

A Guide for Users

A Guide for Users

JOHN F. PIEPER

mamnama
DECbooks

Copyright© 1987 by Digital Equipment Corporation. All rights
:reserved. No part of this publication may be reproduced, stored
in a retrieval system, or ttansmitted, in any form or by any
means, without prior permission of the publisher.

987 65 4321

Printed in the United States of America
Order number EY-6708E·DP

DEC, DECsystem-10, DECSYSTEM-20, DECtape, DECwriter,
the Digital logo, PDP-11 , RSX, RSX-11, RSX-UM, RSX-1 lM­
Plus, and Micro/RSX are trademarks of Digital Equipment
Corporation. IBM-370 is a trademark of the International
Business Machines Corporation. CP/M i_s a :registered
trademark of Digital Research, Inc. MS-DOS is a registered
trademark .of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

Pieper, John F.
RSX, a guide for users.

{DECbooks)
1. RSX (Computer operating system) 2. PDP-11

(Computer)--Programming L Title. ll . Series.
QA76.76.063P54 1987 005.4'44 86-29109
ISBN 0·932376-90-8

This book is dedicated across three generations:

to Gertrude, without whom none of this

could have happened,

to Lee, who patiently did all the typing,

changing and changing,

to Monica, who having decided I was finally

serious about it, staunchly supported me all

the way,

to Dawn, who waited for it all to get done,

and to Sean, who was too young to care.

Preface

In 1975 I met my first RSX. This was RSX,1 ID. Many changes and en­
hancements have been made by Digital Equipment Corporation since
then. RSX-llM has supplanted "D"; "M"s big brother M-Plus is in the
process of supplanting it. They have both been joined by Micro/RSX,
which supports the increasingly popular Micro PDP-11. These changes
notwithstanding, most all of the basic operating system commands I
used then still work on your system today. Given the rapid growth in
the computer industry-both hardware and software-this represents
an impressive longevity.

When I was using RSX·! ID, I did so at an extremely simple level. I
wrote some scientific analysis programs, ran them, fixed them, put the
answers in a report, kept a copy of the program somewhere-in short,
I was a casual user. Several years later I was at a different job. When we
bought our first computer (PDP-ll/70 with RSX-llM Version 3.1), 1
found that I was the only one in the company who had ever seen RSX,
in any shape or form, before. By definition, I was an expert. I decided
that the only sensible way to handle the demands of a variety of users
with a variety of questions was to write a brief manual explaining the
basics of RSX. Thus, RSX: A Guide for User was born.

Things went more smoothly than expected during my stint as de facto
system manager. Those who came with questions that were answered
in the manual were told to read it first and sent away. Few came back.
We rolled along, perhaps doing nothing fancy, but getting our work done.
I decided that if this manual had been successful to our company, it
should be of value to users at other RSX installations as well. Of course,
a little rewriting and an extra section or two would be necessary before
what was an in-house training manual would be good enough to give
to a publisher. By the time I was done, the book had more than quad·
rupled in size. Then again, Digital's official docuiµentation for the latest
version of RSX·llM, binders and all, now fills a three-foot booksheli.
So be it.

As with any project of this nature, there are many acknowledgments
to make. First, I would like to thank Dr. Julian J. Bussgang for graciously

giving me permission to use the material which I wrote as an employee
of Signatron Inc. and which forms the nucleus of this book. Also, I would
like to acknowledge the many helpful suggestions of those who reviewed
the book in manuscript form: James McGlinchey, Thomas Parmenter,
Craig Silver, and Cathy Ziegelmiller. Just as important as the creation
is the preparation. In this regard, Lee Midthun has been all that one
could ask for and more.

To all of these good friends-Thanks!
And to you the reader-Enjoy!

John Pieper
Reading, Massachusetts

Contents

Part 1 System Conventions

Some lntrodnctory Remarks 3

What is RSXl 5

MCR vs. DCL 8

System Generation Options 12

User Privilege and Identification 14

The RSX File System 16

6.1 File Specification 17
6.2 Devices 22
6.3 Logical Units 25
6.4 User Areas and Directories 25

Command Line Formats 28

7.1 MCR Commands 29
7.2 DCL Commands 32
7.3 Changing Your CL! 37

Part 2 Using the System

User/System Interaction 43

Use of a Terminal 47

9.1 Input Control Characters 48
9.2 Output Control Characters 50
9.3 System Control Character 51

10 Identifying Yoursel! 53

JO. I Logging In and Logging Out 53
10.2 Changing Your Default Device or Directory 55

11 Introduction to System Functions 60

I LI Installed Tasks 60
11.2 Invoking System Functions 62
11.3 More on File Specifier Defaults 65

12 File Creation 67

13 File Copying 72

14 File Maintenance 81

14.1 Obtaining a File Directory 82
14.2 Deleting Files 84
14.3 Renaming a File 86
14.4 Fixing a File 87
14.5 Setting File Protection 90

15 Using a Printer 96
15.l Direct vs. Spooled Printing 97
15.2 Issuing a Print Request 100
15.3 Working with the Print Queue 105
15.4 Transparent Spooling 108

16 Language Processors 110

16.1 Using a Compiler 111
16.2 Fortran 116
16.3 Cobol 121
16.4 Macro-11 126
16.5 Using Basic and Basic-Plus-2 129

17 Building a Task 133
17.1 Introduction to the Task Builder 133
17.2 Specifying Output Files 135
17.3 Specifying Input Files 137

17.4 Accessing System Object Modules 141
17.5 Task Builder Switches 144
17.6 Task Builder Options 147
17.7 The Fast Task Builder 150

18 Using a Task 152

18.l The Simplified Method 152
18.2 Tasks vs. Task Images 153
18.3 Installing and Removing a Task 154
18.4 Running a Task 156
18.5 What Does DCL Really Do? 158
18.6 Aborting a Task 160

19 Other Useful Commands 164

19 .1 Getting Help 164
19.2 Setting and Showing Terminal Characteristics 166
19.3 Who's on the System? 172
19.4 Talking to Another User 173
19.5 Listing Active Tasks 175
19.6 Displaying Task Status 176
19.7 Displaying System Status 178
19.8 Obtaining Device Informatioin 180
19.9 What Time Is It? 181

Part 3 Advanced Techniques 183

20 Indirect Command Files 185

20.l Indirect Task Command Files 186
20.2 Indirect CL! Command Files 192
20.3 The Indirect Command Processor 198
20.4 Log-In and Log-Out Command Files 219
20.5 Portability Considerations 222

21 User Area Management 225

21.1 Cleaning Up Your User Area 225
21.2 Sorting a Directory 229
21.3 The Use of Multiple User Areas 233

22 Advanced Features of Pip 239

22.1 Overview 239
22.2 Special PIP Wildcards 241
22.3 Directory Search Modifiers 243
22.4 The Today Command 246
22.5 The Default Data Command 250
22.6 The Exclude Command 252
22. 7 The Selective Delete Command 25 7
22.8 The List Deletions Switch 260
22.9 The Creation Date Switch 261

23 File Backup Techniques 263

23.1 Using Backup Volumes 264
23.2 The File Exchange Utility 282
23.3 Using PIP for Backup 291
23.4 The Record Management Services 295
23.5 The Backup and Restore Utility 301
23 .6 Conclusions and Comparisons 3 IO

24 Object Libraries 313

24.1 Using Object Libraries with the Task Builder 314
24.2 Modules and Entry Points 319
24.3 Making Your Own Object Libraries 320

25 Background Tasks and Batch Processing 328

25.1 Running a Task in Background 330
25.2 Batch Processing via a Virtual Terminal 338

Index 351

Part I System Conventions

1

Some Introductory Remarks

This user's guide to RSX is intended to be a complete reference manual
for the casual or normal RSX user. I consider a "casual" user to be some­
one who uses the computer system for relatively straightforward ap­
plications. A definition such as this can never be exact. Loosely speaking,
if you write, edit, and run programs that do not run in real-time and
that are not large enough to require special storage requirements, you
are a casual or normal user: RSX also offers many features that allow
the system level user to do more advanced things; these are outside the
scope of this book and are not discussed. Recently, RSX has been ex­
panded in its capabilities by the addition of networking; this too is out­
side the scope of this book.

Some of the statements herein are deliberate oversimplifications.
These should be of no concern to the casual user and are according! y
not distinguished in the text from those statements that are strictly
true. The system level user, who should be treating this manual as in­
troductory or background material, is welcome to discover these half­
truths and replace them with their more complex realities.

For the casual user, this manual is intended as an introduction and
supplement to the official RSX documentation supplied by Digital
Equipment Corporation. Its purpose is to introduce you to the various
aspects of RSX, from basic concepts to advanced techniques, with em­
phasis on those things that you, as a casual user, will need to do and
understand. I can never hope to achieve the level of detail offered in the
RSX manuals. Once you have mastered the material in this book, you
are encouraged to tum to these should you wish a better understanding
of how things work. I nonetheless hope that, no matter how adept you
become with RSX, this guide will continue to be a convenient and useful
reference.

Some Introductory Remarks

In this book I include many examples for which I follow several con­
ventions. I use boldface to denote anything that you enter; responses
made by the system to you are in regular type. I do this mainly in the
examples themselves, but I also use boldface in the main text to high­
light command names or other keywords that you enter. Anything that
you must type in as shown is printed in upper case; a generic term, for
which you substitute a specific value, is printed in lower case. Many
commands consist of several parts with some special symbol used to
separate one part frcim the next. Often this separator is a space. In other
parts of the command you may use spaces if you wish. This is often
recommended for clarity, especially in indirect command files. In the
examples, I refrain from using spaces where they are not needed in order
to accentuate those that are mandatory. When a generic term has two
or more words in it, I use underscores instead of spaces between the
words to avoid confusion with any mandatory spaces in the command.
Finally, all command lines are terminated by a carriage-return I the
RETURN key on your terminal); I do not show this. For example, the
basic form of the command to run a task is shown as

RUN task

where the use of boldface indicates that this is something that you type
in. Here, the space between RUN and task is clearly required. By using
lowercase for task, I am indicating that you should replace this by the
actual task name when you use this command. A specific example, such
as the command to run a task called TEST! is thus

RUN TESTl

An alternate form of the Run command allows specification of a task
image file instead of a task; this is shown as

RUN task_image_f i l e

Here, the underscores show that "task image file" is a single entity that
you must similarly replace with an actual name when you issue the
command.

Finally, I note that the English language does not offer any convenient
way to say (/he or she" or "his or her." It is traditional practice to use
"he" and "his" when referring to a person of unspecified gender. !The
aroused feminist may ponder the potential double implications of this .)
I follow this practice, trusting that you will be understanding.

RSX, A User's Guide

2

What Is RSX?

RSX is intended as a real-time multiuser operating system. As such, it
can accommodate several simultaneous users. Note that the definition
of a user is not limited to the familiar notion of a person at a terminal,
but also includes tasks that either have been previously activated by a
user or are a part of the operating system itself. For example, RSX might
be used as an operating system for a PDP-I I that is used to control (in
real-time) an assembly line as well as to support (in nonreal-time) sci­
entific users. Here, the various tasks to process interrupts from the as­

sembly line would be users of the system, just the same as a job being
run by someone at a terminal. Many of the features of RSX were created
to supply this capability, so many of the commands and conventions
are of little concern to you. Nonetheless, RSX offers a powerful multiuser
capability, is relatively easy to use, is by now thoroughly debugged, and
is accordingly a very useful operating system.

Three forms of the RSX operating system are commonly available­
RSX-llM, RSX-1 IM-PLUS and Micro/RSX. For most purposes they are
identical. The significant distinctions among them are discussed in this
manual. Most of the time, I simply use RSX to denote any of these
systems.

An older form of RSX, RSX-110, is no longer offered but still exists
on various installations. It is similar to the current forms of RSX, but
it does not have the newer, more sophisticated features of these systems.
Since RSX-I ID has been discontinued, I do not distinguish those features
that are not available with it. .

A fifth form of RSX also exists. This is RSX- II S, a subset of RSX-l!M
that does not support any disk operations. It is intended to be an operating
system for a small PDP-I I installation. Typically, in order to use RSX-

What Is RSX?

llS on a small system, you would also have available a larger system
running under RSX-llM or RSX-UM-PLUS. You would do program de­
velopment on the larger system, taking advantage of the file control
services and other conveniences not available on the smaller system.
Full compatibility between the two operating systems allows these pro­
grams to be transferred to the smaller system. If you have a small in­
stallation running under RSX-I IS, you will probably use one of the larger
forms of RSX to do most of your development anyway. I accordingly
will not consider RSX-llS in this book.

RSX-llM or RSX-llM-PLUS may be used as an operating system on
any of the PDP-11 series of computers of sufficient size (i.e., model 23
or larger). Micro/RSX is used on the Micro/PDP- I I computer. RSX can
be adapted to support any variety of peripheral devices (disks, printers,
plotters, analog interfaces, etc.) that might be included in a PDP-I I
computer system. The basic parts of the operating system and the com­
mands that enable you to use it are independent of the details of the
particular computer system being used. This manual is thus applicable
to any PDP-11 computer system being run under RSX.

Digital has upgraded RSX by releasing new versions of the operating
system. These are identified by a major and a minor version number.
A change in the major version number typically indicates a significant
change in functionality whereas a change in the minor version number
indicates that only corrections or lesser enhancements were made. As
an example, version 2.0 of RSX-UM-PLUS was upgraded by the addition
of some minor features to version 2.1. The next upgrade to RSX-llM­
PLUS introduced more significant enhancements, and thus.was denoted
as version 3.0. The version of RSX that is on your system depends on.
when your system was installed and on whether your company has what
is known as a Software Maintenance Contract !which entitles you to
free upgrades). It is quite possible that you may not have the latest version
of RSX. Then, some of the features discussed in this book will not be
available to you. When I present a feature that was recently added to
RSX, I identify the version under which it was added. You should ac­
cordingly determine which version of RSX is on your system.

Of the three operating systems, RSX-llM is the oldest. RSX-llM­
PLUS was introduced as an enhanced form of RSX. The first version of
RSX-llM-PLUS was released in 1979, coincident with the release of
version 3.2 of RSX-llM. Since then, until the latest release, both products
have been upgraded in parallel, with essentially the same improvements
appearing in each. Micro/RSX was released in 1984 as a form of RSX
for the Micro/PDP-LL. You should not let this nomenclature fool you.

RSX, A User's Guide

The "Micro" refers strictly to the type of PDP-11 system for which it
was designed, not to the capabilities of the RSX implementation. Far
from being a diminutive form, Micro/RSX was originally more powerful
than either RSX-JlM or RSX-JlM-PLUS. In the January 1986 releases,
RSX-JlM-PLUS received a major upgrade, primarily to bring its capa­
bilities up to those of Micro/RSX. This indicates a change in emphasis,
with RSX- JlM-PLUS and Micro/RSX now offering essentially the same
features, with the only real distinction between them being the class
of PDP-11 on which they run. (To highlight this similarity, the version
number of the latest release of Micro/RSX jumped from 1.0 to 3.0 to
make it the same as that of RSX-1 lM-PLUS; there never was a version
2 of Micro/RSX.)

The release history for the three systems is shown in Table 1.

Table 1. Release History of RSX Systems

Released RSK11M RSX-11M-PLUS Micro/RSX

Jun 1979 version 3.2 version 1.0
Jan 1982 version 4.0 version 2.0
Apr 1983 version4.l version 2.1
Apr 1984 version 1.0
Jan 1986 version 3.0 version 3.0

In this book, I do not consider the extremely old versions of RSX. I
treat version 3.2 of RSX-llM (version 1.0 of RSX-llM-PLUS) as a baseline
system. (It is very unlikely that your system will be older than this.) I
identify any features that were introduced with later versions; when
enhancements were simultaneously made to both RSX-llM and RSX­
llM-PLUS, I typically identify just the RSX-llM version number. I also
identify features that are unique to either RSX-JlM-PLUS or Micro/
RSX. Finally, if you have version 1.0 of RSX-UM-PLUS, you should see
the comments in Chapter 3 concerning DCL.

I will occasionally discuss things which are not an official part of
RSX. These are enhancements to RSX that are made available by DECUS,
the Digital Equipment Computer Users Society. DECUS is an association
of users of Digital products; it is supported by but not controlled by the
Digital Equipment Corporation. DECUS has many Special Interest
Groups (SIGs); one of these is the RSX SIG. Many useful programs are
available (at a nominal charge) from the RSX SIG. Some of these are
utilities that provide capabilities that will help you in your use of the
system but that are not offered by RSX. Since these are not distributed
by Digital, you might not have them on your system. If you do not, you
should ask your system manager to get them.

What Is RSX?

3

MCRvs.DCL

As RSX has. grown over the years, various changes and enhancements
have been made to it. One of the biggest changes to RSX occurred with
the introduction of DCL. Originally, DCL was an enhancement available
only with RSX-llM-PLUS. It was introduced with version 1.0 of RSX-
1 IM-PLUS, but was not added to RSX-I JM until version 4.0. jDCL has
always been available with Micro/RSX.) Prior to these versions of RSX,
only MCR existed. What does all this mean?

In any operating system, when you enter a command, you are com·
municating with what is commonly known as the user interface. In
RSX terminology, this is known as the Command Line Interpreter. This
is a part of the operating system that interprets your command and either
gives it to some other part of the operating system for actual processing,
if it is determined to be a valid command, or else rejects it. Since your
use of the operating system, especially on a casual basis, centers on the
user interface, it is a common mistake to identify the two with each
other. When there is only one user interface available, this blurring of
identities is harmless. RSX is different from most other operating systems
in that it offers you a choice of two user interfaces. The distinction then
becomes important to understand.

Regardless of which interface you use, RSX is the operating system,
and that is that. This is an important point. Much of our discussion in
subsequent sections will be about various aspects of RSX itself (e.g., the
fil e system). Any such discussion will apply to your use of the system,
regardless of which user interface you choose to use.

The two available user interfaces or Command Line Interpreters for
RSX are known as MCR and DCL. MCR is the Monitor Console Routine;

RSX, A User's Guide

DCL is the Digital Command Language. MCR and RSX have grown up
together; DCL is a recent addition. Of the two, MCR is the more powerful
and also the more difficult to master. As an interface, it is aimed more
at the experienced system user than the casual user. DCL, on the other
hand, was designed to be an easy-to-use, general purpose interface. The
name Digital Command Language signifies the effort made by Digital
Equipment Corporation to develop a standard user interface that is in­
dependent of machine or operating system. (DCL, in almost identical
forms, is available on the PDP-11 under both RSX and RT-II , on the
VAX under VMS, and on the DECsystem-JO and the DECSYSTEM-20.)
With the latest versions of RSX, some minor changes to certain DCL
commands have been made to make RSX DCL compatible with VAX!
VMS DCL. To preserve continuity with the earlier versions of DCL,
these changes have been effected by adding new command forms, which
are recommended over the older ones.

Most likely, you will find DCL easier to learn because it uses whole­
word commands instead of abbreviations, and prompts you for missing
fields should you enter only part of a command. As you become more
familiar with RSX in general, however, you may find that this approach
is, in places, verbose . MCR employs a much terser command structure
(also moce cryptic) which allows you do things with shorter commands.
The choice of which you, as a user, prefer will be a matter of your own
judgment. The old MCR standard still has many adherents, but DCL is
undoubtedly the wave of the future.

You should realize that although you have a choice between MCR
and DCL, it is not a one·time decision. Any time you want, you may
switch from one user interface to the other. (We discuss this further in
Section 7.3.) You are not necessarily encouraged to do this, as the dif­
ference in command structures leads to a schizophrenic style of computer
usage. The significant point is that, initially, you should not worry a
lot about whether to use DCL or MCR. Try both for a while, and then
make your own choice.

Although you may find DCL preferable, my presentation of various
commands will stress the MCR usage. There is a very simple reason for
this-MCR is the only interface to the RSX operating system that really
exists. That is, RSX understands MCR commands, but it does not un­
derstand DCL commands. DCL is actually a shell-it is a barrier erected
around the true user interface to shield you from it and its vagaries.
DCL translates the commands that you give it into the corresponding
MCR commands; these are then processed as though you had directly

MCR vs. DCL

typed them in. Since it is MCR commands that actually are processed,
if you really want to understand how to use RSX, you should understand
MCR.

As we noted earlier, DCL was available on RSX-llM-PLUS before it
was available on RSX-1 lM. With the change from version 3.2 to version
4.0 of RSX-1 lM, not only was DCL added, but it was also significantly
changed. These changes also occurred with the switch from version 1.0
to version 2.0 of RSX-llM-PLUS. Thus, DCL under version 1.0 of RSX­
llM-PLUS is somewhat of an anomaly in that it is noticeably different
from all other RSX implementations of DCL. Unfortunately, these
changes do not concern the addition of new features, which I could easily
note when appropriate. Instead, they involve a redefinition of the basic
form of the DCL commands. Some of these changes are as 11trivial11 as
the addition of a slash before an optional field in a command. (This may
seem trivial to you, but it is not taken so lightly by DCL.) Others change
the keywords used within commands to signify various options, while
still others change the names of commands themselves. For me to note
all these special cases would unduly clutter the discussion. Instead, I
will limit my presentation of the DCL command forms to cover only
version 4.0 of RSX-llM (version 2.0 of RSX-l!M-PLUS) or later. If you
have the earliest version of DCL lif so, you have an operating system
that is seven years old) you should expect that any command available
with version3.2 of RSX-llM will be available to you, but that the com­
mand syntax may be different from what I show. To be safe, you should
look up the correct command syntax in the RSX-llM-PLUS Command
Language Manual. If this applies to you, I apologize for the inconven­
ience, but strongly suggest that you solve the problem by upgrading
your system.

Since DCL is a shell, it should be clear that there is nothing you can
do in it that you cannot also do in the actual MCR command language.
(Of course, the DCL commands might be easier, but that is merely a
matter of convenience.) On the other hand, depending on how thoroughly
the shell is implemented, there may be MCR commands for which there
are no DCL counterparts. In this case, there will be things that you can
only do in MCR. What you will find is that all the common operations
will be possible from DCL; only some of the more arcane features are
not provided. Unfortunately, to make all these features available from
DCL, it has been necessary to clutter up the DCL command syntax to
the point where the advantage it offers over MCR is, in many cases,
moot.

As a final point, note that certain commands that you will more com-

RSX, A User's Guide 10

manly use (such as those for getting a list of your files, or copying a
file) are those that are typically cited as illustrating the advantage of
DCL over MCR. It is certainly true that the DCL coilllilands for these
functions are much easier and more natural to use. Although you will
find these DCL forms preferable, that does not necessarily mean that
you will need to choose DCL as your command line interpreter in order
to use them. Instead, depending on the details of your system, you may
be able to use some or all of these commands directly from MCR. This
depends on whether a system generation option known as the Catch
All task is part of your system and, if so, on just what facilities it offers.
As we noted above, when you enter a command, your Command Line
Interpreter first checks to see if it recognizes the command. If it does
not, it may reject the command immediately. Alternatively, your Com­
mand Line Interpreter may give the command to a special task known
as the Catch All task. If Catch All recognizes your command, it will
process it. On many RSX systems, Catch All is used as a means of adding
the more useful DCL commands to the MCR vocabulary. This is es­
pecially true on the later versions of RSX. For example, although MCR
does not understand the command COPY, the Catch All task can be
written so that it will understand it and process it exactly as DCL would.
What Catch All offers is the ability to use MCR as the Command Line
Interpreter for more complicated commands (where the advantage of
DCL is no longer clear) while providing the advantage of the DCL com­
mand style for simpler functions. Most likely, a Catch All capability of
some sort will be available to you-you should check with your system
manager to find out the details.

MCR vs. DCL II

4

System Generation Options

As you read this book, you will probably be thinking in terms of your
particular PDP· l l computer system operating under RSX. Your RSX need
not be the same as someone else's, even if both are from the same release.
RSX· I IM and RSX· I IM· PLUS, as supplied by Digital, contain the flex·
ibility to be configured in one of several ways. The decisions implied
by this flexibility are made by your system manager during a procedure
known as system generation. Of necessity, we will at times discuss cer·
tain features that may not apply to your system. These will be identified
as system generation options. II have already mentioned one-the Catch
All task.)

Unlike RSX·llM and RSX·llM·PLUS, Micro/RSX is delivered as a
pregenerated system. What you receive is a ready-to-use operating sys·
tern. No system generation is required; no modifications are possible.
Typically, Micro/PDP·ll systems have limited disk storage; system
generation and customization require much file space and are thus not
made available with Micro/RSX. If your system is Micro/RSX, our oc·
casional comments concerning system generation options will not apply
to you.

One important system generation option is multiuser protection. This
option is normally selected unless the computer system is intended to
have very few users. Multiuser protection allows the system to control
access to it by a potential user. In a system without this feature, anyone
can use the system simply by entering commands at an available ter·
minal. In a system with the protection feature, you must first properly
identify yourself I through a procedure known as logging in) before being
given access to the system. (Valid identifiers are issued by the system
manager.) Once you have obtained access to an RSX system, there typ·

RSX, A User's Guide 12

ically is no distinction between a system that supports the multiuser
protection feature and one that does not. In particular, despite what the
words "multiuser protection" may suggest, the ability of one user to
access files belonging to another user or to interact with another user
in other ways is the same in either type of system.

RSX systems without multiuser protection were presumably intended
for dedicated applications je.g., a PDP· Jl used to monitor and control
a manufacturing envi10nment, with terminals located throughout the
production area). Since its introduction, RSX has become increasingly
popular as a multiuser timesharing system. This change in emphasis is
reflected in the fact that on both RSX·llM·PLUS and Micro/RSX, mu!·
tiuser protection is not an option-it is the only choice. On RSX-LIM,
it is still an option, but it is unlikely that your system will not have it.

System Generation Options 13

5

User Privilege and Identification

RSX classifies users as either privileged or nonprivileged. Essentially, a
nonprivileged user can do all sorts of normal things but none of the
fancy things. This distinction was created to protect critical real-time
functions from interference by other users.

In a multiuser protection system, individual users are declared by the
system manager to be either privileged or nonprivileged. This distinction
is noted when you log in to the system and determines your ability to
perform privileged functions. In a system without multiuser protection,
individual users are not identified and cannot be categorized in this way.
In this case, each terminal in the computer configuration is declared to
be either privileged or nonprivi\eged-this distinction is made during
system generation. Your ability to perform privileged funct ions is then
determined by the terminal you use-that is, you assume the privilege
status of your terminal. For simplicity, we talk of you, the user, as being
either privileged or not.

In a multiuser protection system, the privilege option is typically lim­
ited to system programmers. If you are reading this manual, you are
probably a nonprivileged user. Let it not concern you.

In a multiuser protection system, each person authorized to use the
system is identified by a User Identification Code jUIC}. The UIC is of
the form [g,mf where g is a group number and m is a member number, ·
both of which are octal, between 000 and 377. Group numbers less than
or equal to 010 are reserved for privileged users. Two users with U!Cs
having the same group number are said to be in the same group. No
significance is attached to UICs that have the same member number.

Only a privileged user !normally the system manager) can assign U!Cs.
When you are given a UIC, you will also be given a password. This

RSX, A User's Guide 14

information is maintained in a special file, known as the system account
file . When you log in to the system, you must supply a valid UIC and
a matching password. You may have more than one UIC, but you can
use only one at a time. In addition to being used to control access to

the system, the UIC is also used to classify and identify users to the
system. The UIC you use when you log in establishes your file access
and system privileges-these remain fixed as long as you are logged-in
to the system.

User Privilege and Identification 15

6

The RSX File System

As with any modem computer operating system, the basic unit of data
storage in RSX is the file. A file is restricted neither in size nor in the
nature of its contents. A file is simply a string of bytes. !One byte is
eight bits; on the PDP-11 series, this is half a computer word and is the
most elemental unit of data storage or transfer.) Most of the bytes in a
file are those that are of interest to you; some are inserted by the op­
erating system for control purposes. The latter are transparent to you.
A file may contain a source program1 an executable task image, text,
numeric data, a list of file names, or anything else. It is essentially im­
possible for you to do anything without referring to a file.

Although RSX shares the common concept of file storage, it has its
own unique system for storing and handling files known as Files-I I. As
all files created under RSX are automatically in Files-I I format, the dis­
tinction is seldom a concern. It becomes important only when you wish
to transfer files !usually program source files or data fil es) to or from a
computer system that is not running under RSX.

Under Files- 11, the basic unit of storage on a disk is the block. The
size of a block is 512 bytes. Any file is stored as an integral number of
blocks. When you obtain a directory listing (Section 14.1), part of the
information that you may get is the size of each file. In some operating
systems, a directory listing will show you the size of a file in bytes li.e.,
the exact size); in RSX, the size is given in blocks. For example, if a file
is shown as being 11 blocks long, you know that its size is somewhere
between 5121 and 5632 bytes, but you cannot determine it more exactly.

We will at times talk of devices and volumes. A device is a unit that
can write data onto and/or read data from a volume, which is some
storage medium. Thus, a disk drive is a device and a disk platter is a

RSX, A User 's Guide 16

volume. Except for our discussion of backup volumes !Section 23.I), we
will not need to be exact in distinguishing between the two. Normally,
we will simply talk about a device, allowing that term to subsume the
concept of volume as well.

Files may be transferred to any of a variety of devices (disk drive,
magtape drive, line printer, terminal, etc.) and stored on various types
of volumes (multiplatter disks, floppy disks, magtapes, etc.) Subject to
obvious physical limitations, you can have as many files as you wish
on any volume. The collection of files belonging to one user on one
volume is known as his user area. It is convenient to picture the volume
(usually a large disk) as being divided into distinct user areas. (Because
files can be created or deleted at any time, this is clearly a dynamic
allocation.)

The files ·within a user area are listed in a user file directory (UFD)
which is itsell a file on the particular volume. Strictly speaking, a user
area is a collection of files, and a UFD is a special file containing a list
of the files in a user area. This distinction is a fine one that we will
normally not need to make. Since the UFD is a file, it has to have a
name and it has to be in some user area. The name of each UFD file is
formed from that of the corresponding user area and all UFD files are
kept in a special system area known as the Master File Directory.

6.1 File Specification

In order to use a file, you must identify it. This is accomplished by using
what is known as a file specifier. An individual file in Files-I I format
is specified in one of several ways. In its full form, the specification is

device: [ufd] filename. type; version

jNote the punctuation shown here; the colon, brackets, period, and
semicolon are all part of the required syntax.)

Changing any one of these specification fields is sufficient to specify
a completely different file. Thus, to specify a particular file unambig­
uously, the complete specifier must be used. This can clearly be clumsy,
fortunately, it is normally not necessary. Many of the fields in the iden­
tifier can usually be omitted, with a typical file reference being of the
form

filename. type

or even more simply,

The RSX File System 17

filename

You must nonetheless understand the purpose and usage of each of these
elements.

The device is the physical unit on which the file is Ito be) stored.
(Strictly speaking, files are stored on a volume, but it is to or from the
device that the contents of the file are transferred. Following standard
RSX convention, we will speak of the device, not the volume, on which
a file is stored.) In a large computer system, more than one physical
device may be available for file storage (e.g., there may be two disk
drives). In this case, since files on one device are independent of files
on the other device, it is necessary to specify the particular device to
completely specify a file.

Although it is in general necessary to specify the device in order to
unambiguously specify a file, you will normally not need to do so. A
small system such as a Micro/PDP-11 running Micro/RSX will com­
monly have only one large disk drive. Even in a large system with many
disk drives, you, as a casual user, will normally have only one drive
available for your files. In cases such as these, it is unnecessarily com­
plicated for you to have to specify the device every time you refer to a
file. RSX provides for this by allowing a default specification. If no device
is specified, a certain one is assumed. This default device is known as
the system device; its identity is dependent on both the particular com­
puter installation and the user. On a multiuser system, each user has
his own definition of the system device; this is determined by the system
manager. !The system device should be called the user device since that
is what it really is, but the term "system device" is too deeply embedded
in RSX to ever change, so you will have to adapt to it.) When the system
device is to be used in a file specification, the device need not be spec­
ified; the colon is then also omitted. When any other device (magtape,
terminal, or line printer) is to be used, the appropriate device code !in­
cluding colon) must be used. We discuss how to specify device codes
in Section 6.2.

Once you have specified a device (either explicitly or via default), you
must next specify the user area on that device in which the file is (to
be) stored. This is effected by the uld portion of the file specifier, which
identifies the corresponding User File Directory (UFD). Even if you have
more than one user area, you will seldom work with files from more
than one area at a time. RSX allows for simplification in this case as
well by assigning you a default directory, which is used if you do not
specify the uld. When there is no need to specify the ufd, it (and the

RSX, A User's Guide 18

brackets) may be omitted. We discuss user areas and default directories
in Section 6.4.

In most cases, your system device and default directory will be ap­
propriate, so that the device and ufd are not required. The file identifier
can then be abbreviated to

fl lename. type; version

Here, filename is the actual name, type denotes the type of the fil e, and
version distinguishes between several files with the same name and type.

The filename.type portion of the file specifier is, logically speaking,
the most important. Files that have the same file name and type, differing
only in the version, are said to be different versions of the same file.
The purpose of the version is just what its name implies-whenever
you change a file, you make a new version of that file. Each version is
a distinct file; the version portion of the file specifier distinguishes be­
tween these files.

The concept of maintaining different versions of a file is somewhat
special to RSX. It does not exist on older operating systems such as
TOPS-10 or RT-11 , nor does it exist on popular microcomputer operating
systems such as CP/M or MS-DOS. It is a very powerful feature, es­
pecially for activities such as program development. For instance, it al­
lows you to keep a set of program changes until you are sure the changes
are correct. If necessary, you can undo these changes simply by going
backward through the saved versions. The danger here is that this can
easily lead to a large accumulation of files within your user area. A
simple means of controlling this is described in Section 14.2.

The version is a number. In the older forms of RSX, you must treat
the version number as an octal value. (Thus, for example, the next ver­
sion after 7 is 10; there is no version 8.) This use of octal arithmetic
directly reflects how the version number is stored by Files- ll , but is
unnatural from the user's viewpoint. In Micro/RSX, all version numbers
are represented as decimal values. In version 3.0 of RSX-I JM-PLUS, this
capability is available as a System Generation option. (Thus, even if you
have version 3.0 of RSX-llM-PLUS, you may still have to represent
version numbers in octal-check with your system manager, or exper~
iment to find out.) Decimal version numbers are not available with RSX­
llM. The use of decimal version numbers certainly simplifies references
to files, and is a welcome improvement to RSX.

The version number can usually be ignored because the system prop­
erly chooses default values for it. Nonetheless, you should understand

The RSX File System 19

how this is done. When you first refer to a file (that is, the first time
you make a file with some combination of device, ufd, file name and
type), a file with these specified values and a version number of l is
created. Thereafter, every time the file is recreated la source file is edited,
an object file is recompiled, a task file is rebuilt, etc.) another file is
created with the next higher version number. Note that the creation of
a new version of a file does not affect the current version of the file.
When you specify a file with no version number (the semicolon is also
omitted), a default version number is assumed. This is

for an input f il e : highest existing version number

for an output file: highest existing version number . + 1

In either case, you can refer to the latest version of a file without having
to keep track of the version number-the File Control Services do this
bookkeeping for you. You also can specify a version number of 0 (when
you specify no version number at all, a value of 0 is used) to refer to
the latest version. Probably the only time that you will need to do this
is to delete the latest version of a file, as is discussed in Section 14.2.

In most cases, you will want to refer to the latest version of your file;
in this case you can omit the version portion of the file specifier. Then,
the specification of a file reduces to the form

filename. type

In many cases, this is all you need to use as a file specifier.
The file name can never be omitted, as there is never a default for it.

It can be from one to nine alphanumeric characters (the letters A-Zand
the numerals 0-9). There is no distinction between upper and lower
case alphabetic characters. The leading character in the file name can
be either a letter or a numeral.

The file type is normally a three-character mnemonic but may more
generally be from zero to three characters long. The type is normally
set to a standard value to signify the nature of the file. The most common
file types are listed below:

BAS a BASIC language source file
B2S a BASIC-PLUS-2 language source file
CBL a COBOL language source file
CMD an indirect command file
DAT a datafile
FTN a FORTRAN-4 or FORTRAN-77 language source file
LST a listing file

RSX, A User's Guide 20

MAC a MACR0-11 Assembler source file
OBJ an object (compiled source) file
OLB an object library file
TSK a task image (executable program) file
TXT a text file

Most system utilities or commands assume certain default file types.
The type need not be specified when it is the same as the default for a
particular command. In this case, the period is also omitted. This leads
to a subtle distinction. Omitting the type but not the period does not
specify a default file type. Instead, it specifies a null type. This is syn­
tactically valid, but unless specifically desired, is a common source of
error.

As an example of the use of default file types, the FORTRAN compiler
reads an input file containing source code and produces an output file
containing object code. The input file is assumed to have type FTN and
the output file is assumed to have type OBJ. Thus, you may use the
simplified file specifier TEST for both the input and output files; the
input file specifier will be interpreted by the FORTRAN compiler as
TEST.FTN and the output specifier as TEST.OBJ. You can, however,
override either of these defaults by specifying the file type. Thus, if you
specify TEST.OLD as the input file, it will be used by the FORTRAN
compiler, even if a file TEST.FTN exists.

As an example of the use of defaults for file types and versions, consider
execution of the following commands:

EDIT TEST. FTN
FORTRAN TEST
EDIT TEST. FTN
FORTRAN TEST

(These commands are in DCL form; we will worry about their exact
structure later.) Assume that you have already made version 1 of the
file TEST.FTN, that is, in your user area you already. have the file
TEST.FTN;l. The command EDIT uses your favorite editor to edit a
file . In the first command above, the input to this editor is the file
TEST.FTN;l, which stays unchanged; the output is a new file,
TEST.FTN;2. The command FORTRAN uses the FORTRAN compiler
to compile a source file. In the second command above, the input to
the compiler is the file TEST.FTN;2, which stays unchanged; the output
is a new file, TEST.OBJ;!. The third command performs another edit,
resulting in the new file TEST.FTN;3. The last command compiles this
file, producing as output the new file TEST.OBJ;2. At this point, a di-

Tbe RSX File System 21

rectory listing of all files with the name TEST would show the five files
listed below:

TEST. FTN; 1
TEST. FTN; 2
TEST. OBJ; 1
TEST . FTN; 3
TEST . OBJ; 2

It is often useful to refer to more than one file at a time. This may
be done by using a wildcard in place of one or more of the file specifi­
cation fields. This is not the same as using a default. Omission of a
specification field directs the File Control Services to accept the default
value for that field; use of a wildcard as a specifier directs it to accept
any value for that field. A wildcard is specified by an asterisk. Wildcards
are typically used in place of the file name, type, and/or version identifier.
As an example, the file specification TEST.FTN;• specifies all files with
a name of TEST and a type of FTN, regardless of version number. The
specifier •.FI'N;• may be used to refer to all FORTRAN source files .
You may use a wildcard and a default together. For example, TEST.•
specifies the latest version of any file with name TEST, regardless of
file type. Similarly, TEST.•;• specifies all versions of any file with name
TEST. (This specifier would have been used to obtain the list of file
specifiers shown in the above example.) Wildcards are a very powerful
feature-once you get used to them, you will use them for many pur­
poses1 such as obtaining a directory listing, and transferring, deleting,
or purging files.

6.2 Devices

RSX allows you to refer to a number of possible devices. These may be
either peripheral or pseudo devices.

A peripheral device is an actual input/output (1/0) unit. A peripheral
device is designated in the form ddnn:, where dd is a two-letter device
code, nn is an (optional) device number, and the colon (:) is required.
The device codes you are likely to use are:

Terminal (any type) TT
Line printer LP
Magtape unit MM, MT, MS

RSX, A User's Guide 22

Floppy disk
Large disk

DX,DY
DB, DP,DR

Your system manager can tell you which devices are in your system.
Device numbers are octal and start at zero. A reference to a peripheral
device with no numeric identifier uses zero as a default value. For ex·
ample, the device code for a line printer is LP. In a system with only
one line printer, the complete device name is LPO:, but LP: is a sufficient
designator. Similarly, two line printers would be identified as LPO: and
LPl:. Jn our examples I will show the device number as nn, implying
that it is a two-digit number. Actually, it may be as large as 377 octal.
Unless your system has a very large number of terminals, you will not
need a three-digit device number.

A pseudo device is not a physical unit; rather, it embodies the concept
of VO. Actual peripheral units are assigned to pseudo devices by the
system. Thus, a reference to a pseudo device is translated into a reference
to an actual unit and in these cases obviates the need for you to know
the peripheral device codes. A pseudo device is designated as xx: where
xx is a two-letter code. The pseudo devices that you are most likely to
use are listed below. Of these, you will find TI: and SY: to be the most
useful.

User terminal TI:
User default device SY:
System default !library) device LB:
Null device NL:
Console listing device CL:

The pseudo device TI: is the pseudo input terminal. TI: refers to the
particular terminal you are using. Different users may each refer to the
pseudo input terminal; the system translates each reference into the
correct terminal code and no confusion results. On the other hand, to
use the actual peripheral device code; you must know whether the ter­
minal you are using is known to the system as ITO:, TTI:, etc.

The other commonly used pseudo device is the user default device,
SY:. This is the device on which your files are stored; it will be a disk
drive of some sort. In a large installation, there may be several disk
drives. In this case, the system will equate SY: to a particular one of
these. If your system has multiuser protection, this assignment will be
made when you log in to the system; SY: will then be set to be the disk
on which your files are stored. On a system without multiuser protec-

The RSX File System 23

tion, this automatic assignment of SY: is not possible, and you may
have to assign SY: yourself. We discuss how to do this in Section 10.2.

Strictly speaking, whenever you refer to a file, you must include a
device code in the file specifier. If you omit the device specification,
SY: will be assumed by default. By having SY: assigned to the disk con­
taining your files, you may refer to your files without having to bother
with specifying a device. For this reason, we will often refer to SY: as
being your system disk. Note that some other user will also have an
SY: which will be his system disk; this need not be the same as yours.

The system default or library device is the device on which operating
system files are stored. As with the user default device, this will be a
disk drive of some sort. On a small system, SY: and LB: will refer to
the same disk drive. On a large system, they will typically refer to dif­
ferent devices. You may occasionally need to refer to a file that is part
of the operating system, hence this distinction should be noted. Nor­
mally, however, you will not need to use LB:.

Although SY is a mnemonic for "system," you should remember that
SY: is the user default device, not the system default device. This is an
easy source of confusion. The common use of "system disk" for SY:
adds to this confusion. It may help you to think of the system device,
LB:, as a mnemonic for "library," since one of the common reasons for
referring to it is to access system library files. The choice of some other
pseudo device name, such as US for user, would have been nicer, but
so it goes.

The null device INL:) does not exist. It allows you to have a syn­
tactically valid input or output statement without performing any actual
l/O operation. A write operation to the null device effectively aborts
output without interfering with program execution. This is very useful
in testing a program, as it can be used to direct portions of the output
to a temporary void. Once the program has been verified, the output
can be easily reassigned to an actual destination (e.g., LP:). The null
device is often referred to as the bit bucket to indicate this deliberate
loss of output. The null device can also be used for data input. Jn this
case, a read from NL: returns an End-Of-File IEOF) indicator instead of
any actual data. We discuss a common use of this device in Section 25.1.

The console listing device (CL:) is the default unit for certain types
of printed output. It is normally assigned to a line printer; in a system
with no printer, it may be assigned to a DECwriter or other hard-copy
terminal. As with other pseudo devices, you may use CL: without
knowing which peripheral device it is assigned to. Due to tl1e use of
print spooling !Chapter 15), however, you will normally neither need
nor want to refer to CL:.

RSX, A User 's Guide 24

6.3 Logical Units

Ultimately, all 1/0 operations must refer to an actµal peripheral device
!except those that refer to the null device). As discussed in the previous
section,. it is possible to delay the choice of peripheral device by first
referring to a pseudo device. For user programs, RSX provides yet another
level of indirectness. In an 110 statement, no direct reference to any
device is made. Rather, the 1/0 operation refers to a logical unit, which
is identified by a decimal number in the range 0 to 255. The logical unit
number ILUN) is later assigned !when your task is built) to either a
peripheral or pseudo device. By referring to logical units, you may make
your source program device independent. Under RSX, certain assign­
ments are assumed by default. These are:

LUN 1 - 4 =SY:
5 = TI:
6 =CL:
7 or greater-not used

In many cases, the default assignments will be adequate for your needs.
The multiple levels of assignment from logical unit to actual device
may at first seem unduly complicated. When properly used, however,
this interaction can provide a great degree of flexibility. We discuss this
in greater detail in Section 25.1.

6.4 User Areas and Directories

As an RSX user, you may have many files on a particular disk volume.
The collection of these files forms what is known as your user area.
The association of all the files in this user area with you is effected
through the User File Directory jUFD). A UFD is a special file maintained
by RSX that contains the names of all the files in a user area, along with
related information, such as where on the volume they are, how big
they are, and when they were created. For each user area on a volume,
there is a corresponding UFD, there is a simple one·to-one relation be­
tween these, based on the name of the user area. Strictly speaking, a
user area is a collection of files and a directory is a file containing a list
of all the files in a user area. The two concepts, however, are so closely
interrelated that they are often used synonymously.

Since a user area is intended to contain files belonging to one user,
that user is known as the owner of the user area. As we discussed in
Section 5, each user is identified by his UIC, which is a two-part number

The RSX File System 25

of the form [g,m]. Traditionally, UFOs have been identified in the same
style as UICs. A UFO that is identified in this way lthat is, by a group
and a member number! is known as a numbered directory. Micro/RSX
introduced a new concept, named directories, wherein the user area is
identified by an alphanumeric name. This has also been made available
in version 3.0 of RSX-llM-PLUS. A named directory is identified by a
name of up to nine characters. (The rules for choosing this name are
exactly the same as those for choosing a file narne. J If your system does
not support named directories, you must use numbered directories. If
your system supports named directories, you can use either numbered
or named directories. This allows compatibility among different RSX
systems.

When you are entered as an authorized user into the system account
file, you are assigned a user area in addition to your UIC. (As we discuss
in Section 21.3, you may later obtain other user areas.J If your system
has only numbered directories iany RSX-llM system and all RSX-llM­
PLUS systems prior to version 3.0J, this initial user area will be identified
by your UIC. When you are given other user areas, they will typically
have the same group number as your UIC, but different member num­
bers. If your system has named directories, you may choose any name
you wish for your initial user area. You may similarly choose any name
for subsequently assigned user areas.

Whenever you log in to the system, a user area is selected for you.
This defines your defaulc directory, which is used whenever you omit
the uld portion of a file specifier. lln Section 10.2, we discuss how to
redefine your default directory.J This initial choice of default directory
is the user area that was originally assigned to you when you were en­
tered into the system account file. This is independent of whether you
have numbered or named directories.

For example, suppose your UIC is [110, l) and your name is Tolman.
If your system has numbered directories, your first user area will be
identified as [110,1). Subsequent user areas will also be in group llO,
such as [110,2), [110,100], or [110,377). Whenever you log in, your default
directory will be set to [110,l]. If your system has named directories,
you may requ es t that your first user area be [TOLMAN], or
ITOLMANOOl], or [SYLVIA], or anything else you wish. Suppose you
choose [TOLMAN] as your initial directory. You might later obtain di­
rectories called IT2J, !PLOTTER), ITROPO), etc. Whenever you log in,
your default directory will be set to [TOLMAN].

I stated earlier that a UFO was a file. As such, it has to have a name.
For a numbered directory, the UFO is given the six-character name

RSX, A User's Guide 26

gggmmm where ggg and mmm are the group and member numbers,
each represented as three octal digits. For a named directory, the UFO
is given the name of the user area. In either case, the file type of the
UFO is DIR. In the examples above, the UFD names would be
110001.DIR and TOLMAN.DIR. Since a UFO is a file, it also must be
in some user area. All UFOs are in a special system area, known as the
Master File Directory (MFD), which is identified as [O,O].

The RSX File System 27

7

Command Line Formats

Anything that you, as a casual user, do on a computer system is effected
by issuing commands to its operating system. The things that you are
allowed to do and the manner whereby you request them may differ
drastically from one system to another, but, in general, you will always
request a particular type of action, perhaps define what is to be acted
upon, and optionally include some finer definitions of the action. For
example, you cannot simply print; you have to print a particular file lor
possibly several files), and instead of automatically getting one copy,
you may further specify how many copies you wane printed.

The commands that you may issue to RSX depend on which of the
two command line interpreters, MCR or DCL, you are using. The general
command style is quite distinct for these two user interfaces. In this
chapter we look at the basics of the command syntax for each.

Before we go any further, you should realize that there is nothing
magical about an operating system (not even RSX). It is a computer pro­
gram, admittedly a big, complicated one, or, more precisely,. a big col­
lection of complicated programs, but that is all. When you ask RSX to
do something for you, it first determines which program, or task, is the
one designed to do what you have requested. Assuming that you have
not asked for something undefined, RSX then gives the particulars of
your request to the responsible task, which does what you requested.
When one task does only one type of thing, this division of labor is very
straightforward. When, however, one task is capable of performing many
different functions, things are not so simple. All this leads to what is
probably the biggest difference between MCR and DCL commands­
the names of the commands themselves. In DCL, the command name
is chosen to describe the action you request, whereas in MCR the com-

RSX, A User's Guide 28

mand name is the name of the task that will actually do it. Presumably,
you will want to think in terms of the operation to be done, but RSX
needs to think in terms of the task required to do it for you. Thus, we
can see that DCL was designed around the convenience of the user,
while MCR was designed around the convenience of RSX.

7.1 MCR Commands

A typical MCR command directly names the task that is required to do
whatever it is you want done. In some cases, there is an obvious rela­
tionship between the task name and the action, but in others !most
noticeably, the file maintenance operations offered by PIP), there is not.
Whether the name of the command itself makes sense to you or not,
you will find that there is a common syntax to the rest of the command
line.

In MCR, a command to the operating system consists of a command
name, which identifies in a rather broad sense what is to be done, and
normally one or more file specifiers, which identify the various files
that are to be used. Some commands refer to no files at all. (A simple
example of this is the command to find out what time it is.) Others
refer to only one file or one group of files . (Some common examples are
the commands to delete and print filels).)·For these commands, regardless
of the command action, we will refer to the file(s) being acted upon as
the input. Finally, there are those commands that refer to two (groups
of) files. One of these will be known as the input to the command, the
other as the output of the command. MCR has a well-defined syntax
for this:

command output=input

You will find this syntax used in a variety of situations-copying a file,
compiling a file, task building, etc. Although it might seem strange (it
is somewhat counterintuitive) at first, this syntax is best remembered
as an equation or as an assignment in a typical programming language­
the output file(s) is set equal to the input file(s) . Learn it well; you will
see it often.

In many cases, an MCR command will offer you a variety of choices
or options from which you may select. These are used to more finely
specify what is to be done. These options may specify some detail of
the filel s) to be used, or they may relate to the entire nature of the com­
mand. In MCR these finer details are specified via switches.

Command Line Formats 29

Switches are entered into the command line in the general form
/switch, where the slash is syntactically required to identify the con­
struct as a switch. In the basic format, the switch is denoted by a two­
character switch code. (In some cases, the switch code is longer than
two characters, but normally it is not .} In this form, you are requesting
that the action identified by the switch be done. If you do not want this
done, you negate the switch. There are two possible forms for this, /-sw
or /NOsw. It is possible that once you have specified a switch, you may
also have to specify a value to completely define the action. This is done
in the form /sw:value-the switch code is followed by a colon and then
the value. The value may be a number or a keyword. When the value
is numeric, it will normally be interpreted as being octal unless you
terminate it with a period, which declares it to be a decimal value. Un­
fortunately, MCR is not consistent on this; some commands assume
switch values to be decimal.

Depending on the detail being specified, the switch is appended to
ei ther the appropriate file specifier or the command name itself. The
older RSX commands use only file switches; some of the newer com­
mands also allow command switches, reflecting the DCL influence. In
a few cases, a switch may be used as either a command or a file switch.
When this duality is possible, the distinction is typically made on the
basis of whether the action specified affects all files la command switch)
or just one file la file switch). You may want to specify m ore than one
switch in a command. If two or more apply to the same item in the
command (the command name for a command switch or a file specifier
for a file switch}, they are all appended to it, one after the other (in any
order), each preceded by the mandatory slash that identifies it as a switch.

To examine some examples of how you do this, we will consider the
FORTRAN-77 compiler. The MCR command to use it follows the gen­
era\ form given earlier of output = input. Jn addition to including an
object file, the output can also specify a listing file. The general command
form is

F77 obj , li s t:source

If you have a source file TEST.FTN and you wish to make an object file
TEST.OBJ and a listing file (the default file type here is LST) TEST.LST,
you would use the command

F77 TEST, TEST=TEST

When you generate a list file, you may request that it be automatically

RSX, A User's Guide 30

printed by using the Spool switch, which is /SP. In this case, your com­
mand would be

F77 TEST, TEST/ SP=TEST

Note that the· Spool switch is appended to the specifier for the list file.
Returning to our first example, when you ask for a list file, it will be
generated in a certain format . You can use the List switch to modify
this format. This switch is /LI:value, where value specifies the format
you want. For FORTRAN-77, a value of 3 requests a listing with the
greatest amount of detail. If this is what you want, your command will
be

F77 TEST , TEST/ LI: 3=TEST

When a switch is possible in a command line, you do not necessarily
have to specify that you want it (/swJ or that you do not want it (/-swJ.
Every switch has a default value that is used unless you override it.
When we discuss the various switches possible for a command, I will
state what the default assumptions are. Normally, these defaults are
rigidly defined by RSX. Some ol them, however, can be changed during
system generation; in these cases I note that the default is system de­
pendent. Let's consider again the Spool switch for a FORTRAN listing.
The default is normally to spool the file. Some users make a listing file
whenever they compile; automatic printing of these results in a lot of
wasted paper. Thus, on your system, the default may have been changed
to No Spool. If you are not sure of the default value for a particular
switch, you can always specify what you want-the worst that will hap­
pen is that you will have typed a few characters more than are necessary
in the command. Continuing with our example, if you want a listing
with full detail but you do not want it to be printed, you would use
both the Listing:Type 3 and the No Spool switches. Note that one switch
directly follows the other (the order is immaterialJ, since both of these
switches are appended to the listing file specifier:

F77 TEST, TEST/ -SP/ LI: 3=TEST

A command such as the above may strike you as looking rather strange.
Nonetheless, there is an indisputable logic underlying the format of the
MCR commands. Once you become familiar with this, it will be easier
to learn new commands than you might expect. Have faith-you will
soon be entering commands with a multitude of switches just like an
old pro.

Command Line Formats 31

7.2 DCL Commands

A typical DCL command directly names the action that you want done.
The fact that the task required to do this may have an entirely unrelated
name is a detail that is hidden from you by the DCL interface. This
typically makes commands !especially the simple ones) easier to learn
in DCL than in MCR. As a further help, you will find that there is a
common syntax for all DCL commands.

In DCL, a command to the operating system consists of a command
name, which identifies in a rather broad sense what is to be done, and
normally one or more file specifiers, which identify the various files
that are to be used. Some commands refer to no files at all. (A simple
example of this is the command to find out what time it is.) Others
refer to only one file. For these commands, regardless of the command
action, we will refer to this file as being the input. Finally, some com­
mands refer to two (groups of) files. One of these will be known as the
input to the command, the other as the output of the command. It is
for these commands that the DCL forms differ most from their MCR
counterparts.

A DCL command that needs to refer to both input and output files
will use one of two possible syntaxes. Some commands !such as the
command to copy files) have a command form that assumes arbitrary
speciliers for the input and output files. This form has the general syntax

contnand input output

Perhaps this reflects more closely the way that you think than does the
MCR syntax. You should remember it as "from-to"- that is, the com­
mand goes from the input file(s) to the output file(s). Perhaps your biggest ·
problem with this syntax will be the fact that it is the opposite of that
used by MCR lat least for commands that use two files). If you are used
to MCR and wish to switch to DCL, you will have problems for a while
due to this reversal.

Other DCL commands (such as those for compiling a program) do not
so readily offer the flexibility of this form. Instead, they use a form that
assumes the output file to have a file specifier that is determined from
that of the input file. For these commands, you do not normally specify
the output file(s)-they are implicit to the command. When you accept
these defaults, the output file specifier is formed for you as part of the
translation into the MCR command form. This general command form
is the following:

RSX, A User's Guide 32

connnand input

11 you want to use a different output file specifier, you have to use a
special switch followed by the desired Iile name:

command input/switch: output

This illustrates an interesting aspect of the difference between MCR
and DCL. For simple operations, where you do things in the "normal"
manner, the DCL command form is simpler than the MCR form, but
for other operations, where you do something that is not expected, the
DCL command form is more complicated.

Just as in MCR (don't forget that DCL is translated into MCR), a com·
mand will in many cases offer you a variety of choices or options from
which you may select. These are used to more finely specify what is to
be done. These options may specify som e detail of the file(s) to be used,
or they may relate to the entire nature of the command. In official DCL
terminology, these finer details are specified via qualifiers. Since DCL
qualifiers translate directly into MCR switches, and to avoid alternating
terminology when we discuss the format of a command under both MCR
and DCL, we will typically refer to them as switches.

Switches are entered into the command line in the general form
/switch, where the slash is syntactically required to identify the con­
struct as a switch. In this form, you are requesting that the action iden­
tified by the switch be done. If you do not want this done, you negate
the switch. There are two possible forms for this, /-switch or /NOswitch.
It is possible that once you have specified a switch, you may also have
to specify a value to completely define the action. This is done in the
form /switch:value-the switch code is followed by a colon and then
the value. The value may be a number, a keyword, or a file specifier.
When the value is numeric, it will be interpreted as being decimal, which
matches the way you think. Since the underlying MCR command will
often want the value to be in octal (or may require a period to declare
the value as being decimal), DCL will, depending on the exact command,
translate the value for you .

In DCL, most switches may be placed either after the command (a
command switch) or after a file specifier (a file switch). Some switches
must be placed after the command as they are a part of the command
name itself. Some switches have meaning only when used as a file
switch. In a few cases, a switch may be used as either a command or a
file switch, with different results being obtained. When this duality is

Command Line Formats 33

possible, the distinction is typically made on the basis of whether the
action specified affects all files (a command switch) or just one file (a
file switch). You may specify more than one switch in a command. If
two or more apply to the same item in the command (the command
name for a command switch or a file specifier for a file switch), they
are all appended to it, one after the other (in any order), each preceded
by the mandatory slash that identifies it as a switch.

In DCL, the name of a command or switch is an entire word, or even
several words connected by underscores. This reflects DCL's use of the
English language rather than MCR's use of abbreviations. Although easy
to understand, long names are often annoying to enter. Thus, DCL allows
you to shorten these commands or switches when you enter th~ . The
DCL rule for abbre'{iating names is simple-you need only maintain
enough initial characters of the word to distinguish it from any other
word that DCL recognizes. Typically, the first three characters are suf­
fici ent for this; sometimes fewer and sometimes m ore are required. For
example, LIB is ·recognized by DCL as an abbreviation for LIBRARY,
but LI is not since it could also be an abbreviation for LINK. When I
present DCL commands, I normally give the full form as well as typical
abbreviations.

An important feature of DCL is command prompting. In DCL, you
do not have to enter an entire command at once. Instead, you may enter
it in pieces. All you have to do is enter (at DCL command level) the
name of the command. DCL then prompts you for the remaining portions
of the command. Note that you are prompted only for the mandatory
parts of a command. If the command refers to only one file and you
enter just the command name, you will be prompted for the input spec­
ifier; if the command refers to two files, you will be prompted for the
input and then the output specifiers. You will not, however, be prompted
for any switches (unless you end an input line with a slash). You may
enter a switch as part of the command line or as part of your response
to either the input or output prompt. Finally, if the command refers to
two files, you may enter the command name and the input file specifier
on one line; you will then be prompted only for the output specifier.
At first, you may find command prompting useful. With it, you do not
have to remember the syntax of the command. This is, however, a
somewhat dubious advantage, since one of the main purposes of DCL
is to offer an easy-to-remember command syntax. Also, once you become
familiar with the various commands, you will find the prompting method
slower than· simply entering the whole command at once.

To examine some examples of how you do all this, let's consider the

RSX, A User's Guide 34

FORTRAN-77 compiler. The DCL command to use it is one in which
the output file specifiers are normally formed from the input specifier.
In the simplest command form, you only need to name the input file,
which, for this command, is the file containing your FORTRAN source
code. The simplest command is

FORTRAN/F77 source

Here we use the full command name FORTRAN; it is more common
to use the abbreviation FOR. Note the use of the command switch
/F77. This must be a command switch, as it is actually part of the com­
mand name. Without this switch, the FORTRAN-IV compiler would be
used instead of the FORTRAN-77 compiler.

In the form above, an object file is produced as output (since no name
is specified, defaults are used), and no listing file is produced (because
none was asked lor, the default is to not make one). Thus, if you have
a source file TEST.FTN and you wish to make an object file TEST.OBJ,
you would use the command

FOR/ F77 TEST

If you also wish to make a listing file I the default file type here is LST)
named TEST.LST, the command would be

FOR/ F77 TEST/ LIST

Here, the switch /LIST specifies that a listing file should be generated.
This switch may be either a file or a command switch, i.e., the above
command could instead be entered as

FOR/F77 /LIST TEST

These two examples are not identical; there is a difference concerning
whether the listing file will be automatically printed or not. (We discuss
this further in Section 16.1) This is one of the few examples in DCL of
a switch whose meaning changes with its placement.

Returning to our first example, when you ask for a list file, it will be
generated in a certain format. You may append other switches to the
List switch to modify this format. The switch is then /LI/format, where
format specifies the format that you want. (Note that we have again
taken advantage of the ability in DCL to abbreviate command names
or keywords by shortening LIST to LL) A format code of MACHINE_
CODE, typically shortened to MACH or MAC, req_uests a listing with
the greatest amount of detail. If this is what you want, your command

Command Line Formats 35

will be

FOR/F77 TEST/LI / MAC

Under DCL, you may also use the FORTRAN-77 compiler in the
prompting format . An example of this is

DCL>FOR/ F77
File(s)? TEST

When a switch is possible in a command line, you do not necessarily
have to specify that you want it l/sw) or that you do not want it 1/-sw).
Every switch has a default value that is used unless you override it.
When we discuss the various switches possible for a command, I will
state what the default assumptions are. Normally, these defaults are
rigidly defined by RSX. Some of them, however, can be changed during
system generation. In these cases, I note that the default is system de­
pendent. If you are not sure of the default value for a particular switch,
you can specify what you want-the worst that will happen is that you
will have typed a few characters more than are necessary in the
command.

We have already noted that since all DCL commands are translated
into MCR commands, there is nothing that you can do in DCL that you
cannot also do in MCR, but that the reverse is not true. This is also
true for command line switches. Some switches that are accessible to
you from MCR are hard-wired to certain values in DCL. An example
of this is the switch in MCR for spooling the listing file made by FOR­
TRAN-77. In our discussion of MCR command syntax in Section 7.1
we saw how you could make a listing file of arbitrary name and direct
that it be spooled or not. In DCL you do not have this full capability,
as there is no switch to control spooling directly. When you include the
List switch, the resulting MCR command has the Spool switch set for
you automatically. (Whether it is on or off and whether you can choose
other than the default listing file name depends on where in the DCL
command you include the List switch.) There are other examples as
weJI !see, for example, Chapter 13). In general, however, most useful
MCR switches will have direct DCL counterparts.

In this and the previous section you have seen a brief overview of
MCR and DCL. From this, you have probably concluded that DCL com­
mands are more meaningful and hence easier to learn, remember, and
use. For simple operations, this is true. Do not take it to be the entire
story. !Further, do not forget the Catch AJI capability that may be avail­
able to you from MCR.) Once you get past the simple operations, you

RSX, A User's Guide 36

will find the DCL's advantage to be much less obvious. Certain DCL
commands will, in fact, look stranger than their MCR counterparts. Read
on!

7.3 Changing Your CLI

When you log in to your system, you will be given a Command ,Line
Interpreter (ei ther MCR or DCL) by default. The choice here will be
made based on a decision made by your system manager when hi' set
up your log-in account. !If your system does not have multiuser 'pro­
tection, you will get whatever CLI the last user on your terminal' was
using.) You are, however, in no way obligated to stick with this chpice.
Instead, you may change from MCR to DCL or from DCL to l'y1CR
whenever you want. As noted earlier, you should not do this frivolo.usly,
as the differences in command syntax lead to what is known as computer
schizophrenia. There may, however, be times when it will be more, con­
venient to change your CLI, or you may wish to try both to help you
decide which one you like better.

Before going further, we must note an interesting point. In all forms
of RSX, MCR is the part of the operating system that actually processes
your commands. In both RSX-llM and RSX-I IM-PLUS, MCR is fully
supported as a CL!. In Micro/RSX, however, DCL is the. only offieially
supported CLI. MCR is still there of course, but you are not expected
to communicate with it directly. Indeed, version 1.0 of Micro/RSX was
implemented in such a way that you could not give commands directly
to MCR-you had to use DCL as your CL!. With version 3.0 of Micro/
RSX, this has been corrected so that you may give commands to MCR.
Nonetheless, Digital does not officially support the use of MCR, with
Micro/RSX. Further, if you are using DCL on Micro/RSX, you c~nnot
easily change your CLI to MCR. If you want to use MCR on Micro/
RSX, you have to have MCR set as your default CLI when you log in.
(Your system manager can do this for you.)

On all forms of RSX, you may change your CLI from MCR to .DCL.
On RSX-llM and RSX-llM-PLUS you may similarly change your CLI
from DCL to MCR. You may change yourCLI by using the Set command.
We will study various forms of the Set command in Section 19.2. For
now, we simply present the commands that you need and ask you to
bear with their rather strange syntax. If you are in MCR and wish to
change to DCL, you use the command

MCR: SET / DCL--TI:

Command Line Formats 37

If you wish to switch from DCL to MCR, the corresponding command

DCL: SET MCR

(I repeat that this will not work in Micro/RSX.) Note that the changes
effected by these commands are temporary. The next time you log in
to your system, you will again get your default CL!. If you wish to make
a more permanent change, you will have to ask your system manager
to change your default CL! as defined in the system log-in accounts file.

On an even more temporary level, you may change your CL! for one
command. That is, if you are in MCR, you may enter a command in
OCL syntax without actually changing your CL! to be DCL, you may
similarly enter a single MCR command while in DCL. You do this by
placing the name of the appropriate CLI in front of the command that
you wish to execute. If you are in MCR and you wish to execute a DCL
command, the form is

MCR: DCL dcl_command

This might be useful in avoiding some of the more clumsy MCR con­
structs. Similarly, if you are in DCL, you may execute an MCR command
in this manner:

DCL: MCR rncr_command

For executing an MCR command from DCL, an alternative exists; you
may preface the command with a period

DCL: . mcr_conunand

As we will later see, certain MCR commands do not have direct OCL
counterparts; these command forms allow you to execute them from
DCL. Note that both of these forms are available to you in Micro/RSX.
If you log in to a Micro/RSX system and your default CL! is DCL, this
will be the only way you will be able to execute MCR commands
directly.

I have stated that DCL commands are translated into their MCR
counterparts. Related to the switching from MCR to DCL (or vice versa)
is the investigation of what the MCR commands are that result from
DCL commands. If you are in DCL, you may determine this by using
the OCL debug mode. When this mode is active, the MCR translation
of each DCL command is displayed to you. The debug mode is enabled

RSX, A User's Guide 38

by another form of the Set command. You may use one of two possible
commands. If you enter

DCL>SET DEBUG

all subsequent DCL commands will be translated (the MCR commands
will be displayed! but none will be executed. If you use the command

DCL>SET DEBUG /EXEC

after the translation into MCR is displayed, the command will be ex­
ecuted normally. In either case, you can disable debug mode with the
command

DCI.>SET NODEBUG

Debug mode is particularly useful for learning just how DCL works or
for learning how to switch from DCL to MCR. If you are new to RSX,
however, I recommeod that you do not experiment with this-you will
have enough to learn as is.

Command Line Formats 39

Part II Using the System

8

User/System Interactfon

You will normally use the RSX system in an exclusively interactive
manner. Your input to the system is entered via your terminal; Output
from the system may be directed to your terminal or to any of the other
peripheral devices in the system configuration. Ignoring time delays due
to other users, commands are effectively processed and executed im·
mediately. It is also possible to use the .system on a delayed basis. This
might be done to schedule execution of a lengthy task for overnight or
another slow period. This is discussed in Section 25.1. In the remainder
of this section we consider the ri:lore typic3.l interactive _use of the system.

Interaction with the system is performed via a special task, known
as the Command Line Interpreter ICLI). As I have already noted, version
4.0 or later· of RSX offers two CL!s, MCR and DCL. jit is also possible
to have additional CLls; this is a system generation optio~. If your system
does have a third CL!, it will be specific to your system,· and you will
have to ask your system manager about it.) Although there are significant
differences between MCR and DCL, the concepts that we discuss here
are common to both; ·to accentuate this, we will refer to a generic CL!.
The CL! iuterprets your commands and schedules the appropriate system
response. For example, suppose you have a task named A.TSK that you
wish to run. You can do so by entering the command RUN A. jNote:
this particular command has the same format for both MCR and DCL.)
The CL! reads this line, interprets the command RUN, and causes the
file A.TSK to be located, read from disk, and loaded into memory. RSX
then passes control to this task. When task A terminates, control is
returned to RSX, which then reactivates the CLI. At this point, the CL!
is ready to process another command from you.

User/System Interaction 43

The passing back and forth of control brings us to an important point·
under normal conditions, only one task can have control of a terminal.
Here, by "task/' I mean a user task or system program. In the previous
example, task A may request you to enter the value of some parameter.
Were the CL! to continue reading terminal input after the Run command,
two different programs would be attempting to read your input from
the terminal. This would lead to unpredictable results, with one program
sometimes reading input intended for the other. The manner whereby
this problem is avoided is somewhat complicated. Basically, if your task
is waiting for input, anything that you type in will go to the task. If
your task is not waiting for input, however, whatever you type in will
go to the CL!. In either case, you normally can force your input to go
to the CL! by using the system control character (Section 9.3). Thus,
you can enter a new command before the previous one has finished.

What happens when you overlap commands in this manner? RSX has
traditionally processed multiple commands in parallel. That is, a com­
mand is acted upon as soon as it is entered, even if the previous command
has not finished. You could, for instance, type in a Compile command;
before the compilation was finished, you could then type in some other
command, such as one to edit a file. Then, while the compilation was
proceeding, you could also be editing your file. As far as you are con­
cerned, this allow_s you to do two things at once, although, of course,
the computer is always doing only one thing at a time.

With versions 3.0 of Micro/RSX and RSX-I JM-PLUS, this traditional
parallel behavior has been modified by adding serial mode as a new way
of responding to overlapped commands. With serial mode, one command
is not started until the previous one has finished. This serial processing
is available as an option to the traditional parallel form of command
processing. When you log in to the RSX system, you will start in either
the parallel or serial processing mode. In Micro/RSX you will be put
into serial mode by default. In RSX-I JM-PLUS you will be put into par­
allel mode by default. (In RSX-llM or in older versions of Micro/RSX
or RSX-llM-PLUS you have no choice; serial mode is not available.)
You may change from one mode to the other by using the Set Serial
command. To go from parallel to serial mode, the command is

MCR: SET /SERIAL=TI'

DCL: SET TERM/ SERIAL

Similarly, to go from serial to parallel mode, the command is

RSX, A User's Guide 44

MCR: SET / NOSERIAL='l'I:

DCL : SET TERM/ NOSERIAL

The ability to enter multiple commands is one of the more powerful
features of RSX, but it also offers significant potential for confusion.
Until you become more familiar with using RSX and either MCR or
DCL, you should not use this feature. If you have version 3.0 of either
Micro/RSX or RSX-UM-PLUS, you might want to disable the traditional
multiple command processing by setting your terminal to serial m.ode
until you have gained more experience with RSX.

The CL! displays a prompt to you when it is ready to accept input. If
you have used the system control character to call it, an explicit prompt
(consisting of the name of the CL! followed by a greater-than symbol)
is displayed. This is either MCR> or DCL>. Normally, you do not have
to forcibly get the CLJ's attention. If you simply wait for one command
to finish, you will be given a default prompt when the CL! is ready to
process your next command. In MCR and in the older versions of DCL,
this default prompt consists of just the >. In the newest versions of
DCL (version 4.2 of RSX-UM, version 3.0 of RSX-llM-PLUS, and version
3.0 of Micro/RSX) the default DCL prompt has been changed to a dollar
sign($). (As with other changes to the newest versions of DCL, the mo­
tivation is compatibility with DCL on VAX/VMS.)

When you run a system utility (other than the CL!) in an interactive
manner, it will give you its own prompt, which is uti>, where uti is
the three-character utility name. In some of ow examples, I will show
command sequences where you get prompts from both the CL! and a
utility. In this case, I will show the explicit CL! prompt for clarity, al­
though you might actually get the default prompt.

Throughout the rest of this book, I will discuss various ways in which
you may interact with or use the RSX operating system. Of necessity,
these discussions will depend on which Command Line lnterpreter­
MCR or DCL--you are using. Where things a.re common to both, I will
simply use CL! to refer to a generic Command Line Interpreter. Where
something is specific to either MCR or DCL, I will identify it as such.
When I state the format of a command, I will show it as

command

when the format is the same for both MCR and DCL. When the formats
are different, I will show them as a pair of commands in the form

User/System Interaction 45

MCR: MCR command

DCL: DCL command

When I show direct interaction with the CU, e.g.,

MCR>connand

I will rely on the CL! prompt to resolve any possible ambiguity. Finally,
there will be times when the use of DCL will be either impossible or
inappropriate. In these cases, I will state that I am considering only the
use of MCR.

In general, interaction with the RSX system via either MCR or DCL
is extremely easy and straightforward. You should not be afraid of it.

RSX, A User's Guide 46

9

Use of a Terminal

All terminals, be they DECwriters, video displays, or teletypes,' are con­
ceptually the same. We will use the generic term "terminal" for any
such device. Viewed as a peripheral device, your terminal is known to
the system as TTnn:. To you, the pseudo-device TI: is a more meaningful
reference.

Use of a terminal for input or output is straightforward. Remember
that entering a character (i.e., depressing the key for that character) in
the full-duplex mode (normal mode of operation) from a terminal does
not directly result in the character being displayed or printed at the
terminal. The character is transmitted from your terminal to the CPU
and is processed by a special task known as the terminal driver. This
program then transmits characters to your terminal, and these are what
you see. This is known as echoing. Usually, the echo is the same as the
input character; there are a few exceptions.

When a terminal (especially a DECwriter) is turned on or switched
from offline (local) to online, switching transients may result in the
transmission of random characters. These will cause whatever follows
to be misinterpreted. In this case, you should enter a carriage return to
terminate the current line of input. You can ignore the "Illegal Com­
mand" error message that follows and proceed normally.

The terminal driver interprets several characters in a special way. Since
both MCR and DCL, as well as most other RSX system routines and
user programs, use the terminal driver to access data from a terminal,
these characters and the special responses they evoke can be used in
almost any situation. (The most notable exception is the use of a video
editor, in which case the special processing normally performed by the

Use of a Terminal 47

terminal driver is bypassed.) Most of these special characters are known
as control characters. These are formed by holding down the Control
key while entering a letter. Note that if you depress the Control key,
release it, and then depress a letter, you will not enter a control character;
you will just enter the letter. In our discussions I will refer to a control
character as CTRLlletter-e.g., CTRLIZ is the special character obtained
by holding down the Control key while typing a Z. (It does not matter
whether the letter is in upper- or lowercase.) When you enter a control
character, it will be echoed to you as a caret n followed by the uppercase
letter (e.g., "Z). I will show this form in our examples. The special char­
acters most commonly used are summarized in the following sections. ·

9.1 Input Control Characters

Line Feed (LIP}

Strictly speaking, a carriage return (CIR) positions the cursor (print head)
at column I of the current line, and LIF advances the line without
changing the cursor position. In most cases, the system generates a
combination of CIR and LIF in response to the single entry of CIR. The
LIF key normally has no use.

Carriage Return (CIR}

The carriage return is used to terminate a line of input. It is echoed as
a carriage return and a line feed. Thus, just as you would with an electric
typewriter, you need type only one character to end a line.

Enter

Most likely, the terminal you use will have an Enter key as part of the
numeric keypad. In most cases, this key is identical in function to the
Return key. There are instances, however, where the Enter and Return
keys will produce different results. Two examples of this that you might
encounter are in the use of certain editors and in the resetting of a VT200
series terminal.

Escape or Alternate Mode (ESC)

The Escape key (ESC, or, on very old terminals, ALT MODE) is used as
a special command by certain utilities, most notably certain editors.

RSX, A User's Guide 48

Also, you may use it instead of a carriage return to terminate a command
to either MCR or DCL, although this is seldom done.

Delete or Rubout

The Delete !Rubout) key is used to correct mistakes made during the
typing of the current line. Each time you press the Delete key, the last
character is removed from the input line. To understand how this func­
tions, you must realize that the terminal driver accepts input from a
terminal one character at a time and stores these in a buffer until a
terminator IC/R or ESC) is encountered. The accumulated input string
is then passed to the program that requested input. Thus, the characters
in a line are not really input until the line is completed; until then, the
line can be arbitrarily changed. By typing a delete character, you can
delete the last character entered; the terminal driver simply removes it
from the input buffer. The terminal driver echoes each DELETE to allow
you to he sure that the requested deletion has been effected. On a printing
terminal, the deleted characters are printed in the order deleted (reverse
of the order entered) and are enclosed in backslashes. On a video terminal,
the deleted characters are simply erased from the display. Thus, a video
terminal always shows the current contents of the input line, whereas
a printing terminal presents a more confusing compendium of characters.·

CTRLIR

When entered, this causes the current input line to he displayed. This
is intended for use on printing terminals when you have deleted several
characters; it shows you a clean copy of what is currently in the input
buffer. The CTRL/R itself is not entered into the input line.

CTRL/U

This causes the entire input line to be deleted. It does not delete the
request for input. Rather than repeatedly using the Delete key to correct
an error in an input line, you can use CTRL/U and simply start the line
over. If the input is being entered in response to a prompt, another prompt
is not issued after the CTRL/U.

CTRL/1 or Tab (TAB)

The Tab key functions in the same manner as a Tab key on a regular
typewriter. In RSX, by definition, there is a tab-stop after every eighth

Use of a Terminal 49

position in a line. TAB is especially nseful for entering source language
statements in most languages. Under RSX, most compilers have been
modified to allow TABs to be used instead of blanks. Entering one TAB
rather than several blanks is clearly easier; it also causes fewer characters
to be stored per line, which can sometimes result in a significant re·
duction in the size of a source file.

CTRLIZ

The CTRL/Z character is used as an end-of-file (EOF) character. CTRL/Z
is not a terminator for a single line of input as is CIR or ESC but rather is
a terminator for a set of input lines. It also is used as a means of exiting
from most system utilities.

9.2 Output Control Characters

When a task writes to your terminal, the output is sometimes small
enough or slow enough so that you can simply let it go at its own chosen
speed. Other times, you may want to be able to control things. You may
do so by using the following output control characters.

CTRLIO

This is a print On/Off switch. Every time you enter CTRL/0, this switch
changes state. It is initially set so that all printout is On-that is, the
terminal driver actually directs output to your terminal. When printout
is Off, the terminal driver discards the output. It is important to note
that the program producing output merely requests the terminal driver
to send the output to your terminal-it is unaware of the status of the
print On/Off switch and continues to execute whether the output ac­
tually reaches your terminal or not. The CTRL/O switch is a system
generation option and may not function on certain RSX systems. It also
will not work with all tasks, as a task may disable this function.

CTRLIS

This is used to suspend output. CTRL/S effectively disables your ter·
minal for reception of output. The terminal driver senses this "not ready"
condition, and execution of the program requesting output to the ter·
minal is suspended until the terminal is ready. Use of CTRL/S does not
cause any output to be lost; it merely delays it.

RSX, A User's Guide so

CTRLIQ

This is the logical reverse of CTRL/S and reenables a terminal for re­
ception of program output.

Scroll On/ Off

Some video terminals (e.g., the VT!OO series or the VT200 series) have
this special key. It functions as an output suspension On/Off switch.
Depressing this key the first time after the terminal is turned on or reset
is equivalent to entering a CTRL/S, the next time a CTRL/Q, and so

Reset

An ill-advised command (e.g., listing a task image file) may result in
the output of characters to your terminal that will be interpreted by the
terminal- as special commands. These m ay cause the terminal to enter
a state wherein it will not respond to any normal inputs. This is es­
pecially likely for the more modem video terminals, since these have
more special capabilities that can be activated by such commands. ln
this case, it is necessary to reset the terminal. For any type of terminal,
this may be done by turning the power off and then back on. On a VTlOO
series video terminal, reset may be effected more conveniently by press­
ing the Setup key and then the Zero key (which has RESET written
above it on the keyboard). On a VT200 series video terminal, reset is
effected by pressing the Setup key which cau ses the Setup Directory to
be displayed. You can then use the cursor keys to move the highlighted
block to the function labeled " Reset Terminal." You must then press
the Enter key; the Return key will not be accepted. Finally, you press
the Setup key again to leave the Setup mode.

9.3 System Control Character

CTRL/C

Under RSX, CTRL/C is the system control character. You can use
this to gain the attention of your CL! (either MCR or DCL) even if some
other task is running at your terminal. The exact interaction is rather
complicated, but it is nonetheless useful for you to have a general idea
of how it works.

Use of a Terminal 51

Anything that you enter at your terminal is processed by the terminal
driver. This utility classifies your input as being either solicited or un·
solicited. Solicited input occurs after some task has asked for input from
your terminal. (Clearly, the terminal driver cannot determine whether
you intended your input for the requesting task; it simply assumes that
this is so.) If there are no requests for input at the time that you type,
your input is considered to be unsolicited. Solicited input is always sent
by the terminal driver to the task that asked for it. If no task is running,
unsolicited input is always sent to the CL!. When another task is run·
ning, unsolicited input may either be sent to the CL!, held in a buffer,
or discarded. The particular choice is a function of both the details of
the operating system and the task.

Traditionally, no matter what else is running at your terminal, you
may (normally) force the terminal driver to pass your input to your CL!
by first typing a CTRL/C. (Note the normally; it is possible for a task
running at your terminal to disable this capability.) When you enter a
CTRL/C, the terminal driver interprets it as a request for immediate
action. RSX is informed of this, whereupon the active task is interrupted
and your CLI is given temporary control of your terminal. (This will
happen even if the task is currently writing to your terminal.) The CL!
gives you an explicit prompt, whereupon you may enter one command
to it. One of the more common uses of this capability is to enter a com·
mand to the CL! to abort the task currently running on your terminal.

This immediate interaction with your CLJ is the traditional RSX be·
havior in response to the system control character. With version 3.0 of
Micro/RSX and RSX· l lM·PLUS, Control C abort processing is available
as an option, but only if you are using DCL. With Control C abort pro·
cessing, when you enter a CTRL/C, all tasks active at your terminal are
aborted. Following this, DCL regains control of your terminal. This cer·
tainly gets the attention of DCL; you might not appreciate the side
effects.

In Micro/RSX, Control C abort processing is enabled by default. In
RSX-llM·PLUS, the traditional immediate interaction with DCL is en·
a bled by default. (In RSX· 11 M, or in older versions of Micro/RSX or
RSX-UM-PLUS, or if you are using MCR, you have no choice; Control
C abort processing is not available.} You may change from one mode to
the other by using the Set Control C command. To disable Control C
abort proCessing you use the command

DCL' SET TERM / NOCONTROL_C

Similarly, to enable Control C abort processing, you use the command

DCL: SET TERM / CONTROL_C

RSX, A User's Guide 52

10

Identifying Yourself

Since RSX is a multiuser system, it is necessary for it to know who is
using it. Thus, when you want to use the system, you must identify
yourself to it. In a system with multiuser protection, this is intrinsic
to the log·in procedure. If you can have only one possible identity, this
initial identification will be sufficient. Under RSX, it is quite possible
for you, even as a casual user, to have several identities. In this case,
you may subsequently need to change your identity. If your system does
not have multiuser protection, there will be no log·in procedure and
you will need to explicitly set your initial identity. We discuss these
procedures in the remainder of this chapter.

10.1 Logging In and Logging Out

The entire concept of logging in and logging out applies only to a system
with multiuser protection. If your system does not have this feature,
you do not need to use these commands (and you do not need this section
of the book). You can simply find an available terminal, sit down, and
enter commands.

Log-in to an RSX system is effected via the Log· In command. In MCR
this is HEL; in DCL it is LOGIN, which may be abbreviated to LOG.
Other than the name of the command itself, the DCL command is iden·
tical to the MCR command. Note that , with the exception of the Help
command, no other system commands can be entered until you have
successfully logged in to the system. (RSX allo_:,s you to enter a Help
command even if you are not Jogged in so that you can refresh your
memory about how to log in. The Help command is discussed further
in Section 19.1.)

To log in to the system, you must first find an unused terminal. Note

Identifying Yourself 53

that even when. a terminal is unused (i.e., not assigned to a particular
user), it is normally being monitored by the operating system for input.
Thus, you can usually gain the attention of the system merely by en­
tering the Log-In command appropriate to your CL!. If there is no re­
sponse, a CTRL/C should be entered.

If only the Log-In command itself IHEL or LOGIN) is entered, the Log­
in routine asks for your account or name. This may be either your UIC
or your name, as assigned to your account by the system manager. The
Log-In routine next requests your password. When the password is en­
tered, print echo is suppressed by the system-that is, the password is
not written back to your terminal. This feature is provided as part of
the multiuser protection system to prevent one user from observing an·
other's password. If your UIC !or user name) and password match an
entry in the system account file, you will then be logged in. After the
display of a system greeting and/or system information, a default prompt
is issued, indicating that your particular CLI is ready to accept a com·
mand from you.

You can shorten the above procedure by entering

MCR: HEL uic /password

DCL: LOG uic/password

where uic is either the UIC or your name and the password is preceded
by a slash. In this case, print echo of the password is not suppressed.
Alternatively, you can use

MCR: HEL uic

DCL: LOG uic

The log-in routine then requests the password and suppresses print echo
for it.

No matter which form of the Log-In command you use, you can enter
the U!C in one of four forms: [g,m], g,m, [g/m], or g/m. The last two
forms are used to avoid getting the log-in message every time you log
in to the system. (Specifically, the only times that you will get a log-in
message when you use a slash in the UIC are the first time you log in
after midnight of any day or after the log-in message is changed.) This
is the only case in which the UIC may be entered with a slash rather
than a comma between the group and member numbers. Also, the Log­
in command is the only command in which the UIC may be entered
without the usual enclosing brackets.

As part of the log-in procedure, RSX determines your privilege status,

RSX, A User's Guide 54

which it remembers for as long as you stay logged-in. RSX also assigns
your default device ISY:J and default directory according to values spec­
ified in your log-in account. If you wish, you can subsequently change
these as explained in Section 10.2.

After one user logs off a terminal and before the next user logs on to
it, the terminal is not in use. If you attempt to use the system without
first logging in, you will get a

NOT LOGGED ON

message. Similarly, an attempt to log in before a previous user has logged
out will be greeted with an

OTHER USER LOGGED ON

error message and your command will be ignored.
Log-out is extremely simple; you use the Logout command. This con­

sists solely of the command name:

DCL: LOGOUT

Note that any task initiated from your terminal that is still executing
when you enter the Log-Out command will be aborted when this com­
mand is processed. To avoid this, your task must be installed and run
with a time delay (see Sections 18.4 and 2S.!J. Otherwise, if you wish
to run a long task, you must be sure not to log out-when a limited
number of terminals is available, this is a poor technique. Also, it is
easy under RSX to walk away from a terminal and not log out when
you are finished. C~mmon courtesy dictates that you remember to ter­
minate)rour turn on the system so that another user may have your
terminal next.

10.2 Changing Your Default Device or Directory

Whenever you interact with RSX, you have a particular disk device as­
signed as your system disk and a particular directory assigned as your
default directory. Your system disk is used as a default for the device
portion of the file specifier whenever you refer to a file. Similarly, your
default directory is used as a default for the ufd portion of the file spec­
ifier. For you to be able to access your files, these must be set correctly.

On a system without multiuser protection, there is no log-in procedure

Identifying Yourself SS

to establish the correct assignment of your system disk and default di·
rectory. When you find an available terminal, SY: and the default ufd
will be as the last user left them. Although valid for him, they will
probably be inappropriate for you. A system with multiuser protection
makes these assignments for you when you log in; nonetheless, yon
may subsequently want to change them. The commands discussed in
this section allow you to do this.

In MCR, two distinct commands are required: one to change your
default device and one to change your default directory. In DCL, one
general purpose command allows you to change either or both.

To change your default device in MCR, you use a form of the Assign
command; in DCL you use a form of the Set Default command. These

MCR : ASN SY: =ddnn :

DCL : SET DEFAULT ddnn:

where ddnn: is the peripheral device code for your disk.
Jn Section 6.4, we discussed the use of two approaches for identifying

user areas-numbered and named directories. To repeat, on any version
of RSX-llM and all versions of RSX·llM·PLUS prior to version 3.0,
named directories are not available-you must use numbered directories.
On any version of Micro/RSX and version 3.0 of RSX· l IM·PLUS, named
directories are available-you can use either numbered or named direc·
tories. If you have the choice of these two modes of operation, you must
be able to pick one or the other. When you log in, a default mode will
be chosen for you. Jn Micro/RSX, the default is to use named directories;
in version 3.0 of RSX· llM·PLUS, the default is to use numbered direc·
tories. In either case, you can ask your system manager to modify your
system account if you want this initial choice changed. Also, once you
are logged in, you can switch between the numbered and named directory
modes by using the Set Named command. To choose numbered direc·
tories, you use the command

MCR: SET /NONAMED

DCL: SET DEFAULT /NONAMED

Similarly, to choose named directories, you use the command

MCR: SET / NAMED

DCL: SET DEFAULT/ NAMED

The command to change your default directory depends on whether

RSX, A User's Guide 56

you are using numbered or named directories. Let's first consider the
use of numbered directories, since this applies to all systems. In MCR1

you use the Set UIC command,

MCR: SET /UIC-[uic]

where uic is the desired UFD, entered in the usual g,m form. Note that
this command actually sets your current (or default) UIC. When you
use numbered directories, the distinction between UICs and UFDs is
blurred. Strictly speaking1 you use this command to set your current
UIC; RSX uses this as your default UFD. The distinction is important
in that the command must be as given above; you cannot type instead
SET /UFD =. In DCL, you use another form of the Set Default command,

DCL: SET DEFAULT [ufd]

(Although the name of this command may seem to be more appropriately
chosen, it is translated into the MCR Set UIC command. Also, the Set
UIC command has special ramifications for the privileged user, which
we discuss in Sections 14.5 and 19.3.) If you are using named directories,
you use the Set Default Directory command

MCR: SET /DEF= [ufd]

DCL: SET DEFAULT [ufd]

(Although the DCL command is the same for named and numbered di­
rectories, its effects are not identical for the privileged user.) Note that,
whether you are using numbered or named directories, you can use the
DCL Set Default command to change both your system disk and default
directory in one command. In this form, the command is

DCL; SET DEFAULT ddnn: [ufd]

Let's look at some examples. First, let's consider the use of RSX-1 lM.
In this case, named directories do not exist. Assume that you have logged
in as UIC [110,1] and your system disk is DRl:. After doing some work
in that area, you decide that you want to look at some files in another
user's area. This is on disk DR2: and is identified by the UFD [222,3].
For each file that you want to use, you could specify DR2:[222,3) to
override your defaults. This is a nuisancei it is easier to change your
defaults. In MCR, you would enter these two commands:

MCR: ASN SY:=DR2:
SET /UIC~[222,3]

Identifying Yourself 57

In DCL, you would enter the single command

DCLo SET DEFAULT DR2o [222, 3]

For a different example, suppose your system originally was version
2.1 of RSX-llM-PLUS. On that system, your UIC is [110,IJ. In UFO
[110,IJ, you have many files for small projects; you also have UFO [110,2]
as a second user area, which is dedicated to one large project. Now, your
system manager upgrades your system to version 3.0, making named
directories available. The continued support for numbered directories
allows him to keep all existing user areas and files without change. He
sets your account so that when you log in, you will be put into numbered
directory mode. Although named directory support is now available,
you can ignore it and continue using the system exactly as you did before.
Eventually, you are assigned a new project for which you decide that
you need another user area. You decide to try a named directory this
time. Your system manager creates one for you, called BIGJOB. When
you log in, if you want to work in this new area, you must change your
mode from numbered to named directories and then change your default
directory from [110,!J to [BIGJOBJ. In MCR, you use the two commands

MCRo SET /NAMED

SET /DEF= [BIGJOB]

In DCL, you could similarly use two commands,

DCLo SET DEFAULT/NAMED
SET DEFAULT [BIGJOB]

Alternatively, you could use another form of the Set Default command
that combines these two functions,

DCLo SET DEFAULT [BIGJOB] /NAMED

After doing this, if you want to work in your numbered area [110,2J,
you could use commands corresponding to those above to change your
mode from named to numbered directories and your default directory
to [110,21,

MCRo SET /NONAMED
SET /UIC=[llO, 2]

DCL' SET DEFAULT/NONAMED
SET DEFAULT [110, 2]

Note that if you are in MCR, the command for changing your default
directory is either SET /UIC or SET /DEF, depending on whether you

RSX, A User's Guide 58

are in numbered or named directory mode. Also note that for both MCR
and DCL, you specify your directory as either (g,m] or (nameL again
dependent on the same distinction.

When you are in named directory mode, you can refer to a numbered
directory if you wish. In Section 6.4, we saw that any directory is simply
a file (containing the names of all the files in the corresponding user
area), and, as such, has a file name of at most nine characters. For a
numbered directory, this name is gggmmm, where ggg and mmm are
the group and member numbers, expressed as three octal digits with
leading zeros if necessary. In the example above, you can remain in
named directory mode but set your default to the numbered directory
1110,2.] by using its six-digit name,

MCR' SET /DEF'-[110002)

DCL' SET DEFAl.JLT (110002]

Whether you use this technique or the .other, you will correctly change
your default directory to (110,2.I. The difference is in whether you want
to be in numbered or named directory mode. This has no effect on file
references that use your default directory (files for which you do not
specify a ufd). It is only when you need to refer to a file in another
directory that this matters. If you change back to numbered directory
m ode, you will not be able to refer to a named directory at all. If you
stay in named directory mode, you will be able to refer to both numbered
and named directories, but you must remember to use the six-digit form
for numbered directories.

Identifying Yourself 59

11

Introduction to System Functions

As a casual user, you may view your use of the computer system as one
of simply running your own programs. That is, you have a problem that
you wish to solve, so you write a program to solve it and then run the
program. Of course, when you do this, you are running many other pro­
grams as well. These are not flyour" programs-they are part of the op­
erating system. Examples of these are the editor that you use to write
your program, the compiler that you use to compile it, and the Task
Builder. Although your emphasis will be on running your programs, you
may well spend more time using these other programs. We will refer
to these as system functions.

Although the concept of having and using system functions should
be obvious, certain aspects of this under RSX require explanation. This
chapter introduces the use of system functionsi we return to this topic
in greater detail in Chapter 18.

11.1 Installed Tasks

So far, we have referred to the concept of a task without defining just
what this means. Under RSX, anything that can be executed (i.e., any­
thing to which control of the CPU may be given) is known as a task.
A user can build a task by first compiling a source program and then
linking the resulting object code with the object code for the various
required subroutines. This linking is done by using the Task Builder,
which is a part of the RSX operating system. A task built by you in this
manner is perhaps the most natural for you to picture. Note, however,
that the entire operating system is itself a collection of tasks. Each of

RSX, A User's Guide 60

these performs a certain function within the system. Some will be ob­
vious-your CLI, an editor, a compiler, the task builder-but you will
use others -without ever realizing it. As far as you are concerned, there
is no need to distinguish among these different types of tasks-they are
all simply tasks.

The concept of linking, which we referred to in the preceding para­
graph, is probably familiar to you. Let's discuss it in a little more detail.
The Task Builder accepts as input a collection of object files-one cor­
responding to the main program, the others to required subroutines.
The output of the Task Builder is a task image file. This is conceptually
the same as any other file. It is stored on some device (typically the
system device), but it is not kept in memory . . As such, it cannot be
directly executed by the computer. Instead, it must first be copied from
the appropriate device into memory. Only then can control of the CPU
be transferred to it, or, in more common terms, can it be run.

In RSX, an intermediate step is required in this process. Before a task
image file can be copied into memory, the operating system must be
made aware of its existence. This is done via a process known as in­
stalling the task. The iTistallation of a task involves storing certain pa­
rameters pertinent to it lthe location of the task image file, the name
of the task, the priority of the task, and others) in a table known as the
System Task Directory (STD). The word "task," strictly speaking, refers
to any entry in the STD. Each task must correspond to a task image
file, but the converse is not true. Note that whereas the name of a task
image file is a file name and therefore can be nine alphanumeric char­
acters, the name of a task can be only six characters in length.

From this discussion, we· see that a "task" and a "task image file" are
two distinct concepts. Most of the time (for a system level user as well
as a casual user) it is convenient to forget this distinction and treat the
two terms as synonymous. I have deliberately made this oversimplifi­
cation several times already and will continue to do so througliout most
of the rest of this book.

A task can be in one of two basic states-dormant or active. A dormant
task is one that is not being used-it consists only of its STD entry and
the corresponding task image file. An active task is one that is being
used-that is, the operating system has received a request to run 'it, and
has either already acted upon or is waiting to act upon this request by
copying the task image file into memory and actually running it. A typ­
ical RSX system will have many installed tasks-at any point in· time,
almost all of these will be dormant and only a few will be active.

The process of installing a task prior to running it may seem unduly

Introduction to System Functions 61

complicated, and for most applications of interest to you, it is. This
procedure was developed to facilitate the handling of real-time appli­
cations. By having a task already installed, the system need not waste
time (using relatively slow disk reads) determining where on disk the
task image file is located. Instead, it merely looks up the disk address
of the file in the STD-because the STD is in the computer memory,
this is extremely fast. Another unusual feature of RSX is that all task
image files occupy a contiguous group of disk blocks. (Other files are
composed of blocks that may be scattered throughout the disk.) As a
task image file is contiguously stored on disk, it can be loaded into
memory using a single Direct Memory Access (DMA) transfer. Thus,
when a command is issued to run a task, RSX is able to give a very rapid
response. For time-sensitive real-time applications, this can be an im­
portant point; to you, it is a feature of no benefit. As the process of task
installation is seemingly unnecessary and thereby aggravating, RSX in­
cludes a special feature whereby this procedure is made invisible to you.
This is discussed further in Chapter 18.

11-2 Invoking System Functions

You will need to use many system functions (tasks that are included
as a part of RSX)-these include system utilities (used to create and
maintain files), compilers, and the Task Builder. There is a common set
of methods for invoking any of these system functions.

In MCR, you must invoke a system function by explicitly naming it.
In DCL, you can often invoke a system function implicitly by asking
for a certain action. For example, in DCL, when you enter the command
COPY, you are actually invoking PIP, the Peripheral Interchange Proc­
essor. This indirect form is available for most actions that you will want.
You may, however, directly invoke a system function in DCL. When
you do, you must use the MCR command form for it. You might want
to do this if you need to use a less common command for which there
is no DCL counterpart or if you want to interact directly with the system
function as discussed below.

The system utility PIP is very commonly used; we will use it as an
example throughout this section. In MCR, if PIP has not been installed,
it must be invoked in the form

RSX, A User's Guide 62

In DCL, whether PIP has been installed or not, it must be invoked in
this form. A dollar sign ($1 as prefix indicates that the named task is a
system, not user, task. Normally, the utilities that you will want to use
will be installed. Then, if you are in MCR, you will not have to run
them in this form (although you still may, if you wish). A simpler form
is instead possible-,--you need merely enter the utility name directly,

In either case, the effect of the command is to have control transferred
to the utility PIP, PIP then requests commands from you, PIP will remain
in control until you terminate the command sequence by entering a
CTRL/Z, and control then returns to your CL!. For example, a typical
command sequence might look like this:

PIP>command
PIP> ...
PIP> AZ

MCR>

DCL>RUN $PIP
PIP>command
PIP> ...

When you use a utility in this manner, we will say that you have "en­
tered" the utility. In general, this interactive use offers you the greatest
flexibility and efficiency. For extremely simple commands, however, it
can be unnecessarily complicated.

If you have only one line of command input, a simpler form may be
used. If you are in MCR, you may invoke the utility and pass your com­
mand directly to it, as in

MCR: PIP command 1 ine

This results in execution of the command by PIP, with control then
being automatically returned to MCR. You can use this abbreviated form
only if the utility is installed. If you are in DCL, the above form can be
used by declaring it to be an MCR command,

DCL: MCR PIP command line

Alternatively, you can often achieve the same effect by using a DCL
command that implicitly invokes a system function . For example, from
DCL you can copy a file by issuing a COPY command-this actually
results in a single line command being issued to PIP.

Now suppose that you wish to execute several commands sequentially

Introduction to System Functions 63

that all use the same system function. There are two ways to do this.
You can give the system function a succession of one line commands
from the CLI, or you can first enter the function and then give the com­
mands directly to it. Although you may achieve the same end result,
these two techniques are not equivalent. Every time you invoke a system
function, it must be loaded from disk into memory; after it executes
your command, it is then removed by RSX from memory. If your next
command again invokes the same utility, the loading has to be repeated.
Thus, the two command sequences

MCR>PIP
P IP>command 1
PIP>conunand 2
PIP>cornmand 3
PIP>~Z

MCR>

and

MCR>PIP command 1
MCR>PIP command 2

MCR>PIP command 3

DCL>RUN $PIP
PIP>command 1
PIP>command 2
PIP>command 3
PIP>'Z

DCL>equi v command 1
DCL>equiv command 2
DCL>equiv command 3

are not equivalent. The second sequence of commands results in PIP
being loaded into memory three times, whereas the first requires that
this be done only once and is therefore more efficient.

All system functions have three-character abbreviations as their of­
ficial names whereby they may be invoked. This is true regardless of
whether you are in MCR or DCL; it is a function of RSX. !This is not
true of version 1.0 of Micro/RSX, which is why it is virtually impossible
to use MCR in it.) The actual name listed in the STD is preceded by
three periods to make it a full six characters long !e.g., PIP appears as
... PIP). When RSX processes a command to invoke a system function,
it takes the first three characters as the name of the command and ignores
any extra characters between these and either the first blank or carriage
return. Thus, the two lines of command input

MCR>PIP command line
MCR>PIPSQUEAK command line

are equivalent, as are

DCL>RUN $PIP
DCL>RUN $PIPSQUEAK

RSX, A User's Guide 64

11.3 More on File Specifier Defaults

In Section 6.1 we saw that certain portions of a file specifier normally
assume default values if you omit them. In this section we consider this
in greater detail for the special case of multiple input file specifiers.

When you enter commands to certain utilities, you can specify more
than one input file. For example, you can use the Print command to

;~::,t ;::e:~t!~:~~r~~~~s~~~~f~e~~:~~o~ t~f d~~t::.:::~1i~:s~;v::1
file specifiers separated by commas. In this case, special mies apply for
forming the defaults. These m ies apply whether you invoke the utility
directly from MCR or indirectly from DCL via a command that is trans­
lated into MCR. In general, the special defaults for multiple input files
work as follows.

The default for the version number is unchanged from that mentioned
earlier; if omitted, a value of zero is used, which is equivalent to the
most recent version of the file. The device, ufd, file type, and sometimes
even the file name, however, change their defaults when you have several
input files. For the first fil e in the input list, these portions of the specifier
assume their normal defaults. (For the first file, there is no .default for
the file name; you must specify it.) The device code defaults to SY:, and
the ufd defaults to your default directory. If it is meaningful for the
command, the file type also assumes a default. Of course, you can over­
ride any of these defaults by entering a value. Whether defaults a.re used
or not, a full file specifier is constructed for the fust input file . The
device, ufd, file name, and file type portions of this are then used as
defaults for the next file in the input list. Thus, if you do not override
any defaults for the first file, the normal defaults will be used for the
second file. When you do override a default, the value you enter will
be used instead of the normal default for the next file. This process
continues from one file to the -next in the input list.

Let's consider some examples. (We will examine these commands in
detail in later chapters.I You may use the Print command to print fil es
on your system's line printer. For the simple examples that we consider.
here, the Print command is the same for both MCR and DCL; it is simply
the command name PRI followed by the names of the files you want
printed. The Print command assumes a default file type of LST. Suppose
your system disk is DBI: and your default directory is 1102,1\. The
command

PRI A, B,C

Introduction to System Functions 65

will cause the latest versions of DBl:[102,l]A.LST, DBl:[l02.,l]B.LST
and DB1:[102,l]C.LST to be printed. If you override the default file type
in the first file specifier by using the command

PRI A. MAC, B, C

the files printed will instead be A:MAC, B.MAC, and C.MAC (all in
DB1:[102,IJJ. If you want to print the MACRO source files for A and B
but the listing file for C, you could use the command

PRI A.MAC,B,C.LST

Now, suppose file B.MAC is in someone else's user area (such as
DB2:[21 l,3]). If you try to print all the source files via the command

PRI A.MAC,DB2: [211,3]B,C

files A and B will be printed, but file C will (presumably) not be found
since what you have specified is actually the file DB2:[2.11,3JC.MAC.

Normally, you will not use defaults for the file name except perhaps
with certain file maintenance commands1 such as deleting files. For ex­
ample, if you have various versions of the files A.MAC, A.OBJ, and
A.TSK and you want to delete the object and task files but not the source
files, you could use the command

MCR:PIP A.OBJ;*,.TSK;*/DE

DCL: DEL A. OBJ;* .. TSK; *
Here, the first file specifier sets the file name to be A, which is used
for the second file specifier in the list.

These special file specifier defaults are a useful feature when you need
to specify several input files. They are especially useful under RSX- I IM,
which limits a command line to a total of 79 characters, as they allow
you to fit more file specifiers into one line. Most utilities for which it
is meaningful to specify more than one input file will follow these special
rules.

RSX, A User's Guide 66

12

File Creation

Sooner or later, you will have a large variety of files. Some of these will
be created by system functions acting upon other files (e.g., a compiler
producing an object file from a source file, or the task builder producing
a task image file from object files). Others will be created directly by
you [e.g., source files, text files, or data files). We consider this latter
form of file creation in this chapter.

Any file may be viewed as a string of bytes or words. A text file
\whether the text be used as source statements, notes, data, or whatever)
is interpreted by the various system functions that manipulate it as a
string of bytes, where each byte contains one character. Characters are
stored in ASCII format. To create a text file, you need a means of entering
characters. Direct entry from the keyboard is possible by copying from
a terminal to a file [see Chapter 13). Because this is effected via the
utility PIP [whether you explicitly name PIP or use the DCL commands
COPY or CREATE), and because PIP has no editing capability, mistakes
cannot be corrected [except by using either the Delete or CTRL/U key)
once entered. Thus, this method is not recommended except for very
short files.

The typical means of creating a text file is by using an editor. An
editor allows you to enter text or to change text that has already been
entered. In general [unless a new file is being made), the editor accepts
as input an existing file and produces as output the next highest version
of that file. You communicate with the editor in an interactive manner,
entering commands or text from the keyboard and obtaining responses
as appropriate. The older generation of editors treats video terminals as
though they are printing terminals. The newer generation takes advan­
tage of the special capabilities of video terminals. In the video editing

File Creation 67

mode, the video display is used to• show you the current contents of a
portion !typically 24 lines) of the file being edited. As you enter changes,
they are .immediately shown in the display. This is a very powerful
technique of which the editors available with RSX have only recently
taken full advantage.

Several editors are available under RSX. You may have some or all of
these available on your system. Under very old versions of RSX, EDI
(EDitor) was the standard editor. Under version 3.2 of RSX-l!M, EDT
IEDiTor) was recommended by Digital as being the standard editor, al­
though this early version was rather limited in capability. Under version
4.0 of RSX, EDT was significantly enhanced, and further improvements
were added with version 4.1. These later versions deserve their promotion
as the standard editor to use on all Digital Equipment Corporation sys­
tems. Roughly concurrent with these changes to EDT, yet another editor,
KEO (Keypad EDitor), was offered. Almost forever, it seems, TECO (Text
Editor and COrrector) has been the unofficial standard editor throughout
the Digital community. Originally developed for the DECSystem-10, it
is also available for most other Digital Equipment Corporation com­
puters. Under RSX, TECO is not an officially supported product, but it
is available from DECUS.

The most general view of a text file is as a string of characters. Perhaps
a more common but less sophisticated conception of a text file is as a
sequence of lines. Since each line is a string of characters, and since
successive lines are separated by special characters (carriage return/line
feed), these two viewpoints are somewhat equivalent.

An editor can treat a file in either manner depending on how it was
designed. A line-oriented editor allows you to operate one line at a time­
if changes are to be made, the entire line must be retyped. A character­
oriented editor is less restrictive-you can operate on a string of char­
acters, whether it is embedded in the middle of a line or encompasses
several lines.

It is not my intent in this book to teach you how to use a particular
editor, just as it is not my intei;it to teach you how to write computer
programs. Therefore, I will limit our discussion to a brief comparison
of the various editors available to you. (Although based on fact, these
remarks also represent personal biases.)

EDI is the most primitive of the editors that you are likely to en­
counter. (The system user may deal with SLP)Source Language Proc­
essor), which makes EDI appear extremely flexible by comparison.
Digital uses SLP for updates to the RSX source code where reliability

RSX, A User's Guide 68

and accountability demand a simple-minded approach.) EDI is essentially
a line-oriented editor, although a few chaiacter string capabilities exist.
It does not offer a video editing mode.

EDT is, like EDI, essentially line-oriented with limited string capa­
bilities. One major advantage of EDT over EDI is that it offers a video
editing mode. The primary advantage of EDT is that it is now Digital's
standard interactive editor. If you learn how to use it on the PDP-11
under RSX, you will know how to use it on other Digital computers or
operating systems as well. EDT has changed considerably with different
releases of the operating system. Many enhancements were made with
version 4.0 of RSX-llM. One of these is the journal file, in which EDT
automatically records every command you enter during an editing ses­
sion. When your computer system crashes (they all do, sooner or later,
often for no discernible reason), any work in progress is lost. This is
very painful if you have just spent several hours making changes to your
file. With the journal file, you can recover your work very easily.

The editor KEO is specifically designed for video editing on a VTIOO
type terminal. (The more recently introduced VT200 series, although
different in physical layout, is compatible with the VTIOO; thus, you
may use KED on them as well.) K52 is a form of KED that is specifically
designed for the VT52, which was the previous standard video terminal.
In function, K52 is essentially the same as KEO. Under version 3.2 of
RSX-llM, KED was generally considered to be better than EDT for video
editing. With the enhancements to EDT under version 4.0, the video
editing capabilities of the two have become roughly the same. Since
EDT also offers a nonvideo mode, there is no longer any real reason to
use KED instead of EDT, and thus KED has fallen into disfavor.

TECO (Text Editor and COrrector) is the most sophisticated editor.
It is a character-oriented editor with several line-oriented capabilities.
It includes support for operation in a video editing mode. TECO is often
described as being a programming language, not an editor. This is true.
For example, you can write a TECO macro to perform some editing
function (such as changing all occurrences of one string of characters
into a second string) not just on one file but on every file (as defined by
wildcards) in your user area. Macros for running TECO in a video editing
mode are available from DECUS. These offer capabilities that are similar
to those in EDT, but, if you need to do something fancy, you can get
out of video mode and continue editing in normal TECO, from which
you can do almost anything. The one big disadvantage of TECO is that
it is slow in the video mode. This is probably due to the video editing

File Creation 69

capabilities being implemented via a macro rather than being built into
the editor, but it may also be due in part to the interface between TECO
and the RSX terminal driver. Whatever the reason, it is likely that you
will type faster than TECO in video mode can handle. !It is not likely
that you will be able to do this with EDT.)

Regardless of which editor you use, a common syntax exists for in­
voking it. You enter a command to your CU naming the editor you
wish to use. Normally, you will also specify the file you wish to edit .
If a version of this file does not already exist, the editor will create version 1
of it. Otherwise, the highest numbered version will be read into memory
for you to modify. After you are done, the edited file will be saved as
the next highest version; the original file will be unchanged. Modifi­
cations to this basic procedure are possible. For example, you can quit
editing without saving your changes; you can call up the editor without
naming a file and subsequently !from within the editor) do so; you can
save your edited file under a different file name; or when you invoke
TECO you can start an editing m acro (this is how you use TECO for
video editing). These are all functions of the particular editor that you
use and typically represent a more advanced use of it. Here, we will
examine only the standard commands for invoking an editor.

In MCR you invoke your favorite editor by using its name as given
above !TECO is typically shortened to TEC). Editing commands are of
tl1e form:

MCR: EDT filespec
EDI fil e spec
KEO filespe c
K52 fil e spec
TEC fil e spec

In DCL you invoke your favorite editor by using the generic command
EDIT. If you do not modify this command, you will get EDT, since this
is the standard editor. To use one of the other editors, you use the com ­
mand form EDIT/editor. For DCL, the editing commands corresponding
to those listed above are:

DCL:EDIT filespec
EDIT/EDI fll e spec
EDIT/ KEO fil e spec
EDIT/K5 2 filespec
EDIT/ TEC fi lespec

The editor with which an individual user will be most comfortable
will change from one user to the next. It is unlikely that you will want

RSX, A User's Guide 70

to use either EDI or KED unless you already know them and do not
want to learn something new. If you are doing relatively simple editing,
you will probably be happiest using EDT in video mode. If you commonly
work with pieces of several files or perform other advanced tasks, you
may well need to use TECO. It will be harder to master TECO than
either EDI, EDT, or KEO; concomitantly, if you do master it, you will
be able to do things that will baffle your colleagues who are using one
of the simpler editors. The best advice for you is to browse through the
manuals for all the editors and to then start experimenting. Have fun!

File Crea ti on 71

13

File Copying

Almost e\<Crything you do on the computer involves using files. One of
the basic things you can do with a file is to copy it. The actual copying
of a file is done by the system utility PIP (the Peripheral Interchange
Program), which is also used for a variety of other functions on user
files. As its name implies, PIP can copy files from any peripheral device
in the system to any peripheral device.

As with other utilities, if you are in MCR, you can use PIP in either
a single-line command form or in an interactive manner; the actual
command to PIP is the same. If you use DCL, you will use a different
command; this is translated into the equivalent PIP command for you.

Copying a file is probably the most quoted example of the difference
in command structure between MCR and DCL. Since the utility PIP
does the copying, the MCR command requires that PIP be specifically
named. In PIP, the general form of the Copy command is

output:;;input

Thus, in MCR, a complete single-line command to copy a file is

MCR : PIP output=input

This command style mimics that of an assignment statement in a lan­
guage such as FORTRAN, and it may be best remembered that way­
you are setting the output equal to the input. This style pervades MCR
usage; it is also found in commands for compiling, task building, etc.
In DCL, the same command is

DCL : COPY input output

RSX, A User's Guide 72

This command reflects the way you would state things in normal con­
versation rather than in a program~you wish to copy from the input
to the output. This 1'from-to 11 style is common to many DCL commands.
If you wish, you can use the multiline command form, in which DCL
prompts you for each file specifier. In the most general form, you first
enter just the command COPY. DCL then asks for the input specifier,
prompting you with "From?" After you supply this, DCL asks for the
output specifier, prompting you with "To?" As with many other DCL
commands, when you are learning them, this multiline form is con~
venient, but once you learn the command syntax lit happens faster than
you might expect), you will find the single-line command form faster
and easier.

Whether you use MCR or DCL, the output and input above are both
file specifiers. Standard defaults apply to the device and ufd portions of
the input and output specifiers. If the output file name and type are not
specified, they are set the same as the input values. If the output version
is not specified, it too is given a default; this depends, however, on
whether you are in MCR or DCL, as we see later. It is possible to omit
the output file specifier completely. You would do this if you wished
to form the output fil e specification according to the above defaults.
!Here, presumably, the input would be from a different user area or de­
vice; otherwise the output specifier would be the same as the input
specifier.) In MCR you can use the form

MCR: PIP=input

The corresponding form does not work in DCL. If you enter

DCL: COPY input

DCL will assume that you are using the multiline command form and
it will prompt you to enter the output file spec. At this point, you can
enter a carriage return. The output file spec will be recognized as being
empty, and the above defaults will apply. This is clumsy because it
cannot be done in one line. If you wish to enter the entire command
on one line I this is especially useful for indirect command files, which
we discuss in Chapter 20), you must give part of the output file specifier
You do not have to supply all of it; either SY: or [uld] or• .• is sufficient
to force the above defaults to be used for the remainder of the output
specifier. Note that whether you are in MCR or DCL, you must always
give the input file name; you can, however, use wildcards.

As a nonprivileged user, you will normally copy files into your user

File Copying 73

/

area. The files being copied may also be in your area, or they may be
in someone else's area. Nothing in the Copy command itself restricts
you to this-you could just as easily give a command to copy a file from
your area into someone else's area. For this to work, however, you must
be able to create files in that other user area. If you are not a privileged
user, you will probably not be able to do this. Thus, although the Copy
command may be syntactically correct, it will fail due to your lack of
file access privileges. In our examples we will consider only the copying
of files into your own area.

Let 's now look at some examples of the basic copy function:

(1) MCR: PIP TEMP. MAC=PROCll . MAC

DCL: COPY PROCll. MAC TEMP. MAC

Here, both the input and output files are within your user area. The
input file is named PROCll.MAC, and you make an identical copy of
the latest version of it, under the name TEMP.MAC. This might be
useful if, for example, PROCl I.MAC is a working program that you do
not wish to destroy, but you want to experiment with some changes to
it.

(2) MCR: PIP=DB2: [100 , l]A.FTN

DCL : COPY DB2: [100,l]A.FTN SY:

The latest version of FORTRAN source fil e A located on disk DB2: in
user area [100, I [is copied into your current user area. The name of the
new file is also A.ITN. Note that in the DCL form, SY: was used as a
dummy output file specifier to enable the command to be given in one
line. Without this, the command would have to be given in two lines·

DCL>COPY DB2: [100, l]A.FTN
To?

Here, the response to the 'JTo?" prompt is simply a carriage return.

(3) MCR:PIP=[IOO, l)A.FTN, B.FTN

DCL : COPY [100 , l]A.FTN, B.FTN SY:

This is the same as example 2 except that two files are copied. They
are copied separately, producing two coiTesponding output files.

(41 MCR : PIP B.FTN=[lOO,l)A.FTN

DCL : COPY [100 , l] A.FTN B.FTN

RSX, A User's Guide 74

This is the same as example 2 except that the name of the output file
is changed from that of the input file to B.FTN. Assuming that no files
named B.FTN exist in your area, the version of the output file is set to 1.

In addition to the straightforward file copying discussed above, several
modifications are possible. If you use MCR, these will be selected by
adding switches to the basic PIP command. If you use DCL, you may
need to add switches to the basic Copy command, or you may need to
use a different command word entirely. The modifications that we con­
sider here fall into two categories: combining several files into one, and
specifying what is to happen when naming conflicts arise.

It is possible to combine several input files into one output file as
part of the copying action. There are two ways to do this: merging the
files and appending them. In either case, as with the basic Copy com­
mand, the input files are not affected by this command.

When two or more input files are copied, and an output file is explicitly
named, the various input files are merged to form the single output file.
This modification of the basic copying action is assumed by default and
need not be specified. If you are in MCR, you may, however, explicitly
specify that you want merging to occur; you do this by using the Merge
switch (/ME). In DCL there is no way to explicitly specify this.

The Append command allows you to append one file to another. Ap­
pending involves copying the input fil e to the end of the output file.
This is similar in action to the Merge command-the difference is that
merging creates a new file whereas appending enlarges an existing file.
Although the output file is changed, a new version is not created. Thus
(except perhaps for the size of the output file) a listing of your directory
will look the same before and after an Append command. The command
is

MCR: PIP output~input/AP

DCL: APPEND input output

The input is appended to the output file; if two or more input files are
specified, they are appended in the order in which they are listed in the
command.

Let's look at some examples of these modified forms of the Copy
command.

(5) MCR: PIP TEST.FTN=A.FTN,B.FTN /ME

DCL:COPY A. FTN , B.FTN TEST.FTN

All files referred to are in your area. The latest versions of files A.FTN

File Copying 75

and B.ITN are merged (concatenated) to form the single file TEST.ITN.
Note that the difference between this example and number 3 is that in
number 3, no output file was named. Thus, the files were copied in­
dividually, preserving their file names. When an output file is named
(no wildcards) and more than one input file is listed, merging is assumed.

(6) MCR:PIP TEST.FTN=A.FTN
PIP TEST. FTN=B. FTN/ AP

DCL : COPY A. FTN TEST. FTN
APP B. FTN TEST. FTN

The net result of this example is identical to that of example number
5. The difference is that it involves two separate steps-a straight copy,
and then an append.

The other special cases that need to be considered concern naming
conflicts. A common scenario, as in the examples above, is that of copy­
ing a file from some other user area into your own. Typically this is
done because you do not have the file in your area-that is, you do not
have any versions of it at all. In this case, there can be no conflicts, and
the copy operation will proceed without incident. What happens when
this is not the case? The answer is somewhat messy because it depends
on several factors.

Let's first consider the case where you give a complete output file
specifier (including the version number) in the Copy command. There
are two possibilities: either a file with the exact complete specifier al­
ready exists, or one does not. If one does not (the existence of other liles
with the same name and type but different versions is irrelevant here),
the copying proceeds and that is that. If, however, you have a file in ·
your area with the exact same lile specifier (including the version numc
her) as the file that you wish to copy into your area, the copy operation
will fail. The assumption is that you must have made a mistake, and
it is safer to refuse your copy request than it is to destroy the lile you
already have in your area. It is, of course, possible that you actually
want to do what you said. In this case, you must specify that you want
the copying to proceed, even ii it requires that an existing file be de­
stroyed. In MCR, you use the Supersede switch (/SU) for this; in DCL
you use the Replace switch (/REP). Note that if you use this switch and
the file does not already exist, nothing special happens-the switch is
ignored, and a normal copy occurs.

Now, suppose you do not specify a version number for the output file.
Instead, you wish to use the default version number for the file you are

RSX, A User's Guide 76

making in your area. What happens in this case depends on whether
you are in MCR or DCL. Let's first examine what happens in MCR.
The version number of the output file is set by default to be that of the
input file. If a file with the same name and version number already
exists, you will have the same problem as discussed above for exactly
the same reasons. A similar but somewhat more subtle problem occurs
when you do not have a file with the exact same specifier, but you do
have one or more files with the same file name and file type but different
versions. Suppose, for example, that you already have versions I, 4 and
5 of the file TEST.FTN in your area and the file that you want to copy
into your area is TEST.FTN;2. Strictly speaking, there is no naming
conflict as you do not have a version 2 of the file TEST.FTN. But what
happens if the copy made in your area is given the number of the original
version? What you may think of as being the latest version of the file
is actually version 2, and FILES- I I will continue to consider version 5
to be the latest version. When you later refer to TEST.FTN, you will
not get the copy that you just made. One way around this problem is
to name the output file so that you can specify a high version, e.g., you
could declare the output file to be TEST.FTN;lO. This is a nuisance,
however-you should be able to let RSX take care of such bookkeeping
for you. You can do this by requesting a new version when you issue
the Copy command. This means that you want PIP to perform the in­
dicated copying but assign a new version number to the output. This
is taken to be one greater than the highest version number of an existing
file with the same name, or version 1 if no file exists with the same
name. In MCR1 you request a new version by using the New Version
switch [/NV); the default is to not make a new version.

If you are in DCL, things are different. Since all DCL commands are
translated into MCR commands, something similar to the above must
happen. What is different about DCL is that when the output version
is not specified, the Copy command is, by default, translated into a PIP
command with the New Version switch set . Depending on which type
of RSX you have, and \Vhat version it is, you may have no control over
this. Specifically, if you have version 3.0 of RSX-l!M-PLUS or version
3.0 of Micro/RSX, you may request that a new version not be created.
If you have RSX-llM or any of the older versions of RSX-llM-PLUS or
Micro/RSX, you do not have this choice. To prevent the creation of a
new version, use the No New Versions switch, /NONEWVERSION. This
may (somewhat confusingly) be abbreviated to /NONE.

In DCL, the only times that you can get a naming conflict are when
you give a version number to the output file or when you request that

File Copying 77

new versions not be made. Otherwise, you will always make a new
version when you copy a file. This prevents some problems but can
cause others. It can lead to confusion in the common situation where
you do not have any versions in your area of the file being copied. Suppose
that, as in example 2 above, you want to copy A.FTN into your area.
Let the latest version of A.FTN be 22 (or 3 or 107 or anything else). The
file that is made in your area will have version number 1, due to the
action of the New Version switch which is forced upon you by DCL.
The version number portion of the file specifier is useful for more than
distinguishing one version of a file from another; it can also have an
absolute meaning in and of itself. This meaning is lost to you when you
use DCL. This is especially bad if you use the Copy command for making
backup copies of your files, as the backup copies will not reflect the
original versions of your files,

Let's now look at some examples. Suppose that in your directory, the
only FORTRAN source files you have are

A.FTN;3
B.FTN;3

Also suppose that there are similar files in user area DB3:[100,l] with
the latest versions being

A.FTN;2
B.FTN;3
C.FTN;4

Using this1 we may consider several examples.

(7) MCR:PIP B.FTN;3=DB3: [100,l]B.FTN

DCL:COPY DB3: [100,l]B.FTN B.FTN;3

These commands will fail since B.FTN;3 already exists in your directory.

(8) MCR:PIP B.FTN;3=DB3: [100, l]B.FTN/SU

DCL:COPY/REPLACE DB3: [100,l]B.FTN B.FTN;3

Here, by including the Supersede (Replace) switch, you force the previous
example to work.

(9) MCR: PIP=DB3: [100, l]B. FTN

DCL:COPY DB3: [100,l]B.FTN *·*

The MCR command will fail since the output file specifier defaults to

RSX, A User's Guide 78

B.FTN;3 and that file already exists. The DCL command will succeed
since the N ew Version switch forces the output specifier to B.FTN;4.
To achieve the same effect under MCR, the command should be entered
with/NV:

MCR : PIP =DB3: [100 , l]B.FTN/ NV

MCR: PIP /NV=DB3: [100,l]B .FTN

(10) MCR:PlP=DB3: [100, l]A .FTN

DCL:COPY DB3: [100,l]A.FTN SY:

Both of these commands will work. In MCR, the new file will still have
version 2 and will thus appear to the File Control Services to be older
than the already existing version 3. In OCL, the new file will have version
4 and will thus appear to be a new file. If you have version 3.0 of RSX­
! JM-PLUS or version 3.0 of Micro/RSX, you may perform the copy from
DCL without creating a new version,

DCL :COPY/NONEW 083: [100,l]A.FTN SY:

which will force the new file to retain the version number of the original.
So far, we have been concerned with copying from one file to another.

As noted, PIP is the Peripheral Interchange Processor, and one of its
major functions is copying a file from one peripheral device to another.
In Section 23.3 we will study how to use this for making backups of
your files. For now, let's consider some other examples in which either
the input or the output is not a file on your default disk. One possibility
is to copy from a file to your terminal (TI:). This is equivalent to typing
the file on your terminal and is how you get a terminal listing of a file
under RSX. A,lthough you could issue a DCL command to copy to TI: ,
DCL allows the special command TYPE for this. Thus, to look at the
latest version of the command file DOITNOW, you would use the
command

MCR: P IP TI : =DOITNOW . CMD
DCL: TYPE DOITNOW. C!IID

Note that for a video terminal, CTRL/S and CTRL/Q may be used if
the file size is greater than the screen capacity 124 lines). You may sim­
ilarly copy your file to another terminal (which might be useful if it is
a hard-copy terminal) by specifying the TTnn: device name for it rather
than TI:. In this case, you cannot use the TYPE command if you are in

File Copying 79

DCL; you must use a Copy command. For example, to list the same
file on terminal 7, the commands would be:

MCR : PIP TT7: =DOITNOW. CMD

DCL: COPY DOITNOW. CMD TT7:

It is also possible to reverse the above procedures and copy from your
terminal into a file. In MCR, you specify TI: as the input. DCL also has
a special command for this form of copying; it is CREATE. Following
the command itself, everything you type is taken to be the "contents"
of the "file" Tl : until you enter an End-Of-File ICTRL/Z) character. If
you want to write a quick note to yourself, you might enter the command

MCR : PIP NOTE. TXT=TI:
DCL: CREATE NOTE . TXT

As discussed in the previous chapter, this is the most primitive form
of creating a file because it gives you essentially no editing capability.
It is suitable only for very short files or for ones in which exact spelling
or appearance do not matter.

As a final example, let's set the output to be the system printer, which
may be identified as CL: !the Console Listing pseudo-device) or as LPnn:
!Line Printer number nn). Copying a file to this is equivalent to getting
a printout of the file. For example, to get listings of all your MACRO­
! I source files, you would use the command

MCR : P IP CL:=O.MAC

DCL : COPY *·MAC CL:

As we discuss in Chapter 15, you will not use this command if your
system has print spooling.

RSX, A User's Guide 80

14

File Maintenance

In the last chapter we learned how to use the utility PIP for copying
files. You can also use PIP for performing a wide variety of file main­
tenance functions. We look at these, as well as a few others, in this
chapter.

With the exception of setting default file protection {Section 14.5), all
the file maintenance functions that we examine here are performed by
PIP. Thus, under MCR, these functions are requested by issuing various
commands to PIP. Since something other than a copy is being done, a
command line switch must be used to specify the exact function. Either
the command form

PIP ou tpu t;::;:i npu t / switch

PIP input/switch

is used, depending on whether output is generated. In DCL, for the var·
ious file maintenance functions, command names are used which have
been chosen to directly signify the function to be performed. From DCL,
you may not (and indeed need not) realize that most of these functions
are performed by PIP. Once you have mastered these basic file main­
tenance functions, you may wish to turn your attention to Chapter 22
where we discuss some commands of a more advanced nature that aug­
ment the capabilities presented here.

File Maintenance 81

14.l Obtaining a File Directory

Once you have more than just a few files in your directory, you will
find it easy to lose track of what you have. When this happens, you will
want to get a list of the names of the files in your area. Such a listing
is known as a file directory. RSX offers several possible forms of directory,
differing in the amount of detail presented. We will first consider only
the standard form; we will then show how to request the other forms .

ln MCR you use the PIP Listing switch /LI to request a standard di­
rectory listing. ln DCL you use the command DIRECTORY, which is
typically shortened to DIR. These commands cause the standard direc­
tory listing to be generated. For each file, the file name (including version
number), the number of disk blocks used to store the file, a file status
code, and the date and time of file creation are printed. Following this,
the total number of files in your directory and the total number of disk
blocks that they occupy are printed.

Remember that the mechanism for creating a directory listing is the
utility PIP and that the basic PIP command includes both an output and
an input specifier. Thus, under MCR, the basic command form for ob­
taining a directory listing is

MCR: PIP output=input/ LI

The output specifier directs where the directory listing is to go; if it is
not given (the = is also omitted), Tl: is assumed by default. This is by
far the most common case, so the MCR. command is normally just

MCR: PIP i nput / LI

which is a natural simplification of the more general form . In DCL, the
command syntax is designed around the assumption that you will nor­
mally want to get the directory on your terminal. The command for
this is

DCL: DIR Input

which is indeed simple. To put the listing elsewhere, however, requires
a special switch:

DCL: DIR/OUTPUT: output input

where the command switch /OUTPUT: may be shortened to /OUT: or

RSX, A User's Guide 82

even /0:. Note that whether you are in MCR or DCL, the output specifier
may refer to either an actual disk file !if it is to be in your user area, it
will show up in the directory listing, but it will show as having zero
blocks, since it is in the process of being made) or to a device such as
a printer. Putting a directory list into a file is not as absurd as it might
at first appear; it is useful for documenting the contents of your directory
at a certain point in time1 such as when you deliver programs to a
customer.

The input specifier identifies those files that will be listed in the di­
rectoryi if it is not given, a specifier of*.*;* (all files in your user area)
is assumed by default. In this case, if the directory listing is to be printed
on your terminal, the basic commands simplify even further:

MCR: PIP /LI

DCL: DIR

By including an input specifier in the command, you can restrict the
files that appear in the listing. For example, if you want to see only the
latest versions of all your files, you would use the command

MCR: PIP *·*/ LI

DCL: DIR *·*

To get a directory listing of the latest versions of all FORTRAN and
MACR0-11 source files as of 23 July and to save this in a disk file, you
might use the command

MCR: PIP JULY23. DI~. Fl'N , *.MAC/ LI

DCL: DIR/OUT: JULY23.DIR *· FTN, *·MAC

Note that we have used multiple input file specifiers, separated by com­
mas, as discussed in Section 11.3. As a final example, if you want to
know when the latest version of the file BIGBOY.TSK was made, you
could request a directory listing of just that one file:

MCR: PIP BIGBOY . 'fSK/ LI

DCL: DIR BIGBOY , TSK

So far, we have considered only the standard form of the directory
listing. This is the one that you will most likely find to be of the greatest
use, but three other options are available. These are each selected by

File Maintenance 83

adding a switch to the basic Directory command; the command syntax
is otherwise unchanged. In a brief directory, only the file names are
listed. In a summary directory, only the total disk block and file counts
are given. A full directory listing contains greater detail than the standard
format-the extra details will seldom be of interest to you. In MCR, the
switches to request these three optional forms are: /BR (BriefJ, /TB (Total
Blocks!, and /FU (FullJ. In DCL, the switches are /BRIEF,
/SUMMARY, and /FULL, which are typically shortened to /BR, /SU, and
/FU. For example, to determine how much disk space you are using for
your object files, you could use the command

MCR: PIP *·OBJ; * / TB

DCL :DIR/SU *.OBJ;*

This will list the total number of object files in your user area and the
total number of disk blocks that they occupy, but it will not list details
about the individual object files.

14.2 Deleting Files

Sooner or later you will find yourself with files in your user area that
you no longer want. When this happens, you will need to know how to
get rid of them. You can do this in one of two ways-deleting or purging.
Deleting has the meaning that you would expect. Purging has meaning
only in a system such as RSX that allows multiple versions of a file.
Purging deletes the old versions of a file without disturbing the more
recent versions. Both file deletion and purging are done by the utility
PIP.

To delete a file in MCR, you use a PIP command with the Delete
switch (illEJ. In DCL you use the command DELETE which is commonly
shortened to DEL. The form of this command is simply

MCR: PIP input/DE

DCL : DEL input

where input is one (or more separated by commasJ file specifier. When
using the Delete command, the version of the file to be deleted must
be explicitly stated. This may be any of the following:

; * to delete a ll versions
; o to delete only the latest vers ion

RSX, A User's Guide 84

; -1 to delete only the earliest version
; n to de l ete only the version #n

Thus, the command

MCR: PIP TEST.FTN/DE

will be rejected. This is a safety feature to guard against accidental dele­
tion of the latest version of a file. Note, however, that in DCL the
command

DCL: DEL TEST. FTN

may or may not be rejected. In older versions of RSX, it will be accepted
but not as a normal Delete command. Instead, it will be translated into
a Selective Delete command-we <liscuss this in Section 22.7. Jn the
latest versions of RSX, the above command will be rejected. This change
is part of the effort to remove nonstandard commands from RSX DCL.

For example, to delete all object and task image files for files Al and
A2, you could use the command

MCR: PIP Al. OBJ; *,Al. TSK; *,A2. OBJ; *,A2. TSK; */DE

DCL: DEL A1.0B..J; *,Al. TSK; *• A2. OBJ;*• A2. TSK; *

To purge a file in MCR, you use a PIP command with the Purge switch
I/PU!. In DCL you use the command PURGE. The form of this command'
is simply

MCR: PIP input/PU

DCL: PURGE input

where input is one !or more separated by commas) file specifier. When
using the Purge command, the version of the file to be deleted has no
meaning and may not be stated.

The Purge command is more powerful than the Delete command be­
cause it does some of your bookkeeping for you. The versions to be
deleted are determined as part of the purging action. Normally, all ver­
sions of each file specified in the command except the latest are deleted.
The Purge command is especially convenient for cleaning out your user
area after a series of e<lits and compiles. A common use of this command
is

MCR: PIP *.*/PU

DCL: PURGE *· *

File Maintenance 85

which results in the retention of only the latest version of each file in
your area.

In its full form, the Purge command includes an integer value n. In
MCR this is appended to the switch /PU; in DCL its inclusion requires
use of the switch /KEEP:

MCR: PIP input/PU: n

DCL: PURGE/KEEP: ll input

The form discussed above results from this with n ~ l being chosen by
default. The integer n (greater than or equal to 1) specifies how many
versions are to be saved. More specifically, if N is the latest version of
the input file, then versions N, N - l, ... , N - n + 1 will not be deleted.
Versions N - n and all lower will be purged. When all versions are present
prior to the Purge command, this is equivalent to stating that n versions
will remain after purging. This simplification can be misleading. Con­
sider the command

MCR:PIP TEST.FTN/ PU:2

DCL: PURGE/KEEP: .2 TEST. FTN

If your directory contains versions 4, 2, and 1 of file TEST.FTN (version
3 having perhaps been previously deleted via a Delete command), PIP
will delete versions 2 and 1, ignoring versions 4 and 3. Thus, following
the purge, only version 4 will remain-the same result that would have
been obtained with a /PU:l command. Another way of looking at this
example is that the /PU:2 command directs PIP to purge all but the two
most recent versions-PIP's definition of the "two most recent versions"
might not be the same as yours. Although confusing, this normally will
not be a problem as you will most likely want to purge all old versions
of your files.

14.3 Renaming a File

Another useful file maintenance activity is the renaming of an existing
file. This does not result in the creation of a new file, nor does it change
the contents of the existing file-it merely changes the directory entry
associated with the file. Thus, it is significantly more efficient than
copying the file Ito get the new file name) and then deleting the original
file Ito get rid of the old name).

Renaming is done by using PIP with the Rename switch (/RE). If you
are in DCL, you can use the command RENAME, which is commonly

RSX, A User's Guide 86

shortened to REN. The form of the Rename command is:

MCR: PIP newname/RE=oldname

DCL : RENAME o 1 dname newname

The newname and the oldname specifiers must refer to files on the same
device; these need not, however, be in the same user area.

If a portion of the new specifier (ufd, file name, type, or version) is
not explicitly stated, or if it is a wildcard, then it is set to the corre­
sponding field in the input specifier-i.e., it is not changed. For the Re­
name operation to make sense, at least one of these four fields in the
new specifier must be different from that in the old specifier, or else
the "new" file name will be the same as the old.

Let 's look at some examples. The command

MCR:PIP TEST.FTN;l / RE=A.FTN

DCL : REN A. FTN TEST . FTN; 1

takes the latest version of A.FTN and changes its name to TEST.FTN;l.
The command

MCR : PIP TEST.*;*/RE=A.* ;*,B· *:*

DCL: REN A. *;*,B·*i* TEST . *;*

takes all files with a file name of A or B and changes the file name to
TEST. The type and version specifiers are not changed. This last example
can lead to an error, as PIP may attempt to assign the same new name
to two different input files (e.g., if A.MAC; l and B.MAC; 1 existed, both
could not be renamed to TEST.MAC;!).

The Rename command is especially useful when you are working
with several user areas, as it allows you to /(move" a file from one area
to another. We discuss this in Section 21.3.

14.4 Fixing a File

Under the File Control Services (FCS), a file can become corrupted. This
occurs when the file is opened for writing (as the result of a write state­
ment) and not closed. Under RSX, normal task termination results in
the automatic closing of any files that were opened. Thus, if your pro­
gram terminates properly, you should not have any problems with your
files. If, however, your program uses a file and is abnormally terminated,
the file will not be properly closed. In this situation, the contents of
your file may or may not be good.

File Maintenance 87

Abnormal termination of your task can result from several causes.
You (or a privileged user) may abort your task. This will normally happen
if you notice something wrong with the way your task is running and
you do not want to wait for it to finish. Your program may have an
error that RSX considers to be especially bad (such as an Odd Address
Trap). If this happens, you will have fun debugging your program. A
third possibility is that your system may crash, in which case not only
your task, but every other program running as well, will die.

If a task terminates abnormally with any files open for writing, and
if the operating system is still there to do something about it (not a
system crash), FCS will lock these files. A locked file cannot be read
from or written into. The file is locked to inform you that, due to the
abnormal program termination, the contents of the file may be garbage.
You can determine whether or not a file is locked by obtaining a standard
directory listing; a status code of L signifies a locked file. If you wish
to use a locked file, you must first unlock it before you can do anything
else with it.

To unlock a file in MCR you use PIP with the Unlock switch (/UN).
In DCL you use the command UNLOCK. The form of the command is

MCR: PIP input/UN

DCL: UNLOCK input

Once you have unlocked a file, you must determine whether it has been
corrupted or not. If you know that your program was only reading from
the file, not writing to it, then you can trust the file to still be good. (In
this case, you should, if possible, rewrite your prngram to open your file
for reading only; then, even if your program terminates abnormally, FCS
will not lock the file.) If you were writing to the file, most likely every­
thing written until your task stopped will be in the file, but you will
not be able to use it. Each file has a header associated with it. The file
header contains various information about the file. One important piece
of information is how big the file is. A new file has an initial size of
zero blocks; the actual size is not put into the header until the file is
closed. Thus, all your information may be in the file, but FCS will think
that, since the file size is zero, nothing is there. You can detect this by
looking at the file size in a directory listing. To fix this condition, you
must use the End Of File command. This directs PIP to figure out where
the end of your file is and to update your file header accordingly. Note
that with older versions of RSX, this command is available only under
MCR. Again you use PIP, this time with the End-of-File switch (/EOF).

RSX, A User's Guide 88

The format of this command is

MCR: PIP lnput /EOF

With the latest versions of RSX (version 4.2 of RSX-llM, version 3.0 of
RSX-UM-PLUS, and version 3.0 of Micro/RSX) this capability was added
to DCL. In DCL, the Set File command was added to allow the setting
of certain file attributes. One of these is the EncLoLFile attribute, which
allows you to fix the size of a file after you have unlocked it. This com­
mand is

DCL: SET FILE/ END_OF__FILE input

PIP cannot determine the exact end of your file. It will always give you
everything that you put into the file, but normally it will also give you
a little bit of junk at the end. This is certainly better than losing every­
thing. You can remove the extraneous stuff by editing the file. Since
this might involve working with strange characters, it may be necessary
to use TECO.

For example, suppose your program is writing answers into the file
RESULTS.OUT. Absentmindedly, you log out; this aborts all currently
active tasks that you started from your terminal. When you log back in
and try to read your answers, the file will be locked. A directory listing
will show you that the size of the file RESULTS.OUT is zero blocks;
you will also see the L for locked. To fix things, first unlock the file
and then set the file size,

MCR: PIP RESULTS.OUT/ UN
PIP RESULTS. OUT/ EOF

If you have the latest version of RSX, you may effect both of these com­
mands from DCL,

DCL: UNLOCK RESULTS. OUT
SET FILE/ END RESULTS. OUT

Otherwise, you will need to issue the EncLoLFile command as an MCR
COillilland,

DCL: UNLOCK RES UL TS. OUT
MCR PIP RESULTS. OUTIEOF

In any case, once you have done all this, you should look at what is in
the file and edit it as necessary.

File Maintenance 89

14.5 Setting File Protection

The entire concept of file protection under RSX is unduly complkated.
Depending on your work environment, the topic may be of no interest
to you. Even if you are concerned about protection for your files, you
will normally find the defaults chosen by RSX acceptable. Nonetheless,
you may want to control access to your files, in which case you must
first understand the protection system.

The file protection system controls the ability of users to access files.
To do anything with a file, a user must be granted the corresponding
access rights to that file. An attempt to access a file without the cor­
responding access rights results in a privilege violation. Files-11 defines
four possible forms of file access

R = read
W =write
E =extend
D =delete

The distinction between write and extend is rather obscure and not
worthy of clarification here.

Under Files-II, every file has an owner. Typically, the owner will be
the user who created the file. The owner of a file is identified by his
UIC. The concept of file ownership allows Files-11 to recognize four
categories of user, based on UIC:

SY (system) - any UIC with a group number less than or equal to
JO (i.e., a privileged user)

OW (owner) -the UIC of the file owner
GR (group) - any UIC with the same group number as the owner
WO (world) -any other UIC

It is important to stress that these categories of user are defined relative
to the owner of the file, not relative to the UFO of the file. With num­
bered directories, the UIC of the file owner will often be the same as
the UFO, and this distinction can be easily overlooked. It is common
to speak of another user as being in the same group as your directory.
This is incorrect; with named directories, it is meaningless, since the
UFO is not even of the same form as a UIC.

I must also be precise in defining what .a UIC is. When you log in,
you use a UIC to identify yourself. This log-in UIC is used to initially
set a value known as your protection UIC. If you are nonprivileged, your

RSX, A User's Guide 90

protection UIC can never be changed. Thus, the MCR command
SET /UIC is a misnomer in that it does not affect your protection UIC.
Instead, it changes your default directory, which in older systems was
referred to as your default UIC. A privileged user, however, can change
his protection UIC. When I speak of classifying a user according to UIC,
I refer to the protection UJC.

For each file, Files-11 ·allows the four types of access to be selectively
granted or denied to each of the four categories of user. This implies
sixteen combinations of user and access type. Files- I I implements this
by storing a 16-bit access code for each file . Default values are typically
used, but you can override these. The access rights that are usually given
to a file are:

SY = RWED
OW = RWED
GR = RWED
WO = R

lf one of your files has these access rights, it means that any user with
a system UIC, you (the owner), and anyone else in your group can do
anything to the file; anyone else can read the file but not change or
delete it. If you do not like these defaults, you choose your own pro·
tection codes.

Before discussing how to change the access rights to your files, we
need to consider in a little more detail how a user accesses a file . Sup­
pose, for example, you issue a command to print the file
DR2:(265,l]TEST.F1N. This is what happens. Since there is a comma
in the ufd portion of the file specifier, the uld is interpreted as referring
t o a numbered directory. Files-11 then forms the file specifier
DR2:(0,0(265001.DIR, which identifies the UFD corresponding to the
user area containing TEST.FTN. This is a UFD, but it is still a file, and,
as such, has access rights of its own. lf you do not have read access to
th.e UFD, you will get an error message citing a privilege violation and
your command will be rejected. If you have read access to it, Files-11
will then read through th e directory until it finds the entry for
TEST.FTN. Ill there are several entries, it will select the one with the
highest version number.) Files-11 then examines the protection code for
this file . lf you have read access to it, your request to print it will be
honored; otherwise, you will get a privilege violation at this point.

In general, to do anything with an existing file, you must pass two
tests-one for access to the appropriate UFD, and one for access to the

File Maintenance 91

file itself. For many actions, such as copying or printing a file, or running
a task, you need read access to both the UFD and the file. To delete a
file, you need delete access to the file, and read and write access to the
UFD. To create a new file, you need read and write (and possibly extend)
access to the UFD.

In the rest of this section I will show you how to set the access rights
to your fil es. Since you own your files (more precisely, since you have
write access to their UFDJ, you can set their access rights as you see
fit. This involves two possible procedures: one to set the protection codes
for existing files, and one to define a default protection code to be used
for new files. You should not, however, overlook a basic point. If you
want to keep other users away from your files, the easiest and safest
way to do so is to deny them read access to your UFD. (If you do this,
they will not even be able to get a listing of your directory to find out
what files you have.) Since your UFD is a file in the Master File Directory
IO,O), you cannot do this yourself. Changing the protection code for a
UFO requires write access to the MFD, which is only available to a
privileged user. If you want to deny other users read access to your UFD,
ask your system manager.

After all these preliminaries, we can finally consider how to set pro­
tection codes for your files. Just as the topic is rather complicated, so
too is the command structure rather awkward. If you are in MCR, you
can change the protection for a file by using PIP with the Protection
switch (/PR). If you are in DCL, you can use the command SET PRO·
TECTION, which is commonly abbreviated to SET PRO. The command
is of the form

MCR: PIP input/PR/xx: yyyy

DCL: SET PRO: xx: yyyy , xx: yyyy input
DCL: SET PRO input (XX: yyyy)

Here, we show two forms of the DCL command. Both are acceptable;
the first is more recent and is now considered preferable. In all command
forms, the input file specifier names the file(sJ for which access rights
are to be changed. The xx:yyyy is a particular protection code; up to

four of these may be included in one command. In MCR, each xx:yyyy
is preceded by a slash. In DCL, multiple protection codes are separated
by commas. In the preferred form, these follow the PRO: and precede
the file specifier. In the alternate form, the entire set of protection codes
must be enclosed in parentheses and follows the file specifier. In all
cases, the xx specifies the type of user for whom protection is to be
changed-it can be either SY, OW, GR, or WO. The :yyyy is the pro-

RSX, A User's Guide 92

tection code, which specifies the new access rights. It can include any
of the letters R, W, E, or D-each letter included allows the corresponding
form of access. A totally empty protection code is perfectly valid; it
means that no access rights are to be granted to the corresponding class
of user. If a particular xx user code is not included in the command, the
access rights for that class of user are not changed. For example, if you
want to change the file protection for all files of type FTN so that other
users in your group will have only read access and nonsystem users in
other groups will have no access, you can use the command

MCR: PIP *.FTN; */PR/GR: R/WO

DCL:SET PRO:GR:R,WO *·FTN;*
DCL: SET PRO *· FTN; * (GR: R, WO)

Note the absence of a protection code field after /WO, which implies
that no access rights are granted. Also note the absence of user codes
SY and OW, which implies that you do not want to change the access
rights for system users or for yourself.

The Set Protection command has a relatively awkward syntax, which
is difficult to remember. If you are in DCL, this is a perfect example of
a situation where the query command form is preferable. Using this
style, the above example becomes

DCL>SET PROTECTION

File? *· FTN; *
Code? (GR: R , WO)
DCL>

It is important to note that the Set Protection command can be used
to set access rights only for existing files. Any files subsequently created
will assume certain default protection values. These defaults are formed
as follows. First, in any RSX system, a set of file protection defaults is
chosen by the system manager for each disk drive in the system. These
will apply to every file in every user area on that disk and will typically
be set as mentioned earlier. On older RSX systems, there is no way for
you to override these default values-they will be used for any new files
that you create. With version 3.0 of RSX-1 IM-PLUS and Micro/RSX, a
new feature, known as user settable file protection, was added. (This
capability is not available with RSX-llM.) This allows you to set your
own file protection defaults, which override the general defaults. There
are two ways you can set your own defaults. The easiest way is to have
your desired protection defaults entered into the system account file by
your system manager. Then, whenever you log in, your file protection

File Maintenance 93

defaults will be set for you. Alternatively, you can set your protection
defaults whenever you wish by using the Set Default Protection
command,

MCRo SET / DPRO= [yyyy, yyyy, YYYY, YYYY I

DCLo SET PROTECTION=(xx: yyyy) /DEFAULT

The Set Default Protection command is roughly similar in form to
the Set Protection command. In both the MCR and DCL forms, the
yyyy protection code sets the file access rights as explained earlier. In
the MCR form, the various classes of user are not explicitly identified,
instead, they are expected to be in the order System, Owner, Group, and
World. Thus, the command

gives systein users only read access to all future files that you will create,
allows you and others in your group all forms of access, and denies all
forms of access to other users. Note that the absence of a protection
code for the World class in this example does not imply keeping the
current access rights as it would in the Set Protection command~in­
stead, it is interpreted as a protection code allowing no forms of access.
To maintain the current rights, the MCR form of the Set Default Prod­
tection command allows an asterisk as a special protection code. For
example, the command

maintains the current access rights for system users, yourself, and users
in your group, but directs that other users be denied any access to all
future files . In the DCL form, the Set Default Protection command more
closely resembles the Set Protection command. The various xx:yyyy
have exactly the same meaning, are separated by commas, and can be
omitted if no change to the current access rights are desired.

It is important to remember that the Set Protection command is used
to change access rights for a file that already exists and that the Set
Default Protection command is used to set access rights for any files
that you will subsequently create. Also, the Set Default Protection com­
mand is part of the user settable file protection feature, which is only
available with version 3.0 of RSX-HM-PLUS and Micro/RSX. If con­
trolling access to your files is important to you, and if your system does
not offer user settable file protection, you must remember to use the
Set Protection command whenever you make new files. Since a new

RSX, A User's·Guide 94

version of an existing file is a new file, this means that you would need
to do this after any editing, compiling, task building, etc. One way to
automate this would be to include a Set Protection command in a Log­
out command file (see Section 20.4). If you do this, you should realize
that your files will not be protected until you log out and thus, while
you are still working, another user can gain access to a newly created
file of yours.

It might seem that file protection is at best clumsy and more likely
annoying. This is especially true if your system does not allow you to
set your own default file protection. Ve1y often, the best approach to
file protection is simply to ignore it. In a benign environment, there is
no reason to assume that someone 'else will want to mess with your
files. If you feel the need to worry about these things, then use the above
teclmiques to reset the various access rights as you see fit. just remember
not to deny read access to yourself (use WO for world, not OW for owner),
for, if you do, not only will you not be able to read your own files, but
you will not be able to reset the access rights for them.

File Maintenance 95

15

Using a Printer

Sooner or later you will want to get a printout of something. You may,
for example, do all your work on a video terminal. This is very con­
venient for writing and editing your programs, but every now and then
you will want to get a hard-copy listing of the latest version of your
program. This is an example of taking data that is currently in a file jin
your user area on the system disk) and printing it. As a different example,
when you run your program, you might want to have it print its answers.
You can always print your answers land ou RSX-llM you have to do it
this way) by first writing them into a file and subsequently printing the
file. From your point of view, this may be unnecessarily cumbersome­
you simply want the answers to go from your program to a sheet of
paper, without having to bother about any intermediate files. To do these
things, you need to use a printer; in this section we discuss how that
is done.

First, you need to have a printer. As silly as that sounds, you might
not have one. On a very small PDP-I I system, your only resource for
obtaining hard copy might be a printing terminal such as a DECwriter.
In this case, you would use the printing terminal the same way as you
would any other terminal. You may log in to that terminal and do your
work on it. You would list a file by copying it to your terminal. jln
MCR, you would use the command PIP TI:=file; in DCL you would
use TYPE lile.) Similarly, you would design your program to write its
answers directly to Tl:. Alternatively, if you are working on a video
terminal and the hard-copy terminal is not being used, you could list a
file on it by copying the file to it (PIP TTnn: = lile or COPY file TTnn:).
These are all very straightforward operations. In the remainder of this

RSX, A User's Guide 96

chapter I will assume that your system has a real printer, and we will
discuss the special commands that are available for using it.

15.1 Direct vs. Spooled Printing

Conceptually speaking, printing a file is easy. Your system has a printer;
you have the file; you send the file to the printer and that is that. In
practice, because RSX is a multiuser system, things are seldom that
easy. Suppose you were to print a file by sending it directly to the printer.
Suppose further that, while your file was being printed, some other user
were to send a file to the printer. What would happen is this. Two sep­
arate tasks would each be sending data, one line at a time, to the same
printer. The lines would come out in some intermingled order on the
printer1 resulting in garbage. Thus, if you do use a printer this way, you
have to make sure that no one else will try to use it also. This is practical
only on a very small system.

Most likely your system includes a feature known as print spooling,
which allows several users to use the printer without getting things all
mixed up. Only on a very old or very small system is it likely that you
will use a printer by sending data directly to i t. If this applies to you (if
your system does not support print spooling), you use the printer as
follows. A printer is a device, so you can use PIP to transfer a file to it.
You do this using the Copy command. You can identify the printer by
its physical device code. The device type for a printer is LP. If you have
only one printer, it is printer 0, which is identified as LPO: or simply
LP:. A second printer would be printer 1, LPl :, and so on. Alternatively,
you can use the Console Listing device. This is a pseudo device that is
assigned (by the.system manager) to one of the printers, normally LP:,
and is identified by the device code CL:. (The use of the pseudo device
code CL: instead of an actual physical device code such as LP: or LPl:
is similar to the use of SY: for the system disk rather than the actual
disk name, DMl : or DR: etc.) You can print a file using a Copy command
such as

MCR: PIP LPnn: =fil e

DCL: COPY file LPnn:

MCR:PIP CL:=file
DCL: COPY file CL:

Using a Printer 97

This will print the file; all that you have to worry about is someone
else also printing a file. There are two ways to take care of this. In a
very small installation, you can simply ask the other users not to use
the printer until you are done. If this is not feasible, you will have to
make it impossible for anyone else to use the printer. You can do this
by using the Allocate command. (This is not possible on RSX-1 lM sys­
tems that do not have multiuser protection. It is definitely possible that
if your system is so small that it does not support print spooling, it also
will not support multiuser protection-these are both system generation
options.) The Allocate command gives you ownership of a device; the
device is then said to be your "private 11 device. If you own a device, no
one else is allowed to use it. (We discuss the Allocate command and
the concept of private devices further in Section 23.1.) In MCR the com­
mand to allocate a device is ALL; in DCL it is ALLOCATE, commonly
abbreviated ALL. The command syntax is the same whether you are in
MCR or DCL (this is also true of the De-Allocate command discussed
next),

MCR: ALL ddnn:

DCL: ALL ddnn:

where ddnn: is the physical device code. When you are done using the
device, you should deallocate it so that it will be available to other users.
The format of this command is

MCR: DEA ddnn:

DCL: DEAL ddnn:

(Note that in DCL you must include the Lin DEALLOCATE. Normally
you could use the three-character abbreviation, but this is a special case,
since DEA is taken as the abbreviation of an entirely different command,
Deassign.)

Suppose that you wish to print the file TEST.LST on printer 0. To
avoid complications, you must first make yourself the owner of the
printer. Similarly, after the file has been printed, you want to give up
ownership so that some other user may have the printer. The command
sequence to do this is:

MCR>PIP LP: =TEST. LST

RSX, A User's Guide 98

DCL>COPY TEST. LST LP:

DCL>DEAL LP'

We now turn our attention to the concept of print spooling. The word
"SPOOL" is an acronym for Shared Peripheral Operations On-Line. With
spooling, all requests for a particular device are funneled through one
special task. This task accepts all requests for the device, puts them
into a queue, and processes them one at a time. Spooling is a general
concept, but we will consider it specifically for the control of printers.
When you request that a file be printed, you are said to be spooling the
file. Once the file has been spooled, it remains in the appropriate print
queue until it has been printed.

Under RSX, the spooling process is accomplished by two or more tasks.
One task, called the Queue Manager, keeps track of all the files that are
waiting to be printed. This is the task you ask to print your files. There
also is one task for each line printer in your PDP-II conhguration­
each task is known as a Line Printer Processor. Each Line Printer Proc­
essor "owns" one printer. No other task, not even PIP, is allowed to
use the printer. For simplicity, you should picture the Queue Manager
as maintaining one queue for each printer. (Things may be more com­
plicated than this.) Whenever one printer is available, the Queue Manager

· takes the name of the next file out of the appropriate queue and tells
the appropriate Line Printer Processor to do the pririting.

Since all requests for output to a printer go through the Queue Man­
ager, it has complete control over what gets sent to the printer when.
Thus, it can make sure that output from different users does not get
mixed up. This is the major advantage of spooling. The other advantage
lies in the manner whereby you spool a file. You enter a request to the
Queue Manager. It reads this request, verifies that the file exists, and
returns control to you. You can then go ahead and do other things with­
out waiting for the file to be printed. You also basically have this ca­
pability without print spooling since, under RSX, you can run several
tasks simultaneously. Thus, if you use PIP to print a file, you can also
start other tasks. You will not, however, be able to use PIP for anything
else !such as getting a directory listing or deleting a file) until the file
has finished printing. There are other advantages inherent in using the
printer via the Queue Manager. For instance, you can control when the
file will be printed and you can djrect that the file be deleted after
printing.

Using a Printer 99

15.2 Issuing a Print Request

The most common way to spool a file is by entering a request to the
Queue Manager. Alternatively, certain system utilities may make a file
and then automatically spool it for you. Also, you can write a program
so that after it puts all its answers into a file, it will then spool the file
for you. Finally, unique to RSX-llM·PLUS is a concept known as trans­
parent spooling which we will discuss later.

Of these various methods, direct communication with the Queue
Manager is the only one that allows you to specify all the various options
that are generally available, such as making multiple copies and con­
trolling flag pages. The others simply spool the file using default as­
sumptions for most of the options. For example, a file that is
automatically spooled will be printed as soon as possible-there is no
way of requesting that the printing be delayed.

The most common examples of automatic spooling by a utility are
the spooling of a listing file by a language processor and the spooling of
a map file by the Task Builder. If you ask the FORTRAN compiler to
make a listing file you may also request that it be spooled when the
compiler finishes. We discuss how you can control this in tbe appropriate
sections later in this book.

If you write a program in MACRO-I I, you can spool a file from within
the program by using the PRINT$ macro. !This is described in the 1/0
Operations Reference Manual.} You may also spool a file from within
a program written in FORTRAN. In this case, you do so when you close
the file by using the DISP ='PRINT' option in the Close statement. On
some systems this will also cause the file to be deleted after it is printed­
check with your system manager to determine what will happen on
your system.

With the exception of the two special cases just discussed, you nor­
mally will spool a file by a direct request to the Queue Manager. You
do this via the Print command. In MCR this is PR!; in DCL it is PRINT,
which is normally shortened to PRI or even P. In the simplest form of
this command, you only name the files to be printed. In this case, the
command syntax is the same in both MCR and DCL:

MCR: PRI files

DCL: PRI files

You can specify as many files as you wish, and you can use wildcards
in the file specifiers. For example, to print the latest version of TEST.FIN
and all versions of TEST.DAT you could use the command

RSX, A User's Guide 100

PRI TEST. FTN, TEST. DAT;*

Each time you issue a Print command, the Queue Manager creates what
is called a print job. As in the example above, one job can consist of
many files. You can modify the basic form of tbe Print command by
including job switches or file switches. A job switch modifies certain
aspects of the entire print job, whereas a file switch modifies the treat­
ment of only some of the files in the job. With these switches, the format
of the Print command becomes more complicated:

MCR: PRI /jobswi tch(es)=files/fileswi tch(es)

DCL: PRI /jobswi tch(es} files/fileswi tch(es)

These two command forms are very similar. The Queue Manager is a
relatively recent addition to RSX, and the design of its user interface
follows that of DCL. Thus, even if you are in MCR, Print commands
will have a definite DCL flavor. The only syntax differences occur when
job switches are included. In MCR an equals sign must be used before
the file specifier, whereas DCL requires a blank; also, in DCL, the blank
after the command word PRINT becomes optional. In the command
forms above, note that each switch must be preceded by a slash. Also
note, however, that although the command syntaxes are very similar,
the names of the various switches may or may not be the same for MCR
and DCL. As with many other RSX commands, many of the possible
switches will be of no interest to you. The ones that you might find
useful are described below.

The Queue Manager processes one complete job at a time. It takes
the name of each file in the job lin the order given in the Print command)
and directs the appropriate Line Printer Processor to do the printing. Iri
addition, it may also direct that some flag pages be printed. There are
two types of these-the job flag page and the file flag page. Each job can
be preceded by one job flag page. This page has your UIC and the job
name !which, by default, is the file name of the first file to be printed)
on it in big letters. It serves to differentiate different jobs and is most
useful in a large installation where a computer operator separates the
output as it comes ant of the printer. In addition, each file in a job may
be preceded by a file flag page. This page has the complete file specifier
(file name, type, and version) on it in big letters. It serves to separate
the listings of different files in your job and is most useful if the contents
of the file do not identify the file itself. (In your source code, you can
put a comment at the top of each page that identifies the name of the
file, the name of the program, etc. In general, this is a good thing to do.

Using a Printer 101

You cannot do this so easily with data files; the file flag page is more
useful in this case.) You can use two job switches to determine whether
or not you will get these flag pages. By default, you will get the job flag
page unless you specify otherwise. If you do not want the job flag page,
include the No Job Flag Page job switch. In both MCR and DCL, this
is /NOJO. IThis switch was introduced with version 4.0 of RSX-UM.}
The default for the file flag pages is system dependent. To ensure that
you get them, include the File Flag Page job switch; to ensure that you
do not get them, use the No File Flag Page job switch. In both MCR
and DCL, these are /FL and /NOFL, respectively.

Certain types of files that you will print, such as listings and maps,
are nicely formatted. Each page has a top and a bottom margin. Others,
such as a long source file that you have made, may not be so nice. When
printed, they may use every line on the page, leaving no margins. The
line printed over the perforations is hard to read and, if you put your
printouts into a binder, the top or bottom lines on each page will be
almost impossible to read. Generally, if you put a form feed character
lthis is a special character, CTRL/L, with ASCII value 12 !decimal} or
14 !octal)} into your file, your printout will advance to the top of the
next page at that point_ By judicious use of form feeds las well as com,
ments and blank lines}, you can convert a sloppy-lo9king source file
into a professional looking product. IAs simple as this is, many otherwise
good programmers do not bother. Their programs look awful.} Sometimes
it takes more effort to put form feeds into a file of answers being produced
by your program, as you may literally have to count each line that is
being written, which is a nuisahce. As a convenience, the Queue Manager
will, upon request, simulate form feeds. With this feature, you can ensure
that, whether you have form feeds in your files or not, each page that
is printed will have adequate top and bottom margins.

You cati use the Length job switch to specify the length of a page. In
both MCR and DCL, the form of this is /LE:n, where n is the maximum
number of lines that you want to have printed on any page. As each
line is printed, the Line Printer Processor increments a counter that
keeps track of the total number of lines printed. Whenever a form feed
is found in your fil~, the count is reset to zero. If the line count ever
reaches n, a form feed is forced, and the line count is reset to zero. The
default value of the page length n is zero. This value has the special
meaning that the file should be printed as is-no extra form feeds
should be inserted. To choose a page length, determine how big your
paper is and what size margins you want. Most often printing is done
at 6 lines to the inch. Normal size paper is 11 inches top to bottom,

RSX, A User's Guide 102

so one page can hold 66 lines. If you want a I-inch margin at the top
and bottom, you should specify a page length of 54. This is typically
a good choice.

The last job switch that may be of interest to you is the After switch.
This switch specifies that the print job should not be started until after
a certain time. If you have a big print job, you might use this out of
courtesy to others-you would direct that your job be printed at night
rather than during the day when other users might want to use the
printer. This switch is rather awkward to specify. In MCR its form is

I AF: hh: nun: dd-llllDm-YY

All the colons, hyphens, and various values must be included. In order,
these values are: the hour ID through 2.3) and the minute, the day, the
month (the first three letters of the name in English), and the year [O
through 99). In DCL the form of the After switch is

The various date and time components have the same meaning as in
the MCR form, but they are in the somewhat more natural order of date
first and then time. Note that in the DCL form the date and time must
be enclosed in parentheses.

Let's now look at some examples. Suppose that TEST.DAT is a long
data file that you would like printed. There are no form feeds in this
file; you would like form feeds to be inserted after every 54th line to
ensure adequate top and bottom margins. You would use this command:

MCR: PRI /LE: 54=TEST. DAT

DCL: PRI /LE: 54 TEST. DAT

As a second example, suppose that you want to print all your .LST files.
To reduce the amount of paper, you will do without the file flag pages.
Even so, you anticipate a few hundred pages, so you want the printing
to be done late at night. If the date is March 2.3, 1986, you would use
a command such as

MCR: PRI /NOFL/AF: 0: 0: 24-MAR-86=*.LST

DCL:PRI /NOFL/AF: (24-MAR-86 0:0) *·LST

In addition to the job switches, two file switches might be of interest
to you. One is the Delete switch and its counterpart, the No Delete
switch. The Delete switch specifies that after it has been printed, a file
should be deleted; the Na Delete switch specifies the opposite. In MCR

Using a Printer 103

these switches are /DE and /NODE, respectively; in DCL they are /DEL
and /NODEL. You will often print files (such as listings, maps, or tem­
porary output from a program that you are debugging) that you do not
need to keep. Once you have a hard copy you can afford to throw away
the files. The Delete switch lets you do this automatically. The default
is No Delete.

You must be careful if you use the Delete switch. The files that you
specify in the Print command are processed from left to right. Initially,
the default condition is No Delete. Whenever you use either the Delete
or the No Delete switch, the default is changed accordingly. Suppose
that you use the command

MCR : FRI A. LST/ DE , A. FTN

You are telling the Queue Manager to print A.LST, delete it, and then
use /DE as the default for the remainder of the command line. Thus,
the file A.FTN also will be deleted after being printed. Since you pre­
sumably do not want to delete your source file, you should either reset
the default to No Delete,

MCRo PRJ A. LST/ DE , A. FTN/ NODE

or reverse the order of the file specifiers

MCR o PRI A. FTN, A. LST/DE

In DCL, you need not be so careful. If you specify /DEL for one file,
/NODEL is assumed for you for any further files. Thus, the command

DCLo PRINT A. LST/ DEL, A. F'rN

is translated into

MCRo PRI A. LST/ DE, A. FTN/ -DE

There is another reason to be cautious about using the Delete switch.
A printer is a mechanical device and as such is subject to failure. If the
sprocket holes in the page rip, the paper may jam. The printer will go
on printing and eventually will finish, whereupon the Queue Manager
will delete your file. All you will have is a sheet of paper with a lot of
black ink and some holes in it. It is often better to print your files, get
your output, and then use the conventional Delete command to get rid
of the files you no longer need.

The other file switch that you might need to use is the Copies switch_
This allows you to get multiple copies of the file being printed. In both

RSX, A User's Guide 104

MCR and DCL, its form is /CO:n, where n is the (total) number of copies
you want. The caution concerning the Delete switch applies to the Copy
switch as well; il you specify it in a list of files, it applies to all succes­
sive files. DCL is again more forgiving than MCR if you are sloppy;
it automatically resets the number of copies to 1 if another file is
specified.

If yours is a large PDP-11 facility you might have more than one print­
er. For example, you might have one printer that normally is loaded
with regular full-size (roughly 15-inchesj paper and another that has
narrow 18 112-inchJ three-part, no-carbon-required forms. Similarly, even
if you have only one printer, you might have various types of paper
(forms) for it. In situations such as this, when you issue a Print request,
you will also want to specify which printer and/or what type of paper
should be used. You can do this by identifying the print queue into
which you want your job to be put and/or the form type that you want
to have in the printer. The Queue Manager can handle several different
print queues and several Line Printer Processors. Each printer is defined
as having a particular type of paper loaded into it which can change at
any time; the interrelationship among all these factors can be complex
and is entirely at the discretion of your system manager. To find out
just how to do specialty printing at your installation, ask your system
m anager.

15.3 Working with the Print Queue

So far we have discussed the entering of jobs into a print queue via the
Print command. The Queue Manager also allows you to do certain things
once a job has been entered into a print queue. The Queue Manager
commands that are likely to be of interest to you are those for finding
out whai jobs are in the print queue and for deleting a job from the
queue. In MCR you do this by using the Queue command (QUE) with
a switch to specify what you want to do; in DCL you use various special
command words.

You can use the Queue List command.to see what is currently in a
queue. The simplest form of this command is

MCR: QUE / LI

DCL: SHOW QUEUE

If the Queue Manager on your system controls several queues, this com­
mand will give you information on every one of them. !There will always

U sing a Printer 105

be at least one print queue; this default queue has the name PRINT.)
Also, if your system is RSX-llM-PLUS, this command will give you
information on all the batch queues. (We discuss batch processing in
Section 25.2.J In either case, you might want to restrict the displayed
information to that for one particular print queue. In this case, the Queue
List command looks like this:

MCR: QUE queue: /LI

DLC: SHOW QUEUE queue

where queue is the name of the print queue.
A sample queue list is shown below. This corresponds to an RSX-! IM

system, so there are no batch queues. Also, this system has only one
printer, so there is only one print queue. I show the MCR command;
the listing you get will be the same if you are in DCL.

MCR>QUE /LI

** PRINT QUEUES **
PRINT => LPO

[265, 1] ARCHIVE ENTRY: 29

1 DR2: [265,l]ARCHIVE.TXT;2
2 DR2: [265,l]LOGIN.CMD;l

[265, 1] MARCH86 ENTRY: 30

[265, 1] MARCH86. RPT; 1

ACTIVE ON LPO

COP: 2
COP: 2

For each queue, the names of the queue and the printer(sJ associated
with it are first displayed on your terminal. This is followed by a list
of all jobs in the queue, in the order in which they will be processed,
with the currently active job first. Each job is identified by a UIC, a job
name, and an entry number. The job name is, by default, the same as
the name of the first file in the job. The entry number is assigned by
tlie Queue Manager. Following the job identifier is a list of files to be
printed. These are also listed in order, and each is preceded with a number
showing its place in tlie print job. A greater-than symbol (>J preceding
a file entry is used as an arrow to indicate that it is currently active.
Special requests, such as multiple copies or file deletion, are indicated
after the file entry when appropriate.

If you issue a Print request and some time later you get a queue listing
and you do not see your job in it, this means that your job has finished.
Alternatively, if you see your job appearing with lots of other jobs ahead

RSX, A User's Guide !06

of it, you know that it is likely to be a long time before your output is
ready. In addition to checking the status of your print job, you can use
the Queue List command to obtain information to be used subsequently
with the Queue Delete command.

You can use the Queue Delete command to remove either an entire
job or one file in a job from a print queue. You typically would use this
command if, after requesting the printing, Y?U decided that the contents
of the file[s) were useless or no longer needed. To use this command,
you must know how to identify the print job, and if you wish to delete
only a particular file, you also must know the sequence number of that
file in the job. You can obtain this information via the Queue List com­
mand. If you are not a privileged user, you can delete only those jobs
that you requested.

There are two ways to identify a print job. One is via the job name,
and the other is via the entry number for the job. To use the job name,
you must also specify the queue name; if you use the entry number,
that is sufficient. In the example above, the first print job can be iden­
tified as either job ARCHIVE in queue PRINT or as entry 29. The entry
number form .is more convenient to specify, but you must examine a
queue listing to determine the number. You can, however, normally
deduce the name of the print job from the name of the first file in it.

To delete an entire print job1 you use the command form

MCR: QUE queuename: jobname/DEL

DCL: DELETE/ JOB queuenarne jobna11e

MCR: QUE / EN: nn/DEL

DCL: DELETE/ENTRY: nn

To delete a single file from a job, you use the command form

MCR: QUE que uename: jobname/FI:nun/ DEL

OCL: DELETE/ JOB queuename jobname/FI : mm

MCR: QUE /EN: nn/FI: mm / DEL

DCL:-DELETE/ENTRY: nn/FJ : mm

where mm is the sequence number of the file in the job. Note that in

Using a Printer 107

DCL the complete command name is either DEL/JOB or DEL/ENTRY
(abbreviated to DEL/J or DEL/E) where the switch /JOB or /ENTRY dis­
tinguishes this command from the more familiar one used to delete a
file.

For example, if your print job is the first in the list in the example
above and you want to delete the second file in it, any of these commands
will work:

MCR: QUE PRINT: ARCHIVE/FI: 2/DEL

MCR: QUE /EN: 29/FI: 2/DEL

DCL: DEL/ JOB PRINT, ARCHIVE/FI: 2

DCL: DEL/EN: 29/FI: 2

15.4 Transparent Spooling

The last topic of interest regarding the use of printers is transparent
spooling. This feature exists only on RSX-llM-PLUS and Micro/RSX.
With this feature you can send data to a printer without explicitly putting
it into a file and subsequently spooling it. Instead, you can pretend that
you are sending it directly to the printer. What actually happens is that
the operating system takes all your data and puts it into a temporary
file, which is then spooled and deleted. You do not see this process­
hence the term transparent spooling.

This feature imitates an old-fashioned single-user computer system.
On a single-user system, when your program was running, if it wanted
to write to the printer, it did so. Since no one else was running other
programs, there never was any conflict. Old versions of FORTRAN de­
veloped the convention that logical unit number (LUN) 6 referred to
the line printer-thus, to print a line, you wrote it to unit 6. This con­
vention still influences the RSX operating system. (As we will see in
our discussion of building a task, unit 6 is assumed by default to refer
to the Console Listing device CL:.) You can use these same programming
techniques with either RSX-llM-PLUS or Micro/RSX. You can write
to unit 6, which will result in your program's output going to whichever
printer has been declared to be the console listing device. Somewhere
along the way, this output will be intercepted and put into a disk file
instead, but it will get to the printer eventually.

With transparent spooling, you can also use PIP to copy a file to a
printer. The command

RSX, A User's Guide 108

MCR: PIP LPnn: =file

DCL: COPY file LPnn:

which is how you print a file if you do not have print spooling, will
work if you have transparent spooling.

Using a Printer 109

16

Language Processors

Several programming languages are available for use on the PDP-I I series
under RSX. It is not my purpose in this book to discuss the actual writing
of a program in any of these languages-however, several points con­
cerning the use of the languages are worth mentioning. The languages
we examine are:

MACRO-II (assembly language)
FORTRAN-IV
FORTRAN-IV-PLUS
FORTRAN-77
BASIC
BASIC-PLUS-2
COBOL
COBOL-81

The system function that you use with a program written in one of
these languages is known as a language processor. In general, a language
processor is a translator, taking the user-written source code and pro­
ducing instructions that the computer can directly understand; these
are known as object code. Such a translator can be classified as either
a compiler or an intei'preter.

A compiler is the more common and less sophisticated of the two. It
does not allow you to interact with it. A compiler takes as input a file
containing source language statements and produces as output a file
containing object code. The source file must have been previously cre­
ated, e.g., via an editor. You must then use the Task Builder (Chapter
17) to create from this (and other) object code an executable task image.
Finally, you must request RSX to run the task.

An interpreter is different from a compiler in that it interacts with

RSX, A User's Guide 110

you and the operating system. Typically, an interpreter has an editing
capability that allows you to enter (or change) source code directly. This
source code is maintained in memory and is only optionally saved on
disk. Tbe interpreter also can link this object code and cause the resulting
task to be executed. During task execution, the interpreter is, in a cenain
sense, still in charge. Thus, you have an on-line debugging capability.

An interpreter is probably easier for the beginning user to use than is
a compiler, since the interpreter functions as somewhat of a miniature
operating system. (Note that the language itself need not be easier to
learn.) An interpreter is definitely easier to use for short programs meant
to be run at most a few times; in fact, many interpreters can be used
to make the computer act as a giant calculator. The defects of an in­
terpreter are that it restricts you to a relatively inflexible means of using
the computer system. This is not surprising, since an interpreter must
offer, within one task, capabilities corresponding to those offered by
several system functions. Thus, the editing capability offered by an in­
terpreter typically is primitive compared to that of any of the editors
discussed in Chapter 12. Although an interpreter produces both object
code and a task image, neither of these is saved. For a program written
in an interpreted language, the steps corresponding to compiling and
task building must be repeated every time the program is run. Finally,
the convenient debugging capability that is intrinsic to the manner
whereby an interpreter executes a task is always present, whether it is
needed or not, and results in an unavoidable decrease in efficiency.

As an operating system, RSX is primarily intended to support multiple
task execution in real-time. Its multiprogramming capability, although
powerful, is not a major design goal; rather, it is derived from the multi­
tasking capability. Emphasis in RSX is placed on efficient loading and
efficient execution of tasks. Thus, the concept of an interpreter is at
odds with the basic philosophy of RSX. Accordingly, only one language,
BASIC, is offered under RSX as a true interpreter. A more sophisticated
version of this language is BASJC-PLUS-2, which is offered under RSX
as a cross between an interpreter and a compiler. All the other languages
available with RSX are compilers.

16.1 Using a Compiler

The language processors for MACRO-I!, FORTRAN-IV, FORTRAN­
!V-PLUS, FORTRAN-77, COBOL, and COBOL-SI all are compilers. One
might argue that the MACR0-11 language processor is an assembler,

Language Processors Ill

not a compiler. {The distinction is that an assembler works with a lan­
guage that is specific to a type of computer whereas a compiler works
with a higher-level language that can be used on many different com­
puters.) I am concerned only with the distinction between a compiler
and an interpreter, as detailed in the previous section. Under RSX, all
compilers are used in a common manner. We first look at the general
aspects of using a compiler and then discuss specific features of the
various languages.

Although not necessarily a part of the basic RSX configuration (all
language processors except MACR0-11 are separately purchased items;
thus, m any of the languages discussed in the next sections may not be
present on your system), a compiler is nonetheless treated as a system
function. As such, it can be invoked in any of the ways described in
Section 11.2. The general form of a command is similar to that already
seen for other functions:

MCR: xxx output=input

DCL: xxx input

Here, xxx is the name of the particular language processor. The input
field defines the source program(s) to be compiled, and must always be
included in the command. It will typically contain a single file specifier,
although this is not always a restriction. When several input files are
specified, they are separated by commas. Multiple input files have a
special meaning in MACR0-11 which we will discuss later. For the
higher level languages, multiple input files are concatenated to form the
input to the compiler; this is legal but normally not advantageous. The
input file specifier follows the general file specification rules detailed
in Section 6.1. The file name must be included. The file type defaults
to a standard type, which is dependent on the compiler being used. In
some languages, an input file can contain more than one program unit
(main program or subroutine). The compiler will always compile all
program units specified by the inpu t field. These program units are in­
dependently compiled in that errors in one do not affect another. if one
program unit is contained in a file with other units and you wish to
compile it separately, you must first (via an editor) move it to its own
separate file.

In MCR, you explicitly name the output files in the command line.
This is done via the output field, which may normally specify none,
one, or two files. (With COBOL-81, a third file is possible.) The first
output file is the object file, the second is the listing file; default file

RSX, A User's Guide 11 2

types for these are OBJ and LST, respectively. The normal purpose of
compiling a source file is to produce an object file that can be used as
part of an executable task. If, however, no object file is specified, none
is produced-you might do this if all you want is a list file. Similarly,
if no listing file is specified, none is produced. The listing file, in addition
to the source statements, contains other useful information such as se­
quence numbers, symbol tables and diagnostics [errors and warnings).
Even when no listing file is specified, compiler diagnostics are printed
on your terminal. The two possible output files are specified in the order
object,listing.

In DCL, you normally do not name the output files. If they are created,
they are given defau lt names unless explicitly directed otherwise. These
default names are formed by taking the name of the input fil e [if several
input files are given, the name of the first is used) and using the appro·
priate default file type. The normal action is to produce an object file
but no listing file. These choices can be overridden by switches appended
to the name of the compiler itself. The form of these switches is the
same for all the compilers available with RSX. To suppress generation
of the object file, you use the No Object switch, /NOOBJ. To give a
name to the object file other than the default, you use the Object switch
followed by the desired file name, /OBJ:objectlile. To request a listing
file, you use the Listing switch. In its simple form, this is /LIST, where
the file name is formed using the defaults described above. If you want
to give a different name to the listing file, you specify it after the Listing
switch, /LIST:listlile.

When you generate a listing file, you will often want to read it, which
implies that you will want to print it. Both FORTRAN and MACRO­
!! allow you to request that the listing file be automatically printed.
This process is known as spooling [see Section 15.lj and is controlled
by the Spool and No Spool switches. The default action-whether a
listing file is spooled or not- is system dependent. [It is often set for no
spooling to avoid wasting paper.) In MCR these switches are /SP and I
NOSP. DCL has no explicit switch to control spooling. Instead, an unduly
contrived procedure involving the Listing switch is used. So fa r1 I have
shown the Listing switch placed after the compiler command. When
you do this, DCL forces the Spool switch to be set for you. Alternatively,
you can place the Listing switch after the source file name. When you
do this, DCL forces the No Spool switch. To further complicate the
issue, when you place the Listing switch after the source file specifier,
you lose the ability to specify the name of the listing file. You are still
able to control whether your listing file is spooled or not, but the mech-

Language Processors 113

anism is neither general nor obvious. This is essentially at odds with
DCL's philosophy of having legible, syntactically consistent, self-doc­
umenting commands.

I will use the FORTRAN-77 compiler as an example for illustrating
typical commands. The default input file type is FTN. Jn MCR the com­
piler name is F77. Jn DCL this compiler is invoked by using the com­
mand FOR with the /F77 switch, that is, FOR/F77. Some typical
commands to the FORTRAN-77 compiler are:

(1) MCR : F77 TES=rEST

DCL: FOR/F77 TEST

This compiles TEST.FTN and produces object file TEST.OBJ. Default
versions (highest existing version for. input; highest existing version plus
I for output) are assumed. No list file is made. Note that in MCR, when
you omit t!)e list file specifier, you also omit the preceding comma.

12) MCR: F77 TES'.i'"TEST. FTN; 3

DCL: FOR/ F77 TEST. FTN; 3

This is similar to the above, except version 3 of the input file is used
even if higher numbered versions exist. The same default version is used
for the output.

(3) MCR: F77 TEST, TES=EST

DCL: FOR/F77 /LIST TEST

This is the same as example I except that a listing file is also produced.
The listing file is to have the name TEST.LST, with the standard output
default version. Jn DCL the listing file will be automatically printed on
the Console Listing device; in MCR the spooling of the listing file de­
pends on how your system manager has set up the FORTRAN compiler.

(4) MCR: F77 TEST, TEST/ -SP=TEST

DCL : FOR/ F77 TEST/ LIST

Tills is the same as example 3 except that you force the listing file to
not be spooled.

(5) MCR : F77 TEST, VER3=TEST

DCL: FOR/F77 / LIST: VER3 TEST

This is the same as example I except that the listing file is forced to
have the name VER3.LST.

RSX, A User's Guide 114

(6) MCR: F77 TEST, Tl:=TEST

DCL:FOR/F77/LIST:TI: TEST

This is similar to example 5. The difference is that the listing file is
specified to be your terminal. Because a terminal is not a file storage
device, the effect of this is to produce a listing on the terminal imme­
diatelyi no permanent listing file is created.

(7) MCR : F77 VER3=TEST

DCL : FOR/F77 / OBJ: VER3 TEST

This is the same as example 1 except that the name of the object file
is VER3.0BJ instead of TEST.OBJ. Note that in DCL, you must use the
/OBJ switch to name the object file.

(8) MCR: F77 , TI:=TEST

DCL ; FOR/F77/NOOBJ/LIST: TI: TEST

In this example, no object file is produced. A listing is generated on your
terminal but no list file is saved. You might use this command if you
know that you have errors in your program and you want to see just
what they are. Note that in DCL the switch /NOOBJ is required to
suppress generation of an object file .

(9) MCR : F77 =TEST

DCL: FOR/ F77 / NOOBJ TEST

No output files are generated. Any diagnostics !compiler error messages)
are printed on your terminal.

So far we have seen examples of giving single-line commands to a
compiler. As discussed in Section 11.2, a system function may also be
used in the multiple-line form. In MCR, this is entered by first typing
the name of the compiler; in DCL, you must use the command RUN
with the compiler name prefaced by a $:

MCR: F77

DCL : RUN $F77

When you do this, the compiler retains control of your terminal and
will accept subsequent commands from you. In this case, it is ultimately
necessary to exit from it. This is done via the command CTRL/Z, which
is an end-of-file, indicating to the compiler the end of your commands.
Note that whether you are initially in DCL or MCR, when you use a
compiler in this manner, you will always use the MCR command forms.

Language Processors 11 5

In addition to the suppression or generation of object and listing files,
it is possible to specify other options to the compiler. This is effected
by including other switches in the command. In MCR, all switches are
of the· form /xx, which means that the compiler should do xx. If you
wish the opposite action, the switch is specified as either /NOxx or
/·xx, which instructs the compiler not to do xx. In DCL, switches have
longer names but can be abbreviated. The location of these switches is
dependent on the particular option. In MCR a switch is appended to
either an input or output file specifier; in DCL all switches except the
Listing switch are appended to the compiler name. The options con­
trolled by these switches are compiler dependent and thus will be de­
scribed in the separate sections for the various compilers.

16.2 FORTRAN

Digital Equipment Corporation offers two varieties of the familiar lan­
guage FORTRAN. One of these is a rather simple and inexpensive im­
plementation known as FORTRAN-IV. The other is considerably more
sophisticated and expensive. It was originally called FORTRAN-IV­
PLUS. Roughly concurrent with version 4.0 of RSX-llM, Digital intro­
duced an upgrade to FORTRAN-IV-PLUS and changed the name to
FORTRAN-77 to reflect the fact that the new version met the ANSI
1977 standards. Several enhancements to the language itself were made,
most noticeably the addition of structured programming constructs. In
terms of its interface to RSX, however, the language processor remained
virtually unchanged. You can use the same command lines with either
FORTRAN-77 or FORTRAN-JV-PLUS, with the possible exception that
the name of the compiler itself will probably be different. The command
for FORTRAN-IV-PLUS was as F4P; that for FORTRAN-77 is F77. Since
FORTRAN-IV-PLUS is no longer a current product, we will consider
FORTRAN-77 in our discussion. If you have the earlier version, you
can do everything we say except you will have to use F4P instead of
F77.

In MCR, the FORTRAN-IV compiler is invoked by the command FOR,
and the command for the FORTRAN-77 compiler is F77. (If you still
have FORTRAN-IV-PLUS on your system, you use the command F4P.J
If you are using DCL, you use the generic command FOR. In this case,
you get, by default, FORTRAN-IV. If you want FORTRAN-77, you must
include the switch /F77 after the command. (Similarly, to get FORTRAN­
JV-PLUS, you include the switch /F4P.J

RSX, A User's Guide 116

At the programming level, the two types of FORTRAN available are
different in that FORTRAN-77 is a significantly enhanced superset of
FORTRAN-IV. At the compiler level, however, the two languages are
quite similar. Both compilers assume the input file type to be .FTN.
FORTRAN-77 allows multiple input files; FORTRAN-JV allows only
one input file. Loosely speaking, the compilers work by first translating
the FORTRAN statements into MACRO-I I assembly language, which
is itself then translated into the actual object code. Either FORTRAN
compiler is used in the general manner described in Section 16.1. In
addition, certain switches are available to specify various compiler op­
tions. Except where noted, these switches are common to both FOR­
TRAN-JV and FORTRAN-77. The various switches assume default
values when not explicitly set; the default values are intended to be the
ones that you would normally elect. I indicate the normal default values;
these may, however, have been changed by your system manager. The
switches that you are most likely to use are described below.

We first consider the Debug switch. Both FORTRAN compilers allow
source statements to have a D in the first column. When the Debug
switch is not set, these lines are treated as comment lines. When the
switch is set, the Dis ignored and the remainder of the line is compiled
as a normal statement line. The default value is No Debug. In MCR,
the Debug switch is /DE. This is a poor choice of mnemonic because,
to many other system functions, the switch /DE means "delete11

; do
not allow this inconsistency to confuse you. The Debug switch is in­
cluded in the input file specifier. In DCL, the Debug switch is /DLINES,
which can be shortened to /DL. Examples of compiling a file with Debug
lines to be included are:

MCR: F77 TEST=TEST/DE

DCL: FOR/F77 /DL TEST

The Spool switch controls the automatic printing of a listing file. When
this switch is on, the listing file is spooled; when it is off, the listing
file is produced but not spooled. In MCR, this switch is /SP and is in­
cluded in the list file specifier, as in

MCR: F77 TEST, LIST/-SP=TEST

The default value is /SP, but this is often changed to /-SP to avoid printing
a lot of listings. In DCL, this switch does not exist. Since setting the
Spool switch makes sense only if a listing file is specified, DCL auto­
matically sets it for you when you request a listing file. The logic here

Language Processors 117

is not obvious. In DCL, you can place the switch requesting a listing
after either the compiler command name or the input file name. If you
place the switch after the command, the Spool switch is forced on; if
you place the listing switch after the input file name, the Spool switch
is forced off.

The Listing Options switch specifies whether a listing file should be
produced or not, and if so, the level of detail in the output listing. You
have several choices concerning what is to be included in the listing
file. In increasing order of detail, you can obtain: a summary of diag­
nostics (warnings or errors), a listing of the source statements (with se­
quence numbers), a storage map, and a listing of the generated assembly
language code.

The syntax of the Listing switch differs totally between MCR and
DCL. In MCR this switch is /LI:n and is placed after the listing file
specifier,

MCR:F77 TEST,LIST/LI:n=TEST

The value of n determines the type of listing. The relationship between
the choice of n and the form of the resulting listing depends on the
choice of compiler. For FORTRAN-IV, you select the listing options
desired and add the corresponding numbers given below to determine
the value of n:

Value List option
Diagnostics
Source program
Storage map
Assembly code

All values of n between 0 and 7 are valid. The default assumption is
/LI:3-i.e., diagnostics, a source program listing, and a storage map. The
FORTRAN-IV compiler also allows mnemonics to be used instead of
the integer code for certain values of n. These are:

Mnemonic
SRC
MAP
COD
ALL

Equiv. value
I

List option
Source and diagnostics
Map and diagnostics
Assembly code and diagnostics
Everything

For FORTRAN-77, a different meaning is assigned to the value of n:

RSX, A User's Guide 118

Value List option
0 Diagnostics only

Diagnostics and source
Diagnostics, source, and storage map
Diagnostics, source, storage map, and assembly code

The default assumption is /LI:2. The FORTRAN-77 compiler docs not
allow mnemonics to be used to specify these choices.

In DCL, you can specify the Listing switch as simply /LIS. In this
case, you will get the default listing form as indicated above. To obtain
a different type of listing, you must use additional switches. Those that
are available to you are /SOURCE, /MAP, and /MACHINE, along with
their negative forms. These control, respectively, the listing of the source
code, the storage map, and the assembly (machine language) code. The
presence of any one of these switches in the command line causes the
Listing switch to be automatically included. Also, the request for a listing
option causes all less detailed listing options to be automatically re­
quested. Thus, the following are equivalent:

DCL: FOR/ LIS ISOU/ MAP / NOMACH TEST

DCL: FOR/LIS /SOU/ MAP TEST

DCL: FOR/LIS/MAP TEST

DCL: FOR/ MAP TEST

The Array Subscript Checking switch exists only with FORTRAN-
77. When present, it causes extra code to be generated so that every
reference to an array is checked to verify that the array subscripts being
used are within bounds. Any subscript that is either too high or too low
(as determined by the dimension of the array) results in display of an
errm message when your program is run. Subscript checking can be an
extremely useful tool for debugging a program as out-of-bounds array
references can destroy other parts of the program, leading to very obscure
malfunctions. It can, however, produce a significant increase in both
program size and running time. The default is to not include subscript
checking. In MCR the Subscript Checking switch is / CK and is included
in the input file specifier. In DCL the switch is /CHECK

MCR: F17 TES'.i'"TEST I CK

DCL: FOR/ F77 /CHECK TEST

The Trace and Sequence Numbers switches allow you to control the

Language Processors 119

level of traceback detail generated when an error occurs while your pro­
gram is running. In general, whenever an error occurs during execution
of a FORTRAN program, information pinpointing where the error oc­
curred is displayed. This consists of where in the program unit the error
was; which program unit I name of the main program or subroutine) the
error occurred in; and how jvia which sequence of subroutine caJls, ul­
timately originating in the main program) that program unit was reached.
Location within a program unit is identified by line !sequence) number;
the line numbers are those given in the source listing.

The Trace switch is used with FORTRAN-77, and the Sequence
Numbers switch is used with FORTRAN -IV. In MCR the Trace switch
is /TR:xxx and the Sequence Numbers switch is /SN. Jn either case, the
switch is included in the input file specifier. In DCL these switches are
/TRACEBACK:xxx and /LINE_NUMBERS, which are commonly ab­
breviated to /TR:xxx and /LINE. In both the MCR and the DCL forms,
the xxx in the Trace switch specifies the level of detail maintained by
the traceback procedure.

FORTRAN-77 allows four choices of how the location within the pro­
gram unit is specified. The keywords used to select these are the same
for MCR and DCL. At the greatest level of detail jALLJ, individual line
numbers are identified. At the next level of detail !BLOCKS), lines are
grouped into blocks and errors are identified as occurring "at or after"
a certain line number. At the next level !NAMES), only the name of the
program unit (no line numbers) is identified. At the least level of detail
jNONEJ, neither the program unit nor the line number is identified. If
the Trace switch is specified without the detail qualifier jsimply /TR),
then the default is ALL. It is important to note that if the Trace switch
is not specified at all, then the default is to generate traceback infor­
mation on a block basis. If you wish to suppress any traceback infor­
mation, you must include the Trace switch and specify NONE.

FORTRAN-IV allows only two choices of traceback detail. If the Se­
quence Numbers switch is specified1 internal sequence numbers are
generated for every line. This corresponds to F77's /TR:ALL. If the No
Sequence Numbers switch is specified1 no sequence numbers are gen­
erated. This corresponds to F77's /TR:NONE. The default is to generate
sequence numbers for every line of code. Jn MCR these switches arc
/SN and /NOSN. In DCL the switches are /LIN and /NOLIN.

With both compilers, the inclusion of traceback information simplifies
debugging. Remember, however, that (similar to use of the Subscript
Checking switch with F77) this increases both the program size and the
running time.

RSX, A User's Guide 120

16.3 COBOL

For use on the PDP-II under RSX, Digital offers two versions of the
COBOL language~COBOL, which is an implementation of the ANSl-
1974 standard, and COBOL-81 which is an enhanced version. The man­
ner whereby you use these two compilers is similar, but there are some
differences. We discuss the two compilers together, identifying items
unique to one or the other as appropriate.

The COBOL compiler processes your source file and produces as its
primary output an object file. The default file type for the input file is
CBL; the default for the object file is OBJ. In addition, a listing file (type
LST) can be produced. COBOL-81 can produce a third output file known
as a diagnostics file (default type DIA) which contains a summary listing
of all diagnostic messages generated by the compiler. This can be useful
if you need to locate only a few ·errors in a long program-it is easier
than reading the entire listing file.

In MCR, the regular COBOL compiler is invoked by the command
CBL. COBOL-81 is invoked by C81. The basic command forms are:

CBL obj, list=source

COBOL-81: C81 obj, list, diar-source

where obj, list, diag, and source are the names you supply for the various
files. As an example, if you have written a COBOL program in file
REPl.CBL, the command

will compile it using ANSI-74 COBOL, producing an object file named
REP I.OBJ. No listing file will be made. When you do not want a listing
file, you simply omit the specifier for it; you can, as shown, also omit
the preceding comma. With COBOL-81, the procedure is basically the
same except that the comma before the listing file is needed to distin­
guish it from the diagnostics file, unless you wish to omit both. To
compile REP! using COBOL-81, producing a diagnostics file but no list­
ing, you would use the command:

MCR: C81 REPl, ,REPl~REPl

In DCL, the generic command COBOL is used for both compilers. By
default, this will get you the COBOL-81 compiler; to get the regular
COBOL compiler, you must place the switch /CU after the compiler

Language Processors 121

name. In DCL, the basic command forms are:

DCL: COBOL· COBOL/ Cl 1 source

COBOL-81: COBOL source

As with other language processors, the generation of the various output
files is controlled by the use of certain switches after the compiler name.
By default, the object file is generated but not the listing (or, for COBOL-
81, the diagnostics) file. The switches to override these defaults are
/NOOBJ, /LIST:listfile, and /DIAG:diagfile. For example, to compile a
COBOL program in file REPl.CBL, producing only the object file, you
would use the command

DCL: COBOL/cu REPl

To compile the same file with COBOL-81, producing only a diagnostics
file, the command would be:

DCL: COBOLINOOBJ /DIAG REPl

Note that in these examples I have chosen the names of the various
output files to be the same as those of the input files, thereby distin­
guishing them on the basis of file type alone. This is not necessary (you
could use any file names you wanted), but it is normally best to do
things this way. The various files are logically interrelated, so they should
all have the same name. Further, the procedure for building a task re­
quires that the object file have the same name as the source file; we
discuss this shortly.

You can modify the basic commands for compiling a COBOL program
by including various switches in the command line. These switches can
identify special properties of the source, object, or list files. In MCR,
they are nonetheless all placed following the source file specifier-i.e.
at the end of the command line. In DCL they are all placed after the
compiler name. The complete command forms are:

MCR: CBL obj, list=source/swi tches
CBI obj,list,diag=source/switches

DCL: COBOL/c11/swi tches source

COBOL/switches source

You can specify several switches on the command line; each switch is
preceded by a slash. Not all the switches that may be used will be of
interest to you. We discuss the most useful ones below.

The ANSI standard for COBOL source statements specifies the 80-

RSX, A User's Guide 122

column format left over from the days of punched cards. The Digital
compilers allow you to use a shorter, more convenient format that is
designed for use with a terminal instead of a deck of cards. Both compilers
assume that you will use the terminal format for your source file. If
your file is in ANSI (card reference) format, you must use the ANSI
format switch. In MCR this is specified as /CVF (Convert Format); in
DCL it is /ANSI. The switch names are the same for both compilers.

Both compilers allow you to include automatic checking of various
operations when your program is run. This checking will discover many
common errors, but it does so at the expense of making your task both
larger and slower. With both compilers, you can check the values of
subscripts and indices against their allowable bounds as defined by the
corresponding Occurs clauses in your program. To include this checking
you may use the Bounds switch; to specify that you do not want to
check against bounds, you use the No Bounds switch. By default, bounds
checking will be included. With COBOL-81, you may also check for
improper nesting of Perform statements during program execution. The
switches controlling this checking are the Perform and No Perform
switches.Again, the default is to include this checking. In MCR, the
Bounds and No Bounds switches are /BOU and /-BOU. The Perform and
No Perform switches are /PER and /-PER. These switches are the same
for both compilers (the (No) Perform switch does not pertain to regular
COBOL). In DCL, the switches differ depending on whether you are
using COBOL or COBOL-81. In both cases, you use the switch /CHECK
to control checking. In COBOL, there is only bounds checking. Thus,
the possible switches are /CHECK and /NOCHECK. In COBOL-81 there
are more possibilities to control; for this, DCL uses subswitches to
the switch /CHECK. Thus, for COBOL-SI, you must use a compound
switch of the form /CHECK:xxx. The allowable subswitches are :BOU,
:NOBOU, :PER, and :NOPER. Use of /CHECK by itself causes both forms
of checking to be included in your program. To suppress all checking,
you can use either the No Check switch (/NOCHECK) or the None
subswitch to the Check switch (/CHECK:NONE).

By including the appropriate file specifier in the command line, you
request the generation of a listing file. This contains both the complete
source code and any diagnostic messages. You can use various switches
to control additional elements of this list file. With either compiler, you
can request the addition of a cross-reference. This adds two cross­
reference tables, one by data name and one by procedure name, to the
basic listing file. In MCR, you use the switch /CREF with COBOL and
the switch /CRF with COBOL-81. In DCL the switches are slightly dif-

Language Processors 123

ferent (/CROSSREFERENCE vs CROS5-REFERENCE) but there is a
common abbreviation, /CROSS. With either compiler, no cross-reference
is the default. For both compilers, you can also request maps of the Data
Division and the Procedure Division. In MCR, with either compiler, the
switch is /MAP. In DCL, with either compiler, the switch is
/SHOW:MAP. With either compiler, the default is to not make the maps.
With the regular COBOL compiler, you can control two other aspects
of the listing. By specifying the No List switch, you can suppress the
inclusion in the listing of source statements copied from a library file.
When you do this, only the copy statement appears in your source listing.
The default is to include these statements. By specifying the Object
Location switch, you can include the object location (relative address)
of the code produced for each program verb. The default is to not include
this. The No List and Object Location switches do not have counterparts
in COBOL-81. In MCR these switches are /NL and /OBJ; in DCL they
are /NOSHOW:COPY and SHOW:VERB. Normally, when you generate
a listing, the defaults for these various switches will be adequate. If you
are doing detailed debugging of your program, however, you may need
to use these switches to override the defaults.

The last switch that you may need to know is the Subprogram switch.
This switch specifies that the source file being compiled contains a sub­
program that does not use parameters from the main program-i.e., it
does not contain the Procedure Division Using header. You can use this
switch with either version of COBOL. In both MCR and DCL its form
is /SUB. By default, it is not set.

In addition to producing an object file, the COBOL compiler (either
one) produces what is known as a skeleton overlay descriptor file. You
have no control over the name of this file; it has the same file name as
your source file, and its file type is SKL. Correspondingly, you should
always use the source file name for the name of the object file, or else
subsequent operations will not work properly. Making a task from a
COBOL program is a complicated process involving the use of what are
known as overlays. (Overlays are outside the scope of casual use and
hence are not discussed in this book.) To produce the overlay descriptor
file that is needed for task building, you must combine the various skel­
eton overlay files from the various program units (main program and
subprograms) that arc needed for the task. Thus when you make an
object fil e, the COBOL compiler automatically makes the skeleton file
for you as well.

Under COBOL-81, the process of combining the skeleton files and

RSX, A User's Guide 124

then building the task has been automated so that you do not have to
understand what is really happening. All the necessary commands have
been prepared and collected in what is kuown as an Indirect Command
file. (We discuss these in Chapter 20.J To use this, you enter a special
command:

MCR:@LB: (1, 2]C81LNK files

DCL: LINK/CS! files

(The @ specifies that this is an indi.rect command). The files are the
names of the files containing your various program units.

For example, if you have a main program in file REPLCBL and sub­
programs in files IOSUBS.CBL and LIST.CBL, you could compile and
then build under COBOL-81 with a sequence of commands similar to
this:

MCR>C81 REPl, REPl=REPl/CRF
MCR>C81 IOSUBS=IOSUBS/SUB
MCR>C81 LIST=LIST/SUB
MCR>@LB: [1,2]C81LNK REPl,IOSUBS,LIST

DCL>COBOL/LIST/CROSS REP!

DCL>COBOL/ SUB IOSUBS
DCL>COBOL/SUB LIST
DCL>LINK/CSl REPl, IOSUBS,LIST

Following all this (assuming that no errors are detected while compiling
your programs), you could run the task by issuing the command

RUN REPl

Before doing all this, you should check with your system manager for
exact details-some system dependent options may require you to use
a slightly different form of the @C81LNK (LINK/C81J command above.

Under regular COBOL, you will not have a command file to do all
the necessary things unless your system manager has made one espe­
cially for your installation. (The command file C81LNK is supplied as
part of COBOL-81; no corresponding command file is supplied with
COBOL.) In general, you will have to use a special utility called MERGE
to combine the skeleton files and then use a complicated set of com­
mands to build the task. The exact details of this process are sys­
tem dependent; you should ask your system manager just how to do
this.

Language Processors 125

16.4 MACR0-11

MACRO·! I is the assembly language for the PDP· 11 series. The various
features of the language itself do not depend on the operating system,
as the manner in which you write a program in assembly language is
the same whether you are running under RSX or any of the other op­
erating systems available for the PDP-11 . As with the other language
processors that we discuss, I assume that you already know how to use
the language itself.

One special interaction between your MACRO-I I program and RSX
is worth mentioning. You can use the directive . TITLE in your program
to define a title to be printed on each page if you request a listing .. TITLE
is more important than this-it also defines the name of the object mod­
ule produced by the Assembler. This name is used by the Librarian to
identify modules within an object library (we discuss this in Chapter
24). The module name is taken as the first six nonblank characters in
the title. If you do not specify a title, a default module name of .MAIN.
will be used. It is good programming practice to always include a .TITLE
directive in a MACRO-I I program.

Input to the MACRO Assembler is your source file; by default the
file type is assumed to be MAC. Primary output is an object file (default
type OBJ) and secondary output is a list file (default type LST). In MCR
the basic MACRO-I I command line is of the form

MCR : MAC obj, list=source

For example, if your program is in REP2.MAC and you wish to compile
it but you do not want a listing, you could use the command

MCR: MAC REP2=REP2

In DCL the basic MACRO-I I command is of the form

DCL: MACRO source

Generation of the various output files (object and/or listing) is controlled
by the switches /OBJ:objname, /NOOBJ, LIST:listname, and /NOLIST.
In DCL, the example above is

OCL: MACRO REP2

In most cases, a command in this very simple form will be all that you
need.

With MACRO-I I it is possible to have more than one input file. Ap-

RSX, A User's Guide 126

plications requiring this are normally limited to system level program­
ming and are outside the scope of this book. I assume that all your
applications will be limited to the straightforward assembly of individual
files.

When MACRO-I! processes your source file, it may detect errors. If
it does, and if you have specified a list file, the individual error messages
will be put into that file; if you have not specified a list file, these error
messages will instead be written to your terminal. In either case, a sum·
mary line stating the total number of errors will be written to your
terminal. If, after invoking the MACRO Assembler, the next output to
your terminal is a prompt IMCR> or DCL>}, your assembly was suc­
cessful-no errors were found.

The actions of the MACRO- I I Assembler can be modified by including
various switches in the command line. Some of these may be of interest
to you.

When you write your MACRO- I I program, you can include various
directives. These control certain aspects of the assembly. You can also
enter some of these directives via the command line-these will over­
ride any directives present in your source code and will remain in effect
for the entire assembly.

The Assembler accepts certain function directives. These are assembly
functions that you can enable or disable within your program via the
directives .ENABL arg and .DSABL arg. Alternatively, you can specify
these in the Assembler command by using the Enable and Disable
switches. In MCR these are /EN:arg and /DS:arg. You can append these
switches to either the object file or the source file specifier. In DCL
these switches are /ENABLE:arg and /DISABLE:arg, which can be ab­
breviated /EN:arg and /Dl:arg. In DCL, the switches are placed after the
compiler name. In both MCR and DCL, arg identifies the particular
function to be enabled or disabled. In MCR, you enter this in exactly
the same form as you would in a directive inside your program. In DCL
you use various keywords, which although closely related to the directive
names, are not necessarily the same. Probably the only function that
might be of interest to you is global mode. In MCR this is identified as
GBL; in DCL it is GLOBAL. By default, this mode is enabled, in which
case all symbols that are undefined in your program are. assumed to be
global symbols (i.e., they are defined in some other program module,
which will be .used when you eventually build a task}. By disabling this
mode, all undefined symbols are treated by the Assembler as errors and
are marked as such in your listing with the code letter U. A common
programming error is to mistype a name, which normally leads to an

Language Processors 127

undefined symbol. By disabling global mode, you can find these while
you are writing and debugging your program. If, for example, you are
writing program REP2 and you want to assemble it for the purpose of
detecting errors (you do not yet want to produce an object file, but you
will want a listing), you might use this command:

MCR: MAC , REP2=REP2/DS: GBL

DCL: MAC/DIS: GLOBAL/NOOBJ /LIST REP2

MACRO- l l also offers a variety of Listing Control directives. These
allow you to include or exclude various parts of the listing that the
Assembler produces. You specify these in your source code as the di­
rectives .LIST arg and .NLIST arg. You can also specify them in the
command line via the List and No List switches. In MCR, these are
/LI:arg and /NL:arg, and they must be appended to the listing file spe­
cifier. In DCL the List and No List switches are SHOW:arg and NO­
SHOW:arg, and are placed after the command name. If you wish to
include (or exclude) several different features, you must specify all of
them in one switch, e.g., /NL:argl:arg2 or /NOSHOW:argl:arg2. Nor­
mally, the default values for the various listing options should be ad·
equate for your purposes, but you can change them (without editing
your source program) in this manner. As with the Enable/Disable
switches, if you are in MCR, the various arg codes that you might use
are exactly the same as those you would use in a listing control directive;
if you are in DCL, you use various keywords. For example, if you are
done writing REP2 and you want to make an object file and also a final
listing, this time without unsatisfied conditional statements (the default
is to include these), you could use the command

MCR:MAC REP2,REP2 / NL:CND=REP2

DCL: MACRO / LIST/ NOSHOW: COND REP2

The other two switches that you might want to use also affect the
list file. By default, every time you produce a list file, it is spooled. Often
you will not want to print this file unless you need it to figure out
errors. In MCR you can use the No Spool switch l/-SP) to suppress the
automatic printing of the list file; you must append this to the listing
file specifier in the command line. In DCL you control the spooling of
a listing file by the placement of the switch /LIST; if the switch is placed
after the command MACRO, the list file will be spooled; if the switch
is placed after the source file name, the list file will not be spooled.

You might want a cross-reference as part of your listing. The default

RSX, A User's Guide 128

is to not produce a cross-reference; to get one, you use the Cross Ref­
erence switch. In MCR this is /CR; in DCL it is /CROSS. To make the
cross-reference1 a special task has to run after the Assembler. You do
not have to worry about this because it is automatically done; however,
this task (CRF) must be installed for this to work. If you ask for a cross­
reference and nothing happens, you will have to ask your system manager
to install CRF for you.

16.5 Using BASIC and BASIC-PLUS-2

Under RSX, two versions of the language BASIC are available-these
are known as BASIC (or BASIC-11) and BASIC-PLUS-2. BASIC-11 is es­
sentially plain old BASIC. BASIC-PLUS-2 is a significantly enhanced
vers10n.

BASIC-11 is a true interpreter. Certain small features of the language
may differ from what some might consider to be a "standard" BASIC,
but the manner whereby it is used is unchanged. It contains its own
editor and file handler. It interprets your program every time you want
to run it. It may be used in the immediate mode of execution as a giant
calculator. In short, it acts just the way you would expect. It does not
depend upon the RSX operating system-in fact, once you are running
BASIC-11, you can forget that your operating system is RSX. Thus, there
is nothing further for us to discuss about BASIC-11 under RSX other
than the command you use to invoke it:

MCR,BAS

DCL' BASIC/Bll

BASIC-PLUS-2 is different. It offers many features not found in plain
old BASIC and is significantly more powerful and flexible as a program­
ming language. These features do not concern us here as it is not my
intent to teach you how to write computer programs. What does concern
us is that BASJC-PLUS-2 is not an interpreter. It does retain the editing
and file handling capabilities of regular BASIC. Once you have your pro­
gram written, however, you must compile it, producing an object file.
You must then leave BASIC-PLUS-2 and use the Task Builder to build
a task from this object file in much the same manner you would with
an object file created by any other language processor. Finally, you must
run the task using the MCR command RUN. Thus, BASIC-PLUS-2 does
not shelter you from the RSX operating system the way that BASIC-I I
does.

Language Processors 129

Whether you are in MCR or DCL, you first enter BASIC-PLUS-2. The
command for this is:

DCL: BASIC

Once you are in BASIC-PLUS-2, you interact directly with it. At this
point, it does not matter whether you were in MCR or DCL.

Once BASIC-PLUS-2 is running, you can edit and save source files
just as you would with regular BASIC. If you want to run your program,
however, things are different. Before you can do this, you must compile
your program. This is done from within BASIC-PLUS-2 by using the
Compile command, designated by the keyword COM. If your program
is currently in memory (for instance, as the result of the command OLD)
you can compile it directly with the command

COM

If your program is in a file, the command

COM file_specifier

will load the file into memory and then compile it. If you do not specify
a file type, B2S is assumed by default. You can modify the Compile
command to obtain double precision for all floating variables. In this
case, the commaqd is

COM/DOU

Note that all floating point variables and operations are either single or
double precision-you cannot mix these types.

Once you have compiled your program, you must build a task from
it. You use the RSX Task Builder to do this, with some help from BASIC­
PLUS-2.While in BASIC-PLUS-2, you can then use the command BUILD.
This constructs an indirect command file that contains all the commands
required for task building. (We discuss task building in Chapter 17 and
indirect command files in Chapter W-for now, don't worry about them.)
If all you need for your task is a main program, the Build command is
of the form

BUILD main/switch

where main is the name of the file (default type .OBJ) previously made
by using the Compile command. If your program uses subroutines
(BASIC-PLUS-2 supports subroutines) the command is

RSX, A User's Guide 130

BUILD main, subl, sub2, ... I switch

Here, the various sub entries are object files for the subroutines. If you
have subroutines, they and the main program must have been compiled
in the same precision-Le., with or without the double precision option.
Both the commands above include a switch following the object file
specifiers. If you use any files in your program (if your source code con­
tains an Open statement), you must use a switch here; otherwise, none
is needed. Via what is known as the Record Management Services (RMS),
BASIC-PLUS-2 supports a wide variety of file structures. For each type
of file structure that your program uses, you must specify the appropriate
switch. For simple applications (such as writing answers into a disk file
for subsequent printing), you will use only sequential files, for which
the switch is /SEQ. Thus, if TEST is a main program that writes to a
disk file and does not use any subroutines, the Build command will be

BUILD TEST/ SEQ

The Build command within BASIC-PLUS-2 creates an indirect com­
mand file that you can give directly to the Task Builder. This file has
the same name as your program and has a file type of .CMD. To build
your task, you must leave BASIC-PLUS-2 (via the Exit command),
whereupon control returns to your CL!. You then invoke the Task
Builder using the command form

MCR: TKB @prog

DCL : LINK @prog

Here, prog is the name of the program specified in the BASIC-PLUS-2.
Build command. Finally, when the Task Builder is finished, you can run
your program by using the Run command. This is the same for both
MCRandDCL:

RUN prog

As an example of all this, suppose that you have a main program in
the file TABLE.B2S which uses a subroutine in file AUX.B2.S. For sim­
plicity, assume that you have done all the necessary editing to these
files already. To compile, build, and run, you would use the sequence
of steps given below. Since our emphasis here is oh your interaction
with BASIC-PLUS-2 itself, I only show the example for MCR. Note that
before you can enter a command to BASIC-PLUS-2, you must get the
prompt "Basic2/' as shown. This indicates that the previous operation
has finished and that BASIC-PLUS-2. is ready to accept a new command.

Language Processors 131

In this example I also show the files that are made at the various steps.
Until you get used to using BASIC-PLUS·2 under RSX, you will be
amazed at the plethora of files that you will find in your user area.

MCR>BP2

Basic 2
OLD TABLE

Bas ic 2
COM

Bas ic 2
OLD AUX
Basi c 2
COM

Bas i c 2
BUILD TABLE, AUX

Basic 2
EXIT
MCR>TKB @rABLE
MCR>RUN TABLE

RSX, A User's Guide

TABLE.OBJ

AUX . OBJ

TABLE. CMD, TABLE. ODL

132

17

Building a Task

In the preceding chapters, we have discussed how to write a program
and how to compile it. The next step is to create a task from it. You do
this by using the system utility known as the Task Builder.

The Task Builder is used to link various object modules together to
form a task. The Task Builder is a rather complicated program as it was
designed to accommodate a large variety of tasks including those running
in real-time or requiring very large amounts of memory. Most of the
details concerning its possible use will be of no interest to you. (The
official Task Builder manual fills an entire 2·inch binder.) In this section,
we will consider only straightforward use of the Task Builder; even so,
many things must be discussed. Be patient.

17.1 Introduction to the Task Builder

In general, a Task Builder command can consist of up to three parts:
the basic command, which identifies the input and output files; various
switches that specify special properties of th.Se files; and options that
modify the linking procedure. For simple task builds, only the basic
command, with .perhaps a few switches, is required. In this case, as long
as you do not have a large number of input files, you can give your entire
command to the Task Builder in a single line. When a more complicated
command is required, you must use the multiple-line command form.

Before going any further, you should realize that the Task Builder in
RSX corresponds to the system utility that in almost any other operating
system is known as the Linker. For this reason, the DCL command for
building a task is LINK. Under MCR, the command is taken from the
official name of the utility; it is TKB for Task Builder.

Building a Task 133

The basic command to the Task Builder follows the standard rules
for MCR and DCL:

MCR: TKB output=input

DCL: LINK input

Here, output and iupnt are file specifiers. The generation of the various
possible output files is controlled in the same manner as it is in the
various language processors discussed earlier. MCR gives you complete
control over each possible output file by producing only the ones that
you name. DCL automatically makes certain output files for you; you
can change these defaults by including switches in the command. In
particular, DCL normally generates a task image file with a default name
taken from that of the first input file.

As an example of this, suppose you have compiled a main program
in a file called TEST.OBJ and that this main program calls a subroutine
named Fl , which is located in a file called MA THI .OBJ. To make a task
of your program TEST, you must link the object modules in the files
TEST.OBJ and MATHl.OBJ. If you want the name of the task image
file to be TEST.TSK, the basic command to the Task Builder would be

MCR: TKB TES~TEST, MATHl

DCL: LINK TEST , MATH!

Now, suppose you enter the same command but with the two input
files specified in the reverse order:

MCR: TKB TEST=MATHl, TEST

DCL: LINK MATHl , TEST

In MCR, exactly the same task build will happen, since you explicitly
name the output file TEST. In DCL, however, the task image file will
now be called MATHl.TSK, since its name is taken, by default, from
the first input file specified.

The example above represents a very simple task build in which a
single-line command is sufficient. In many instances, this is the only
means of using the Task Builder that you will need. Often, however, a
more complicated task build, which does not fit this simple format, is
required. There are two cases where this may happen to you. You may
have too many input files to ht on one command line, or you may have
to include certain options. The multiple-line Task Builder command
provides for these cases.

RSX, A User's Guide 134

In MCR, the multiple-line command is always started with the
command

MCR>TKB

This invokes the Task Builder, which then accepts successive lines of
input from you. The total number of these is variable. The multiple­
line format always ends with the command

TKB>I!

(two slashes followed by a carriage-return), which signifies the termi­
nation of input to TKB.

In DCL, the multiple-line form is started with the command

DCL>LINK

Successive lines of input are prompted for, processed, and accumulated
by DCL until it determines that you have entered a complete command.

Because Task Builder commands may involve the multiple-line form,
DCL cannot always translate your Link command into a single TKB
command. DCL overcomes this problem by using indirect command
files. We will discuss these at length in Chapter 20. For now, note that
an indirect command file is a file of commands that may be given to a
program so that they appear to have been typed in by you directly. In­
direct command files are especially beneficial with the Task Builder
because command sequences for the Task Builder are typically complex.
Any time you enter a Link command1 DCL forms an indirect command
file from your inputs. It then gives this to the Task Builder. Finally, it
deletes the indirect command file. Note that even if you enter a simple
Link command-one that translates into a single-line TKB command­
DCL will go through this process. Due to this extra overhead, linking
under DCL is often noticeably slower than it is under MCR. Finally,
note also that if the DCL Link process is somehow interrupted, the in­
direct command file that is temporarily used will not be deleted. If you
find a file named A TINK.TMP in your directory, this is how it got there.

17.2 Specifying Output Files

Strictly speaking, the Task Builder produces three possible output files-­
the task image file, the map file, and the symbol table file. Normally,
you will want only one or two of these. In MCR you get only the files

Building a Task 135

for which you ask; you specify their names when you ask for them. In
DCL, defaults apply to both the files you get and their names.

The primary output produced by the Task Builder is the task image
file, which is assumed by default to be of type TSK. You will almost
always want this. In addition to the task image file, you can produce
map or symbol table files. Normally, your only use for a map file will
be in debugging your program. Thus, it will be of occasional interest to
you, but normally you will not want it. When you generate a map file,
it is assumed by default to be of type MAP. You should never need a
symbol table file for casual use.

In MCR the three output files are specified in the order

task_image, map, symbol_table

These are separated by commas as required. Any files that are not wanted
are simply omitted. Note that if you do not want a certain output file
but you do want the next one, you must include the comma separating
them. If, for example, you have already built your task and you now
want to generate a map, you would use a command of the form

MCR>TKB , map=input

In the DCL command form, the default is to produce only the task
image file and to give it the same name as the first input file. If you ask
for a map file, its name is similarly formed. You can override these de­
faults by using the Task and Map switches. To suppress generation of
the task image file, you use the No Task switch (/NOTASK). To change
the name of the task image file, you use the Task switch with the desired
file name as a parameter (/TASK:name). Similarly, you can get a map
file with the default name by using the Map switch (/MAP). Finally, to
get a map file with a different name, you include a file name with the
Map switch (/MAP:name). You append these switches to the LINK
command.

In the previous section, we examined an example with a main program
in a file named TEST.OBJ that required subroutines in MATH!.OBJ.
Continuing with this example, if you want to make a task image file
TEST.TSK, the basic Task Builder command would be

MCR, TKB TEST=TEST, MA THl

llCL o LINK TEST, MATHl

Here, the default name (that of the first input file) supplied by DCL for
the task image file is what you want. Now, if you want to link the same

RSX, A User's Guide 136

input files but you want the task image file to be named TESTL.TSK,
your commands would be

MCR: TKB TESTl=TEST. MATHl

DCL: LINK/ TASK: TESTl TEST, MATHl

Note that in this case, in DCL, the switch /TASK:name is required to

override the default file name. In MCR, the syntax is unchanged.
If, in addition to the task image file TEST.TSK, you also wanted a

map file named TEST.MAP, the command would be

MCR: TKB TEST, TEST=TEST, MATHl

DCL:LINK/MAP TEST,MATHl

In the DCL command form, the Map switch is required to generate a
map file; the name is again chosen by default. Similarly, you can change
the name of the map file by using the Map switch in the form
/MAP:name.

17 .3 Specifying Input Files

As obvious as it may be, it is worth mentioning that you cannot suc­
cessfully build a task unless you make available to the Task Builder all
the required object modules. If your program is at all complex, it will
probably be split into several program units or modules. References be­
tween these will involve function calls and/or global data items. The
names of these functions or data items are known as symbols. The link­
ing process requires that a definition be found for every symbol that is
referred to in your program. These definitions may be located in various
files, and if you do not name all of these as input files, the Task Builder
will not be able to link your program.

Forgetting to name a required input file is a rather common user error.
When it happens, the Task Builder will quit, giving you the following
error message:

nn Undefined symbols segment xxx

Here, nn is the total number of undefined symbols and xxx is the segment
name, which, for our purposes, can be ignored. If you have not generated
a map file, then the names of the missing symbols will be listed on your
terminal. If you have made a map file, they will be listed in it, and the
Task Builder will not bother repeating them on your terminal. (They

Building a Task 137

will be listed at the end of the map file; the easiest way to see them is
to use an editor to read the map file and jump to its end.) Note that this
error message will only identify the missing symbol(s); it is your re­
sponsibility to determine what file (if any) each is in.

In general, the object modules used to form a task consist of one main
program and an arbitrary number of subroutines. The simplest example
is one in which there are no subroutines. In that case, only the file con­
taining the main program need be specified. Even when several subrou­
tines are used, the corresponding object modules may be included in
the object file containing the main program so that only one input file
is required. (This is not necessarily good programming practice.) Often,
however, you will have to specify several input files. Although not nee·
essary, it is recommended practice that the first input file specified be
the one containing the main program unit. If there are not too many
input files, you can include them on one line. It is then possible to use
the single-line form of the Task Builder command. If you cannot do this,
you must use the multiple-line command. (A second reason for using
the multiple-line form is to enter options, as discussed in Section 17.6).

In the multiple-line command form, you can use as many lines as
you wish to specify all your input files. Each line can specify one or
more files. As with other system utilities in RSX, when several input
files are specified on one line, they are separated by commas. This is
true for both MCR and DCL. When you need to use more than one line
of input files, however, things are not so straightforward; the syntax
depends on the CLI you are using. In MCR, the last file specification in
a line is never followed by a comma. If you do end the line with a comma,
the Task Builder will expect another file specifier to follow on that line
and will give you an error message ~hen it does not find one. In DCL
the rules are reversed. If you need to use several lines to name all the
input files, you must end each line except the last with a comma to

signify to DCL that you have further lines of input to enter. If you do
not end a line with a comma, DCL assumes that you have entered all
the input specifiers that are required for the linking process and will
not give you a chance to enter any others.

In MCR, after the initial TKB command, successive lines of input file
specifiers are not prefaced by any special words or symbols. The Task
Builder simply assumes that all further lines contain input specifiers
until it finds a line beginning with a slash. For example, to build task
ABCD from object modules contained in the files A, B, C, and D, you
could use the single-line command

RSX, A User's Guide I38

MCR:TKB ABCD=A , B, C, D

Alternatively, you could use multiple-line commands such as

TKB>ABCD=A

TKB> B,C,D
TKB> //

MCR>

MCR>TKB

TKB>ABCD=
TKB> A,B
TKB> C,D

TKB>//

When using the multiple-li ne command form in MCR, note that once
the Task Builder has been invoked, the output specifier and the equals
sign must appear on the first line you enter, although (as shown in the
second example) nothing else need appear on that line.

In DCL, the command to do the same task build could be given in
single-line form

DCL: LINK / TASK : ABCD A, B , C, D

Multiple-line commands also are possible, for example:

DCL> LINK/TASK: ABCD A,
Fil e (S)? B , C, D

DCL> LINK / TASK : ABCD
File(S) '? A,B,

Fil e (SJ? C,D

Note carefully that these last two examples do not correspond to the
MCR examples above, even though the input files are split across the
various lines of input in the same way. Instead, DCL puts all the input
files that you specify into one line in the MCR command. (This action
can have some subtle ramifications.) Thus the two DCL commands
printed above both translate into this MCR command:

Building a Task 139

MCR>TKB
TKB>ABCD=

TKB>A,B,C,D
TKB>ll
MCR>

Individual input files (and the output file[s] as well) follow all the
normal rules for file specification. Thus, in the above examples, I have
omitted the device, ufd, file type, and version specifications, thereby
using the default values for these. Sometimes, input files must be taken
from several user areas. In this case, some care is needed in specifying
the device and ufd due to the manner whereby the Task Builder forms
defaults for these. To examine this, let's suppose you have a main pro­
gram in file A that calls subroutines in files BESSEL and CUBIC, all of
which are in your user area [123,1], and that these call subroutines in
file TRIG, which is in a general user area [100,l].

Let's first consider what happens in MCR. You might try to use the
command

MCR:TKB A~A,BESSEL,CUBIC, [100,l]TRIG

to build task A from all this. This command will work. Another com­
mand that you might try is

MCR:TKB A=A, [100,l]TRIG,BESSEL,CUBIC

This command will fail. The reason for this is as follows. The Task
Builder initially sets the default for the ufd portion of an input file spec­
ificier to your default directory. In this example, this is [123,lj, which
is used to complete the file specifier for the first input file, A.OB). The
appearance of the explicit ufd specification [100,lj resets the default,
and this new value is used for any further input file specifiers.Thus, the
Task Builder looks for files {100,l]BESSEL.OB) and [100,l]CUBIC.OBJ,
which (presumably) do not exist. It is important to note that when the
multiple-line Task Builder command is used, the default for the ufd is
reset (to your default directory) at the beginning of each line of input
specification. Thus, the command sequence

MCR>TKB
TKB>A=A
TKB> [100, 1] TRIG
TKB>BESSEL, CUBIC
TKB>//
MCR>

RSX, A User's Guide 140

will work. (The UFD of [JOO,!] is used as the default only on the line
in which it appears; for the next line, the default reverts to (123,lJ.J
Although we have used numbered directories in this example, the same
rules apply for named directories. Defaults for the device specifier are
handled in the same manner.

Now, in DCL, multiple lines of input specifiers are packed into one
line as part of the command translation into MCR. Thus, the command
sequence

DCL> LINK
File(S)? A,
File (s)? (100,l)TRIG ,
File (s)? BESSEL , CUBIC
DCL>

will fail, since it is equivalent to the MCR command

MCR: TKB A=A, (100, 11 TRIG , BESSEL , CUBIC

which, as noted above, fails.
Similar considerations apply to the output file specifiers. If no device

or ufd specifiers are present, then the usual defaults apply to all output
files; an explicitly specified device or ufd applies to all successive output
files. Note, however, that the defaults for the output files do not affect
those for the input files, even if a one-line Task Builder command is
being used.

So far we have considered only the use of object files as input (default
type OBJJ. A second type of input file, known as an object library (default
type OLB I also is allowed. [The use of object libraries is discussed in
Chapter 24) The syntax for including these in the input specifier is the
same as for object files except that object library files must be denoted
as such by using the Library switch (Section 17.SJ. You can specify files
of types OBJ and OLB on the same command line. The specification of
object libraries is espei:ially important for accessing system modules,
as is discussed in the next section.

17A Accessing System Object Modules

Before discussing how to access object modules that are part of the sys­
tem, let's briefly discuss why it is necessary for you to do so. We will
use an example from FORTRAN; similar arguments hold for all other
languages. Suppose you have a program that includes the statement

Building a Task 141

A = SQRT(B)

What you intend by this statement is that the square root of B be taken
and that A be assigned this value. Presumably, it 'is of no concern to
you what mechanism is employed to determine the square root of B. In
actuality, a subroutine is required to calculate the square root function­
this subroutine is supplied as part of the FORTRAN system. (This is
what you should expect, since if FORTRAN allows you to use SQRT
to designate the square root, it should correspondingly provide the means
of determining the square root.I The fact that you do not have to write
the subroutine for calculating the square root function does not nec­
essarily mean that you can ignore this subroutine when you build the
task. You must incjude it as part of your task, and depending on how
your RSX system is structured, you may accordingly have to tell the
Task Builder where it is.

In our example above I used the sql!are root function- I could equally
well have chosen many others, for instance the exponential, absolute
value or modulo fm{ctions. All of these are functions that you explicitly
name in a program. Perhaps it is therefore reasonable to expect you to
remember which functions are used in a program and to correspondingly
identify each subroutine at task b;,ild time, although doing so would
be clumsy. Continuing with an example of a FORTRAN program, many
other subroutines are typically needed but are never explicitly called­
notable among these are the niany subroutines for input and output. As
you probabJy will not even know the names of these subroutines, you
clearly cannot be expected t6 identify them at task build time.

The use of 5ystem object libraries solves this problem. An object library
is a file (default file type OLE) coiltaini;g many object modules. The
file is organized so that these modules are readily accessible on an in­
dividual basis. When the Task Builder encounters an object library as
an input ' file, it selects from it those object modules required by the
task it is building and ignores the others. (The manner whereby the
Task Builder processes object libraries is discussed in greater detail in
Section 24. I) Note that this differs from normal Task Builder operation.
When regular object files are specified as input, the Task Builder takes
all modules, whether required or not, and includes them in the task
being built. The principle behind the use of system object libraries is
as follows. All object modules that are in some broad functional sense
interrelated are organized into an object library. To access any of these
system object modules, you need merely specify the object library as a
Task Builder input file. You need not worry about identifying the object

RSX, A User's Guide 142

modules that are required by your program or about making your task
unduly large by including modules that are not required.

As an example of this, let 's consider FORTRAN-77. The aggregate of
subroutines used to implement various features of this language is re­
ferred to as the Object Time System (OTS). These are supplied in a single
object library. The name and location of this file can vary, but it is nor­
mally known as F770TS.OLB and is commonly on the system library
device (LB:) in user area (1 ,1]. A typical way to access the FORTRAN-
77 OTS is to include the file specifier (note the Library switch) in the
Task Builder input,.

MCR:LB' (1, l]F770TS /LB
DCL: LB' [l, l]F770TS /LIB

Check with your system manager for the exact details for your system.
Although this is much simpler than specifying individual subroutines,

it is still somewhat of an inconvenierice. From your viewpoint, it should
not be necessary to do anything special to obtain required system object
modules when building a task. (This is in accord with the philosophy
that a good operating system should bother you with as few details as
possible.) The Task Builder provides a m eans of maintaining this "in­
visibility" regarding system modules. The extent to which this applies
to you depends on the details of your RSX configuration. To every list
of input files, the Task Builder automatically adds the file
LB:(l, l)SYSLIB.OLB. SYSLIB is the system library; by using this file, the
Task Builder has access to any system object modules that it contains.
On many systems, F770TS and other similar libraries are included in
SYSLIB so that you do not have to specify them.

So far, we have discussed the use of object library files for system
object modules. Under RSX, another possibility exists: the memory res­
ident system library. Under this scheme, the most commonly used sys­
tem modules are permanently located in memory. The advantage of this
is that they need not be included in a task, thereby allowing larger tasks.
(The task, however, must know where in memory they are.) The dis­
advantage is that a certain portion of memory is permanently dedicated
to the resident library. If your system has a resident library, it must be
specified via a Task Builder option (see Section 17.6).

In conclusion, there are three basic ways of obtaining access to the
system object modules required by your task. These are not mutually
exclusive, and you may have to use more than one method. First, you
can specify an object library file containing the required modules as an

Building a Task 143

input file to the Task Builder. Second, the default system library file,
LB:[l,l]SYSLIB.OLB, may contain the required modules. Third, you may
have to specify a memory-resident system library. To be sure of what
to do for your particular system, check with your system manager.

17.5 Task Builder Switches

You can modify or control the actions of the Task Builder by switches
and options. Switches are appended to file specifiers and modify the
interpretation or characteristics of these files. Switches typically can be
set to one of two possible values (a yes/no dichotomy). If not specified,
a switch assumes a default value. Options are used to supply additional
information about certain aspects of the task to be built. Options typ­
ically allow specification of a wider range of values and do not always
have defaults. Switches can be used without departing from the one­
line command format. Options, however, are always entered as separate
lines and thus can only be used in the multiple-line format. We discuss
switches for the Task Builder in this section and options in the next
section.

Task Builder switches are specified in standard syntax, as discussed
in Chapter 7. All switches assume default values; thus, it is common
to specify a switch only if you wish the nondefault value. The default
values for the various Task Builder switches are defined as part of RSX
but some of them can be changed during System Generation. You should
either verify the default values for your system or specify switches rather
than relying on the defaults. Many switches are available. Most of these
will be of little interest to you, so we need to discuss only a few.

The Floating Point switch states that the task will use the Floating
Point Processor (FPP). The FPP is a special piece of hardware that allows
floating point instructions to be executed directly in hardware rather
than by subroutine. On large PDP-11 systems, the FPP is standard
equipment; on smaller systems, it is optional. Most scientific applica­
tions (e.g., FORTRAN programs using real variables) will use the FPP
if it is present. Since RSX can be used on a PDP-11 that does not have
an FPP, the standard RSX distribution sets the default value for the
Floating Point switch to NO. (If your installation includes the FPP, your
system manager has probably changed this default.) The FPP contains
a set of registers; the Floating Point switch specifies that space is to be
reserved in the task image file to save the contents of these registers.
Even if it is built with the Floating Point switch turned off, a task can

RSX, A User's Guide 144

use the FPP-what will happen, however, is that sometimes the FPP
registers will be loaded with seemingly random values. Thus, unless
you set the Floating Point switch, or unless the default is redefined,
your task might not work properly. In MCR, the Floating Point switch
is /FP and is appended to the task image file specifier. In DCL, the Float­
ing Point switch is /CODE:FPP and is appended to the Link command.

The second switch worth noting is the Checkpoint switch, which
signifies that the task is "checkpointable." The concept of checkpointing
refers to the temporary copying of a task from memory to disk so that
some other task can use the memory space. RSX does this as part of its
procedure for running several tasks "simultaneously." Normally, you
will not care whether your task is checkpointable or not, and you should
accordingly set the Checkpoint switch to enable checkpointing. The
standard default assumption is NO, which is based on the concept of
critical tasks running in real-time. Thus, unless this default has been
changed for your system, you might be asked to build tasks using the
Checkpoint switch. In MCR, this switch is /CP and is appended to the
task image file. In DCL, it is /CHECKPOINT, typically shortened to
/CH, which is appended to the Link command.

Using the Floating Point and Checkpoint switches, the Task Builder
command for our earlier example is

MCR: TKB TESTI/FP/CP=TEST, MATH!

DCL: LINK/CODE: FPP/CH/TASK: TEST! TEST , MATH!

In RSX-llM-PLUS, you can take advantage of a hardware feature of
the PDP-11 known as separate I and D space. You can also use this in
version 3.0 of Micro/RSX if your Micro/PDP-11 has the jll processor
chip; if it has the Fl I processor chip, this capability will not be available.
The separate I and D space feature is not supported in RSX-llM. Without
this feature, a normal task is limited to a total address space of 64 kilo­
bytes (65,536 bytes or 32, 768 words). With this feature, a normal task
can use up to 64 kB for instructions (I space) and another 64 kB for data
(D space). You can use the I and D switch to cause your task to be built
in this manner. In MCR, this switch is /ID; it is appended to the task
inlage file. In DCL, it is /CODE:DATA SPACE or /CODE:DATA,which
is appended to the Link command. In DCL, both the Floating Point and
the I and D switches are variants of the /CODE switch. When you wish
to use both, you can specify each individually or combine them in the
form /CODE:(DATA,FPP).

In MCR and in the new versions of DCL, you can use the Spool switch

Building a Task 145

to control whether or not a map file will be automatically printed. The
Spool switch specifies that the map file is to be spooled; the N6 Spool
switch similarly forces it to be not spooled. As RSX is distributed, the
default is to spool the map file, but often this is changed to avoid wasting
paper. Sometimes you might make a map file but not print it unless
you need it for debugging; other times you may always want to print
it. Thus, you may need to use either the Spool or the No Spool switch.
In MCR, the Spool switch is /SP and is appended to the map file specifier.
With the new versions of DCL [version 4.2 of RSX-I IM, version 3.0 of
RSX-llM-PLUS, and version 3.0 of Micro/RSX), you can use the switch
/PRINT, which is appended to the Link command.

We have already met the Task and Map switches in our discussion
of the basic Task Builder command. These exist only in DCL. When
you use the Map switch, the Task Builder produces a file which you
may want to have printed. In older versions of DCL, there is no direct
counterpart of the Spool switch found in MCR. Instead, spooling is con­
trolled via a rather contrived technique based on how and where the
Map switch is used. If you append the Map switch to the Link command
and you accept the default map file name, the map file will be printed
automatically !the Task Builder command in MCR format that DCL
generates will have the Spool switch set). If you name the map file, or
if you append the Map switch to an input file lin this case, the default
name for the map file is that of this particular input file), the MCR
command will have the No Spool switch set. These same rules apply
to the new versions of DCL, but as noted above, you can use the Spool
switch /PRINT or /NOPRINT to directly control the spooling of the
map file.

The Library switch is always appended to an input file specifier; it
declares the input file to be an object library file rather than a simple
object file. When the Library switch is present, the default file type is
OLB. The default setting of this switch is off so that input files are nor­
mally asJiimed to be object files I type OBJ). In MCR the Library switch
is /LB; in DCL it is /LIBRARY or /LIB. You can modify the Library
switch to specify that only certain object modules be taken from the
particular.object library. In MCR the syntax for this is /LB:module. In
DCL the Library switch is changed to the Include switch to allow this;
the syntax is /INCLUDE:module. The subtleties of including only cer­
tain modules from a library are discussed in Section 24.1.

The last switch that you might need is the Options switch. This is
used only in DCL; it signifies that you wish to include some options
in your command to the Task Builder. If you do not use this switch,

RSX, A User's Guide 146

you will not be given a chance to include any options. The Options
switch is /OPTION, commonly shortened to /OPT, and is appended to
the Link command. We discus·s· the use of options in the next section.

17.6 Task Builder Options

In addition to switches, the Task Builder allows you to modify certain
features of the task build by entering options. To utilize this capability,
you must always use the multiple-line form of the Task Builder com­
mand. The multiple-line command form does not require you to enter
options; it merely allows you to. If you want to enter options, you must
first tell the Task Builder that you want to do so. The manner whereby
you do this depends on which CL! you are using.

In MCR you first invoke TKB and enter the basic Task Builder com­
mand. After specification of all input files, you must enter a line con­
sisting of a single slash {terminated, as usual, with a carriage return).
The purpose of this line is to inform TKB that you wish to enter options.
The Task Builder then prompts you for these with "ENTER OPTIONS."
You enter as many options as you wish, one per line. To signify that
you are done, you enter a line consisting of two slashes. This m arks the
end of the option input as well as the end of all input to the Task Builder.

In DCL you must include the Options switch in the basic Task Builder
command. You can append this to the Link command itself or to any
of the input file specifiers. When you have entered all the input files,
DCL will then prompt you for the first line of options with "Option?"
You enter as many options as you wish, one per line. DCL repeats the
prompt at the start of each line. To signify that you are done, you enter
an empty line (one consisting of only the terminating carriage return).

Although the manner whereby you declare your intention to enter
options differs between MCR and DCL, the options them selves are en­
tered in exactly the same form. This is somewhat unusual for DCL. As
we have seen, command names, switches, and the entire command syn­
tax are often quite different from their MCR counterparts. Perhaps this
is because the options are very specific to RSX; Digital Equipment Cor­
poration m ay have seen no reason to rewrite them in a more "standard"
format. Whatever the reason, if you are in DCL, you will enter Task
Builder options u sing MCR syntax. Thus, in the remainder of this sec­
tion, I have the rare luxury of presenting commands in only one syntax.

Options are specified in the form

keyword:;;value

Building a Task 147

where keyword identifies the particular option being set and value is
the choice for said option. The RSX Task Builder provides a wide variety
of options, most of which will be of little interest to you.

The three options that are most commonly used are interrelated; they
refer to the definition and use of logical units. Under RSX, all I/O op­
erations refer to a logical unit; each unit is identified by a Logical Unit
Number ILUN). The system must associate each logical unit with a
particular device for I/O to occur. There are defaults for these; the Units,
Assign, and Active Files options allow you to override these defaults.
The default assignments made by the Task Builder are:

Logical unit
1
2

7 or larger

Device
User disk jSY:)
User disk ISY:)
User disk.ISY:)
User disk ISY:)
User Terminal (TI:)
Console Listing ICL:)
Invalid

Thus, an I/O operation to logical unit 1 will, by default, refer to a file
on your disk. Logical units 2 through 4 similarly refer to other files on
your disk, thereby allowing you to simultaneously refer to several dif­
ferent data files. Logical units 5 and 6 are used for "normal" input and
output, as discussed in Section 15.1; however, you may not be able to
use unit 6 in this way.

The Units and Assign options allow you to change these default as­
signments during a task build. The new assignments affect only the one
task being built. From the default table, we see that 6 is assumed to be
the largest legal LUN. If you wish to use LUNs greater than 6 [you can
use LUNs from 1 to 250), you must first use the Units option to reset
the number of LUNs used by the task. The form of this is

UNITS=value

where value is the largest LUN. Each allowable LUN for the task requires
extra storage, so you can make a task needlessly large by careless use
of this feature.

The Assign option is used to assign a device to a LUN. The form of
the Assign option is

ASG=device: LUN: LUN---e tc .

RSX, A User's Guide 148

Each ASG statement names one device, which may be a peripheral or
pseudo device. More than one LUN may be assigned to that device in
the command. To assign LUNs 7 through 10 to disk drive DRl:, you
would use

ASG;DR1 : 7: -8: 9: 10

Any actual VO operation requires some storage area (known as a buffer)
to hold the characters being transmitted. Under RSX, each task has a
certain number of buffers, which are assigned to the various logical units
as required while the task is running. Each logical unit that is being
used (i.e., each unit that has been opened and not yet closed) requires
a buffer. The greatest number of units that might simultaneously be
open during execution determines the buffer requirements for the task.
If an insufficient number of buffers is available, the task will exit due
to an error; if too many buffers are included in the task, the ta§k will
be unnecessarily large. The number of buffers that are included in the
task image by the Task Builder is controlled by the Active Files option.
The form of this is

ACTFIL=val ue

The default value is 4.
As an example of the use of these three options, suppose you wish to

build a task that needs to access many different files. Specifically, assume
that it will access files on LUNs 3 and 4 from SY: and will access files
on LUNs 5 through 8 from ORO:. Further, LUN I is to be used for in­
teractive 1/0. At any point in the program, however, only three or fewer
LUNs will simultaneously be open. The following set of Task Builder
commands will work:

MCR>TKB

TKB> ou tpu t=:inpu t
TKB>/
TKB>AS<J;SY: 3: 4
TKB>UNITS-8
TKB> ASG;DRO : 5 : 6 : 7 : 8
TKB> AS<J;TI: 1
TKB>ACTFII..=:;;3
TKB>//

Note that you can enter these options in any order, with the exception
that the Units command must precede any Assign command that at­
tempts to define a LUN greater than the default maximum of 6.

Building a Task 149

You may require one other Task Builder option. This is the Library
option, which is used to specify a m emory-resident system library. As
discussed in Section 17.4, system object modules may be located in a
memory resident library. If they are, it is necessary to use this option.
A typical use of the Library option might be

LIBR=SYSRES: RO

Here, SYSRES (system resident) is the name of the library, and :RO
specifies that the library has read-only protection. The LIBR option has
no default-that is, the default is that the task is not to refer to any
resident library. If your task is to use a resident library, you must use
the multiple-line form of the Task Builder command to be able to include
this option. Check with your system manager to determine whether or
not the LIBR option is required for your system and if it is, just how
you should use it.

17.7 The Fast Task Builder

The Task Builder is designed to provide a great degree of fl exibility in
the building of a task and is correspondingly large and clumsy. For the
casual user, a simple subset of its capabilities is all that is normally
required. This capability is provided by the Fast Task Builder. For simple
task builds, the Fast Task Builder is reputedly at least four times as fast
as the regular Task Builder. The Fast Task Builder is available witb RSX­
llM and RSX-llM-PLUS. It is not available with Micro/ RSX.

The Fast Task Builder is used in exactly the same manner as the regular
Task Builder except for the manner whereby it is invoked. In MCR, you
use the name FTB rather than TKB. In DCL, you append the switch
/FAST to the Link command.

You can use the Fast Task Builder with both the single-line and mul­
tiple-line command. Unlike the regular Task Builder, however, the Fast
Task Builder supports only a few of the more common switches and
options. It allows you to use the Floating Point, Checkpoint, Spool, and
Library switches discussed in Section 17.5, but it does not support the
I and D switch, or the module selection usage of the Library switch
discussed in Section 24. 1. The Fast Task Builder allows the Assign, Units
and Active Files options; it does not support the Library option.

In several ol the following sections, I will give examples that include
the building of a task. In these, .I will indicate the use of the Fast Task
Builder. If your system is Micro/RSX, you will not have this and you

RSX, A User's Guide ISO

should substitute the regular Task Builder. If your system is either RSX­
! IM or RSX-I IM-PLUS, you will have both available. When you have
tho chance, try building the same task with the regular and with the
Fast Task Builder. This simple experiment should convince you of the
difference in running time, after which you will use the regular Task
Builder only when the Fast Task Builder does not suffice.

Building a Task 151

18

Using a Task

So far, we have discussed how to write, compile and make a task from
a program. If you have gone this far with your program, you presumably
will next want to run it. As with many other aspects of RSX, the pro­
cedure for running a task offers a high degree of flexibility with a cor­
respondingly high degree of complexity. Fortunately, RSX offers an
extremely simplified special case of the more general procedure. In most
cases, this is all you need to know to run your task. We will look at
this first, then we will examine the entire procedure in more detail. If
you are impatient, read only Section 18.1-otherwise, here we go!

18.1 The Simplified Method

Suppose that you have used the Task Builder to build a task image file.
You now wish to execute this. The appropriate command is the same
whether you are in MCR or DCL-it is simply

RUN task_image_file

The default file type is TSK, so you typically need only the file name
portion of the specifier for the task image. Execution of the task should
!assuming that you wrote the program correctly) proceed as you would
expect. If any error m essages are generated, they will appear at your
terminal. If everything goes properly, your task will eventually terminate,
after which you will get another prompt from your CL!.

If you wish to stop task execution prematurely !for instance, if you

RSX, A User's Guide 152

discover a mistake), you can do so via the Abort command. In this sim·
plilied form of running a task, a correspondingly simple form of this
command will suffice. This command also has the same form for both
MCRandDCL,

Note that you may need to use a CTRL/C to get your CLI's attention
before it will accept the Abort command.

In Section 11.2 we discussed how to run a system function. Just as
you might want to abort your task once it has started running, so too
migbt you want to abort a system utility. You can use the Abort com­
mand to prematurely terminate task execution in this case as well.
Things are a little more complicated here-we discuss this in Section
18.5.

18.2 Tasks vs. Task Images

Up to now, I have been purposely sloppy in referring to tasks and task
images. At this point, we must distinguish between these two concepts.
Althougb you normally will be able to ignore the distinctions, it is
nonetheless useful for you to understand them.

Under RSX, a task is something to which control of the CPU may be
given. When a task is executing, it must be in the main memory of the
CPU. When it is not executing, it need not be in memory and, due to
limited memory resources, is normally removed from memory. Because
a task is not always in memory, a copy of it must be kept somewhere.
This copy is known as the task image and is stored in a task image file,
which must be on a disk. !Actually, our emphasis here is backward, as
the task image file is created by the Task Builder first and the task is
then made by copying this image into memory.)

This distinction between a task in memory and a copy of it on a mass
storage device is typical of most operating systems althougb the ter­
minology may not be the same. On any system1 to run a program, the
corresponding task image file must be loaded into main CPU memory,
and control must then be passed to it. In some operating systems, this
would require searching through directory files to locate the task image
file. RSX introduces an intermediate step, motivated by the desire to
expedite this procedure for real-time processing applications. This is
known as installing a task.

Using a Task 153

18.3 Installing and Rem9ving a Task
RSX maintains a special list known as the System Task Directory ISTD).
When a task is installed, it is added to the list; when a task is removed,
it is deleted from the list. The processes of installation and removal
have no effect on the task image files. Each entry in the STD consists
of the name of the installed task, the location Ion disk) of the corre­
sponding task image file, and several other pertinent parameters. Only
when a task has been installed can it be run. When you make a request
to run a task, RSX searches the STD until it finds the entry for that
task. RSX obtains the location of the task image file, copies it into
memory, and then declares it to be active li.e., eligible to compete with
other active tasks for control of the CPU).

Note that the process of installation creates a one-way association
between a task and a task image. That is, each installed task is associated
with a unique task image, but each task image is not associated with
a unique task. Clearly, it is possible to use the Task Builder to create
a task image without ever installing a task corresponding to it. Perhaps
not so obviously, it is also possible to install several tasks, all corre­
sponding to the same task image. The only restriction here is that the
various tasks must all have different names. From this, we see that a
task name need not be the same as that of the corresponding task image.
In fact, the name of the task image las with any other file) can be up to
nine characters long, whereas a task name can be no more than six char­
acters long.

When RSX processes a request to run a task, it checks whether that
task is already active. If it is, the request is denied. It is often useful,
however, to run the same program several times at once (for example,
you and some other user might want to use the FORTRAN compiler
simultaneously). This may be accomplished by installing two different
tasks for one task image. When these two tasks are run, two different
copies of the same original task image file will be brought into memory.
The operating system does this with the system utilities, but the process
is transparent to the user.

Note that when a system utility is running, its task name is often
not the same as its name in the STD. In Section 11.2 we saw that the
name used in the STD was the first three characters of the MCR com­
mand used to invoke the utility, preceded by three periods !e.g., the
FORTRAN-77 compiler is invoked by the command F77 and is installed
as ... F77). In RSX the name used in the STD is known as the prototype

RSX, A User's Guide 154

task name. System utilities can, in general, be run by more than one
µser at a time-that is, several copies of the same basic task may be
simultaneously active. This requires that they all have distinct names­
they cannot all be given the prototype name.

The way task names are chosen for system utilities depends on the
type of RSX you have. For RSX-I IM, the task name will, if possible, be
the prototype name. If this name is already being used, the task name
will be the three-character utility name followed by Tnn, where nn is
the number of the user's terminal. Thus, if you are on terminal 2 and
you are running the utility PIP, your task might be either PIPT2 or ... PIP.
Under RSX-llM-PLUS and Micro/ RSX, this ambiguity is avoided. The
prototype name is never used for an active task, the task name is always
the three character utility name followed by Tnn.

To install a task, you must use the Install command. This is a priv­
ileged command. The general form of this command is

MCR: INS task_image_file / options

DCL: INS/options task_irnage_file

If no options are used, the MCR and DCL commands reduce to the same
form. All the usual defaults apply to specification of the task image file
with the file type assumed to be TSK. The only option likely to be of
interest to you is the task name option. In MCR this is entered as
/TASK=task_name; in DCL it is entered as /TASK:task_name. If this
is omitted, the task name is taken by default to be the same as the name
of the task image file. If this is longer than six characters, only the first
six are used. For example, the command

INS TEST2

creates an entry in the System Task Directory for a task called TEST2,
which refers to the task image file TEST2.TSK. As another example,
the command

INS TESTPROG2

installs a task known as TESTPR. If this were followed by the command

INS TESTPROG3

an error would result due to the attempt to install two tasks with the
same name. To avoid this, you could specify unique task names with
commands such as

Using a Task 155

MCR: INS TESTPROG2 / TASK"'1'EST2

DCL: INS/TASK: TEST2 TESTPROG2

As a final example, suppose that you wished to simultaneously execute
two copies of a program called CALCULATE. To create two separate
tasks, you could use the commands

MCR: INS CALCULATE/TASK=CALCl
INS CALCULATE/TASK=CALC2

DCL: INS/TASK: CALCI CALCULATE
INS / TASK: CALC2 CALCULATE

After a task has been installed, you can delete the corresponding task
image file yet the task name will remain in the STD. A subsequent
attempt to run the task will lead to unpredictable results, as the operating
system will attempt to copy the task into memory from the same disk
address. To remove a task name from the STD, you use the Remove
command. The forrn of this command is the same for both MCR and
DCL:

REM task

This also is a privileged command.
The Install and Remove commands are, as noted, both privileged. As

a casual user, you probably will not be able to use them. There may be
situations where it wi U be desirable for you to be able to install a task;
in these cases, you will have to ask your system manager to do so for
you. An example of this is running a long task overnight, which we
discuss in Section 25. l.

18.4 Rnnning a Task

Once a task has been installed, it can be made active by using the Run
command. There are several forms of this command. In the simplest
forrn, the command is the same in MCR and DCL:

RUN task

This command can be used by nonprivileged or privileged users and
results in immediate (subject to the existence of other active tasks in
the system) execution of the task.

Because the Install command is available to privileged users only, RSX
provides another means to execute a task. This is the simplified form

RSX, A User's Guide 156

of the Run command described in Section 18.l. In addition to running,
it automatically installs and removes the task. The command is the
same for both MCR and DCL:

RUN task_image_file

In terms of system action, this command is equivalent to the following
sequence of MCR commands

INS task_image_fil e/TASK=TI'nn
RUN TI'nn
REM TI'nn

First, the task is installed under the default task name TTnn where
TTnn: is the peripheral device name of the terminal in use. !This task
name is chosen because it is unique to the user. Names such as TT1

TTO, TTl, etc., should accordingly not be used as task names for per­
manently installed tasks.) The task TTnn is then run and, following
completion, removed from the STD. This command may also be used
for system utilities that are not installed. In this case, the utility name
is preceded by a dollar sign, For example, if PIP were not installed, the
nonprivileged user could run it via the command

RUN $PIP

Jn this case, although it will be only temporarily installed, the utility
will retain its traditional name !either ... PIP or PIPTnn); it will not be
called TTnn.

So far, we have discussed two forms of the Run command-the normal
form for an installed task and the Install·Run·Remove form. Syntacti·
cally, these two forms are identical. In either MCR or DCL, the command

RUN SIMUL

could be intended to refer to either an installed task named SIMUL or
a task image in a file named SJMUL.TSK. Under RSX, this ambiguity
is resolved as follows. When a Run command of this form is entered,
the STD is searched for a task with the given name. If one is found, it
is executed. If not, a search is made for a task image file !file type =
TSK) with the given name. If the first character of the name is not a
dollar sign, your directory is searched; if the name begins with a dollar
sign, the UFO containing system tasks is searched instead. If the ap·
propriate file is found, it is executed using the Install-Run-Remove
command. If not, an error message is displayed on your terminal.

Using a Task 157

This ambiguity can lead to rather obscure behavior. Suppose some
other user has created a task image fil e in his user area called
[147,tjSIMULATE.TSK and has had it installed under the task name
SIMUL. Now suppose you write a program to solve simultaneous equa­
tions and from it you make a task image file [123,l]SIMUL.TSK. In all
innocence, you enter the command

RUN SIMUL

What happens is that SIMULATE.TSK is copied from user area [147,1]
into memory, and it is this program, not yours, that is executed.

A similar problem can occur if it is your own task that is instalied.
Suppose you write a program, build a task image, and have it installed
for you. by a privileged user. After running the task for a while, you
decide to make some changes to the program. You edit the source, re­
compile and rebuild. Before arranging to have the new version installed,
you decide to test it using the Install-Run-Remove command. If, as is
often the case, the task name is the same as the task image name, you
will execute the old, not the new, version. This can lead to anguished
confusion concerning why your changes did not work. To avoid this,
you should have the old task removed orice the new one has been built.
Alternatively, you can specify the file type in the Run command rather
than relying on the default, as in

RUN REPORT. TSK

The period here forces the name to be a file name, thereby avoiding any
possible confusion with the name of an installed task.

In addition to the commands for the immediate running of an installed
task and for installing, running, and removing an uninstalled task, other
forms of the Run command exist. These are limited to use by privileged
users. They allow a task (it must be installed) to start execution in the
future and thus may be of value to you for scheduling lengthy runs to
occur during relatively slow hours. (Presumably, you will be able to get
a privileged user to install the task and enter this type of command for
you.) These forms of the Run command are discussed in Section 25. 1.

18.5 What Does DCL Really Do?

I have consistently stated that DCL translates your commands into MCR
commands and that it is these MCR commands that are executed. This
is essentially true and is normally a sufficient explanation of how DCL

RSX, A User's Guide 158

works. In this section, however, -we need to discuss somewhat more
exactly just what it is that DCL does.

Let's suppose you are in DCL and you wish to get a directory listing.
To do this, you enter the command DIR. As we have seen, the system
utility that makes the listing for you is PIP. Thus, the DCL command
DIR is translated into an MCR command that invokes PIP. Although
this is essentially true, it is not the full story. In somewhat rnore exact
detail, this is what happens. Since MCR is the only user interface that
really exists, it receives the command ·that you enter. This is given to
the primary MCR command dispatcher, which is a task with the name
MCR. ... Since your terminal is identified as being set to DCL, this dis­
patcher gives your command to the DCL command parser, which is a
task with the name .. .DCL. This activates a special DCL command task,
which is named from the first three characters of your original command,
followed by the letter T and your two-digit terminal number. (In this
example, if you are on terminal 7, the intermediate task would be called
DIRT07.) It is this task that actually translates (the remainder of) your
command into the equivalent MCR command (e.g., PIP /LI) and then
gives this command to the secondary MCRcommand dispatcher, which
is known as ... MCR. If required (as in this example), the secondary dis­
patcher gives your command to the appropriate system utility; otherwise,
an internal part of RSX performs the processing. The DCL command
task remains active while the MCR task runs. When the MCR task
finishes, the DCL command task may translate and display its output
for you, give yoU error messages, oI-issue another MCR command. When
everything is done, it exits.

I hinted above at the fact that a single DCL command could result in
several MCR commands being generated. This is normally not true, but
it is possible. For example, as we saw in Section 10.2, the DCL command
SET DEFAULT can be equivalent to the pair of MCR commands ASN
and SET /UIC. When this happens, the intermediate DCL command
task gives one command to MCR, then the next, and so on, until all
requisite MCR commands have finished, or until one of them fails. To
simplify our discussion, let's assume that only a single MCR command
results from a DCL command.

The process used to implement the DCL user interface may seem to
be incredibly convoluted. After all, the command DIR translates into a
simple PIP command; why is an intermediate task needed? Why not
just have the DCL command parser do the translation directly? The
reason is threefold. First, remember the basic reason for the existence
of DCL-to provide a common user interface and to shelter you from

Using a Task 159

the vagaries of MCR. Thus, when you type in DIR to get a directory
listing, you probably do not want to know tbat something called PIP is
doing the work for you. From your viewpoint, it is appropriate that a
task named DIRTnn appears to be doing it all. This reason is not as
frivolous as it might sound-we return to it in tbe next section.

Second, not all functions are as simple as that of getting a directory
listing. In Chapter 19 we will meet various DCL commands that all
begin with the word SHOW; depending on what is to be shown, various
MCR commands or system utilities may be used. All the DCL Show
commands activate an intermediate DCL command task called SHOTnn.
This task, in turn, determines just which MCR command is appropriate.
As an even more complicated example, the Link command activates
the intermediate task LINTnn, which collects all your additional input,
translates it into the appropriate set of input lines for the Task Builder
!either normal or fast), puts these lines into a temporary file on disk,
and finally calls the Task Builder, naming this file as an indirect com­
mand file . Of course, even though these translations are more compli­
cated than the simple directory example, the DCL command parser could
do them all. This brings us to the third and most important reason for
having the intermediate tasks. Without such a division of labor, the
DCL command parser would be enormous and would occupy an exces­
sive amount of memory.

Whatever the reasons behind the manner whereby DCL functions,
you must remember that when you enter a DCL command, a task with
a corresponding name appears to do the work for you. This is important
in the next section when we consider how to abort a system function,
for in order to abort a system function, you need to know how to identify
it. It is also important to understand all this when you use the Show
Active Tasks command !Section 19.5); otherwise you will wonder what
tbat task called SHOTnn is all about.

18.6 Aborting A Task

Any time that you run a task, there is a poss!tiility that it may be de­
sirable for you to prematurely terminate it. For example, you may write
a program to perform the same calculation on many different inputs
and to print a corresponding table of answers. Inspection of the first few
lines of output may show an error in the calculation. In this case, it
would be useless to continue execution and you would like to be able
to stop execution of the task.

RSX, A User's Guide 160

The Abort command is used to terminate a task. This is a privileged
command with the exception that a nonprivileged user can abort a task
that he started. In MCR the form of this command is

MCR: ABO task

where task is the name of the installed task. It does not matter whether
the task is a system utility or your own task. In DCL, however, there
are two different forms of the Abort command-one for a system utility
and one for a 11regular" task.

Let's first consider the aborting of a user ta:sk. It is important to note
once again the distinction between the name of a task and the name of
its task image file. Suppose that you, a nonprivileged user, are logged
in to a video display known to the system as TT2: and that you have
built a task called TESTl.TSK, which you wish to execute. You may
do this, as explained, in either MCR or DCL, via the command

RUN TEST!

If you subsequently decide to abort the program, it might quite naturally
seem sensible to enter a command that names TEST! as the task to be
aborted, e.g.,

ABO TEST!

In both MCR and DCL, this will be rejected since, due to your use of
the Install-Run-Remove command, the task name actually is TT2.

In MCR, the correct command is one that names the task as TT2,

MCRoABO TT2

This distinction is is easy to forget. To simplify this for you, RSX assumes
a default task name of TTnn (where nn is the number of your terminal)
for the Abort command. Thus, in the above example, you could simply

MCR: ABO

and the desired effect would be achieved.
In DCL, the same arguments concerning naming the task to be aborted

apply as well. The same simplified command also exists-that is, you
can enter

DCL: ABO

Using a Task 161

This is translated into an MCR Abort command with no task name,
which, by the above default, causes the desired effect.

In DCL, the more general form of the Abort command for a user task
is

OCL : ABO/ TASK task_name

Here, the task...name is the name of the installed task and the switch
/TASK is necessary to tell DCL that the task is a user and not a system
task.

To sum up, suppose you wish to run and then abort a task of yours
called TEST!. If this task is not installed li.e., you will use the Install­
Run-Remove·form of the Run command), the command sequences are

MCR: RUN TEST!

ABO

DCL o RUN TEST 1

ABO

If, however, you have arranged to have your task installed, the correct
command sequences are

MCRo RUN TESTl

ABO TESTl

DCLo RUN TESTl
ABO/TASK TESTl

The Abort command may also be used to abort system functions.
Suppose you have started a lengthy FORTRAN compilation via the
command

MCRo F77 TEST=TEST

DCLo FOR/F77 TEST

You then remember that you did not make a necessary change to the
source code. Rather than waiting for the compilation to be finished, you
can abort the FORTRAN compiler. !This does not affect the ability of
any other user on the system to use the FORTRAN compiler.) In MCR
the command to do this is

MCRoABO F77

In keeping with the philosophy of DCL, you do not need to know that
the command FOR is translated into an MCR command invoking the
task F77. Instead, you can abort the DCL command itself. In this ex­
ample, the DCL command would be

DCL o ABO FOR

In the previous section, I was rather pedantic about the exact sequence

RSX, A User's Guide 162

of operations that result when you issue a DCL command. From that,
you can see that the DCL command to compile a FORTRAN program
results in a task named FORTnn, which, in tum, activates the F77 task.
The mechanism used in RSX that enables one task to start another is
called spawning. Without going into details, if one task spawns another
and is then aborted, the task that it spawned will also be aborted. Thus,
by aborting the FOR task, you indirectly (but just as effectively) abort
the F77 task. This does not mean that you cannot abon the F77 task
directly from DCL. You can if you want to; the same command that
you would use in MCR will also work in DCL. In this example, once
the DCL task FORTnn spawns F77, it waits until F77 finishes. When
you abort F77, FORTnn is reactivated, much the same as if F77 had
terminated normally, whereupon it exits as well. Normally, if you are
in DCL, it will be easier (and probably more meaningful) for you to abort
the DCL command, and I will assume this in our examples.

In Section 18.3 we discussed how a task name is formed for a system
utility. Just as RSX normally hides that relation from you when you
ruo the task, so too does it hide it from you when you abort the task.
For example, in MCR you need not wonder whether your copy of the
FORTRAN compiler is FORTnn or the prototype ... F77. You can simply
request that F77 be aborted, and RSX will take care of the details. Sim·
ilarly, in DCL you can simply abort FOR without remembering what
your terminal number is so that you can properly identify the task as
FORTnn. Note these simplifications in the examples above.

When a task is aborted, any user output files that are open will not
be properly closed. This may result in a locked file or a file of length
zero (see Section 14.4). After aborting a task, you should use PIP (or its
DCL counterparts) to detect (via a directory listing) and correct (via the
Unlock, End Of File or Delete commands) such conditions.

Note that log out (via the command BYE in MCR or LOG in DCL)
may cause active tasks to be aborted. Specifically, if a nonprivileged
user runs a task immediately and then logs out prior to normal task
completion, the task will be automatically aborted. To avoid this, you
must use a delayed form of the Run command. (The delay can be ar·
bitrarily brief; a one-second delay effectively produces immediate exe­
cution but nonetheless causes the operating system to recognize the
task as being run in delayed rather than immediate mode.) This is dis·
cussed in Section 25.l.

Using a Task 163

19

Other Useful Commands

There are many other commands that we have not yet discussed. Some
of these are an intrinsic part of RSX itself. Others are tasks that should
(but might not) exist on your system. Most of these will not be of any
interest to you, the casual user. You will1 however, find some to be
useful, although they are not as important as the ones that we have
already examined. We discuss these remaining commands in this section.

19.1 GETTING HELP

The Help command allows you to obtain information on various facets
of the RSX operating system. The general form of the command is the
same for both MCR and DCL

HELP topic (s)

where topic is a word or group of words specifying the topic about which
you would like information.

In MCR, all four letters of the word HELP must be used to distinguish
it from the Hello command (HEL)-this is the only exception to the
rule that all MCR commands may be three characters long. In DCL, the
command can be shortened to HEL or even H, since HELLO is not a
command in DCL. You can use the HELP command even if you are not
logged in to the system. In this manner, you can obtain information
about the log-in procedure.

The various messages that may be displayed in response to a Help
command are stored in a file. If the particular topic is found in the file,
the corresponding message is displayed. A rather extensive Help file is

RSX, A User's Guide 164

provided as part of the RSX system. In general, as more recent versions
of RSX have been released, the Help file has been made increasingly
compr_ehensive. Due to the size of this file, it is sometimes removed
from the system. Alternatively, the system manager may edit the Help
file to include more information. The choice of possible Help messages
will depend on the particular installation.

If your RSX system supports both MCR and DCL (version 4.0 or later
of RSX-llM, all versions of RSX-llM-PLUS), it should have separate
Help files for MCR and DCL. The one that you get is automatically
selected for you depending on which CL! you are currently using. Thus,
if you are in DCL and you type

HELP LINK

you will get Help messages for the Link command. If you enter this
same command while in MCR, you will get an ' 'Unknown HELP Qual­
ifier" error message, since MCR does not use LINK as a command name.
Similarly, if you type

HELP RUN

you will, in either MCR or DCL, get information on how to use the
Run command, since this command has the same name in both CL!s.
The information that you get will, however, depend on whether you are
inMCR orDCL.

The topics for the Help command are organized in a tree-like structure.
The manner whereby topics are broken into levels is the same for both
MCR and DCL (the topics themselves differ, but not the tree structure)
so in the discussion below we consider MCR only.

At the most basic level, the topic is blank-i.e., the command is simply

HELP

This will produce the listing of a group of very basic topics with a brief
description of each. Suppose one of these is MORE which, in one version
of the main MCR Help screen, is described as offering information on
system utilities. The command

HELP MORE

will give a brief description of various utilities. One of these is PIP. The
command

HELP PIP

Other Useful Commands 165

will give more detailed information on PIP. This might be a list of
switches, followed by the instruction to enter

HELP PIP switch

for detailed information on a particular switch. In this case, the command

HELP PIP DE

would display information on the use of the Delete switch for PIP. Note
that this last example specifies two topics. In general, you may specify
several topics in a Help command. These must be separated by spaces,
with the first being the primary topic, the next the secondary topic, and
so on.

The Help command allows the Help file to include many levels of
topic specification. Normally, no more than two such levels will be
used. The Help file sometimes is broken into levels and sublevels so
that no individual response is more than 23 lines long. This allows the
entire response and the subsequent prompt to fit on a standard 24 line
video display. This is not always the case, so you should be ready to
use CTRL/S and CTRL/Q !Scroll On/ Off) if you are using a video
terminal.

19.2 Setting and Showing
Terminal Characteristics

A PDP·! I installation under RSX can accommodate a large variety of
terminal types. Since these do not all have the same capabilities, each
terminal in an RSX system has associated with it a list of characteristics
that tell the terminal driver how to work with it. The system manager
initially sets these values. His choices will normally be correct for your
use; you may nonetheless need to change them. The Set and Show com­
mands allow you to alter or display these terminal characteristics.

We will first examine setting terminal characteristics. In its most
general /arm, the command to do this is

MCR: SET / keyword=TTnn ! value

DCL : SET TERMINAL: TTnn : /keyword: value

This form allows you to set characteristics for any terminal las specified
by the terminal number nn) in the system and is accordingly limited
to privileged users only. The non privileged user may al ways set char·

RSX, A User's Guide 166

acteristics for his own terminal. In this case, rather than remembering
the terminal number, you can use the pseudo device identifier TI: in
the MCR command form . In DCL a further simplification is possible;
you need not enter any terminal code at all, and TI: will be assumed.
Thus, the commands to set characteristics for your own terminal are

MCR: SET / keyword=TI : value

DCL: SET ·TERMINAL/ keyword: value

The keyword specifies the particular terminal characteristic to be set .
Note that DCL does not always use the same keywords for the various
terminal characteristics that MCR does. The :value may or may not be
needed depending on the varticular characteristic.

MCR has been criticized as having an awkward and unnatural com­
mand structure. The Set command for terminal characteristics may well
represent its syntactical nadir. Do not be surprised if you cannot re­
member the exact form of this command. On most systems, you will
be able to use the command

HELP SET

to refresh your memory.
Several terminal characteristics might be of use to you. Before pre­

senting these, we should discuss some reasons why it might be necessary
to set the characteristics of your terminal. As noted, default values are
established for all terminal characteristics. Assuming that these have
been properly chosen, why should it be necessary to change them? One
important reason is the use of remote terminals. If your computer in­
stallation includes a dial-up capability (a phone line and a modem) then
you can access it via the telephone network if you have your own ter­
minal and modem. In this case, the modem at the computer end is iden­
tified as being a remote terminal and is assigned a number just as is a
terminal that is directly connected to the computer. Jn actuality, the
terminal corresponding to this number is whatever device is at the other
end of the telephone link and may arbitrarily vary from one use of the
link to another. To accommodate this, RSX assumes tb.at remote ter­
minals are of the most primitive type possible. Specifically, it is assumed
that a remote terminal does not have lower case, is not a video terminal
and can only print 72 characters per line. If you call into the system
from a more sophisticated terminal, you will want to redefine these
characteristics.

Many characteristics are associated with a terminaJ. You wiJI want

Other Useful Commands 167

to change at most a few of them. You will probably be able to change
all of these as described below, but this is not guaranteed, since some
of them are system generation options.

The Lowercase keyword specifies that the terminal is capable of
transmitting and receiving lowercase alphabetic characters. In both MCR
and DCL, this keyword is /LOWER. Similarly, the keyword /NOLOWER
specifies that the terminal does not have this capability. Essentially all
modern terminals offer lowercase; vintage teletypes (such as the type
ASR-33) from the 1960s are examples of terminals that do not. The key­
words for controlling lowercase do not require a value; the Set commands

MCR: SET /LOWER='!'!:
SE'.1' / NOLOWER='I'I:

DCL: si~ TERM/ LOWER
SET TERM/ NOLOWER

By setting your terminal to NO Lowercase, you can force all terminal
input to be in uppercase. When you do so, the terminal driver will convert
any lowercase letters entered into uppercase before being passed on to
the re~t of the system. Most terminals have a Caps Lock key that gives
the same effecti if your terminal does not1 you can use this command
instead.

Thi: Video keyword specifies that the terminal is a video, not a hard­
copy terminal; the Hard-copy keyword specifies the reverse. The sig­
nificance of this distinction lies in the treatment of the Delete character,
as discussed in Section 9.1. In MCR the Video keyword is /CRT (for
Cathode Ray Tube); in DCL it is either /SCOPE or /NOHARD. In MCR
the Hard-copy keyword is /NOCRT; in DCL it is either /NOSCOPE or
/HARD. These keywords do not require a value.

The Width keyword is used to specify the buffer size of the terminal,
which is equivalent to the number of characters that can be printed per
line. In MCR this keyword is /BUF; in DCL it is /WIDTH. The Width
keyword requires a value to specify the buffer size. In MCR this value
is interpreted as being octal unless it is terminated with a period to

signify that it is decimal_ In DCL you do not have to worry about this;
DCL assumes that you are entering a decimal value and appends the
required period for you . A video terminal can normally display up to 80
characters per line; a DECwriter can print up to 132. To set the buffer
size corresponding to a DECwriter, you would use the command

MCR: SET / BUF=TI: 132.

DCL: SET TERM/WIDTH: 132

RSX, A User's Guide 168

Note that in MCR, the command

MCR: SET /BUF=TI: 132

sets the terminal width to 90 since the 132 is not followed by a period;
this represents a common error.

If the number of characters sent to a terminal in one line is greater
than the defined buffer size for that terminal, one of two things can
occur. Either the excess characters will be put on a second line !i.e., the
terminal driver will generate a Carriage Return and Line Feed after filling
the terminal's buffer) or the excess characters will be lost. This is con­
trolled by the wraparound characteristic. In both MCR and DCL the
keyword for this is /WRAP which directs the terminal driver to wrap
excessively long lines around to the next line position on the terminal.
The /NOWRAP keyword is used to disable this option, resulting instead
in the Joss of excess characters. These keywords do not require a value.

Another keyword that you might find useful for setting terminal
characteristics is the Terminal Type keyword. In both MCR and DCL,
the general form of this keyword is /type, where type is the particular
terminal type, such as VTlOO, VT52, or LA36. In a sense, this is a "super"
keyword because it can cause several characteristics to be set at once.
Specifically, it will cause the Video and Width keywords land others)
to be set corresponding to the capabilities of the specified terminal type.
Thus, the Type keyword can decrease the number of commands you
must enter to reconfigure your terminal and is particularly useful if you
are on a remote terminal. Note, however, that it will not affect the low­
ercase characteristic of your terminal, since even if your terminal sup­
ports lowercase characters, you may wish to force it into an uppercase
only mode as discussed above. If you have a VTlOO terminal and you
log in on a remote line, you can reset all the significant terminal char­
acteristics with the two commands

MCR, SET /VTlO<FTI'
SET /LOWE~!'

DCL ' SET TERM/ VTIOO
SET TERM/ LOWER

Setting the terminal type characteristic might be useful if you are
using a VTIOO type terminal, as these terminals offer two possible modes
of operation. (In the mid-1970s, the VT52 was Digital's standard video
terminal. In the late 1970s it was replaced by the VTlOO, which offers
many enhancements. To offer compatibility with software specifically
written for the VT52, the VTlOO was designed with a user-selectable

Other Useful Commands 169

mode of operation wherein it acts as though it were a VT52.) If you are
using a VTlOO and you want it to imitate a VT52, you must do two
things. First, you must change what the terminal thinks it is (this is a
hardware function, accomplished by using the Setup feature of the
VTlOO). Second, you must change what the operating system thinks the
terminal is. This is done using the keyword /VT52, as in the command

MCR: SET /VT52=TI:

DCL: SET TERM/VT52

In the early 1980s, the VT200 terminal series was released as an up­
wards compatible enhancement of the VTlOO series. With version 4.2
of RSX-llM, the Set Terminal Type command was expanded to include
keywords for the various models in this series. Currently, there are three
models in the VT200 series: the VT200, VT240, and VT241. The VT240
and VT241 offer graphics capabilities as well all the normal features of
the VT200. As RSX does not use any of these graphics capabilities (a
specific application might, but the operating system itself does not), it
does not need to distinguish among these three models. Thus, RSX sim­
ply identifies a generic VT200 series terminal; this is done with the
keyword /VT2XX. To declare that you are using one of the VT200 series
terminals, you use the command

MCR: SET /VT2XX=TI:

DCL: SET TERM/VT2XX

Note that the keyword is /VT2XX. The actual terminal type, VT200,
VT240, or VT241, is not a valid keyword and will not be recognized.

One last terminal characteristic of interest is the (No) Broadcast option.
Normally, any message broadcast to you by another user will appear on
your terminal, no matter what you are doing at the time. (The Broadcast
command is discussed in Section 19.4.) If you wish to prevent this, you
may set your terminal to No Broadcast. The keyword for this is the
same for both MCR and DCL; it is /NOBRO. If you later wish to reenable
the broadcast capability, you use the keyword /BRO. These commands
were first made available in version 4.0 of RSX-l!M.

Besides setting characteristics for your own terminal, you may want
to examine the characteristics of other terminals. The commands to do
this are generically known as Show commands although their underlying
MCR implementations are effected in a variety of ways. There are two
basic forms of the Show command.

RSX, A User's Guide 170

The first shows all terminals that have a certain characteristic. This
command is

MCR: SET / keyword

DCL : SHOW TERMINAL/ keyword

Note that in MCR the syntax is particularly strange. By not including
a terminal identifier in the Set command, you are directing MCR to
show rather than set characteristics. The keyword may be any that may
be set with the Set command. As an example, the command

MCR: SET I CRT

DCL : SHOW TERM/ SCOPE

will list all terminals in the PDP-11 configuration that are video ter­
minals. Normally, this is not very useful. There is only one keyword
that you may want to use with this command. This is the Privileged
keyword, which is /PRIV in both MCR and DCL. llf you are.a privileged
user, you can also use this keyword to tum the privileged status of a
terminal on or off.) There may be times when you need the assistance
of a privileged user; by using the command

MCR: SET / PRIV

DCL: SHOW TERM / PRIV

you can determine which (if any) terminals are currently privileged.
The other useful Show command is the one that shows all the char­

acteristics of your terminal. This command was made available in ver­
sion 4.0 of RSX-llM. It produces a display of the status of every
characteristic of your terminal. These include all those just discussed
under the Set command as well as many others. As all of the terminal
characteristics are controllable and individually displayable via the Set
command in MCR, you might expect that this master display would
also be obtainable via a form of the Set command. It is not . In MCR,
the command is

MCR : DEV Tl :

This is a special form of the Devices command, which we discuss in
Section 19.8. In DCL the command syntax is more naturaf. It is the
Show command without any keywords,

DCL: SHOW TERMI NAL

Other Useful Commands 171

19.3 Who's on the System?

At times !such as we discuss in the next section} it is useful to know
who else is on the system-that is, who else is currently logged in to a
terminal. The Show Users command enables you to find this out. It is

MCR: DEV /LOG

DCL: SHOW USERS

In MCR, this command is a special form of the Devices command which
provides information about a specified class of devices in the system­
here, the class is specified to be Jogged-in terminals. In DCL, the more
appropriate command name SHOW USERS is used. The Show Users
command requests a listing Ion your terminal) of all terminals that are
currently being used, along with the UIC of each user. You can use this
to get information about another user or terminal. If, for example, you
need to consnlt with a co-worker whose UIC is 1150,1], you can use this
command, examine the listing, and see if he is logged in to any of the
terminals. If you are working on a remote terminal, this ability can be·
invaluable. Alternatively, if you are on one type of terminal [for instance,
video) and wish to switch to another type [hard-copy), you can use this
command to check whether any of the appropriate terminals lif you
know their numbers} are not being used. If your system has terminals
that are not located close together, this is easier than walking all over
the place.

The Show Users command is somewhat of a misnomer. It does show
which terminals are being used, but it does not always display the log­
in UIC, which is what really identifies a user. Rather, in RSX-llM, it
displays only the protection UIC of the user. [We discussed the concepts
of protection UIC and default UIC in Section 14.5.)For a nonprivileged
user, the protection UIC is the same as the log-in UIC. For a privileged
user, it is whatever his default UIC happens to be. In RSX-llM·PLUS,
for any user, the Show Users command shows both the default and the
log-in UIC. Suppose that your system manager logs in to the system on
TT6: usingUIC [2,1] and then changes his UIC to [351,ll]. In RSX-llM,
he will appear in the list of system users as

TT6: (351 , 11]

In RSX-llM-PLUS he will be listed as

TT6: [351, 11] [2 , l]

RSX, A User's Guide 172

If the RSX-llM-PLUS system supports Resource Accounting (this is a
system generation option), some additional information will be given.

If your system does not support multiuser protection (Chapter 4), there
are no separate log-in, protection, and default U!Cs. Instead, each user
simply has a current UIC, which corresponds to his default directory.
(This is only possible on RSX-llM, since both RSX-llM-PLUS and Mi­
cro/RSX always include multiuser protection. Thus, named directories
are not possible and the default directory will always be in the same
form as a UIC.J This current UIC is all that will be shown by the Show
Users command.

The utility WHO offers another way to find out who is on your system.
This is not a part of RSX, thus it might not exist on your system. WHO
is an enhancement to RSX that is available frorn DECUS. It combines
the functions of the Show Users and the Active Tasks commands. It
shows you each user who is logged in as well as which (if any) tasks are
currently active on his terminal. WHO is not an intrinsic part of the
operating system. Assuming that it has been installed as a system func­
tion (under the task name ... WHO), you can simply enter its name as a
command to run it, if you are in MCR. If you are in DCL, you can run
it by prefacing this MCR command form with the command MCR,

DCL:MCR WHO

Alternatively, if the task image file for WHO is in the standard user
area for RSX system tasks, you can use a Run command and identify
WHO as a system function by prefacing its name with a dollar sign,

DCL: RUN $WHO

If WHO exists on your system, you will find it useful . Check with your
system manager concerning its availability.

19.4 Talking to Another User

The Broadcast command can be used to send a message to another user.
The form of this command is the same for both MCR and DCL:

BRO TTnn: message

This command causes the specified m essage to be printed on terminal
number nn, preceded by a header stating that the message was sent via
the Broadcast command and from which terminal it was sent. The m es-

Other Useful Commands 173

sage itself cannot be Iilore than 80 characters long and cannot continue
past the end of the line-the carriage return acts as a message terminator.

When using the Broadcast command, it is important to understand
just how it works. To this end, we must discuss the terminal driver a
little more fully. Normally, when a program wishes to write something
to a. terminal,' a conventional Write command is issued to t_he terminal
driver. The driver first checks as to whether the specified terminal is
busy or not. If the terminal is not busy, the write is performed; if the
terminal is busy, the Write command is rejected.

Another type of write, known as a break-through write, exists. This
is a system generation option; it is typically found on all except very
small RSX systems. The break-through write does just what its name
implies: it breaks through whatever the recipient terminal is doing. Es­
sentially, when a program issues a Break-through Write command, the
terminal driver does the write immediately, whether the specified ter­
minal is busy or not.

If your system supports break-through writes, Broadcast will always
use them. In this case, whenever you use the Broadcast command, even
if you are not privileged, your message will appear on the recipient's
terminal, regardless of what the other user is doing, unless he has spe­
cifically disabled broadcasts for his terminal. This could be very annoying
because it might affect h'!rd-copy output or cause confusion during a
video edit. It will not, however, be catastrophic, as it will not interfere
with the task running on the other terminal, even if that task is doing
I/O.

On a system without the Break-tjirough Write capability, Broadcast
must use a conventional Write command. In this case, if the terminal
to be written to is busy, BRO will tell you that it is unable to send the
message. If this happens, you will have to wait until the terminal is no
longer busy before you can send your message. By busy, I mean that
some task has "attached" the terminal. I do not want to define this
precisely. A task can use a terminal without attaching it; if so, the ter­
minal driver will not consider the terminal to be busy. For example, if
MCR is waiting for a command from a user, that terminal is not busy.

Dile to its interaction with other users, it is best to use the Broadcast
command in conjunction with the Show Users and Active Tasks com­
mands. The Show Users command (previous section) can be used to find
out who is currently using which terminal. This tells you to whom you
can broadcast. The Active Tasks command (next section) can be used
to find out what each user is doing. This tells you whether it is a good
time to send a message to a particular terminal or not. Of course1 if

RSX, A User's Guide 174

someone uses Broadcast to send you a message, you should feel free to
use Broadcast to send a reply without first checking.

Just as a broadcast from you can interfere with someone else, so too
can a broadcast from someone else interfere with you. You can prevent
this by using the Set No Broadcast command, as described in Section
19.2. This command was introduced with version 4.0 of RSX-llM.

Broadcast offers a rather primitive capability. The limitation of the
message to one line means that long messages must be sent via multiple
broadcasts, each of which prints a heading on the recipient's terminal.
On older versions of RSX, lowercase letters are forced into uppercase.
Nonetheless, Broadcast can be very useful for short communications
and is often invaluable if you are working on a remote terminal.

19.5 Listing Active Tasks

The Active Tasks command requests a listing of currently active tasks.
This consists simply of the name of each active task. Any further in­
formation about a particular task must be obtained by another means,
such as the Task Status command (discussed in the next section).

The basic form of the Active Tasks command, which is

DCL: SHOW TASKS/ ACTIVE

lists only those tasks associated with your terminal. U you are not doing
anything, only two tasks will be shown as being active; these are part
of the operating system itelf. In MCR these will be called MCR ... and
... MCR, which are the primary and secondary command processors. In
DCL you will see MCR ... and a task called SHOTnn. The first of these
illustrates that even though you are working in DCL, MCR is waiting
there, behind the scenes, and doing the actual work. The second of these
is the DCL task that processes the Show command. As explained in
Section 18.5, it is one example of the formation of special tasks to im­
plement the DCL interface. In this example, the SHO task forms the
corresponding ACT command and passes it to MCR. It then waits until
the ACT command finishes successfully (it may need to give you an
error message) and is thus active along with MCR ... when the Active
Tasks command actually runs.

The Active Tasks command is often used out of impatience. Suppose,
for example, you have started a task build and a minute later you have

Other Useful Commands 175

not yet received a prompt from your CL! indicating completion of this
command. Perhaps the system is unusually slow, or perhaps something
has gone wrong. By using the Active Tasks command, you can determine
whether the Task Builder is still active. Remember that if you are in
DCL, you should look for the MCR task name, which in this example
would be TKB or F"TB.

Two variants of the Active Tasks command also are of interest. The
command

MCR; ACT I ALL

DCL' SHOW TASKS I ACT I ALL

lists all active tasks in the system. This may be used to list tasks running
in background (see Section 25.1) or to get a feeling for how busy the
system is as a whole.

The other variant is

MCR; ACT / TERM=TTnn:

DCL; SHOW TASKS / ACT:TTnn:

where on is the number of a particular terminal. This command lists
those active tasks associated with the specified terminal. You can use
it to find out what another user is doing. If the user is at command level
(i.e., his CL! has given him a prompt and is awaiting further input), the
list of active tasks for his terminal will be empty. This command is
particularly useful before broadcasting a message (see the previous sec­
tion) to another user.

19.6 Displaying Task Status

You can use the Active Tasks command (see the previous section) to
obtain a listing of the names of active tasks. To obtain detailed infor­
mation about the status of a particular active task, you must use another
command. This information is most likely to be of interest if you have
a task running in background.

You can use two virtually identical commands for this purpose. You
use the Active Task List command only for a task that is currently active.
The form of this command is

MCR: ATL task_name

DCL : SHOW TASK: task_name

RSX, A User's Guide 176

If the specified task is not active, an error message will be displayed
stating that the task is not in the system. You can use the Installed Task
List command for any installed task. Its form is

MCR: TAL task_name

DCL : SHOW TASK: task_name/INS/FULL

If the specified task is installed but not active, its list of status codes
will include -EXE for 1'not in execution. 11 For an active task, the response
to an Installed Task List command will be the same as that to an Active
Task List command. Note that you must specify a system task by its
exact name (see Section 18.3). For example, to examine the status of
PIP, you must use either the task name ... PIP or PIPTnn.

The status information listed by either command appears on four lines.
Some of this will not be of interest to you and is not discussed here.
The first line contains the task name and priority. The second line con­
tains the status flags. The last two lines contain the event flags, the
processor Status word, and the registers, all of which are in octal format.

There are many possible status flags. These are all three- or four-letter
cpdes, some preceded by a minus sign. The ones most likely to be of
interest are those explaining why the task is not running. The flag CKP
indicates that the task has been checkpointed, while the flag OUT in­
dicates that the task is out of memory, that is, it has been removed from
memory. These two conditions are virtually synonymous; rarely will
one flag be shown without the other. Through the process of check­
pointing, tasks are moved between memory and disk so that limited
m emory resources can be shared among many different tasks. This occurs
routinely as part of multiple-task scheduling under RSX and should not
be a source of alarm. If the task is OUT, then the register contents will
not be displayed.

The flag WFR indicates that the task is in a wait-for condition. This
means that the task cannot continue execution until the condition for
which it is waiting has been satisfied. The most common condition
here is the completion of an 1/0 request. The TIO flag represents a spe­
cific wait-for condition; it specifies that the task is waiting for input
from the user's terminal (TI:). Since a task's attempt to get input from
TI: need not be preceded by a prompt to the user, it is possible to have
a task hang in this state. The TIO flag is useful for diagnosing this
condition.

The flags STP and BLK indicate that the task is stopped or blocked.
These two conditions are identical; older versions of RSX use the ter-

Other Useful Commands 177

minology stop/unstop. With version 4.0 of RSX-I IM, these names were
changed to block/unblock. When a task is blocked (stopped) it cannot
continue to execute until it is unblocked (unstopped). Blocking a task
is not the same as aborting it; as long as it is not time-sensitive, an
active task can be blocked and subsequently unblocked with no impact
on its results. Various system tasks will often be blocked, but your own
tasks normally should never be in this state. If you find your task un­
expectedly blocked or stopped, ask your system manager to figure out
why.

The event flags (EFLG in the third line of status information) are
available to you and normally are used for advanced applications in­
volving multiple-task coordination.They may be also used by your task
as a means of displaying up to 24 bits of status information, such as the
number of times a main loop in your program has been executed. To
do this, you must know how to use Executive References, which are
outside the scope of this book.

The remainder of the task status information ·displayed is a snapshot
of the contents of the processor registers. This is unlikely to be of interest
unless you have to do some complicated debugging.

19.7 Displaying System Status
Most RSX installations include a system task that dynamically portrays
the status of the entire system. Although of greatest value to the system
manager, it is also available to you. This task is officially known as
RMDEMO and is installed under the name RMD. RMD is the Resource
Monitor Demonstration program. RMD is intended for use from a video
terminal, although you can use it from a hardcopy terminal. From a
video terminal, it offers a continuously updated picture of some aspect
of the overall system status. From a hard-copy terminal, it offers a single
snapshot of the same system parameters.

Under earlier versions of RSX, RMD offered only one mode of oper­
ation, a memory display. In this, a display of the total available memory
space along with the tasks currently occupying memory is shown. This
not only depicts which tasks are currently in memory, but also shows
how much memory each occupies aod how much (if any) memory is
available for other tasks. Other status information, such as the currently
executing task, the time of day, the amount of free disk space, and the
number and total size of active tasks in and out of memory, also is

RSX, A User's Guide 178

given. By watching RMD on a video terminal, you can "see" tasks being
loaded into or swapped out of memory.

With version 4.0 of RSX-llM, two other capabilities were added to

RMD. An active task display offers a continuously updated list of all
currently active tasks, along with a brief status display for each. An
individual task display offers a continuously updated display of detailed
status information for one particular task.

To run the RMDEMO program, you need merely enter the command

MCR:RMD

DCL: SHOW MEMORY

The default mode (mem ory map) will be assumed. If your version of
RSX supports the additional RMD capabili ties, you can switch from one
display to another by entering a single character via your terminal. The
choices are:

H = Help: Display options available
M = Memory Map
A = Active Task List
T = Individual Task Display
CTRL/Z = Exit

Note that once RMD is running, it does not matter whether you started
in MCR or DCL. Thus, the above commands are the same regardless of
your CLI.

You may also start RMD in one of the other modes. To go immediately
to the Active Task List display, you use the command

MCR: RMD A

DCL : SHOW TASKS/DYNAMI C

To go immediately to the Individual T ask Display, you use thi s
command

MCR: RMD T, T=task_name

DCL : SHOW TASK: task_name/DYNAMIC

RMDEMO is perhaps most useful as a system diagnosis tool. It is
nonetheless extremely useful as a means of monitoring a single task,
which might be of special value to you for debugging a program. A picture
is worth a thousand words-the easiest way to understand RMD's value
is to use it.

Other Useful Commands 179

19.8 Obtaining Device Information

The Show Devices command is used to get information concerning the
various devices in the computer system. The most basic form of this
command is simply

DCL: SHOW DEVICES

This results in a listing of every device along with an extremely brief
status report on each. This command is normally not very useful unless
you forget the physical device code for a particular peripheral (is the
tape drive a type MM: or a type MT: device?Ji as it reports on every
device in the system. ~

You can also use the Show Devices command to get information on
all devices of a specified type

MCR: DEV dd:

DCL: SHOW DEVICES dd:

or on just one particular device

MCR: DEV ddnn:

DCL: SHOW DEVICES ddnn:

Earlier versions of RSX allow an alternate form of the DCL command,

DCL: SHOW DEVICES/ ddnn:

but the form without the I is now preferred. In these commands, dd: is
the device type, and ddnn: is the complete device specifier. Note that
when you ask for all devices of a given type, the dd device type is followed
by a colon. Thus, DB: means all disk drives of type DB. In other RSX
commands, this would be an abbreviation for DBO:. For example, suppose
you wish to copy some files onto a floppy diskette. For this operation,
you need a type DY drive. To find out if one is available, you could
walk to the computer room and look. Being lazy, you instead enter the
command

and let the system tell you.
We have already met a special case of the Show Devices command

in Section 19.2. The command

RSX, A User's Guide 180

MCR: DEV Tl :

displays the status of the device Tl:, which is your terminal. In DCL
you could enter this command as

DCL: SHOW DEVICES / TI :

but the special command SHOW TERMINAL is more convenient.

19.9 What Time Is It?

An RSX system measures the time of day. (This is not surprising, since
RSX originally was intended for real-time processing applications.) The
Time command requests that the current time of day and date be dis­
played on your terminal. The form of this command is simply

MCR:TIM

DCL: SHOW TIME

Other Useful Commands 181

Part III Advanced Techniques

In this, the third and final part of our book. we discuss some of the
more advanced techniques available with RSX. The distinction between
the topics discussed here and those discussed in parts I and II cannot
be sharp. By "advanced" I mean that you do not have to know how to
use these techniques to do your work. In parts I and II my intent was
to present all that you need to know to create, compile, and run a pro­
gram. Jn this part, we discuss techniques that, although not necessary
for casual use, will make your work easier. There is bound to be some
overlap between these categories, and you may feel that I have put
certain topics in one part of this book when they should have been in
the other. So be it.

Given my rationale for distinguishing basic from advanced tech ­
niques, it must be noted that advanced does not mean more compli­
cated. Some of the topics in part II, such as the use of the Task Builder
and the distinction between tasks and task images, are likely to strike
you as being more confusing than some of th e techniques we consider
here. Thus, I urge you not to be afraid to explore these topics, although
it is probably best that you become relatively comfortable with what
you have already studied before going fur ther. Too much at once is no
fun, and it is my hope that mastering RSX will be fun for you.

20

Indirect Command Files

The ability to process indirect commands is one of the more powerful
features of the RSX operating system. Once you have become familiar
with the basics of using RSX, the use of indirect command files will
probably be the first advanced technique you will use. Once you realize
how much it can simplify routine operations, you will consider it to be
part of your repertoire of basic techniques . Nonetheless, it will un­
doubtediy be a while before you can fully exploit the capabilities offered
by indirect command files .

In general, an indirect command file is a file containing a sequence
of commands. You can direct a task to read commands from this file
rather than from your terminal. In essence, a command to process an
indirect command file causes the source of further command input to
be switched from your terminal to the file. When the end of the command
file is reached, command input is returned to its norm31 source, i.e.

1

your terminal. The commands taken from the file have the same effect
as if you entered them directly; the only difference lies in the indirect
(via the command file) means by which they are entered.

You can use indirect command files at two different levels. At the
lower level, you enter the command to take further input from the file
Wan individual task, typically a system utility. Thus, the commands
that can be in the file are limited to those that are acceptable to the
particular task. This form of usage is available only from MCR. At the
higher level, you enter the command to take further input from the file
to your CL!. In this case, the contents of the file are processed by a
special system utility known as the Indirect Command Processor. At
the lower level of usage, the file is known as an indirect task command
file; at the higher level, it is known as an indirect CL! command file.

Indirect Command Files 185

20.1 Indirect Task Command Files

The use of an indirect task command file represents the simplest way
to use command files. In it, all the commands in the indirect command
file are given to one task. This type of command file is most commonly
used when a long command (or sequence of commands) must be given
to a task several times. Note that this does not eliminate the need to
enter the command. Instead, it offers a shortened means of doing so. If
the full command is itself very short, little is saved by putting it in a
command file.

Before going any further, note that you can use indirect task command
files only if you are in MCR. This is not a limitation imposed by the
structure of RSX; it simply is a limitation in the implementation of
DCL. Due to the basic structure of DCL-a shell between you and the
actual RSX tasks-you will have fewer opportunities to benefit from
using an indirect command file at the task level than you will in MCR.
Thus, this feature has not been provided in DCL. If you are using DCL,
you must use an indirect command file at the CL! level, where your
commands are given directly to DCL. (We discuss this in the next sec­
tion.) Since the material in this section applies only to MCR usage, 1
will consider only MCR commands in our examples. If you are a DCL
user, you should read this section anyway. It will provide useful back­
ground for the remainder of this chapter on indirect command files, and
it will illustrate some capabilities that you may wish to exploit, even
if you have to use MCR to do so.

The basic form of an indirect command to a task in MCR is

tsk @file_specifier

Here, tsk is the name of the task. It must be installed and will typically
be a system utility. The at-sign(@) signifies to the task that whatever
follows is not a command but should be used as the name of a command
file. The file specifier follows all the normal rules for specifying a file;
if it does not include a file type, a default type of CMD is used.

Your most common use of an indirect task command file will probably
be with the Task Builder. This is simply because the Task Builder typ­
ically requires more complicated commands than do the other system
utilities you are likely to use. Let's use it for a few examples of how
command files are used at the task level.

Let's consider a very simple example first. Suppose you have compiled
a main program in a file named TEST, which requires subroutines in a

RSX, A User's Guide 186

file named MATH!. From these you wish to make a task image file
named TESTl. (Assume that these files all have standard file types so
that the file type need not be specified.) You can build the task via a
one-line command to the Fast Task Builder :

FTB TESTl=TEST, MATH!

Now, suppose you make a file named T.CMD that contains the single
line

TESTl=TEST , MA1111

You can then build the task via the command

FTB @T

You might argue that, in this example, the savings you obtain by typing
@T rather than the actual command line are not significant and do not
justify the creation of the file T.CMD. This may be so. Let's move on
to a slightly more complicated example.

Suppose now that your task uses the tape drive (MM:), which should
be assigned to unit 7. To build the task, you have to use a multiple-line
command to specify these options. You could do use this in the con­
ventional manner-that is, after invoking the Fast Task Builder via the
command

you could type the following set of command lines to FTB:

TESTi=TEST, MATHl
I
UNITS=7
ASG=MM:
II

Alternative)y, if you put these five lines into the file T.CMD, you could
again effect the task build via the simple command

FTB @T

In this case, it is clear that entering the Task Builder command via a
command file offers a significant savings.

Continuing with this example, it is of course true that there is no
reason to use the comma.nd file if you are going to build the task TEST l

Indirect Command Files 187

only once. After all, by the time you enter the command lines into the
command file (via an editor), you could have entered them directly to
FTB. The decision here must be based on how many times you are going
to build the task, along with the complexity of the build procedure itself.

It is often the case that you will underestimate the number of times
you will repeat a task build. A typical example of how things do not
work properly the first time might go like this. You have just finished
writing the main program TEST; the subroutines in MATH! have been
previously written and tested. You want to build the task TEST! and
run it a few times to get some answers. The first time you run it, you
get a divide-by-zero error. You track this down to a mistyped variable
name in TEST; you fix it, recompile, and rebuild. The program now
runs but gives ridiculous answers. You again figure out why, edit, re­
compile, and rebuild. This time the answers seem correct, but since you
want to put them into a report, you decide to print them out in a slightly
different manner. This is yet another change and requires yet another
build. By the time you are done, you will have built many versions of
TEST! .TSK, each requiring exactly the same set of commands. This is
in no way an exaggeration-it is a normal part of the program devel­
opment process and happens even with short and simple programs.

So far, I have confined our attention to the Task Builder. As noted
earlier, indirect command files may be used with many tasks. (Con­
ceptually, any task could take its command input from a command file.
In actuality, some additional program logic must be included to offer
this capability. Under RSX, most system functions have been designed
to accept indirect command files. You should assume that any system
function that you are likely to use offers this capability.) As another
example, we will consider the use of PIP for cleaning up your directory.

When you are developing a program, the recurrent process of editing,
compiling, building, and running can lead to an accumulation of many
versions of source, object, task image, and possibly list, map, and data
files. It is good practice to clean these up periodically, especially if your
disk is relatively full. One common approach is to purge all object and
task image files; delete all list and map files; and subsequently purge
or delete source and data files on a selective basis. Since all of these are
file maintenance activities offered by PIP, you can do this entire sequence
via a single indirect task command file. First, you make the command
file (call it CLEANUP.CMD) containing the following commands:

·OBJ,· TSK/ PU
*· LST; *•*.MAP; */DE
*.FfN; *•*·DAT; *1LI

RSX, A User's Guide 188

Then, when you feel that you have accumulated too many old versions
of files in your directory, you can clean the directory up via the command

PIP @cLEANUP

In Section 11 .2 we discussed the various means of invoking a system
function. Briefly, if tsk is an installed system function, it may be invoked
in two ways. The single-line command form is:

tsk command

In this case, MCR starts the task. The task takes and processes the com­
mand, then returns control to MCR. The multiple-line command form
is

tsk

In this case, MCR similarly starts the task, but when the task fails to
find a command, it continues to accept commands from your terminal.
In this case, the task does not return control to MCR until specifically
commanded to do so.

When command files are used, a similar set of rules is followed. In­
voking a system function via a command of the form

tsk @command file

represents a cross between the single· and multiple-line commands dis·
cussed above. It is a multiple-line command in that, as in our examples,
more than one line of actual command can be given to the task simply
by having multiple lines in the command file. It is, however, a single·
line command in that, upon detecting the end of the command file, the
task returns control to MCR. Note that the commands taken from the
file are not echoed on your terminal.

To illustrate this, we consider again our example of cleaning up a
directory. If you use the command file CLEANUP, this is what will
appear on your terminal:

MCR>PIP @CLEANUP

directory listing for
* . FTN: * and *.DAT;*

MCR>

Indirect Command Files 189

If you effect exactly the same commands by typing them directly into
PIP, this is what will appear on your terminal:

MCR>PIP
PIP>*. OBJ,*· TSK/PU
PIP> *. LST; * •*· MAP; */DE
PIP>*. FTN; *•*'DAT; */LI

directory listing

PIP>CTRL/Z
MCR>

A command file may also be used as part of a multiple-line command.
You do this via a sequence of commands of the form:

MCR> tsk
tsk> ... individual command lines (optional)
tsk>@cOmJJand file
tsk> ... individual command lines (optional)
tsk>command terminator (optional)
MCR>

The invocation of the task puts it into the multiple-line command mode.
You can then enter individual command lines. When you enter the line
@command file, the task takes the contents of the file as a continuation
of command input. The significant point is that upon detection of the
end of the command file, control does not automatically return to MCR,
and you can continue to enter command lines. Concomitantly, it is your
responsibility to enter the appropriate command terminator. (If the
command file includes a command terminator, control will revert di­
rectly to MCR.)

This form of using a command file is particularly useful with the
Task Builder. For example, suppose you are writing a set of interrelated
main programs that are to be made into separate tasks. All these tasks
will require the use of tape drive 2 (MM2:), which must be assigned to
unit 3. Each program uses special subroutines for reading or writing to
the tape, which are in an object library named TAPEIO.OLB. To support
the various task builds required, you would make a file containing a
partial set of Task Builder commands. Specifically, you might call this
file TAPE.CMD; it wouid contain the following commands

RSX, A User's Guide 190

TAPEIO/ LB
I
ASG=MM2: 3
II

To make a task image called PROCl from the main program PROCESS!,
you could use the command file as follows:

FTB>PROCl=PROCESSl
FTB>@TAPE

Similarly, to make a task image called PROC2 with a map called PROC2
from the main program PROCESS2, your command sequence would be:

MCR>FTB

FTB>PROC2 , PROC2=PROCESS2
FTB>@TAPE

In these examples, the command file contains the special command //1

which terminates input to the Task Builder_ If it did not, you would be
able to follow the command @TAPE with the specification of further
options, but you would eventually have to enter the termination com­
mand yourself.

A special feature of the Task Builder is useful for forming complicated
command files. When you are entering commands to the Task Builder,
be it directly or indirectly, you can enter comments. Any line beginning
with a semicolon will be treated by both TKB and FTB as a comment­
that is, it will be ignored. This is useful for documenting task build
command files. For example, you could rewrite the file TAPE.CMD as

; this is the . OLB file containing IO routines for mag-tape:
TAPEIOI LB
I
; tape drive assumed to be logical unit 3!
ASG=MM2: 3

II

The last important point concerning indirect task command files is
that they can be nested-that is, one command file can refer to another.
Consider again our example of building PROCl. The use of the command
file TAPE.CMD simplified the specification of the tape subroutines and

Indirect Command Files 191

options. The whole procedure can be simplified further by creating an­
other command file containing the commands

PROCl=PROCESSl
@TAPE

If this file is called PROC!.CMD, the entire task build can be done with
the single-line command

FTB @PROCl

In this example, PROC! is an indirect command file at the first level
and TAPE is at the second level. The degree to which nesting is permitted
depends on the particular system utility. The Task Builder (both FTB
and TKB) and PIP accept two levels of command files. In general, it is
unlikely that you will want to nest command files to a depth greater
than that allowed.

20.2 Indirect CLI Command Files

The use of indirect command files at the CLI level offers you an even
more powerful capability than the task level usage just discussed. This
is partially because your Command Line Interpreter (MCR or DCL) itself
offers more capabilities than does an individual task, but primarily be­
cause this form of usage offers the additional capability of passing di­
rectives to the Indirect Command Processor. We will discuss this latter
capability in the next section; here, we will consider simpler means of
using CLI command files.

If the special directives are not used, the use of a command file at the
CLI level is conceptually identical to that at the task level. The CLI is
itself a task. Thus, the giving of commands to the CLI via a command
file may be thoug]it of as a special example of the general concept of
giving commands to any task via an indirect command file. What is
special is that the commands given to the CLI typically request other
tasks to be run. Thus, these commands to activate a task are at a hig]ier
level than the commands that actually tell the task what to do.

The concepts of using an indirect CLI command file (with or without
the special directives discussed in the next section) are the same whether
you are in MCR or DCL. If you are using MCR, it is probably more
natural to refer to these files as indirect MCR command files; similarly,
in DCL you would prefer to call them indirect DCL command files.

RSX, A User's Guide 192

When we discuss a specific example, I may use one of these alternate
designations to stress which CL! is being used.

Let's consider an example. Suppose you are writing a program in
MACR0-11 to copy data files. The source file for the main program is
COPY.MAC; special subroutines are in an object library UTILITIES.OLB.
After each major change to the source code, you want to assemble (mak­
ing a listing file), task build, and then purge all associated files. A re­
petitive sequence of operations such as this is an obvious candidate for
the use of an indirect CL! command file.

Let's first examine how to do this in MCR. If you interact directly
with MCR, your commands will be

MCR>MAC COPY, COPY I SP=COPY
MCR>FTB COPY=COPY, UTILITIES/LB
MCR>PIP COPY. */PU

This sequence of commands can also be entered via an indirect MCR
command fil e. First, you make a file (call it COPY.CMD) containing
the following three lines:

MAC COPY, COPY/ SP=COPY
FTB COPY=COPY, UTILITIES/ LB

PIP COPY.* / PU

Then, when you are at MCR level, the single command

MCR>@COPY

will suffice. When you enter this command, this is what you will see
on your terminal:

MCR>@COPY
> MAC COPY , COPY I SP=COPY
> FTB COPY=COPY, UTILITIES/LB
> PIP COPY. */PU
@ <EOF>

If you are in DCL, the process is conceptually identical. If you interact
directly with DCL, your commands will be

DCL>MACRO /LI ST COPY
DCL>LINK/FAST COPY, UTILITIES / LIB

DCL> PURGE COPY. *

Indirect Command Files 193

You can make a file (you can again call it COPY.CMD) containing the
following three lines

MACRO / LIST COPY
LINK/ FAST COPY, UTILITIES/LIB

PURGE COPY. *
If you make such a file, you can perform the entire process by entering
the command

DCL>@COPY

when you are at DCL level. The only difference between using an indirect
MCR command file and an indirect DCL command file is that one con­
tains MCR commands and the other contains DCL commands.

As implied by this example, the syntax for using an indirect command
file at the CL! level is the same as that at the task level. The command
that you give to the CLI consists of an at-sign(@) followed by the name
of a command file. If a file type is not specified, it is taken by default
to be CMD.

It is useful to briefly discuss just what happens when you use an in­
direct CL! command file. Continuing with our example above, in re­
sponse to the CL! prompt, you enter the command

@cOPY

The fact that the first character is an at-sign (@) signifies that the re­
mainder of the line specifies a command file. A special system utility
is activated by MCR (even if you are in DCL) to process the contents
of the command file; this utility is known as the Indirect Command
Processor. As with other system utilities, its task name is thtee periods
followed by a three-character abbreviation. This abbreviation is AT.­
that is, the utility is named after the at-sign used to invoke it. The In­
direct Command Processor then processes the file COPY.CMD, one line
at a time.

The Indirect Command Processor expects each line of an indirect CL!
command file to be either a complete CL! command or a special directive
(see the next section). By a complete CL! command, I mean that if you
are in MCR, an MCR command is expected, and if you are in DCL, a
DCL command is expected. As we discussed in Section 7.3, when you
are interacting directly with your CLI, you can use a command from
another CL! by putting the name of that CL! in front of the command.
You can also do this at the indirect command level. For example, in an

RSX, A User's Guide 194

indirect DCL command file, you could have a line beginning with MCR
followed by any valid MCR command.

Returning to our example above, in the MCR form, the first line is

MAC COPY, COPY/ SP=COPY

The Indirect Command Processor determines that this is a command
requesting the MACRO-Assembler. It activates MAC, giving it the rest
of the command line. It then waits until MAC is finished, whereupon
it processes the second line of the file. This causes control to be passed
to FTB. The Indirect Command Processor follows this procedure until
there are no more lines remaining in the indirect CLI command file,
whereupon it quits, returning control to your CL!.

Two important points related to this process concern the means of
aborting the sequence of commands started by an indirect command
and the restriction.to single-line commands in a command file.

To understand the subtleties associated with aborting a sequence of
indirect commands, you must first realize that when an indirect CL!
command file is being processed, you will typically have several tasks
active at your terminal. In MCR there will normally be two tasks. One
will be the Indirect Command Processor IAT.J and the other the MCR
task appropriate to the particular command line. In our example above,
during the assembly of file COPY.MAC, an active task listing would
show both ... AT. and ... MAC. Similarly, during the task build both ... AT.
and ... FTB would be active. II have shown the prototype task names
here; as noted in Section 18.3, the names might be AT.Ton, MACTnn,
and so on.} In DCL there will often be three active tasks, since (as de­
scribed in Section 18.SJ DCL introduces an intermediate task as part of
the process of translating your commands. The Indirect Command
Processor will appear as AT.Tnn. The intermediate task will be as de­
scribed in Section 18.S and the actual MCR task will have its normal
MCRname.

Suppose now that during the assembly, you realize that you forgot to
make an important correction to the source file so that it would be a
waste of time to finish the assembly, build the task, etc. Let's assume
that you are in MCR. If you get MCR's attention and abort the assembly
via the command

the assembly will, as desired, indeed be aborted. The Indirect Command
Processor, however, will still be active. It will note that MAC has ter-

Indirect Command Files 195

minated and will then process the next command, causing FTB to run.
The proper way to terminate the processing of an indirect command
file is to first abort the Indirect Command Processor and then abort the
task currently executing. Thus, in our example, you would enter the
two commands

MCR>ABO AT.

When MAC terminates, there will be no AT. for control to return to;
control will thus return to MCR. Similar arguments and procedures hold
for DCL except that after aborting AT., you next abort the appropriate
intermediate DCL task.

The second point is that the Indirect Command Processor expects
each task command to be complete within one line. You cannot have
multiple-line commands for utilities such as the Task Builder within
an indirect CL! command file. Suppose that in our example the program
COPY that you are writing is intended to take data that was recorded
during an experiment on magtape and copy it into a disk file. The task
COPY will now need to use a tape drive, which must be assigned during
the task build. If you were entering commands directly into MCR, the
procedure could be modified to be

MCR>MAC COPY, COPY I SP=COPY

FTB>COPY=COPY, UTILITIES/LB

FTB>/
FTB>ASG=MMl: 3

FTB>//
MCR>PIP COPY. */PU

You cannot use this procedure in this form in an MCR command file.
Clearly, not all the commands above are MCR commands; some of them
are FTB commands. If you tried to do this via an MCR command file,
the Indirect Command Processor would attempt to interpret the lines
of FTB commands as individual MCR commands. Similarly, in DCL
you could not use a multiple-line Link command.

To execute this sequence of commands indirectly, you must separate
the Task Builder commands and put them into their own command file.
You would then have a single-line command to the Task Builder that
referred to this indirect task command file. Since indirect task command
files are not allowed in DCL, this procedure is, in general, possible only
in MCR. (There is one exception to this. In a DCL Link command, you
can specify an indirect command file. This is allowed since LINK always

RSX, A User's Guide 196

forms an indirect command file for the Task Builder anyway. When,
however, you use the construct LINK @file; the indirect command
file must contain Task Builder commands; that is, it must be in MCR
form. If you are going to do this, you m ight as well do everything using
MCR commands. In describing how to do this, I will consider MCR
only.)

In our modified example, the command file for the Task Builder (you
might call it COPYBLD.CMD J would contain the lines

COPY=COPY, UTILITIES / LB
I
ASG--MMl : 3

/ I

The file COPY.CMD would then be this:

MAC COPY, COPY I SP---COPY
FTB @cOPYBLD

PIP COPY. */PU

With these two files, you can do everything by entering o ne simple
command

MCR>@COPY

The procedure just described is somewhat clumsy because it requires
two separate command files. Nonetheless, it is still much easier than
typing in the complete set of commands, especially if you are making
numerous changes to the source code.

In general, you will need two (or more) command files whenever you
have to pass a multiple-line command to a task from an MCR command
file. This might happen in a variety of ways; you will probably encounter
it only with the Task Builder. I will restrict our attention to that case,
but my comments apply directly to other examples.

When you need two command files, a slight problem arises regardirig
the choice of file names. In cases where only one command file is used­
be it the MCR command file or the Task Builder command file-it is
a natural choice to choose the file name to be the same as that of the
main program and the file type to be CMD. Then, all files related to
the project can be isolated from the other files in your user area by a
wildcard construct of the form name. • . This is useful for getting directory
listings, making backups, etc. When both command files are needed,
you cannot use the natural name for each, and you have to give one a
different name. In this case, it is common to use the natural name for

Indirect Command Files 197

the MCR command file and a modified name for the other command
file. I did this in our example above by using the name COPYBLD.CMD,
which parallels the constructions used by Digital in the RSX software.
Another choice would be BLDCOPY.CMD. This is not quite as good,
since tbe file name does not begin with tbe letters COPY. As we discuss
in Chapter 23, if several related files have names that are not identical,
but that all begin with the same characters, you can use the special PIP
wildcards to access all of them in a single command. An alternate ap­
proach for namirig the second command file is to leave the file name
the same but change the type-for instance, COPY.FTB. This approach
has the advantage tbat the normal wildcard construct COPY.• can be
used; it has the disadvantage that you must specify the file type when
you use the command file. There are no strong reasons to choose one
method over another; it is a· matter of personal preference.

Finally, it is important to realize that CL! command files can be nested.
(This is true for DCL as well as MCR.) The basic rule noted earlier is
that each line in a command file (if not a special directive) must be a
complete command. This can be satisfied by a reference to another CL!
command file. As an example of nesting, suppose you are writing a series
of programs that will be used to create three interrelated tasks. Let 's
call these TSKl, TSK2 and TSK3. You might have a command file
BUILDTSKl .CMD which does the compilations and task build for TSKl.
Command files BUILDTSK2.CMD and BUILDTSK3.CMD would sim­
ilarly be for the other tasks. If you make changes only to programs in
one task, you need to execute only one of these command files. If, how­
ever, your changes affect all tbe tasks, then you must execute all three
of these command files. You can do this with another command file
(call it BUILDALL.CMD) which functions as a sort of super command
file. This file would contain three lines :

@BUILDTSKl

@BUILDTSK2
@BUILDTSK3

To perform all the compilations and task builds for the three tasks, your
only input would be

@BUI WALL

20.3 The Indirect Command Processor

In the last section we discussed the means by which the Indirect Com­
mand Processor [AT.) processes a simple indirect CL! command file. In

RSX, A User's Guide 198

this section we will examine more sophisticated command files-that
is, those files containing special directives to the Indirect Command
Processor.

The Indirect Command Processor directives offer a set of commands
that forms a high level programming language. Using these directives,
you can direct the Indirect Command Processor to interact with you
the user, read and create files, test conditions, control the processing of
the directives, and construct commands to be given to the CL!. We will
not discuss every possible directive that can be used with the Indirect
Command Processor; many of these are intended for complicated system
level use such as in the command files used for RSX system generation.
Instead, we will consider only those directives that are likely to be of
the most interest to you. Nonetheless, our discussion here will be rather
lengthy. This is simply because it must be, in effect, a description of
an entire programming language.

In our discussion of the use of Indirect Command Processor directives,
I will not deal with the various possible directives one at a time, ex­
plaining in full detail the syntax and special features of each. Rather, I
will present realistic examples, proceeding from the very basic to those
at a medium level of sophistication. As I present solutions for each ex­
ample, I will introduce new directives or new features of ones introduced
earlier. In this way, I hope you will be able to obtain a feeling for why
each directive exists.

An important point to bear in mind is that when you create a com­
plicated indirect command file, you are, in effect1 programming. You
should use the same techniques of choosing meaningful names and pro­
viding informative comments that you would use when writing a com­
puter program. Similarly, in long command lines, you should use blanks
to improve legibility. Just as you might have to look at an old program
and remember what it does, so too might you have to reuse or revise
old command files.

Much of the material in this section is dependent upon the version
of RSX being run. The Indirect Command Processor is one of the features
of RSX that has been significantly enhanced in recent releases of the
operating system. Unfortunately, some of the topics we discuss do not
apply to older versions. These topics are important enough to discuss
anyway; if they do not apply to your system, bear with me.

Let's first discuss very briefly just what a directive is. In general, each
line in an indirect CL! command file is either a command acceptable
to your CL! or a special directive. AT. reads a command file one line at
a time. If a line is determined to be a CL! command, it is (after possible
modification) given to the CL!; if a line is determined to be a directive,

Indirect Command Files 199

it is processed by AT. itself. Directives are characterized by a period as
the first non-blank character in the line. The nature of the directive is
specified by a keyword, which must immediately follow the period. De­
pending on what the keyword is, one or more parameters or values may
follow.

Before I can explain the use of particular directives, we need to discuss
the concept of symbols. The Indirect Command Processor offers the
means to define and subsequently use symbols. (The use of symbols in
a command file is conceptually equivalent to the use of variables in a
computer program; I use the term "symbol" because that is the term
used in the RSX manuals.) The name of a symbol can be up to six char­
acters (a letter, digit or dollar sign) long and must begin with a letter or
dollar sign. There are three possible types of symbols-string (SJ, logical
(L) and numeric (NJ. A string symbol can have as its value a string con­
sisting of 0 through 132 characters. (A string of 0 characters is the null,
or empty, string.) A logical symbol can have the value either true or
false. A numeric symbol can have as its value a 16-bit nonnegative in­
teger (O through 65,535).

You can use vatious directives to define the value of a symbol. The
particular directive used also specifies the type of the symbol. (Note
that the concept of declaring the existence of a variable without spec­
ifying its value, typical of most programming languages, does not apply
to the Indirect Command Processor.) Once a symbol has been defined,
you can subsequently change its value but not its type. There are three
ways to define a symbol: by a Set or an Ask directive for user-defined
symbols, or automatically for system-defined symbols.

The Set directives define a symbol to have a predetermined value.
The Set directives for string, logical, and numeric symbols, respectively,

. SETS symbol string_expression

. SETL symbol logical_expression

. SETN symbol numeric_expression

In each case, the expression specifies the value to be assigned to the
symbol; the rules for writing expressions will be discussed later. In ad­
dition, the following directives set a logical symbol to the values true
and false, respectively:

. SETT symbol

. SETF symbol

The Ask directives define a symbol to have the value typed in by the

RSX, A User's Guide 200

user in response to a displayed message. The Ask directives for string,
logical, and numeric symbols, respectively, are:

. ASKS symbol text_s tring

. ASK sy11bol text_s tr ing

. ASKN symbol text_string

(Note that the Ask directive for a logical symbol is .ASK, not .ASKL.J
In each case, the text string is displayed on your terminal; the value
that you enter is then assigned to the symbol. The text string itself is
not enclosed in quotes; it is delimited by the mandatory blank foll owing
the symbol name and by the end of the directive line. Most typically,
you will write command files that you will use yourself. In this instance,
you will be "the user," and you will respond to your own queries. None­
theless, as in using interactive VO statements in a normal program, you
should construct your Ask directives so that they can be readily under­
stood by someone else.

Special symbols have values assigned to them by the operating system.
These symbols are distinguished from user-defined symbols by their
names being enclosed in angle brackets-e.g., < EXSTAT> is the name
of a special symbol. These symbols also are categorized as being string,
logical, or numeric and may be used in the same manner as user-defined
symbols. In addition, some special symbqls are designated as being re­
served symbols. Reserved symbols are similar to special symbols in the
sense that their values are automatically defined for you; unlike special
symbols, however, their names are not enclosed in angle brackets.

As a casual user, your most common use of Indirect Command Proc­
essor directives will be to manipulate strings, and your most common
use of s tr in gs will be to fill in file names for various commands to your
CL!. Intrinsic to all this is the concept of symbol value substitution.
Whenever a symbol name enclosed in single quotes (apostrophes) is en­
countered in a line in a command file, symbol value substitution causes
the value of the symbol to be substituted for its name. For example, if
the string symbol A has been assigned the value TEST, the line

F77 'A'='A'

will be transformed in to the line

F7 7 TEST=TEST

Substitution can be used for string, logical, or numeric symbols; we will
consider its use only for string symbols.

Indirect Command Files 201

It is important to note that substitution does not happen automatically.
In general, AT. has several modes of operation, each of which can be
selectively turned on or off via the directives .ENABLE and .DISABLE.
One of these modes controls substitution. By default, this mode is turned
off. When it is off, the Indirect Command Processor will not perform
the substitution illustrated above. Thus, before .any substitutions can
be done, you must turn on this mode using the directive

. ENABLE SUBSTITUTION

Let's illustrate all of this so far by a simple yet useful example. Suppose
you commonly write simple FORTRAN programs (by "simple" I mean
that these programs do not utilize subroutines in other files). If filename
is the actual name of a particular source file, a typical series of MCR
commands that you would use might be:

F77 filename, fi lename=filename
FTB fi lename=.fi lenarae
PIP filename. */PU

In the previous section we discussed how to make a command file that
would do this series of operations for one particular file name. Using
this technique, every time you write a new program, you will have to
write a command file to go with it. This is clearly undesirable. Using
directives, you can instead write one general purpose command file that
can be used to perform this series of operations for any source file. You
can do this by writing the MCR commands above in terms of symbols.
After assigning a particular file name to the symbol, symbol value sub­
stitution will transform these commands from the general to the specific.
Note that a simple, repetitious use of the same file name such as we
have here is a perfect choice for symbol value substitution in a command
file.

I will use this same general set of operations (compiling, linking, and
purging) for most of our examples in this section. !Note that if you are
in DCL, the commands will be different, but the concepts concerning
symbol value substitution, etc., and the directives used to effect them
will be identical. For simplicity, I will restrict our examples to the MCR
command forms.)

We now reconsider the above sequence of operations, this time using
directives to allow the substitution of an arbitrary file name. A command
file that you might use is as follows:

. ENABLE SUBSTITUTION

. ASKS FILE Enter file name:

RSX, A User's Guide 202

F77 'FILE', 'FILE' = 'FILE'
FTB 'FILE' = 'FILE'
PIP 'FILE'.*/PU

In this example, the first two lines begin with periods and are thus in­
terpreted as directives to be processed by AT. itself. The Ask directive
(.ASKS) takes whatever you type in arid assigns it as the value of the
symbol FILE; because it is an .ASKS and not an .ASK or .ASKN, FILE
is defined to be a string symbol. Since the third line in the file does not
begin with a period, AT. assumes it to be an MCR command. Since
substitution mode has been enabled, AT. first scans the line to see
whether it contains any single quotes. The first pair found encloses the
characters FILE; this matches the name of a defined symbol, and the
value of that symbol is substituted for the six characters 'FILE'. The
other two occurrences of 'FILE' in the line are similarly changed. Only
after substitution has been completed is the line passed as a command
to MCR. The Fast Task Builder and PIP commands are similarly changed
before being passed to MCR.

In the example above, we have put additional spaces in the F77 and
FTB commands. These are not necessary, but they do improve the leg­
ibility of the commands, especially with all the apostrophes and other
punctuation. The key concept here is that you will type the command
into the indirect command file only once; the extra effort to insert spaces
for legibility is minimal. We will use this technique throughout this
section. Note that after symbol value substitution, these add.itional
spaces will remain, and we accordingly include them when we show
what appears on your terminal.

Suppose the command file above is called COMPILE.CMD. A typical
use of this file might look like this:

> @COMPILE
>*Enter File name : [S J : RwrEST
>F7 7 RWTEST, RWTEST ~ RWTEST
>FTB RWTEST ~ RWTEST

>PIP RWTEST. * /PU
>@ <EOF>

In this example, the first line is the command to MCR to run the Indirect
Command Processor with file COMPILE.CMD as input. The next line
is produced by AT. in response to the Ask directive. The specified text
string is preceded by an asterisk as a prompt and is followed by an S in
brackets to signify that a string value is required. Your response, which
in this case is the file name RWTEST, is entered on the same line. The

Indirect Command Files 203

next three lines are the commands for compiling, building, and purging,
all of which have the file name properly substituted. The last line is
generated by AT. and specifies that the end of the command file has
been reached; AT. then returns control to MCR.

By using an indirect CL! command file, your required input in this
example is reduced to only two things : the command to process the
command file and the name of the source file. The simplification here
is twofold. First, you need to enter the file name only once rather than
several (in this particular example, six) times. This reduces the chances
of error and eliminates monotonous work. In addition, you do not have
to enter the individual CLI commands directly. This too reduces the
amount that you must type in. What is sometimes more important is
that this gives you the ability to do things without being there. In the
example above, after typing in the file name, you can walk away from
your terminal. AT. will automatically generate the commands for com­
piling, building, and purging; there is no need for you to sit and watch
them. You may instead get a cup of coffee. When you return, the pro·
cessing will probably be complete, in which case your CLI will be waiting
for your next command.

As shown by this simple example, the technique of symbol value sub­
stitution for file names can be extremely useful. The basic concept is
not limited to the example I have given but can be extended to more
complicated examples with multiple symbols. Because the compile and
build sequence is so common, I will continue with this example, using
it to illustrate some other things you can do with directives and symbols.

I earlier mentioned the existence of reserved symbols. These are sym·
bols that are predefined. Unlike the special symbols, their names are
not enclosed in angle brackets and they are defined by AT. itself, not
by RSX. There are eleven such symbols; their names are COMMAN
and PO through P9. These are all string symbols. (These symbols are
officially implemented on version 4.0 of RSX-llM; they exist as un­
supported and undocumented feature~ on version 3.2.) When AT. is ac·
tivated by MCR in response to an@ command, it assigns values to each
of these symbols based on the exact contents of the command line. The
symbol COMMAN contains the entire line, and the symbols PO through
P9 contain individual parameters in the command line, where parameters
are identified as being separated by spaces. The zeroeth parameter, PO,
is assigned a string containing an at-sign and the name of the file. If
other parameters are in the command line, they are assigned to the sym ·
bols Pl, P2, etc. Otherwise these symbols are assigned the empty string.
To illustrate this, suppose you enter the following command:

RSX, A User's Guide 204

@SYMBOLS XYZ X Y Z

Before starting to process the file SYMBOLS.CMD, the Indirect Com­
mand Processor will define the reserved symbols as follows:

COMMAN @SYMBOLS XYZ X Y Z
PO @SYMBOLS
Pl XYZ
P2 x
P3 y

P4 z
PS-P9 empty

Within the command file, you can use these reserved symbols as you
· wish.

We now modify our command file COMPILE to exploit this capability.
Suppose you rewrite it as follows:

. ENABLE SUBSTITUTION
F77 'Pl', 'Pl' = 'Pl '
FTB 'Pl'= 'Pl'
PIP 'Pl'. */PU

To avoid confusion, call this file COMPILE2.CMD. To use it, you enter
a COIJ1mand such as

@COMPILE2 fl I ename

where iilename is the file to be compiled, built, etc. A typical use of
this would look like this:

>@CmlPILE2 RWI'EST
>F77 RWTEST, RWTEST = RWTEST
> FTB ·RWTEST = RWTEST
> PIP RWTEST . */PU
>@ <EOF>

The net effect is exactly the same as with the earlier example of
COMPILE.CMD. The difference in usage is that there is no Ask directive
and correspondingly no need for user input after the command line. This
may seem to be a rat~er minor improvement, and that is true if all you
are doing is compiling and building one file. The importance of this
capability is that by eliminatng the need for further user input, it allows
the command to be issued from within another command file. As an

Indirect Command Files 205

example of this nesting of command files, suppose you have three sep­
arate programs named PROGi, PROG2, and PROG3. You can use a sin­
gle command file !call it COMPALL.CMD) to compile and build all three
of these programs by issuing three successive commands to process the
command file COMPILE2. The command file COMPALL would contain
the three lines

@cOMPILE2 PROGl
@COMPILE2 PROG2
@COMPILE2 PROG3

This is what happens when you use this command file:

> @COMPALL
>F77 PROGl, PROGl = PROGl
> FTB PROGl = PROGl
> PIP PROGl. * /PU
> F77 PROG2 , PROG2 = PROG2
> FTB PROG2 = PROG2
> PIP PROG2. * /PU
> F77 PROG3, PROG3 = PROG3
> FTB PROG3 = PROG3
>PIP PROG3. * /PU
> @ <EOF>

In essence, we have created something !let's call it a procedure) that
offers capabilities greater than those of a single utility but that is none­
theless used as thougli it were a single utility. In this example, the pro­
cedure @COMPILE2 is syntactically equivalent to any other single MCR
command, yet it results in the succession of three separate utilities (F77,
FTB, and PIP). This is a very powerful and useful capability.

Now, suppose you would like to have a command file similar to
COMPILE2 but that you do not want to be required to purge your source
files . !Automatic purging of your source files is not necessarily a good
idea. We discuss this topic in Section 21.1.) You nonetheless would like
to automatically purge the other files made during compiling and build­
ing. One way to do this is to list all the file types that you wish to
purge-that is, you could change the last line of the command file
COMPILE2 to

PIP 1 Pl'.0BJ, 'Pl'.LST, 1Pl'.TSK/ PU

There is a certain inelegance about this compared to the use of the wild-

RSX, A User's Guide 206

card file ty\,e. Another technique is to use one file name for the source
file and another for all the other files. In this case, you would probably
use a long, meaningful name for the source file and a short, convenient
name for the other files. You can modiiy COMPILE2.CMD to accom­
modate two distinct file names simply by using both the Pl and P2
parameters Imm the command line. Choose P 1 for the source file name
and P2 for the name of the other files. The command file now looks
like this:

. ENABLE SUBSTITUTION
F77 'P2', 'P2' = 'Pl '
FTB 1P2' = 'P2'
PIP 'P2'. * / PU

Let's call this file COMPILE3.CMD. You might use it with a source file
named ASTROLOGY, using the simple name A for the other files. If
you do, this is what happens:

>@COMPILE3 ASTROLOGY A
> F77 A, A = ASTROLOGY
>FTBA=A
> PIP A. */PU
> @ <EOF>

As the next complication, suppose that at times you would like to be
able to have a different name for the source file but that at other times
you would like to use just one name for everything. In other words, you
would like to have a command file that was sometimes like COMPILE3
and sometimes like COMPILE2. You can do this by using the conditional
capability of the Indirect Command Processor. The logic is very simply
this. If there are two parameters on the command line you will use
them as separate file names, but if there is only one, you will use it as
a name for all the files. Thus, you need to be able to test the second
parameter IP2) and see if it contains anything. You can ·do this by com­
paring it against the empty string.

The comparison is effected by the lf directive, the general form of
which is

. IF condition statement

This directive is very similar to the Logical-IF of FORTRAN-if the
condition is true, then the statement is executed; if the condition is not
true, then the statement is not executed. The statement can be either

Indirect Command Files 207

a CL! command or another directive. You must follow special rules for
specifying the condition to be tested. The condition must compare a
symbol to an expression; the symbol must be given first. The condition
is written as

symbol relation expression

The possible relations are:

EQ Equal
NE Not equal
GT Greater than
GE Greater than or equal
LT Less than
LE Less than or equal

You can use these relations with either numeric or string symbols and
expressions. Ill you are comparing string quantities, you will probably
be interested in using only the EQ and NE relational operators.) We
have not yet discussed the rules for forming expressions; for now, it is
sufficient to note that any constant, any symbol, or any combination
thereof constitutes a valid expression. In general, a string constant is
delimited by quotation marks I"). In particular, two consecutive quotation
marks ("'') represent the empty string. Thus, the condition you wish to
test can be written as

P2 NE ""

This form of the If directive is used with string or numeric symbols.
For logical symbols, the only conditions that make sense are whether
the symbol has the value true or false. To test a logical symbol, two
special forms of the If directive are provided. These are

. IFT symbol· statement

. IFF symbol statement

In the first case, the statement is executed if the symbol is true; in the
second case it is executed if the symbol is false.

We now utilize the conditional directives to determine how to set
the output file names. This is really no different from writing a simple
program, and as is often the case, there are several equally valid ways
to design the basic program logic. I will use one string symbol !OUT)
for the name of all the nonsource files and will set it equal to either
the second or the first parameter in the command line. For the sake of

RSX, A User's Guide 208

generality, I will use another string symbol (IN) for the name of the
source file, although, since this will always be set equal to the first
parameter, it is redundant. The complete command file may then be
written as:

. ENABLE SVBSTITUflON

.SETS IN Pl

. IF P2 EQ '"' . SETS our Pl

. IF P2 NE "" . SETS OUT P2
F77 'OUT'' 'OUT' = I IN'
Fl'B 'OUT' = 'OUT'
PIP 1 0UT' ·*/ PU

Let's call this file COMPILE4.CMD. If you use it with distinct input
and output file names, you will get an interaction that looks like this:

>@cOMPILE4 RWTEST RW
> F77 RW, RW = RWTEST
>FTB RW = RW
>PIP RW . * / PU
>@ <EOF>

Alternatively, if you specify only one file name, the sequence of com­
mands that results looks like this:

>@COMPILE4 RllTEST
>F77 RWTEST , RWTEST = RWTEST
>FTB RllTEST = RWTEST
>PIP RWTEST . * / PU
>@ <EOF>

Let's study the command file COMPILE4 a bit further. Jn it, I have
used the Set directive,

. SETS IN PI

Here, IN is a string symbol that is assigned a value determined by the
string expression Pl. This is one of the simpler forms of a string expres­
sion as it consists of a single string symbol. It is important to note that
in this case, we simply use the symbol name IP I), not the name enclosed
in apostrophes ('Pl'). This may seem confusing because when you sub­
stitute the value of a symbol into a CL! command you need to use the
apostrophes.

As I mentioned earlier, lines in an indirect CL! command file are either
directives or CL! commands. If you remember this distinction, you will

Indirect Command Files 209

know when to enclose a symbol name in apostrophes and when not to.
Directives are processed by AT., the Indirect Command Processor; CL!
commands are processed by your CL!. AT. understands symbols; the
CL! does not. Thus, when AT. processes a directive, it uses symbol values
when symbol names are encountered. AT. does not need apostrophes
to signify this substitution in a directive; in fact, this action takes place
whether substitution mode is enabled or not. It might seem that apos·
trophes in a directive would be merely redundant. This is not so-they
are actually wrong. If substitution mode is enabled, AT. looks for apos·
trophes as it reads each line from the command file. For each pair found,
it substitutes the value 0£ the enclosed symbol name. Only after this is
done does AT. interpret the line as being either a directive or a CL!
command. Thus, apostrophes in a directive actually result in double
substitution. For example, suppose you have the directive

.SETS Tl 1 A 1

in a command file. If substitution mode has not been enabled, the three·
character string 'A' will be rejected as being an invalid symbol name.
[The apostrophe is not a valid character for forming a symbol name. I If
substitution mode has been enabled, the value of the string symbol A
will be substituted for 'A' and will itself subsequently be interpreted as
the name of a symbol. In contradistinction to this, when the CL! is
given a line from a command file, it does not (it cannot) do any sub·
stitution. Thus, in CL! command lines, symbol names must be enclosed
in apostrophes to force substitution prior to AT.'s giving the command
line being given to the CL!. All of this may be confusing at first, but
the logic behind it is consistent, and once you understand how it works,
you will be able to remember how to use it.

In our examples, I have sometimes used simple expressions. Now I
will define just what an expression is-and when you can use one. An
expression may be used only as the second operand in either an .IF or
in a .SETS, .SETN, or .SETL directive. An expression is any combination
of constants and symbols, written as one or more such terms with ad·
jacent terms connected by operators. No spaces or tabs are allowed be­
tween terms and connecting operators, since a space or tab is interpreted
as marking the end of the expression. Unless parentheses are used, terms
are combined from left to right.

We are primarily interested in string expressions. These are made from
string symbols and string constants. The only operator allowed in a string
expression is the concatenation operator, which is denoted by a plus
sign. This operator simply combines two strings into one, putting the

RSX, A User's Guide 210

second after the first. Thus, the string expression

"A"+"B''+uC:'

is equivalent to the string constant "ABC". Similarly, if the string symbol
NAME has been assigned the value "TEST'' and the string symbol TYPE
has been assigned the value "MAC", then the string expression

NAME+". "+TYPE

is equivalent to the string constant "TEST.MAC".
You will probably not need to use numeric or logical expressions that

are more complicated than a single constant or symbol. More compli­
cated numeric or logical expressions can, however, be formed by using
operators to combine constants and/or symbols. For the sake of com­
pleteness, there are four allowable numeric operators: + 1 - , •, and /,
which follow the normal rules of integer arithmetic. There are three
allowable logical operators: inclusive OR l!J, AND l&I, and NOT l#J,
which follow the normal rules of Boolean algebra.

Let's return to our ongoing example and introduce yet another im­
provement. The basic sequence of operations we have been considering
is compiling followed by task building. If you want your command file
to do exactly what you would do interactively at a terminal, you must
include an intermediate step-checking for errors in the compilation.
You will.want to do the task build only if the compilation was successful.
Generalizing, you will often want to proceed with the rest of the steps
in a command file only if the previous step was successful. This ca­
pability is available via the special symbol < EXSTAT>.

<EXSTAT> is a special numeric symbol that is assigned a value
whenever a task exits. In general, a task can give RSX a status value
when it exits. This is the value that is assigned to < EXSTAT>. Most
RSX utilities support this feature. The standard values used are:

1 = Success
O = warning
2 = Error
4 = Severe error

17 = NQ status informati on available

The last value I I 7) is used by the Indirect Command Processor if the
task does not supply a status value when it exits. On version 3.2 of RSX­
! IM, the return value 17 is not implemented, if a task does not return
a status value, the value I (success) is assumed.

To clarify the use of <EXSTAT>, let's use a simple command file as

Indirect Command Files 211

an example-we repeat our earlier example of COMPILE2:

. ENABLE SUBSTITUTION
F77 'Pl' , 'Pl' = 1 Pl'
FTB 'Pl'= 'Pl'
PIP· 'Pl'. */PU

We first want to check whether the compilation was successful or not.
You can do this by checking the value of <EXSTAT> between the F77
and FTB commands. Since F77 returns a status value when it exits, it
should be impossible to obtain a value of 17 at this point. Thus, the
only value that we will consider acceptable is 1 (Success). lf < EXSTAT>
has any other value, we should terminate processing of the indirect
command file. The test is done with an If directive. There are two di­
rectives available for terminating processing. These are .STOP and / (a
single slash). These are identical in their action; .STOP is more readily
understood if you are reading the command file. The complete test may
be written either as

. IF <EXSTAT> NE 1 . STOP

. IF < EXSTAT> NE 1 I

Note that this directive does not depend upon its coming after an F77
command, it merely expects the exit status to be set and could be used
equally well after other utilities. In particular, we can also use it after
the FTB command. The complete command file then becomes

. ENABLE SUBSTITUTION
F77 'Pl', 'Pl'= 'Pl'
. IF <EXSTAT> NE 1 . STOP
FTB 'Pl' ;::::: 'Pl'
. IF <EXSTAT> NE 1 . STOP

PIP 'Pl'. * / PU

Let's call this command file COMPILE2X.CMD. If you use it with a
source file that has no errors, the sequence of operations that results
looks like this:

>@COMPILE2X RWTEST
>F77 RWTEST , RWTEST = RWTEST

>FTB RWTEST = RWTEST

>PIP RWTEST. * / PU
>@ <EOF>

RSX, A User's Guide 212

If you use it with a source file that has errors, you get something like
this:

>@coMPILE2X RWERROR
>F77 RWERROR, RWERROR = RWERROR
F77---ERROR 48-F Missing keyword

fn (uni t =l, file} in module . MAIN at line 11
F77"--1 Error RWERROR. FTN; 2

>@ <EOF>

More complicated decisions can be made based on the value of the
exit status. For example, if there is a compilation error,-you might want
to issue a Print command for the listing file before terminating the pro­
cessing of the command file . In this case, you must be able to do two
things when a bad exit status is detected. Since the Indirect Command
Processor language does not support compound statements (such as those
found in languages supporting structured programming), you must be
able to branch or jump within the command file. This is done with the
.GOTO directive, the form of which is simply

• GOTO label

In function, this is equivalent to the dreaded GO TO statement of FOR­
TRAN. To define the point to which control is to be transferred, a label
directive is used. This is of the form

. label:

where label may be up to six characters (alphabetic, numeric, or dollar
sign). The label directive must be at the beginning of a line. It can be
followed on that line by a directive or command or it can be on a line
by itself. If you do not indent every line of the command file, you may
wish to put the label on its own separate line, as it is more noticeable
that way. Also, this allows the test and resulting action to be written
as a block of complete lines, which is a convenience if you are modifying
a command file with a line-oriented text editor such as EDI. If you have
already made the file COMPILE2X.CMD and you wish to change it so
that the list file will be printed before stopping when an error is detected,
you could replace the first If directive with the block of lines

. IF <EXSTAT> EQ 1 . GOTO GOOD
PRI 'Pl'.LST
.STOP
.GOOD:

Indirect Command Files 213

You can construct more sophisticated control flows based on examining
the value of <EXSTAT> at various points in a command file; I leave
these to your imagination.

Tbe list of available special symbols is rather large. (This is something
that is highly dependent on the version of RSX being run.) Almost all
of these, however, will probably never be of interest to you. In addition
to <EXSTAT>, you will probably find only one other special symbol
useful. This is the logical symbol < LOCAL>, which we will discuss in
the next section.

At the beginning of this section, I stated that using the Indirect Com­
mand Processor directives is equivalent to writing a program in a high
level language. To highlight each feature that we have learned, I have
kept our examples relatively simple. Nonetheless, it should be easy to
see that you may find yourself creating rather complex command files
as you become more and more familiar with the capabilities of the In­
direct Command Processor. You may reach a point at which you are
modifying your command files in a manner analogous to maintaining
11regular11 computer programs. At this point, if not earlier1 it will be very
useful for you to put comments into your command files.

You can put comments into an indirect CL! command file either as
separate lines or at the end of other lines. The Indirect Command Proc­
essor treats a line that begins with a semicolon as a comment. It is
echoed to your terminal but otherwise ignored. You can suppress the
display of the comment on your terminal by putting a period in front
of the semicolon. (This must be the first character in the line.) The two
forms of comment look like this:

; . conunent that is echoed to terminal

. ; comment that is not echoed

In many cases, a directive may be followed by a comment in the same
line. The comment is preceded by a semicolon. An example of this form
of comment is

. SETS IN Pl i input the file name

In general, in-line comments cannot be used with directives that end
with a text string (for example .ASK or .DATA) or with a file specifier
(.OPEN). If a directive ends \\'.ith a text string, any comment (including
the introductory semicolon) will be taken to be part of the text string.
When a directive ends with a file specifier, you cannot use the in line
comment because the semicolon for the comment could be confused
with the semicolon used for specifying the version number of the file.

RSX, A User's Guide 214

Any CL! command may be followed by a comment in the same line.
In this case, an- exclamation point is used instead of a semicolon to
introduce the comment-this choice .of syntax is again due to possibly
ambiguous interpretation of the semicolon. (This syntax is a function
of the CL!, not of the Indirect Command Processor; both MCR and DCL
allow it.) An example of this form of comment is

PIP 'OUT' . */PU ! Purge only the output files.

When we were discussing the technique used for symbol value substi­
tution, I stated that substitution (if enabled) occurs before any inter­
pretation of the contents of the line is made. This is also true of
comments. Thus, assuming substitution mode to be enabled, the line

;A= 'A'

will be displayed on your terminal with the' A' replaced by the current
value of symbol A. This is the easiest way to display the value of a
symbol and can be quite useful for debugging a command file. (Yes,
writing a command file is like writing a program, including the possible
need for debugging.) As a simple example, suppose that you have a com­
mand file and you would like to add some extra statements based on
testing the value of the exit status. Before you do this, however, you
need to know just how the exit status is set under various conditions.
You could try to determine this from documentation (the theoretical
approach), or you could simply run a test case and see what happens
(the empirical approach). Suppose specifically that you want to know
what status is returned by PIP when you ask it to delete a file that does
not exist. The easiest way to find out is to write and execute a very
short command file such as

. ENABLE SUBSTITUTION
PIP ARENTANY.JNK;MDE
;<EXSTAT> = 1 <EXSTAT> 1

If you call this file TESTEX.CMD and run it, you will see that the status
value in this case is 0 (Warning):

>@TES TEX
>PIP ARENTANY. JNK; * / DE
PIP --- No such file (s)

SYO: [265, lO]ARENTANY.JNK; *
> ; <EXSTAT> = 0
>@ <EOF>

Indirect Command Files 215

This trick of displaying symbol values depends on the fact that com­
ments preceded by a semicolon are echoed to your terminal. More spe­
cifically, all CLI commands (after substitution, if enabled) are echoed
to your terminal; all directives are not echoed. (An exception to this is
the @ command used to nest command files. This is not echoed nor is
anything displayed when control returns from the lower level to the
high level command file.) U you think of; as being a CLI comment and
.; as being a directive comment, it will be easier to remember that the
first one is echoed and the second is not.

It is sometimes tiresome to see the CLI commands being echoed every
time the command file is used. This echoing is controlled by a mode
of Indirect Command Processor operation known as quiet mode. Nor­
mally, the quiet mode is disabled - that is, CLI commands and com­
ments are echoed. On some RSX systems (this is a system generation
option) it is possible to enable the quiet mode, in which case CL! com­
mands and comments will no longer be echoed. (Even when quiet mode
is in effect, output such as error messages, produced as a result of ex­
ecuting a CLI command, will be displayed on the terminal.) You can
enable and disable the quiet mode via the directives

. ENABLE QUIET

. DISABLE QUIET

You can alternate these so that echoing will be done for only certain
portions of the command file.

So far, I have concentrated our attention on the use of directives and
symbol value substitution for the formation of commands to be given
to your CL!. In RSX-llM commands are limited to one line 179 char­
acters), which is not always long enough. When a longer command line
is needed for a utility, you can use an indirect task command file. As
explained in the previous section, this is most typically the case with
the Task Builder, where you might need to name many input files. The
final topic we discuss in this section is how to use directives and symbol
value substitution to make entire command files rather than single line
commands.

The Indirect Command Processor includes directives for opening and
closing files and for writing into and reading from files. There are several
directives for opening a file .. OPEN opens a file for output. This file is
always a new file; if a file with the same name already exists, the fil e
with the next higher version number is made; if the version is specified
and that file already exists, then it is written over. Two variants of .OPEN
also exist . . OPENA is similar to .OPEN except that the specified file is

RSX, A User's Guidi' 216

assumed to already exist and any output will be appended to (written
at the end of) the file . H no file matching the given specifier exists, then
.OPENA is handled in the same manner as .OPEN. The other variant
is .OPENR (version 4.0 of RSX-HM and later) which opens a file for
reading-the specified file must already exist. For those familiar with
FORTRAN-77, these three directives are equivalent to Open statemen!s
with the following choices of keywords:

.OPEN type= 'new'

. OPENA type = 'unknown' , ac_cess = 'append'

. OPENR type = 'old 1 , readonly

In general, several files may he simultaneously open during execution
of a command file. There should be no reason why you will need to
have more than one file open, in which case you can use the simple
form of .OPEN. This is

. OPEN f ile_specifier

If no file type is specified, DAT is assumed by default. The form of
.OPENA and .OPENR is identical. When only one file has been opened,
the corresponding directive to close the file is simply

. CLOSE

This is used no matter how the file was opened.
Once a file has been opened, data may be written into or read from

it during execution of the indirect command file. We will not discuss
reading, as you probably will not need to use it. You can write text to
a file in one of two manners. The Data directive (.DATA) may be used
to write a single line (record) to the file. The form of this is

. DATA text

The text string is written to the output file. A blank is normally used
to separate the text string from the directive word .DATA, but this is
not mandatory. H the first character after .DATA is a blank, it is dis­
carded; otherwise, the text string is written as it is. Successive Data
directives can be used to write additional lines to the output file. U
several lines are to be written, it is more effective to use the data mode
of Indirect Command Processor operation. As with other modes of op­
eration, you can enable or disable this via directives. These are

. ENABLE DATA

. DISABLE DATA

Indirect Command Files 217

Once the Indirect Command Processor has been put into data mode, all
successive lines encountered in the command file are written to the
output file . {If enabled, substitution is performed first.} This continues
until either a .DISABLE DATA or a .CLOSE directive is found. This
terminating statement must begin in the first column of its line to be
recognized; otherwise, it too will be written to the output file.

Let's now put all this to practical use. The procedure we have con·
sidered thoughout this section is that of compiling, task building, and
purging. Implicit in this has been the assumption that you can do the
task building with the single-line form of the Task Builder command.
If you must use the multiple-line command form, then the procedure
we have been using will no longer suffice. Unfortunately, there is no
way to put a multiple-line command into an indirect CLI command file.
AB we discussed in the previous section, the Indirect Command Processor
expects each line to be a complete command by itself. The only way to
get around this is to put the complete multiple-line command into. an
indirect task command file {remember, these are not available in DCL}
and then run the task via the single-line command

tas k @file

Following this, you may delete the command file just created if you
wish.

In Section 20.l I gave an example of programs that need to use a tape
drive. There, I put the tape specific commands into a file TAPE.CMD
so that the task build could be done with two command lines:

file = file
@TAPE

Suppose we wish to incorporate this into an MCR command file that
also compiles and purges. (Other than the use of a multiple-line Task
Builder command, this will be conceptually identical to our earlier ex­
ample COMPILE2.CMD.} We may do this via a command file such as:

, ENABLE SUBSTITUTION

. F77 'Pl', 'Pl'= 'Pl'

. OPEN TEMI'. CMD

, ENABLE DATA

'Pl' = 'Pl'
@TAPE
. CLOSE
FTB @TEMP
PIP TEMP. CMD; */DE
PIP 'Pl I. */PU

RSX, A User's Guide 218

If you call this file TAPECOMP.CMD and you use it on a source file
called PROCESS!,

@TAPECOMP PROCESS!

the file TEMP.CMD will contain the two lines

PROCESS! ~ PROCESSl
@TAPE

The FTB command will then cause the Fast Task Builder to take these
two command lines from the file. Although the mechanism is clumsy,
we have effectively passed a multiple-line command to the Task Builder
from our command file. On the assumption that you do not need the
temporary command file following the task build, it is then deleted.
Note that .OPEN must precede .ENABLE DATA and that .CLOSE must
precede any attempt to use the file.

In this section we have examined some of the more advanced features
of the Indirect CommaI)d Processor. The directives we have discussed
offer you the ability to write programs at the CL! level. As our examples
have shown1 this can take the monotony out of your more common
interactions with RSX. The Indirect Command Processor, especially via
its directives, offers you some truly powerful capabilities-you will have
fun exploring them.

20.4 Log-In and Log-Out Command Files

In the previous sections, we have examined some of the more common
uses of indirect command files, both at the individual task and at the
CL! levels. Here, we will discuss two specialized uses of CL! command
files. These are features of the log-in and log·out procedures and as such,
apply only to RSX systems with multiuser protection.

As discussed in Section 10.1, you use the command HELLO in MCR
or LOG in DCL to log in to your RSX system if it has multiuser pro·
tection. With this command you enter a UIC. After you have been logged
in, RSX may display a log·in message on your terminal. Following this,
you normally receive a prompt from your CL!. At this point, however,
it is possible that a special indirect command file will be executed. Spe·
cifically, RSX searches your default directory (as determined by your
log-in account) for a file with name LOGIN.CMD. If one is found, it is
passed to the Indirect Command Processor. This mechanism enables
you to have a CL! command file that is automatically executed whenever
you jog in to your system.

Indirect Command Files 2I9

The purpose of such a file is to automate certain commands that you
might wish to use when you log in. You would do this if you used the
system in a nonstandard manner and needed to configure it in some
special way. The most common example of this is the use of remote
terminals. In Section 19.2 we saw that when you log in on a remote
terminal the system has no way of knowing what type of terminal you
are using and therefore assumes a default set of terminal characteristics.
After logging in, you can use the Set commands discussed in Section
19.2 to change these characteristics so that they match the terminal
you are using. Putting these Set commands into a LOGIN.CMD file will
result in their being automatically done for you.

Let's assume that your remote terminal is a conventional video ter­
minal. The terminal characteristics that you will probably want to set
are your terminal type je.g., VTlOO); the fact that the terminal is video,
not hard-copy; a line length of 80 characters; and lowercase capability.
You can do this with a command file consisting of the following four
lines:

MCR: SET /VTIOO=TI:
SET / CRT=TI'
SET / BUF=TI' 80 ,
SET /LOWER=TI'

DCL: SET TERM/ VTlOO
SET TERM/ SCOPE
SET TERM/WIDTH' 80
SET TER'l / LOWER

If you call this file LOGIN.CMD, it will automatically perform this
reconfiguration whenever you log in to the system.

Use of this as a log-in command file would be appropriate if you always
used the RSX system as a remote user !e.g., via a telephone link to a
commercial timesharing organization). With the continued decline in
hardware prices, it is becoming more and more common for individuals
to own their own terminals and modems and to work at home. If you
are fortunate enough to be in this position lit is by no means unrealistic)
you will find yourself logging in at home as a remote user and at the
office as a local user. When you log in as a local user, you should not
need to change the default terminal characteristics because they should
already be properly set. In other words, you might not want to execute
this command file whenever you log in. As one solution, you could give
the command file a name other than LOGIN.CMD and enter the com·
mand to execute it yourself only when you are on a remote terminal.
A more elegant technique is to keep it as a log-in command file but to

RSX, A User's Guide 2W

include in it a test to determine whether your terminal is remote or
local. You can do this by using the special logical symbol <LOCAL>
(available on versions 4.0 and later ofRSX-!IM) which is true if your
terminal is local and false if it is remote. Using the directives presented
in the last section, you can write a log-in command file that executes
the various Set commands only when you are on a remote terminal. A
typical MCR example looks like this:

. IFT <LOCAL> . STOP
SET / VTlOO=TI:
SET / CR=I:
SET /BUF=TI: 80.
SET / LOWER=TI:

If you make this your LOG!N.CMD file, this is what will happen when
you log in on a remote terminal:

>@LOGIN. CMD
>SET / VTlOO=TI:
> SET / CR'l'=TI :
>SET / BUF=TI: 80.
>SET /LOWER=TI:
>@ <EOF>

When you log in on a local terminal, however, this is what will happen:

>@LOGIN. CMD
>@ <EOF>

If you are using a remote terminal, you will find it useful to have a
LOGIN.CMD file similar to the ones presented here. You may also wish
to add some embellishments. For example, it is often nice to know who
else is on the system, so you might add the Show Users command (Sec­
tion 19.3) after the Set commands. If, however, you never log in to your
system as a remote user, it is not likely that a LOGIN.CMD file will
be of much use to you.

Corresponding to the execution of a LOGIN.CMD file when you log
in to an RSX system is the execution of a LOGOUT.CMD file when
you log out from the system. This feature is available only on versions
4.0 and later of RSX-1 lM and is a system generation option. If you wish
to use a log-out command file, you should check to see whether this
capability is available on your system or not.

The log-out command capability is generally less useful than the log-

Indirect Command Files 221

in command capability. There are two reasons that you might have for
using a log-out command file. One is to restore terminal characteristics
after setting them to unusual values. When you use Set commands to
set characteristics for your terminal, some of them stay set, even after
you log out and even if you are not privileged. In that case, the terminal
characteristics may not be properly set for the next user. An example
of this is using APL on a DECwriter that is equipped with the special
APL character set-this requires that you set the terminal as not having
lower case capability. In all likelihood, the next person to use that ter­
minal will expect it to support lowercase. You should restore this ca­
pability before you log out. Do this with a LOGOUT.CMD file consisting
of the single line

MCR: SET / LOWER=TI :

DCL: SET TER,./ LOWER

Similar examples involve the setting of a VTIOO to be a VT52 emulator
and the setting of a VTIOO to display 132 characters per line.

The other reason you might have for using a log-out command file is
to set up a procedure for performing various file maintenance activities.
You might want to do certain things every time you use the system.
Doing these via a log-out command file is convenient in that they will
always be done every time you log out, whether you remember them
or not. Activities of this sort include purging your files (we discuss this,
along with the associated dangers, in Section 21.1) and changing the
protection codes for newly created files (we discuss this in Section 14.SJ.

20.5 Portability Considerations

So far, our discussion of the various uses of indirect command files has
been motivated solely by the consideration of making things easier for
you. A second set of reasons centers on issues of portability. These might
not seem to be as important to you1 but in some cases, they can distin­
guish a truly professional product from a well-done but nonetheless am­
ateurish effort.

By portability, I refer to the taking of computer programs written and
tested on one machine and running them on another. Portability is nor­
mally thought of as an issue only when the two computers are of different
types-for example, a FORTRAN program written for a PDP-11 might
not work on an IBM-3 70. Portabili ty can be an important issue in other
cases, however, and should be considered even when both computers

RSX, A User's Guide 222

involved are PDP-1 ls running under RSX. Our discussion of portability
is based on two considerations: the documentation of required procedures
and the possible variation in standard procedures between different sites.

First, let's briefly consider why you might want to run your programs
on another computer. This depends on the type of work you do. Perhaps
you use the computer purely as a tool for scientific analysis-you for­
mulate a solution to a problem, write a simple FORTRAN program to
evaluate it, and run it for a few cases. In this case, you would be unlikely
to go beyond your own computer system, and our discussion here will
not have much.relevance for you. As another possibility, you may write
programs that, after testing, are to be delivered to a customer so that
he can run them on his computer. In this case, your responsibility in­
cludes not only making your programs work on your computer, but also
ensuring that they will work on his. We will use this scenario as an
example here.

Suppose now that your programs require a relatively complicated task
build-e.g., as in our earlier examples, a certain logical unit number has
to be assigned to the tape drive and certain subroutines in an object
library are required. You cannot simply give your customer the source
code and expect him to figure out how to make it work-at least not
if you expect to get further work from him. The easiest and often the
best way to document the required task build procedure is via a command
file. This contains the required information in as succinct a form as is
possible. The use of a command file offers a further advantage over a
separate document. Since you will probably have already rnade the com­
mand file (for use during program development and testing), no further
writing will be required on your part. Similarly, if you supply the com­
mand file on the same medium (tape or disk) as the source code, your
customer will not have to re-create it, as it will already be there.

When you use a command file as a means of documenting procedures,
it is natural to use the command file in the form you have been using
on your system. Without realizing it, you may be relying on details that
are specific to your system. Portability requires that you take a more
general approach. Suppose, for example, that a lot of scientific processing
is done at your facility so that most tasks use the floating point processor.
Your system manager may then have installed a special version of the
Task Builder in which the Floating Point switch is, by default, on. In
your Task Builder command, you will probably not bother to specify
that your task uses the FPP. If, however, your customer's facility uses
the normal RSX default (Floating Point off), a Task Builder command
without the Floating Point switch will not produce the correct task image

Indirect Command Files 223

on his system. To avoid this problem, you should specify the Floating
Point switch (/FP in MCR; /CODE:FPP in DCL) in your command file.

· Similar arguments may apply to other switches or options, during both
compilation and task building, and also to device and ufd specifiers.

It may strike you as being redundant to specify parameters in your
commands that you know are correctly specified by default. Although
this is indeed true, you should remember two points. The most important
is that these defaults may not apply on another system, so you should
not rely on them. Further, although the effort is (to you) redundant, it
is small, as you only need to type the switches and other specifications
when you make the command file. The general principle here is that
since it costs very little to put extra details into command files, you
might as well do so.

RSX, A User's Guide 224

21

USER AREA MANAGEMENT

When you work on your system, your immediate attention will probably
be directed at only a few files. This is natural, as you will typically work
on at most a few programs at a time. Nonetheless, you will most likely
have many files that are still important to you, along with a slew of
other files that you no longer need. In terms of working on the files that
are of immediate interest to you, all these others can only get in the

way. This leads to the need for user area management. Under this head­
ing, we consider both the cleaning up and sorting of an individual user
area as well as the use of multiple user areas.

21.1 Cleaning Up Your User Area

A basic fact of life lat least insofar as computer programming is con­
cerned) is that things are never perfect the first time. Even for what is
conceptually a very simple program, you will probably make several
changes to your source file before you are done. These changes typically
result in corresponding versions of object and task image files. You can
quickly develop a large number of old versions of these files. This leads
to what is probably the most common need for periodic cleaning up of
your user area.

There are two reasons for cleaning up your area. The first is for your
own direct benefit. In general, the more files you have in one area, the
clumsier it is to do anything in that area. You have probably already
seen this in terms of directory listings. The greater the number of files
in your user area, the more difficult it is to read through a directory
listing. You can partially alleviate this by getting a listing of only the
latest versions of your files,

User Area Management 225

MCR: PIP *·*/LI

DCL: DIR *·*

however, this merely masks the problem. Whenever you ask the op­
erating system to do anything with a file, it has to search through your
directory until it locates that file. The greater the number of files, the
longer this search takes. Under RSX, especially when the system is
heavily loaded, this difference can be surprisingly noticeable. By keeping
your user area relatively clean, you not only get ea&ier-to-read director}'
listings, but you also improve the response time for many system
interactions.

The second reason for cleaning up your area is that all those files that
you no longer need still occupy disk space, thereby preventing any other
use of that space. The significance of this depends on how crowded your
system is. If your computer system has more disk storage than it really
needs, then you can afford to be sloppy. This is seldom the case. It is
more likely that disk space will be at a premium, in which case it is
your duty to try to use only what you really need. On systems where
lack of disk space has become a serious problem, the decision will be
taken out of your hands, as your system manager will conduct periodic
disk cleanups. It is also possible that you (or, more specifically, the proj­
ect you are working on) will be billed for total disk space utilized. This
is yet another reason for you to get rid of files you do not need.

So much for motivations. How should you clean up your directory?
Probably the most common method is via the Purge command (Section
14.2). Generally speaking, purging the files in your directory is a good
habit to develop. In Chapter 20 we saw various examples of how to
include purging in your command files. One warning is important: au­
tomatic purging of your object, task, list, and map (.OBJ, .TSK, .LST,
and .MAP) files is virtually harmless. You should not, however, purge
your source files until you are sure that your latest edits are good. Sooner
or later you will mess up an edit. (It is not all that hard to do and you
do not always realize it right away.) When this happens, it will be easier
to delete the newest version (which you can always do by specifying 0
as the version number in the Delete command) and start again. If, how­
ever, you have already purged your source files, you will no longer be
able to do this-deleting the latest version will be equivalent to deleting
the only version, and you will be left with nothing. Thus, you should
not purge after editing until you have checked the new version. Although
I speak of this in terms of source files, it also applies to TXT files (used
for documentation), CMD files, and to any other type of file that you

RSX, A User's Guide 226

would make with an editor. As a final related caution, the editor EDI
has two commands for exiting. EX offers a normal exit, but ED first
deletes the previous version of the file that was just edited. You may
be tempted to use ED because it saves you the effort of subsequently
purging your source files. Sooner or later this will catch up with you­
don't do it.

Although purging is the most common and normally the most useful
means of cleaning up your directory, you cannot use it for everything.
Purging merely deletes old versions of your files. If you decide that you
no longer need !any version of) a particular file, you will have to use
the Delete command !Section 14.2) to get rid of it. Suppose, for example,
that you write a simple FORTRAN program to evaluate some compli­
cated expression. !In essence, you are using the computer as a giant cal­
culator.) After you have gotten your answer, you will have no further
need of the TSK or OBJ files, although you may wish to retain the source
fi le. Purging will leave you with a single copy of the FTN, OBJ, and TSK
files; to get rid of the OBJ and TSK files, you must use the Delete com­
mand. Note that of these three files, the TSK file will often be consid­
erably bigger than the others put together. !For a simple FORTRAN
program, the source and object files might each be from I to JO blocks
long whereas the task image file will typically be at least 40 blocks
long.)

There are other situations in which you can delete rather than just
purge. Consider again a simple task made from only a main program.
Even if you wish to keep the task for a while, there is no reason to keep
the object file. If you change the main program, you will have to re­
compile it, producing a new version of the object file. All you really
need to keep are the source and task image files. (If the task also includes
subroutines from other files, you may wish to keep those object files
because they might be useful for building other tasks. It is, however,
very unlikely that the object file corresponding to the main program
would ever be useful for more than one task.) In a similar vein, you can
produce listing files when compiling or map files when task building.
These are useful for debugging a program; once your program is running
properly, they are often of no further use. At that point you should delete
them. If for some reason you need them later, it is relatively painless
to recreate them. The general principle here is that if you are unlikely
to need a file in the immediate future and if it is not hard to recreate
it, then it will most often be advantageous to delete it. The decision
depends on the size of the file, the effort to make it, and how crowded
the disk is. At one extreme, you may allow all your unnecessary files

User Area Management 227

to accumulate over a period of weeks or months; at the other extreme
you may delete all your LST, MAP, OBJ and TSK files every day.

In Section 14.2 we discussed the use of the Purge and Delete com­
mands. These are basic PIP commands !even if you access them via the
DCL commands PURGE and DELETE). Several advanced features of PIP
often simplify the procedure of deleting files. We discuss these in Chapter
22.

Another way to clean up your user area is not as dramatic as deleting
files. This is making a backup copy of various files and then deleting
them. Often you will have files that you are not using and that you
probably will not use again but that you do not want to get rid of, just
in· case you do need them one day. By making a backup copy, you can
save these £iles, but not at the expense of valuable disk space in your
probably already crowded directory. Instead, you save the files on another
medium-magtape, DECtape, or floppy disk. Once you have backed-up
a file, you can delete it from your user area without really losing it (a
situation somewhat analogous to the proverbial having your cake and
eating it too). Various utilities are available for backup; we discuss these
in Chapter 23.

Finally, another technique is worth noting. Although this does not
reduce the number of files you have, it does reduce the amount of disk
space they occupy. This is the Truncate command. Before discussing
this command, it is necessary to explain a bit about how the Files-11
system works in RSX. When you create a file !via an edit, by writing
data from a program, by compiling, or by any other means) an entry is
made in the directory for your user area and an initial number of disk
blocks are allocated for the file. As required, these blocks are used; when
they are all full, another allocation is made, etc. It is quite likely that
not all the disk blocks allocated to the file will be needed. When the
file is closed, the excess blocks are not returned; they remain as an un­
used part of your file. If you get a full directory listing for the file, you
will see two sizes shown: the number of blocks used and the number
of blocks allocated. The difference between these two is the number of
blocks that are being wasted. The Truncate command allows you to
return these blocks to the system.

In the older versions of RSX, the Truncate command is available only
in MCR. With the latest versions !version 4.2 of RSX-I IM, version 3.0
of RSX-I IM-PLUS, version 3.0 of Micro/RSX), it is also available in DCL.
The form of the Truncate command is

MCR: PIP file_specifier/TR

DCL: SET FILE/TRUNCATE file_specifier

RSX, A User's Guide 228

The truncation reduces the allocation for each file to the number of
blocks actually used. Except in very unusual circumstances, there is
never any danger in doing this. The simplest and most common way
to use the Truncate command is on all your files,

MCR: PIP *·*;*/TR

DCL: SET FILE/ TRUNCATE *· *; *
The number of blocks given per allocation is a system generation op­

tion; five is a commonly used value. In this case, each file in your di~

rectory could have as many as four unused blocks in it. (Command files
are particularly wasteful, as they normally are short enough to need
only one block.) The summary line that appears at the end of the standard
directory listing (this is also what you get in the summary form of di­
rectory listing) shows the total number of blocks allocated for all the
files specified. If you look at this prior to truncating, you will know
how many blocks you are returning to the system. Here is an example:

PIP>ITB
Storage used/allocated for Direc tory DR2: [351 , 7]
3-JAN-84 1 0: 08
Total of 304. /3 75 . blocks in 29. files
PIP>*·*; * / TR
PIP>/ TB
Storage used/allocated for Directory DR2: [351, 7)
3-JAN-84 10 : 08

Total of 304. /3 04. blocks in 29 . fi l es

By truncating all your files, you have made 71 blocks available. You
might argue that this is a small number. Depending on how big your
disk is, it may indeed appear to be small. Even big disks fill up eventually,
and those few unused blocks may be more important than you think.
You do not need them, so why keep them? Give them back-every little
bit helps.

21.2 Sorting a Directory

To manage your user area, it is necessary to know what is in it. You
can determine this by getting a directory listing. As you probably know
by now, in RSX a directory listing has the files in no particular order.
If you could sort the files in your directory first, you would then get a
much easier to read list . This capability is offered by SRO (Sorted Di­
rectory Utility). SRD is not an official part of RSX-it is a u tility supplied

User Area Management 229

by DECUS. If SRD is not available on your system, you should ask your
system manager to get it, as it can be quite useful.

SRD offers several capabilities that both overlap and extend those of
PIP for file management. For example, you can use both SRD and PIP
to list or delete files. SRD allows the selection of files by a portion of
the file name or by the date of file creation which, with earlier versions
of RSX, was not possible with PIP. Improvements to PIP have made
these features of SRD unimportant. I will limit our discussion of SRD
tq using it for sorting the files in a directory.

SRD commands follow the MCR style. Since SRD is not an official
part of RSX, DCL does not include commands that translate into SRD
commands. If you want to use the services provided by SRD, you will
have to do so from the MCR environment. In all our examples, I assume
that you are in MCR.

For sorting files, the basic SRD command is

SRD file_specifier/swi tches

The lile_specilier determines the files that will be sorted. It can specify
anything from a single file to a set of directories. For example,

specifies that you wish to sort all MACR0-11 source files in your area,
and

DR2' (265, 111

specifies that you wish to sort all files in user area [265,11[on disk
DR2:. Omitting the file specifier is equivalent to specifying all files in
your default directory. Normally, you will want to sort your entire user
area, and I will assume this in our examples.

The sorting done by SRD is alphabetical. The exact nature of the sort­
ing is controlled by three switches. The alphabetizing is done for both
file name and fil e type. The Name switch (/NA) determines which of
these predominates. lf you specify /NA, all fil es with the same file name
will be grouped together. Different groups will be alphabetized by file
name; within any group, the files will then be alphabetized by file type.
lf you specify /-NA (not by name), the reverse ordering will occur.

It is not always the case that one ordering will be preferable to another,
hence the choice. lf you omit the Name switch, the default will probably
be /-NA, but this can vary with the installation. For purposes of cleaning

up your area, sorting by file type (/-NA) is normally most useful. With

RSX, A User's Guide 230

this ordering, you can easily determine how many files of each type you
have in your area. This helps you decide whether you should delete all
your LST files, all your OBJ files, etc. On the other haod, if you want
to see how many files you have that are associated with a particular
topic, it is more meaningful to sort your directory by file name.

The Writeback switch (/WB) determines whether the sorting is to be
permanent or not. If you specify /-WB (no writeback), the sorting is tem­
porary. You will be given a listing of your files in alphabetical order,
but your directory itself will remain unchanged. To make the sorting
permanent, you must ask for writeback. This means that SRD should
write the alphabetized list of files back into your directory file. Following
this, any reference to your directory (for instance, making a conventional
directory listing) will access the files in the sorted order. In addition,
the SRD writeback feature compresses your directory by removing gaps
caused by file deletions. This increases the efficiency of operations that
refer to the directory to find a file. If you do not specify this switch at
all, the default is to not write back.

Finally, when you sort, you can also obtain a listing. This is controlled
by the List switch (/U). Since the major purpose of sorting your directory
is to obtain an alphabetized directory listing, it might seem that you
would always want to get a listing. This is not so. The listing produced
by SRD is essentially the same as the brief form produced by PIP. SRD
does not offer a listing equivalent to the normal PIP listing format. The
difference here is that the PIP directory listing includes the date and
time of file creation, which is often useful. Thus, you may want to use
SRD (with writeback) to order your directory and then use PIP to get a
directory listing. Jn this case, you would use the No List switch (I-LI)
to suppress the SRD listing.

Let's. now consider a simple example of how SRD works. Suppose the
directory listing of your user area, as produced by PIP, is

ASSEMBLE, OBJ ; 3
SYMTABLE. MAC; 2

COMMAND. MAC; 2

ASSEMBLE, MAC; 2

ASSEMBLE. TSK; 3

COMMAND, OBJ ; 2

ASSEMBLE. MAC; 3

SYMTABLE. OBJ ; 2

This seemingly haphazard order is caused by the fact that when you
create a new file, its entry does not always go at the end of your directory.
If there is an empty space in your directory due to the deletion of some

User Area Management 231

other file, the new entry will go there instead. Suppose you wish to sort
this directory by file type and then get a listing. Depending on how
much detail you wish to get in the listing, either the command

MCR: SRD / WB/ -NA/LI

or the set of commands

MCR: SRD / WB / -NA/ -LI
PIP / LI

would be appropriate. In either case, the listing (as well as the directory
itself due to the writeback} would show the files in this order:

ASSEMBLE. MAC; 3

ASSEMBLE. MAC; 2

COMMAND. MAC; 2

SYMTABLE. MAC; 2

ASSEMBLE. OBJ; 3

COMMAND. OBJ ; 2
SYMTABLE . OBJ; 2

ASSEMBLE. TSK; 3

If you want to get a sorted listing such as this, but you do not want to
change your directory, then you should use the command

MCR: SRO I -WBI -NA/ LI

If you want to sort your directory by file name instead of file type, you
should use either the command

MCR: SRO /WB/NA / LI

or the set of commands

MCR: SRD /WB/NA / -LI
PIP / LI

The files will then be listed in this order:

ASSEMBLE. MAC; 3

ASSEMBLE. MAC; 2

ASSEMBLE. OBJ ; 3

ASSEMBLE . TSK; 3
COMMAND. MAC; 2

COMMAND. OBJ ; 2

SYMTABLE. MAC; 2

SYMTABLE. OBJ; 2

RSX, A User's Guide 232

Note that whether the files are sorted by name or by type, multiple
versions las in ASSEMBLE.MAC above) will always appear together with
the highest version number first.

As noted, SRD offers capabilities other than sorting a directory. These
have been incorporated into PIP in the more recent versions of RSX.
Rather than discussing them as pan of SRD, which is not an official
part of RSX, we will discuss their use via PIP in Chapter 22. If your
system has an old version of RSX that does not offer these capabilities
but does have SRD, then you should ask your system manager for a
summary of the available SRO commands.

21.3 The Use of Multiple User Areas

So far, I have limited our discussion of user area management primarily
to the cleaning up of an area by the permanent removal of unnecessary
files. Sometimes you encounter a different problem. You may have many
files in one area, all of which are still useful, but not all of which are
interrelated. When the total number of files involved is large, this makes
things hard to manage. The best way to avoid this problem is to have
several user areas.

For example, suppose you are given a lengthy data analysis assignment.
You write several programs and command files and make object and
task image files by compiling and building. You have various input data
files and output data files as well as some text files for documentation.
Even after purging, you may still have a lot of different files. As this is
a long-range assignment, you wish to keep all these files active. Once
most of the work is completed, you are given an assignment to write a
precompiler. The number of files involved in this effort soon becomes
sizable also. Whenever you get a directory listing, files from the two
projects are mixed together. Using SRO does not help this problem very
much, as it can only sort alphabetically. To make life easier for yourself,
you should have two separate user areas-one for the data analysis project
and the other for the precompiler. In a sense, you are treating yourself
as two different people; your identity as a user depends on what you
are working on at a given time.

Although you are a single user, RSX allows you to have many user
areas. Additional user areas are made by the Create Directory command,
which is available only to privileged users. In our example, you should
ask your system manager to give you two more user areas. You move
all your data analysis files into one of your new areas and all your pre-

User Area Management 233

compiler files into the other. Any other files you may have had you
leave in your original area. Now, things are nicely organized into separate
areas and file maintenance is easier for you.

On a system with multiuser protection, when you log in, your entry
in the system account file specifies the initial value of your default di­
rectory. This does not mean that you need a separate log-in account
I with UIC) for each user area you have. On the contrary, this is wasteful
and is normally avoided. You should need only one log-in account; after
you use it to log in, you simply change your default directory as explained
in Section 10.2.

This last point needs some clarification. As we discussed in Section
14.5, a ufd is a file and accordingly has an owner. For you to be able to
work in a user area, you must have full access to the ufd for that area.
When your system manager creates a numbered directory, Files-11 de­
fines the owner of the new ufd to be the ufd itself. For example, suppose
your UIC is I l 10, 1 I and you ask your system manager to create I 110,21
as a new user area for you. The owner of this new ufd will be lllD,21.
Note that there need not be an actual user whose UIC is 1110,2]; this
is merely a fiction used to determine the access rights to the ufd. Since
your log-in account identifies you as UJC (110,11, you will not be the
owner of the ufd for I l 10,21. You will, however, be in the same group
as the owner. Thus, you will be granted group access to the directory
file. Since the file protection defaults for group users allow full access
rights, you can use the new user area as though it were your own. Nor­
mally, you will be totally unaware of all this-as far as you are concerned,
both user areas, [110,l I and 1110,2], are yours, and when you use them,
it all works. Underlying this is the fact that both areas have the same
group number, which is what makes it work. Generalizing, you can
have as many numbered directories as you want, as long as they are in
the same group, and still need only one log-in account.

Things are not so obvious when you use named directories. When a
named directory is created, there is no obvious way for Files- I I to define
an owner for it. Thus, it uses the protection UIC of the user issuing the
Create Directory command. Unless your system manager takes special
precautions, he will be the owner of the new ufd, and you will be unable
to use it. To avoid this, he should set his protection UIC to be your log­
in UIC and then issue the Create Directory command. Your UIC will
then be used to define the ownership of the named directory, and you
will have no problems.

In addition to using the Set Default command [Section 10.21 to change
your default directory, there is one other way to maneuver among a

RSX, A User's Guide 234

variety of user areas. This is via the Default switch (/DF) in PIP. This
change is temporary-it remains in effect only while you are in PIP.
N onetheless, it can be quite convenient.

You cannot (it does not make sense to) use the Default switch in PIP's
single-line command form. Instead, you must first get into PIP and then
use it in an interactive manner {see Section 11.2) . Thus, you can use
this technique only in MCR. To change your default directory within
PIP, you can use a command of the form

PIP> [ufd) / DF

Any subsequent PIP commands will use uld as the default for file spec­
ifiers, regardless of what your actual default directory is.

For example, suppose you are working in [110,lJ. You have edited and
tested a file of general purpose subroutines, creating an object file
MATHSUBS.OBJ. You now wish to put a copy of this into [110,2], first
deleting any previous versions that might be there. You intend to con­
tinue working in [110, 1), hence you do not want to make more than a
temporary change to your default directory. You can do all this with
PIP as follows:

MCR>PIP
PIP> [IlO , 2] / DF
PIP> MATHSUBS. OBJ; *IDE
PIP>=(lIO, l]MATHSUBS. OBJ
PIP>CTRL/ Z

When you have several user areas, the Rename command {Section
14.3) is a convenient way to move files from one area to another. Func­
tionally, it is equivalent to making copies in the second area and then
deleting the originals in the first area, but it is mucb faster, since no
actual copying is done. Following with our example, suppose you have
just been given [110,2] and [110,3! as extra user areas. You wish to move
all your MACRO-Jl source files for the precompiler project from [110, l J
into [l 10,3j, and you also wish to move all your FORTRAN source files
for the data analysis project into [110,2]. To do this, you use the following
conunands:

MCR: PIP (110, 3] / RE=(llO , l]*. MAC;*
PIP [110,2] / RE=[llO,lJ*.FTN;*

DCL : REN (110,l]*.MAC; * [110, 3 J
REN [110,1]*.FTN ; * 1110,2]

If all your MACR0-11 files are for the precompiler and all your FOR-

User Area Management 235

TRAN files are for data analysis, you are all set. Suppose that as part
of the data analysis effort, you have a random number generator written
in MACR0-11 contained in file RANDOM.MAC. This will have been
moved, along with the other MACRO-I I source files, into the precom­
piler area. This poses no real problem, as you can move (rename) a file
as many times as you like. Move it again, this time to where it belongs:

MCR: PIP (110, 2) / RE=[llO , 3 JRANDOM. MAC:*

DCL: REN (110, 3]RANDOM. MAC; * [110, 2]

In the examples above, I have speciiied the ufds for both input and
output. Although not always necessary, this is recommended. Suppose
you are in user area [110,2] and you wish to move all the FTN files from
[110,1]. If you try this command, it will not work:

MCR:P I P /RE=[llO,l]*.FTN;*

DCL: REN (110 , 1) *· FTN; * *· *
It is, however, a perfectly legal command, so no error message will appear,
making you think that it did work. In the MCR example, the output
file speciiier is void. In DCL this cannot be done, since it is taken as a
signal to prompt you for the output speciiier. Thus, in the DCL example,
I use a wildcard output file specifier. The PIP Rename command is special
in the way it handles output specifiers. The output ufd, fil e name, file
type, and/or version, if not explicitly given, or if a wildcard, will be set
to the corresponding portion of the input speciiier. This allows you to
rename certain portions of the file specifier without affecting the others.
When renaming a file, you must specify at least one portion of the output
specifier for the command to make any sense. If the entire output spec­
ifier is void, then the entire input file specifier is simply used for the
output. Thus, the command shown above indeed renames all the FOR­
TRAN files in [110,1), but it renames them to their current names. This
is perfectly valid but also perfectly useless. On the other hand, you can
rely on your default directory being used for the input file speciiier. If
you are in user area [110, 1] and you wish to move the FTN files into
[110,2], the following command will work:

MCR:PIP [110,2] / RE=*.FTN;*

DCL: REN *· FTN; * [110 , 2]

Rather than remembering that you can get away with omitting the ufd
from the input but not the output specifier, it is safer to always include
it in both.

RSX, A User's Guide 236

So far we have discussed why you might want to have more than one
user area and also how to work with files in different areas. One point
remains to be considered. Given that you decide to use several areas1

how should you choose the names of the various ufds?
If your system supports named directories, you can pick any name

you want. It might be tempting to use your own uame (for example,
PIERCE), but this does not tell you anything about the contents of the
user area, other than who you are, which you probably already know.
Further, when you get another area, calling it something like PIERCE2
is even less meaningful. Instead, you should choose a name that relates
to the files that will be in the area. This might be a project name or
code, a customer name, or a generic term such as MA THSUBS. Subject
to the nine character limitation, try to pick a useful name.

If you are limited to numbered directories, you will not have this
flexibility. In defining a ufd, both the group and member numbers must
be from 000 to 377 octal. You may have no control over your group
number, but within that group, there is probably no reason why you
cannot pick your own member numbers. Member numbers do not have
to be in the order 1, 2, 3 and so on. Instead, you can (and should) pick
numbers that are meaningful to you. For example, if you want another
user area to segregate work for a particular project, and if your company
has assigned that project a code number such as A265, you might as
well use 265 as the member number for the new user area. (If the project
code number is not a valid member number, .such as 268 or 600, this
will not work so nicely.) Alternatively, you might prefer member num­
bers of 10, 20, etc. Pick whatever is meaningful to you; you will be the
one using it.

If you are using numbered directories, it is perfectly valid to have zero
as a member number. This does, however, raise some interesting points.
You cannot set your default directory to have zero as the member num­
ber. That is, RSX will reject a command such as

MCR: SET / UIC=[110 , 0)

DCL: SET DEFAULT [110, OJ

You will be told that the UIC is invalid. This is not true; the UIC is
perfectly valid, but RSX will not let you do this as it reserves group and
member numbers of zero. If, however, you are in PIP, you can set your
default directory to have a member number of zero:

PIP> [llO, OJ / DF

Unless you are in PIP and have used the Default switch, any use of

User Area Management 237

a file in a user area with member number zero can and must be effected
by explicit specification of the ufd. This is clumsy enough to make zero
a bad choice for a member number of a frequently used area. It does,
however, offer an interesting option for protection of certain files. Since
you cannot access files in an area with member number zero without
specifying the ufd, the chances of accidental deletion are minimized.
You .may lose track of where you are when you switch your default
directory around several times. In this case, a Delete command, espe­
cially with wildcards, can be disastrous. The restriction on setting the
default directory protects files in a member number zero area from this
type of accident, which is the main reason RSX processes group and
member numbers of zero specially. If you have files that are often used
but seldom changed, the choice of zero as the member number may be
a good one. If your use of these files is typically via a command file,
the requirement to specify the µId is not onerous. Files that might fall
into this category are object libraries of general purpose subroutines (used
in task builds in other user areas) and master copies of files that are
used often enough to warrant separate copies in other areas (e.g., com­
mand or data files). In general, you \Vlll probably not want a zero member
number area until you have quite a few user areas.

In conclusion, when you first start working on an RSX system, one
user area will probably be sufficient. In fact, the idea of having several
user areas will strike you as unnecessarily confusing and inconvenient.
AB your use of the system grows and you accumulate more and more
files, you will reach a point where this will no longer be the case. Do
yourself a favor. Co to your system manager and get some extra user
areas. Divide your files among them. You will soon get used to switching
from one user area to another, and once you master this, you will find
user area maintenance significantly easier.

RSX, A User's Guide 238

22

Advanced Features of PIP

In Chapter 14, we discussed some commands that are useful for file
maintenance. As noted, almost all of these involved using the utility
PIP. In this section we discuss some additional featnres of PIP. Referring
to these as being advanced features is somewhat misleading. They are
not advanced in the sense that they are more difficult to learn. They
are advanced in that they extend the basic capabilities of PIP discussed
in Chapter 14 or they are implemented only under the later versions of
RSX. These features are not necessary, but they will make life easier
for you. If your system is very old, you may not be able to take advantage
of them all, but the basic features that were presented earlier will still
be applicable.

22.1 Overview

In general, a PIP command (whether entered directly in the MCR PIP
format or via the DCL equivalent) specifies one or more files as well as
what should be done with them. The advanced features we consider
here offer a more flexible means of specifying files, or they offer mod·
ifications to the basic commands considered earlier that can be applied
to the specified files. In general, these advanced features are most useful
for identifying or deleting files and are thus directly related to the topic .
of user area maintenance, which we discussed in the previous chapter.

Let's consider what happens when you enter a typical file maintenance
command. This might, for instance, be a command to delete, list, or
copy files. Assume for simplicity that the files you want to work with
are in yonr default directory. PIP first reads through your directory to

Advanced Features of PIP 239

determine which, if any, files match the specifier that you entered in the
command. By now, you should be relatively familiar with this concept.
If, for example, the file specifier is TEST.Fm, PIP locates all files with
file name TEST, file type FTN, and an arbitrary version number; it then
selects the one with the highest version number. This is an example of
a unique match-exactly one [unless there are none, in which case an
error message is generated) file is selected as a match for your specifier.
As another example, if the file specifier is *.OBJ;• , all files with file
type OBJ, regardless of file name or version number, are taken as match­
ing your specifier. This is an example of a multiple match. Finally, if
no specifier is given, *. •; • is assumed by default, in which case all files
in your area are taken as matches.

Many of the advanced features of PIP that we discuss in this section
modify the manner in which PIP looks through your directory for
matches to your file specifier. Since these features do not depend on
what is to be done with the files that are selected, you can us< them in
combination with any of the PIP action commands, including the basic
ones previously discussed. In MCR, these features are effected by in·
eluding additional switches in the PIP command. Similarly, in DCL they
are effected by adding a command switch. In DCL, although the basic
command names themselves vary, the switches used for these features
do not.

In most of the rest of this book, I present topics by their function, not
by their underlying implementation. For example, all of the activities
studied in Chapter 14 relate to file maintenance. The fact that almost
all of them are effected by the utility PIP is somewhat of a side issue
and, if you are using DCL, is something that you might never realize.
In the remainder of this section, we discuss special techniques that can
be used only with PIP. This has an important interpretation for DCL­
if the command you are using does not translate into a function per­
fom1ed by PIP, then you will not be able to use these advanced techniques
with it. Jumping ahead a bit, one of these techniques allows you to re­
strict directory searches to those files created on the current day. By
using this, you will be able to get a directory listing of only the files
made today, since the listing is generated by PIP. You will not, however,
be able to get a printout of all files made today, since the printing of
files !via the Print command) does not use PIP. If you consider only the
DCL command forms, you might wonder why some commands allow
you more flexibility than others. Now you know.

To emphasize the restriction of these advanced features to the utility
PIP, most of our discussion in the rest of this section will be in terms

RSX, A User's Guide 240

of the MCR command form. For the benefit of the DCL user, here are
the DCL commands that are effected by PIP:

COPY
APPEND
TYPE
DIRECTORY
DELETE
PURGE
RENAME
UNLOCK
SET PROTECTION

The techniques for modifying directory searches will apply to any of
these commands; I will give an example or two in DCL, but there is no
need to give an example for each of these commands. The other advanced
techniques, those that modify a basic command action, will apply to
only the corresponding command and will be noted as such.

22.2 Special PIP Wildcards

In Section 6.1, I discussed the use of wildcards in file specifiers. This
technique applies not only to PIP but to many other utilities as well.
With version 4.0 of RSX-llM, a powerlul extension of the basic wildcard
technique was added to PIP. This has not (at least yet) been implemented
in other utilities. (This capability was already available in SRO, but as
noted in Section 21.2, SRO is not an official part of RSX.) The special
PIP wildcards are probably the most powerful and useful of all the ad­
vanced features of PIP.

You can use the special PIP wildcards in either the file name or file
type portion of the file specifier; you cannot use them for the device,
ufd, or version number.-To explain how these work, we will first consider
only the file name. The basic wildcard consists of a single asterisk (•)
in place of an actual file name. When your directory is searched, any
file name is taken as a match. More specifically, any string of characters
(including none) is taken as a match for the asterisk. With special PIP
wildcards, asterisks may be mixed with other characters; the above
interpretation still applies to each asterisk. Thus, the file name specifier
T• is equivalent to specifying "T followed by an arbitrary string (in­
cluding none) of characters." U you want a directory listing of all files
with a name that begins with T, you would use the command

Advanced Features of PIP 241

MCR: PIP T*. */LI

DCL: DIR T* . *
File names such as T, TI, and TRANSLATE are acceptable matches for
this. Similarly, the file name specifier • 356• is matched by any file
name that has 356 somewhere in it, such as TEST356, TEST356xx,
356WORK, or even just 356. As a more thorough example, in Table 2,
we show several possible file names and specifiers and indicate by the
letter Y jfor Yes) all matches.

Version 4.0 of RSX-llM also introduced a second wildcard character
for PIP. This is the percent sign 1%). Any single character is taken as a
match for a %. This is in distinction to the asterisk just discussed, which
is matched by any string of characters. Thus, if you specify T%, the file
name Tl will be selected as a match but Tll will not, whereas both
names will match T*. As another example, %%% specifies any file
name that is exactly three characters long. In general, the percent sign
will be less useful than the asterisk wildcard, but you may have occasion
to use it.

You can also use the asterisk and percent sign wildcards in specifying
the file type, altl10ugh this is much less likely to be useful. Generally,
file types are chosen to match defaults for certain utilities, not to follow
naming patterns that you have set up. It is more often coincidence than
intent that enables the use of these special wildcards with file types.

Although the special wildcards of PIP are not implemented for other
utilities, you can effectively use them with other utilities if you are
willing to go through a few extra steps. For example, in Chapter 23 we
will examine techniques for making backups of your files. Without going
into details at this time, you specify a set of files and a device on which
you want a copy made. Following the backup, you may also want to

Table2
Matches between File Names and Specifiers

File N'am e File Name Specifier
T• •T• •T• ll •11 •11•

TEST y y

TESTll y

TESTl 2 y

BEST!! y
BEST12
WORK!! y

TESTllA y

WORK II A y

RSX, A User's Guide 242

delete the files from disk. Suppose that you wish to make a backup copy
of all files (source, object, listing, etc.) whose names begin with the proj­
ect title RED. Since this includes names such as RED and REDPARTl,
you cannot use a simple file specifier such as RED.•;•. Instead, the
more sophisticated file specifier RED•.*;* would be ideal; however, most
backup utilities will not accept this. Suppose that all these files are in
user area 1217,2) and that you have another user area, 1217,3), which
currently has no files in it. (If you do not have another area available,
get one! See Section 21.3.)You can then use the Rename command with
special wildcards to move the desired files into the spare area. Because
there will be no other files in the spare area, you may effect the backup
from that area, using a conventional*.*;*· file specifier. Following the
backup, you can either move the files back or delete them. By using the
Rename command, you do not really have to m ove the files, so almost
no system overhead is involved. This is how the backup goes:

MCR; PIP [217 , 3) / RE=[217, 2)RED*. *; *
backup [217,31*·*;*

CCL; REN [217, 2)RED*. *; * [217 , 3)

backup [217 , 3] *· *; *
(I use backup to denote an arbitrary backup utility.) To clean up after·
wards1 use ei ther

MCR;PIP [217,2J / RE=[217,3]*-*;*

DCL:REN (217,31*·*;* [217 ,2]

MCR; PIP [217, 3] *·*;*/DE

DCL: DEL 1217, 3] *· *; *
You can use similar tricks with the directory search modification com­
mands discussed in the following sections.

22.3 Directory Search Modifiers

The special PIP wildcards allow you to create special file specifiers. Sev­
eral other PIP commands modify the way that PIP searches your directory
for files that match a specifier. Unlike the wildcards, these are not used
within the file specifier. Instead, they are separate commands that force
a modified interpretation of the file specifier. You can use these directory

Advanced Features of PIP 243

search modification commands with the regular PIP action commands,
in either the single- or multiple-line command form.

Three commands are available for modifying the means whereby PIP
searches your directory for file specifier matches. These are the Today,
Default Date, and Exclude commands, which we discuss in the next
three sections. These commands all work in the same basic manner.
Each specifies a modification li.e., a restriction) on file matching. If you
use a single-line command, the modification affects only that command.
If you enter PIP and use a multiple-line command, the modification
remains in effect from the time it is entered either until it is overridden
by another similar command or until you exit from PIP.

There are some important syntactical points concerning the use of
the directory search modification commands. In the next section we
will discuss the Today command. We use this as an example here; the
concepts that we discuss concerning its use apply to the other directory
search modification commands as well. As you might guess, the Today
command directs PIP to consider only files created on the current date.
In MCR the Today command is effected by the switch /TD; in DCL the
command switch /TODAY is used.

If you are in MCR, the easiest way to use the directory search mod­
ification commands is in the multiple-line command form. To do this,
you enter PIP, give the desired directory search modiiication command(s),
and then give the appropriate action command. For example, if you enter
PIP, give the Today command, and then ask for a directory listing of all
files, the resulting listing will show only those files created on the current
day. The proper command sequence is

MCR>PIP

PIP>/TD
PIP> /LI

Since PIP processes command input one line at a time when you use it
in this interactive manner, you must enter the Today command before
the Directory command. Note that I do not show your leaving PIP jvia
a CTRL/Z). If you remain in PIP, the Today command will remain in
effect for subsequent commands. Depending on what you are doing, this
may or may not be desired.

In MCR, you can also do the above in a single-line command. The
syntax for doing this is perhaps tied with that of the Set command (Sec­
tion 19.2) for ungainliness. First, you must realize that the directory
search modification commands are separate, self-standing commands.
They are not subcommands to the basic action commands that we dis­
cussed in Chapter 14. You enter a directory search modification com-

RSX, A User's Guide 244

mand directly after the PIP command itself. !This is similar to the
distinction that DCL makes between a command switch and a file switch
and is one of the few instances in MCR syntax where a switch must be
appended to the command itself.) You follow the command with an
ampersand{&.) which is recognized by PIP as a command separator. This
allows you to enter more than one command in a single command line.
Finally, you enter the basic PIP command {which is, in general, a file
specifier followed by the command switch). Thus, the above example,
in a single-line command to PIP, is

MCR>PIP / TD&/LI

Note that if you omit the ampersand

PIP /TD / LI

you will get the error message

PIP -- Too many command switches - ambiguous

(The PIP manual for RSX-llM version 4.0/4.J shows examples in this
combined form but gives the wrong syntax; it does not include the am­
persand.) Now, if you interchange the two switches,

PIP / Ll&/ TD

you will get no error message, but the Today switch will be ignored.
What happens here is that the Directory command is processed first lit
accordingly considers every file in your user area), and the Today com­
mand is processed only after the directory listing is complete.

As bad as it is, this example is deceptively simple, since there is no
file specifier. Suppose you want a directory of only the MACR0-11
source files created today. The file specifier {•.MAC;•) is part of the
Directory command, so it {and the switch /LI) must be entered after the
ampersand,

It is much more natural to enter the command as

This will not work-it is a more general case of the mistake noted above.
You will again get the error message

PIP -- Too many command switches - ambiguous

Advanced Features of PIP 2.45

Even if you put an ampersand after the Today switch (/TD), this form
with both switches at the end of the command is still wrong. The
command

results in the error m essage

PIP -- Command syntax error

followed by a directory listing that ignores the Today switch. As you
can see, the single-line command form is quite a bit more difficult to
remember than the multiple-line form. Normally, a single-line com­
mand, once you know it, is faster to use. Here, you will probably find
the multiple-line command faster to use because you will probably be
able to at least get it correct. Perhaps the only time that the single-line
form will be advantageous is in an indirect MCR command file where
you cannot use multiple-line command forms.

If you are in DCL, you are restricted to a single-line command form.
Here, however, things are easy and sensible. You can put the directory
search modification C()mmand switch after the DCL command name,
the way that you would expect. Thus, in DCL, our last example is

DCL>DIR/ TODAY *·MAC;*

As a final point, you can combine several directory search modification
commands. (It does not make sense to combine the Today and the De­
fault Date commands, since one overrides the other. It does make sense
to combine either of these with the Exclude command.) In the multiple­
line MCR command form, each of these is a separate command and is
entered on a separate line. In the single-line MCR command form, each
is entered as a switch appended to the command PIP and must be fol­
lowed by an ampersand. In DCL each is entered as a command switch
appended to the appropriate DCL command.

22.4. The Today Command

The first directory search modification command that we consider is
the Today command. It is the easiest of the three to use; the basic mech­
anisms illustrated in our examples apply to the other commands as well.
The Today command is available with version 4.0 of RSX-llM. There
are no parameters or values associated with this command. In MCR it
is simply entered in the PIP command as the switch /TD. In DCL it is
entered as the command switch /TODAY.

RSX, A User's Guide 246

The Today command specifies that only those files created on the
current date will be eligible for consideration in matching your file spec­
ifier. for example, suppose that you first get a normal !without any con­
straints) directory listing:

Directory DR2 : [265, 51

16-DEC-85 11: 27

JUNK. FTN; 5 2.

RANDOMBIT. MAC; 4 5.

RANDOM. MAC; 3 2.

RANDOM . OBJ ; 3 2.

TRAND. MAC; 5 2.

TRAN!l. OBJ; 5 2.

RANDOM. MAC; 2 2.

RANilOMBIT. OBJ ; 2 1.
A.OBJ; 1 1.
RANDOM. OBJ; 2 1.

15-SEP-85 10: 00

02-DEC-85 16: 38

16-DEC-85 09: 39

16-DEC-85 09: 43

16-DEC-85 10: 22
16-DEC-85 10: 24

15-DEC-85 17: 44
02-DEC-85 10: 07

16-NOV-85 10: 03

15-DEC-85 17: 44

Total of 20. /20. blocks in 10 . files

Suppose that you have made several changes today and you would like
a lis ting of only those files made today. You can do this with the
command

MCR: PIP /TD&/LI

DCL: DIR/TODAY

This is what you get:

Directory DR2: (265, 5]
16-DEC-85 11 : 21

Day of 16-DEC-85

RANDOM. MAC; 3

RANDOM. OBJ ; 3

TRAND. MAC; 5
TRAND. OBJ ; 5

2.
2.

2.

16-DEC-85 09: 39

16-DEC-85 09: 43

16-DEC-85 10: 22

16-DEC-85 10: 24

Total of 8. /8. blocks in 4. fil es

Note that the heading in the directory listing !normally two lines long)
now contains a third line !"Day of ... "). This is to document the fact that
the directory listing was prepared with the Today command in effect.

Continuing with this example, suppose you wish to delete all object
files created today. You can follow the Directory command with a second
command to delete these files,

MCR:PIP /TD&*.08.J ;*/ DE

DCL: DELETE/TODAY *·OBJ;*

Advanced Features of PIP 247

Alternatively, if you are in MCR, you can enter PIP and interact with
it. In this case, you should first issue the Today command by itself,
since it will affect all subsequent commands while you remain in PIP.
Your sequence of commands will be

MCR>PIP
PIP> /TO

PIP>/LI
PIP> *. OBJ; */DE

Note that the file A.OBJ;l was created on a day other than today and
thus will not be affected by the Delete command. If you are using PIP
interactively and you want to assure yourself that this file is still there,
you cannot do so by entering the command

PIP>/LI

Since the Today command is still in effect, and since A.OBJ was not
created today, it will not be taken as a match. (This is a common source
of confusion.) At this point, a directory -listing will show this :

Directory DR2: [265, 5]
16-DEC-85 11: 28
Day of 16-DEC-85

RANDOM. MAC; 3

TRAND. MAC ; 5

2. 16-DEC-85 09 : 39

16-DEC-85 10: 22

Total of 4. / 4. blocks in 2. files

To see that the file A.OBJ;l is still in your directory, you have to cancel
the effect of the Today switch. You can do this by leaving PIP (CTRL/Z),
returning to MCR, and then reentering PIP, or by staying in PIP but
cancelling the Today command via the switch /DD as explained in the
next section. If you have been entering individual single line commands
(which is what you have to do from DCL), you do not have to worry
about this, since the Today command does not have a lasting effect.

Finally, suppose you decide to delete any FTN files created today. You
can do this with the command

MCR: PIP /TD&*. FTN; * / DE

DCL: DELETE/ TODAY *· FTN; *
In this case, you will get the response

PIP - - No such fi l e (S)

SYO: [265, 5!*· FTN; *

RSX, A User's Guide 248

which simply means that although you may have some FTN files in
your user area, you have none that were created today. (Note that, unlike
the directory listing, no reminder is typed stating that the Today com­
mand is in effect. Thus, this message is by itself misleading.)

The Today command is often valuable when you have a working ver­
sion of a program and make a series of changes to it. Suppose, for ex­
ample, that you have an old program called PRE.MAC. You decide to
add some extra features to it. You edit the file, which (inevitably) results
in some errors; these are corrected via another edit, etc. After several
edits, a directory of all your PRE.MAC files looks like this:

MCR>PIP PRE. MAC; */LI

Directory DR2: [265, 6)

16-DEC-85 11 : 29

PRE. MAC; 3
PRE. MAC; 4
PRE. MAC ; 2
PRE. MAC; 5
PRE . MAC; 1

2

1.

16-DEC-85 09: 43
16-DEC-85 09: 53
16-DEC-85 09: 39
16-DEC-85 10: 22
27-MAY-85 15: 19

Total of 9. /9. blocks in 5. files

You would like to keep only the most recent of the new versions, but
since you have not finished testing the enhancements, you do not wish
to get rid of the old version. A simple purge will not do what you want,
but you can purge today's files:

MCR: PIP / TD&PRE. MAC / PU

DCL: PURGE/TODAY PRE. MAC

The Today command excludes PRE.MAC;! from consideration for file
matching, so it will not be affected by the Purge command. Note that
by using a single line command, the Today command does not affect
subsequent PIP commands. If you then get a directory listing, it will
show only the two files that you wanted to keep:

MCR>PIP PRE.MAC;*/LI

Directory DR2: [265, 6]

PRE. MAC ; 5
PRE. MAC; 1

16-DEC-85 10: 22
27-MAY-85 15: 19

Total of 3. / 3. blocks in 2. files

Advanced Features of PIP 249

22.5 The Default Date Command

The second directory search modification command is the Default Date
command. !This is available with version 4.0 of RSX-UM.) Conceptually
this is very similar to the Today command, but it offers a more gen·
eralized capability. The Default Date command specifies a beginning
and an end date. When the Default Date command has been specified,
only files created between these two dates are eligible for matching file
specifiers. The dates are inclusive; a file must have been created on or
after the beginning date and on or before the end date. By setting the
beginning and end dates the same, you can specify one particular day.
By setting both dates equal to the current date, you obtain exactly the
same action as you would with the Today command. !The Today com·
mand, however, is easier to use.) When you are in an interactive session
with PIP, you can specify the Default Date command as often as you
like. Each time you do, you change the start and end dates.

In MCR the Default Date command is entered by using the switch
/DD. The form of this is

/DD: startdate: enddate

The colons preceding startdate and enddate are required. The dates are
both entered in the standard RSX date format:

dd-mmm-yy

The hyphens also are required. dd is a two-digit day number jyou can
omit the leading zero if the day is between 01 and 09); mmm is a three­
letter month abbreviation jthe first three letters of the month name in
English); and yy is a two-digit year value. As an alternative, you can
use a wildcard date; this is entered as an asterisk j•) and specifies that
the corresponding limit !start or end) is to be ignored.

In DCL, two separate commands correspond to the two date limits
allowed in the Default Date command. These are the Since and Through
commands, which are entered as command switches in the form

/ SINCE: startdate

/ THROUGH: enddate

where standate and enddate have the same meaning and are specified
in exactly the same manner as in the MCR command. You can specify
both these commands; the switches are simply appended one after the
other to the basic DCL command. When you wish to specify just one
day, you can use the special form

RSX, A User's Guide 250

/ DATE: date

rather than entering both the Since and Through commands with the
same date.

For example, suppose you want a directory listing of those files created
during the months of January, February, or March of 1985. If you are in
MCR, you can enter PIP and then restrict all further directory searches
to this time period by entering the command

PIP>/DD: Ol-JAN-85: 31-MAR-85

Following this, a conventional Directory command to PIP will give you
what you want. Alternatively, you can use a single line command

MCR: PIP /DD: 01-JAN-85: 31-MAR-85&/LI

DCL: DIR/ SIN: 01-JAN-85 / THR: Sl-MAR-85

If you want all files created prior to 1985, yc;m specify December 31,
1984, as the end date. In MCR you use a wildcard for the start date; in
DCL you simply omit the Since command:

MCR : PIP /DD:*' 31 - DEC-84& / LI

DCL : DIR/ 111R: 31-DEC-84

Similarly, to copy only those files created on or after November 2, 1985,
from your user area to the floppy disk drive DYi: (this is a form of
backup that we will examine below in Chapter 23), you would use the
command

MCR : PIP /DD:02-NOV-85:*&DY1:~.*

DCL: COPY/SINCE: 02-NOV-85 *· * DYl:

If you use PIP interactively, you can enter the Default Date and the
Today commands as often as you wish. (Remember that the Today com·
mand is merely a special case of the Default Date command.J Entering
one of these commands cancels any previous ones; only the last one
entered is significant. In particular, you may use the command /DD:•:•
to declare that you do not care at all about the creation date of the file.
This condition is in effect when you first enter PIP, so there is no need
to use the command /DD:•:• unless you specify date restrictions and
then wish to cancel them.

The way in which the Default Date command modifies further PIP
commands is very similar to that already discussed for the Today com·
mand. Other than the extra flexibility, the only point worth noting is

Advanced Features of PIP 251

the identification of the default dates on directory listings. If you specify
actual values !no wildcards) for both the start and end dates, the directory
heading will have a third line of the form

Dates from startdate through enddate

where startdate and enddate are the values you specified. If you use a
wildcard for the startdate !or in DCL omit the Since switch), this line
will instead be of the form

Oates before enddate

Similarly, if you use a wildcard for the enddate lor in DCL omit the
Through switch), the line will be of the form

Dates after startdate

Finally, if you restrict the directory search to a single day, either by
setting the startdate equal to the enddate or, in DCL, by using the Date
switch, the third line of the directory heading will be of the form

Day of date

We have already seen a special case of this form with the Today
command.

22.6 The Exclude Command

The third command available for modifying directory searches is the
Exclude command. !This is available with version 4.0 of RSX-llM.) This
command identifies certain file specifiers that are to be excluded from
directory searches. In MCR the form of the Exclude command is

file_specifier/EX

lnDCLitis

/EX: fil e_specifier

The file_specifier determines which files are to be excluded; it cannot
include device or ufd specifiers, but it can include any combination of
file name, file type and version.

The file specifier is interpreted exactly as in other PIP commands,
with the exception of the version number. The version number cannot

RSX, A User's Guide 252

be omitted; if it is, the PIP command will be rejected, resulting in the
error message

PIP -- Version must be explicit or "*"

Furthermore, you cannot use a version number of zero to exclude the
latest version of a file. To exclude the latest version of a file, you must
determine !via a directory listing) what that version number is and then
specify it in the Exclude command. Finally, you can use a wildcard for
the version number, which causes all versions of the file to be excluded.

The treatment of the version number in the Exclude command is
somewhat nonstandard but the file name and file type portions of the
file specifier are treated normally. For example, if you are using PIP
interactively, the command

specifies that all files of type .FTN be excluded, regardless of file name
or version. Similarly, you can use the command

to exclude all files with name TEST. The Exclude command and the
special PIP wildcards were both introduced in version 4.0 of RSX-llM.
Thus, if your system has one of these features, it has both. With these
features, you can use commands such as

which directs that all files with TEST appearing anywhere in the file
name are to be excluded.

Let's now consider a simple example. In our discussion of user area
maintenance, I explained that you might not want to purge source files
when cleaning up your area. The Exclude command can help you here.
Suppose your directory looks like this:

MCR>PIP/LI

Directory DR2: (265 -, 6)
30-DEC-85 14: 57

MAKEFILES. F™; 4 4.
MAKEFILES . FTN; 2 2 .
MAKEFILES . LST ; 4 7 .
MAKEFILES. LST ; 3 6 .

Advanced Features of PIP

14-DEC-85 16: 37

09-NOV-85 17: 14
14- DEC-85 17 : 03
13-DEC-85 15: 52

253

MAKEFILES. OBJ; 4
MAKEFILES. OBJ; 3
MAKEFILES. TSK; 2

3.
2.
42.

14-DEC-85 17: 04
13-DEC-85 16: 08

C 30-DEC-85 09: 44

Total of 66. / 66. blocks in 7. files

You would like to purge everything except yoll.r FORTRAN source files .
You can do so by excluding these files and then purging:

MCR: PIP *· FTN; */EX&*. */PU

DCL: PURGE/ EX:*· FTN; * *· *
You can also do this interactively:

MCR>PIP
PIP> *. FTN; */EX
PIP> *·*/PU
PIP>/LI

Directory DR2: [265, 6 J

30-DEC-85 14: 58

*· FTN; * excluded

MAKEFILES. LST; 4

MAKEFILES. OBJ; 4
MAKEFILES. TSK ; 2

7.
3.

14-DEC-85 1 7: 03
14-DEC-85 17: 04

C 30-DEC-85 09: 44

Total of 52. /52. blocks in 3. fil es

In this example, after purging, we get a directory listing. Because the
Exclude command is still in effect, no .FTN files appear in the listing.
Note also that a third line appears in the heading stating that• .FTN;•
is excluded.

When you are using PIP interactively, you can use the Exclude com­
mand repeatedly. Each time you use it, the previous exclusion is dropped,
and the new file specifier exclusion becomes effective. A special form
of the Exclude command in which no file specifier is given,

PIP>/EX

directs that no files are to be excluded. You can use this to cancel any
previous exclusions, returning to the basic PIP directory search condition.
In our example above, if you want to convince yourself that all original
versions of your FORTRAN source files remain after the purge, you
would first cancel the current exclusion and then get a directory listing:

RSX, A User's Guide 254

PIP>/ EX
PIP>/LI

Directory DR2: [265 , 6]
30-DEC-85 14 : 59

MAKEFILES. FTN; 4

MAKEFILES. FTN; 2
MAKEFILES. LST; 4
MAKEFILES. OBJ; 4
MAKEFILES. TSK; 2

3.

14-DEC-85 16 37
09-NOV- 85 17 14

1 4 -DEC- 85 1 7 03
14-DEC-85 17 0 4

C 30-DEC- 85 09 44

Total of 5 8. /58 . blocks i n 5. f iles

Because the Default Date (or Today} command and the Exclude com­
mand restrict directory searches in different ways, they can be used to­
gether. Let's return to our example above. Suppose you want to know
which files, other than FORTRAN source files, are more than a week
old. You can do this by excluding .FTN files, setting the end date, and
getting a directory listing. Let's first look at the interactive form of doing
this:

MCR>PIP
PIP>* . FTN; */EX
P IP>/ DD: *: 23-DEC-85
P IP>/LI

Dire ctory DR2: [265 , 6]
30-DEC-85 15 : 03

*· FTN; * excluded
Oates before 23-DEC-85

MAKEFILES. LST; 4
MAKEFILES. OBJ; 4

14-DEC-85 17 : 03
1 4 -DEC- 85 17: 04

Total of 10 . / 10. blocks i n 2 . f iles

You can enter the Exclude and the Default Date (or Today} commands
in any order. When you use both and get a directory listing, the file
specifier exclusion is indicated in the third line of the header and the
date restriction appears as the fourth line.

You could also use a single-line command in the above example. In
MCR, the command line becomes incredibly awkward; in DCL, it is
not too bad:

Advanced Features of PIP 2.55

MCR: PIP *· FTN; */EX&/oo, *' 23-DEC-85&/LI

DCL: DIR/ EX'*· F'l"N; * / THR' 23-DEC-85

From these examples, you might conclude that the general forms of
MCR Exclude and Default Date commands differ. It is natural to think
of either command as specifying an action, with the remainder of the
command line supplying details of said action. If you think of them this
way, the Exclude command looks like "what files" followed by the
switch /EX, whereas the Default Date command looks like the switch
/DD followed by "what dates." This lack of parallel structure is an un­
fortunate source of confusion. Actually, both commands follow the same
basic syntax that is used for all PIP commands:

PIP> file_specifier/ switch: parameter (s)

With the Exclude switch, the "what files" is the file specifier and comes
first, whereas with the Default Date switch the "what dates" is a pa­
rameter value and comes last. Try to not let it confuse you.

The Exclude command is useful, but it suffers from an important lim­
itation. Exclusions cannot be combined; only a single file specifier can
be excluded. For example, you cannot exclude both FORTRAN and
MACR0-11 source files. If you try this

PIP> *· FTN; */EX
PIP>*. MAC; */EX

the second exclusion will override the first, and only the MACR0-11
files will be excluded. Similarly, there is no way that you can simul­
taneously exclude all files with TEST in the file name (•TEST'.*;*)
and all files of type MAC (*.MAC;*). The command

MCR: PIP *TEST*. MAC; * / EX&*. */PU

DCL: PURGE/ EX' *TEST*· MAC;* *· *

excludes only those files that have TEST in the file name and that also
are of type MAC. Thus, files such as TEST2.FfN and SCREEN.MAC
will not be excluded from the purge. In many instances where excluding
files would be useful, you will find that you need to exclude combi­
nations that cannot be cited in a single file specifier; the Exclude com­
mand will then be of no use. Don't dismiss it entirely, however, as there
will still be times when the Exclude command will be helpful to you.

RSX, A User's Guide 256

22.7 The Selective Delete Command

The basic means of deleting files with PIP is via the Delete command.
There is also a variant of this known as the Selective Delete command.
The difference between these two commands is this. When you use the
conventional Delete command, any file that matches the file specifier
is immediately deleted, and that is that. When you use the Selective
Delete command, each file that matches the file specifier results in a
query; based on your response, the file is either deleted or left alone.
There is no sense in using the Selective Delete command when you
explicitly name files, but it is very useful when you use wildcards. By
doing a wildcard selective deletion, you get PIP to list each file that is
eligible for deletion and to then give you a chance to not delete it.

After naming a file, PIP gives you four choices:

Y=Yes
N=No
G=Go
Q=Quit

Your response must be one of these four. A Y means "Yes, delete the
file just named." Similarly, an N means "No, do not delete it." In either
case, after the appropriate action, the name of the next file eligible for
deletion will be listed followed by a similar prompt. The other two re·
sponses that you might enter are different in that they terminate the
interactive process. A G means "Go; delete this file and also all re­
maining ones without listing their names.' 1 A Q means "Quit; do not
delete this file and do not delete or ask me about any others."

In MCR, the Selective Delete command is a syntactically identical
functional replacement for the conventional Delete command. It is ef.
fected by using the switch /SD rather than the switch /DE; otherwise,
the commands are identical. In DCL, the Selective Delete command is
effected by adding the switch /QUERY !this is typically shortened to
just IQ) to the normal Delete command. Thus, the basic form of the
Selective Delete command is

MCR: PIP file_specifier/SD

DCL: DEL/QUERY file_specifier

With the new versions of RSX (version 4.2 of RSX·llM, version 3.0 of
RSX-llM-PLUS and version 3.0 of Micro/RSX), the DCL has been mod·

Advanced Features of PIP 257

ilied to allow the switch /CONFIRM as a synonym for the Query switch.
This is now the preferred usage as it is the same as that used in DCL
on the VAX.

As an example of using the Selective Delete command, suppose you
decide that it is time to get rid of some of the object files in your user
area. You first get a brief directory listing via the command

MCR:PIP *.OBJ;*/BR

DCL:DIR/BR *.OBJ;*

so that you can see what there is. The listing that you get looks like
this:

Directory DR2: [265, 6]

A.OBJ; 1

MAIN. OBJ; 1
SUBSl.OBJ; 1
TAPESUBS. OBJ; l
SUBS2 . OBJ ; 1
MAINVERS3. OBJ; 1

TEST. OBJ; 1
QFUNCTION. OBJ; 1
MAINVERS7. OBJ; 1

You decide that you no longer need the object files named A, TEST,
MAIN, and MAINVERS3. You could delete these by individually typing
their names and using the conventional Delete command, but this seems
to be too laborious. (After all, computers are supposed to do the work,
not you.) Instead, you decide to do use the Selective Delete command,
which avoids the need for typing the individual file names. In MCR this
is what happens:

MCR>PIP *.OBJi#SD
Delete file DR2 : [265 ,6] A.OBJ ; l
Delete file DR2 : [265, 6]MAIN . OBJ; 1

Delete file
Delete file
Delete file
Delete file
Delete fil e
Delete file
MCR>

DR2:
DR2:
DR2:
DR2:
DR2:
DR2 :

[265, 6] SUBS!. OBJ; 1
[265, 6] TAPESUBS. OBJ; 1

[265, 6] SUBS2. OBJ; 1
[265, 6]MAINVERS3. OBJ; 1
[265 , 6]TEST. OBJ; 1
[265 , 6]QFUNCTION . OBJ; 1

[Y / N/ G/ Qj? Y
[Y /N/ G/Q]? Y
[Y / N/G/ Q]? N
[Y/N/G/QJ? N
[Y/ N/G/Q]? N
[Y/N/G/QJ' Y
[Y/ N/ G/ Q]? Y
[Y / N/ G/ Q]' Q

(In DCL exactly the same thing happens except that the command you

RSX, A User's Guide 258

enter is DEL/Q *.OBJ;• or DEL/CON• .OBJ;•.) A brief directory listing
now shows that only the other object files remain:

MCR>PIP *.OBJ; * / BR

Directory DR2: [265, 6]

SUBSl. OBJ; 1
TAPESUBS. OBJ; 1

SUBS2. OBJ; 1
QFUNCTION. OBJ; 1
MAINVERS7. OBJ; 1

Of course, you do not have to examine your directory before using
the Selective Delete command. Even if you do not remember in advance
each file that you have, you will normally know by looking at the file
name whether you want to keep it or not. The one danger here is that
if you have multiple versions, you may inadvertently delete the latest
version if it is listed first. U you have multiple versions, you should first
purge and then selectively delete, or you should get a directory listing
so that you know exactly which files to_ delete.

You can use the Selective Delete command in conjunction with the
other advanced features that we have already examined. For example,
sup.pose you have been editing, compiling, and building several portions
of a new video game called Wombat. You do not wish to disturb any of
the MACRO-I I source files, but you do wish to clean up some of the
others that have accumulated. You do this by combining the advanced
PIP wildcards, the Exclude switch and the Selective Delete command:

PIP> *. MAC; */EX
PIP> *WMB*. */PU
PIP> *WMB*· *;*/SD
Delete file
Delete file
Delete file
Delete file
Delete file
Delete file
Delete file
PIP> "z

DRl. [107 , 3] WMBSUBS . LST; 3
DRl [107 ,3]WMBMAIN . OBJ;6
DRl : (107,3]WMBSUBS.OBJ;3
DRl: [107,3]WMB.CMD;2
DRl: [107,3]WMBMAIN.LST;6
DRl: [107,3]WMB.TSK;3
DRl: [107,3]WMB.MAP ; 3

(Y/N/G/ Q]? Y
[Y/ N/ G/ Q]? N
[Y / N! G(Q]? Y
[Y !N!GfQ]? N
[Y (N(G!Q]? N

[Y (N(G/Q] ? Y

[Y(N/G(QJ? Y

Note that in this example it is preferable to use the multiple-line PIP
command form since you want the file exclusion to apply to both the
Purge and the Selective Delete commands. It is, of course, possible to

Advanced Features of PIP 259

do this with two single-line commands, but you will have to include
the Exclude command in each:

MCR: PIP *·MAC; */EX&*WMB*. * / PU
PIP *·MAC; */EX&*WMB*. *;*/SD

DCL: PURGE/EX:*· MAC;* *WMB*· *
DEL/Q/EX: *·MAC;* *WMB*· *; *

As a final point, on older versions of DCL, if you omit the version
portion of the file specifier in the Delete command, a Selective Delete
command will automatically be generated. Thus, the two commands

DCL>~EL/Q *· FTNi *
DCL>DEL *. FTN

are identical, and both translate into the MCR command

MCR>PIP *· FTN ; */SD

This is not a good feature, since if you get used to it and then inad­
vertently include the ;* in the file specifier,

DCL>DEL *. FTN; *
you will delete everything, without any queries. With the new versions
of RSX (version 4.2 of RSX-llM, version 3.0 of RSX-llM-PLUS and ver­
sion 3.0 of Micro/ RSX), this special case has been removed. Now, a De­
lete command in DCL without an explicit version will be rejected.

22.8 The List Deletions Switch

It is possible with either the conventional Delete or the Purge command
to delete many files without actually naming them. It is sometimes
useful to know which files were deleted. The awkward way of deter­
mining this is to compare directory listings made before and after the
deletions. The List Deletions switch eliminates this clumsiness by di­
recting PIP to tell you which files it has deleted. (Note that this does
not give you any choices, as does the Selective Delete command. It
merely tells you what happened after it is all over.)

You can use the List Deletions switch as a modifier for either the
Delete or the Purge command. In MCR it is indicated by the switch
/LD, which is a subswitch of the switches /DE and /PU. By a subswitch
I mean that it is appended directly to the main command switch; there
is no ampersand as in the directory search modifiers. In DCL the List

RSX, A User's Guide 260

Deletions switch is effected by the switch /LOG which is appended to
either the Delete or Purge command. When you use this switch, PIP
lists on your terminal the name of each file it has deleted. For example,
if you want to delete all the files made today and you want a record of
what the files were, you can do this:

MCR>PIP

PIP>/TD

PIP>*.*; */DE/LD

The following files have been deleted:
DR2: [351, 4] MAKEFILES. TSK; 1
DR2: [351, 4]MAKEFILES. OBJ; 5
PIP>"z

MCR>

The same command in single-line form would be

MCR: PIP /TD&*.*; */DE/LD

DCL: DEL/TODAY/LOG *· *; *

22.9 The Creation Date Switch

In Chapter 13, I introduced the basic PIP copy function. When you copy
a file, not only is a new file made, but a new entry in your directory is
made as well. Part of this entry is the creation date of the file. The
default choice for the creation date of the new file is typically the date
of the copy. (Prior to version 4.0 of RSX-1 lM this was always the default;
with version 4.0, a system generation option was introduced whereby
the default could be changed to be the creation date of the old file.) The
Creation Date switch allows you to override the default choice. In older
versions of RSX, the Creation Date switch is available only if you are
inMCR.

In many contexts, it is more meaningful to keep the creation date of
the original file than it is to use the date of the copy. By keeping the
original date, a certain historical perspective can be maintained. Whether
this is useful or not is up to you. It is sometimes important to consider
the possible subsequent action of the Default Date command when you
decide whether to use the creation date or not.

In MCR, the Creation Date switch is specified as either /CD or /-CD.
Regardless of the default, /CD specifies that you want to save the creation
date of the original file. Similarly, /·CD specifies that you want to use

Advanced Features of PIP 261

the date that the copy was made. In either case, you can use the switch
with either the output or the input file specifier. llf you do not include
the switch at all, you will get the default, which is system dependent.)
For example, to make a copy of a master dictionary file from user area
[100,lj on disk DRO: into your user area, with the creation date preserved,
you could use the command

MCR:PIP /CD=DRO: [100, l]DICT.TXT

With the new versions of RSX (version 4.2 of RSX-llM, version 3.0 of
RSX-llM-PLUS, and version 3.0 of Micro/RSX), this capability has been
added to DCL. It is effected by the switch /PRESERVE_DATE. In DCL,
the above command is now

DCL:COPY/PRESERVE DRO: [100,l]DICT.TXTSY:

RSX, A User's Guide 262

23

File Backup Techniques

In this section, we discuss various techniques for making backup copies
of your disk files. In general, when you back up a file, you make a copy
of that file onto some device other than the one containing the original
copy of the file. When you restore a file, you reverse this procedure. If
you could guarantee that nothing would ev~r happen to the original
copy of the file, there would be no reason to worry about backing up or
restoring. This is not possible, hence the need for backup techniques.

Two basic things can happen to your files, which lead to two distinct
motivations for backing them up. First, your files may be inadvertently
destroyed. This may be due to some sort of disaster, such as a disk crash,
but more commonly results from a mistake, such as accidental deletion.
Second, as discussed in Section 21.1, you may deliberately remove from
disk some of your files that, for the moment at least, you no longer
need. The only way to guard against accidental destruction is to pe­
riodically make backup copies of your files. This might involve backing
up either all your files or only those that have been created since the
last backup. In a well-managed computer system, it should not be nec­
essary for you to worry about protecting your files. Your system manager
should periodically back up not only your files but those of all the other
users as well. Even so, you may occasionally wish to make a backup
copy of all your files, especially when you have reached some milestone,
such as the completion of a major project. The second reason is more
likely to be of interest to you. By making a backup copy of selected files,
you can then delete those files without really losing them. You are
merely transferring the files from disk to the backup device so as to
relieve some of the clutter in your user area on the disk.

The important feature of any backup operation is that the backup

File Backup Techniques 263

copy should not be on the same physical device as the original copy. If
you were to put the backup copy on the same device, it would not be
effective. For example, a head crash can destroy an entire disk, resulting
in the loss of both the original and backup copies. Presumably, the device
containing the original will be your pseudo device ISY:), which will be
a large disk drive. If your system has several large disk drives, it is pos­
sible to use another for backup. Your system manager would normally
do this when making a backup for many lor all) users. For your individual
backups, we will consider only the use of smaller devices. Backup copies
are most typically made to magtape. On older systems, DECtape is
common, while on newer systems, floppy disks I diskettes) are likely to
be found. In all these cases, the object on which data is stored is re­
movable from the device and is small enough to keep in your desk drawer
or file cabinet. Thus, you would literally make and keep your own backup
tapes or di sks.

Removability leads to another important use of the techniques that
we will discuss. By making a backup copy of files from your computer
system and restoring the files onto another system you have effected a
physical transfer of files from one computer system to another. This
transfer is made possible by the transportability of the backup medium.
Prior to local area networking, this was the only way to transfer files
from one system to another; it is still an important technique. Examples
of this range from receiving data to be processed on a magtape to de­
livering programs on a diskette. As long as the other computer system
has the appropriate device and backup programs, you can use any of the
backup/restore techniques that we discuss for transferring files between
computer installations.

23.1 Using Backnp Volumes

Most of the time, your use of your PDP-11 computer facility will be
limi ted to only a few devices jyour terminal Tl:, your default disk SY:,
and possibly the printer LP: or the system library disk LB :). The system
may have a variety of other devices, such as magtape drives, DECtape
drives, and floppy disk drives, but you will normally not use these.
Backing up and restoring files ior possibly transferring fil es to or from
another computer facility) are probably the only operations you will do
that require use of one of these other devices. With these devices, it is
sometimes necessary to perform some special steps, which we discuss
in this section.

RSX, A User's Guide 264

Let's first get some terminology straight. We will be talking about
devices and volumes. A device is something that can read or write data;
a volume is something in the device on which data can be stored. For
example, a magtape drive is a device; a reel of magtape is a volume. In
most cases, volumes are interchangeable (you can remove one reel of
tape and put on another one), although this is not true of some disk
drives. As part of the system generation procedure, the RSX operating
system is told about all the physical devices in the computer configu­
ration. It does not, however, know which volumes are on the various
devices. Thus, when you physically mount a volume !your own personal
backup tape or disk) on a device, it also may be necessary to tell the
system certain things about the volume before you can use it.

I say it "may be necessary11 because it is not always necessary to do
this. This is where things get confusing. The exact details of what you
have to do depend on several things·

1 Whether your operating system is RSX-I JM, RSX-llM-PLUS, or
Micro/RSX

2. Whether your system includes Multiuser Protection or not
3. The backup/restore technique that you are using
4. Whether the backup volume is magtape or not
5. Whether the files on your backup volume are (to be) in standard

RSX format or not
6. Whether the backup volume has ever been used before or not

I will attempt to discuss all possibilities, but if you have any doubts
about what you should do on your particular system, ask your system
manager. All of this might strike you as being unnecessarily complicated.
Perhaps it is-so be it.

In the other sections in this chapter we will discuss several utilities
that you can use for backing up and restoring fil es. In this section, for
brevity, I will refer to these by only their MCR names, which are FLX,
PIP, RMS, and BRU. For now, note that the ways in which these utilities
use backup volumes vary considerably. In tum, the preparatory steps
that you may have to take before you can use a volume with one of
these utilities will vary considerably. For example, if you use FLX, almost
none of what we discuss here will be necessary. On the other hand, if
you use PIP, all of it will be relevant. As we go along, I will try to indicate
the distinctions, but I will defer complete summaries of just what has
to be done for each backup technique until the appropriate sections.

In general, the various RSX commands that we will discuss offer a

File Backup Techniques 265

large number of options and possibilities. Almost all of these are totally
irrelevant insofar as we are concerned. The entire set of procedures, in
all their combinations, accomplishes only two things. First, these pro­
cedures prepare the volume so that it can be used by the various backup
utilities. In general, this need be done only once per volume. Second,
these procedures provide a protection mechanism whereby, once you
have initialized it, no one else is allowed to use your backup volume.
More specifically, no one else can read the files already on it or add new
files to it. Another user, even if he is nonprivileged, can, however, erase
everything on your volume. Thus, this protection mechanism does not
really do you any good unless you are paranoid and would rather have
your files destroyed than read by someone else. The entire protection
mechanism may be unnecessary anyway, since in many installations
you have actual physical custody of your backup volume and can lock
it up or otherwise protect it as you see fit.

Loosely speaking, the sequence of things you have to do goes like this.
A volume must be initially formatted via the Initialize Volume com­
mand. As part of this procedure, a label is written onto the volume. This
label is the key to the protection system-another user cannot use the
volume unless he knows the label. To use the volume for any sort of
operation, you must first mount it via the Mount command. As part of
this command, you tell the system what the volume label is; this is
checked against the label that is on the volume. Only if they agree will
the Mount command succeed. Next, you may have to use the Create
Directory command to create user areas on the volume. At this point,
you can use the volume for backup and restore operations. When you
are done using it, you dismount the volume.

In some cases, before you can do any of this, you have to allocate the
device on which the volume will be mounted and, after everything else
is done, you have to correspondingly deallocate it. Under RSX-llM-PLUS
and Micro/RSX, the initializing procedure is more complicated.

As a side comment, suppose you succeed in going through all this
and make a backup of your files as desired. You then put the volume,
be it tape, floppy disk or whatever, in your desk. Months later you decide
to restore some files from it, but by then you have forgotten what the
label is. You cannot mount the volume, since the Mount command re­
quires that you specify the volume label. This means that you cannot
read your own files. There is, fortunately, a way out of this. A privileged
user (such as your system manager) can mount a volume w ithout know­
ing its label, find out what the label is, and tell you. To avoid this prob­
lem, m any users write the label on a piece of paper and tape it to the

RSX, A User's Guide 266

outside of the volume. This defeats the protection concept as it makes
the label known to anyone who has the volume, but.it certainly is more
convenient than not being able to read your own files.

Before discussing in detail the various procedures required for using
backup volumes, I must introduce a few concepts. The first is the concept
of volume formats. RSX has a standard format for files known as Files­
! I. The Files-11 format is used for all large disk devices and may be
used for backup devices as well. To be acceptable to the Files- I I system,
a volume must be specially formatted. (It may be helpful to think of
this as being analogous to putting a set of hanging folders into an empty
file cabinet drawer. This need be done only once, but until it has been
done, the drawer cannot be used for storing papers.I Files-11 is not the
only possible volume format; many others exist, corresponding to dif­
ferent operating systems or computer types. RSX considers any volume
that is not in Files- I I format to be a foreign volume. Note that a foreign
volume is not necessarily one that has come from another computer
installation (although the term might imply thisJ. A brand new volume
is in no particular format and is considered to be foreign.

The Files-I I format is typically associated with disk volumes but can
also be used with magtapes. In our discussion of backup techniques I
will frequently need to distinguish a disk volume from a magtape vol­
ume. By "disk" I mean "disklike." Disklike devices include large disk
drives (such as your system disk!, cartridge disks (such as type RLOI or
RL02 drives!, floppy disks (such as type RXOI or RX02 drives!, and DEC­
tape and DECtape II. Although these offer a wide range of storage ca­
pacities and data transfer rates, and although DECtape physically
resembles conventional magtape (except that it is I inch wideJ, all these
storage media are handled in the same manner by the Files-I I software.
For simplicity's sake, I will refer to all these devices as disks. On the
other hand, conventional (1/2-inch-wideJ magtapes are handled differ­
ently. You can put a magtape into Files-II format, or1 more exactly, you
can make it sort of compatible with the Files-11 format. Such a tape
volume is known as an ANSI tape because the Files- I I format for tapes
conforms to ANSI (American National Standards Institute) specifica­
tions. Nonetheless, an ANSI tape is not a true Files-I I volume. In certain
ways, you can pretend that it is, but you can do several things with a
Files-11 disk volume (the most important is deleting a file) that you
cannot do with an ANSI tape.

It is important to understand the interrelationship between the volume
format (Files-I I or foreign! and the backup utility. FLX is used only with
foreign volumes. BRU uses foreign volumes for magtape, but it uses

File Backup Techniques 267

Files- I I volumes for disk. Both PIP and RMS require Files- I I format for
both magtape and disk.

There is, by the way, a third category of backup volume, which is
much less important but may be of interest to you. It includes paper
tape and the TU60 cassette, neither of which is a Files-11 device. Backup
and restore operations to paper tape or cassette are only possible with
the utility FLX.

The second concept that you must understand is the status of a device.
This discussion applies only to systems with multiuser protection. Most
of the time, you can use whatever devices you need in the system with­
out knowing anything about their status. This is not so for the devices
that you are likely to use for backup. Any device that can store infor­
mation can have a status of public, private, or unowned. A public device
is one that can be used by any user. The system disk (SY:) is, for example,
almost always public. You cannot use a public device in any way that
would interfere with another user. If your system has several large disk
drives, all of which are public, you may be able to perform a backup by
copying files from one disk to another. You could not, however, then
remove the disk. Thus, devices with removable volumes suitable for
backup (magtapes, DECtapes, floppy disks, and small cartridge disks)
are typically not public. A private device is one that can be used by only
one user. This user is known as the owner of the device; you do not
need to be privileged to own a private device. A device that is unowned
is neither public nor private. As long as a device is unowned, it is similar
to a public device in that anyone can use it. Unlike a public device,
however, an unowned device can be made private by a nonprivileged
user and can subsequently be returned to the unowned status.

Let's now turn to the various commands that you may need to use
for backup volumes. For simplicity, I will (at first) ignore the special
restrictions that RSX-I IM-PLUS and Micro/RSX impose on foreign vol­
umes. In all of these descriptions, I will use ddnn: to denote the name
of a particular physical device, where dd is the two-character device­
type mnemonic and nn is the device number.

To make a device private, you use the Allocate command. (This applies
only to systems with multiuser protection.) The basic format of this
command is

MCR: ALL ddnn:

DCL: ALLOCATE ddnn:

In DCL, the command ALLOCATE is commonly abbreviated to ALL.

RSX, A User's Guide 268

The Allocate command is then the same for both MCR and DCL. For
example, to allocate tape drive number I of type MM, you would use
the command

ALL MMl:

You can also use a modification of this command form in which you
do not have to include the device number. In this case, the command
form is

ALL dd

Note that the colon is omitted. If you include the colon, it is equivalent
to specifying a default device number of zero. By omitting the device
number and colon, you are requesting that any available (currently
unowned) device of the specified type be allocated to you. If all devices
in the system of the specified type are in use, an error message is returned.
Suppose, for example, that you want to restore some files from a backup
that was made onto an RX02 floppy disk. Your system has four RX02
drives (device code DY), which are heavily used. These drives are in the
main computer room, which is some distance away from where your
terminal is. You could walk to the computer room, find a free drive,
load your floppy disk, walk back to your terminal, and then allocate
that particular drive. 1£1 during this time, someone else allocates it, you
have to find another drive. Instead of going through all that, you first
enter the command

ALL DY

Assuming that there is an available drive, you get a response such as

ALL - - DY2: NOW ALLOCATED

You then walk to the computer room and load your floppy disk onto
drive 2.

There are several reasons why you might want to allocate a device.
Conceptually, if you have your own personal backup volume on a device,
it makes sense that the device should be private to you. Practically
speaking, this does not matter, since once you have started using the
volume, it is very hard for another nonprivileged user to interfere with
you, even if the device remains unowned. There are only two compelling
reasons why you will want to allocate a device-it is necessary to do
so to initialize a volume on that device and to create user areas on the
volume.

File Backup Techniques 269

To put a volume into Files-II format, you must use the Initialize
Volume command. The initialization procedure does three things: it
formats the volume, erases any data that may have previously been on
the volume, and writes a volume label. Once you have initialized a vol­
ume, you should not use the Initialize Volume command unless you
wish to erase the volume and then reuse it.

If your system has multiuser protection, you must allocate a device
before you can initialize a volume on it. If your system does not have
multiuser protection, only a privileged user can use the Initialize Volume
command. In this case, you will have to have someone such as your
system manager initialize your backup volume.

In its basic form, the Initialize Volume command is

MCR: INI ddnn: label

DCL: INITIALIZE ddnn: label

In DCL, the command is commonly abbreviated to INI. The basic In­
itialize Volume command is then the same for both MCR and DCL.
The label is a string of alphanumeric characters that. will be written
onto the volume as a label for subsequent identification and verification.
If the volume is an ANSI magtape, label may be up to 6 characters long;
otherwise, jt may be up to 12 characters long. In the label, there is no
distinction between upper- and lowercase alphabetic characters; you can
also use digits and some special jpunctuationl characters. For example,
you could use the command

INI DY2: JAN84BACKUP

to initialize the floppy disk volume on drive 2 of type DY. Any previous
data on the disk will be effectively overwritten. The label will be checked
whenever you subsequently attempt to use the volume. If your backup
volume is a magtape, you might use the following command instead:

INI MT: JAN84

Here, you use only the date as a volume label to comply with the six­
character limitation.

When you use the Initialize Volume command, it is often because
you have a disk or tape that has never been formatted . It is also possible
to use this command with a volume that is already in Files-11 format.
The initialization procedure does not check for a volume label from a
previous initialization-it simply writes your new label over the old
one and erases any existing files. Suppose that you, as a nonprivileged

RSX, A User's Guide 270

user, have gotten access to someone else's tape or disk volume. Without
knowing the volume label, you will not be allowed to read any of the
files on the volume. Nonetheless, you can use the Initialize Volume
command to initialize the volume, thereby destroying all the files that
are currently on it.

For magtape volumes, this is all that you need to know about ini­
tializing. Disk volumes are a little more complicated. Let's consider the
basic nature of a Files-!! disk volume such as a floppy disk or a reel of
DECtape. As far as you are concerned, it is just a backup volume­
something onto which you occasionally will want to write or from which
you will want to retrieve files. As far as Files-11 is concerned, it is a
disk volume, and it is handled in exactly the same manner as a large
disk. The disk volume can have many user areas on it; each user area
can have many files in it. In essence, your backup volume is your own
private (albeit little) disk. Just as your system manager assigns areas to
various users on the system disk and has to worry about how much
room is left on it (sooner or later they tend to fill up), so too must you
manage your backup volume. The management aspect that is of interest
to us is how many files you want to have on the volume.

When you initialize a disk volume, you can specify the maximum
number of files that will be allowed on the volume. If you do not specify
this, a default value will be used. This value, regardless of the actual
storage capacity of the disk, limits how many files you can have at any
time. Of these, five are required for the Files- I I structure on the disk.
!You may never see this structure, but the files are there.) For your con­
venience, you probably will want to make user areas on the disk. (We
discuss this shortly; you do not have to, but it is clumsy not to.) Each
user area requires one file for its directory and accordingly decreases the
number of files available to you even further. Countering this somewhat
is the fact that with Files-I I disk volumes, it is possible to delete files.
Thus, you can decrease the number of files in use on the volume, thereby
increasing the number of available files.

For example, an RXOl floppy disk has a total storage capacity of 494
blocks. !In Files-I!, regardless of device type, a block holds 512 bytes.)
If you accept the default, you will be allowed a maximum of 29 files
on the floppy. As noted, 5 of these are used by Files-11 itself. Even if
you do not make any user areas, only 24 files will be left over for your
use. With user areas, this number will be less. If your files are moderately
sized source files averaging between 8 and 9 blocks, the 2.4 files that are
available to you by default will fill only half the capacity of the disk.
Thus, if you accept the default value for the maximum number of files,

File Backup Techniques 271

you probably will wind up underutilizing the capacity of your backup
volume. This, in turn, often leads to using more volumes than is nec­
essary. The expense of buying more volumes than you need is not nec­
essarily a problem (floppy disks, for example, are cheap). It is, however,
a nuisance to have to handle several volumes at once. Continuing with
our example of an RXOI floppy, if you wanted to back up 30 fi les, you
would not be able to do so easily. You would have to put up to 24 of
them onto one floppy and put the other files onto another floppy. You
would then have to keep track of which files were on which floppy.

When you use a disk for backup, the default value of the maximum
file count will typically be too small. This is because it is chosen for
typical active use, not backup. When you actively use a volume las in
your user area on the system disk) you will have a mixture of file types­
source files, object files, task image files, etc. Task image files are typ­
ically much larger than the others, and they tend to raise the average
file size. When you back up your user area, you will often select only
source (along with text, command, and other similar) files. The average
size of these selected files will be significantly smaller than that on
which the default maximum file count is based. Due to this smaller
average size, your backup volume can hold more files than would be
possible with the typical mixture of file types.

From all this it should be clear that you will often want to allow more
than the default number of files on your backup volume. You can do
this when you initialize the volume by specifying the Maximum Files
keyword. Although the simplest form of the Initialize Volume command
is the same for both MCR and DCL, the syntax for keywords depends
on which CLI you are using. With the Maximum Files keyword, the
format of the Initialize Volume command is

MCR: lNl ddnn : label/MXF=value .

DCL: INI / MAX: value ddnn: label

Depending on your CLI, either /MXF= or /MAX: is required syntax
for specifying the Maximum Files keyword. In either case, value is the
number of files you want. Note carefully, however, that as shown above,
in MCR the value should be followed by a decimal point (.) or else it
will be interpreted as an octal value. In DCL you do not have to worry
about this, since the conversion to MCR supplies the required decimal
point for you.

If your system is version 3.2 of RSX-llM or earlier, once you have
specified the maximum file count for a volume, it is fixed. There is no

RSX, A User's Guide 272

way to change it other than by reinitializing the volume, which will
destroy everything on it. With version 4.0 of RSX-llM, a modification
of the Initialize Volume command was added to MCR. This is the Home
command, which allows you to change certain characteristics of a vol­
ume that has already been put into Files-I I format. (The Initialize Vol­
ume command creates a Home block on the volume, which contains
certain key parameter values for the volume. The Home command allows
you to change parameters in this block without disturbing the contents
of the volume.) The requirements for using the Home command are the
same as for the Initialize Volume command: you must allocate the device
and, as we will see later, in RSX-llM, you need not mount the volume,
but in RSX-llM-PLUS or Micro/RSX, you must mount it as a foreign
volume. The most common use of the Home command is to increase
the maximum file count allowed on the volume. The format of the Home
command is identical to that of the Initialize command except for the
command name itself. In MCR the command changes from INI to HOM;
in DCL the switch /UPDATE is appended to the INI command. For the
specific purpose of increasing the maximum number ol files on the vol­
ume, the form of the Home command is

MCR: HOM ddnn: label / MXF=value.

DCL: !NI/UPDATE/MAX: value ddJtn: label

Before using the Home command, make sure that your version ol RSX­
llM is 4.0 or later (or, for RSX-llM-PLUS, 2.0 or later). If you do not
have the proper version of RSX, do not try to use this command-'-it will
do nasty things to your volume.

You now have the means of specifying how many files should be al­
lowed on your backup volume. How do you determine what value to
use? To answer this, you must know a little bit more about Files-II
volumes. As part of the Files: 11 format, each file has a header associated
with it. The file header contains information about the file, such as the
name ol the file and exactly where on the disk it is. The size of a file
header is one block. Thus, for example, 100 files require a total of 100
blocks for the headers, independent of the actual content of the files.
When a disk volume is initialized, a certain amount of space is reserved
for file headers; the size of this space limits how many files you can
simultaneously have on the volume. The determination of how much
space to reserve for headers is based on the maximum file count value.
If, for example, you initialize an RXO! floppy and specify a maximum
file count of 100, 100 of the total 494 blocks, or just over 20 percent of
the entire capacity of the floppy, will be reserved for file headers. Note

File Backup Techniques 273

that the Home command only allows you to increase the file count;
once the header space has been set aside, you can never use it for any
other purpose. Thus, you do not want to specify an unnecessarily large
maximum file count, as this also limits how many files you can have.

Table 3 lists various possible backup devices. For each, I show the
capacity in blocks of a volume and the default value for the maximum
fil e count. You can assess your particular backup requirements from
this. Suppose, for example, that you want to back up all the files in two
of your user areas. From standard directory listings, you determine that
this involves 40 files totaling 200 blocks. If your backup medium is
DECtape, you will have more than ample capacity on one reel of tape;
you will, however, have to change the maximum file count. If the 40
files total 500 blocks, it is unlikely that (considering the file headers
and other overhead) they will all fit on one reel of DECtape. They will
fit on two reels, in which case the default maximum file count will
probably be sufficient for each reel.

Suppose now that you want to get a feeling for how much space you
will have left over (space that you can actually use) on a volume after
you initialize it. You can do this via the following procedure. First, choose
the type of backup volume and ascertain its capacity from the table.
When you use the volume, this total capacity will be divided among
three functions: the five files required by the Files-1! structure, directory
files for any user areas you may have created, and your files. The size
in blocks of the five Files-11 files and the directory files will be some
small number plus the maximum file count. If you have only a couple
of user areas, you may approximate this small number with the following
equation: (20 + the maximum file count/32). This may be slightly pes­
simistic, but it is not worth trying to be more exact. This represents

Table 3
Possible Backup Devices

Device Volume Type Capacity Max Files
Code (blocks) (default)

DT TU56 DECtape 578 34
DD TU58 DECtape 512 30
DX RXOI 8·inch floppy 494 29
DY RX02 8-incb floppy 988 60
DU RX50 5.25-inch floppy 800 48
DK RK05 cartridge disk 4800 294
DL RLOl cartridge disk 10240 629
DL RL02 cartridge disk 20480 1259
DM RK06 cartridge disk 27126 1668
DM RK07 canridse disk 53790 3308

RSX, A User's Guide 274

the overhead imposed by Files-11. Subtract it from the total capacity­
this gives a close approximation to the number of blocks that will be
left over for your files. The number of files that you can use is the max­
imum file count minus five for the Files-!! structure minus one for
each user area. If you divide these two numbers, you will get the average
file size available. For example, suppose you initialize an RX02 floppy
and specify a maximum file count of 100. From the table, you see that
the disk capacity is 988 blocks. You will want to have two user areas
on the disk. The overhead taken by Files-11 will be roughly 124 blocks
(20 + (100/32) rounded up + 100). The number of usable blocks will
be roughly 864. The number of files available to you will be 93 (100
minus 5 minus 2 directories). This implies an average file size of between
9 and 10 blocks. If after initializing the floppy you intend to immediately
copy 50 files totaling 420 blocks, you will have the capability of later
adding up to 43 files totaling 444 blocks.

Now suppose you have initialized a volume to be used for backing
up your files. It is now (be it a tape or a disk) in Files·ll format and
ready to be used. Before you can actually use it, however, you must tell
RSX certain things about it. You do this via the Mount command, which
also verifies that you are allowed to use the volume. There are two forms
of the Mount command that you may need to know-the form to mount
a Files-11 volume and the form to mount a foreigo volume. If your system
is RSX-llM, you need only mount Files·ll volumes; if your system is
RSX-llM-PLUS or Micro/RSX, you must mount any volume. We discuss
mounting foreigo volumes later.

If your volume has been put into Files· 11 format (via the Initialize
Volume command), you use the following form of the Mount command:

MCR: MOU ddnn: label

DCL: MOUNT ddnn: label

In DCL, MOUNT is typically abbreviated to MOU so that, in this sin1ple
case, the Mount command is the same for both MCR and DCL. Further,
except for the command word MOU, this is identical to the simple form
of the Initialize Volume command. When you enter a Mount command,
RSX reads the label off the volume on the specified device and compares
it against the label that you give in the command line. If the labels do
not match, you will get an error message (the exact form of which de·
pends on your CL!). If the volume is a magtape, you will get this message:

MCR: MOU -- incorrect file set identifier

DCL: MOU -- wrong volume label

File Backup Techniques 275

If the volume is a disk, you will get this message:

MCR: MOU -- incorrect volume label

DCL: MOU -- wrong volume label

The Mount command will then be rejected, and you will not be able to
do anything with the volume. If the label you specify is correct, the
Mount command will succeed. No particular message will be given;
you will simply get a prompt from yout CL!, indicating that you may
proceed. For example, to put an RXOl floppy disk into Files-II format
and then mount it, in either MCR or OCL, you might use the commands

INI DXl : JOB427

MOU DXl: JOB427

If you subsequently want to use the same volume jperhaps to restore
some files from it or to back up more files onto it) you would use only
the Mount command.

Once a Files-11 volume has been mounted you can use it in various
ways. An ANSI tape may be used immediately by the various backup
utilities. A disk volume requires an additional step. When we discussed
the maximum number of files on a disk volume, I alluded to having
several user areas on the disk. We now consider this issue in detail.
When you initialize a disk, one user area is created on it. This is identified
by the UFO [O,O]. In general, [0,0] is a special user area used by the op­
erating system itself. It contains the five files required by the Files- I I
system as well as the directory file for every other user area on the disk.
!The directory for the area [O,O] is one of the five Files-II system files.I
On a public disk jsuch as your system diskl the area [O,O] typically is
not used for anything else.

The UFO [O,O] identifies an area that, despite the special importance
of some of the files in it, is nonetheless conceptually the same as any
other user area. On your own private disk volume, you can use area
[O,OJ not only for the system files but also for your own files. Thus, if
you are willing to put all of your backup files into UFO IO,OJ, your volume
is ready to use after you have initialized it.

Although it is possible to do things this way, it is poor practice for
several reasons. When you make a backup copy of yout files, you typ­
ically warit to preserve all attributes of these files. This includes not
only the file name and file type, but also the ufd. By copying all your
files into user area IO,OJ, you lose each file's ufd. This makes it difficult
to restore the files onto your system disk if your files originated from
several different user areas. A related problem is that during restore op-

RSX, A User's Guide 276

erations, you may want to copy all your files from the backup volume.
If you do this by using wildcards (•. •; •), you will get not only your files
but the Files·! I files as well. By putting your files into their own user
area, you are isolating the system files in area [O,Oj. Finally, unless you
are extremely short of file headers, it costs very little to put user areas
on your backup volume, so you might as well do so.

You use the Create Directory commarid to put user areas onto a vol­
ume. We examined this command earlier in the.context of having several
user areas for yourself on the system disk. I noted that this was a priv­
ileged command. The Create Directory command is privileged for a
public device, but it is not so for your own private device. Thus, if you
have allocated the device, you can use this command to establish as
many user areas as you wish on whatever volume is mounted on that
device. The form of this command is

MCR: UFD ddnn: [ufd]

DCL: CREATE/ DIR ddnn: [ufd]

where uld is a normal ufd specifier. If you have either version 3.0 of
RSX-llM·PLUS or any version of Micro/RSX, you may use a named
directory if you wish.

The Create Directory command creates a User File Directory. This
directory is itself a file, and is located in the system area [O,Oj. If you
are using numbered directories, the UFD is specified as [ggg,mmm],
where ggg and mmm are the three-digit (with initial zeros, if necessary)
octal group and member numbers, and the name of the directory file is
gggmmm.D!R. If you are using named directories, the UFD is specified
as [name) where name is a string of up to nine alphanumeric characters,
and the name of the directory file is name.DIR. Thus, for example, if
you issue the command

MCR: UFD DYl: (123, 1]

DCL: CRE/DIR DYl: [123, 11

you are actually creating the directory file DYI:[0,0]123001.DIR. This
is all that you are doing. Once you have created the directory, you can
then put files on the volume and associate them with the corresponding
UFO.

Once you have created a user area on a Files-I! disk volume, you can
use PIP to perform file maintenance functions in exactly the same man­
ner as you would in your area on the system disk. In particular, you can
delete files. You can delete all the files in an area, but the area itself

File Backup Techniques 277

will remain. If you want to remove a user area and all the files in it
from your backup volume, you must delete not only your files but the
directory.file as well. (You might do this, for instance, to remove outdated
files to make more space available on your volume.) These deletions
must be done in the proper order. The correct sequence is

MCR:PIP ddnn : (g,m)*·*;*/ DE
PIP ddim: [O, O] gggmmm. DIRj */DE

DCL: DEL ddnn: (g , m)*·*;*
DEL ddnn: [0, OJ gggmmm. DIR;*

(I have shown the command forms for numbered directories; those for
named directories are analogous.)

Putting user areas onto a backup volume is similar to initializing a
volume. Your only reason for doing it is to prepare the volume for later
use. Unlike the Initialize Volume command, the Create Directory com­
mand is nondestructive. You can use it as often as you like, when you
like. If you have put a bunch of files onto a backup volume and you
subsequently decide that you want to create another user area for backing
up other files, you can do so. Also, although the Initialize Volume and
Create Directory commands both serve to prepare a volume, one must
be done before the volume is mounted and the other afterward. As a
final note, I repeat that the creation of user areas on a Files-11 volume
relates only to disk volumes. The concept of different UFOs does not
exist for ANSI tapes.

If you mount a volume, you should correspondingly dismount it when
you are done using it. When you issue a Dismount command, you are
telling RSX to forget the relationship between device and volume that
was established by the Mount command. The form of this command is
simply

MCR: DMO ddnn:

DCL: DISMOUNT ddnn:

Note that it is not necessary to specify the volume label. You can specify
it by using this form of the Dismount command:

MCR: OMO ddnn: label

DCL: DISMOUNT ddnn : label

In this case, the label must be correct or the command will be rejected.
In some cases, the Dismount command will also physically dismount

the volume. For example, if you are using a tape drive, the operating

RSX, A User's Guide 278

system will issue commands to the drive that will cause the tape to be
rewound land with some drive types unloaded) and the drive will then
be put into off-line status. Following completion of the Dismount com­
mand, you can physically remove your volume from the device.

If you have allocated the device, you should deallocate it after dis­
mounting the volume. In MCR the name of this command is DEA. In
DCL the official name of this command is DEALLOCATE. Some ver­
sions of the DCL manual (e.g., version 4.l of RSX-llM) state that you
can shorten this to DEA. This is not true. The command DEA is rec­
ognized by DCL as being an abbreviation of the command DEASSIGN.
The correct abbreviation is DEAL. Thus, the command forms are

MCR:DEA ddnn :

DCL: DEAL ddnn :

Note that to deallocate a device, you must first dismount the volume
on it. When you issue a Deallocate command, you are telling RSX that
you no longer need the device. This allows someone else to use it. If
you allocate a device and mount a volume, then subsequently dismount
the volume but do not deallocate the device, you still own the device,
and no one else can use it. If you log out and have forgotten to dismount
or deallocate, RSX will do so for you. You should not, however, rely on
the log-out procedure to clean things up. It is common courtesy for you
to free up system resources as soon as you no longer need them.

It is now time to consider the extra complications introduced by RSX­
l IM-PLUS. These all apply to Micro/RSX as well; for brevity here, we
will refer to only RSX-llM-PLUS. Under RSX-llM-PLUS, any volume
must be mounted before you can do anything with it. If the volume is
foreign, it must be mounted as such; if the volume is in Files- l l format,
it must be mounted as such. The command form for mounting a foreign
volume is

MCR: MOU ddnn: / FOR

DCL: MOU/ FOR ddnn:

The keyword /FOR specifies that the volume is foreign; in this case,
there is no volume label for you to specify. Before you can use the In­
itialize Volume command to put a foreign volume into Files-ll format,
you must first mount it as a foreign volume. ·it is important to note that
once you mount a volume as foreign, RSX-l IM-PLUS remembers that
it is foreign. When you then initialize the volume, you physically put
it into Files-11 format, but RSX-I IM-PLUS does not remember this and

File Backup Techniques 279

continues to regard the volume as foreign. Thus, you must next dismount
the volume, as this is the only way to make the operating system forget
that the volume was foreign. (The Dismount command is the same for
a foreign volume as it.is for a Files-11 volume; you use the command
form discussed earlier.} Of course, you must then mount the volume
again, this time as a Files-11 volume.

It is also possible to mount a foreign volume under RSX-llM. This
is, however, not necessary and normally is not done. Under RSX-llM,
certain utilities can work with foreign volumes whether they are
mounted or not. These include the Initialize Volume command and the
backup utilities FLX and BRU. Thus, if your operating system is RSX-
1 lM and you use the backup/restore techniques that we discuss, you
will never have to mount a foreign volume. Under RSX-llM-PLUS and
Micro/RSX, however, you have no choice-you must always mount a
foreign volume.

By way of summary, I will list the sequence of operations required
for using a backup volume under various conditions. I will not indicate
the Create Directory commaod for putting user areas onto a disk volume,
since, although you should use it, it is not required. Nor will I worry
about changing the maximum number of files on a disklike device from
its default value (although you probably should}. Rather than giving spe­
cific examples, I will show the generic command forms-that is, I will
refer to ddnn: and label as being arbitrary device identifiers and volume
labels. Similarly, I will use uti to denote the backup/restore utility. For
simplicity, I will show only the MCR command, forms. In these ex­
amples, the only commands that are different for DCL are the Mount
Foreign, Dismount, and Deallocate commands.

The various conditions I will consider are:

a. Does the backup/restore utility require the volume to be in Files-
11 format?

b. Does your system have multiuser protection?
c. Has the volume been used previously?
d. Is the operating system RSX-I IM, or RSX-I IM-PLUS or Micro/

RSX?

The various command sequences are summarized below. In the next
sections we discuss several utilities that can be used for backup and
restore operations. If necessary, the command sequences are explained
in greater detail.

RSX, A User's Guide 280

I. FLX with any volume type, or BRU with magtape

a. Files-11 volume: NO
b. Multiuser protection: YES or NO
c. Volume previously used: YES or NO

RSX-l!M

uti
commands

RSX-llM-PLUS or Micro/RSX

MOU ddnn: / FOR
uti
... commands
IJMO ddnn:

2a. BRU with disk; PIP or RMS with any volume type

a. Files- I I volume: YES
b. Multiuser protection: NO
c. Volume previously used· NO

RSX-llM or RSX-llM-PLUS or Micro/RSX

MOU ddnn: label
uti
... commands
DMO ddnn :

2b. BRU with disk; PIP or RMS with any volume type

a. Files- I I volume: YES
b. Multiuser protection: YES
c. Volume previously used: NO

RSX-llM

ALL ddnn:

JNJ ddnn: I abe I

MOU ddnn: label
uti
... coounands
DMO ddnn:

RSX-llM-PLUS or Micro/RSX

ALL ddnn:
MOU ddnn: / FOR
JNI ddnn: label
IJMO ddnn:
MOU ddnn: la be 1
uti
... commands
IJMO ddnn:

DEA ddnn: DEA ddnn:

2c. BRU with disk; PIP or RMS with any volume type

a. Files- I I volume: YES
b. Multiuser protection: YES or NO
c. Volume previously used: YES

File Backup Techniques 281

RSX-llM or RSX-llM-PLUS or Micro/RSX

MOU ddnn: label
uti
... coJM1ands
DMO ddJm: labe l

23.2 The File Exchange Utility

The first backup technique that we will consider is the file exchange
utility, FLX. Historically, this is the oldest of the methods that we will
consider; it should exist on any RSX installation. FLX originally was
written as a utility to support the transfer of files between various PDP-
11 installations. Its use as a backup utility is an incidental outgrowth
of this capability. Nonetheless, FLX is often both the simplest and
quickest technique available for backing up or restoring files. This is
especially true if your backup medium is magtape. This is the most
likely possibility, except on relatively small systems where a less
expensive device might be found. The use of FLX is not limited to mag­
tape, but most of our discussion will assume that this is what you are
using.

RSX is but one of several possible operating systems offered by Digital
for its PDP-11 series of computers. Under RSX, files are stored in the
Files- I I format. Other operating systems have their own fil e storage
formats. Two of these are DOS-11 and RT- I I. (The DOS operating system
no longer exists for the PDP-ll, but its file storage system lives on and
is still widely used as a universal means of transferring files on magtape.)
The utility FLX supports file transfers by perfom1ing conversion between
Files-11 and these two other formats. For example, you can use FLX to
take a file in your user area (which is on disk in Files-I I format), convert
it into DOS-II format, and write it out to magtape. You could then
deliver this tape to a PDP-11 facility that could read a tape in DOS-11
format. Similarly, this facility could deliver files to you by putting them
on magtape in DOS·l l format. You would use FLX to read these files
from the tape, convert them in• ; Files- I I format, and store them in
your user area. File transfer operations such as these were the original
purpose for using FLX. As noted earlier, file transfer and backup/restore
are, in a sense, indistinguishable. Backing up a file and subsequently
restoring it is equival• • to transferring the file from yourself now to
yourself some time in the future. Thus, you can use FLX to copy files
onto a tape in DOS-I I format , which you can then save as a backup. If

RSX, A User's Guide 282

you ever need to restore the files, you can use FLX to read them in,
converting them from DOS-11 back to Files-11 format.

It may seem strange to you that we discuss using FLX for backup in
the context of converting between Files-11 and DOS-11 format. Why
not simply copy the files from disk to tape in Files-11 format? For one
reason, FLX does not support this capability. FLX was designed for
transferring files from one computer installation to another, and the
DOS-11 format historically has been used for this transfer. The second
reason is that it is actually faster to do the format_ conversion than it is
to copy the files in Files- I! format. This is admittedly counterintuitive.
The Files-I I format is designed for disks; it becomes very inefficient
when used with magtape. On the other hand, the DOS-II format is
quite efficient for use with magtape. The writing to or reading from
magtape is the slowest step in the process of backing up or restoring
files. By using DOS-11 format on the tape, the increased efficiency in
the tape 1/0 outweighs the extra work requited for format conversions,
and the entire procedure can be done in less time.

FLX can also be used to back up files in RT-I I format. The DOS format
is limited to an older generation of devices: magtape, cassettes, DECtape,
RKOS disk cartridges, and paper tape. The RT format is not supported
for magtape. It can be used only with small disk devices: DECtape, RKOS,
RK06, RK07 and RLOI or RL02 disk cartridges, and RXOI or RX02 floppy
disks. Based on these restrictions, you may ncit have any choice of format
to use with FLX-you may have to use either the DOS-11 or RT-11
form at according to the devices available to you.

In DCL there is no direct way to use FLX-that is, there are no DCL
commands that translate into MCR commands to FLX. Instead, you
must use the MCR command forms. As with other RSX utilities, you
can use FLX either in a single-line command or interactively. You enter
a single-line FLX command as follows:

MCR>FLX command

DCL>MCR FLX COlllDland

To use FLX interactively, you invoke it via the command

MCR>FLX

DCL> RUN $FLX

Once in FLX, you enter individual commands, eventually terminating
the sequence with a CTRL/Z which causes FLX to exit, returning control

File Backup Techniques 283

to your CLI. Unless you use FLX frequently, it is easy to forget an exact
command form, in which case you may need several tries before you
get it right. For this reason, it is probably best to use FLX interactively,
even for single commands.

The basic FLX command is the File Transfer or Copy command, which
is of the general form

output_device/forJ1at;;;input_files/format

In addition, other commands exist for performing special functions to
the backup device.

Let's first consider the basic file transfer command shown above. The
Format switches {/format) specify the format of the input and output
files. We will discuss these later. Ignoring these switches, the basic
command form is

output_device~input_files

which, syntactically, is identical to the basic PIP Copy command. The
input side may specify several files, either explicitly or via wildcards.
This is, however, subject to restrictions as noted below. The output side
of the command differs from what we have seen before in utilities such
as PIP as it can specify only the output device or ufd. Output file names
cannot be specified. They are automatically set equal to those of the
input files, to the extent that this is possible. You have no choice in
this, but for purposes of backing up and restoring, you should have no
reason to change file names. A more significant limitation arises from
the fact that neither DOS-II nor RT-11 supports the full Files-II file
specification. Version numbers do not exist in either DOS-II or RT-I I.
In addition, UFDs do not exist in RT-11. The greatest difference is that
file names in RT-I I can be only six characters long {the file type is the
normal three characters). These limitations can lead to problems when
you are backing up your files.

As a very simple example, suppose you wish to back up a group of
files that includes the two files NOTES.TXT;3 and NOTES.TXT;2. With
either the DOS-I I or the RT-I I output format, both of these input files
would lead to an output file specifier of NOTES. TXT. Since there can
be only one file associated with any particular specifier, a naming conflict
results. In this case, one of the versions of NOTES.TXT {whichever is
specified or found first) will be copied as requested. The other will not
be copied; instead, you will get a "File Already Exists" error message.
Similarly, the two files 1100,llMATH.FTN;l and II00,2JMATH.FTN;I
will lead to a naming conflict if the output format is RT-11. {Under

RSX, A User's Guide 284

OOS-11, the different UFOs will result in distinct file specifiers so that
there will be no conflict.) Finally, you must be careful with files that
have long names. H you have two files called CHAPTER1.TXT;l2 and
CHAPTER2.TXT;33, you will get a naming conflict if you use the RT-
11 output format, since both file specifiers will collapse to the name
CHAPTE. TXT. (You will not have a problem with OOS-11 , since it pre­
serves all nine characters in the Files-11 file name.) Even when this
truncation does not produce naming conflicts, it can take all the meaning
out of carefully chosen file names.

To avoid the most common source of naming conflicts, you are not
allowed to use a wildcard for the version number in the input specifier.
You can omit the version number (in which case the latest version will
be used) or you can specify any version number you wish. When you
arc backing up files, you probably will want to save only the latest version
of each file. This will not pose a problem as you can simply use an input
file specifier such as • -*. H your backup medium is in OOS-11 format,
this will eliminate naming conflicts, at least for a single backup oper­
ation. If your backup medium is in RT-11 format, you will still have to
worry about naming conflicts due to the lack of UFOs and also due to
the truncation of file names.

The problem of naming conflicts can arise in oth~r situations in which
it is not so easily dismissed. FLX acts in an append mode. That means
that you can use FLX to make a backup of several files onto your volume.
If you later use FLX to back up some other files, they will be written
after the first batch of files. The composite then forms one set of files,
and naming conflicts are not allowed within this set. Suppose that you
back up a set of files including MA THSUBS.FTN;2. Over the next several
weeks you write some new programs that require modifications to your
mathematical subroutines. These changes lead to the ·file MATH­
SUBS.FTN;3. Your original backup used only a small fraction of the
storage capacity of the volume, so you try to back up these new files
onto the same volume. A naming conflict results, since the file MA TH­
SUBS.FTN already exists on the volume. What is particularly annoying
about this situation is that you are left with only the old version of the
file on your backup.

In general, you can do several things when naming conflicts arise with
FLX. If the conflict occurs during a single backup session, you can avoid
it by specifically not copying certain files. If the conflict occurs between
a file that was copied previously and one that you wish fo copy now,
you can sometimes delete the earlier copy. If this is not possible, you
can use a different volume (e.g., a second reel of tape). Regardless of how
the conflict arises, you can always get around it by renaming certain

File Backup Techniques 285

files prior to backing them up. If none of these choices is acceptable,
you must use one of the other, more sophisticated backup techniques
that we discuss later.

Restoring files with FLX is easier than backing them up because nam­
ing conflicts almost never arise. Instead, the opposite problem arises.
Since each input file is in either DOS-II or RT-II format, there is no
version number in the input specifier for FLX to copy into the Files-II
specifier. Since some version number has to be used, FLX acts like PIP
with the New Version switch set. If you back up a group of files and
subsequently restore them into an empty user area ior any area where
there are no files with the same name), they will all appear as version
I. This may be confusing and represents a certain loss of historical per­
spective, but it will not cause any real problems. If, however, you have
other versions of the same files already in your user area, the files brought
in via FLX will be given higher version numbers, which may or may
not be what you want. If the input is in RT-11 format, there also is no
ufd to use. In this case, your default directory is used.

Let's return to the basic FLX File Transfer command. Either side of
this command may end in a switch that specifies the file format. The
possible choices are:

/RS Files-11
/DO DOS-11
/ RT RT-11

If you do not use any file format switches, these defaults are assumed:

/ RS for output
/Do for input

Thus, the default configuration for FLX is to read DOS files into an RSX
system. This corresponds to restoring files that were backed up in DOS
format. If you are backing up, you can reverse these defaults via the
special command

FLX>/RS

Following this command, the default assumptions are

/DO for output
/ RS for input

You can return to the original defaults via the command

FLX> / DO

RSX, A User's Guide 286

These are not easy to remember, and it is probably better to specify the
format switches all the time. Also, il you are using the RT-LI format
for your backup volume, you will always have to specify tbe formats.

Let's look at some simple examples. The command

FLX>MM: / DO=A . DAT/ RS

takes the latest version of file A.DAT from your user area, converts it
to DOS-!! format, and puts it onto tbe reel of magtape currently on
tape drive MM:. The command

FLX>DTl: /RT=*. FTN, *·MAC/ RS

takes the latest versions of all FORTRAN and MACRO-I I source files
in your area, converts them to RT-11 format, and writes them to DEC­
tape drive 1. All file names are truncated to six characters.

Commands for restoring files are just as simple. The command

FLX>/RS-=lllT2 : A. DAT/ DO

reads the tape on MT2: until the single file A.DAT is found. The file
is then converted from DOS-11 back to Files-II format and put into
your user area. The command

restores all files from floppy disk drive DX: into your area. Note that
due to the file name truncation during backup, the file names after this
restore operation may not be the same as those you originally had.

You will need to know about a few auxiliary commands in FLX. Before
you can back up any files with FLX, you have to initialize the output
volume. jThis is conceptually identical to initializing a Files-I I volume
as discussed in the previous section.} Initializing is done with the Zero
command, which is denoted by the switch /ZE. The form of this com­
mand is

FLlC>device : / ZE / DO
or
FLX>device: / ZE / RT

When you use the Zero command, you must remember to specify
whether the device format is to be DOS-II or RT-II. If you do not specify
the format, DOS is assumed. Thus, the command

FLX>DYl: / ZE

File Backup Techniques 287

will not work, since the assumed DOS format is not applicable to floppy
disk devices. The Zero command is potentially dangerous. When you
use it, you effectively erase whatever is already on the volume. Suppose
you are given a DECtape and you wish to back up some of your files
onto it in DOS format. The first time you use FLX with that particular
DECtape, you must iuitialize it with a command such as DT1:/ZE/DO.
You can then back up files onto it. If, several months later, you decide
to put more files on the DECtape, you must not use the Zero command.
If for some reason you no longer need any of the files on the DECtape,
you can use /ZE to reinitialize it so that you can use it for something
else.

The next useful FLX command is the Directory List command. This
command is identical in function to the conventional PIP Directory
command, but you can use it only on volumes in DOS or RT format.
In FLX, you request a directory lisiting by using the List switch (ILi).
The simple form of this command is

device: file_specifier/LI/format

This causes the directory listing to be displayed on your terminal. For
example,

FLX>DT: /LI/RT

specifies that the volume currently on DECtape drive 0 is in RT-11 for­
mat and requests a directory listing of all files on it. Similarly,

FLX>MM: !*,*l*-MAC/ LI

produces a directory of all MACRO source files in all directories for
MM:. !As with /ZE if no format is specified, DOS-11 is assumed for
/LI.)

The last auxiliary command that we consider is the Delete command.
You can use this to delete files that have been previously copied via
FLX. You can use it only with disks or DECtapes-you cannot use it
with other devices such as magtape. The Delete command is identified
by the Delete switch I/DE)

FLX>device: file_specifier / OE/format

Suppose that you have previously made a backup copy of version 2 of
MA TH.ITN onto DECtape in DOS format. Several months later you
modify the file and decide to back it up. The command

FLX>DT: /DO=MATH. FTN; 3/RS

RSX, A User's Guide 288

will fail because the file already exists on DT:. In this case, you can
overcome the naming conflict by first deleting the old copy via the
command

FLX>DT: MATH. FTN/DE/DO

Let's summarize the various FLX commands with an example of backing
up and subsequently restoring a group of files. First, get a directory of
your area:

MCR>PIP/LI

Directory DR2: (351, 11]
13-JAN-85 1 4: 14

MAKEFILES. MAC; 3 4 .

TESTFILEA. MAC; 16 . 6.
NOTES. TXT ; 2 2.

NOTES. TXT; 3

14-DEC-84 16: 37
13-DEC- 84 15: 52
09-NOV-84 17: 14
13-DEC-84 16: 08

Total of 14. /14. blocks in 4. files

Next, put a new reel of tape on tape drive MM:, invoke FLX, and initialize
the backup volume {DOS-I I format) :

MCR>FLX
FLX>MM: /ZE

Now you can use the tape. Make a backup copy of {the latest version
of) all files and then get a directory listing of the tape, just to double­
check:

FLX>MM: /DO=*. */RS
FLX>MM: ILI

Directory MM: [351, 11]
13-Jan-85

MAKEFILES . MAC
TESTFILEA . MAC

4. 13-Jan-85 < 233>
13-Jan-85 < 233>
13-Jan-85 <233>

Total of 11. blocks i n 3. files

In this directory listing of MM:, note that there are no version numbers.
Also note that all the dates reflect the creation of the file on MM:, not
the original file creation on SY:. Type CTRL/Z to get out of FLX, take
the tape off the drive, and put it in a safe place. Now suppos€ something

File Backup Techniques 289

happens to the originals of these files on disk. Perhaps you enter this
command:

Whether you did so deliberately to remove unneeded files or accidentally
is irrelevant. At this point, the files are gone. That is why you have a
backup tape. To restore the files, dig out your backup tape and read it
with the command

MCR>FLX / RS=MM: *.*/ DO

A directory listing of your user area will look like this:

MCR>PIP /LI

Directory DR2 : [35 1 , llJ
22-Feb - 85 14: 16

MAKEFILEB. MAC; 1
TESTFILEA. MAC; 1

NOTES . TXT; 1

4 .

6.
2.

22-FEB-85 14: 16
22-FEB-85 14: 16
22-FEB-85 14: 16

Total of 12. /12 . blocks in 3. files

Note that following the restore, all files are version I and that the cre­
ation dates are all the day of the restore operation.

If you want to back up the files in the example above but you wish
to use an RX02 floppy, you will have to go to RT-I I format. Assume
that you load your floppy onto drive DY . In this case, your sequence
of commands will be

MCR>FLX
FLJC>DY: / ZE / RT

FLX>DY : / RT=*. * / RS
FLX>DY : /LI

Similarly, to restore these files later, you would use the command

MCR>FLX / RS=DY: *·* / RT

A directory listing of your user area will now look like this:

MCR> PIP / LI

Directory DR2: [351, 11]
22-Feb-85 14: 16

MAKEFI. MAC; 1

RSX, A User's Guide

22-FEB-85 14: 16

290

TESTFI. MAC; 1
NOTES. TXT; 1

6. 22-FEB-85 14: 16

22-FEB-85 14: 16

Total of 12. /12. blocks in 3. files

Note that the file names have all been truncated to six characters. Al­
though this did not lead to nanring conflicts when you made the backup,
it led to the loss of all the information distinguishing File A from File
B that you had so carefully put into your original file names. This is
probably the greatest weakness of using the RT-11 format for FLX
backups.

23.3 Using PIP for Backup

When I first introduced the utility PIP, I explained that its name was
an acronym for Peripheral Interchange Program. Since the essence of
backing up and restoring files is moving them from one peripheral device
to another, it seems that PIP should be well suited for these operations.
In general this is true.

With the possible exception of magtapes, PIP is capable of writing
files to or from any device that you might use for backup. PIP can also
support magtapes (if they are in Files-I I format-that is, if they are ANSI
tapes); however, this is a system generation option. This feature is known
as ANSI support. ANSI support is offered as an option because you may
not use it often enough to justify the increased size of the PIP task.
There are three possibilities for your system. First, PIP may include ANSI
support. Second, the installed version of PIP may not, but another version
of PIP may be available somewhere that does have ANSI support. Third,
ANSI support may not be available at all, in which case you will not
be able to use PIP for magtape volumes.

You can easily determine whether PIP, as installed on your system,
has ANSI support or not. To do this, you get into PIP (if you are in DCL,
you use the command RUN $PIP) and enter the Identify command,

PIP>/ID

In response to this, PIP displays its version number followed by "(ANSI)"
if it has ANSI support. Typical responses look like

PIP VERSION M1340 (ANSI)

File Backup Techniques 291

If the installed PIP does not have ANSI support, check with your system
manager to find out whether another version does. In the remainder of
this section I will assume that ANSI PIP is available to you.

To use PIP, your backup volume must be in Files-11 format and must
be mounted. (This is accomplished as explained in Section 23.1.J If you
are using a disk volume, you should already have created user areas on
it via the Create Directory command (Section 23.1). It is possible to
effect this from within PIP, but it is easier to do so from your CL!.

A backup or restore operation is accomplished using the basic PIP
Copy command. This is conceptually identical to other uses of the PIP
Copy command with the important exception that now your backup
volume is mounted on either the output device (for file backup) or the
input device (for file restoring). For backup, the basic command form is

MCR: PIP ddnn: =file_specifier (S)

DCL: COPY file_specifier (s) dcbm:

and for restoring it is

MCR: PIP =ddnn: file_specifier (s)

DCL: COPY ddnn: file_specifier (S) SY:

where ddnn: is the backup device. These simple commands are all you
need if your backup volume is magtape. They will also work with disk
volumes, but if you are using a disk volume, you should take advantage
of all PIP's capabilities.

Normally, you will not want to change file names, so I defaulted these
in the output specifiers above. Typically, for each file being backed up
or restored, you will want the output file specifier to be identical to the
input specifier except for the device code. If you are working with only
one user area, the commands above are sufficient. When you are working
within several user areas, you must be careful with the output specifier.
If you leave the ufd portion of the output file specifier blank, it will be
set to your default directory. If you are copying files from several UFOs
on one device, they will all end up in one UFO on the output device.
Presumably, you will want to preserve the ufd along with the other
parts of the file specifier when you copy files for backing up or restoring.
You can force the output ufd to be set equal to the input ufd by using
wild cards for the ufd portion of the output specifier. If you have num­
bered directories, these wildcards are [*, *]; if you have named directories,
they are [*]. In the examples below we will use the form for numbered
directories, since your system may not support named directories.

RSX, A User's Guide 292

With ufd specifiers included, the more generalized command forms
for backing up and restoring, respectively, are

MCR: PIP ddnn: [*, *1=file_specifier (S)

DCL: COPY file_specifier (s) ddnn: C*, *l

MCR: PIP- [*, *]=ddnn: file_specifier (s)

DCL: COPY ddnn: file_specifier (s) l*, *1

Finally, you should preserve the creation dates of your files. As ex­
plained in Section 22.9, you can do this by using the Creation Date
switch. Although we include the DCL forms below, this feature is avail­
able to you from DCL only with the new versions of RSX (version 4.2
of RSX-llM, version 3.0 of RSX-llM-PLUS and version 3.0 of Micro/
RSX). With the preservation of the creation date included, the PIP com­
mands for backing up and restoring, respectively, are:

MCR: PIP ddnn: C*• *l /CD=file specifiers

DCL: COPY/PRESERVE file_specifier (s) ddnn: C*• *l

MCR: PIP [*, *1 /CD=ddnn: file specifiers

DCL: COPY/PRESERVE ddnn: file_specifier (s) C*, *l

The features for preserving the ufd and the creation date apply only to
the use of disk volumes. The ANSI standard for magtapes does not sup­
port UFDs. The ANSI standard does include the file creation date (but
not the time of day), but the PIP Creation Date switch specifically does
not work with ANSI volumes. You can specify a ufd or the Creation
Date switch for a magtape, but they will be ignored.

Let's now look at some examples. These will be several lines long;
for brevity, I will show only the MCR command forms. If you wish to
perform these operations from DCL, you should by now be able to trans­
late my examples into the appropriate DCL Copy commands with little
difficulty. Remember, if you are using DCL, you must have a new version
of RSX in order to use the Creation Date switch. If you have an older
version, you may want to effect these commands from MCR to avoid
losing the historical perspective afforded by this capability.

Let's suppose you have group number 212 on your system and in this
group you have several user areas. The areas defined by member numbers

File Backup Techniques 293

4 and 5 are for projects that you have recently finished and do not an­
ticipate using again. You decide to make a backup copy of all these files
so that you can then delete them from the system disk.

Afi a first example, suppose that your backup is to be made onto DEC­
tape. You get a reel of DECtape and mount it on drive DTl:. (If necessary,
you put the volume into Files-11 format and establish UFOs for areas
[212,4] and [212,5] on it.) You then enter the following commands

MCR>PIP

PIP>DTl' [* , *] /CD=[212 , 41*·*;*, [212 , 51*·*;*
PIP>[212, 41*· *; *• [212, 51*- *;*/ DE
PIP>"z

MCR>

When your backup is complete, you can dismount the DECtape and put
it in a safe place. Since it is a disk volume, you can use PIP to work
with the files just as you do on the system disk. You can add more files
whenever you want to by using the same procedure. You can get a di­
rectory listing, either of all files or of a subset, which may be specified
using wildcards. You can store multiple versions of a file on the volume;
delete files, which is useful if the volume fills up; and purge to get rid
of old versions. You can also restore files from the DECtape back into
your regular user area on the system disk simply by reversing the copy
command used for backup. For example, suppose you decide that you
want to restore all FORTRAN source files from area [212,4] and all
MACR0-11 source files from area (212,S J back onto your system disk.
You get your DECtape and mount it, but this time you do not initialize
it or create user areas on it. If you use drive 21 the PIP command to
restore your files would simply be

As a somewhat different example, suppose your backup is to be to
magtape. If necessary, you initialize the tape to put it into ANSI format.
You do not (cannot) put user areas on it. You can then back up your
files in much the same way as just discussed:

MCR>PIP

PIP>MM: ~[212 1 4] *· *; *' [212, 5] *· *i *
PIP> [212 ,41*- *;*, [212 , 51*- *;*/DE
PIP>"'z
MCR>

Since you cannot distinguish files on a tape volume by user area, you
should make sure that you do not have any files in [212,4] with the same

RSX, A User's Guide 294

file name, type, and version (you should avoid even the same name and
type with different version number) as any in [212,5]. Once you have
made your backup tape, you can obtain directory listings with PIP in
the same manner that you would for any other device. For a directory
listing from magtape, as opposed to one from disk, you will notice the
following differences: there is no user area specification; the format for
printing the name, type, and version is slightly different; the creation
date is always the date of the file copy; and the creation time is always
00:00. A further restriction is that you cannot delete files from an ANSI
tape volume. Since files on tape are not identified by user area, the res­
toration of files that were backed up from different user areas is not as
simple as the backing up operation. To restore all FORTRAN files from
[212,41 and all MACR0-11 files from [212,5J, you would have to use
something like this:

PIP> [2I2, 4J~MM, * -FTN; *
PIP> [212, 5]~MM, *·MAC;*
PIP>

If, when you make the backup, you have no MACRO-II files in [212,4)
and no FORTRAN files in [212,5), you will be all set at this point. If,
however, you have FORTRAN files in both areas, this restore operation
will put all of these back into [212,4). Presumably, you would then want
to get a directory listing of all of these to find out just what you have
and then use PIP to delete [from the system disk) those that originally
came from [212,5].

In conclusion, for disk volumes, PIP is a wonderful utility to use for
backup and restore operations. For magtape volumes, the lack of UFDs
and the inability to delete files limit its usefulness.

23.4 The Record Management Services

As part of your RSX system, you have a collection of programs known
collectively as the Record Management Services (RMS-!! or simply
RMS). RMS is designed to provide a means of storing and retrieving
large amounts of data. It allows you to define a wide variety of file struc­
tures~for example, you can use files that are designed specifically to
store personnel information, stockroom inventory data, etc. RMS is in­
tended to be used for applications involving what is commonly known
as data base management.

The ways of organizing files allowed by RMS-11 are more versatile

File Backup Techniques 295

than those offered by Files- I I. When you use RMS files, you cannot use
the Files-I I system. RMS- I I provides all the file management services
that you need. As part of this, RMS provides its own utilities for backing
up and restoring RMS-11 files. The RMS- I I file structure is a superset
of the Files- I I structure, which means that any Files-11 file is (a rela­
tively simple form of) an RMS-11 file. Thus, you can use the RMS backup
and restore utilities for your normal Files- II files. You do not have to
know anything about the RMS-11 file structure to do this. As strange
as it may seem, these RMS utilities are sometimes more convenient
than the more traditional Files- I I backup routines.

Unlike the other backup and restore utilities that we consider in this
section, RMS offers the various functions that you will require from
several interrelated but distinct utilities. To back up your files, you will
use one RMS utility; to restore your files, you will use another. This
may seem somewhat strange, but it should pose no problems for you.

The RMS utilities are not available to you directly from DCL. To use
them, you will have to use the MCR command forms. For single-line
commands, you can do this by prefacing the appropriate MCR command
with the command name MCR. For multiple-line commands, you will
have to enter the utility, which you can do from DCL with the command
RUN $rrns, where rrns is the particular RMS utility you wish to run.
In our examples in this section, I will consider only MCR usage.

RMS offers three interrelated utilities for manipulating backup vol­
umes. These are RMSBCK, RMSRST, and RMSDSP, which are the RMS-
11 File Backup, Restore, and Display utilities, respectively. These are
typically installed as BCK, RST, and DSP. If they are not installed on
your system, ask your system manager whether they are available. You
use these in the same manner as any other RSX utility. You can enter
a single-line command if the utility is installed, or you can run it (either
by invoking it by its installed name or by using a Run command if it
is not installed) and then interact with it.

You can use the RMS utilities with both disk and tape volumes. The
backup volume must be in Files-11 format, and it must be mounted.
This highlights an important distinction. The volume itself is in Files­
! I format (it has normal directory structures) but the individual files
are not normal Files- I I files. The RMS backup utility writes files onto
a backup volume in a special format that can be read by only the RMS
restore utility. (If you try to look at a file written by ECK with a command
such as PIP TI: =lile, you will get a lot of garbage on your screen.)

On a disk volume, this special format imposes an overhead of 4 blocks
per fil e. For example, if you use BCK to back up lO files totaling 40

RSX, A User's Guide 296

blocks from your user area onto a disk volume, the copies made will
be in 10 files totaling 80 blocks. For very large files !such as a data file
with several hundred blocks) these extra 4 blocks are not very significant.
For small files, especially if your backup volume has limited storage
capacity, these extra blocks are intolerable. Thus, unless you specifically
need to use the RMS backup/restore utilities because you have RMS­
! I structured files, you will not want to use the RMS utilities for backup
onto small disk volumes.

If you are using a magtape volume, things are different. Magtapes have
much greater storage capacity than floppy disks or DECtapes. Further,
RMS backup to tape offers features not available with either FLX or PIP.
In the remainder of this section I will limit our discussion to using the
RMS utilities with magtape.

RMS backup to an ANSI tape volume is effected via what is known
as a container file. Each backup operation leach command to BCK to
copy some of your files) puts one container file on the tape. The basic
command form is

BCK ddim: container_file=input_files

All the input files that you specify are combined into one large data
structurei this is the container file. It is organized in such a way that
only the other RMS utilities (DSP or RST) can identify or retrieve the
individual files contained therein.

The container file concept may strike you as being confusing, but it
is actually very clever. We have discussed the limitations of the ANSI
tape format. With RMS, these limitations apply only to the container
files, not to their contents. Thus, you will not be able to identify con­
tainer fil es by user area, and the creation date of each will be the date
on which it was copied !which, in this case, makes sense). Your files
do not appear on the magtape as files ; they appear as data inside the
container file. Thus, they are not affected by the ANSI tape volume
format. BCK takes advantage of this to store, along with the contents
of your files, complete information concerning your files. Correspond­
ingly, RST extracts this information and uses it when it copies your
files back from tape. With the RMS utilities, you can back up files onto
magtape and subsequently restore them. All identifying information­
user area, file name, file type, version number, creation date, etc.-will
be preserved.

of ~;h~~l~sc:e;:; :a~~~::e;n7~/~~:: ~::~: ;:~:::: B~~~:~

File Backup Techniques 297

command. This listing identifies each input file that was put into the
container file and thus provides a permanent record of the contents of
your backup. If you want to get a summary listing, you should use BCK
with the Summary Listing switch. The form of this command is

BCK ddnn: container_file!:input_files/SL: list_file

Here, lisLfile is the name of a file (in your default directory) into which
the summary listing will be written. If a file of this name already exists
in your directory, the summary will be appended to its contents.

A container file is identified by a file name, type, and version according
to normal Files-II conventions. You must specify the file name and
type. If you do not specify the version, a default value of zero will be
used. To avoid overwriting a previously made container file of the same
name, you must specify a version number each time you make a new
container file.

Let's consider some examples. Suppose you have mounted a freshly
initialized tape onto drive MMO:. The commands

MCR>BCK

BCK>MM:PROJECT22. BAK=[351, 22] *· *l */SL: 22. B
BCK>MM: SOURCE! 7 . BAK; 2=[351, 171*· FTN, *.MAC
BCK>"z

will make two container files on your tape. The first will contain copies
of all the files in your user area [351,22). A summary listing of this op­
eration will be written into file 22.B in your default user area. The second
command will add a container file to the tape. (BCK writes each new
container file after all other container files already on your tape.) This
second container file will contain copies of the latest versions of the
source files in your area [351,17]. No summary listing will be generated
for this.

Despite its special form, a container file is nonetheless a file on an
ANSI tape volume. You can determine which container files are on an
RMS backup tape by obtaining a simple PIP directory listing. In our
example, if you had started with a blank tape, a PIP directory would
show a total of two files on the tape:

PROJECT22. BAK; 0

SOURCE! 7. BAK; 2

This is a useful capability, since over the course of months or years,

RSX._ A User's Guide 298

you might occasionally use BCK to put another container file on the
tape. It is easy to lose track of what you have there; this is an easy way
to find out.

Of course, PIP can display only the name of each . container file-it
cannot tell you what is in a file. If all you need is a general idea of the
contents, a well-chosen file name will be sufficient. To find out what
you actually have in a particular container file (if you do not have a
summary listing ftom when you made it) you can use the RMS Display
utility, DSP. (You can also use DSP to find out the names of all the
container files, but DSP shows you other information that will not be
of interest to you.) To examine the contents of a container file, the gen­
eral command form is

DS~ ddnn: container_.file/BP

Here, the Backup switch I/BP) identifies the specified file as being a
container file. DSP will list on your terminal the contents of the con­
tainer file in a style very similar to that used by PIP for directory listings.
Referring to our earlier example, the command

DSP MM: SOURCE! 7. BAK; 2 / BP

will produce a listing that might look like this:

Contents of container file MMO: SOURCEl 7. BAK; 2

[351, 017] PARTl. Fl'N; 3
1351, 017] BIGSUBS. MAC; 11

22. /22 .
17 . / 17 .

1-JAN-1984 14: 22
31-DEC-1983 17: 57

This listing gives you more information than the summary listing ob­
tained with the Backup command. You can put this listing of the con­
tents of the container file into a disk file . This is useful if you are running
on a video terminal and you want to keep a hard-copy listing of the file
contents. You do this by including the name of an output file:

DSP outfile~ddnn: container_file/BP

For example, if you are on a video terminal, a typical command sequence
might look like this:

MOU MM: label
BCK MM: container_.file=-input_files
DSP list_fil~: container_file/BP
DMO MM:

PRI list_file / DEL

File Backup Techniques 299

This would give you a listing that you could keep with your backup
tape so that you would know just what you have on it.

The third RMS utility is RST. This allows you to restore files from
one or more container files on tape. You can either restore every file in
a container file or specify individual files to be selected from the con­
tainer file. There are several forms of the Restore command. The basic
form is

RST output_files=ddnn: container_file / swi tches

The file name and type in outpuLfiles must be*. *-that is, you cannot
rename files when you restore them. You can, however, change user
areas. If you specify a ufd in the output file specifier, all the files will
be restored into that user area. (As a special case of this, if you omit
the ufd, your default directory will be used.) If you use wildcards to
specify the ufd, as each file is restored from the container file, it will
be put back into its original user area. You will probably want to preserve
the user area in all cases, so the Restore command will normally look
like this:

RST [*, *1 *· *=ddnn: container_file/swi tches

llf yot\ are using named directories, the wildcard ufd specifier is[*].)
The switches determine which files are restored from the container

file. If you use no switches, the entire contents will be put back .onto
your system disk. You can use two switches to control this action. The
Original Account switch restricts the restoration·to files that were orig­
inally in a specified user area. The format of this switch is

/QA: lufd]

The Select switch allows you to specify up to IO file specifiers. Here,
a file specifier consists only of the file name, type, and version. With
this switch, a file will be restored only if it matches one of the specifiers.
If you use only one specifier, the format of the switch is

/ SE: file_spec

If you want to have several file specifiers, you enclose them in paren­
theses and separate them with commas,

/SE: (spec!, spec2, ..)

Let's consider some examples. Suppose your backup tape is mounted
on drive MM2. The command

RSX, A User's Guide 300

RST [*,*I* · *=MM2: SOURCE! 7. BAK

will take all files out of the container file SOURCE! 7.BAK and restore
them into their original user areas on your system disk. The command

will go through all container files on the tape and restore all files that
were backed up from user area (351,21(. The command

RST l*,*l* . r-MM2: SOURCE17.BAK/SE:*.Fl'N

will restore all FORTRAN source files in the container file
SOURCE! 7.BAK. Finally, the command

RST !*,*l*·*=MM2:*.BAK/OA: (351,21]/SE:*.MAC

will restore, from all container files of type BAK, all MACRO-I I source
files that were originally in area [351,21].

23.5 The Backup and Restore Utility

The last utility that we examine for backing up your files is the Backup
and Restore Utility, which I will refer to by its MCR name of BRU.
BRU is available to you from DCL via the command BACKUP. In both
MCR and DCL, its name implies that is the utility to use for backup
and restore operations. Do not let its somewhat grandiose name fool
you. It may be the utility for some backup and restore operations, but
not necessarily for yours. BRU was designed to provide an efficient means
of backing up large disks. For instance, your system manager probably
uses BRU to periodically back up the major disks in your system. Such
a backup would include not only all the files in your user area, but also
those in everyone else's user area as well. BRU contains many features
that are designed around this type of operation. For your purposes, BRU
is a much more powerful utility than you need. Unfortunately, when
you want to use BRU to do what is comparatively a trivial backup op­
eration, the means of using it are not simplified. You will probably find
BRU difficult and awkward to use. If your backup medium is a disk
volume, you almost definitely should not use BRU. Anything you can
do with BRU, you can also do with PIP. For large file transfers (such as
an entire disk) BRU will be significantly more efficient than PIP, but
for your purposes, the more important considerati.on is that PIP will be
easier to use. If your backup medium is magtape, however, you might

File Backup Techniques 301

want to use BRU. In the remainder of this section, I will limit our dis­
cussion of BRU to the use of magtape.

BRU has its own format for backup tapes. The tape volume should
not be in Files- II format. If your system is RSX-llM, the tape should
not be mounted; if your system is RSX-llM-PLUS or Micro/RSX the
tape must be mounted foreign.

When you use BRU with magtapes, backup is accomplished via what
is known as a backup set .. This is conceptually similar to the container
file that we discussed for RMS. A backup set is defined as the entire
collection of data that is transferred from disk to tape during one backup
operation. On your tape the data is organized as a collection of back­
up sets, each of which contains as many of your files as you wish. A
backup set is identified by a name which can be up to 12 characters
long. Since BRU has its own format for tapes, you cannot use PIP to
determine which lif any) backup sets are already on a tape. Instead, you
must use BRU to do this, as I describe later.

You can use BRU from MCR (via the command BRU) or from DCL
(via the command BACKUP). Although you can access BRU from MCR,
it uses DCL style commands. (The common command style notwith­
standing, the actual commands used in MCR are not the same as those
for DCL.) If you are in MCR, the command style alone will make BRU
difficult for you to master. If you are in DCL, this will not bother you.
Regardless of which CL! you are in, the generality of BRU will force
you to specify things in the command that will, from your viewpoint,
be unnecessary.

As noted, whether you are in MCR or DCL, you enter commands in
the DCL form. Also, the same basic command form is used whether
you are doing a backup or a restore operation. Although the general
form is the same, the details do depend on your CL!. The greatest dis­
tinction here is that the keywords for some of the command qualifiers
change from MCR to DCL.

You can enter a BRU command in any of several manners. Regardless
of how you enter it, a command will typically consist of three parts:
the command qualifiers (or switches), J:he input specifier, and the output
specifier. These three parts are separated by blanks; these are the only
blanks that are allowed in the command line. Thus, if you type a blank
in the middle of your qualifiers, the remainder of the qualifiers will be
taken as being the input specifier.

In the single-line form, a BRU command looks like this:

MCR>BRU/qualifier!!! input output

DCL>BACKUP/qualifiers input output

RSX, A User's Guide 302

It is, however, more common to invoke the BRU utility and then enter
your command interactively. If you are not familiar with using BRU,
this will be the easiest form to use. The multiple-line command form
differs somewhat between MCR and DCL. In MCR you first enter the
command BRU. When you do this, you will get a prompt, at which
point you can enter a command. (This may be the entire command, but
I will assume that you want to enter it in pieces.) In response to the
prompt, you might first enter only the qualifiers. BRU will then prompt
you to enter the input specifier, and on the next line it will prompt you
to enter the output specifier. Thus, you can enter the command in this

MCR: MCR>BRU

BRU>swi tches
From: input
To: output

In DCL you use the command BACKUP. If you enter the word BACK­
UP by itself, you will have lost your chance to enter any command
switches. Instead, you must either enter them on the same line as the
command BACKUP or end that line with a slash (/)to signify that you
want to enter switches. In the latter case, you will be prompted with
the word "Qualifier?" At this point, you enter the appropriate switch
without its initial slash I the slash ending the previous line is used by
DCL for this). If you want multiple switches, they are separated by
slashes as usual. Following the switches, the entry of the input and out·
put specifiers is the same as for MCR. Thus, in DCL, you can enter a
BRU command in this ~anner:

DCL: DCL>BACKUP /

Qualifier? switches
From? input
To? output

A BRU command can be rather long. When you use BRU interactively,
you can continue a command across several lines. This is independent
of whether you enter the command in three separate parts or all at once.
To continue a command line being entered to BRU, end the current line
with a hyphen (-). BRU will then give you another prompt, at w.hich
point you continue. [The use of a hyphen to continue a command line
is general DCL syntax; for BRU, you can also use it in MCR.) Again,
you must not enter any exuaneous spaces. For yolU purposes, you prob­
ably will not need to continue a BRU command (especially if you split
it into three pieces) unless you have a long input specifier.

File Backup Techniques 303

The first part of a BRU command consists of a list of command
switches or qualifiers. The qualifiers control various aspects of the data
transfer from the input to the output. Each qualifier may specify some­
thing about either the input or the output, but the qualifiers are all
entered together, regardless of function. Each qualifier is entered in the
normal form for entering a command switch:

/switch

/switch: value

Qualifiers are entered one after the other with no intervening spaces.
Each qualifier may be shortened to a three-letter abbreviation.

There are many possible qualifiers to the BRU command. We will
discuss only the ones that you will need to use. First, whether you are
backing up or restoring your files, you must identify the backup set on
the tape. This is done with the Backup Set qualifier. In MCR this is
BACKUP_SET, and in DCL it is SAVE_SET. These are typically abbre­
viated to /BAC and /SAV, respectively :

MCR: / BAC: name

DCL: /SAV: name

The name of the backup set may be up to 12. characters long. For a
backup operation, it specifies the name to be given to the backup set
that will be written to tape. For · a restore operation, it identifies the
backup set from which files will be copied back to disk.

When you use BRU for backup, you must use the Mounted qualifier.
For both MCR and DCL, this switch may be entered as /MOU, which
informs BRU that the input device jyour system disk) is mounted. lf
you forget this switch when you enter a BRU command to back up your
files, you will get an error message for a "Privilege violation" citing
I/O error code 16. This is certainly obscure, and you will probably not
be able to decipher it as meaning that BRU is trying to treat the system
disk as an unmounted device.

Although you must use the Mounted switch for backing up your files,
you do not want to use this qualifier when you are restoring files because
in that case, the input comes from an unmounted tape volume. Similarly,
when you restore files, you must use the No loitialize qualifier. The
form of this j/NOI) is the same for both MCR and DCL. This specifies
that the output device jyour system disk) should not be initialized. !Since

RSX, A User's Guide 304

you are not privileged, you will not be allowed to initialize the system
disk, but you still have to tell BRU that you do not want it to try.) This
qualifier is not necessary for backup operations to magtape because the
concept of initializing the output device applies only to a disk.

With BRU you can put several backup sets on one reel of magtape.
Unlike the other utilities we have examined, BRU does not assume that
you want to do this. (Note again BRU's origin as a tool for backing up
an entire disk; it is not designed for consecutive small backups such as
you will want.} During backup you can use the Append qualifier to spec­
ify that you want the new backup set to be written after any others
already on the tape. If you forget to specify this and you are at the be­
ginning of the tape, the new backup set will be written over whatever
might already be on the tape. Presumably, this is not what you want.
Although you can avoid this by using the Append switch, things are not
as easy as they might seem. If you are at the beginning of the tape (you
have just loaded it onto the tape drive) the Append qualifier will do
what you expect: the tape will be moved past all existing backup sets
before the new backup set is written. Similarly, if you are at the logical
end of the tape (you have just finished writing the last backup set), you
can again use the Append qualifier. In this case, BRU will remember
that it already is at the end of the tape, and it will simply write out the
next backup set. It is when you are somewhere in the middle of the tape
that problems arise. If you use the Append switch, BRU will not advance
to the end of the tape. Instead, it will give you an error message for a
"Tape label error, " citing 1/0 error code 13. (As with the problem that
happens if you forget to declare the system disk to be mounted, this is
likely to send you screaming to your system manager.) In this situation,
you must specify the Rewind qualifier, which will force BRU to rewind
the tape, following which the Append switch will be correctly inter­
preted. In both MCR and DCL, the Append and Rewind switches are
entered as /APP and /REW. You may specify both of these in the same
command.

The Append switch has no meaning for a restore operation. You may
have to use the Rewind qualifier when you are restoring files. During
restore operations, BRU will advance the tape from its current position
until it finds the specified backup set or until it reaches the logical end
of tape. If you are already past the part of the tape that contains the
backup set you want to use (perhaps as the result of previous BRU com­
mands), you will have to rewind the tape. Rewinding a tape typically
takes a long time. By not automatically rewinding, BRU can be signif­
icantly more efficient for operations such as the creation of several con-

File Backup Techniques 305

secutive backup sets. In return for this, you have to keep track of where
you are on the tape and rewind it as required.

In summary, for backup operations, you will need the Backup Set and
the Mounted qualifiers; you will probably want the Append qualifier;
and you may also need the Rewind qualifier. The various qualifier com­
binations that you are likely to use when you back up your files from
disk to tape are:

MCR: / MOU/ BAC: name
/ MOU/ BAC : name/ APP
/ MOU/BAC: name/ APP / REW
/ MOU/ BAC: name / REW

DCL: /MOU/ SAV: name
/MOU/SAV: name/ APP
/MOU/SAV: name/APP/REW
/MOU/SAY: name/ REW

Note that the last command !Rewind without Append) will erase any­
thing already on the tape when the backup is made. The sarne effect is
achieved with the first command if the tape is already at its beginning.

For restore operations, you will need the Backup Set and the No In­
itialize qualifiers; you may also need the Rewind qualifier. Possible
qualifier combinations for file restore operations are:

MCR: / NOI / BAC: name
/ NOIIBAC: name / REW

DCL: / NOI / SAV: name
/NOI / SAV: name/REW

After the qualifiers, the next part of the BRU command is the input
specifier. This includes both the input device and also various file
specifiers.

When you use BRU for backup, the input specifier names those files
that you wish to copy from disk to your backup volume. You must
specify the input device as SY:, as there is no default. You also must
include a file specifier. U you do not, BRU will try to copy every file
jnot just yours!) from the system disk to your backup volume. When
this happens, you will notice that BRU runs for a very, very long time.
What is especially frustrating is that you will not be able to abort BRU
once it has staned-only a privileged user can do this.

In the input specifier you may have as many as 16 file specifiers, which
are separated by commas. If necessary, you can continue the input spe­
cifier across several lines. For example, if you wanted to back up all

RSX, A User's Guide 306

command and text files from your areas [300,1) and [300,2), you could
use this input specifier:

From: SY: [300, 1) *· CMDi *• [300, 1) *· TXT; *, -
From : [300 , 21*.CMD; * , [300 ,2)*.TXT;*

ln this example, I assume that you are using BRU interactively from
MCR and that you have already entered the qualifiers, hence the prompt
"From:" on the first line above. Note that the first line of input ends
with a hyphen. In response to this continuation indicator, BRU repeats
its prompt on the next line. The second line ends without a hyphen,
signifying the end of the input specifier;

When you use BRU to restore files, the input specifier, along with the
backup set defined in the previously entered Backup Set qualifier, names
those files that you wish to copy back onto disk. The input specifier is
entered in the same way as for a backup command. The device code
identifies the particular tape drive in use. The individual fil e specifiers
(if any) identify those files that you wish to extract from the particular
backup set. If you do not specify any files, the entire contents of the
backup set will be restored.

If you read the Utilities Manual for RSX-llM version 4.0, you will
note some confusion on this issue. This manual specifically states that
you must restore the entire contents of a backup set from tape to disk
and then select (via PIP, for example) the individual files that you want.
This is not true. You can select the individual files as part of the restore
operation.

ln general, the input file specifiers follow the normal rules for spec­
ifying files under RSX. There are, however, some important distinctions
concerning wildcards. First, as already noted, you must specify the de­
vice; presumably SY: will suffice. If you specify a ufd and no file name
or type, all files in that UFO are used-,for example, [300,1] is the same
as [300,1]•.•;•. As already noted, if you omit the ufd as well as the file
name and type, you will not simply get all the files in your current
area-you will get all the files on the entire disk. !This again is based
on using BRU for system level rather than individual user backup.) You
should be careful not to do this, especially since you might not be able
to abort BRU once you have started it. BRU also handles version numbers
in a strange way. If you do not specify the version number, you do not
get the latest version, as you would with other RSX utilities. Instead,
you get all versions. Also, you cannot request the latest version by spec­
ifying a version number of zero-BRU will reject this. This is particularly
bothersome for backup operations in which the input is on disk and

File Backup Techniques 307

there is no reason why BRU should not be able to select the latest ver­
sions of your various files . You will find these peculiarities of BRU an­
noying, but you can at least accept them if you remember that they are
intended to simplify the use of BRU for backing up an entire system
disk.

The last and easiest part of the BRU command is the output specifier.
You are allowed to identrly only the output device itself. There are no
defaults for the device code, so you must specify the tape drive for backup
or SY: for restore operations. If you have files from more than one user
area in a backup set, they will be restored into the appropriate user areas.
The file names are automatically set to those of the input files. Again,
think big. For restoring files, BRU is designed to restore an entire disk,
one user area at a time. As noted above, however, you can pick individual
files {or groups thereof by using wild cards) from a backup set.

Let's now put all of this together. Suppose, for example, that you want
to back up all the command, FORTRAN, and MACRO-II source files
that are in your default directory. You want to put these into a backup
set called VERS03MAR27, which is to be appended to a tape on which
you have other backup sets. You have just loaded the tape onto drive
MT!: so it is at the beginning of the tape. In MCR, an interactive com­
mand sequence to do the backup might look like this:

MCR>BRU

BRU> /MOU/ APP/BAC: VERS03MAR27

From : SY:*· CMD, *· FTN, *·MAC
To:MTl:
BRU - starting Tape 1 on MTl:

BRU - End of Tape 1 on t.fl'l:
BRU - Complete d
BRU>~Z

Similarly, in DCL, the command sequence might look like this:

DCL>BACKUP I
Qualifier: MOU / APP/SAV: VERS03MAR27

From : SY:*· CMD , *· FTN, *·MAC
To:MTl:
BAC - star ting Tape l on MTl:

BAC - End of Tape 1 on MT!:
BAC - Completed

Note that after accepting your entire command, BRU informs you that
it is starting the first backup tape. Again, BRU is designed to back up

RSX, A User's Guide 308

large amounts of data and is designed to use, if necessary, several reels
of tape. The "end of tape" message tells you that BRU has finished writ·
ing to the first reel of tape, not that the tape is full. If it were full, you
would be told to load a second volume. The "completed" message tells
you that BRU has copied all your files to tape. After completing the
backup operation, if you are in MCR, BRU gives you another prompt.
At this point you could enter another backup or restore command. To
leave BRU, you enter CTRL/Z. If you are in DCL, BRU is automatically
terminated. Note that the messages you get from BRU are prefaced by
the name "BAC"-this is because the DCL intermediate task BAC
intercepts the messages from BRU and displays them in its own
manner.

Having made this backup set, suppose you later want to restore the
single file MAIN.FTN from it. At the time you want to do this, you
have already loaded your tape on drive MTO: and used BRU to append
another backup set to it. The tape is ready to read, but it must be re­
wound, since it is at the logical end of tape. Your command sequence
would look like this:

MCR>BRU

BRU>/NOI/REW/BAC: VERS03MAR27
From : MT: MAIN. FTN
To: SY:

DCL> BAC I
Qualifier? NOJ/REW/SAV: VERS03MAR27
From: MT: MAIN. FTN
To: SY:

You will find one last command sequence useful for BRU-obtaining
a directory of your backup tape. To do this, you use the Directory qual­
ifier. Note that in MCR, this is entered as the switch /DIR. In DCL,
however, the switch DIR has a different m eaning; to get a directory
listing you must use the switch /LIST. To use the Directory switch,
your tape must be at the beginning, so you might as well always use
the Rewind switch also. (If your tape is at the beginning you do not
need to rewind it, but it does not cost you anything either.) If you do
not include the Backup Set qualifier, the directory will list the names
of all the backup sets on the tape. If you do specify a particular backup
set, then the directory will list all the files (the list will be ordered by
user area) in that backup set. When you use the Directory qualifier, the
input portion of the command is simply the device code for the tape
drive. There is no output specifier, as the listing is always written to

File Backup Techniques 309

your terminal. If you want a hard copy of the directory listing, you must
use a printing terminal. To get a listing of the names of all the backup
sets on your tape, you would use this command sequence:

MCR>BRU

BRU>/ REW/ DIR

From: dchm:

DCL>BACKUP I
Qualifier? REW/ LIST
From?ddnii:

where ddnn: is the particular tape drive. Similarly, to get a listing of all
the files in one backup set, you would use this command sequence:

MCR>BRU

BRU>/REW/DIR/BAC: name
From: ddnn:

DCL>BACKUP I
Qualifier? REW/LIST/ SAV: name
From?ddnn:

23.6 Conclusions and Comparisons

In the preceding sections we have examined four possible backup tech­
niques. In terms of capabilities and usage, they differ significantly. You
may well have all four of these backup utilities available to you. Which
should you use? This decision must be a personal one. To help you, I
offer some comparisons and some purely personal preferences.

First, you must decide what medium-magtape, DECtape, floppy,
etc.-you will use for backup. It is quite possible that you will have no
choice here. If you do have a choice, you should consider the storage
capacity of the various volume types. In Table 3 (page 274) I listed the
storage capacities of various disk devices. Cartridge disks are not com­
monly used for single-user backup-it is more likely that you will have
DECtape or floppy disks. From the table, a typical volume can hold
between 500 and 1000 blocks. By way of comparison, a very short tape
(600 feet} at what is today a low recording density (800 bpi) can hold
roughly 11,250 blocks. A full-size tape (2400 feet) at what is rapidly
becoming the standard density (1600 bpi) can hold eight times as much
as this. Thus, one full-size reel of tape can hold the equivalent of any-

RSX, A User's Guide 310

where from 45 to 90 DECtapes or floppy disks. If you need to back up
large amounts of data (not necessarily all at once, but in total) you will
probably want to use magtape. Magtape does, however, have some dis­
advantages. First, it is much slower than a disk because it must be pro­
cessed sequentially. Further, not all of the file handling capabilities that
you are used to are available with tape. Specifically, files on magtape
cannot be identified by ufd, and once on the tape, files cannot be deleted.
A final consideration in the choice of medium is whether you might
want to use the backup volume as a means of transporting your files to
another installation and if so, what devices are available there. Magtape
has been, and probably will be for some time to come, the universal
medium for transferring data from one system to another.

Once you have chosen a backup medium, you must choose a backup
utility. If you are using a disk volume for backup, you should use PIP.
There are several reasons for this. First, you are by now already quite
familiar with using PIP (or, if you use DCL, the equivalent commands
such as COPY, DELETE, and DIR). Why learn yet another set of com­
mands? Further, PIP is more versatile than any of the other techniques.
The special wildcards discussed in Section 22.2 alone should convince
you of this. For your purposes, PIP should be the best choice.

If you are using magtape, things are not as well defined. Each of the
four techniques we have discussed has its own advantages. FLX continues
to be widely used for transferring files from one system to another. It
does not require the rigmarole of putting tapes into ANSI format. It has
a very easy command form, especially for using DOS format (which is

. what you would use on a magtape). It is capable of distinguishing files
by user area. Its main disadvantage is that it does not recognize version
numbers. Further, all backup operations get put together into one large
collection of files, which, coupled with the version number problem,
leads to naming conflicts that are not easily overcome. PIP avoids the
version number problem. In return, it requires you to use ANSI tapes,
whereby it cannot. recognize UFOs. The command syntax is one with
which you are already familiar. Thus, the comparison between FLX and
PIP should be based on whether you will have multiple UFOs or multiple
versions. If you want to back up files from several areas and you do not
intend to change any of these files afterward, use FLX. If you are working
in only one area but want to make frequent backups as you update your
files, use PIP.

If you need to be able to distinguish files by both UFO and version
number, neither FLX nor PIP will be adequate. You should use either
RMS or BRU. For your purposes, RMS and BRU offer essentially equal

File Backup Techniques 311

capabilities. RMS requires ANSI formatted tapes; BRU does not. The
RMS concept of a container file is equivalent to the BRU concept of a
backup set. If you use MCR, you will find that the RMS command syntax
closely resembles that of other utilities to which you are accustomed.
From MCR, the BRU syntax is strange, but once you get used to it, the
interactive procedure renders it tolerable. If you use DCL, the reverse
will be true; you will find BRU easier to use. The RMS utilities are
designed for backing up RMS-11 files but you can use them for normal
Files-11 files without being aware of this. BRU is designed for backing
up an entire disk. To use it for backing up just your own files, you have
to remember to include some strange switches in your commands. Also,
BRU does not allow you to select only the latest versions of your files
for backup (you can, of course, purge your files prior to backing them
up).

Perhaps the biggest difference between RMS and BRU is the way in
which they handle multiple backup sets on one tape. RMS assumes that
each backup you make should be put after any others that already exist
on the tape. BRU is designed for backing up an entire disk at once, in
which case one reel of tape may not be large enough to hold even one
backup set. Thus, in BRU, the default is to overwrite any backup set
that may already be on the tape. Unless you are working with huge
amounts of data, the collection of files associated with one of your proj­
ects will occupy only a small amount of one reel of tape. One reel of
tape will suffice for all your backups; one time you might put files for
one project on it, and some time later you might add files for another
project. RMS very nicely matches this style of use. With BRU, if you
load your reel of magtape and enter an overly simple backup command,
BRU will very quietly destroy all your old backups. You can, as noted,
avoid this by using the Append switch, but the problem is that you
must remember to add this switch to your command. (If you forget it­
too bad.) For this reason alone, I hesitate to recommend BRU. The po­
tential danger is simply too great, especially for casual use where you
will not use BRU often enough to remember these details. All in all,
RMS is probably more convenient for you to use than BRU, but you
should try both and decide for yourself.

RSX, A User's Guide 312

24

Object Libraries

When you compile a source file, you make an object We. This object
file may then be used as an input to the Task Builder for inclusion in
a task. This procedure is straightforward and often will be all that you
will ever have to know about object files. The procedure can, however,
be m ade more versatile by using object libraries.

An object library is a file that contains several closely related object
modules. [Loosely speaking, a module is a single program unit, such as
a subroutine or a function; I will define this more precisely.) For example,
RSX contains a special library file of system functions ; this file is
LB:[l , l]SYSLIB.OLB. !The default file type for an object library file is
OLB.) SYSLIB contains various system level functions that, even though
you may not realize it, you will typically need when you build a task.
Similarly, if you write a program in FORTRAN, you may use various
subroutines or functions jfor example, the SQRT function) that are sup­
plied as part of the FORTRAN language. The collection of these land
other) functions is known as the Object Time System jOTS), which is
contained in its own object library. Depending on whether your system
has FORTRAN-IV or FORTRAN-77, the name of this library will be
FOROTS or F770TS. llf FORTRAN is used frequently on your system,
your system manager may have added these functions into the main
system library SYSLIB.)

SYS LIB and the FOR TRAN OTS are examples of object libraries that
are supplied as part of your RSX system. Another important use of object
libraries is for object modules that you have written. Let's consider a
few reasons why you might want to make your own object library. Sup­
pose you write a lot of scientific analysis programs in FORTRAN. Some
of these require special mathematical functions that you have to write

Object Libraries 313

yourself. Over the years, you have developed a collection of such func­
tions which are located in various files. Some of these files might be:
NORMAL, containing the Normal density and probabilities; BESSEL,
containing Bessel functions of order zero; GAMMA, containing the
Gamma and log-Gamma functions; and BETA, containing the Beta
function, which is evaluated using the log-Gamma function. When you
write a program that requires one of these special functions, you must
remember in which object file it is located, whether it uses any of your
other special functions, and if so, where they are located. If you put all
the functions into an object library {call it FUNCS), all you have to do
is include this one library file in your Task Builder command. In this
case, the main benefit to you of using an object library is that you do
not have to choose which of many possible object files to use for making
a particular task. As a somewhat different example, suppose you have
written a collection of subroutines for using a plotter. To simplify editing
and compiling, these are in several files-you might have one for ini­
tialization, one for basic pen moving commands, one for axis drawing
functions, and one for drawing solid or dashed lines. Each time you build
a task to use the plotter, you will probably want to use all of these. In

this example, the use of an object library (call it PLOTSUBS) avoids the
need to specify each file whenever you do a task build.

Jn general, it is appropriate to use an object library whenever you have
a collection of related functions . The best way to handle these is to have
many source files, as this simplifies making or changing an individual
function. After compiling, you put all the object modules into one object
library. This is done by compiling the source files (as you normally
would) and then using a special system utility known as the Librarian
to put the modules into a library file. Once you have done this, you no
longer need the individual object files, and you can delete them. Typ­
ically, the single object library file will occupy less disk space than the
collection of object files from which it was made; this savings in space
is an additional benefit of using object libraries.

24.1 Using Object Libraries
with the Task Builder

In Chapter 17 we discussed the use of the Library switch to denote a
particular input file to the Task Builder as being an object library instead
of an object file. For extremely simple applications, this may be all that
you need to know about using object libraries for building a task. Re-

RSX, A User's Guide 3 14

ferring to our earlier example of the object library FUNCS, if you have
written a program to analyze the statistics of harmonic vibrations for
suspension bridges, you might use a Task Builder command as simple

MCR: FTB VIBRATE=VIBRATE, FUNCS/LB

DCL: LINK / FAST VIBRATE, FUNCS/ LIB

In this case, your input consists only of the file containing the main
program and your object library. If you follow the general principle of
specifying the main program first, everything will be fine. For anything
more complicated than this, things might not always work as you would
like. To understand why, you must understand how the Task Builder
works with object libraries.

Input files specified during a task build may be either object files or
object libraries. These are handled differently by the Task Builder. An
object file will often contain only one object module. It need not be
limited in this manner, however. If it does contain more than one object
module, the assumption is that all ·modules in it are needed. The Task
Builder includes all modules in an object file in the task image being
built. An object library has a more general purpose nature-it is assumed
to contain a possibly large collection of object modules, not all of which
may be needed. The Task Builder takes only those modules from an
object library that are needed. This is the main reason for using object
libraries: it is easier to specify one object library than it is to specify
several object files, and this typically results in a smaller task.

What do I mean by a particular object module being needed or not
during a task build? To make a task image, you first need a main pro­
gram-that is, you need an object module that contains a definition of
the point at which task execution will start. This main program will
typically call several functions (subroutines), and these may in turn call
other functions. The name of each function is known as an external
reference. (Under RSX, external references may be at most six characters
long.) For the task build to succeed, every external reference must be
defined somewhere. These definitions come from object modules, which
may be in object files or object library files. The modules are taken from
the files you specify as input to the Task Builder, as well as from the
System Library (SYSLIB), which is automatically included. If a module
in a library file contains a definition of a currently unresolved external
reference, then the Task Builder puts that module into the task being
built; otherwise, the module is not used.

The important words in the above definition are 11currently unre-

Object Libraries 315

solved." The Task Builder processes your input files in exactly the order
that you specify them. As it goes through each file, it will typically find
definitions of some functions, which will resolve some external refer­
ences. It will also find references to other functions, which will result
in new unresolved references. Thus, as the files in your input list (or,
more exactly, the object modules in these files} are read, the list of cur­
rently unresolved external references changes. When it comes to an ob­
ject library, the Task Builder knows only about currently undefined
references; it docs not know about external references that may occur
in files it has not yet read. The Task Builder takes only those modules
from the library that it currently needs and then goes on; it does not go
back to the library to look for other unresolved references. Thus, when
you use object libraries, your task build will be sensitive to the order
in which you specify your various input files. A Task Builder command
with a set of input files specified in one order may succeed whereas
another command with the same set of files in a different order may
fail. For example, suppose that in the file TEST, you have a main program
that calls a function CALC, which is in the file CALC. This function,
in turn, uses the Normal probability functions, which are in your object
library FUNCS. In this case, the command

MCR ' FTB TEST=TEST, CALC, FUN CS /LB

DCL' LINK/ FAST TEST, CALC, FUNCS/ LIB

will work. What might appear to be an equivalent command,

MCR ' FTB TEST=TEST, FUNCS/LB , CALC

DCL' LINK/FAST TEST, FUNCS/ LIB, CALC

will, however, fail, for when FUNCS.OLB is processed, the references
in CALC to the Normal probability functions will not have been noted.

This sequence of processing by the Task Builder was designed to pro­
vide a degree of flexibility that is normally required only for rather so­
phisticated applications. As far as you are likely to be concerned, it is
an aggravation. To avoid problems, you should make your object library
the last file that you specify as input when you build a task. Unless you
are using more than one object librnry, you should not have any prob­
lems. I noted earlier that the Task Builder always reads the System Li­
brary; using similar logic, SYSLIB is read after all the files that you
specify.

In its search for definitions of external references, the Task Builder
does not go back to an object library once it has left it, but it does go

RSX, A User's Guide 316

back and forth within a library. Thus, if the Task Builder extracts a
module from a library and this requires other modules in the same li­
brary, the Task Builder will also take these, regardless of their relative
order within the library. You must worry about the position of a library
file specifier in your input list to the Task Builder, but you do not have
to worry about the order of modules within the library.

If you have several object libraries, it is acceptable if functions in one
library call functions in another. When this happens, you might say that
the functions in one library are hierarchically higher than those in the
other library. As long as you specify the higher level library first, every­
thing will be all right. jAgain, the functions in SYSLIB are considered
to be at the lowest possible level, so it is always taken last.) If your
libraries cannot be hierarchically divided, things will not be so nice.
This would happen if you had a circular structure, where each library
called functions in the other. In a case such as this, the best solution
is to coalesce the two libraries into one. If you cannot do this, you will
have to specify one library, then the other, and then the first again land
possibly the second again, etc.) to ensure that all necessary modules are
found.

~n far, I have spoken of including an entire object library as an input
file. It is also possible to specify only particular modules from a library.
When you do this, the Task Builder takes the named modules !whether
it currently needs them or not) and ignores the other modules I whether
it currently needs them or not). When you specify an object library in
this manner, the format is

MCR: object_library/ LB: uodule: module .. .

DCL: object_library/INCLUDE: module: module . . .

In MCR, you still use the switch /LB, but in DCL, you use the switch
/INC instead of /LIB. In either case, you follow the appropriate switch
by a list of module names, each preceded by a colon.

This ability to force inclusion of specific modules is used with the
strictly sequential processing of input files to create special module
combinations. Normally, this will be of no interest to you, but there is
one notable exception. When you write a FORTRAN program, the OTS
includes a number of functions for error checking and handling. For
example, as part of the SQRT function, the OTS checks whether the
input value is negative or not. If it is negative, the OTS prints an error
message on your terminal and takes certain corrective action. The FOR­
TRAN OTS similarly detects and handles a large variety of other errors.

Object Libraries 317

In general, the error message that is printed to you consists of an error
number followed by explanatory text. The collection of these text por­
tions is contained in one module; for FORTRAN-77 this module is more
than 1,000 words long. Since the maximum task size is 32k words, this
represents a sizable fraction of your total task image, which in some
cases, you may not be able to afford. You may build your task to include
a dummy module that contains no textual descriptions.This forces the
exclusion of the normal error message module, thereby saving over 1,000
words of memory. (This is one of the easiest and most profitable ways
of reducing the size of a FORTRAN task; it will work for both FOR­
TRAN-IV and FORTRAN-77.) If you elect this option and an error is
detected when you run your task, the error number will be printed with­
out any explanation. This is no big problem since all the possible errors
are listed in numerical order in the FORTRAN User's Guide (not the
FORTRAN Language Reference). To suppress the normal error message
module, you force the Task Builder to include the short message module.
For both FORTRAN-IV and FORTRAN-77, this is known as $SHORT.
It is specified to the Task Builder as

MCR:LB: [1,l]SYSLIB/ LB:$SHORT

DCL:LB: [1,l)SYSLIB/ INC:$SHORT

MCR: LB : [1, l]F770TS / LB: $SHORT

DCL: LB : [1 , l)F770TS/ INC:$SHORT

MCR: LB: [1, l]F4POTS/ LB: $SHORT

DCL:LB: [1,l]F4POTS/ INC:$SHORT

depending on whether the FORTRAN OTS is part of your System Library
or not. In MCR, a typical example for a system with a separate library
for the FORTRAN OTS might look like this:

MCR>TKB

TKB> TEST=TEST

TKB> TESTSUBS, FUNCSILB
TKB> LB: [1, l]F770TS/LB: $SHORT
TKB> LB: [1, l]F770TS / LB
TKB>//

RSX, A User's Guide 318

Note that in this example the library F770TS is specified twice: the
first time to extract the single module $SHORT and the second time
to extract all other necessary modules. These two specifications must
be in this order. Also note that in this example I use the regular Task
Builder, not the Fast Task Builder. The Fast Task Builder supports the
Library switch as shown in previous examples; it does not, however,
support the module selection form of this switch. To save on task size
with this technique, you must tolerate the extra time required to link
via the regular Task Builder.

24.2 Modules and Entry Points

Up to now, I have been somewhat vague in my references to object
modules and external references (or entry points). It is now time to ex·
amine the interrelations and distinctions among files, modules, and entry
points. Loosely speaking, a module is a program unit, and an entry point
is an address to which a program may jump. In simple examples, these
are often synonymous. Suppose you have a file called BESSEL.FTN,
which contains a single subroutine called BESSEL. In this case, one
module will be associated with the file; this module will be called BES­
SEL. Further, a single entry point, again called BESSEL, will be associated
with the module. The first and most obvious point is that the file name
and the m odule name need not match. The file could be called BSL or
GEORGE37 just as well as it is called BESSEL, although these other
names might not be as meaningful to you. The module name is taken
from the source code and is unaffected by your choice of file name.

The next point is that one object file may contain several object mod­
ules. A FOR TRAN source file can contain as many subroutines or lune·
tions as you wish. When you compile it, you will get one object file,
but each of these program units will result in a separate object module
in that file. The name of each module will be taken from the corre·
sponding Subroutine or Function statement. This multiplicity of mod·
ules per file is not possible with the MACRO-Assembler. By definition,
one MACR0-11 source file defines one module. The module name is
taken from the .TITLE directive. (You can, however, concatenate several
object files using the basic PIP Copy command. The result is a single
object file containing several modules.)

The next important point is that one module may contain several
entry points. This is probably most common in MACRO-I! programs,

Object Libraries 319

where entry points are synonymous with global symbols. Any symbol
defined as global in an assembly language source file becomes an entry
point in the corresponding object module. The entry point name is the
symbol name. It is also possible to have multiple entry points in a FOR­
TRAN module. By default there is always at least one entry point, cor­
responding to the Subroutine or Function statement that defines the
module. By using the Entry statement (which effectively defines other
subroutines or functions), it is possible to define other entry l'oints in
the module. (Note this feature is available only with FORTRAN-77.)

To summarize, each object file can contain one or more object mod­
ules; each module can have one or more entry points. The significance
of this lies in the means whereby the Librarian and the Task Builder
use object libraries. The Librarian deals with an object library primarily
on the module level. It maintains the library as a collection of modules,
performing insertions, deletions, or replacements by the module. The
Task Builder views the library as being a collection of entry points. It
looks through the library to resolve undefined external references. When
it finds an entry point that it needs, it copies the corresponding module
into the task image being built. To support this dualistic viewpoint, the
Librarian maintains two tables, one of module names and one of entry
points.

24.3 Making Your Own Object Libraries

The Librarian is the system utility that lets you create and maintain
object libraries. In MCR, you invoke the Librarian by the command LBR.
In DCL you use the command LIBRARY, which offers you a limited
interface to the Librarian. If you are in MCR, you can use the Librarian
in either the single- or multiple-line command form. In DCL, the LI­
BRARY command allows for only the single-line command form. In
either MCR or DCL, you can use an indirect task command file with
the Librarian, but if you are in DCL, you must use the MCR ·command
forms.

For consistency in my presentation, I will show the single-line com­
mand forms for both MCR and DCL. If you are in MCR, you will probably
want to use the Librarian in the multiple-line form, since you will typ­
ically need several successive commands to accomplish what you want.
(Even if you need only one command, you may need several tries to get
the syntax correct, since it is somewhat strange.) In this style, you enter
various commands until you are done, and then exit via CTRL/Z.

RSX, A User's Guide 320

An object library is stored in a special format (I have already mentioned
the module and entry point tables). To set up the necessary structure
for the object library file, you must use the Library Create command.
The general form of this is

MCR: LBR library/CR: size : ept:mnt

DCL: LIB/CR: (BLOCKS: size, GLOBALS: ept,MODULES: mnt} library

Here and in the rest of this section, library denotes the name of the
object library file. The file type OLB is assumed by default and need not
be specified. In both MCR and DCL, /CR is the Create switch, which
specifies the particular Librarian function to be effected by this com­
mand. The remaining parameters specify initial sizes for the library. In
MCR they must be in the order shown and separated by colons. In DCL
they may be in any order because they are identified by keywords, but
the colons, commas, and parentheses are required. If you are willing to
accept default values for these parameters, you need not specify them.
Since you need to create a library file only once, however, you might
as well specify values that will be somewhat more reasonable than the
defaults.

The parameter size is the number of disk blocks to be reserved for
the file, ept is the size of the entry point table, and mnt is the size of
the module name table. It is not always easy to determine how big these
should be. You can make reasonable estimates for whatever you .plan
to put into the library, but if you add more modules in the future, your
initial allocations may become inadequate. This is not a disaster, as the
Librarian offers you a way of redefining these. Try to make sensible
choices that allow for a reasonable amount of growth but that are not
excessively large. The size can be any value that you wish; the default
is 100. The lengths of the entry point and module name tables are re­
stricted to being multiples of 64, since one disk block can hold 64 table
entries. [You can specify a value that is not a multiple of 64, but it will
be rounded up to the next multiple.) The smallest values are each 64;
it is likely, at least at first, that this will be more than ample for you.
The default values are 512 for the entry point table and 256 for the
module name table. If you are in MCR, the values that you enter for
these three parameters will be assumed to be octal unless you include
a decimal point.

For example, suppose you wish to make an object library for special
mathematical functions. You have already written several functions
(which are in several object files) that you wish to put into the library.

Object Libraries 321

The combined size of the object files is 33 blocks. You plan on adding
more functions later so the default size of 100 blocks seems reasonable.
You figure that you will probably have at most 20 modules and 30 entry
points, so the minimal values of 64 are indicated. FUNCS seems to be
an appropriate name given the nature of the object library. To create
this object library, you would use the command

MCR: LBR FUNCS/CR: : 64. : 64.

DCL : LIB/ CRE : (GLOB: 64 , MOD: 64)

Note that by not specifying any size for the file, you are requesting the
default size. If you wish to be more explicit, you could specify it:

MCR: LBR FUNCS/CR: 100.: 64.: 64.

DCL: LIB/ CRE: (BLOCKS: 100, GLOB: 64, MOD : 64)

Note also the decimal points in the values 100., 64., and 64. in the MCR
forms.

Now that you have set up the object library, you are ready to put some
modules into it. Modules are put into an existing object library via the
Insert co=and. (You may, if you wish, put modules into the library
as part of the Create command. Because the Create command is so com­
plicated, we have not shown this.) In MCR, this is the default Librarian
command. If you enter a command without any command switch, the
Insert command is assumed. In DCL you must specify the Insert switch
(!INSERT). The basic form of the Library Insert command is

MCR: LBR library / JN=file_specifier (s)

DCL: LIB/INS library file_specifier (s)

The fik ... specifier(s) determine the input files (assumed to be type OBJ)
from which object modules are to be taken. Continuing with our ex­
ample, suppose you have object files corresponding to the source fijes
BESSEL.FTN, GAMMA.FTN, and NORMAL.FTN. BESSEL contains a
single subroutine called BESSEL; GAMMA contains two subroutines
called GAMMA and GAMLOG; NORMAL contains a function ZNORM
and a subroutine PNORM with an entry statement for QNORM. Thus,
you have a total of three object files that define five modules and six
entry points. To insert all of this, you can use the command

MCR: LBR FUN CS I IN=BESSEL, GAMMA, NORMAL

DCL : LIB/ INS FUNCS BESSEL,GAMMA,NORMAL

RSX, A User's Guide 322

Note that the default file types are used for the library and the input
files. In the MCR form, you can omit the switch /IN since Insert is
assumed by default,

MCR: LBR FVNCS=BESSEL, GAMMA,NORMAL

You can use the Insert command as often as you like-that is, you
can insert some modules now and others later. At no time can a module
being inserted have the same name as one that is already in the library,
nor can any of its entty points have the same name as an entry point
defined by one of the existing modules. If you attempt an insert that
would lead to one of these name duplications, the command will be
rejected an<! an error message printed.

The Librarian has two listing commands that show you what is cur­
rently in an object library. The List Modules command lists only the
module names; the List Entries command lists module names and entiy
points. In either case, the listing is organized by the module names
!which appear in alphabetic order) and is preceded by a few lines that
summatjze the current status of the library file. The basic form of the
List Modules command is

MCR: LBR library / LI

DCL: LIB/LIST library

The basic form of the List Entries command is

MCR: LBR library/LE

DCL: LIB/ LIST/ NAMES library

In these forms, the listing will appear on your terminal. If you want a
permanent copy of the library listing, you can specify that it be put into
a file instead of on your terminal. In this case, the command forms are

MCR:LBR library, listfile/LI

DCL: LIB/LIST: listfile library

MCR: LBR library, listfile/ LE

DCL: LIB/LIST /NAMES: 1i8 tfi le library

Note tjlat when a listing file is specified, it will be automatically printed
unless the No Spool switch {I-SP) is also specified. This switch is avail­
able only from MCR,

Object Libraries 323

MCRo LBR library, listfile/ Ll / -SP

MCRoLBR library, listfile/LE/ -SP

There is a subtle point involved in the generation of a listing file.
From the MCR command syntax, we see that the Librarian command
involves two output files, where. the first is the library file itself. (Al­
though this command does not change the library file, it is nonetheless
entered as an output file to conform to the syntax of the other Librarian
commands.) Jn Section 11.3 we discussed the special MCR rules for de­
faults for multiple input files. Although I did not mention it there (it
almost never is an issue), these rules apply to multiple output files as
well. Thus, if you omit the device and UFO for the listing file, they will
default to that of the library file. If the library file is in someone else's
user area, you will be attempting to create the listing file in that area,
not yours. Since you will presumably not have write access to that area,
your command will fail with a privilege violation. This may leave you
rather perplexed, especially if you enter the command from DCL,
wherein the form of the multiple output files is totally obscured. This
is not as far-fetched as it might at first seem. Once one person has written
some useful functions and put them into an object library, it is common
for co-workers to use them. (Why reinvent the wheel? I To find out what
functions are available in the library, you would use the Library Listing
command from your user area and fall into this trap.

Returning now to our example, if you use the List Entries command
on your object library file FUNCS.OLB, you will see something like
this:

Directory of file FUNCS. OLB; 1
Object module library created by: LBR V06. 00
Last insert occurred 13-FEB-84 at 13: 16: 59
MNT entries allocated: 64; Available: 59
EPT entries allocated: 64; Available: 58
File space available: 17206 words

* * Module: BESSEL
BESSEL

** Module: GMU...OG
GAMUJG

** Module: GAMMA
GAMMA

*"' Module:PNORM
PNORM QNORM

** Module: ZNORM
ZNORM

RSX, A User's Guide 324

When you put modules into an object library, you should be reasonably
certain that they are correct and final. Nonetheless, whether it be to
correct errors or to add improvements, you may make changes to your
source code after putting the object modules into the library. When this
happens, you will want to remove old object modules and insert new
ones. You can do this as a two-step (Delete/Insert) operation, but a sim­
pler mechanism is offered by the Replace command.

The Replace command is similar in form to the Insert command in
that you can specify several input files, each containing a variety of
modules. Each module replaces the module of the same name in the
library if it exists; if not, the module is si~ply inserted. Thus, the com­
mand action is actually "Replace if possible; otherwise insert." Note
that when you use the Replace command, you cannot select one module
from the object file and replace the corresponding module in the object
library. All modules in the input file will either replace a corresponding
module in the library or be included for the first time. The basic form
of the Replace command is

MCR: LBR library/RP=file_speclfier (s)

DCL: LIB/ REP library file_specifier (S)

For example, if your original version of the file BESSEL contained only
a subroutine that calculated the Bessel function of order 0 and you have
now added a second subroutine to calculate the Bessel function of order
I, you could put the new object modules into the library FUNCS with
the command

MCR: LBR FUNCS/ RP=BESSEL

DCL: LIB/REP FUNCS BESSEL

Note that in MCR, the Replace command is signified by the switch
/RP but that in DCL the switch is /REPLACE or /REP.

The Replace command should handle most of the situations in which
you need to delete a module, but there may be times when you need to
delete a module without inserting a replacement. You can do this with
the Delete command. The form of this command is

MCR: LBR 1 ibrary/ DE :module:module . .

DCL: LIB/DEL library module:module ...

Here, each module is the name of a module to be deleted. The module
is removed from the module name table, and all associated entry points
are removed from the entry point table.

Object Libraries 325

It is normally necessary to use the Delete command only when you
change the organization of entry points within modules. By definition,
it is impossible to have a module name duplication when you do a Re­
place, but you can still obtain an entry name conflict las when you re­
organize things). Continuing with our example, when you first wrote
the file GAMMA.FTN, it included two separate subroutines, which led
to the ·two modules GAMMA and GAMLOG, each with a single entry
point of matching name. Suppose now that you decide to rewrite these
so that they share a certain amount of common code. In this case, you
can rewrite the source file as a single subroutine called GAMMA with
an Entry statement defining GAMLOG. When you compile this, you
will get an object file containing a single module called GAMMA, which
defines both entry points. If you attempt to put this into the object library
with a Replace command, you will have two conflicting definitions of
the entry point c;AMLOG. The proper sequence of commands is to delete
the module GAMLOG a.nd then replace the module GAMMA:

MCR: LBR FUNCS/DE: GAMLOG

LBR FUNCS / !IP=GAMMA

DCL: LIB/DEL FUNCS GAMLOG

LIB/REP FUNCS GAMMA

Alternatively, you may find it more straightforward to delete both old
modules and then insert the single new module:

MCR: LBR FUNCS / DE: GAMLOG' GAMMA

LBR FUNCS/RP--GAMMA

DCL: LIB/ DEL FUNCS GAMLOG: GAMMA

LIB/REP FUNCS GAMMA

When you delete modules, be it by the Library Delete or the Library
Replace commands, it is important to note that the deleted modules are
not physically removed from the object library file. The module names
and entry points are removed from the library tables so that the object
modules can no longer be used, but these modules continue to occupy
space in the library file . If you .make numerous changes to your library,
this wasted space may become significant. You can recover it by using
the Library Compress command. Conceptually, the Compress command
rewrites the library file, moving all the currently active modules to the
beginning of the file so that all the unused space is in one contiguous
piece at the end of the file. This compression is not done in place; it is
done by copying the active modules into a new object library. Following
the compression, the old !uncompressed) object library file remains in
your directory, and you should delete it.

RSX, A User's Guide 326

Since the Library Compress command creates a new library file, you
are given an opportunity to redefine the file and table sizes. Thus, even
if you have not deleted any modules, you may need to use the Compress
command if your original choice (in the Library Create command) of
one or more of the size parameters was too small. ln this case, the Com­
press command functions as an "Expand" command. The form of the
Compress command is

MCR: LBR new_lib/CO: size: ept:mnt=old._lib

DCL: LIB/CO: (BLOCKS: size, GLOBALS: ept,MODULES: nmt) old_lib
new_lib

Here, newJib and old_lib are the file specifiers of the compressed and
uncompressed libraries, respectively. In MCR, these must both be spec­
ified, even if the file names are to be the same. In DCL, if the new
library name is omitted, it is set the same as the old library name. The
parameters size, ept and mnt are defined the same as for the Create
command except that with the Compress command, the default values
are those for the old library file. For example, suppose you have made
enough replacements of modules in library FUNCS so that the original
allocation of JOO blocks has been exhausted. The total space actually
being used is, however, still small so that after compression an allocation
of 100 blocks should .again be adequate. ln this case, you can continue
to use the original parameters. The Compress command is simplified
by using defaults for these:

MCR: LBR FUNCS/ CO=FUNCS

DCL: LIB/CO FUNCS

AB a different example, suppose that you plan to add several functions
into FUNCS so that a file size of 300 blocks and module name and entry
point table sizes of 128 are more reasonable. ln this case, you would
use the command

MCR: LBR FUNCS/CO: 300 . : 128.: 128.~FUNCS

DCL: LIB/CO: (BLOCKS: 300, GLOB: 128, MODS: 128) FUNCS

ln both examples, when you are finished modifying your library, you
should delete the old version of the object library file, which may be
done via the command

MCR: PIP FUNCS. OLB/ PU

DCL: PURGE FUN CS. OLB

Object Libraries 327

Background Tasks and
Batch Processing

25

So far, most of this book has been concerned with your use of the RSX
operating system in an interactive and immediate manner. I stress here
the words "interactive" and "immediate." You interact with the op­
erating system: your CL! (or a utility) gives you prompts, asks you ques­
tions, and reports errors; you issue commands, supply responses, and
take corrective actions. What you do is also immediate: you issue a
command and something is done; you then issue another command. At
times, it is useful to be able to do things in a noninteractive or non-
immediate manner.

I distinguish between noninteractive and nonimmediate because, al­
though the two concepts are essentially inseparable, they represent dif­
ferent motivations for doing things in this manner. Some examples
should clarify this. Suppose you have spent all morning editing programs
in several files. You now want to compile all these programs, build a
task, and run it. It is lunch time, however, and you do not want to sit
at your terminal, entering one command after another. In this example,
you would like to be able to do all these things in a noninteractive man­
ner so that you can walk away and have lunch. You would still like
things to be done rather quickly so that everything will be finished when
you return from lunch. As a different example, suppose you have a task
that will take many hours to run (for instance, a lengthy simulation).
In this case, your primary interest is in running the task in a nonim­
mediate manner. It is no problem to interact with the system to enter
the command to run the task. You would, however, like to be able to
do other things, including logging out, without first waiting for the task
to finish.

RSX, A User's Guide 328

Loosely speaking, doing things in a noninteractive manner is known
as "batch processing" and doing things in a nonimmediate manner is
known as 11running in background." (In contradistinction1 the normal
way of running a task is often described as running in foreground.) The
RSX family of operating systems offers these capabilities to varying de­
grees. RSX-llM allows you to run your own tasks in background, but
the procedure is somewhat clumsy. RSX-I IM-PLUS and Micro/RSX offer
a true batch processing capability, which includes running any task in
background.

By "running in background" I will refer to two closely related but
nonetheless distinct concepts. True background running consists of
having your task active at the same time as other user tasks but at a
lower priority. Off-hours running consists of running your task only at
times when few if any other users will be on the system (such as late
at night). In this case, the priority of your task is not significant. You
run a task in background when you know that it will take a very long
time to run or will, in some other way, use an inordina te amount of
system resources. Many PDP-ll systems tend to be dedicated to a rel­
atively small group of users. Thus, a common reason for putting a task
in background is out of courtesy to your fellow users. PDP-ll systems
are used less often for commercial timesharing, but if this applies to
you, you will want to run large jobs during off-hours, as the charges for
computer time are typically less. If your system is heavily loaded, a task
that you start in background during busy hours may not receive any
CPU time until much later in the day. Thus, the net effect will be much
the same as if you had simply scheduled your task to start running during
off-hours. There is, however, always the chance that the computer sys­
tem will have unutilized periods during the day, and by having your
task in background, it can take advantage of these.

In distinction to background running, batch processing often involves
running tasks at the same priority as other users during the busy part
of the day. Batch processing is advantageous because it lers you do things
without really being there. The entire concept of having batch processing
on a multiuser system such as RSX is rather interesting. Originally,
computer systems were purely single-user systems. There was no op­
erating system-instead, the user had complete control of the system.
Batch processing represented a major advance over single-user systems.
Many users submitted jobs (remember decks of punched cards?), which
were fed in as a batch to the computer by operators who also returned
the answers when they came out on the printer. The next big advance
was the multiuser system capable of supporting many user terminals.

Background Tasks and Batch Processing 329

Systems such as these (e.g., RSX) eliminated the need to carefully prepare
all input in advance, as they offered the ability to interact with the com­
puter. Now, by including a batch processing capability, such multiuser
systems are, in a sense, reviving a style of computer usage that was once
abandoned as being obsolete. Batch processing is similar to running in
background in that you will typically use it when the total running time
is expected to be long. Batch processing, however, can be used when
this total time is the sum of the running times of many different tasks,
each of which may be short or long. Background running allows you to
run a single task without being on the system; batch processing allows
you to execute a complicated series of tasks.

25.1 Running a Task in Background

RSX includes a special form of the Run command that allows you to
run a task in background. This is effected by specifying that the task,
rather than being run immediately, is to be started at some time in the
future. This is known as a deferred or delayed Run conunand. You can
specify the time at which your task is to start either as an absolute time
or as a relative (to the time at which you issue the Run command) value.
The time delay may be as small as one second. The magnitude of the
time delay is not functionally significant; all that matters is that you
are not asking that your task be started immediately. An important as­
pect of using the delayed Run command is that, after issuing the com­
mand, you can log out without affecting the running of the task. This
is not true of the immediate Run command discussed in Section 18.1;
any task started in this manner will be aborted if you log out before it
finishes.

Before discussing the many ramifications of running a task in back­
ground via the delayed Run command, I note that this is a privileged
command. Further, to run a task this way, the task must be installed,
which also is done via a privileged command. Assuming that you are
not a privileged user, you must get a privileged user (such as your system
manager) to install your task after you have built it and also to run it
for you whenever you want to run it in background. (Some installations
have added special capabilities to RSX that allow nonprivileged users
to install tasks or to run in background. Find out whether this is possible
on your system.) In the rest of this section I will assume that, one way
or the other, you have the wherewithal to use these commands.

There are two forms of the delayed Run command. You can command

RSX, A User's Guide 330

that a task be run at a certain time increment (relative to the time of
issuance of the command) in the future. This increment can be measured
in hours, minutes, or seconds and cannot exceed 24 hours. The form of
this command is

MCR: RUN task delay

DCL: RUN / DELAY' delay task

The delay field is specified as an integer number of time units followed
by the unit code, which is H (for hours), M (for minutes), or S (for sec­
onds). Alternatively, you can direct that the task be activated at some
absolute time in the future. This command is

MCR: RUN task hh: mm: SS

DCL: RUN/SCHEDULE: hh:rrun: SS task

where the fields hh, mm, and ss specify the absolute (24 hour clock)
time of day in hours, minutes, and seconds, respectively. Examples of
these delayed Run commands are

MCR: RUN TEST 6H

DCL: RUN/ DELAY' 6H TEST

which requests that task TEST be made active in six hours, and

MCR: RUN TEST 22' 30' 00

DCL:RUN/ Scn,22,30,00 TEST

which requests that task TEST be made active at 10:30 P.M. Note that
in the MCR command forms, the time specification is separated from
the task name by a space, not a slash; this is contrary to the syntax of
most other MCR commands.

When RSX processes a delayed Run command, it does not sta1t the
task immediately. Rather, it puts the task, along with the desired start
time, into a list known as the Clock Queue. This list is used to control
all time-delayed task executions. You can use the Show Clock Queue
command to see what {if any) requests are in this list. There are no
options; the command is simply

MCR: CLQ

DCL: SHOW CLOCK_QUEUE

On early RSX systems, this is a privileged command although, since it
is informational only, there is no need for this restriction. With version

Background Tasks and Batch Processing 331

4.0 of RSX-1 lM, this command was made available to the nonprivileged
user as well.

In Section 18.5 we discussed the Abort command. This may be used
only to abort an active task. If you have used a delayed form of the Run
command to schedule a task and you then decide that the task should
not be run, you cannot use the Abort command until the task is active.
Rather than waiting for this to happen, you can simply cancel the request
to run the task by using the Cancel command. The form of this command
is the same for both MCR and DCL,

CAN task

This is a privileged command.
Earlier in this book I introduced the concept of the pseudo device TI:.

Whenever a task is run in foreground (via a normal Run command), the
terminal from which the Run command is issued is assigned to TI:.
Suppose you are on terminal TT2: and you run a task using an immediate
Run command. The task does interactive reads and writes to TI:. The
operating system translates these into reads and writes to the physical
device TT2:. This process is transparent to you; normally you never
have to think about it. When a task is in background, however, the
concept of TI: becomes meaningless. There is no user, and correspond­
ingly there is no user terminal. The task still may attempt to read or
write to TI:, and when this happens, the operating system has to choose
some physical device to use. Under RSX, all 1/0 to TI: for a background
task goes to the Console Output device CO:. This device is used to
record a log of things that happen in the computer system-for example,
all log-ins and log-outs are noted on CO:. (This recording, known as
console logging, is not a part of Micro/RSX.) Typically, CO: will be a
printing terminal located in the computer room and will be available
only to the computer operator or system manager. Thus, when you run
a task in background, all output written to TI: will appear in the Console
Output log, interspersed among log-ins, log-outs and other messages.
Any attempts to read data from Tl: will fail unless you have access to
CO: (assuming that it is a terminal, not a printer). In effect, a background
task cannot use the pseudo device TI:.

The inability to use Tl: with a background task is, by itself, not a
problem. What is a major limitation is that, although the deferred Run
command allows you to put a task in background, it does not provide
a mechanism for passing a command line to the task. This severely
limits the usefulness of the command. For example, you could use a

RSX, A User's Guide 332

delayed Run command to start the Task Builder. Without a command
line, this is equivalent to entering the MCR command

MCR>TKB

In this case, the Task Builder will try to get command input from you
via TI:, which it will not be able to do. In normal interactive use, you
can use a command such as

MCR>TKB @co1D1Dand_file

DCL> LINK @commancl_file

to direct the Task Builder to get all its user input from an indirect com­
mand file. There is, however, no analogous capability with the delayed
Run command. In general, all system utilities are designed to accept
interactive input, be it only a command file specifier. As a result, they
cannot be run effectively in background via the delayed Run command.

What the delayed Run command is useful for is running a task that
you have made. If it is your task, you can design it so that it does not
require interactive input. At the simplest level, you can design the task
so that it does not require any input at all. In this case, the input pa­
rameters are said to be hard-wired into the program. For example, suppose
you wish to simulate the operation of a digital communications system.
The input to the receiver is a signal to which random noise is added.
When the noise is large, the receiver makes a mistake. You wish to
simulate many such events and count how many errors the receiver
makes. The randomness of the noise is modeled by using a random
number generator. This program requires very few inputs-typically,
the level of the signal relative to that of the noise and the total number
of trials are sufficient. For a task that might run for several hours (you
might want to simulate millions of events), it is not out of the question
to change two statements in the source program that specify these values,
then recompile and rebuild each time you want to change them. Your
task will then be totally sell-contained. You can schedule it to start
running a few seconds or a few hours later with a deferred Run command.
You can then log out from the system and forget about it. When your
task starts, it will have all the information it needs.

Although conceptually this may be the easiest way to get input values
into your program, it certainly is not the most convenient. It is very
unusual for you to want to run a task in background exactly once-that
is, for only one set of input parameters. As soon as you start changing

Background Tasks and Batch Processing 333

these inputs, the process of changing the source code, recompiling, and
rebuilding will become a nuisance. In addition, whenever you do this,
you will have to remove the old task and install the new one !see Section
18.3), which can only be done by a privileged user. It is much more
common to write your program so that it reads its input values from a
data file. In this manner, the data file, not the task, is changed whenever
you want to run with a different set of inputs.

The easiest way to set up a program to take input from a data file is
to write the program exactly as you would if it were to read its input
from your terminal. The form of the Read statements would not change,
but the specification of the source of the data would. Correspondingly,
the data in the file would appear in exactly the form that you would
use if you were to enter it interactively from a terminal. Thus, you could
simply use a text editor to create or modify the data file.

The fact that a background task cannot interact with you means more
than that it cannot get its input directly from you; it also means that
it cannot give its output directly to you. This affects the design of your
progra:m fo two ways. First, you must write your answers into a file
rather than to your terminal. You may be familiar with this procedure.
Even il you have a simple interactive task, it may generate large amounts
of output. Rather than having it come out on your terminal, you might
prefer to have it go into a data file so that you can have the file printed
on a line printer !see Chapter 15). The same concept applies to a back­
ground task except that it is a requirement, not merely a convenience.
What is less obvious is that the manner whereby your task accepts its
input also must change. A typical interactive input sequence consists
of a question or prompt !e.g., "Enter the value of ... ") from the task to
you followed by a read of the answer that you type in. A background
task has nowhere to write these prompts. Thus, you must either leave
them out of your program oi include them as you normally would but
render them ineffective.

If you write a program specifically to be run in background, it is no
big problem for you to follow these guidelines in your initial program
design. You will not put in any Write statements for prompts. All Read
statements for input parameters will refer to a logical unit number that
you associate with a disk file. Similarly, all Write statements for your
results will refer to another disk file. Without going into programming
details, you do this by specifying logical unit numbers ILUNs) in your
Read and Write statements. !Note that in FORTRAN, you cannot use
the Accept, Type, or Print statements; you must use Read and Write
statements). These LUNs are associated with specific disk files by using

RSX, A User's Guide 334

a statement that opens the file. Opening a file directs the operating sys­
tem to find the file (if you specify that it already exists, as you would
for the input data file) or to create the file (if you specify that you want
a new file, as you ptobably would for the output data file). Any subse­
quent 1/0 requests to the LUN that was specified in the Open statement
are then directed to the file. In FORTRAN, you may open a file using
the Open statement; alternatively, if you do not wish to do so specifi­
cally, the FORTRAN OTS will do so for you, choosing a default file
name of FORnnn.DAT where nnn is the three-digit (including leading
zeros) unit number. Thus, if you write a FORTRAN program that reads
from unit I and writes to unit 2 and you do not bother to open data
files, your task will read input parameters from the file FOROOJ.DAT
and will write answers into the file FOR002.DAT.

You do not always write a program with the specific purpose of running
it in background. Often you will first run it as a normal interactive task.
For instance, in our example of simulating errors in a receiver, you might
want to run several small cases to make sure that everything is correct
before you do any long simulations. In this case, you should write your
program so that you can run it as either an interactive or a background
task.

One means of switching from foreground to background use is to re­
write the program itself. This implies having several copies of the source
code, including one that interacts with Tl: and one that uses disk files.
This is very inconvenient, especially when you make other changes to
your program, as you have to change all copies.

The better method is to make different tasks from one program. You
do this by changing device assignments when the task is built. This
avoids the problem of maintaining multiple copies of the source code.
To do this, you must first be careful in your choice of logical units. The
RSX operating system relies heavily on the concept of the user terminal
TI:. This uses one logical unit for both terminal input and output. Since
the input and the output are to the same physical device (your terminal,
whichever one it might be), this is a somewhat logical choice.But input
and output are fundamentally different, so it is a poor choice to tie the
two together. In your program, you will typically want to have three
separate LUNs-one for user output, one for user input, and one for
writing answers. You specifically will not want to have both reads and
writes to LUN 5 (which is the normal LUN for Tl: under RSX), as this
will not let you specify different devices for input and output.

As an example of how to do all of this, let's assume that you write
your program so that all prompts to the user are written to LUN I, all

Background Tasks and Batch Processing 335

inputs from the user are read from LUN 2, and all answers are written
to LUN 3. You use the three lowest possible LUNs because this allows
you to decrease the total number of units used by the task, which in
turn decreases the size of the task. !Although it is good practice to use
the lowest unit numbers, there is nothing special about our assignment
of functions to these units; any other permutation would do just as well.)
Given a program written in this manner, you can make a completely
interactive task with a task build sequence such as this:

MCR>FrB

FTB>task~input_fi les
FTB>/

Enter Options:
FTB>ASG=TI: 1: 2: 3
FTB>UNITS=3

FTB>ACTFIL=3

FTB>//

!For simplicity, I have shown only the MCR form. The key point in this
example is the use of certain Task Builder options. Even if you are in
DCL, you have to enter these in MCR format.) Here, the Assign option
(ASG) specifies that all three logical units are to be assigned to the pseudo
device Tl:. Since you are not using any other units, you include the
Units option (UNITS) which specifies that the task will use a total of
only three !rather than the default of six) units. This allows the task to
be smaller. Similarly, the Active Files option IACTFIL) specifies that
only three !rather than the default of four) files will simultaneously be
open. This also saves on task size, as it reduces the number of 1/0 buffers
included in the task. UNITS and ACTFIL are not critical, but since you
will probably put all this into an indirect command file anyway, you
might as well include them. !Note that if you have a more complicated
program, such as one that reads auxiliary data from other files, you will
have to use a larger number of units and possibly a larger number of
active files as well. On the other hand, you can reduce the number of
units and active files to two if you are really pressed for space in your
task by structuring_your program so that you first do all the user I/O
on units 1 and 2, then close them, and then open unit l again, this time
for the answers. I

In the example above, the answers are written to your terminal; that
is why I called it fully interactive.Uthe answers are going to be lengthy
{for example, a long table of results), you might prefer to write them
into a disk file. In this case, you could make a partially interactive task
by replacing the single ASG option line above with the two lines

RSX, A User's Guide 336

FTB>AS~l: l: 2

FTB>ASG=SY: 3

Finally, if you want the task to run in background, you would use these
device assignments:

FTB>ASG=SY: 2: 3
FTB>ASG=NL: l

Here, the user input (LUN 2) and the task output ILUN 3) are both as­
signed to your default disk SY:. The other assignment is a little bit spe­
cial. It specifies that prompts ILUN 1) are to be written to the Null
device. The Null device is a pseudo device that does not correspond to
any physical device. Anything that is written to the Null device goes
nowhere. The value of the Null device is that you can write to it with
normal Write statements, exactly as you would to any other device.
Thus, you can effectively disable the writing of prompts without chang­
ing the Write statements simply by directing them at task build time
to the Null device.

Note in these examples that ASG specifies the device to use for a file,
but it does not say anything about what the file name itself is. The file
name is specified within your program by an Open statement. For ex­
ample, if you specify via an Open statement that unit 2 is to be associated
with file PARAMETER.DAT, the complete file specifiers for LON 2
will be TI:[ufd)PARAMETER.DAT for the interactive task and
SY:[ufd[PARAMETER.DAT for the background task, where ufd is your
default directory. By convention, if the device portion of a file specifier
is a terminal (TI: or TTnn:) or the Null device (NL:), the remainder of
the file specifier is ignored. Thus, the effective file specifier for LON 2
will be either TI: or SY:[ufdjPARAMETER.DAT. The importance of this
is that you need not worry about creating any confusion by opening a
file on either Tl: or NL:, neither of which are physically capable of hold­
ing files.

If you are familiar with some of the more advanced programming
techniques for RSX, you may have used some of the Executive Refer­
ences. These are a set of functions that allow you to interface directly
with the innards of the operating system. As a final point, note that the
Executive Reference RUN (RUN$ for MACRO- I I programs; CALL RUN
for FORTRAN} allows you to put an installed task into the Clock Queue.
By writing a simple task that uses this function, you can run any installed
task on a deferred basis. For some strange reason, you do not have to

Background Tasks and Batch Processing 337

be privileged to do this. This offers you a sneaky way around the privilege
requirement for the delayed Run command.

25.2 Batch Processing via a Virtual Terminal

Under RSX-llM-PLUS and Micro/RSX, a concept known as the "virtual
terminal" offers the user a true batch processing capability. This is true
only of these operating systems; none of what we discuss in this section
pertains to RSX-llM.

This batch processing capability allows you to do almost anything
that you can normally do at a terminal, with the important distinction
that you do not have to be logged in to do it. You can schedule the
processing of your batch job to be immediate or to begin at any arbitrary
time in the future . Your batch job may, for example, perform a lengthy
sequence of compilations and task builds, or you may use it to schedule
a single task (which need not be installed) for running during off-hours.
You do not have to be privileged to use any of these capabilities.

The means by which batch processing is provided under RSX-llM­
PLUS or Micro/RSX and the concept of a virtual terminal are insepara­
ble-to understand one, you must understand the other. Consider first
what you do at a normal terminal. You log in, enter commands, respond
to questlons, make decisions based on the results of previous commands,
and eventually log out. Suppose that you were to make a record of
everything that you typed in while working on the terminal. U you could
get a stand-in to enter all this exactly as it appeared in your record, line
by line, then you would get exactly the same results without actually
being there. This is the principle underlying the virtual terminal. You
create a disk file containing lines of input that, in essence if not in fact,
look just like lines that you would enter at a terminal. You then direct
the operating system to read this file, one line at a time, pretending that
you entered each line from a real terminal. A special utility known as
the Batch Processor processes each line in a manner similar to the way
that MCR handles input from a real terminal. The disk file that is treated
as though it were a real terminal is known as a virtual terminal and the
sequence of commands that it contains is known as a batch job.

The most important thing to remember about using a virtual terminal
is that your batch job must be complete. Whatever you might have to
type during a normal terminal session must have a counterpart in your
batch file. You should allow for no surprises; you should anticipate any­
thing that might happen and correspondingly provide for it. For example,

RSX, A User's Guide 338

if in your batch job you compile a file and then build a task, you must
consider tbe possibility that the compiler will detect errors in your source
code. This is not necessarily as difficult as it might sound, although it
may seem strange at first.

Just as input from a virtual terminal actually comes from a disk file,
output directed to a virtual terminal actually goes into another disk file.
This is known as the log file. The log file contains a complete record
of what happened when your batch job was run. It includes each com­
mand line in your batch job jwith the time that it was executed), output
directed to the virtual terminal, any data you may supply as part of your
job, error messages, identifying information, etc.

Batch processing is controlled by the Queue Manager. As we saw in
Chapter 15, the Queue Manager provides a print spooling capability by
controlling various Line Printer Processors and various print queues. In
an identical manner, it provides a batch processing capability by con­
trolling various Batch Processors and various batch queues. Your batch
job is processed by a Batch Processor; it is directed to do so by the Queue
Manager. You will notice a distinct similarity between the commands
used for print spooling and batch processing, especially since these com­
mands are unlike all the other RSX commands we have studied,

To cause a batch job to be run, you submit it to the Queue Manager
via the Submit command. The basic form of this command is the same
for both MCR and DCL:

SUB batch_fi le

Here batchJile is the name of the file containing your batch job; the
default file type is CMD. It is important to note that this is the same
as the default file type for an indirect command file. This offers a great
potential for confusion. It is unfortunate that a different file type, such
as BAT, was not chosen as the default. You cannot change this, so you
must do your best to avoid mistakes. One technique is to use the 'me
type BAT for all batch job files. This reserves the file t'YJ>e ClVID for
indirect command files. The disadvantage is that you ·must remember
to specify the file type whenever you use the Submit command. This
is not a major imposition, but if you forget to do it, and if you have an
indirect command file with the same name, it will be submitted to the
Batch Processor. Due to differences in command syntax, the command
file will be rejected when the Batch Processor attempts to interpret it
as a batch job, but you will not know this until you go looking for your
results. A second technique is to use the default file type but to use file
names that (to you) distinguish batch job files from indirect command

Background Tasks and Batch Processing 339

files. (For example, you might set the first or the last three characters
of each batch job file name to be BAT. You could then access all these
files via special PIP wildcards, as in BAT•.CMD or •BAT.CMD.) The
disadvantage is that you must choose file names that might not be the
most natural or meaningful. I will use the file type BAT for batch job
files in our examples, but you may prefer the other technique.

When you submit a batch job, it is put into a batch queue. Your system
can have up to 16 batch queues. One, the default queue (BATCH) will
always exist. Your system manager may create others. The individual
queues are controlled by various Batch Processors; as with print spooling
the interrelationships can be intricate. For simplicity, I will assume a
one-to-one relationship between Batch Processor and batch queue. Each
Batch Processor takes jobs out of its queue one at a time-that is, once
a job has started, all other batch jobs after it in the queue must wait
until it has finished. Thus, batch processing is not always well suited
for running a single long task in background. It might be better to use
the delayed Run command discussed in the previous section for this. If
you want to use batch processing for a very lengthy job, check with your
system manager to find out which batch queue you should submit it
to. In the basic Submit command above, the default queue BATCH is
assumed. I will assume this in our examples, but I will also show how
to specify a different queue.

With the simple form of the Submit command shown above, certain
default actions are assumed in addition to the choice of batch queue.
For one, the batch job is declared to be eligible to start immediately.
Also, a log file will be made. Following termination of the batch job,
the log file will be automatically printed and then deleted. The log file
will have the same name as the batch file (regardless of that file type),
but the file type for the log file will be LOG. Suppose as a simple example
that you have a batch job in a file called PROCESS.BAT. In either MCR
or DCL, the command

SUB PROCESS. BAT

will submit this to the Queue Manager, which will give it to the ap­
propriate Batch Processor for immediate processing. The job will be
identified by the name PROCESS. A log file named PROCESS.LOG will
be opened, and all commands, output and messages will be written into
this file. When the job finishes, the file PROCESS.LOG will be spooled
(sent to the Line Printer Processor), and after being printed, it will be
deleted.

If you want to override any of these defaults, you must use a slightly

RSX, A User's Guide 340

· more elaborate form of the Submit command. The general command
form is"

MCR: SUB queue: job_na111e /options=batch_file

DCL: SUB/QUEUE: queue / NAME: job_nanie/ options batch_file

Here, queue is the name of the batch queue that you want to use. In
MCR the terminating colon is required syntax; if you do not specify the
queue, you also omit the colon. The job_name will be given to the batch
job itself and to your log file. You can omit both the queue and job name
specifiers but still include options. In that case, the command form
is

MCR: SUB I options=batch_file

DCL : SUB/options batch_file

There are several possible options, but only three are likely to be of
value to you. The After option allows you to control when your job will
start. You specify that your job is not to start until after a given time.
!There is, of course, no guarantee that it will start at that time-if your
system is heavily loaded, your job may be further delayed.) Whether you
are in MCR or DCL, the form of this option is cumbersome:

MCR: I AF: hh: mm: dd-ll1llllll-yy

DCL: / AFTER: (dd-mmm-yy hh:mm)

Here, hh and mm specify the time of day in hours and minutes, dd is
the number of the day, mmm is the first three letters of the month (in
English), and yy is the year. All of this, including the plethora of punc­
tuation, must be included, with the exception of hh and mm. If you
omit these, the time of day will default to midnight lin MCR, all three
colons must still be included). There is no way to make the date default

· to the current date; you must specify it. Note that this is exactly the
same as for the Print command.

The other two options that you may find useful allow you to control
the processing of the log file. In the Submit command, these are both
appended to the job_name specifier. The No Log File option specifies
that you do not want a log file. (Unless you are sure that everything
will work properly, you should not suppress creation of the log file. It
is safer to let it be made and subsequently delete it.) For both MCR and
DCL, this option is simply /NOLO. The No Print option specifies that
the log file should not be spooled and then deleted. Instead, it is made
a permanent file in your user area. With this option, you may elect to

Background Tasks and Batch Processing 341

print the log file only if something did not work right and you need to
see all the details. For both MCR and DCL, this option is simply
/NOPRIN.

Let's continue with our example of a batch job in the file PRO­
CESS.BAT. Suppose that you want to run this several times overnight.
If the current day is June 25, 1985, you might use a series of Submit
commands such as these:

MCR: SUB TRYl / NOPRIN/ AF: 22: 00: 25-JUN-85=PROCESS. BAT
SUB TRY2 / NOPRIN/ AF::: 26-JUN-85=PROCESS.BAT

SUB TRY3 / NOPRJN / AF: 02:: 26-JUN-85=PROCESS.BAT

DCL: SUB / NAME:TRYl/NOPRIN/AF: (25-JUN-85 22) PROCESS.BAT
SUB /NAME:TRY2/NOPRIN/AF: (26-JUN-85) PROCESS.BAT

SUB /NAME: TRY3/NOPRIN/ AF: (26-JUN-85 02) PROCESS. BAT

This will cause a total of three jobs to be scheduled by the Queue Man­
age1. Job TRYI will start after 10 P.M.; TRY2. will start after midnight,
and TRY3 will start after 2 A.M. Log files TRYl.LOG, TRY2.LOG, and
TRY3.LOG will be made and kept in your user area; they will not be
printed.

So much for the mechanics of submitting a batch job. How do you
prepare the job itself? In many ways, this is sinillar to writing an indirect
command file . If you are familiar with using indirect command files
!Chapter 20), you should have no problems (other than adapting to yet
another syntax) mastering the use of batch jobs. Unfortunately, many
of the fancy things that you might be used to doing with command files
cannot be done with batch jobs.

The Batch Processor treats the contents of your batch file as a sequence
of input lines. There are three basic categories of lines- special com­
mands to the Batch Processor itself, commands to your CL!, and data
for tasks that might need it. All commands, whether they are for the
Batch Processor_ (Batch Specific commands) or your CL!, must begin with
a dollar sign($). All data must appear exactly as the task that will read
it expects to see it.

The Batch Specific commands. are interpreted directly by the Batch
Processor and, as such, do not depend on whether you are in MCR or
DCL. Commands for your CL! are entered in exactly the same way that
you would enter commands for interactive use, except that each must
be prefaced with a dollar sign.

Remember that your batch job must duplicate everything that you
would do at a terminal. This includes logging in and out. For a virtual
terminal, however, you use special commands for these. The first com-

RSX, A User's Guide 342

mand in your batch file must be a Job command, and the last should
be an End-of-job command. These replace the Log-Jn and Log-Out com­
mands that you would use at a normal terminal. These commands are
simply

$JOB

and

$EOJ

Between the Job and End-of-Job, commands you can have any mixture
of command and data lines that makes sense. This includes the@ com­
mand !remember to put a$ in front of it). Thus, you can invoke indirect
command files from within a batch job.

Before going any further, let's consider a simple example. For brevity,
I will present only the MCR command forms. Suppose you are developing
a task called TASK22 that will process data in a file and write results
into the file TASK22.0UT. The task is to he built !using the indirect
command file TASK22.CMD) from the FORTRAN main program
MAIN22 and from the Macro-ll files FILEIN and GETVALUES. After
rewriting the source files, you want to compile, build, run the task, and
then print the answeis. A batch job to do this might look like this:

$JOB
$F4P MA1N22,MAIN22/-SP=MAIN22

$MAC FILEIN=FILEIN
$MAC GETV ALUES=GETV ALVES
$FTB @TASK22
$RUN TASK22
$PRI TASK22 . OUT
$EOJ

If you were to put these commands in a file called T ASK22.BA T, after
editing you could do this:

MCR>SUB TASK22 . BAT

After logging out, you could go have lunch, come back sometime later,
and !presumably) find your results waiting for you.

To stress the point I made earlier, if you were to enter the commands

MCR>SUB TASK22

Background Tasks and Batch Processing 343

the file TASK22.CMD would be submitted to the Batch Processor. This
would result in the immediate generation of the error message

BPR -- Syntax error -- $JOB does not appear first

which would be written into your log file. Following this, the job would
be terminated. This is a common error. There is nothing inherently
wrong with having files named TASK22.BAT and TASK22.CMD, just
as there is nothing wrong with using the names TASK22.TSK and
TASK22.0UT-the file names are all the same to indicate the inter­
relationship of the files. You just have to be careful.

In Section 25.l we discussed some techniques for making data avail­
able to a task started by a delayed Run command. When you use a Batch
Processor to run a task, a much simpler procedure is possible. You simply
put the data into the batch job. Remember the principle behind the use
of a virtual terminal. At a real terminal, you would type in the Run
command and then type in data values as your task requested them.
Correspondingly, in your file, you have one line containing the Run
command, and the next lines have data values as required. Thus, the
general format for including data for a task is:

$RUN task
data

data
$next command

Note that the data lines do not start with a dollar sign. All lines until
the next line starting with a dollar sign are assumed to contain data.
The number of lines of data that you include in your batch job should
be the same as the number that the task will want to read.

The use of data in a batch job is not restricted to the running of one
of your tasks. You may also supply data in this manner to system util­
ities. For example, you could start the Task Builder and then have data
lines that would specify which files and options to use. If you did not
have an indirect command file for building T ASK22 in our example,
you could instead do something like this:

$FTB
TASK22=MAIN22

FILEIN, GETVALUES

I
UNITS=S

RSX, A User's Guide 344

ASG=SY: 7: 8
ACTFIL=6
II
$RUN TASK22

For many simple applications, what we have discussed so far-pre·
paring a batch job, including the Job and End·of·Job commands, the CLI
commands, and data, and submitting the job-is all that you need to
know about using the Batch Processor. As such, it is a simple, conve­
nient, and powerful tool. In the remainder of this section, we discuss
error handling and control flow. You may need to know about these,
but in general, they will not be as useful to you.

Let's return to our example of TASK22. What we have discussed is
fine if everything works right. What happens if, for example, one of the
compilations or assemblies fails due to an error in your source code? If
you were working interactively at a normal terminal, you would probably
determine the error in your program, correct it by editin& recompile,
and then proceed. This is clearly too versatile a procedure to emulate
on a virtual terminal. What can you do when errors occur during a batch
job?

With the Batch Processor, the default action is to stop the job when
an error occurs. Thus, in our example, if you had made some mistakes
when you last edited MAIN22.FTN so that the compiler returned an
Error status, the batch job would stop at that point. You can override
this default by specifying that you want processing to continue regardless
of errors. The rest of the job-the assemblies, task build, and execution­
would then be done. Neither of these options is what you would really
like. With the default, the assemblies are not done, so you cannot find
out whether either FILE!N.MAC or GETVALUES.MAC also contain er·
rors. If you override the default, the file MAIN22.0BJ used in the task
build will not be what you expect it to be, making it meaningless or
even dangerous to run the task.

In general, if your batch job compiles several files and then builds a
task, what you would like is to do all the compilations, then note if an
error occurred in any one of them, an<j proceed only if all of them were
successful. There is no simple or sensible way of doing this with the
Batch Processor. In a batch job, you can detect an error when it occurs,
but you cannot remember it-you must act on it immediately. Further,
the available actions are extremely limited. In contradistinction, the
Indirect Command Processor is much more powerful. In an indirect
command file, you can set and test logical symbols to achieve the desired
processing flow. (Specifically, you would initialize a logical symbol in·

Background Tasks and Batch Processing 345

dicating success to the value True; you would then use the AND operator
to accumulate the success of each compilation. The task build would
then be conditional on the value of this symbol-i.e., on the success of
all the preceding operations.) What you will find is that if you want to
do anything fancy in a batch job, you will do it via an indirect command
file that you run from within the batch job. The batch job itself then
becomes just a shell that allows you to execute the command file in
batch mode.

Although the capabilities are limited, it is still worthwhile to discuss
how you can control the sequence of operations in a batch job. In general,
any task run under RSX is able to return an exit status when it finishes
running. (We discussed this concept, as it relates to indirect command
files, in Section 20.3.J This status allows the task to inform the operating
system whether it encountered any problems and if so, how severe they
were. A task may return four possible status values: SUCCESS, WARN­
ING, ERROR, and SEVEREERROR. You can assume that all system
utilities return a status value. Typically, a task that you write will not
return a status value, although you may make it do so via the Executive
Reference "Exit with Status." A task that returns no status is assumed
by the Batch Processor to have returned the value SUCCESS.

Your batch job is structured as a sequence of commands. Some of
these are commands to the Batch Processor itself, and some are CL!
commands. After each CL! command, the Batch Processor examines the
status that was returned and uses this value to control further operations.
Loosely speaking, this is what happens. Each time a status value is re­
turned, a table of possible conditions and actions is examined to deter­
mine what to do next. This table contains entries for each of tbe three
error codes (WARNING, ERROR, and SEVEREERROR). For each status
code, the corresponding entry specifies whether the condition should
be ignored or not and if the condition is not to be ignored, what should
be done if it occurs. The Batch Processor maintains a list of tests and
actions that it uses by default unless you direct otherwise. You can define
the defaults by using the batch specific commands $ON and $SET, and
you can override a default for one step in the job by using the command
$IF. When your batch job starts, the default tests are initialized to enable
the recognition of all errors and the default actions are initialized to
stop the batch job. In our example of T ASK22 I did not use any On, Set
or If commands, so these initial defaults apply for the entire job. After
the FORTRAN compilation, for example, the returned status will be
examined. If it is any one of the three error conditions, the Batch Proc-

RSX, A User's Guide 346

essor will stop the job. Only if the status is SUCCESS will the batch
job be allowed to proceed to the next instruction (the first assembly).
The status returned by this assembly will similarly be examined, etc.

In many cases, this stopping of the batch job upon detection of any
error condition will be perfectly acceptable. You may, however, wish
to have more control over what happens. For example, in a FORTRAN
program, you may use a variable name longer than six characters; the
compiler will generate a warning and use only the first six characters.
If you like to use long variable names, you certainly would not want t9
have the job stopped upon generation of a warning by the FORTRAN
compiler. Going one step further, you might want to ignore all warnings.

You can use the Set command to disable or reenable the default tests.
You can use the On command to change the default tests and actions.
You can use the If command to temporarily override any or all of the
defaults. A Set or an On command applies until [if ever) it is changed.
An If command applies to only the command that last returned a status
and always overrides any On or Set commands.

The Set command can be either

$SET NO ON

which disables all the default tests, or

$SET ON

which enables them. The Set command does not change the details of
the default tests. It just determines whether the tests are to be done or
not.

The On and If commands have the same general form:

$ON status THEN action
$IF status THEN action

The possible status values that you can specify and actions that you
can declare are the same for both commands. The status may be
WARNING, ERROR, or SEVEREERROR [no space); these may be short­
ened to WAR, ERR, or SEV. Note that you cannot test for Success. You
can declare three possible actions. You can stop the job [STOP); ignore
the error [CONTINUE); or transfer control to another part of the job
[GOTO label).

The On command sets the default action to be taken when the re­
turned status is equal to or worse than the status you specify. It also

Background Tasks and Batch Processing 347

declares that a status better than the one you specify is to be ignored.
For example, the command

$ON ERROR THEN STOP

sets the default tests to "Ignore a status of SUCCESS or WARNING;
stop the job if the status is ERROR or SEVEREERROR." Normally, this
example will be the only form of the On command that you will use.
The If command overrides the default action for the particular status
code specified. Probably your most common use of the If command will
be

$IF WARNING THEN CONTINUE

You would use this command, for example, after a FORTRAN compi­
lation to ignore warnings. It would not affect the default action (pre­
sumably STOP) for errors or severe errors.

The On and If commands allow you to specify GOTO label as an
action to be taken. Somewhere in the batch job label must be defined
in the command

The name of the label may be from one to six characters long. You will
probably use the command GOTO only if you want to do something
special (such as printing certain files) before terminating the job.

The STOP, CONTINUE and GOTO actions that you use in the On
and If commands can also be used by themselves as batch-specific com­
mands. Their forms remain the same except that, when used as separate
commands, they are preceded by the mandatory dollar sign.

To illustrate these commands, we consider again our example of
TASK22. Suppose that while the task is running it stores intermediate
data in a temporary file. The purpose of this data is to help you debug
your program if it fails. If the program runs properly, you do not need
this information. The program can detect errors and returns an appro­
priate status value when it exits. You might modify our batch file shown
earlier so that after the Compile and Build commands it looks like this:

$RUN TASK22
$IF SEV THEN GOTO DUMP
$IF ERR THEN GOTO DUMP

$PIP *· TMP; */DE
$STOP
$DUMP

RSX, A User's Guide 348

$PRI DEBUG. TMP /DEL
$STOP
$EOJ

This batch job will run your program and print the temporary file only
if your program returns a status signifying an error.

Background Tasks and Batch Processing 349

Index

& !ampersand), 245
<>!angle brackets), 201
> !greater than), 45-46
'!apostrophe), 210
• !asterisk), See Wildcards
@ (at-sign), 186, 194
ll(brackets), 17, 18-19
'!caret), 48
: (colon), 17, 18, 22, 341
, !comma), 65-66
$!dollar sign), 45, 63, 157, 342
! I exclamation point), 215
- !minus sign), 177, 303, 307
% !percent sign), 242
. !period), 17, 199-200
+ lplus sign), 210-211
"!quotation mark), 208
; (semicolon)1 17, 20, 214
I !slash), single, 30, 33, 147, 212, 303
II !slash), double, 135, 147, 191
_!underscore), 4, 34

Abbreviations, for names in DCL, 34
Abnormal terminatioil of a task, 87-

88, 263, 264
effects of on file headers, 88
and journal files, 69
recovering from, 88-89

Aborting, 153, 160-163
correcting conditions resulting

from, 88-89, 163
with CTRLIC, 51-52

Index

indirect commands, 195-196
interaction with log out, 55, 163
naming task in command for, 161
need for, 160-161

Access rights, 91-95
Active Files option, 149, 336
Active Task List command, 176-178
Active Tasks command, 174-176
After switch, 103, 341
Allocate command, 98, 120, 268-269
Alternate Mode key !ALT MODE),

48-49
ANSI format switch, for COBOL

compilers, 122-123
ANSI support, for PIP, 291-292
Append command, 75-76
Append switch, 305
Array Subscript Checking switch,

119
Ask directives, 200-201
Assemblers. See also MACRO-II

Assembler
definition of, 112

Assign command, 56
Assign option, 148, 336
AT., see bl.direct Command

Processor
ATLNK.TMP, 135

Background running, 329
assigning devices for, 336-33 7
vs batch processing, 329-330

351

Background running (cont.)
input/output with, 332
limitation on system utilities

with, 332- 334
modifying tasks for, 334-339
redefinition of TI: wi th, 332

BACKUP, see BRU
Backup

with BRU, 30B
categories of volumes for, 267-268
and creation dates, 289, 293, 297
estimating space required for,

273-275
factors affecting steps in, 265
with FLX, 2B2-291
guidelines for selecting device for,

310-311
guidelines for selecting u tility for,

3 11-3 12
lis t of devices for, 274
need for, 263
options for, 265-266
with PIP, 291- 295
portability as factor in, 264, 311
with RMS utilities, 296--301
saving disk space with, 228
sequence of operations for, 266,

2B0-2B2
with special wildcards, 243
status of device as factor iri, 268
storage overhead of RMS for, 296-

297
and user areas, 276-277
versions of file as, 19
wildcardconstructsfor, 197, 2B5

Backup and Restore Utility, see BRU
Backup Set qualifier, 304
Backup sets, 302, 304, 3 IO
Backup switch, 299
BASIC, IIO, 129-130

example of command sequence for
BASIC-PLUS-2, 13 1- 132

Batch jobs, 342-349
example of, 342, 343
handling errors in, 348-349
including data with, 344
log in and log out with, 342-343
using$ in commands for, 3421 343
using exit status values for control

in, 346- 347

Index

Batch processing, 33B- 349
vs background running, 329-330
file defaults with, 339

Batch Processor, 339-340
vs Indirect Command Processor,

345-346
Batch queues, 105-106, 340
BCK, see RMS utilities
Blanks, vs tabs, 50
BLKflag, 177-17B
Blocked tasks, I 7B
Blocks, 16

allocation of in Files--11, 22B
Bounds switch, 123
BP2, see BASIC
Break-through Write, 174
Brief directory listing.. 84
Broadcast command, 173-1 76
Broadcast option, 170
BRU !Backup and Restore Utility),

301-3 10
advantages and disadvantages of,

3 II-312
and BAC messages, 309
blanks in command for, 302
blocking initialization of restore

volume with, 304-305
directory lis tings with, 309-310
erasing_ tapes with, 306
example backup with, 306, 30B
example restore with, 309
and Files-I I format, 302
guidelines for use of, 301-302
input output specifiers for, 306-

30B
mounting volumes for, 304
overwriting tape files with, 305
problems aborting, 306
prompts from, 303, 307, 309
qualifiers for, 304-306

Buffers, 149
Build command for BASIC-PLUS-2,

130-13 1
BYE, see Logout

CBI. See Cobol-BI
Cancel command, 332
Capacity of volume types, 274
Caps Lock key, 168
Catch All, II

352

Characters per line, setting1 168
Checkpoint switch, 145
CKPllag, 177
Cleaning up, 225-229. See also File

Maintenance
back up and delete as technique

for, 228
purging as technique for, 226-227
truncation as technique for, 228-

229
CLI. See Command Line Interpreters

(CLIJ
Clock Queue, 331
Close directive, 217-219
COBOL, llO, 111
COBOL-81, llO, J ll, 121

compilcroutputwith1 112
as default, 121

COBOL compilers
command forms for, 121, 122
default versions of, 121- 122
generation of listing files with, 123
output from, 124
switches available for, 122-124
versionavailableof, 121

Command input
DCL syntax for, 32
defaults for multiple files of, 65-

66
MCR syntax for, 29
solicited vs unsolicited

classification of, 52
Command Linc Interpreters (CLIJ, 8-

JO
CatchAllcapabilitywith, 10--11
changing, 3 7-38
defaults for, 37, 38, 44
definition of, 8
options for, 4,3

Command output
from compilers, 112- 113
with Copy command, 73- 80
DCL syntax for, 32- 33
defaultsforinDCL, 73, 113
MCR syntax for, 29
specifying in BRU, 308

Command switches, see switches
Commands

DCL vs MCR versions of, 28-29,
33, 26-37

Index

format for in DCL, 32-36
format for in MCR, 29-31
line limit for in RSX- JIM, 66
prompting for in DCL, 34
separators for in PIP, 245
terminating with CIR, 3

Comments
in command files, 214
in FORTRAN source statements,

ll7
in Task Builder, 191

Compilers, see also BASIC; COBOL
compilers; FORTRAN
compilers; MACRO-!!

characteristics of, 110
anddefaultDCLoutput1 113
diagnostics from, 113
form of commands for, 11 21 115
input output fields in corrimands

to, 112-113
multiple- line command form for,

ll5
Concatenation operator f +)1 2 10--211
Confirm switch, 258
Console listing device, 24, 97
Console logging, 332
Console Output device CO:, 332
Container files, 297--300
Continuation indicators, 303, 307
Control characters

c, 51-52, 54
echoing,48
entering, 47-48
1,49-50
L, 102
0,50
Q,51, 79
R,49
S, 50, 79
for screen output, 79
scrol!On/Off,51
for system, 51-52
Tab(TABJ,49--50
U,49
Z,50, ll5

Copies switch, 104-105
Copy command, 11

appendingwith, 75, 76
assigning version number to

output with, 77

353

Copy command (cont.)
changing ou tput file name with1

75
creating files with1 80
examples of, 74-76, 78-79
input output defaults for, 73, 76-

77
listing files with, 79-80
mergingwith, 75- 76
naming conflicts with, 76
printing files with, 80, 97
problems with for backups in

DCL, 77-78
and response to 11To? 11 prompts,

73, 74
syntaxfor1 72-75
wildcards in, 73, 76

CIR (Carriage return key(, 3, 48
Crashes. See Abnormal terminations
Create Directory command, 2331 278

in backup procedures, 266
establishing user areas with, 277

Create switch, 321
Creation Date switch, 261, 262, 293
Creation dates

of backup container files, 297
after backup with FLX, 289
after backup with PIP, 293
delaulcsfor, 261

Cross Reference switch, 1231 124,
129

Cross-reference tables, 123-124
CTRL 11x11

1 see Control characters

Data, in batch jobs, 344
Data base management. See Record

Management Services (RMSI
Data directive, 217
Data Division Map switch, 124
Date formats1 250
DCL (Digital Command Language(,

8-11
abbreviating names in, 34
changing to MCR from, 37-38
Control/C abort option in, 52
dummy file specifiers in, 74
file maintenance in, 81
and intermediate tasks, 159-160
invoking utilities in1 62

Index

names of commands in, 32
prompts in, 45
switch placement with, 35
syntax for commands in, 32-33
translation of into MCR, 9- 10,

158-160
Deallocate command, 98-99, 279
Debug mode in DCL, 235
Debug switch, 11 7
Debugging

indirect command files, 215-216
FORTRAN listing options for,

118-120
map file for, 136, 137-138
with null device, 24
RSX system performance, 179
with task status information,

176-178
DECtape, making backups on,

264
DECUS (Digital Equipment

Computer User's Society)1 7,
68, 173, 230

Default Date command, 250-252
backup with, 251
combining with other search

modification commands,
255-256

lasting effects of, 251
syntax of, 250-251, 256
wildcards in, 250-252

Defaults
for devices, 18, 23-24, 55-56, 65,

140-141
for directories, 261 55-561

for file types, 21- 22
with multiple input files, 65-66
for switches, 31 , 36
for ufds, 18-19, 56, 65
for version numbers, 19-W, 65
vs wildcards, 22

Delayed Run command, 163, 330-
332

Delete key, 49
Delete switch, 103-104
Deleting. See Deleting files; Library

Delete command;
Queue Delete command;

Selective Delete command

354

Deleting files
access required for, 92
accidental, 263
command for, 49, 84, 107-108
command for in FLX, 288-289
Delete vs Selective Delete for,

257
guidelines for, 227-228
latest version of files, 20
List Deletions switch for, 260--

261
with Print cornrnand, 103-104
vs purging, 84
syntax for, 84-85
from user areas on private

volurnes, 277- 278
and version numbers, 84-85,

260
wildcards with, 84-85, 260

Devices, 16--17
for background running, 336--33 7
capacity of, 274
changing defaults for, 56, 57-59
codes for, 22-231 274
defaults for, 18, 23-24, 25, 55-56,

65, 140-141
definition of, 16-17, 265
getting information on, 180-181
and logical units, 24, 25
maximum files for, 274
private ownership of, 98
pseudo (se:e Pseudo devices)
sel~cting for backups, 268, 310--

311
specifying, 18, 22, 336--337

Diagnostics files, from COBOL
compiler, -121

Digital Command Language, see
DCL

Digital ~quipment Computer User's
Society, see DECUS

Directives. See Indirect Command
Processor directives; specific
directives

Directories, see also User areas
compressing with SRO write.back

command, 231
modifying searches of, 240, 241
names of named, 26, 76, 77-79

Index

names of numbered, 59
names vs numbers for, 26, 56

Directory listings, 82-84
blocks allocated in, 16, 229
forms of, 82-84
output options for, 82-83
sorting, 229-233
with Today command, 244-249
wildcard constructs for, 197
zero blocks for size in, 88, 89

Directory qualifier, 309
Directory search modificadon

commands, 243-256
combining, 246, 255-256
Default Date command, 250-252
Exclude command, 252-256
placement of, 244-245
separators in, 245-246
single- vs multiple-line types of,

244-246, 248, 251, 254
syntax of, 244-246
Today command, 244-249

Disable directives, 217-218
Disable switch, 127
Disks

capacity of, 2 7 4
changing characteristics of, 273
creating user areas on, 276- 277
device codes for, 23
initializing, 271-272
maximum file count on, 271-272

Dismount command, 278- 279
with Deallocate command, 279
for foreign volunies, 280

Documenting. See also Comments
command files as a form of, 223

Double precision, 130, 131
DOS-I I formats, converti.Qg from,

282
DSP, see RMS utilities

Echoing commands, 189, 214, 216
Echoing keystrokes, 47, 48, 49
EDI, 68-69, 227
Editors, 67-71

syntax for invokin& 70
EDT, 68-71
EFLG, 178
Empty string, 208

355

Enable directives, 216-219
Enable switch, 127
End-of-file character, 50, 80
End-of-file command, 88-89
End-of-Job batch command, 343
Enddate specifications, 250-251
Enter key, 48
Entry numbers, for print job, 107
Entry points. See also External

references
definition of, 319
in FORTRAN modules, 320
names of, 3201 323
in object modules, 320

Errors. See also Debugging
aborting wrong task, 161
access violations, 74, 91
with array subscripts, 119
Batch Processor handling of, 345-

349
in BRU commands, 304
with default file type on batch

jobs, 339-340
deleting latest version of files, 85
denying read access to self, 95
with devices not available, 269
disagreement in precision, 131
execution of FORTRAN programs

during1 120
faulty order of file specification,

316
incorrect output specifiers to

Rename command1 236
incorrect volume labels, 278
insufficient number of buffers,

149
with Library command, 324
missing version numbers in

Exclude command, 252-253
mounting unknown volumes,

275-276
with multiple UIC's, 15
naming conflicts, 761 77-791 871

284-286, 288-289, 339, 343-
344

from no matches in PIP
command, 240

from octal vs decimal setting of
characters per line, 169

Index

from old disk address for task,
156

omitting file type but not period,
21

from random values in FPP
register, 145

and resetting terminals, 51
suppressing text of for FORTRAN

programs, 317-318
from system vs user default

devices, 24
with tape labels, 305
TODAY command still in effect,

248-249
with task names, 155, 157-158
undefined symbols in assembly,

127-128
undefined symbols in task build,

137
unknown command in Help,

165
with zero as default directory

number, 237-238
Escape key IESC), 48-49
Event flags, 178
Exclude command, 252-256

combining with other search
modification commands,
255-256

lasting effects of, 254
limitations on, 256
purging files with, 253-254
version numbers in, 252-253
wildcards in, 253

EXE flag, 177
Execution, scheduling, 43
Executive References, 178

exit status with, 346
RUN, 337

Exit status
altering flow of control with,

213-214,
controlling Batch Processor with,

346-347
determining setting of, 215-216
error checking with, 211-213
with Executive References, 346
values of, 346

Exiting from utilities, 50

356

Expressions in Indirect Command
files, 207-208, 210-211

<EXSTAT>, 211-214
External references, 315-316

F4P, see FORTRAN compilers
F77, see FORTRAN compilers
F770TS.OLB, 143
Fast Task Builder, see FTB
File Exchange Utility, see FLX
File flag page switch, 101-102
File headers

and abnormal termination, 88
overhead for, 273, 274
updating with End Of File

command, 88-89
File maintenance. See also

Cleaning up
automatic execution of, 222
functions for, 81
and indirect task command files,

188-189
Filenames

conventions for, 20
default for with multiple input

files, 65
duplication when copying, 76,

77-79
duplication when renaming, 87
relating input to output, 122
specifying, 19, 20
of task image files, 61, 154
wildcard specification of (see

Wildcards)
File protection system, 90-95
File specification, 17-21

dummy in DCL, 74
with multiple files, 138

File types, 19, 20-21, 67
defaults for with multiple input

files, 65
omitting, 21
specifying, 19, 20-21
standard types, 20--21
wildcard specification of, 22

File version numbers.- See Version
numbers

Files. See also Input files; Output
files

Index

copying !see Copy command)
creating, 67-71
definition of, 16
deleting (see Deleting files)
latest version of, 20
locked !see Locked files)
ownership 0£1 90
renaming jsee Renaniing)
size of in directory listings, 16
space required for, 271-275
types of (see File types)

Files-I!, 16
block allocation system of, 228
and BRU, 302
converting from formats of, 282
files required for on disks, 2 71
formatting volumes for, 267-268

Floating Point Processor (FPP), 144-
145

Floating Point switch, 144-145
Floppy disks. See disks
FLX (File Exchange UtiliiyJ

advantages and disadvantages of
for backup, 311

backups with, 282-291
defaults for, 286-287
Delete command in, 288-289
Directory List command in, 288
initializing volumes for, 287-288
naming conflicts with, 284-286,

288-289
restoring files with, 286, 287

Foreign volumes, 267, 279~286
Form feeds

control character for (CTRL/LJ,
102

effects of on line count, i01
preventing forced, 102
Queue Manager insertion of, 102,

103
FORTRAN-IV, see FORTRAN

compilers
FORTRAN-IV-PLUS, see

FORTRAN compilers
FORTRAN-77, 110, see FORTRAN

compilers
FORTRAN compilers

subscript checking with, 119-120
command for, 114-ll6

357

FORTRAN compilers (cont.)
excluding text of errors in, 317-

318
input files for, 117
listing files from, 117-118
reducing size of tasks in, 318
short message module for, 318
switches available for, 116, 117-

120
versions available of, 116, 117

FORTRAN modules, entry points
in, 3W

FTB (Fast Task Builder), 150-151,
187

module selection with, 319
Full directory listing, 84
functions, 141-142. See also Object

library files
defining for Task Builder, 315-

316
names of, 315

Global mode, 127
Go To directive, 213
Graphics capabilities, 170
Group numbers, 114

Head crashes, 264
Hello, see Login
Help, 53

command for, 164-166
Home command, 273
Housekeeping. See Cleaning up

I and D space feature, 145
1 and D switch, 145
Identify command, 291
If command, 347, 348
If directives, 207-208
Indirect CL! command files, 191-

198
used by BASIC-PLUS-2, 130-131
characteristics of, 185
commands vs directives in, 209-

210
debugging, 215-216
documentation with, 223:-224
example of file maintenap.ce

with, 202-203, 205

Index

file types of, 194
indirect task command files in,

196-198, 218-219
·interchanging CL!s in, 194-195
levels of, 185
naming, 197-198
nesting, 198
order of processing for, 215
portability as factor with, 222-

224
single-line command limitation

on, 218
syntax for symbols in, 209-210
with Task Builder, 135

Indirect Command Processor,
185

aborting, 195-196
conditional capability of, 207
data mode of, 217-218
defining symbols in, 200-201
opening and closing files with,

216-217
quiet mode for, 216
single-line requirements with,

194, 196
task name of, 194
terminating execution of, 212

Indirect Command Processor
directives, 199-219

apostrophes in1 210
Ask, 200-201
delimiters in, 204-205
echoing of, 216
form of, 199-200
If, 207-208
order of processing with, 203
reserved symbols in, 204-207
Set, 200, 209
symbol value substitution in,

201- 204
syn<ax for symbols in, 209-210
types of symbols in, 200

Indirect task command files, I 86-
192

echoing, 189
example use of, 186-188
file maintenance with, 188-189
in Indirect CLI command files,

196, 218-219

358

invoking multiple-line
commands with, 190

invoking single-line commands
with, 189

nesting, 191- 192
Task Builder with, 19(}...192
terminators in, 190
unavailability of in DCL, 186

Initialize qualifier, 304
Initialize Volume command, 269-

273, 278
destroying files with, 27(}-271
effects of multiuser protection on

procedures for, 2 70
file headers as factor in, 2 73-

274
for FLX, 287-288
for foreign volumes, 279-280
form of, 270
Maximum Files keyword in, 272

Input. See Command input; Input
files; Terminal input

Input files
for compilers, 112, 117, 123
to MACRO Assembler, 126,

127
object library files, 141
specifying !see File specification)
wildcards for (see Wildcards)

Install command. 155-156
Installed Task List command, 177-

178
Installing. See Task installation
Interpreters

advantages and disadvantages 0£1

Ill
BASIC-11 as, 129
characteristics of, 110-111

Job command, 343
Job flag page switch, 101-102
Job name, for printjob, 107
Jobswitches, 101-103
Journal files, 69

K52, 69, 71
KEO (Keypad EDitor), 68, 69, 71
Keyboard, 48-521 1681 see also

Control characters

Index

Keywords
for terminal characteristics, 166-

171
in Task Builder options, 147-148
typographical conventions for, 4

K52, 69, 71

Label directives, 213
Labels for volumes, 266, 270
Language processors, 110-111
Librarian, 320
Library Compress command, 326-

327
Library Create comniand, 321-322
Library Delete command, 325-326
Library Insert command1 322-323
Library option for Task Builder1 150
Library Replace command, 325-326
Library switch for Task Builder,

141, 146, 314--315
Line feed key jL/F), 48
Line Printer Processors, 99
Link command, see also Task

Builder
intermediate output from, 160

Linker, 133, see also Task Builder
List Deletions switch, 261
List Entries command1 323-324
List Modules command, 323-324
Listing Control directive, 128
Listing files

from compilers1 1131 117-118,
123-124

effects of Listing switch on1 113-
114

spooling of as system option, 113,
114

terminal as, 115
Listing switch1 231

for COBOL compilers, 122
for FORTRAN compilers, 118
for SRD,.·231

Listings. See also Ditectory listings
of deleted files, 260-261
of object libraries, 323, 324
of sorted directories, 231

Locked files, 88, 163
fixing, 88-89

Log file option, 341

359

Log files, 339, 341
Log in, 15, 53-55

automatic execution of command
files with, 219-229

with multiple user areas, 234
no response to, 54
short procedure for, 54
and system defaults, 54-56
system response to, 219, 221
on virtual terminals, 342-343

Log out, 55, 89
automatic execution of command

files for, 221-222
as cause of abort, 163
with delayed Run command, 330
example of automatic command

file for, 222
on virtual terminals, 343

Log switch, 261
Logical expressions, 211
Logical operators, 211
Logical symbols, 200
Logical Unit Numbers (LUN), 148
Logical units, 25
LOGIN.CMD, 220-221
Login command files, 95, 219-221
LOGOUT.CMD, 221
Logout command files, 95, 221-222
Lowercase keyword, 168
LUN (Logical Unit Numbers), 148

MACRO-II, 110-112, 126-128
form of command for, 126
function directives for, 127
Listing Control directives with,

128
naming object modules in,

126
switches available for, 126, 127

Magtapes, 264, 267, 301-307
Map hies, 135, 137, 145-146
Map switch, 119, 124, 136, 137

interaction of with Spool switch,
146

Master File Direcory (MFDJ, 17, 27
Maximum Files keyword, 272
MCR (Monitor Console Routine)

changing to DCL from, 37-38
characteristics of, 8-11
invoking utilities in1 62

Index

names of commands f0r,
28-29

prompts fo, 45
switch placement for commands

in, 30, 31
syntax for commands in, 29, 30
using DCL with, 9-11

Memory, information about status
of, 178-179

Merging, 75-76, 125
Micro/RSX, 5, 6-7

CL! support with, 37
and foreign volumes,

279-280
as pregenerated system, 12
using MCR in, 38

Modems, automatic log-in
command for1 219-221

Modules. See Object modules
Monitor Console Routine, see MCR
Mount command, 266, 275-276

for foreign volumes, 279
Mounted qualifier, 304
Multiuser protection, 12-15

Name switch in SRO, 230-231
Names

of backup sets, 302-304
of directories (see Directories)
of entry points, 320
of files (see File names)
of indirect command files, 13 1
of labels, 213, 270
of modules, 319-320
of symbols, 200, 210
of task image files, 61, 154
of tasks, 61, 154, 155
of UFDs, 17, 26-27, 237
of utilities, 64

Naming conflicts, 76, 77-79, 87,
284-286, 288-289, 339, 343-
344

Networkin& 3
New Version switch, 77, 79
Null device, 23, 24, 337
Numbered directories. See

Directories, names of
numbered

Numeric expressions, 211
Numeric symbols, 200

360

Object code, definition of, I IO
Object files

from compilers, 113
naming, 113, 11 5
suppressing in DCL, 115

Object library files
components of, 142
conflicting names of modules and

entry points in, 323
creating, 321-322
deleting old versions of, 327
example output from listings of,

324
example uses of, 3 13
inserting modules in, 322-323
using multiple interrelated, 317
and order of file specification,

3 16-317, 319
order of modules in, 3 17
processing of by Librarian, 320
selecting modules from, 142-143
specifying modules in, 317-319
updating and correcting, 325
using with Task Builder, 1431

146, 314--319
Object Location switch, 124
Object modules, 3 19, 320, 32.3
Object switch, 113
Object Time System (OTS), 143,

313
On command, 347-348
Open directive, 217
Options. See System Generation

options; Task Builder options
Original Account switch, 300
OUT flag, 177
Output, see Command output;

Output Hles; Terminal
output

Output files
from BASIC-PLUS-2,
from COBOL compiler, 124
for directory listings, 82-83
from FORTRAN compilers, 118-

119
from MACRO Assembler, 126,

127
from Task Builder, 135
wildcards in, 7 6

Overlay descriptor files, 124

Index

Page length, 102
Paper tape, 268
Parallel processing, 44--45
Passwords, 14---15, 54
Perform switch, 123
Peripheral devices, 6, 22-23. See

also specific devices
Peripheral Interchange Processor,

see PIP
PIP (Peripheral Interchange

Processor)
advantages and disadvantages of

for backup, 311
and ANSI support, 291-292
command separators in, 245
copying files with, 72, 108-109
for creating files, 67
directory searches in [see

Directory search
modification commands)

example of backups with, 293-
295

file maintenance with, 81, 239-
240

and magtapes, 291
purging files with, 85- 86
renaming files with, 86-87
setting protection codes with,

92-94
syntax for copy command in, 7'lr-

73
syntax for invoking, 6'lr-63
using wildcards with, 240-243,

292-293
Portability, 222-224, 264, 3 11
PRINTS, 100
Print option, 341-342
Print queue

default name of, 106
deleting jobs from, 107-108
example listing of, 106
identifying jobs in, 107
interpreting listing of, 106-107

Printers
allocating ownership of, 98
device type for, 97
as output for Copy command,

80
Printing terminals, 96

specifying options for, 100

361

Printing, see also Spooling
access required for, 92
default units for, 24
delaying, 103
deleting files after, 99, 100, 103-

104
and identifying output, 101-102
of listing file, 113-114
margins for, 102
multiple copies of, 104--105
of multiple files, 100-101
page lengths for, 102--103
without print spooling, 97-99
on printing terminals, 96
specifying printer and paper for,

105
syntax of command for, 1001 104,

108-109
and transparent spooling, 108-

109
Privilege, 14--15, 90-91
Privileged keyword, 171
Procedure Division Map switch,

124
Program development, 188
Program size

effects of debug switch on, 119,
120

in Library Create command, 321-
322

Program speed, effects of debug
switch on, 123

Programs, independent compilation
of units of1 112

Prompts
in Ask directives1 2011 203
in BASIC-PLUS-2, 131
in BRU, 303, 307, 309
from Command Line Interpreters,

45
for copy command in DCL, 731

74
disabling for background running,

337
"ENTER OPTIONS," 147
"Option?/' 147
"Qualifier?," 303
"To?" in Copy command, 73, 74
from utilities, 45
and version of RSX1 45

Index

Protection, 90--95
Protection switch, 92
Prototype task names, 154--155
Pseudo devices1 23-24
Purge switch, 86
Purging, 84-86

automatic execution of with log-
out command file, 222

caution with1 226-227
defaults in command for, 86
definition of, 84
with Exclude command, 253-

254
and List Deletions switch, 260--

261
and retaining versions of files,

85-86
with Today command, 249

Qualifiers1 33, 304
Query switch, 257
Queue command, 105
Queue Delete command, 107-108
Queue List command, l 051 l 06
Queue Manager, 99-101, 339, 340
Quiet mode, 216

Record Management Services, see
RMS

Remote terminals, automatic log in
command for, 219-221

Remove command, 156
Renaming, 86-87, 235-236, 243
Reserved symbols, 201, 204--207
RESET key, 51
Resetting terminal, 51
Resource Accounting, 173
Resource Monitor Demonstration

(RMD) program, 178-179
Restoring files, 263

with BRU, 306-309
with FLX, 286, 287
with PIP, 292
rewinding tapes for, 305-306
with RMS, 300

Return key, 481 51
Rewind qualifier, 305
RMDEMO (Resource Monitor

Demonstration program),
178-179

362

RMS !Record Management
Services), 13 1, 295- 296

RMS utilities, 296--301
advantages and disadvantages of

for backup, 311-312
backups with, 298-300
and container files, 296-300
inDCL, 296
and File&-11, 296
storage overhead of, 296-297

RST, see RMS utilities
RSX, 5- 7, 12-13
RSX SIG, 7
RSX-llD, 5
RSX- llM, 5, 6

CLI support with, 37
using indirect task command file

for long command lines in,
216

RSX--1 lM-PLUS, 5, 6
CLI support with, 37
and foreign volumes, 279-280

RSX-llS, 5-6
RT-11 formats, converting from,

282
Rubout key, 49
Run command, 131, 157-158

delayed, 163, 330-332
RUN$,337
Running in background. See

Backgrormd running
Running in foreground, 329
Running tasks. See Task execution
Running time, effects of debug

switch on, 119, 120, 123

Save_Set qualifier, 304
Scheduling, 158
Select switch, 300
Selective Delete command, 252,

257-260
Sequence numbers switch, 119-

120, 131
Serial processing mode, 44-45
Set (No) Broadcast command, 175
Set command in batch job, 346--34 7
Set Defaµlt command, 56-59, 234
Set Default Protection command,

57, 94
Set directives, 200, 209

Index

Set File command, 89
Set Named command, 56
Set Protection command, 92-95
Set Serial command, 44-45
Set Terminal command, 166- 171
Set UJC command, 57
Setup key, 51
Setup mode, 51
Short error message module, 318
Show command, 160, 170-171
Show Clock Queue command, 331-

332
Show Devices command, 18~181
Show Time command, 181
Show Users command, 172-173
Since command, 250--'252
Skeleton overlay descriptor ~ile,

124
SLP !Source Language frocessor),

68-69
Software Maintenance Contr~ct, 6
Solicited input, 52
Sorted Directory Utility (SRD),

229-233
Sorting, directory listings, 229- 230
Soufce code files, 101, 110
Sou'rce programs

crCating object files horn, 30-31
formatting, 102-103
syntax for in compiler command,

112
Spaces, in commands, 4
Spawriing, effects of aborts on, 163
Special symbols, 201

< EXSTAT>, 211-214
defining, 204--205
< LOCAL>, 214, 221

SPOOL (Shared Peripheral
Operations On-Line), 91

management of, 99
Spool switch, 145-146

with FORTRAN compilers, 117-
118

Spooling, 113--114
transparent, 108--109

SRD !Sorted Directory Utility),
229-233

Startdate, specification of, 250-251
Status flags, 177
Status values, definition of, 211

363

STD [System Task Directory), 154,
156

Stop directive, 212
Storage. See Capacity
STP !lag, 177-178
String constants, 208
String expressions, 210-211
String symbols, 200
Submit command, 339-342
Subprogram switch, 124
Subroutines, 141-142. s.,, also

Object library files.
Subscript checking switch, 119, 123
Subswitches, 260
Summary Listing switch, 298
Switches. See also Task Builder

switches
command vs file specification of

with DCL, 33-34
command vs file specification of

withMCR, 30
decimal vs octal interpretation of,

30, 33
in DCL commands, 32-36
with DCL prompting, 34
in MCR commands, 29-31

Symbol table files, 135-136
Symbols, 200-204, 209-2!0

Ask directive prompts for, 201,
203

defining value of, 200-201, 204-
205

delimiting types of, 201
<EXSTAT>, 211-214
indicating in commands, Wl
<LOCAL>, 214, 221
logic of substitution for, 210
names of, 2001 210
reserved, 201, 204-206
special, 201
syntax for, 209-2!0
types of, 200

SYSLIB
automatic accessing of, 143
order of specification of, 3 I 6, 3 I 7

System control characters, 44, 51-
52

System default device codes, 23
System device, 23-24

default assignment of, 56

Index

System functions. See Utilities
System generation options

automatic log out files, 221
blocks per allocation, 229
break-through write, 174
Control/C abort processing, 52
Help messages, 164
multiuser protection, 12-13
quiet mode,.216
resident libraries, 150
Resource Accounting, 173
RMD capabilities, 179
spooling of listing file, 113, 114
Task Builder switches, 144
terminal characteristics, 168

System object library files. See
Object library files

System status, displaying, 178-
179

System Task Directory ISTD), 61,
154

System utilities. See Utilities

Tab key, 49-50
Task Builder. See also Fast Task

Builder
characteristics of, 144, 147
comments in, 191
default assignments for LUN by,

148
defining symbols for, 13 7
effects of defaults on input

output specifications in1 140-
141

error messages with, 137-138
with indirect task command files,

190-192
input for, 137-141
module selection with, 142-143,

317-319
order of file specification with,

316-317, 319
output from, 134-136
placement of object and system

libraries as input to, 316
renaming output files with, 136-

137
signaling options to1 147
slowness of in DCL, 135
switches for, 136- 137

364

synux for, 136-137. 139-141
terminating input to, 135, 138-

139, 191
Task Builder options, 147-ISO

for background running, 336
Task Builder switches, 144-147, ISO
Task building

with BASIC-PLUS-2, 130
from COBOL programs, 124-125

Task execution
aborting, 152-IS3
defaults for, IS2
for nonprivileged users, 156-157
scheduling, 158
simplified method for, IS2-IS3
temporary installation for1 157

Task image files, 13S-137
names of, 61 1 154
vs tasks, 61 1 153

Task installation, 61-62, IS4-IS8
Task names, IS4-IS7
Task switch, 136, 137
Tasks

active vs dormant, 61
blocking, 178
definition of, 60
displaying, 17S-179
installation of, 61-62, 1S4-158
names of, 61
vs task images, 153
types of, 60-61

TECO (Text Editor and COrrectorJ,
68-70

Terminal input
control characters for, 48-50
deleting lines of, 49
displaying lines of, 49
end-of-file for, SO
with TAB, 50
terminating lines of, 48

Terminal output
control characters for, 50-51
delaying, SO
resuming, 51
suspending, 51

Terminal Type keywords, 169-170
Terminals, 172-173. See also

Keyboard
characteristics of, 166-171
characters per line of, 168

Index

device code for, '22
pseudo, 4, 23
resetting, 22, 51
temporary disabling 0£1 50
virtual, 338-339' 342-343

Text files, 67-71
Through command, 2S0-2S2
Time command, 181
TIO flag, 177
TKB. See Task Builder
Today command, 244-249

combining with other search
modification commands,
2SS-256

Total Blocks switch, 84
Trace switch, 119-120
Transparent spooling, 108-109
Truncate command, 228-229
TIJ60 cassettes, 268
Type command, 79
Types. See File types

UFD. See User File Directory (UFDJ
UIC. See User Identification Code

(UICJ
Units, logical, 25, 148
Units option, 148, 336
Unlock command, 88, 89
Unsolicited input, 52
Uppercase, converting to, 168
User areas, 271 ·

advantages of multiple, 238
creating, 269, 276-277
defaults for1 56-59, 234, 235
definition of, 17, 2S
deleting, 278
identification 0£1 26
moving: files between, 8 7, 235-

236
procedures for multiple areas, 234
separation of by project, 233-234
zero number for, 237-238

User File Directory IUFDJ, 10
creating, 277
defaults for, 18-19, 56, 65, 140-

141
definition of, 17, 25
denying read access to, 92
file type of, 27
names of, 17, 26-27, 237

365

User File Directory jUFDJ (cont.)
ownership of with multjple user

areas, 234
specifying, 18- 19
syntax for, 26
system area for, 27

User identification, 14-15, 53
User Identification Code IUICJ, 14

assignment of, 14-15
categbries of, 90
protection value of, 90-91
setting current, 57
syntax for, 14, 25-26
syntax for log in with, 54
and UFDs with numbered

directories, 57
Users, 14-15, 90, 172-174

categories of, 90
Utilities. See also specific utilities

?bhreviations for involtin& 64-
aborting execution of, 153
compilers as, 112
effects of changing input defaults

for, 66
exit status return by, 346
invoking, 62-64, 189-190
multiple input files for, 65_,;6
multiple use of, 154
passing commands to, 63-64
prompts with, 45
running uninstalled, 157
task names of, 154--155
typical cortunand sequence for, 63
using special wildcards with,

242-243

Version nwnbers, 6
after backup witb FLX, 286
defaults for, 19-20, 65
in Delete command1 84-85
in Exclude command, 252-253
latest, 20
octal and decimal values for, 19
problems in witb Copy

command, 76-79

Index

in Purge command, 85- 86
specifying, 19-20
wildcard specification of, 22
zero, 20

Video keyword, 168
Virtual terminals, 338-339, 342-

343. See also Batch jobs
Volumes

definition of, 16-17, 265
foreign, 267, 279- 286
formatting, 266-268
labels for, 266, 270
types of, 274

VTIOO, 169-170
VTIOO, 170
VT52, 169- 170

Wait-for-condition, 177
WFRflag, 177
WHO, 173
Width keyword, 168
Wildcards, 22

accessing files with, 197- 198
for backups witb FLX, 285
in Copy command, 73, 76
in Default Date command, 250-

252
in Delete comm and, 84-85, 260
in Exclude command, 253
modifying directory searches

with, 243-256
percent sign for in PIP, 242
in PIP command, 240, 241-243
in Print command, 100--IOl
in protection codes, 94
in Rename command, 87, 236
in Selective Delete command,

257, 259, 260
special wildcards, 242-243
for ufds in Restore command,

300
Wraparound, 169
Writeback switch, 231

Zero command, 287- 288

366

Related Titles Available from Digital Press

Working witb RT-11, by David Beaumont, Anne Summerfield, and
Julie Wright.

For new or potential users of this popular PDP-11 operating system.
$24.00 Order number EY-00021-DP.

Programming witb RT-11 . Volume I: Program Development
Facilities, by Simon Clinch and Stephen Peters.

$28.00 Order number EY-00022-DP.

Programming witb RT-11 . Volume II: Callable System Facilities, by
Stephen Peters, Kevin Small, Anne Summerfield, and Julie Wright.

Using RT-11 program.ming facilities and system services to build BASIC,
FORTRAN and MACRO programs.
$32.00. Order number EY-00023-DP.

Tailoring RT-11: System Management and Programming Facilities,
by Simon Clinch, Stephen Peters, Kevin Small, and Anne Summerfield.

A resource book for systems managers and advanced programmers.
$36.00. Order number EY-00024-DP.

Structured Programming in MACRO-II , by Bob Southern.
Hands-on instruction in assembly language programming for beginners.
Packed with exercises and examples.
$21.00. Order number EY-00032-DP.

Designing Applications for tbe Professional 300 Series: A Developer's
Guide, by John Lucas.

A guide for designers and programmers of applications intended to run
Wlder the RSX-like P/OS operating system.
$35.00. Order number EY-00030-DP.

Digital Press books are available at your local technical bookstore.
To order by Mastercard or VISA, call toll free l-800-343-8321, or
write Digit'\! Press Order Processing, Digital Equipment Corporation,
l2A Esquire Road, Billerica, Massachusetts 01862.
Prices listed are U.S. list prices only and are subject to change
without notice. For current prices and further information, call 617/
663-4152.

