. Logical files contain no data but instead are used to specify key fields,
select/omit logic, field selection, and field manipulation. The key fields serve to specify the
access paths to use for accessing the actual data records that reside in physical files. A
logical file must be externally described using Data Description Specifications (DDS) or
created as a view using SQL's Create View statement. If you use DDS to describe a logical
file, the physical file on which the logical file is based can even be program described (no
external definition)!

Source Files
A source file (such as QCLSrc, where CL source members are maintained) is simply a
customized form of a physical file; as such, source files are denoted as Type(*File) and
Attr(PF). (Note: If you work with objects using PDM, physical data files and physical
source files are distinguished by using two specific attributes: PF-DTA and PF-SRC.)

All source files created using the CrtSrcPF (Create Source Physical File) command
have similar record formats. Each source file has the same fields, but the field to contain
your source statements, SrcDta, can differ in length from one source file to another. This is
made possible by the fact that the CrtSrcPF command lets you specify a record length.

When you use the CrtSrcPF command, the system creates a physical file that allows
multiple data members. When you edit a particular source member, you're simply editing
a specific data member in the file.

Some iSeries commands are specific to source files and can't be used with data files.
Likewise, some commands are specific to data files yet do not operate on source files.

Chapter 20 File Structures 335

Device Files
Device files contain no actual data. 111eir function is to define a protocol for presenting
application-supplied information to a physical device, such as a workstation or printer.
The types of device files are display, printer, tape, diskette, and ICF.

Display files, denoted by the system as Type(*File) and Attr(DspF), provide specific
infonnation about how an application can interact with a workstation. Although a display
file contains no data, it does contain various record fom1ats that represent the screens the
application will present to the workstation. You can view and maintain each specific record
fonnat using IBM's Screen Design Aid (SDA), which is part of the Application Development
TfxJls licensed program prcxluct. SDA generates DDS source for the display file. Programmers
often edit display file DDS source directly rather than use SDA to generate display files.

Interactive high-level language (HLL) program; include the workstation display file as
one of the files to be used in the application. The HLL program writes a display file
record format to the screen to present the user with formatted data and then reads that
format from the screen when the end user presses Enter or another appropriate function
key. Whereas I/0 to a database file accesses disk storage, 1/0 to a display file accesses a
workstation.

Printer files, denoted by the system as Type(*File) and Attr(PrtF), provide specific
information about how an application can create data for output to a writer. The printer
file can be created with a specified maximum record length and a format to be used
with an HLL program for program-described printing, or it can be created from external
source statements that define the fom1ats to be used for printing. Like display files, printer
files themselves contain no data and therefore have no data member associated with
them. When an application program performs output operations to a printer file, the
output becomes spooled data that can be printed on a writer device or is printed directly
from the application to the writer device.

Tape files, denoted by the system as Type(*File) and Attr(TapF), provide specific
information about hmv an application can read or write data using tape media. The
description of the tape file contairn; infom1ation such as the device name for tape
read/write operations, the tape volume requested (if a specific volume is desired), the
density of the tape to be processed, the record and block length to be used, and other
essential info1mation related to tape processing. Without the use of a tape file, HU
programs cannot access tape media devices.

Diskette.files, denoted by the system as Type(*File) and Attr(DktF), are much like tape
files, except diskette files support diskette devices. For example, diskette files have
attributes that describe the volume to be used as well as the record and block length.

Intersystem Communications Function files, denoted by the system as Type(*File) and
Attr(ICFF), provide specific attributes to describe the physical communications device used
for application peer-to-peer communications programming. When a local application
wants to communicate with an application on a remote system, the local application turns
to the ICF file t()r infonnation about the physical device to use for those communications.

336 Starter Kit for the IBM iSeries and AS/400

The ICF file also contains record fonnats used to read data from and write data to the
device as well as the peer program.

DDM Files
Distributed Data Management files, denoted by the system as Type(*File) and Attr(DDMF),
are objects that represent files that exist on a remote system. For instance, if your
customer file exists on a remote system, you can create a DDM file on the local system
that specifically points to that customer file on the remote system. DDM files provide an
interface that lets you access the remote file just as if it were on your local system. You
can compile programs using the file, read records, write records, and update records
while the system handles the communications. Figure 20.6 represents a typical DDM file
implementation.

FIGURE 20.6
DDM File Implementation

Local (source) system Remote (target) system

I DDMfile
-

1_ I Data file I

t i
I Record request I

Save Files
Save files, denoted by the system as Type(*File) and Attr(SavF), are a special form of file
designed specifically to handle save/restore data. You can't determine the file-, record-,
and field-level descriptions for a save file. The system creates a specific description used
for all save files to make them compatible with save/restore operations.

Save files can be used to receive the output from a save operation and then be used
as input for a restore operation. The process works just the same as performing
save/restore operations with tape or diskette, except that the saved data is maintained on
disk. Save file data can be transmitted electronically or transported via a sneaker network
or overnight courier network to another system and then restored.

With that, we've looked briefly at the various types of files that exist on the system.
Understanding these objects is critical to effective application development and
maintenance on the iSeries.

337

Chapter 21

So You Think You Understand File Overrides
In Chapter 20, we discussed the various kinds of files that exist on the iSeries, each of
which has unique characteristics or attributes. These attributes not only provide the file
definition; they also determine how the system controls the file. In this chapter, we
introduce file ovenides, which you can use to temporarily change the attributes (i.e., the
definition) of a me during program execution.

~'1]I!)
~Caution

If you're considering skipping this chapter because you already understand
file overrides, read the chapter title again! We know many AS/400 and iSerles
programmers, some excellent, who sincerely believe they understand file
overrides - after all, they've been using file overrides in their applications
fur years. But we wouldn't be at all surprised to learn that, given a compre
hensive test on file overrides, each and every one of these programmers
would come up short in some way.

What Do Overrides Do?
You use file ovenides to temporarily, and dynamically, change the attributes of a file that
your programs use so that you don't need to create pennanent files or programs for every
combination of attributes your applications might need. When you consider the number of
attributes supported by the various types of files, it's easy to see how ovenides might be
necessary from time to time.

To perform an override, you use a specific ovenide command designed to ovenide
the particular type of file you want to access. Figure 21.1 lists the file override commands
and some of the reasons for performing each type of ovenide. As the figure shows,
ovenide commands exist for most *File objects on the iSeries. Each override command has
specific parameters that correspond to the file attributes of the file type on which the
command is designed to operate. For instance, you can't use the OvrTapF (Ovenide with
Tape File) command to specify a data member because tape files don't support members.
likewise, the OvrDbF (Ovenide with Database File) command can't specify a tape-volume
number because a database file doesn't require a tape when you access the file directly.
You get the ide'd - a command for each type of file and appropriate override parameters
for each command.

338 Starter Kit for the IBM iSeries and AS/400

FIGURE 21.1
File Override Commands and Tbeir Functions

Override command File types Possible reasons to use
OvrDbF (Override with Database File) Database • Select data member to process

Source • Change Share attribute to share ODP

OvrDktF (Override with Diskette File) Device • Select device to associate with file
• Establish record and block length

OvrDspF (Override with Display File) Device • Change DfrWrt (Defer write) attribute
• Change RstDsp (Restore display) attribute

OvrlCFF (Override with ICF File) Device • Select device to associate with file
• Select communications type

OvrPrtF (Override with Printer File) Device • Select output queue
• Select font, CPI, LPI, and form type

OvrSavF (Override with Save File) Save • Select whether to delete previous records

OvrTapF (Override with Tape File) Device • Select device to associate with file
• Establish record and block

Suppose you want to override a tape file so you can write records from a physical file
to tape using a high-level language (HLL) program. You can specify this override in a CL
program before calling the HLL program. The override and call would appear as follows:

OvrTapF File(QSysTap) +
DevCTap01) +
RcdlenC256) +
BlklenC5120) +
EndOpt(*Unload)

Call HLLProgram

This override provides the attributes for device, record length, block length, and end-of
process tape options. The HLL program opens file QSysTap using the new attributes,
reads records from the physical file, and v.Tites the records to tape.

Consider another example. Suppose you need an override to a printer file to correctly
set the number of copies you want to print. Because the number of copies will vary
depending on each particular job, you want to specify the desired number of copies as a
parameter to a CL program that calls the HLLPrint program. The code in the CL program
would use the OvrPrtF (Override with Printer File) command and would look something
like this:

OvrPrtF File<Report) +
ToFile(QPrint) +
Copies<&Copies)

Call HLLPrint

Chapter 21 So You Think You Understand File Overrides 339

Because of the override, program HLLPrint opens file QPrint rather than file Report and
generates the specified number of repo1ts.

Yet another useful example of an override is selecting a specific member of a
multimember file for processing. For instance, to process member Ord200011 (orders for
November of the year 2000) in file Orders, which contains a member for each month's
orders, you would specify

OvrDbF File(Orders) +
Mbr(Ord200011)

Call HLLPgm

When program HLIJ'gm opens file Orders, it opens member Ord200011.

Prerequisites
Before examining file overrides closely, you need to be familiar with the parts of a job's
anatomy integral ro the function of overrides. The call stack and activation groups both
play a key role in determining the effect that overrides have in your applications.

The Call Stack and Job Call Levels
Jobs typically consist of a chain of active progra.ms, with one program calling another. TI1e
call stack is simply an ordered list of these active programs. When a job starts, the system
routes it to the beginning program to execute and designates that program as the first
entry in the call stack. If that program then calls another program, the system assigns the
newly rnlled program to the second call stack entry. This process can continue, with the
second program calling a third, the third calling a fourth, and so on, each time adding the
new program to the end of the call stack. The call stack therefore reflects the depth of
program calls.

Consider the following call stack:

ProgramA
ProgramB
ProgramC
ProgramD

You can see four active programs in this mil stack. In this example, the system called
ProgramA as its first program when the job started. ProgramA then called ProgramB,
which in tum called ProgramC. Last, ProgramC called ProgramD. Bemuse these are nested
program call<>, each program is at a different layer in the call stack. These layers are
known as call level>. In the example, Program.A is at call level 1, indicating the fact that it
is the first program called when the job started. ProgramB, ProgramC, and ProgramD are
at call levels 2, 3, and 4, respectively.

340 Starter Kit for the IBM iSeries and AS/400

As programs end, the system removes them from the call stack, reducing the number
of call levels. For instance, when ProgramD ends, the system removes it from the call
stack, and the job will then consist of only three call levels. If ProgramC then ends, the
job consists of only two call levels, with ProgramA and ProgramB making up the call
stack. This process continues until ProgramA ends, at which time the job end'>.

So far, you've seen that when one progrnm calls another, the system creates a new,
higher call level at which the called program runs. The called program then begins execution,
and when it ends, the system removes the progrnm from the call stack, returning control
to the calling program at the previous call level.

That's the simple version. But there's a little more to the picture. First, it's possible for
one program to pass control to another progrnm without the newly invoked progrnm run
ning at a higher call level. For instance, with CL's TfrCtl (Transfer Control) command, the
system replaces (in the call stack) the program issuing the command with the progrnm to
which control is to be transferred. Not only does this action result in the invoked program
running at the same call level as the invoking progrnm, but the invoking program is also
completely removed from the chain of programs making up the call stack. Hence, control
cannot be returned to the program that issued the TfrCtl command. Instead, when the
newly invoked program ends, control returns to the program at the immediately preceding
call level.

You may recall that earlier we said that as programs end, the system removes them
from the call stack. In reality, when a progrnm ends, the system removes from the call stack
not only the ending program but also all programs at a call level higher than that of the
ending program. You might be thinking about our example and scratching your head,
wondering, "How can ProgramB end before ProgramC"? Consider the fact that ProgramD
can send an escape message to ProgramB's program message queue. This event results in
the system returning control to ProgramB's error handler. This return of control to ProgramB
result'> in the system removing all program<:; at a call level higher than Progr.amB namely,
ProgramC and ProgramD - from the call stack. ProgramB's design then determines
whether it is removed from the call stack. If it handles the exception, ProgramB is not
removed from the call stack; instead, proce55ing continues in ProgramB.

You should also note that under normal circumstances, the call stack begins with several
system programs before any user-written programs appear. In fact, system programs will
likely appear throughout your call stack. This point is important only to demonstrate that
the call stack isn't simply a representation of user-written programs as they are called.

Activation Groups
In addition to an understanding of a job's call levels, you need a basic familiarity with
activation groups to comprehend file overrides. You're probably familiar with the fact that
a job is a structure with it'> own allocated system resources, such as open data paths
(ODPs) and storage for program variables. These resources are available to programs
executed within that job but are not available to other jobs. Activation groups, introduced
with the Integrated Language Environment (ILE), are a furtl1er division of jobs into smaller
substructures.

Chapter 21 So You Think You Understand File Overrides 341

As is the case with jobs, activation groups consist of private system resources, such as
ODPs and storage for program variables. An activation group's allocated resources are
available only to program objects that are assigned to, and running in, that particular
activation group within the job. You assign ILE program objects to an activation group
when you create the program objects. Then, when you execute these programs, the
system creates the activation group (or groups) to which the programs are assigned. A job
can consist of multiple activation groups, none of which can access the resources unique
to the other activation groups within the job. For example, although multiple activation
groups within a job may open the same file, each activation group can maintain its own
private ODP. In such a case, programs assigned to the same activation group can use the
ODP, but programs assigned to a dt[ferent activation group wouldn't have access to the
same ODP.

A complete discussion of activation groups could span volumes. For this chapter's
purposes, it's sufficient simply to note that activation groups exist, that they are
substructures of a job, and that they can contain their own set of resources not available
to other activation groups within the job.

Override Rules
The rules governing the effect that overrides have on your applications fall into three
primary areas: the override scope, overrides to the same file, and the order in which the
system processes overrides. After we examine the details of each of these areas, we'll look
at a few miscellaneous rules.

Scoping an Override
An override's scope determines the range of influence that the override will have on your
applications. You can scope an override to the following levels:

• Call level - A call-level override is at the level of the process that issues the override,
except that if the override is issued using a call to program QCmdExc, the call level is
that of the process that called QCmdExc. A call-level override remains in effect from
the time it is issued until the system replaces or deletes it or until the call level in
which the override was issued ends.

• Activation group level An activation-group-level override applies to all programs
running in the activation group associatc"Ci with the issuing program, regardless of the
call level in which the override is issued. In other words, only the most recently
issued activation-group-level override is in effect. An activation-group-level override
remains in effect from the time the override is issued until the system replaces it,
deletes it, or deletes the activation group. 1bese rules app~}' on~v if the override is
issued from an activation group other than the default activation group. Activation
group-level overrides issued from the default activation group are scoped to call-level
overrides.

• Job level - A job-level override applies to all programs running in the job, regardless
of activation group or call level in which the override is issued. Only the most

342 Starter Kit for the IBM iSeries and AS/400

recently issued job-level override is in effect. A job-level ovenide remains in effect
from the time it is issued until the system replaces or deletes it or until the job in

which the override was issued ends.

You specify an override's scope when you issue the override, by using the ovenide
command's OvrScope (Override scope) parameter. Figure 21.2 depicts an ILE application's
view of a job's structure, along with the manner in which you can specify ovenides.

First, notice that two activation groups. the default activation group and a named
activation group, make up the job. All jobs have as part of their structure the default
activation group and can optionally have one or more named activation groups.

Original Program Model (OPM) programs can run only in the default activation group.
Figure 21.2 shows two OPM programs, Programl and Program2, both running in the
default activation group. Because OPM programs can't be assigned to a named activation
group, jobs that run only OPM programs consist solely of the default activation group.

ILE program objects, on the other hand, can run in either the default activation group
or a named activation group, depending on how you assign the program objects to
activation groups. If any of a job's program objects are assigned to a named activation
group, the job will have as part of it'i structure that named activation group. In fact, if the
job's program objects are assigned to different named activation groups, the job will have
each different named activation group as part of its structure. Figure 21.2 shows five ILE
programs: Program3 and Program4 are both running in the default activation group, and
Programs, Program6, and Program7 are running in a named activation group.

The figure not only depicts the types of program objects that can run in the default
activation group and in a named activation group; it also shows the valid levels to which
you can scope overrides. Programs running in the default activation group, whether OPM
or ILE, can issue overrides scoped to the job level or to the call level. ILE programs
running in a named activation group can scope overrides not only to these two levels but
to the activation group level as well. Figure 21.2 portrays each of these possibilities.

Overriding the Same File Multiple Times
One feature of call-level overrides is the ability to combine multiple ovenides for the same
file so that each of the different overridden attributes applies. Consider the following
program fragments:

ProgramA:
OvrPrtF File(Report) OutQ(Sales01> OvrScope(*CallLvl)
Call Pgm(ProgramB)

ProgramB:
OvrPrtF File(Report) Copies(3) OvrScope(*Calllvl)
Call Pgm(PrintPgm)

When program PrintPgm opens and spools printer file Report, the overrides from both
programs are combined, resulting in the spooled file being placed in output queue
SalesOl with three copies set to print.

--

Job-level
overrides

--

Chapter 21 So You Think You Understand File Overrides 343

FIGURE 21.2
Scoping Ovemdes

JOB
Default activation group

OPM
Programl

OPM
- : Call-level overrides / Program2

ILE
- : Call-level overrides I Program3

ILE
Program4

Named activation group

Activation-group-level overrides J

t
ILE

Programs

ILE
_ : Call-level overrides J Program6

ILE
Program?

Now, consider the following program fragment:

ProgramC:
OvrPrtF File(Report) OutQ(Sales01> OvrScope(*CallLvl)
OvrPrtF File(Report) Copies(3) OvrScope(*CallLvl)
Call Pgm(PrintPgm)

What do you think happens? You might expect this program to be functionally equivalent
to the two previous programs, but it isn't. Within a single call level, only the most recent

344 Starter Kit for the IBM iSeries and AS/400

override is in effect. In other words, the most recent override replaces the previous
override in effect. In the case of ProgramC, the Copies(3) override is in effect, but the
OutQ(SalesOl) override is not. This feature provides a convenient way to replace an
override within a single call level without the need to first delete the previous override.
It's also fun to show programmers ProgramA and ProgramB and explain that things worked
flawlessly and then ask them to help you figure out why things didn't work right after you
modified the application to look like ProgramC ! When they finally figure out that only the
most recent override within a program is in effect, show them your latest modification -

ProgramA:

OvrPrtF File(Report) OutQ(Sales©1) OvrScope(*Calllvl)
TfrCtl Pgm(ProgramB)

ProgramB:

OvrPrtF File(Report) Copies(3) OvrScopeC*Calllvl)
Call Pgm(PrintPgm)

- and watch them go berserk again! This latest change is identical to the first iteration of
ProgramA and ProgramB, except that rather than issue a Call to ProgramB from ProgramA,
you use TfrCtl to invoke ProgramB. Remember, TfrCtl doesn't start a new call level.
ProgramB will simply replace ProgramA on the call stack, thereby running at the same call
level as ProgramA. Because the call level doesn't change, the overrides aren't combined.

You may need to point out to the programmers that they didn't really figure it out at
all when they determined that only the most recent override within a program is in effect.
The rule is: Only the most recent override within a call level is in effect.

The Order of Applying Overrides
You've seen the rules concerning the applicability of overrides. In the course of a job,
many overrides may be issued. In fact, many may be issued for a single file. When many
overrides are issued for a single file, the system constructs a single override from the
overridden attributes in effect from all the overrides. This type of override is called a
merged override. Merged overrides aren't simply the result of accumulating the different
overridden file attributes, though. The system must also modify, or replace, applicable
attributes that have been overridden multiple times, as well as remove overrides when an
applicable request to delete overrides is issued.

To determine the merged override, the system follows a distinct set of rules that
govern the order in which overrides are processed. You should first note that the system
processes the overrides for a file when it opens the file. The system uses the following
sequence to check and apply overrides:

1. call-level overrides up to and including the call level of the oldest procedure in the
activation group containing the file open (beginning with the call level that opens the
file and progressing in decreasing call-level sequence)

Chapter 21 So You Think You Understand File Overrides 345

2. the most recent activation-group-level overrides for the activation group containing
the file open

3. call-level ovenides lower than the call level of the oldest procedure in the activation
group containing the file open (beginning with the call level immediately preceding
the call level of the oldest procedure in the activation group containing the file open
and progressing in decreasing call-level sequence)

4. the most recent job-level overrides

~~!
~Caution

Titls ordering of overrides can get tricky! It is without a doubt the least
understood aspect of file overrides and the source of considerable confusion
and errors.

Let's look at an example. Figure 21.3A shows a job with 10 call levels, programs in the
default activation group as well as in two named activation groups, and overrides within
each call level and each activation group. Before we show you how the system processes
these overrides, see whether you can detennine the file that Program] at call level 10 will
open, as well as the attribute values that will be in effect due to the job's ovenides. In fact,
try the exercise twice, the first time without referring to the ordering mies.

Figure 21.3B reveals the results of the job's overrides. Did you arrive at these results
in either of your tries? Let's walk, step by step, through the process of determining the
overrides in effect for this example.

Step 1 - call-level overrides up to and including the call level of the oldest procedure in
the activation group containing the file open
Checking call level 10 shows that the system opens file Reportl in activation group AG 1.
The oldest procedure in activation group AGl appears at call level 2. Therefore, in step 1,
the system processes call-level overrides beginning with call level 10 and working up the
call stack through call level 2. When the system processes call level 2, step 1 is complete.

a. There is no call-level ovenide for file Reportl at call level 10.

b. There is no call-level override for file Reportl at call level 9.

c. There is no call-level override for file Reportl at call level 8.

d. There is no call-level ovenide for file Reportl at call level 7.

e. Call level 6 contains a call-level override for file Reportl. The Copies attribute for file
Reportl is overridden to 7.

Active overrides at this point: Copies(7)

346 Starter Kit for the IBM iSeries and AS/400

FIGURE 21.3A

Ordering Overrides l!xample 1

Ca// Acti11ation
Program le11el group Source ..
ProgramA 1 Default OvrPrtF File{Report1) +

OutQ{Prt01l +
Copies{2) +
OvrScope(*Calllvll

Ca LL Pgm(ProgramB)

ProgramB 2 AGl OvrPrtF File(Report1) +
LPI(7.5) +
FormType(FormB) +
Copies(3) +
OvrScope(*ActGrpDfn)

Ca LL Pgm(ProgramCl

Program(3 AG2 OvrPrtF FileCReport1) +
LP1(9) +
Copies(4) +
OvrScope(*Calllvl)

Call Pgm(ProgramD)

ProgramD 4 Default OvrPrtF File{Report1) +
LPI(8) +
PrtQlty(*NLQ) +
Copies(5} +
OvrScope(*Job)

Call Pgm(ProgramE)

ProgramE 5 Default OvrPrtF File<Report1> +
CP1<13.3) +
Copies(6) +
OvrScope{*ActGrpDfn)

Ca LL Pgm(Prog ramF)

ProgramF 6 AGl OvrPrtF File(Report1l +
Copies(?) +
OvrScopeC*CallLvll

Call Pgm(ProgramG)

ProgramG 7 AG2 OvrPrtF File<Report1) +
Copies CS> +
OvrScope(*Job)

Call Pgm(ProgramH)

ProgramH 8 AGl OvrPrtF File(Report1l +
LPIC12) +
FormFeed{*Cut) +
Copies(9) +
OvrScope(*ActGrpDf n)

Call Pgm(Programl)

Program I 9 AG2 OvrPrtF File{Report1l +
LPI(4) +
Copies(10) +
OvrScopeC*ActGrpDfn)

Call Pgm<ProgramJ)

Program] 10 AG1 File specification from RPG IV program:
FReport1 0 F 132 Printer

Chapter 21 So You Think You Understand File Overrides 347

FIGURE 21.38
Merged Override Values for Ordering Overrides &le 1

from step from call level Merged override value
2 8 LPl(12)

5 CPl(13.3)

2 8 FormFeed(*Cut)

3 OutQ(PrtOl)

4 7 Copies(8)

f. Call level 5 shows an activation-group-level ovenide, but the program is running in
the default activation group. Remember, activation-group-level ovenides issued from
the default activation group are scoped to call-level ovenides. Therefore, the system
processes this ovenide as a call-level ovenide. The CPI attribute for file Reportl is
ovenidden to 13.3, and the previous Copies attribute value is replaced with this latest
value of 6.

Active overrides at this point: CPI(13.3) Copies(6)

g. There is no call-level override for file Reportl at call level 4.

h. Call level 3 contains a call-level ovenide for file Reportl. The LPI attribute for file
Reportl is overridden to 9, and the previous Copies attribute value is replaced with
this latest value of 4.

Active overrides at this point: IPJ(9) CPI(13.3) Copies(4)

i. There is no call-level ovenide for file Reportl at call level 2.

Step 1 is now complete. Call level 2 contains the oldest procedure in activation group
AG 1 (the activation group containing the file open).

348 Starter Kit for the IBM iSeries and AS/400

Step 2 - the most recent activation-grou~level overrides for the activation group
containing the file open
The system now checks for the most recently issued activation-group-level override within
activation group AGl, where file Reportl was opened.

a. There is no activation-group-level override for file Reportl at call level 10.

b. There is no activation-group-level override for file Reportl in activation group AG 1 at
call level 9. The activation-group-level override in call level 9 is in activation group
AG2 and is therefore not applicable.

c. Call level 8 contains an activation-group-level override in activation group AG 1 for
file Reportl. The FormFeed attribute for file Reportl is overridden to *Cut. The pre
vious LPI attribute value is replaced with this latest value of 12, and the previous
Copies attribute value is replaced with this latest value of 9.

Active overrides at this point: IPJ(12) CPI(133) FonnFeed(*Cut) Copies(9)

Step 2 is now complete. The system discontinues searching for activation-group-level
overrides because this is the most recently issued activation-group-level override in
activation group AG 1.

Step 3 - call-level overrides lower than the call level of the oldest procedure in the
activation group containing the file open
Remember, call level 2 is the call level of the oldest procedure in activation group AG 1.
The system begins processing call-level overrides at the call level preceding call level 2. In
this case, there is only one call level lower than call level 2.

a. Call level 1 contains a call-level override for file Reportl. The OutQ attribute for
Reportl is overridden to PrtOl, and the previous Copies attribute value is replaced
with this latest value of 2.

Active overrides at this point: IPI(12) CPIC133) FonnFeed(*Cut) OutQ(PrtOJ) Copies(2)

Step 3 is now complete. The call stack has been processed through call level 1.

Chapter 21 So You Think You Understand File Overrides 349

Step 4 - the most recent job-level overrides
The system finishes processing overrides by checking for the most recently issued job
level override for file Reportl.

a. There is no job-level override for file Reportl at call level 10.

b. There is no job-level override for file Reportl at call level 9.

c. There is no job-level override for file Reportl at call level 8.

d. Call level 7 contains a job-level override for file Reportl. Notice that the program runs
in activation group AG2 rather than AGl. Job-level overrides can come from any acti
vation group. The previous Copies attribute value is replaced with this latest value of 8.

Active overrides at this point: IPJ(J2) CPI(J3.3) FonnFeed(*Cut) OutQ(PrtOl) Copies(8)

Step 4 is now complete. The system discontinues searching for job-level overrides because
this is the most recently issued job-level override.

This completes the application of overrides. The final merged override that will be
applied in call level 10 is

LPIC12) CPIC13.3) FormFeed(*Cut) OutQ(Prt01) Copies(8)

All other attribute values come from the file description for printer file Reportl. It's easy to
see how this process could be confusing and lead to the introduction of errors in
applications!

Now, let's make the process even more confusing! In the previous example, our HLL
program (Program]) opened file Reportl, and no programs issued an override to the file
name. What do you think happens when you override the file name to a different file
using the ToFile parameter on the OvrPrtF command? Once the system issues an override
that changes the file, it searches for overrides to the new file, not the original. Let's look at
a slightly modified version of our example. Figure 21.3C contains the new programs.

Only two of the original programs have been changed in this new example. In
ProgramC at call level 3, the ToFile parameter has been added to the OvrPrtF, changing
the file to be opened from Reportl to Report2. And ProgramB at call level 2 now
overrides printer file Report2 rather than Reportl

Figure 21.3D shows the results of the overrides. Let's once again walk, step by step,
through the process of determining the overrides in effect for this new example.

350 Starter Kit for the IBM iSeries and AS/400

FIGURE 21.3(
Ordering Overrides Example 2

Call Activation
Prog!a/11 level gr~up Source
ProgramA 1 Default OvrPrtF Fi le(Report1) +

OutQ(Prt01> +
Copies<2> +
OvrScope(*CallLvl)

Call Pgm(ProgramB)

ProgramB 2 AGl OvrPrtF Fi le(Report2) +
LPI(7.5) +
FormType(FormB) +
Copies(3) +
OvrScopeC*ActGrpDfn)

Call Pgm (P rog rame>

Program(3 AG2 OvrPrtF File(Report1) +
ToFile(Report2) +
LPI(9) +
Copies(4) +
OvrScope(*CallLvl)

Call PgmCProgramD)

ProgramD 4 Default ovrPrtF Fi le(Report1) +
LPI(8) +
PrtQltyC*NLQ) +
Copies(5) +
OvrScope(*Job)

Call Pgm(ProgramE)

ProgramE 5 Default OvrPrtF Fi le(Report1 J +
CPIC13.3) +
CopiesC6J +
OvrScope(*ActGrpDfn)

Call Pgm(ProgramF>

ProgramF 6 AGl OvrPrtF FileCReport1J +
Copies(?> +
OvrScope(*CallLvl)

Call Pgm(ProgramG)

ProgramG 7 AG2 OvrPrtF File(Report1) +
Copies +
OvrScope(*Job)

Call Pgm(ProgramH)

ProgramH 8 AGl OvrPrtF File(Report1) +
LPI(12) +
FormFeedC*Cut) +
Copies(9) +
OvrScope(*ActGrpDfn)

Call PgmCProgramI)

Program I 9 AG2 OvrPrtF Fi le(Report1) +
LPI(4) +
CopiesC10> +
OvrScope(*ActGrpDfn)

Call Pgm(ProgramJ)

ProgramJ 10 AG1 File specification from RPG IV program:
FReport1 0 F 132 Printer

Chapter 21 So You Think You Understand File Overrides 351

FIGURE 21.30
Merged Override Values for Ordering Overrides Example 2

From step From call level Merged override value
1 3 ToFile(Report2)

2 2 LP1(7.5)

5 CPl(l 3.3)

2 2 Form T ype(Form B)

2 2 Copies(3)

Step 1 - call-level overrides up to and including the call level of the oldest procedure in
the activation group containing the file open
Checking call level 10 shows that the system opens file Reportl in activation group AG 1.
The oldest procedure in activation group AGl appears at call level 2. Therefore, in step 1,
the system processes call-level overrides beginning with call level 10 and working up the
call stack through call level 2. When the system processes call level 2, step 1 is complete.

a. There is no call-level override for file Reportl at call level 10.

b. There is no call-level override for file Reportl at call level 9.

c. There is no call-level override for file Reportl at call level 8.

d. There is no call-level override for file Reportl at call level 7.

e. Call level 6 contains a call-level override for file Reportl. The Copies attribute for file
Reportl is overridden to 7.

Active overrides at this point: Copies(7)

f. Call level 5 shows an activation-group-level override, but the program is running in the
default activation group. Again, activation-group-level overrides issued from the default
activation group are scoped to call-level overrides. Therefore, the system processes
this override as a call-level override. The CPI attribute for file Reportl is overridden to
13.3, and the previous Copies attribute value is replaced with this latest value of 6.

Active overrides at this point: CPI(13.3) Copies(6)

g. There is no call-level override for file Reportl at call level 4.

h. Call level 3 contains a call-level override for file Reportl. The LPI attribute for file
Reportl is overridden to 9, and the previous Copies attribute value is replaced with
this latest value of 4. Notice that the printer file has also been overridden to Report2.
This is especially noteworthy because the system will now begin searching for over
rides to file Report2 rather than file Reportl.

Active overrides at this point: ToFile(Report2) IP1(9) CP1(13.3) Copies(4)

352 Starter Kit for the IBM iSeries and AS/400

i. There is no call-level override for file Report2 at call level 2.

Step 1 is now complete. Call level 2 contains the oldest procedure in activation group
AG 1 (the activation group containing the file open).

Step 2 - the most recent activation-grou~level overrides for the activation group
containing the file open
The system now checks for the most recently issued activation-group-level override within
activation group AGl where file Reportl (actually Report2 now) was opened.

a. There is no activation-group-level override for file Report2 at call level 10.

b. There is no activation-group-level override for file Report2 in activation group AG 1 at
call level 9. The activation-group-level override in call level 9 is in activation group
AG2 and is therefore not applicable.

c. There is no activation-group-level override for file Report2 at call level 8.

cl There is no activation-group-level override for file Report2 at call level 7.

e. There is no activation-group-level override for file Report2 at call level 6.

f. There is no activation-group-level override for file Report2 at call level 5.

g. There is no activation-group-level override for file Report2 at call level 4.

h. There is no activation-group-level override for file Report2 at call level 3.

i. Call level 2 contains an activation-group-level override in activation group AG 1 for
file Report2. The FormType attribute for file Report2 is overridden to FormB. The
previous LPI attribute value is replaced with this latest value of 7.5, and the previous
Copies attribute value is replaced with this latest value of 3.

Active overrides at this point: ToFile(Report2) LPI(7.5) CPI(133) FomzT)pe(FonnB)
Copies(3)

Step 2 is now complete. The system discontinues searching for activation-group-level
overrides because this is the most recently issued activation-group-level override in
activation group AGl.

Step 3 - call-level overrides lower than the call level of the oldest procedure in the
activation group containing the file open
Again, call level 2 is the call level of the oldest procedure in activation group AG 1. The
system begins processing call-level overrides at the call level preceding call level 2 (i.e.,
call level 1).

a. There is no call-level override for file Report2 at call level 1.

Step 3 is now complete. The call stack has been processed through call level 1.

Chapter 21 So You Think You Understand File Overrides 353

Step 4 - the most recent job-level overrides
The system finishes processing overrides by checking for the most recently issued job-level
override for file Report2.

a. There is no job-level override for file Report2 at call level 10.

b. There is no job-level override for file Report2 at call level 9.

c. There is no job-level override for file Report2 at call level 8.

d. There is no job-level override for file Report2 at call level 7.

e. There is no job-level override for file Report2 at call level 6.
f. There is no job-level override for file Report2 at call level 5.

g. There is no job-level override for file Report2 at call level 4.

h. There is no job-level override for file Report2 at call level 3.

i. There is no job-level override for file Report2 at call level 2.

j. There is no job-level override for file Report2 at call level 1.

Step 4 is now complete. There are no job-level overrides for file Report2.

This completes the application of overrides. The final merged override that will be
applied to printer file Report2 in call level 10 is

LPIC7.5) CPIC13.3) FormType(FormB) Copies(3)

All other attribute values come from the file description for printer file Report2.

Protecting an Override
In some cases, you may want to protect an override from the effect of other overrides to
the same file. In other words, you want to ensure that an override issued in a program is
the override that will be applied when you open the overridden file. You can protect an
override from being changed by overrides from lower call levels, the activation group
level, and the job level by specifying Secure(*Yes) on the override command.

Figure 21.4 shows excerpts from two programs, ProgramA and ProgramB, running in
the default activation group and with call-level overrides only. ProgramA simply issues an
override to set the output queue attribute value for printer file Reportl and then calls
ProgramB. ProgramB in tum calls two HLL programs, HLLPrtPgml and HLLPrtPgm2, both
of which function to print report Reportl. Before the call to each of these HLL programs,
ProgramB issues an override to file Reportl to change the output queue attribute value.

354 Starter Kit for the IBM iSeries and AS/400

FIGURE 21.4
Protecting Ovemdes

Program
Program A

ProgramB

Call
level
1

2

Activation
group
Default

Default

Source
OvrPrtF

Call

OvrPrtF

Call

OvrPrtF

Call

File(Report1)
OutQ(Prt©1l
OvrScope(*CallLvl)
Pgm(ProgramB)

Fi le(Report1)
OutQ(Prt©2l
Secure(*Yes)
OvrScopeC*CallLvl)
Pgm(HLLPrtPgm1)

Fi le(Report1)
OutQ(Prt©3>
OvrScope(*CallLvl)
Pgm(HLLPrtPgm2)

+
+

+
+
+

+
+

When you call ProgramA, the system first issues a call-level override that set5 Reportl's
output queue attribute to value PrtOl. Next, ProgramA calls ProgramB, thereby creating a
new call level. ProgramB begins by issuing a call-level override, setting Reportl's output
queue attribute value to Prt02. Notice that the OvrPrtF command specifies the Secure
parameter with a value of *Yes. ProgramB then calls HLL program HLLPrtPgml to open
and print Reportl. Because this call-level OvrPrtF command specifies Secure(*Yes), the
system does not apply call-level overrides from lower call levels - namely, the override
in ProgramA that sets the output queue attribute value to PrtOl. HLLPrtPgml therefore
places the report in output queue Prt02.

ProgramB continues with yet another call-level override, setting Reportl's output
queue attribute value to Prt03. Because this override occurs at the same call level as the
first override in ProgramB, the system replaces the call level's override. However, this new
override doesn't specify Secure(*Yes). Therefore, the system uses the call-level override
from call level 1. This override changes the output queue attribute value from Prt03 to
PrtOl. ProgramB finally calls HLLPrtPgm2 to open and spool Reportl to output queue
PrtOl. These two overrides in ProgramB clearly demonstrate the behavioral difference
between an unsecured and a secured override.

Explicitly Removing an Override
The system automatically removes overrides at certain times, such as when a call level
ends, when an activation group ends, and when the job ends. However, you may want to
remove the effect of an override at some other time. The DltOvr (Delete Override)
command makes this possible, letting you explicitly remove overrides.

With this command, you can delete overrides at the call level, the activation group
level, or the job level as follows:

Call level:
Activation group level:
Joh level:

Chapter 21 So You Think You Understand File Overrides 355

DltOvr FileCFile1) OvrScope(*)
DltOvr FileCFile2) OvrScopeC*ActGrpDfn)
DltOvr FileCFile3) OvrScopeC*Job)

Value *ActGrpDfn is the default value for the DltOvr command's OvrScope (Override
scope) parameter. If you don't specify parameter OvrScope on the DltOvr command, this
value is used.

The command's File parameter also supports special value *All, letting you extend the
reach of the DltOvr command. This option gives you a convenient way to remove
overrides for several files with a single command.

Miscellanea
We've covered quite a bit of ground with these mies of overriding files. In addition to the
mies you've already seen, we'd like to introduce you to a few tidbits you might find useful.

You've probably grown accustomed to CL programs letting you know when you've
coded something erroneously - the program crashes with an exception! However,
specify a valid, yet wrong, file name on an override, and the system gives you no warning
that you've done so. This seemingly odd behavior is easily explained. Consider the
following code:

OvrPrtF FileCReport1) OutQ(Prt01)
Call Pgm(HLLPrtPgm)

However, HLLPrtPgm opens file Report2, not Reportl. The system happily spools Report2
without any regard to the override. Although this is clearly a mistake in that you've
specified the wrong file name in the OvrPrtF command, the system has no way of
knowing this. The system can't know your intentions. Remember, this override could be
used somewhere else in the job, perhaps even in a different call level.

The second tidbit involves a unique override capability that exists with the OvrPrtF
command. OvrPrtF's File parameter supports special value *PrtF, letting you extend the
reach of an override to all printer files (within the override scoping mies, of course). All
rules concerning the application of overrides still apply. Special value *PrtF simply gives
you a way to include multiple files with a single override command.

Also, you may recall an earlier reference to program QCmdExc and how its use
affects the scope of an override. This program's primary purpose is to serve as a vehicle
that lets HLL programs execute system commands. You can therefore use QCmdExc from
within a HLL program to issue a file override. Remember that when you issue an override
using this method, the call level is that of the process that invoked QCmdExc.

You should note that override commands may or may not have an effect on system
commands. For more information about overrides and system commands, see "Overrides
and System Commands" (page 358).

356 Starter Kit for the IBM iSeries and AS/400

Important Additional Override Information
With the major considerations of file overrides covered, let's now take a brief look at
some additional override information of note.

Overriding the Scope of Open Files
At times, you'll want to share a file's ODP among programs in your application. For
instance, when you use the OpnQryF (Open Query File) command, you must share the
ODP created by OpnQryF or your application won't use the ODP created by OpnQryF.
To share the ODP, you specify Share(*Yes) on the OvrDbF command.

You can also explicitly control the scope of open files (ODPs) using the OpnScope
(Open scope) parameter on the OvrDbF command. You can override the open scope to
the activation group level and the job level.

Non-File Overrides
In addition to file overrides, the system provides support for overriding message files and
program device entries used in communications applications.

You can override the message file used by programs by using the OvrMsgF (Override
with Message File) command. However, the mies for applying overrides with OvrMsgF are
quite different from those with other override command'>. You can override only the
name of the message file used, not the attributes.

During the course of normal operations, tl1e system frequently sends various types of
messages to various types of message queues. OvrMsgF provides a way for you to specify
that when sending a message for a particular message ID, the system should first check
the message file specified in the OvrMsgF for the identified message. If the message is
found, the system sends the message using the information from this message file. If, on
the other hand, the message isn't found, the system sends the message using the
information from the original message file.

Using the OvrICFDevE (Override ICF Program Device Entry) command, you can issue
overrides for program device entries. Overrides for program device entries let you override
attributes of the Intersystem Communications Function (ICF) file that provides the link
between your programs and the remote systems or devices with which your program
communicates.

Chapter 21 So You Think You Understand File Overrides 357

Overrides and Multithreaded Jobs
The system provides limited support for overrides in multithreaded jobs. Some restrictions
apply to the provided support. The system supports the following override commands:

• OvrDbF - You can issue this command from the initial thread of a multithreaded
job. Only overrides scoped to the job level or an activation group level affect open
operations perfonned in a secondary thread.

• OvrPrtF You can issue this command from the initial thread of a multithreaded job.
As with OvrDbF, only overrides scoped to the job level or an activation group level
affect open operations performed in a secondary thread.

• OvrMsgF - You can issue this command from the initial thread of a multithreaded
job. This command affects only message file references in the initial thread. Message
file references performed in secondary threads are not affected.

• DltOvr You can issue this command from the initial thread of a multithreaded job.

The system ignores any other override commands in multithreaded jobs.

File Redirection
You can use overrides to redirect input or output to a file of a different type. For instance,
you may have an application that wlites directly to tape using a tape file. If at some time
you'd like to plint the information that's written to tape, you can use an override to
accomplish your task. When you redirect data to a different file type, you use the override
appropriate for the new target file. In the case of our example, you would override from
the tape file to a printer file using the OvrPrtF command.

Because file redirection is rarely used, we don't provide detailed information here. We

mention file redirection so that you know it's a possibility. Of course, many restrictions
apply when using file redirection, so if you decide you'd like to use the technique, refer
to the documentation. You can find more information about file redirection in the File
Management book at IBM's iSeries Information Center (http://publib.boulder.ibm.com/
pubs/htmllas400/il?focenter.htm).

Is All This Really Necessary?
Strictly speaking, it's possible to develop applications without using overrides. However,
try to do so, and you undoubtedly will create an unmanageable nightmare. As
experienced application developers, we can unequivocally state that overrides provide
needed flexibility.

358 Starter Kit for the IBM iSeries and AS/400

Overrides and System Commands
Overrides may or may not have an effect on a system command, or they may have limited effect on a

system command. The following information will help you determine the effect that overrides will have

on many system commands.

Commands That Ignore Overrides

AddLFM (Add Logical File Member) DspFD (Display File Description)

AddPFM (Add Physical File Member) DspFFD (Display File Field Description)

AlcObj (Allocate Object) DspJrn (Display Journal)

ApyJrnChg (Apply Journaled Changes) EdtDLOAut (Edit Document Library Object

ChgObjOwn (Change Object Owner) Authority)

ChgPtr (Change Pointer) EdtObjAut (Edit Object Authority)

ChgSbsD (Change Subsystem Description) EndJrnPF (End Journal Physical File)

ChgXxxF1 (Change Xxx File) GrtObjAut (Grant Object Authority)

ClrPFM (Clear Physical File Member) lnzPFM (Initialize Physical File Member)

ClrSavF (Clear Save File) MovObj (Move Object)

CpylGCTbl (Copy DBCS Font Table) RgzPFM (Reorganize Physical File Member)

CrtAutHlr (Create Authority Holder) RmvJrnChg (Remove Journaled Changes)

CrtDktF (Create Diskette File) RmvM (Remove Member)

CrtDupObj (Create Duplicate Object)

CrtSbsD (Create Subsystem Description)

CrtTapF (Create Tape File)

DlcObj (Deallocate Object)
DltAutHlr (Delete Authority Holder)
DltF (Delete File)

DspDbR (Display Database Relations)

1 All change file commands

RnmObj (Rename Object)
RtvMbrD (Retrieve Member Description)

RvkObjAut (Revoke Object Authority)

SbmDbJob (Submit Database Jobs)
SignOff (Sign Off)
StrDbRdr (Start Database Reader)

StrJrnPF (Start Journal Physical File)

Commands That Allow Overrides Only for Srcfile and SrcMbr

CrtCmd (Create Command)

CrtDspF (Create Display File)

CrtlCFF (Create ICF File)

CrtLF (Create Logical File)

CrtPF (Create Physical File)

2 All create program object commands

CrtPrtF (Create Printer File)

CrtSrcPF (Create Source Physical File)

CrtTbl (Create Table)

CrtXxxPgm2 (Create Xxx Program)

Commands That Allow Overrides Only for
Tofile, Mbr, SeqOnly, LvlChk, and lnhWrt

OpnQryF (Open Query File)

continued

Chapter 21 So You Think You Understand File Overrides 359

Commands That Allow Overrides hut Not Mbr(• AU)
CpyFrmPCD (Copy From PC Document) CpyToPCD (Copy To PC Document)

Save and Restore Operations
Save and restore operations ignore all file overrides related to the respective media (e.g. tape, diskette,
save file).

Files Opened as Part of an End-of-Routing Step or End-of-Job Processing
The system does not apply overrides to system files that are opened as part of an end-of-routing step or
end-of-job processing. For instance, you cannot override the printer file for job logs, QPJoblog.

361

Chapter 22

Logical Files
As you learned in Chapter 20, the iSeries provides two kind5 of datalYase files: physical
files and logical files. Physical files contain data; logical files do not. Logical files control
how data in physical files is presented, most commonly using key fields so that data can
be retrieved in key-field sequence. However, the use of key fields isn't the only function
logical files provide. In this chapter, we introduce you to the following basic logical file
concepts:

• record format definition/physical file selection

• key fields

• select/omit logic

• multiple logical file members

We discuss only the Data Description Specifications (DDS) interface to logical file
creation. Keep in mind that you can also create logical files using SQL's Create View
statement.

Record Format Definition/Physical File Selection
To define a logical file, you must select the record formats to be used and the physical
files to be referenced. You can use the record format found in the physical file, or you
can define a new record format. If you use the physical file record format, every field in
that record format is accessible through the logical file. If you create a new record format,
you must specify which fields will exist in the logical file. A logical file field must either
reference a field in the physical file record format or be derived by using concatenation or
substring functions.

Because the logical file doesn't contain any data, it must know which physical file to
access for the requested data. You use the DDS PFile keyword to select the physical file
referenced by the logical file record format You specify the physical file in the PFile
keyword as a qualified name (i.e., LibraryName/FileName) or as the file name alone.

362 Starter Kit for the IBM iSeries and AS/400

Figure 22.lA lists the DDS for physical file HREMFP, and Figure 22.lB shows the DDS
for logical file HREMFLl.

FIGURE 22.lA

DDS for Physical File HREMFP

* ... 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 ••••

* ==
* = File •..•.•.... HREMFP =
* File type Physical =
* = Description ... Employee Master File =
* ==

A R HREMFR TEXT('Employee Master'>

A EMPID 6 TEXTC'Employee ID')
A FIRSTNAME 15 TEXT('First Name')
A MIDDLEINIT 1 TEXT('Middle Initial')
A LASTNAME 15 TEXT('Last Name')
A SOCIALSEC 9 TEXT('Social Security No.')
A STREETADDR 30 TEXT('Street Address')
A CITY 20 TEXT('City')
A STATEABBR 2 TEXTC'State Abbreviation')
A ZIPCODE 9 TEXT('Zip Code')
A TELEPHONE 20 TEXTC'Telephone Number'>
A DEPTID 4 TEXT('Department ID')
A STARTDATE L TEXT('Start Date')
A ALWNULL
A TERM DATE L TEXT('Termination Date')
A ALWNULL
A TYPE 1 TEXT('Employee Type')
A PAY RATE 9 2 TEXT('Pay Rate')

FIGURE 22.1 8

DDS for Logical File HREMFLl

* ... 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 ••••

A
A

A

* ==
*
*
*
*
*
*

= Fi le ..•..•.... HREMFL1 =
= File type •.... Logical =
= Description ... Employee Master File with primary key =
=

Key fields EMPID - Employee ID (Unique> =
==

R HREMFR

K EMPID

UNIQUE
PFILE(HREMFP)

Notice that the logical file references the physical file's record format (HREMFR) and does
not list fields individually. As a consequence, every field in the physical file will be
presented in logical file HREMFLl. Also notice that the PFile keyword in Figure 22.lB
references physical file HREMFP.

Chapter 22 Logical Files 363

In Figure 22.lC, logical file HREMFL2 defines a record format not found in PFile
referenced HREMFP. Therefore, this logical file must define each physical file field it will use.

FIGURE 22.1(
DDS for Logical File HREMFL2

* ... 1 + •••• 2 .••• + •••• 3 + •••• 4 •.•• + •••• 5 •... + •••• 6 ...• + •••• 7 ••..
* ==
* File•..... HREMFL2 =
* File type Logical =
* Description ••• Employee Master File alternate keys and
* = selected fields
*
* Key fields LASTNAME - Employee Last Name =
* FIRSTNAME - Employee First Name
* MIDDLEINIT - Employee Middle Initial =
* ==

A R HREMFR2 PFILECHREMFP)

A FIRSTNAME
A MIDDLEINIT
A LASTNAME
A STREETADDR
A CITY
A STATEABBR
A ZIPCODE
A DEPT ID
A STARTDATE
A TERMDATE
A TYPE

A K LASTNAME
A K FIRSTNAME
A K MIDDLEINIT

A logical file can thus be a projection of the physical file - that is, contain only selected
physical file fields. Notice that fields EmpID, SocialSec, Telephone, and PayRate all appear
in the physical file but are not included in file HREMFL2.

W3 Tip
Although a logical file can use the record format name of the physical file
on which it is based and still use explicitly named fields to restrict the fields
contained in the logical file, we suggest you not use the physical file's record
format name. Instead, for each group of selected fields, supply a unique
record format name.

364 Starter Kit for the IBM iSeries and AS/400

Key Fields
Let's look at Figures 22.lB and 22.lC again to see how key fields are used. File HREMFLl
identifies field EmpID as a key field (in DDS, key fields are denoted by a K in position 17
and the name of the field in positions 19-28). When you access this logical file by key,
the records will be presented in employee ID sequence. The logical file simply defines an
access path for the access sequence - it doesn't physically sort the records.

The Unique keyword specified in this source member tells the system to require a
unique value for EmpID for each record in the file, thus establishing EmpID as the
primary key to physical file HREMFP. Should the logical file be deleted, records could be
added to the physical file with a non-unique key - giving rise to a question that has
been debated over the years: Is it better to use a keyed physical file or a keyed logical file
to establish a file's primary key?

You could specify EmpID as the key in the DDS for physical file HREMPF and enforce
it as the primary key by using keyword Unique. Making the primary key part of the
physical file has a distinct advantage: The primary key is always enforced because the
physical file can't be deleted without deleting the data. Even if all dependent logical files
were deleted, the primary key would be enforced. However, placing the key in the
physical file also has a disadvantage: Should the access path for a physical file data
member be damaged (a rare, but possible, occurrence), the damaged access path prevents
access to the data. Depending on the type and severity of the damage, you may be forced
to delete the member and restore it from a backup.

Placing the primary key in a logical file, as we do in Figure 22.lB, ensures that access
path damage results only in the need to recompile the logical file - the physical file
remains intact. This method also means you can access the physical file in arrival
sequence. As we mentioned earlier, the negative effect is that deleting the logical file
results in leaving the physical file without a primary key.

Let us make a few more comments concerning the issue of where to place the
primary key. Access path maintenance is costly; when records are updated, the system
must determine whether any key fields have been changed, requiring the access path to
be updated. In an interactive environment where changes are made randomly based on
business demands, the overhead for this operation is relatively small. But when batch
purges or updates result in many access path updates for files, the overhead can be quite
detrimental to performance.

With these points in mind, you should investigate the potential performance gains that
the following suggestions might provide:

• For work files, which are frequently cleared and reloaded, create the physical file
with no keys, and place the primary and alternate keys in logical files. Then delete
the logical files (access paths) before you clear and reload the file. The update will
occur much faster with no access path maintenance to perform. After the update,
rebuild or restore the logical files.

Chapter 22 Logical Files 365

• For very large files, consider the same method as that for work files. When you need
to update the entire file, you can delete the logical files, perform the update, and then
rebuild or restore the logical files.

• For files updated primarily through interactive maintenance programs, putting the key
in the physical file poses no performance problems.

The Unique keyword is also expensive in terms of system overhead, so you should use
it only to maintain the primary key. Logical file HREMFL2 specifies three key fields -
LastName (employee last name), FirstName (employee first name), and Middlelnit (employee
middle initial). Keyword Unique is not used here because the primary key is the employee
ID and because there is no advantage to requiring unique names (even if you could
ensure that no two employees had the same name). A primary key protects the integrity
of the file, while alternative keys provide additional views of the same data.

Select/Omit Logic
Another feature logical files offer is the ability to select or omit records from the referenced
physical file. You can use DDS keywords Comp, Values, and Range to provide select or
omit statements when you build logical files.

Figure 22.2 shows logical file HREMFL3.

FIGURE 22.2
DDS for Logical File HREMFL3

*· . . 1 + ••• • 2 + ••• • 3 + ••• • 4 + ••• • 5 + ••• • 6 + •••• 7

A

A
A

* ==
*
*
*
*
*
*
*
*

=
=

Fi le
File type
Description ..•

Key fields ...•

Selection ...••

HREMFL3
Logical
Employee
selected

EMPID -
Current

=
Master Fi le primary key and
records =

=
Employee ID =

=
employees

* ==
R HREMFR PFILECHREMFP)

K EMPID
S TERMDATE COM PC EQ *NULL)

Field TermDate (employee termination date) is used with keyword Comp to compare
values, forming a Select statement (notice the S in position 17). This DDS line tells the
system to select records from the physical file in which field TermDate is equal to *Null
(i.e., no termination date has been entered for that employee). Therefore, when you
create logical file HREMFL3, OS/ 400 builds indexed entries in the logical file only for
records in which the employee termination date is *Null, thus selecting only current
employees. When a program accesses the logical file, it reads only the selected records.

366 Starter Kit for the IBM iSeries and AS/400

Using Select/Omit Statements
Before looking at some more examples, let's go over some of the basic rules for using
select/omit statements:

1. You can use select/omit statements only if the logical file specifies key fields (the value
*None in positions 19-23 satisfies the requirement for a key field) or if the logical file
uses the DynSlt keyword. (We provide more detail about keyword DynSlt later.)

2. To locate the field definitions for fields named on a select/omit statement, OS/400 first
checks the field name specified in positions 19-28 in the record format definition and
then checks fields specified as parameters on ConCat (concatenate) or Rename
keywords. If the field name is found in more than one place, OS/ 400 uses the first
occurrence of the field name.

3. Select/omit statements are designated by an Sor an 0 in position 17. Multiple statements
coded with an Sor an 0 form an OR connective relationship. The first true statement
is used for select/omit purposes.

4. You can follow a select/omit statement with other statements containing a blank in
position 17. Such additional statements form an AND connective relationship with the
initial select or omit statement. All related statements must be true before the record is
selected or omitted.

5. You can specify both select and omit statements in the same file, but the following
rules apply:

a. If you specify both select and omit for a record format, OS/ 400 processes the
statements only until one of the conditions is met. Thus, if a record satisfies the
first statement or group of related statements, the record is processed without being
tested against the subsequent select/omit statements.

b. If you specify both select and omit, you can use the All keyword to specify
whether records that do not meet any of the specified conditions should be
selected or omitted.

c. If you don't use the All keyword, the action taken for records not satisfying any of
the conditions is the converse of the last statement specified. For example, if the
last statement was an omit, the record is selected.

Now, let's work through a few select/omit examples to see how some of these rules
apply. Consider the statements in Figure 22.3.

FIGURE 22.3
Statements Forming an OR Relationship

*· . . 1 + •••• 2 •••• + ••• • 3 + ••• • 4 + ••• • 5 + ••• • 6 + •••• 7
A S TERl'IDATE COMPCEQ *NULL)
A S TYPE COMPCEQ 'H')

Chapter 22 Logical Files 367

Based on rule 3, OS/400 selects any record in which the employee termination date
equals •Null or the employee type equals H (i.e., hourly). Both statements have an S
coded in position representing an OR connective relationship.

Contrast the statements in Figure 22.3 with those in Figure 22.4.

FIGURE 22.4
Statements Forming an AND Relationship

*· .. 1 •••• + ••.. 2 •••• + •.•• 3 •••• + •..• 4 •••• + •••. 5 •••• + •••• 6 •••• + •••• 7 ••••
A S TERMDATE COMPCEQ *NULL)
A TYPE COMP(EQ 'H')

Notice that the second statement in Figure 22.4 does not have an S or an 0 in position
17. According to rule 4, this statement is related to the previous statement by an AND
connective relationship. Therefore, both comparisons must be tme for a record to be
selected, so all mrrent hourly employees will be selected.

To keep things interesting, let's change the statements to appear as they do in
Figure 22.5.

FIGURE 22.5
An Incorrect Variation of Figure 22. 4

* ... 1 •••• + •••• 2 •••• + •••• 3 .••. + •••• 4 ••.. + •••• 5 •••• + •••• 6 + •••• 7 ••..
A S TYPE COMP(EQ 'H')
A 0 TERMDATE COMPCNE *NULL>

At first glance, you might think thi5 combination of select and omit would provide the same
result as the statements in Fie,rure 22.4. However, it doesn't - for two reasons. As rule 5a
explains, the order of the statements is significant. In Figure 22.5, the first statement
determines whether the employee type equals H. If it does, the record is selected and the
second test is not performed, thus letting records for terminated hourly employees be
selected.

The second reason the statements in Figures 22.4 and 22.5 produce different results is
because of the absence of the All keyword, which specifies how to handle records that
don't meet either condition. According to rule 5c, records that don't meet either comparison
are selected because the system perfonns the converse of the last statement listed (i.e., the
omit statement).

Figure 22.6 shows the correct way to select records for current hourly employees using
both select and omit statements.

FIGURE 22.6
A Correct Use of Select and Omit

*· .. 1 •••• + •••• 2 •.•• + •••• 3 •..• + •.•• 4 •••• + •••• 5 •••• + .••• 6 •••• + ...• 7 ••••
A 0 TERMDATE COMP<NE *NULL)
A S TYPE COMP{EQ 'H')
A 0 ALL

368 Starter Kit for the IBM iSeries and AS/400

The All keyword in the last statement tells the system to omit records that don't meet the
conditions specified by the first two statements.

In general, however, it's best to use only one type of statement (either select or omit)
when you define a logical file. By limiting your definitions this way, you'll avoid introducing
errors that result when the rules governing the use of select and omit are violated.

Dynamic Selection with Select/Omit
Select/omit statements give you dynamic selection capabilities through the DDS DynSlt
keyword. DynSlt lets you defer the select/ omit process until a program requests input
from the logical file. When the program reads the file, OS/400 presents only the records
that meet the select/omit criteria. Figure 22.7 shows how to code the DynSlt keyword.

FIGURE 22.7
Coding the DynSlt Keyword

* ... 1 ...• + •••• 2 + •••• 3 .••• + •••• 4 ...• + •••• 5 ..•• + •••• 6 •..• + •••• 7 ••••

A
A

A
A

* ==
*
*
*
*
*
*
*
*

=
=
=
=
=
=

Fi le
File type ..•..
Description ...

Key fields

Selection ..•..

HREMFL4
Logical =
Employee Master File primary key and =
dynamically selected records =

=
EMPID - Employee ID =
Current employees =

* ==

R HREMFR

K EMPID
S TERMDATE

DYNSLT
PFILECHREMFP)

COMP C EQ *NULL>

You're probably wondering just how this differs from an example without the DynSlt
keyword. It differs in one significant way: performance. Without keyword DynSlt, the
system uses access path select/ omit. With access path select/ omit, the access path contains
keys only for those records that meet the logical file's select/omit criteria. This access path
is maintained by the system when you add records to or update records in the physical
file on which the logical file is based. This approach results in faster access than with
dynamic select/omit, but at the cost of increased overhead.

With dynamic select/omit, a key exists for all records in the file, not just for those that
meet the select/ omit criteria. Only when you access the file does the system perform the
record selection. This removes the overhead of performing the select/ omit logic as records
are added to or updated in the physical file. Dynamic select/omit also allows more access
path sharing, which can improve performance.

One scenario in which dynamic select/omit might be appropriate is when you have a
file that is updated frequently, yet read infrequently. In such a case, you may not need to
update the access path for select/omit purposes until a program reads the file.

Chapter 22 Logical Files 369

For example, consider a physical file with a field that you want to use for select/omit
processing in a logical file, and assume that this field changes frequently. Further, assume
that you infrequently read the logical file to produce a report. In such a case, dynamic
select/omit may be more efficient than peiforming access path maintenance on an ongoing
basis as the field is changed.

As a guideline, if you have a select/omit logical file that uses more than 75 percent of
the records in the physical file member, keyword DynSlt can reduce the overhead required
to maintain that logical file without significantly affecting the retrieval peifonnance of the file
because most records will be selected anyway. If the logical file uses less than 75 percent
of the records in the physical flle member, you can usually maximize peiformance by
omitting keyword DynSlt and letting the select/omit process occur when the flle is created.

Multiple Logical File Members
The last basic logical file concept you should understand is the way logical file members
work. The CrtLF (Create Logical File) command has several parameters related to establish
ing the member or members that will exist in the logical file. These parameters are Mbr
(the logical file member name), DtaMbrs (the physical file data members upon which the
logical file member is based), and MaxMbrs (the maximum number of data members the
logical file can contain). The default values for these parameters are *File, *All, and 1,
respectively. Typically, a physical file has one data member. When you create a logical file
to reference such a physical file, these default values instruct the system to create a logical
flle member with the same name as the logical file itself, base this logical ftle member on
the single physical file data member, and specify that a maximum of one logical file
member can exist in this me.

When creating applications with multiple-data-member physical ftles, you often don't
know precisely what physical and logical members you eventually will need. For example,
for each user, you might add members to a temporary work file for each session when
the user signs on. Obviously, you (or, more accurately, your program) don't know in
advance what members to create. In such a case, you would normally

• create the physical file with no members:

CrtPF File(TestPF) +
MbrC*None)

• create the logical file with no members:

CrtLF FileCTestLF) +
MbrC*None)

370 Starter Kit for the IBM iSeries and AS/400

• for every user that signs on, add a physical file member to the physical file:

AddPFM FileCTestPF) +
MbrCTestMbr) +
TextC'Test PF Member')

• for every physical file member, add a member to the logical file and specify the phys
ical file member on which to base the logical member:

AddLFM FileCTestLF) +
MbrCTestMbr) +
DtaMbrsCCTestPF TestMbr)) +
TextC'Test LF Member')

When a logical file member references more than one physical file member and your
application finds duplicate records in the multiple members, the application processes
those records in the order in which the members are specified on the DtaMbrs parameter.
For instance, if the CrtLF command specifies

CrtLF FileCTestLib/TestLF) +
MbrCAL l Years) +
DtaMbrsCCYrPF DT1998) +

CYrPF DT1999) +
CYrPF DT2000>>

a program that performs sequential-by-key processing on logical file member AllYears
first reads the records in member DT1998, then in member DT1999, and finally in
member DT2000.

Keys to the iSeries Database
Logical files on the iSeries provide the flexibility needed to build a database for an
interactive multiuser environment. Understanding logical files will take you a long way
toward creating effective database implementations.

Because this chapter has introduced only the basic concepts, we strongly recommend
that you spend some time in the manuals to increase your knowledge about logical files.
You can find more information about logical files in OS/400 DDS Reference (SC41-5712)
and in DB2 UDE for ASl400 Database Programming (available at IBM's iSeries Information
Center, http.//publib.boulder.ibm.com/pubs/html/as400/infocenter.htm). As you master the
methods presented there, you'll discover many ways in which logical files can enhance
your applications.

371

Chapter 23

File Sharing
You may already be familiar with the general concept of file sharing, a common feature of
many operating systems that lets more than one program concurrently open a file. The
iSeries provides this support automatically. When a program opens a file, the system
allocates the file and the file's resources in a way that prevents conflict with other jobs
and programs that may be using the file. This is true even if the file open occurs multiple
times in a single program within a job!

This is just one level of file sharing provided by OS/400, though. In this chapter, we
focus on another level - that provided by the Share (Share open data path) file attribute.
As you further examine the Share attribute, you'll see that this additional level of sharing
not only enables programs within a job to interact in ways not othetwise possible but also
provides a mechanism for enhancing program performance.

Sharing Fundamentals
When a program opens a file, the system creates a path from the program to the data or
device associated with the file through which the program perfonns all I/O operations for
the file. This path, called the open data path (ODP), contains such things as file status
information O.e., the general and file-dependent I/0 feedback areas), the ftle cursor (i.e.,
the current record position in a file), and storage areas.

Even if a file is used multiple times within a job, the system creates a new ODP for
each open operation. This approach lets a job's programs perform independent I/0
operations to the same file. For instance, for each ODP, the system maintains a unique
database file cursor that determines which record the system reads next. This unique file
cursor means that when multiple programs within a job open the same file, each progrnm
can be assured that its 1/0 operations will be applied to the correct record within the file.

However, the behavior associated with a unique ODP isn't always the most desirnble,
as you'll soon see. Fortunately, the system provides a method that enables multiple
programs within a job to share an ODP created when the job initially opened a file. This
sharing of an ODP is controlled by a file's Share attribute.

The Share attribute is valid for database, source, device, Distributed Data Management
(DDM), and save files. You establish the Share attribute or change it for a file using any of
the CrtXx:xf (Create XXx File), ChgXXxf (Change XXx File), or OvrXXxf (Override with
XXx File) commands. The valid values for the Share attribute are *Yes and *No.

372 Starter Kit for the IBM iSeries and AS/400

The default Share value *No instructs the system to establish a unique ODP each time
a job opens the file. We advise you to always use this default value in the file object itself
(i.e., don't set Share to *Yes using the Crt..XXxf or ChgXXxf command), Instead, you
should issue the appropriate override command and specify Share(*Yes) only when you
want to share an ODP for a specific application. Specifying within the file object that the
file's ODP should be shared means that unless you issue an override in your jobs to
prevent sharing, all opens for that file will be shared opens. This approach is
counterintuitive and sure to introduce programming errors. Now is an opportune time to
introduce you to a few fundamentals that will help you better understand the sharing of
ODPs and prevent such application problems.

First, you should be aware that there's only a slight difference between jobs running
in the Original Program Model (OPM) environment and jobs running in the Integrated
Language Environment (ILE). In the OPM environment, shared opens let multiple
programs within a job share an ODP. ILE, on the other hand, lets you scope a file open
to either the job level or the activation group level using the OpnScope (Open scope)
parameter on the appropriate override command. Therefore, when you scope a file open
to the job level specifying Share(*Yes) in ILE, all program objects within the job use the
ODP created by the first file open operation. When an ILE job uses shared opens scoped
to the activation group level, the system creates an ODP for each activation group that
opens the file. Program objects running within any activation group can share open files
that are scoped to the job level. However, only programs running within the same
activation group can share open files scoped to the activation group level. To simplify
further discussion, we refer primarily to open files scoped to the job level. Just remain
aware that in ILE, the scope may really be to the activation group level.

You should also note that when a program opens a file, the system establishes open
options that control the operations the program can perform for the file. The options
specified on the OpnDbF (Open Database File) command or by the high-level language
definition of the file (e.g., RPG's F-spec) determine the open options. The open options are

• input only (*Inp on the OpnDbF command)

• output only (*Out on the OpnDbF command)

• input, output, update, and delete (*All on the OpnDbF command)

These options are significant when you share an ODP. If you specify Share(*Yes) for a
file, the first program to open the file determines these options. This program must
therefore specify all the open options required for any subsequent programs in the same
job. For example, if program Programl performs a shared open of file Test with the open
option *Inp (for input only) and the job then calls program Program2, which requires the
open option *All (for an update or delete function), Program2 will fail.

In addition to sharing open options, programs also share the file cursor. This means
that each program within a job does not maintain its own position within a file (i.e., the
record that will be read next). For instance, if Programl petforrns sequential reads of file
Test, reading records 1 and 2, and then calls Program2 to petform two sequential reads of

Chapter 23 File Sharing 373

file Test, Program2 reads records 3 and 4 rather than rereading records 1 and 2. If control
then returns to Programl and this program performs two reads of file Test, it reads
record<; 5 and 6. This capability, although powerful, can be problematic. If your programs
need to maintain their own individual positions within a file, you must code the programs
accordingly. Upon return from a called program that reads records from a shared file,
calling programs cannot presume that they will be pointing to the same record they were
pointing to when they issued the call.

last, there is a common misconception that the use of Share("Yes) alters the way in
which the database manager performs record locking. This is not the case. The system
performs record locking on files with Share(*Yes) specified in the same manner it performs
record locking on files with Share(*No) specified.

With these fundamentals under your belt, it's time to look at a few examples. These
examples will show you the differing behavior when you share an OOP and when you
do not. We'll also point out a few reasons you might consider sharing OOPs in your
applications.

Sharing Examples
Let's look at two examples that illustrate how sharing an OOP lets your programs interact
in ways not otherwise possible. We'll show you an example using a shared database file
OOP, as well as an example using a shared device file OOP.

Shared Database File Example
The first example demonstrates the behavior of the file cursor when you share the OOP
for a database file. This example also illustrates sharing an OOP within an activation
group. The example uses activation groups AGl and AG2 for this purpose.

Figure 23. lA shows the data contained in physical file ShrOb, and Figures 23. lB,
23.lC, and 23.10 show sample code for processing this file using a shared OOP. Notice
that the comment banner at the top of the code in Figure 23.10 indicates that the source
code is for four programs. In other words, this same source applies to each of the four
programs. Program5 Shr0b03Al and Shr0b03A2 will share an OOP for file ShrOb within
activation group AGl, while programs Shr0b03Bl and Shr0b03B2 will share an OOP for
file ShrOb within activation group AG2.

FIGURE 23.1 A
Shared Database File Example- Data for File ShrDb

Record 1
Record 2
Record 3
Record 4
Record 5
Record 6
Record 7
Record 8

374 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*
I*
I*
I*

Pgm

FIGURE 23.1 B
Shared Database File F.xample - Program ShrDbO JA

===
= Program ShrDb01A =

Source type ... CLLE
Description ... Shared database file example =
Comments Runs in default activation group =

===

*I
*I
*I
*I
*I
*I

I* === *I
I* =Share ODP for file ShrDb */
I* === *I

I*
I*
I*

OvrDbF File(ShrDb)
Share< *Yes)
OpnScopeC *ActGrpDfn

===
= Call main RPG driver =
===

Call ShrDb02A

+
+

*I
*I
*I

I* === *I
I* = Clean up activation groups */
I* === *I

RclActGrp AG1
RclActGrp AG2

EndPgm

c
c
c
c
c
c
c

FIGURE 23.1 C
Shared Database File F.xample - Program ShrDb02A

* ===
*
* =
*

Program ShrDb02A =
Source type ... RPGLE =
Comments Runs in default activation group

* ===

Do
Call
Call
Call
Call
End Do
Eval

4
'SHRDB03A1 I

'SHRDB03A2'
'SHRDB03B1 I

'SHRDB03B2'

*InLR = *On

*
*
*
*
*
*
*
*

Chapter 23 File Sharing 375

FIGURE 23.1 D
Shared Database File F.xample Programs to Read ShrDb

===
= Program ..••.•. ShrDb©3A1 (assign to activation group AG1>

ShrDb©3A2 (assign to activation group AG1> =
= ShrDb©3B1 (assign to activation group AG2) =
= ShrDb©3B2 (assign to activation group AG2)

Source type ... RPG LE =
Comments ••.... This source is used to compile a LL programs =

= Listed above =
* ===

FShrDb IF E Disk

c
c

Read
Return

ShrDb

Program ShrDbOlA (Figure 23.lB) is the main CL program that drives the process.
This program rnns in the default activation group. The program begins by issuing an
OvrDbF (Override with Database File) command for file ShrDb. The override indicates
that the system is to share the ODP and is to set the file's open scope to the activation
group. This statement causes the system to create one ODP per activation group for file
ShrDb when the system opens the file.

Next, the program calls the main RPG driver program, ShrDb02A, which calls all
programs that actually read file ShrDb. When control returns from the RPG programs to
CL program ShrDbOlA, the program finishes by cleaning up the resources for activation
groups AGl and AG2. This cleanup doses the open instances (both ODPs) of file ShrDb.

Figure 23.lC shows the main RPG driver program that calls all programs that read file
ShrDb. This program, like CL program ShrDbOlA, runs in the default activation group.
Program ShrDb02A simply calls the four programs to read file ShrDb (within a loop
executed four times).

The source shown in Figure 23. lD applies to all four of the programs that ShrDb02A
calls. These programs do nothing more than read one record from file ShrDb and return
control to ShrDb02A.

The table in Figure 23.lE shows the results of this example. You can see that within
each activation group, each program reads a record and skips a record. The record is
skipped because a different program read it!

376 Starter Kit for the IBM iSeries and AS/400

FIGURE 23.1 E
Shared Database File Example - Results

Loop iteration in
P'-~8~'!11.'§~~~~2A -~-~-Progr_~!'L ____ ODPused Record read

"---·-----------WWW--~ --·WWW·---_,, ____ -- -·-----·-·---

1 ShrDb03A1 AG1 Record 1
ShrDb03A2 AG1 Record 2
ShrDb03B1 AG2 Record 1
ShrDb03B2 AG2 Record 2

2 ShrDb03A1 AG1 Record 3
ShrDb03A2 AG1 Record 4
ShrDb03B1 AG2 Record 3
ShrDb03B2 AG2 Record 4

3 ShrDb03A1 AGl Record 5
ShrDb03A2 AGl Record 6
ShrDb03B1 AG2 Record 5
ShrDb03B2 AG2 Record 6

4 ShrDb03A1 AG1 Record 7
ShrDb03A2 AG1 Record 8
ShrDb03B1 AG2 Record 7
ShrDb03B2 AG2 Record 8

Shared Printer File Example
Now, let's look at an example that demonstrates the use of a shared ODP for a device
file - namely, a printer file. This example shows how you can use multiple programs to
write a single spooled file. AB with the previous example, you'll see how multiple
activation groups influence the process.

Figure 23.2A shows the DDS for printer file ShrPrt, which produces a simple name
list. The printer file contains two record formats: HdgOl to print headings and DtlOl to
print the detail lines containing the names. The main driver program is CL program
ShrPrtOlA (Figure 23.2B).

A
A
A
A
A
A

A
A
A

FIGURE 23.2A
Shared Printer File Example - Printer File ShrPrt

* ===
*
*
*

=File ShrPrt
=Source type ... PRTF
=Description ... Shared printer file example printer file

=
=

* ===
R HDG01

R DTL01

NAME 10

SKIPBC1)
1 'Name List'

SPACEA(3)
1 'Name'

SPACEA(2)

SPACEA(1)
1

Chapter 23 File Sharing 377

I*
I*
I*
I*
I*
I*

Pgm

FIGURE 23.28
Shared Printer File Example- Program ShrPrt01A

===
=Program••• ShrPrt01A
=Source type ••• CLLE

Description •.. Shared printer file example
=Comments ...•.. Runs in default activation group

=
=
=
=

===

*I
*I
*I
*I
*I
*I

I* === *I
I* =Share print file ShrPrt */
I* === *I

OvrPrtF File(ShrPrt)
Share(*Yes)

+

I* === *I
I* =Open print file ShrPrt in each activation group */
I* === *I

I*
I*
I*

Call
Call

ShrPrt02A
ShrPrt02B

===
= Write reports =
===

Call ShrPrt03A

*I
*I
*I

I* === *I
I* = Clean up activation groups */
I* === *I

RclActGrp AG1
RclActGrp AG2

EndPgm

This program begins by overriding print file ShrPrt to share its ODP. Next, ShrPrtOlA
calls RPG programs ShrPrt02A (running in activation group AG 1) and ShrPrt02B (running
in activation group AG2) to open print file ShrPrt in each activation group. Because there
are two ODPs (one for each a<.tivation group), two spooled files will be produced. After
opening the printer files, ShrPrtOlA calls program ShrPrt03A, the main RPG program that
calls the actual print programs. Last, ShrPrt01A cleans up the activation groups, dosing the
printer files.

378 Starter Kit for the IBM iSeries and AS/400

*
*
*
*
*
*

Figure 23.2C shows the source used to create programs ShrPrt02A and ShrPrt02B.

FIGURE 23.2C
Shared Printer File F:xample - Programs to Open ShrPrl

===
= Program •...... ShrPrt02A (assign to activation group AG1) =
= ShrPrt02B (assign to activation group AG2) =

Source type •.. RPG LE
= Comments•• This source is used to compile all programs

listed above =
* ===

FShrPrt 0 E Printer

c Return

These programs may seem a little odd to you. A glance at the C-specs reveals that these
programs simply return to their caller! That's true. It's the F-spec that does all the work in
these programs. Programs ShrPrt02A and ShrPrt02B serve only to open print file ShrPrt in
activation group AGl and AG2, respectively. We chose this method of opening the printer
files to demonstrate that once you open a file scoped to the activation group level, that
open is available for all programs in the activation group.

Program ShrPrt03A (Figure 23.2D) runs in the default activation group Cit could be
any activation group, though) and serves to call the actual print programs.

c
c
c
c
c

FIGURE 23.20
Shared Printer File F:xample - Program ShrPrl03A

* ===
*
*
* =

Program .•..•.. ShrPrt03A
Source type •.. RPGLE
Comments .•.... Runs in default activation group

* ===
Call
Call
Call
Call
Return

'SHRPRT04A'
'SHRPRT04C'
'SHRPRT04D'
'SHRPRT04B'

Programs ShrPrt04A and ShrPrt04B share the ODP in activation group AGl, while
programs ShrPrt04C and ShrPrt04D share the ODP in activation group AG2. You might
notice that ShrPrt03A calls these programs in a seemingly strange sequence. We've
purposely used this sequence to highlight the fact that the ODPs are shared within an
activation group. First, we call an activation group AG 1 print program. Next, we call two
activation group AG2 print programs. Last, we call the second activation group AGl
program. When you examine the resulting output later, you'll see that the reports are
indeed correct.

Chapter 23 File Sharing 379

Figures 23.2E through 23.2H shows print programs ShrPrt04A, ShrPrt04B, ShrPrt04C,
and ShrPrt04D, respectively. Each of these programs simply prints headings and two
detail lines. The resulting spooled file for activation group AG 1 appears in Figure 23.21,
while Figure 23.2] shows the spooled file for activation group AG2.

FIGURE 23.2E

Shared Printer Ftle Example - Program ShrPrt04A

* ===
* = Program ••.•••• ShrPrt04A
* = Source type ••• RPGLE
* = Comments ..•••• Runs in activation group AG1

=

=
* ===

FShrPrt 0 E Printer

c
c
c
c
c
c

*
*
*
*
*

Write Hdg01
Eval Name = 'Gary'
Write Dt l01
Eval Name = 'Karen'
Write Dt L01
Return

FIGURE 23.2F

Shared Printer File Example Program ShrPrt04B

===
= Program• ShrPrt04B
= Source type ••• RPGLE
= Comments•. Runs in activation group AG1

=

===
FShrPrt 0 E Printer

c Write Hdg01
c Eval Name = 'Josh'
c Write Dtl01
c Eval Name 'Shannon'
c Write Dtl01
c Return

380 Starter Kit for the IBM iSeries and AS/400

FIGURE 23.2G
Shared Printer File F:xample - Program ShrPt104C

* ===
* Program ShrPrt04C
* Source type •.• RPGLE
* = Comments •..... Runs in activation group AG2 =
* ===

FShrPrt 0

c
c
c
c
c
c

E Printer

Write Hdg01
Eval Name = 'Don'
Write Dtl01
Eval Name = 'Mark'
Write Dtl01
Return

FIGURE 23.2H
Shared Printer File F:xample - Program ShrPt104D

* ===
*
*
* =

Program •..•..• ShrPrt04D
Source type .•• RPGLE
Comments• Runs in activation group AG2

=
=
=

* ===
FShrPrt 0

c
c
c
c
c
c

Name List

Name

Gary
Karen
Josh
Shannon

E Printer

Write Hdg01
Eval Name = 'Charlie'
Write Dtl01
Eval Name = 'Spiro'
Write Dtl01
Return

FIGURE 23.21

Spooled File Produced for Activation Group AG 1

Chapter 23 File Sharing 381

FIGURE 23.2J
Spooled File Produced for Activation Group AG2

Name List

Name

Don
Mark
Charlie
Spiro

How Sharing ODPs Can Help
Now that you've seen the examples, you may be wondering why you would ever do
such a thing. Perhaps the best answer is that the shared ODP technique sometimes makes
it easier to write more modular applications. For example, consider an application that
maintains a set of database files with current customer information as well as database
files with historical customer information. Often, applications summarize current
information before archiving it to history files. The result is that the history database
typically has completely different files with completely different layouts than the current
files. You may need to produce a report that contains both current information and
historical customer information. The infom1ation in the report is the same whether the
source of the information is current or historical, but the processing required for current
information differs greatly from that required for historical information.

A modular application might have one program to process and print current rnstomer
information and another program to process and print historical customer information.
Using a shared ODP, you can call boili programs yet generate a single spooled file with
all ilie necessary information. This modular approach means you can

• call Programl to generate a spooled file with current customer information

• call Progran12 to generate a spooled file with historical customer information

• share the ODP and call both program5 to generate a spooled file with all information

We're sure you can think of many ways you can use this technique to your advantage.

Share and Enhance Program Performance
Sharing ODPs can also play an important role in boosting application performance. In
fact, this is perhaps ilie most common reason applications employ shared ODPs.

One of the most popular uses of the Share attribute is opening files at the menu level
when users frequently enter and exit applications on that menu. Figure 23.3A illustrates a
simple order entry menu (OEMenu) wiili five options, each of which represents a program
that uses one or more of the listed files. If Share(*No) is defined for each file, then each

382 Starter Kit for the IBM iSeries and AS/400

time one of these programs is called, an ODP is created for each file the program uses.
File-open processing is considerably expensive in terms of performance, and if users
frequently switch between menu options, they experience a delay each time a file is
opened. In applications with a considerable number of files to open, this delay can be
significant.

The coding example in Figure 23.3B provides a solution to this problem. For this
example, assume that program OEMenu runs in activation group OE and that all programs
it calls run in activation group •caller. This lets file opens be scoped to the activation group
level. Program OEMenu first issues an OvrDbF command specifying Share(•Yes) for each
file identified. The program then uses OpnDbF to open each file with the maximum open
options required for the various applications. This moves the overhead of opening the file
to the menu program itself rather than each application program. Users therefore experience
the delay in opening the files only once, when the menu program is executed. When a
user selects an option on the menu, the respective program need not perform a full open
of the file, and thus the programs are initiated more quickly. Remember, however, to plan
carefully when using shared ODPs, keeping in mind the above-mentioned guidelines
about placing the file cursor.

OE Menu

1. Order Inquiry

2. Order Entry

3. Order Update

4. Customer Inquiry

5. Item Master Inquiry

Option: _

F3=Exit

FIGURE 23.3A
Sample Order Entry Menu

1~~~~!'<1
j 5·:=1~~ / .. ··I

Chapter 23 File Sharing 383

I*
I*
I*
I*
I*

FIGURE 23.38

Sample Order Entry Menu Program

===
Program ••••••. OEMenu

= Source type ••. CLLE
=Description .•• Order Entry Menu

=
=
=

===
Pgm

I*
I*
I*

I*
I*
I*

I*
I*
I*

===
= Declarations =
===

DclF OEMenu

===
=Open files for application programs = ===

OvrDbF

OvrDbF

OvrDbF

OpnDbF

OpnDbF

OpnDbF

File(OEMaster)
Share(*Yes)
OpnScope(*ActGrpDfn
File(ARCustinfo)
Share(*Yes)
OpnScope(*ActGrpDfn
File(ICMaster)
Share(*Yes)
OpnScope(*ActGrpDfn

File(OEMaster)
Option(*All)
File(ARCustinfo
Option(*Inp)
File(ICMaster
Option(*All)

===
= Display menu and process selected option = ===

Menu:

SndRcvF RcdFmt(OEMenu

If &In03
Go To Exit

If C &Option *Eq
Call Ordinquiry

If C &Option *Eq 2
Call OrdEntry

If C &Option *Eq 3
Call OrdUpdate

*I
*I
*I
*I
*I

*I
*I
*I

*I
*I
*I

+
+

+
+

+
+

+

+

*I
*I
*I

+

+

+

+

continued

384 Starter Kit for the IBM iSeries and AS/400

If
Call

If
Call

FIGURE 23.38 CONTINUED

C &Option *Eq 4
Cstinquiry

C &Option *Eq 5
Itminqui ry

Go To Menu

+

+

I* === *I
/* = Clean up activation group and exit program */
I* === *I

Exit:

RclActGrp OE

EndPgm

The Share attribute also comes in handy when you write applications that provide
online inquiries into related files. Figure 23.4A outlines an order entry program that opens
several files and lets the user call a customer inquiry program or item master inquiry
program to look up specific customers or items. Both of these inquiry programs use a file
already opened by the initial program.

FIGURE 23.4A
Structure of Order Entry Program

Ord Entry
Order entry program
(Activation group OE)

OEMaster
Order entry master file

OEDetail
Order entry detail file

ARCustlnfo
Customer master file

ICMaster
Item master file

i i
Cstlnquiry ltmlnquiry
Customer inquiry program Item inquiry program
(Activation group *Caller) (Activation group *Caller)

ARCustlnfo ICMaster
Customer master file Item master file

Chapter 23 File Sharing 385

By including the statements in Figure 23.4B in a CL program that calls the order entry
program, you can ensure that the ODP for these files is shared, reducing the time needed
to access the two inquiry programs.

OvrDbF

OvrDbF

FIGURE 23.48
Sharing ODPs for Order Entry

File< ARCustlnfo)
Share< *Yes)
OpnScopeC *ActGrpDfn
File< ICMaster >
Sharee *Yes >
OpnScopeC *ActGrpDfn

Call OrdEntry

+
+

+

There's no doubt that the Share attribute is powerful. Sharing ODPs lets programs
perform functions not otherwise possible, can shorten program initiation steps, and can let
programs share vital I/0 feedback information. If you're considering highly modular
programming designs, sharing ODPs is a must.

387

Chapter 24

CL Programming: You're Stylin' Now!
There's much to be said for individuality, but when it comes to code, it's usually unwise
to have as many styles as there are programmers. A single style based on a set of
standards helps ensure your code is easy to read, understand, and maintain. Although
adhering to standards may initially slow you down, within a short time you'll find that it
actually results in faster development. Beyond this boost in productivity, though, is the
fact that good coding style transcends any one language. It's a matter of professionalism,
of doing your work to the best of your abilities and with pride.

Although most CL programs are short and to the point, a consistent programming
style is as essential to CL as it is to any other language. When we started writing CL, we
used the prompter to enter values for command parameters. Today, we still use the
prompter for more complex commands or to prompt for valid values when we're not
sure what to specify. The prompter produces a standard of sorts: Every command begins
in column 14, labels are to the left of the commands, and the editor wraps the parameters
onto continuation lines the way a word processor wraps words when you've reached the
margin. But although using the prompter is convenient, code generated this way can be
extremely difficult to read and maintain.

Apples and Oranges
Apples and oranges? Let's look at CL program EZCHGDFfC (Figure 24.1), a utility
program for changing command defaults. Don't get hung up on what the code is doing
(it's a bit complicated). Simply pay attention to its look. Take a quick glance at this code,
and make note of your first-impression "comfort level."

FIGURE 24.1
Styleless CL Program EZCHGDFI'C

I* PROGRAM EZCHGDFTC */
PGM PARMC&CMDSTR)

I* VARIABLE DECLARATIONS */
DCL VARC&CMDSTR) TYPEC*CHAR) LENC2088)
DCL VARC&CMDSTRLENA) TYPEC*CHAR) LENC2)
DCL VARC&CMDSTRLEN) TYPEC*DEC) LENC4 0>
DCL VARC&CMDSTRPOS) TYPEC*DEC) LENC4 0>
DCL VARC&CHGSTR) TYPEC*CHAR) LENC3000> +

VALUEC'CHGCMDDFT ')
DCL VARC&CHGSTRLEN) TYPEC*DEC) LENC4 0> VALUEC10)
DCL VARC&CHGSTRPOS) TYPEC*DEC) LENC4 0>
DCL VARC&CMD) TYPEC*CHAR) LENC10)
DCL VARC&CMDLIB) TYPEC*CHAR) LENC10)
DCL VARC&CMDPOS) TYPEC*DEC) LENC4 0>

continued

388 Starter Kit for the IBM iSeries and AS/400

DCL
DCL
DCL
DCL
DCL
DCL
DCL
MONMSG

I* GET USER */
RTVJOBA
IF

ELSE

I* BUILD COMMAND */
CHGVAR
CHGVAR
CHGVAR
CHGVAR
CHGVAR
CHGVAR

GETCMDEND: CHGVAR

ADDNXT:

IF

CHG VAR
CHGVAR
CHGVAR
END DO
IF

CHGVAR
CHGVAR
CHGVAR
RTVOBJD
CHGVAR
CHGVAR
CHGVAR
IF

CHGVAR
IF

IF
CHGVAR
CHGVAR
CHGVAR
CHGVAR
GOTO
END DO
CHGVAR

IF

flGURE 24.1 CONTINUED

VARC&LEN) TYPE(*DEC) LEN(4 0)
VARC&USR) TYPE(*CHAR) LENC10>
VARC&MSGID) TYPE(*CHAR) LEN(?)
VARC&MSGDTA) TYPEC*CHAR) LENC100>
VARC&MSGF) TYPEC*CHAR) LENC10)
VARC&MSGFLIB) TYPEC*CHAR) LENC10)
VARC&ERRORSW) TYPE(*LGL)
MSGID(CPF0000 MCH0000> EXEC(GOTO CMDLBL(ERROR))

USERC&USR)
CONDC&USR *EQ 'QSECOFR') THENCCALL +

PGMCEZCHGDFTC1))
CMD(CALL PGMCEZCHGDFTC2)) /* NOT QSECOFR */

VARC&CMDSTRLENA) VALUEC%SSTC&CMDSTR 1 2))
VARC&CMDSTRLEN) VALUEC%BINC&CMDSTRLENA))
VARC&CMDSTR) VALUE(%SSTC&CMDSTR 3 &CMDSTRLEN))
VARC&CMDLIB) VALUE('*LIBL')
VARC&CMDPOS) VALUE(1)
VARC&CMDSTRPOS) VALUE(1)
VARC&CMDSTRPOS) VALUEC&CMDSTRPOS + 1)
CONDC%SSTC&CMDSTR &CMDSTRPOS 1) *EQ '/') +

THENCDO)
VARC&LEN) VALUEC&CMDSTRPOS - 1)
VARC&CMDLIB) VALUE(%SSTC&CMDSTR 1 &LEN))
VARC&CMDPOS) VALUEC&CMDSTRPOS + 1)

CONDC%SST<&CMDSTR &CMDSTRPOS 1) *NE I I) +
THENCGOTO CMDLBL(GETCMDEND))

VARC&LEN) VALUEC&CMDSTRPOS - &CMDPOS)
VARC&CMD) VALUE(%SSTC&CMDSTR &CMDPOS &LEN))
VARC&CMDPOS) VALUEC&CMDSTRPOS)
OBJC&CMDLIB/&CMD) OBJTYPEC*CMD) RTNLIBC&CMDLIB)
VARC&CHGSTRPOS) VALUEC&CHGSTRLEN)
VARC&CMDSTRPOS) VALUEC0>
VARC&CMDSTRPOS) VALUEC&CMDSTRPOS + 1)
CONDC&CMDSTRPOS *GT &CMDSTRLEN) THENCGOTO +

CMDLBLCADDENDDFT))
VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)
CONDC&CHGSTRPOS *GT 3000> THENCGOTO +

CMDLBLCSTRLENERR))
CONDC&CMDSTRPOS *EQ &CMDPOS) THENCDO)
VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)
VAR(%SSTC&CHGSTR &CHGSTRPOS 1)) VALUE('(')
VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)
VARC%SSTC&CHGSTR &CHGSTRPOS 1)) VALUE(' I I')

CMDLBLCADDNXT>

VARC%SSTC&CHGSTR &CHGSTRPOS 1)) +
VALUE(%SSTC&CMDSTR &CMDSTRPOS 1))

COND(%SSTC&CHGSTR &CHGSTRPOS 1) *EQ I I I I) +
THEN(DO)

continued

CHGVAR
IF

CHGVAR
END DO
GOTO

Chapter 24 CL Programming: You're Stylin' Now! 389

flGURE 24.1 CONTINUED

VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)
CONDC&CHGSTRPOS *GT 3000> THENCGOTO +

CMDLBLCSTRLENERR))
VARC%SSTC&CHGSTR &CHGSTRPOS 1)) VALUE(' I I')

CMDLBLCADDNXT>
ADDENDDFT: CHGVAR VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)

CONDC&CHGSTRPOS *GT 3000> THENCGOTO + IF

CHGVAR
CHGVAR
IF

CHGVAR

CMDLBLCSTRLENERR))
VARC%SSTC&CHGSTR &CHGSTRPOS 1)) VALUE(' I I')
VARC&CHGSTRPOS) VALUEC&CHGSTRPOS + 1)
CONDC&CHGSTRPOS *GT 3000> THENCGOTO +

CMDLBLCSTRLENERR))
VARC%SSTC&CHGSTR &CHGSTRPOS 1)) VALUE(')')

I* CHANGE COMMAND DEFAULTS */
EXECUTE: RMVMSG CLEARC*ALL)

STRLENERR:

CHGCMDERR:

CALL PGMCQCMDEXC) PARMC&CHGSTR 3000>
MONMSG MSGIDCCPF0000> EXECCGOTO CMDLBLCCHGCMDERR))
CHGVAR VARC&MSGDTA) VALUEC&CMD *CAT &CMDLIB)
SNDPGMMSG MSGIDCCPC6260) MSGFCQSYS/QCPFMSG) +

RETURN
RMVMSG
SNDPGMMSG

RETURN
RCVMSG

IF

CALL
GOTO
END DO
IF
CALL
GOTO
END DO
IF

RMVMSG
SNDPGMMSG

RETURN
END DO
GOTO

MSGDTAC&MSGDTA) MSGTYPEC*COMP)

CLEARC*ALU
MSGIDCCPF9897) MSGFCQSYS/QCPFMSG) +

MSGDTAC'Command string is too long.') +
MSGTYPEC*DIAG)

MSGTYPEC*DIAG) RMVC*YES) MSGDTAC&MSGDTA) +
MSGIDC&MSGID)

CONDCC&MSGID *EQ 'CPD6260') *OR C&MSGID *EQ +
'CPD6261') *OR C&MSGID *EQ 'CPD6262')) +
THENCDO)

PGMCEZCHGDFTC3) PARMC&CHGSTR &MSGDTA)
CMDLBLC EXECUTE)

CONDC&MSGID *EQ 'CPD6273') THENCDO)
PGMCEZCHGDFTC4) PARMC&CHGSTR &MSGDTA)
CMDLBLCEXECUTE)

CONDCC&MSGID *EQ 'CPD1013') *OR C&MSGID *EQ +
'CPD1014')) THENCDO)

CLEARC*ALU
MSGIDCCPF9897) MSGFCQSYS/QCPFMSG) MSGDTAC'No +

parameters selected for change.') +
MSGTYPEC*DIAG)

CMDLBLCERROR)

continued

390 Starter Kit for the IBM iSeries and AS/400

FIGURE 24.1 CONTINUED

I* ERROR ROUTINE */
ERROR: IF CONDC&ERRORSW) THENCSNDPGMMSG MSGIDCCPF9897) +

MSGFCQSYS/QCPFMSG) MSGDTAC'An unexpected+
error occurred. See job Log.')+
MSGTYPEC*ESCAPE))

CHGVAR VARC&ERRORSW) VALUEC'1 ')
RCVMSG MSGTYPEC*EXCP) MSGDTAC&MSGDTA) MSGIDC&MSGID) +

MSGFC&MSGF) MSGFLIBC&MSGFLIB)
SNDPGMMSG MSGIDC&MSGID) MSGFC&MSGFLIB/&MSGF) +

MSGDTAC&MSGDTA) MSGTYPEC*DIAG)
ENDPGM

Now, compare the code in Figure 24.1 with the version of this program shown in
Figure 24.2. How's your first-impression comfort level now?

The programs' styles are dramatically different, aren't they? Figure 24. l's code is
crowded and difficult to read, primarily because of the CL prompter's default layout. In
addition, this style lacks elements such as helpful spacing, code alignment, and comments
that help you break the code down into logical, readable chunks. Figure 24.2's code is much
more readable and comprehensible. An informative program header relates the program's
purpose and basic functions. The program also features more-attractive code alignment,
spacing that divides the code into distinct sections, indentation for nested Do-End.Do groups,
and mnemonic variable names. Apples and oranges!

Developing Stylistic Standards
In developing your standards, it's important to keep in mind some key considerations.
Among these are psychological constraints, such as the fact that we're conditioned to read
in mixed case and to associate words that are next to or close to each other. There are
also physical constraints, such as the size of your screen - you want to add white space
for readability, but not so much that you can see only a few commands and parameters at
a time. You'll be happier with the results of your efforts to develop standards if you take
some time to think about considerations such as these before you begin.

Let's look at some suggestions to consider as you develop standards for your CL
environment. We'll present guidelines for CL style in the following areas:

• comments

• statement alignment

• variable names and case

• use of shortcuts

As you peruse these guidelines, refer to Figure 24.2 for illustration.

(Text resumes on page 397 following Figure 24.2.)

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Chapter 24 CL Programming: You're Stylin' Now! 391

FIGURE 24.2
Stylin' CL Program EZChgD.ftC

== = Program EZChgDftC
= Type ••.•••...• Command processing program for EZChgDft = = Description .•. EZ Change command defaults =
= =

This program receives a command string and =
for each parameter specified attempts to =
change the command defaults. =

=
= Because the prompter requires that all = = required parameters be specified, it is not
= possible to omit required parameters from = the command string this program receives = = as input. Instead, these parameters must = = be stripped from the command string. The =

program monitors for error messages that =
are returned from ChgCmdDft to identify =
the parameters that must be stripped. This
also applies not only to those parameters = that are required but also to errors that
might result from such actions as trying =
to change the default value for parameters = = that have no default value. =

= -- =
= Parameter interface =
=
:::: Parameter Type

&CmdStr Input
=

Description

Command string for which to
change command defaults

=

==
Pgm

&CmdStr

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

I* == *I
I* = Variable declarations */
I* == *I

Del &cmdStr *Char (.2fl88 }

Del &CmdStrLenA *Cher (2)

Del &.CmdStrLen *Dec (4 fl }

Dc.l &CllldStrPos *Dec (4 fl)

Del &chastr *Char (3flfl0) 1 CHGCll!DDH I .)

Del &~h!lStrun *De.c (4 fl) 1 fl)
Del &ChQStrPos *Dec (4 fl)

t>el &Cmd *.Char (10)

Del .&Cllldlib *Char (10)

Del &cmdPos *Dec (4 0)

Del &Len *Dec (4 fl)
Del &Usr *Char (10 }

Del &Msalt> *Char (7 }

Del &Ill SAD.ta *Char (Hl0)

Del &ll!S!'.lf *Char (1 fl)

Del &Ms11Flib *Char (10)
Del &ErrorSw *Lgl

continued

@

@

@

392 Starter Kit for the IBM iSeries and AS/400

FIGURE 24.2 CONTINUED

I* == *I
I* = Global error monitor */
I* == *I

I*
I*
I*

lllonMsg
Goto

CPF000el MCH0000
Error

Exec<
)

==
=Set Logging options based on user profile =
==

RtvJobA

If
Call

Else
Call

User(&Usr

&Usr *Eq 'QSECOFR'
EzChgDf tC1

EzChgDf tC2

+

*I
*I
*I

+

+

I* == *I
I* = Parse command string into Length and actual command string */
I* == *I

Chg Var
ChgVar
ChgVar

&CmdStrLenA
&CmdStrLen
&CmdStr

%Sst(&CmdStr 1 2 > >
%Bin(&CmdStrLenA > >
%Sst(&CmdStr 3 &CmdStrLen > >

I* == *I
I* = Get command name and Library name for completion message */
I* == *I

Chg Var
Chg Var
Chg Var

GetCmdEnd:

ChgVar

If
Do

Chg Var
ChgVar
ChgVar

End Do

lf
Go To

ChgVar
ChgVar
ChgVar

RtvObjD

&CmdLib '*LIBL'
&CmdPos 1)

&CmdStrPos 1)

&CmdStrPos (&CmdStrPos +

%Sst(&CmdStr &CmdStrPos *Eq I/ 1)

&Len (&CmdStrPos 1)

&Cmdlib (%SstC &CmdStr 1 &Len))

&CmdPos (&CmdStrPos + 1 >

%SstC &CmdStr &cmdSt rPos 1 l *NE • •)

GetCmdEnd

&Len &CmdStrPos - &CmdPos)
&Cmd %Sst(&CmdStr &CmdPos &Len)

&cmdPos &CmdStrPos)

Obj(&CmdLib/&Cmd
ObjType(*Cmd >
RtnLibC &CmdLib)

)

+

+

+
+

continued

Chapter 24 CL Programming: You're Stylin' Now! 393

FIGURE 24.2 CONTINUED

I*
I*
I*

== = Build change command string one character at a time =
==

ChgVar
ChgVar

AddNxt:

&ChgStrPos
&CmdStrPos

&ChgStrLen
0)

I* --
!* - Check to see if end of command has been reached
I* --

ChgVar

If
Go To

&CmdStrPos (&CmdStrPos + 1)

&CmdStrPos *GT &CmdStrLen)
AddEndDft

I* --
!* - Check to see if within maximum Length for change command
I* --

ChgVar

If
Go To

&ChgStrPos (&ChgStrPos + 1)

&ChgStrPos *GT 3000)
StrLenErr

I* --
!* - If at end of command name, insert beginning delimiter of ('
I* - for parameters
I* --

If &CmdStrPos *Eq &CmdPos)
Do

ChgVar
ChgVar
ChgVar
ChgVar
Go To

End Do

&ChgStrPos
(%Sst(&ChgStr &ChgStrPos
&ChgStrPos
(%Sst(&ChgStr &ChgStrPos
AddNxt

&ChgStrPos + 1
I (I)

&ChgStrPos +
I I I I)

*I
*I
*I

*I
*I
*I

+

*I
*I
*I

+

*I
*I
*I
*I

+

I* -- *I
I* - Copy character from command to change command. If the */
I* - character is ' then add another ' character to the change *I
I* - command string. Also, make sure change command is within */
I* - maximum Length. */
I* -- *I

ChgVar %Sst(&ChgStr &ChgStrPos +
%Sst(&CmdStr &CmdStrPos

If %Sst(&ChgStr &ChgStrPos *Eq I I I I) +
Do

ChgVar &ChgStrPos (&ChgStrPos + 1)

If &ChgStrPos *GT 3000) +
Go To StrLenErr

continued

®

©

394 Starter Kit for the IBM iSeries and AS/400

FIGURE 24.2 CONTINUED

ChgVar (%Sst(&ChgStr &ChgStrPos 1)) ('''')
End Do

GoTo AddNxt

I* -- *I
I* - Insert ending delimiter of ') for parameters and make sure */
I* - change command is within maximum Length */
I* -- *I

AddEndDft:

ChgVar

If
Go To

ChgVar
ChgVar

If
Go To

ChgVar

&ChgStrPos (&ChgStrPos + 1)

&ChgStrPos *GT 3000)
StrLenErr

(%Sst(&ChgStr &ChgStrPos 1))
&ChgStrPos

&ChgStrPos *GT 3000)
StrLenErr

I I I I)

&ChgStrPos + 1)

%Sst(&ChgStr &ChgStrPos 1)) (')')

+

+

I* == *I
I* = Execute the ChgCmdDft command */
I* == *I

Execute:

RmvMsg
Call

MonMsg
Go To

Clear(*ALL)
QCmdExc
(&ChgStr 3000
(CPF0000) Exec(

ChgCmdErr)

+

+

I* -- *I
I* - ChgCmdDft command succeeded. Send a completion message and */
I* - exit. */
I* -- *I

ChgVar &MsgDta (&Cmd *Cat &CmdLib)

SndPgmMsg MsglD(CPC6260)
Msgf(QSys/QCPFMsg
MsgDta(&MsgDta)
MsgType(*Comp)

Return

+
+
+

I* == *I
I* = Generated command string is too Long */
I* == *I

continued

StrLenErr:

RmvMsg
SndPgmMsg

Return

Chapter 24 CL Programming: You're Stylin' Now! 395

FIGURE 24.2 CONTINUED

Clear(*All)
MsgIDC CPF9897)
MsgFC QSys/QCPFMsg
MsgDtaC 'Command string is too long.')
MsgTypeC *Diag)

+
+
+

I* == *I
I* = Error in ChgCmdDft - try to handle */
I* == *I

ChgCmdErr:

RcvMsg MsgTypeC *Diag)
RmvC *Yes)
MsgDtaC &MsgDta
MsgIDC &MsgID)

+
+
+

I* -- *I
I* - If ChgCmdDft command fails with one of the following */
I* - diagnostic messages, strip the parameter out of the command */
I* - string. This can occur if the parameter does not have a *I
I* - default value (such as a required parameter>, for a list */
I* - item with no default value, or for a qualifier <such as a *I
I* - library name) with no default value. After removing the */
I* - parameter, execute the ChgCmdDft command again. */
I* -- *I

If
*Or
*Or

Do
Call

Goto
End Do

&MsgID *Eq 'CPD6260'
&MsgID *Eq 'CPD6261'
&MsgID *Eq 'CPD6262'

EZChgDf tC3
C &ChgStr &MsgDta
Execute

)

)
)

+
+
+

+

I* -- *I
I* - If ChgCmdDft command fails with the following diagnostic */
I* - message, add a null placeholder for the missing entry. */
I* - This can occur when a single value is specified in a list */
I* - <such as the Size parameter with value *NoMax specified on */
I* - the ChgPF command). After adding the null placeholder, */
I* - execute the ChgCmdDft command again. *I
I* -- *I

If &MsgID *Eq 'CPD6273' > +
Do

Call

Goto
End Do

EZChgDf tC4
C &ChgStr &MsgDta
Execute

+

continued

396 Starter Kit for the IBM iSeries and AS/400

FIGURE 24.2 CONTINUED

I* -- *I
/* - If ChgCmdDft command fails with one of the following */
I* - diagnostic messages, just ignore the change request. This */
I* - can occur when the request results in no parameters being */
/* - changed. This can happen due to the data entered by the *I
I* - user or as a result of stripping out parameters with no */
I* - default value (for instance, all parameters may be stripped */
I* - out). */
I* -- *I

If
*Or

Do
RmvMsg
SndPgmMsg

Return
EndDo

&MsgID *Eq 'CPD1013'
&MsgID *Eq 'CPD1014'

Clear(*All)
MsglD{ CPF9897)
Msgf(QSys/QCPFMsg
MsgDtaC 'No parameters selected for change.')
MsgType(*Diag)

+
+

+
+
+

I* -- *I
/* - ChgCmdDft command failed for an unknown reason. Let normal */
/* - error processing take control. */
I* -- *I

Goto Error

I* == *I
I* = Error handler */
/* == */

Error:

If (&ErrorSw)
SndPgmMsg

ChgVar

MsgID(CPF9897)
MsgF(QSys/QCPFMsg
MsgDta('An unexpected error occurred. See job log.')
MsgType(*Escape)

&ErrorSw (I 1 I

RcvMsg MsgType(*Excp)
MsgDta(&MsgDta)
MsgID(&MsglD)
MsgF(&MsgF)
MsgFLib(&MsgFLib

SndPgmMsg MsglD(&MsglD)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgType(*Diag)

+
+
+
+

+
+
+
+

+
+
+

I* == *I
I* = End of program */
I* == *I

EndPgm

Chapter 24 CL Programming: You're Stylin' Now! 397

1.0 Comments
No doubt the notion of including comments in your code has been drilled into you more
times than you care to remember. However, a closer look at some specific commenting
guidelines might help you improve your technique.

1.1 Use comments to clarify- not echo - your code. Remember that sometimes less is
more. Good coding techniques help document your program, so simply repeating the
code in your comments adds no value. Use comments to

• provide a brief program summary

• group logical sections of code

• explain a technique that isn't readily apparent

• explain any business rules that aren't readily apparent

1.2 Always include a brief summary at the beginning of a program. The program
summary should include

• the program name

• the program type (e.g., command processing program, validity-checking program)

• a description of the program's purpose

• a description of any special circumstances that exist

• a description of the program's interface (any input, update, and output parameters)

• any special program-creation information

There's a school of thought that says the program summary should also contain a
chronology of changes that includes the date, programmer, and purpose of each
change. You can include this information if you like, but, in our experience, this
information is often ignored or erroneous. If you need to track program changes, a
better alternative is to institute a change management system.

1.3 Use consistent "comment boxes" to divide major sections of code. To clearly divide
sections of code by using comments, enclose the comments inside a "comment box."
Never use one-line comments or comments embedded on the same line as code.
Such comments tend to be overlooked, and they often lead to a cluttered appearance.
Instead, start comments in column 1, and make them a standard length. Use a
hierarchy of box styles. For instance, construct the boxes for major sections out of
equal signs (=), as at F in Figure 24.2 (page 393), and construct those for a
subordinate level out of hyphens (-), as at G (page 393). Use a third box style if you
have yet another subordinate level, but normally two box styles will suffice.

1.4 Use blank lines to group related code and heighten readability. When comments are
unnecessary but you still want to divide sections of code, blank lines can be useful.
Used in the right place, white space also makes your code easier to read.

398 Starter Kit for the IBM iSeries and AS/400

2.0 Statement Alignment
Well-laid-out comments are only the first step in adding style to your CL programs. You
can also take steps to maximize the readability of the CL statements in your code by
improving on the way the prompter aligns statements.

2.1 Begin statements near the left margin. To accommodate labels in column 2, the
prompter begins statements in column 14. You should instead relegate labels to their
own line and start them in column 1. Begin CL commands in column 3 (or at the
appropriate indentation level if the ccxie is part of a Do structure or the continuation
of a previous line). This practice maximizes the space you have for entering useful
code on a line.

2.2 Align command parameters ~allowing space for the maximum command length.
When a command is shorter than the 10-byte maximum, leave sufficient blanks after
the command to pad to the maximum length. Skip one more space, and then start
the first parameter. For example, when a command begins in column 3, start the first
parameter in column 14.

23 Use indentation to highlight dependencies. Use a consistent indentation factor (we
prefer two spaces) for all statements you want to indent. For each nested level,
increase the indentation by this factor.

23.1 lf statements. Place each If condition on a line by itself (or on multiple lines if
the condition uses •And or •or). On a continuation line, indent the command to
be executed when the If condition is true. If only one command is to be
executed as the result of a test, don't follow the If with a Do group; instead,
execute the a<..."tllal command. When an If statement has an associated Else
statement, align Else with If. The segments of code at C and D (page 392) and
H (page 396) in Figure 24.2 illustrate these guidelines.

23.2 MonMsg!Exec statements. When you use the MonMsg (Monitor Message)
command's Exec parameter, follow an alignment standard that indents the
command to be executed in case of error on the line following the MonMsg, as
at B (page 392) in Figure 24.2. It would be nice if you could simply drop the
Exec keyword; unfortunately, it's required. By positioning Exec and its
parentheses as shown in the figure, you further enhance your code's readability.

233 Do groups. Indent each statement that occurs between the Do and EndDo
commands of a Do group. Grouping statements this way makes it easy to tell
which ones belong to the Do group.

2.4 Align command parameters. In many cases, you can fit a command and all its
parameters on one line. When this isn't possible, place the first parameter on the line
with the command. Code a continuation line for each subsequent parameter, and
align it directly beneath the f1rst one. Place the continuation character (+) to the right,
aligned with the last character of your comment boxes.

Chapter 24 CL Programming: You're Stylin' Now! 399

2.5 For repeated one-line commands, align the commands and their parameters. Some
commands (e.g., ChgVar, Del) are often repeated in succession and fit on a single
line. When this is the case, align the commands and their parameters in columns (see
A on page 391).

2.6 Align continuation characters in a consistent column at the end of each line. This style
not only gives your program a tidy appearance but also makes it easy to distinguish
which commands are continued on subsequent lines. A quick glance lets you know
whether a command is continued - no more hunt-and-peck missions looking for
continuation characters.

3.0 Variable Names and Case
Many schools of thought exist on variable naming and whether to use upper, lower, or
mixed case for various programming entities. Proper variable naming and proper case use
greatly enhance your code's appearance and readability.

3.1 Avoid special characters in variable names. It's wise to avoid special characters (e.g.,
$, #) in variable names for several reasons. First, special characters can differ from
language to language, and their use can lead to problems if your software ever runs
on systems with different or multiple language features. Special characters don't "read"
well, either - isn't CstNbr (or CstNo) easier to interpret than Cst#? Likewise, don't
prefix field names with special characters to signify information such as the fact that a
field is from a display file. Not only is DspCstNbr or DspCstNo easier to read than
$Cst#, but a prefix of Dsp rather than $ more clearly says that the field comes from a
display file.

If those reasons aren't enough for you, consider that special characters are harder
to find on the keyboard! Okay, so that's not the greatest reason, but you get the point.

3.2 Construct meaningful variable names. Devise a naming convention that relies on
abbreviations to represent particular entities. Then combine these abbreviations to
construct meaningful variable names. OS/ 400 commands provide a good example of
this type of structure with their verb/subject construction.

3.3 Use mixed case. NEVER USE ALL UPPER CASE! It is perhaps the most difficult case
style to read. If this chapter were presented in all upper case, you wouldn't even be
reading this sentence - you'd have given up long ago! Likewise, code written all in
lower case can be hard to interpret.

Some stylists suggest using all lower case for variables and all upper case for
everything else. Others suggest some other variant - upper case for this, lower case
for that, mixed case for something else. But your goal should be to create readable
code, not to emphasize the fact that a variable is a variable - you know it's a
variable by its context!

We suggest you use mixed case for everything. Code written this way looks neat
and is by far the easiest to read. When you break down entities into multiple
abbreviations, capitalize only the first character of each piece (e.g., variable &CmdStr

400 Starter Kit for the IBM iSeries and AS/400

for command string); when a name consists of only one element, capitalize just the
first character of the name (e.g., variable &User for user).

4.0 Shortcut Dos and Don'ts
Shortcuts have their place in program code, but be sure to use them thoughtfully. For
starters, never use a shortcut out of laziness. This tendency is a sure sign of a drop in
quality. On the other hand, some shortcuts don't detract from quality and can actually
make some parts of your CL programs easier to read.

4.1 Don't use shorthand symbols for concatenation operations. Avoid using the shorthand
symbols I I, I>, and I< for CL's *Cat, *BCat, and *TCat concatenation operators. The
vertical bar character (I) isn't readily available with some keyboard mappings. More
important, though, the meanings of these symbols aren't as clear as the reserved words.

4.2 Simplify commands with obvious keywords. Some commands, such as the following,
have obvious keywords and are easier to interpret when you omit the keywords
altogether.

4.2.1 Simplifying Pgm. Drop the Parm keyword on the Pgm (Program) command,
enclose the parameter list in parentheses, and place one parameter to a line.

4.2.2 Simplifying Del. On Del (Declare CL Variable) commands, drop the Var, Type,
Len, and Value keywords. Define the keyword values positionally, and enclose
the Len and Value parameters in parentheses. Leave enough space between the
parentheses to enable Len to contain the largest value possible (a four-digit
number, a space, and two decimal positions). Figure 24.2 illustrates this rule at
A (page 391).

4.2.2 Simplifying MonMsg. Drop the MonMsg command's MsgID keyword, and use
parentheses to enclose the list of message IDs for which you're monitoring (B,
page 392).

4.23 Simplifying ChgVar. Omit the ChgVar (Change Variable) command's Var and
Value keywords, and enclose the Value parameter in parentheses.

4.2.4 Simplifying If. Drop the Cond and Then keywords from If statements, and
follow the alignment guidelines given above.

4.25 Simplifying Else. Drop the Else command's Cmd keyword, and follow the
alignment guidelines given above.

4.2.6 Simplifying GoTo. Drop the GoTo command's CmdLbl keyword.

5.0 Miscellaneous Suggestions
Several other general techniques can help make your CL programs more readable and
maintainable. Here are some ideas.

5.1 Insert a blank after each opening parenthesis and before each closing parenthesis. This
rule may seem trite, but it makes your code easier to read.

Chapter 24 CL Programming: You're Stylin' Now! 401

5.2 Develop a standard error-handling routine, and place it at the end of your code. It's
wise to insulate your users from abnormal terminations. Toward that end, you should
always include a standard error-handling routine in your programs. Use a global
MonMsg statement to trap any unforeseen errors, and handle the errors gracefully in
the error-handling section. Tuck this section of code out of the way, at the end of
your code.

5.3 Extract single values from multivalue variables before referring to the values. When a
variable contains more than one value, such as a qualified object name or the
contents of a data structure, extract the individual values before using them in your
program. Declare individual fields and then use the ChgVar command with the %Sst
built-in function to extract the fields (E, page 392). Then use these individual fields in
your program.

Start Stylin'!
You can use the guidelines in this chapter as the foundation for a style that lets you write
CL code that's easy to read, understand, and maintain. Try out these style suggestions,
share your ideas about what works with others, and implement your own set of standards
to give your CL more style.

CL Coding Suggestions
• Use comments to clarify - not echo - your code.
• Always include a brief summary at the beginning of a program.
• Use consistent "comment boxes" to divide major sections of code.
• Use blank lines to group related code and heighten readability.
• Begin statements near the left margin.
• Align command parameters by allowing space for the maximum command length.
• Use indentation to highlight dependencies.
• Align command parameters.
• For repeated one-line commands, align the commands and their parameters.
• Align continuation characters in a consistent column at the end of each line.
• Avoid special characters in variable names.
• Construct meaningful variable names.
• Use mixed case.
• Don't use shorthand symbols for concatenation operations.
• Simplify commands with obvious keywords.
• Insert a blank after each opening parenthesis and before each closing parenthesis.
• Develop a standard error-handling routine, and place it at the end of your code.
• Extract single values from multivalue variables before referring to the values.

403

Chapter 25

Extend Cl's Reach with APls
The fact that CL programs consist of the very OS/400 commands used in day-to-day
operation is good news for those wanting to automate system-related tasks. The bad news
is that not all of those commands used in day-to-day operations lend themselves to
automated, programmatic solutions. For instance, a command may let you display or print
a particular item of interest but provide no way for a program to retrieve the same
information in a useful form.

One common scenario for such a case is the need to determine programmatically a par
ticular job's status. No OS/400 command exists to retrieve this information in a form useful
to programs. Some programmers use a programming technique that issues the appropriate
job-related command (e.g., Dsp]ob, WrkAct]ob) to create a spooled file containing the
necessary information. After creating the spooled file, the program copies it to a physical
file and extracts the information that the program needs to continue processing. Such
techniques, however, often petform poorly and are risky in a production environment. Even
if a program's design accounts for all possible scenarios during the information-extraction
process, applying PTFs or upgrading the operating system may change the layout of the
spooled file, thereby invalidating the extraction rules and producing incorrect results.

We have seen many such techniques employed and have seen many of them fail to
function correctly after a change to the system. We've also seen the resulting mayhem that
occurred when these techniques were relied on in a production environment. A better,
more stable solution often lies in the use of application programming interfaces (APis) to
perform the desired tasks. In addition to exhibiting better performance characteristics, APis
provide for compatibility with future releases.

OS/400 APis are simply IBM-supplied programs designed to interface with user-written
programs. The system sports numerous APis that perform a variety of functions. Typically,
you'll use these APis in high-level language programs, but you can also use many of them
in CL programs. In this chapter, we assume you have some familiarity with APis as we
discuss concerns unique to CL when using APis.

Know Your Limitations
Make no mistake about it - limitations apply when you use APis in CL programs. Even
so, many APis are suitable for use. Familiarize yourself with the limitations, and you'll be
successful in determining which APis you can effectively use in your CL programs.

When you call an API, you use parameters to communicate information between it
and your program. The various APis accept as parameters various data types, some of
which CL does not support. Figure 25.1 shows common data types and constructs used by
APis, along with the level of support provided by Original Program Model (OPM) CL and
Integrated Language Environment (ILE) CL.

404 Starter Kit for the IBM iSeries and AS/400

FIGURE 25.1
CL Data Supporl

Packed Zoned Floating
Character decimal decimal point Binary 2 Binary 4 Pointer Structures Arrays

OPMCL ./ ./ .;1 .;1 .;3 .;3

ILE CL ./ ./ .;1 .;1 .;2 .;3 .;3
1 CL has no binary data type. However, you can use built-in function %Bin to convert decimal data to character data with the equivalent binary

value, and vice versa.
2 CL has no pointer data type. However, pointers passed to an ILE CL program are preserved.
3 CL has no structure or array support. However, you can use the substring function to simulate structures and arrays.

Of the data types listed in the figure, only two (character and packed decimal) have full,
direct support. Nor does direct support exist for structures or arrays. Fortunately, there are
techniques you can use in CL to relax some of these limitations.

The CL built-in function %Bin is very important to using APis in CL. This built-in
function converts decimal data into character data that has the equivalent binary value and
converts character data representing a binary value into decimal data. Because of the
prevalence of binary parameters in APis, you could all but forget about using APis in CL
without %Bin. Consider the following code:

Del VarC&LengthNbr) TypeC*Dee) LenC4 0>
Del VarC&LengthChr) TypeC*Char) Len(4)

ChgVar VarC&LengthNbr) ValueC10)
ChgVar VarC%BinC&LengthChr)) ValueC&LengthNbr)

. Call to AP/ with input parameter &LengtbChr

This example shows how you can use %Bin to place a numeric variable's value into a
character field so that the character field contains the binary representation of the numeric
value. You can then specify this character field as an API's binary input parameter.

Now, let's look at another use for %Bin in conjunction with APis. Consider the
following code:

Del VarC&LengthNbr) TypeC*Dee) LenC4 0>
Del VarC&LengthChr) TypeC*Char) Len(4)

. Call to AP/ with output parameter &LengthChr

ChgVar VarC&LengthNbr) ValueC%BinC&LengthChr))

This example shows how you can use %Bin to place the value of an APl's binary output
parameter into a numeric variable.

As you investigate APis, you'll probably discover two important pieces of information.
First, many APis use only character and four-byte binary parameters. You're also likely to
find that much of the time, the APis you want to use fall into this category.

APis also frequently use structures. Although CL doesn't provide support for structures
or arrays, CL can simulate both with the substring string function, o/o.Sst. This function lets

Chapter 25 Extend Cl's Reach with APls 405

you construct and decompose structures and arrays. Let's look at a simple example for a
name structure that contains the following subfields:

15-byte first name subfield &FirstName

1-byte middle initial subfield &Middlelnit

20-byte last name subfield &LastName

You can use the subfields to construct a structure in variable &FullName with the
following code:

Del
Del
Del
Del

VarC&FullName)
VarC&FirstName)
VarC&Middleinit)
VarC&LastName)

TypeC*Char)
TypeC*Char)
TypeC*Char)
TypeC*Char)

LenC36)
LenC15)
Len(1)
LenC20>

ChgVar VarC%SstC&FullName 1 15)) ValueC&FirstName)
ChgVar VarC%SstC&FullName 16 1)) ValueC&Middlelnit)
ChgVar VarC%SstC&FullName 17 20>> ValueC&LastName)

You use this construction technique before calling an API when you need to pass a
structure as input to the APL

Let's now look at decomposing a structure into its subfields. To decompose the name
structure from the previous example, you simply reverse the operands in the ChgVar
(Change Variable) commands as follows:

ChgVar VarC&FirstName) ValueC%SstC&FullName 1 15))
ChgVar VarC&Middlelnit) ValueC%SstC&FullName 16 1))
ChgVar VarC&LastName) ValueC%SstC&FullName 17 20>>

You use this decomposition technique after calling an API when you need to parse a
structure returned by the API (output parameter).

You should also be aware that there are two ways the system passes parameters: by
reference and by value. When you pass a parameter by reference, you simply pass a
pointer to the data that the parameter references (the field's address). When you pass a
parameter by value, you pass the actual contents of the field. Some APis (notably Unix
type APis) require you to pass parameters by value. CL, however, supports passing only
by reference. Obviously, you won't be able to call such APis from CL programs. The good
news here is that these aren't among the most commonly used APis.

Reporting Errors with APls
As with any program, APis can encounter error conditions. When an API fails with an
error, a well-designed application should take notice of the failure and handle the
exception gracefully rather than let the application terminate abnormally.

APis use three basic error-reporting mechanisms:

• feedback codes and conditions

• an error number (errno)

• an API error structure

406 Starter Kit for the IBM iSeries and AS/400

The API's category determines the error-reporting mechanism used. For example, ILE CEE
APis use feedback codes and conditions, while Unix-type APis use an error number that
you can optionally use to retrieve error text. The most commonly used error-reporting
mechanism, though, is the API error structure; hence, it is the focus of this discussion.

The API error structure can be one of two formats, ERRCOlOO or ERRC0200, each of
which is variable in length and contains information relating to an error condition.
ERRCOlOO is the most frequently used of these formats. Typically, only when convertible
character support is required is ERRC0200 used. The general principles that apply and the
techniques you will use in CL programs are the same regardless of the format; therefore,
we'll look solely at format ERRCOlOO.

Figure 25.2 shows the layout for format ERRCOlOO. The output subfields return error
details. The single input subfield determines how much error information is returned and
whether the system issues an exception message.

FIGURE 25.2
AP! Error Format ERRCOJOO

!'~11!_ ____ !.~---- _Ir!!.~---- __ -'!.5!. _____ f!e_s!'!f!!~~"------- --- ---- --- -- ----------- ---------

5

9

16

17

4 Binary Input Bytes Provided

8 Binary Output

15 Character Output

16 Character Output

n Character Output

Length of API error structure to pass to the APL Valid values are
0 - The API returns no error details. The system issues an exception

message.
8 - The API returns no error details (except the length of returned

message data indicating an error occurred). The system does not
issue an exception message.

>8 - The API returns error details. This value specifies the maximum
amount of error information to return. The system does not issue an
exception message.

Bytes Available
Length of returned API error structure information when the API encoun
ters an error (the value is 16 plus the length of the message data
returned). If the API does not encounter an error, O (zero) is returned.

Message ID
Message ID returned when the API encounters an error.

Reserved

Message Data
Message data associated with the message ID returned when the API
encounters an error. This field is variable in length to a maximum of
32,767 bytes (i.e., a value of 32,783 for n).

The first two subfields, Bytes Provided and Bytes Available, confuse a fair share of
programmers. The decision to refer to these subfields as Bytes Provided and Bytes Available
in the documentation contributes to the confusion. Both of these subfields designate a
length, and labeling them as such would have been a better choice. The Bytes Provided
subfield simply specifies the length of the entire API structure that the application is

Chapter 25 Extend Cl's Reach with APls 407

passing to the APL The Bytes Available subfield returned by the API indicates the length
of the returned API error structure (i.e., 16 plus the length of the returned message data).
IBM probably chose the terms "provided" and "available" because the API error structure
is variable in length and the programmer determines how large a structure to "provide."
This in tum influences the amount of error data that the API can return and make
"available" to the calling program. Because the programmer determines the length of the
structure, it's possible that the space available to hold the returned error data isn't large
enough to hold the data in its entirety. In such a case, the API truncates the error data
accordingly.

Handling AP/ Errors
The Bytes Provided subfield is responsible for determining what occurs when an API
encounters an error. The following three basic methods represent your options:

Method 1: Bytes Provided = 0

The API does not return error information and instead issues an exception message.
In such a case, you must use normal CL error-handling techniques (i.e., the MonMsg,
or Monitor Message, command) to trap any errors the API may issue. This is a
common method for handling API errors in CL programs.

Method 2: Bytes Provided = 8

The API does not issue an exception message and returns only the Bytes Available
subfield portion of the error details. Your program can check for a nonzero Bytes
Available value to determine whether an error occurred in the API, but specific
identifying information (message ID and message data) are not returned by the APL
This method is sufficient if you need to determine only that an error of some kind
occurred. You can accomplish the same thing using method 1 along with a MonMsg
statement to monitor for any message (CPFOOOO); therefore, method 2 is not
commonly used.

Method 3: Bytes Provided > 8

The API does not issue an exception message, and it returns as much of the error
details as will fit in the API error structure. Your program can check for a nonzero
Bytes Available value to determine whether an error occurred in the APL This method
makes it possible to examine the message ID for the error that generated the
exception and to react accordingly. You can accomplish the same thing using method
1 and a RcvMsg (Receive Message) command to obtain the error details, but letting
the API furnish the information is simpler. This is another common method for
handling API errors in CL programs.

Figure 25.3 demonstrates these three methods of handling API errors.

408 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*

FIGURE 25.3
AP! Error Structure Alternatives

===
= API error methods =
===

Pgm

I*
I*
I*

I*
I*
I*

I*
I*
I*

=== = Variable declarations =
===

Del
Del
Del
Del
Del
Del

Del
Del
Del
Del

API error fields

&APIError *Char
&AEBytesPrv *Char
&AEBytesAvl *Char
&AEMsg ID *Char
&AEMsgDta *Char
&AEMsgDtaLn *Dec

Global error handler fields

&MsgID
&MsgDta
&MsgF
&MsgFLib

*Char
*Char
*Char
*Char

272
4
4
7

256
3

7
256

10
10

0

)
)
)
)

)

)

)
)
}

}

*I
*I
*I

*I
*I
*I

*I
*I
*I

*I
*I
*I

I* --- *I
I* Global error trap */
I* --- *I

I*
I*
I*

I*
I*
I*
I*
I*
I*
I*
I*
I*

MonMsg
Go To

(CPF0000 MCH0000) Exec(
Error)

+

Call API
*I
*I
*I

..
Method

ChgVar
ChgVar

. "'
• II • • " • • IO • • a • II • • • • • " .. 10 • • •

- Bytes Provided = 0
Exception occurs. If explicit Mon~sg statements
follow the call to the API, they are checked
to determine whether they handle the exception.
If explicit MonMsg statements do not exist or
do not handle the exception, the global error
monitor receives control if one exists.
" "

%BinC &AEBytesPrv)
%SstC &APIError 1 4

. " "'
0)
&AEBytesPrv

*I
*I
*I
*I
*I
*I
*I
*I
*I

continued

I*
I*
I*
I*
I*
I*
I*
I*
I*

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Chapter 25 Extend Cl's Reach with APls 409

Call SomeAPI
C &SomeParm

&AP I Error

FIGURE 25.3 CONTINUED

.. • • • • • • • • • • • • • .. • • • • • • Ill • • .. • • • . "
Method 2 - Bytes Provided = 8

ChgVar
ChgVar

Call

ChgVar

If
Do

No exception occurs. The program continues and
optionally can check the return value in the
bytes available portion of the API error
structure to determine whether some exception
occurred. Error details CMsgID and MsgDta) are
not available. "

%Bin(&AEBytesPrv)
%Sst(&APIError 1 4)

SomeAPI
(&SomeParm

&AP I Error

(8)

.

C &AEBytesPrv)

&AEBytesAvl %Sst(&APIError 5 4))

C %Bin(&AEBytesAvl) *NE 0)

.

Insert code for condition where some error occurred

End Do

.. "
Method 3 - Bytes Provided > 8

+
+

*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

+

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

No exception occurs. The program continues and
optionally can check the return value in the
bytes available portion of the API error
structure to determine whether some exception
occurred. Error details CMsgID and MsgDta) are
available Cif sufficient space is allocated),
providing granular control. The program can
optionally examine error details and take the
appropriate action. For example, it can check
for specific errors (by examining the MsgID
portion of the API error structure) and handle
them in a specific manner. The program can also
easily percolate the exception to the calling
program. *I

: : *I
continued

.

410 Starter Kit for the IBM iSeries and AS/400

FIGURE 25.3 CONTINUED

(272) ChgVar
ChgVar

%Bin(&AEBytesPrv)
%Sst(&APIError 1 4) C &AEBytesPrv

Call SomeAPI
C &SomeParm

&APIError

ChgVar
ChgVar
ChgVar
ChgVar

&AEBytesAvl
&AEMsgDtaln
&AEMsgID
&AEMsgDta

C %Sst< &APIError 5 4))
C %Bin(&AEBytesAvl) 16)
(%Sst< &APIError 9 7))

If

C %SstC &APIError 17 &AEMsgDtaln))

Do
If

%Bin(&AEBytesAvl) *NE 0)

&AEMsgID *NE 'MsgID01'
&AEMsglD *NE 'MsgID62'

Do
ChgVar &MsgID &AEMsgID)
ChgVar &MsgDta &AEMsgDta
ChgVar &MsgF 'QCPFMSG'
ChgVar &MsgFLib 'QSYS')

GOTO SndError
End Do

If &AEMsgID *Eq 'MsgID61'
Do

• Insert code for specific error condition

End Do

If
Do

(&AEMsgID *Eq 'MsgID02')

• Insert code for specific error condition

End Do

End Do

*And
)

+
+

+

+
+

+

+

I* --- *I
I* Exit program */
I* --- *I

Return
continued

Chapter 25 Extend CL' s Reach with APls 411

FIGURE 25.3 CONTINUED

I* --- *I
I* Error handler (percolate error message to caller) */

I* --- *I

Error:

RcvMsg

MonMsg

SndError:

MsgTypeC *Excp)
RmvC *Yes)
MsgDtaC &MsgDta)
MsgIDC &MsgID)
MsgFC &Msgf)
MsgFLibC &MsgFLib
C CPF0000 MCH0000

SndPgmMsg MsgIDC &MsgID)
MsgFC &MsgFLib/&Msgf
MsgDtaC &MsgDta)
MsgTypeC *Escape)

MonMsg C CPF0000 MCH0000)

EndPgm

+
+
+
+
+

+
+
+

The example uses variable &APIError as the API error structure. Notice that we declare
this variable with a length of 272. This lets the API return up to 256 bytes of message
data. We use 272-byte structures for all the API calls in the example, but note that this
structure could be shorter for methods that don't need the error details. Also, notice that
we've defined a global error trap to handle any errors that aren't handled explicitly.

In each of the methods, the program first initializes the API error structure's Bytes
Provided subfield and then calls the APL In method 1, the program initializes the subfield
to 0 (zero) so that any API error generates an exception message. The example relies on
the global MonMsg statement to handle any errors produced by the APL However, you
can follow the API call with any MonMsg statements appropriate to your requirements
and explicitly handle any errors.

Method 2 initializes the Bytes Provided subfield to 8, thereby preventing any
exception messages when an error occurs in the APL After the call to the API, the
program checks to determine whether an error of any kind occurred and explicitly
handles any such error.

Method 3 in the example demonstrates granular control when an API encounters an
error. The example explicitly handles Msg!DOJ and Msg!D02 errors. The example
percolates any other errors to the calling program. This section begins by initializing the
Bytes Provided subfield to the full length (i.e., 272) of the declared API error structure.
After the call to the API, the program decomposes the API error structure into its subfields.
Next, the program determines whether an error occurred. When an error occurs and the
message ID is neither Msg!DOJ nor Msg!D02, the program sets values needed by the
SndPgmMsg (Send Program Message) command to percolate the message to the calling

412 Starter Kit for the IBM iSeries and AS/400

program. The program then branches to the portion of the global error handler that sends
the message. When the error is either Msg/DOJ or Msg!D02, the program explicitly
handles the error.

As you can see, you have a choice when it comes to handling errors encountered by
APis. For consistency's sake, you may want to select either method 1 or method 3 as the
standard technique to use in all your CL programs.

Retrieve an IP Address
With the basics under your belt, let's now take a look at an API in action in a CL
program. We often hear of the need to know the IP address associated with a device.
This information is handy both for application reasons and for operational reasons. This
need is a classic example of a situation where an API provides a solution when no
system-supplied command exists do so.

With format DEVD0600 of API QDCRDevD (Retrieve Device Description), you can
retrieve a device's IP address. We've encapsulated this function in command RtvIPAddr
(Retrieve IP Address). Figure 25.4A shows the RtvIPAddr panel.

FIGURE 25.4A
Retrieve IP Address (RTVIPADDR) Panel

Retrieve IP Address CRTVIPADDR)

Type choices, press Enter.

Device
CL Var for IPADDR (1 5)

•• > *REQUESTER Name, *REQUESTER
Character value

Bottom
F3=Exit F4=Prompt FS=Refresh F12=Cancel F13=How to use this display
F24=More keys

The command has a single input parameter, Dev, in which you specify the name of
the device whose IP address you want to retrieve. You can enter a specific device name,
or you can accept the default special value, *Requester, which specifies that the command
is to retrieve the IP address of the device from which the command was issued. The
command also has a return value parameter, IP Addr, in which you specify the CL variable
to contain the retrieved IP address. Figure 25.4B shows the command source. Figure 25.4C
shows command processing program RtvIP AddrC.

I*
I*
I*
I*
I*
I*
I*
I*

I*
I*
I*
I*
I*
I*
I*

Chapter 25 Extend Cl's Reach with APls 413

FIGURE 25.48
RtvIPAddr Command Source

===
Command .•••••• RtvIPAddr =

= Description .•• Retrieve device IP address =
= --- =
= CrtCmd Cmd(YourLib/RtvIPAddr)
= Pgm(YourLib/RtvIPAddrC)
= Allow(*IPgm *IMod *IRexx

+
+

=
=
=

===
Cmd

Parm

Parm

Prompt('Retrieve IP Address')

KwdC Dev)
Type(*Name
Len C 10)
Oft(*Requester
SpcValC C *Requester))
ExprC *Yes)
Prompt('Device'

KwdC IPAddr
Type(*Char
Len(15)
RtnValC *Yes)
Prompt('CL Var for IPADDR

FIGURE 25.4(

(15) I)

RtvIPAddr Command Processing Program RtvIPAddrC

===
= Program ..•••.. RtvIPAddrC =

Description ••• Retrieve device IP address
= --- =
= CrtCLPgm Pgm(YourLib/RtvIPAddrC) + =
= SrcFileC YourLib/YourSrcF) =
===

*I
*I
*I
*I
*I
*I
*I
*I

+
+
+
+
+
+

+
+
+
+

*I
*I
*I
*I
*I
*I
*I

Pgm +
+
+

&Dev
&IPAddr

I* --- *I
I* Variable declarations *I
I* --- *I

Del
Del
Del
Del
Del

&Dev
&IPAddr
&RcvVar
&RcvVarLen
&Format

*Char
*Char
*Char
*Char
*Char

10
15

892
4
8

continued

414 Starter Kit for the IBM iSeries and AS/400

Del
Del
Del
Del
Del
Del
Del

&APIError
&AEBytesPrv
&NoIPAddr
&MsgID
&MsgDta
&MsgF
&MsgFLib

FIGURE 25.4(CONTINUED

*Char
*Char
*Char
*Char
*Char
*Char
*Char

8
4

15
7

256
10
10

I* --- *I
I* Global error trap */
I* --- *I

MonMsg
Go To

C CPF0000 MCH0000) Exec(
Error)

+

I* --- *I
I* Initialize information */
I* --- *I

ChgVar
ChgVar
ChgVar
ChgVar

&NolPAddr
&Format
%Bin(&RcvVarlen
%Bin(&AEBytesPrv)

X'000000000000000000000000000000'
I DEVD0600')
892)
0)

I* --- *I
I* Retrieve current device name if necessary */
I* --- *I

If
RtvJobA

&Dev *Eq '*REQUESTER'
Job(&Dev)

+

I* --- *I
I* Retrieve dotted IP address */
I* --- *I

ChgVar

Call

ChgVar

If

ChgVar

Return

%Sst(&APIError 1 4) C &AEBytesPrv)

QDCRDevD +
C &RcvVar +

&RcvVarLen +
&Format +
&Dev +
&APIError

&IPAddr C %Sst(&RcvVar 878 15))

C &IPAddr *Eq &NoIPAddr) *Or
C &IPAddr *Eq ' '))
&IPAddr C '*None')

+
+

continued

Chapter 25 Extend Cl's Reach with APls 415

FIGURE 25.4(CONTINUED

I* --- *I
I* Error handler (percolate error message to caller) */
I* --- *I

Error:

RcvMsg MsgType(*Excp)
Rmv(*Yes)
MsgDta(&MsgDta)
MsglD(&MsgID)
MsgF(&MsgF)
MsgFLib(&MsgFLib

MonMsg (CPF0000 MCH0000

SndPgmMsg MsgIDC &MsgID)
MsgF(&MsgFLib/&MsgF
MsgDta(&MsgDta)
MsgTypeC *Escape)

MonMsg (CPF0000 MCH0000)

EndPgm

+
+
+
+
+

+
+
+

First, notice the definition for the API error structure, variable &APIError, in the variable
declarations section of the program. We've defined this structure as only eight bytes in
length because the program is to use a global error handler to trap any error that may
occur and percolate it back to the calling program.

In the initialization section, we set variable &NoIPAddr's value to the hexadecimal
string that API QDCRDevD returns for an applicable device that is not currently using an IP
address. Notice that we also set the Bytes Provided subfield, &AEBytesPrv, to O (zero) to
indicate that the API is to issue an exception if it encounters an error. The program continues
by retrieving the current device name when special value *Requester is specified.

Before calling the API, the program constructs the API error structure variable by
placing the Bytes Provided value in the structure's first four bytes. The program then calls
API QDCRDevD to retrieve the selected device's IP address. If the API encounters an
error, control is passed to the global error handler, which receives the exception and
percolates it back to the calling program. When no error occurs, the program continues
by extracting the IP address stored in bytes 878--892 of the information returned by the
APL If the returned IP address value matches the aforementioned hex string or if the
address is blank, the program sets the return IP address to value *None.

One application requirement that can make good use of command RtvIP Addr is an
application that uses the RunRmtCmd (Run Remote Command) command to initiate a
program on a TCP/IP-attached PC. You specify the PC to which the RunRmtCmd
command applies by specifying the PC's IP address as a parameter on RunRmtCmd. Your
application program can use command RtvIP Addr to capture the needed IP address.

416 Starter Kit for the IBM iSeries and AS/400

Displaying IP Addresses
At times, operations personnel may need to know the IP address associated with one or
more devices to diagnose and solve an operational problem or perhaps simply to locate
particular devices. The RtvIPAddr command can help when such needs arise.

Command DspIP Addr (Display IP Address) displays the IP address of up to 25 selected
devices. Figure 25.5A shows a sample of the command's output.

FIGURE 25.SA
DsplPAddr Output

Display IP Address

Device IP Address

AS400PRT Incompatible device category
CMN01TCP Incompatible device category
DSP01 *None
DSP99 *None
LT001 *None
OPT01 Incompatible device category
PC002 Incompatible device category
PC002A *None
PC002B *None
PC002C *None
PC002D *None
QPADEV0001 192.168.0.1
PC002E *None
PC002F *None
PRT01 Incompatible device category
QCONSOLE *None
QESPAP Incompatible device category +

F3=Exit

Display IP Address

Device IP Address

QIADSP Incompatible device category
QPADEV0004 192.168.0.2
QQAHOST Incompatible dev ce category
QTIDA Incompatible dev ce category
Q1SHARE400 Incompatible dev ce category
TAP01 Incompatible dev ce category

F3=Exit

Chapter 25 Extend Cl's Reach with APls 417

Notice that the output spans two screens. Believe it or not, the output is a subfile that is
loaded and displayed by a CL program. Let's see how DspIPAddr takes advantage of a
handy technique to display, in a subfile, the output from command RtvIPAddr.

Figure 25.SB shows the source for display file DspIPAddrD. DspIPAddr uses this
display file to display the retrieved IP addresses (as shown in Figure 25.SA).

FIGURE 25.58
Display File Dsp!PAddrD

* ==
*
*

=Display file ••• DspIPAddrD
=Description ••.. Display IP Addresses

=
=

* ==
*
* - Headings
*

A R DSPHDG
A
A
A
A
A
A

*
* - Function key legend
*

A R DSPFTR
A
A
A
A

*

CLRLC*NO)
32'Display IP Address'

COLORCBLU)
3 2'Device'

COLOR(BLU)
3 14'IP Address'

COLOR(BLU)

OVERLAY
SLN0(23)
CLRL(*NO)
CF03C03>

2'F3=Exit'

* - Message subfile to show IP addresses

A
A
A
A

A
A
A
A

*

A 99
A 99
A
A
A

R MSGSFL

MSG KEY
PGMQ

R MSGCTL

PGMQ

SFL
SFLMSGRCDC5)
SFLMSGKEY
SFLPGMQ

SFLCTLCMSGSFL)
KEEP
SFLSIZ(18)
SFLPAG(17)
SF LINZ
SF LEND
SFLDSPCTL
SFLDSP
SFLPGMQ

418 Starter Kit for the IBM iSeries and AS/400

Four record formats make up the display file. Format DspHdg contains the headings, and
format DspFtr contains the function key legend displayed at the bottom of the display.
The other two formats, MsgSfl and MsgCtl, make up a message subfile used to display the
IP address information. You may be familiar with message subfiles that display error
messages on the bottom of the display. It is standard design to load all error messages in
the message subfile, display one of them, and allow scrolling through the list of messages.
Nothing says that message subfiles must contain only error messages or that the subfile
page size must be 1 and be displayed on the bottom line of the display, though. In record
format MsgSfl, we use the SflMsgRcd keyword to specify line 5 as the line on which to
begin the message subfile; a glance at record format MsgCtl shows that the subfile
contains 17 entries per page. Notice that we set the subfile size to 18, one more than the
number of entries per page, to enable scrolling.

Now, let's see how to load the subfile for display. Figure 25.SC shows the DspIPAddr
panel, where you can enter up to 25 devices or accept the default special value
*Requester for the command's single parameter, Dev.

FIGURE 25.5C
Display IP Address (DSPIPADDR) Panel

Display IP Address CDSPIPADDR)

Type choices, press Enter.

Device > AS400PRT
> CMN01TCP
> DSP01 -
> DSP99-
> LT001-
> OPT01
> PC002==
> PC002A __
> PC002B
> PC002C=
> PC002D
> QPADEV0001
> PC002E __
> PC002F
> PRT01 --

Name, *REQUESTER

More ...
F3=Exit F4=Prompt FS=Refresh F12=Cancel F13=How to use this display
F24=More keys

continued

I*
I*
I*
I*
I*
I*
I*
I*
I*

Chapter 25 Extend CL' s Reach with APls 419

FIGURE 25.5(CONTINUED

Display IP Address CDSPIPADDR>

Type choices, press Enter.

Device . • • . • • . . • . > QCONSOLE
> QESPAP -
> QIADSP
> QPADEV00fl4
> QQAHOST
> QTIDA-=
> Q1SHARE400
> TAP01 __

Name, *REQUESTER

F3=Exit F4=Prompt FS=Refresh F12=Cancel
F24=More keys

Bottom
F13=How to use this display

The source for command DspIPAddr appears in Figure 25.SD.

FIGURE 25.50
Dsp!PAddr Command Source

~==~~:::~~:::::::=~;~;;~~~;===================================~

=
=
=

Description ..• Display IP Address =
CrtCmd CmdC YourLib/DspIPAddr) +

Pgm(YourLib/DspIPAddrC) +
VldCkr(YourLib/DspIPAddrV) +
Allow(*Interact *IPgm *IMod *IRexx

=
=
= ===

Cmd

Parm

Prompt('Display IP Address')

Kwd< Dev)
Type(*Name)
Len(Hl)
Dft(*Requester)
SngVal(C *Requester >)
Max(25)
Expr< *Yes)
Prompt('Device')

*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+
+
+
+
+
+

Validity-checking program DspIPAddrV (Figure 25.SE) simply loops through the list of
selected devices, ensuring that each entry is indeed a device. Once the devices have been
validated, command processing program DsplPAddrC (Figure 25.SF) is executed.
DspIPAddrC declares display file DspIPAddrD for use, specifying that all its record formats
are to be available. As part of standard design, the program sets a global error trap to

422 Starter Kit for the IBM iSeries and AS/400

FIGURE 25.5E CONTINUED

SndPgmMsg MsgID(CPD0006)
MsgF(QSys/QCPFMsg)
MsgDta('0000' *TCat &Msg)
ToPgmQ(*Prv)
MsgType(*Diag)

MonMsg (CPF0000 MCH0000

SndPgmMsg MsgID(CPF0002)
MsgF(QSys/QCPFMsg
ToPgmQ(*PRV)
MsgType(*Escape)

MonMsg (CPF0000 MCH0000)

I*
I*
I*

===
End of program =

===
EndPgm

FIGURE 25.5F

Dsp!PAddr Command Processing Program DsplPAddrC

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

===
= = Program •...... DspIPAddrC =
= Type ••••...••• Command processing program for DspIPAddr

Description ... Display IP. Address =
=
=

= Parameters
= =

&Dev Input List of up to 25 device names =
===

Pgm
&Dev

~= ~=~=;~=~~==~=~~=;=~~~~==~
I* ===

Del &Dev *Char (252)
Del &DevName *Char (10)
Del &DevCount *Char (2)
Del &DevCountN *Dec (2 0)
Del &IPAddr *Char (15)
Del &IPAddrinfo *Char (60) Del &LoopCount *Dec (3 0) Del &Offset *Dec (3 0) Del &Msg
Del *Char (512)

&MsgID *Char (7 }

+
+
+
+

+
+
+

*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+

*I
*I
*I

continued

Chapter 25 Extend Cl's Reach with APls 423

Del
Del
Del
Del

&MsgF
&MsgFLib
&MsgDta
&KeyVar

FIGURE 25.Sf CONTINUED

*Char
*Char
*Char
*Char

10
10

100
4

I* === *I
I* = File declaration */
I* === *I

DclF DspIPAddrD
RcdFmtC *ALL

+

I* === *I
I* = Global error trap */
I* === *I

I*
I*
I*

MonMsg
Goto

CPF0000 MCH0000) Exec(
Error)

=== = Initialize error subfile information =
===

ChgVar &PgmQ (I DSPIPADDRC I)

+

*I
*I
*I

I* === *I
I* = Parse number of devices in List */
I* === *I

ChgVar
ChgVar

&DevCount
&DevCountN

%SstC &Dev 1 2))
%Bin(&DevCount))

I* ======= === *I
I* Retr eve IP addresses and send as message */
I* ======= === *I

ChgVar

Loop01:

ChgVar

If
Go To

ChgVar
ChgVar

If
RtvJobA

ChgVar

&LoopCount C 0)

&LoopCount C &LoopCount + 1)

&LoopCount *GT &DevCountN)
Dspinfo

&Offset
&DevName

C C &LoopCount - 1) * 10) + 3)
%Sst(&Dev &Offset 10))

&DevName *Eq '*REQUESTER'
Job< &DevName)

&IPAddrinfo C &DevName

RtvlPAddr Dev(&DevName)
IPAddrC &IPAddr

+

+

+

continued

424 Starter Kit for the IBM iSeries and AS/400

MonMsg
Do

RcvMsg

ChgVar

End Do

MonMsg
Do

RcvMsg

ChgVar

End Do
MonMsg

Do
RcvMsg

ChgVar

End Do

MonMsg
Do

RcvMsg

ChgVar

End Do

MonMsg
Do

RcvMsg

ChgVar

End Do

If
ChgVar

FIGURE 25.5f CONTINUED

CPF2625) Exec(
)

MsgTypeC *Excp
Rmv(*Yes)
%Sst(&IPAddrlnfo 13 48)
C 'Cannot allocate device description')

CPF2634) Exec(
)

MsgTypeC *Excp
Rmv(*Yes)
%SstC &IPAddrlnfo 13 48)
'Not authorized to device description')

CPF26A7) Exec(
)

MsgTypeC *Excp
Rmv(*Yes)
%SstC &IPAddrlnfo 13 48)
C 'Incompatible device category'

CPF271ll2) Exec(
)

MsgTypeC *Excp
Rmv(*Yes >
%Sst(&IPAddrlnfo 13 48 >
C 'Device description not found' >

CPF811ll5 > Exec(
)

MsgTypeC *Excp
Rmv(*Yes)
%Sst(&IPAddrlnfo 13 48)
C 'Device description damaged'

C %Sst(&IPAddrlnfo 13 48
%Sst(&IPAddrlnfo 13 48

*Eq I I)

C &IPAddr

SndPgmMsg MsgIDC CPF9897)
MsgFC QSys/QCPFMsg)
MsgDtaC &IPAddrlnfo >
ToPgmQC *Same *)
MsgType(*INFO)

Go To Looplll1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

continued

Chapter 25 Extend Cl's Reach with APls 425

I*
I*
I*

FIGURE 25.5f CONTINUED

===
= Display IP addresses =
===

Dsplnfo:

I*
I*
I*

I*
I*
I*

ChgVar

Sndf
Sndf
SndRcvF
If

Go To

&In99 (I 1 I

RcdFmt(MsgCtl
RcdFmt(DspHdg
RcdFmt(DspFtr
< &In03 *NE '1 • >

Dsplnfo

=== = Exit =
===

Return

===
= Error handler =
===

Error:

I*
I*
I*

RcvMsg MsgType(*Excp)
MsgDtaC &MsgDta >
MsglD(&MsgID)
MsgF(&Msgf)
MsgFLib(&MsgFLib

MonMsg (CPF0000 MCH0000

SndPgmMsg MsgID(&MsglD)
MsgF(&MsgfLib/&MsgF
MsgDtaC &MsgDta)
MsgType(*Escape >

MonMsg (CPF0000 MCH0000)

=== = End of program =
===

EndPgm

*I
*I
*I

+

*I
*I
*I

*I
*I
*I

+
+
+
+

+
+
+

*I
*I
*I

DspIP AddrC begins by initializing the display file field (&PgmQ) that identifies the call
message queue that the message subfile uses. The program indicates that the message
subfile is to use the program's own call message queue.

Next, DspIP AddrC processes the list of selected devices. For each entry in the list, the
program sends a message containing the device name along with the retrieved IP address
information to it<> call message queue. This, of course, causes the information to be
displayed in the message subfile. The program builds the message in variable
&IP Addrlnfo. Notice that immediately before executing RtvIP Addr, the program initializes

426 Starter Kit for the IBM iSeries and AS/400

variable &IPAddrinfo with the device name. DspIPAdclR: adds to this information based
on the result of the attempt to retrieve the device's IP address.

DspIPAddR: explicitly monitors for five of the possible exceptions that RtvIPAddr
may cause. This lets the program tailor the message it sends to its call message queue for
display. If RtvIP Addr signals any exception other than the monitored five, the global error
handler receives control. After the five MonMsg statements, the program checks variable
&IP Addrinfo to determine whether it contains error information. When it doesn't, no
errors occurred and the program adds the retrieved IP address to the variable. Finally,
DspIPAdclR: sends the message it constructed in variable &IPAddrinfo to its call message
queue for display.

Once the program finishes processing the entire list of selected devices, it displays the
results by setting control indicator 99's value and writing the record formats from the display
file. The sequence in which the program writes the record formats is important for ensuring
that all information is displayed properly and that function key F3 is active. To exit the
display, the user must press F3.

EndPgm
Although CL has its limitations, it's a good language when your programs need to
interface to the system. And with APis, you have additional capabilities not inherent to CL.
The information in this chapter will help you determine whether CL is a viable language
to use with an API, and the techniques used in the examples will help you more easily
integrate APis with CL programs.

427

Chapter 26

CL Programs and Database Files
Once you learn to write basic CL programs, you'll probably tty to find more ways to use
CL as part of your iSeries applications. In contrast to operations languages such as a main
frame's Job Control Language QCL), which is used primarily to control steps, sorts, and
parameters in a job stream, CL offers more. CL is more procedural, provides support for
database file (read-only) and display file (both read and write) processing, and lets you
extend the operating system command set with your own user-written commands.

In this chapter, we examine one of those fundamental differences of CL: its ability to
process database files. We explain how to declare a file, extract the field definitions from
a file, read a file sequentially, and position a file by key to read a specific record. With
this overview, you should be able to process database files in your next CL program.

Why CL?
Before we talk about how to process database files in a CL program, let us address the
question you're probably asking yourself: "Why would I want to read records in CL
instead of in a high-level language program?" In most cases, you probably wouldn't. But
sometimes, such as when you want to use data from a database file as a substitute value
in a CL command, reading records in CL is a sensible programming solution.

Say you want to perform a DspObjD (Display Object Description) command to an
output file and then read the records from that output file and process each object using
another CL command, such as DspObjAut (Display Object Authority) or MovObj (Move
Object). Because executing a CL command is much easier and clearer from a CL program
than from a high-level language (HLL) program, you'd probably prefer to write a single CL
program that can handle the entire task We'll show you just such a program a little later.

I DCLare!
Perhaps the most crucial point in understanding how CL programs process database files
is knowing when you need to declare a file in the program. The rule is simple: If your CL
program uses the RcvF (Receive File) command to read the file, you must use the DclF
(Declare File) command to declare that file to your program. DclF tells the compiler to
retrieve the file and field descriptions during compilation and make the field definitions
available to the program. The command has only one required parameter: the file name.
To declare a file, you need only code in your program either

Dclf FileCYourFile)

or

Dclf FileCYourLib!YourFile)

428 Starter Kit for the IBM iSeries and AS/400

When using the DclF command, you must remember three implementation rules.
First, you can declare only one file - either a database file or a display file - in any CL
program. This doesn't mean your program can't operate on other files - for example,
using the CpyF (Copy File), OvrDbF (Override with Database File), or OpnQryF (Open
Query File) command; it can. However, you can use the RcvF command to process only
the file named in the DclF statement.

Second, the DclF statement must be placed after the Pgm (Program) command in
your program and must precede all executable commands (the Pgm and Del, or Declare
CL Variable, commands are not executable). The third rule is that the declared file must
exist when you compile your CL program. If you don't qualify the file name, the compiler
must be able to find the file in the current library list during compilation.

Extracting Field Definitions
When you declare a file to a CL program, the program can access the fields associated
with that file. Fields in a declared file automatically become available to the program as
CL variables - there's no need to declare the variables separately.

When the file is externally described, the compiler uses the external record-format
definition associated with the file object to identify each field and its data type and length.
Figure 26.1 shows the Data Description Specifications (DDS) for sample file TestPF.

FIGURE 26.1
DDS for Sample File TestPF

*
*
*
*

===
File TestPF

= Source type ... PF
=Description ... Sample file for reading files in CL =

* ===
A
A
A
A

R TESTPFR
CODE
NUMBER
FIELD

1
SS 0

30

To declare this file in a program, you code

DclF TestPF

TEXT('Test Record')
TEXT('Test Code')
TEXT('Test Number')
TEXT('Test Field')

The system then makes the following variables available to the program:

&Number

&Field

*Char 1

*Dec 5,0

*Char 30

Chapter 26 CL Programs and Database Files 429

Your program can then use these variables in spite of the fact that they're not explicitly
declared. For instance, you could include in the program the statements

If ((*Code *Eq 'A') *And +
<&Number *GT 10)) +

ChgVar &Code (1 8 1
)

Notice that when you refer to the field in the program, you must prefix the field name
with the ampersand (&) character. All CL variables, including those implicitly defined
using the DclF command and the file field definitions, require the & prefix when
referenced in a program.

What about program-described files - that is, files with no external data definition?
Suppose you create the following file using the CrtPF (Create Physical File) command

CrtPF FileCDiskFile) RcdLen(258)

and then declare file DiskFile in your CL program. As it does with externally defined files,
the CL compiler automatically provides access to program-described files. Because there
is no externally defined record format, however, the compiler recognizes each record in
the file as consisting of a single field. That field is always named &FileName, where
FileName is the name of the file. Therefore, if you code

DclF DiskFi le

your CL program recognizes one field, &DiskFile, with a length equal to DiskFile's record
length. You can then extract the subfields with which you need to work. In CL, you
extract the fields using the built-in function %Sst (or o/oSubstring). The statements

ChgVar &Field1 (%SstC&DiskFile 1 10))
ChgVar &Field2 (%Sst<&DiskFile 11 25))
ChgVar &Field3 C%SstC&DiskFile 50 1))

extract three subfields from &DiskFile's single field.
You'll need to remember two rules when using program-described files. First, you

must extract the subfields every time you read a record from the file. Unlike RPG, CL has
no global data-structure concept that can be applied for every read. With each read cycle,
you must use the %Sst function to retrieve the subfields.

Second, the %Sst function supports only character data. If a certain range of positions
holds numeric data, you must retrieve that data as a character field and then move the
data into a numeric field. You can use conunand ChgVar (Change Variable) to move
character data to a numeric field. You must also ensure that the variable's data type
matches that of the data you're extracting.

Assume that positions 251-258 in file DiskFile hold a numeric date field eight digits
long. To extract that date into a numeric CL variable requires the following Del statements
and operations:

430 Starter Kit for the I BM iSeries and AS/400

Del
Del

&DateChar
&DateNbr

*Char
*Dec

8)
8 0>

ChgVar &DateChar C%SstC&DiskFile 251 8))
ChgVar &DateNbr C&DateChar)

The first ChgVar command extracts the substring from the single &DiskFile field and
places it in variable &DateChar. The second ChgVar places the contents of field
&DateChar into numeric field &DateNbr.

~Cau6on
When you use this technique, be sure that the substring contains only
numeric data. If it doesn't, the system will send your program a distinctly
unfriendly error message, and your program will end abnormally.

Reading the Database File
Reading a database file in CL is straightforward. The only complication is that you need a
program loop to process records one at a time from the file, and CL doesn't directly
support structured operations such as Do-While or Do-Until. However, CL does offer the
primitive GoTo command and lets you put labels in your code. Using these two
capabilities, you can write the necessary loop.

Figure 26.2 shows part of a program to process file TestPF. Notice that the program
uses a manual loop to return to the ReadBegin label and process the next record in the
file. The first time through the loop, the RcvF command opens the file and processes the
first record. The loop continues until the RcvF statement causes the system to send error
message "CPF0864 End of file detected." When the MonMsg (Monitor Message) command
traps this message, control skips to ReadEnd, thus ending the loop.

I*
I*
I*
I*

FIGURE 26.2
CL Fragment for Processing a Database File

===
= Program•.. Test CL =
= Description •.. Process database file =
===

Pgm

I*
I*
I*

===
Variable declarations =

===
Del
Del

&MsgFlag
&RtnCode

*Lgl
*Char

*I
*I
*I
*I

*I
*I
*I

continued

Chapter 26 CL Programs and Database Files 431

I*
I*
I*

I*
I*
I*

FIGURE 26.2 CONTINUED

=== = File declaration =
===

DclF TestPF

=== = Read database file =
===

ReadBegin:

RcvF
MonMsg

Go To

RcdFmt(TestPFR)
(CPF0864) Exec(

ReadEnd)

GoTo ReadBegin

ReadEnd:

*I
*I
*I

*I
*I
*I

+

Unlike HLLs, CL doesn't let you reposition the file for additional processing after the
program receives an end-of-file message. Although you can execute an OvrDbF command
containing a Position parameter after your program receives an end-of-file message, any
ensuing RcvF command simply elicit<> another end-of-file message. Two possible
workarounds to this potential problem exist, but each has its restriction.

You can use the first workaround if, and only if, you can ensure that the data in the
file will remain static for the duration of the read cycles. The technique involves the use of
the RtvMbrD (Retrieve Member Description) command. Using this command's NbrCurRcd
(CL variable for NBRCURRCD) parameter, you can retrieve into a program variable the
number of record<> currently in the file. Then, in your loop to read records, you can use
another variable to count the number of records read, comparing it with the number of
records currently in the file. When the two numbers are equal, the program has read the
last record in the file.

Although the program has read the last record, the end-of-file condition is not yet set.
The system sets this condition and issues the CPF08(J4 message indicating end-of-file only
after attempting to read a record beyond the last record. Therefore, this technique gives
you a way to avoid the end-of-file condition. You can then use the PosDbF (Position

432 Starter Kit for the IBM iSeries and AS/400

Database File) command to set the file cursor back to the beginning of the file. Simply
specify •start for the Position parameter, and you can read the file again! Remember, use
this technique only when you can ensure that the data will in no way change while
you're reading the file.

The second circumvention is perhaps even trickier because it requires a little
application design planning. Consider a simple CL program that does nothing more than
perform a loop that reads all the records in a database file and exits when the end-of-file
condition occurs (i.e., when the system issues message CPF0864). If you replace the
statement

MonMsg (CPF0864> Exec(GoTo End)

with

MonMsg
If
ChgVar
TfrCt L

End Do

(CPF0864) Exec(Do)
<&Stop *Eq 'Y') GoTo End
&Stop ('Y')
Pgm(YourPgm) Parm(&Stop)

where YourPgm is the name of the program containing the command, the system starts
the program over again, thereby reading the file again. Notice that with this technique,
you must add code to the program to prevent an infinite loop. In addition to the changes
shown above, the program should accept the &Stop parameter. Fail to add these groups
of code, and each time the system detects end-of-file, the process restarts. You also must
add code to ensure that only those portions of the code you want to execute do so.

When possible, we advise that if you need to read a database file multiple times, you
construct your application in such a way that you can call multiple CL programs (or one
program multiple times, as appropriate). Each of these programs (or instances of a program)
can then process the file once. This approach is the clearest and least error-prone method.

File Positioning
One well-kept secret of CL file processing is that you can use it to retrieve records by
key ... sort of. The OvrDbF command's Position parameter lets you specify the position
from which to start retrieving database file records. You can position the file to •start or
*End (you can also use the PosDbF command to position to *Start or *End), to a particular
record using relative record number, or to a particular record using a key.

To retrieve records by key, you supply four search values in the Position parameter: a
key-search type, the number of key fields, the name of the record format that contains the
key fields, and the key value. The key-search type determines where in the file the read
by-key begins by specifying which record the system is to read first. The key-search value
specifies one of the following five key-search types:

• •KeyB (key-before) - The first record retrieved is the one that immediately precedes
the record identified by the other Position parameter search values.

Chapter 26 CL Programs and Database Files 433

• *KeyBE (key-before or equal) The first record retrieved is the one identified by the
search values. If no record matches those values, the system retrieves the record that
matches the largest previous value.

• *Key (key-equal) - The first record retrieved is the one identified by the search
values. (If your CL program calls an HLL program that issues a read-previous opera
tion, the called program will retrieve the preceding record.)

• *KeyAE (key-after or equal) The first record retrieved is the one identified by the
search values. If no record matches those values, the system retrieves the record with
the next highest key value.

• *KeyA (key-after) - The frrst record retrieved is the one that immediately follows the
record identified by the search values.

As a simple example, let's assume that file TestPF has one key field, Code, and
contains the following records:

Code Number Field
A 1 Text in Record 1
B 100 Text in Record 2
c so Text in Record 3
E 27 Text in Record 4

The statements

OvrDbF PositionC*Key 1 TestPFR 'B')
RcvF RcdFmtCTestPFR)

specify that the record to be retrieved has one key field as defined in DDS record fonnat
TestPFR (Figure 26.1) and that the key field contains the value B. These statements will
retrieve the second record (Code= B) from file TestPF. If the key-search type were *KeyB
instead of *Key, the same statements would cause the RcvF command to retrieve the first
record (Code A). Key-search types *KeyBE, *KeyAE, and *KeyA would cause the RcvF
statement to retrieve records 2 (Code= B), 2 (Code= B), and 3 (Code= C), respectively.

Rules for Database File Processing in CL
• If your CL program uses the Rcvf (Receive File) command to read a database file, you must use

the DclF (Declare File) command to declare that file to your program.
• You can declare only one file - either a database file or a display file - in any CL program.
• The DclF statement must appear after the Pgm command and precede all executable commands

(Pgm and Del are not executable commands).
• The declared file must exist when you compile your CL program.
• When using program-described files, you must extract the subfields every time you read a record

from the file.
• The CL substring operation supports only character data.

434 Starter Kit for the IBM iSeries and AS/400

Now let's suppose that the program contains these statements:

OvrDbF Position<&KeySearch 1 TestPFR 'D')
RcvF RcdFmtCTestPFR)

The following matrix shows how each &KeySearcb value affects the RcvF results.

• *KeyB - returns record 3 (Code = C)

• *KeyBE returns record 3 (Code C)

• *Key - causes an exception error because no match was found

• •KeyAE - returns record 4 (Code= E)

• *KeyA - returns record 4 (Code= E)

Using the Position parameter with a key consisting of more than one field gets tricky,
especially when one of the key fields is a packed numeric field. You must code the key
string to match the key's definition in the file, and if any key field is other than a character
or signed-decimal field, you must code the key string in hexadecimal form.

For example, suppose the key consists of two fields: a one-character field and a five
digit packed numeric field with two decimals. You must code the key value in the
Position parameter as a hex string equal in length to the length of the two key fields
together (i.e., 1 + 3 - a packed field occupies three positions). For instance,

Position{*Key 2 YourFormat X'C323519F')

tells the system to retrieve the record that contains values for the character and packed
numeric key fields of C and 235.19, respectively.

As we've mentioned, a CL program can position the database file and then call an
HLL program to process the records. For instance, the CL program can use OvrDbF's
Position parameter to set the starting point in a file and then call an RPG program that
issues a read or read-previous to start reading records at that position.

Having this capability doesn't necessarily mean you should use it, though. One of our
fundamental rules of programming is this: Make your program explicit and its purpose
clear. Thus, we avoid using the OvrDbF or PosDbF command to position a file before we
process it ·with an HLL program when we can more explicitly and clearly position the file
within the HLL program itself. There's just no good reason to hide the positioning function
in a CL program that may not clearly belong with the program that actually reads the file.
However, when you process a file in a CL program, positioning the file therein can
simplify the solution.

What About Record Output?
Just about the time you get the hang of reading database files, you suddenly realize that
your CL program can't perform any other form of I/O with them. CL provides no direct
support for updating, writing, or printing records in a database file. Some programmers
use command StrQMQry (Start Query Management Query) to execute a query manage
ment query or use the RunSQLStm (Run SQL Statements) command to effect one of these

Chapter 26 CL Programs and Database Files 435

operations from within CL. To use these techniques, you must first create the query
management query or enter the SQL source statements to execute with RunSQLStm.

A Useful Example
Now that you know how to process database files in a CL program, let's look at a
practical example. Security administrators would likely find a program that prints the
object authorities for selected objects in one or more libraries useful. Figure 26.3A shows
the command definition for the PrtObjAut (Print Obje<l Authorities) command, which does
just that. Figure 26.3B shows PrtObjAut's command processing program (CPP), PrtObjAutl.

FIGURE 26.3A
Command PrtObjAut

I* === *I
I* *I
I* *I
I* *I
I* *I
I* *I
/* === */

Cmd Prompt('Print Object Authorities')

Parm Kwd(Obj) +
Type(QualObj +
Min(1) +
Prompt('Object'

Parm Kwd(ObjType) +
Type(*Char) +
Len(8 } +
Rstd(&Yes) +
Oft(*All) +
Values(+

*AlrTbl *AutL *BndDir +
*CfgL *ChtFmt *CLO +
*Cls *Cmd *CnnL +
*CoSD *CRG *CRQD +
*CSI *CSPMap *CSPTbl +
*CtlD *DevD *Doc +
*DtaAra *DtaDct *DtaQ +
*EdtD *ExitRg *FCT +
*File *Flr *FntRsc +
*FntTbl *FormDf *Ftr +
*GSS *IPXD *JobD +
*JobQ *JobScd *Jrn +
*JrnRcv *Lib *Li nD +
*Locale *MedDfn *Menu +
*MgtCol *ModD *Module +
*MsgF *MsgQ *M36 +
*M36Cfg *NodGrp *NodL +
*NtBD *NwID *NwSD +

continued

436 Starter Kit for the IBM iSeries and AS/400

FIGURE 26.3A CONTINUED

*OutQ *OvL *PagDfn +
*PagSeg *PDG *Pgm +
*PnLGrp *PrdAvL *PrdDfn +
*Prdlod *PSFCfg *QM Form +
*QMQry *QryDfn *RCT +
*SbsD *Schldx *SpADct +
*SQLPkg *SQLUDT *SrvPgm +
*SsnD *SrvStg *536 +
*TbL *Usrldx *UsrPrf +
*UsrQ *UsrSpc *VLdL +
*WsCst +

) +
SpcVaLC C *ALL)) +
Prompt('Object type'

QuaLObj: QuaL Type(*Generic +
Len(10) +
SpcVaLC C *ALL

QuaL Type(*Name) +
Len(10) +
DftC *Li bl) +
SpcVaLC +

*LibL +
*Usrlibl +
*Curlib +
*ALL) +
*ALLUsr +

+
Prompt('Library'

Notice that the CPP declares file QADspObj in the DclF statement. This IBM-supplied
file resides in libraiy QSys and is a model for the output file that the DspObjD command
creates. In other words, when you use DspObjD to create an output file, that output file is
modeled on QADspObj's record format and associated fields. In the CPP, the DspObjD
command creates output file ObjLlst, whose file description includes record format
QLiDObjD and fields from the QADspObj file description.

Because we declare file QADspObj in the program, that's the file we must process.
(Remember: You can declare only one file in the program, and file ObjList did not exist at
compile time.) The CPP uses OvrDbF to override QADspObj to newly created file ObjList
in libraiy QTemp. When the RcvF command reads record format QLiDObjD, the override
causes the RcvF to read records from file ObjList.

As it reads each record, the CL program substitutes data from the appropriate fields
into the DspObjAut command and prints a separate authority report for each object
represented in the file.

Now, you're ready to begin processing those database files with CL. Using CL
programs to process display files is the next logical step and is the topic of Chapter 27.

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

Chapter 26 CL Programs and Database Files 437

FIGURE 26.38
PrtObjAut Command Processing Program PrtObjAutl

===
Program ••••••• PrtObjAut1

= Source type ..• CLP =
Type•••••• Command processing program for PrtObjAut

= Description ..• Print Object Authorities =
= Parameters
=

=

&Obj

&Obj Type

Input

Input

=
=

Qualified object name
=

Object type =
===

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

Pgm +
+
+

I*
I*
I*

I*
I*
I*

&Obj
&Obj Type

=== = Variable declarations =
===

Del &Obj *Char 20
Del &Obj Type *Char 10
Del &Obj Name *Char 10
Del &MsgID *Char 7
Del &MsgF *Char 10
Del &MsgFLib *Char 10
Del &MsgDta *Char 100
Del &Error Flag *Lg L

= File declaration

DcLF QADspObj

*I
*I
*I

*I
*I
*I

I* === *I
I* = Global error monitor *I
I* === *I

MonMsg
Go To

CPF0000 MCH0000) Exec(
Error)

+

I* === *I
I* = Retrieve List of objects to a file */
I* === *I

ChgVar
Chg Var

DspObjD

&Obj Name
&Obj Lib

%SstC &Obj 1 10
%SstC &Obj 11 10

Obj(&ObjLib/&ObjName
ObjType(&ObjType)
Detail(*Basic)
Output(*OutFile)
OutFileC QTemp/ObjList

+
+
+
+

continued

438 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*

flGURE 26.38 CONTINUED

===
= Read records in file ObjList and print authorities =
===

OvrDbF File(QADspObj)
ToFile(QTemp/ObjList

ReadBegin:

I*
I*
I*

RcvF
MonMsg

Go To

DspObjAut

Go To

RcdFmtC QLiDObjD)
C CPF0864) Exec(

Exit)

Obj(&ODLbNm/&ODObNm
ObjTypeC &ODObTp)
Output(*Print)

ReadBegin

=== = Error handler =
===

Error:

If (&ErrorFlag)
Do

SndPgmMsg MsglD(CPF9897)
MsgFC QSys/QCPFMsg)
MsgDta('Error in PrtObjAut. See joblog.')
MsgTypeC *Escape)

MonMsg (CPF0000 MCH0000) Exec(
Return)

End Do

Chg Var

RcvMsg

MonMsg

&ErrorFlag C '1'

MsgTypeC *Excp)
MsgDtaC &MsgDta)
MsgIDC &MsgID)
MsgFC &MsgF)
MsgFLibC &MsgFLib

C CPF0000 MCH0000

SndPgmMsg MsgIDC &MsgID)
MsgFC &MsgFLib/&MsgF
MsgDtaC &MsgDta)
MsgTypeC *Escape)

MonMsg C CPF0000 MCH0000)

*I
*I
*I

+

+

+
+

*I
*I
*I

+

+
+
+

+

+
+
+
+

+
+
+

continued

Chapter 26 CL Programs and Database Files 439

FIGURE 26.38 CONTINUED

I* === *I
I* = Clean up and exit program */
I* === *I

Exit:

DltF
MonMsg

QTemp/Objlist
C CPF0000 MCH0000

I*
I*
I*

===
= End of program =
===

EndPgm

*I
*I
*I

441

Chapter 27

CL Programs and Display Files
In Chapter 26, we talked about processing database files using a CL program. We discussed
declaring a file, extracting field definitions (both externally described and program-described),
and processing database records. In this chapter, we discuss how CL programs work with
display files.

CL is an appropriate choice for certain situations that require displays. For example,
CL works well with display files for menus because CL is the language most commonly
used to override files, change a user's library list, submit jobs, and check authorities all
common tasks in a menu environment.

CL is also a popular choice for implementing a friendly interface at which users can
enter parameters for commands or programs that print reports or execute inquiries. For
example, a CL program can present an easily understood panel to prompt the user for a
beginning and ending date for use in a query management query. The program can then
format and substitute those dates into a StrQMQry (Start Query Management Query)
command to produce a report covering a certain period. When you want users to enter
substirution values for use in a complex command such as OpnQryF (Open Query File),
it's almost imperative that you let them enter selections in a format they understand (e.g.,
a prompt screen) and then build the command string in CL.

CL Display File Basics
As with a database file, you must use the DclF (Declare File) command to identify the
display file with which you want to work in CL (for more details about declaring a file,
see Chapter 26). Declaring the file lets the compiler locate it as well as retrieve the field
and format definitions.

Figure 27.1 shows the Data Description Specifications (DDS) for a sample display file,
UserMenuF, and Figure 27.2 (page 444) shows part of a compiler listing for a CL program
that declares UserMenuF.

A
A
A
A

FIGURE 27.1
DDS for Display File UserMenuF

* ===
* = File ••••.•••.. UserMenuF
* =Source type •.. DSPF
* =Description •.. Display file for UserMenu menu example

=

=
* ===

ERRS FL
MSGLOC(24)
CA03C03)
PRINT

continued

442 Starter Kit for the IBM iSeries and AS/400

FIGURE 27.1 CONTINUED

*
*
*

- Main menu format

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

*
*
*

A
9A

A
A
A
A
A
A

I) A 40
A 40
A
A
A

*
*
*

A
A
A
A
A

R MENU

OPTION

- Message subfile

R MSGSfL

MSGKEY
PGMQ

R MSGCTL

PGMQ

3

5
6
7
8

19
20

2Y 01 20
22

- Prompt for menu option 1

R PROMPT01

KEEP
OVERLAY

2'USERMENU'
COLORCBLU)

30'Sample User Menu'
DSPATRCHI)

2'Select one of the following:'
COLORCBLU)

7'1. Submit Batch Report 1'
7'2. Submit Batch Report 2'
7'3. Submit Batch Report 3'
7'4. Work with printed output'
2'Selection'
2'===>'
7
2'F3=Exit'

COLORCBLU)

SFL
SFLMSGRCDU4>
SFLMSGKEY
SFLPGMQ
SFLCTLCMSGSFU
KEEP
SFLSIZC10>
SFLPAGC1)
SfLINZ
SFlEND
SFLDSPCTL
SFLDSP
SFLPGMQ

CA12C12)
2'PROMPT01'

COLORCBLU)
30'Submit Batch Report 1'

DSPATRCHI)
A 4 2'Type the following, then press Ent-
A
A
A

er.'
COLORCBLU)

7 4'Territory ID

continued

Chapter 27 CL Programs and Display Files 443

flGURE 27 .1 CONTINUED

A TERR ID 3 B 7 40
A 61 ERRMSG('Territory ID required.' 61)
A 62 ERRMSG('Invalid Territory ID.' 62)
A 8 4'Sales Rep ID I
A SLSREPID 3 B 8 40
A 63 ERRMSG('Sales Rep ID required.' 63)
A 64 ERRMSG('Invalid Sales Rep ID.' 64)
A HI 4'0rdered by
A ORDER B HI 40VALUES('D' IC I I A I)
A 10 44'(D)ate•
A 11 44'(C)ustomer•
A 12 44 1 CA>mount - Decreasing'
A 14 4'Detail type . . .
A DETAIL B 14 40VALUES('D' IS I)
A 14 44'(D)etail'
A 15 44'(S}ummary•
A 23 2'F3=Exit F12=Cancel'
A COLOR(BLU)

The default for DclF's RcdFmt (Record fonnat) parameter, •Aft, tells the compiler to identify
and retrieve the descriptions for all record formats in the file. Notice that the field and
format definitions immediately follow the Dc!F statement on the compiler listing.

If your display file has many format<> and you plan to use only one or a few of them,
you can specify up to 99 different record formats in the RcdFmt parameter instead of
using the •All default value. Doing so reduces the size of the compiled program object by
eliminating unnecessary definitions.

After you declare a display file, you can output record formats to a display device
using the SndF (Send File) command, read formats from the display device using the RcvF
(Receive File) command, or petform both functions with the SndRcvF (Send/Receive
command. These commands parallel RPG's Write, Read, and Ex:Fmt opcodes, respectively.

For instance, to present a record format named Prompt on the display, you could
code your CL as either
SndF RcdFmt(Prompt)
RcvF RcdFmtCPrompt)

or
SndRcvF RcdFmt(Prompt)

To send more than one format to the screen at once for example, a standard header
format, a function key format, and an input-capable format you use a combination of
the SndF and SndRcvF commands as you'd use a combination of Write and Ex:Fmt in RPG:

SndF RcdFmt<Header>
SndF RcdFmtCFKeys)
SndRcvF RcdFmtCDetail)

Notice that the RcdFmt parameter value in each statement specifies the particular format
for the operation. If only one format exists in the file, you can use RcdFmt's default value,
*File, and then simply use the SndF, RcvF, or SndRcvF command without coding a
parameter.

444 Starter Kit for the IBM iSeries and AS/400

5769SS1 V4R4M0 990521
Prag ram . .

Library .
Source file

Library .
Source member name

FIGURE 27.2
Parlial CL Compiler Listing

Control Language
USERMENU

USER
QC LS RC

USER/USERMENU

Source printing options
Program generation options

USER
USERMENU
*SOURCE
*NOLIST
*USER

10/02/00 14:23:34
*GEN *NOSE

*NOPATCH
*XREF
*NOXREF

User profile
Program logging
Allow RTVCLSRC command
Replace program
Target release
Authority ...
Sort sequence .
Language identifier
Text

*JOB
*YES
*YES
V4R4M0
*LIBCRTAUT
*HEX
*JOBRUN

Compiler IBM AS/400 Control Language
Control Language Source

SEQNBR * ... + .•. 1 ... + ..• 2 ..• + ••. 3 ... + ••. 4 •.• + ••. 5 ... + ••• 6 ... + •••
100- /* ===
200- /* Program UserMenu
300- /* Description ... Sample CL menu program
400- /*

Pgm
500-
600-
700-
800- /*
900- /* File declaration

1000- /*
1100-
1200-
1300

File(UserMenuF)
RcdFmt(*All)

QUALIFIED FILE NAME - USER/USERMENUF

Del F

RECORD FORMAT NAME - MENU
CL VARIABLE TYPE

&IN03 *LGL
&OPTION *DEC

RECORD FORMAT NAME - MSGSFL

LENGTH
1
2

CL VARIABLE TYPE LENGTH
&IN03 *LGL 1
&MSGKE Y *CHAR 4
&PGMQ *CHAR 10

RECORD FORMAT NAME - MSGCTL
CL VARIABLE TYPE LENGTH

&IN03 *LGL 1
&IN40 *LGL 1
&PGMQ *CHAR 10

RECORD FORMAT NAME - PROMPT01
CL VARIABLE TYPE LENGTH

&IN03 *LGL 1
&IN12 *LGL 1
&IN61 *LGL 1
&IN62 *LGL 1
&IN63 *LGL 1
&IN64 *LGL 1
&TERRIO *CHAR 3
&SLSREPID *CHAR 3
&ORDER *CHAR 1
&DETAIL *CHAR 1

PRECISION

PRECISION

PRECISION

PRECISION

TEXT

TEXT

TEXT

TEXT

Territory ID required.
Invalid Territory ID.
Sales Rep ID required.
Invalid Sales Rep ID.

Chapter 27 CL Programs and Display Files 445

CL Display File Examples
Let's look at an example of how to use CL with a display file for a menu and a prompt
screen. Figure shows a menu based on the DDS in Figure 27.1 (page 441).

FIGURE 27.3
Sample User Menu

USERMENU Sample User Menu

Select one of the following:

1. Subm t Batch Report 1
2. Subm t Batch Report 2
3. Subm t Batch Report 3
4. Work with printed output

Selection
===>

F3=Exit

From the DDS, you can see that record format Menu displays the list of menu options,
and record formats MsgSfl and MsgCtl control the message subfile function that send<;
messages to the program message queue. Record format PromptOl is a panel that lets the
user enter selection values for Batch Report 1.

Figure 27.4 shows CL program UserMenu, the driving program for this menu. As you
can see, UserMenu sets up variable &PgmQ to hold the program message queue name,
displays the menu, and then, depending on user input, either executes the code that
corresponds to the selected menu option or exits the menu.

The sample menu's options, option selection field, and function key description are
all pa1t of the Menu record format on the DDS. To display this information to the user
and allow input, program UserMenu uses the SndRcvF command. Should the user enter
an invalid menu option, the program displays an error message at the bottom of the
screen by displaying message subfile record format MsgCtl (at C). (We discuss this record
format in more detail in a moment.) Figure 27.5 (page 449) shows a completion message
at the bottom of the sample menu.

446 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*
I*

Pgm

I*
I*
I*

FIGURE 27.4
CL Menu Driver

===
= Program. Use rMenu =
= Description ... Sample CL menu program =
===

===
= File declaration =
===

Del F File(UserMenuF
RcdFmt(*ALL)

I*
I*
I*

I*
I*
I*

===
= Global error monitor
===

MonMsg
Go To

CPF0000 MCH0000
DspMsg

Exec(
)

===
= Initialize program message queue control field =
===

ChgVar &PgmQ 'USERPIENU'

*I
*I
*I
*I

*I
*I
*I

+

*I
*I
*I

+

*I
*I
*I

/* === *I
I* Display menu */
I* === *I

DspMenu:

SndRcvF

R11vMsi:a

ChgVar

RcdFmt(Menu)

PqmQ(*Same *
Clear(*ALL

&In40

+

·0·

I* --- *I
I* Exit selected with F3 */
I* --- *I

I*
I*
I*

If

If

Go To

Option 1

Do
ChgVar
ChgVar
ChgVar

&In03
Exit

&Option *Eq

&Terr ID
&Order
&Detail

ID I
ID I

+

*I
*I
*I

+

continued

Chapter 27 CL Programs and Display Files 447

Prompt01:

SndRcvF

If
Go To

If

flGURE 27.4 CONTINUED

RcdFmt(Prompt01

&In03
Exit

&In12
Do

SndPgmMsg MsgIDC CPF9897)

Go To
End Do

If
ChgVar

If
ChgVar

If
ChgVar

If
ChgVar

If

Go To

SbmJob

End Do

MsgFC QSys/QCPFMsg)
MsgDta('User cancelled
ToPgmQ(*Same *)
MsgTypeC *Diag)
DspMsg

&TerrID *Eq ' ')
&In61 '1'

request.')

%Sst< &TerrID 1 1
& I n62 < '1 '

*NE 'T')

&SlsRepID *Eq
&In63 C

I I

I 1 I

%Sst(&SlsRepID 1
&In64 C '1'

< &In61 *Or
< &In62 *Or
< &In63 *Or
C &In64))
Prompt01

) *NE Is I)

Cmd(Call Batch01 (&TerrID &Order &Detail))
Job(UserMenu01)
JobDC QBatch)

+

+

+
+
+
+

+

+

+

+

+
+
+
+

+
+

I* --- *I I* Option 2 */
I* --- *I

If
Do

EndDo

< &Option *Eq 2) +

I* --- *I I* Option 3 */
I* --- *I

If
Do

EndDo

< &Option *Eq 3) +

continued

©

448 Starter Kit for the IBM iSeries and AS/400

FIGURE 27.4 CONTINUED

I* --- *I
I* Option 4 */
I* --- *I

If C &Option *Eq 4) +
Do

End Do

/* --- *I
I* Invalid option */
/* --- *I

If

Do
SndPgmMsg

End Do

&Option *NE 1
&Option *NE 2
&Option *NE 3
&Option *NE 4

MsgIDC CPF9897)

*And
*And
*And
)

MsgFC QSys/QCPFMsg
MsgDtaC 'Invalid option.'
ToPgmQC *Same *)
MsgTypeC *Diag)

+
+
+
+

+
+
+
+

I* === *I
I* = Display messages *I
I* === *I

DspMsg:

I*
I*
I*

ChgVar &In40 (I 1 I

SndF RcdFmtC MsgCtl)
MonMsg C CPF0000 MCH0000) ExecC

Do)
SndPgmMsg MsgIDC CPF9897)

MsgFC QSys/QCPFMsg)
MsgDtaC 'Error in UserMenu. See joblog.' >
MsgTypeC *Escape)

MonMsg C CPF0000 MCH0000) ExecC
Return >

End Do

Go To DspMenu

==
= Ex t program

==
Exit:

EndPgm

+

+
+
+

+

*I
*I
*I

Chapter 27 CL Programs and Display Files 449

FIGURE 27.5
Sample Message Subfile Display

USERMENU Sample User Menu

Select one of the following:

1. Submit Batch Report 1
2. Submit Batch Report 2
3. Submit Batch Report 3
4. Work with printed output

Selection
===>

F3=Exit

Job 006073/GUTHRIE/USERMENU01 submitted to job queue QBATCH in library QGPL.

Using a Message Subfile
'The message subfile is a special form of subfile whose definition includes some
predefined variables and special keywords. The message subfile record format is format
MsgSfl (Bin Figure 27.1, page 442). The keyword SflMsgRcd(24) tells the display file to
display the messages in this subfile beginning on line 24 of the panel. You can specify
any line number for this keyword that is valid for the panel you're displaying.

The associated SflMsgKey keyword and the variable MsgKey support the tasks of
retrieving a message from the program message queue associated with the St1PgmQ
keyword (i.e., the message queue named in variable &PgmQ) and displaying the message
in the form of a subfile. The CL program assigns the value USERMENU to variable
&PgmQ (at A in Figure 27.4, page 446), thus specifying that the program message queue
to be displayed is the one associated with program UserMenu.

MsgCtl, the next record format in the DDS, uses the standard subfile keywords (e.g.,
SflSiz, Sfllnz, SflDsp) along with the SflPgmQ keyword. This record format establishes the
message subfile for this display file with the SflSiz value of 10 and the SflPag value of 1.
In other words, the message subfile will hold up to 10 messages and will display one
message on each page. Because of the value of the SfLl\1sgRcd keyword in the MsgSfl
fonnat, the message will be displayed on line 24. You can alter the SflMsgRcd and St1Pag
values to display as many messages as you like and have room for on the screen. If more
than one page of messages exists, the user can scroll through the pages by pressing Page
up and Page down.

450 Starter Kit for the IBM iSeries and AS/400

You might be asking, "What does program UserMenu have to do to fill the message
subfile?" The answer: absolutely nothing! This fact often confuses programmers new to
message subfiles because they can't figure out how to load the subfile. You can think of the
message subfile as simply a mechanism by which you can view the messages on the program
message queue. By changing the value of variable &PgmQ to USERMENU, we specified
which program message queue to associate with the message subfile. That's all it takes.

At C in Figure 27.4 (page 448), you can see that we change indicator 40 (variable
&In40) to 'l' (on) and then output format MsgCtl using the SndF command. In the DDS,
indicator 40 controls the Sfllnz and SflEnd keywords (C in Figure 27.1, page 442) to
initialize the subfile before loading it and to display the appropriate plus sign (+) or blank
to let the user know whether more subfile records exist beyond those currently displayed.
(You can specify SflEnd(*More) if you prefer to have the message subfile use the "More ... "
and "Bottom" text).

When the program outputs the MsgCtl format, the &PgmQ and &MsgKey variables
coded in the MsgSfl record format cause all messages to be retrieved from the program
message queue and presented in the subfile. The user can move the cursor onto a message
and press the Help key to get secondary text (when it is available) and can scroll through
all the error messages in the subfile.

At Bin Figure 27.4 (page 446), the RmvMsg (Remove Message) command clears all (*All)
messages from the current program queue (i.e., queue UserMenu). Clearing the queue at
the beginning of the program ensures that old messages from a previous invocation do
not remain in the queue.

Using an Error Subfile
Figure 27.6 shows a prompt screen a user might receive to specify selections for a menu
option that submits a report program to batch. The user keys the appropriate values and
presses Enter to submit the report. If the program encounters an error when validating the
entered values, the display file uses an error subfile to display the error message at the
bottom of the screen, like the error message shown in Figure 27.7.

To indicate an error subfile, you use the ErrSfl keyword in the DDS (A in Figure 27.1,
page 441). An error subfile provides a different function than a message subfile. The error
subfile automatically presents any error messages generated as a result of DDS message or
validity-checking keywords (e.g., Check, ErrMsg, SflMsg, Values). The purpose of the error
subfile is to group error messages generated by these keywords for a particular record
format, not to view messages on the program message queue.

Chapter 27 CL Programs and Display Files 451

FIGURE 27.6

Prompt Screen to Specify Selections

PROl'IPT01 Submit Batch Report 1

Type the following, then press Enter.

Territory ID
Sa Les Rep ID

Ordered by •

Detail type

F3=Exit F12=Cancel

PROl'IPT01

.!l. (O)ate

.!l.

(C)ustomer
(A)mount - Decreasing

(ll)etai l
(S)ummary

FIGURE 27.7
Sample Error Subfile Display

Submit Batch Report 1

Type the following, then press Enter.

Territory ID
Sales Rep ID

Ordered by .

Detail type

F3=Exit F12=Cancel
Sales Rep ID required.

Jl (D)ate
CC>ustomer
(A)mount Decreasing

(O)etail
(S)ummary

452 Starter Kit for the IBM iSeries and AS/400

Considerations
CL's lack of support for user-written subfiles limits the usefulness of display files within CL
in applications that require user interaction. However, in many common situations, CL's
strengths more than offset these limitations. CL's command-processing, message-handling,
and string-manipulation capabilities make it a good choice for menus, prompt screens,
and other nondatabase-related screen functions.

Although it's not always appropriate, for many basic interactive applications CL offers
a simple alternative to a high-level language for display file processing. With this
knowledge under your belt, you can choose the best and easiest language for applications
that use display files.

453

Chapter 28

OpnQryF Fundamentals
The basic function of the OpnQiyF (Open Queiy File) command is to open one or more
database files and present records in response to a queiy request. Under the covers,
OpnQiyF creates an open data path (ODP) that programs can then use in obtaining input.
This ODP appears to programs as a single database file containing only the records that
satisfy the queiy selection criteria. In essence, OpnQiyF works as a filter that determines
the way your programs see the file or files being opened.

You can use the OpnQiyF command to perform a variety of database functions,
including to

• join records from more than one file

• group records

• perform aggregate calculations such as sum and average

• select records before or after grouping

• sort records by one or more key fields

• calculate new fields using numeric or character string operations

Although OpnQiyF is powerful, its syntax can be confusing. In this chapter, we
provide the foundation for OpnQiyF use. You'll want to spend some time studying
OpnQiyF so you can maximize the benefit the command provides.

First Things First
One crucial point to remember when using OpnQiyF is that you must share the ODP the
command creates so your programs can use the ODP to obtain their input. To share the
ODP, you must use the Share(*Yes) file attribute for each file opened by the OpnQiyF
command. When you specify Share(*Yes), subsequent opens of the same file will share
the original ODP and thus see the file as presented by the OpnQiyF process. If OpnQiyF
opens a file using the Share(*No) attribute, the next open of the file will not use the ODP
created by the OpnQiyF command but instead will perform another full open of the file.
You must also be aware of the file open scope. You must properly scope the open so
your programs will work properly. (If you've not done so yet, this would be a good time
to read Chapter 23, where we discuss sharing ODPs and the scope of file opens.)

454 Starter Kit for the IBM iSeries and AS/400

l.J Tip
Don't assume the file description already has the Share("Yes) value when
you use the OpnQryF command. Instead, always use the OvrDbF (Override
with Database File) command just before executing OpnQryF to explicitly
specify Share("Yes) for each file to be opened. Be aware that the OpnQryF
command ignores any parameters on the OvrDbF command other than
ToFile, Mbr, LvlChk, WaitRcd, SeqOnly, InhWrt, and Share.

The Command
Figure 28.1 shows the entire OpnQryF command. OpnQryF has five major groups of
parameters - specifications for file, format, key field, join field, and mapped field - plus
a few extra parameters not in a group. Using the OpnQryF command is easier once you
master the parameter groups.

Some strong (but awkwardly structured) parallels exist between OpnQryF parameters
and specific Structured Query Language (SQL) concepts. For instance:

• OpnQryF's file and format specifications parallel the more basic functions of the SQL
Select and From statements.

• OpnQryF's query selection expression parallels SQL's Where statement.

• OpnQryF's key field specifications parallel SQL's Order By statement.

• OpnQryF's grouping field names expression parallels SQL's Group By statement.

• OpnQryF's group selection parallels SQL's Having statement.

If you compare OpnQryF with SQL, you'll see that the OpnQryF command is basically a
complicated SQL front end that offers a few extra parameters.

Start with a File and a Format
For every query, there must be data - and for data, there must be a file. OpnQryF's File
specifications parameters identify the file or files that contain the data. A simple OpnQryF
command might name a single file, like this:

OpnQryF FileCMyLib/MyFile) ...

This partial command identifies MyLib/MyFile as the file to be queried. Notice that the File
parameter in Figure 28.1 has three separate parameter elements: the qualified file name,
data member, and record format. A specified file must be a physical or logical file, an SQL
view, or a Distributed Data Management (DDM) file. In the sample command above,
we've specified the qualified file name only and have not entered a specific value for the
second and third elements of the File parameter. Therefore, the default values of *First and
*Only are used for the member and record format, respectively.

Chapter 28 OpnQryF Fundamentals 455

FIGURE 28.1
OpnQryF Command Panel

Open Query File COPNQRYF)

Type choices, press Enter.

File specifications:
Fi le • • .

Library
Member
Record format

FILE

Open options ..
+ for more values
•••• OPTION

Format specifications:
Fi le . • • . .

Library
Record format

Query selection expression

Key field specifications:
Key field

File or element
Key field order
Order by absolute value

Unique key fields
Join field specifications:

From field
File or element

To field
File or element

Join operator

+ for more values
FORMAT

QRYSLT

KEYFLD

+ for more values
UNIQUEKEY
JFLD

+ for more values
Join with default values JDFTVAL
Join file order JORDER
Grouping field names GRPFLD

File or element
+ for more values

Group selection expression ... GRPSLT

*LIBL __ _
*FIRST __
*ONLY __ _

*!NP

*FILE __ _

*ALL _____________ _

*NONE __ _

*NONE_

*NONE __ _

*NO __ _
*ANY_
*NONE __ _

*ALL _____________ _

continued

456 Starter Kit for the IBM iSeries and AS/400

FIGURE 28.1 CONTINUED

Mapped field specifications:
Mapped field•.
Field definition expression

Mapped field type
Length . . . • . .
Decimal positions
Mapped field CCSID

MAPFLD

+ for more values
Ignore decimal data errors IGNDECERR
Open file identifier . • . OPNID
Limit to sequential only: SEQONLY

Sequential only
Number of records

Commitment control active COMMIT
Open scope . • . . . OPNSCOPE
Duplicate key check DUPKEYCHK
Allow copy of data . ALWCPYDTA
Performance optimization: OPTIMIZE

Performance optimization
Number of records

Optimize all access paths OPTALLAP
Sort sequence SRTSEQ

Library
Language ID LANGID
Final output CCSID CCSID

Additional Parameters

Type of open TYPE

*NONE __

*NO_
*FILE __

*YES

*NO_
*ACTGRPDFN
*NO_
*YES

*ALLIO_

*NO_
*JOB __ _

*JOB __ _
*JOB. __ _

*NORMAL

You can select a particular data member to queiy by supplying a member name. You can
also select a specific record format. The default value of •only for record format tells the
iSeries database manager to use the only record format named in the file. When the file
has more than one record format, you must use the record format element of the File
parameter to name the particular record format to use.

You can enter a plus sign (+) in the "+ for more values" field and enter multiple file
specifications to be dynamically joined (as opposed to creating a permanent join logical
file on the system). When joining more than one record format, you must enter values in
the Join field specifications parameter (JFld) to specify the field (or fields) the database
manager will use to perform the join.

OpnQiyF's Format parameter specifies the format for records made available by the
command. The fields defined in this record format must be different from those named in
the File and MapFld (Mapped field) parameters. When you use the default value of *File
for the Format parameter, the record format of the file defined in the File parameter is
used for the records selected. You cannot use Format(•File) when the File parameter
references more than one file, member, or record format.

To return to our example, if you used

OpnQryF File(Mylib/MyFile) •..

Chapter 28 OpnQryF Fundamentals 457

the record format of file MyFile would be used for the records presented by the OpnQryF
command. On the other hand, if you used the command

OvrDbF File(MyJoin) +
ToFileCMyLib/MyFile) +
ShareC*Yes)

with this OpnQryF command

OpnQryF File(Mylib/MyFile) +
Format(MyJoin)

the database manager would use the record fom1at for file MyJoin.
The Fomut parameter can specify a qualified file name and a record fomlat (e.g.,

(MyLib/MyJoin JoinR)), or it can simply name the file containing the foffilat to be used
(e.g., (MyJoin)). Although you can select (via the QrySlt parameter) any fields defined in
the record format of the file named in the File parameter, OpnQryF will make available
only those fields defined by the record format named in the Foffilat parameter. In the
previous example, the high-level language (HLL) program would open file MyJoin, and
the OvrDbF command would redirect the open to the queried file, MyLib/MyFile. The
foffilat for MyJoin would present records from MyFile. Later, in the discussion of field
mapping, we'll explain why you might want to do this.

Because this chapter is only an introduction to OpnQryF, we don't discuss join files
further. Instead, we focus on creating queries for single-file record selection, sorting,
mapping fields, and Hil processing.

Record Selection
As we said earlier, the record selection portion of the OpnQryF command parallels SQL's
Where statement. The system perlorms record selection before it perlonns record
grouping (the GrpFld parameter controls record grouping). 1he query selection
expression, specified in parameter QrySlt, c-.in be up to 5,000 characters long, must be
enclosed in apostrophes (') it constitutes a character expression - and can consist of
one or more logical expressions connected by •And or •or. Each logical expression must
use at least one field. The OpnQryF command also offers built-in functions you can
include in your expressions (e.g., %Range, %Sst, %Values, and o/oWildcard).

The simple logical expression

QrySlt('DltCde = "D"')

instructs the database manager to select only records for which the field DltCde contains
the constant value D. A more complex query might use the following expression:

QrySlt('CstNbr *Eq %RangeC10000 49999) *And +
CurDue *GT Crdlim *And +
CrdFlg *Eq "Y"')

458 Starter Kit for the IBM iSeries and AS/400

In this example, CstNbr (customer number), CurDue (current due), and CrdLim (credit
limit) are numeric fields, and CrdFlg (credit flag) is a character field. lhe QrySlt expression
uses the %Range function to determine whether the CstNbr field is in the range of 10000
to 49999 and then checks whether CurDue is greater than the credit limit. last, it tests
field CrdFlg against the value Y. When all tests are true for a record in the file, that record
is selected.

QryS/t Guidelines
You can minimize trips to the manual by remembering a few rules about the QrySlt param
eter. lhe following guidelines can help you avoid many common CL programming mistakes.

QrySlt and Constants
When the system parses the QrySlt expression, it determines whether a constant is
character or numeric by the absence or presence of enclosing apostrophes or quotation
marks ("). Consider the following examples:

Example 1:

'CustID *Eq 123'

Example 2:

'CustID *Eq "123"'

In example 1, the system compares a numeric customer ID field with the constant value
123. lhe value 123 is numeric because it doesn't appear within surrounding apostrophes
or quotation marks (the apostrophes at the beginning and end of the expression apply to
the QrySlt parameter expression itself). Example 2 shows the syntax to use when you
want to compare a character customer ID field. Notice that quotation marks surround the
value 123, making it a character constant. lhe rules regarding constants state that you
don't enclose numeric constants within apostrophes or quotation marks and you must
enclose character constants within apostrophes or quotation marks.

In reality, the use of constants in QrySlt expressions usually isn't a major source of
confusion. lhis is true because not only are the rules easy to remember, but the syntax is
intuitive as well. One look at the examples and this is reasonably obvious.

lhe most important thing you can learn from this discussion about using constants in the
QrySlt expression is the form of the expression. Understanding QrySlt's form is essential to
understanding how to use variables - where the real source of confusion lies - in the
expression. A quick dissection of the QrySlt parameter reveals that its form is quite simply

'Expression'

Right about now, you're probably thinking, "No kidding?" We're not, though. Our point is
that mastering the QrySlt parameter can be quite simple if you methodically pick apart its
syntax piece by piece. lhe lesson here is that there are three elements to the QrySlt

Chapter 28 OpnQryF Fundamentals 459

parameter: the opening apostrophe, the expression, and the closing apostrophe. In the
case of the two examples above, the &pression element is

In Example 1:

CustID *Eq 123

In Example 2:

CustID *Eq "123"

From this, you can see that &pression consists of three elements:

Field Operator Operand

In both examples, Field is CustID and operator is •Eq. operand can take one of two
forms, either numeric (123) or character ("123") in the examples. (For brevity's sake, we
discuss only numeric and character values here.) The lesson in this step is that the
complete QrySlt statement takes the form

'Field Operator Operand'

and that the data type of operand determines the syntax used in specifying it (i.e., with or
without quotation marks).

The final lesson in this section is that OpnQryF always sees the QrySlt parameter in
this form, even when you use variable substitution in the QrySlt parameter. That's because
CL performs the variable substitution before OpnQryF processes the QrySlt expression.

QrySlt and Variables
Without a doubt, the use of variables in the QrySlt expression introduces an added level
of complexity, which leads to confusion, which in tum leads to errors. For example,
assume you want to use variable substitution with the two examples we just discussed.
The most common mistake is to construct the QrySlt statement as

'CustID *Eq &SelectID'

It's natural to make this mistake. After all, it sure looks right! The problem with this
expression is that the system interprets &SelectID as a constant because it's part of the
expression enclosed within apostrophes.

It's interesting that this mistake is so common when you consider that programmers
rarely make the same mistake on other commands that function similarly with respect to
variable substitution. One such command is the ChgVar (Change Variable) command. For
example, consider a scenario in which the value of CL variable &SelectID is "A47" and
you want to set another variable, &Prompt, to the value "Selection: A47" using variable
substitution. Few would code the following erroneous statement

ChgVar VarC&Prompt) +
Value('Selection: &SelectID')

460 Starter Kit for the IBM iSeries and AS/400

which would produce the value "Selection: &SelectID" for variable &Prompt. Instead, most
would correctly code

ChgVar Var<&Prompt) +
Value('Seleetion:' *BCat &SeleetlD)

setting &Prompt's value to "Selection: A47".
The first rule when using variable substitution in the QrySlt parameter is that you

must concatenate variables into the expression, just as you concatenate variables on the
ChgVar command when using compound values. Just how you concatenate the variables
is the most confusing aspect of constructing the QrySlt parameter. For instance, as is the
case with the ChgVar command, you can concatenate only character variables. If you
need to substitute a numeric value into the QrySlt expression, you must first place the
value in a character field (using the ChgVar command) and then concatenate the character
field into the expression.

The trickiest part of concatenating variables into the QrySlt expression is making sure
you have the expression's form correct, as we previously mentioned. Again, breaking
down the expression into its individual components makes it much easier to construct the
string properly. Let's take another look at our two examples, this time with an eye to
using variable substitution rather than constants. Assume that the goal is to select records
in which field CustID is equal to the value in CL variable &SelectID. Let's see how to code
the QrySlt statement for numeric and for character fields.

Recall that the expression's form is

'Field Operator Operand'

Let's break this down into its components. First, there's the opening and closing
apostrophe. You might find it useful to actually code the expression piece by piece, so
you might enter the following in your source:

The other known, nonvariable elements are the database field (CustID) and the operator
(*Eq). Let's insert these into the line above as follows:

'CustID *Eq

Now, all that's left to code is the variable portion of the expression. Because we have
only variable information left to insert into the expression, we can rid the statement of
the extraneous spaces appearing after the operator element. Our statement now is

'CustlD *Eq'

So far, we've coded all elements of the QrySlt expression except the operand element.
Everything we've shown to this point will work regardless of the data type of the variable
to be concatenated into the expression. Next, let's see how to insert a numeric variable
into the QrySlt expression. First, look at the following CL declarations:

Del VarC&CustIDNbr) TypeC*Dee) LenC3 0>
Del VarC&SeleetID) TypeC*Char) Len(3)

Chapter 28 OpnQryF Fundamentals 461

Variable &CustIDNbr contains the numeric customer ID for which we want to select
records. Remember, though, that you can concatenate only character variables. For that
reason, we've defined character variable &SelectID, into which we can place the value
of &CustIDNbr. After you issue the command

ChgVar &SelectID &CustIDNbr

you can concatenate variable &Select ID into the QrySlt expression. There must be a blank
between Operator (*Eq) and operand, so you use function *BCat as follows to insert into
the QrySlt expression the customer ID for which to select records:

'CustID *Eq' *BCat &SelectID

We now have the final QrySlt expression. Your OpnQryF statement resembles the following:

OpnQryF File(CstHist> +
QrySlt('CustID *Eq' *BCat &SelectlD)

That wasn't so bad, was it?
Now, let's examine the most confusing case - when the customer ID field is a

character field. The confusion lies in the fact that when Operand is character, you must
enclose it within apostrophes or quotation marks.

Remember, the first few steps of constructing the QrySlt expression are the same
regardless of the type of variable we want to insert. Let's begin this example after those
steps that construct the following portion of the expression:

'CustID *Eq'

All that remains is to concatenate the variable portion. First, we concatenate the opening
quotation mark for the character data, remembering to insert a blank first. The expression
is now

'CustID *Eq' *BCat ''"

Next, we concatenate the variable, so that the expression is

'CustID *Eq' *BCat "" *Cat &SelectID

Last, we add the closing quotation mark. The expression is now

'CustlD *Eq' *BCat "" *Cat &SelectlD *Cat 1111

and the QrySlt expression is complete. It resembles

OpnQryF File(CstHist) +
QrySlt('CustID *Eq' *BCat "'' *Cat &SelectlD *Cat "")

Some programmers find it easier to avoid the literal quotation marks in the expression.
You can do this by setting a program variable's value to the quotation mark and using this
variable as you construct the QrySlt expression. For example, the statements

Del Var(&Quote) Type(*Char) Len(1) Value('"')
OpnQryF File(CstHist) +

QrySlt('CustID *Eq' *BCat &Quote *Cat &SelectID *Cat &Quote)

462 Starter Kit for the IBM iSeries and AS/400

result in the same QrySlt expression as the previous example. This is simply a matter
of preference.

e Note
The examples so far have all shown character variables enclosed within
quotation marks. You may remember that we said apostrophes work as
well. If you prefer to use apostrophes, you must code two of them to
replace a quotation mark. In other words, rather than coding apostrophe
quote-apostrophe, you code apostrophe-apostrophe-apostrophe-apostrophe.
Be careful if you decide to use apostrophes. You can code apostrophe
apostrophe-apostrophe, and the combination will pass Source Entry Utility's
(SEUs) syntax checker. However, the QrySlt expression won't function in
the intended manner. We prefer to use the quotation mark method
exclusively because it is more intuitive and less error-prone.

I' Tip
If OpnQryF is failing in one of your programs, using the ChgJob (Change Job)
command, set the LogCLPgm (Log a program commands) attribute for your
job to value *Yes. Then after you try to execute the OpnQryF command,
display the job log, and you can see how your OpnQryF command's param
eters look after variable substitution. Remember this tip. It will save you
considerable time!

Differentiate Between Upper- and Lowercase Data
Character data in the QrySlt expression are case sensitive. You must therefore be careful
to make sure your comparisons are coded in a way that accounts for this. If your data can
be either upper or lower case, or is in mixed case, you might find the %Xlate function
useful. This function lets you translate data using a translation table. Table QSysTrnTbl
translates lowercase data to upper case. For instance, if CustlD in our example is in mixed
case, with some records containing customer ID ABC, some AbC, some aBC, and so on,
the %Xlate function lets you select all these records. The syntax is as follows:

QrySltC'%XlateCCustID QSysTrnTbl) ...

That does it for the guidelines for using the QrySlt parameter. OpnQryF's GrpSlt
(Group Selection expression) parameter functions exactly like the QrySlt parameter, except
that the system performs selection after grouping records. The same QrySlt functions are
available for the GrpSlt expression, and the same rules apply.

Key Fields
Besides selecting records, you can establish the order of the records OpnQryF presents to
your HLL program by entering one or more key fields in the Key field specifications. The

Chapter 28 OpnQryF Fundamentals 463

KeyFld parameter consists of several elements. You must specify the field name, whether
to sequence the field in ascending or descending order, whether to use absolute values
for sequencing, and whether to enforce uniqueness.

Let's look at a couple of examples. TI1e OpnQryF command

OpnQryF FileCMylib/MyFile) +
QrySltC' ..• ') +
KeyFldCCstNbr)

causes the selected records to appear in ascending order by customer number (because
•Ascend is the default for the key field order). The command

OpnQryF FileCMylib/MyFile) +
QrySltC' ..• '} +
KeyFldCCCurBal *Descend) CCstNbr)}

presents the selected records in descending order by current balance and then in
ascending order by customer number.

Any key field you name in the KeyFld parameter must exist in the record format
referenced by the Format parameter. The key fields specified in the KeyFld parameter can
be mapped from existing fields, as long as the referenced field definition exists in the
referenced record format. The KeyFld default value of *Kone tells the database manager to
present the selected records in any order. Entering the value *File tells the query to use
the access path definition of the file named in the File parameter to order the records.

e Note
In Data Description Specifications (DDS), you can specify only fields from
the primary file as key fields for a join logical file. With OpnQryF, however,
you can use fields from any of the joined files as key fields.

Mapping Virtual Fields
One of the richer features of the OpnQryF command is its support of field mapping. The
Mapped field specifications let you derive new fields (known as "virtual" field<> in
relational database terms) from fields in the queried record format. You can map fields
using a variety of powerful built-in functions. For example, o/oSst returns a substring of the
field argument, %Digits converts numbers to characters, and %Xlate performs character
translation using a translation table. You can use the resulting field<> to select record<> and
to sequence the selected records.

Look at the following OpnQryF statement:

OpnQryF Fi LeCinpDtL> +
FormatCDetaiL> +
QrySLt('linTot *GT 10000'} +
KeyFLdCCCstNbr} ClnvDte)) +
MapFLdCCLinTot 'InvQty * !Price'})

464 Starter Kit for the IBM iSeries and AS/400

Fields InvQty (invoice item quantity) and IPrice (invoice item price) exist in physical file
InpDtl. Mapped field LinTot (line total) exists in the Detail format, which is used as the
format for the selected records. As each record is read from the InpDtl file, the calculation
defined in the MapFld parameter ('InvQty • !Price') is performed, and the value is placed
in field LinTot. The database manager then uses the value in LinTot to determine whether
to select or reject the record.

OpnQryF Command Performance
Whenever possible, the OpnQryF command uses an existing access path for record
selection and sequencing. In other words, if you select all customer numbers in a specific
range and an access path exists for Csu'Jbr, the database manager will use that access path
to perform the selection, thus enhancing the performance of the OpnQryF command.
However, if the system finds no usable access path, it creates a temporary one and
creating an access path can take a long time at the machine level, especially if the file is
large. Likewise, when you specify one or more key fields in your query, the database
manager will use an existing access path if possible; otherwise, the database manager
must create a temporary one, again potentially degrading performance.

Overall, the OpnQryF command provides flexibility that is sometimes difficult to
emulate using only HLL programming and the native database. However, OpnQryF is a
poor performer when the system must create many temporary access paths to fulfill the
que1y request. You may also need to weigh flexibility against performance to decide
which record-selection method is best for a particular application. To help you make a
decision, you can use these guidelines:

• If the application is interactive, use OpnQryF sparingly. And unless the file is
relatively small (i.e., fewer than 10,000 records), ensure that existing access paths
support the selection and sequencing.

• If the application is a batch application run infrequently or only at night, you can use
OpnQryF without hesitation, especially if it eliminates the need for logical files used
only to support those infrequent or night jobs.

• If the application is run frequently and in batch during normal business hours, use
OpnQryF when existing access paths support the selection and sequencing or when
the files are relatively small. Use native database and HLL programming when the files
are large (greater than 10,000 records) or when many (more than three or four)
temporary access paths are required.

The next time a user requests a report that requires more than a few selections and
whose records must be in four different sequences, use the OpnQryF command to do the
work, and write one HLL program to do the reporting But remember, to be on the
safe side, run the report at night!

465

Chapter 29

Teaching Programs to Talk
In Chapter 7, we covered the commands you can use to send impromptu messages from
one user to another: Sndt\1sg (Send Message), SndBrkMsg (Send Break Message), and
SndNetlv1sg (Send Network Message). Programs can also use these commands to send an
informational message to a user, but because these commands provide no means for the
sending program to receive a user response, their use for communication between programs
and users is limited.

In contrast, IBM-supplied command SndUsrMsg (Send User Message) and user-written
command SndBrkMsgU both let a CL program send a message to a user and then receive
a reply. Your program can then use this reply in its processing.

Putting SndUsrMsg to Work
Figure 29.1 shows the SndUsrMsg command screen.

FIGURE 29.1
SndUsrMsg Command Screen

Send User Message (SNDUSRMSG)

Type choices, press Enter.
Message text, or . . • MSG

Message identifier
Message file

Library •
Message data field values

MSG ID
MSGF

MSGDTA

Valid reply values .••••.. VALUES

Default reply value

Message type • • •
To message queue .

Library
To user profile .
CL var for message reply
Translate table

Library

+ for more values

DFT

MSGTYPE
TOMSGQ

TOUSR
MSGRPY
TRNTBL

*LIBL

*NONE

*MS GD FT

QSYSTRNIBL
*LIBL

466 Starter Kit for the IBM iSeries and AS/400

The message you send can be an impromptu message or one you've defined in a message
file. To send an impromptu message, just type a message of up to 512 characters in the
Msg (Message text) parameter. To use a predefined message, enter a message ID in the
MsgID (Message identifier) parameter. The message you identify must exist in the message
file named in the MsgF parameter.

The MsgDta (Message data field values) parameter lets you specify values to take the
place of substitution variables in a predefined message. For example, message CPF2105,
which is

Object &1 in &2 type *&3 not found

has three data substitution variables: &1, &2, and &3. When you use the SndUsrMsg
command to send this message, you can also send a MsgDta string that contains the
substitution values for these variables. If you supply the following in the MsgDta string

'CSTMAST ARLIB FILE

the message appears as

Object CSTMAST in ARLIB type *FILE not found

If you don't supply any MsgDta values, the message is sent without values (e.g., "Object
in type • not found").

The character string specified in the MsgDta parameter is valid only for messages that
have data substitution variables. It's important that the character string you supply is the
correct length and that each substitution variable is positioned properly within the string.
The previous example assumes that the message is expecting three variables (&1, &2, and
&3) and that the expected length of each variable is 10, 10, and 7, respectively, making
the entire MsgDta string 27 characters long. How do we know that? Because each system
defined message has a message description that includes detailed information about
substitution variables, and we used the DspMsgD (Display Message Description) command
to get this information for message CPF2105.

Every iSeries system is shipped with file QCPFMsg (a message file for OS/400 messages)
and several other message files that support particular products. You can also create your
own message files and message IDs that your applications can use to communicate with
users or other programs. For more information about creating and using messages, see
05/400 CL Programming (SC41-5721).

The next parameter on the SndUsrMsg command is Values (Valid reply values), which
lets you specify the value or values that will be accepted as the response to your message,
if a response is requested. When you specify MsgType(*Inq) and specify a CL variable in
the MsgRpy parameter (discussed later), the system automatically supplies a prompt for a
response when it displays the message. The system then verifies the response against the
valid values listed in the Values parameter. If the user enters an invalid value, the system
displays a message saying that the reply was not valid and resends the inquiry message.
To make sure the user knows which values are valid, you should list the valid values as
part of your inquiry message.

Chapter 29 Teaching Programs to Talk 467

In the Dft (Default reply value) parameter, you can supply a default reply to be used
for an inquiry message when the message queue that receives the message is in the *Dft
delivery mode or when an unanswered message is deleted from the message queue.
The default value in the SndUsrMsg command overrides defaults specified in the message
description of predefined messages. The system uses the default value when the message
is sent to a message queue that is in the *Dft delivery mode, when the message is inadver
tently removed from a message queue without a reply, or when a system reply JL<;t entry is
used that specifies the *Dft reply.

Oddly enough, this value need not match any of the supplied values in the Values
parameter. This oddity presents some subtle problems for programmers. If the system
supplies a default value not listed in the Values parameter, the value is accepted. However,
if a user types the default value as a reply and the default is not listed in the Values
parameter, the system will notify the user that the reply was invalid. To avoid such a
mess, we strongly recommend that you use only valid values (those listed in the Values
parameter) when you supply a default value.

The MsgType (Message type) parameter let'> you specify whether the message you're
sending is an *Info (informational, the default) or *Inq (inquiry) message. Both kinds
appear on the destination message queue as text, but an inquiry message also supplies a
response line and waits for a reply.

The ToMsgQ (To message queue) parameter names the message queue that will
receive the message. You can enter the name of any message queue on the local system,
or you can use one of the following special values:

• • - instructs the system to send the message to the external message queue (*Ext) if
the job is interactive or to message queue QSys/QSysOpr if the program is being
executed in batch.

• •sysOpr - tells the system to send the message to the system operator message
queue, QSys/QSysOpr.

• *Ext - instructs the system to send the message to the job's external message queue.
Inquiry messages to batch jobs will automatically be answered with the default value
or with a null value (*N) if no default is specified. Keep in mind that although messages
can be up to 512 characters long for first-level text, only the first 76 characters \Vill be
displayed when messages are sent to *Ext.

The ToUsr (To user profile) parameter is similar to ToMsg but lets you specify the
recipient by user profile instead of by message queue. You can enter the recipient's user
profile, specify *SysOpr to send the message to the system operator at message queue
QSys/QSysOpr, or enter *Requester to send the message to the current user profile for an
interactive job or to the system operator message queue for a batch job.

One problem emerges when using the SndUsrMsg command to communicate with a
user from the batch job environment. In the interactive environment, both the ToUsr and
ToMsgQ parameters supply values that let you communicate easily with the external user
of the job. In the batch environment, the only values provided for ToUsr and ToMsgQ

468 Starter Kit for the IBM iSeries and AS/400

direct messages to the system operator as the external user. There are no parameters to
communicate with the user who submitted the job.

The CL code in Figure 29.2 solves this problem. When you submit a job, the MsgQ
parameter on the SbmJob (Submit Job) command tells the system where to send a job
completion message. You can retrieve this value using the RtvJobA (Retrieve Job Attributes)
command and the SbmMsgQ and SbmMsgQLib return variables. The program in Figure 29.2
uses the RtvJobA command to retrieve the name of the message queue and then tests
variable &Type to determine whether the current job is a batch job. If so, SndUsrMsg
sends the message to the message queue defined by the &SbmMsgQ and &SbmMsgQLib
variables. If the job is interactive, the SndUsrMsg command simply directs the message to
the external user by specifying ToUsr(•Requester).

FIGURE 29.2
Sample CL Code for Communicating with the User of a Batch job

I* === *I
I* Program MsgSample1 */
I* Source type ... CLP */
I* Description ... SndUsrMsg demonstration */
I* === *I

Pgm

I* === *I
I* Variable declarations */
I* === *I

Del
Del
Del

&SbmMsgQ *Char
&SbmMsgQLib *Char
&Type *Char

10
10

1

I* === *I
I* Retrieve environment information */
I* === *I

RtvJoBA Type(&Type)
SbmMsgQC &SbmMsgQ)
SbmMsgQLibC &SbmMsgQLib

+
+

I* === *I
I* Send message to external user or submitter */
I* === *I

I* --- *I
I* If job is running in batch, send the message to the */
I* message queue retrieved from job attributes */
I* --- *I

If C
SndUsrMsg

&Type *Eq 1 0 1
)

MsgC 'The dai Ly report is avai Lable
MsgTypeC *Info)
ToMsgQ(&SbmMsgQLib/&SbmMsgQ)

for printing.')
+
+
+

continued

Chapter 29 Teaching Programs to Talk 469

FIGURE 29.2 CONTINUED

I* --- *I I* If job is running interactively, send the message to */
I* - *Requester - *I
I* --- *I

If (&Type *Eq '1') +
SndUsrMsg Msg('The daily report is available for printing.') +

MsgType(*Info) +
ToUsr(*Requester)

I* === *I
I* End of program */
I* === *I

EndPgrn

You can use the SndUsrMsg command's MsgRpy (CL variable for message reply) parameter
to specify a CL character variable (up to 132 characters long) to receive the reply to an
inquiry message. Make sure the length of the variable is at least as long as the expected
length of the reply; if the reply is too short, it will be padded with blanks to the right, but
if the reply exceeds the length of the variable, it will be truncated. The first result causes
no problem, but a truncated reply may cause an unexpected glitch in your program.

An inquiry message reply must be a character (alphanumeric) reply. If your application
requires the retrieval of a numeric value, it's best to use Data Description Specifications (DDS)
and a CL or high-level language (HLL) program to prompt the user for a reply. This
approach ensures that validity checking is performed for numeric values.

Alas, the SndUsrMsg command also exhibits another oddity: If you don't specify a
MsgRpy variable but do specify MsgType("Inq), the command causes the job to wait for a
reply from the message queue but doesn't retrieve the reply into your program.

The last parameter on the SndUsrMsg command is TmTbl (Translate table), which lets
you specify a translation table to process the response automatically. The default translation
table is QSysTrnTbl, which translates lowercase characters (X'Sl' through X'A9') to upper
case characters. This option makes it possible for you to check only for uppercase replies
(e.g., Y or N) rather than having to code painstakingly for all lowercase and uppercase
possibilities (e.g., Y, y, N, n).

Figure 29.3 shows how the SndUsrMsg command might be implemented in a CL
program. Notice that SndUsrMsg is first used for an inquiry message. The message is
sent to *Requester to make sure the entire message text is displayed on the queue. The
job determines whether the daily report has already been nm for that day and, if it has,
prompts the user to verify that the report should indeed be run again. The program
checks for a valid reply of Y or N and takes appropriate action.

Also notice that the SndUsrMsg command is used again in Figure 29.3 to send infor
mational messages that let the user know which action the program has completed (the
completion of the task or the cancellation of the request to process the daily report,
depending on the user reply). You'll find that supplying informational program-to-user
messages will endear you to your users and help you avoid headaches (e.g., multiple
submissions of the same job because a user wasn't sure the first job submission worked).

470 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*
I*
I*

Pgm

I*
I*
I*

FIGURE 29.3
Sample CL Program Using SndUsrMsg

===
= Program MsgSample2 =
= Source type ... CLP =
= Description ••• SndUsrMsg demonstration =
===

===
= Variable declarations =
===

Del
Del

&Reply
&DailySts

*Char
*Char

I*
I*
I*

I*
I*
I*
I*

===
= Retrieve daily report status =
===

RtvDtaAra DtaAraC DailyLib/DailyRpt
RtnVar(&DailySts)

===
= If daily report has already run, prompt user to verify =
= that the daily report should be executed again
===

If (&Dai lySts *Eq 'Y')
Do

SendMsg:

*I
*I
*I
*I
*I

*I
*I
*I

*I
*I
*I

+

*I
*I
*I
*I

+

SndUsrMsg Msg('The daily report has already been run today.' +

If
Go To

If
Go To

Go To

End Do

*BC at +
'Do you want to run it again? CY,N)'

Values('Y' 'N')
Dft('N')
MsgTypeC *Inq)
ToUsr(*Requester
MsgRpy(&Reply)

&Reply *Eq 'Y'
RunRpt

&Reply *Eq 'N')
CnlRpt

SendMsg

+
+
+
+
+

+

+

continued

Chapter 29 Teaching Programs to Talk 471

I*
I*
I*

FIGURE 29.3 CONTINUED

===
Run report =

===
RunRpt:

I*
I*
I*

Call
SndUsrMsg

Go To

DlyRpt
Msg('The dai Ly report is available for printing.')
MsgType(*Info)
ToUsr(*Requester)
End

=== = Cancel report =
===

CnlRpt:

*I
*I
*I

+
+

*I
*I
*I

SndUsrMsg Msg('The daily report request has been canceled.') +
MsgType(*Info) +

I*
I*
I*

End:

ToUsr(*Requester)

===
End of program =

===

EndPgm

Send Break Messages to a User with SndBrkMsgU

*/
*I
*I

One feature missing from the iSeties potpourri of messaging commands is the ability to
direct a message to a user so that it intermpts him or her. Users, as message recipients,
can choose to place their message queue in a delivery mode that causes messages to
break; however, the message sender, whether an interactive user or a program, has no
system-supplied command for doing so.

W'hen you consider that users can sign on to multiple workstations, along with the
nuances of object allocation, you can understand why the system doesn't provide this type
of support. Where would the system actually display a break message if the user has
multiple sessions? And, how could the system allocate the user's message queue properly
with multiple sessions using it? For such reasons, the system sends break messages only to
workstation message queues, where it knows there is a one-to-one relationship between
message queue and physical device no object allocation problems and no question as
to where the system should display the message.

472 Starter Kit for the IBM iSeries and AS/400

Although you can't send a break message to a user message queue, the QEZSndMg
(Send Message) API lets you send a break message to a specified user. The API directs
the message to the workstation message queue of any workstation to which the user is
signed on. If the user isn't signed on at the time the system sends the message, the
message is placed in the user message queue.

API QEZSndMg combines the functions of the SndMsg (Send Message) and SndBrkMsg
(Send Break Message) commands. With it, you can

• send a message to one or more users or display stations

• send an inquiry message to more than one user

• send a break message to users

• send a break or inquiry message to all active users

• send an inquiry message to display stations

QEZSndMg requires no parameters, but 12 optional parameters determine

• the type of message sent (informational or inquiry)

• the delivery mode of the message (break or normal)

• the message text

• the users or display stations to receive the message

• the message queue to receive the reply to an inquiry message

• whether the Operational Assistant's Send a Message display is shown

• whether user profile names or display station names have been specified

Figure 29.4 describes the 12 QEZSndMg parameters and their possible values.
You can use QEZSndMg interactively from the command line or within a program.

For instance, if you call the program from the command line and pass no parameters, the
system presents the Operational Assistant Send a Message panel (Figure 29.5, page 475)
where you can enter the message you want to send, along with its recipients and
presentation information.

A user-written command interface to QEZSndMg brings an air of user-friendliness to
the APL Fashioned after IBM's SndBrkMsg command, the SndBrkMsgU (Send Break
Message to User) command (Figures 29.6A through 29.6C) makes it a snap to send break
messages to users (i.e., to their workstation message queues). The command also adds the
ability to send predefined messages based on a message ID. API QEZSndMg, by itself,
supports only impromptu messages.

To keep the command simple, only one value is allowed for the ToUsr (To user
profile) parameter. You may want to modify the command to accept a list of users or a
generic name. Notice that in addition to the special values API QEZSndMg allows (•All,
*SysOpr, and •A11Act), command SndBrkMsgU adds •Requester. When you specify this
value, the message is sent to the user profile of the job containing the command.

Chapter 29 Teaching Programs to Talk 473

FIGURE 29.4
AP! QEZSndMg Parameters

Two optional parameter groups make up the 12 parameters for API QEZSndMg (Send Message). If a batch

job uses the API, you must specify all the parameters from both groups.

Optional Parameter Group 1
API QEZSndMg's first optional parameter group has nine parameters. If you specify any of these parameters,

you must specify all nine.

Message type. This 10-byte character input field determines whether an informational (*Info) or inquiry

(*lnq) message is sent. When an inquiry message is sent, the system appends the name of the user profile

providing the reply to the beginning of the reply text.

Delivery mode. This 10-byte character input field determines how the message is delivered. Valid values

are *Break and *Normal. In break (*Break) mode, the message interrupts the recipient at each workstation

to which he or she is signed on. If the recipient isn't signed on, the message is sent to the user message

queue. If the sender isn't authorized to send break messages, normal (*Normal) mode is used; in this mode,

the delivery mode of the target message queue determines how the message is delivered.

Message text. This variable-length character input field contains the message to be sent. The maximum

length of the text is 494 bytes. This parameter cannot be blank when used in a batch job or when the value

of QEZSndMg's Show Send a Message display parameter (covered below) is N.

length of message text. This four-byte binary input field specifies the number of bytes in the Message text

parameter. Valid values are 0 through 494. The parameter value must be greater than 0 when used in a
batch job or when the value of the Show Send a Message display parameter is N.

List of user profiles or displays. This parameter is an array of 10-byte character input fields containing the

list of message queues to which the message is to be sent. The list can contain from 0 to 299 entries.

QEZSndMg's Name type indicator parameter (covered below) indicates whether the list contains user

profiles or workstations; the default is user profiles. You must specify at least one entry for this parameter

when using it in a batch job or when the Show Send a Message display parameter value is N. You can also

specify the following special values for this parameter:

• *All (all user message queues): When you use *Alt it must be the only value in the list and the

Name type indicator value cannot be *Dsp. Using *All requires *JobCtl special authority.

• *AllAct (all active user or workstation message queues): You can use *AllAct in combination with

specific users or workstations, as well as with the special value *SysOpr.

• *SysOpr (the system operator message queue, QSysOpr): You can use *SysOpr in combination with

specific users or workstations, as well as with special value *AllAct.

When the message is sent to workstation message queues, the system uses the library list to locate them.

continued

474 Starter Kit for the IBM iSeries and AS/400

FIGURE 29.4 CONTINUED

Number of user profiles or displays. This four-byte binary input field specifies the number of user or work

station message queues specified. Valid values are 0 through 299. The parameter's value must be 1 when

the value of the List of user profiles or displays parameter is *All. The value must be greater than O when

the parameter is used in a batch job or when the Show Send a Message display parameter value is N.

Message sent indicator. This four-byte binary output field indicates whether the user pressed Fl 0 to send a

message from the Send a Message display. The return value will be one of the following:

0 No messages were sent.

One or more messages were sent.

2 One or more messages were sent, but one or more message queues specified are invalid.

Function requested. This four-byte binary output field indicates how the user exited the Send a Message

display. The return value will be one of the following:

-4 The user pressed the Exit key (F3).

-8 The user pressed the Cancel key (Fl 2).

0 The Send a Message display was not used.

Error code. This variable-length input/output structure contains the standard API error information.

Optional Parameter Group 2

API QEZSndMg's second optional parameter group has the following three parameters:

Show Send a Message display. This one-byte character input field determines whether the Send a Message

display is to be displayed before the message is sent. Valid values are Y (the default) and N. Batch jobs

must specify N for this parameter.

Qualified message queue name. This 20-byte character input field specifies the message queue to receive

the reply for an inquiry message. The field contains a 10-byte message queue name followed by a 10-byte

library name. If the parameter is blank or not specified, the reply is sent to the message queue specified in

the sender's user profile. If the message is not an inquiry message, the parameter is ignored. Special values

*Libl and *Curlib are valid for the library portion of the message queue name.

Name type indicator. This four-byte character input field specifies whether the message is being sent to user

or workstation message queues. Valid values are *Usr (the default) and *Dsp. You cannot specify *Dsp

when the Show Send a Message display parameter value is Y.

Chapter 29 Teaching Programs to Talk 475

FIGURE 29.5

Operational Assistant Send a Message Panel

Send a Message

Type information below, then press F10 to send.

Message needs reply N Y=Yes, N=No

Interrupt user N Y=Yes, N=No

Message text .

Send to Name, F4 for list

More ..•
F1=Help F3=Exit F10=Send F12=Cancel

Although SndBrk...l'vlsgU supports inquiry messages, as does SndUsrMsg, the reply
mechanism works differently. With SndUsrMsg, you receive the reply in a program
variable. SndBrki.\1sgU, on the other hand, requires you to designate a message queue to
receive the reply. Your program can access the reply by receiving messages from this
designated message queue.

FIGURE 29.6A
SndBrkMsgU Command Source

I* === *I
I* *I Command ••..... SndBrkMsgU
I* *I Source type •.. CMD =
I* *I = Description ••• Send Break Message to User
I* *I =
I* *I = CPP •.••••••••• SndBrkMsgC =
I* *I VCP SndBrkMsgV
I* === *I

Cmd

Parm

Prompt('Send Break Message to User')

Kwd(Msg)
Type(*Char)
Len(494)
Vary(*Yes *Int4
Prompt('Message text, or')

+
+
+
+

continued

476 Starter Kit for the IBM iSeries and AS/400

Parm

Parm

Parm

Parm

Parm

Parm

QMsgF: Qual

Qual

FIGURE 29.6A

Kwd(MsgIO)
Type(*Name)
Len< 7)
Full< *Yes)
Prompt('Message identifier')

Kwd(MsgF)
Type(QMsgF
Prompt('Message file')

Kwd(MsgOta)
Type(*Char)
Len(494)
Oft(*None)
SpcVa l < < *None ' 1

))

Prompt('Message data'

Kwd(ToUsr)
Type(*Name)
Len< 10)
Oft(*Requester
SpcValC

*All)
*SysOpr
*Al lAct
*Requester

Prompt('To user profile'

Kwd(MsgType)
Type(*Char)
Len(5)
Rstd(*Yes
Oft(*Info
Values(

*Info
*Inq

Prompt('Message type')

Kwd(RpyMsgQ)
Type(QRpyMsgQ)
Prompt('Message queue to get reply')

Type(*Name
Len(10)
Min(1)

Type(*Name
Len< 10)
Oft(*LibL)
SpcValC

*LibL
*CurLib

Prompt('Library'

+
+
+
+

+
+

+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+

+
+

+
+
+
+
+
+
+

continued

Chapter 29 Teaching Programs to Talk 477

FIGURE 29.6A
QRpyMsgQ: Qual Type< *Name) +

Len< 10) +
Dft(QSysOpr)

Qual Type(*Name) +
Len(10) +
Dft(*LibL) +
SpcVa LC +

(*LibL) +
(*CurLib +

) +
Prompt< 'Library'

Dep Ctl< &Msg *Eq I ' +
Parm< (MsgID)) +
MsglD(CPD2536)

Dep Ctl(&Msg *NE ' .) +
Parm(+

MsgID) +
MsgF) +
Msgl>ta +

) +
NbrTrueC *NE 1 +
Msgll>(CPD2443

Dep CtlC &Msg *NE ' I) +
Parm< +

MsgID) +
Msg F) +
MsgDta +

) +
NbrTrueC *NE 2 +
MsgID{ CPD2443

Dep CtlC &Msg *NE I I) +
Parm< +

MsgID) +
MsgF) +
MsgDta +

) +
NbrTrue< *NE 3 +
MsgIDC CPD2443

Dep Ctl(&Msg *NE . I +
Parm((MsglD)) +
NbrTrue(*NE 1) +
MsgIDC CPD2536)

Dep CtlC &MsgID *NE I I) +
Parm((MsgF)) +
NbrTrueC *EQ 1) +
MsgIDC CPD2441)

478 Starter Kit for the IBM !Series and AS/400

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

FIGURE 29.68
Validity-Checking Program SndBrkMsg V

===
= Program •...... SndBrkMsgV
= Source type ... CLP
= Type ••.....••• Validity-checking program for SndBrkMsgU =

Description ... Send Break Message to User =
= --- =
= Parameters =

=
&Msg Input Message =

=
= &MsgID Input Message ID =
=
= &MsgF Input Qualified message file =
= =

&MsgDta Input Message data =
=

&ToUsr Input To user profile

= &MsgType Input Message Type =
=

= &RpyMsgQ Input Message queue to get reply =
===

Pgm

I*
I*
I*

&Msg
&MsgID
&MsgF
&MsgDta
&ToUsr
&MsgType
&RpyMsgQ

=== = Var able declarations

Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del
Del

===
&Msg *Char 498)

&MsgID *Char 7)

&MsgF *Char 20)

&MsgDta *Char 494)

&ToUsr *Char 10)

&MsgType *Char 5)

&RpyMsgQ *Char 20)

&MsgFNm *Char 10)

&MsgFLib *Char 10)

&RpyMsgQN *Char 10)

&RpyMsgQL *Char 10)

&EMsgID *Char 7)

&EMsgF *Char 10)

&EMsgFLib *Char 10)

&EMsgDta *Char 200)

&EMsg *Char 508)

&EKeyVar *Char 4)

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+
+
+
+
+
+
+

*I
*I
*I

continued

Chapter 29 Teaching Programs to Talk 479

FIGURE 29.68 CONTINUED

I* ================== == *I
I* Global error mon tor */
I* ================== == *I

I*
I*
I*

I*
I*
I*

MonMsg
Go To

CPF0000 MCH0000
Error

Exec<
)

===
If ToUsr is special value *Requester, retrieve user =

===
If

RtvJobA
&ToUsr *Eq '*REQUESTER'
User(&ToUsr)

===
Validate ToUsr parameter =

===
If
*And
*And

ChkObj

&ToUsr
&ToUsr

(&ToUsr
&ToUsr

*NE '*ALL')
*NE '*SYSOPR'
*NE '*ALLACT'

*UsrPrf

+

*I
*I
*I

+

*I
*I
*I

+
+
+

I* === *I
I* Parse message file name */
I* === *I

ChgVar &MsgFNm C %Sst(&MsgF 1 10))

I* --- *I I* If message file specified, parse and validate */
I* --- *I

If
Do

ChgVar
ChkObj

End Do

&Msg FNm *NE • ') +

&MsgFLib (%Sst(&MsgF 11 10))
&MsgFLib/&MsgFNm *MsgF

I* === *I
I* = If message type is *ING, parse and validate reply queue */
I* === *I

If
Do

ChgVar
ChgVar
ChkObj

End Do

&MsgType *Eq '*ING')

&RpyMsgQN (%Sst(&RpyMsgQ 1 10
&RpyMsgQL (%Sst(&RpyMsgQ 11 10
&RpyMsgQL/&RpyMsgQN *MsgQ

+

I* === *I
I* = If message type is not *ING default reply queue so a valid = *I
I* = value will be passed to the QEZSndMg program. Even if an */
I* inquiry message is not being sent, this parameter must be */
I* = a valid message queue name. */
I* === *I

Else
Do

ChgVar
End Do

Return

&RpyMsgQ

+

('QSYSOPR *LIBL I)

continued

480 Starter Kit for the IBM iSeries and AS/400

I*
I*
I*

FIGURE 29.68 CONTINUED

=== = Error handler =
===

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&EMsgDta
MsglD(&EMsglD)
MsgF(&EMsgF)
MsgFLib(&EMsgFLib

(CPF0000 MCH0000)

SndPgmMsg MsglD(&EMsgID)

MonMsg

RcvMsg

MonMsg

MsgF(&EMsgFLib/&EMsgF
MsgDta(&EMsgDta)
ToPgmQ(*Same)
KeyVar(&EKeyVar)

(CPF0000 MCH0000)

KeyVar(&EKeyVar >
Msg(&EMsg)

(CPF0000 MCH0000)

SndPgmMsg MsgID(CPD0006)
MsgF(QSys/QCPFMsg)

MonMsg

MsgDta('0000• *TCat &EMsg)
ToPgmQ(*Prv)
MsgType(*Diag >

(CPF0000 MCH0000

SndPgmMsg MsgID(CPF0002)
MsgF(QSys/QCPFMsg
ToPgmQ(*PRV)
MsgTypeC *Escape)

MonMsg (CPF0000 MCH0000)

*I
*I
*I

+
+
+
+

+
+
+
+

+

+
+
+
+

+
+
+

/* === *I
I* = End of program */
I* === *I

EndPgm

Chapter 29 Teaching Programs to Talk 481

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

FIGURE 29.6C
Command Processing Program SndBrkMsgC

=== = Program SndBrkMsgC
= Source type .•• CLP =

Type •••••...•• Command processing program for SndBrkMsgU = Description ... Send Break Message to User
--- =
Parameters =

= &Msg Input Message

= &MsgID Input Message ID

= &MsgF Input Qualified message file =
=

&MsgDta Input Message data =
= =

&ToUsr Input To user profile =

&MsgType Input Message Type

= &RpyMsgQ Input Message queue to get reply =
===

Pgm

I*
I*
I*

&Msg
&MsgID
&MsgF
&MsgDta
&ToUsr
&MsgType
&RpyMsgQ

============= ===
= Var able declarat ons

============= ===
Del &Msg *Char (498
Del &MsgID *Char (7
Del &MsgF *Char (20
Del &MsgDta *Char (494
Del &ToUsr *Char (1 Ill
Del &MsgType *Char (5
Del &RpyMsgQ *Char (20
Del &KeyVar *Char (4
Del &MsgToSnd *Char (494
Del &MsglenA *Char (4
Del &MsgTypeA *Char (10
Del &Delivery *Char (1 Ill '*BREAK')

Del &NbrUsers *Char (4 X' fllfllfllfll0fllfll1'
Del &NbrMsgsSnt *Char (4
Del &RqsFne *Char (4
Del &AP I Err *Char (16)

(X'fllfllfllfll00fllfll0fllfllfll0fllfll04fll4040404040404fll'

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

+
+
+
+
+
+
+
+

*I
*I
*I

+

continued

482 Starter Kit for the IBM iSeries and AS/400

Del
Del
Del
Del
Del
Del
Del
Del

&UseSndDsp
&SndToTyp
&MsgFNm
&MsgFLib
&EMsgID
&EMsgF
&EMsgFLib
&EMsgDta

FIGURE 29.6(CONTINUED

*Char
*Char
*Char
*Char
*Char
*Char
*Char
*Char

1
4

10
10

7
10
10

200

'N'
'*USR'

I* === *I
I* = Global error monitor */
I* === *I

MonMsg
Go To

CPF0000 MCH0000
Error

Exec<
)

+

I* === *I
I* = Parse message into length and message *I
I* === *I

ChgVar
ChgVar

&MsgLenA
&MsgToSnd

%Sst(&Msg 1 4
%Sst(&Msg 5 494

I* === *I
I* = Change message type to length required by QEZSndMg */
I* === *I

ChgVar &MsgTypeA &MsgType

I* === *I
I* = If ToUsr is special value *Requester, retrieve user */
I* === *I

If
RtvJobA

&ToUsr *Eq '*REQUESTER'
User(&ToUsr)

+

I* === *I
I* = If MsgID specified, retrieve message and set length */

I* === *I

If &MsgID *NE '
Do

ChgVar &MsgFNm %Sst(&MsgF
ChgVar &MsgFLib %Sst(&MsgF

SndPgmMsg MsgID(&MsgID)

MsgF(&MsgFLib/&MsgFNm
MsgDta(&MsgDta)

ToPgmQ(*Same)

KeyVar< &KeyVar

RcvMsg MsgKey(&KeyVar)

Msg(&MsgToSnd)

Chg Var &MsglenA (X'000001EE'
End Do

1 10
11 10

+

+
+
+
+

+

continued

Chapter 29 Teaching Programs to Talk 483

FIGURE 29.6(CONTINUED

/* === *I
I* = Send the message */
I* === *I

I*
I*
I*

Call

Return

QEZSndMg
(

&MsgTypeA
&Delivery
&MsgToSnd
&MsglenA
&ToUsr
&NbrUsers
&NbrMsgsSnt
&RqsFnc
&APIErr
&UseSndDsp
&RpyMsgQ
&SndToTyp

===
= Error handler =
===

Error:

RcvMsg

MonMsg

MsgType(*Excp)
MsgDta(&EMsgDta
MsgID(&EMsgID)
MsgF(&EMsgF)
MsgFLib(&EMsgFLib

(CPF0000 MCH0000

SndPgmMsg MsgID(&EMsgID)

MonMsg

MsgF(&EMsgFLib/&EMsgF
MsgDta(&EMsgDta)
MsgType(*Escape)

(CPF0000 MCH0000 >

+
+
+
+
+
+
+
+
+
+
+
+
+
+

*I
*I
*I

+
+
+
+

+
+
+

I* === *I
I* = End of program */
I* === *I

EndPgm

484 Starter Kit for the IBM iSeries and AS/400

Knowing When to Speak
As shown in the CL program example, using command SndUsrMsg to prompt the user
for a simple reply makes good use of the command's capabilities. This function differs
somewhat from prompting for data when you submit a job. We don't recommend using
the SndUsrMsg command to retrieve data for program execution (e.g., branch number,
order number range, date range) because SndUsrMsg offers minimal validity checking
and isn't as user-friendly as a DDS-coded display file prompt can be. Instead, you should
create prompts for data as display files (using DDS) and process them with either a CL or
an HLL program.

In a nutshell, the SndUsrMsg command is best suited to sending an informational
message to the user to relate useful information (e.g., "Your job has been submitted.
You will receive a message when your job is complete.") or to sending an inquiry message
that lets the user choose further program action. The SndUsrMsg command can teach
your programs to talk, but the vocabulary associated with this command is specific to
these two task'l.

Command SndBrk."1sgU gives you a way to shout at users. As with SndUsrMsg, though,
you should use SndBrkMsgU primarily as a way to send an urgent informational message
to a user.

Now that you know how to train your programs to talk to users, the next challenge is
teaching your programs to communicate with each other! You'll be able to master that after
we explain how to use the SndPgmMsg (Send Program Message) command, which lets
you send messages from program to program with information such as detected program
errors and requirement<; for continued processing.

485

Chapter 30

Just Between Us Programs
In Chapter 7, we explained that you can use the SndMsg (Send Message), SndBrkMsg
(Send Break Message), or SndNet"l\tlsg (Send Network Message) command to communicate
with someone else on your system. In Chapter 29, we discussed Operational Assistant's
QEZSndMg (Send Message) API, along with user-written command SndBrkMsgU (Send
Break Message to User), which enhances the APL We showed you how to use command
SndUsrMsg (Send User Message) to have a program send a message to a user, and we
noted that you can also use SndBrkMsgU in your programs.

But when you want to establish communications between program objects (for this
discussion, we use the term "program object" to denote a program or a procedure), none
of these commands will do the job. Instead, you need the Snc!PgmMsg (Send Program
Message) and RcvMsg (Receive Message) commands. As an alternative, you can use system
APis to perform these functions, but APis QMHSndPM (Send Program Message) and
QMHRcvPM (Receive Program Message) are typically used by high-level language (HLl..)
programs. In this chapter, we talk about the SndPgmi\1sg command. For a discussion of
the RcvMsg command, see Chapter 31.

Program messages are normally used for one of two reasons: to send error messages
to a calling program or procedure (so it knows when a function has not been successfully
completed) or to communicate the status or successful completion of a process to a calling
program or procedure. In this chapter, you'll learn how a job stores messages, how to
have one program obje<-1 send a message to another, what types of messages a program
object can send, and what actions those messages can require a job to perform. But first,
you need to understand the importance of call message queues.

Call Message Queues
All messages on the iSeries must be sent to and received from a message queue. User-to
user and program-to-user messages are exchanged primarily via non-call message queues
(i.e., a workstation message queue or a user message queue). OS/400 creates a non-call
message queue when a workstation device or a user profile is created. You can also use
the CrtMsgQ (Create Message Queue) command to create non-call message queues. For
example, you might want to create a message queue for communication between program
objects that aren't part of the same job. Or you might want to create a central message
queue to handle all print messages. Both users and program objects can send messages to
and receive messages from non-call message queues.

Although program objects can use non-call message queues to communicate with
other program and procedures, OS/400 provides a more convenient means of commu
nication between program objects in the same job. For each job on the 1>ystem, OS/400
automatically creates call message queues. These consist of an external message queue
(*Ext, through which a program object communicates with the job's user) and a message

486 Starter Kit for the IBM iSeries and AS/400

queue associated with each call stack entry (program or procedure) in that job. (For an
introduction to the call stack, see Chapter 21.)

e Note
Now is a good time to point out the fact that although we discuss Integrated
Language Environment (ILE) concepts here, we limit examples to the
Original Program Model (OPM) environment. We do so because our goal is
to introduce you to sending program messages rather than to overwhelm
you. Because ILE is more comprehensive than OPM, it's also more complex.
Once you have a handle on sending program messages in the OPM
environment, you can further explore ILE.

Figure 30.1 illustrates a sample call message queue.

Call stack

QCmd

ProgramA

ProgramB

Program(

ProgramD

FIGURE 30.1
Sample Call Message Queue Strncture

Call message queues

*Ext - external queue

QCmd - call queue

ProgramA - call queue

ProgramB - call queue

Program(- call queue

ProgramD - call queue

Note: Not actual size. This is a simplified call stack without system programs and ILE procedures.

OS/ 400 creates an external message queue when a job is initialized and deletes this queue
when the job ends. OS/400 also creates a call message queue for each entry in the call
stack and deletes it when the entry is removed from the call stack (i.e. when the program
or procedure ends). The call message queue becomes the basis for the job log produced
when a job is completed. The job log includes all messages from the call message queue,
as well as other essential job information. (For more information about job logs, see
Chapter 9. In addition, "Understanding Job Logs" on page 487 reviews some key points
and provides additional details.)

Chapter 30 Just Between Us Programs 487

Understanding Job Logs
During job execution, OS/400 logs informational, completion, diagnostic, and other messages into the
job's message queue (the external message queue and the various call message queues associated
with the job). When the job is finished, OS/400 creates a spooled file that lists these messages as well
as the CL commands executed during the job's execution. This spooled file is commonly known as
the job log. Every job, whether interactive or batch, generates a job log that records the job's activities
and varies in content (both in the number and type of messages) depending on the job attributes
associated with the job.

During a job's execution, you can use the DspJob (Display Job) or DspJobLog (Display Job Log)
command to view the job log while the system creates it, accessing, in effect, a window to the job's
active message queue.

Enough Is Enough
At times you may want to control the generation of or contents of job logs. For instance, you may not
want to generate logs for jobs that are completed normally; conversely, you may want to generate the
maximum amount of information in the job log for jobs that are experiencing frequent problems. Or
you may want to exclude from the log messages that are only informational in nature.

Job attributes control the creation and contents of the job log. The Log (Message logging) attribute
consists of three values: message level and message severity, both of which control the type and
number of messages the system writes to a job log, and message text level, which controls the amount
of message text written to the job log when the job encounters a message that meets the requirements
of the first two values.

The message level value specifies one of the following five logging levels:

Level __ !!!_~!!f:~titJll,.~·-·~·-···-·-········-···········-·····-·····················---···-······
1 No data is logged.
2 Only messages logged sent to the job's external message queue with a severity greater than or

equal to the specified message severity are logged.
3 All level 1 messages are logged, plus the following:

• any requests or commands from a CL program that cause the system to issue a message
with a severity level that exceeds or equals the severity specified in the Log attribute

• all messages associated with a request or command from a CL program that results in a
high-level message (i.e., one sent to the receiving program's message queue) with a severity
at least equal to the specified severity

4 All messages logged by level 2 are logged, plus the following:
• all requests or commands from a CL program
• all messages associated with a request or command that results in a high-level message

with a severity at least equal to the message severity specified
5 The following information is logged:

• all requests or commands logged from a CL program
• all messages, including trace messages, with a severity at least equal to the specified severity

continued

488 Starter Kit for the IBM iSeries and AS/400

(Understanding Job Logs Continued)
Every iSeries message has an associated severity (i.e., priority). The message severity determines which
messages are logged and which are ignored. Messages with a severity greater than or equal to the
severity specified in the Log attribute are logged according to the specified logging level. Messages
essential to the system's operation (e.g., inquiry messages that must be answered) have the highest
severity, 99. Informational messages (e.g., messages that tell you a function is in progress) have a
severity of 00.

A value of *Msg for the message text level portion of the Log attribute specifies that the system
should write only first-level message text to the job log. A value of *SecLvl specifies that the system
write both the first-level message and the help text (defined as second-level text in the message
description) to the job log.

By setting the message text level attribute value to *Nolist, you can ensure that the job doesn't
generate a job log when Jt ends normally. Jobs that end abnormally always generate a job log with
both first- and second-level message text (as if you specified *SecLvl for the message text level).
Eliminating job logs for jobs that are completed normally can greatly reduce the number of spooled
and printed logs.

Logging CL Commands
Jobs also include the LogCLPgm attribute, for which a value of *Yes instructs the system to write any
loggable CL commands to the job log. {You must also specify Log(*Job) or Log(*Yes) as an attribute
of the CL program.) A value of LogCLPgm(*No) specifies that commands in a CL program are not logged
to the job log. Using LogCLPgm(*Yes) differs from using the Log attribute, which controls logging only
of CL commands that generate a message with a severity at least equal to the severity identified in the
Log attribute. LogCLPgm(*Yes) lets you force OS/400 to log all CL commands issued during job
execution.

The SndPgmMsg Command
Figure 30.2 shows the parameters associated with the SndPgmMsg command. You can use
this command in a CL program to send a program message to a non-call or a call
message queue.

For the Msg (Message text) parameter, you can enter an impromptu message (up to
512 characters long), or you can use the MsgID (Message identifier), MsgF (Message file),
and MsgDta (Message data field values) parameters to send a predefined message. (To
review predefined messages, see Chapter 29.) The system routes messages sent using the
SndPgm.\1sg command based on values you specify in the ToPgrnQ (Call stack entry
message queue), ToMsgQ (Send to non-program message queue), and ToCsr (To user
profile) parameters.

Chapter 30 Just Between Us Programs 489

FIGURE 30.2
SndPgmMsg Command Parameters

Send Program Message (SNDPGMMSG)

Type choices, press Enter.

Message text, or • • • • MSG

Message identifier
Message file

Library

MSG ID
MSGF

Message data field values MSGPTA

Call stack entry message queue: TOPGHQ

Relationship •...••••
Call stack entry identifier:
Call stack entry

Module • • •••••
Bound program

Send to non-pgm message queue
Library ...•.•.

TOMSGQ

+ for more values

To user profi Le TOUSR
Message type MSG TYPE
Message queue to get reply RPYMSGQ

Library
CL var for KEYVAR (4) KEYVAR

Additional Parameters

Coded character set ID .•... CCSIP

*LIBL __
*NONE. ____________ _

*PRV_

*NONE __
*NONE __

*TOPGl'IQ_

*INFO_
*PGMQ --

*JOB __ _

490 Starter Kit for the IBM iSeries and AS/400

The ToPgmQ parameter is unique to the SndPgmMsg command and identifies the call
message queue to which the message will be sent. The message queue can be the
external message queue (•Ext) or a message queue associated with a call stack entry.
Parameter ToPgmQ consists of two elements, Relationship and Call stack entry identifier,
that are used in determining the message queue to which the message will be sent.

ToPgmQ's first element specifies the relationship between the target program object
and the sending program object. For this element, you can specify the following values:

• *Ext The message is to go to the job's external message queue .

• •prv - The message is to go to the message queue of the call stack entry immedi
ately preceding the one identified by ToPgmQ's second element. If this preceding
message queue is for an ILE program entry procedure (PEP), the message is sent to
the message queue that precedes the PEP message queue in the call stack.

• •same The message is to be sent to the message queue of the call stack entry
identified by ToPgmQ's second element.

ToPgmQ's second element has three elements: Call stack entry, Module, and Bound
program. These items determine the exact call message queue to receive the message.
The Call stack entry item identifies the program or procedure name used to identify the
call message queue. Special value • (asterisk) indicates that the call stack entry is the
program or procedure issuing the SndPgmMsg command. In ILE, it's possible to have
duplicate procedure names in the call stack; hence, procedure name alone may not be
sufficient to identify the correct procedure. In such a case, you can use the Module and
Bound program items to further identify, or qualify, the exact procedure. The Module item
identifies the module into which the procedure was compiled, and the Bound program
item identifies the program into which the procedure was bound.

With SndPgmMsg's ToMsgQ parameter, you can send a message to non-program
message queues, or you can use special value *ToPgmQ (the default) to instruct the
system to refer to the ToPgmQ parameter to determine the message destination.

Let's look at the job message queues shown in Figure 30.1. Assuming that ProgramD
is the active program, let's suppose ProgramD executes the following SndPgmMsg command:

SndPgmMsg MsgC'Test message') +
ToMsgQC*SysOpr> +
MsgTypeC*Info)

ProgramD sends the message "Test message" to the system operator's message queue
(QSys/QSysOpr) because the value •sysOpr is specified for the ToMsgQ parameter.

In the following SndPgmMsg command

SndPgmMsg MsgC'Test message'>+
ToPgmQC*Same *) +
ToMsgQC*ToPgmQ) +
MsgTypeC*Info)

the parameter ToMsgQ(*ToPgmQ) tells OS/400 to use the ToPgmQ parameter to determine
the message destination. Because ToPgmQ specifies *Same for the relationship and • for

Chapter 30 Just Between Us Programs 491

the call-stack-entry identifier, the system sends the message "Test message" to call message
queue ProgramD.

Now, consider the command

SndPgmMsg Msg('Test message'} +
ToPgmQ(*Prv *} +
MsgType(*Info)

In this case, the message is sent to call message queue ProgramC because ProgramC is
ProgramD's calling program (•Prv). (Notice that this time we chose not to specify the
ToivlsgQ parameter but let it default to "ToPgmQ.)

The SndPgmMsg command's ToUsr parameter instructs the system to send the
message to the message queue specified in the named user profile. You can also select
from special values that instruct the system to send the message to the system operator
esysOpr), to the user profile requesting that the message be sent (*Requester), or to the
user message queue of all users with a currently running interactive job (* AllAct).

Message Types
The next parameter on the SndPgmMsg conunand is MsgType (Message type). You may
recall that with the SndMsg and SndUsrMsg conunands you can send two types of
messages: informational (*Info) and inquiry (*Inq). SndPgmMsg supports both of these
message types as well as six additional ones. Figure 30.3 lists the message types and
describes the limitations (message content and destination) and normal uses of each. Each
message type has a distinct purpose and communicates specific kinds of information.

*lnq

*Comp

*Diag

*Rqs

*Escape

*Status

*Notify

UseofMsg
or M.sglD
Both

Both

MsglD

MsglD

Msg

MsglD

MsglD

MsglD

Message
'l"eues ...
All

Non-call,
external

All

All
All

AIP except
external

Call and
external

All

FIGURE 30.3
Message Types

T ypi£~1 use..
To send a message containing descriptive information about
a process

To prompt a user for a reply needed to complete a process

To inform the calling program or the user that requested work
has been successfully completed

To describe errors detected during program execution

To send a command string (i.e., a request) to a request message
processing program

To state specifically an error condition that caused the sending
program to fail
To describe the current status of a process

To describe a condition that exists in the sending program that
correction or a

1 Escape messages are typically sent to call-stack-entry message queues to terminate program objects. If you send an escape message to a
non-call-stack-entry message queue, no processes are terminated.

492 Starter Kit for the IBM iSeries and AS/400

You can send an infonnational message (*Info) to any message queue. Because inquiry
messages (*Inq) expect a reply, you can send an inquiry message only to a non-call-stack
entry message queue (i.e., a user or workstation message queue) or to the current job's
external message queue.

A completion message (*Comp) is usually sent to inform the calling program object
that the requested work is complete. It can be sent to any message queue or to the job's
external message queue.

Diagnostic messages (*Diag) can be sent to any message queue but typically are sent
to call-stack-entry message queues or to the external message queue to describe errors
detected during program execution. Typically, escape messages follow diagnostic messages,
telling the calling program object that diagnostic messages are present and that the requested
function has failed.

You can send a request message (*Rqs) to any message queue as a command request.
You must use an impromptu message on the Msg parameter to send the request.

An escape message (*Escape) specifically identifies the error that caused the sending
program to fail. Although you can send an escape message to message queues other than
call-stack-entry message queues, there is no need to do so and the system behaves differently.
An escape message's function is to terminate one or more processes immediately. For this
to happen, the message must be sent to a call-stack-entry message queue. If the message
is sent to some other type of message queue, no processes are terminated. An escape
message terminates the program objects that are below the receiving program object in
the call stack. Control returns to the program object receiving the message, where the
exception can be handled. If the exception is not handled, the receiving program object
fails. MsgType(*Escape) cannot be specified if the Msg parameter is specified - in other
words, all escape messages must be predefined and you cannot send an escape message
to the external message queue.

Status messages (*Status) describe the status of the work that the sending program
object performs. When a program sends a status message to an interactive job's external
message queue, the message is displayed on the workstation screen, processing continues,
and the sending program object does not require a response. When a status message is
sent to a call-stack-entry message queue, the message functions as a warning message. If
the program object receiving the message monitors for this message (for instance, using
the MonMsg, or Monitor Message, command in CL programs), the message functions as an
escape message. If the program receiving the status message does not monitor for that
message, the system immediately returns control to the sending program object.

OS/400 uses notify messages (*Notify) to describe a condition in the sending program
object that requires a correction or a reply. If the notify message is sent to an interactive
job's external message queue, the message acts like an inquiry message and waits for a
reply, which the sending program object can then receive. When a notify message is sent
to a call-stack-entry message queue, the message functions as a warning.

Chapter 30 Just Between Us Programs 493

If the program object receiving the notify message monitors for it, control is returned
to the receiving program object after any necessary call stack entries are removed. If the
receiving program object doesn't monitor for the message, or if the message is sent to a
batch job's external message queue, the default reply for that message is sent and control
returns to the sending program object. You can either define the default reply in the
message description or specify it on the system reply list.

The Receiving End
The next parameter on the SndPgmMsg command is RpyMsgQ (Message queue to get
reply), which lets you specify the message queue to which the system sends a reply for an
inquiry or status message. The only valid values are *PgmQ, which specifies that the reply
is to go to the message queue associated with the call stack entry of the program or
procedure issuing the SndPgmMsg command, or a qualified non-call message queue name.

You can receive or remove a specific message by using a key value to identify that
message. The KeyVar (CL variable for KEYVAR) parameter specifies the CL return variable
to contain the message key value of the message sent by the SndPgmMsg command. To
understand how key variables work, examine the following CL statement:

SndPgmMsg MsgC'Test message') +
ToPgmQ(*Prv *) +
MsgTypeC*Info) +
KeyVar<&MsgKey)

The SndPgmiVlsg command places the message on the message queue associated with the
previous call stack entry, and OS/400 assigns to that message a unique message identifier
that is returned in the &MsgKey variable. In the following example

RmvMsg PgmQ(*Prv *) +
MsgKeyC&MsgKey) +
Clear(*ByKey)

the RmvMsg (Remove Message) command uses the &MsgKey value to remove the correct
message from the message queue. In CL, the return variable must be defined as
Type(*Char) with Len(4).

Program Message Uses
Now that you're acquainted with SndPgmMsg parameters, let's look at a few examples
that demonstrate how to use this command. The follo'-Ving command sends a sample
diagnostic message:

SndPgmMsg MsgID(CPF9898)
MsgF(QSys/QCPFMsg)
MsgDta('Output queue'

&OutQLib
I/ I

&OutQ
'not found')

ToPgmQ(*Prv *)
MsgTypeC*Diag)

+
+

*BCat +
*TCat +
*Cat +
*BCat +

+
+

494 Starter Kit for the IBM iSeries and AS/400

In this example, we've concatenated constants ('Output queue', '/', and 'not found') and
two variables (&OutQLib and &OutQ) to construct the diagnostic message "Output queue
YourLib/YourOutQ not found." The current program sends this message to the calling
program, which upon receiving control again can receive the message from the message
queue associated with its call stack entry.

As we mentioned in the discussion of the MsgType parameter, you must supply a
valid message ID for the MsgID keyword when you send certain message types. (To
review which types require a message ID, see Figure 30.3.) Because this means you can't
simply use the Msg parameter to construct text for these message types, OS/ 400 provides
two special message IDs, CPF9897 and CPF9898, to handle this particular requirement.
The message text for these messages is almost identical. The message text for CPF9897 -
&l - means that substitution variable &l will supply the message text, which you can
construct using the MsgDta parameter. Message CPF9898 functions exactly the same way,
except that its message text adds a period at the end!

Notice in the preceding example that we constructed the message text in the MsgDta
parameter. When the program sends the message, the MsgDta text becomes the message
through substitution into the &1 data variable. (For a more complete explanation of
substitution variables, see Chapter 29.)

The next example constructs an escape message that might follow such a diagnostic
message:

SndPgmMsg MsglD(CPF9898) +
MsgF(QSys/QCPFMsg) +
MsgDta<'Operations ended in error.' *BCat +

'See previously Listed messages'> +
ToPgmQ(*Prv *> +
MsgType(*Escape)

OS/400 uses an escape message to tenninate program objects when it encounters an
error. When a program sends an escape message, control returns to the program object to
which the message is sent after programs below the receiving program object in the call
stack are ended and removed from the call stack.

In the following example, the current program sends a completion message to the
calling program to confirm the successful completion of a task.

SndPgmMsg Msg1DCCPF9898>
MsgF(QSys/QCPFMsg)
MsgDta('Copy of spooled
ToPgmQ(*Prv *>
MsgType(*Comp>

+
+

files is complete'> +
+

The following sample status message goes to the job's external message queue and
tells the job's external user what progress the job is making.

SndPgmMsg MSGIDCCPF9898> +
Msgf(QSys/QCPFMsg) +
MsgDta('Copy of spooled files in progress'> +
ToPgmQC*Ext> +
MsgTypeC*Status>

Chapter 30 Just Between Us Programs 495

When you send a status message to an interactive job's external message queue, OS/400
displays the message on the screen until another program message replaces it or until the
message line on the display is cleared.

Although you may now be ready to send messages to another program, you have
only half the picture. In Chapter 31, you'll learn how programs receive and manipulate
messages, and we'll give you some sample code that contains helpful messaging
techniques.

497

Chapter 31

Hello, Any Messages?
On the iSeries, sending and receiving program messages functions much like voice mail.
Within a job, each program object, as well as each job, has its own "mailbox." One program
or procedure within the job can leave a message for another program or procedure or for
the job. Each program object or job can "listen" to messages in its mailbox, and programs
or procedures can remove old messages from their mailboxes.

In Chapter 30, we explained how program objects can send messages to message
queues associated with call stack entries and to a job's external message queue. In this
chapter, we discuss the "listening" side of the equation: the RcvMsg (Receive Message)
and MonMsg (Monitor Message) commands.

As was the case with the previous chapter, the information in this chapter is intended
as an introduction only. We therefore touch on the Integrated Language Environment
(ILE) but focus on CL programs in the Original Program Model (OPM) environment.

Receiving the Right Message
You can use the RcvMsg command in a CL program to receive a message from a message
queue and copy the message contents and attributes into CL variables. Why would you
want to do this? You may want to look for a particular message in a message queue to
trigger an event on your system. Or you may want to look for messages that normally
would require an operator reply and instead have your program supply the reply. Or you
may want to log specific messages received at a message queue. Whatever the reason, the
place to begin is the RcvMsg command.

Figure 31.1 shows the RcvMsg command parameters. The first seven parameters -
PgmQ (Call stack entry message queue), MsgQ (Message queue), MsgType (Message
type), MsgKey (Message key), Wait (Wait time), Rmv (Remove message), and CCSID
(Coded character set ID) - determine which message your program will receive, the
message queue from which the message will be received, and how your program
processes the message.

Figure 31.2 (page 499) illustrates a call message queue made up of a job's external
message queue and five call message queues. For our purposes, each message queue
contains one message.

498 Starter Kit for the IBM iSeries and AS/400

FIGURE 31.1
RcvMsg Command Parameters

Receive Message (RCVMSG)

Type choices, press Enter.

Call stack entry message queue: PGMQ
Relationship ...•••••
Call stack entry identifier:
Call stack entry .•..•••

Module
Bound program

Message queue MSGQ
Library

Message type MSGTYPE
Message key MSGKEY
Wait time WAIT
Remove message RMV
Coded character set ID CCSID
CL var for KEYVAR (4) KEYVAR
CL var for 1st level text MSG
CL var for MSGLEN (5 0> MSG LEN
CL var for 2nd level text SECLVL
CL var for SECLVLLEN (5 0> SECLVLLEN
CL var for msg data MSGDTA
CL var for MSGDTALEN (5 0> MSGDTALEN
CL var for MSG ID (7) MSG ID
CL var for SEV <2 0> SEV
CL var for SENDER <80) SENDER
Sender format SENDERFMT
CL var for RTNTYPE (2) RTNTYPE
CL var for ALROPT (9) ALROPT
CL var for MSGF (10> MSGF
CL var for MSGFLIB (10> MSGFLIB
CL var for SNDMSGFLIB (10> SNDMSGFLIB
CL var for text CCSID (5 0> TXTCCSID
CL var for data CCSID (5 0> DTACCSID

*SAME

*NONE __
*NONE __

*LIBL __
*ANY_
*NONE 0 ____ _
*YES __
*JOB __ _

*SHORT

Let's suppose that ProgramD is the active program and that it issues the following
command:

RcvMsg

Because no specific parameter values are provided, OS/400 would use the following
default values for the command's first seven parameters:

RcvMsg PgmGC*Same C* *None *None)) +
MsgGC*PgmQ) +
MsgTypeC*Any) +
MsgKey (*None) +
Wait C0> +
RmvC*Yes) +
CCSID(*Job)

Chapter 31 Hello, Any Messages? 499

FIGURE 31.2
Sample Call Message Queues with Messages

*Ext - external queue
'First message on *Ext queue'

QCmd - call queue
'First message on QCmd queue'

ProgramA - call queue
'First message on ProgramA queue'

ProgramB - call queue
'First message on ProgramB queue'

Program(- call queue
'First message on ProgramC queue'

ProgramD - call queue
'First message on ProgramD queue'

Note: Not actual size. This is a simplified call stack without system programs and ILE procedures.

The PgmQ and MsgQ parameters function the same way as the SndPgmMsg (Send
Program Message) command's ToPgmQ (Call stack entry message queue) and ToMsgQ
(Send to non-program message queue) parameters, respectively (see Chapter 30 for
details). In the example above, because the PgmQ value is

(*Same (**None *None))

ProgramD would receive a message from its own (i.e., the ProgramD) call queue. According
to Figure 31.2, there is only one message to receive: "First message on ProgramD queue."

In the example, the value MsgType(*Any), combined with the value MsgKey(*None),
instructs the program to receive the first message of any message type found on the
queue, regardless of the key value. (For more information about the MsgType and
MsgKey parameters, see "RcvMsg and the MsgType and MsgKey Parameters," page 500.)

The value Wait(O) tells the program to wait zero (O) seconds for a message to arrive
on the message queue. You can use parameter Wait to specify a length of time in
seconds that RcvMsg will wait for the arrival of a message, or you can specify *Max,
which instructs the program to wait indefinitely to receive a message. If RcvMsg finds a
message immediately, or finds one before the number of seconds specified in the Wait
value elapse, RcvMsg receives the message. If RcvMsg finds no message on the queue
during the Wait period, it returns blanks or zeroed values for any return variables.

500 Starter Kit for the IBM iSeries and AS/400

RcvMsg and the MsgType and MsgKey Parameters
The RcvMsg (Receive Message) command can use its MsgType (Message type) and MsgKey (Message

key) parameters to determine which message or type of message the command will receive. Here are

some guidelines for using these parameters:

• If RcvMsg specifies only the MsgType parameter (using the default value of *None for the

MsgKey parameter) and one of the message types specified for MsgType is *Comp, *Diag,

*Info, *lnq, *Rpy, *Copy, or *Rqs, RcvMsg will receive a new message of that specific type in

first-in, first-out (FIFO) order. However, if RcvMsg uses the MsgType value *Excp, the

command will receive messages in last-in, first-out (LIFO) order.

• If RcvMsg specifies only the MsgKey parameter (using the default value of *Any for the

MsgType parameter) and a message exists on the message queue with that message reference

key, RcvMsg receives that message. If both an original inquiry message and a reply exist with

that reference key (both messages will have the same message reference key), the program will

receive the reply message. If the reply is not yet available in the message queue, RcvMsg will

receive no message. Note: If your program tries to receive a message by key and the message

can't be found on the message queue, an escape message is sent to your program.

• If RcvMsg specifies neither the MsgType nor the MsgKey parameter, the default MsgType(*Any)

is used and the first new message in the queue is received.

• If RcvMsg specifies MsgType(*Copy) and MsgKey(&MsgKey), RcvMsg will receive the sender's
copy of an inquiry message, if available.

• If RcvMsg specifies both the MsgType and MsgKey parameters and a message of that type
exists, RcvMsg receives that message. When the reference key is correct and the message type

is not, 05/400 sends an error message to the program that executed RcvMsg.

• If RcvMsg specifies MsgType(*Next), the MsgKey parameter must have a valid reference key
value. RcvMsg then receives the next message following the message with that reference key.

• If RcvMsg specifies MsgKey(*Top) along with MsgType(*Next), RcvMsg receives the first

message on the message queue.

The Rmv parameter value of *Yes tells the program to delete the message from the
queue after processing the command. You can use Rmv(*No) to instruct OS/400 to leave
the message on the queue after RcvMsg receives the message; OS/ 400 then marks the
message as an "old" message on the queue. A program can receive an old message again
only by using the specific message key value to receive the message or by using the
value *First, *Last, *Next, or *Prv for the MsgType parameter. You can also specify special
value *KeepExcp for the Rmv parameter to instruct the system to leave any unhandled
exception message on the queue as a new message. If you specify *KeepExcp and the
message is not an exception message or is an exception message that has been handled
already, the system leaves the message in the message queue as an old message.

Chapter 31 Hello, Any Messages? 501

Receiving the Right Values
The remaining RcvMsg parameters listed in Figure 31.1 provide CL return variables to
hold copies of the actual message data or message attributes. You typically use the
RcvMsg command to retrieve the actual message text or attributes in order to evaluate
the message and then take appropriate actions. For example, the command

RcvMsg MsgQ(MyMsgQ) +
MsgType(*Comp) +
RmvC*No) +
MsgC&Msg) +
MsgDtaC&MsgDta) +
MsgIDC&MsgID) +
SenderC&Sender)

retrieves the actual message text, the message data, the message identifier, and the message
sender data into return variables &J...1sg, &MsgDta, &MsgID, and &Sender, respectively. After
a program executes a RcvMsg command, it can use these return variables. For example, the
program may be looking for a particular message identifier. In the example, the current
program might be looking for a particular completion message on a non-program
message queue (MyMsgQ) to determine whether a job has been completed before starring
another job.

Retrieving Message Sender Data
Notice the Sender parameter used in the example above. When you create a return variable
for the Sender parameter, the variable should be at least 80 characters long when the
SenderFmt (Sender format) parameter value is •short (or a minimum of 720 characters if
the format is *Long). When you use SenderFmt(•Short) - the default and most often used
format - the following information is returned:

Positions 1-26 identify the sending job:
1-10 job name

11-20 user name
21-26 job number

Positions 27-42 identify the sending program:
27-38 - program name
39-42 - statement number

Positions 43-55 provide the date and timestamp of the message:
43-49 date (cyymmdd)
50-55 time (hhmmss)

Positions 56--69 identify the receiving program (when the message is sent to a program
message queue):

56--65 - program name
66--69 - statement number

Positions 70-80 are reserved for future use.

502 Starter Kit for the !BM iSeries and AS/400

The Sender return variable can be helpful when processing messages. For example,
during the execution of certain programs, it's helpful to know the name of the calling
program without having to pass this information as a parameter or code the name of the
program into the current program. You can use the technique shown in Figure 31.3 to
retrieve that information.

I*
I*
I*

I*
I*
I*

FIGURE 31.3
Using RcvMsg to Retrieve the Previous Program's Name

=== = Variable declarations =
===

Del
Del
Del

&MsgKey
&Sender
&PrvPgm

*Char
*Char
*Char

4
80
10

=== = Retrieve previous program's name =
===

SndPgmMsg Msg('Any message will do')
ToPgmQ(*Prv *)
KeyVar(&MsgKey)

RcvMsg PgmQ(*Prv < *))
MsgKey(&MsgKey)
Rmv(*Yes)
Sender(&Sender

ChgVar &PrvPgm (%Sst(&Sender 56 10 > >

*I
*I
*I

*I
*I
*I

+
+

+
+
+

The current program sends a message to the calling program and then immediately uses
the RcvMsg command to receive from the *Prv message queue the message just sent.
Positions 56-65 of the &Sender return value contain the name of the program that
received the original message; thus, you have the name of the calling program.

Retrieving the Message Return Type
Another RcvMsg command parameter you might find useful is RtnType (Return message
type). When you use RcvMsg to receive messages with MsgType(*Any), your program can
use a return variable to capture and interrogate the message type value. For instance, in
the command

RcvMsg PgmQC*Same (* *None *None)) +
MsgType(*Any> +
Msg<&Msg) +
RtnTypeC&RtnType)

the variable &RtnType returns a code that provides the type of the message that RcvMsg
is receiving.

The possible codes returned are

Code
01

02
04

05

06

08
10

14

15

16

17

21

22
23
24

25

···-············ MessaRe. tree_.
Completion

Diagnostic

Information

Inquiry

Copy

Request

Chapter 31 Hello, Any Messages? 503

Request with prompting

Notify (exception already handled)

Escape (exception already handled)

Notify (exception not already handled)

Escape (exception not already handled)

Reply (not checked for validity)

Reply (already checked for validity)

Reply (message default used)

Reply (system default used)

Reply (from system reply list)

As you can see, IBM didn't choose to return the "word" values (e.g., *DIAG, *ESCAPE,
*NOTIFY) that are used with the MsgType parameter on the SndPgmMsg command but
instead chose to use codes. When you write a CL program that must test the &RtnType
return variable, you might want to avoid writing code that looks like this:

If C&RtnType *Eq '02'> +
Do

End Do
Else If C&RtnType *Eq '15') +

Do

End Do

Instead, you'll find your CL program easier to read and maintain if you use a standard list
of variables, such as those defined by the CL code shown in Figure 31.4.

504 Starter Kit for the IBM iSeries and AS/400

FIGURE 31.4
Declare Statements for Return Types

I* ===
I* Variable declarations =
I* ===

Del &RtnType *Char 2)

Del &Comp *Char 2) (1 01 1

Del &Diag *Char 2) (1 02 1

Del &Info *Char 2) ('04'
Del &Inquiry *Char 2) (1 05 1

Del &Copy *Char 2) ('06'
Del &Request *Char 2) ('08'
Del &RequestPmt *Char 2) ('10'
Del &NotifyHd *Char 2) (I 14 I
Del &EscapeHd *Char 2) (I 15 I

Del &NotifyNtHd *Char 2) (I 16 I
Del &EscapeNtHd *Char 2) (I 17 I

Del &ReplyNtChk *Char 2) (I 21 1

Del &ReplyChk *Char 2) (1 22 1

Del &ReplyMDft *Char 2) ('23'
Del &ReplySDft *Char 2) ('24'
Del &ReplyRpyL *Char 2) ('25'

With this approach, you can change the code above to appear as

If C&RtnType *Eq &Diag)
Do

End Do

+

Else If C&RtnType *Eq &EscapeNtHd) +
Do

End Do

Monitoring for a Message

*I
*I
*I

The MonMsg command is available only in CL programs. It provides a technique for trap
ping error and exception conditions by monitoring for escape, notify, and status messages.
MonMsg also provides a way to direct the execution of a program based on the particular
error conditions detected. Figure 31.5 shows the MonMsg command parameters.

You can use the MsgID (Message identifier) parameter to name from one to 50
specific or generic message identifiers for which the command will monitor. A specific
message identifier is a message ID that represents only one message, such as CPF9802,
which is the message ID for the message "Not authorized to object &2 in &3." A generic
message identifier is a message ID that represents a group of messages, such as CPF9800,

Chapter 31 Hello, Any Messages? 505

FIGURE 31.5
Monilfsg Command Parameters

Type choices, press Enter.

Message identiiier

Comparison data

Monitor Message CMONMSG>

•.• MSGlD
+ for more values

CMPDTA

Command to execute ••.. EXEC

which includes all messages in the CPF9801 through CPF9899 range. Thus, the command

MonMsg (CPF9802> Exec(GoTo Error)

monitors for the specific message CPF9802, whereas the command

MonMsg CCPF9800> ExecCGoTo Error)

monitors for all escape, notify, and status messages in the CPF9801 through CPF9899 range.
The second parameter on the Moru\Isg command is the CmpDta (Comparison data)

parameter. You can use this parameter to specify comparison data that will be used to
check against the message data of the message trapped by the MonMsg command. If the
message data matches the comparison data (actually, only the first 28 positions are
compared), the MonMsg command is successful and the action specified by the Exec
(Command to execute) parameter is taken. For example, the command

MonMsg CCPF9802) CmpDta('MAINMENU') Exec(Do)

monitors for message identifier CPF9802 but executes the command found in the Exec
parameter only if the CmpDta value 'MAINMENU' matches the first eight positions of the
actual message data of the trapped CPF9802 message.

The Exec parameter let'> you specify a CL command that is processed when Mon..\1sg
traps a valid message. If no Exec value is found, the program simply continues with the
next statement found after the MonMsg command.

506 Starter Kit for the IBM iSeries and AS/400

Command-Level Message Monitoring
You can use the MonMsg command to monitor for messages that might occur during the
execution of a single command. This form of MonMsg use is called a command-level
message monitor. You place the command immediately after the CL command that might
generate the message. It might appear as

ChkObj &ObjLib/&Obj &ObjType
MonMsg CCPF9801) ExecCGoTo NotFound)
MonMsg CCPF9802) ExecCGoTo NotAuth)

The MonMsg commands here monitor only for messages that might occur during the
execution of the Chk:Obj (Check Object) command. You should use this implementation
to anticipate error conditions in your programs. When a command-level MonMsg traps a
message, you can then take the appropriate action in the program to continue or end
processing. For example, to monitor for the "CPF2105 File not found" message, you might
code the following:

DltF QTemp/WorkF
MonMsg CCPF2105)

In this example, if error CPF2105 is found, the program simply continues processing as if
no error occurred. That may be appropriate for some programs.

Now, examine the following code:

ChkObj QTemp/Work *File
MonMsg CCPF9801) Exec(Do)

CrtPF File(QTemp/Work) RcdLenC80)
End Do

ClrPFM QTemp/Work

This code uses the MonMsg command to determine whether a particular file exists. If the
file does not exist, the program uses the CrtPF (Create Physical File) command to create
the file. The program then uses the ClrPFM (Clear Physical File Member) command to
clear the existing file (if the program just created the new file, the member will already
be empty).

Global Message Monitoring
In addition to using a command-level message monitor to plan for errors from specific
commands, you can use another form of MonMsg to catch other errors that might occur.
This form of MonMsg use is called a program-level, or global, message monitor. You must
position a global message monitor immediately after the last Del (Declare) statement and
before any executable CL commands. Figure 31.6 illustrates the placement of a global
message monitor.

Chapter 31 Hello, Any Messages? 507

FIGURE 31.6
Global Message Monitor

Pgm

I*
I*
I*

I*
I*
I*

=== = Variable declarations =
===

Del
Del
Del

&Obj
&Obj Lib
&ObjType

*Char
*Char
*Char

(
(
(

10
10

8

)
)
)

===
= Global error monitor =
===

MonMsg
Go To

CPF0000 MCH0000
Error

Exec(
)

*I
*I
*I

*I
*I
*I

+

There are two schools of thought concerning which message IDs a global message
monitor should monitor for. One method monitors for CPFOOOO and MCHOOOO (and
potentially other generic message IDs), while the other monitors for CPF9999. We'll
describe the major differences, and you can decide which method suits you best.

When a global MonMsg command monitors for CPFOOOO and MCHOOOO, it receives
control when your program receives any CPFxxxx or MCHxxxx exception message that
isn't trapped by a specific MonMsg following the command that caused the exception.
The result is that the last exception message in the message queue is the message related
to the error. Your program can then easily receive this message and present it in whatever
manner you prefer (e.g., resend it up the call stack, display it in a message subfile). With
this method, if messages with other prefixes are of concern, you need to add a generic
message to the list of global messages to be monitored.

If you instead implement your global message monitor so that it monitors for CPF9999,
the monitor gains control when the program receives a CPF9999 escape message. Any
unhandled exceptions generate a CPF9999 message, so your program will still trap all
exceptions, but it will do so later in the game. Proponents of this method cite two potential
advantages: You need only list the CPF9999 message on the global MonMsg command,
and the CPF9999 message data contains the number of the statement where the error
occurred. 111e disadvantage of this method is that the CPF9999 message becomes the most
recent exception message in the message queue. You must therefore add logic to try to
mine the actual message from all the messages in the message queue - and there may
be many! Even though the original error message still exists in the message queue, it's
sometimes very difficult to determine what the actual error is by retrieving and examining
the messages. Therefore, presentation isn't as easy as when you monitor for CPFOOOO and
MCHOOOO.

508 Starter Kit for the IBM iSeries and AS/400

We prefer to monitor for CPFOOOO and MCHOOOO, and that is the method used in the
examples presented here. Whichever method you choose, use it consistently.

Message Processing in Action
Figure 31.7 shows a sample program that demonstrates message processing.

FIGURE 31.7
.Examples of Message Processing

I* === *I
I* = Sample message processing */
I* == *I

I*
I*
I*

Pgm

===
= variable declarations =
===

Del
Del
Del
Del
Del

&MsgID
&MsgDta
&MsgF
&MsgFLib
&Error

*Char
*Char
*Char
*Char
*Lgl

7
256

10
10

)

)

)

)

*I
*I
*I

I* === *I
I* = Global error monitor */
I* === *I

MonMsg
Goto

CPF0000 MCH0000
Error

Exec(
)

+

I* === *I
I* =Try to delete a nonexistent file and trap errors */
I* === *I

DltF
MonMsg

QTemp/DummyF1
C CPF2105)

I* === *I
I* =Try to delete a nonexistent file and do not trap errors *I
I* === *I

I*
I*
I*

DltF QTemp/DummyF2

=== = Send completion message
===

SndPgmMsg MsgIDC CPF9897)
MsgFC QSys/QCPFMsg
MsgDta('Example completed normally.'
ToPgmQC *Prv C *))
MsgType(*Comp >

*I
*I
*I

+
+
+
+

continued

Chapter 31 Hello, Any Messages? 509

FIGURE 31.7 CONTINUED

I* === *I
I* = Exit program */
I* === *I

I*
I*
I*

Return

===
= Error handler =
===

Error:

If C &Error)
Do

SndPgmMsg MsgIDC CPF9897)
MsgFC QSYS/QCPFMSG)

MonMsg
Return

End Do

ChgVar

RcvMsg

MonMsg

MsgDtaC 'Unexpected error occurred. See job Log.')
MsgTypeC *Escape)
C CPF0000 MCH0000)

&Error (I 1 I

MsgTypeC *Excp)
MsgDtaC &MsgDta
MsgIDC &MsglD)
MsgFC &MsgF)
MsgFLibC &MsgFLib

C CPF0000 MCH0000

SndPgmMsg MsgIDC &MsglD)

MonMsg

MsgFC &MsgFLib/&MsgF
MsgDtaC &MsgDta)
MsgTypeC *Escape)

C CPF0000 MCH0000)

*I
*I
*I

+

+
+
+

+
+
+
+

+
+
+

I* === *I
I* = End of program */
I* === *I

EndPgm

The program begins by declaring variables used with error handling. Next, you see a
global error monitor that monitors for any CPF.xxxx and MCH.xxxx exceptions. If such an
exception occurs, control is passed to the error handler at label Error. The program then
attempts to delete a nonexistent file, DummyFl in library QTemp. Because this command
is followed by a MonMsg command that traps the error, the program continues. Next, the
program tries to delete yet another nonexistent file, DummyF2 in library QTemp. Because
this DltF command is not followed by a specific MonMsg command, the global monitor

510 Starter Kit forthe IBM iSeries and AS/400

gains control and in tum passes control to the error handler at label Error. Notice that
following the attempt to delete file DummyF2 is a SndPgmMsg command to send a
completion message indicating successful completion. The program does not execute this
command because the global error handler gains control before the program ever reaches
this point.

The global error handler appears at label Error. It first checks to see whether the error
handler has already been entered (i.e., whether logical variable &Error is true). This happens
only if some unexpected error occurs in the global error handler itself. If &Error is true,
the program sends an escape message indicating that an unexpected error occurred. For
precaution's sake, the program also includes a MonMsg command and a Return command
in case the SndPgmMsg command fails.

The remainder of the global error handler is the portion that executes under normal
error-handling circumstances (i.e., when &Error is false). This section first sets logical
variable &Error to true ('1') to indicate that the error-handling section has been entered.
Next, the program receives the most recent exception message using the RcvMsg
command and resends the message up the call stack as an escape message using the
SndPgmMsg command.

What Else Can You Do with Messages1
Now that you understand the mechanics, you may want to know what else you can do
with messages. Here are three possible solutions using messages:

• Create a message break-handling program for your message queue. (For more
information, see Chapter 8.)

• Create a request message processor (a command processor like QCmd). (For more
information, see OS/400 CL Programming, SC41-5721.)

• Use the SndPgmMsg and RcvMsg commands to send and receive data strings between
programs. For instance, you might send a string of order data to a message queue
where the order print program uses RcvMsg to receive and print the order data. This
approach avoids the need to submit a job or call a program. The order print program
simply waits for messages to arrive on the queue. The process functions similarly to
data queue processing but is simpler because you can display message information (you
can't display a data queue without writing a special program to perform that task).

These are only a few examples of how you might use messages to perform tasks on
the system. With the mechanics under your belt, it's time for you to explore how you can
use messages to enhance your own applications.

511

Chapter 32

OS/400 Commands
OS/400 commands - friend or foe? That's the big question for anyone new to the iSeries.
It's certainly understandable to look at the IBM-supplied system command'l and wonder
just how many there are, why so many are needed, and how you're ever going to
remember them all!

The good news is that you don't need to remember all these commands. You do need
a modicum of familiarity with them, though. In this introduction to OS/ 400 commands, we
give you a few helpful tips and suggestiom for using and customizing system commands.

Commands: The Heart of the System
The command is at the heart of the iSeries operating system. Whether you're working
with an output queue, creating an object, displaying messages, or creating a subsystem,
you are using an OS/ 400 command. When you select an option from an OS/ 400 menu or
from a list panel display, you're usually executing a command. Let us give you a couple
of examples.

Figure 32.1 shows the iSeries USER (User Tasks) menu. Next to each menu option,
we've listed the command that the system executes when you select that option. You can
simply key in the named command to achieve the same results as the menu option.

Figure 32.2 shows the familiar Work with Output Queue display. After the screen
format, we've listed the available options and the command that the system executes for
each one. For instance, if you enter 6 (Release) next to a spooled file entry on the list, the
system releases that spooled file. If you're familiar with the system command5, you can
enter RlsSplF on a command line (to execute the Release Spooled File command), request
prompting for the command, and fill in the appropriate parameters to accomplish the same
thing. Obviously, typing in the RlsSplF command is much more time-consuming than
entering a 6 in the appropriate blank. However, this example isn't typical of all OS/400
commands. In many cases, keying in the command is quicker and easier than using the
menus. To know which technique to use, it's helpful to have a firm grasp of how
commands are organized and how they can be used and to know which commands are
important to remember.

512 Starter Kit for the IBM iSeries and AS/400

FIGURE 32.1
User Tasks Menu and System Commands Panel

USER User Tasks
System: AS400

Select one of the following:

1. Display or change your job
2. Display messages
3. Send a message
4. Submit a job
5. Work with your spooled output files
6. Work with your batch jobs
7. Display or change your library List
8. Change your password
9. Change your user profile

60. More user task options

90. Sign off

Selection or command

(Wrk)ob)
(DspMsgJ
(SndMsg)
(SbmJob)
(WrkSplF)
(WrkSbmJob)
(EdtlibL)
(ChgPwdJ
(ChgUsrPrf)

===> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F16=AS/400 Main menu

F13=Information Assistant

(C) COPYRIGHT IBM CORP. 1980, 1999.

FIGURE 32.2
Work with Output Queue Panel

Work with Output Queue

Queue: PRT(/11 Library: QUSRSYS Status: RLS

Type options, press Enter.
1=Send 2=Change 3=Hold 4=Delete 5=Display 6"Release
8=Attributes 9=Work with printing status

Opt File User User Data Sts
QSYSPRT QSYSOPR PRT01 WTR
PRINTKEY QSYSOPR PRT01 RDY
QQRYPRT GGUTHRIE PRT01 HLD
QPDSPLIB QSECOFR PRT01 HLD
ARLIST KN I ELSEN PRT01 SAV

Parameters for options 1, 2, 3 or command
===>
F3=Exit F11=View 2
F24=More keys

F12;;Cancel F20=Writers

Pages Copies
3 1
1 1

23 2
70 1
31 3

F22=Printers

?=Messages

Form Type Pty
*STD 5
*STD 5
*STD 5
*STD 5
*STD 5

Bottom

continued

2=Change
3=Hold
4=Delete
S=Display
6=Release
8=Attributes
9=Work with printing status

FIGURE 32.2 CONTINUED

Chapter 32 OS/400 Commands 513

Command functi~'1on111~1~ETIJ't1~
Send Network Spooled File
Change Spooled File Attributes
Hold Spooled File
Delete Spooled File
Display Spooled File
Release Spooled File
Work with Spooled File Attributes
Work with Printing Status

Before we continue vvith this chapter, let us say something about how system com
mands are organized and named. OS/ 400 commands consist basically of a verb and a
noun - for example, the CrtOutQ command is made up of the verb "Create" and the
noun "Output Queue." More than two-thirds of the existing commands are constructed
using just 10 verbs: Add, Chg, Cpy, Crt, Dlt, Dsp, End, Rmv, Str, and Wrk. This is good
news if you're worried about remembering command'>. We recommend you first familiarize
yourself with the various object..'i that can exist on the system. Once you understand most
of those objects, you can quickly figure out what verbs can operate on each object type.
For example, you can't delete a job, but you can end one.

For help identifying and using OS/ 400 commands, try using one or more of the
following resources:

• On any command line, press F4 (Prompt). OS/400 will present you with a menu of
the major command groups. You can choose menu options to find and select the
command you need.

• On any command line, type Go Cmd.xxx, filling in the .xxx with either a verb or an
object for example, Go CmdPfF for PTF-related commands or Go CmdWrk for
"work with" commands. OS/400 will present you with a list of those command<>.

• Type a generic name directly on the command line (e.g., Wrk•, St~, CrtDev*) and
press Enter. OS/400 will present you with a list of commands that start with the same
letters you specified before the asterisk.

• Type a command on the command line, and press Fl (Help). OS/400 offers online
help for all system commands.

e Note
You can also execute the SltCmd (Select Command) command to find
commands using a generic name (e.g., Str", Wrk•). We don't recommend
using this command, though; it's too easy to accidentally type D instead of S
as the first character in the command - that's right, DltCmd Wrk*l Oops!!

514 Starter Kit for the IBM iSeries and AS/400

Tips for Entering Commands
Put a little time and effort into learning a few phrases in this new language, and you'll be
comfortably prcx:luctive with day-to-day tasks on the iSeries. Onc--e you've acquainted yourself
with some of the most frequently used commands, it's often easier to key them in on the
system command line than it is to go through the menus. Follow these tips for entering
commands to help ensure correct syntax and get up to speed:

• Be sure to enter values for required parameters.

• When entering parameter values positionally (i.e., without keywords), key them in the
same order as they appear in the CL documentation's command syntax diagram. If
you exceed the number of allowed parameters, the system issues an error message.
The syntax diagram uses a P in a box to designate the number of allowed positional
parameters. If this symbol doesn't appear in the syntax diagram, you can code all
parameters positionally.

• Specify values for positional parameters unless you want to use the default values.

Keeping these guidelines in mind, let's practice a few commands. First, consider the
DspObjD (Display Object Description) command. Type DspObjD and press F4 to prompt
the command. In the resulting screen (Figure 32.3), the line next to "Object" will be in
bold, indicating that parameter Object is a required parameter.

FIGURE 32.3
DspObjD Command Panel

Display Object Description CDSPOBJD)

Type choices, press Enter.

Object ••.
Library

Object type

Detail
Output

+ for more values

Name, generic*, *ALLUSR •••
*LIBL....,.__ Name, *LlBL, *USRLIBL •••

*ALL, *ALRTBL, *AUTL .••

*BASIC_
* ---

*BASIC, *FULL, *SERVICE
*, *PRINT, *OUTFILE

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Chapter 32 05/400 Commands 515

Now press Fll, and you'll see the screen shown in Figure 32.4.

FIGURE 32.4
DspObjD Command Panel with Keywords

Display Object Description (DSPOBJD)

Type choices, press Enter.

Object ...
Library

Object type

Detail
Output

. .• OBJ

••. OBJTYPE
+ for more values

DETAIL
. . • • OUTPUT

*LIBL __

*BASIC_
* ---

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=P'lore keys

Notice that the key'Vlord'> now appe-a.r beside each field (e.g., OBJ for object name, OB]1YPE
for object type). The Obj keyword requires a qualified value, which means you must supply
the name of the libraiy in which the object is found. The default value •ubL displayed on
the screen indicates that if you don't enter a specific libraiy name, the system will search
for the object in the job's libraiy list.

You'll also see that the entry fields for keyword'> DETAIL and OUfPLT do not appear
in bold; this means they are optional parameters. The default value for Detail is *Basic,
indicating that basic object infonnation should be displayed. The default value for Output is
• (asterisk), which instructs the system to display the results of the command on the
screen.

Now, key in the values QGPL and QSys for the object name and library name, respec
tively, and enter the value *Lib for the ObjType parameter. Press Enter, and the screen will
display the object description for library QGPL, which exists in library QSys.

Next, using only the command line, type in the same command as either

DspObjD QSys/QGPL *Lib

or

DspObjD QGPL *Lib

Either command meets the syntax requirements. Keywords aren't needed because all the
parameters used are positional and the order of the values i5 correct. Suppose you type

DspObjD QGPL *Lib *Full

516 Starter Kit for the IBM iSeries and AS/400

Will this work? Sure. In this example, you've entered, in the corre(t order, values for the
two required parameters and a value (*Full) for the optional, positional parameter (Detail).

Wbat if you want to direct the output to the printer and you type

OspObjO QGPL *Lib *Full *Print

Will this work? No! You have to use the keyword (Output) in addition to the value (*Print),
because Output is beyond the positional coding limit.

Let's say you skip *Full and just enter

DspObjD QGPL *Lib Output(*Print)

Because you haven't specified a value for the positional par-<1meter Detail, you'll get the
description specified by the default value (*Basic).

Most of the time, you'll probably prompt commands, but learning how to enter a few
frequently used commands with minimal keystrokes can save you time. For example,
which would be faster: to prompt the WrkOutQ (Work with Output Queue) command
just to enter the output queue name or to enter

WrkOutQ OutQName

Should you prompt the WrkJobQ (Work with Job Queue) command just to enter the job
queue name, or should you simply enter

WrkJobQ JobQName

In both cases, you'll save yourself a step (or more) by simply entering the entire command.

Customizing Commands
Taking our discussion one step further, let's explore how you might create friendlier versions
of certain useful system commands. Why would you want to? Well, some (translation:
"many") IBM-supplied commands are long, requiring multiple keystrokes. You might want
to shorten the commands you use most often. For example, you could shorten the command
WrkSbmJob (Work with Submitted Jobs) to WSJ or Jobs. The command WrkOutQ could
become WO, and the command DspMsg (Display Messages) could become Msg. How
can you accomplish this without renaming the actual IBM commands or having to create
your own command to execute the real system command? Easy! Just use the CrtDupObj
(Create Duplicate Object) command.

Before trying this command, first create a library to hold all your new customized
versions of IBM-supplied commands.

M1caution
Don't place the new command in library QSys or any other system-supplied
library. New releases of OS/400 replace these libraries, and your modified
command will be lost when that happens. Give your new library a name that
describes the library's purpose (e.g., AltSys), and include (before QSys) the
new library in the system portion of the library list of those users who will
use your modified commands.

Chapter 32 OS/400 Commands 517

When the destination libraiy is ready, use the CrtDupObj command to copy the commands
you want to customize into the new libraiy. CrtDupObj lets you duplicate individual objects,
or you can duplicate objects generically (i.e., using an initial character string common to a
group of objects followed by an asterisk), all objects in a particular library, or multiple
object types.

To rename the WrkOutQ command, you could enter

CrtDupObj WrkOutQ QSys *Cmd AltSys WO

In this example, WrkOutQ, QSys, and *Cmd are values for required parameters that specify
the object, the originating libraiy, and the object type, respectively. If you prompt for the
parameters, enter

CrtDupObj ObjCWrkOutQ) +
FromLib(QSys) +
ObjType(*Cmd) +
ToLibCAltSys) +
NewObj(WO)

Either of these commands places the new command (WO) into libraiy AltSys.
When you duplicate an object, all the object's attributes are duplicated. This means

that the command processing program for WO is the same as for WrkOutQ, so the new
command functions just the same as the IBM-supplied command.

Changing Default Values
The final touch for tailoring commands is to modify certain parameter default values when
you know you'll normally use different standard values for those parameters. You may
want to change default values for the CrtXXx (Create) conunands especially. For example,
for eveiy physical file created, you may want to specify the Size (Member size) parameter
as (1000 1000 999). Or you may want the WaitRcd (Maximum record wait time) parameter
to contain the value 30 rather than the IBM-supplied default value of 60. You can change
these defaults using one of two methods.

The first method requires that everyone who uses a command remember to specify
the desired values instead of the defaults for certain parameters. Although you can place
such requirements in a data processing handbook or a standards guide, this method relies
on your staff to either remember the substitute values or look up the values each time
they need to key them in.

The other method for changing the default values of IBM-supplied commands is to use
the ChgCmdDft (Change Command Default) command. ChgCmdDft simply changes the
default values that will be used when the command is processed. For instance, to make
the changes mentioned above for the CrtPF (Create Physical File) command, you'd type

ChgCmdDft Cmd(CrtPF) +
NewDft('Size(1000 1000 999) WaitRcd(30)')

You could also use ChgCmdDft to enhance the WO conunand we created earlier.
Suppose you usually use the WO command to work with your own output queue. Why

518 Starter Kit for the IBM iSeries and AS/400

not change the default value of •All for the OutQ parameter to be the name of your own
output queue? Then, rather than having to type

WO YourOutQ

you could simply type WO (of course, this personalized command should exist only in
your library list). If you want to work with another output queue, you can still type in the
queue name to override the default value. See? Commands can be fun!

To change system command parameter defaults using the ChgCmdDft command, you
should duplicate the command into a different library. Then change the command defaults
and, if you have retained the CL command names rather than renaming the commands,
list the library before QSys on the system library list.

~Tip
When you use the ChgCmd.Dft or CrtDupObj command to customize CL

commands, you should create a CL source program that performs those

changes. Then whenever a new release of OS/400 is installed, you should run

the CL program, thus duplicating or modifying the new version of the system

commands. The system commands on the new release might have new

parameters, different command processing programs, or new default values.

Using ChgCmdDft is an effective way to control standards. However, you should be
cautious when using this command because it affects all uses of the changed command.
(For example, a vendor-supplied software package might be affected by a change you
make.) You might want to use a good documentation package to find all uses of specific
commands and evaluate the risk of changing certain default values.

You can change your user profile attribute UsrOpt (User options) to include the value
*CLKwd if you want the CL keywords to be displayed automatically when you prompt
commands (rather than having to press Fl 1 to see them). To change this attribute,
someone with the proper authority should enter the ChgUsrPrf (Change User Profile)
command as follows:

ChgUsrPrf UserProfile UsrOptC*CLKwd)

Some users, notably some programmers, find this option useful.
The iSeries provides a function-rich command structure that lets you maneuver through

the operations of your system. We don't happen to believe that everyone should be able
to enter every command without prompting or using any keywords. But we're convinced
that having a good working knowledge of the available OS/ 400 commands will not only
help you save time but also make you more productive on the system.

519

Chapter 33

It's Gotta Be TCP/IP,
If You Wanna Talk with Me
It's virtually impossible to have a computer today without the need to use Transmission
Control Protocol/Internet Protocol (TCP/IP). It seems that no matter where you tum, TCP/IP
is being used for something. TCP /IP arose out of the need for dissimilar systems to share
information and resources across a network. You need only think of the Internet for a
good example.

TCP and IP, separate protocols, are only two in a set of several protocols that provide
the support for sharing information and resources across your local area network (Lfu~) or
even around the world on the Internet. However, because TCP and IP are the foundation
protocols of the set, the industry simply refers to the entire set as TCP/IP.

OS/400 contains basic communications support for TCP/IP on the iSeries, and many
iSeries installations are putting TCP/IP to use. In fact, we can't recall the last time we saw
an iSeries or AS/400 installation that wasn't using TCP/IP. One reason for this is the fact
that, in most cases, installations are using Client Access Express for display sessions, and
Client Access Express works only with TCP/IP connectivity. TCP/IP does a lot more, though,
and with licensed program 5769-TCl, it provides support for several applications and
functions.

For instance, TCP/IP includes applications such as

• Telnet (TELetypewriter :NETwork) - lets users on one system sign on to another system

• FTP (File Transfer Protocol) - sends files from one system to another

• SMfP (Simple Mail Transfer Protocol) - exchanges e-mail between system'>

• POP server (Post Office Protocol) the iSeries implementation of POP3 that lets
iSeries systems act as POP servers for clients that support the POP mail interface

• REXEC server (Remote EXECution) lets clients submit system commands to
remote servers

• LPR/LPD (Line Printer Requester/Line Printer Daemon) sends printer files to and
receives printer files from remote systems

• SNMP (Simple Network Management Protocol) - supports the industry-standard
management protocol that originated for TCP/IP networks

• HITP server (HyperText Transfer Protocol) - serves multimedia objects such as
Hypertext Markup Language (HTML) documents to Web browsers

• SSL (Secure Sockel'i Layer) provides secure public encryption for HTML, Telnet,
and r!P

520 Starter Kit for the IBM iSeries and AS/400

In addition to these applications, TCP/IP supports functions such as

• BOOTP seIVer (BOOTstrap Protocol)
code from a seIVer

lets workstations without media request IPL

• RouteD seIVer (Route Daemon) - supports Routing Infonnation Protocol (RIP), the
most commonly used routing protocol

• SLIP (Serial Line Internet Protocol) - provides dial-up TCP/IP support

• PPP (Point-to-Point Protocol) - provides dial-up TCP/IP support

• TFfP seIVer (Trivial File Transfer Protocol) - permits unauthenticated basic file
transfer using a simple protocol

Although this isn't a complete list of TCP/IP applications and functions, it should make
clear the fact that TCP/IP has considerable substance.

To administer TCP /IP on your system, you need a basic understanding of a few
TCP/IP concepts. In this chapter, we introduce you to those concepts and discuss a
commonly used iSeries TCP/IP configuration: TCP/IP over Ethernet.

Networks and lnternetworks
An important aspect of TCP/IP is that in addition to supporting netv.rorks, TCP;1P supports
intemetworks. An internetv.rork is actually a collection of multiple individual netv.rorks that,
to the attached computers, appears to be a single large network. The Internet, composed
of thousands of netv.rorks, is the quintessential example of an internetwork.

Even though the networks that make up an internetv.rork can be of differing physical
types (e.g., Ethernet, Token-Ring), through the magic of TCP/IP, interaction between the
systems on the internetwork is possible. Before we discuss how internetv.rorks send
information from one attached system to another, we want to briefly touch on the way in
which information gets from one attached system to another on a network.

Figure 33. lA shows an Ethernet netv.rork that we refer to as network A.

FIGURE 33.1 A
Ethernet Network A

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 521

This network has five attached computers (hosts), each with an IP address unique to the
network. The uniqueness of the IP address makes it possible to route information to a
particular host on the network. For example, host 2 could send information to host 4 by
directing the information to IP address 201.4.13.171. We discuss IP addressing in more
detail later; for now, simply note that an IP address consists of four bytes most often
represented in dotted-decimal notation, as the examples show. Dotted-decimal notation
represents each byte as a decimal number in the range 0-255, separated by periods.

Figure 33. lB represents yet another network, network B.

FIGURE 33.1 B
Token-Ring Network B

Notice that this network is a Token-Ring network with four attached hosts. Again, each
attached host has an IP address that uniquely identifies the host to the network. Just as any
host on network A can send information to any other host on network A, so can any host
on network B send information to any other of network B's hosts.

An internetwork might connect LANs within a building or campus, or it might be a
wide area network (WAN) connecting far-flung LA.N's. Each network connects to the inter
network via a special device called a gateway or router. The terms are used interchange
ably, but usually a gateway is a computer running special software, called routing
software, while a router is a dedicated hardware device devoted to providing an interface
with the internetwork.

With an internetwork, any host can send information to any other host, regardless of the
network containing the host. All one machine has to know is that a destination IP address
isn't local - it then sends the traffic for that IP address to the gateway or router, which
figures out how to the traffic to the final destination. This process is called routing.

Figure 33.2 represents an internetwork connecting the local area networks network A
and network B. Notice that network A and network Beach have their own IP router
devices. When hosts on network A want to exchange data, they do so directly across the
network A LAN. But when a host on network A wants to talk to one on network B, the
network A host sends its traffic to the router. For example, host 2 on network A could
send information to host 3 on network B (199.27.3.201) by directing the information to the

522 Starter Kit for the IBM iSeries and AS/400

IP router
199.27.3.254

FIGURE 33.2
Internetwork

Internetwork

IP router
201 .4.13.254

router on network A at IP address 201.4.13.254. This router then sends the infonnation to
the network B IP router at address 199.27.3.254, which in tum forwards the infonnation to
destination IP address 199.27.3.201, host 3 on network B. The response from host 3 on
network B follows the reverse path. How does host 2 know that host 3 is on a distant
network? The answer is the IP address, as you'll see shortly.

TCP/IP traffic from one host to another can travel through numerous routers before
reaching its final destination. So how does TCP/IP know when the information has reached
the destination? TCP /IP sends information in packets, and these packets contain not only
data but also the destination IP address. As a system receives packets, it compares its own
IP address (the system could actually have multiple IP addresses) to the destination IP

Chapter 33 It's Gotta Be TCP/JP, If You Wanna Talk with Me 523

address in the packet. When these addresses match, the packet has reached its destination
and the system doesn't forward it to any other systems.

lliat's the simple version, anyhow. Considering that the Internet has millions of attached
hosts, what do you think would happen if when one host sent information to another, all
of the Internet's hosts had to determine whether the information was for them? The answer
is nothing! The internetwork would exhaust its resources trying to determine destinations.
You might think, then, that it obviously doesn't work like this. Essentially, it does work
this way, but not without optimization.

That optimization is the routing process, which keeps track of the best path to any
destination from any other given destination. The wonderful thing about TCP/IP routing
is that if a path to a destination becomes unavailable (perhaps someone inadvertently cuts
a fiber optic cable), TCP/IP routing will find an alternative path and immediately switch
to it without interrupting user sessions. This self-healing aspect of TCP /IP is what makes
the Internet practical. In reality, the Internet is never running completely - there are always
some routers in the Internet broken at any given time. However, TCP /IP routes around
this damage so that most users never see the problem. The only time TCP/IP routing fails
is when no alternative path to a given destination exists. For example, if your company
has a single link to the Internet and that link goes down, nobody on the Internet can reach
you until that link is repaired.

You've seen that each host on an internetwork has a unique address. What we've not
yet told you is that each network also has a unique address. This network address makes
it possible for the internetwork to determine a more direct route to a system when sending
information to it. This reduces the number of routing decisions the internetwork must make,
improving internetwork petformance.

You also know how to specify a host's unique IP address, but you may be wondering
how you specify the network address. As it turns out, the network address is part of the IP
address you specify for your host. That is, an IP address contains both the network address
(or network ID) and the host address (or host ID), with the network address preceding
the host address. An IP address can therefore be represented with these two portions as

[Network ID][Host IDJ

As a quick illustration, consider three hosts, with IP addresses 192.168.0.1, 192.168.0.5,
and 192.168.120.1. If the network part of the address is the first three bytes, the first two
hosts are on the same network the 192.168.0.0 network. The third host is on a completely
different network - the 192.168.120.0 network. In a minute, you'll see how to tell the
network part of the address from the host part. In the meantime, keep this important rule
in mind: For a host in one network to talk to a host in another network, the networks must
be connected through a router. This key concept will save you many headaches when you
work on your own network designs. With that in mind, it's time to tum our attention to IP
addressing to get a closer look at how things work.

524 Starter Kit for the IBM iSeries and AS/400

IP Addressing
If you want to understand TCP /IP, one of the first things you must understand is a few IP
addressing concepts. You need to know more than the fact that IP addresses normally
appear in dotted form and that IP addresses contain both a network ID and a host ID.

TCP /IP is for use by small networks with only a few hosts as well as by very large
networks that have tens of thousands of hosts. In addition, intemetworks such as the
Internet use TCP /IP. When you consider the variable sizes and complexities of these arrange
ments, you may begin to wonder just how TCP /IP divides the IP address into the network
ID and host ID portions. With all these different types of networks, it's not possible to divide
an IP address into its network ID and host ID portions with a single fixed method. Instead,
two methods have evolved, called clasiful and classless IP addressing. The first method,
classful addressing, is older and falling into disuse, primarily because it allocates IP addresses
inefficiently and the rapid growth of the Internet is quickly depleting the available addresses.
The classless method of IP addressing is what is primarily used today, but to understand
classless addressing, you first need to appreciate classful addressing. The good news is that
classless addressing is much simpler than classful addressing!

Classfu/ IP Addressing
In classful addressing, TCP/IP defines five classes of networks. Primarily, the size character
istics of a network determine its class, as Figure 33.3 shows.

FIGURE 33.3
Network Classes

Network Beginning Network ID (N) Maximum Maximum
class value and host ID networks hosts
A 1-1 NNN.hhh.hhh.hhh 127 16,777,214

B 128--191 NNN.NNN.hhh.hhh 16,383 65,534

c 192-223 NNN.NNN.NNN.hhh 2,097,151 254

D 224--239 Multicast

E 240--2552 Reserved
1Value 127 is reserved for loopback addresses used in testing TCP/IP.
2With the exception of broadcast address 255.255.255.255, this range is not supported by the iSeries.

The first three classes in the figure (A, B, and C) are the most commonly used classes and
are the subject of this discussion. You can see that IP addresses that begin with a value
between 1 and 127 belong to class A, between 128 and 191 to class B, and so on. The
last two columns in the figure show the maximum number of networks and the maximum
number of hosts that each class can have. With a maximum of more 16 million hosts,
class A networks were intended for the largest of organizations.

The third column in the figure shows how TCP /IP divides the IP address into its
respective network ID and host ID. Notice that the scheme differs for each of the classes
A, B, and C. With class A networks, the first byte of the IP address defines the network

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 525

ID, and the last three bytes define the host ID. With class B networks, the first two bytes
define the network ID, and the last two bytes define the host ID. Class C networks follow
this pattern, with the first three bytes defining the network ID and the last byte defining
the host ID.

If you're wondering how this scheme works, it may help you to think of the IP address
in terms of binary, as TCP/IP does. let's begin by looking at how TCP/IP determines the
maximum number of hosts for a class C network. The third column in Figure 33.3 shows
that TCP /IP specifies the host ID in the last byte of the IP address for a class C network.
In binary fomiat, the minimum possible value appears as

Bits: 0123 4567
Value: 0000 0000

for a decimal value of 0. The maximum possible decimal value of 255 appears in binary
format as

Bits: 0123 4567
Value: 1111 1111

Between decimal values 0 and 255, there are 256 distinct values or possible combinations
of bits. It may therefore seem that there is a maximum of 256 hoslo;; allowed for a class C
network. Figure 33.3, however, lists the maximum as 254 hosts. TCP /IP doesn't allow the
host ID portion of an IP address to be all binary Os or all binary ls. Therefore, decimal
value 0 (binary value 0000 0000) and decimal value 255 (binary value 1111 1111) can't be
used. Removing these two values from the list of possible values yields a maximum of 254
hosts for a class C network.

To calculate the maximum number of hosts for a network class, you can use the
formula

2 11 - 2

where n is the number of bits allocated for the host ID. The formula adjusts for the two
disallowed host ID values (all binary Os and all binary ls). With class B networks, 16 bits
are allocated to the host ID, so there is a maximum of 216 - 2, or 65,534, class B hosts.
likewise, the maximum number of class A hosts is 2, or 16,777,214.

The simplest mathematical formula for calculating the maximum number of networks
for a network class is

12811
- 1

where n is the number of bytes allocated for the network ID. You must reduce the number
by 1 to adjust for a value of decimal 0 (all binary Os). Therefore, class A networks have a
maximum number of 127 (128 1 1), class B networks have a maximum of 16,383 (128 2-1),

and class C networks have a maximum of 2,097,151 (1283 - 1) networks.

526 Starter Kit for the I BM iSeries and AS/400

Earlier, we said that network addresses (network IDs) reduce the number of routing
decisions an internetwork must make by providing more direct routes to systems. We also
mentioned that IP routers join networks together. Remember, the Internet is simply many
networks connected by IP routers to fonn what appears to be a single, very large network.
Because an association exists between an IP router and a network ID, a large internetwork
such as the Internet is able to move infonnation from system to system in an efficient way.

Classless Addressing and Subnetworks
Now that you have a handle on classful IP addressing and how it relates to network IDs
and host IDs, it's time to muddy the waters again. Don't wony - everything clears up
by the end!

A problem arose with the classful addressing scheme in that the three different network
sizes it supports don't fit all organizations, or even most organizations, very well. A Class
B network, for example, allows 65,534 hosts. How many companies do you know that
have this many hosts on their network? Yet the next smaller size, the Class C network of
254 hosts, may well be too small for many organizations. Worse, the standard of many
companies today, concerned about security, is to use only private IP addresses internally

these addresses aren't visible to the outside world at all. These organizations usually
need only a handful of IP addresses one for each public server or firewall. The servers
and firewalls take care of translating IP addresses for the private IP users on the company's
intemal LAN. For these reasons, TCP/IP supports the splitting of networks into subnetworks,
or subnets. This technique is called classless IP addressing because it circumvents the
limitations of network classes. Let's look at a few reasons for creating subnets, along with
the details about how to do so.

Consider class A and class B networks for a moment. Both of these classes have a
large number of available host IDs nearly 17 million in the case of class A networks!
Chances are excellent that an organization won't have 17 million hosts on a single network.
Subnetting, using classless IP addressing, provides a way to avoid wasting these IP addresses
by letting you change the way your system detennines the network portion and host
portion of your IP addresses. In other words, you can divide the host ID, reassigning some
of the host space to network space. Reassigning host space to network space is referred
to as creating a subnet, or subnetting.

Recall that earlier we represented the fact that an IP address i<; made up of the
network ID followed by the host ID as

[Network ID][Host ID]

With subnetting, the representation would be

[Network ID)[Subnet ID][Host ID)

Consider a class B network with a network ID of 153.47 as a candidate for subnetting.
Remember, a class B network has 16 bits allocated for the network ID and 16 bits allocated
for the host ID as

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 527

16 bits 16 bits
Network ID Host ID

In classless addressing, a Class B network is renamed - it's called a /16 network,
because the network part of the address is 16 bits. We can reallocate some of the host ID
space to the subnet. To make the example simple, we'll reallocate a full byte (eight bits)
of host space to the subnet. We now have 24 bits total allocated to the network portion
of the IP address and eight bits allocated to the host portion as

16 bits I Bbits 8 bits
Network ID I Subnet ID Host ID

Subnetwork Host ID

In classless notation, this is a /24 network. Because only eight bits are allocated for the
host ID, each subnet can now have only 254 hosts. However, there can now be 254
subnets of the original /16 network. (Keep in mind that each of these networks requires a
router to communicate with the other network<>!)

You're probably now wondering how you go about reassigning host space to
network space. It's done using a subnet mask. A subnet mask is simply a string of binary
ls and binary Os (32 bits' worth) that map out the network space and the host space. A
value of 1 indicates the bit is allocated to network space, and a value of 0 represents host
space. Figure 33.4 shows the classes of networks with their associated subnet masks.

Network
class

A

B

c

FIGURE 33.4
Network Classes and A'>Sociated Subnet Masks

Beginning Network ID (NJ Subnet
value and host ID (h) mask

1-1271 NNN.hhh.hhh.hhh 255.0.0.0

128--191 NNN.NNN.hhh.hhh 255.255.0.0

192-223 NNN.NNN.NNN.hhh 255.255.255.0
1 Value 127 is reserved for loopback addresses used in testing TCP/IP.

The values in this table are fairly straightfonvard because we're dealing with whole bytes.
Decimal value 255 is equivalent to eight bits of binary 1, and decimal value 0 is equivalent
to eight bits of binary 0. Therefore, when decimal value 255 is the subnet mask, all bits
are 1 and the entire byte to which the mask is applied is network space. Likewise, when
decimal value 0 is the subnet mask, all bits are 0 and the entire byte to which the mask is
applied is host space.

Perhaps we can make this a little clearer by showing you the following subnet mask
information with e'ach of the four bytes clearly delineated:

Decimal: 255 255 255 0
Binary: 11111111 11111111 11111111 00000000

528 Starter Kit for the IBM iSeries and AS/400

It should be clearer now that a subnet mask of 255.255.255.0 indicates that the first three
bytes of the IP address are network space and the last byte is host space. Note that, at a
minimum, a subnet mask must mask off the network ID portion of the IP address. In other
words, a class A network must specify a value of 255 for the first byte of the subnet mask,
a class B network must specify a value of 255 for both the first and second bytes of the
subnet mask, and a class C network must specify a value of 255 for the first three bytes of
the subnet mask.

The subnet mask notation is still the most common way of indicating subnets, but it's
rapidly being replaced by the classless notation, which is both more compact and easier to
understand. For example, you could specify a complete IP address for a host as

153.47.1.4 with a subnet mask of 255.255.255.0

Or you could specify it more concisely, and more clearly, using classless notation:

153.47.1.4/24

The formal term for classless notation is Classless Internet Domain Routing, or CIDR. If
someone asks you for the CIDR address of your host, you know that they want it in
classless notation.

Let's look at examples of applying a subnet mask and deciphering the result. For the
first example, let's use our class B network with an IP address of 153.47.21.209 and apply
the associated subnet mask from Figure 33.4 (255.255.0.Q). To apply a subnet mask, you
perform a logical AND with the IP address (a logical AND states that if both bits are 1, the
result is 1; othel\Vise, the result is 0).

Subnet mask: 11111111
IP address: 10011001

Subnet: 10011001

11111111
00101111
00101111

00000000 00000000
00010101 11010001
00000000 00000000

In this case, the subnet ID is 153.47 (drop trailing 0 values). Notice that this is the same
value as the network ID, so there is no subnet. You extract the host ID from the original
IP address beginning at the bit beyond the point where the subnet ID ends and ending
with the last bit (bit 32). In this case, that is bits 17-32, or bytes 3 and 4. The host ID is
therefore 21.209, the same as in the original IP address. We could have stopped extracting
information once we determined there was no subnet because without a subnet, the
network ID and host ID can be easily extracted from the IP address based on the class of
network.

For our second example, let's allocate the first byte of the host ID portion of the IP
address (the third byte in the IP address) to a subnet. Remember that to allocate a whole
byte to a subnet, we simply set the subnet mask for that byte to value 255. Let's use our
new subnet mask of 255.255.255.0 and see what the logical AKO yields for a subnet.

Subnet mask: 11111111
IP address: 10011001

Subnet: 10011001

11111111
00101111
00101111

11111111
00010101
00010101

00000000
11010001
00000000

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 529

In this example, the subnet ID is 153.47.21, and the value 209 remains for the host ID.
Again, this example is fairly straightfotward because we're dealing with whole bytes and
subnet mask values of 255 and 0.

Let's look now at an example that allocates bits to a subnet on a boundary other than
a whole-byte boundary. In this example, let's allocate the first byte plus the first two bits
of the host ID to a subnet.

Subnet mask: 11111111
IP address: 10011001

Subnet: 10011001

11111111
00101111
00101111

11111111
00010101
00010101

11000000
11010001
11000000

Here, the subnet mask is 255.255.255.192. The resulting subnet ID is 153.47.21.192 (notice
that the value of the fourth byte of the subnet is the same as the value of the fourth byte
of the subnet mask). The host ID in this example is contained in bits 27-32 because bits
25 and 26 were allocated to the subnet. Extracting bits 27-32 of the original IP address
yields a value of 17 for the host ID. This shows that a class B network with a network ID
of 153.47 and a subnet mask of 255.255.255.192 will resolve to subnet 153.47.21.192 host
ID 17 when presented with 153.47.21.209 for an IP address.

Now that we've taken you through all these calculations, you may notice when you
examine the IP address and the subnet mask that 209 minus 192 is 17. We didn't want to
deprive you of any fun! Actually, we wanted you to have an understanding of how things
are really working. Figure 33.5 will help you translate bit configurations to the decimal
values used in subnet masks.

FIGURE 33.5
Commonly Used Values in Subnet Masks

Biliary Decimal . " -" ___ ,_
00000000 0

10000000 128

11000000 192

11100000 224

11110000 240

11111000 248

11111100 252

11111110 254

11111111 255

Peaceful Coexistence
For any network, when you assign IP addresses, you must remain aware of a few things.
First, you must heed matters of correctness, such as maintaining address uniqueness as
well as assigning addresses that are appropriate for the network to which your system is
connected. You must also remain cognizant of any special circumstances or restrictions

530 Starter Kit for the IBM iSeries and AS/400

that might apply. For example, all networks use IP addresses beginning with 127 for
loopback purposes. You should therefore refrain from assigning these addresses to hosts
within your network.

With a private network one within your enterprise - you have control over the IP
addresses you assign. Other than the concerns we just mentioned, you're virtually restriction
free. Public networks, such as the Internet, require that a central authority assign any
addresses that are to be detectable by the network in order to maintain uniqueness. How
long do you think it would take for a duplicate address issue to arise if everyone on the
Internet assigned their own addresses?

When you architect a network, you need to carefully consider not only your current
needs but also what the future may hold for your network. If today's private network is
tomorrow exposed to a public network, there will be problems unless you've designed
your private network in a way that avoids conflict with the public network.

To help prevent problems and to promote peaceful coexistence, The Internet Assigned
Numbers Authority (lANA) has designated blocks of IP addresses for use in private
networks. These blocks are

10.0.0.0 to 10.255.255.255
172.15.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

lANA guarantees that IP addresses from these blocks are not valid host addresses for use
on the Internet. We strongly suggest that for your private networks, you use IP addresses
from these blocks of numbers. Doing so will prevent any problems if, in the future, these
networks are exposed to the Internet. Of these blocks, the IP addresses beginning with 10
and those beginning with 192.168 are the most commonly used for private networks.

A Simple iSeries Configuration
Many users create a TCP /IP network solely to use with Client Access in accessing the
iSeries from their PCs. This private network is most often an Ethernet network and makes
for a good sample configuration, introducing you to the mechanics of TCP /IP
configuration on an iSeries.

You should start by gathering a couple of pieces of information you'll use in config
uring TCP/IP. First, determine the system name. You can find the current system name
using command DspNetA (Display Network Attributes).

Next, you need to determine whether a line description exists that is associated with
your communications adapter (your Ethernet card). To do so, from the command line,
enter command Go Hardware and press Enter to display the HARDWARE (Hardware
Resources) menu. From menu HARDWARE, select option 1 to work with communication
resources. On the resulting Work with Communication Resources panel, locate the
appropriate Ethernet adapter, and note the resource name. To determine whether a line
exists for the adapter, use option 5 to work with configuration descriptions. The resulting
Work with Configuration Descriptions panel displays the line information. If a line

Chapter 33 It's Gotta Be TCP/lP, If You Wanna Talk with Me 531

description exists, note its name; otherwise, create a line description using the following
instructions:

On the Work with Configuration Descriptions panel, type 1 in the Opt field and
press Enter. The CrtLinEth (Create Line Description (Ethernet)) command prompt
will be displayed. Specify a line description name. You rnn choose any name you
like. We prefer to give the line description the same name as the resource; this
makes it easy to correlate a line description with its associated resource. In addi
tion to the line description name, you must specify the previously determined
resource name.

You can accept most of the default parameter values, but we suggest you
page down to the AutoCrtCtl (Autocreate controller) parameter and change its
value from *No to *Yes. 1his lets the .'>)'Stem handle some of the additional
configuration tasks. You can also enter descriptive text for the Text (Text
'description') parameter. Once you've entered all the information, press Enter to
create the line de'icription. After confinning that the system successfully created
the line description, you have completed the preparatory steps.

Menus TCP ADM (TCP /IP Administration, shown in Figure 33.6) and CFGTCP
(Configure TCP/IP, shown in Figure 33.7) contain administration and configuration
options. You'll be using options from these menus to configure your network. (For an
introduction to the options these menus provide, see "TCP /IP Administration and
Configuration Options," page 536.)

FIGURE 33.6
TCP/IP Administration Afenu

TCPADll TCP/IP Administration
System: AS400

Select one of the following:

1. Configure TCP/IP
2. Configure TCP/IP applications
3. Start TCP/IP
4. End TCP/ IP
5. Start TCP/IP servers
6. End TCP/IP servers
7. Work with TCP/IP network status
8. Verify TCP/IP connection
9. Start TCP/IP FTP session

10. Start TCP/IP TELNET session
11. Send TCP/IP spooled file

20. Work with TCP/IP jobs in QSYSWRK subsystem

Selection or command
===> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

532 Starter Kit for the IBM iSeries and AS/400

FIGURE 33.7

Configure TCP/IP Menu

CFGTCP Configure TCP/IP

Select one of the following:

1. Work with TCP/IP interfaces
2. Work with TCP/IP routes
3. Change TCP/IP attributes
4. Work with TCP/IP port restrictions
5. Work with TCP/IP remote system information

10. Work with TCP/IP host table entries
11. Merge TCP/IP host table
12. Change TCP/IP domain information

20. Configure TCP/IP applications
21. Configure related tables
22. Configure point-to-point TCP/IP

Selection or command

System: AS400

===> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

With the simple network you're configuring, you have only two tasks to complete to
begin communicating with TCP /IP. You must define the iSeries to the network by specify
ing its IP address, and you must specify your domain information.

For our sample network, we'll use a class A IP address from the block of reserved
private addresses beginning with 10. We'll also create a subnet, in light of the fact that a
class A address has space for a few million more addresses than we really need! This will
also give us flexibility for future networking needs within the organization. In the example,
we'll allocate a full byte for the subnet ID portion of our IP address. We'll therefore select
an IP address of 10.1.0.1 for the iSeries, with a value of 255.255.0.0 for the subnet mask.

You specify the system's IP address by defining a TCP/IP interface. We'll use option 1
from menu CFGTCP, Work with TCP/IP interfaces, to perform this task. Figure 33.8 shows
the Work with TCP/IP Interfaces panel you'll see when you select option 1 from menu
CFGTCP.

If TCP/IP has never been configured on your system, you'll probably see that a
single interface with an IP address of 127.0.0.1 already exists. This is a special address for
loopback functions used in testing TCP/IP. Using option 1 (Add) from the Work with
TCP/IP Interfaces panel, we'll add our network's interface information. This option
prompts the AddTCPifc (Add TCP/IP Interface) command as shown in Figure 33.9.

Chapter 33 It's Gotta Be TCP/lP, If You Wanna Talk with Me 533

FIGURE 33.8
Work with TCP/IP Inteifaces Panel

Work with TCP/IP Interfaces

Type options, press Enter.
1=Add 2=Change 4=Remove

Opt
Internet
Address

127.0.0.1

Subnet
Mask

255.0.0.0

5=Display 9=Start

Line
Description

*LOOPBACK

10=End

Line
Type

*NONE

System:

F3=Exit
F12=Cancel

F5=Ref resh
F17=Top

F6=Print list
F18=Bottom

F11=Display interface status

FIGURE 33.9
AddTCPifc (Add TCP/IP Inteiface) Command Prompt

Add TCP/IP Interface <ADDTCPlfC)

Type choices, press Enter.

> ' ·~~~~~~~
Name, *LOOPBACK .••

AS400

Bottom

Internet address ..•.•
Line description ...••
Subnet mask . . . • •
Associated local interface
Type of service ..•..
Maximum transmission unit
Autostart • . . .

*NONE
*NORMAL
*LIND
*YES

*MINDELAY, *MAXTHRPUT .••
576-16388, *LI ND

PVC logical channel identifier
+ for more values

X.25 idle circuit timeout
X.25 maximum virtual circuits
X.25 DDN interface .
TRLAN bit sequencing

F3=Exit F4=Prompt
F24=More keys

F5=Refresh

60
64
*NO
*MSB

F12=Cancel

*YES, *NO
001-FFF

1-600
0-64
*YES, *NO
*MSB, *LSB

Bottom
F13=How to use this display

534 Starter Kit for the IBM iSeries and AS/400

You need specify only the first three values with following information:

Internet address: 10. 1 . 0. 1
Line description: YourL ineDescriptionName

Subnet mask: 255 .255 .0.0

where fourlineDescriptionNarne is the line description you identified earlier. You can accept
the default values for all other parameters. After you've supplied the necessary values,
simply press Enter, and you've assigned the TCP/IP address for your system.

Last, we'll define the network's domain information. The domain name has two parts:
the local domain name and the local host name. The qualified domain name (often referred
to as the host name) by which your system is known to the network is the combination
of these two parts. You can use any names you like for these values, but we suggest a
standard: For local host name, we suggest you use the system name you retrieved earlier
during the preparatory phase. For local domain name, use a value that is descriptive of
your organization. A local domain name consists of labels separated by periods, such as
iseries.ibm.com where iseries defines a domain within another domain named ibm. The
.com portion simply follows Internet conventions to signify that the organization is a
commercial enterprise.

Once you decide which local domain name you'd like to use, you can use option 12,
Change TCP/IP domain information, from menu CFGTCP to enter your domain infom1a
tion. Figure 33.10 shows the Change TCP /IP Domain panel, where you can enter your
chosen domain information.

FIGURE 33.10
ChgTCPDmn (Change TCP/IP Domain) Command

Change TCP/IP Domain (CHGTCPDMN)

Type choices, press Enter.

Host name

Domain name

Host name search priority
Domain name server:

Internet address • . . .

'AS400'---------------

'QUINTESSENCE. COM'-----------

*REMOTE *REMOTE, *LOCAL, *SAME

*NONE ____ _

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 535

Starting TCP/IP
Your iSeries now has a TCP/IP configuration capable of communicating with other hosts
on the network. Before it can do so, however, you must start TCP /IP processing. You can
start TCP/IP using option 3 from menu TCPADM. This option starts TCP/IP processing as
well as TCP /IP interfaces and server jobs that are configured to start automatically. After
starting TCP/IP and waiting for a brief time, you can check the TCP/IP jobs in subsystem
QSysWrk using option 20, Work with TCP/IP jobs in QSYSWRK subsystem, from menu
TCPADM. Job QTCPIP should be in the list of active jobs, as well as TCPi1P server jobs
for applications such as FIP, SMTP, and Telnet (potentially).

~' ~Tip
You can end TCP/JP processing explicitly using the EndTCP (End TCP/JP)
command, implicitly by ending subsystem QSysWrk, or implicitly with a
system IPL To once again use TCP/JP, you must start TCP/JP processing
again. We suggest you add command StrTCP (Start TCP/JP) to your system
start-up program so TCP/IP processing starts each time you IPL the system.

Once job QTCPIP is started, you can verify that TCP/IP is functioning properly. Menu
TCPADM's option 8, Verify TCP/IP connection, issues a ping to test connections. You can
test TCP/IP connections at various levels as follows:

• To test connections without sending anything out of the Ethernet adapter, specify
Loopback for the RmtSys (Remote 1>')'Stem) parameter on the VfyTCPCnn (Verify
TCP/IP Connection) command, as shown in Figure 33.11.

• To verify that the line description and TCP /IP interface are functioning correctly,
specify your system's IP address (10.1.0.1) for the RmtSys parameter.

• To test connection to the network, specify the IP address of another host in the net
work (if one currently exist'>) for the RmtSys parameter.

Examine the resulting messages to detennine whether your connections are functioning
properly. If everything is fine, your system is ready to run TCP /IP applications.

536 Starter Kit for the IBM iSeries and AS/400

FIGURE 33.11

VfyTCPCnn (Verify TCP/IP Connection) Command

Verify TCP/IP Connection CVFYTCPCNN)

Type choices, press Enter.

Remote system

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

TCP/IP Administration and Configuration Options
You should familiarize yourself with the TCP/IP administration and configuration options available on menus
TCPADM (TCP/IP Administration) and CFGTCP (Configure TCP/IP). Here is a brief introduction to the functions
these options provide.

Menu TCPADM - TCP/IP Administration
1. Configure TCP/IP

This option displays menu CFGTCP.

2. Configure TCP/IP applications
This option displays options for configuring TCP/IP applications.

3. Start TCP/IP
This option issues the StrTCP (Start TCP/IP) command, which initializes and activates TCP/IP processing,
starts the TCP/JP interfaces, and starts the TCP/IP server jobs.

4. End TCP/IP
This option issues the EndTCP (End TCP/IP) command, which ends all TCP/IP processing.

5. Start TCP/IP servers
This option issues the StrTCPSvr (Start TCP/IP Server) command, which starts the TCP/IP application servers.

6. End TCP/IP servers
This option issues the EndTCPSvr (End TCP/IP Server) command, which ends the TCP/IP application servers.

7. Work with TCP/IP network status
This option issues the WrkTCPSts (Work with TCP/IP Network Status) command, which lets you view and
manage the status of your TCP/IP interfaces, routes, and connections. Wrk TCPSts is the OS/400 version of
the TCP/IP NetStat (Network Status) command (OS/400 also has a NetStat command).

continued

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 537

8. Verify TCP/IP connection
This option issues the VfyTCPCnn (Verify TCP/IP Connection) command, which tests the TCP/IP connection
between your system and a remote system. VfyTCPCnn is the OS/400 version of the TCP/IP Ping command
(OS/400 also has a Ping command).

9. Start TCP /IP FTP session
This option issues the StrTCPFTP (Start TCP/IP FTP) command, which transfers a file. StrTCPFTP is the OS/400
version of the TCP/IP FTP command (OS/400 also has a FTP command).

10. Start TCP/IP TELNET session
This option issues the StrTCPTelN (Start TCP/IP Telnet) command, which starts a client session with a remote
system, letting you sign on to the remote system. StrTCPTelN is the OS/400 version of the TCP/IP Telnet
command (OS/400 also has a Telnet command).

11. Send TCP /IP spooled file
This option issues the SndTCPSplF (Send TCP/IP Spooled File) command, which sends a spooled file to a
remote system. SndTCPSplF is the OS/400 version oi the TCP/IP LPR (Line Printer Requester) command
(OS/400 also has an LPR command).

20. Work with TCP/IP jobs in QSYSWRK subsystem
This option lets you work with the active TCP/IP jobs in subsystem QSysWrk (using the WrkAct)ob, or Work
with Active Jobs, command).

Menu CFGTCP - Configure TCP/IP
1. Work with TCP/IP interfaces

This option lets you add, display, change, print, or delete TCP/IP interface information. You can also start or
end an interface.

2. Work with TCP/IP routes
This option lets you add, display, change, print, or delete TCP/IP route information.

3. Change TCP/IP attributes
This option issues the ChgTCPA (Change TCP/IP Attributes) command, which lets you change attributes that
relate to TCP/IP.

4. Work with TCP/IP port restrictions
This option lets you add, display, print, or delete TCP/IP port restrictions.

5. Work with TCP/IP remote system information
This option lets you add, print, or delete X.25 data network addresses.

10. Work with TCP/IP host table entries
This option lets you add display, change, print, rename, or delete host table entries.

11. Merge TCP /IP host table
This option issues the MrgTCPHT (Merge TCP/IP Host Table) command, which lets you merge or replace a
local host table.

12. Change TCP/IP domain information
This option lets you add or change TCP/IP domain information.

20. Configure TCP/IP applications
This option lets you configure TCP/IP applications.

21. Configure related tables
This option lets you configure tables related to TCP/IP.

22. Configure point-to-point TCP/IP
This option lets you define, display, or change your TCP/IP point-to-point (SLIP) configuration.

538 Starter Kit for the IBM iSeries and AS/400

Identifying Other Hosts in Your Network
To communicate with other hosts in your network, you need to identify them. So far,
we've seen that you identify hosts by their unique IP address. Although you can use IP
addresses for identification, doing so is unwieldy at best. It's simply not practical to try to
remember the IP address for all your hosts, not to mention the fact that identification by
IP address is certain to introduce errors.

To alleviate these problems, you can give your hosts names you can use in identifying
them. There's no doubt that names are easier to remember. With a host table, you can
associate a host name with a host address. When you then communicate with a host by
name, the system retrieves that host's corresponding IP address from the host table.

You can store a host table on your iSeries system (a local host table), or you can
store it on a remote name server in your network. In fact, you can have multiple remote
name servers in your network. Although you can use both a local host table and remote
name servers concurrently, you typically use one method or the other. Each method has
its advantages and disadvantages, which we'll point out.

You usually use a local host table when your network is small with relatively few hosts.
A local host table's advantage is that because it's local, it is always available and can be
searched quickly. The local host table approach suffers the disadvantage that each host in
your network must maintain its own host table. With every change to a host table, the
change must be replicated on all your hosts.

A remote name server, more often referred to as a domain name server (DNS), maintains
host table information for the entire TCP /IP domain. This method has the obvious, and
significant, advantage of eliminating the need to maintain a host table on each host in
your network. Its disadvantage is that it requires more in-depth experience to administer
than local host tables. Your network must also have a system that can act as a domain
name server, and it's possible that at times outages will render this system inaccessible.
Larger networks invariably use this approach to maintaining host table information.

Because our sample configuration is for a small network without a domain name
server, we show you how to build a local host table. The iSeries lets you associate up to
four host names with an IP address. This association is referred to as a host table entry.
You can add a host table entry to the local host table using CFGTCP option 10, Work
with TCP/IP host table entries. Figure 33.12 shows the Work with TCP/IP Host Table
Entries panel. This panel's option 1 (Add) prompts the AddTCPHTE (Add TCP /IP Host
Table Entry) command. Figure 33.13 shows the AddTCPHTE command with host table
entry information entered.

Chapter 33 It's Gotta Be TCP/IP, If You Wanna Talk with Me 539

FIGURE 33.12
Work with TCP/IP Host Table Entries Panel

Work with TCP/IP Host Table Entries

Type options, press Enter.
1=Add 2=Change 4=Rernove 5=Display ?=Rename

Internet
Opt Address

127.0.0.1

Host
Name

LOOPBACK
LOCALHOST

System:

F3=Exit F5=Refresh F6=Print List F12=Cancel F17=Position to

FIGURE 33.13
AddTCPHIE (Add TCP/IP Host Table Entry) Command

Add TCP/IP Host Table Entry (ADDTCPHTE>

Type choices, press Enter.

Internet address
Host names:

> '10.1.0.2' __ _

-

AS400

Bottom

Name . . • . .
> PC002 _________________ ~

+ for more values
Text 'description• .•.••.• -,PC002 Room 147, Slot 9'---------

F3=Exit F4=Prompt
F24=More keys

FS=Refresh F12=Cancel
Bottom

F13=How to use this display

540 Starter Kit for the IBM iSeries and AS/400

Notice that we've entered the host name as PC002. This name is kno-.vn as a short name
because it doesn't specify domain information. A common practice is to specify both a
short name and a long name (which includes domain information). You can do this by
keying the plus sign (+) for more values and entering a value such as

PC002.Guintessence.com

for the long name. Remember, you can enter up to four ho51 names for a single IP address.

The Real World
In a full-fledged TCP /IP environment, there are many considerations above and beyond
those we've discussed in this chapter. From issues such as address manipulation with
network address translation (NAT) to security, the list of topics is significant.

We hope we've given you a foundation upon which you can build your TCP/IP
knowledge. You can find IBM documentation for TCP/IP with the iSeries in TCP/IP
Fastpath setup (SC41-5430) and TCP/IP Corifiguration and Reference (SC41-5420).

541

Chapter 34

Operations Navigator
Full of functions of interest to iSeries administrators, operators, and users, Operations
Navigator (commonly referred to as OpsNav) is increasingly becoming an integral part
of system interaction. If you've not yet looked at OpsNav, now is a good time to see how
its many features simplify the administration of one or more iSeries systems in a network.
The Explorer-like appearance of this Windows-based graphical user interface (GUI)
minimizes the need to learn the OS/400 command interface.

OpsNav L<> an optionally installable component of Client Access with a user interface
that will be familiar to those who use any of the Windows operating systems. For instance,
you'll find such customary features as help windows, drag-and-drop functions, pull-down
menus, fly-over help, and configuration wizards. Many find this graphical interface more
productive than the t:.ystem's traditional command-line interface.

In this chapter, we highlight some of the major functions supported by OpsNav.
We also introduce you to a few navigational techniques you'll use in moving around
within OpsNav.

OpsNav Components
In addition to base support that provides its basic functions (such as the user interface),
OpsNav consists of several optionally installable components. These components include

• Basic Operations

• Job Management

• Configuration and Service

• Network

• Security

• Users and Groups

• Database

• File Systems

• Multimedia

• Backup

• Application Development

• .Management Central

• Application Administration

Figure 34.1 shows the main OpsNav window with two systems, named As400
and Thumper.

542 Starter Kit for the IBM iSeries and AS/400

FIGURE 34.1
Main operations Navigator Window

To see the OpsNav components available for a system, you simply expand the system's
information by clicking the plus sign (+ symbol) beside the system in the left-hand pane
of this window. Figure 34.2 shows the components for system As400.

Me.ne.gement Central (As400)
R • My AS/400 Connections

'-I I As<DO
1±1 l(j. Bo.sic Opero.tions
'.fl fi Job MMe.gement
+J t" Configuration Md Service
[tJ (I Network

'.±\"Security
'.+J &- Users ond Groups
'.fl tJDoto.bo.se
:.tJ e;.~ File Systems
~ti ill> Mult1medio.
&J (lil Bockup
~ 0 Applicstion Development

r±1 I Thumper

FIGURE 34.2
operations Navigator Components

~Be.sic Operations
Iii Job Me.ne.gement
IPConfigurotion and SeMce
(iNetwork

,&security
iiusers Md Groups
lflDe.te.be.se
,..~File Systems
~Muttimedio.
liJBockup
eApplice.tion Development

Mo.no.gs AS/400 messe.ges, printer output and printers
Me.ne.ge AS/400 jobs o.nd server jobs
Disploy system inventory, work with fixes, and collect performe.nce doto.

Manage AS/400 TCP/IPe.nd Internet support.
Configure and mMo.ge AS/400 security.
MMo.ge AS/400 users o.nd user groups
Administer 082/400.
Work with AS/400 file systems.
Store and share muttimedio.do.to. on the AS/400 system
Schedule bo.ckups of AS/400 dll!lto..
Work '9ll'ith AS/400 o.pphcation development tools.

Chapter 34 Operations Navigator 543

You may notice that the Iv1anagement Central component appears before the list of systems.
That's because Management Central applies to all systems in your network. You may also
notice that the Application Administration component doesn't appear at all. Application
Administration is a property of a system and therefore is accessible by right-clicking the
system and selecting Application Administration from the pop-up menu.

To effectively use OpsNav, you need to know the functions it provides as well as a
few navigational techniques you use to access information. To give you a jump start with
navigational techniques, we provide several examples for, and discuss in greater detail, the
first component, Basic Operations. Then we briefly introduce you to the other OpsNav
components.

Basic Operations
OpsNav's Basic Operations component contains functions for working with perhaps the most
common of day-to-day operations. Expanding the view for Basic Operations (Figure 34.3)
reveals that this component includes functions for working with Messages, Printer Output
(spooled files), and Printers.

Management Centre! (As400)
• MyAS/400 Connections

I As<OO
~; l!lJ,i Basic Operations

t8 Messages
10 Printer Ouipvt

;;t:;-~ Printers
fi Job Management
• Configuration Md Service
tl Ne..,olk

:*;flSer:..1.1rity
r+: f/' Users end Groups

Im Dc!obase
li: .:r'g File Systems
;;;,~ Mummedia
;£Qi Backup
1tJ e Apphc011on Development

~~1 I ~umpe1

FIGURE 34.3
Basic operations

You select Messages to perform message management functions, such as displaying
messages, sending messages, and replying to messages. Figure 34.4 shows the window
that results when you select Messages. In this example, the message queue contains a
single, yet important, message. The security officer want<> to know where to have lunch!

You can view the message details by double-clicking the From user entry to the left of
the message or by right-clicking the entry and selecting Details from the resulting context
sensitive pop-up menu. Figure 34.5 shows the window that displays message details.

544 Starter Kit for the IBM iSeries and AS/400

~---~ Basic Operations

1
- - S8 Messages

1-- [CiPrinterOutput
!£ -~Printers

ffi Ei Job Management

~-· Contigurmion and Service
tf. Il Network

rti a Secuffi/
$- &-Users and Groups

Lf.1 B Database
f.fJ o'5 File Systems
(£- i@ Multimedia
rfJ ~8tiekup
ffi @Application Development

&1 I Thumper

FIGURE 34.4
Messages

FIGURE 34.5
Message Details

Chapter 34 Operations Navigator 545

In this example, the section for Message help simply shows the message text because this
message is an ad hoc message and, hence, has no associated second-level text. When the
message is a predefined message from a message file, the Message help section displays
the message's second-level text.

Look again at Figure 34.4 and notice that the Message type associated with the message
from the security officer is Inquiry. To reply to this message, you right-click the From user
entiy and select Reply from the pop-up menu. Figure 34.6 shows the window from which
you reply to an inquiiy message.

FIGURE 34.6
Reply to a Message

-- ------
' I ~

After you type the reply, a simple click of the Reply button sends it.
By now, you should be noticing that right-clicking an entity is important to understand

ing how to perform various tasks related to that entity. This point is true throughout OpsNav.
You can set the frequency with which the system refreshes the OpsNav Messages

window. If you forget to do this, you may wonder where your messages are! To set the
frequency, you right-dick Messages in the left-hand pane and select Properties from the
pop-up menu. Figure 34.7 shows the resulting Properties window, where you can enter
the automatic refresh properties you want to use.

546 Starter Kit for the IBM iSeries and AS/400

FIGURE 34.7
Setting Refresh Frequency for Messages

---- -- --- c.r
- '

--- . ~.. " - ~
~~- --'"-..!:..~

The Printer Output entry in Basic Operations is another important day-to-day task that
OpsNav addresses. This option lets you work with spooled files . Figure 34.8 shows the
window you see when you select Printer Output. You can see that the user has two
spooled files .

As with messages, you can obtain further information by right-clicking a spooled file
entry and selecting Properties from the pop-up menu. Figure 34.9 shows the resulting
window. From here, you can click the various tabs to obtain additional attribute information.

You can display a spooled file by double-clicking its entry or by right-clicking its
entry and selecting Open from the pop-up menu. Figure 34.10 shows the job log that is in
the current user's list of spooled files. You can use drag-and-drop to copy or move a
spooled file from one printer to another. The target printer can even be on a different
system! You can also use drag-and-drop to copy a spooled file to the PC desktop or a
Windows folder. This action creates an ASCII text file, ignoring any graphics that the
spooled file may contain.

The last of the Basic Operations options, Printers, lets you work with your printers.
Figure 34.11 shows the window you see when you select Printers. With this option, you
can perform a variety of printer management functions . For instance, you can display a list
of spooled files for a printer by selecting that printer from the list of printers in Printers.
Figure 34.12 shows the result.

ffi ·{~; Management Centre! (As400)

a--- My AS/400 Connections
6 I As400

8 ~ Be.sic Opere.tions
· '8 Messoges

.. {[l Printer Output
rtl -~ Printers

1 rB fl Job Monagement ft)-· Configuro.tion and Service
1 rfl-Cl Network

Ol ~ SoaJrify
. lt i/' Users Md Groups
i rfl a De.to.base

!~ d~ File Systems
rtl·· ·~ Multimedia

1 iii Iii Backup
I itJ e Application Development

ttJ-1 Thumper

FIGURE 34.8
Printer Output

Chapter 34 Operations Navigator 547

FIGURE 34.9
Spooled File Properties

548 Starter Kit for the IBM iSeries and AS/400

FIGURE 34.10
Displaying a Spooled File

5769331 V4R~ 990521 ------~- .. ---'"----~is-p~1.-,-,~o~b~L-09-----~~-----.A .. S4WO;;;-o-mi7!'!70l'!1!Tlj'))"'!I

Job nl!lll'le: •• ' •
Job desc:r:1ptJ.on

M5<HD TYP!

CPrll2i Infor:mati(rn

"IOIB Requl!l!lt

'*liOH! ltequeat

'""'"' Rt!!qtle!!!t

'll'Olll! Rt!!que11t

•JJOli!l R.t!H{rn!!l!lt

*"ll01l1! l«i!:t{Uttllt

Management Centrol (As400)
s • MyAS/400 Connernon•

I As400
~~}-~ Scsic Operations

:8 ~essoges
Ill Primer0U1put

:::;.-~Printers
':i As4ll0prt
·'iii Prt01
i;j Qpodev0001

~ fl Job Mo.nagemsnt
IP Conhguro.tmn end Service ,,.Q Networi<

a,411 Securily
~ i' Users ond Gro1,.1ps
i!l.Dotabase
:fl-~ F'tte Systems
~ '9 Muttimsdio.
f\) Iii Boci<np
tii .. tf!I: Applfcation Development

ij; I Thvrnper

: QPADRV0003
, : GUTHRif

S!V DATE

00

U!!J!!r •
r.dbr:tty

TI!!I!

FIGURE 34.11
Printers

GtlTJHlI!!
GtlTBRrJ!

LIBAAP.I

l!umbl!t

lJraT

DEl'Vice created 1or AS.¢00

Chapter 34 Operations Navigator 549

FIGURE 34.12

Displaying the List of Spooled Files for a Printer

Management DI-I (As400)
3 • MyAS/400 O:mnecions

I As400
~ Basic Opere.tions

'8 Messages
"IQ Printer Output

?;~Printers
;jAs400prt ,_.Prt01
~ Qpodev0001

± ti Job Menogemenl
~- f" C.Onfiguro.iion and Service
i.i1 (i Netwolk

<1:1Ssecurity
:.i.J 6"' Usera ond Groups

'" lllDotab•se
'.±}.;.:;~ Fife Systems
:B-i? Multimedia
ii1 Iii Backup
ctdi) Application Development
I Thumper

GVTHAIE AS400PRT

Other functions include those to start and stop printers, hold and release printers, vary off
and on printers, and reply to printer messages. Practice your navigational techniques and
determine what mouse action gives you access to these functions.

Job Management
With OpsNav's Job Management component, you can work with Jobs and Server Jobs for
a selected system. Server jobs are those jobs petforming work for a particular OS/ 400
server. Some of the supported functions include those to display jobs, hold jobs, and
delete jobs.

You can tailor the look of the job information displayed using the Options pull-down
menu. For example, you can select Sort to sort the list of jobs by one or more columns,
select Columns to specify the columns you want to display and the order in which you
want to arrange them, and select Include to specify which information you want to include.

Configuration and Service
lhe Configuration and Service component of OpsNav let5 you work with Hardware Inventory,
Software Inventory, Fixes Inventory (PTFs), and Collection Services (performance data
from multiple systems). For instance, you can view a list of hardware resources and their
operational status with the Hardware Inventory entry. One handy feature of Hardware
Inventory is the ability to manage disk units and auxiliary storage pools, as you can with
System Service Tools (using command StrSST, or Start System Service Tools).

With the Software Inventory entry, you can view a list of the software resources on your
system, along with the version and release level of each resource and the installed options.

550 Starter Kit for the IBM iSeries and AS/400

The Fixes Inventoty entty gives you a way to display and manage PTFs on your
system. This option provides some vety handy features. For instance, you can run wizards
to compare and update fixes on a group of systems against those on a model system,
send fixes to and install them on other systems, permanently install fixes, temporarily
install fixes, and remove fixes. Also among the features presented by Fixes Inventoty is
one for cleaning up the save files and cover letters associated with fixes.

The Collection Services entty lets you work with performance data. You can collect
performance data for multiple systems, view the data, and view the status on one or more
systems or groups of systems.

Network
The Network component contains many functions that let you work with network-related
issues. OpsNav categorizes these functions into various entries in Network.

With the IP Security entty, you can work with items such as IP filtering and network
address translation (NAT). IP Security also lets you set up Virtual Private Networking (VPN).

The Point-to-Point entry provides a way for you to work with connection profiles.
This ability includes Point-to-Point Protocol (PPP) and Serial Line Internet Protocol (SLIP).
Using the Modem entry in Point-to-Point, you can also work with modems and their
properties. With Point-to-Point's Connection Profiles entty, you can perform such tasks as
work with the Point-to-Point attributes for TCP/IP.

The Protocols entry contains basic TCP /IP functions as well as TCP /IP connection wizards.
You can access the wizards by right-clicking TCP /IP in the right pane and then clicking
New Interfaces. The Protocols entry provides functions such as setting TCP /IP properties,
running TCP/IP utilities, starting and stopping TCP/IP, verifying TCP/IP connections, and
working with and monitoring TCP/IP interfaces.

With the Servers entry, you can work with servers on your system, including TCP/IP
and Client Access servers. You can perform such functions as configuring servers, starting
and stopping servers, and checking server status.

The IBM Network Stations entty lets you work with IBM Network Stations and IBM
Network Station users. With this option, you can perform setup and management functions.

The Internet entty provides a list of Internet functions you can access from within
OpsNav. In addition to launching Internet applications, you can access the home page for
Internet-related functions installed on your system. The Firewall home page lets you set up
and monitor an Internet firewall. With the IBM HlTP Server home page, you can configure
the HlTP server and Secure Sockets Layer (SSL) support. The IBM Payment Server home
page lets you configure and manage the payment server. The Digital Certificate Manager
home page lets you manage the certificates used by your secure applications and users.
Using the Net.Commerce home page, you can configure the Net.Commerce server.

Security
You use OpsNav's Security component to secure your system. This entry contains
functions for using the Security Wizard, managing security and auditing settings, working
with security and auditing policies, and working with authorization lists.

Chapter 34 Operations Navigator 551

The Security Wizard makes it easy to secure your system. To access the Security
Wizard, right-dick Security and select Configure. Simply follow the instructions to
configure your system security.

The Authorization Lists entry in Security lets you work with authorization lists. You
can peiform such tasks as creating and changing authorization lists, adding users and
groups to authorization lists, and displaying the objects secured by authorization lists.

With the Security Policies entry in Security, you can set audit policies as well as
security policies. Policies are overriding values used as defaults in processing.

Users and Groups
The Users and Groups component contains functions that let you manage users and
groups. You can filter the list of users using the entries in Users and Groups. You can
select All Users, Groups, or Users Not in a Group.

Using Users and Groups, you can create, change, and delete users; add users to groups;
copy users to other systems; and create and change groups. You can use drag-and-drop
to perform tasks such as adding users to groups, moving users to different groups, remov
ing users from groups, and adding users to another system.

Database
The Database component gives you an extensive array of functions you can use to manage
DB2 database objects such as journals, tables, and views. The Database entry also contains
functions for working with services such as Open Database Connectivity (ODBC), running
Structured Query Language (SQL) statements, and monitoring SQL performance. This entry
also supports drag-and-drop.

Among the many functions provided by the Database component are the ability to
create libraries, journals, tables, views, aliases, functions, procedures, and types; to display
libraries; to display, edit, and reorganize tables; and to delete database objects. You'll find
these functions in the Libraries entry in Database.

With the ODBC Data Sources entry, you can manage ODBC data sources. You can
create data sources, change data sources, and delete data sources.

The SQL Peiformance Monitors entry gives you a way to track resources used by SQL
statements. You can use the resource usage information to determine whether your SQL
statements are peiforming as they should or need fine-tuning. This entry includes
functions to create SQL monitors, delete SQL monitors, end SQL monitors, pause SQL
monitors, and analyze the results of SQL monitors.

File Systems
The File Systems component functions let you administer integrated file system (IFS) objec..ts
as well as file shares. Selecting the File Systems entry displays a list of file systems to which
you are authorized.

The Integrated File Systems entry in File Systems provides functions to accomplish
tasks such as browsing file systems, setting permissions to objects, and creating and

552 Starter Kit for the IBM iSeries and AS/400

managing file shares. You can drag and drop files within a system or between systems and
the PC desktop.

The File Shares entry in File Systems lets you work with NetServer file shares. You
can configure NetServer by right-clicking File Shares and selecting Open NetServer from
the pop-up menu. In addition to opening and exploring file systems, you can map network
drives to your file shares.

Multimedia
The Multimedia component of OpsNav lets you use the Ultimedia System Facilities (USF)
application to store and share multimedia objects (e.g., video, audio, and graphic objects)
on the iSeries. Using the Ultimedia System Facilities entry in Multimedia, you can perform
such functions as creating, copying, and deleting multimedia objects.

Backup
With the Backup component, you can schedule and administer backup services. This entry
provides access to backup options that correspond to those on the OS/400 Backup menu.

The Policies entry in Backup includes functions for setting general backup options
and for working with daily, weekly, and monthly backups. You can define what, when,
and where the system backs up data. In addition to defining daily, weekly, and monthly
backups, you can view them.

Application Development
The Application Development component contains functions for working with application
development tools. The Interprocess Communication entry in Application Development
lets you view the types of Interprocess Communication (IPC) objects on your system.
These IPC objects include such items as Kernel Message Queues, Shared Memory, and
Semaphore sets.

The IPC properties help you identify and locate a selected IPC object. To view these
properties, click Kernel Message Queues, click Shared Memory, or expand Semaphores.
These entries all appear in Interprocess Communication.

Management Central
The Management Central component of OpsNav is a collection of system management
functions that let you more easily manage multiple systems. Because Management Central
entails a considerable number of features, we provide only a glimpse of this component
here. (For tips on obtaining more detailed information about Management Central, see
More About OpsNav," page 554.)

To use Management Central, you define a managing, or central, system whose function
it is to store Management Central data. This system connects to the PC and communicates
with the endpoint systems. Endpoint systems are the other systems in your network that
you choose to manage through the central system using Management Central. You can

Chapter 34 Operations Navigator 553

define a system that serves as a repository for information (e.g., fixes, files, folders) that
you want to send to other systems. You can also define groups of systems with which
Management Central can work.

Management Central works in conjunction with other OpsNav components. It lets you
perform tasks such as working with hardware, software, and fixes inventories; working
with fixes (PTF) management; working with collection services (performance data); working
with packages (collections of files and objects) that you can send to other systems; schedul
ing tasks; working with command defmitions (used in running commands on multiple
systems); and working with performance monitors.

You can even access Management Central information remotely using a Web browser,
a Personal Digital Assistant (PDA) with a wireless modem, or an Internet telephone. For
instance, you could remotely check systems availability or check active monitors.

Application Administration
The Application Administration component lets you control the availability of OpsNav
functions to users. You can also use this component to control the availability of functions
in other applications if those applications have defined functions that Application Admin
istration can manage.

We've already mentioned that Application Administration is a property of a system and
therefore is accessible by right-clicking the system and selecting Application Administration
from the pop-up menu. You can also access Application Administration through Management
Central by right-clicking Management Central and selecting Application Administration
from the pop-up menu. You then select the function with which you want to work.

Plug-in Support
You can enhance OpsNav by adding plug-ins -your own custom tools or applications
to the OpsNav hierarchy. Programs written in C++, Java, or Visual Basic can take advantage
of the application programming interfaces (APis) that IBM provides for use with plug-ins.
For instance, Lotus Domino provides a plug-in for managing Domino servers. When
installed, this plug-in appears in the Network component as an entry in the Servers entry.

Once you develop a plug-in, you can take advantage of support provided by Client
Access Selective Setup to distribute the plug-in to users. Whether distributing to users
within your own organization or to customers, distribution and installation of your plug-in
is simple.

If you're interested in trying your hand at writing OpsNav plug-ins, see "More About
OpsNav" for further reading options.

More Than Just a Pretty Face
You can see that OpsNav does indeed provide support for many OS/400 operational
procedures and in many cases greatly simplifies the tasks at hand. As you explore OpsNav

554 Starter Kit for the IBM iSeries and AS/400

more closely, you'll soon realize that we've touched only the tip of the iceberg. There
really is something in OpsNav for all classes of users!

IBM recommends you use OpsNav and is committed to continued support. With each
new release of the operating system, it's probably safe to expect significant OpsNav
enhancements. So, does OpsNav equate to the beginning of a GUI for the iSeries? Let's
hope so!

More About OpsNav
One option you might find useful when working with Operations Navigator (OpsNav) is its own Wel
come window (Figure 34.A). This is the OpsNav portal to help! The Welcome window is displayed
each time you start OpsNav unless you've indicated that the window is not to be displayed at start-up
time. You can also access the Welcome window by selecting Help Topics from the Help pull-down
menu on the OpsNav toolbar.

FIGURE 34.A
Operations Navigator Online Help

([) Whal can I do wih .. ?

0 Which function$ are av~able for each OS/400
release?

© Related information on the Internet

Pi Show this Help again when I open OperatiO'ls Navigator.

continued

Chapter 34 Operations Navigator 555

OpsNav:furlherReading
You can find additional OpsNav information on the Internet Following are some of the locations you

may want to visit.

M9 Cau6on
IBM is notorious for changing documentation locations. We hope the URls listed
here still work as advertised when you try them. If they don't, call IBM, not us!

iSeries Information Center
http/;Www.iseries.ibm.com/infocenter
IBM's iSeries Information Center is available on CD-ROM and on the Internet. You can access the Infor

mation Center from the OpsNav Help pull-down menu found on the OpsNav toolbar, as well as

through hyperlinks found within Client Access and OpsNav help topics. You identify the location (CD

ROM or Internet) that you want to use when accessing the Information Center using the OpsNav Help

pull-down menu. Click the link for Information Center, and then select Location; you can opt to use the

Internet, or you can specify the path for accessing information from the CD-ROM (or disk if you copied

the CD-ROM to disk).

Online Library
http://publib.boulder.ibm.com/pum;thtml/as400/online/homeeng 1.htm (for English)

http//publib.boulder.ibm.com/pubs/htm//as400/on/inelib.htm (to select a language of your choice)
You can search IBM's online library for publications containing OpsNav information. For instance, one

good source of information is the Redhook Managing A5/400 V4R4 with Operations Navigator (SG24-

5646). Even though this book is geared to V4R4, it's still a good source of general OpsNav information.
Note that the URLs given above for the Online Library aren't prefixed with "www". You can also access

the Online Library using links found at the Information Center.

Technical Studio
http/;Www.as400.ibm.com/tstudio
You can search IBM's Technical Studio for OpsNav information. You can also access Technical Studio

using links found at the Information Center.

Operations Navigator home page
http/;Www.as400.ibm.com/oper_nav
For the latest Operations Navigator information, visit this page.

continued

556 Starter Kit for the IBM iSeries and AS/400

(More About OpsNav Continued)

Management Central home page
httpi/Www.as400.ibm.com/sftsoVmgmtcentral.htm
For the latest Management Central information, visit this page.

Plug-Ins: Further Reading
You can find additional information for creating OpsNav plug-ins on the Internet. Here are some of the
locations you may want to visit.

Third-Party Plug-in Support page
httpi/Www.as400.ibm.com/oper_nav/pluginpage.htm
This page is a good source of information useful for working with plug-ins.

"Operations Navigator Plug-in Support"
httpi/www.as400.ibm.com!tstudio/opsnav/plugin/pludex.htm
This Tech Studio document provides information to help you create your own OpsNav plug-ins.

557

Further Reading

IBM Manuals
In the list below, dcx.ument5 followed by "InfoCenter" rather than an IBM document number
can be viewed online at IBM's iSeries Information Center, http://publib.boulder.ibm.com/
pubs/htmVas400/infocenter.htm. The references with document numbers are available
online at IBM's Online library site, http://publib.boulder.ibm.com/pubs/htmVas400/online/
bomeengl .btm (for English) or http://publib.boulder.ibm.com/pubs/htmVas400/onlinelib.htm
(to select a language of your choice). Most cited references are for V4R5; however, a few
are located in the V4R4 section of the Online Library. If you have trouble locating a
reference using the document number given here, check the AS400 Network's Index400
facility (http://www.as400network.com/index400), which provides a directory of IBM
documentation organized by topics, with links to the latest location of the documentation
on the Web.

Backup, Recovery and Media Services (SC41-5345)

Basic System operation, Administration, and Problem Handling (SC41-5206)

DB2 UDB for AS/400 Database Programming (InfoCenter)

DDS Reference (InfoCenter)

File Management (Inf oCenter)

OS/400 Backup and Recovery (SC41-5304)

OS/400 CL Programming (SC41-5721)

OS/400 CL Reference- Part 2 (SC41-5724)

OS/400 CL Reference- Part 4 (SC41-5726)

OS/400 Communications Configuratkm (SC41-5401)

OS/400 Security- Reference (SC41-5302)

OS/400 Work Management (SC41-5306)

OS/400 Work Management AP!s (SC41-5878)

Security- Enabling/or C2 (SC41-5303)

Software Installation (SC41-5120)

System AP! Reference (SC41-5801)

TCP/IP Configuration and Reference (SC41-5420)

TCP/IP Fast;patb Setup (SC41-5430)

Tips and Tools for Securing four AS/400 (SC41-5300)

558 Starter Kit for the IBM iSeries and AS/400

I BM Red books
IBM's Redbooks are available online at http://www.redbooks.ibm.com.

ASl400 Internet Security: Protecting Your ASl400 from HARM on the Internet (SG24-4929)

An Implementation Guide for ASl400 Security and Auditing: Including C2, Cryptography,
Communications, and PC Connectivity (GG24-4200)

Managing AS/400 V4R4 with operations Navigator (SG24-5646)

IBM Web Sites
Backup, Recoveiy and Media Services (BRMS)

http://www.as400.ibm.com/seroice/brms.htm

Client Access
http://www.as400.ibm.com/clientaccess

Global Services (AS/400 Alert)
http://www.ibm.com/seroices

iSeries and AS/ 400 Information Center
http.//publib.boulder. ibm.com/pubslhtmVas400/infocenter.htm

iSeries and AS/400 Technical Support
http://www.as400seroice.ibm.com

Management Central
http://www.as400.ibm.com/iftsoVmgmtcentral.htm

Online Libraty
http:! /publib.boulder. ibm.com/pubslhtmVas400/online/homeeng 1.htm (for English)
http://publib.boulder.ibm.com/pubslhtmVas400/onlinelib.htm (to select a language of

your choice)

Operations Navigator
http://www.as400.ibm.com/oper_nav

"Operations Navigator Plug-in Support"
http.//www.as400.ibm.com/tstudio/opsnav/plugin/pludex.htm

Security Advisor
http.//www.as400.ibm.com/tstudio/secure1/index_av.htm

Technical Studio
http://www.as400.ibm.com/tstudio

Third-Party Operations Navigator Plug-in Support
http://www.as400.ibm.com/oper_nav/pluginpage.htm

Further Reading 559

Articles
For a searchable archive of articles providing more detail on the topics covered in this
book, see the IVEWS/400 article database at http://wuw.as400network.eom (in the Tech
Resources section).

Books
Conte, Paul. Database Design and Programming for DB2/400. 29th Street Press, 1996.

Cravitz, Mike. !IE by E~ample. NEWS/400 Books, 2000.

Dawson, Mike, and Mike Manto. OPNQRYF by Example. NE\VS/400 Books, 1999.

Fottral, Jerry. Mastering the AS/400, 3rd ed. 29th Street 2000.

Meyers, Biyan, and Dan Riehl. Control Language Programming for the AS/400, 2nd ed.
29th Street Press, 1997.

Nelson, Lynn. Creating CL Commands by Example. NEWS/400 Books, 1999.

Rothenbuehler, Heidi, and Patrice Gapen. Introduction to AS/400 System operations,
2nd ed. 29th Street Press, 2000.

Ryan, Michael. TCP/IP and the AS/400. NEWS/400 Books, 1999.

Woodbuiy, Carol, and Wayne Madden. Implementing AS/400 Security, 4th ed.
NEWS/400 Books, 2000.

Index

A
Access-path protection, 256
Activation-group-level ovenide, 341

defined, 341
deleting, 355
in ordering example 1, 348
in ordering example 2, 352
proteL'ting ovenides from, 353-354
in sequence. 345
See also File ovenides

Activation groups, 340-341
defined, 341
different, 341
elements, 341
same, 341
See also File ovenides

Active jobs, 26
Activitv level
~ storage pool, 25
system, maximum, 25-26

Add Spooled File list panel, 284
AddAJE (Add Autostart Job Entry)

corrunand, 313
AddCmnE (Add Communications Entry)

command, 312
AddJobQE fAdd Job Queue Entries)

command, 310
AddMsgD (Add Message Description)

corrunand, 121
AddOutQME (Add OutQ Monitor Entry)

corrunand, 163
command processing program

AddOutQMlB, 178
defined, 163
panel, 174
source, 175-177
validity-checking program

AddOutQMZA, 179-182
validity-checking program

AddOutQM2B, 182-183
AddPFM (Add Physical File Member)

command, 330, 331
AddPJE (Add Prestart Job Entry)

command, 313
AddRtgE (Add Routing Entry) command, 315
AddTCPHTE (Add TCP/IP Host Table

Entrv) command. 538
defined, 538 .
prompt, 539

AddTCPifc (Add TCP /IP Interface)
command, 532-534
prompt, 533
specifying, 534

AddWSE (Add Work Station Entrv)
command, 306 '

'All public authority set, 71

All keyword, 366, 367, 368
'AllObj authority

defined, 11
need for, 38
security level 20 and, 7
security level 30 and, 8
See also Special authorities

An Implementation Guide for AS/400
Security and Auditing- Including C2,
Cryptography, Communications, and PC
Omnectii~ty, 12

AP!s, 403-426
%Bin function and, 404
calling, 403
data support, 404
error format ERRCOlOO. 406-407
error handling, 407-412
error structure, 406
error structure alternatives, 408-411
passing structure as input to, 405
QDCRDevD {Retrieve Device

Description), 412, 415
QEZSndMg (Send Message), 107-108,

472-474
QMHRcvPM (Receive Program

Message), 485
QMHSndPM (Send Program Message), 485
QRcvDtaQ (Receive Data Queue), 160
QUSCl1:US (Create User Space), 242
QUSRtvUS (Retrieve User Space), 242
QWCL.'icdE (list Job Schedule Entries). 242
reporting errors with, 405-412
spooled file, 271
structures, 404-405
used, 403

AS/400 Alert, 101
AS/400 Internet Security: Protecting Your

AS/400 from HARJ1 on the Internet, 12

'Audit authoritv
controlling, 39
defined, 11

Aut parameter, 73
Authorities

data, 69
field, 69
object, 69
planning, 12
public, 69- 75
See also Special aufhori!ies

Autoconfiguration, 23

561

Automatic cleanup, 213-216
functions, 215
objects, 215
options, 214-216
procedure, 213-216
See also Cleanup

Automatic installation, 81-82
items replaced during, 87
operation environment and, 87

Autostart job entries, 297, 313
adding, 313
attributes, 313
defined, 313
routing data, 322
See also Work entries

Auxiliary storage pools (ASPs), 13-14
as availability option, 256-257
defined, 13, 256
flexibility, 257
as part of backup plan, 19
recovery advantage, 256
system, 13
user, 14, 19

Availability, 255
Availability options, 255-258

access-path protection.
auxiliary storage pools,
clustered systems. 258
comparing, 255

B

cast justification, 255
defined, 255
device parity protection, 257
dual systems, 258
journal management, 255-256
mirrored protection, 257 -258
terms, 255
types of, 255

Backup, Recovery and Media Services.
SeeBRMS

Backup, Recovery and Media Seruices, 293
Backup and recovery plan, 12-15, 253-277

ASPs, 13-14
See also Pre-installation planning

Backup control groups, 281, 282
Backup list

defined, 283
spooled file entries in, 284- 285
updating, 284

Backup outage, 269
eliminating, with save-while-active, 270
reducing, with save-while-active, 270

Backup policies, 281, 287-288
creating, 287 - 288
defined, '2B7

562 Starter Kit for the IBM iSeries and AS/400

running, 288
scheduling, 289
types of, 287
See also Policies

Backup strategy, 253-262
alternative, 262
availability options and, 255-258
complex, 261-262
designing, 253-254
example, 259
good, verifying, 253
implementing, 258-262
medium, 259-261
pieces, fewer, 254
simple, 258-259
types, 254
volume naming and, 274-275
See also Recovery

Backups
daily, 258
Lotus Notes Servers, 280, 282- 283
media, preparing and managing, 273-277
PTF installation and, 97
scheduling, 258
spooled file, 271-272, 280
unattended, scheduling, 288-289
weekly, 258
window size, 253

Base storage pool, 298
maximum activity level, 25
maximum size of, 25
minimum size of, 25

Basic System operation, Administration,
and Problem Handling, 23, 99, 226

Batch jobs, 132
CL code for communicating with user

of, 468-469
routing data determination, 316
routing data for, 320-322
See also Jobs

Batch work environment, 310-311

BchJob (Batch Job) command
InqMsgRpy parameter, 112
Log parameter, 130-131

%Bin function, 404
BOOTP server (BOOTstrap Protocol), 520

Break messages, sending, 471-483
Break-handling program, 117-121

control to, 117
default, 117
defined, 111, 117
functioning, 117
initial program, 120-121
sample, 118-119
See also Message handling

BRMS, 279-293
authority access levels, 289
backup control groups, 281, 282

backup list, 283
benefits, 279
data archive, 280
defined, 262, 279
dynamic data retrieval, 280
features, 280
flexible backup options, 280
getting started with, 280- 282
housekeeping, 292- 293
introduction, 279-280
Lotus Notes Servers backup, 280,

282-283
maintenance operation, 292- 293
media, 280, 281
media identifier, 280, 281
media management, 280, 292
Operations Navigator interlace, 285- 289
package, 283
parallel save, 280, 282
policies, 281
recovery defaults, 285
resources, 293
restoring spooled files saved with, 285
restricted-state saves, 283
saving! restoring spooled files and, 272, 284
special values, 281
spooled file backup, 280, 283-285
step-by-step recovery infonnation, 279
storage alternatives, 280
terms, 280-281

BRMS OpsNav, 285-289
backup policies, 287-288
backup/restore scheduling, 288-289
defined, 285
functional differences, 286
green-screen interlace, 286
item backup, 288
item restoration, 288
terminology differences, 286
using, 287 - 289

BRMS security
access levels, 289- 290
Advanced Media Activities, 291
Auxiliary Storage Pools, 291
Backup Control Groups, 290
Backup Lists, 290
Backup Policy, 290
Basic Backup Activities, 290
Basic Media Activities, 290
Basic Movement Activities, 291
Basic Recovery Activities, 290
Basic System-related Activities, 291
Devices, 291
functions, 289- 292
Initialize, 292
Log, 292
Maintenance, 291
Media Classes, 291
Media Infonnation, 291
Media Policies, 291
Move Policies, 291

c

Move Verification, 291
options, 290- 292
Recovery Policy, 290
System Policy, 291

Call levels, 339
Call message queues, 485-486

as basis for job log, 486
creation, 485
sample, with messages, 499
structure, 486
See also Message queues

Call stack, 339-340
Call-level override, 341

defined, 341
deleting, 355
in ordering example 1, 347-348
in ordering example 2, 351-352
in override sequence, 344 - 345
protecting overrides from, 353-354
See also File overrides

CD-RO Ms
arranging, 87
examining, 79
processing, 81

CFGTCP (Configure TCP/IP) menu, 532
illustrated, 532
options, 537

'Change authority set, 71
Change Cleanup Options panel, 128, 129,

214-216
accessing, 214
authority to use, 214
illustrated, 214
options, 215
StrTime parameter, 214
"System journals and system logs," 217

Change Passwords for IBM-Supplied Users
panel, 22

Checkpoint image, 269
ChgCmdDft (Change Command Default)

command, 321, 517-518
changing system command parameter

defaults with, 518
defined, 517
for standards control, 518
using, 517-518

ChgDtaAra (Change Data Area)
command, 243

Chgfob (Change Job) command, 136
InqMsgRpy parameter, 112
Log parameter, 130- 131

ChgfobD (Change Job Description)
command
InqMsgRpy parameter, 112
JobD parameter, 132
Log parameter, 130-131

Chg.~lsgD (Change Message Description)
command, 121

ChgOutQ (Change Output Queue)
command
DtaQ parameter, 158
prompt screen, 159

ChgPnF (Change Printer File) command, 126
Hold parameter, 127, 130
OvrFlw P'Jrameter, 127
PageSize parameter, 127
Schedule parameter, 127

ChgShrPool (Change Shared StoFage Pool)
command, 298

ChgSplFA (Change Spooled File Attributes)
command, 127, 158

ChgSysVal (Change System Value)
command, 20, 221

ChgTCPDmn (Change TCP/IP Domain)
command, 534

ChgUsrPrf (Change User Profile) command,
33, 518
CrtUsrPrf command vs., 46
password changing with, 47
use authority, 46

ChgVar (Change Variable) command, 429,
459, 460

ChgWtr (Change Writer) command, 152
ChkObj (Check Object) command, 5(X)

CL
data support, 404
file positioning, 432-434
procedural nature, 427
reasons for using, 427
user-written subfiles and, 452

CL commands
AddAJE (Add Autostart Job Entry), 313
AddCmnE (Add Communications

Entry), 312
AddJobQE (Add Job Queue Entries), 310
AddMsgD (Add Message Description), 121
AddOutQME (Add OutQ Monitor

Entry), 163, 174, 175-177, 179-183
AddPFM (Add Physical File Membe1-),

330, 331
AddPJE (Add Prestart Job Entry), 313
AddRtgE (Add Routing Entry), 315
AddTCPITTE (Add TCP/IP Host Table

Entryl, 538, 539
AddTCPifc (Add TCP/IP Interface),

532-534
AddWSE (Add Work Station Entry), 306
BchJob (Batch Job), 112, 130-131
ChgCmdDft (Change Command

Default), 321, 517-518
ChgDtaAra (Change Data Area), 243
Chg!ob (Change Job), 112, 130-131, 136

Chg!obD (Change Job Description), 112,
130-131, 132

Chg.~gD (Change Message
Description), 121

ChgOutQ (Change Output Queue),
158, 159

ChgPrtF (Change Printer File), 126,
127, 130

ChgShrPool (Change Shared Storage
Pool), 298

ChgSplFA (Change Spooled File
Attributes), 127, 158

ChgSysVal (Change System Value). 20, 221
ChgTCPDmn (Change TCP/IP

Domain). 534
ChgUsrPrf (Change User Profile), 33, 46,

47, 518
ChgVar (Change Variable), 429, 459, 460
ChgWtr (Change Writer), 152
ChkObj (Check Object), 506
ClrjobQ (Clear Job Queue), 230
ClrOutQ (Clear Output Queue), 130
OrPFM (dear Physical File Member), 5o6
CpyF (Copy File), 428
CpySplF (Copy Spooled File), 158, 272
CpyUsr, 50-58, 59, 66-67
CrtDev Ptr (Create Device Description

(Printer)), 145
CrtDstL (Cr~ate Distribution List), 109
CrtDtaQ (Create Data Queue), 158, 159
CrtDupObj (Create Duplicate Object),

165, 235-242, 516-517
CrtjobD (Create Job Description), 112,

130-131
CrtJobQ (Create Job Queue), 310
CrtLF (Create Logical File), 369-370
CrtMsgQ (Create Message Queue), 485
CrtOutQ (Create Output Queue),

145-149, 513
CrtOutQMon (Create Output Queue

Monitor), 162, 169, 170-171
CrtPF (Create Physical File), 331, 506
CrtPrtF (Create Printer File), 137
CrtSrcPF (Create Source Physical File), 334
CrtUsrPrf (Create User Profile), 33,

39-45, 319
DclF (Declare File), 427-428, 430, 441
DltlicPgm (Delete Llce~<;ed Program), 222
DltOutQMon (Delete Output Queue

Monitor). 163, 194, 195-196
DltOvr (Delete Override), 354-355, 357
DltUsrPrf (Delete User Profile), 33, 47-48
DspFD (Display File Description),

124-126
DspPFD (Display File Field Descrip

tion), 331
DspIPAddr (Display IP Address), 416, 419,

420-442
Dspjob (Display Job), 128, 487
DspJobLog (Display Job Log), 128, 487

Index 563

DspLib (Display Library), 150, 220
DspLnk (Display Link), 220, 221
DspI.og (Display Log), 105, 247, 248, 249
DspMsg (DLsplay Message), 220, 221
DspMsgD (Display Message Descrip-

tion), 114
DspObjAut (Display Obje<.t Authority), 427
DspObjD (Display Object Description),

249-250, 427, 514-516
DspSbsD (Display Subsystem Descrip

tion), 299, 309
DspSfwRsc (Display Software

Resources), 222
EdtObjAut (Edit Object Authority), 149
EndOutQMon (End Output Queue

Monitor), 164, 204, 205-206
EndTCP (End TCP/IP), 536
GrtObjAut (Grant Object Authoriry), 149
InzTap (Initialize Tape), 274
logging, 1188
MonMsg (Monitor Message), 430, 497,

504-510
MovObj (Move Object), 427
MrgTCPHT (Merge TCP/IP Host

Table), 537
NetStat (Network Status), 536
OpnDbF (Open Database File), 372, 382
OpnQryF (Open Query File), 356. 428,

441, 453-464
OvrDbF (Override with Database File),

332, 382, 428
OvrDktF (Ovenide with Diskette File), 338
OvrDspF (Ovenide with Display File), 338
OvrlCFDevE (Override !CF Program

Device Entry), 356
OvrlCFF (Override with ICF File), 338
OvrMsgP (Override Message File), 357
OvrPrtF (Override with Printer File), 338,

357, 358-359
OvrSavF (Override with Save File), 338
OvrTapF (Override with Tape File), 338
PnDbjAut (Print Object Authorities),

435-439
PrtSyslnf (Print System Infonnation), 266
PwrDwnSys (Power Down System), 88, 98
RdSplStg (Reclaim Spool Storage), 217
RdStg (Reclaim Storage), 218-219,

220-221
RcvF (Receive File), 427, 443
RcvMsg (Receive Message), 117,

497-504, 510
reasons for using, 427
RgzDLO (Reorganize Document Library

Object), 225
RmvMsg (Remove Message), 450, 493
RMVOutQ!\.1E (Remove OutQ Monitor

Entry), 163, 184-193
Rrt]ob (Reroute Job), 322
RtvDtaAra (Retrieve Data Area), 243

564 Starter Kit for the IBM iSeries and AS/400

RIVIPAddr (Retrieve IP Address), 412,
413-415 .

RtvJobA (Retrieve Job Attributes), 468
RIVUsrPif (Retrieve User Profile), 48-50
RunRmtCmd (Run Remote C'..om-

mand), 415
RunSQLSrm (Run SQL Statements),

434-435
RvkObjAut (Revoke Object Authority), 149
Sav (Save), 264, 265, 269, 271
SavBRM (Save Object using BRM), 283
SavCfg (Save Configuration), 265
SavChgObj (Save Changed Objects), 259,

268, 271
SavDLO (Save Dcx:ument Llbraiy Objects),

259, 271
SavLib (Save Libra!)'), 261, 264, 271
SavLicPgm (Save Licensed Program), 222
SavSecDta (Save Security Data), 265
SavSys (Save System), 264, 265
SbmJob (Submit Job), 130-131, 135, 136,

243-244, 320-322
simplifying, 400
SltCmd (Select Command), 513
SndBrkMsg (Send Break Message),

106-107, 465
SndBrklvlsgU (Send Break Message to

User), 108, 471-483
SndF (Send File). 443
Sndiv!sg (Send Message), 103-106, 465
SndNetMsg (Send Network Message),

108-109, 465
SndNetSplF (Send Network Spooled

File), 141
SndPgmMsg (Send Program Message),

484, 488-493
SndPTFOrd (Send PTF Order), 94-96
SndRcvF (Send/Receive File). 443
SndTCPSplF (Send TCP/IP SPooled

File), 537
SndUsrMsg (Send User Message), 16o,

465-469
StrBkuBRl\il (Start Backup using

BRM), 283
StrOutQMon (Start Output Queue

Monitor), 163-164, 199, 200-201
StrPrtWtr (Start Printer Writer), 151, 152
StrQMQI)' (Start Que!)' Management

QUel)'), 434, 441
StrRmtWtr (Start Remote Writer), 151
StrSbs (Start Subsystem), 301
StrTCP (Start TCP/IP), 535, 536
StrTCPFTP (Start TCP/IP FI'P), 537
StrTCPSvr (Start TCP/IP Server), 536
StrTCPtelN (Start TCP/IP Telnet), 537
TfrJob (Transfer Job), 307, 322, 325
VfyTCPCnn (Verify TCP/IP Connection),

536. 537
WrkActJob (Work with Active Jobs), 91

WrkCmtDfn (Work with Commitment
Definitions), 85

WrkHldOptF (Work with Held Optical
Files), 85

WrkJobQ (Work with Job Queue),
230, 516

WrkJobSchE (Work with Job Schedule
Entries), 231

WrkLBRM (Work with Lists using
BRM). 284

WrkMsgD (Work v.ith Message
Description), 121

WrkObjOwn (Work with Object
Ownership), 221

WrkObjOwn (Work with Objects by
Owner), 48

WrkObjPGp (Work with Objects by
Primal)' Group), 48

WrkOutQ (Work with Output Queues),
143-145. 151, 516

WrkOutQME (Work with Output Queue
Monitor Entries), 164

WrkOutQMon (Work with Output
Queue Monitor), 164

WrkSbmJob (Work with Submitted
Jobs), 516

WrkShrPool (Work with Shared Pools),
298, 299

WrkSplP (Work with Spooled File), 141,
153-155

WrkSplFBRM (Work with Spooled Files
using BR"1), 285

WrkTCPSts (Work with TCP/IP Network
Status), 536

WrkUsrPrf (Work \'>ith User Profiles), 50
CL programming, 387-401

comments, 397
miscellaneous suggestions, 401
shortcut dos and don'ts, 400
statement alignment, 398-399
style, 387
stylistic standard, developing, 390-396
variable names and case, 399-400

CL programs
database files and, 427-439
display files and, 441-452
EZCHGDFfC, 387 -390
EZChgDftC stylin', 391-396
QEZUsrClnp, 227
record output, 434-435
sample, using SndCsrMsg, 470-471
ShrPrtOlA, 377

CL statements
alignment, 398-399
beginning, 398
command parameters, 398
continuation characters, 399
indentation, 398

CL variables
& prefix, 429
changing, 429
conC'atenating, 46o
defined, 429
QrySlt and, 459-462

Classful IP addressing, 524-526
Classless Internet Domain Routing

(CIDR), 528
Classless IP addressing, 526- 529
Cleanup

automatic procedures, 213-216
disk storage, 213-227
histOI)' log, 250-251
journal receivers, 222
manual procedures, 216-227
for OfficeVision users, 216
Operational Assistant, 213-216
options, changing, 214-216
system, 82-83

Cleanup Tasks menu
accessing, 213
"Change cleanup options," 214
illustrated. 213
"Start cle-anup at schedule time," 216

Client Access service pack information, l 01
ClrJobQ (Clear Job Queue) command, 230
ClrOutQ (Clear Output Queue) com-

mand, 130
ClrPFM (Clear Physical Pile Member) com-

mand, 506
Clustered systems, 258
Collect Disk Space Information prompt, 224
Command processing programs (CPPs)

CnUsrOOl, 65
DltOutQMlA, 195-196
Dsp!PAddrC, 419, 422-426
F.ndOutQlA, 205-206
PrtObjAutl, 435-436, 437-439
RmvOutQMlA, 184-186
RmvOutQMlB, 187
RmvOutQMlC, 187
SndBrkMsgC, 481-483
StrOutQMlA, 200-201

Command-level message monitoring, 506
Comments, 397
Communications entries, 298, 311-312

adding, 312
attributes, 311
defined, 311
Dev attribute, 311
DftUsr attribute, 312
JobD attribute, 312
MaxAct attribute, 312
Mode attribute, 312
Rmtl..ocName attribute, 311-312
routing data, 322
See also Work entries

Communications recovery limit, 24
Comp keyword, 365
Completion messages, 492
Complex backup strategy, 261-262, 2:79
ConCat keyword, 366
Concatenation operators, 400
Concurrent saves, 261, 267-269

of DLOs, 268
of libraries, 267 - 268
of objects, 267 - 268
of objects in directories, 269

Continuation characters, 399
Continuous availability, 255
Copper processor technology, 1
(',orrecrive service, 102
CpyF (Copy File) command, 428
CpySplF (Copy Spooled File) command,

158, 272
CpyUsr command

creation infonnation, 66-67
defined, 50
as framework, 59
global error trapping, 59
source, 50-58
tasks, 59

CrtAut attribute, 72
for default public authority

detennination, 74
defined, 72
effect of data values for, 73

CrtDevPtr (Create Device Description
(Printer)) command, 145

CrtDstL (Create Distribution List)
command, 109

CrtDtaQ (Create Data Queue) com
mand, 158
MaxLen parameter, 158
prompt screen, 159

CrtDupObj (Create Duplicate Object)
command, 165, 516-517
for copying command, 517
parameters, 517

CrtDupScdE (Create Duplicate Job
Schedule Entry) command, 235
ease of use, 242
NewName parameter, 235
processing program CrtDupSElA,

236-242
QCSCrtUS API, 242
QUSRtvUS AP!, 242
QWCLScdE system API, 242
source, 235-236
user space layouts, 242
using, 235

CrtJobD (Create Job Description) command
InqMsgRpy parameter, 112
Log parameter, 130-131

CrtJobQ (Create Job Queue) command, 310
CrtLF (Create Logical File) command,

369-370
DtaMbrs parameter, 369, 370
MaxMbrs parameter, 369
Mbr parameter, 369

CrtMsgQ (Create Message Queue) com
mand, 485

CrtOutQ (Create Output Queue)
command, 145, 513
Aut parameter, 149
AutChk parameter, 149
configuration JYarameters, 148
DspDta parameter, 148-149
DtaQ parameter, 158
FileSep parameter, 147-148
JobSep parameter, 147
MftrypMdl parameter, 148
OprCtl parameter, 149
panel, 146-147
parameter categories, 145
procedural parameters, 147-148
RmtSys parameter, 148
security parameters, 148-149
Seq parameter, 147
Transform parameter, 148
using, 145
WsCst parameter, 148

CrtOutQMon (Create Output Queue Monitor)
command, 162
command processing program

CnOutQMlA, 170-171
defined, 162
Monitor name parameter, 162
panel, 169
source, 169
validity-checking program CrrOutQM2A,

171-174
CrtPF (Create Physical File) command,

331, 5o6
CrtPrtF (Create Printer File) command, 137
CrtSrcPF (Create Source Physical File) com

mand, 334
CrtUsrOOl command processing program,

62-65
global error trapping, 65
source, 62
tailoring, 65
tasks, 65

CrtUsr002 RPG program, 65-66
CrtUsr command

creation infonnation, 66-67
parameters, 61
source, 60-61

Index 565

CrtUsrPrf (Create User Profile) command,
33, 319
CurLib parameter, 39-40
Dlvry parameter, 44
DspSgnlnf parameter, 41-42
GrpAut parameter, 43
GrpPrf parameter, 42
Inl\fou parameter, 39-40
In!Pgm parameter, 39-40
JobD parameter, 43-44
LmtCpb parameter, 40-41
LmtDevSsn parameter, 42
MsgQ parameter, 44
OutQ parameter, 44-45
Owner parameter, 42-43
parameters, 34
Pa&word parameter, 35
PrtDev parameter, 44-45
PwdExp parameter, 36
PwdExpltv parameter, 42
sample, 46
sample parameter values, 46
Sev parameter, 44
SpcAut parameter. 36-39
Status parameter, 36
SupGrnPrf parameter, 43
Text parJmeter, 45
UsrCls parameter, 36-39
UsrPrf parameter, 35

Cumulative PTF package, 93

D
Data archive, 280
Data area

creating, 141
problem examples, 142
rules, 141

Data authorities
defined, 69
individual, 71
list of, 70
See also Authorities

Data Description Specifications (DDS), 334
for display file UserMenuF, 441-443
for logical file HREMFI.3, 365
for logical file HRMFL2, 363
for physical file HREMFP, 362
for sample file TestPF, 428

Data members, 331-333
defined, 331
multiple, 331

Data queues
associated with output queues, 157, 158
creating, 158
layout for output queue entries, 158
maximum entry length, 158
name specification, 158

Data types, 403-404

566 Starter Kit for the IBM iSeries and AS/400

Database files, 329, 334
CL fragment for processing, 430-431
CL processing rules, 433
CL programs and, 427-439
cleanup, 216
defined, 334
organization, 332
reading, 430-432
Share attribute, 371
shared, example, 373-376
subtypes, 329
See also File types; Logical files;

Physical files
DB2 UDB for ASl400 Database

Programming, 370
DdF (Declare File) command, 427-•128

defined, 427
for identifying display files, 441
implementation rules, 428, 433
placement, 428
RcdFmt parameter, 443
syntax, 427 -428

DD!v! files, 336, 454
defined,
field descriptions, 331
implementation, 336
Share anribute, 371
subtype, 329
See also File types

DDS Reference, 123
Dedicated Server for Domino, 1
Default reply, 121-122

defmed, lll
specifying, 121
use circumstances, 121
using, 122
See also Message handling

Deleting
file overrides, 354-355
journal receivers, 222
licensed program products, 222
objects, 82
PTF save files and cover letters, 82
save files, 223
spooled files, 82
unnecessary licensed programs, 82-83
unused objects, 223-225
user profiles, 33, 47 -50

Delivery modes, 105-106
*Bre.ik, 105-106, 117
•oft, 106
*Hold, 106
'Notify, 106

Device files, 329, 335-336
defined, 133
diskene files, 335
display ftles, 33'i
!CF files, 335-336

printer files, 335
Share attribute, 371
subtypes, 329
tape files, 335
See also File types

Device names
automatic configuration and, 16
example, 16
naming convention, 15-16

Device parity protection, 15, 257
Diagnostic messages, 492
%Digit<; fun<.'tion, 463
Disk protection, 15
DL'ik Space Tasks menu, 224
Disk storage cleanup, 213-227

automatic proc'edures, 213-216
manual procedures, 216-227
need for, 213
Operational Assistant, 213-216
options, 214-216

Diskette mes, 335
Display files

CL compiler listing, 444
CL examples, 445-451
CL programs and, 441-•i52
declaring, 443
defined, 335
DspIPAddrD, 417
with error subfile, 450-451
identifying, 441
with message subfile, 449-450
record formats, 443
Sample User Menu example, 445-449
UserMenuF, 441-443

Display History Log Contents panel, 248
Display Install History panel, 89
Display Job Schedule Entry Detail<; panel, 232
Distributed Data Management. See DDM files
DltLlcPgm (Delete Licensed Program) com-

mand, 222
DltOutQMon (Delete Output Queue Monitor)

command, 163
command processing program

DltOutQMlA, 195-196
defined, 163
panel, 194
source, 194
validity-checking program Dlt0utQM2A,

196-198
DltOvr (Delete Override) command,

354-355, 357
DltUsrPrf (Delete User Profile) command, 33

OwnObjOpt parameter, 47
parameters, 47-48
PGpOpt parameter, 48

Document library objects (DLOs)
cleanup, 216
concurrent saves of, 268
reorganizing, 225
saving, 259

DOD C2 security, 8-9
Do-it-yourself routing, 322-327
Domain name server (DNS), 538
Domain names, 534
Dotted-decimal notation, 521
DspFD (Display File Description) com

mand, 124-126
DspFFD (Display File Field Description)

command, 3.~l
DsplPAddr (Display JP Address) com

mand, 416
defined, 416
Dsp!PAddrC command processing

program, 419, 422-426
DspIPAddrD display file, 417
DspIPAddrV validity-checking program,

419, 420-442
output, 416
panel, 418-419
source, 419

Dsp!PAddrC command processing
program, 419, 422-426
beginning of, 425
defined, 419
device list processing, 425
exceptions monitoring, 426
source, 422-425

DspJob (Display job) command, 128, 487
DspJobLog (Display Job Log) command,

128, 487
DspLlb (Display library) command, 150, 220
Dsplnk (Display link) command, 220, 221
DspLog (Display Log) command, 105, 220

defined, 247
Job parameter, 249
Log parameter, 249
MsgID parameter, 249
Output parameter, 249
panel, 248
parameters, prompting for, 247
Period parameter, 249
syntax, 247

DspMsg (Display Message) command,
220, 221

DspMsgD (Display Message Description)
command, 114

DspObjAut (Display Object Authority) com
mand, 427

DspObjD (Display Object Description)
command, 249-250, 427
defined, 249

Detail parameter, 516
entering, 514-515
with keyword<;, 515
Object parameter, 514
ObjType parameter, 515
Output parameter, 516
panel, 250, 514
prompting, 514
syntax, 249, 515

DspShsD (Display Subsystem Description)
command, 299, 309

DspSfwRsc (Display Software Resources)
command, 222

Dual systems, 258
Dynamic select/ omit, 368-369
DynSlt keyword, 366, 368-369

E

coding, 368
defined, 368
overhead reduction, 369

EdtObjAut (Edit Object Authority)
command, 149

Education plan, 5
End-0f-file condition, 431 -432
EndOutQMon (End Output Queue

Monitor) command, 164
command processing program

EndOutQMlA, 205-206
defined, 164
panel, 204
source, 204
validity-checking program

End0utQM2A, 207 -209
EndTCP (End TCP/IP) command, 536
Error subfiles, 450-451

defined, 4 50
indicating, 450
sample display, 451

ErrSfl keyword, 450
Escape messages, 492
eServer family, 1
Estimated Storage Requirements for System

ASP panel, 83
Ethernet networks, 520
'Exclude authority set, 71
EZCHGDFTC CL program, 387-390

F

defined, 387
EZChgDftC stylin' program vs., 391-3%
source, 387 - 390
See also CL programming

Field authorities
defined, 69
list of, 70

File description
levels, 330, 330-331
subtype, 330

File overrides, 337-359
activation-group-level, 341, 345, 348, 352
call-level, 341, 344-345, 347-348, 351-352
commands, 337 - 338
commands that allow (not Mbr('All)), 359
commands that allow (SrcFile and

SrcMbr), 358
commands that ignore, 358
defined, 337
deleting, 354-355
examples, 338-339
explicitly removing, 354-355
function of, 337-339
jolrlevel, 341-342, 345, 349-351, 353
lurutations, 337
merged, 344
miscellanea, 355
multithreaded jobs and, 357
non-file, 356
OpnQryF command and, 358
ordering, 344-353
performing, 337
prerequisites, 339-341
protecting, 353-354
for redirection, 357
rules, 341-355
same file multiple times, 342-344
save and restore operations and, 359
scope of open files, 356
scoping, 341-344
system commands and, 355, 358-359

File separators, 148
File sharing, 3 71- 385

application performance and, 381-385
cursor, 372-373
database file example, 373-376
examples, 373-381
fundamentals, 371-373
ODPs and, 371-373, 381
primer file example, 376-380

File structures, 329-336
description levels, 330-331
fundamentals, 329-331

File types, 329, 334-336
database files, 334
DOM files, 336
device files, 335-336
save files, 336
source files, 334

Files
database, 373-376, 427 -439
di<iplay, 441-451
externally defined, 428-429
logical, 361-370
physical, 164, 225, 333, 362, 506
positioning, 432-434

printer, 123-127
program-described, 429
save, 329, 336, 371

Index 567

source, 165, 329, 333-334, 371
First-time sign-on, 20-25
FTP (File Transfer Protocol), 519
Full synchronization, 269
Functional Usage Model

G

accessing, 289
defined, 289
item lists, 289

Gateways, 521
Global error handler, 510
Global message monitoring, 506-508

defined, 506
illustrated, 507
implementing, 507
message IDs and, 507

Go LicPgm command, 88
Group profiles

authority specification, 43
defined, 42
multiple assignment, 43
naming, 42
object ownership, 42-43
parameters, 42-43
passwords, 42
See also User profiles

GrtObjAut (Grant Object Authority)
command, 149

H
HARDWARE (Hardware Resources)

menu, 530
High availability, 255
HIPER group package, 84, 90, 93
History log, 247 - 251

benefits, 251
cleanup, 250-251
defmed, 105, 247
displaying contents of, 247- 249
housekeeping, 249-251
learning from, 247
as management tool, 251
record elements, 247
reviewing, 251
sending messages to, 105

Host ID, 523
Host table

defined, 538
entry, 538

HTI'P server (HyperText Transfer
Protocol), 519

568 Starter Kit for the IBM iSeries and AS/400

IBM online librnry, 555
IBM Technical Studio, 555
Informational messages, 104, 131

sending, to message queues, 492
specifying, 467
See al.so Messages

Inquiry messages, 104-105
reply, 469
sending, to message queues, 492
SndBrkMsgU support, 475
specifying, 467
See al.so Messages

Install Licensed Progrnm panel, 90
Install progrnm

compiling, 165
executing, 166
installation, 166-168

Installation
automatic, 81-82
before, 3-18
checklist, 1-2
first steps after, 19
Install progrnm, 166-168
license keys, 90
manual, 82
new release, 77 -91
Output Queue Monitor Utility, 165-168
PTF, 96-99
verifying, 88-89

Installation plan
benefits, 3
developing, 3-5
parnllel running question, 5
requirements, 3
sample, 4
time frame, 3
See al.so Pre-installation planning

Installation planning checklist, 78-87
automatic/manual decision, 81-82
document system changes, 84
fixes, 84
illustrated, 78
INS/IXS shutdown, 85
installation-day tasks, 78, 85-87
order verification, 79-81
pending operdtions resolution, 85
pre-installation tasks, 78-85
PTF application, 82
storage verification, 83-84
system cleanup, 82-83
system integrity verification, 86-87
system save, 84-85
system values, checking, 87

Integrated Language Environment (ILE),
372, 497

Integrnted Netfinity Server (INS)
shutdown, 85

Integrnted xSeries Server (!XS) shutdown, 85
Interactive jobs, 132, 136

example, 136-137
routing data for, 319-320
routing data illustrntion, 320
See al.so Jobs

Internet Assigned Numbers Authority
(!ANA), 530

lntemetworks, 520- 523
illustrated, 522
TCP /IP support, 520
types of, 521

Intersystem Communications Function
(!CF), 331
files, 335-336
overriding file attributes of, 356

InzTap (Initialize Tape) command, 274
'IOSysCfg authority

controlling, 39
defined, 11

IP addresses, 521, 524-529
assigning, 529
classful, 524-526
classless, 526-529
displaying, 416-426
host ID, 523, 524, 525, 529
JANA guarnntee, 530
knowing, 412
network ID, 523, 524, 525, 526
private networks and, 530
retrieving, 412- 426
translating, 526

IP routers, 526
iSeries

defined, 1
Information Center, 555
setup checklist, 1-2

Job attributes
defined, 487
Log attribute, 487
LogCLPgm attribute, 488

Job Control Language QCL), 427
Job descriptions

defmed, 43
for each user types, 43
IBM-supplied, 43
for job log generation control, 132
sample, 323
specifying, 43-44

Job logs, 127 -132
accumulation, 130
batch jobs and, 132
call message queues and, 486
content generation control, 487

defined, 127, 487
eliminating, 131
infonnation to include in, 132
internctive jobs and, 132
management methods, 127-128
printed, for nonnally completed jobs,

130-131
printed output control, 128-130
record elements, 247
redirecting, 128
understanding, 487-488
viewing, 128, 487

Job queue entries, 298, 309-311
adding, 310
attributes, 309
conflicting, 311
defined, 309
example use of, 310- 311
JobQ attribute, 309
MaxAct attribute, 309
MaxPtyn attribute, 309
SeqNbr attribute, 309
See al.so Wark entries

Job queues
creating, 310
holding, 230
removing jobs from, 230

Job schedule entries
components, 233- 234
copying, 235
detailed infonnation about, 234
frequency component, 234
WA and, 243
printing list of, 234
relative day of the month component, 235
schedule date component, 234
working with, 231

Job scheduler
adding entries to, 244
manipulating entries in, 230
parnmeter support, 244
problem, 243
SbmJob command vs., 243-244
timing and, 244

Job scheduling, 229-245
Job separator, 147, 148
'JobCtl authority, 149

defined, 11
output queue security and, 149

Job-level override, 341 - 342
defined, 341
deleting, 355
in ordering example 1, 349
in ordering example 2, 353
in sequence, 345
See al.so File overrides

Jobs
active, 26

additional number of, 26
attributes, 134
autostart, 322
batch, 132
communications, 322
completion, detecting, 245
identification, 305
ILE, 372
initial total number of, 26
initiation of, 305
interactive, 132, 136
message-logging attributes, 130
normally completed, 130-131
prestart, 322
QPrtjob, 141
timing, 244
where they go, 313

Journal receivers
cleanup, 222
defined, 255
setting up, 256

Journals

K

defined, 255
entries, 255
management, 255-256
setting up, 256

Kev fields. 364-365
OpnQryF conunand and, 462 - 463
petformance gains, 364-365
specifications, 462 - 463
use of, 364
See also Logical ftles

Key-search types, 432- 433, 434

L
Libraries

attributes, 72
concurrent saves of, 267 -268
QSys, 72, 73, 265
synchronization, 270

Licensed Iruernal Code -Status panel, 88
Licensed program product5

PTF installation, 99
unused, removing, 222

Licensed programs, deleting, 82-83
Licensed Programs Not Found on Media

panel, 81
LmtCpb parameter, 40-41

areas of control, 40
production systems and, 41
values. 41
See also CrtUsrPrl' (Create User

Profile) command
Local data area (IDA), 243

Log parameter, 130-131
for batch jobs, 132
commands using, 130
for interactive jobs, 132

Logical files, 361-370
concepts, 361
DDS descriptions, 334
defined, 334, 361
defining, 361
HREMFL2. 363
HREMFL3. 365
key fields, 334, 361. 364-365
multiple members, 369-370
multiple record formats, 331
OutQMonELl, 212
physical file selection, 361-363
primary key, 364
record format defmition, 361-363
record fonnat name, 363
resources, 370
selec'l/omit logic, 365-369
See also Physical ftles

Logical paltitioning (LP AR), 97
Lost objects

Rc!Stg command and, 218-219
recovery rules. 218-219
recovery rules (QSys), 219

Lotus Notes Servers backup, 280, 282- 283
LPR/LPD (Line Primer Request/Line Printer

Daemon), 519

M
Machine pool, 298
Manual cleanup

defined, 216
DLOs. 225
enhancing, 226- 227
hardware configuration, 226
OfficeVision for AS/400 objects, 225
physical files, 225
prooedures, 216-226
procedures, enhancing, 226- 227

areas, 218-221
save 223
security audit journal receivers, 217
spool file storage, 217
spooled files, 223
suggested operations, 216
system-supplied objects, 216
unused licensed program pnxlucts, 222
unused objects, 223-225
user-defined objects, 216
See also Cleanup

Manual verification, 275
Media Distribution Report, 79
Media Policies, 281

Index 569

Medium backup strategy, 259-261
defined. 259
developing, 259
journaling objects and saving journal

receivers, 260- 261
methods. 259
saving changed objects, 259- 260
saving groups of user libraries, folders,

directories, 261
See also Backup strategy

Memo to Users for OS/400, 79
Memory allocation, 25
Merged overrides

defined, 344
detemlining, 344
override order, 344- 345
See also File overrides

Message handling
with break-handling program, 117-121
with default reply, 121-122
methods, 111
parameters, 44
with system reply list, 111-116

Message identifiers
defined, 504
global message monitors and, 507
naming, 504
reply list, 113

Message level, 487
Message monitoring, 504-510

command-level, 506
defined. 504
global, 506-508

Message processing, 508 - 510
examples of, 508-509
global error handler, 510

Message queues
call, 485-486
cre-dtion. 485, 486
non-call, 485
receiving messages from, 497 - 500
sending messages to, 491-493
specifying, 44, 467
spe.cifying, for reply, 493

.'l<tessage severity, 487, 488
Message subfiles

defined. 449
sample display, 449
using, 449- 450

Message text level, 487, 488
Messages

break, 471-483
completion, 492
default reply, 467
delivery specification, 44, 105-106
diagnostic, 492
escape, 492

570 Starter Kit for the IBM iSeries and AS/400

infonnational, 104, 131, 492
inquiiy, 104-105, 492
levels, 131
monitoring, 504-510
network, casting, 108-109
notify, 492
predefined, 466,472, 488
processing, 508-510
receiving, 497-500
recipient specification, 467
refresh frequency for, 546
request, 492
response values, 466
sending, 103- 106
sending, into histoiy, 105
severity, 130
severity code, 44
status, 492, 494, 495
type specification, 104-105, 467
types of, 491-493
user-to-user, 103-109

Migration plan, 5-6
Mirrored protection, 257 - 258

defined, 15, 257
levels, 257
remote mirroring support, 258
starting, 257

MonMsg (Monitor Message) command, 430,
497, 504-510
availability, 504
CmpDta parameter, 505
for command-level monitoring, 506
defmed, 504
Exec parameter, 505
for global monitoring, 506-508
M5glD parameter, 504
parameters, 505
successful, 505

Move Policies, 281
MovObj (Move Object) command, 427
MrgTCPHT (Merge TCP/lP Host Table)

conunand, 537

N
Naming conventions

device names, 15- 16
establishing, 15-17
user profile names, 16-17
See also Pre-installation planning

NetStat (Network Status) command, 536
Network address translation ('.'!AD, 540
Network ID, 523
Networks

classes, 524
domain infonnation, 534
Ethernet, 521
host identification in, 538-540

local area (LANs), 521
private, 530
Token-Ring, 521
wide area (WAJ,ls), 521
See also lntemetworks

New Backup Policy wizard, 287 -288
accessing, 287
options, 287

Non-file overrides, 356
Notify messages, 492

0
Object authorities

defined, 69
individual, 71
list of, 69
See also Authorities

Object-level public authority, 75
Objects

automatic cleanup of, 215
changed, saving, 259-260
concurrent saves of, 267 -269
deleting, 82 .
document libraiy (DLOs), 216, 225
duplicating, 517
integrity, verifying, 86
journaling, 26o
lost, 218-219
OfficeVision for AS/400, 225
unused, deleting, 223-225
work-management, 296

OfficeVtsion
cleanup option, 216
object cleanup, 225

Open data path (ODP)
appearance to programs, 453
contents, 371
creation, 381, 453
defined, 371
shared technique, 381
sharing, 371-373, 381
sharing, for order entry example, 385
See also File sharing

Operational Assistant
automatic cleanup options, 83, 213-216,

226-227, 250
disk analysis reports, 221
messaging with, 107 -108
output queue creation, 153
Send a Message panel, 475
system cleanup panel, 128

Operations Navigator (OpsNav), 541-556
Application Administration compone!1t, 553
Application Development component, 552
Backup component, 552
Basic Operations component, 543-549
components, 541-553

Configuration and Seivice component,
549-550

Database component, 551
defined, 541
enhancement5, 554
File Systems component, 551-552
home page, 555
Job Management component, 549
main window, 542
Management Central component, 543,

552-553
Messages, 543, 544
Multimedia component, 552
Network component, 550
plug-in support, 553
Printer Output, 546, 547
Printers, 546, 548
Reply window, 545
resources, 554-556
Security component, 550-551
spooled file display, 548
spooled file properties, 547
spooled files list display, 549
user interface, 541
Users and Groups component, 551
Welcome window, 554

Operations Navigator (OpsNavJ BRMS,
285-289
backup policies, 287 - 288
backup/re&tore scheduling, 288-289
defmed, 285
functional differences, 286
green-screen interface, 286
item backup, 288
item restoration, 288
terminology differences, 286
using, 287-289
See also BRMS

OpnDbP (Open Database Pile) command,
372, 382

OpnQiyF (Open Queiy File) command,
356, 428, 441, 453-464
built-in functions. 457
database functions, 453
defined, 453
field mapping support, 463-464
file overrides and, 358
File parameter, 456
as filter, 453
llexibility, 464
Format parameter, 456, 457
fundamentals, 453-464
GrpFld parameter, 457
GrpSlt parameter, 462
KeyFld parameter, 463
MapF!d parameter, 456
OvrDbf conunand before executing, 454
panel, 455-456
parameter groups, 454

performance, 464
power of, 453
QrySlt parameter, 457, 458-462
record selection, 457 -462
Share('Yes) attribute and, 453
simple, 454
SQL concepts vs., 454
use decision guidelines, 464

Order entiy menu (OEMenu) example,
381-385
defined, 381
illustrated, 382
program code, 383-384
program structure, 384
sharing ODPs, 385
See also File sharing

Ordering overrides, 344-353
example 1, 345-349
example 2, 350-353
sequence, 344 - 345
See also File overrides

Original Program Model (OPM)
environment, 372, 497
programs, 343

OS/400
function management, 216
job scheduling, 229-245
Memo to Users for, 79

05/400 Backup and Recovery, 272, 289
051400 CL Programming, 466
05/400 CL Reference-Part 4, 131

OS/400 commands, 511-518
customizing, 516-517
default values, changing, 517-518
as heart of operating system, 511-513
parameter values, 514
positional parameters, 514
required parameters, 514
resources, 513
tips for entering, 514-516

05/400 DDS Reference, 370
05/400 Work Management, 25, 230, 303
05/400 Work Management AP!s, 242
Outage, 255
Output queue monitor, 157-212

adding entries, 163
configuring, 162-163
creating, 162
defined, 157
deleting, 163
ending, 164
OutQMon, 164
parameters, 160
removing entries, 163
Sample program, 160-162
starting, 163-164
uses, 157

using, 163-164
See also Output queues

Output Queue Monitor Utility, 160-212
installing, 165-168
interface to, 160, 164

Output queues, 123, 143-156
attributes, 145
creating, 145-149
data queues associated with, 157, 158
default, 145, 155
defined, 143
for each programmer, 155
invisible, 156
local, 148
for operations department, 156
organizing, 155-156
path, 138
QPrint, 151
qualified name of, 45
remote, 148
starting writers from, 151
using, effectively, 155
who should create, 149-150

OutQMon program
control file OutQMonE, 212
defined, 164
logical file OutQMonELl, 212
overview, 164
source, 209-211

OutQMonE physical file, 164
Overrides. See File overrides
OvrDbF (Override with Database File)

command, 332, 382, 428
before OpnQryF execution, 454
defined, 338
issuing, 357
OpnScope parameter, 356
Position parameter, 431, 432, 434

OvrDktF (Override with Diskette File) com
mand, 338

OvrDspF (Override with Display File) com
mand, 338

Ovr!CFDevE (Override !CF Program
Device Entiy) command, 356

Ovr!CFF (Override with !CF File) com
mand, 338

OvrMsgF (Override Message File) com
mand, 357

Ovrl'ttF (Override with Printer File) command
defined, 338
issuing, 357
use of, 358-359

OvrSavF (Override with Save File)
command, 338

OvrTapF (Override with Tape File)
command, 338

p
Package, 283
Parallel running, 5
Parallel saves, 262, 280

with BRMS, 282
defining, 282

Passwords
changing, 36
expiration, 21

Index 571

format control system values, 20-21
formatting rules, 9-10
group profile, 42
maximum length, 21
with numbers, 21
as part of user profiles, 10
repeating characters in, 21
security, 7
setting, to expired, 36
system-supplied user profile, 21-23
user profile, 35-36
See also Security

Performance tuning, 25
PFILE keyword, 361
'Pgmr user class, 10
Physical files

clearing, 506
creating, 506
defined, 334, 361
HREMFP, 362
with multiple data members, 333
OutQMonE, 164
purging, 225
reorganizing, 225
See also Logical files

Plans
backup and recovery, 12-15
education, 5
installation, 3-5
migration, 5-6
security, 6-12

Plug-and-play output queue monitor,
157-212

Plug-ins
resources, 5 56
support, 553
third-party, support page, 556
See also Operations Navigator (OpsNav)

Policies
backup, 287 - 288
configuration at installation, 283
defined, 281
types of, 281
See also BRMS

Pools
base, 25, 298
definitions, 300
machine, 298

572 Starter Kit for the IBM iSeries and AS/400

numbering, 299
private, 300, 301
sample definitions, 301
shared, 298, 300
system, 299- 300
viewing, 299

POP server (Post Office Protocol), 519
PPP (Point-to-Point Protocol), 520
Predefined messages, 466, 472

using, 466
viewing, 488
See also Messages

Pre-installation planning, 3-18
backup and recovery plan, 12-15
education, 5
installation plan, 3- 5
migration plan, 5-6
naming conventions, 15-17
security plan, 6-12

Pre-installation-day tasks (upgrades), 78-85
fixes, 84
manuaVautomatic decision, 81-82
order verification, 79-81
PTF application, 82
storage verification, 83-84
system changes documentation, 84
system cleanup, 82-83
system save, 84-85
See also Insta Ila ti on planning checklist

Prepare for Install panel, 80
Prestart job entries, 298, 312-313

adding, 313
defined, 312
JobD attribute, 312
Pgm attribute, 312
routing data, 322
See also Work entries

Preventive service, 101
Preventive Service Planning (PSP),

100-101
documents, 100, 101
hardware documents, 101
information, 94
software documents, 101

Print direction, 134-138
'Current value, 135-136
'Dev value, 137-138
'Job value, 134-135
'JobD value, 135
'SysVal value, 137
'UsrPrf value, 136
'WrkStn value, 136-137

Print path, 138-140
Print System information prompt, 266
Printer Control language (PCL) printers, 148
Printer devices

name specification, 45

path, 139, 140
PCL, 148

Printer files, 123-127
attributes, 133
changing, 126, 147
creating, 123, 147
defined, 123, 335
Dev attribute, 133, 134, 137
direction illustration, 139
example, 133-134
externally described, 123
OutQ attribute, 133, 134, 137
QPQuPrFil, 123
QPSuPrtF, 123
QSysPrt, 123
shared, example, 376-380
Spool attribute, 133

Printing
job schedule entry list, 234
system information, 266- 267

Print-path resolution, 140
Private networks, 530
Private pool, 300

configuration, 301
defined, 298
use decision, 301
See also Pools

Product library
compiling program Install into, 165
creating, 164
defined, 165
name retrieval, 165

Program temporary fixes. See PTFs
Program-described files, 429
Program-level message monitoring, 506-508
Programming Development Manager

(PDM), 332
PrtObjAut (Print Object Authorities)

command, 435-439
command processing program

PrtObjAutl, 435-436, 437-439
defined, 435
source, 435-436

PrtSyslnf (Print System Information)
command, 266

PTF Shipping Information Letter, 79
PTFs, 93-102

backups and, 97
Client Access service packs, 93
cumulative installation, 90
cumulative package, 93, 101
current package level, determining, 100
group, 93
group packages, 84, 89-90
HIPER group package, 84, 90, 93
installation verification, 99-100
installing, %-99

Internet orders, %
introduction to, 93-102
level verification, 20
licensed internal code, installing, 98-99
licensed program product, installing, 99
loading, 89-90
logical partitioning (LP AR) and, 97
management processes, developing, 100
need determination, 93-94
obtaining, 84
ordering, 94-%
permanently applying, 82, 222
proactive strategy, 100-102
save files, deleting, 82
temporarily applying, 98

Public authorities, 69-75
'All, 71
authority sets, 70
by design, 74-75
'Change, 71
creating, by default, 72-74
creation of, 70
default, implementing, 74
defined, 70
effective implementation of, 74
'Exclude, 71
at library level, 75
limiting, 7 4
object-level, 75
'Use, 71
See also Authorities

PwrDwnSys (Power Down System)
command, 88, 98

Q
QADspObj file, 436
QAudJm, 251
QBase

configuration, 27
defined, 299
pool definition for, 299

QCmdExc program, 355
QCPFMsg file, 466
QCtl configuration, 27 - 28

advantage, 28
granular control, 28
See also Subsystems

QDCRDevD (Retrieve Device Description)
AP!, 412
calling, 415
return, 415

QEZJobLog, 128-130
QEZSndMg (Send Message) AP!, 107-108,

472-474
defined, 472
Delivery mode parameter, 473
Error code parameter, 474

Function requested parameter, 474
functions, 472
interactive use, 472
Length of message text parameter, 473
List of user profiles or displays

parameter, 473
Message sent indicator parameter, 474
Message text parameter, 473
Message type parameter, 473
Name type indicator parameter, 474
Number of user profiles or displays

parameter, 473
parameter functions, 472
Qualified message queue name

parameter, 474
Show Send a Message display

parameter, 474
user-written command interface, 472

QEZUsrt::Jnp
adding enhancements to, 226
CL program, 227
compiling copy of, 226
defmed, 226

QHst. See History log
QMHRcvPM (Receive Program Message)

AP!, 485
QMHSndPM (Send Program Message)

AP!, 485
QMNSave program, 264
QPgmr (programmer) profile, 22
QPQuPrFil, 123
QPrtJob jobs, 141
QPSuPrtF, 123
QRcvDtaQ (Receive Data Queue) AP!, 160
QrySlt expression, 457, 458-462

case sensitivity, 462
completed, 461
constants and, 458-459
failure, 462
first construction steps of, 461
form, understanding, 458
guidelines, 458-462
mastering, 458
mistakes, 4 59
numeric variables in, 460-461
operand element, 460, 461
operator element, 460, 461
parsing of, 458
SEU syntax checker and, 462
variables and, 459-462
See also OpnQryF (Open Query File)

command
QSecOfr (security officer) profile, 22
QSpl, 299
QSRSavl program, 264
QSRSavU program, 264

QSrv (service representative profile)
profile, 22

QSrvBas (basic service representative)
profile, 22

QStrUp
CL source code, 29
defined, 28
retrieving, 28

QSys library, 72
description display, 73
saving, 265

QSysOpr (system operator) profile, 22
QSysPrt, 123
QSysTrnThl, 469
Queues

call message, 485-486, 499
clearing, 450
data, 157, 158
job, 230, 310
message, 485-486, 491-493, 497-500
resetting, 223
See also Output queues

QUSCrtUS (Create User Space) AP!, 242
QUser (user) profile, 22
QUSRtvUS (Retrieve User Space) AP!, 242
QWCLScdE (List Job Schedule Entries)

AP!, 242

R
RANGE keyword, 365
RclSplStg (Reclaim Spool Storage)

command, 217
RclStg (Reclaim Storage) command

defined, 218
deleting/clearing recovery areas and,

218
executing, 221
lost objects and, 218-219
recovery after, 220-221
syntax, 218

RcvF (Receive File) command, 427, 443
RcvMsg (Receive Message) command,

117, 497
CCSID parameter, 497
MsgKey parameter, 497, 499, 500
MsgQ parameter, 497, 499
MsgType parameter, 497, 499, 500
parameter default values, 498
parameters, 498
PgmQ parameter, 497, 499
for retrieving previous program's

name, 502
Rmv parameter, 497, 500
RtnType parameter, 502-504
Sender parameter, 501-502

Index 573

for sending/receiving data strings
between programs, 510

Wait parameter, 497, 499
Read This First document, 79
Reclaiming

DLO unused space, 225
spool file storage, 217
storage and clean up recovery areas,

218-221
Record formats, 331

display files, 443
logical files, 331
logical files definition, 361-363
name, 363
source files, 334

Records
output, 434-435
retrieving, by key, 432
selection, 457-462

Recovery
step-by-step information, 279
system, 272-273
system, report, 289
See also Backup strategy; Backups

Recovery areas
cleanup commands, 220
deleting/ clearing, 218

Recovery Policy, 281
Release installation, 77 -91

advice, 91
fixes, 84
INS/IXS shutdown, 85
manuaVautomatic decision, 81
order verification, 79-81
pending operation resolution, 85
planning, 77
planning checklist, 78-87
process, 87-91
PTF application, 82
stordge verification, 83-84
system changes documentation, 84
system cleanup, 82-83
system integrity verification, 86-87
system save, 84-85
system values, checking, 87
from tape, 86
verifying, 88-89

Remote journal function, 256
Remote mirroring support, 258
Rename keyword, 366
Reports, 123

controlling when printed, 126-127
page size, 126
print system information-generated,

266-267
system recovery, 289

Request messages, 492

574 Starter Kit for the IBM iSeries and AS/400

Restore operations, scheduling, 288- 289
Restricted-stale saves, 283
REXEC seiver, 519
RgzDW (Reorgan:ze Document Library

Object) command, 225
RmvMsg (Remove Message) command,

450, 493
RmvOutQME (Remove OutQ Monir.or

Entry) command, 163
command processing progrnm

RmvOutQMlA, 184-186
conunand processing progrnm

RmvOutQMlB, 187
command processing program

RmvOutQMlC, 188
defined, 163
panel, 183
source, 184
validity-checking program

RmvOutQMZA, 189-192
validity-checking progrnm

RrnvOutQMZB, 193
RouteD seiver (Route Daemon), 520
Routers, 521
Routing, 315-327

defined, 315, 521
do-it-yourself, 322-327
software, 521
step, 315
understanding, 315

Routing data
for autostart jobs, 322
for batch jobs, 320-322
for communications jobs, 322
defined. 315
importance of, 315 - 319
for interactive jobs, 319-320
for prestart jobs, 322
requirement, 315, 317

Routing entries, 308
adding, 317
attributes, 317-319
compare value, 315
defined, 315
Ma.xAct attribute, 318
Pgm attribute, 317
PoolID, 318-319
SeqNbr attribute, 317

Rn Job (Reroute Job) command, 322
RtvDtaAra (Retrieve Data Areal com

mand, 243
RtvIPAddr (Retrieve IP Addres.s) com

mand, 412
application requirement, 415
Dev pardmeter, 412
panel, 412
source, 413-415

RtvJobA (Retrieve job Attributes) com
mand, 468

RtvUsrPrf (Retrieve User Profile) command,
48-50
example, 50
prompt screen, 48-49
uses, 48
validity, 49

RunRmtCmd (Run Remote Command)
command, 415

RunSQLStm (Run SQL Statements) com
mand. 434-435

RvkObjAut (Revoke Object Authority) com
mand, 149

s
Sample program, 160-162

defined, 160
illustrated, 161-162
SndUsrJl.1sg execution, 160
See also Output queue monitor

Sav (Save) command, 264
Obj parameter, 269
QSys.Llb file omission, 265
save-while-active parameters, 27 i

SavBRM (Save Object using BRM)
command, 283

SavCfg (Save Configuration) command, 265
SavChgObj (Save Changed Objects)

command, 259, 268
Obj parameter, 268
save-while-active parumeters, 271

SavDW (Save Document Library Objects)
command, 259, 271

Save files, 329, 336
clearing/ deleting, 223
defined, 336
Share attribute, 371
subtype, 329
uses, 336
See also File types

SAVE menu
accessing, 254
"All user data" option, 259, 264-265
command illustration, 263
"Entire system" option, 258, 263-264
illustrated, 254
inner workings, 262-267
option defaults, 265-266
primary options, 262
"System data only" option, 258, 264

Saves
concurrent, 261, 267-269
parallel, 262, 280, 282
restricted-state, 283
system, 84-85
types of, 85

Save-while-active, 262, 271
defined, 269
functioning of, 269
save commands supporting, 270-271
synchronization, 269
using, 270

Saving
changed object5, 259-260
data concurrently, 261, 267-269
data in parallel, 262
DLOs, 259
entire system, 258
journal receivers, 222
licensed program product5, 222
QSys library, 265
system data, 258

SavLib (Save Libraiy) command, 261, 264, 271
SavLicPgm (Save Licensed Progrnm) com

mand, 222
SavC:lbj (Save Object) command, 261, 268 271
SavSecDta (Save Security Data) com

mand, 265
•savSys authority

defined, 11
using, 39

SavSys (Save System) command, 264, 265
Sbmjob (Submit Job) command

benefits, 243-244
defmed, 229
InqMsgRpy parameter, 112
job scheduler vs., 243-244
JobD parameter, 321
Log parameter, 130-131
MsgQ parameter, 468
OutQ parameter, 135, 136
PrtDev parameter, 135, 136
RrgDta parnmeter, 320-321, 322
Scdfrate parameter, 229, 230
ScdTime parameter, 229, 230
timing and, 244

•SecAdm authority
defined, 11
using, 38

•secAdm user class, 10
•secOfr user class, 10
Security

B&'v!S functions, 289-292
DOD C2, 8-9
operating system integrity, 8
output queue parameters, 148-149
resource, 8
user profile names and, 17
See also Passwords

Securi{J!- Enabling for C2, 9
Security Advbor, 12
Security audit journal receivers, 217

Security levels, 7-9
changing, 20
security level 10, 7
security level 20, 7-8
security level 30, 8
security level 40, 8
security level 50, 8-9
setting, 20

Security plan, 6-12
advice, 12
developing, 6-12
importance, 6
password fonnat rules, 9-10
resources, 12
sample, 6
system security level, 7-9
system user identification, 10-12
See also Pre-installation planning

Security Wizard, 12, 550-551
Select/ omit statements, 365-369

correct use of, 367
dynamic selection with, 368-369
examples, 366-368
use rules, 366
using, 366-368
See also Logical files

'Service authority
defined, 11
using, 39

Setup checklist, 1-2
SflPgmQ keyword, 449
Share attribute, 371

default, 371
file validity, 371
online inquiries and, 384
record locking and, 373
specifying, 453
using, 453

Shared database file example, 373- 376
data for file ShrDb, 373
defined, 373
progrnm ShrDbOlA, 374
progrnm ShrDb02A, 374-375
results, 376
See also File sharing

Shared pool, 298, 300
defined, 298
use decision, 301
See also Pools

Shared printer file example, 376-380
defined, 376
printer file ShrPrt, 376
program ShrPrtOlA, 377
progrnm ShrPrt03A, 378
progrnm ShrPrt04A, 379
progrnm ShrPrt04D, 380
progrnms to open ShrPrt, 378
spooled file results, 380
See also File sharing

Sign-on
first time, 20-25
initial, options, 39- 41
maximum invalid attempts, 24
user profile, enabling/disabling, 36

Sign-on Information panel, 41-42
defined, 42
display, 41
information, 41

Silicon-on-insulator technology, 1
SLIP (Serial Line Internet Protocol), 520
SltCmd (Select Command) command, 513
SMTP (Simple Mail Trnnsfer Protocol), 519
SNA Distribution Services (SNADS)

starting, 109
subsystem, 27

SndBrkMsg (Send Break Message)
command, 106-107, 465
panel, 107
sample usage, 106
SndMsg command vs,, 106

SndBrkMsgU (Send Break Message to
User) command, 108
command processing progrnm

SndBrkMsgC, 481-483
defined, 472
inquiry message support, 475
reply mechanism, 475
source, 475-477
ToUsr parnmeter, 472
uses, 484
using, 471-483
validity-checking progrnm SndBrkMsgV,

478-480
SndF (Send File) command, 443
SndMsg (Send Message) command,

103-106, 465
accessing, 103
defined, 103
message delivery with, 105-106
MsgType parnmeter, 104-105
panel illustrntion, 104
RpyMsgQ parnmeter, 105
SndBrkMsg command vs,, 106
ToMsgQ parameter, 104
ToUsr parnmeter, 103-104

SndNetMsg (Send Network Message)
command, 108-109, 465
Msg parnmeter, 108
panel, 109
ToUsrlD parameter, 108
uses, 108-109

SndNetSplF (Send Network Spooled File)
command, 141

SndPgmMsg (Send Progrnm Message)
command, 484, 488-493
defined, 488

KeyVar parnmeter, 493
Msg parameter, 488
MsgDta parnmeter, 488
MsgF parnmeter, 488
Msg!D parnmeter, 488

Index 575

MsgType parnmeter, 491-493, 503
parnmeters, 489
RpyMsgQ parnmeter, 493
for sending/receiving data strings

between progrnms, 510
ToMsgQ parnmeter, 488, 490
ToPgmQ parnmeter, 490
ToUsr parnmeter, 488, 491
use examples, 493-495

SndPTFOrd (Send PTF Order) command,
94-96
defined, 94
Delivery parnmeter, 95
Order parnmeter, 96
prompt illustrntion, 95
PTFID parnmeter, 94
PTFPart parnmeter, 95
Reorder parnmeter, 96
RmtCPNName parameter, 95
RmtNetlD parnmeter, 95
using, 94-96
See also PTFs

SndRcvF (Send/Receive File) command, 443
SndTCPSplF (Send TCP/IP Spooled File)

command, 537
SndUsrMsg (Send User Message) command,

160, 465
Oft parnmeter, 467
MsgDta parameter, 466
MsgQ parameter, 468
MsgRpy parameter, 469
MsgType parameter, 467
prompt screen, 465
for prompting user reply, 484
sample CL progrnm using, 470-471
ToMsgQ parnmeter, 467
ToUsr parnmeter, 467
TmThl parameter, 469
uses, 484
using, 465-471
validity checking, 484
Values parameter, 466

SNMP (Simple Network Management
Protocol), 519

Software
license keys, updating, 90
verifying, 20

Software Installation, 78
Source Entry Utility (SEU) syntax checker, 462
Source files, 329, 334

defined, 334
organization, 333
populating, 165

576 Starter Kit for the IBM iSeries and AS/400

record formats, 334
Share attribute, 371
subtype, 329
See also File i:}'pes

SpAut parameter, 37-39
defined, 37
values, 38
See also CnUsrPif (Create User

Profile} command
Special authorities

•AfJObj, 11, 38
•Audit, 11, 39
default, 37
defined, 10, 36
'IOSysCfg, 11, 39
'JobCtl, 11, 149
'SavSys, 11, 39
'SecAdm, 11, 38
'Service, 11, 39
specifying, 36-39
'SplCtl, 11, 39
user classes and, 10

Specify Command Defaults panel, 265-266
accessing, 265
default parameter values, 267
illustrated, 266

'SplCtl authority
defined, 11
using, 39

Spooled files
AP!s, 271
automated management, 157
backing up, 271-272
backing up (BRMS), 283-285
CL (Closed), 144
cleanup, 223
deleting, 82
DFR (Deferred), 143
display (OpsNav), 548
getting on queue, 150-151
HLD (Held), 144
how printed from the queue, 151-153
identifying, 157
list display (Ops'-lav), 549
member cleanup, 217
MSGW waiting), 144
OPN (Open),
PND (Pending), 144
properties (OpsNav), 547
PRT (Printing), 144
RDY (Ready), 143
restoring, saved with BRMS, 285
SAV (Saved), 144
sending to users, 141
SND (Sending), 143
status. 143-144
storing, under QPrtJob, 141
WTR (Writer), 144

SQL
OpnQiyF command vs., 454
Wbere statement, 457

SSL (Secure Sockets Layer), 519
o/.Sst function, 404-405, 429, 463
Stan-up program

QStrUp, 28- 29
user modified, 30-31

Status messages, 492, 494, 495
Storage

determining, 83-84
reclaiming, 217- 221

Storage pools
auxiliaiy (ASPs), 13-14, 19
base, 25, 298
entries, 297

StrBkuBRY (Stan Backup using BRM)
command, 283

StrMntBRM (Stan Maintenance for BRM}
command, 293

StrOutQMon (Start Output Queue Monitor)
command, 163-164
command processing program

StrOutQMlA, 200-201
defined, 163
monitor job submission, 16:3
panel, 199
source, 199
validity-<:hecking program StrOutQM2A,

201-204
StrPnWtr (Stan Printer Writer) command,

151, 152
StlQMQry (Stan Query Management Query)

command, 434, 441
StrR.mtWtr (Stan Remote Writer) com-

mand, 151
StrSbs (Start Subsystem) command, 301

Str'TCP (Stan TCP /IP) command, 535, 536
Str'TCPITT (Start TCP/IP ITT) command, 537
Str'TCPSvr (Start TCP/IP Server) com-

mand, 536
Str'TCPtelN (Start TCP/IP Telnet) com

mand, 537
Subnet masks

commonly used values, 529
defined, 527
notation, 528

Subnets, 526-529
defined, 526
ID, 529

Subnetting, 526
Subsvstems

attnbutes, 297
aulostan job entries, 297
communications entries, 298

creating, 28
defining, 297 - 298
description components, 297 -298
establishing, 26- 28
job queue entries, 298
pool defmirions, 298-301
prestan job entries, 298
QBase, 299
QBase configumtion, 27
QCtl configuration, 27- 28
QSpl, 299
routing emries, 298
sample descriptions, :324
sample pool definitions, 301
starting, 301-302
storage pool definitions, 297
work entries, 297-298
workstation entries, 297 - 298

Synchroniwtion, 270
•sysOpr user class, 10, 11
System APJ Reference, 272
System ASP, 13
System Policy, 281
System pools, 299-300
System reply list, 111-116

comparison data, 113
contents, 111
defmed, 1ll
dump attribute, 114
message identifiers, 113
modifying, 112, 113
with narrow focus, 114
reply value portion, 114
shipped, 112
remporarily changing, 115-116
See also Message handling

System security levels. See Security levels
Svstem values
' changing, 23

checking, 87
general, setting, 23-25
overrides, 41-42
password format control, 20-21
QAbnonnSw, 24
QActjob, 26
QAdlActJ, 26
QAdlToij, 26
QAlWObjRst, 87
QAutoCfg, 23
QBasActLvL 25
QBasPool, 25
QCmnRcyLmt, 24
QCnAut, 72
QctlSbsD, 26-27
QDevNaming, 23
QMaxActLvl, 25-26
QMaxSgnAcn, 24
QMaxSign, 24

QMchPool, 25
QPrtDev, 24
QPwdExpltv, 21
QPwdLmtAjc, 21
QPwdlmtRep, 21
QPwdMinlen, 21
QPwdRqdOgt, 21
QPwdVldPgm, 35
QRclSplStg, 217
QStrUpPgm, 28, 31
QSyslib, 87
QTol]ob, 26
QUsrtibL, 43, ff1
viewing, 23

System-<lefined synchronization, 270

SystemC5)

T

changes,documenting,84
cleaning up, 82-83
clustered, 258
date/time, changing, 244-245
dual, 258
integrity security, 8
integrity verification, 86-87
recovering, 272-273
recovery repm, 289
saving, 84-85
verification, 276

Tape devices
cleaning, 27 4
preparing and managing, 273
saving data concurrently 'Nith, 261
saving data in pamllel with, 262

Tape files, 335
Tapes

BR.MS management, 292
discarding, 2n
external label, 275
handling errors, 277
initializing, 27 4
labeling, 27 4-275
naming, 274-275
preparing, 274
recoverable errors, zn
rotation schedule. 273
storing, 276 .
unrecoverable errors, 2n
verifying, 275- 276
worn out, zn

TCP/IP, 519-540
administering. 520
administration options, 536-537
application configuration, 537
applicatioll.5, 519
communications suppm for, 519
configuration options, 537
domain information, 537

function support, 520
inteiface information, 53 7
internetwork support, 520-523
IP addressing. 524-529
packets, 522
point-to-point configuration, 537
port restriction.5, 537
route information, 537
routing process, 523
self-healing aspect of, 523
starting, 535-536
table configuration, 537

TCP/IP Configuration and Referr:nce, 540
TCP/IP Fastpatb Setup, 540
TCPADM (TCP/IP Administration) menu,

531, 536-537
Telnet, 519
TirJob (Transfer Job) command, 307, 322

error on, 325
RtgDta parameter, 322

TIT!' server (Trivial File Transfer
Protocol), 520

Tips and Tools/or Securing Your AS1400, 12
Token-Ring networks, 521
Training, planning, 5
Translation table, 469
Transmission Control Protocol!lntemet

Protocol. SeeTCP/W

u
Cninterruptible power supply (UPS), 96
Unique keyword, 364, 365
Upgrades

advice, 91
hardware. 77
planning, 77
planning checklist, 78-87
process, 87-91
software, 77

•use authority set, 71
'User class, 10
User ASPs, 14

defined, 14
disk configuration with, 14
establishing, 19
functions, 14

User classes, 10
User passwords, 35-36

active before change duration, 42
changing, 36, 47
no need to know, 37
See also Passwords; user profiles

User profile names
admini~tmtion convention, 16
meaningless convention. 16

Index 577

naming convention, 16-17
security and, 17
similar to person convention, 16
specifying, 35
strategy implementation, 16-17
user access and, 17

User profiles
assigning, to class, 37
changing, 33, 46-50
creating, 33-46
creation, consistent, 6o
defmed, 33
deleting, 33, 47-50, 83
job description, 43-44
maintaining, 46- 50
passwords, specifying, 35-36
passwords as part of, 10
planning, 45-46
security level 10 and, 7
security level 20 and, 7
sign-on, enabling/disabling, 36
system-supplied, 22, 33
system-supplied, passwords, 21- 22
text descriptions. 45
in user information file, 17
working for you, 67
See also Group profiles; User profile names

USER (User Tasks) menu
illustmted, 12
options, 511

Userlnfo file
DDS, 59
defmed, 59
maintaining, 67

UserMenu example, 445-449
defmed, 445
sample message subfile display, 449
Sample User Menu, 445
source, 446-448

Users
classifying, 37
identifying, 10-12
types of, 10

User-to-user messages, 103-109

v
Validity-checking programs

AddOutQM2A, 179-182
AddOutQMZB, 182-183
Crt0utQM2A, 171-174
Dlt0utQM2A, 196-198
DspIPAddrV, 419, 420-422
EndOutQM2A, 207 - 209
RmvOutQM2A, 189-192
RmvOutQMZB, 193
SndBrkMsgV, 478-480
Str0utQM2A, 201-204

Values keyword, 365

578 Starter Kit for the IBM iSeries and AS/400

Variable names, 399-400
meaningful, 399
mixed case, 399-400
special characters and, 399

Verification
manual, 275
system, T76
tape, 275- 276

VfyTCPCnn (Verify TCP/IP Connection)
command, 536
issuing, 537
panel, 536

Virtual field,, mapping, 463-464
Volume Table of Contents, 13

w
Work entries, 305-313

autostart job entries, 313
communications entries, 311-312
job queue entries, 309-311
prestart job entries, 312-313
types of, 305
workstation entries, 306-309

Work environmenr
batch, 310-311
establishing, 25-31

Work with All Ot:tput Queues panel, 152
Work with All Printers p-anel, 153
Work with Communication Resources

panel, 530
Work with Configuration Descriptions

p-anel, 530-531
Work with licensed Programs panel, 81, 83

"Display log for messages" option, 88
"Estimated storage requirements for

system ASP" option, 83

"Install licensed programs" option, 89
"Prepare for install" option, 86

Work with Output Queue panel, 512-513
Work with Printer Output panel, 154
Work with TCP/IP Host Table Entries

panel, 539
Wrnk with TCP/IP Interfaces panel, 532, 533
Work-management objects, 2%
Workstation entries, 297-298, 306-309

At attribute, 307, 308
attributes, 306
conflicting, 308-309
defined, 306
defining, 306
JobD attribute, 306-307, 319
MaxAct attribute, 307
with SpJobD job description, 320
using, 307-308
WrkSm attribute, 306, 308
WrkStnType attribute, 306
See also Work entries

Writers
changing, 152
starting, 151-152

WrkActJob (Work with Active Jobs)
command, 91

WrkCmtDfn (Work with Commitment
Definitions) command, 85

WrkHldOptF (Work with Held Optical
Files) command, 85

WrkJobQ (Work with Job Queue)
command, 230, 516

WrkJobSchE (Work with Job Schedule
Entries) command, 231

WrkIBRM (Work with Lists using BRM)
command, 284

WrkMsgD (Work with Message
Description) command, 121

WrkObjOwn (Work with Object
Ownership) command, 221

WrkObjOwn (Work with Objects by
Owner) command, 48

WrkObjPGp (Work with Objects by
Primary Group) command, 48

WrkOutQ (Work with Output Queues)
command, 151, 516
options, 144-145
panel, 143, 144
syntax, 143

WrkOutQME (Work with Output Queue
Monitor Entries) command, 164

WrkOutQMon (Work with Output Queue
Monitor) command, 164

WrkSbmjob (Work with Submitted Jobs)
command, 516

WrkShrPool (Work with Shared Pools)
command, 298, 299

WrkSplF (Work with Spooled File)
command, 141, 153
basic assistance level, 154
defined, 153
intem1ediate assistance level, 155
output, 153, I 54, 155

WrkSplFBRM <work with Spooled Files
using BRM.) command, 285

WrkTCPSts (Work with TCP/JP Network
Status) command, 536

WrkUsrPrf (Work with User Profiles)
command, 50

x
o/oXlate function, 462, 463

VISIT OUR WEB SITE AT WWW.AS400NE1WORKSTORE.COM FOR A MORE DETAILED LlSTING OF BOOKS FROM

2911-1 STREET PRESS® AND NEWS/400 BOOKST•

New Books in the 29th Street Press® and NEWS/400 Books™ Library

CREATING CL COMMANDS BY EXAMPLE
By Lynn Nelson
Learn from an expert how to create CL commands that have the same functionality and power as the IBM commands

you use every day. You'll see how to create commands with all the function found in IBM's commands, including
parameter editing, function keys, F4 prompt for values, expanding lists of values, and conditional prompting. Whether

you're in operations or programming, Creating CL Commands lry Example can help you tap the tremendous power

and flexibility of CL commands to automate tasks and enhance applications. 134 pages.

DOMINO R5 AND THE AS/400
By Justine Middleton, Wilfried Blankertz, Rosana Choruzy, Linda Defreyne, Dwight Egerton, Joanne Mindzora,

Stephen Ryan, Juan van der Breggen, Felix Zalcmann, and Michelle Zolkos
Domino R5 and the AS/400 provides comprehensive installation and setup instructions for those installing Domino RS

"from scratch," upgrading from a previous version, or migrating from a platform other than the AS/400. In addition,
you get detailed explanations of SMIP in Domino for AS/400, dial-up connectivity, directory synchronization, Advanced

Services for Domino for AS/400, and Domino administration strategies, including backup strategies. 512 pages.

E-BUSINESS
Thriving in the Electronic Marketplace
By Nahid Jilovec
£-Business: Thriving in the Electronic Marketplace identifies key L'isues organizations face when they implement e-business

projects and answers fundamental questions about entering and navigating the changing world of e-business. A concise

guide to moving your business into the exciting world of collaborative e-business, the book introduces the four e-business

models that drive today's economy and gives a clear sumtnary of e-business technologies. It focuses on practical

business-to-business applications. 172 pages.

ILE BY EXAMPLE
A Hands-on Guide to the AS/400's Integrated Language Environment
By Mike Cra\/itz
Learn the fundamentals of the AS/400's Integrated Language Environment (ILE) by following working examples that
illustrate the ins and outs of this powerful programming model. Major topics include ILE program strncture, bind by
copy, ILE RPG subprocedures, service programs, activation groups, ILE condition handling and cancel handling, and
more. A CD contains all sample programs discussed in the book, as well as a sample ILE condition handler to address
record locks and ILE RPG software to synchronize system clocks using the Internet SNTP protocol. 165 pages.

IMPLEMENTING AS/400 SECURITY, FOURTH EDITION
By Carol Woodbury and Wayne Madden
For years, AS/400 professionals have depended on earlier editions of Implementing AS/400 Security to learn and

implement essential AS/400 security concepts. This latest edition not only brings together in one place the fundamental

AS/400 security tools and experience-based recommendations you need but also includes specifics on the security

enhancements available in OS/400 V4R5. In addition, you'll find expanded coverage of network, communications, and
Internet security - including thwarting hacker activities - as well as updated chapters covering security system

values, user profiles, ohject authorization, database security, output-queue and spooled-file security, auditing,

contingency planning, and more. 454 pages.

INTRODUCTION TO AS/400 SYSTEM OPERATIONS, SECOND EDITION
By Heidi Rothenbuehler and Patrice Gapen

Here's the second edition of the textbook that CO\':ers what you need to know to become a successful AS/400 system

operator or administrator. Introduction to AS/400 System Operations, Second Edition teaches you the basics of system
operations so that you can tnanage printed report.-;, perform regularly scheduled procedures, and resolve end-user

problems. New material covers the Integrated File System (IFS), AS/400 lnfoSeeker, Operations Navigator, and much
more. 182 pages.

MASTERING THE AS/400, THIRD EDITION
A Practical, Hands-On Guide
By Jerry Fottral

The latest edition of this best-selling introduction to AS/400 concepts and facilities takes a utilitarian approach that
stresses student participation. The book emphasizes mastery of system/user interface, member-object-library relationship,
use of CL commands, basic database concepts, and progmm development utilities. The texr prepares students to move
directly into progmmming languages, database management, and system operations courses. Each lesson includes a lab
that focuses on the essential topics presented in the lesson. 553 pages.

PROGRAMMING IN RPG IV, SECOND EDITION
By Bryan Meyers and Judy Yaeger

This texrbook provides a strong foundation in the essentials of business progmmming, featuring the newest version of
the RPG language: RPG IV. Focusing on real-world problems and down-to-earth solutions using the latest techniques
and features of RPG, this lx)ok provides everything you need to know to write a well-designed RPG IV progmm. 1be
second edition includes new chapters on defining data with D-specs and modular progmmming concepts, as well as
an RPG IV summary appendLx and an RPG IV style guide. An instructor's kit is available. 408 pages.

RPG IV JUMP START, THIRD EDITION
By Bryan Meyers

RPG IV]urnp Start presents RPG IV from the perspective of a progmmmer who already knows RPG Ill, pointing out
the differences between the two languages and demonstrating how to take advantage of the new syntax and function.
Tbis third edition is fully updated for V4R4 and includes information about the latest H-spec keyword5, built-in functions,
opcodes, and data types. Also included are expanded coverage of RPG's pointer support, new chapters on RPG
progmmming style, and what's in store for the future of RPG. 234 pages.

SQL/400 DEVELOPER'S GUIDE
By Paul Conte and Mike Cravitz
SQI/400 Developer's Guide provides start-to-finish coverage of SQ1/400, IBM's strategic language for the AS/400's
integrated database. This texrbook covers database and SQL fundamentals, SQ1/400 Data Definition Language (DDL)
and Data !vfanipulation Language (DML), and database modeling and design. 1broughout the book, coding suggestions
reinforce the topics covered and provide practical advice on how to produ<.'C robust, well-functioning code. Hands-on
exerd5es reinforce comprehension of the concepts covered. 508 pages.

Also Published by 29th Street Press® and NEWS/400 Books"'

THE AS/400 EXPERT: READY-TO-RUN RPG/400 TECHNIQUES
By Julian Monypenny and Roger Pence

Ready-to-Run RPG/400 Techniques provides a variety of RPG templates, subroutines, and copy modules, sprinkled with
fundamental advice, to help you write robust and effective RPG/400 progmms. Highlights include string-handling routines,
numeric editing routines, date routines, error-handling modules, and tips for using OS/400 AP!s with RPG/400. The
tested and ready-to-run code building blocks - provided on an accompanying CD easily snap into existing RPG
code and integrate well with new RPG/400 projects. 203 pages.

THE A TO Z OF EDI AND ITS ROLE IN E-COMMERCE, SECOND EDITION
By Nahid Jilovec

E-commerce expert Nahid Jilovec gives you the pmctical detail5 of EDI implementation. Not only does thL5 book show
you how to cost justify EDI, but it also gives you job descriptions for EDI team members, detailed criteria and folTil.5
for evaluating EDI vendors, considerations for trading-partner agreements, an EDI glossary, and list5 of EDI organiza
tions and publications. TI1e second edition includes new information about EDI and the Internet, system security, and
auditing. 221 pages.

CONTROL LANGUAGE PROGRAMMING FOR THE AS/400, SECOND EDITION
By Bryan Meyers and Dan Riehl
This CL programming textbook offers students comprehensive knowledge of the skills they will need in today's MIS

environment. Chapters progress methodically from CL basics to more complex processes and concepts, guiding

students toward a professional grasp of CL programming techniques and style. In this second edition, the authors have

updated the text to include discussion of the Integrated Language Environment (ILE) and the fundamental changes ILE

introduces to the AS/400's execution model. 522 pages.

DATABASE DESIGN AND PROGRAMMING FOR DB2/400
By Paul Conte
This textbook is the most complete guide to DB2/400 design and programming available anywhere. The author shows
you everything you need to know about physical and logical file DDS, SQL/400, and RPG IV and COBOL/400 database

programming. Clear explanations illustrated by a wealth of examples demonstrate efficient database programming and

error handling with both DDS and SQL/400. 610 pages.

DATA WAREHOUSING AND THE AS/400
By Scott Steinacher
In this book, Scott Steinacher takes an in-depth look at data warehousing components, concepts, and terminology.

After laying this foundation, Scott presents a compelling case for implementing a data warehouse on the AS/400.

Included on an accompanying CD are demos of AS/400 data warehousing software from several independent software

vendors. 342 pages.

DDS KEYWORD REFERENCE
By James Coolbaugh
Reach for the DDS Keyword Reference when you need quick, at-your-fingertips information about DDS keywords for
physical files, logical files, display files, printer files, and !CF files. In this no-nonsense volume, author Jim Coolbaugh

gives you all the keywords you'll need, listed alphabetically in five sections. He explains each keyword, providing syntax
rules and examples for coding the keyword. DDS Keyword Reference is a friendly and manageable alternative to IBM's

bulky DDS reference manual. 212 pages.

DDS PROGRAMMING FOR DISPLAY AND PRINTER FILES, SECOND EDITION
By James Coolbaugh
DDS Programming for Display and Printer Files, Second Edition helps you master DDS and - as a result - improve

the quality of your display presentations and your printed jobs. Updated through OS/400 V4R3, the second edition
offers a thorough, straightforward explanation of how to use DDS to program display files and printer files. It includes
extensive DDS programming examples for CL and RPG that you can put to use immediately because a companion CD
includes all the DDS, RPG, and CL source code presented in the book. 429 pages.

DEVELOPING YOUR AS/400 INTERNET STRATEGY
By Alan Arnold
This book addresses the issues unique to deploying your AS/400 on the Internet. It includes procedures for configuring
AS/ 400 TCP /IP and information about which client and server technologies the AS/ 400 supports natively. This enterprise

class tutorial evaluates the AS/400 as an Internet server and teaches you how to design, program, and manage your

Web home page. 248 pages.

DOMINO AND THE AS/400
Installation and Configuration
By Wilfried Blankertz, Rosana Choruzy, Joanne Mindzora, and Michelle Zolkos

Domino and the AS/400: Installation and Configuration gives you everything you need to implement Lotus Domino

4.6 on the AS/400, guiding you step by step through installation, configuration, customization, and administration. Here
you get an introduction to Domino for AS/400 and full instructions for developing a backup and recovery plan for

saving and restoring Domino data on the AS/400. 311 pages.

ESSENTIALS OF SUBFILE PROGRAMMING
and Advanced Topics in RPG/400
By Phil Levinson
Essentials of Subfile Programming and Advanced Topics in RPG/400 teaches you to design and program subfiles,
offering step-by-step instructions and real-world programming exercises that build from chapter to chapter. You learn
to design and cre-&te subfile records; load, dear, and display subfiles; and create pop-up windows. In addition, the
advanced topics help you mine the rich store of data in the file-info!1Ilation and program-status data structures, handle
errors, improve data integrity, and manage program-to-program communications. An instructor's manual is available.
260 pages.

ESSENTIALS OF SUBFILE PROGRAMMING
and Advanced Topics in RPG IV
By Phil Levinson
This textbook provides a solid background in AS/400 subfile programming in the newest version of the RPG language:
RPG N. Subfiles are the AS/400 tool that lets you display lists of data on the screen for user interaction. You learn to
design and program subfiles via step-by-step instructions and real-world programming exercises that build from chapter
to chapter. A section on the Integrated language Environment (ILE), introduced concurrently with RPG N, present5
tools and techniques that support effective modular programming. An instructor's kit is available. 293 pages.

ILE: A FIRST LOOK
By George Farr and Shailan Topiwala

This book begins by showing the differences between ILE and ito; predecessors and then goes on to explain the
essentials of an ILE program - using concepts such as modules, binding, setvice programs, and binding directories.
You'll discover how ILE program activation works and how ILE works with its predecessor environments. The book
covers the APis and debugging fucilities and explains the benefits of ILE's exception-handling model. You also get
answers to the most commonly asked questions about ILE. 183 pages.

IMPLEMENTING WINDOWS NT ON THE AS/400
Installing, Configuring, and Troubleshooting
By Nick Harris, Phil Ainsworth, Steve Fullerton, and Antoine Sammut
Implementing Windows NI' on the A.S/400: Installing, Configuring, and Troublesh(X>ting provides everything you need
to know about using NT on your AS/400, including how to install NT Server 4.0 on the Integrated Netfmity Server,
synchronize user profiles and passwords between the AS/400 and NT, administer NT disk storage and service packs
from the AS/400, back up NT data from the AS/400, manage NT servers on remote AS/400s, and run Windows-based
persona! productivity applications on the AS/400. 393 pages.

INSIDE THE AS/400, SECOND EDITION
Featuring the AS/400e series
By Frank G. Soltis

Learn from the architect of the AS/400 about the new generation of AS/400e systems and setvers and about the system
features and capabilities introduced in Version 4 of OS/400. Dr. Frank Soltis demystifies the system, shedding light on
how it came to be, how it can do the things it does, and what its future may hold. 402 pages.

JAVA AND THE AS/400
Practical Examples Using VisualAge for Java
By Daniel Darnell
This detailed guide takes you through everything you need to know about the AS/400's implementation of Java,
including the QShell Interpreter and the Integrated File System (IFS), and development products such as Visua!Age for
Java (VAJ) and the AS/400 Toolbox for Java. The author provides several small application examples that demonstrate
the advantages of.Java programming for the AS/400. The companion CD contain.-; all the sample code presented in the
book and full-version copies of VAJ Professional Edition and the AS/400 Toolbox for Java. 300 pages.

JIM SLOAN'S CL TIPS & TECHNIQUES
By Jim Sloan
Written for those who understand CL, this book draws from Jim Sloan's knowledge and experience as a developer for
the System/38 and the AS/400 and his creation of QUSRTOOL's TAA tools, to give you tips that can help you write
better CL programs and become more productive. The book includes more than 200 field-tested techniques, plus
exercises to help you understand and apply many of the techniques presented. 564 pages.

MASTERING AS/400 PERFORMANCE
By Alan Arnold, Charly Jones, Jim Stewart, and Rick Turner
If you want more from your AS/400 - faster interactive response time, more batch jobs completed on time, and
maximum use of your expensive resources this book is for you. In Mastering AS/400 Performance, the experts tell
you how to measure, evaluate, and tune your AS/400's performance. From their experience in the field, the authors
give you techniques for improving performance beyond simply buying additional hardware. 259 pages.

OPNQRYF BY EXAMPLE
By Mike Da\.'VSOn and Mike Manto
The OPNQRYF (Open Query File) command is the single most dynamic and versatile command on the AS/400.
Drawing from re-al-life, real-job experiences, the authors explain the basics and the intricacies of OPNQRYF with lots of
examples to make you productive quickly. An appendix provides the UPDQRYF (Update Query File) command a
powerful addition to AS/400 and System/38 file update capabilities. CD included. 216 pages.

PROGRAMMING IN RPG/400, SECOND EDITION
By Judy Yaeger
The second edition of this textbook refines and extends the comprehensive instructional material contained in the
original textbook and features a new se~tion that introduces externally described printer files, a new chapter that
highlights the fundamentals of RPG IV, and a new appendix that correlates the key concepts from each chapter with
their RPG IV counterparts. The book includes everything you need to learn how to write a well-designed RPG
program, from the most basic to the more complex. An instructor's kit is available. 481 pages.

PROGRAMMING SUBFILES IN COBOL/400
By Jerry Goldson
Learn how to program subfiles in COBOl/400 in a matter of hours! This powerful and flexible programming technique
no longer needs to elude you. You can begin programming v..ith &ubftles the same day you get the book. You don't have
to wade through page after page, chapter after chapter of rules and parameters and keywords. Instead, you get solid,
helpful information and working examples that you can apply to your application programs right away. 204 pages.

RPG IV BY EXAMPLE
By George Farr and Shailan Topiwala
RPG IV by Example addresses the needs and concerns of RPG programmers at any level of experience. The focus is
on RPG IV in a practical context that lers AS/400 professionals quickly grasp what's new without dwelling on the old.
Beginning with an overview of RPG IV specifkations, the authors prepare the way for examining all the features of the
new version of the language. -The chapters that follow explore RPG IV further with practical, easy-to-use applications.
488 pages.

RPG ERROR HANDLING TECHNIQUE
Bulletproofing Your Applications
By Russe// Popeil
RPG Error Handling Technique teaches you the skills you need to use the powerful tools provided by OS/400 and
RPG to handle almost any error from within your programs. The book explains the INFSR, INFDS, PSSR, and SDS in
programming terms, with examples that show you how all these tools work together and which tools are most
appropriate for which kind of error or exception situation. It continues by presenting a robust suite of error/ exception
handling techniques within RPG programs. Each technique is explained in an application setting, using both RPG III
and RPG IV code. Diskette included. 163 pages.

SQL/400 BY EXAMPLE
By James Coolbaugh
Designed to help you make the most of SQl/400, SQI/400 lry Example includes everything from SQL syntax and rules
to the specifics of embedding SQL within an RPG program. For novice SQL users, this book features plenty of
introductory-level text and examples, including all the features and tenninolO!,'Y of SQl/400. For experienced AS/400
programmers, 5QI/400 by Example offers a number of specific examples that will help you increase your
understanding of SQL concepts and improve your programming skills. 204 pages.

SUBFILE TECHNIQUE FOR RPG/400 PROGRAMMERS
By Jonathan Yergin, CDP, and Wayne Madden
Here's the code you need for a complete library of shell subfile programs: RPG/400 code, DDS, CL, and sample data
files. There's even an example for programming windows plus some "whiz bang" techniques that can add punch to
your applications. The book explains the code in simple, straightforward style and tells you when each technique
should he used for hest results. 3.5-inch PC diskette included. 326 pages.

TCP/IP AND THE AS/400
By Michael Ryan
Transmission Control ProtocoVIntemet Protocol ('TCPi1P) is fast becoming a major protocol in the AS/400 world
because of TCP/IP's ubiquity and predominance in the networked world, as well as its heing the protocol for the
Internet, intranets, and extranets. TCP/IP and the AS1400 provides background for AS/400 professionals to understand
the capabilities of TC.'P/IP, its strengths and we-aknesses, and how to configure and administer the TCP/IP protocol
stack on the A.S/400. It shows TCP/IP gurus on other types of systems how to configure and manage the AS/400
TCP/IP capabilities. 362 pages.

USING QUERY/400
By Patrice Gapen and Catherine Stoughton
This textbook, designed for any AS/ 400 user from student to professional with or 'l'\cithout prior programming
knowledge, presents Query as an easy and fast tool for creating report5 and tiles from AS/400 databases. Topics are
ordered from simple to complex and emphasize hand~-0n AS/400 use; they include defining database files to Query,
selecting and sequencing fields, generating new numeric and character fields, sorting within Query, joining database
files, defming custom headings, creating new database files, and more. An instructor's kit is available. 92 pages.

VISUALAGE FOR RPG BY EXAMPLE
By Bryan Meyers and Jef Sutherland
VisuatAge for RPG (VARPG) is a rich, full-featured development environment that provides all the tools necessary to
build Windows applications for the AS/400. VisualAgejor RPG lry Example brings the RPG language to the GUI world
and lets you use your existing knowledge to develop Windows applications. Using a tutorial approach, VisualAge for
RPG QjJ Example lets you learn as you go and create sin.pie yet functional programs from start to finish. The
accompanying CD offers a scaled-down version of V ARPG and complete source code for the sample project. 236 pages.

FOR A COMPLETE CATALOG OR TO PIACE AN ORDER, CONTACT

29th Street Press®
NEWS/400 Books™

Duke Communications International

221 E. 29th Street • Loveland, CO USA 80538-2727
(800) 650-1804 • (970) 663-4700 • Fax: (970) 663-4007

OR Shop Our Web Site: www.as400networkstore.com

Talk to Us!

~ Complete this form to join our network of computer professionals

le'll gladly send you a free copy of

J NEWS/400

J Selfing eServer Solutions

U Business Finance

J Windows 2000 Magazine

J SOL Server Magazine

) Group Computing Magazine

Providing help -

not hype.

Publisher of practical,

hands-on technical

books for ASf 400

computer

professionals.

Name ---------------------
Title Phone

Company -------------------
Address

City/State/Zip-------------------

E-mail ---------------------

Where did you purchase this book?

:J Internet l.J Card deck l.J Trade show

l.J Bookstore

Cl Computer store

Cl Magazine Q Direct mail catalog or brochure

What new applications do you expect to use during the next year?

How many times this month will you visit one of our Web sites (29th Street Press"',

AS400 Network, Selling eServer Solutions, Business Finance, Windows 2000 Magazine,

SQL Server Magazine, or Group Computing Magazine)! _______ _

Please share your reaction to Starter Kit for the IBM iSeries and AS/400. ___ _

0 YES! You have my permission to quote my comments in your publications

(initials) ___ _

[BX001X1A]

Copy this page and mail to
29th Street Press • 221 East 29th Street • Loveland, CO 80538

OR Fax to (970) 667-4007

OR Visit our Web site at www.as400networkstore.com

WE'RE VERY RESOURCE-FULL!

Join the AS400 Network
- your complete
AS/400 resourcel

Newswatchllelldl- ·-···--• Cj\len;~erthe~bp --:.idl
• Mitrcsofi.JUl"l;is the Java Ship, \'i'hde!BM St.avstheC-Ow-se --
• lilMWellSpllereHe~PrngrarnTrosrorGood 1stl'lljlress"" mBm
•TuoolnlhIBW... 111111111111111
• Slirdd OeMrs !Series System Management Llti~ty Suite --
• Mo:erewsa1'ldfheweekjy;ecrttipinside! =
Road-Up, Alk llllntions, Download SyslDm YiCi:C;{/fc)
Mwgement Pmtvcm- and Mm!
(2/1/0t)
Weve launched our flew System Maf13!Je:nmt Microsrte. It'~
packed Yr 1th system mar.agemoot·specifK: articles, arid we'll
be aading rrore in the days aheact Plus, yoo can download

Your Professional Membership Includes:

./ NEWS/400, the #1 AS/400 magazine worldwide, 14 times per year

./ Tech Resources: Web-exclusive articles, downloadable code and
tutorials, and the NEWS/400archive

./ Member Communilies: AS/400-specilic forums

./ Solution Center: AS/400 vendors, buyers guides, product reviews,
and screen tours

./ IBM Conneclion: Find what you need at ibm.com

./ News & Analvsis: AS/400 news updated daily

./ Jobs400: To hire or be hired

./ Worldwide Events: AS/400 events searchable by subject or location

./ NEWSWire/400: E-mail newsletters on AS/400 products, news, tips,
and techniques

./ Discounts on NEWS/4811 products:
• 25% off book purchases of $99 or less
• 30% off book purchases of $100 or more

Includes e-mail newsletters & access to much more!

Click on www.as400network.com and find out what the buzz is all aboutl

0 Yes. sign me up for the AS400 Network as a Professional Member for US$149/year in
the U.S. and Canada. Elsewhere US$199/year. Additional Professional Memberships
US$39/year in the U.S. and Canada. Elsewhere US$89/year.

COPY THIS PAGE
AND MAIL TO:
NEWS/400
221 E. 29th St.
Loveland, CO 80538

or fax to
970/663-4007

or subscribe
on the Web at
www.as400network.com

Name

ntle

Company

Address

City/State/Zip

Phone

E-mail

Fax

:sxoo1x1Ai

BROUGttl
TO YOU BY
~S/4001

AS400~
NEIWORK'"

NEWS/400

Without a doubt, the strong suit of
IBM's iSeries and AS/400 systems
is their sophisticated operating
system, OS/400. But along with
OS/400's unmatched level of
functionality and integration
comes a complexity you must
learn to manage.

Starter Kit for the IBM iSeries and
AS/400 provides essential
information to help you
understand the basic concepts and
nuances of iSeries and AS/400
systems - information that will

make your job easier and will increase your comfort level working
on these systems.

The book is arranged in logical order from basic system setup
information through some of the more important areas you need
to understand to operate, program, and manage your system.

CO HATURIS
The CD accompanying this
book contains all the utilities
and sample code presented in the book,
including

• a plug-and-play output queue monitor
• commands to copy user profiles and

create standard user profiles
• a command to duplicate job schedu le

entries
• commands to retrieve a device's IP

address and display a list of up to 25 IP
addresses
a command to print the object authori
ties for selected objects in one or more
libraries

• a command interface to API QEZSndMg
that lets you send break messages to
users

Comprehensive sections provide essential information about the following topics :

• system setup • operations • system management
• file basics • basic CL programming

Two additional chapters focus on TCP/IP and Operations Navigator to get you up to speed on these two
important aspects of working with iSeries and AS/00 systems today.

Whether you're a programmer, a system administrator, or an operator, the information presented in Starter
Kit for the IBM iSeries and AS/400 will help you develop a basic working knowledge of some of the key
concepts and functions you'll encounter on these systems. With this foundation , you'll be solidly
prepared to explore each subject in depth and apply what you 've learned to make your iSeries or AS/400
environment more secure, productive, and manageable.

Gary Guthrie is a NEWS/400 technical editor and a technical support consultant with more
than 20 years of progressive IT experience. He has written numerous articles for NEWS/400 and
served as editor of the newsletter The RPG Source. Among Gary's many areas of expertise are
problem determination and resolution, customer support, operating systems, languages, utilities,
database, application development, operations integration, system migration, configuration,
performance, security, work management, internals, and Client Access.

Wayne Madden is vice president and group publisher at Duke Communications International.
He is also the editor-in-chief and publisher of NEWS/400, Selling eServer Solutions, and Group
Computing magazines and The AS400 Network. Wayne is a well-known author and speaker in
the IBM technology marketplace, has written more than 200 articles, and has authored three
books. He has worked in the IBM midrange industry for more than 18 years
as a programmer, manager, consultant, author, and speaker.

Shop for other books at
www.as400networkstore.com,
part of the AS400 Network

Duke Communications International
A subsidiary of Penton Media, Inc.
Loveland, CO, USA

AS400"~
NffWORK
------- - --
WWW . Al400N I TWO It K . COM

	Blank Page

