

,

RECEIVED
I. r~ '!''J

BV DATE

~~~~~· 

~ DOS 
POWER TOOLS 





DOS 
POWER TOOLS 

TECHNIQUES, TRICKS AND UTILITIES 

Paul Somerson 
Executive Editor, PC Magazine 



PC Magazine DOS Power Tools 
A Bantam Book/June 1988 

All Rights Reserved 
Copyright © 1988 by Paul Somerson and Ziff Communications Company 

Cover design © 1988 by Bantam Books, Inc. 
Interior design by Nancy Sugihara 

Produced by Micro Text Productions, Inc. 

This book ma.y not be reproduced in whole or in part, by mimeograph or any 
other means, without permission. For information address: Bantam Books, Inc. 

Throughout the book, trade names and tradema.rks of some 
companies and products have been used, and no such uses 

are intended to convey endorsement of or other affiliations with the book. 

Bantam Books ( .. Bantam") warrants that the physical diskette is free from defects in 
materials and workmanship for a period of ()() days from the date of purchase. If Bantam 
receives notification within the warranty period of defects in material or workmanship, 
Bantam will replace the defective diskette. The remedy for the breach of this warranty will 
be limited to replacement and will not encompass any other damages, including but not 
limited to loss of profit, and special, incidental, consequential, or other claims. 

BANTAM, THE AUTHOR, AND ZIFF COMMUNICATIONS COMPANY SPECIFI
CALLY DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUD
ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANT ABillTY 
AND FTINESS FOR A PARTICULAR PURPOSE WITH RESPECT TO DEFECTS IN 
TIIE DISKETTE, THE PROGRAMS THEREIN CONTAINED, THE PROGRAM LIST
INGS IN TIIE BOOK, AND/OR THE TECHNIQUES DESCRIBED IN TIIE BOOK, 
AND IN NO EVENT SHALL BANTAM, THE AUTIIOR,AND/OR ZIFF COMMUNI
CATIONS COMPANY BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER 
COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO SPECIAL, INCI
DENT AL, CONSEQUENTIAL OR OTHER DAMAGES. 

ISBN 0-553-34526-5 

Published simultaneously in the United States and Canada 

Bantam Boob ll'CI published by Bamam Boob, Inc. Its trade
mark, consisting of lhc words "Bantam Boob" llild tbCI por
trayal of a roosll:t, is registered in U.S. Paumt and Tradcuw:k 
Office llild in otbllr countries. Marca Rcgiatrada. Bmwn 
Boob, Inc. 666 Fifth Awnuc, New Yad:, New York 10103 

PRINTED IN THE UNITED STATES OF AMERICA 
0 9 8 7 6 5 4 



To the three smartest PC aces I've ever met, who are responsible for much of 
the programming and technical content of this book - Jeff Prosise, Michael 
Mefford, and especially PC wizard Charles Petzold; to Bill Machrone and Ken 
Koppel for saying yes; and to Terry for helping get it right. 





Contents 

Foreword, by BillMachrone xiii 

Read This First xv 

PART I 

Getting Up to Speed 1 

1 The Development of DOS 3 

DOS 1.0 5 
DOS 2.0 7 
DOS 3.0 10 
The Future 15 

2 Disk Organization, Files, Filenames 21 

The Physical Disk 22 
File Types 26 
Creating Filenames 32 
Reserved Filenames 33 
The Parts of a Filename 37 
The PATH Command 40 
Wildcards 48 
Filename Extensions 61 

3 Hard Disks Made Easy 65 

Formatting a Hard Disk 66 
Subdirectory Structure 68 

vii 



viii PC Magazine DOS Power Tools 

Customizing Your Prompt 72 
The CONFIG.SYS File 74 
Directory Limits 77 
Disk Tools 78 
Important Files 82 
PATH Magic 92 
The DOS RAMdisk 96 
Protecting AUTOEXEC.BAT and CONFIG.SYS 97 
Hidden Files 98 
Subdirectory Navigation 101 
Finding Files 109 
Moving Files 111 
Fine-Tuning Your Hard Disk System 112 
Caveat Emptor 113 

4 Hex Class 119 

Pattern Recognition 124 
Chip Logic 131 
Bit Masks 133 
Hex Marks the Spot 135 
Fancy Footwork with Hex Numbers 138 

5 The Keys to the Kingdom 147 

Typewriter Keys 148 
High-Bit Characters 150 
Shift and Special Purpose Keys 152 
Cursor Movement and Number Pad Keys 165 
Freezing the Display 170 
Function Keys 173 
AT and PS/2 Keyboard Tricks 181 

6 Chips and Memory 193 

The CPU - The Brains of the PC 193 
RAM 197 
Parity Problems 200 
ROM - Free Programs 202 
Mapping the Meg 210 
The Official Way to Expand Memory 214 
Expanded vs. Extended 216 
Memory and the Bus 218 



Contents ix 

PART II 

The DOS Tools 231 

7 

8 

9 

EDLIN 233 

Starting EDLIN 237 
The EDLIN Commands 239 

Copy Lines 239 •Delete Lines 240 •Edit Line 241 •End Edit 243 •Import 
Files 243 •Insert Lines 244 •List Lines 246 •Merge Files 248 •Move Lines 
248 •Page 250 • Quit Edit 253 •Read In Files 253 •Replace Text 253 • 
Search Text 256 • Transfer Lines 258 • Write Lines 259 

Using EDLIN 259 
ECHO Version Madness 263 

DEBUG 267 

Addresses 269 
Starting Up DEBUG 301 
Naming a File for Loading or Writing 302 
Displaying Memory Contents 304 
Entering New Memory Contents 309 
Filling a Block of Memory 314 
Moving a Block of Memory 317 
Searching for Characters 323 
Assembling ASM Instructions 330 
Unassembling Instructions 336 
Displaying Register and Flag Contents 349 
Performing Hexadecimal Arithmetic 357 
Comparing Two Blocks of Memory 361 
Loading Disk Infonnation into Memory 363 

Loading Files 364 • COM vs. EXE 368 •Loading Sectors 370 
Writing Information from Memory to Disk 393 
Quitting DEBUG 400 
Advanced Commands 401 

Output/Send a Single Byte to a Port 401 •Execute Program in Memory (Go) 
404 •Execute and Show Registers/Flags (Trace) 404 •Jump Through a 
Program (Proceed) 405 

ANSI and Other DOS Drivers 409 

DRIVER.SYS 410 
VDISK.SYS 413 



x PC Magazine DOS Power Tools 

DISPLAY.SYS and PRINTER.SYS 415 
ANSI.SYS 417 

Working with Color 429 • Full Screen Displays 448 • Mode-Setting Com
mands 454 • Redefining Keys 455 • Macro Magic 469 • Customizing 
Your Configuration 471 • Total ANSI Management 478 

PART III 

Power User Secrets 495 

10 Batch Techniques 497 

Batch File Basics 497 
Easy Batch File Creation 498 • ECHO Mastery 501 • REMinding Your
self 503 • Jumping, Skipping, Looping, and Branching 506 • ERROR
LEVEL-Best Command, WorstName 510 • BreakingOutofaBatchJob 
525 • Putting It All Together 536 

The Batch Commands 543 
ECHO 544 •REM 552 • GOTO 554 • CALL 560 • FOR .. JN ... DO 
566 • PAUSE 571 • Replaceable Parameters 573 • SHIFT Parameters 
580 • Environment Variables 582 • IF 585 

Batch File Applications 621 
DOS Notepads 621 • A Date with DOS 623 • Free Dialer 625 • Free 
Telephone Directory 627 • Daily Chores 630 • Time of the Month 635 • 
Current Events 637 • Real-Time Batch File Entries 639 • More Efficient 
Copies 640 • AUTOEXEC .BAT 642 

11 The DOS Environment 645 

The SET Command 646 
647 

650 
The PROMPT Environment Variable 
The COMSPEC Environment Variable 
The PATH Environment Variable 651 

653 
657 

660 

Batch Files and the Environment 
Programs and the Environment 
Memory-Resident Programs 
Expanding the Environment 

12 Screens and Color 673 

In the Cards 
Storage Schemes 

697 
700 

661 



Contents xi 

Blanking Out the Screen 707 
Cursor Words 710 
Clear Colors 713 

13 EGA and Beyond 715 

Changing Video Modes 716 
The EGA and Other Adapters 720 
Pages and Pages 721 
The 64 Color Palette 723 
The EGA 64 Varieties 726 
The EGA Border Problem 729 
Permanent Color Mapping 734 
Background on Fonts 738 
Font Changes Through the BIOS 740 
Changing the Displayable Rows 742 
EGA-Aware MORE 743 
Creating Custom Screens 745 
The Problems of Cursor Emulation 749 
A New Print Screen Routine 750 
EGA Screen Dumps 751 
A New Screen Clearer 754 
Blanking Out the Screen 756 
43-Line WordStar 759 
The 512 Character Set 760 
The Poor Person's Font Editor 763 
EGA Underlines 766 
An Introduction to EGA Graphics 770 
Video Wrinkles 772 
Cursor Registers 773 
Bug in the BIOS 774 
Identifying Adapters 776 

14 Favorite Tips 781 

DOS Commands 781 
RECOVER 781 • CHKDSK 782 • COPY 7&4 • VERIFY 790 • -
DISKCOPY 792 • ASSIGN 793 • APPEND 793 • EXE2BIN 795 • 
KEYBxx 795 • COMPARE 798 • GRAPHICS and GRAFTABL 801 • 
STACKS 802 • XCOPY 803 • COMMAND 804 • SYS 810 •FD/SK 
811 

DOS Filters 
Printers 

816 
841 



xii PC Magazine DOS Power Tools 

Security 848 
Communications 854 

15 When It All Goes Wrong 863 

PART IV 

The Utilities DOS Forgot 873 

16 Assembly Language Programs 889 

17 BASIC Programs 1141 

PART V 

Quick Reference 1163 

18 The PC-DOS 3.3 Commands 1165 

Primary DOS 3.3 Commands 11()6 
DOS 3.3 CONFIG.SYS Commands 1200 
DOS 3.3 Batch File Commands 1206 
Batch File Help 1210 

19 EDLIN, DEBUG, and ANSI Commands 1239 

EDLIN 1239 
DEBUG 1241 
ANSI.SYS 1242 

Cursor Movers 1242 • Erasing and Screen Clearing 1244 • Color and At
tribute Setting 1244 • Mode Controls 1246 • Keyboard Controls 1247 

Index 1253 



Foreword 

Computers are terrific power tools. In the right hands they can help you write, calculate, 
plan, design, even think better. But users typically end up spending far too many hours 
trying to figure out how to get things done exactly the way they want. Unless someone 

shows them the right tricks, they can waste hours struggling with tasks that they could 
have knocked off in a few minutes with the proper techniques. 

No matter how experienced you are, you're always a beginner. While you may be a 

virtuoso at the few programs that you use most often, sit down in front of a brand new 
software package and you become a fumbling beginner all over again. If you 're so smart, 

as the saying goes, how come you can't do more than two or three things really well with 
your computer? 

Let's face it, computers are incredibly hard to master. Manuals are frequently awful, 

and good tutorials rare. With a few exceptions, support from manufacturers is pretty much 

nonexistent. Many users learn just enough to get by, and miss the real power of their sys

tems. They end up doing much of their work by brute force, ignoring techniques for 

making operation efficient and automatic. 
To make matters worse, software isn't the least bit standardized, even on fundamen

tal operations such as starting up, saving files, or getting help. If the controls on your car 

were as nonstandard as they are on software, you wouldn't even be able to get it out of 
your driveway. 

We Can Help 

At PC Magazine, the nation's largest and most-respected computer publication, we have 

two primary goals - to tell you which products are best suited for your needs, and to 

help you make the best possible use of these products. We show you how to work faster, 

smarter, and better. 
Each issue is packed with how-to columns and articles that give you the kind of hands

on help you need to boost your productivity through the roof. We scour the country to 

provide the best technical tips, advanced techniques, and ingenious shortcuts that can 

tum everyone into a true power user. 
Several years ago I asked Paul Somerson to put together the very best productivity sec

tion on the planet. With the help of experts like Charles Petzold, Michael Mefford, Jeff 

xiii 



xiv PC Magazine DOS Power Tools 

Prosise, Jared Taylor, John Dickinson, Neil Rubenking, Ethan Winer, Ray Duncan, 
Robert Hummel, Craig Stark, the Cobb brothers, and the thousands of readers who 
provided their favorite tips and tricks, he set out to turn the back pages of PC Magazine 
into a national institution. 

And it worked. Grateful readers send us baskets of mail every day thanking us for help
ing them fully master their computers. With computers becoming increasingly complex, 
users are starved for this kind of hands-on help. Over the years they're been clamoring 
for a book that distills the magazine's very best tips and techniques. 

Paul has gone well beyond that seemingly simple request He's taken the most useful 
step-by-step techniques and how-to explanations from the last few years, enlarged and 
updated them, and mixed them with a hefty supply of undocumented tricks and ingenious 
shortcuts. And we added a disk crammed with powerful utilities to fill in the gaps. The 
result is a package that we're sure will turn even average users into true experts -pain
lessly. 

These expert techniques have already helped hundreds of thousands of PC Magazine 
readers work far more productively. Let them help you too. 

Bill Machrone 
Editor-in-Chief and Publisher 
PC Magazine 



Preface 

Many PC users think DOS is simply the few seconds of disk grinding between the time 
they hit the power switch and the time their favorite software pops onto the screen. 
They've learned how to format a disk and copy a floppy but are ignorant of the genuine 
magic it can perform in the right hands. Still, even experienced users often miss impor
tant shortcuts and tricks. This book and the programs on the accompanying disk will 
make mastering any DOS system a breeze. 

If you've ever wondered why computers aren't easier to deal with, you're not alone. 
It's really not your fault - the standard DOS manual is a fat, inscrutable alphabetical 
reference crammed with useless details on how to use Norwegian characters or hook your 
computer to a nuclear reactor. It doesn't try very hard to help you. If General Patton were 
alive today he'd slap it. 

Worse, the DOS manual makes even the few things that you have to do every day
like print out files - insanely complex. The latest entry on its PRINT command reads: 

Format: [d:][path]PRINTf/D:device][JB:buffsiz] 
[/U :busytick] [/M:maxtick] US:timeslice] 
UQ:quesizJUCJ [ff] uPl [[ d: [path] 
[filename] [.ext] ... ] 

Clear? And it follows this madness with six pages of dense, oblique prose that would 
make Hemingway weep. You want to know what/Mis for instance? Here's what the 
manual says: "/M is called maxticks." Maxticks? Huh? So what do they do? According 
to the manual, /M will "specify how many clock ticks PRINT can have to print charac
ters on the print device." Clock ticks? Print device? Give us all a break. 

You don't really have to understand what maxticks are, or what a buffsiz is. But know
ing about these details can actually save you time and trouble. In this case, they'll let you 
print one or more documents without tying up your whole system, so you can start work
ing on other documents right away. We'll explain every one of these PRINT terms later 
in crisp, understandable English. And in any case we'll give you a handful of PRINT 
shortcuts you can type in to start speeding up your own work, even if you don't want to 
learn what it all means. 

xv 



xvi PC Magazine DOS Power Tools 

So Why Do I Need This Aggravation? 

Simple. Once you know a few easy techniques and shortcuts you can work far faster and 
safer. Users flood us with fan mail thanking us for speeding up their daily chores and 
automating all their drudgework. They tell us that we've taken away the nagging worry 
that they'll do something stupid, like erase all their files by mistake. And they say we've 
made life at the keyboard vastly easier and more productive. 

Simple? Who's Kidding Whom? 

It is easy, when someone shows you how, and throws in a few helpful programs to get 
you through the rough spots. The best way to learn is to have an expert standing over 
your shoulder pointing out tricks, giving you short, custom-made programs to boost your 
efficiency, and keeping you out of trouble. That's what we do regularly for over half a 
million serious readers. We bring reJatively new users up to speed quickly, and turn or
dinary users into power users. 

What's This "We" Business? 

A quick plug: PC Magazine is the oldest and largest IBM PC and PC-compatible 
magazine in the world. We not only tell readers what products to buy, but how to use 
these products (especially DOS) most productively. 

Twice each month, PC Magazine's Productivity section prints nearly 50,000 words of 
helpful, hands-on, how-to advfoe. Each issue we publish compact but powerful programs 
you can run on your system to make the whole process painless. And let you do things 
you never thought possible. 

When we need to have a question answered, or a program created, or a comprehen
sive how-to article written, we rely on a staff of experts and a large stable of specialists 
around the nation. And each week hundreds of clever readers mail us their favorite dis
coveries and most ingenious techniques. We publish the most useful ones in our popular 
interactive columns. 

We've taken the best tips, techniques, shortcuts, and actual programs that have ap
peared in PC Magazine over the last few years, added a lot of our own favorite tricks, 
and put everything in this one package. Our goals were to cover every important area of 
operation, and to make it all as clear and painless as possible. We wanted to create a 
single book that would answer every important question and provide truly useful infor
mation on every critical area of operation. 

So Who's This Book For? 

Glad you asked. !Cs for every serious user who wants to work faster, smarter, and better. 



Pref ace xvii 

If you 're starting out, or if you want a refresher course in the fundamentals, plunge in 
at the beginning. If you happen to be a black belt expert, you 'II still learn plenty; just 
skim over the first few chapters (we'll bet that even advanced users will find tricks they 
didn'tknow). 

But no matter where you start. you 'II soon find yourself collecting armloads of power
ful tips, shortcuts, and advanced techniques. Trust us. Hundreds of thousands of smart 
readers do on a regular basis. 

But a Whole Book On DOS? 

This book starts with DOS. But it shows users at every level how to operate their whole 
systems better. DOS affects every aspect of operation, from keyboards to screens to 
printers to modems to disk drives. 

You can nibble at it and pick up the few techniques you need to get a specific job done, 
or devour every word and become a true PC guru. If you want the hex numbers and the 
undocumented commands and the environment variables it's all here. But if all you want 
to do is master the basics and make your time at the computer so efficient you won't 
believe you ever did it the hard way, you can do that too. 

Okay, So What Exactly ls DOS? 

It's easier to start with what DOS isn'L It isn't very easy, friendly, or forgiving. Several 
years ago IBM responded to such criticism by publishing a booklet with little dancing 
birds in the margins. This didn't solve the problem. Users still did things the hard way, 
or avoided doing anything tricky in the fear they'd damage their files (and they were 
often right to worry). 

Sometimes using DOS is a little like manipulating plutonium in the next room through 
a thick glass window using remote-control robot hands. It's too clumsy. And s-1-o-w. 

What you really want to do is just get in there and grab what you're working on and knead 
it into shape. But the mechanisms DOS provides are cumbersome and seemingly difficult 
to master. 

Using a PC means creating, changing, displaying, printing, copying, moving, and stor
ing files. DOS does the really dirty work for you - interpreting and processing the com
mands you type, loading programs into memory, salting away your work in a 
semipermanent form that can readily be retrieved and altered, or sending data down a 
cable to a printer or another computer. 

DOS has a truly limited vocabulary of a few dozen commands to handle all of this. 
Many of these commands are primitive, incomplete, even purposely crippled to protect 
you from yourself. Some are useless. The trick is to master the important ones, super
charge the incomplete ones, learn the effective DOS shortcuts that can automate your 
daily chores, and get your hands on a few necessary tools that DOS forgot. We'll show 
you how, with step-by-step instructions - and we 'II provide a slate of powerful little 
programs to do all the hard work for you. 



xviii PC Magazine DOS Power Tools 

Keeping Current 

One reason DOS is so thorny is that it has to adapt to a rapidly changing technology while 
remaining compatible with the older hardware and all the original commands. Even so, 
it should be a whole lot friendlier and easy to get along with. That's where we come in. 

Times really have changed. The reason its creators called it DOS (short for Disk 
Operating System) was that it let users work with floppy disks, which were revolution
ary two decades ago, but are commonplace to even kindergarteners now. These days op
tical disks (laser-based storage systems somewhat similar to audio CDs) and even a few 
hard disks can put a gigabyte - a billion characters' worth - of storage space at your 
fingertips in a fraction of a second. 

(Some system manufacturers are even starting to talk about terabytes - a trillion 
characters' worth. Sending a terabyte of data to someone over a 1,200-baud modem 
would take several millenia, give or take a century.) 

To put this in perspective, when IBM introduced its first PC in 1981 it actually stuck 
a plug on the back so users could store data on cassette tape recorders - a method so in
efficient it's laughable today. 

Impatient? 

To be a real power user you should understand what makes your system tick, and be 
familiar with its evolution and internal structure. This is especially important because 
DOS comes in so many flavors, revisions, and dialects that you have to know how to 
handle the important differences between versions. 

If you see a term in the early chapters of this book that you don't fully grasp, don't 
worry. It will all be explained in detail a little later. However, if you just can't wait to 
plunge in and start boning up on specific tips, jump ahead to the following chapters. 

How to Use This Book 

The shortest distance between two points may be a straight line, but frankly, we prefer 
the scenic route. It may take you just a bit longer, but it's a lot more fun. When you travel 
on an expressway you often miss the sights. 

This book will turn anyone into a true power user. But don't be scared by its size. You 
don't have to start at page 1 and follow it all the way through to the end (although if you 
do, you'll become an absolute DOS wizard). Most readers tend to jump around from 
place to place, and this book is designed to accommodate them. 

You can use this book and disk several different ways: 

• If you're still fairly new at this, you can learn the ropes quickly by glancing at the 
Up to Speed section. 

• If you need the best possible tips on a specific area such as organizing your hard 
disk, harnessing the color abilities of your new monitor, automating complex file 



Preface xix 

management tasks, or taming your keyboard, jump directly to that particular 
chapter. 

• If you 're interested in wringing the maximum horsepower out of your system, be 
sure to investigate the advanced techniques in the OOS Tools pages. 

• And if you really want to stomp on your system's accelerator, step through every 
last trick in the Power User Secrets section. 

No matter what your level, be sure to try the programs on the accompanying disk. 
They'll make it a snap to master every aspect of your system. Once you use a utility like 
Charles Petzold's BROWSE, SWEEP, or ATIR, or Michael Mefford's DR, RN, or CO; 
or run a powerful application program such as Jeff Prosise's DOSK.EY, or IN
ST ALL/REMOVE, you'll wonder how you ever got anything at all done without them. 
And the disk contains hundreds more. 

Warning! 

No Os 

As with any power tools, be extremely careful when using the programs and tips in this 
book and on the disk. 

Read the appropriate manual entries carefully before running any of the programs. Not 
all programs will work on all systems (for instance, some are designed for EGAs, A Ts, 
or PS/2 systems only). And just as you wouldn't plug too many power tools into the same 
outlet, if you want to load lots of different programs into memory at once, experiment 
with them to see how your hardware configuration handles it before working with any 
unsaved data. 

The final section of this book contains two additional resources - a detailed program 
manual and a series of handy DOS quick reference charts. The manual is more than just 
a list of command syntaxes. It's jam-packed with tips, technical explanations, and in
genious customization hints. Both are extremely useful. 

Note that in virtually every example in the text, a 0 is the numeral zero and not a capital 
o. Similarly, a 1 is a one and not a lowercase L. This book assumes you're using aver
sion of DOS 2.1 or later. If you 're not, go out right now and get your hands on the very 
latest version available. 

While virtually all the tricks included here are utterly safe, a few (like those that deal 
with advanced disk modification techniques) are so powerful that you have to use ex
treme caution when trying them. The text includes stem warnings about these, but be 
sure you observe the following rules: read each entire section carefully before attempt
ing the procedures mentioned, don't try modifying any of the procedures, and if you're 
really nervous, don't execute them. The book contains thousands of other equally useful 
but less fearsome tips to try. 



xx PC Magazine DOS Power Tools 

Finally, the book makes extensive use of a technique called redirection to create and 
modify files. In most cases, this involves creating a small text file that DOS redirects, or 
feeds, into its DEBUG file-customization program. When creating these small text files 
or scripts be sure to use a "pure-ASCII" word processor. The DOS EDLIN editor will 
create such files, as will the ASCIUtext modules of popular word processors such as 
Microsoft Word, WordStar, XyWrite, or Word.Perfect. 

As it's used here, a pure-ASCII file is one that, with just a few exceptions, contains 
nothing other than the letters, numbers, and punctuation that you can type directly from 
the keyboard. Most word processors throw in other nontext characters to handle format
ting commands such as underlining or margin settings. But just about every word proces
sor lets you create files without these formatting characters. 

You can test whether your own word processor is capable of producing such files by 
using the DOS TYPE command to display them. If you create a file called TEST.FIL, 
for example, just make sure you 're at the DOS A> or C> prompt and type: 

TYPE TEST.FIL 

If all you see is clear, unadulterated text, you're probably safe. But if you see odd 
characters, or if the text jumps and beeps its way across the page, look at your word 
processor's manual under "DOS files" or "Text files" or "ASCII files" and try again. 

Whether you're just starting out, or you're an old hand at DOS, the tips and programs 
included here will make you the master of your system rather than the other way around. 
Isn't that why you started using a computer in the first place? 



P A R T I 

Getting Up to 
Speed 



--------------~· 



Chapter 1 

The Development of DOS 

Personal computers began appearing in the mid 1970s, initially as hobbyist toys that 
didn't even have keyboards or screens. The first real one, named Altair by a magazine 
editor's 12-year old daughter who liked a Star Trek episode that took place in that star 
system, was built around a jazzed-up calculator chip, the Intel 8080. (Today Intel sup
plies the state-of-art CPUs for all ofIBM' s desktop computers.) Produced as a do-it-your
self kit by a company called MITS (for Micro Instrumentation Telemetry Systems), it 
originally came with 256 bytes of memory, enough to hold only three or four lines of 
text. Since it lacked a keyboard, you entered information into it by flipping a series of 
switches on the front panel in binary on-off sequences. Because it had no screen, you had 
to decode the binary patterns of blinking lights it produced. And it didn't let you store 
information permanently. Compared to that, DOS is positively telepathic. 

Two teenagers, Bill Gates and Paul Allen, who had gotten their digital feet wet by 
starting Traf-0-Data, a company that made Intel-based computers to measure how many 
cars rolled over a rubber hose stretched across a road, happened to see a picture of the 
Altair on the cover of Popular Electronics magazine, and developed a version of the 
BASIC programming language for it. Gates later upgraded Altair BASIC to give it primi
tive file-management disk-storage abilities, something that would come in handy later. 
The pair subsequently changed the company name to Microsoft; by 1976 the industry 
had progressed to the point where Gates was already railing against software pirates (al
though back then users were making illegal copies of punched paper tape rather than flop
py disks). A few years later Gates became the world's youngest billionaire. 

Soon after the Altair introduction, a coterie of hard-driving salespeople and "est" 
devotees became the market leaders with their IMSAI 8080, another Intel-chip machine, 
and the first computer aimed squarely at small businesses. To let users store data effi
ciently, IMSAI developed a floppy disk drive whose motors and circuits were run by a 
program called CP/M (short for Control Program for Microcomputers), which it had 

3 



4 PC Magazine DOS Power Tools 

licensed from Intergalactic Digital Research - later shortened to Digital Research. Digi
tal Research's Gary Kildall had created CP/M while working for Intel, to scale down the 
mainframe PL/I programming language into a version that would fit on a microcomputer. 
Intel hadn't seen much value in this brand new CP/M operating system and had given 
Kildall all rights to it. 

The early versions of DOS owe quite a bit to CP/M. In fact, things like the COM for
mats of CP/M and DOS and the basic system calls were so similar that programmers 
could easily switch up from CP/M. CP/M used a command interpreter called CCP (for 
Console Command Processor), and two fundamental system files called BDOS and BIOS 
that handled files and I/0. This arrangement is nearly identical to the DOS COM
MAND.COM, IBMDOS.COM, and IBMBIO.COM system trio. What was especially 
remarkable about CP/M was that it took up only 4 K of space. DOS 1.0 doubled that, and 
has been mushrooming ever since. 

Chain store magnate and leathercrafter Charles Tandy tried unsuccessfully to buy com
puters from IMSAI, then ended up creating his own system, the TRS-80, which contained 
a competing Zilog Z-80 chip, boasted slightly more than 4,000 characters of memory (a 
page or two of text), and came fully assembled rather than in kit fonn. To shave a few 
dollars off the price he designed it to work entirely in uppercase letters. Customers 
snapped them up as fast as Tandy could make them. 

What really kicked the microcomputer business into high gear, however, were a hand
ful of visionary renegades from California and Florida. 

In 1976 Steves Wozniak and Jobs, whose early careers included a stint peddling "black 
box" devices to circumvent AT&T long distance billing computers, bought some MOS 
6502 chips and built a few hundred copies of a computer that they christened the Apple 
I. It too worked in uppercase characters only. Their second-generation Apple II offered 
an optional floppy disk drive, and sold several orders of magnitude more. One reason for 
its success was a revolutionary program called VisiCalc, which was cobbled together by 
Dan Bricklin, Dan Fylstra, and Bob Frankston. Visicalc turned Wozniak and Jobs's lit
tle computer into a powerful financial analysis and planning machine. 

But not all operating systems work on all chips. The increasingly popular CP/M ran 
on chips made by Zilog and Intel but not on the Apple's MOS processor. 

Microsoft's Gates and Allen moved to Seattle to write programming languages for 
computers built around Intel and Zilog processor chips and running CP/M. Dismayed 
that their languages wouldn't work on MOS-based Apples, they considered translating 
them all to run on Apple's proprietary operating system, an arduous job. Instead, they 
joined the crowd, licensed CP/M, and sold it along with an add-in board that had a Zilog 
chip on it. Apple owners could stick the Microsoft board in their systems and run any 
CP/M programs. 

But Apple was an eight-bit machine and Gates and Allen felt Intel's new 16-bit proces
sors were the wave of the future. So did a local board maker named Tim Patterson who 
worked for Seattle Computer Products. All earlier processor chips managed data in eight
bit chunks. Intel's new 8088/8086 chip family doubled the processing power. 

Patterson's board sported an 8086, and he needed a new 16-bit operating system to 
take advantage of it. Digital Research had announced that it was planning to tweak CP/M 
into a 16-bitCP/M-86 version, but Patterson couldn't wait. In early 1980 he started work 



The Development of DOS 5 

on one of his own design called QDOS (for Quick and Dirty Operating System) that was 
to become 86-DOS (or SCP-DOS) and eventually just plain DOS. To make it relatively 
easy for programmers to translate CP/M software to his system, he retained fundamen
tal CP/M file-management structures and mimicked the way it loaded and ran programs. 
Patterson then added a device called a File Allocation Table (FAT) which Gates had used 
in Altair disk BASIC , and a few other refinements. 

DOS 1.0 

In late 1980, IBM approached Microsoft and revealed that it was considering production 
of its own eight-bit personal computer. Vast helpings of money, ego, pride, and general 
corporate paranoia have tempered the details of this exchange, but the popular version is 
that IBM wanted Microsoft to design a version of BASIC for its new machine that would 
be delivered on a ROM chip inside the IBM chassis. Gates was happy to oblige and 
wanted to do a whole raft of languages, as the story goes, but argued that IBM should 
consider a 16-bit computer instead When IBM asked who made a 16-bit operating sys
tem, Gates is said to have suggested that IBM contact Gary Kildall - and supposedly 
even dialed the phone to Digital Research himself. 

Here the tale gets very fuzzy. According to one telling of it, when IBM trooped down 
to see Digital Research the next day, Kildall' s wife and lawyer were hesitant to sign 
IBM's strict nondisclosure agreements. Other stories had Kildall out flying his plane 
while IBM executives waited impatiently for him to land. Microsoft's own publications 
admit that Gates and Allen had heard rumors that Kildall was about to buy a version of 
BASIC from a Microsoft competitor and give it away free with every copy of CP/M-86, 
which didn't exactly endear him to them. 

In any event, Gates and Allen bought the rights to Patterson's 86-DOS for around 
$50,000 and proposed to IBM that Microsoft provide BASIC, FORTRAN, Pascal, 
COBOL, an 8086 Assembly language, and the 86-DOS operating system for the new 
computer. IBM agreed in November 1980, and on August 12, 1981 introduced the world 
to its new PC and its main operating system, Microsoft's DOS 1.0 (which IBM called 
PC-DOS). At the announcement, IBM mentioned that users would someday be able to 
buy two competing operating systems: CP/M-86 or the UCSD p-System. But IBM priced 
these much higher than DOS, and since they were late in reaching the market and received 
little support from other software vendors, they went nowhere. 

Computer hardware (the chips and disk drives and other parts inside the cabinet) isn't 
useful without software (the programs that put the chips through their paces). And IBM 
didn't initially offer much software - EasyWriter, a bug-filled version of a mediocre 
word processor; Adventure, a mainframe text game adapted for smaller computers; a DOS 
version of VisiCalc; some artless business software; a few Microsoft languages; and one 
or two other packages. 

The most popular and powerful programs back then -dBASE II and WordStar- ran 
only on CP/M systems. One ofIBM's highest priorities was to make it easy for software 
vendors to translate programs from CP/M to DOS, and it was smt1It enough to know that 
making it easy meant making the two operating systems similar. 



6 PC Magazine DOS Power Tools 

Many of the DOS features that today's users truly hate- such as overly brief eight
character filenames with three-character extensions, terse prompts like A>, and unfriend
ly or missing messages (such as stony silence in response to file deletions) were directly 
swiped from CP/M. So were underlying structures such as File Control Blocks (FCBs), 
Program Segment Prefixes (PSPs), and reliance on CP/M's memory loading addresses. 

DOS did change a few CP/M quirks. File lengths that were rounded off in CP/M were 
reported precisely in DOS. Some commands were turned around to be more logical. 
Programmers could treat input and output to peripheral devices such as printers and 
screens the same way that they handled files. DOS' s variable record lengths made disk 
storage and retrieval far more efficient. DOS could load and run larger EXE-format files 
in addition to the smaller standard CP/M-style COM-format files which were limited to 
64K. And it could keep a program loaded in memory but inactive so that users could pop 
it onto their screens whenever they needed it. DOS relied on a FAT, first used by Bill 
Gates and Tom Patterson, to keep track of where all the various pieces of a file were 
stored, and could read and write more than one piece of data at a time, which speeded up 
disk activity significantly. 

DOS at least theoretically made it easier for programmers to create their own versions 
of the COMMAND.COM user interface, although none has ever caught on. But the 
ability to run scripts of commands called batch files did become very popular. When DOS 
reported inevitable errors, it did so in a slightly friendlier way than CP/M, and it handled 
severe hardware errors far better. DOS also sniffed out new disks automatically while 
CP/M forced users to log such changes manually, and it kept track of the date files were 
created or changed. 

It also split the COMMAND.COM user interface into several parts, a mixed blessing. 
When the PC was new, and IBM offered it with a maximum 65,536 characters of memory 
(which is usually rounded off to 64K), this feature was welcome since it let other space
hungry software temporarily steal a few thousand characters of memory space from DOS. 
When the user was finished with the software he'd have to then insert his DOS disk in 
drive A: so the part of DOS that hadn't been stolen could reload the part that had. Trouble 
was that a short time later users were buying systems with ten times that much memory, 
and the amount of space freed up by this technique was relatively insignificant. But flop
py disk users still had to contend with keeping a DOS disk handy to reload the "transient" 
stolen part. 

One of the worst things about the first IBM PC and its operating system was that it 
could store only 163,840 (160K) characters of data on floppy disks that were clearly 
capable of squirreling away twice that much. A standard floppy disk has two usable sides, 
but IBM's original drives (and DOS) took advantage of just one. 

And the initial DOS release contained several nasty bugs. In mid-1982 IBM began 
selling PCs with double-sided drives, and released DOS version 1.1 to handle the new 
storage abilities and fix several of the early bugs. Microsoft then released its own similar 
generic DOS upgrade, which it called MS-DOS 1.25. 

The initial release of DOS was tiny and relatively crude. Version 1.0 TIME and DATE 
commands were separate short programs rather than part of the main COMMAND.COM 
user interface. While the DOS 1.0 directory listing noted the date a file was created or 
changed, it ignored the time. The MODE command couldn't set communications speeds 



The Development of DOS 7 

or protocols, or let the PC's parallel printer adapter work with the many serial printers 
on the market. You weren't able to have the COPY command join (or concatenate) 
smaller files into larger ones. The onscreen prompts and messages were especially ugly 
and cryptic. 

DOS 1.1 fixed all these problems, or at least made them less irritating. The biggest 
problem of all was that DOS was still constrained by its CP/M heritage and its clanky in
ternal structure. And although IBM doubled the amount of disk storage space from 
163,840 (160K) characters to 327 ,680 (320K), users found this was far from enough. 
They demanded disks that were faster and more efficient. 

DOS2.0 

In March 1983, IBM announced its PC-XT, a beefed up version of the standard PC that 
came with three additional internal expansion slots (for a total of eight), a ten-megabyte 
hard disk, a heftier power supply, and a new version of DOS - 2.0. 

The new hard disk (which IBM referred to as ajued disk) could hold the equivalent 
of more than 31 double-sided floppies. But all that storage space introduced a new 
problem. DOS 1.0 and 1.1 had crammed all the file information for each floppy disk into 
a single directory. A single-sided floppy directory had room for a maximum of 64 entries, 
and you could fit only 112 on a double-sided diskette. 

Keeping track of all the files on a hard disk meant coming up with a new DOS file 
management and directory system. CP/M had dealt with large disks by splitting (or par
titioning) them evenly into smaller ones, an inelegant and inefficient solution. But UNIX, 
an operating system developed by the phone company, could handle vast volumes of files 
with relative style and ease. Microsoft had licensed UNIX, and was offering a version of 
it called XENIX. At the heart of UNIX/XENIX was a hierarchical or tree-structured 
directory system that gave users lots of flexibility in dividing up the available storage 
space. 

Microsoft adapted this tree-structured system as the core of a significantly new incar
nation of DOS - version 2.0. But it blundered slightly. UNIX used a slash (I) to iden
tify the hierarchical subdirectory levels that acted as branches on the tree structure. But 
earlier DOS versions used such slashes as switches, command suffixes (such as the /S in 
FORMAT /S) that turned certain optional features on and off. Microsoft substituted a 
backslash ( \) to identify subdirectory levels, which ended up confusing a whole genera
tion of DOS and UNIX users, and caused much consternation abroad where foreign 
keyboards often didn't come with backslash characters. 

IBM and Microsoft also had to find a way to deal with an explosion in the number and 
type of devices that manufacturers were stamping out for the PC. One of DOS 's main 
roles was to manage the communication between the PC and anything you could hook 
up to it. If DOS had to contain explicit internal tables and instructions for every possible 
external device it would end up being absurdly large and cumbersome. 

Microsoft designed a new version of DOS with hooks in it so that manufacturers of 
peripheral equipment could supply installable device driver programs to hook the new 
hardware effortlessly into the operating system. Users could load these specific addition-



8 PC Magazine DOS Power Tools 

al sets of instructions 'into DOS as needed, through a special CONFIG.SYS file. This file 
also let users customize the configuration of their systems by telling DOS such things as 
how much memory it should devote to disk buffers (areas of memory that hold disk data 
for speedy access), how many files could be opened simultaneously, and how frequent
ly DOS should check to see whether a user might be hitting the Ctrl-Break panic button. 
It also made it easy for users to load a replacement command processor if they weren't 
planning on using the standard COMMAND.COM, or tell DOS if they were storing 
COMMAND.COM in an unusual place. And it gave users extended screen and keyboard 
control with ANSI.SYS, a special device driver supplied by Microsoft in an unsuccess
ful attempt to standardize certain parts of the user interface across different computer 
systems. 

Version 2.0 introduced several commands most users can't live without. It's hard to 
believe, but versions 1.0 and 1.1 didn't offer any way to clear the screen. CLS now does 
it, although unless you're one of the few users taking advantage of ANSI, it will reset 
your screen colors to drab grey on black. This version was the first to offer batch file 
commands such as ECHO, IF, FOR, SHIFT, and GOTO. If you haven't yet mastered 
these, you 'II be amazed at how they can help automate drudge work. We, ll show you how 
(and point out tricks for retaining colors when you clear your screen) a bit later. 

DOS 2.0 also introduced a raft of commands and utilities to give users control of hard 
disks, although some, like the pathetic TREE command - designed to "display the en
tire directory structure'' - are a bad joke. 

Perhaps to compensate, IBM threw in a gem that has become a power user's best friend 
- the mini-assembler in DEBUG. You can become an absolute computer whiz without 
ever having to learn a single thing about hex codes or assembly language. But if you want 
to climb inside your system and stomp on the gas pedal, there's no better way. It's a lot 
easier than you think. 

One of the most significant changes in DOS 2.0 was the way it dealt with files inter
nally. To remain compatible with CP/M, DOS versions 1.0 and 1.1 kept track of critical 
file information with a device called a File Control Block (FCB). But as programs be
came more sophisticated they were forced to manipulate the data stored in FCBs direct
ly, which was awkward and potentially dangerous. And FCBs had no provisions for 
subdirectory names. 

DOS 2.0 introduced.file handles as an optional way to streamline disk management. 
Once DOS knew about a particular file in a particular subdirectory, it could act on that 
file simply by using a two-character shorthand code called a handle. In addition, DOS 
established five special handles that made it a snap to switch inputs and outputs. Normal
ly the keyboard and screen (which DOS collectively refers to as the console or CON) act 
as both the input and output. But DOS 2.0 let users "redirect0 input and output to or from 
printers, files, or other devices. And it allowed users to pipe streams of data through fil
ters to do things like turn uppercase files into lowercase ones, strip out extraneous charac
ters, or sort records in alphabetical order. 

The sample filters DOS 2.0 provided are actually pretty useful. They'll let you slog 
through files and skim out the text you want saved or discarded. They'll sort your direc-



The Development of DOS 9 

tories (or any list of names, numbers, or items that have carriage returns at the end of 
each entry) lightning fast. And they'll pause your displays for you so you'll never again 
have text scroll off your screen too quickly to read. 

To top it off, DOS 2.0 provided rudimentary background processing. DOS was 
originally designed as a single-tasking operating system that let users do just one thing 
at a time. But the designers of version 2.0 threw in a PRINT spooler command that could 
print out one file while a user was actively working on another. 

While spoolers are nothing new, this one was. Spoolers normally lop off a big chunk 
of RAM and trick DOS into sending files to memory that were really destined for the 
printer. Then they wait for a quiet moment and re-route the files onto your printed page. 
When they're done printing, however, they still hold onto all the memory they hogged 
- very inefficient. The DOS PRINT command reads files off your disks and uses your 
precious memory much more sparingly. It watches how you work, and about 18 times 
each second, if you're not doing something at that precise moment, it sneaks a few charac
ters at a time to the printer. Your computer is so blazingly fast that this "time slicing" 
technique makes it appear that it's doing two things at once, when what it's really doing 
is alternating so quickly you don't notice it. And the best part is that if you happen to be 
working on something that takes more of your computer's constant attention than usual, 
you can adjust how frequently the spooler tries to intercede. 

In addition, DOS increased the number of 512-byte sectors - the wedge-shaped mag
netic pie slices on a floppy disk that actually hold your data - from eight to nine. While 
DOS kept the number of tracks in each sector at 40, this upped the storage capacity of 
double-sided floppy disks from 320K to 360K. DOS 2.0 also let users add electronic 
volume labels to their disks, gave them access to a part of memory called the environ
ment in which critical system settings were maintained, made memory allocation more 
efficient, and threw in more than two dozen new commands. 

With so many changes and new features, you'd think a brand new version of DOS such 
as 2.0 would be filled with insidious bugs. And you'd be right. In March 1984, a year 
after the PC-XT introduction, IBM released DOS version 2.1 to excise these software er
rors - and to handle a hardware error it produced called the PCjr. 

The less said about the PCjr the better. While it provided more colors onscreen in 
graphics mode than IBM's real microcomputers, and came with three-voice sound that 
could play chords, it was utterly nonstandard inside and out. In fact, it used such a cheap, 
flimsy disk drive that DOS 2.1 actually had to slow down the drive performance so the 
thing wouldn't crash. 

What's especially sad about this is that lots of users still rely on DOS 2.1, which means 
they have to put up with unacceptably slow drive access times even though they're using 
machines that could handle much higher speeds. A pity. And one of many good reasons 
to upgrade to a more recent DOS edition. 

Microsoft ended up producing versions 2.05, 2.11, 2.2, and 2.25 with an added 
modicum of international time, date, keyboard, and currency support. These may come 
in handy if you need to work with Korean Hangeul or Japanese Kanji characters; today 
Microsoft sells DOS in more than 60 assorted languages. 



10 PC Magazine DOS Power Tools 

DOS3.0 

IBM's PC and PC-XT brought microcomputing into the mainstream of American busi
ness. But these machines were both relatively slow and small. In fact, they weren't real
ly even true 16-bit computers. While a 16-bit Intel 8088 central processing unit (CPU) 
ticked away inside each one, their system bus - the connecting pathway of wires that 
ties the CPU to all the other parts of the system - was a bottleneck that worked in eight
bit chunks only. 

IBM introduced its first genuine 16-bit system, the PC-AT. Compared to IBM's ear
lier releases, this was a rocket ship of a computer. Inside was an 80286 CPU with a trick 
up its sleeve - it could run everything IBM and Microsoft threw at it and could also ac
commodate Microsoft's next-generation OS/2 operating system. And it needed a new 
version of DOS - 3.0. 

Engineers measure computer performance in many ways. Two prime indicators are 
the clock speed of the CPU and the average access time of the hard disk. The faster the 
clock, the faster a computer processes instructions and the faster just about everything 
runs. The speedier the hard disk average access time, the speedier it can read and write 
programs and data. The higher the clock speed and the lower the average access time, 
the nimbler the system. 

Both the PC and the PC-XT run at 4.77 megahertz (MHz). IBM sold many different 
brands of hard disks for the XT, and the average access time was somewhere between 
80 and 115 millisecom;ls. 

The official clock speed of IBM's first AT was 6 MHz, but users quickly found out 
that by replacing a socketed $4 quartz crystal on the main system board they could boost 
performance to 8 or even 9 MHz without any ill effects. (IBM is famous for publishing 
ultraconservative specifications and holding down performance a bit on purpose.) When 
IBM discovered that users were hot-rodding their systems, they wrote a program that 
acted as a speed governor and put it onto a system ROM chip to prevent tampering. 

All of IBM's AT hard disks ran at speeds of 40 milliseconds or better. Unfortunately, 
the first big batch of PC-ATs came with CMI-brand drives that crashed in shockingly 
high numbers. Hard disks - rapidly spinning precision-crafted aluminum platters with 
magnetic coatings on both sides - need precise feedback on where their magnetic 
read/write heads are located. If the location mechanism is off by even a tiny bit the heads 
can write bad data over good or wipe out important tables that tell the computer where 
files are stored. 

Hard disk heads actually "fly" on a cushion of air directly above the surface of the plat
ters themselves. All decent hard disks retract or park the magnetic heads when the power 
goes off so they don't sink down and plow furrows into your data. To save money, CMI 
disks used what many believe was an unreliable implementation of wedge servo technol
ogy. Most other hard disks used a dedicated positioning surface, a whole side of a hard 
disk platter that contained no user data and instead acted as a map to the platters that did. 
But not CMI's AT drives. And these drives didn't park the heads when you turned the 
power off. The heads just dropped down onto the data area and scraped against it. 

IBM never really admitted doing anything wrong, but tens of thousands of users know 
differently. If this black episode in microcomputing history had a silver lining, it was that 



The Development of DOS 11 

it taught hard disk users how absolutely imperative it is to make frequent and comprehen
sive backup copies of their work. 

In any event, a PC-AT running at 8 MHz was 67 percent speedier than a standard PC 
or PC-XT. The PC-AT hard disk was twice as fast as the speediest PC-XT drive, which 
made everything seem a lot more energetic, and ended up turbocharging disk-intensive 
applications such as database searches. On top of all that, the PC-AT could deal with 
memory in 16-bit chunks, while the PC and PC-XT had to lumber along with half that 
amount. Clone makers soon began producing respectable AT imitations that chugged 
along even faster. To avoid falling behind the competition too much, IBM eventHally had 
to nudge the performance upward slightly each time it refined the AT design. 

IBM's newest PS/2 line of hardware and the many high-performance clones on the 
market make even the fastest IBM PC-AT look like it's standing still. With CPU speeds 
of 20 and even 24 MHz, hard disk access times in the high teens, and a 32-bit bus that 
moves information nearly four times as efficiently as the one in the original PC, these 
hot new microcomputers give refrigerator-sized minicomputers a run for their money. 

The PC-AT was originally delivered wjth a 20-megabyte hard disk, although sub
sequent versions have enhanced both the AT's speed and the size of its hard disk. Still, 
20,480,000 characters' worth of storage meant that backing it all up would take 56 stand
ard 360K double-density floppies. The mind reels. Apparently, so did IBM's. It dropped 
a quad-density floppy disk drive, which could hold 1.2 megabytes of data - or the 
equivalent of nearly four 360Kfloppies-into each PC-AT. IBM refers to these as high
capacity drives. Unhappy users have called them something else, unprintable here. 

The PC-AT's new DOS, version 3.0, could handle the increased floppy disk storage. 
But it also had to understand every other floppy format. In the space of six years IBM 
had introduced single-sided and double-sided drives, with eight or nine sectors, and in 
double or quad density, so downward compatibility meant knowing how to deal with: 

• 160K single-sided 5-1/4 inch drives 
• 180K single-sided 5-1/4 inch drives 
• 320K double-sided 5-1/4 inch drives 
• 360K double-sided 5-1/4 inch drives 
• l .2M double-sided 5-1/4 inch drives 

Well, there's compatibility and there's compatibility. Out of the 25 different possible 
combinations of using the DISKCOPY command to move information from one to the 
other, 16 won't work. 

What's more, IBM's PS/2 hardware uses 3-1/2 inch diskettes, a whole new ball game. 
These smaller diskettes are sturdier, easier to transport, and vastly more efficient at stor
ing information. IBM characteristically complicated matters by producing two different 
and slightly incompatible 3-1/2 inch formats, one that holds 720K and one capable of 
storing 1.4 megabytes of data. The 5-1/4 inch 320/360K floppy format won't go away 
very quickly, since so many vendors have made it the standard for program distribution. 
But the PC-AT's 1.2 megabyte drive and the low-end PS/2 720K diskette are orphans. 

All IBM microcomputers gave users a clock and calendar that could stamp DOS direc
tory listings with the time and date files were created or most recently changed. But users 



12 PC Magazine DOS Power Tools 

had to set the clock each time they started (booted up) their systems, unless they had pur
chased an add-in board with a battery-driven clock on it (and most did). The PC-AT came 
with its own internal battery-run clock/calendar, although it wasn't until DOS version 
3.3 that users could reset it easily. 

Figure 1.1 shows the configurations of all of IBM's PCs. 

Model ID CPU Speed 1/0 Maximum Keyboard DOS 
Byte (MHz) Bus RAM Version 

(Bits) 

PC FF 8088 4.77 8 640K old 1.0 
XT FE 8088 4.77 8 640K old 2.0 
PCjr FD 8088 4.77 8 640K special 2.1 
AT FC 80286 618 16 15M both 3.0 
PC/2 FB 8088 4.77 8 640K both 
XT/286 FC 80286 6 16 15M both 
Convertible F9 80C88 4.77 8 640 special 
Model30 FA 8086 8 8 640K new 
Model SO FC 80286 10 16 16M new 3.3 
Model60 FC 80286 10 16 16M new 3.3 
Model80 F8 80386 16{l0 32 4G new 3.3 

Figure 1.1. Hardware Configurations of IBM's Personal Computers 

"'Model 30 has 16-bit memory bus 

Program developers live by a rule: "The software is never finished." Each release of 
DOS or any commercial application is quickly followed by a version with bug fixes, 
speedups, and forgotten utilities. Market considerations force manufacturers to ship 
everything at the earliest possible date. Microsoft officially admits that DOS 3 .0 "wasn't 
quite ready" at the introduction of the PC-AT. But it went out the door anyway. 

Today, virtually every desk in America has a telephone in one comer. IBM's vision 
of the future puts a computer terminal next to it, and strings all the terminals together 
electronically. Networking computers this way does have lots of advantages. It lets users 
"mail" messages and files to each other, and share centralized data bases of information. 
Someday when everyone has to send text to everyone else and when it's easier and 
cheaper to consult a far wider range of databases, this will be attractive. 

Networks can also let users share expensive peripherals like plotters or laser printers, 
but it doesn't make much sense to install three $1,500 network hookups to share one 
$1,500 printer. Today networks are interesting to a minority of users only - although 
the number grows as the costs and headaches often associated with using them are 



The Development of DOS 13 

reduced. Networks introduce their own special set of problems. Two users may reach for 
the same data base records at the same time, and something has to mediate the conflict. 
Worse, giving users access to centralized information means someone has to decide who 
has the authority to read what files and change which data. And then something has to 
keep track of the authorization levels and enforce it all, and make sure the right data is 
routed to the right place. 

Microsoft designed DOS version 3.0 to support the official IBM PC network hardware. 
Unfortunately, the AT was ready before the network features of DOS were, and the 
Microsoft designers had to deactivate these features in the final product They finally 
turned them back on in version3.l,releasedin November 1984. But DOS 3.1 was picky; 
it would handle only certain "well-behaved" networks. ("Misbehaved" products are ones 
that use undocumented 9ommands, or bypass software safeguards by manipulating 
hardware directly, or otherwise bend industry rules to enhance performance.) 

DOS 3 .0 introduced a streamlined method for integrating FCBs and handles. And while 
it provided a small handful of new features, none was a radical departure from DOS 2.1. 
In fact, IBM stated in its documentation that "DOS 3.0 does not replace DOS 2.1." But 
it did fix a nasty 2.1 oversight, by making it harder for users to format their hard disks if 
they weren't careful. (It wasn't until version 2.0 that DOS asked for confirmation if users 
tried to delete all the files on their disk with a single ERASE*.* command.) Version 3.0 
also let users make files read-only to prevent any inadvertent changes or deletions. 

Version 3.1 provided better aliasing features to combine drives and directories and to 
trick DOS into treating a subdirectory like a disk drive. DOS 3.2 introduced users to 3-
1/2 inch diskettes (although the tools it provided to handle this were downright awful), 
made it easier for them to upgrade DOS versions, and gave them one of the best, but least
used, new commands, XCOPY. 

DOS 3.3, tossed off by IBM pitchmen at the introduction of the PS/2 as an "interim 
solution" and the operating system for a string of dogs including the PC Convertible, 
Portable PC, and PCjr, deftly excised a heap of user headaches, and added a few sizzling 
new tricks. 

As all seasoned hard disk users are aware, working efficiently on a hard disk machine 
means pigeonholing related programs and data in electronic file drawers called subdirec
tories. But users who are currently working in one subdirectory often want to execute a 
program or look at data stored in another. 

Since version 2.0, users had been able to tell the PA TH command to check specified 
subdirectories for executable files (with filenames ending in COM, EXE, or BAT). This 
let users run programs in other subdirectories, but it didn't let them get at distant data. 
Nonexecutable files remained immune to even the most comprehensive search, forcing 
power users to purchase commercial "path extender" programs such as FileP ath or File 
Facility, or struggle with the DOS 3.1 SUBSTcommand. The DOS 3.3 APPEND com
mand made the process relatively easy- and a lot cleaner. 

Serial ports are your system's main gateway to the outside world. Version 3.3 let 
MODE work with four serial ports rather than just two (OS/2 can juggle up to eight), and 
cruise along at up to 19 ,200 baud, double the previous limit. And IBM finally recognized 
that at least twice a year users need to reset their internal IBM clocks and provided a way 
to do this without having to hunt down their Diagnostics disks, figure out which option 



14 PC Magazine DOS Power Tools 

adjusts the time, and then grind through all the irritating preliminary screens. The 3.3 
TIME and DATE commands automatically adjusted IBM CMOS memory to reflect the 
change. 

Another improvement was the newfound ability of the DOS 3.3 A 11RIB command 
to gang-process all files in a directory and its related subdirectories, which made it easier 
to create backups and prevent inadvertent file deletions or changes. Unfortunately, the 
same process used by A TfRIB can also "hide" files from casual snooping, but IBM won't 
show you how. (We will.) 

The original DOS architects preferred working with 512-byte disk sectors, and used a 
FAT to keep track of what data is in which sector. When they designed the FAT they 
used 16-bit addresses, which allowed a maximum of 65,536 (64K) table entries. This 
clamped a firm 32 megabyte limit (512 x 65,536 = 33,554,432 bytes) on the size of any 
physical hard disk. To get around this limit, manufacturers either had to increase the sec
tor size, which made their hardware nonstandard and relatively wasteful, or come up with 
a whole new file management scheme, which ended up being even more nonstandard. 

IBM tuned DOS 3.3 to divide physical hard disks into smaller logical drives, and fixed 
the FDISK command to create extended DOS partitions in addition to the primary ones 
users were able to carve out previously. Each extended partition could be further sub
divided into logical drives 32 megabytes or smaller, with their own drive letters. Com
paq quickly made it even easier to use enormous hard disks, by introducing a DOS version 
(3.31) that boasted 32-bit FAT addresses. 

To expedite directory searches with the new generation of larger hard disks, DOS 3.3 
provided a filename cache utility called FASTOPEN. Caches keep track of things in 
memory rather than on disk, speeding up many processes significantly. FASTOPEN 
notes the location of files and subdirectories (which are really just special classes of files) 
the first time you hunt for them, and then directs DOS to the exact spot on the disk the 
next time you have to deal with them. 

The DOS BACKUP command had always been so pathetic that an entire industry of 
third-party backup software has evolved to fill in the gaps. While the version 3.3 
enhancements aren't going to put all those developers out of business, they will bring 
some users back into the fold. Under previous DOS versions you had to format a tall stack 
of disks before starting the backup process. If you ran out of formatted disks halfway 
through you had to abort and either find a way to catch up, or start the whole elaborate, 
time-consuming procedure over again. 

In DOS 3.3 the BACKUP command can summon the FORMAT command and prepare 
unformatted disks if necessary - with certain irritating restrictions. And you have to 
limit the disks and drives you use; it still can't mix and match. The DOS 3.3 BACKUP 
works faster and more efficiently than older versions, by copying all smaller files to a 
single enormous one, and by creating a guide file that tells DOS how to take the big file 
apart and restore it properly later. It will also create a log file telling you what it did where. 

The DOS 3.3 RESTORE gives you added flexibility in restoring backed-up files by 
date and time, as well as those deleted or changed since you backed them up, or files that 
are no longer on the target disk. Better yet, while older versions of RESTORE let you ac
cidently obliterate your current system files (IBMBIO.COM, IBMDOS.COM, and 
COMMAND.COM or their generic counterparts) with older backed-up versions, DOS 



The Development of DOS 15 

3.3 RESTORE won't. Inadvertently mixing versions of hard disk system files is like 
replacing a heart surgeon, in the middle of an operation, with a tree surgeon. 

Batch files can take much of the anguish out of tricky or repetitive tasks. The first thing 
most power users do when they create a batch file is turn off the display by issuing an 
ECHO OFF command. This stops DOS from littering your screen with the frantic 
prompts, messages, and other electronic graffiti a batch file triggers. But users had no 
authorized way of preventing this ECHO OFF command from adding to the screen clut
ter itself. Version 3.3 users can prevent such clutter simply by prefacing any command 
with a @ symbol. 

In addition, DOS 3.3 could CALL one batch file from another, execute it, and then 
return to the original batch file and continue executing it. Doing this kind of "nesting" 
under previous editions of DOS meant that each batch file had to load its own separate 
version of COMMAND.COM, do its work, exit, and drop back to yet another version -
which was sort of like restarting a movie each time a latecomer walked into the theatre. 
DOS 3.3 also documented environment variables for the first time, which let users pass 
information back and forth from application to application. 

DOS 3.0 to 3.2 came in five international flavors. By executing the appropriate 
KEYBxx command, users could transform the keyboard into British, German, French, 
Italian, or Spanish modes. With version 3.3, IBM totally revamped the way DOS handled 
foreign alphabets. IBM's manuals have gotten a bit better over the years, but the three 
abstruse and seemingly contradictory chunks on this international support virtually defy 
comprehension. IBM prefaced its long appendix-like treatment of the topic with the 
caveat "You can use code page switching without fully understanding everything about 
it." After poring over the text, you '11 know why this was included. And if you live in the 
United States, you'll take one look, put your hand over your heart, and say "Thank God 
we 're Americans." 

For the first time, DOS 3.3 set a default number of disk buffers based on your system's 
configuration. Under previous versions, it assumed every PC and XT user really wanted 
only two and every AT user only three. DOS will now sniff out what hardware you have 
available, and allocate from two buffers (minimal RAM and no high density floppies, 3-
1/2 inch diskettes, or hard disks) to 15 (any machine with 512K or more of RAM). If 
you're using a big hard disk you may want more than 15. Better yet, you should try a 
commercial file cache program. 

Figure 1.2 shows the relative sizes of the various versions of DOS. You can use the 
chart provided to look at the size of COMMAND.COM on diskettes formatted with the 
/S option and determine the DOS version number. Note that DOS 3.3 is a whopping six 
times larger than 1.1, and 13 percent fatter than its immediate predecessor. 

Figure 1.3 traces the addition of commands through versions of DOS, up to 3 .1. Figure 
1.4 shows which commands were modified in which versions. 

The Future 

IBM and Microsoft continue to add and adapt messages and prompts; the infamous and 
ubiquitous DOS error message "Abort, Retry, Ignore?" became a more chilling "Abort, 



16 PC Magazine DOS Power Tools 

Retry, Ignore, Fail?" under DOS 3.3. This isn't exactly friendly. When Microsoft 
originally designed DOS it published all the specifications so other manufacturers could 
replace the COMMAND.COM user interface with something different, such as a visual 
shell. Several amateurs have tried, but nothing much has come of it. Microsoft itself tried 
an easier interface called Windows, but users have resisted, calling it overly large, un
gainly, and slow. (Microsoft and IBM adapted Windows as a graphic front-end called 
Presentation Manager for the next generation OS(l operating system.) 

DOS needs all sorts of help. Way back when the EGA was first introduced, for in
stance, users complained that the MODE command couldn't deal with any of the new 
graphics settings (such as 43 or 50 lines, or the far better color selection). Now that an 
even jazzier VGA color standard is out, you'd think that DOS could handle at least some
thing past the CGA standard it introduced way back with the original PC. Guess again. 
But this book/and its accompanying-disk provide a dozen utilities to master the EGA. 
And it will explain in lush detail how to get around most of the other DOS limitations, 
and provide you with the Utilities DOS Forgot. 



DOS 1.0 -13312 bytes used by system files 

COMMAND COM 3231 8-04-81 
IBMBIO COM 1920 7-23-81 
IBMDOS COM 6400 8-13-81 

DOS 1.1-14336 bytes used by system files 

COMMAND COM 4959 5-07-82 
IBMBIO COM 1920 5-07-82 
IBMDOS COM 6400 5-07-82 

DOS 2.0 - 40960 bytes used by system files 

COMMAND COM 17664 3-08-83 
IBMBIO COM 4608 3-08-83 
IBMDOS COM 17152 3-08-83 

DOS 2.1 - 40960 bytes used by system files 

COMMAND COM 17792 10-20-83 
IBMBIO COM 4736 10-20-83 
IBMDOS COM 17024 10-20-83 

DOS 3.0 - 60416 bytes used by system files 

COMMAND COM 22042 8-14-84 
IBMBIO COM 8964 7-05-84 
IBMDOS COM 27920 7-05-84 

DOS 3.1 - 62464 bytes used by system files 

COMMAND COM 23210 3-07-85 
IBMBIO COM 9564 3-07-85 
IBMDOS COM 27760 3-07-85 

DOS 3.2 - 69632 bytes used by system files 

COMMAND COM 23791 12-30-85 
IBMBIO COM 16369 12-30-85 
IBMDOS COM 28477 12-30-85 

DOS 3.3 - 78848 bytes used by system files 
COMMAND COM 25307 3-17-87 
IBMBIO COM 22100 3-18-87 
IBMDOS COM 30159 3-17-87 

Figure 1.2. Relative Sizes of All IBM DOS Versions 

The Development of DOS 17 

12:00a 
12:00a 
12:00a 

12:00p 
12:00p 
12:00p 

12:00p 
12:00p 
12:00p 

12:00p 
12:00p 
12:00p 

8:00a 
3:00p 
3:00p 

1:43p 
1:43p 
1:43p 

12:00p 
12:00p 
12:00p 

12:00p 
12:00p 
12:00p 



18 PC Magazine DOS Power Tools 

DOS 1.0 

BASIC.COM 
BASICA.COM 
CHKDSK.COM 
COMMAND.COM 
COMP.COM 
DATE.COM 
DEBUG.COM 
DISKCCMP.CCM 
DISKCOPY.CCM 
EDLIN.COM 
FORMAT.COM 
LINK.EXE 
MODE.COM 
SYS.COM 
TIME.COM 

DOS 1.0 

COPY 
DIR 
ERASE 
PAUSE 
REM 
RENAME 
TYPE 

DOS 1.1 

EXE2BIN.EXE 

DOS 1.1 

DATE 
DEL 
REN 
TIME 

New External Commands 

DOS 2.0/2.l DOS 3.0 DOS3.l 

ANSI.SYS ATTRIB.EXE BASIC.PIP 
ASSIGN.COM GRAFTABL.CCM BASICA.PIF 
BACKUP.COM KEYBFR.COM JOIN.EXE 
FDISK.COM KEYBGR.COM SUBST.EXE 
FIND.EXE KEYBIT.COM 
GRAPHICS.CCM KEYBSP.COM 
MORE.COM KEYBUK.COM 
PRINT.COM LABEL.COM 
RECOVER.COM SELECT.COM 
RESTORE.COM SHARE.EXE 
SORT.EXE VDISK.LST 
TREE.COM VDISK.SYS 

New Internal Commands 

DOS 2.0/2.1 DOS 3.0 

BREAK 
BUFFERS 
CD 

COUNTRY 
DEVICE 
FCBS 

CHOIR IASTDRIVE 
CLS 
CTTY 
ECHO 
ERRORLEVEL 
EXIST 
EXIT 
FILES 
FOR 
GOTO 

DOS 3.1 

(none) 

Figure 1.3. New DOS Commands and Utilities 

DOS3.2 DOS 3.3 

DRIVER.SYS 4201.CPI 
REPIACE.EXE 5202.CPI 
XCOPY.EXE APPEND.EXE 

DOS 3.2 
(none) 

COUNTRY.SYS 
DISPIAY. SYS 
EGA.CPI 
FASTOPEN.EXE 
KEYS.COM 
KEYOOARD.SYS 
LCD.CPI 
NLSFUNC.EXE 
PRINTER. SYS 

DOS 3.3 

CALL 
CHCP 

Note: Files with extensions are predominantly external commands or device drivers. Those 
without extensions are either internal commands (part of COMMAND.COM) or configuration 
commands that work specifically with CONFIG.SYS. 

------------



The Development of DOS 19 

Modified External Commands 

DOS 1.0 DOS 1.1 DOS 2.0/2.l DOS 3.0 DOS 3.1 DOS3.2 DOS 3.3 

(none) (TIME.COM) CHKDSK.COM FORMAT.COM LABEL.COM ATTRIB.EXE ATTRIB.EXE 

DOS 1.0 

(none) 

(DATE.COM) COMP.COM BACKUP.COM TREE.COM CCM1AND.ca-1* BACKUP.COM 
FORMAT.COM DEBUG.COM RESTORE.COM LINK.EXE DISKCXJ1P.CC'M FDISK.COM 
CHKDSK. COM DISKCOOP. CC'M DISK.COOP. CC'M DISK.COPY. CC'M GRAFTABL. CCM 
ERASE. COM DISK.COPY. CC'M DISK.COPY .CC'M FORMAT. COM MODE. COM 
DISKCCMP. CCM EDLIN. COM GRAPHICS. CCM SELECT. COM RESTORE. COM 
DISKCOPY.CC'M FORMAT.COM 
LINK.EXE 
DEBUG.EXE 
MODE.COM 

DOS 1.1 

(none) 

Modified Internal Commands 

DOS 2.0/2.1 DOS 3.0 

DIR 
DEL 
ERASE 

DATE 
(external 
command 
paths okay) 

DOS 3.1 

(none) 

* enviro111Mnt 
size 

DOS 3.2 

SHELL 

DOS 3.3 

ECHO 
DATE 
TIME 

Figure 1.4. Modified DOS Commands and Utilities 





Chapter 2 

Disk Organization, Files, 
Filenames 

The first thing most users do when they walk over to a computer equipped with a hard 
disk is type DIR to see what's there. On a well-organized system you'll probably see 
something like: 

Volume in drive C is WORKDISK 
Directory of C:\ 

COMMAND COM 25307 3-17-87 12:00p 
CONFIG SYS 47 10-18-88 7:07a 
AUTO EXEC BAT 256 10-18-88 12:01a 
DOS <DIR> 10-18-88 7:09a 
WORDS TAR <DIR> 11-06-88 12:22a 
DBASE <DIR> 2-11-88 12:00a 
LOTUS <DIR> 12-03-88 12:02a 

7 File {s) 28220672 bytes free 

However, try this on a disorganized floppy disk system and you'll see a real mess: 

Volume in drive A has no label 
Directory of A:\ 

TF86_CDY RPT 
TF86 CDY BAK 

65387 
54396 

1-01-80 7:07a 
1-01-80 12:0la 

21 



22 PC Magazine DOS Power Tools 

RRXWFEB7 4QS 6754 1-01-80 7:07a 
FIN 54TT RPT 11239 1-01-80 11: Olp 
SPELLIT <DIR> 1-01-80 12:02a 
PROSEWIZ EXE 86456 4-17-87 9:54p 
FIN 54TT BAK 9437 1-01-80 5: 07p 
COMMAND COM 25307 1-01-80 12:00p 
AUTOEXEC BAT 256 1-01-80 12:01a 

etc. 

When you type DIR and press the Enter key, DOS shows you what's in the directory 
that you happen to be using. Directories are storage bins, like drawers in a file cabinet. 
Just as some file cabinets prevent you from opening more than one file drawer at once, 
you can look at the contents of only one directory at a time. Each line in the main part of 
a DIR listing represents either a single file stored in that directory, or the name of another 
related directory on the same disk. 

And just as some well-organized workers keep their file cabinets in meticulous shape 
and can find any document in seconds, while others live in the shadow of chaos and can't 
find anything without tedious searching, disks can be well-organized or in total disarray. 
Fortunately. once you know the basic techniques and have a few powerful programs 
handy, your computer can do all the organizing for you. This book will show you the 
tricks and provide the programs you need. 

The Physical Disk 

All diskettes and hard disks use the same basic technology. The surface of each is coated 
with a material that can store lots of isolated magnetic charges. An electromagnetic coil 
of wire or special "stepping" motor propels a tiny magnetic read-write head over the sur
face of the disk. When you want to store information, you tell a controller circuit to move 
the magnetic head to an unused part of the disk, then send signals into the head that alter 
the magnetic charges on a small adjacent area of the surface. When you want to retrieve 
information, you have the controller move the head to the appropriate area and tell the 
head to sniff out the pattern of magnetic charges located there. 

It's actually a lot more complicated than this. When you issue a command, something 
has to interpret your typing and figure out what you 're trying to do. If it determines that 
you want to load a program, it has to decipher the name and location of the file, and look 
on the appropriate disk to make sure it's there. Files are normally stored in small chunks 
scattered over the surface of the disk, and something has to thread all the chunks together, 
then find an unused area in memory and copy the chunks there in the right order. At this 
point things get even more complex, since something has to rope off the area of memory 
that holds the program, set up other memory areas for storage, see if you entered any 



Disk Organization, Files, Filenames 23 

parameters after the name of the program that need processing, and pass control to the 
program. 

Fortunately, DOS handles all the details. All you have to do is type in the filename and 
press Enter. 

Individual floppy disks on IBM's earliest PC could hold a mere 64 files, or 160,256 
bytes of programs and data. As users began demanding bigger and more efficient sys
tems, manufacturers first tried cramming additional storage space onto the same 5-1/4 
inch floppies. But as space needs skyrocketed, vendors started introducing increasingly 
large hard disks - as well as 3-1/2 inch diskettes that could store as much as 1,457 ,664 
bytes of information - more than nine times the capacity of the first PC diskettes. 

IBM's first hard disk, for the XT, held ten megabytes; the first for the AT could store 
20 megs. Users accustomed to floppy disks initially wondered how they could possibly 
fill so relatively enormous a storage space. But having all their programs and files at their 
fingertips was so seductive that users quickly clamored for more. Stacks of today's mus
cular hard disks and optical disks can salt away bytes in the gigabyte range (gig a means 
billion and is pronounced "jig-guh" the way gigantic is pronounced "jy-gan-tic" - al
though most users say "giga" with a hard gas in "gargantuan"). 

But DOS wasn't designed for such massive storage. It doesn't store data in long, con
tinuous, uninterrupted blocks of space. If it did, making additions and deletions to files 
would become insanely inefficient, since each time you made a file longer, DOS would 
have to find a brand new uninterrupted amount of disk area to store the enlarged file. So 
DOS divides files up into little pieces and stores the pieces in small areas called clusters. 

Clusters are made up of sectors. Each sector - the smallest possible user storage area 
on any DOS disk-is 512 bytes long. On some disks, like the earliest single-sided 160K 
and 180K floppies, or the high-density 1.2 megabyte 5-1/4 inch and 1.44 megabyte 3-1!2 
inch diskettes, each cluster contains just one sector. At the other end of the scale, the ab
surdly inefficient ten-megabyte XT hard disk allots eight sectors to each cluster, which 
means it takes 8 x 512, or 4,096 bytes to store even the smallest file on an original XT. 
And some large, nonstandard hard disks are even worse. 

When you store a file on a disk, DOS splits it into cluster-sized chunks and starts look
ing for vacant parts of your disk to hold these chunks. On a newly formatted hard disk, 
all these chunks can be continuous and uninterrupted. But on a disk thaCs seen months 
or years of heavy use - especially one that's near I y filled with data - DOS has to look 
long and hard to find empty spaces, and may end up dividing a typical file into dozens 
of fragmented clusters scattered all over the surface of your disk. 

DOS relies on a chart called the File Allocation Table (FAT) to remember which 
clusters on the disk are temporarily unused, and to keep track of where all the scattered 
chunks of your files are located. It also uses a special nondisplaying part of the disk's 
directory to steer itself into each file's very first cluster. But while the directory contains 
the address of the initial cluster, the FAT maintains the addresses of all the rest of any 
file's clusters. The FAT is so important that most disks contain two identical copies, and 
DOS updates both each time it adds, deletes, or changes a file. This way if one copy of 
the FAT becomes damaged, DOS can consult the other for the vital mapping informa
tion it needs. 



24 PC Magazine DOS Power Tools 

A raw disk is sort of like a tract of undeveloped land that someone wants to turn into 
a housing development crammed with one-acre lots. At first the land is just one large 
uniform property that may have some random buildings, hills, gulleys, and dirt roads on 
it. The first thing the developer does is flatten out the property, divide the land into lots, 
and build a grid of roads that lead to each individual lot. He may find that one or two lots 
contain jagged rocks or swampy areas that can't easily be converted into homes. Then 
he constructs a main office and puts a map of the development on the wall, displaying 
the addresses of each lot and marking off the few that have cliffs or quicksand that prevent 
them from being sold. As buyers start purchasing homes, the developer crosses off these 
lots one by one. 

Fresh from the factory, a disk is just one large uniform surface that has some random 
information on it (left over from the manufacturing process). The first thing a user has to 
do with a disk is format it, which divides the disk into uniform sectors, evens out the ran
dom magnetic hills and valleys in key places, creates the underlying maps and structures, 
and reports any "bad" sectors that are magnetically unstable or unfit for holding data. 

(Actually, hard disks require two kinds of formatting, low-level and high-level. To con
tinue our analogy, a low-level format is like drawing a map of the land. A high-level for
mat is like actually putting in roads. Most hard disks come from the factory with the 
low-level formatting already done. And today many dealers even do the DOS high-level 
formatting to spare users the grief of having to read the manual.) 

When the developer first starts hawking his hundreds of homes, the map of available 
lots is wide open, except for the few that are too craggy or wet to build on. Likewise, 
when a disk is first formatted, its map of available sectors is wide open, except for the 
few that are magnetically unsuited to store information. If one huge clan of families ap
proached the developer just as he started selling, and wanted to buy a long string of homes 
adjacent to each other, the developer could easily put them all in a row, then cross an en
tire contiguous block of homes off the map. But if the developer sold most of the build
ing lots to unrelated families, the map would start filling up in somewhat random order. 
Over the years, many of these unrelated families would sell their individual homes and 
move out, and the development would always contain some homes that were temporari
ly vacant. If the clan descended on the development a few years after it was built, they 
probably wouldn't be able to find a string of homes next to each other, and would have 
to settle for one here, one there, one way over there, etc. 

When a disk is newly formatted and empty, you can store files in relatively contiguous 
clusters. But as you add new files and erase old ones, and make existing files smaller and 
larger, you end up with pieces of your files all over the disk. It's far faster to load and 
write files that aren't scattered in many pieces. Hard disk users should periodically make 
full file-by-file backup copies of all their files, reformat their disks, and then put all the 
important files back. This has three good effects: 

1. It makes sure everything is backed up. 
2. It unfragments files so they load faster. When you back up a file, DOS takes all the 

scattered pieces from the far-flung reaches of your hard disk and puts them all together 
in one continuous area on the newly formatted backup floppy or tape. When you go 



Disk Organization. Files, Filenames 25 

back later and restore your backed up files to the newly formatted hard disk, DOS 
writes the file in one long, efficient, continuous piece. Of course, as soon as you start 
editing it again, the efficiency plummets. Because programs don't change much, 
however, reformatting your disk and then copying programs back to it may speed up 
loading dramatically. 

3. It cleans up unwanted files, giving you lots more free space on your hard disk. You'll 
be surprised at how many files you'll decide aren't worth copying back to the hard 
disk once you've backed them up. Having them available on a backup floppy or tape 
means you can always retrieve them if you need to. But by not copying them back to 
your hard disk, you'll end up with free space for new files -and you'll prevent the 
wasteful "churning" DOS is forced to do when it tries to hunt down the few vacant 
sectors on an overstuffed hard disk. 

DOS has a serious design problem when it comes to large hard disks. When you ask 
it to store a file, DOS consults the FAT to find out where the unused sectors are located. 
And when you later ask DOS to load a file, it looks up the locations of the bulk of the 
file's sectors by again examining the FAT. 

The engineers who originally designed DOS had to decide how big the FAT should 
be. Making it too small meant limiting the number of bytes users could store on a single 
disk. But if they made it too large, they would have ended up with an ungainly FAT that 
would have taken up too much raw space on each disk. (And remember, this was back 
in the days when a standard diskette held a trifling 160K, the standard PC came with 16K 
of RAM, and IBM seriously thought users were going to store their data on cheap tape 
recorders.) They finally settled on giving the FAT a maximum of 16-bit addresses, which 
meant that the largest possible table could have 64K worth of entries. Since each entry 
on the chart was a sector 512 bytes long, the maximum size of any single DOS disk was 
64K x 512, or 32 megabytes. 

The first IBM hard disk FAT, for the XT. used 12-bit, or 1.5 byte, addresses. Each ad
dress was made of three hexadecimal digits (16-bit addresses use four hex digits). But 
since FAT values are maintained as even pairs of hex digits, and because of the "back
words" storage technique used by the CPU, juggling 12-bit FAT addresses can be a real 
headache. Fortunately, DOS does all the work. 

While 32 megabytes must have seemed enormous in the early 1980s, today it can seem 
small and cramped. TheFDISKcommand in IBM's PC-DOS 3.3 let users divide (or par
tition) one large physical hard disk into several smaller logical drives, each 32 megabytes 
or less, and each with its own drive letter. DOS version 3.31 extended the idea of logi
cal drives by adding 32-bit FAT addresses, which allow single logical drives as large as 
half a gigabyte. Other manufacturers have tried increasing the sector size past 512 bytes, 
which breaks the 32-megabyte barrier but causes all sorts of incompatibility problems. 

In any event, all references to disks in this book really mean logical drives 32 
megabytes or smaller. If you're using one monster physical drive that you've divided 
into three logical drives called C:, D:. and E:, this book will treat them as three separate 
entities. And so will DOS. 



26 PC Magazine DOS Power Tools 

File Types 

Files are either executable or nonexecutable. Executable files come in two classes -
most are programs (with COM or EXE extensions) that your system can run, such as 
WordStar, or CHKDSK, or 1-2-3. But DOS can also execute batch files (with BAT ex
tensions), which are sequential lists of DOS commands and program names. DOS chums 
through batch files a line at a time, executing any DOS commands on each line and run
ning any programs you've specified there. 

Most other files store data, in one of two forms. Some data files are in text or low-bit 
ASCII format, which means that they contain nothing but the alphanumeric characters 
you could produce on a conventional typewriter. You can use the DOS TYPE command 
to read such ASCII files (although the TYPE command can also handle high-bit ASCII 
characters without missing a beat). But such files waste lots of space, and aren't very 
secure from prying eyes. Many data files are stored in proprietary nontext formats that 
compress the data more efficiently than ASCII files, and keep the information safe from 
snoopers. If you try using the DOS TYPE command on these, you '11 either see a mean
ingless mass of what look like random characters, or a few familiar words interspersed 
with gibberish. 

Some special kinds of nonexecutable files, with extensions like SYS or DRY, contain 
instructions that your operating system uses to control hardware better. The DOS 
ANSI.SYS device driver gives you enhanced keyboard and screen control. VDISK.SYS 
turns some of your memory into a virtual disk (as IBM calls it), or RAMdisk. And 
DRIVER.SYS lets you use some of IBM's external oddball drives. 

You may also see files on recent DOS disks that have PIF extensions, which stands 
for Program Information File. IBM invented the PIF file for use with its Top View operat
ing environment. Although Top View is now extinct, Microsoft also used PIF files for its 
Windows operating environment. Some programs are specially written to run under 
Microsoft Windows. But many normal programs that run under DOS can still run under 
Windows. Microsoft refers to these programs as either standard applications or old ap
plications. 

Windows looks for a PIF file whenever you want to run an old application. The PIF 
file contains information about the program and tells Windows things like how much 
memory the application needs and how "well-behaved" the program is. An "ill-behaved" 
program generally writes directly to the display memory. Virtually all word processors, 
spreadsheets, and graphics programs do. Windows cannot run these programs in a win
dow and may have trouble multitasking them. It has to give up the entire display because 
it has no way of knowing when the program will write to the screen. A program that does 
not write directly to display memory, but instead goes through DOS or the BIOS to dis
play everything, can be run in a window, share the screen with other applications, and 
often be multitasked.) 

Program Files 

Programs all sport either COM or EXE extensions. The COM stands for command and 
the EXE for executable files, but they're really both executable. They're also unreadable. 



Disk Organization, Files, Filenames 21 

If you manage to peek inside one (using the COPY /B trick mentioned below) all you'll 
see is beeping, flashing gibberish punctuated by any error messages and English-lan
guage prompts or ~nstructions that happen to be imbedded inside the program code. 

The gibberish is really just an artifact. Each byte of every program has a value between 
0 and 255; your system interprets strings of these values as instructions that put your 
programs through their paces. But since IBM's version of the ASCII character set con
tains 256 separate characters with values between 0 and 255, when you display the con
tents of a program onscreen your system prints the ASCII characters that happen to 
represent the value of each byte. These characters generally have nothing to do with the 
actual program instructions. The beeping and flashing is caused when your system tries 
to display certain very low values that DOS interprets as control characters. 

COM files are memory ima.ge files. The pattern of bytes in the file on the disk is ex
actly the same as the pattern when the file is loaded into memory, which isn't the case 
with EXE files. They can't be larger than 64 K, and are generally more compact than EXE 
files. DOS always loads COM files at offset IOOH (which is why DEBUG starts COM 
files at address lOOH), and squeezes a 256-byte Program Segment Prefix (PSP) beneath 
it. The bottom half of the PSP contains a lot of important addresses that tell DOS where 
to find the things it needs, and the top half contains a copy of the comma.nd tail - the 
part of the command line that you entered at the DOS prompt after the filename. Any 
parameters and switches show up here. DOS also uses this upper area as a default Disk 
Transfer Area (DT A), a file I/0 buffer space. 

The COM file extension came from the older CP/M operating system, since the first 
versions of DOS were heavily based on CP/M. In fact, the COM file formats of CP/M 
and DOS (including the PSP that DOS builds when it loads a COM file) are practically 
identical. For software developers, this similarity helped ease the early transition to the 
PC. Programmers could ignore the segmented addressing scheme of the 8086 and work 
with just 64K of program and data space, the same as under CP/M. 

EXE files are gradually replacing COM files. The mix of code and data in the same 
segment and the calculation of segment addresses outside the code segment are two of 
the major stumbling blocks that limit PC programs to one megabyte of addressable 
memory and prevent them from running under the 80286 extended-memory protected 
mode. Strictly speaking, COM files no longer exist under OS(l, although you can still 
run these programs in a "DOS Mode" session. For the millions of older systems running 
DOS, however, COM programs will still work as advertised. 

While programmers once prided themselves on what tight, sleek assembly language 
COM programs they could write, EXE programs today are often pieced together by teams 
of coders who use higher-level languages like C and end up with enormous, often slop
py programs that are relative memory hogs. 

The EXE format started with DOS and can handle programs larger than 64K; in fact, 
an EXE file can snatch around 600K in a typical maxed-out system. It does this by using 
multiple segments for program code, data, and a special storage area called the stack (see 
Chapter 6). Each of these segments can be 64K long. DOS looks at a special header at 
the beginning of any EXE file to figure out how and where to load the individual seg
ments. Every EXE header contains information that DOS needs to load the program into 
memory correctly, juggle the segment assignments, and allocate space for it to run. You 



28 PC Magazine DOS Power Tools 

can't see this header information if you load the EXE file directly into DEBUG, because 
DEBUG uses the header to perform all the space allocation and fix-ups and gets the 
program ready to run. But you can look at the header if you first rename the file to give 
it an extension other than EXE and then load it into DEBUG. (But then you won't be 
able to run it in DEBUG, so don't try.) 

Use the following commands to examine the first part of the file header on a sample 
EXE program called SAMPLE.EXE: 

RENAME SAMPLE.EXE SAMPLE.XXX 
DEBUG 
N SAMPLE.XXX 
L 0 
D 0 
Q 

One value in the header specifies the number of 16-byte paragraphs needed after the 
end of the loaded program. This extra memory space is used for the heap and the stack. 
During calculations, the stack is used to store intermediate results. The heap is used by 
the program mostly for dynamic storage. If a program executes a STRING$ command 
or DIMensions an array, the result has to be put somewhere, and it goes in the heap. In 
a program that does a lot of dynamic string and array allocation, the heap can get pretty 
cluttered up and disorganized. At times, normal execution can grind to a halt while the 
program cleans up the heap in a process technically referred to as "garbage collection." 

You can examine the PSP by loading the EXE file (not the renamed XXX file) or COM 
file into DEBUG. To look at SAMPLE.EXE, type: 

DEBUG SAMPLE.EXE 
D 0 L 100 
Q 

In all DOS versions before 3 .3 users received a utility called EXE2BIN that can trans
late certain kinds ofEXE files into COM (BIN stands for binary) files. (In 3.3 IBM moved 
EXE2BIN totheDOSTechnicalReference Manual.) Only EXE files that have been spe
cially prepared, generally in assembly language, can be successfully turned into COM 
files. These programs must not contain a stack segment, must have no references to 
relocatable segments, and must begin execution at offset IOOH in the file. Since an ex
ecutable EXE file must have a stack segment and generally uses separate code and data 
segments, the two formats are essentially incompatible. 

(The next few paragraphs are a bit technical, so skip ahead if you'd like.) DOS provides 
several different ways to exit programs. Under all versions of DOS. the most common 
method is the: 

INT 20H 

command. But you can also use: 



MOV AH,0 
INT 21H 

Disk Organization, Files. Filenames 29 

The first two bytes of the PSP that DOS builds at the beginning of all programs loaded 
into memory contains the machine code for an INT 20H (the bytes CD 20). For a COM 
program, DOS pushes a word of zeroes on the stack before it turns control over to the 
program. This way, assuming that the stack pointer is the same as it was on entry to the 
program, a COM program can terminate with a simple: 

RET 

This branches to the beginning of the PSP and executes the INT 20H instruction. 
Prior to DOS 2.0, interrupt 20H presented some problems for EXE programs. Inter

rupt 20H requires the value of the CS (Code Segment) register to point to the beginning 
of the PSP. In general, this is not true for EXE programs. On entry, however, the value 
of the DS (Data Segment) register points to the PSP. So, to use interrupt 20H, EXE 
programs have to execute code that looks something like this: 

PUSH DS 
MOV AX,0 
PUSH AX 

This code puts the far address (segment plus offset) of the beginning of the PSP on the 
stack. The EXE program can then exit with a RET within a far procedure, which effec
tively branches to the INT 20H instruction at the beginning of the PSP. 

DOS 2.0 added interrupt 2 lH function call 4CH, which has two advantages over in
terrupt 20H: it doesn't require that the CS register point to the PSP, and it lets a program 
pass a return code or exit code (in register AL) back to DOS. You can exploit this return 
code in a batch file by processing it with IF ERRORLEVEL tests. Or, if the program is 
executed through function call 4BH as a subordinate process of another program, the 
parent program can retrieve the return code through function call 4DH. 

Aside from these advantages, however, the two methods of termination are about the 
same. DOS turns an interrupt 20H into an interrupt 21H function call 0. Function calls 0 
and 4CH both execute a few lines of code on their own but then share the bulk of the 
DOS code involved in terminating programs. 

It's a similar story for interrupt 27H. By setting register DX to the end of the program 
and executing an INT 27H, a program can terminate but remain resident. This works for 
all DOS versions. Interrupt 27H is a problem with EXE programs because CS must again 
point to the beginning of the PSP. 

Beginning with DOS 2.0, interrupt 2 lH function call 3 lH can also be used to terminate 
and remain resident. Here register DX is the size of the program in 16-byte paragraphs. 
By using a paragraph size rather than a byte size, function call 31H allows a program 
larger than 64K to remain resident in memory. Like function call 4CH, you can also pass 
back a return code with function call 3 lH. But again, interrupt 27H and function call 3 lH 
share a lot of DOS code. 



30 PC Magazine DOS Power Tools 

Function calls 4CH and 3 lH are now the "preferred" methods for exiting programs, 
but only because they are more flexible than interrupt 20H and 27H. The only problem 
is that these two function calls don't work under DOS 1.1. Not an earth-shaking problem, 
however. 

Nonprogram Files 

Programs produce and process data. This data is either in pure-low-bit-ASCII text for
mat or in some compressed proprietary form. 

A "pure-low-bit" ASCII file contains only letters, numbers, punctuation, the symbols 
tt#$%& '()*+-/<=>@[\]A_' {I}-, tabs, and variations of the carriage return/line feed com
bination that tells your system to end one line and start the next one. Such files can't in
clude most characters with ASCII values less than 32 or greater than 127. 

Word processors often use special proprietary formats that rely on ASCII characters 
lower than 32 or greater than 127 to keep track of things like settings (margins, line spac
ing, etc.) and special printing tricks (underlines, boldfaces, pitch changes, etc.). But most 
good word processors include a mode that will let you create and edit pure-ASCII files. 
Or if they don't, they'll usually let you strip out any offending characters from their 
proprietary formats and leave just the letters, numbers, and punctuation. 

Pure-low-bit ASCII files are usually called just ASCII files, text files, or DOS files. 
You can tell if a file is pure ASCII by using the DOS TYPE command to display its con
tents onscreen. If it looks like normal everyday text, it's probably pure ASCII or close to 
it However, if it's jumbled, or littered with smiling faces, math symbols, crooked lines, 
and foreign language characters, it's not a pure-ASCII file. 

If you have a file punctuated with jumbled characters, you can strip out these non text 
characters by passing it through the STRIP.COM filter on the accompanying disk. 

To filter a jumbled file called DIRTY .FIL and send the cleaned-up results to the screen, 
just type: 

STRIP < DIRTY.FIL 

If you wanted to take the cleaned-up results and put them in a new file called 
CLEANED.UP just type: 

STRIP < DIRTY.FIL > CLEANED.UP 

On a decently fast hard disk, S1RIP.COM can take a messy lOOK WordStar file and 
produce a text version in a second or two. 

While powerful word processors - with their abilities to move and copy blocks of 
text, perform formatting magic, and search for and replace strings of characters - are at 
one end of the editing spectrum, the DOS COPY CON command is at the other. The DOS 
EDLINtexteditorissomewhereinbetween,althoughfewuserseverbotherwithEDLIN, 
since everyone either uses word processors, program editors, or even the character han
dling features of programs like 1-2-3 to create small text files. 



Disk Organization, Files, Filenames 31 

All COPY CON can really do is copy characters from the keyboard to a file. The only 
"editing" it offers is the ability to erase mistakes on the current line with the backspace 
or left arrow key. But it's fast and convenient, and it lets you create short files without 
having to leave DOS or have your word processor handy. 

COPY CON creates absolutely pure ASCII text files, without any embedded codes, 
except to indicate the end of the file. It's simple to create a file such as a batch file using 
COPY CON. First,justpickafilename that ends with BAT, such as DIRSIZE.BAT, type 
it in after the command COPY CON at the DOS prompt, and press the Enter key: 

COPY CON DIRSIZE.BAT 

DOS will drop the cursor down a line and just sit there waiting for you to do some
thing. Start typing up to 127 characters of text per line (126 if it's the last line). If you 
make a mistake, you can backspace it away only if it's on the same physical line of the 
screen as the cursor. Lines wrap down one row on the screen when they reach 80 charac
ters, so if you 're typing the 8 lst and you notice a goof at character 79, you 're out of luck. 
(To abort the process and start again, press Ctrl-Break.) When you're done typing each 
line, press Enter key to start the next one. 

In this case, type in a command to sort the DIR listing in reverse size order and dis
card extraneous lines: 

DIR I FIND "-" I FIND /V "<" I SORT /R /+14 I MORE 

(To make this work, you'll have to have the DOS FIND.EXE, SORT.EXE, and 
MORE.COM files on the same disk as the batch file you're creating, unless they're in a 
subdirectory that your PATH command knows about.) Before pressing the Enter key at 
the end of the line, press the F6 function key. You'll see a "Z onscreen. This tells DOS 
you're done. Then press the Enter key and you should see the message: 

1 File(s) copied 

Check the directory and you'll see a new file called DIRSIZE.BAT. If you do have the 
FIND.EXE, SORT.EXE, and MORE.COM files handy, typing DIRSIZE at the DOS 
prompt will produce a directory listing sorted by file size, with the biggest files at the top. 

If for some reason you have changed the meaning of the F6 key (either with ANSI.SYS 
or a commercial macro-writing program like ProKey), you could instead hold down the 
Ctrl key and press Z. Or you could even hold down the Alt key, type 26 on the number 
pad (not the top row keys), and then release the Alt key. All three methods will put an 
ASCII character 26 end-of-file marker at the end of the file. 

Most of the time you can put the "Z end-of-file marker at the end of the last command 
rather than on an extra line all by itself at the very end of the file. However, certain com
mands, such as ECHO, require that you follow the command with a carriage return rather 
than an end-of-file marker. And if you do put the Ctrl-Z on a line by itself, the batch file 
will usually end up putting two prompts on the screen after it finishes executing. 



32 PC Magazine DOS Power Tools 

Creating Filenames 

You can't store any information on any disk unless you give it a filename. Unfortunate
ly. because of its CP/M heritage, DOS limits the length of all filenames to 11 characters, 
just enough to remind you what's inside the file, but far too few if your file contains chart 
#2 for the fourth quarter income report on the Airframe Division of Amalgamated 
Electronics, since you'll end up with some cryptic entry like ADAE4QIN.CH2. 

Filenames can contain: 

• the letters A through Z 
• the numerals 0 through 9 
• the characters ' - ' ! @ # $ % A & () - _ { ) 
• high-bit characters (with ASCII values over 127) 

Filenames can't contain: 

• spaces 
• characters treated as spaces, such as = ; , tab 
• the "wildcard" characters ? and * 
• characters with special DOS meanings . : " \f I < > + [ ] 
• control characters (with ASCII values less than 33) 
• lowercase letters (DOS automatically uppercases these) 

Many of the ASCII characters with values between 128 and 165 are foreign language 
versions of a, e, i, o, u, and y. When creating filenames, the American version of DOS 
tends to ignore the wide range of accent marks and treat these as the plain old vowels. 
And DOS turns all lowercase letters into their uppercase versions, which means that you 
can't have one file called: 

autoexec.bat 

and a different one called: 

AUTOEXEC.BAT 

(Actually, if you use the brute-force techniques described in Chapter 8 on DEBUG, you 
can do this, by loading and writing absolute sectors. But while DOS will acknowledge 
that this lowercase file exists by including it in DIR listings, it won't let you change or 
delete or examine it - except with DEBUG. This does let you keep the file secure, but 
fooling around with your directory directly is a bad idea unless you know exactly what 
you're doing and are sure all your files are backed up. And on a hard disk, where you can 
really lose big if you make one silly mistake, it's an especially bad idea.) 

This capitalized exclusivity also means that upper- and lowercase pairs of special 
characterssuchastheoneswith values 128/135, 145/146, 148/153, 129, 154,and 164/165 
automatically turn into their uppercase versions. 



Disk Organization, Files, Filenames 33 

Using some of the more unusual high-bit ASCII characters for filenames can keep 
prying fingers away, since few users have ASCII charts handy when they snoop inside 
someone else's system, and even fewer know the Alt-keypad method of generating these 
odd characters (described in Chapter 5). There's nothing more confounding to a casual 
snoop than entering a DIR command and seeing an entire screen full of gibberish where 
the filenames should be. 

If you try to create a filename using ASCII 127 (with the Alt-keypad technique), DOS 
will just backspace the previous character away. But you can use this character in a 
filename, if you find a way to type it in. BASIC lets you do it Try typing in the follow
ing CHAR127.BAS program: 

100 'CHAR127.BAS 
110 OPEN CHR$(127) FOR OUTPUT AS *l 
120 PRINT *l,"It works ... " 
130 CLOSE:SYSTEM 

Then, at the DOS prompt, type: 

BASICA CHAR127.BAS 

(or GWBASIC CHAR127 if you're using a generic MS-DOS version of BASIC). 
The CHAR127.BAS program will create a file with a single ASCII character 127 as 

the filename. This character will show up in DIR listings as a delta (which looks like a 
little house). 

You can view it by typing: 

DIR ? 

because using the single? wildcard in a DIR command will display all the filenames that 
are just one character long. 

If you try to use an illegal character, such as an asterisk, DOS will discard everything 
from the asterisk on. So if you type: 

A>COPY CON NOTE*IT 

DOS will discard the asterisk and the IT that follows, and create a file called NOTE. 

Reserved Filenames 

DOS is selfish about its internal names for devices such as printers, communications 
hardware, the keyboard/screen combination (which is collectively called the console, or 
CON), and a special dummy device with interesting properties, known as NUL. One 



34 PC Magazine DOS Power Tools 

reason for this hands-off attitude is that you can use some DOS commands on devices as 
well as files. For instance, while the COPY command is great for backing up your files 
to another disk or subdirectory (the more recent XCOPY command is even better), you 
can also use COPY in conjunction with the CON device to create files: 

COPY CON FILENAME 

Using COPY this way tells DOS to take whatever the user is typing at the keyboard and 
put it in a file called FILENAME (or any other legal filename you specify). And if you 
type: 

COPY /B COMMAND.COM CON 

you'll be able to see the entire contents of COMMAND.COM onscreen, since copying 
a file to CON reads it from a disk and sends it to your display. You can't do this with a 
TYPE COMMAND.COM command, since all but the very shortest executable files con
tain addresses or instructions loaded with ASCII 26 characters. The DOS TYPE com
mand interprets these ASCII 26 characters as end-of-file markers, and grinds to a halt as 
soon as it stumbles over the first one. 

The /B that appears directly after the COPY command in the above example is called 
a switch. Switches turn optional command features on and off (and can also furnish 
needed values and settings at the same time). In this case, the /B switch tells DOS to look 
at the directory listing, figure out the exact number of bytes in the file you want copied, 
and copy them all - including any ASCII 26 characters it sees (which it displays as lit
tle arrows). You can slap lots of different switches onto various commands, producing 
such nightmarish results as: 

PRINT /D:LPT2 /B:8192 /U:2 /M:4 /S:20 /Q:20 B:\INFO\FILl C:\FIL2 

This particular thorny command would use DOS 's background printing feature to print 
two files in a row - one on drive B:, the other on drive C: - using the second of two 
printers that were attached to your system. And it would let you run another program 
while the files were printing. (See the next chapter for a full discussion of backslashes 
and subdirectories.) 

DOS refers to the prompt and all the commands, switches, filenames, and miscel
laneous parameters following it as the command line. Everything after the actual com
mand itself is called the command tail. Here's an example: 

. command line J 
tch 

! 
A>COPY /B COMMAND.COM CON 

pr01t.1 f L command tail _J 
command 



Disk Organization, Files, Filenames 35 

CON isn,t the only device thafs useful with COPY. You could print out a copy of 
your AUTOEXEC.BAT file with the command: 

COPY AUTOEXEC.BAT PRN 

And COPY isn't the only command that works with devices. If you wanted to send a 
formfeed command to your printer to advance the paper, you could do it with: 

ECHO "L > PRN 

(You create the AL by holding down the Ctrl key and typing L. Typing ECHO AL PRN 
without the > redirection symbol won't do anything other than printing a AL PRN 
onscreen.) 

Because DOS has to know when you want it to use PRN or CON as a device, you can ,t 
use such reserved device names as filenames. Names like: 

•CON 
• PRN 
• PRN.XYZ 

are invalid. (PRN.XYZ is no good because DOS interprets the dot after PRN as a space, 
leaving the filename as just PRN.) However, you could use PRN as the extension, or 
along with other characters in the filename. These are all legal: 

• DRIVER4.PRN 
• XYZPRN 
• PRNl.CON 

But stay away from the following reserved DOS device names: 

CON (keyboard/screen) 
AUX (first serial port) 
PRN (first parallel printer) 
NUL (dummy device) 
COMl, COM2, COM3, COM4 (serial ports 1 through 4) 
LPTl, LPT2, LPT3 (parallel printer ports 1through3) 

COMl is pretty much interchangeable with AUX, and LPTl with PRN. NUL is use
ful for getting rid of most simple DOS messages - although it can't suppress serious 
error messages. 

If you try copying your COMMAND.COM file to something called ABC.COM, with 
the command: · 

COPY COMMAND.COM ABC.COM 



36 PC Magazine DOS Power Tools 

DOS will oblige, and print a: 

1 File(s) copied 

message. If you then type DIR to see what's on your disk, you'll see two files with iden
tical sizes: 

COMMAND COM 
ABC COM 

25307 
25307 

3-17-87 
3-17-87 

12:00p 
12:00p 

But if you try copying it to a file called NUL.COM, with the command: 

COPY COMMAND.COM NUL.COM 

DOS will interpret this command as 

COPY COMMAND.COM NUL 

and discard the .COM part. Copying a file to the NUL device makes DOS go through the 
motions but not actually copy anything. It will still print a: 

1 File(s) copied 

message, but when you type DIR you won't see any file called NUL.COM. Similarly, if 
you try copying your startup AUTOEXEC.BAT file to one called PRN.BAT, with the 
command: 

COPY AUTOEXEC.BAT PRN.BAT 

DOS will toss the .BAT part and interpret this command as: 

COPY AUTOEXEC.BAT PRN 

Since copying any file to the PRN device will cause it to be printed on your default 
LPTl printer, this command will either print out your AUTOEXEC.BAT file (if your 
printer happens to be turned on and connected properly) or freeze your system as DOS 
tries to print a file to a printer that's not responding. 

You can also run into trouble if you try to create a file that has the same name as a sub
directory entry. If you 're in a directory that has a subdirectory called BIN branching off 
of it, typing DIR will produce a listing that includes something like: 

BIN <DIR> 12-15-88 10:59p 

If you then try to create a file called BIN, you '11 see a message that makes it look as if 
you just created a file called BIN even though you didn't. 



Disk Organization, Files, Filenames 37 

COPY CON BIN 
This is a test 
AZ 
This is a test 

1 File(s) copied 

This happens because subdirectories are really just special kinds of files, and you can't 
have two files in the same directory with the same name. When you try to create a file 
called BIN, DOS looks at the directory and sees there's already a file with that name. 
However, instead of reporting that it can't create the file, it lies. If you think that's un
friendly, you 're right. But you have to very careful with filenames in general. If you've 
been working on a 100,000-byte file called LIFSTORY that's on drive A: and you type: 

COPY CON LIFSTORY 
Oops 

and press the F6 function key (to tell DOS you 're at the end of the file) and then the Enter 
key, DOS will wipe out the 100,000 byte file and replace it with the new four-byte file 
you just created. 

Similarly, if you want to print out a short file, such as your startup AUTOEXEC.BAT 
file, you can type: 

COPY AUTOEXEC.BAT PRN 

which will copy the file to your default printer. But if you accidentally switch the order 
and type: 

COPY PRN AUTOEXEC.BAT 

DOS will print a: 

0 File(s) copied 

message - and then wipe out your AUTOEXEC.BAT file. Gone. So be very careful 
with filenames. And make sure you have everything backed up. 

The Parts of a Filename 

Filenames can be as short as one character, or as long as 11. Once they grow past eight, 
however, they start encroaching on the filename extension. Most users refer to the entire 
name of the file as the filename, which isn't technically correct. According to IBM, the 
whole thing is really called afilespec (short for file specification), and has three parts: 

d:FILENAME.EXT 



38 PC Magazine DOS Power Tools 

where: 

d: is the drive the file is on 
FILENAME is the actual filename 
EXT is the optional filename extension 

A period separates the filename from its extension, although DOS doesn't display 
periods in DIR listings. You don't have to use a period when you're dealing with files 
that don't have extensions, although doing so won't hurt. So you could create a file called 
TEST by typing either: 

COPY CON TEST 

or: 

COPY CON TEST. 

Technically you need to include a drive letter in the filespec, since you can have two 
similarly named files on two drives with utterly different contents-A:DAT AFILE can 
be totally unrelated to B:DATAFILE. However, DOS tries to second-guess you if you 
omit something it needs. If you 're on drive A: and you want to have DOS give you a 
report on the status of your file and memory use, you can type: 

A:CHKDSK.COM 

or simply: 

CHKDSK 

In the second version of this command, DOS fills in the missing (A:) drive letter and 
(COM) extension for you by furnishing defaults. Since you were already logged onto 
drive A: DOS makes drive A: the default. Whenever you issue a command that needs a 
drive letter, DOS will try using the current drive. And you don't need to supply the COM 
extension when you're running a command like CHKDSK. The reason for this is a bit 
complicated: 

When DOS sees something on the command line, it tries to figure out, or parses, what 
you typed by first capitalizing it if necessary, then looking for delimiters (spaces, and 
things like commas and equal signs that act the same as spaces), switches (like /B), drive 
letters, subdirectory paths, and filenames. It assumes that the very first thing you typed 
on the command line after the prompt is the main command itself. 

This command can be one of four things: an internal command, an external command, 
the name of the application program, or a typo or missing filename. 

Internal commands are the instructions that execute many of the fundamental DOS 
operations such as DIR and TYPE. They are actually buried inside the main DOS COM-



Disk Organization, Files, Filenames 39 

MAND.COM command processor. DOS first compares what you typed to the list main· 
tained inside COMMAND.COM. In version 3.3 the list contains these commands: 

BREAK 
CALL 
CD 
CHCP 
CHDIR 
CLS 
COPY 
CTIY 
DATE 
DEL 
DIR 
ECHO 
ERASE 
ERRORLEVEL 
EXIST 
EXIT 
FOR 
GOTO 
IF 

INDO (INDO) 
MD 
MKDIR 
NOT 
PATH 
PAUSE 
PROMPT 
RD 
REM 
REN 
RENAME 
RMDIR 
SET 
SHIFT 
TIME 
TYPE 
VER 
VERIFY 
VOL 

Some of these are just parts of larger commands. EXIST and ERRORLEVEL really 
only work with IF. FOR and IN DO work together. And NOT doesn't do anything by it· 
self. These few have slightly different properties (which you'll see a bit later) from the 
others on the list. 

If it finds a match, COMMAND.COM then runs the proper instructions, which are 
also kept inside COMMAND.COM, to execute the command. If it can't find a match, it 
starts looking in the default directory for an external command or applications program 
with the name you typed. If it can't find the specified filename in the current directory, 
it will see if you've specified a PA TH and start looking in all the directories that this 
PATH specifies. 

External commands are separate programs, outside of COMMAND.COM. DOS ver· 
sion 3.3 contains 36 of these, all of which end in COM or EXE: 

ASSIGN.COM 
BACKUP.COM 
BASIC.COM 
BASICA.COM 
CHKDSK.COM 
COMMAND.COM 
COMP.COM 
DEBUG.COM 
DISKCOMP.COM 

MORE.COM 
PRINT.COM 
RECOVER.COM 
RESTORE.COM 
SELECT.COM 
SYS.COM 
TREE.COM 
APPEND.EXE 
ATTRIB.EXE 



40 PC Magazine DOS Power Tools 

DISKCOPY.COM 
EDLIN.COM 
FDISK.COM 
FORMAT.COM 
GRAFfABL.COM 
GRAPHICS.COM 
KE YB.COM 
LABEL.COM 
MODE.COM 

FASTOPEN.EXE 
FIND.EXE 
JOIN.EXE 
NLSFUNC.EXE 
REPLACE.EXE 
SHARE.EXE 
SORT.EXE 
SUB ST.EXE 
XCOPY.EXE 

Users sometimes forget that these DOS external commands are actually separate 
programs, and that they won't work unless the appropriate programs are in the default 
directory or are in a directory that their PATH command knows about. (And yes, COM
MAND.COM, the part of DOS that actually processes the commands you enter, can be 
an external command itself, and a very useful one as you'll soon see.) 

You can also type the name of an application program on the command line. DOS 
doesn't give its external commands any priority over commercial applications with 
similar names. It simply tries to run an internal command first and if that doesn't work, 
it then looks for a file in the current directory that has a matching filename and a COM, 
EXE, or BAT extension. If it happens to find a DOS program that fits the bill, it runs it. 
But if you didn't have any external DOS commands handy, and for some reason you 
renamed your main WS.COM WordStarfile to CHKDSK.COM, typing CHKDSK would 
run WordStar. 

Finally, if DOS doesn't understand what you've entered, you've probably mistyped a 
command or entered the name of a file that DOS cannot locate. This is usually a PATH 
problem. 

The PATH Command 

The PA TH command specifies a list of the important directories you want DOS to search 
when it can't find an executable program in the current directory. DOS keeps this list in 
a special section of memory called the environment. 

If you weren't able to use PATHs to tell DOS where to search, you'd either have to 
keep copies of all your important programs in all your subdirectories, or you'd always 
have to specify each program's precise location each time you ran it. And if you're 
wondering why DOS can't just search in every single directory, doing so on even a 
medium- sized hard disk could take a while each time you typed a command. A typical 
PATH might look something like: 

PATH D:\;C:\;C:\BIN;C:\DOS;C:\DOS\BAT;C:\SK;C:\DOS\NORTON 

which tells DOS to look in the following places for the file you specified, if it can't find 
it in the current directory: 



D:\(the root directory of drive D:) 
C:\ (the root directory of drive C:) 
C:\BIN 
C:\DOS 
C:\DOS\BAT 
C:\SK 
C:\DOS\NORTON 

Disk Organization, Files, Filenames 41 

If you wanted to run a program that wasn't in the current directory or in any of the 
places listed in your PATH statement, DOS wouldn't be able to run it unless you explicit
ly entered the name of the directory this file happened to be in. So if the CHKDSK.COM 
command was in a subdirectory called: 

C:\LIONS\TIGERS\AND\BEARS 

and your PATH didn't mention this subdirectory, typing just: 

C>CHKDSK 

wouldn't run the program. Even though it was on your disk, if DOS couldn't find it, it 
couldn't run it. You could run it, however, by typing: 

C:\LIONS\TIGERS\AND\BEARS\CHKDSK 

or: 

\LIONS\TIGERS\AND\BEARS\CHKDSK 

Here's a fine point but an important one: Note the initial backslash character at the 
very beginning. By putting this backslash character there, you're telling DOS that the 
specified PATH for the CHKDSK file started at the root directory. If you omitted this in
itial backslash: 

LIONS\TIGERS\AND\BEARS\CHKDSK 

DOS would assume that the first directory in the list - LIONS - was a directory one 
level below whatever directory you happened to be in at the time. If you were logged into 
the root directory, this wouldn't matter. But if you were already in a directory called 
\WfZ>OZ, and you omitted the initial backslash before LIONS, DOS would think you 
were really telling it to run: 

\WIZ\OZ\LIONS\TIGERS\AND\BEARS\CHKDSK 



42 PC Magazine DOS Power Tools 

And if you happened to be in one called \INCOME\REPOR1\4Q, DOS would assume 
you meant: 

\INCOME\REPORT\4Q\LIONS\TIGERS\AND\BEARS\CHKDSK 

When you include an initial backslash in a PA TH, you are giving DOS an explicit 
PATH. When you omit the backslash you give DOS a relative path - one that starts a 
level down from whatever directory you are in at the time. 

If you made a typing mistake when you entered the command, or specified a program 
that DOS couldn't find, all you'd get would be an error message that told you: 

Bad command or file name 

Also, remember that DOS can execute only three kinds of files - those that end in 
COM or EXE or BAT. So if you had just the following files on your disk: 

• CHKDSK 
• CHKDSK.WKS 
• CHKDSK.BAS 
• CHKDSK.DBF 
• CHKDSK.SYS 
• CHKDSK.DRV 
• CHKDSK.PIF 

and you typed CHKDSK, all you'd get would be the "Bad command or file name" error 
message, even though DOS uses extensions such as SYS or PIF (but not on executable 
programs). 

By including the name of a subdirectory in your PATH, you tell DOS to look in that 
directory for executable files (with COM, EXE, or BAT extensions). But PATHs are for 
executable files only; DOS won't be able to find nonexecutable files, such as your data 
files, or overlay files that help programs work, in subdirectories specified in your PATH. 
To have DOS search through your directories to find nonexecutable files, use the AP
PEND command introduced with version 3.3. 

DOS will always execute internal commands first, then COM files, then EXE files, 
and finally BAT files. So if you have these three files on your disk: 

• RUNME.COM 
• RUNME.EXE 
• RUNME.BAT 

and you type RUNME, you'll always run RUNME.COM. You'll never get a chance to 
run either RUNME.EXE or RUNME.BAT, since DOS always tries to run COM files 
before any other kind of program. If you erased RUNME.COM, you could run 
RUNME.EXE, but you'd never be able to run RUNME.BAT while either RUNME.COM 
or RUNME.EXE was in the same directory. 



Disk Organization, Files, Filenames 43 

But that's if you try justRUNME without any extension. What if those three RUNME 
files are on your disk, and you include the extension by typing RUNME.EXE or 
RUNME.BATI Sorry, out of luck. DOS will still executeRUNME.COM. 

If you have any separate programs on your disk that happen to have the same name as 
most of the internal DOS commands, you'll never be able to run these at all. This means 
you can't ever create executable files like BREAK.COM, REM.EXE, DATE.COM, or 
SET.BAT, since DOS will look inside COMMAND.COM, find a match, and execute the 
internal command before it has a chance to run the external COM, EXE, or BAT version. 

While 34 of the internal commands will indeed preempt external versions, you can ac
tually use four parts of internal command names in external programs: ERRORLEVEL 
(which under certain circumstances DOS truncates toERRORLEV),EXIST, INDO, and 
NOT. 

So don't try creating a batch file that has the same basic filename as a program you're 
using. If you wanted to set up a batch file that logged into your WP subdirectory, ac
tivated underlining on an EGA screen, then ran Word.Perfect (and you had a program 
called UNDERLIN.COM handy to handle this) you could do it with something like: 

CD C: \WP 

UNDERLIN ON 
WP 

However, you couldn't name this batch file WP.BAT, since typing WP would simply 
bypass the WP.BAT file and load the WP.EXE program. Instead, name it something like 
W.BAT. 

Well, okay, if you're a stickler, there actually is a way to run a program that has the 
same name as an internal command. 

All you have to do is prefix the similarly named program with a drive letter or path. 
For example, if you had a special program on your disk that sorted the directory, and you 
were using something newer than DOS 2.x and just had to name it DIR.COM, you could 
run it by typing: 

. \DIR 

The .\is DOS shorthand that specifies a file in the current directory. If you omitted this 
prefix, all you'd get is the normal DOS DIR listing, since COMMAND.COM always 
gives internal commands priority over external commands with the same name. However, 
prefacing a command with a drive letter or path designation tells DOS that you want to 
execute an external file rather than an internal command. 

You won't be able to add a .\prefix like this in DOS versions 2.x, since version 3.0 
was the first that let you specify a drive and path before external commands. But if you 're 
logged into a directory called C:\WORK and the DIR.COM program also happens to be 
in that directory, you could run it by entering: 

\WORK\DIR 



44 PC Magazine DOS Power Tools 

You really shouldn't have to worry about this, however, since you can almost always 
come up with a name that's slightly different from the actual internal DOS command. 

Fooling COMMAND.COM's knee-jerk reflex to give internal commands priority can 
actually save you grief. Say your office is short of PCs, and you have to share your hard 
disk system with a less sophisticated user. Your worst fear is that your co-worker will try 
to format a floppy disk, forget to add the drive letter in the FORMAT command, and end 
up wiping out the contents of the hard disk. 

This was all too easy on older versions of DOS. Newer versions of FORMAT.COM 
won't do anything unless the user specifies a drive letter. And newer versions can also 
tell if a user is trying to reformat a hard disk, and won't budge unless the user types in 
the hard disk's volume label. Still, the message DOS prints: 

Enter current Volume Label for Drive 
(press Enter for none) : 

WARNING, ALL DATA ON NON-REMOVABLE DISK 
DRIVE C: WILL BE LOST! 
Proceed with Format (Y/N)? 

is confounding to someone who has no idea what a non-removable disk is, and if a new 
or clumsy user has a deadline and needs to format a disk, well, that's what backups are 
for. 

Hard-disk-format victims have devised all sorts of solutions to prevent hard disk for
mat. The best is obviously to remove the FORMAT.COM program from your disk, or 
rename it to something that would throw beginners off track. But a new user could al
ways bring a floppy disk copy of FORMAT.COM over and copy it onto the hard disk. 

Ifyoudon'tmindpatchingCOMMAND.COM,youcanpreventmostFORMATheart
ache by tricking COMMAND.COM into thinking FORMAT is an internal command. 
DOS maintains a table of internal commands inside COMMAND.COM and always 
checks there first when you enter something on the command line. FORMAT is six let
ters long. Three internal commands - PROMPT, RENAME, and VERIFY - also have 
six letters in their names. If you replace the six letters in one of these entries with the let
ters "FORMAT" DOS will see FORMAT on the table when it checks to see if you entered 
an internal command, and won't execute any external program with the same name. 

But putting FORMAT in the table means getting rid of one of the existing six-letter 
table entries. Fortunately, RENAME has a shorter version, REN. So if you replace the 
letters RENAME in the table with FORMAT you'll still be able to rename files by using 
REN. But changing the letters R-E-N-A-M-E to F-0-R-M-A-T in the lookup table won't 
change the actual instructions that DOS uses to rename files. So if a user enters FOR
MAT, DOS will see it on the table and execute the rename procedure. Since you can't 
rename files unless you specify an existing name and a new name, all you'll get is an 
error. Typing: 

FORMAT OLDNAME.TXT NEWNAME.DOC 

will rename a file called OLDNAME.TXT to NEWNAME.DOC. And typing: 



Disk Organization, Files. Filenames 45 

FORMAT C: 

will just produce an "Invalid number of parameters" message. 
But this won't work if a user boots off a diskette and executes the FORMAT command 

that's on the floppy. And patching COMMAND.COM isn'talways such a good idea. If 
you do it, be sure that all versions of COMMAND.COM on your disk are identical. Other
wise DOS can become confused. 

You could use either the Norton Utilities or DEBUG to change RENAME to FOR
MAT. Once you've patched COMMAND.COM, use REN to rename FORMAT.COM 
to FORMATO.COM (where O stands for an ALT +255 null). To do this, type: 

REN FORMAT.COM FORMAT 

but don't press the Enter key yet - hold down the Alt key and type 255 on the numeric 
keypad, then release the Alt key. The cursor will move over one space. Then type: 

.COM 

and press the Enter key. 
Finally, create a batch file called F.BAT: 

ECHO OFF 
CLS 
ECHO Insert disk in drive A: and 
PAUSE 
FORMAT[] A: /V /S 

Remember to type in FORMATO (where[] represents Alt+255) when creating your 
batch file, or this won't work. 

To patch COMMAND.COM with DEBUG, frrst make a backup copy of COM
MAND.COM called COMMAND.OLD so that if you make a mistake you can start over. 
Then type: 

DEBUG COMMAND.COM 

Find out how long your version is by typing: . 

RCX 

and pressing the Enter key twice. You'll see something like: 

ex 62DB 

Take the four-digit hex number following the CX and type: 



46 PC Magazine DOS Power Tools 

S 100 L62DB "RENAME" 

(substituting the four-digit hex number if yours is different from 62DB). Press the Enter 
key and you should see something like: 

61B2:547B 

Ignore the leftmost four digits, preceding the colon. Take the rightmost four digits and 
type: 

E 547B "FORMAT" 

(substituting the four-digit hex number if yours is different from 547B). Press the Enter 
key. Then press W (and Enter) to write the new version back to disk, and Q (and the 
Enter) to quit DEBUG. Once you've patched COMMAND.COM, reboot. 

Another simple way to prevent unwanted fonnatting is to rename FORMAT.COM to 
something innocuous like DATA.COM and then insert a simple reboot routine at the 
beginning of your old FORMAT.COM file. Type in FORMAT and the system will 
reboot. Type in DAT A and you can fonnat disks. Make sure you have DEBUG .COM 
handy, and type in the following ten lines to create both files. 

DEBUG 
N FORMAT.COM 
L 
N DATA.COM 
w 
N FORMAT.COM 
E 100 BS 40 00 SE DS BS 34 12 
E lOB A3 72 00 EA 00 00 FF FF 
w 
Q 

Be sure to press the Enter key at the end of each line. You could of course create a tiny 
16-byte reboot file called FORMAT.COM, but the short length would be a tipoff to an 
unauthorized user that something was amiss. 

If you try this, you can fonnat a floppy in drive A: by typing: 

DATA A: 

And if you type FORMAT at the DOS prompt your system will do a wann reboot. If you 
really want to be safe, change the 34 12 at the end of the line that begins E 100 to 7F 7F, 
so the line looks like: 

E 100 BS 40 00 BE DB BB 7F 7F 



Disk Organi.zation, Files, Filenames 41 

This will make your system do a long cold boot with all the slow memory diagnostics. 
Some users create a file on every disk that contains a sorted DIR listing. You can do 

this easily if you have the DOS programs MORE.COM, FIND.EXE, and SORT.EXE 
handy. (It's best to have them on a hard disk in a subdirectory that your PATH knows 
about.) Just type: 

DIR I SORT I FIND "-" I FIND /V "<" > DIRFILE 

The DIR command produces a list of files as well as a report on how many bytes are free, 
how many files are there, and what the volume label is, if one exists. The I is the pipe 
sign, and the > is a redirection sign. The default devices for input and output (110) are 
obvious: input usually comes from the keyboard; output usually goes to the screen. But 
starting with version 2.0, DOS let you mix and match I/0. You can take output that would 
normally appear on your screen, and instead reroute it to you printer or modem - or cap
ture the characters by turning them into a file on your disk. Similarly, you can take charac
ters in a file on your disk and feed them into a program just as if you were typing them 
at the keyboard. And you can filter files through pipes on the way from one place to 
another. This lets you do things like search for or screen out certain characters, or sort 
jumbled lists into orderly ones. Piping and redirection ofI/0 are extremely powerful tools 
that you'll use often. 

Using the SORT command as shown above will arrange the DIR listing in rough al
phabetical order. The first FIND command will screen out all the miscellaneous DIR in
formation and leave just the filenames, since files all have hyphens in their creation dates 
but miscellaneous "bytes free" or "Volume in" reports rarely use hyphens. The second 
FIND will weed out any subdirectory listings, because each contains a <DIR> instead of 
a size: 

Volume in drive C is WORKDISK J Miscellaneous DIR 

Directory of C:\ 
information filtered 
ouJ by first FIND 
command 

COMMAND COM 25307 3-17-87 12:00p 
CONFIG SYS 47 10-18-88 7:07a 
AUTO EXEC BAT 256 10-18-88 12:01a 
DOS <DIR> 10-18-88 7 • 0 ga J Subdirectory 
WORDS TAR <DIR> 11-06-88 12

: 
22 

listingsfilteredout 
· a by the second FIND 

DBASE <DIR> 2-11-88 12: OOa command 
LOTUS <DIR> 12-03-88 12:02a 

7 File (s) 28220672 bytes free J Miscellaneous DIR 
information filtered 
out by first FIND 
command 

The final redirection command sends the output to a file called DIRFILE. You could then 
view the sorted list of files on your disk by typing: 



48 PC Magazine DOS Power Tools 

TYPE DIRFILE 

If your list was longer than 24 files, you could type: 

MORE < DIRFILE 

which would show you a screenful at a time (assuming you were using a monitor that 
displayed the standard 25 lines), then pause and prompt you to press any nonshift key to 
view another screenful. 

If you do this to all your disks, you '11 end up with a different version of DIR.FILE on 
each one. The one on drive A: is really A:DIRFILE, the one on B: is B:DIRFILE, etc. 
And when you do just about anything with these files you have to use the appropriate 
drive letters, so they really are part of the filespec. 

Even though IBM's various manuals don't seem to agree in their definition of the 
filespec, a file's PATH is just as important as its drive letter, especially on a hard disk, 
and should be thought of as a fourth filespec component. Just as you can have two similar
ly named files calledA:DIRFILE andB:DIRFILE, you can also create C:\DOS\DIRFILE 
and C:\ WORD\DIRFILE on the same physical disk. 

Wildcards 

You don't have to specify the PA TH if you 're referring to files in the current-or default 
- subdirectory. If you 're logged into a subdirectory called \DOS and you want to check 
out your COMMAND.COM file, all four commands below will produce the same result 

DIR COMMAND.COM 
DIR C:\DOS'COMMAND.COM 
DIR \DOS'COMMAND.COM 
DIR .'COMMAND.COM 

DOS is very flexible, and provides even more ways to ferret out just the COM
MAND.COM file entry. You could simply type DIR and use a DOS filter to screen out 
everything that didn't have the character string "COMMAND COM" in it: 

DIR I FIND "COMMAND COM" 

Unfortunately, you'd have to specify "COMMAND COM" rather than "COM
MAND.COM" because that's how the DIR listing displays it. DOS is flexible, but con
sistently inconsistent. 

You could also isolate COMMAND.COM in directory searches by looking for a part 
of its filename: 

DIR I FIND "COMMAND" 



Disk Organization, Files, Filenames 49 

However, if you had a game on your disk called COMMANDO.EXE, and a list of Word
Perfect commands called WCOMMAND.LST, this filtering technique would find all 
three files with the characters "COMMAND" in their names. 

Finding one file is easy. However, you might want to look at an entire class of related 
files, such as all the COM files on your disk, at one time. Or you may have several cus
tomized versions of COMMAND.COM, such as COMMANDI.COM and COM
MAND2.COM on your disk and want to look at the date you created each version. 

DOS makes it easy to list such groups of files, by using one of two special symbols on 
the command line. IBM calls this pair-an asterisk(*) and a question mark(?)- global 
file name characters. Everyone else calls them wildcards. 

A question mark can stand for any single character (including a blank, or no charac
ters). An asterisk can represent up to eleven characters. If you apply this rule to the charac
ter string: 

?UN 

you could substitute ten single characters in place of the ? and end up with English words 
- BUN, DUN, FUN, GUN, HUN, NUN, PUN, RUN, SUN, TUN (a big barrel). 

If you tried this with the character string: 

SYL* 

you could substitute all sorts of character combinations of varying lengths in place of the 
* and end up with words like SYLLABLE, SYLLABUB, SYLLABUS, SYLLOGISM, 
SYLPH, and SYLVAN. Of course, not all of these could be filenames, because some are 
longer than eight characters. If you tried to create a file called SYLLOGISM, DOS would 
end up calling it SYLLOGIS.M since it allows a maximum of eight characters to the left 
of the extension. 

Assume your disk contained the following files: 

• COMMAND.COM 
• COMMAND.CO 
• COMMAND.EXE 
• C.COM 
• COMMANDI.COM 
• COMMAND.C 
• ZOMMAND.COM 
• COMMAND.ZOM 
•COMMA.COM 
•COMMAND 
•COMM.AND 
• ZZZ.1 
• REDLINE.DBF 

The broadest possible wildcard directory search would be: 



50 PC Magazine DOS Power Tools 

DIR *·* 

which is really the same as: 

DIR 

or: 

DIR * 

or: 

DIR ????????.??? 

An asterisk to the left of a period lets DOS substitute from one to eight characters there. 
An asterisk to the right of a period lets DOS substitute from zero to three characters there. 
A filename needs at least one character to the left of the period, but can get by just fine 
with no characters after the period. One asterisk used by itself can stand for all 11 pos
sible characters. When you issue a DIR command without anything after it, DOS inter
nally puts •. • after it. And it then turns all the asterisks into the correct number of question 
marks. So when you type DIR, DOS first translates it to DIR*.* and then finally to DIR 
???????? .??? (both of which will show all your files). 

Incidentally, you could also see the complete set of files in any directory by typing: 

DIR . 

but this technique doesn't have anything to do with wildcards. Used this way, the period 
following DIR is shorthand for the current subdirectory itself, just as a double period rep
resents the parent directory. You can see these special directory entries by logging into 
any subdirectory and typing DIR. You'll see, for example, 

Volume in drive C is WORKDISK 
Directory of C:\DOS 

<DIR> 3-15-88 5:15p 
<DIR> 3-15-88 5:15p 

Wildcards really come in handy when you use them to isolate certain parts of filenames. 
For instance, you could limit your search to files that end in COM only with the com
mand: 

DIR *.COM 



Disk Organization, Files, Filenames 51 

This tells DOS to accept anything on the left side of the period, but to screen out all files 
that have something other than a COM to the right of the period. This command would 
display every file on the above sample list that ended in COM, and no others: 

• COMMAND.COM 
• C.COM 
• COMMANDl.COM 
• ZOMMAND.COM 
•COMMA.COM 

If you put the asterisk on the other side of the period: 

DIR COMMAND.* 

DOS wouldn,t care what was after the period, but would list only those files with the 
precise letters "COMMAND,, - and only those letters - before the period: 

• COMMAND.COM 
• COMMAND.CO 
•COMMAND.EXE 
• COMMAND.C 
• COMMAND.ZOM 
•COMMAND 

This variation would list plain old COMMAND (with no extension) because an asterisk 
to the right of a period can stand for three, two, one, or no characters. COMMAND with 
no extension is really the same as: 

COMMAND. 

but you rarely see it listed that way. 
However, this particular search won,t list COMMAND I.COM, since COMMAND I 

is not equal to COMMAND, and you told DOS to list only those files with the exact string 
"COMMAND" to the left of the period. If you wanted to include COMMAND 1.COM 
in the list, you'd have to broaden the previous command either with: 

DIR COMMAND*.* 

or: 

DIR COMMAND* 

or even with: 

DIR COMMAND?.* 



52 PC Magazine DOS Power Tools 

Remember, asterisks can represent from one to 11 letters, but a question mark always 
represents just one character. All three of the above commands would produce the same 
result: 

• COMMAND.COM 
• COMMAND.CO 
•COMMAND.EXE 
• COMMANDl.COM 
• COMMAND.C 
• COMMAND.ZOM 
•COMMAND 

You should always try to limit wildcard searches by making them as explicit as pos
sible. A command like: 

DIR C*.COM 

would list any file that started with C and ended with COM: 

• COMMAND.COM 
• C.COM 
• COMMANDl.COM 
•COMMA.COM 

You could limit the search to list only files that ended in COM and that started with 
the letter C but had five or fewer characters to the left of the period, with: 

DIR ?????.COM 

which would yield: 

• C.COM 
•COMMA.COM 

If you wanted files that started with the letter C and had extensions that started with 
the letter C, you could try: 

DIR C*.C* 

or: 

DIR C* .C?? 

which would both list: 



•COMMAND.COM 
• COMMAND.CO 
• C.COM 
• COMMANDl.COM 
• COMMAND.C 
•COMMA.COM 

Disk Organization, Files, Filenames 53 

To narrow this search to files that started with the letter C and had extensions shorter 
than two characters long, this would do it: 

DIR C*.?? 

You'd see just: 

• COMMAND.CO 
• COMMAND.C 

You get the idea. One thing to watch out for is that once DOS sees an asterisk, it ig
nores everything following the asterisk up to the next period or the end of the filename. 
So: 

DIR C*QQQ.COM 

will list 

• COMMAND.COM 
• C.COM 
• COMMANDI.COM 
•COMMA.COM 

just as if you had typed: 

DIR C*.COM 

And trying: 

DIR *OMMAND . *OM 

or even: 

DIR *HELLOTHERE 

will list every file on your disk, since DOS ignores what comes after the asterisks and 
treats these two commands as: 



54 PC Magazine DOS Power Tools 

DIR*·* 

and: 

DIR * 

What you probably meant to type rather than DIR *OMMAND.*OM was: 

DIR ?OMMAND.?OM 

which will yield: 

• COMMAND.COM 
• ZOMMAND.COM 
• COMMAND.ZOM 

since all three of these are the same except for the very first letter and the first letter of 
the extension. The more specific you make the command, the more you '11 limit the search. 

Wildcards are especially useful in deleting groups of files and in making backups. 
Many word processors create backup files with BAK extensions, and these can eat up 
lots of space. Once you've determined that you don't need these files any longer, you 
can wipe out the whole gang of them with a simple command: 

DEL *.BAK 

And wildcards can take the drudgery out of backups. If you spent all day working on 
the fourth quarter projections, and all the files have 4Q9 extensions (for fourth quarter of 
1989), you can copy them all from your hard disk to a floppy with the command: 

COPY *.4Q9 A: 

(or the even better DOS 3.2 and later XCOPY *.4Q9) 
Of course, many applications use their own extensions, so you may have to put iden

tifying codes at the beginning rather than the end of the filename. If you were working 
on the Sturm and Drang accounts, you might want to give these files names like: 

• 4Q9STURM.WK1 
• 4Q9DRANG.WK1 

The problem with naming files this way is that you later might want to copy all your 
Drang accounts to one disk, and they might have names like: 

• 4Q9DRANG.WK1 
• DRANG.RPT 
• 89DRANG.MEM 



Disk Organization, Files, Filenames 55 

You could put the DRANG part at the beginning of the filenames: 

• DRANG4Q9.WKI 
• DRANG.RPT 
• DRANG89 .f\.IBM 

which would let you handle them with a DRANG*. * wildcard. But this way you wouldn't 
necessarily be able to use wildcards to find all the files with 4Q9 in them. STURM4Q9 
and DRANG4Q9 have the same number of letters, which would let you use ?????4Q9, 
but a filename like GUB4Q9 would throw the process off. 

DOS doesn't make it easy to use wildcards when the string of characters you want to 
isolate is in different places in the filenames.But you can employ a combination of sophis
ticated DOS tricks to do it, as long as the DOS FIND.EXE program is either in your cur
rent directory or is in a directory that your PA TH knows about It gets a little complicated 
(no one ever said DOS would be easy) so you may want to refer to Chapter 10 on batch 
files before you tackle this: 

Use your pure-ASCII word processor, EDLIN, or the DOS COPY CON command to 
create two BAT files. (Before you try this, be sure you don't already have a file on your 
disk called DOIT.BAT, because this process will erase it. If you do, either rename the 
existing file, or change all the references in COPYSOf\.IB.BAT and NEXTFILE.BAT 
from DOIT.BAT to something else.) 

First, COPYSOf\.IB.BAT: 

ECHO OFF 
IF %2!==! GOTO OOPS 
IF EXIST DOIT.BAT DEL DOIT.BAT 
FOR %%A IN {*.*) DO COMMAND IC TESTTHEM %%A %1 %2 
COMMAND IC DOIT 
DEL DOIT.BAT 
GOTO END 
:OOPS 
ECHO Enter a string to search for, and a drive 
ECHO or directory to copy the matching file to 
:END 

Then, TESTTHEM.BAT: 

ECHO OFF 
ECHO COPY %1 %3 I FIND "%2" >> COIT.BAT 

Then, to copy any filename with the string DRANG in it to drive A:, just type: 

COPYSOME DRANG A: 

Or to copy the files to \WORK\ACC'I\1989, type: 



56 PC Magazine DOS Power Tools 

COPYSOME ORANG \WORK\ACCT\1989 

The COPYSOME.BAT batch file will first make sure that you entered both a string 
of characters to search for and a drive or directory to copy the matching files to. If you 
forget one or the other it will abort the process and print an error message. 

Be sure you enter the string first and the drive or directory second. And make certain 
that you enter the string in all uppercase letters, and that you don't put quotation marks 
around the string. 

COPYSOME will then use a FOR batch command to take all the filenames in your 
directory one by one and feed them into the second 1ESTTHEM.BAT batch file. The: 

%%A %1 %2 

at the end of the FOR command will pass three parameters to 1ESTTHEM.BAT. Each 
time the FOR command cycles through, this will replace %%A with the name of the file, 
% 1 with the character string you 're trying to match, and %2 with the drive or directory 
you want to copy everything to. But by the time these parameters reach 
1ESTTHEM.BAT, the parameters shift slightly: 

%%A in COPYSOME becomes %1in1ESTTHEM 
% 1 in COPYSOME becomes %2 in 1ESTTHEM 
%2 in COPYSOME becomes %3 in 1ESTTHEM 

Each time COPY SOME passes these parameters to 1ESTTHEM, 1ESTTHEM translates 
the: 

ECHO COPY %1 %3 I FIND "%2" >> DOIT.BAT 

line to something like: 

ECHO COPY 89DRANG4.MEM A: I FIND "ORANG" >> DOIT.BAT 

The command at the beginning of this line would normally use ECHO to display the text 
following the word ECHO. But this batch file pipes this text through the FIND filter. 
FIND will look at the text to see if it contain the specified string (in this case "ORANG"). 

If the text doesn't contain the specified string, nothing else will happen and the process 
will continue with the next filename. But if FIND does locate the string it passes the string 
through to the very end of the command. Here, the final: 

>DOIT.BAT 

command takesanytextthatsurvived the FIND test and adds it toafilecalledDOIT.BAT. 
Note that a single > sign creates a new file and redirects data into it. A double >> sign 
will create a file if none exists, and will append data to the file if it's already there. You 
have to use a double>> sign here because each time you find a filename with the charac-



Disk Organization, Files, Filenames 51 

ters DRANG in it, you're going to add an additional line to DOIT.BAT, and you don't 
want each new line to wipe out the old one. 

So if COPYSOME.BAT passes TESTTHEM.BAT parameters like: 

%%A 89DRANG4.MEM 
%1 ORANG 
%2 A: 

TESTTHEM plugs these into its main command and ends up with: 

ECHO COPY 89DRANG4.MEM A: I FIND "ORANG" >> DOIT.BAT 

Since the characters "DRANG" are indeed in the string: 

COPY 89DRANG4.MEM A: 

the FIND filter passes this string through to the: 

>DOIT.BAT 

command, where the string is appended to the OOIT.BAT file. 
However, if COPYSOME passes TESTTHEM parameters that don't include the 

specified characters, such as: 

%%A 89STURM4.MEM 
%1 ORANG 
%2 A: 

TESTTHEM will tum this into: 

ECHO COPY 89STURM4.MEM A: I FIND "ORANG" >> DOIT.BAT 

The FIND test won't pass anything through, since the characters "DRANG" aren't in the 
COPY 89STURM4.MEM A: string. 

When the FOR command in the COPYSOME.BAT file has worked all the way through 
the (*. *) set of files, COPY SOME will execute the command in the next line: 

COMMAND /C DOIT 

This will run the DOIT.BAT file you just created, and make all the copies. When DOIT 
has made its last copy, DOS will delete DOIT.BAS and the process ends. 

Whew. Okay, it's convoluted, but it shows what you can do by slapping together a few 
DOS commands. And once you have both the COPYSOME.BAT and TESTTHEM.BAT 
batch files on your disk, you don't have to worry about how they work. You just use 
them. It's a whole lot easier than sitting down with (shudder) paper and pen and making 



58 PC Magazine DOS Power Tools 

a list of all the files you have to copy and then typing in the COPY commands one by 
one. 

Incidentally, if you 're using a version of DOS 3 .3 or later, replace the: 

FOR %%A IN (*.*) DO COMMAND /C TESTTHEM %%A %1 %2 

line in COPYSOME.BAT with: 

FOR %%A IN (*.*) DO CALL TESTTHEM %%A %1 %2 

Do the same thing with the COMMAND /C DOIT line that follows. Prefix the initial 
ECHO OFF with a@ sign (so it looks like @ECHO OFF), which will prevent it from 
displaying onscreen. 

Using CALL will expedite things a bit and get rid of some screen clutter. The 
COPYSOME.BAT batch file turns ECHO OFF to prevent commands from showing up 
on the screen as they execute. But when you use COMMAND IC to run another batch 
file, DOS loads a second copy of COMMAND.COM, which turns ECHO on again for 
the second batch file. CALL leaves the ECHO state alone. If it, s off in the first batch file, 
CALL leaves it off. 

Be careful when you're using a command such as REN (or its longer version 
RENAME) or DEL (or its longer cousin ERASE) with wildcards, since the wildcard may 
end up including more files than you intended. 

If you tried to delete all your BAK backup files by typing: 

DEL *.BA* 

you would erase anything with an extension beginning with BA. Since this includes batch 
files (which end in BAT) and BASIC program files (which normally end in BAS), you'd 
delete far more than you wanted. The safe way to delete or rename is to use the DIR com
mand with the wildcard structure first, and then to use the DEL or REN. DOS makes this 
easy, since it lets you use the F3 key to duplicate any or all of what you typed in the pre
vious command. 

So if the only files in your directory that had extensions beginning with BA were in
deed backup files, you could type: 

DIR *.BA* 

and see something like: 

Volume in drive C is WORKDISK 
Directory of C:\ACCOUNT 

SCHEDULE BAK 
4Q9DRANG BAK 
DRANG BAK 

16256 
21256 
32932 

10-17-88 
10-24-88 
11-12-88 

12:01a 
6:32a 

11:40a 



Disk Organization, Files, Filenames 59 

89DRANG BAK 9674 11-15-88 1:23p 

4 File(s) 4122624 bytes free 

you could then just type DEL and press F3: 

DEL *.BA* 

However, if you tried typing DIR *.BA* and you saw: 

Volume in drive C is WORKDISK 
Directory of C:\ACCOUNT 

AUTOEXEC BAT 256 2-11-88 
SCHEDULE BAK 16256 10-17-88 
RUN BAT 128 2-12-88 
4Q9DRANG BAK 21256 10-24-88 
DRANG BAK 32932 11-12-88 
CHART BAS 28932 8-22-88 
89DRANG BAK 9674 11-15-88 

7 File(s) 4122624 bytes free 

3:15p 
12:01a 

7:28a 
6:32a 

11:40a 
8:32p 
1:23p 

you could see that the DEL *.BA* would have erased too much. If this happens, just nar
row the focus of the wildcard by changing the command to DEL *.BAK instead. 

DOS is a little protective of your files. If you type just: 

DIR C* 

DOS will display everything beginning with the letter C (such as COMMAND.COM). 
But if you type: 

DEL C* 

DOS won't erase COMMAND.COM or anything else that has an extension of any kind. 
(It will, however, erase files that begin with C but don't have extensions.) It's decent of 
DOS to make the directory search wildcards broader than the deletion wildcards. 

One place that a wildcard can come in very handy is in fixing filenames with spaces 
in them. DOS won't let you put a space in a filename, but some programs (and even 
BASIC) will. If you try to create a file called 

SPACE IT 

DOS will get confused and print an error message that warns: 



60 PC Magazine DOS Power Tools 

Invalid number of parameters 

But you can create such a file with BASIC. Type in the following short BAD NAME.BAS 
program: 

100 ' BADNAME.BAS 
110 OPEN "SPACE IT" FOR OUTPUT AS U 
120 PRINT 11,"0oops ... " 
130 CLOSE:SYSTEM 

Then, at the DOS prompt, type: 

A>BASICA BADNAME 

(or GWBASIC BADNAME if you're using a generic MS-DOS version of BASIC). The 
BADNAME.BAS program will create a file with a space in it called SPACE IT. To see 
this file, just type: 

DIR S* 

and sure enough you '11 see: 

SPACE IT 11 11-17-88 5:31p 

If you try to rename or copy or delete the file, you won't be able to, since DOS will in
terpret the space as the end of the filename, not a character in the middle. Depending on 
what you 're trying to do all you '11 get is error messages like: 

• Invalid number of parameters 
• Duplicate file name or File not found 
• Invalid parameter 
• File not found 

You could remove the space by loading your disk's directory sectors into DEBUG and 
changing the name with the DEBUG E command But why bother, when a simple 
wildcard operation can do it for you? Just type: 

REN SPACE?IT SPACEIT 

•ou'll end up with something called SPACEIT that will respond to all nonnal DOS 
'nds. 



Disk Organization, Files, Filenames 61 

Filename Extensions 

Filenames can contain from one to eight characters. Extensions can have from zero to 
three characters. You don't have to use extensions, but they help you organize or search 
for data. However, you can't use an extension without a filename preceding it. These are 
all valid filenames: 

• A 
• A.B 
•A.BB 
• A.BBB 
• AAAAAAAA 
• AAAAAAAA.B 
• AAAAAAAA.BB 
• AAAAAAAA.BBB 
• (UJ 
• ' ... '!@#%$.A&-
• $ 

These aren't: 

• AAAAAAAAA 
•.AAA 
• AAAAAAAA.AAAA 
• AAAAAA A 
• AA+AA/A 
• ? 

If you do try creating a file such as: 

(more than eight characters in the filename) 
(no filename) 
(more than three characters in the extension) 
(space in the filename) 
(illegal characters+ and I in filename) 
(illegal character) • 

ABCDEFGHUKLM.NOPQRSTUVWXYZ 

t t LJ 
filename .ext 

DOS will truncate the filename to the first eight characters before the dot, and the exten
sion to the first three characters after the period, producing: 

ABCDEFGH.NOP 

Extensions are important, since they tell DOS which files it can try to execute and which 
it can't, and how in memory to load the executable ones. You and your programs can use 
extensions to organize your files. Most applications keep track of their specialized data 
files by giving them extensions, such as WKS for old-style 1-2-3 worksheets and DBF 
for old-style dBASE database files. 



62 PC Magazine DOS Power Tools 

And by using extensions you can exploit DOS' s formidable wildcard abilities. Without 
this wildcard magic it would be a real headache to do simple everyday chores like copy
ing all your database files from drive C: to drive B:. First you'd have to type DIR to see 
all the files in your logged subdirectory, and then write down the names of each one that 
you thought was a database file. Then you'd have to copy them one by one. Instead, as
suming you 're on drive C: and that all your database files end with a DBF extension, you 
can simply type: 

COPY *.DBF B: 

Normally DOS will print a message when it's done, reporting how many files it copied. 
If you want to suppress this message, just stick a> NUL on the end of the command. This 
redirects the output of the command (which in this case is just the "File(s) copied" mes
sage) into a special DOS device called NUL that simply discards the characters. Typing: 

COPY *.DBF B: > NUL 

will make the copies and avoid screen clutter. Doing this isn't such a good idea when 
you're making important backup copies, since you want to know the number of files that 
DOS actually was able to copy. If you have 30 files on your disk that have a DBF exten
sion and DOS reports: 

2 File(s) copied 

you can tell something is wrong, and go back and fix the problem before it's too late. 
However, most serious users have to issue so many commands to set things up proper

ly when they start working that they put all these commands in a special startup file called 
AUTOEXEC.BAT. DOS executes this startup file automatically when you power up 
each day. These users also know that they can improve performance by lopping off a 
chunk of memory and convincing DOS to treat this memory as a super-fast disk called a 
RAMdisk. So their AUTOEXEC.BAT files are filled with commands to copy files from 
floppies or hard disks to RAMdisks. This normally produces a long cascade of "1 File(s) 
copied" messages. Adding a> NUL to each COPY command in your AUTOEXEC.BA T 
will do away with these unsightly messages. 

(Incidentally, IBM and Microsoft have had more than half a decade to cram sophisti
cated tricks into DOS and generally refine it. It's hard to believe that they still have DOS 
printing and idiotic message like "1 File(s) copied." Or refusing to tell you how many 
files DOS erased when you use a wildcard with the DEL or ERASE commands.) 

In this chapter we described the basic principles of data storage and the physical proper
ties of the disk. While the PC will place data in its own convenient locations, it's up to 
you to impose a structure on that data by organizing it into files and assigning those files 
unique and descriptive names. DOS has some inflexible rules that define what it will and 



Disk Organization, Files, Filenames 63 

will not recognize in a filename. We've presented those rules here, as well as some simple 
tips to help you create workable filenames. 

In the next chapter we' 11 take a closer look at how to manage these files on a hard disk. 





Chapter3 

Hard Disks Made Easy 

The single most important productivity enhancement for most users is a fast hard disk. 
A hard disk gives you instant access to all your files, speeds up operation dramatically, 
and makes "disk full'' errors a lot less common. Floppies are how new software products 
are packaged, and how you back up your files - unless you use a tape drive or Bernoul
li Box. They're also for the birds. Hard disks used to be expensive and unreliable. That's 
all changed. Today they're inexpensive and unreliable. I've personally replaced seven 
hard disks over the past three years, and have to perform tedious daily ministrations to 
keep my current one purring. 

Even the most expensive hard disks are frail and transitory. Many users wedge PC
ATs or PS/2s into floor stands beneath their desks, which is fine until they start playing 
knee-hockey with their systems. Others blithely slide working XTs back and forth across 
their desks to make room for paperwork, or routinely lift a comer of the chassis to retrieve 
something that's burrowed beneath it. 

You've all probably seen versions of the famous illustration where a human hair, a 
smoke particle, and even the greasy schmutz of a fingerprint seem enormous compared 
to the gap between the magnetic head of a hard disk and the rotating disk platter itself. 
With tolerances slightly above the angstrom level, dropping a chassis a quarter inch, or 
tapping it with your toe, is the hard disk equivalent of an atom bomb going off directly 
overhead. 

It's true that packages like the Norton Utilities and Mace Utilities, and even the 
dangerous DOS RECOVER command, can rescue parts of text files that remain intact 
after a bounced magnetic head has plowed little oxide furrows into the disk surface. But 
these programs aren't very good at resurrecting program files, or chunks of data stored 
in binary format. And when you see a message like: 

General Failure error reading drive C 
Abort, Retry, Ignore? 

65 



66 PC Magazine DOS Power Tools 

well, that's what backups are for. 
If you set up your hard disk properly. you 'II not only take the anguish out of daily back

ups, but you 'II also end up working a whole lot smarter and more efficiently. While you 'II 
have to learn how to handle subdirectories, the tips and utilities provided here should 
make it a breeze. Once you learn the basics - and install the tools you'll find in this 
chapter - you'll be able to solo with the best of them. 

Formatting the Hard Disk 

Hard disks require two kinds of formatting, low-level and high-level. These days the fun
damental low-level formatting is done at the factory. You or your dealer have to do the 
high DOS-level formatting. 

Dealers nowadays test and set up hard disks before shipping them to purchasers. Un
fortunately. they also usually follow the questionable advice in the DOS manual and copy 
all the files from the two DOS floppy disks onto the root directory. For best performance, 
you should clean things up if you log into a brand new hard disk, type DIR, and see the 
listing scroll off your screen. But you can'tjusterase or move all the files there; you'll 
learn which ones have to stay in a moment. 

If your dealer or MIS department didn't set up your system, and you have a single 30 
megabyte or smaller hard disk, it's fairly straightforward. 

(If you have a hard disk that no one has touched, and all you see when you try to start 
is a "161- System Options Not Set" message, hunt for the SETUP program, which on 
older systems IBM perversely buried on its Diagnostics disk. Put this disk in drive A:, 
turn the computer on, press Fl when prompted, and answer the questions about date, 
time, hard disk type, floppy disk type(s), and memory size. If you need to know the drive 
type, check to see that it's not in the documentation that came with your system. If it's 
not, take the cover off the computer and look for the number on the label on the front of 
the drive. If all else fails, call your dealer.) 

Once the setup program has run, insert your DOS disk in drive A: and turn your sys
tem on. Press the Enter key twice when asked for the date and time. Type in: 

FD I SK 

and press the Enter key, and when you see the "Fixed Disk Setup Program" screen, ac
cept the defaults by pressing the Enter key again to create a DOS partition, and then once 
more to tell the program you want to devote the entire hard disk to DOS. 

You can slice up a standard hard disk into as many as four partitions, and jump from 
one to the other by using FDISK. Take our word for it, unless you have a penchant for 
dabbling in other operating systems, you don't want to. 

After you've answered the partitioning questions, press any key and your system 
should reboot. This time, unless you're using an AT or XT-286 or PS/2 with a battery
operated clock, enter the correct date and time when asked. Assuming you're installing 
your first 30 megabyte or smaller hard disk in an XT or AT, type: 



Hard Disks Made Easy 61 

The Low-Level Format 

Many systems come with their own built-in low-level formatters. If you've in
stalled third-party hard disks driven by Western Digital controller cards (ROM 
version 6.0 or earlier) and either wish to experiment or did not receive adequate 
instructions on how to low-fevel format your hard disk, it's easy to do so. But 
don't even think of trying this unless you're installing a brand new hard disk 
and feel adventurous. 

These procedures will also let you change other hard disk specifications if 
you want, such as the drive designation and the interleave factor, a measure of 
how physically close to one another the controller writes consecutive sectors. 
However, fooling with these will wipe out everything on your hard disk. Be ab
solutely sure this is what you want to do before trying it. And it won't work on 
systems with other controller cards. 

First, load DEBUG.COM by typing DEBUG, and at the"-" prompt enter: 

RAX 

When DEBUG responds with a":" enter the drive designation and the interleave 
you want. For example, for a hard disk designated as drive D: with an interleave 
of 4 you would enter: 

0104 

since drives are designated 0 through 7 with drive C: equal to 0. (The relative 
drive number goes into register AH, and the interleave factor into AL.) 

Then, at the DEBUG prompt, enter: 

G=C800:5 

Answer Y to the question onscreen if you wish to begin low-level formatting. 
Finally, use FDISK and FORMAT to complete the setup of your newly con

figured drive. Remember - this will erase all information already on your hard 
disk, so most of you won't want to try it. If you do, first, make sure your back
ups are absolutely current, and, second, jot down the default settings so you can 
reset everything to normal when you 're done. You obviously will know what 
the original relative drive number is, and the low-level formatter should print 
out the standard interleave factor in its prompt. 



68 PC Magazine DOS Power Tools 

FORMAT C: /S/V 

and, if necessary, verify that you want to proceed by entering Y. 
The /S suffix, or switch tells DOS you not only want to format the hard disk, but want 

to add the three system files - IBMBIO.COM, IBMDOS.COM (or their non-IBM
specific cousins), and COMMAND.COM- to it so you can boot without having to stick 
a DOS floppy disk in drive A:. 

If you forgot to add the /S, or if your system is delivered with a hard disk that's been 
FDISKed and formatted but without these three system files, turn your system on with 
your main DOS disk in drive A:, enter the correct date and time, and then type: 

SYS C: 
COPY COMMAND.COM C: 

The N switch tells DOS to let you add a volume name. This doesn't really do much 
except let you personalize your directory listings and CHKDSK reports, and avoid the 
pesky "Volume in drive C has no label" messages. With recent versions of DOS you can 
always go back and use the LABEL command to add or revise the volume label. 

It's becoming increasingly common to add additional hard.disks, especially monstrous 
ones that hold vastly more than IBM's original issue 10s, 20s, and 30s. Current DOS ver
sions limit individual drives to a maximum of 32 megabytes. Manufacturers of larger 
hard disks usually add small driver programs to get around this restriction. However, 
starting with version 3.31, Microsoft fixed this problem. 

Subdirectory Structure 

Many users who are either lazy or are befuddled by the terse explanation of subdirec
tories in the DOS manual end up dumping all their files into the main, or root directory. 
It's called a root directory because all other subdirectories branch off of it in a shape 
vaguely resembling an upside-down tree, or more accurately, a family tree, with the 
progenitor planted at the top and all the descendants fanning out beneath him. A simple 
representation looks likes this: 

Level One Root 
Directory 

I 
I I 

Level Two Subdirectory Subdirectory 
#1 #2 



Hard Disks Made Easy 69 

You could make the tree much more complex, with third, fourth and fifth levels dan
gling below the second, each one bristling with additional subdirectories. Too few sub
directori~s and you end up with unmanageable numbers of files in each; too many and 
you can run into PA TH problems (more about that later). 

Note that the schematic representation of your subdirectory structure doesn't have to 
be in the form of a symmetric tree. An equally valid way to describe the above setup is: 

-RootL Subdirectory #1 

Subdirectory #2 

Note also that the root of the tree is at the top, so it's really an upside-down tree. A 
lower level is one farther away from the root As you go higher in the tree you get closer 
to the root. This sounds confusing, and it is. Just be thankful that IBM didn't choose 
UNIX instead of DOS. 

IBM's XT and AT hard disks (which in its typically contrary way IBM callsfaed disks 
because they're fixed in place and not removable like floppies) can hold between ten and 
30 million characters; its loaded PS/ls and the killer systems from other manufacturers 
can squirrel away as many as half a billion. With storage space so capacious, keeping 
similar files grouped together is a necessity. Otherwise, you (and DOS) would have to 
sort through hundreds or thousands of files each time you wanted to find a single program 
to run. 

Just as you can't be at two places at the same time (unless you have a good lawyer), 
DOS lets you log into only one subdirectory at a time. When you first boot up, DOS logs 
you into the root directory of either your hard disk or the diskette in drive A:. If you in
stalled the necessary DOS system files on your hard disk, and if you either didn't have 
a floppy disk in drive A: or had one there but left the drive A: door open, you'll boot off 
the hard disk. If this doesn't happen it's probably because you either have some bizarre. 
brand-X hard disk or an early PC with an old ROM chip that doesn't understand hard 
disks. 

You really need only three files in your root directory: 

• COMMAND.COM 
• AUTOEXEC.BAT 
• CONFIG.SYS 

Actually, a root directory formatted with the /SN option will contain two additional, hid
den files, IBMBIO.COM and IBMOOS.COM (or Microsoft's generic versions of these), 
plus the volume label, which is also stored in a small hidden file. They're called hidden 
files since they won't show up in normal directory searches. But they're there, and you 
can see at least the system files at the top of the list when you type: 



70 PC Magazine DOS Power Tools 

CHKDSK C:/V 

IBMBIO.COM contains additions and corrections to the gut-level device-handling 
BIOS routines that come with your system on ROM chips. IBMOOS.COM provides other 
fundamental services for things like copying and deleting files, searching through the 
directory, or reading the keyboard. 

Technically, you can patch these system files and put the COMMAND.COM, 
AUTOEXEC.BAT, and CONFIG.SYS files in other places than the root directory. But 
playing with your hidden files is like playing with fire. 

COMMAND.COM is the primary command interpreter, processor, and loader that 
watches what you type at the DOS prompt. When it sees you trying to execute an inter
nal command such as DIR, TYPE, RENAME, COPY, or ERASE, it can dispatch these 
right away, since the main routines for these are stored inside COMMAND.COM (which 
is why they're called internal commands). When it can't find an internal command to 
match what you typed- such as FORMAT, SORT, or 123- it looks in a set of direc
tories you specify, called a path, for files with COM, EXE, or BAT extensions, and tries 
to load or execute these external commands. In addition, a disposable part of COM
MAND.COM looks for the startup AUTOEXEC.BAT file to execute immediately after 
bootup. 

Every hard disk system should have an AUTOEXEC.BAT file, if only to set the proper 
system prompt. But it's also handy for loading resident pop-up programs like SideKick 
into memory, changing screen colors, setting operating modes (to switch monitors or 
specify communications protocols, for instance), copying files into RAMdisks, and other
wise automatically configuring your system the way you like it. 

Actually, AUTOEXEC.BAT doesn't have to be located in the root directory, and 
doesn't even have to have a BAT extension, even though it's a batch file. (See the sidebar 
"Booting Up With BERNIE.") 

The normal DOS hard disk prompt is a cryptic: 

C> 

which tells you only that at that moment DOS recognizes drive C: - rather than the other 
drives in your system - as the active drive. Once you start creating subdirectories and 
jumping around from one to another, you 'II want to know which subdirectory you 're cur
rently logged into. By issuing the command: 

PROMPT $P$G 

you '11 tell DOS to report the name of the subdirectory along with the drive that's active, 
each time you finish executing a command or program. The root directory prompt will 
change to: 

C:\> 



Hard Disks Made Easy 71 

The solitary backslash is DOS' s shorthand for indicating the root directory. If the back
slash-greater-than-sign combination is too visually jarring, you could adapt the prompt 
to: 

PROMPT $P: 

which will make the root directory appear as: 

C: \: 

Remember, the \sign all by itself stands for the root directory. You can always see what's 
in the root directory, for instance, by typing: 

DIR \ 

Later, when you add other subdirectories, you '11 connect subdirectory names and their 
files with \characters. So a subdirectory called PCMAG that's one level down from the 
root directory would actually be called \PCMAG. And if you were to branch an addition
al subdirectory off of \PCMAG, and called it \UTIL, the actual name of this new sub
directory would be \PCMAG\UTIL. A file called TOOLS.DOC in this new subdirectory 
would then be called \PCMAG\UTIL\TOOLS.DOC. 

One of the handiest, but most confusing, aspects of naming files in subdirectories is 
that you could pepper your hard disk with other TOOLS.DOC files. So a TOOLS.DOC 
file on drive C: in the \PCMAG subdirectory would really be C:\PCMAG\TOOLS.DOC, 
while a different version in the root directory would be C:\TOOLS.DOC. The full name 
of any file has three parts-drive letter, path, and the actual filename-plus-extension. 

A representation of this structure would be: 

Root \ 

I 
One Level Down \PCMAG 

I 
Two Levels Down \PCMAG\UTIL 



72 PC Magazine DOS Power Tools 

The root directory doesn't have a user-defined name such as PCMAG, so DOS desig
nates it as just\ with nothing following it. The DOS manuals clearly state that the max
imum length of any subdirectory path - the list of directory names from the top (root) 
to the deepest level - may be no longer than 63 bytes, measured from the beginning of 
the first name to the end of the last name, excluding slashes in front or at the end. 

DOS function call 47H (Get Current Directory) requires a 64-byte area in memory to 
return the current directory path. It is not preceded by a backslash but it is terminated by 
a hex 0, so this is consistent with the 63 character restriction. 

How many nested levels are allowed in a directory structure? Although the manuals 
never say so, the answer is obviously 32. If each of the subdirectory names is one letter 
long and they are separated by backslashes, then 32 levels would make the total length 
63. 

Of course, 32 nested levels of subdirectories would place an-enormous drain on DOS 
as well as on the human user's mental faculties. What happens if you attempt to go beyond 
32? Don't even try. You may get away with it but DOS will make life hard after that and 
you '11 have difficulty just removing that snarl of subdirectories. 

Customizing Your Prompt 

The PROMPT command can do all sorts of tricky things, such as reporting the time and 
date, or the DOS version. If you ask it to, it will print the current time whenever you do 
something that summons another DOS prompt, such as press the Enter key again, or finish 
executing a program. It will not act as a clock and display the continuously changing 
time. And it will display time in hundredths of seconds based on a 24-hour clock. If you 
want it to print just the hours and minutes, you can backspace away everything else, with 
the command: 

PROMPT It's now $T$H$H$H$H$H$H 

Users who discover the PROMPT command's flexibility invariably end up creating 
strange prompts such as: 

PROMPT +$Q$Q$Q$Q+$_$B $N$G $B$_+$Q$Q$Q$Q+$_ 

which produces: 

+====+ 
I C> I 
+====+ 

or: 



Hard Disks Made Easy 73 

PROMPT $L$N$G $L$N$G$_ $B$_ $Q$Q$Q$_ 

which yields: 

<C> <C> 

_J_ 
A less frivolous use of the PROMPT command is in sending escape sequences to the 

ANSI.SYS extended screen driver, which can give you precise control over the way your 
monitor looks and works. The real strength of including $P in any PROMPT command 
is that when you log into a subdirectory, DOS will display the name of that subdirectory. 
So if your PATH setting is $P: and you create a subdirectory called ST AR in which you 
keep all your WordStar files, and you move from the root directory into that subdirec
tory, your prompt will change from: 

C: \: 

to: 

C:\STAR: 

To see the command that most recently configured your prompt, type SET on a line 
by itself, which displays the system's environment - the fundamental settings that tell 
DOS where to look for key files and how to prompt the user. To restore the prompt to its 
original C> just type PROMPT with nothing following it. 

Customizing your prompt isn't all roses. Once you tell DOS to include the subdirec
tory name in the prompt, it will relentlessly seek one out So if you have a $Pin your 
PROMPT command and log into a floppy drive, then remove the disk from that floppy 
drive and do something that generates an "Abort, Retry, Ignore?" message, DOS won't 
budge until you stick the diskette back in the floppy slot. Newer versions of DOS give 
you the additional option to "Fail" which actually lets you succeed here. If you are of
fered this option, type F, then enter the drive letter of your hard disk. 

A second disadvantage is that if you have tons of multilayered subdirectories with long 
directory names, and you 're logged into one five levels deep, the prompt may be so long 
that your commands wrap around the right edge of your screen. The best solution is to 
keep subdirectory names short. In addition to preventing wraparound problems, this 
makes it far easier to switch between subdirectories. It's a lot simpler to type \WS1\UT 
than \WORDSTAR\UTILITY, especially when you're doing it several times a day. 
(While you're at it, truncate the names of programs you use every day. Why type 
EDITOR when you could just key in ED? If you don't like the idea of renaming your 
files you can always create batch files with short names that can run programs with longer 
ones.) Also, resist the temptation to use extensions in subdirectory names since they'll 
just make the whole process more cumbersome and prone to error. 

Another solution to wraparound ills is to end all your prompts with a$_ which jumps 
the cursor down to column 1 of the line below. Unfortunately, doing this will confuse 



74 PC Magazine DOS Power Tools 

certain DOS utilities like MORE that are designed for single-line prompts and will end 
up scrolling information off the screen before you can read it. 

The CONFIG.SYS File 

Apart from AUTOEXEC.BAT, the only other file that normally has to be in the root 
directory is CONFIG.SYS. Your system will run without a CONFIG.SYS file, but will 
work better with one. And certain programs demand one. If you 're using a database 
manager, for instance, that handles more than eight open files at once, you have to prepare 
DOS for juggling the extra ones with a FILES= command in CONFIG .SYS. 

But where CONFIG.SYS really shines is in increasing disk-read buffers, loading 
device drivers, and adding logical drives to your system. 

For some odd reason, IBM specified a default of two buffers for the XT, and a paltry 
three for the AT. Buffers are simply chunks of memory set aside to store the data your 
system most recently read from or wrote to your disk, although some buffers don't store 
written data. If you have tq go back and read or write the same data, it's far speedier to 
do so via these memory buffers than to have to move the magnetic heads again and slurp 
up or slap down the information on the physical disks one more time. 

Buffer needs vary from system to system, and the number of buffers is often a topic 
of heated discussion when tech types get together. Virtually everyone agrees that three 
is a joke. Somewhere around ten or 15 seems right for XT users, and 20 or 30 for AT 
users and other power users. Specifying too many is as detrimental to performance as too 
few, since your system will end up wasting time as it churns through endless reams of 
data it will never use. 

If you currently have a directory crammed with hundreds of files, it's easy to 
demonstrate how increasing the number of buffers can help boost performance. First, 
make sure you don't have a CONFIG.SYS file, or if you do, that it doesn't contain a 
BUFFERS= command. If yours does, rename it temporarily. 

Reboot, and issue a DIR command. The first few dozen files scroll rapidly by, but 
eventually the buffers fill, and the display suddenly turns balky. If you get tired of watch
ing your files bounce slowly upward, interrupt the directory listing by holding down the 
Ctrl key and tapping either the C key or the ScrollLock key. Then, when you're back in 
the root directory at the DOS prompt, create a CONFIG.SYS file by typing: 

COPY CON CONFIG.SYS 

and then pressing the Enter key. The cursor will drop down a line. Type: 

BUFFERS=15 

and then press Enter, the F6 function key, and then the Enter key again. You'll see the 
message: 

1 File(s) copied 



Hard Disks Made Easy 15 

Reboot and reissue the DIR command. Now virtually all the files will fly by, not just the 
first few, since your system can load a giant chunk of directory data from your disk into 
memory at one pass and not have to keep reading the disk in little sips. 

CONFIG.SYS is also where you instruct your system to load device drivers such as 
the DOS VDISK.SYS virtual disk (RAMdisk), or drivers to link your basic hardware 
with mice, nonstandard external storage devices, 3-lfl inch outboard floppy drives, or 
giant hard disks. 

And it's where you tell DOS how many drives you're going to want to use. When you 
boot up, DOS assumes a maximum of five (drives A: through E:). But if your system is 
loaded to the gills with hard disks, half-heights, microfloppies, and other exotica, you 
might need more. And if you use the SUBST command to fool your system into treating 
a subdirectory like a disk drive to get around PATH or environment limitations, you'll 
have to prearrange it with a LASTDRIVE= CONFIG.SYS command. 

Apart from the hidden DOS system files, COMMAND.COM, AUTOEXEC.BAT, and 
CONFIG.SYS, a well-organized disk's root directory should contain no other nonhid
den files. 

Some users don't mind having their important DOS utilities in their root directory, and 
cut through the clutter of a messy directory with a DIR/P (paused directory) or DIR/W 
(wide directory) command. This won't radically degrade performance, and may actual
ly be a hair faster than storing the utilities in a separate \DOS subdirectory, if the files 
are kept at the very beginning of the hard disk directory. But it's even faster to keep them 
on a RAMdisk. And clutter gets to be a bad habit. Soon you start dumping files anywhere. 
Users who run the REPEATS.COM duplicate file finder on the accompanying disk are 
always amazed at the large number of misplaced and misfiled programs and data. 

As mentioned earlier, it's a good idea to clean up a root directory cluttered with ex
traneous files. If all a dealer or corporate systems installer did when setting up your brand 
new system was copy all the DOS files from their original floppies to your root direc
tory, you can go ahead and erase everything except COMMAND.COM (which is re
quired to reboot the computer). 

You can see if all the files in your root directory are also on your DOS disk either by 
putting the DOS disk in drive A: and then typing: 

DIR C:/W 

and then: 

DIR A: /W 

for a wide-display filenames-only listing. Or, tum on your printer and either type: 

DIR C: > PRN 

and then: 

DIR A: > PRN 



76 PC Magazine DOS Power Tools 

or hold down the Ctrl key and press P (or PrtSc) to toggle your printer on so that it echoes 
everything simultaneously to the printer and the screen, and type DIR C: and then DIR 
A: for a printed copy of your directory listing. If you used the Ctrl-P (or Ctrl-PrtSc) tech
nique to turn simultaneous printing on, hold down the Ctrl key and type P (or PrtSc) once 
more to toggle it off. 

You can also see what's on your disk by sorting the files in order of their extension. 
The command: 

DIR I SORT /+10 I MORE 

will make it easy. For this to work, the DOS SORT.EXE and MORE.COM files must be 
on the current directory, or be in directories that you've included in your PA TH com
mand. 

The DOS COMP utility can also come in handy here. If your DOS disk is in drive A:, 
type: 

COMP . A: 

(The period used in this example is a shorthand way to indicate whatever directory you 
are currently in.) 

Any way you do it, if you see that all you have on your root directory is DOS files, 
erase all the files except COMMAND.COM (you '11 put them back in their proper places 
later). If you have AUTOEXEC.BAT or CONFIG.SYS files, examine their contents by 
using the TYPE command. To see what's inside CONFIG.SYS,just type: 

TYPE CONFIG.SYS 

If you see other files listed, such as: 

DEVICE=VDISK.SYS 360 
DEVICE=ANSI.SYS 
DEVICE=MOUSE.SYS 

you'll want to leave VDISK.SYS, ANSI.SYS, and MOUSE.SYS where they are on the 
root directory. Later you can move them out of the root directory to a subdirectory called 
\BIN (so named because that's where you store your programs, which are in binary, non
text format), and change the CONFIG.SYS file so that it says: 

DEVICE=\BIN\VDISK.SYS 360 
DEVICE=\BIN\ANSI.SYS 
DEVICE=\BIN\MOUSE.SYS 

Similarly, if you use the TYPE command to examine AUTOEXEC.BAT and see that 
it loads SideKick with the command SK, leave SK.COM in the root directory for now. 



Hard Disks Made Easy 77 

Later, if you create a third-level subdirectory below \BIN called \BIN\KICK, and move 
your SideKick files there, you would change the line in your AUTOEXEC.BAT file from: 

SK 

to: 

\BIN\KICK\SK 

The TYPE command is terrific for peeking into short text files. But if a file is longer 
than 24 lines, the beginning will scroll off the screen before you can read it. To prevent 
this, use the MORE.COM utility, which shows you the contents of files a screenful at a 
time. If your AUTOEXEC.BAT is getting long, type: 

MORE < AUTOEXEC.BAT 

You could also enter: 

TYPE AUTOEXEC.BAT I MORE 

but the first method is more efficient and easier to type. 

Directory Limits 

You can store up to 64 files in the root directory of a single-sided floppy disk (if you can 
still find one), and 112 files in the root directory of a more common 360K floppy. The 
root directory on the unpopular 1.2 megabyte floppy holds 224. And there's space on 
most hard disk root directories to store 512 files. 

But don't test this out on your hard disk. If you do, you'll end up after the 509th with 
a "File creation error" message (the 510th, 51 lth, and 512th are the two hidden system 
files and the hidden volume label). Any subdirectory entries you may have in the root 
directory are really just special types of files, so they're included in the count too. So you 
may run out of room well before you actually have a chance to create the 512th file. 

The number of directory entries in a subdirectory is limited only by available space 
on the disk. That's because each subdirectory is really just a special kind of file that keeps 
track of other files. Because the subdirectory itself is a file, it can grow the same way a 
data file grows when you add information to it. 

Remember - if you really want to organize your hard disk properly, don't put any 
other files on your root directory than the ones mentioned above. Then, when you type: 

DIR C:\ 



78 PC Magazine DOS Power Tools 

all you'll see is one screenful of your bootup files and main subdirectory listings. It'll be 
an index into your hard disk. 

Disk Tools 

When IBM introduced its hard disk XT, it added several UNIX-like hierarchical sub
directory features (as well as a UNIX-like tree structure) to the new release of DOS that 
accompanied it (version 2.0). Among these powerful new commands were: 

• MKDIR (and MD) 
• RMDIR (and RD) 
• CHDIR (and CD) 
•PATH 

Nobody anywhere ever uses the command names MKDIR, RMDIR, and CHDIR, since 
the shorthand versions MD, RD, and CD will do just fine. Of course, since the IBM DOS 
manual is not exactly what you'd call friendly, you can't look up these commands by 
hunting for the shorter versions in the alphabetical reference section. MD, CD, and RD 
aren't even in the manual's index. Nice touch, IBM. 

The MD command creates a new subdirectory. The first thing you should do after run
ning FDISK and FORMAT is create a DOS subdirectory. To do this, type: 

MD \DOS 

If you are sure you are in the root directory, you can also type: 

MD DOS 

since both commands will do the same thing - create a subdirectory one level down 
from where you currently are, in the root directory. 

By omitting the backslash (as in MD DOS) you're saying "create a directory called 
DOS that's one level down in the subdirectory tree from where I currently am." By in
cluding the backslash (as in MD \DOS) you 're saying "create a directory called DOS that 
is one level down from the root directory," since the single backslash specifies the root 
directory. 

The method that omits the backslash uses relative locations. The technique that in
c/ udes the backslash uses absolute locations. Both have their advantages. We'll discuss 
this in more detail later. This is a critical distinction, and a point of real confusion among 
new hard disk users. (Many DOS commands allow alternate phrasings. For instance, you 
can use several different syntaxes to perform the same COPY command, depending on 
what you want to do and where you currently are.) 

Once you've created the \DOS subdirectory, log into it (or Change Directories) from 
the root directory by issuing the CD DOS (or CD\DOS) command. Here's a shortcut
once you've typed MD \DOS to create the subdirectory, type the letter C and then press 



Hard Disks Made Easy 79 

F3. F3 repeats the previous command, so it will fill in the command line with the rest of 
what you typed at the previous DOS prompt. So at the C> prompt you'd type: 

MD \DOS 

then press the Enter key. Then you'd type: 

c 

and press F3. As soon as you did you'd see: 

CD \DOS 

Press the Enter key and DOS will log you into your new \DOS subdirectory, and you'll 
see: 

C> 

How do you know you 're in the \DOS subdirectory? If you type in DIR you'll get some
thing like: 

Volume in drive c is PC MAGAZINE 
Directory of C:\DOS 

<DIR> 
<DIR> 

2 File (s) 

6-10-88 10:48p 
6-10-88 10:48p 

20840448 bytes free 

You can see the current directory in the second line of the DIR report. But if you remem
bered to set your prompt to $P: you could automatically tell which directory you were 
logged into, since instead of: 

C> 

as soon as you typed CD \DOS you'd see: 

C: \DOS: 

Typing CD by itself will also display the current subdirectory. But that's an extra step. 
Notice that DOS already thinks you have two files in the \DOS subdirectory with the 

peculiar names. and .. and with <DIR> where the file size usually goes. Dot notation 
will be covered a bit later. The <DIR> tells you you 're dealing with subdirectory entries. 
Now go back to the root directory. You can do this one of two ways. 

You can use the absolute location technique and issue a command that says "move to 
the root directory": 



80 PC Magazine DOS Power Tools 

CD \ 

or you can say "move one level up from where I am" with the command: 

CD .. 

You could have typed CD\ rather than CD \,and CD .. rather than CD .. since in this 
case DOS isn't picky about extra spaces (unless you're using one of the older DOS ver
sions, in which case the space between the CD and the .. is mandatory). The double dot 
stands for the parent directory of the one you 're currently logged into - the directory 
(or subdirectory) directly one level up toward the root. In this case the only level up is 
the root. 

If you 're curious, the single dot stands for the directory you 're currently in. This short
hand actually comes in handy when you 're prompted for a subdirectory name and you 're 
in one five levels deep and would rather type a single period than a long, elaborate path
name - although just pounding on the Enter key sometimes works in such situations. 

If you're deep inside one subdirectory like A/B/C/D/E/F/G and you're using the DOS 
COMP utility to compare a file there with another file deep within another directory like 
/l/2/3/4/5/6, you can enter: 

COMP /1/2/3/4/5/6/PROGRAM 

COMP will respond with a message to enter the directory the other version of the file is 
in.Just type a period, which tells DOS to look at the subdirectory you 're currently logged 
into. Or, you could specify the period on the command line, as was done earlier: 

COMP /1/2/3/4/5/6/PROGRAM . 

or: 

COMP . /1/2/3/4/5/6/PROGRAM 

You can also use the dot to simplify erasing all the files in a subdirectory. Instead of 
typing: 

DEL *.* 

all you really have to type is: 

DEL . 

This technique can be potentially dangerous, however. If you let someone who doesn't 
understand subdirectories use your system you can run into trouble. If a novice user 
doesn't have a clue what the . and .. represent in a directory listing but does know about 
the DIR and ERASE commands, and somehow logs into a directory one level down from 



Hard Disks Made Easy 81 

the root, he or she may be tempted to erase these mysterious double dot entries and end 
up deleting all the files in the current and root directories. 

DOS will respond with a: 

Are you sure (Y/N)? 

warning when you try to erase an entire subdirectory like this, but that's not a threaten
ing enough message to a novice. You can make this message meaner by patching COM
MAND.COM, but many users feel COMMAND.COM is sacrosanct and shouldn't be 
touched. If you 're not one of these, here's how to avoid potential mass-erasure problems 
like this by changing the message from: 

Are you sure (Y/N)? 

to: 

Now hit the N key!! 

First, make sure you have a copy of DEBUG.COM handy, and then make a backup copy 
of COMMAND.COM called COMMAND.OLD so that if you make a mistake you can 
start over. Then type: 

DEBUG COMMAND.COM 

Find out how long your version is by typing: 

RCX 

and pressing the Enter key twice. You '11 see something like: 

ex 62DB 

Take the four-digit hex number following the CX and type: 

S 100 62DB "Are you sure" 

(substituting the four-digit hex number if yours is different from 62DB). Press the Enter 
key and you should see something like: 

61B2:5158 

Ignore the first four digits preceding the colon. Take the rightmost four digits and type: 

E 5158 "Now hit the N key!!" 



82 PC Magazine DOS Power Tools 

(substituting the four-digit hex number if yours is different from 5158). Press the Enter 
key. Then press W (and Enter) to write the new version back to disk, and Q (and Enter) 
to quit DEBUG. Once you've patched COMMAND.COM, reboot. 

If you do this, make sure you don't mix patched and unpatched versions of COM
MAND.COM on the same disk, or you'll confuse DOS. 

In any event, once you've used the CD\or the CD .. command, and you're back in the 
root directory, type DIR and you'll see a new listing along with: 

Volume in drive C is PC MAGAZINE 
Directory of C:\ 
COMMAND COM 25307 3-17-87 12:00p 
CONFIG SYS 128 1-11-88 3:27p 
AUTO EXEC BAT 640 2-22-88 8:12p 
DOS <DIR> 6-10-88 10:48p 

The <DIR> tells you that you now have a subdirectory one level down from the root 
directory. 

Important Files 

You should now copy all the important files from your DOS floppy disks into your new 
DOS subdirectory. You can log onto drive A: and type: 

COPY *. * C: \DOS 

or, while in the root directory in drive C:, type: 

COPY A:*.* \DOS 

Or you could log into C:\DOS (with the CD DOS or CD \DOS command) and simply 
type: 

COPY A:*.* 

or: 

COPY A:. 

Even better is to use the XCOPY command introduced with DOS 3.2. COPY works 
one file at a time. XCOPY will read in as many commands in one gulp as memory al-



Hard Disks Made Easy 83 

lows, then spit them out in one continuous stream without bouncing back and forth 
repeatedly the way COPY does. XCOPY is also a terrific backup tool. 

If you 're logged into C:\DOS and you have XCOPY handy, just type: 

XCOPY A: 

Make sure you copy the important files from both the main DOS floppy disk and the sup
plemental one. (Starting with DOS 3.3, these are called "Operating" and "Startup" disks.) 

However, you can skip some of the files nobody ever uses, such as VDISK.LST (a 
long assembly language source code file for programmers), anything that ends with a 
BAS extension (unless you think DONKEY is an exciting and challenging game), and 
some of the stranger utilities such as KEYBIT.COM and KEYBFR.COM which load in 
foreign keyboard templates (in this case Italian and French). These foreign utilities were 
all combined into one file called KEYB in version 3.3. 

You can also toss BASIC, since BASICA does everything BASIC does and more. In 
fact, with version 3.3, BASIC just loads BASICA. It's hard to believe, but some of the 
programs on even the most recent version of DOS will work only on the-PCjr; try run
ning MUSICA.BAS for instance. Do however copy DEBUG.COM, which, for some 
bizarre reason is not on the main DOS disk. Incidentally, while IBM removed the 
documentation for DEBUG from the 3.3 manual, it left the program on the disk. 

Now that you've created a subdirectory (called \DOS) one level down from the root 
directory, go ahead and create another subdirectory on the same level as \DOS, called 
\BIN. But be careful. Why? 

If you're currently logged into either the root directory or the \DOS directory, you 
could create \BIN with the absolute command: 

MD \BIN 

This command in effect says "create a subdirectory one level down from the root direc
tory and call it BIN." The single\ prefix means "one level down from the root directory." 

However, if you forget the backslash and try the command: 

MD BIN 

two different things will happpen, depending on where you currently are on your hard 
disk, since omitting the backslash makes this a relative command rather than an absolute 
one. 

Typing MD BIN will create a subdirectory that's one level down from where you cur
rently are. So if you're currently logged into the root directory, MD BIN will create a 
subdirectory called \BIN that's one level down from the root. 

But if you're currently logged into \DOS, which is already one level down from the 
root, and you type MD BIN, you'llend up creating a subdirectory called\DOS\BINthat's 
one level down from \DOS and two levels down from the root. That's because leaving 
out the backslash in the MD command makes it a relative rather than an absolute com
mand. 



84 PC Magazine DOS Power Tools 

To recap, if you already have a subdirectory called \DOS, but you 're currently logged 
into the root directory: 

You are here _____ .,. \ 

I 
\DOS 

and you type MD BIN, you'll end up with: 

Root \ 

I 
I I 

One Level Down \DOS \BIN 

which is what you want. But if you're already one level down, in \DOS: 

Root \ 

I 
You are here------ \DOS 

and you type MD BIN, you'll get: 

Root \ 

I 
One Level Down \DOS 

I 
Two Levels Down \DOS\BIN 



Hard Disks Made Easy 85 

Actually, it really doesn't matter which way you set up your subdirectories. Most users 
aren 'treally comfortable creating tree structures any more complex than one or two levels 
deep. A few prefer intricately filigreed systems. For best results, keep it simple. The only 
real reason to create lots of subdirectories branching off of each other is if your work 
demands it. 

For instance, if you're a CPA with many clients, each one deserves its own subdirec
tory. and each will require still deeper subdirectory levels of organization. It's good prac
tice to keep records separated by year or quarter or even month, depending on the quantity 
of files. But while it might make sense to keep expenses in one subdirectory and income 
in another, it would be ridiculous to have one called: 

\SMITHC0\1987\JUNE\EXPENSES\OFFICE\PENCILS 

and another: 

\SMITHC0\1987\JUNE\EXPENSES\OFFICE\STAPLES 

If you've followed the earlier instructions properly, you now have two subdirectories 
called \DOS and \BIN, each one level down from the root directory. \DOS contains all 
the important files you copied from your two main DOS disks. \BIN should contain all 
the smaller non-DOS utilities and batch files you use every day. 

You should absolutely positively copy many of the utilities from the accompanying 
disk to \BIN. Tops on the list are VTREE.COM, BROWSE.COM, DR.COM, RN.COM, 
and CO.COM. But other winners such as CARDFILE.COM and SETUP.COM belong 
there too. If you have the space, copy them all. 

VTREE.COM displays a pictorial representation of the tree structure of the subdirec
tories on your hard disk. BROWSE.COM is a replacement for the DOS TYPE command 
that lets you scan rapidly through your files. DR.COM is a sensational file manager. 
RN.COM manages whole subdirectory structures, and lets you run DR from within it. 
CO.COM makes copying, moving, or deleting selected files a breeze. CARDFILE is a 
pop-up name and address filer and phone dialer. While it isn't strictly a DOS utility, it's 
one of the most popular programs we've published. SETUP tames your printer. Dozens 
of others will make your life at the keyboard a joy rather than a chore, and really stream
line your hard disk operation. 

Once you've created your \BIN subdirectory, copy these utilities into it (by adapting 
any of the syntaxes you used to copy your DOS files into \DOS, above). Log into \BIN 
by typing: 

CD \BIN 

and run VTREE by typing: 

VT REE 

You should see something that looks like: 



86 PC Magazine DOS Power Tools 

LDOS 
BIN 

This may not be a very impressive graphic representation, but it's vastly better than the 
nearly useless output produced by the DOS 1REE.COM utility. All TREE.COM does is 
grind out a long, slightly confusing textual description. With just two subdirectories it's 
not so terrible, but with 20 or 30 all you get is an unmanageable scrolling mess. And dis
playing such a graphic object as a hierarchical tree with words alone is like trying to 
describe colors to someone who's congenitally blind. 

TREE's version of the above subdirectory structure is: 

DIRECTORY PATH LISTING FOR VOLUME PC MAGAZINE 

Path: \DOS 

Sub-directories: None 

Path: \BIN 

Sub-directories: None 

You can make 1REE slightly more useful by adding an IF switch, which will display 
all the files in all the subdirectories. But even this use of TREE is overshadowed by the 
far better CHKDSK N, which also lists all the files on your disk. CHKDSK N displays 
full pathnames; TREE IF doesn't. And TREE pads all its listings with unnecessary spaces, 
which makes it scroll rapidly off your screen. As a bonus, CHKDSK N adds the stand
ard CHKDSK report detailing the number of files, bytes free, etc. And it displays the hid
den files; TREE IF doesn't. Finally, CHKDS KN is far faster. Chugging through slightly 
more than 2,000 files on an AT took CHKDSK N 98 seconds. 1REE IF produced an in
ferior report and took 123 seconds, or 25 percent longer. 

When you copy our program, VTREE.COM, into your \BIN directory, the very next 
thing you should do is type: 

ERASE \DOS\TREE.COM 

Incidentally, early versions of lREE contain a nasty bug. When the TREE command 
in PC-DOS 2.0, 2.1, and 3.0 encounters a directory with an extension, such as 
UTILS.NEW, it stops in its tracks after it has finished listing any directories below the 
one with the extension. DOS didn't get around to fixing it until version 3.1. 

Earlier lREE versions also don't list files in the root directory when you specify the 
IF parameter after TREE. The upgraded lREE in DOS versions 3.1 and later also fixes 
this problem. 



Hard Disks Made Easy 87 

Note that in the above example, the full name of the primitive DOS utility that you 
just expunged was\DOS\TREE.COM rather than just TREE.COM. That's because you 
can have different versions of similarly named files in different subdirectories. You can 
even have similarly named subdirectories; if you wanted to (but trust us, you don't) you 
could have a subdirectory called \DOS and one called \BIN\DOS on the same disk. 

For instance, you could rename VTREE.COM to TREE.COM and put it in \BIN. So 
if you keep the original DOS version in the \DOS subdirectory, your hard disk would 
then contain files called \DOS\TREE.COM (which is the original DOS version) and 
\BIN\TREE.COM (which is the renamed version of VTREE.COM). To run the original 
DOS version, you'd type: 

\DOS\TREE 

To run VTREE.COM, which for this example you renamed to TREE.COM, you'd type: 

\BIN\ TREE 

If you were in the root directory, and you hadn't yet used the PATH command to tell 
DOS where to look for executable files, and you typed: 

TREE 

you wouldn't run either \DOS\TREE or \BIN\TREE; all you'd get is a "Bad command 
or file name" message. As discussed above, when you type a command like TREE at the 
DOS prompt, COMMAND.COM first checks whether it's an internal command, and 
when it discovers it's not, checks the current directory and then a PATH - a specified 
set of directories -for a file by that name with a COM, EXE, or BAT extension. If\DOS 
and\BIN aren't yet included in the path, COMMAND.COM won't check in those sub
directories, and won't run either version of TREE.COM. 

You can tell COMMAND.COM to check in both of these subdirectories with the com
mand: 

PATH C:\DOS;C:\BIN 

or: 

PATH C:\BIN;C:\DOS 

The difference between these two is that if the top path is active, DOS will look in the 
\DOS subdirectory before it looks in \BIN. In the second example it will examine \BIN 
before \DOS. If DOS finds a TREE file ending in COM, EXE, or BAT, it will stop look
ing and execute the file. So if the first path is in use, typing TREE will run the DOS ver
sion of TREE. If the second path is in use, DOS will find the renamed versic .. Jf VTREE 
and run it. If you had files called TREE.COM, TREE.EXE, and TREE.BAT in either 
subdirectory, DOS would run TREE.COM. It always looks for COM files first, then 



88 PC Magazine DOS Power Tools 

EXEs, and finally BA Ts.But it won't look for filenames with any other extensions, such 
as data files or program overlays. If you have a version of DOS 3.3 or later, you can use 
the APPEND command to mimic the PATH command and find any kind of file. If you 're 
using an earlier version, you can purchase a commercial PATH extender like Filepath or 
File Facility. But save yourself heartache and upgrade to the most current DOS version 
available. 

It's best to include a PA TH command like either of the ones above in your startup 
AUTOEXEC.BATfile.Andifyou'reusingaPATHextenderorAPPEND,addaseparate 
line in your AUTOEXEC.BAT for it too. 

As mentioned above, the SET command can show you the command you entered to 
customize your prompt. Typing SET on a line by itself will also display the current path 
setting, as will typing PATH by itself. You can always modify your existing path setting 
by following the PA TH command with the new list of subdirectories, joined together 
with semicolons. 

A smarter technique for adding path settings is to use environment variables. These 
variables weren't documented until version 3.3, and they don't work at all in version 3.0. 
And you have to make sure you have enough environment space to accommodate these 
variables. 

The environment is a special area of memory that DOS uses to store important settings 
like your current PROMPT setting, what directories your path includes, and where to 
look for your main copy of COMMAND.COM. You can also park variables there by 
using the SET command, and retrieve them in batch files by wrapping the variable name 
in percent signs. So if you wrote a small batch file that included just the lines: 

SET COLOR=BLUE 
ECHO %COLOR% 

the first line of the batch file would insert the string: 

COLOR=BLUE 

into the environment, and the second line would look in the environment for the value, 
replace %COLOR% with BLUE, and display the word: 

BLUE 

on screen. If you later typed: 

SET COLOR=RED 

and ran a batch file that included the line: 

ECHO %COLOR% 

it would print: 



Hard Disks Made Easy 89 

RED 

To get rid of the COLOR environment variable, just type: 

SET COLOR= 

with nothing after the equals sign. At any point you can see all your environment set
tings by typing: 

SET 

at the DOS prompt. 
However, DOS sets up a default environment that's only 160 bytes long, and this space 

fills up quickly. You can make it bigger, but the method varies with the DOS version 
you 're using. Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address ECF 
to represent the number of 16-byte memory paragraphs that will make up your new en
vironment. (For DOS 2.11 the address is DF3.) DOS 3.0 and 3.1 lets you put a: 

SHELL [d:] [path]COMMAND.COM /E:n /P 

command in your CONFIG.SYS file, where n is the number of 16-byte paragraphs. For 
versions 3.2 and later, use the same SHELL command but specify the actual number of 
bytes rather than paragraphs. You can increase the size from the default of 160 bytes up 
to 32K in DOS 3.2 and 3.3, but the maximum size in earlier versions is 62 paragraphs, 
or 992 bytes. 

Once you've made sure you have enough environment space, create a small batch file 
called ADDPATH.BAT by getting into DOS, typing in the lines below, pressing the 
Enter key at the end of each one, and then pressing the F6 key and the Enter key one final 
time when you're all done. Do it right and you'll get a "1 File(s) copied" message after
wards: 

COPY CON ADDPATH.BAT 
ECHO OFF 
IF %1!==! GOTO OOPS 
PATH=%PATH%;%1 
GOTO END 
:OOPS 
ECHO Enter the new directory after %0 
ECHO that you want to add to your PATH 
:END 

To test it out, assuming you don't already have PA TH set, create a simple PATH to your 
C:\DOS directory with the command: 

PATH=C:\DOS 



90 PC Magazine DOS Power Tools 

Then type either PATH or SET to make sure you typed it in properly. To extend the path 
so it included C:\BIN, you'd ordinarily have to type: 

PATH=C:\DOS;C:\BIN 

But if you have ADDPATH.BAT handy, all you have to do is type: 

ADDPATH C: \BIN 

Then type SET or PATH again and you'll see the path setting has indeed been extended. 
When the PATH statement is short, this doesn't save much typing. But when your path 

goes all the way across the screen, you'll appreciate it. It works by using an environment 
setting as a variable. The %PA TH% is a variable that tells DOS "look inside the current 
environment setting and substitute, in place of the %PATH% in the batch file, whatever 
follows the word PA TH=." The technique also uses what is called a replaceable parameter 
- the %1. When DOS sees this in a batch file, it replaces the %1 with the first word or 
string of characters you typed on the command line immediately following the name of 
the batch file. 

So if the batch file is called ADDPATH, and at the DOS prompt you typed: 

ADDPATH HELLO 

it would replace the %1 with HELLO. 
The "IF% 1 !==! GOTO OOPS" (note the double equals sign) tests to see whether you 

typed anything in after the name of the batch file. If you did type something in, like 
C:\BIN, DOS replaces the% 1 with C:\BIN and turns the test into: 

IF C:\BIN!==! GOTO OOPS 

Now C:\BIN! is clearly not equal to ! , so the test fails. However, if you entered nothing 
after the name of the batch file, % 1 would be equal to nothing, and DOS would turn the 
test into: 

IF !==! GOTO OOPS 

Sure enough,! does equal!, so the batch file will jump to the "label" called :OOPS, where 
it prints a message providing instructions. (Labels are preceded with colons and don't 
execute.) This effectively jumps around the "PATH=%PATH%;%1" command if you 
forgot to enter an additional path extension. DOS will replace the %0 in the line that says 
"ECHO Enter the new directory after %0" with the name of the batch file itself. This 
way, if you change the name of the batch file from ADDPATH.BAT to something else, 
DOS will always display the current name in the instructions. 

If you did enter a new subdirectory that you wanted tacked onto the end of your path, 
DOS would concatenate it when it came to the "PATH=%PATH%;%1" line. It would 
replace the %PATH% with the current path and the %1 with the new subdirectory you 



Hard Disks Made Easy 91 

just typed in. And it would tack on the semicolon DOS uses to separate subdirectories. 
If the current path was: 

PATH C: \DOS 

and you typed in: 

ADDPATH C:\BIN 

you'd end up with: 

PATH C:\DOS;C:\BIN 

The equals sign sometimes used after PA TH is optional; DOS treats it as a space. Typing: 

PATH C: \DOS 

or: 

PATH=C : \DOS 

will produce identical results. If you do like to experiment with your path settings, you 
can always make it easy to reset everything by typing: 

PATH > OLDPATH.BAT 

at the DOS prompt before you make any changes. This redirects the environment string 
into a batch file called OLDPA TH.BAT. When you 're done changing the PA TH, just 
type: 

OLDPATH 

at the DOS prompt to put things back to normal. Sometimes you may need to add direc
tories to your PA TH setting temporarily, then get rid of the additions when you 're done. 
You can adapt the process described above by modifying ADDPATH slightly: 

COPY CON ADDPATH.BAT 
ECHO OFF 
IF %1!==! GOTO OOPS 
SET P1=%PATH% 
PATH=%PATH%;%1 
GOTO END 
:OOPS 
ECHO Enter the new directory after %0 



92 PC Magazine DOS Power Tools 

ECHO that you want to add to your PATH 
:END 

Then create another called PA TH OLD .BAT that restores the original PA TH: 

ECHO OFF 
PATH=%P1% 
SET Pl= 

For instance, if you want to add C:\BIN to your existing PATH temporarily, type: 

ADDPATH C: \BIN 

just the way you did before. But when you're done, to restore things the way they were 
before you made the addition, just type: 

PATHOLD 

The new "SET P1=%PATH%" line simply creates a dummy variable called Pl that 
stores the contents of the old PATH, before you make any PATH changes. 
PATH OLD.BAT then takes the original PATH - stored under the P 1 environment vari
able - and puts things back the way they were, then gets rid of the dummy Pl. 

The only problem with this is that you have to single-step your way through. If you 
add one directory and later want to get rid of it and add another one, you have to run 
PATHOLD before you add the second one. If you don't, ADDP A TH will add the second 
new one onto the first. 

PATH Magic 

Just about every hard disk user ends up battling the DOS PA TH. Since many users keep 
data directories one level down from the programs that use the data, one way to make 
life easier is to include a" .. " in your PATH. Some users even try starting their own PA TH 
with D: \; .. ; C: \; so DOS can always try to look one level higher no matter where they 
are in their subdirectory structure. 

But what users really need is a PA TH editor to let them add or remove subdirectories 
temporarily. You can create a series of batch files to do just that. To use them, simply 
type: 

[d:] [path]CHPATH SUBDIR [-Bl-El-DBI-DEi-I] 

where: 

[d:][path]CHPATH is the name of the main batch file 
SUBDIR is the subdirectory on which to act 



Hard Disks Made Easy 93 

-B will add the specified subdirectory to the beginning of the existing PA TH 
-E will add the specified subdirectory to the end of the existing PATH 
-DB will delete from the current PA TH all subdirectories up to and including the 

specified subdirectory 
-DE will delete from the current PATH all subdirectories after the specified 

subdirectory 
-I will let you remove a single subdirectory inside the current PA TH 

For example, if your PATH is C:\l 1 l;C:\222;C:\333; and you entered: 

CHPATH C:\444 -E 

you'd end up with C:\11 l;C:\222;C:\333;C:\444;. If you started with the same PA TH but 
entered: 

CHPATH C:\444 -B 

you'd end up with C:\444;C:\l 1 l;C:\222;C:\333;. If you started with 
C:\l 1 l;C:\222;C:\333;C:\444; and you entered: 

CHPATH C:\222 -DB 

you'd end up with C:\333;C:\444;. If you started with the same 
C:\l 1 l;C:\222;C:\333;C:\444; and you entered: 

CHPATH C:\222 -DE 

you'd end up with just C:\111. If your current PA TH was C:\111 ;C:\222;C:\333;C:\444; 
and you entered 

CHPATH C:\333 -I 

you'd end up withjustC:\lll;C:\222;C:\444;. 
You '11 need four batch files, the main CHP A TH.BAT, CPSETl .BAT, CPSET2.BAT, 

and CPSET3.BAT to handle the trickier delete-to-beginning and delete-to-end opera
tions. First, CHP A TH.BAT: 

ECHO OFF 
REM CHPATH.BAT 
IF %2!==! GOTO ERROR 
PATH > RESET.BAT 
SET M=%1 
SET P=%2 
IF !%2==!-DB CPSETl %PATH% 
IF !%2==!-db CPSETl %PATH% 



94 PC Magazine DOS Power Tools 

IF !%2==!-DE CPSET2 %PATH% 
IF !%2==!-de CPSET2 %PATH% 
IF !%2==!-I CPSET3 %PATH% 
IF !%2==!-i CPSET3 %PATH% 
SET P= 
SET M= 
IF !%2==!-B 
IF !%2==!-b 
IF !%2==!-E 
IF !%2==!-e 
PATH 
GOTO END 
:ERROR 

PATH=%1;%PATH% 
PATH=%1;%PATH% 
PATH=%PATH%;%1 
PATH=%PATH%;%1 

ECHO Current path is: 
PATH 
ECHO Proper syntax is: 
ECHO %0 DIRECTORY [-B -E -DB -DE -I] 
:END 

Next, CPSETl.BAT, whose only purpose is to invert the order of the PATH entries: 

REM CPSETl.BAT 
CPSET2 %9;%8;%7;%6;%5;%4;%3;%2;%1; 

Then CPSET2.BAT: 

ECHO OFF 
REM CPSET2.BAT 
SET PATH= 
:LOOP 
IF !%P%==!-DB PATH=%1;%PATH% 
IF !%P%==!-db PATH=%1;%PATH% 
IF !%P%==!-DE PATH=%PATH%%1; 
IF !%P%==!-de PATH=%PATH%%1; 
SHIFT 
IF NOT !%1==! IF NOT !% 
SET M= 
SET P= 
PATH 

And finally, CPSET3.BAT: 

ECHO OFF 
REM CPSET3.BAT 
SET PATH= 

!%M% GOTO LOOP 



:LOOP 
IF NOT %1==%M% PATH=%PATH%%1; 
SHIFT 
IF NOT !%1==! GOTO LOOP 
SET M= 
SET P= 
PATH 

Hard Disks Made Easy 95 

About the only drawback to using the batch programs is that when you want to delete 
subdirectories you have to type them uppercase exactly the way they appear in the path. 
So if a sulxlirectory is C:\5K and you type c:\sk or just\5K they won't work properly. 
Also note that as the programs are currently written you can't use the delete-to-end or 
delete-to-beginning functions successfully if you have more than nine subdirectories in 
your PATH. 

Note: CHPATH.BAT creates a file called RESET.BAT. To reset your PATH the way 
it was before you made any changes, just type RESET. 

Some of the assembly language utilities on the accompanying disk can make the 
process a bit easier. But DOS can do it all for you too. 

Keeping subdirectory names short saves environment space and wear and tear on your 
typing fingers. It's also a good idea because the CD command can't handle more than 
63 characters. If you absolutely can't Ii ve without long subdirectory names, and you run 
out of environment space, you can always use the SUBSTcommand as shorthand in your 
AUTOEXEC.BAT file. Subdirectories really work pretty much like individual disk 
drives. SUB ST blurs the distinction. 

If you have a tangle of subdirectories like: 

C:\ABLE\BAKER\CHARLIE\FOXTROT 

you could issue the SUBST command: 

SUBST E: C:\ABLE\BAKER\CHARLIE\FOXTROT 

before you issue the PA TH command. Then, the short path command: 

PATH E: 

will actually tell DOS to include C:\ABLE\BAKER\CHARLIE'FOXTROT in its path 
searches. This method cuts down on your typing and lets you treat long subdirectories 
the exact same way you'd treat drives. If you type: 

DIR E: 

you'll see what files are in C:\ABLE.\BAKER\CHARLIE\FOXTROT. You can also use 
this trick to copy files in and out of that subdirectory. And you can log into itjust by 
typing E: at the prompt. Note that you can't use a higher drive letter than E: unless you 



96 PC Magazine DOS Power Tools 

warn DOS beforehand in your CONFIG.SYS file with the LASTDRIVE= command. 
And you can create such drives temporarily. The command: 

SUBST E: /D 

will undo the substitution. But, if you 're going to use this trick, read all the warnings in 
the SUB ST section of the DOS manual. Commands like LABEL and BACKUP can cause 
problems with it And SUBST is magic with programs like WordStar 3.x that can find 
their overlays on specified drives but not subdirectories. Notice that each of the subdirec
tories is preceded by a drive letter, C:. If all you ever do is use your C: hard disk, and 
never log onto a RAMdisk or a floppy. you can omit this. A path such as: 

PATH \DOS;\BIN 

would work just as well. 
You should include the drive letters, however, because if you really want to boost per

formance you'll create a RAMdisk and copy your most frequently used programs - and 
all your long batch files - into it. 

The DOS RAM disk 

As every power user knows, a RAMdisk is a section of memory that some software has 
tricked DOS into treating like an additional physical disk drive. RAMdisks are far faster 
than even the fastest hard disks, since they contain no moving parts. The tradeoff, of 
course, is that RAMdisks are volatile; all data stored on them vanishes when you turn the 
power off or when the current in your wall socket hiccups. 

To install the free RAMdisk that comes with later versions of DOS, make sure the 
DOS VDISK.S YS program is in your C:\DOS subdirectory, and include this line in your 
CONFIG.SYS file: 

DEVICE=C:\DOS\VDISK.SYS 

This command will set up a virtual drive D: with 64K of available space. If you want a 
larger RAMdisk, you can specify the number of bytes at the end of the command. For 
example, 

DEVICE=C:\DOS\VDISK.SYS 360 

would set up a drive D: that's the same size as a standard double-sided floppy. However, 
IBM won't let you DISKCOPY into it. RAMdisk software from other manufacturers, 
such as AST's SUPERDRV, will let you use the DISKCOPY command. IBM's VDISK 
driver will let you create multiple virtual disks, configure the sector size and number of 
directory entries, and, in the most recent versions of DOS, use extended memory. 



Hard Disks Made Easy 97 

The trick is to figure out which major programs, batch files, and utilities you use fre
quently and insert a cascade of commands in your AUTOEXEC.BAT file to copy those 
files to the RAMdisk. Then make sure your path includes this new drive. In the example 
used above, the path would now look like: 

PATH=D:\;C:\DOS;C:\BIN 

Putting D:\ first means that the root directory of the RAMdisk is the first place DOS will 
look. 

It's smart to put all your batch files except the tiniest ones into a RAMdisk, since batch 
files execute one slow line at a time. Watching even a hard disk grind its way through a 
medium sized batch file is no fun. 

Let's say you use three programs very often - CHKDSK.COM, a color-setting and 
screen-clearing program called C.COM, and BROWSE.COM. Your AUTOEXEC.BAT 
file would contain the lines: 

COPY C:\CHKDSK.COM D: > NUL 
COPY C:\C.COM D: > NUL 
COPY C:\BROWSE.COM D:Z.COM > NUL 

The > NUL at the end of each line gets rid of the "1 File(s) copied" messages. Notice 
that the third line not only copies BROWSE.COM to D: but also renames it to Z.COM. 
That's because Z is a lot easier to type than BROWSE since Z is one letter long and hap
pens to be at the lower lefthand comer of the keyboard. 

Protecting AUTOEXEC.BAT and CONFIG.SYS 

Most software packages these days either come with instructions that suggest creating 
one or more dedicated subdirectories, or have their own installation programs that do it 
automatically. 

However, these automatic installers can be downright dangerous. Some replace your 
versions of AUTOEXEC.BAT and CONFIG .SYS with their own, when they really ought 
to modify yours rather than trashing them. Others hide files, which makes it difficult to 
remove subdirectories. 

You can prevent your AUTOEXEC.BAT and CONFIG.SYS files from being written 
over by using the TYPE or BROWSE commands or your word processor to examine the 
program's BAT and installation programs. If you see a command that simply copies that 
program's versions of AUTOEXEC.BAT and CONFIG.SYS to your hard disk, you can 
use your word processor to adapt your existing files rather than watch them get trashed. 

A smart idea is to maintain a small subdirectory called \BAKUP containing nothing 
butyourcurrentversionsofCOMMAND.COM,AUTOEXEC.BAT,andCONFIG.SYS. 
Every time you update one of these, copy it to the \BAKUP subdirectory. Then when a 
program installs itself destructively you can type: 



98 PC Magazine DOS Power Tools 

COPY \BAKUP \ 

This is shorthand - you could have said: 

COPY \BAKUP\*.* \ 

Or, you can log into the root directory and just type: 

COPY BAKUP 

DOS thinks that when you tell it to perform a task such as copying or deleting and you 
specify just the name of the subdirectory, you are asking it to do something to all the files 
in the subdirectory. So if you have a \BIN directory and you type: 

DEL \BIN 

DOS assumes you want to wipe out every file in the subdirectory just as if you had typed: 

DEL \BIN\*.* 

In both cases it will warn you in its quirky way with the message: 

Are you sure (Y/N)? 

Keeping duplicates of your important root directory files in a \BAKUP subdirectory 
is also a good idea if you try to get too tricky. While DOS usually pauses to warn you if 
you try to delete all the files in a directory, you can sidestep the protection. Execute either 
of the commands: 

FOR %A IN (*.*) DO DEL %A 

or: 

ECHO Y I DEL *·* 

and DOS will merrily wipe out every last nonhidden file. The syntax for the above FOR 
command is correct if you type it in at the DOS prompt (be careful if you try this). But 
if you want to use it in a batch file replace both single% signs with double%% signs 
(and be even more careful). 

Hidden Files 

Hidden files can be a real problem with subdirectories. Few users keep the same sub
directory structure for very long. Most end up cutting and pasting branches of the tree as 



Hard Disks Made Easy 99 

they get more sophisticated or desperately short of space, or when they replace applica
tions packages with newer ones. 

The RD command removes subdirectories, but only when they're empty. If you've 
left even one file or lower-level subdirectory in them, you won't be able to expunge the 
subdirectory. 

Some programs, in spiteful attempts at copy protection, install hidden files that you 
can't see in normal directory searches. If you try to remove a subdirectory that you think 
is empty, and you see this message: 

Invalid path, not directory, 
or directory not empty 

first check to see if you've left any subdirectories branching off the one you want to get 
rid of. If so, you have to move or erase the contents of those lower-level subdirectories 
first, then use the RD command to remove them. 

If there aren't any files or lower-level subdirectories, some nasty application has 
probably planted a hidden file there. You can check on this by executing the CHKDSK 
N I MORE command, which will show all the files on your disk a screenful at a time, 
including the hidden ones. Then use the ATTR.COM or UNHIDE.COM programs on 
the accompanying disk to unhide the file. You can also use AT1R.COM or the accom
panying HIDE.COM programs to make any program hidden. 

To hide a file like AUTOEXEC.BAT, type: 

HIDE AUTOEXEC.BAT 

To unhide it, type: 

UNHIDE AUTOEXEC.BAT 

Warning: Some commercial software packages not only hide files but scramble the 
arrangement of DOS sectors beneath the hidden file. If at all possible, always try to use 
the deinstallation program that came with the software package before using a utility like 
UNHIDE or ATIR to reveal the program so you can erase it. 

Changing the file attributes to "hidden" or "read-only" will prevent programs from 
overwriting them. These utilities use function 43H of INT 21 to first check the existing 
attribute byte, and change only the bits that need modification. ORing the existing value 
with 1 makes it read-only; ORing it with 2 makes the file hidden. ANDing it with FE 
takes away the read-only attribute; ANDing it with FD unhides the file. This way it leaves 
other attributes (system or archive) as they were. 

Unfortunately, you can't use function 43 to change the attribute byte of subdirectories 
or volume labels, so this won't let you meddle with those. 

Be careful when hiding files en masse. If you issued a command such as: 

FOR %A in (*.*) DO HIDE %A 



100 PC Magazine DOS Power Tools 

you'd end up with a whole directory of hidden files. You won't be able to use a similar 
command to unhide them all at once, since DOS won't see any files to unhide. You'll 
have to unhide all your files individually. The safest thing to do if you hide lots of files 
is first create a master file listing all the filenames, and put this master file in another 
directory or on another disk. If you're on drive C: you could use a command like: 

DIR > B:C-HIDDEN.LST 

Making all your root directory files hidden may look interesting, but it can confuse 
anyone else who tries to work with your system. Making them read-only will prevent 
other programs from changing (or deleting) them, but you'll still see them in normal DIR 
searches. 

Some awful installation programs change things as they proceed. They may rename a 
driver file on the original disk or delete files once they've copied them to a hard disk. If 
the installation process is interrupted, or if it's so dumb that it doesn't know when some
thing' s gone wrong, you may have trouble reinstalling things later. 

Another clever way to prevent having software packages replace or otherwise modify 
AUTO EXEC.BAT is to make your AUTOEXEC.BAT tiny and have it run another start
up batch file with a different name that does all the real work. This way if something 
clobbers the file on your disk named AUTOEXEC.BAT, it won't hurt your real startup 
file. 

To do this, just put the following two lines in your AUTO EXEC.BAT: 

ECHO OFF 
SETPATH STARTUP 

All this does is execute another batch file called SETPATH.BAT: 

SET NORMPATH=C:\DOS;C:\UTIL;C:\ 
PATH %NORMPATH% 
%1 

SE1PATH.BAT sets the path, and then executes the STARTUP.BAT file, since its %1 
replaceable parameter refers to the word STARTUP in the last line of the 
AUTOEXEC.BAT file. 

The STARTUP.BAT file contains all commands you normally would have placed in 
an AUTOEXEC.BAT file: 

PROMPT $P$G 
PRINT /D:PRN /Q:32 
CARDFILE C:\UTIL\CARDFILE.TXT 
DOS KEY 
CTYPE /MA 
SPEEDUP 



Hard Disks Made Easy 101 

There are several advantages to this technique: 

• The AUTOEXEC.BAT file is simple to recreate if it is destroyed or inadvertently 
modified. 

• The PA TH command is in its own separate batch file, making it easy to change if 
directories are added or removed. 

• The SETP A TH.BAT file can quickly restore the default path if it has been changed. 
• By creating a batch file like ADDPATH.BAT: 

PATH %NORMPATH%;%1 

it's easy to add a new directory to the path temporarily, and then restore it later 
with SETPATH.BAT. Don't try this with buggy DOS 3.0 however. 

• If all memory resident programs are removed by utilities such as IN
STALL/REMOVE, running STARTUP.BAT restores the memory resident 
programs as they were at power-on time. 

Another ingenious protection solution is to change COMMAND.COM so it looks for 
a file with a name other than AUTOEXEC.BAT. In fact, the first file COMMAND.COM 
tries to execute doesn't even have to end in .BAT. See the sidebar "Booting Up With 
BERNIE" for details. 

Subdirectory Navigation 

It's easy to create new subdirectories and move around inside existing ones if you have 
the right tools handy and follow a few simple rules. 

The first rule is to remember that when you want to move up- toward the root direc
tory - all you have to do is type: 

CD •• 

(or CD .. ) to jump to each successive parent directory. However, when you finally land 
in the root directory' you can't move up any more levels, trying to do so will produce an 
"Invalid directory" message. 

It is especially easy to back out to the root directory by using the F3 key. If you're in 
a subdirectory five levels deep called: 

LEV1\LEV2\LEV3\LEV4\LEV5 

(you of course will be able to tell this by looking at the 
C:\LEV1\LEV2\LEV3\LEV4\LEV5: prompt that your PROMPT $P: command dis
plays) and you want to jump back to the root directory, you can do this the easy way, by 
typing: 



102 PC Magazine DOS Power Tools 

CD \ 

or, you can jump upward a level at a time by typing: 

CD .. 

once and then tapping the F3 key four more times. Each time you do, DOS will repeat 
the earlier command, and since that command is CD .. it will bounce you rapidly root
ward. 

To move in the other direction, down from the root directory to LEV5, you could of 
course simply type: 

CD \LEV1\LEV2\LEV3\LEV4\LEV5 

However, you can't type: 

CD \LEVS 

because that would tell DOS to jump you into a subdirectory called \LEV5 that was just 
one level down from the root directory. The real name of the \LEV5 subdirectory above 
is notjust\LEV5; it's\LEV1\LEVZ\LEV3\LEV4\LEV5. 

Another way to get from the root directory to there is by using the relative version of 
the CD command to bounce you down one level at a time. Note that since DOS keeps 
track of each subdirectory by its full pathname rather than by just its particular branch 
on the tree, you could have a path like: 

C:\SHARE\AND\SHARE\ALIKE 

since the subdirectory: 

C:\SHARE 

is utterly different from: 

C:\SHARE\AND\SHARE 

One is a single level down from the root directory, while the other is three levels down. 
However, having similar names like this is confusing, and is a bad idea for an important 
reason you '11 see later. 

To go from the root to the lowest branch one level at a time, you'd type: 

CD SHARE 
CD AND 
CD SHARE 
CD ALIKE 



Hard Disks Made Easy 103 

When you 're on one branch of a tree it's easy to bounce around from one subdirec
tory to another on the same level. If you have a tree that looks like this: 

FRUIT 

I 
I I I 

APPLE PEACH GRAPE 

and you're currently in \FRUI1\APPLE and you want to jump to \FRUI1\GRAPE, you 
can type in: 

CD .. \GRAPE 

since the .. is shorthand for the parent directory (\FRUI1j. But jumping from one deep 
branch of your subdirectory structure to a completely different branch can be a bad 
typist's nightmare. 

If you 're currently logged into: 

\FRUIT\PEACH 

and you want to jump to: 

\PROGS\STAR\VER3\MEMOS\MERGER 

you'd normally have to type in: 

CD \PROGS\STAR\VER3\MEMOS\MERGER 

Awful. But there's a far easier trick. If your hard disk is set up properly you can simply 
type: 

MERGER 

and DOS will zap you there. 
The trick is to create either a slate of small batch files - or one huge batch file to 

do all the switching. If you had a batch file called MERGER.BAT on your hard disk, in 
a subdirectory included in your path, with the contents: 

CD \PROGS\STAR\VER3\MEMOS\MERGER 



104 PC Magazine DOS Power Tools 

typing MERGER would execute that batch file, which would in turn execute the proper 
thorny CD command. This is why it's a good idea to have subdirectories that avoid con
fusingly similar names.You can create a new batch file every time you issue an MD com
mand to create a new subdirectory. Or you can run one of the two BASIC programs on 
the accompanying disk that are designed to help. BA TMAKRl .BAS creates lots of small 
individual batch files, while BA TMAR2.BAS creates one big batch file. Each has its ad
vantages and disadvantages. 

It's far faster to have individual batch files, since they run more quickly. But even 
though each batch file may be only 20 or 30 bytes long, each takes up whatever the min
imum cluster size is on your hard disk. On an XT running under DOS 2.X, this is a mind
bending 4K. On an AT under 3.X, its a more manageable 2K. Put a hundred of these 
small files on your hard disk and you start chewing up valuable real estate. 

The advantage of using one big file is that it takes up far less space. The severe disad
vantage is that it executes ponderously. This is because one big batch file has to test your 
input and match it against all the subdirectories on your disk to see which one to switch 
to. Batch files execute one slow line at a time, so on a slow XT hard disk the process can 
take ten or 20 seconds if the subdirectory you want is at the very bottom of the list of 
tests. If you are tight for space and want to use the one-big-file method, put a command 
in your A UTOEXEC.BAT file to copy this subdirectory switcher to a RAMdisk, and run 
it from there. 

The other real advantage of having small individual files is that they're more forgiv
ing of typing mistakes. If you tell the long batch file to switch to a subdirectory that 
doesn't exist, it has to check the one you entered against its entire list, which means chug
ging its way one line at a time through every test. And, while the one long batch file does 
at least check for all uppercase and all lowercase entries, it doesn't test for mixtures of 
upper- and lowercase. It could handle user input such as: 

merger 

or: 

MERGER 

but not Merger, or MErger (a common typing mistake) or something like MeRgEr. That's 
because this method uses replaceable parameters, and DOS retains the case of your typing 
exactly. With the individual file technique, you 're typing in a command (the name of a 
file actually) rather than a replaceable parameter. DOS automatically translates com
mands into all uppercase for you. Use the shorter individual system if at all possible. 

Both versions work from a list of subdirectories you create by typing: 

CHKDSK /V I FIND "Dir" > TEMPFILE 

The N switch tells CHKDSK to list all the files on your disk, including subdirectories 
(which are simply files that DOS codes a special way). DOS then pipes the CHKDSK 
output through its FIND filter, discarding every line that doesn't have the letters "Dir" 



Hard Disks Made Easy 105 

in them. This eliminates all conventional files and blank lines, as well as the nonnal 
CHKDSK report on the number of hidden files and bytes free. 

The longer version creates a single BAT file to handle all the subdirectory switching. 
If all you had on your hard disk were a root directory and two subdirectories one level 
down, \DOS and \BIN, the contents of S.BAT would look something like: 

ECHO OFF 
IF %1!==! GOTO ERROR2 
IF %1==DOS goto DOS 
IF %l==dos goto DOS 
IF %1==BIN goto BIN 
IF %1==bin goto BIN 
GOTO ERRORl 
:DOS 
CD C:\DOS 
GOTO END 
:BIN 
CD C: \BIN 
GOTO END 
:ERRORl 
ECHO Subdirectory %1 not found. 
ECHO Try again. 
GOTO END 
:ERROR2 
ECHO You must enter a subdirectory 
ECHO name after %0 
:END 

Both versions require that you have CHKDSK.COM and FIND.EXE on your current 
directory, or in a subdirectory that you've included in your path. Once you've run the 
CHKDSKN command mentioned above, run BATMAKR2.BAS to create the long 
S.BAT file. If you enter only the name of the batch file you just created, S, with no sub
directory after it, the line: 

IF %1!==! GOTO ERROR2 

will jump to to the ERROR2 error message. The %0 in this message is a special replace
able parameter that prints the name of the batch file itself in place of the %0. If you change 
the name of the batch file to something like SWITCH.BAT, this device will handle the 
new name. 

BATMAKR2 automatically creates both a lowercase and an uppercase test. If you 
entered: 

S DOS 



106 PC Magazine DOS Power Tools 

or: 

S dos 

either would jump the program to the :DOS label. The line immediately following the 
label switches to the \DOS subdirectory and then jumps the program to the :END label 
so it exits. There are other faster ways to exit, such as having the batch file execute another 
short batch file, but the delay isn't all that bad on a RAMdisk, and you really shouldn't 
run this on anything else. 

If you enter a subdirectory name that's not in the list of tests at the beginning of the 
program, you'll jump to the :ERROR! label, which uses the %1 replaceable parameter 
to tell you it couldn't find the directory you specified. 

You could adapt this process so that you jump directly to labels that are the same as 
your subdirectory names. Batch file labels are not case-sensitive, so you don't have to 
use any case tests at all. The problem with these is that if you make a typing mistake or 
enter a directory for which there is no label, DOS just prints a "Label not found" mes
sage and aborts the batch file. See the Chapter 10 on batch files for details. 

BA TMAKRl .BAS is shorter, and creates shorter files that work far faster than the long 
S.BAT. After you run it, to change to \BIN you'djust type BIN. 

These programs don't offer any fancy way to jump back to the root directory. After 
all, CD\ isn't that hard to type. And if you 're really rabid about it, you can always create 
a ROOT.BAT batch file that executes this for you. 

But how do you know what directories are on your disk? Simple. Just redirect the out
put of V1REE into a file called VTREE.PIC with the command: 

VTREE > VTREE.PIC 

and then create a small batch file called V.BAT: 

COPY CON V.BAT 
BROWSE VTREE.PIC 

Press the Enter key after each line, and when you 're finished, press the F6 function key 
and then the Enter key one more time. 

Redirect the output of VTREE into VTREE.PIC every time you create a new subdirec
tory or remove an existing one. Then, assuming BROWSE.COM and V .BAT are in a 
subdirectory that you've included in your PATH, each time you type: 

v 

you'll see an instant graphic representation of your subdirectory tree structure. You can 
use the arrow and PgUp/PgDn keys to move around in the tree. Pressing Esc will return 
you to DOS where you can switch to the target subdirectory by using one of the BAT
MAKR programs described above. 



Hard Disks Made Easy 107 

If you have SideKick, an even better adaptation of this method is to use SideKick's 
notepad as a window that displays the V1REE.PIC file as the default. Store V1REE.PIC 
in your\BIN subdirectory. Bring up SideKick's main menu, and type F7 or S for the setup 
menu. Type in \BIN\V1REE.PIC as the new Notefile name and press F2 to save this as 
the default. Then whenever you pop up SideKick and select the notepad, the graphic rep
resentation will jump onto the screen. Press QG to turn on the graphics line characters 
that connect the subdirectories. 

Once you've created a lot of individual switcher files, make sure that whenever you 
create a new subdirectory, you also create a batch file (which goes in \BIN or \BA 1) that 
simply contains the full pathname of the subdirectory with a CD\ prefix. So if you're ad
ding a new directory called 1\2\3\4\5, create a batch file called 5.BAT: 

CD \1\2\3\4\5 

and put this batch file into \BIN or \BAT. Then, just type 5 to jump directly into your 
\1\2\3\4\5 directory. 

You '11 obviously have a problem with this if your disk contains two subdirectories 
with similar names, such as \ACCOUNl\1989\TAX and\ACCOUNl\1990\T AX. In this 
case you'd have to either change one of the names slightly, or forego this technique. 

Some users feel this is too wasteful, since each file, no matter how small, can take up 
4K on an XTor2Kon an AT. However, this is a small price to pay for easeoftree-hop
ping. You could also use the short utilities UP.COM, DOWN.COM, and NEXT.COM 
on the accompanying disk to move you effortlessly around your subdirectory tree. 

UP.COM is a lot like the command CD .. except that if you keep tapping CD .. you'll 
eventually get to the root directory and receive the "Invalid directory,, message men
tioned earlier. When UP.COM reaches the root directory it just sits there silently. 
DOWN .COM takes you in the other direction, away from the root. NEXT.COM moves 
you sideways. Try them. You '11 like them. NEXT is especially useful when you type it 
in once and then just lean on the F3 and Enter keys to meander up and down the branches 
of your subdirectory tree. 

You can also create four batch files that work almost as well - UP.BAT, 
DOWN.BAT, NEXT.BAT, and ROOT.BAT. UP.BAT lets you move to a parent direc
tory - the one above the current directory - by typing UP and pressing Enter. 
DOWN.BAT moves you down one level. For example, to go to a subdirectory called 
DOS located one level below the current directory, just type DOWN DOS. Type NEXT 
if you want to move over to another directory on the same level one that branches off 
the same parent directory that you 're currently logged into. Finally, type ROOT to return 
to the root directory. 

Here's UP.BAT: 

ECHO OFF 
CD .. 

DOWN .BAT is a little more complex: 



108 PC Magazine DOS Power Tools 

ECHO OFF 
IF %1!==! GOTO OOPS 
CD %1 
GOTO END 
:OOPS 
ECHO You have to specify where you want to move down. 
:END 

This is NEXT.BAT: 

ECHO OFF 
IF %1!==! GOTO OOPS 
CD .. \%1 
GOTO END 
:OOPS 
ECHO You have to specify where you want to move over. 
:END 

And this is ROOT.BAT: 

ECHO OFF 
CD\ 

When using DOWN.BAT or NEXT.BAT, be sure to enter the names of the subdirec
tory where you want to end up. If you don't specify one, the batch file will ask where 
you want to go. 

If you 're a diehard power user, you may think these programs are silly. All these batch 
files really do is type in the CD commands that you can rattle off in your sleep. But they 
can be helpful for new or casual users. On the other hand, unless something is unusual
ly complex and bizarre, it's always better to learn how to do something the real way than 
to learn just the shortcut. If all you learn is to type UP and you have to move to someone 
else's system, all typing UP will do is produce an error message. The bottom-line answer 
is that these programs may help someone get started, but once he or she becomes profi
cient, it's better to master the the real thing. 

The following HOME.BAT batch file does a very interesting trick: 

ECHO OFF 
IF %1!==! GOTO CHANGE 
SET HOMEDIR=%1 
:CHANGE 
IF %HOMEDIR%!==! GOTO OOPS 
CD %HOMEDIR% 
GOTO END 
:OOPS 



ECHO Enter a full path after %0 
:END 

Hard Disks Made Easy 109 

If you specify a subdirectory path after the word HOME, it will set the environment 
variable HOMEDIR to that path and change to that directory for you. Then if you go 
wandering off through your tree structure you'll move back to the subdirectory you 
specified earlier simply by typing HOME by itself. 

The main problem with this is that you have to specify an absolute path rather than a 
relative one. If you,re in \DOS and you want to jump to \DOS\BAT you can normally 
do it with the command: 

CD BAT 

But if you want to specify this directory with HOME.BAT, you have to do it by typing: 

HOME \DOS\BAT 

You can't just type: 

HOME BAT 

This is because typing CD BAT will move you from \DOS to \DOS\BAT only when 
you happen to be in \DOS. If you,re in \BIN and you type CD BAT, DOS will think you 
want to switch to \BIN\BAT and this directory probably doesn ,t exist. 

You also have to make sure that a copy of HOME.BAT is in a subdirectory that your 
path knows about. And you have to set it properly the first time you use it. If you haven't 
entered anything after HOME and you type HOME by itself, the batch file will simply 
print a message telling you to enter something next time. 

Also, because of a DOS bug, you can't use HOME.BAT with version 3.0, because it 
has trouble with environment variables. 

Of course the best navigation tool of all is RN.COM, especially when coupled with 
DR.COM. To use RN and DR, just type RN/I to install the program. Then, whenever 
you want to see, change, or move around your subdirectory structure, type RN at the 
DOS prompt and follow the directions onscreen. Pressing FlO will load DR.COM (if it's 
handy), which makes this even more useful, since DR will let you examine, rename, 
move, or delete any file. 

Finding Files 

Users have their own favorite ways to find files buried deep inside a long-forgotten sub
directory. The SEARCH and WHERE programs on the accompanying disk can help. But 
by executing a simple FINDFILE.BAT batch file you can have DOS do it: 



110 PC Magazine DOS Power Tools 

ECHO OFF 
IF %1!==! GOTO OOPS 
ECHO NOW SEARCHING DIRECTORIES FOR "%1" 
CHKDSK /V I FIND "%1" I MORE 
GOTO END 
:OOPS 
ECHO Enter a f ilespec (or part of one) after %0 
:END 

FINDFILE exploits the N feature of CHKDSK.COM. The N option lists all files in 
all subdirectories, but you wouldn't know this from some of the early DOS manuals, 
which describe it with meaningless remarks like saying it will "display a series of mes
sages indicating its progress, and provide more detailed information about the errors it 
finds." The more recent editions of the manual are a little clearer. 

Adding a N switch makes it a snap to search for a particular file. FIND FILE pipes the 
output of CHKDSK N through the FIND.EXE and MORE.COM filters, so you have to 
have these DOS utilities on the same subdirectory as FINDFILE.BAT or in a directory 
your path knows about. 

If you wanted to search for BASICA.COM, for instance, you would simply type: 

FINDFILE BASICA 

If you typed: 

FINDFILE BASIC 

the batch file would locate both BASIC.COM and BASICA.COM, and any other 
filename with the capital letters BASIC in it. You may also use parts of names. Typing: 

FINDFILE ASICA 

would find BASICA.COM. This comes in handy if you want to look for files with the 
same extensions. Enter: 

FINDFILE .COM 

and you'll see all your COM files. Remember to enter capital letters only. And don't put 
quotes around the filenames or parts of filenames you want to find - the batch file will 
do this for you automatically. FINDFILE won't display a special message telling you no 
matches were found if it comes up empty. But this will be obvious when no matches are 
displayed on your screen. The only real problem with this is that FINDFILE.BAT is slow, 
especially on a nearly full hard disk, since it has to pipe hundreds or thousands of 
filenames through a filter, and create temporary files while it does so. You could redirect 



HardDisks Made Easy 111 

the output of CHKDSK N into a file and adapt FINDFILE so it looks at the existing list 
of filenames instead of having to recreate the list each time. The tradeoff is that such a 

list has to be updated frequently, and ends up always being at least a bit out of date. 

Moving Files 

When users normally move a file from one subdirectory to another, they first copy the 
file with the COPY command and then use ERASE to delete the original. Or they write 
a short batch file to do it: 

COPY %1 %2 
ERASE %1 

The problem with such a batch file is that if an incorrect destination is specified, it can 
fail to make the copy but then go ahead and erase the original anyway. A better way is 
to use one of the utilities on the accompanying disk. Or you could try the following 
MOVEIT.BAT batch file: 

ECHO OFF 
IF NOT %2! == ! GOTO TEST 
ECHO You must specify what to move 
ECHO and where to move it to, eg: 
ECHO %0 CHKDSK.COM \DOS 
GOTO END 
:TEST 
IF NOT EXIST %2\%1 GOTO COPY 
ECHO %1 is already in %2 
ECHO To prevent overwriting %1, press 
ECHO Ctrl-Break right now. Otherwise 
PAUSE 
:COPY 
COPY %1 %2\%1>NUL 
IF NOT EXIST %2\%1 GOTO ERROR 
ERASE %1 
GOTO END 
:ERROR 
ECHO Error in destination specified, or 
ECHO the file to be moved is not in 
CD 
:END 

MOVEIT.BAT starts by checking to see if you entered the correct number of 
parameters, and gives you a help message if you didn't. It then copies the file, using 



112 PC Magazine DOS Power Tools 

%2\%1 so you don't have to spell out the name of the file in both locations (wildcards 
will work). However, this limits you a bit, since you have to be in the directory of the file 
you are trying to copy. (You could modify it to COPY % 1 %2 if you like, which would 
allow you to copy files without having to first log into those files' subdirectory - but 
you would have to spell out the name of the file in both places.) Finally, it erases the 
original file only if it finds the new one. 

It's smart to confirm that the copy was indeed made before deleting the original. But 
versions of DOS earlier than 3.0 will have problems with IF EXIST tests and paths. 

MO VEIT.BAT checks to make sure the file isn't already at the destination subdirec
tory before you copy it, which prevents you from accidentally overwriting files. If you 
see a message warning you that you 're about to obliterate an existing file, just press Ctrl
Break and then the Y key to abandon the process. Otherwise, press any key to proceed. 

Fine-Tuning Your Hard Disk System 

While DOS limits the number of files you can shoehorn into the root directory, and smart 
users know to keep their root directories small, the number of files in each of your sub
directories is limited only by the amount of space on your disk. 

But it's not wise to let your subdirectories get too big, unless you have an easy way to 
back them up. 

The DOS BACKUP and RESTORE commands aren't very slick, but they're free and 
can split large files up and spread them over several disks. You can back up incremen
tally, by having BACKUP copy only files created or changed after a certain date, or 
modified since the last time you backed up. You can tell BACKUP to dig down into your 
subdirectory structure and overwrite earlier versions or add a new version along with the 
old. 

But, BACKUP should format brand new disks automatically. And it changes backed
up programs slightly so you can't just run them unless you first RESTORE them. You 
have to be careful (and use the/P switch) when you'rerestoring files backed up with ear
lier DOS versions so you don't write the wrong system files onto your hard disk. DOS 
3.3 and later versions are careful about this; earlier ones weren't. 

Because of all these potential problems, many users keep their subdirectories small 
enough so each can be copied onto a single floppy disk. And they're starting to discover 
the terrific DOS 3.2 XCOPY command as a better way to create backups. This obvious
ly won't work with giant files. If you work with large files, you have to either grit your 
teeth and use BACKUP, or buy a tape drive or Bernoulli Box. 

Do get into the habit of backing up regularly. The morning you turn your system on 
and hear a sound like a wrench in a blender, you'll be glad you did. 

Backing up just the files you changed or added recently is better than not backing up 
at all, but when your hard disk goes south, you'll have to spend days putting all the little 
puzzle pieces back together. It's a good stopgap measure, but nothing beats making com
plete archive copies of the whole disk. 



HardDisksMadeEasy 113 

A real advantage to backing up everything at once is that you '11 be able to streamline 
your file structure and end up working far faster. The routine process of adding to and 
editing down your files each day ends up sowing little file fragments more or less at ran
dom over the surface of your disk. 

You should periodically copy all your files to a backup medium (and get rid of the 
duplicates, BAK versions, and dead data in the process), reformat your hard disk, and 
then copy everything back. You'll notice an immediate improvement in speed. When 
you do this, put the subdirectories that you path to at the very beginning of your direc
tory by making sure they're the first ones you copy to the newly formatted disk. 

One final pearl is obvious, but bears repeating. Think before you FORMAT. Even 
though the latest versions of DOS make you type in a Y and then press the Enter key 
before going ahead and wiping everything out, late at night you may misinterpret the 
question or press a Y when you meant N, or have some aberrant and lethal combination 
of JOIN, APPEND, and SUB ST bubbling away under the surface that steers an innocent 
floppy request into a jolt of panic. (And never run RECOVER, unless you're really 
desperate, since this will bollix up everything and tum your hard disk structure and all 
the files on it into anonymous mush.) 

A few seconds into the formatting process the hard disk FATs and directories get 
zeroed out, and any attempt at resurrection is only a best guess. It is possible to bring 
much of your data back to life with a utility like Mace's or Norton's, especially if you 
let Mace park a copy of your FAT ahead of time. But don't tempt fate. 

If you 're working on something time-sensitive and critically important, stop frequent
ly while you're working and make a working copy to a floppy. It is possible to corrupt 
a hard disk if you 're writing to it and the local power company decides that moment 
would be a good one to switch generators. You can set up a batch file to automate the 
process. Otherwise you might end up spending the rest of the evening patching together 
little shards of your work that you've fished out of the magnetic murk. 

If you notice that performance is degrading, or hear the percussive rhythm of repeated 
read retries, run Norton's DISKTEST program. This takes a few minutes, but can ferret 
out developing programs and zap out bad sectors better than DOS can. And if Norton 
reports grief, back up everything pronto and hie down to your dealer. When hard disks 
start whimpering they go downhill real fast. Hard disk problems never just go away. 

Caveat Emptor 

If you don't yet own a hard disk, remember, no mauer what kind of hard drive you're 
considering, don't buy yourself trouble. Make sure it's (1) safe, and (2) fast. While no 
hard disk is immune to potential disaster, some are more fragile than others. Since most 
users back up their data infrequently, a hard disk problem can wipe out weeks of work. 

Don't buy a hard disk unless its heads retract automatically when you turn the power 
off. Otherwise, they'll just drop down to the disk and take a bite out of whatever data's 
there. 



114 PC Magazine DOS Power Tools 

And don't get stuck with a low-speed disk in a high-speed system. While you can 
measure hard disk performance many different ways, the most common single gauge is 
average access time in milliseconds. The lower the number, the faster the drive. IBM's 
several different low-performance PC-XT drives score anywhere from 80 to 115 ms. 
IBM's specification for its far faster PC-AT is 40 ms. or less. Some speed demons are 
down in the teens. 

While other factors can influence speed, average access time is a fairly reliable per
formance indicator. Take pains not to buy a hard drive that's dragging its foot, especial
ly in a computer that runs at a relatively high clock speed. 



Hard Disks Made Easy 115 

Booting Up with BERNIE 

Everyone knows the first thing DOS does after turning itself on is look for a 
batch file called AUTOEXEC.BAT and try to run it if it's there, right? 

Not if it's busy booting BERNIE. 
The mechanism that tries to sniff out the existence of a bootup file is buried in 

COMMAND.COM. This bootup file doesn't have to be called 
AUTOEXEC.BAT. In fact, it doesn'teven have to end in BAT. 

It's easy to change the name of this bootup file to something innocuous like 
BERNIE. This will prevent others from using the TYPE command to look in
side AUTOEXEC.BAT to see what files you use when you start your system. 
And it will keep snoops at bay by displaying a special message. Here's how: 

First, make sure you have copies of COMMAND.COM and 
AUTOEXEC.BAT stashed safely away, since the process described below alters 
COMMAND.COM slightly. If you try this and want to put things back to the 
way they were, all you'll have to do later is copy your old original COM
MAND.COM over the patched one, and then copy it and the original 
AUTOEXEC.BAT back to the root directory. 

Put DEBUG.COM and a copy of COMMAND.COM in your root directory. 
If you've never used DEBUG.COM before, it's on your Supplemental DOS 
disk, not the main disk. 

This process assumes that you normally boot from a system with a C: hard 
drive, and that you have a subdirectory called C:\DOS. If not, it's pretty simple 
to figure out how to adapt it. To get the ball rolling, enter: 

DEBUG COMMAND.COM 

You should see a hyphen at the left edge of your screen. This is the DEBUG 
prompt. Type: 

S 100 5000 "AUTO" 

and DEBUG should print two pairs of four-digit hexadecimal numbers (hex 
numbers can be made up of the numerals 0-9 plus the letters A-F), separated by 
a colon. Ignore the leftmost four digits; they'll vary from system to system and 
they don't matter here. But note the rightmost four digits; this is where the name 
\AUTOEXEC.BAT is located inside COMMAND.COM. Now enter: 

E **** "DOS\BERNIE " 

but substitute those rightmost four digits in place of the ****. For instance, if 
DEBUG responded earlier with: 



116 PC Magazine DOS Power Tools 

54BA:130F 

after you entered the line beginning with the S, you would enter E 130F 
"DOS\BERNIE " there. 

Note that you must include two blank spaces between BERNIE and the 
rightmost quote mark. This is because \DOS\BERNIE is two characters shorter 
than the \AUTOEXEC.BAT that appears inside COMMAND.COM. You have 
to pad over all existing letters in AUTOEXEC.BATwith spaces if your new 
name isn't as long. 

Then type W and press the Enter key, and type Q and press the Enter key. 
Finally, copy your AUTOEXEC.BA T routine to your \DOS subdirectory and 

name it BERNIE, and then delete it from the root directory, with the commands: 

COPY AUTOEXEC.BAT \DOS\BERNIE 
DEL \AUTOEXEC.BAT 

You can then create a phony AUTOEXEC.BAT file in your root directory that 
contains the line: 

PROMPT Access Denied$_ 

If another user tries to run AUTOEXEC.BAT, all he'll get is a screen full of 
"Access Denied" prompts. You can even adapt the above technique to patch 
COMMAND.COM so that it changes the DIR command most people will try to 
use to see what's on your disk. Enter: 

DEBUG COMMAND.COM 

and then: 

S 100 5000 "DIR" 3 

(The 3 is important, since the letters DIR are in COMMAND.COM several 
times, but you 're looking for the only one that's followed immediately by a 3). 
DEBUG will print two more pairs of hex numbers separated by a colon. Then 
enter: 

E **** "DUR" 

but again, substitute the four rightmost hex digits for the****. Then type Wand 
press the Enter key, then Q and Enter, and then reboot. If you type in DIR you'll 
get a "Bad command or filename" error. If you type in DUR you'll see your nor
mal directory listing. 



Hard Disks Made Easy 117 

A word of caution though - don't mix versions of COMMAND.COM. DOS 
checks to make sure the version it dealt with originally is not different from one 
you're trying to use later. That's why you made copies of your originals before 
you started. 





Chapter4 

Hex Class 

Ok, this is your chance. If you 're fairly new to all this, or if all you want is a thorough 
mastery of the DOS commands, with a double armload of time-saving tricks and in
genious shortcuts thrown in, turn to the next chapter. Because it's time to talk about bi
nary and hex. You can get by just fine without them. But if you really want to make your 
system hum, you should know your way around inside. And inside means hex numbers. 

It's really not all that difficult; it's just that discussions of ls and Os are not inherent
ly absorbing. Still, being a power user means knowing at least a little about all this so 
that later when we talk about things like binary bit masks (to give you total control over 
the shift keys on your keyboard) and hexadecimal addresses (to help you recover lost 
data) youdon'tjustscratch your head and turn on HBO. So here goes. We'll try to make 
it as painless as possible. And we'll throw in a few surprises you'll like. 

There's no such thing as a little bit pregnant, or a little bit dead. You either are or you 
aren't. Life offers few such absolutes. A hundred people look at a sculpture in an art 
museum. A third love it. A third hate it. A third look at their watches. 

If you watch old Fred Astaire movies you rarely see objects that are all black or all 
white. Some things are close, but if you look carefully you 'II admit that they are 2 per
cent grey or 98 percent grey. And most things are closer to the middle of the scale. 

High-contrast photographic paper, on the other hand, is designed to produce a stark 
black-on-white image without any greys whatsoever. You put it into a darkroom enlarger 
and project a normal photographic negative with lots of shadows and grey shades onto 
it Anything that's 49 .99 percent grey or lighter doesn't trigger the silver salts and remains 
bright and white; wherever anything is 50 percent grey or darker, however, the paper 
turns jet black. 

The world is analog. A dot of color on a TV screen is produced by a fast-changing 
wave-shaped signal and can be one of hundreds of thousands of hues and tints. However, 
the waveform is subject to all kinds of distortion and deterioration; make a copy of a TV 
show on a VCR and then a copy of the copy, and after a few generations play it back on 

119 



120 PC Magazine DOS Power Tools 

the same TV set and you 'II see the colors and the general sharpness are very different 
from the original. Each copy chews up the shape of the wave a little; after thousands of 
copies all you'd have is hissy static and a demonstration of entropy in action. 

Computers are digital. A dot on a computer screen is produced by a hard, cold, un
changing numeric value. Create a graphics image on a digital computer and make 
hundreds of successive copies of it and display the 500th one on the same computer and 
it will have the exact same colors as the original. When you copy a file containing the 
data that make up the picture, all the mechanisms involved make sure if the value of the 
first dot in the file was a 69, it remains a 69. It's easier to pack more information into an 
analog signal. But if you need precision, you have to sacrifice a little quantity for quality. 
And when you're dealing with computers, the integrity of your data is sacrosanct. 

The fundamental building block of digital information is a bit (short for binary digit). 
One bit can't store much information by itself; it has a short menu - on or off, 1or0, 
"high" or "low." But in the right chip at the right time, a single bit can trigger instruc
tions that change or move lots of other bits, and when you start stringing millions of them 
together incredibly fast, you can get some real work done. 

Some people are adept at fudging their way through life, laying down dense fog like 
a PT boat. But you can't fudge a bit. It's either in one state or the other - one of life's 
few absolutes. Binary numbering makes a lot of sense on a digital computer, a system 
made up of hundreds of thousands of interconnected switches that are either on or off. 
Simple two-position switches can indicate the status of something (like an "occupied" 
sign on a jet), store data (a W or Lis what you really want to know about what your local 
baseball team did the night before), or execute important decisions (like switching tracks 
to send Chicago trains either north to Boston or south to Washington). But bits are most 
useful when arranged in groups of eight called bytes. A byte is a convenient way to store 
eight related pieces of information, such as the condition of eight different status in
dicators deep in the heart of your main chips. It's also handy for representing a letter, 
number, or special character such as 1/2 or the symbol for pi. And while chips deal with 
long binary streams of ls and Os, humans prefer friendlier alphabets. 

Your system is built to move information in one, two, or four byte chunks - depend
ing on whether you 're using an eight-bit, 16-bit, or 32-bit computer- rather than in lots 
and lots of individual bits. (Actually, some second-level processors, like those used by 
display adapter boards for EGA-compatible monitors, even work with halves of bytes 
called nibbles, and a base-8 numbering system called octal. If you're genuinely inter
ested in EGA sleight-of-hand, you may want to dabble in octal a little later.) 

If you noticed that everything so far seems to be divisible by the number 2, you're 
right. It all leads back to binary. EGAs use four bits to specify colors. PCs rely on a mix
ture of eightand 16. Systems based on Intel's 80286 chip, such as thePC~AT, can hand
le 16 from stem to stern. And the latest crop of 80386 powerhouses devour 32 at a single 
gulp. Users once added extra computer memory in packages of about64,000 bytes. Today 
the number has jumped to roughly 256,000 or even four times that. 

We all like round numbers. Folks who make it to 100 get on the evening news. The 
advent of a decade is important enough; we're on the verge of a new century and mil
lenium, and the celebration will undoubtedly be eye-popping, all because of a few well
placed zeros. 



Hex Class 121 

The computer industry likes round numbers too. But in this business they should real
ly be called "around" numbers, since the two most common big ones - a K for kilobyte 
(around a thousand bytes) and M for megabyte (around a million bytes) are actually 1,024 
and 1,048,576 respectively. 

Inflation is affecting even these numbers. Huge storage devices (optical disks and 
monstrous hard disks) that can salt away a gigabyte (around a billion characters) are ap
pearing on the scene. (Incidentally. the word is pronounced JIG-uh-byte, not GIG-uh
byte, since it comes from the same root as giant and gigantic rather than gargantuan.) 
And chip makers love to see our reaction when they start talking about the 80386's ability 
to address a terabyte (around a trillion bytes). (The root for this word, which means 
monster, was last in the news as "teratogenic" when it described the property of the drug 
thalidomide to deform offspring.) 

One kilobyte is 2" 10 (2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2). One megabyte is 2"20. So 
when you see a memory board that holds 64K, it actually can juggle 64 x 1,024, or 65,536 
bytes. And when someone tells you a PC's 8088 chip can directly handle a megabyte of 
memory, they mean 1,048,576 rather than just a paltry one million memory locations. 
However, it's far easier to call these amounts Ks and me gs, which everyone does anyway. 

Working with binary or hex numbers isn't intrinsically harder than dealing with 
decimals; it• s just that we've all had so much practice with decimal calculations that we 're 
pretty handy with them by now. But play with binary and hex for a while and you'll pick 
it up pretty fast. 

Odds are that we use a decimal (base-10) system because human have ten fingers and 
toes. So let's count toes. In decimal it's easy. But start with 0 instead of 1 to make it a 
little less dull. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Ten toes, ten digits. At this point you run out of both. Any more and you have to go to 
double-digits. 

Counting in binary is easy too. The decimal system has ten digits to play with. When 
you run out, you have to start using more than one digit, and you do it by putting a 0 in 
the column where the single digits were, and a 1 in the next column. 

The binary system has two digits to play with, 0 and 1. When you run out, you also 
put a 0 in the column where the single digits were, and a 1 in the next column. Only you 
run out a lot sooner. So you have to keep putting Os in the columns where you just ran 
out and ls in the next column over to the left. Counting toes in binary looks like this: 



122 PC Magazine DOS Power Tools 

0 (the first number, just as with decimal) 
1 (ran out of single digits; shift over one column) 
10 
11 (ran out of double-digits; shift again) 
100 
101 
110 
111 (that's all the triple-digits; shift one more time) 
1000 
1001 {last toe) 

People often pad binary numbers out with Os, so the same counting process could just 
as easily look like: 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

How do you ttanslate a decimal number into binary format? The key is to become com
fortable with the first nine powers of 2. Remember that 2AO is equal to 1. 

2A8=256 
2A7=128 
2A6=64 
2A5 =32 
2"4 = 16 
2A3=8 
2A2=4 
2Al =2 
21\() = 1 

Look at the binary version of this chart and you '11 see an interesting pattern that will make 
sense in a moment: 

2A8 = 100000000 
2A7 = 010000000 
2A6 = 001000000 
2A5 = 000100000 



2"4 = 00001 ()()()() 
2A3 = ()()QOOl()()() 

2A2 = 000000100 
2A 1 = 000000010 
2"0 = 000000001 

Now pick a number to translate: 13. 

Hex Class 123 

The goal is to see which of the powers of 2 make up this number. Consult the chart 
and look for the biggest number that's equal to or smaller than the one you've picked 
(13). Obviously the number that fits this description is 8. Since 8 is the fourth one in the 
chart, the binary version of 13 will have four binary digits, and the leftmost one will be 
a 1 (although you could stick Os on the left, since leading Os don't mean anything in bi
nary just as they don't in decimal; 00000027 is the same in decimal as just plain 27). 
Then, since you already considered the 8, get rid of it. Subtract it from 13. 

1 

After subtracting 8 from 13, you're left with 5. Look at the chart again. The next num
ber under 8 is 4. Since you can safely subtract 4 from 5 without ending up with a nega
tive number, put another 1 in the next position over to the right, and subtract the 4 from 
5 to leave a remainder of 1. 

1 1 

Consult the chart again. The next lower number after 4 is 2. But you can't subtract the 2 
from 1 or you'd end up with a negative number. So you'll put a 0 in the next position 
over. 

110 

The last number on the chart is 1. You can subtract 1 from the remainder of 1 and still 
not have a negative number, so put a final 1 in the rightmost position. 

1101 

Decimal 13 is equal to binary 1101. 
Another way to look at what you just did is to say 13 is made up of 1 1 O 1 

1 x 2"3 = 8 
1 x 2"2 = 4 
0 x 2"1 = 0 
1 x 2"0 = 1 

_ _____,f lj 
Total = 13 



124 PC Magazine DOS Power Tools 

Going from binary to decimal is easier. Pick a number: 00110100. Ignore the Os on the 
left side (remember, 00000027 in decimal is equal to plain old 27). This leaves a six-digit 
binary number, 110100. Tum it on its side and put it next to the lowest six entries on the 
chart. Mutiply as indicated, then add up the result: 

1 x 2A5 = 32 
1 x 2A4 = 16 
0 x 2A3 = 0 
1 x 2A2 = 4 
0 x 2A} = 0 
0 x 2AQ = 0 

Total = 52 

You don't really need the chart. You do need to remember the sequence of 1, 2, 4, 8, 16, 
32,64, 128, 256. Then whenever you see a binarynumber,justcountoverfrom the right, 
and in your head say "that's no ls plus no 2s plus a 4 (subtotal=4) plus no 8s plus a 16 
(subtotal 20) plus a 32 (total 52)." It's easier than it sounds. 

Pattern Recognition 

While your system can deal with 256 different characters, all it's really doing is handling 
256 different numeric values. In one of the only fairly successful attempts to standardize 
anything on the PC, IBM adopted (and added to) a character-numbering system called 
ASCII (pronounced as-kee, and standing for the American Standard Code for Informa
tion Interchange). In every ASCII file a capital A has a value of decimal 65, a capital B 
66, a lowercase a 97, a lowercase b 98, etc. 

Your keyboard lets you type 95 characters directly - 26 uppercase and 26 lowercase 
letters, ten digits, a space, and 32 punctuation marks: 

!"#$%&'0*+,-./:;<=>?@[\]A _'(I}-

In addition, your keyboard and computer have to agree on codes for other important 
operations such as tabs, backspaces, escapes, carriage returns, line feeds, form feeds 
(otherwise known as page breaks), and so on. You can generate these codes by holding 
down the Ctrl key and pressing letter keys; to generate a 3 you'd hold down the Ctrl key 
and press a C (since C is the third letter in the alphabet). You can use a Ctrl-C, abbreviated 
as AC, to stop many DOS operations in their tracks, just as with Ctrl-ScrollLock. 
(However, in IBM BASIC, a AC will act as a carriage return.) A few of the important 
operations (some in DOS; some in BASIC) with ASCII codes below 32 are shown in 
Figure4.1. 



Hex.Class 125 

Ctrl ASCII 
Code Value What it does in DOS and/or BASIC 

0 Nul 
AB 2 Jump to previous word 
AC 3 Break; carriage return in BASIC 
AE 5 Erase to end of line 
AF 6 Jump to next word 
"G 7 Beep 
AH 8 Backspace 
AJ 9 Tab 
AJ 10 Linefeed 
AK 11 Home (sometimes) 
AL 12 Form feed 
AM 13 Carriage return 
AN 14 End of line 
Ap 16 Toggle echo to printer on and off 
AQ 17 Restart scrolling in CP/M type operations 
AR 18 Toggle Insert/overtype 
AS 19 Toggle scrolling on and off 
AZ 26 End of file 
A[ 27 Esc 
A\ 28 Cursor right 
A) 29 Cursor left 
AA 30 Cursor up 
A - 31 Cursor down 

Figure 4.1. Control Code Operations 

You can fit all the letters of the alphabet, digits, punctuation, and control codes (with 
ASCII values lower than 32) into 128 characters. Early seven-bit systems could address 
only 128 characters, since 2A7 is 128. IBM added one bit to this system and doubled the 
number of characters to 256. 

The leftmost side of a number is the high order side and the rightmost side the low 
order one. This is obvious; for the decimal number 567, for instance, the 5 stands for how 
many hundreds and the 7 for how many ones. Hundreds are higher than ones in any sys
tem, so the 5 is on the high side and 7 on the low side. 

Because adding this additional bit meant slapping it onto the leftmost side, ASCII num
bers over 128 - which all have a 1 as the leftmost digit- are sometimes referred to as 
high-bit characters. 

IBM's high-bit characters let you use foreign languages, create mathematical formulas, 
and draw box-character pictures and borders. IBM also added a few printable symbols 



126 PC Magazine DOS Power Tools 

to the ASCII characters with values under 32 (for instance, decimal ASCII character 11 
produces the biological male sign and character 12 the female sign). 

To see all the ASCII characters. run the tiny demonstration program called SHOW
CHAR.COMon theaccompanyingdisk.BIOSprovidesmanydifferentmethodsforwrit
ing characters. You could use something like BIOS service hex OE, which treats the 
screen like a teletype, advancing the cursor automatically each time it prints a character, 
and wrapping text down to the next line when necessary. 

However, this service gives special treatment to four ASCII characters: 

• decimal 7 - beep 
• decimal 8 - backspace 
• decimal 10 - linefeed 
• decimal 13-carriage return 

If you use it to print these four, you won't see their character symbols onscreen. Try 
to write an ASCII 7 with service OE, for instance, and instead of displaying the small 
centered dot character that IBM assigned to a character 7, all you'll get is a beep. . 

BIOS services 09 and OA will print the characters IBM assigned to all 256 ASCII 
values. including the troublesome four above. All three services, 09, OA. and OE, will 
display three ASCII characters as blanks: 

• decimal 0 - null 
• decimal 32 - space 
• decimal 255 - blank 

The difference between services 09 and OA is that service 09 can change the attribute 
as it writes each character, while service OA can't. But with both of these you have to ad
vance the cursor yourself. since BIOS won't do it for you. 

The SHOWCHAR.COM program will first use BIOS service 08 to read the attribute 
at the current cursor position, and will then use service 06 to clear the screen to that posi
tion. Then it will display all 256 characters in rows of 32. 

MOV AH,8 read attribute at cursor 
INT 10 do it 
MOV BH,AH move attribute into BH 
MOV AX,0600 clear screen 
XOR ex, ex starting wth upper lefthand corner 
MOV DX,1849 and using whole 25 x 80 screen 
INT 10 do it 
XOR DX,DX put cursor in upper left corner 
XOR BH,BH of page 0 
MOV CX,1 just print one character at a time 
PUSH AX save value of character 



MOV 
INT 
POP 
MOV 
INT 
INC 
ADD 
CMP 
JNZ 
INC 
XOR 
CMP 
JNZ 
RET 

AH,02 
10 
AX 
AH,OA 
10 
AL 
DL,2 
DL,40 
12F 
DH 
DL,DL 
AL,FF 
0117 

set cursor position 
do it 

HexClass 127 

; restore value of character 
write character to screen 
do it 
get ready for next character 
two columns over 
is cursor at end of row? 
no, so skip next routine 
otherwise move down a line 
and back to beginning of line 
is it last character? 
no, go back and print next one 
yes, bye 

You can run the SHOWCHAR.COM program on the accompanying disk or create a 
script file that will produce the program for you. Create a script file called SHOW
CHAR.SCR that contains the following nine lines: 

E 0100 B4 08 CD 10 88 E7 BS 00 06 31 C9 BA 49 
E OlOD 18 CD 10 31 D2 30 FF B9 01 00 50 B4 02 
E OllA CD 10 58 B4 OA CD 10 FE co 80 C2 02 80 
E 0127 FA 40 75 04 FE C6 30 D2 3C FF 75 E4 C3 
N SHOWCHAR.COM 
RCX 
34 
w 
Q 

Be certain you press the Enter key at the end of each line, especially the last one with 
the Q. Then make sure DEBUG.COM version 2.0 or later is handy at the DOS prompt, 
type: 

DEBUG < SHOWCHAR.SCR 

Displaying the ASCII characters in rows of 32 shows that the lowercase alphabet let
ters have values that are decimal 32 (hex 20) higher than their uppercase cousins. 

You can experiment with this program to change the way it displays characters. For 
instance, once you've created it, you can type: 

DEBUG SHOWCHAR.COM 
E 115 DO 07 
E 123 EB OA 



128 PC Magazine DOS Power Tools 

N SHOWFULL.COM 
w 
Q 

The basic SHOWCHAR.COM program displays only one of each character at a time. 
SHOWFULL.COM will display 2,000 (hex 700) characters at a time - a full 25 x 80 
screenful. BIOS will flash through all 256 full screens of characters in a few seconds. 

Or, to see the difference between services 09 and OA, first use a pure-ASCII word 
processor or EDLIN to create the following ADDCOLOR.SCR script file. Be sure to 
press the Enter key at the end of each line, especially the last one with the Q: 

E llD 88 C3 B4 09 CD 10 FE CO 80 C2 01 80 FA 
E 12A 40 75 04 FE C6 30 D2 3C FF 75 E2 C3 
N SHOWCOLR.COM 
RCX 
36 
w 
Q 

Then, at the DOS prompt, type: 

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR 

and you'll end up with a variation of SHOWCHAR.COM called SHOWCOLR.COM 
that displays each character using the ASCII value of the character as the attribute. If 
you're using a color monitor, you'll see all 256 possible attributes. 

SHOWCOLR.COM will display four rows of characters, rather than the eight 
produced by SHOWCHAR.COM. All four rows will be in color, and because of the BIOS 
color numbering system, the foreground colors in the bottom two rows will be blinking. 
The four rows will be divided into four chunks of background colors that are each 16 
characters wide. Within these chunks, each of the 16 characters will have a different 
foreground color. The leftmost eight will appear in normal colors, while the rightmost 
eight will appear as high-intensity (bright) colors. 

Here's why: 
It's easiest to see how this works by using the hex value of each attribute. All attributes 

can be expressed as two-digit hex numbers. The lefthand and righthand digits can each 
range from 0 to F, which yields decimal 256 possible values from 00 through FF. 

The lefthand digit represents the background color, and the righthand digit the 
foreground color. So on a color system, a number like 71 will produce blue (1) text on a 
white (7) background, while 17 will yield white text on a blue background. The hex color 
assignments are shown in Figure 4.2. 



Hex Class 129 

Value Color Value Color 

0 Black 8 Grey 
1 Blue 9 Bright blue 
2 Green A Bright green 
3 Cyan (Lt Blue) B Bright cyan 
4 Red c Brightred 
5 Magenta D Bright magenta 
6 Brown E Bright yellow 
7 White F Bright white 
.-- background only--+ 

foreground --------

Figure 4.2. Hex Color Assignments 

However, a value like 4E will produce bright yellow text (E) on a red ( 4) background, 
while E4 will produce bright blinking yellow text on a red background. Any value that 
has a lefthand digit higher than 7 will blink. So a number like 71 won't blink, while a 
number like 81 will. 

Any value that has a righthand digit higher than 7 will appear as a high-intensity color. 
So a number like 47 will produce a normal, low-intensity color, while 48 will display 
something in high-intensity. 

When you type something like: 

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR 

what you 're doing is using the redirection abilities of DOS (versions 2.0 and later) to take 
characters in a file and treat them as keystrokes that DEBUG uses to create a file. DEBUG 
doesn't care where its keystrokes are coming from - a live user at the keyboard or a file 
that contains keystrokes that the user put there long ago. 

Redirecting script files like this makes a lot of sense when you're using DEBUG to 
create files, since it lets you check your typing, and since you can often adapt script files 
so DEBUG can create customized variations of programs for you. 

To create files using this technique, make sure you use a pure-ASCII word processor, 
the DOS EDLIN line editor, or the DOS COPY CON command. If you're not sure 
whether your word processor can produce pure ASCII text (a file composed of just let
ters and numbers and punctuation, and not containing anything else), just load it up and 
type a paragraph and save it as a short file called TEST. Then exit your word processor 
and get into DOS and type: 

TYPE TEST 



130 PC Magazine DOS Power Tools 

You could also use lowercase letters, by typing: 

type test 

since DOS translates all characters into uppercase before trying to do anything serious 
with them, except in a few rare examples such as the with ANSI.SYS keyboard and screen 
extender that are discussed in Chapter 9. 

Either way, if all you see is the text you typed and nothing else, your word processor 
should do just fine for creating script files. But if your screen fills with "garbage" charac
ters that jump around and beep and clear the screen, you'll have to use another method. 
Most word processors have a way to create pure-ASCII files; check your manual under 
"text files" or "ASCII" or "DOS files" or "program editing." 

To create the file directly in DOS, make sure you're at the DOS prompt, and type: 

COPY CON SHOWCHAR.SCR 

and press the Enter key. The cursor should do nothing except drop down a line and blink 
dully at you. 

Start typing the script, line by line. Make sure each line is absolutely correct before 
you press the Enter key at the end of it; if you make any mistakes use the backspace key 
to erase them and then type in the right characters. 

Be sure to press the Enter key at the end of each line, especially the last one (with the 
lonesome Q). 

When you 're all done, and you 're sure you've pressed the Enter key after the final Q, 
the cursor should be directly below the Q. Press the grey F6 function key and then press 
the Enter key one last time. When you press the F6 key you '11 see a AZ appear, and then 
when you press the final Enter key you'll see a "I File(s) copied" message. You'll then 
be back at the DOS prompt again. If you want, type DIR SHOWCHAR.SCR and you 
should see the file you just created with a number just under a thousand beside it, and a 
date and time. If you don't, you did something wrong and should start the whole process 
over again. 

The COPY CON FILENAME (where FILENAME stands for the name of the file you 
want to create and not the word "FILENAME" itself) command tells DOS to take the in
formation you're typing at the console (the keyboard and screen) and copy it into a file 
with the name you entered after the word CON. Pressing the F6 function key when you 're 
all done puts a special character at the end of your file called (surprise) an end-of-file
marker. This special character has an ASCII value of 26, and there are several other ways 
you could put this character there. The easiest is to hold down the Ctrl key and press the 
Z key while you're holding it down. The AZ that shows up on the screen when you do 
either is shorthand for Ctrl-Z. 

DOS generally stops in its tracks when it sees an end-of-file marker, as do many com
mercial software products. So, when creating text files, be careful not to let a stray AZ 
wander into your file or DOS will ignore everything that follows. 

The only real problem with using the COPY CON technique is that you can't back up 
and correct a line above the one you're working on. You can fix problems only in the 



HexC/ass 131 

current line. If you make a mistake and don't catch it in time, you have to start over, or 
go in and edit the file later with EDLIN or a real word processor. And if you have one of 
those handy. you might as well create the whole file on it. 

Anyway, once you've created the SHOWCHAR.SCR script file, locate your sup
plemental DOS disk and look for DEBUG.COM on that disk. (You have to be using a 
version of DOS that starts with a 2 or a 3 to make this work; if you 're still using 1.1 stop 
right now and go to your dealer and upgrade.) 

Copy DEBUG.COM onto the disk that has SHOWCHAR.SCR on it. If you're way 
ahead of this discussion and have a hard disk with DEBUG in a subdirectory that you've 
included in your path, fine. If you don't understand a word of that last sentence, go back 
to Chapter 3 to review the PA 1H command. 

Finally, to create the final program, make sure both SHOWCHAR.SCR and 
DEBUG.COM are on the disk you're currently using, and at the DOS prompt type: 

DEBUG < SHOWCHAR.SCR 

You'll see the SHOWCHAR.SCR scroll down your screen. You don't want to see any
thing that says "error." If you do see any error messages, use the DOS TYPE command 
(as mentioned above) to make sure you actually did create a pure ASCII file. If the file 
goes by too quickly, you can stop and start it from scrolling by holding down the Ctrl key 
and pressing the S key. Also, be sure you left a blank line above RCX; if you didn't you '11 
see a string of error warnings. 

If your whole system locks up, it's because you forgot to press the Enter key after the 
final Q. Reboot, then go back and retype the SHOWCHAR.SCR file and press the Enter 
key twice for good measure at the end. What the "DEBUG< SHOWCHAR.SCR" com
mand does is take the script file you just created and redirect it into the DEBUG.COM 
program. Essentially, it takes the keystrokes that you typed in earlier when you created 
the file and feeds them into DEBUG. Those keystrokes contain data and DEBUG com
mands to assemble the data into a file called a COM file or command file (one that you 
can run in DOS and that ends in .COM). Script files like this are handy, especially when 
you create them with a real word processor, because they let you correct previous mis
takes and it's easy to modify them slightly and create improved versions of the COM 
files. 

When you 're all done, just be sure you 're looking at a DOS prompt, and type: 

SHOWCHAR 

and you'll see every ASCII character. 

Chip Logic 

Dealing with all the binary ls and Os is a nuisance. But they really come in handy when 
you have to do logical operations. 



132 PC Magazine DOS Power Tools 

Why is the ASCII value for A 65 and for a 97? Look at the binary representations of 
the first few letters of the alphabet 

A 65 1000001 ~ 66 1000010 c 67 1000011 
a 97 1100001 b 98 1100010 c 99 1100011 

t .t th t 
sixth SIX sixth 
bit bit bit 

(2"5) (2"5) (2"5) 
=32 =32 =32 

The lowercase version of each is identical to the uppercase version, except that in all 
cases the sixth binary digit over from the right is a 1 in the lowercase version and a 0 in 
the uppercase one. 

The easy way to find out the decimal value of a binary bit is to count over from the 
right "1, 2, 4, 8, 16, 32, 64 .... " Do this and you'll reach 32 when you get to the sixth bi
nary digiL You could also try to remember that the sixth bit over is 2"5, since computer 
numbering systems generally start with 0 rather than 1 and since the rightmost bit is 2AQ. 
But some users forget, and make the sixth bit 2"6, which is wrong. 

Subtract 65 (the value of uppercase A) from 97 (the value of lowercase A) and you'll 
get 32. So you can instantly calculate the value of any capital letter by subtracting decimal 
32 from the value of the lowercase letter. And, of course, you could add 32 to the value 
of the uppercase letter to obtain the ASCII value of the lowercase letter. 

If you wanted to convert every lowercase character in a typical text file to uppercase 
you couldn't just subtract 32 from the ASCII value of every letter, since files contain 
mixtures of uppercase and lowercase letters. Subtracting 32 from all the lowercase let
ters would indeed yield uppercase ones. But if you did this blindly, you'd also end up 
subtracting 32 from the letters that were already uppercase, which would tum them into 
something unrecognizable. 

Here's a short sentence, with the decimal ASCII value of each character shown beneath 
it 

I 
73 

L o v e 
76 111118 101 

Subtract 32 from each and you get 

) 
41 

OVE 
44 79 8669 

NY 
7889 

. 9 
4657 

As you can see from the "ABC" and "abc" examples above, subtracting 32 from the 
value of a number is the same as turning the sixth bit (2"5) from a I to a 0. So what you 
really want to do is find a way to look at the sixth bit and tum it into a 0 only if it's cur
rently a 1. 



Hex Class 133 

Your computer can do this instantly, by using logical operations. In this case, you 
would use the logical AND operation to make letters uppercase, and the logical OR opera
tion to make them lowercase. 

The most useful logical operations are AND, OR, NOT, and XOR. They're fairly in
tuitive, but as with binary numbers, they take some getting used to. Think of them as 
miniture legal contracts. 

If a contract says you will be paid if you: 

write a novel 
AND 
write greeting cards 

obviously you'll get paid only if you write both. If a contract says you will be paid if you: 

write a novel 
OR 
write greeting cards 

you have to write only one of these to get paid (what a choice). If a contract says you will 
be paid if you: 

do NOT grow crops this year 

you'll fatten your bank account only if your back 40 sit idle. 
We all deal with AND, OR, and NOT operations regularly. XOR, which stands for 

eXclusive OR, simply flips one binary state to another, but can also add binary numbers 
together (see "Chomping at the Bit"). Flipping twice brings you back to the original state. 

Computers use XOR operations for all sorts of things. If you XOR a value with itself, 
you cancel it out and end up with 0. And if you want to produce graphic animations, you 
first XOR one image onto the screen to draw something at a certain location, and then 
XOR the same image at the same location again to restore the screen to the way it was 
originally. Since the second XOR effectively erases the image (by canceling out the chan
ges), you can move an image across your screen by having XOR repeatedly draw it and 
then erase it. 

Bit Masks 

ANDing any ASCII value with decimal 223 will capitalize lowercase letters and leave 
uppercase letters alone. AND works by comparing two values (the example below will 
compare one bit at a time) and returning a 1 only when both values are nonzero. 



134 PC Magazine DOS Power Tools 

AND Table 
1 AND 1 = 1 
1 AND 0 . = 0 
0 AND 1 = 0 
0 AND 0 = 0 

In binary notation, 223 is 11011111, and this number works as a bit mask. ANDing any 
binary number of eight digits or less with it will leave things the way they were in every 
position except the sixth over from the right, where it will leave Os alone and change ls 
to Os. This forces the digit in that position to become a 0, which is the same as .subtract
ing 32. But it does this only when there,s a 1 in that position. In other words, it subtracts 
32 only when there's a 32 there to subtract. It's called a mask because it masks out any 
changes except in the one place where we want the change to happen - the 0 in the 2"5 
position. 

Since A (decimal 65) is binary 01000001, while a (decimal 97) is binary 01100001, 
ANDing these numbers with 11011111 could be represented as: 

01000001 (65) 
AND 11011111 (223) 

01000001 (65) 

01100001 (97) 
AND 11011111 (223) 

01000001 (65) 

ANDing either a 0 or a 1 with 1 in effect leaves the value alone, and ANDing both a 
0 and a 1 with 0 in effect turns the value into a 0. The binary number 11011111 forces 
the 2"5 bit - the sixth one from the right - to become a 0 and leaves all the other bits 
the way they were. 

Changing a bit from 0 to 1 is often referred to as setting the bit, and changing it from 
a 1 to a 0 as unsetting the bit The only difference between a lowercase letter and its capi
tal counterpart is that the 2"5 bit is set (= 1) in the lowercase version. ANDing it with 
11011111 unsets the bit, changing it to a 0 and lowering the ASCII value by 32. 

To reverse the process and turn capital letters into lowercase ones, use the logical OR 
operation to OR a value with 32. 

OR Table 
1 OR 1 = 1 
1 OR 0 = 1 
0 OR 1 1 
0 OR 0 = 0 

32 equals binary 00100000. Since ORing either a 1 or a 0 with 0 in effect leaves the value 
alone, and ORing either a 1 or a 0 with 1 in effect turns the value into a 1, the binary num-



Hex Class 135 

her 00100000 forces the 2"5 bit to become a 1 and leaves all the other bits the way they 
were. 

This sets the unset 2"5 bit in an uppercase letter, changing it to a 1 and raising the 
ASCII value by 32. But it leaves already set bits just the way they were. 

01000001 (65) 
OR 00100000 (32) 

01100001 (97) 

01100001 (97) 
OR 00100000 (32) 

01100001 (97) 

Hex Marks the Spot 

Nobody likes dealing in cumbersome eight-bit binary numbers. But our more comfort
able decimal (base-ten) system doesn't really lend itself to the base-two world of com
puters. A base-16 number system does, since every eight-bit binary number can be 
expressed as two single-digit base-16, or hexadecimal, numbers strung together. In fact, 
it's easier to translate binary numbers into hexadecimal and back than to translate binary 
into decimal and back. 

Hexadecimal (hex for short) numbering works just like decimal numbering except that 
it provides six additional digits. The first ten digits are the same as the ten decimal ones 
you use every day. But you run out of digits after you get to 9. Hex then tacks on the first 
six letters of the alphabet. So, you count to 10 in hex like this (decimal values are shown 
in parentheses): 

0(0) 
1 (1) 
2(2) 
3 (3) 
4 (4) 
5 (5) 
6 (6) 
7 (7) 
8 (8) 
9 (9) 
A(lO) 
B (11) 
c (12) 
D(13) 
E (14) 
F(15) 
10 (16) 



136 PC Magazine DOS Power Tools 

How do you tell a hexadecimal 10 (which is really equal to decimal 16) from a gar
den-variety decimal 10? Hex numbers usually end with an H (or an h), or have a &H (or 
&h) prefix attached. So, 

lOh 
lOH 
&HlO 
&hlO 

are all the same number. 
Programmers often like working with two-digit hex numbers, so they'll stick zeros 

onto the left side. OD is the same as D; OA the same as A. Scripts often use" ,OD,OA" at 
the end of the messages to tell the program to insert a carriage return (an OD character) 
and a linefeed (an OA character) at the end of the text. 

Hex is handy because you can squeeze lots of values into a compact amount of space. 
Using decimal numbers takes three digits to write 156 of the ASCII characters (all the 
ones greater than 99). But every ASCII character can fit into two hex digits (decimal 255 
is the same as hex FF). 

Your system comes from the factory containing certain important gut-level tools and 
programs already loaded on ROM chips (which will be discussed in the next chapter), 
and each generation of these chips has important changes from previous versions. You 
can figure out which set of chips is in your system by peeking at a specific memory loca
tion, or address. The address that tells you the date your system ROM was released is 
61440:65525 in decimal, but is FOOO:FFF5 in hex. 

To see this date yourself, get into DOS, make sure DEBUG.COM is on your disk, and 
type: 

DEBUG 

You 'II see a (-) at the left edge of your screen; this is DEBUG's prompt the same way 
that "OK" is BASIC's prompt and A> or C> is DOS's default prompt. Type: 

D FOOO:FFFS L8 

and press the Enter key. The date will appear at the right edge of your screen. Then press 
Q and then Enter to quit DEBUG and return to DOS. 

You could also retrieve the date by plugging the numbers into a short BASIC program: 

100 DEF SEG=61440! 
110 FOR A=O TO 7 
120 PRINT CHR$(PEEK(65525!+A)); 
130 NEXT 

The hex version of this program doesn't save much typing, though: 



100 DEF SEG=&HFOOO 
110 FOR A=O TO 7 
120 PRINT CHR${PEEK(&HFFF5+A)); 
130 NEXT 

HexClass 137' 

Hex also makes binary translations a dream. For instance, what is the binary equivalent 
of FF! Well, that one's too easy, since it's equal to 255, and 255 is the highest number 
you can make out of ls and Os, which means it must be made up of all ls: 

11111111 

But pick any other hex number: &H3D (61 in decimal notation). Each hex digit stands 
for half of an eight-digit binary number. Remember that one binary digit is a bit and that 
eight bits make a byte. And that half a byte is called a nibble. (Get it? Byte? Nibble?) 

In &H3D, the 3 stands for the lefthand (or high) nibble, and the D for the righthand 
(or low) nibble. In binary notation, decimal 3 is 0011, while decimal 13 -which is what 
hex Dis equal to-is 1101. We figured that out above. 

So hex 3D is equal to 00111101. This is easier to see if you put a space in the middle: 
00111101. 

Going from binary to hex is also easy. What's 10100101? First break it in half: 1010 
0101. The left half (or high nibble) is 1010: 

1 x 2"3 = 8 
0 x 2"2 = 0 
1 x 2"1 = 2 
0 x 2"0 = 0 

Total = 10 decimal, or A in hex 

The right half (low nibble) is 0101: 

0 x 2"3 = 0 
1 x 2"2 = 4 
0 x 2"1 = 0 
1 x 2"0 = 1 

Total = 5 decimal, or 5 in hex 

Therefore, 10100101 is AS in hex, or 165 in decimal. Note that the numbers 1through9 
are the same in decimal and hex. Most new users get the hang of it pretty quickly, but 
they all make a common mistake of putting 10 after 9 in hex, when everyone knows hex 
9 is followed by hex A. Don't worry, you'll get used to it. It's not really all that hard to 
convert two-digit hex numbers into decimal. First, convert each digit into decimal. From 
the above example, A is equal to 10, and 5 is equal to 5. Multiply the value of the left
hand digit by 16 and add the righthand digit to it: 



138 PC Magazine DOS Power Tools 

( 10 x 16) + 5 = 165' 

Converting a decimal number 256 or less to hex is only a little harder. First divide the 
number by 16. You'll probably end up with a whole number quotient and a remainder. 
Convert them each to single digit hex numbers. Put the whole number on the left and the 
remainder on the right: 

165I16 = IO with a remainder of 5 
IO= A 
5 = 5 

So the hex representation is AS. 
Hex is the language of DEBUG. And DEBUG is an incredible power tool. It lets you 

rip open the DOS covers and repair, examine, or customize anything. And it makes it 
easy to create and customize short assembly language programs like SHOWCHAR.COM 
above. 

Multiplying and Dividing Hex Numbers 

Translating numbers into and out of hex is hard enough, and adding or subtracting them 
is no picnic, but multiplying and dividing is out of the question. Lots of books show you 
how; we'll spare you the grief. Actually, we will tell you how: just install a copy of 
Borland's SideKick on your system. Even the older version of the software comes with 
an ASCII chart, a powerful notepad/clipboard that can lift text off your screen and move 
it to another program or store it in a file, and a terrific decimal/hex/binary calculator. 
Some of our programmers even use the WordStar-like notepad as their main program 
editor. 

BASIC makes it a snap to translate most integer values in and out of hex. And it can 
simplify working with ASCII values. Type either BASICA or GWBASIC to get the ball 
rolling. To have it figure out the decimal value of the hex number 7 ABC, just type: 

PRINT &H7ABC 

and press the Enter key. BASIC will print out: 

31420 

Unfortunately, since BASIC has to work with both positive and negative integers, the 
largest positive integer it can deal with is 32,767 (7FFFH). Tell it to PRINT &H7FFF 
and you'll indeed get 32767 (without the comma). But since BASIC can handle only 
65 ,536 possible integers. it has to rope off the half starting with 32, 768 and pretend they 're 
negative numbers. So entering: 

PRINT &H8000 



Hex Class 139 

will get you 

-32768 

Note that while you may use either &Hor &h as a prefix, BASIC won't understand H 
or h suffixes on hex numbers. If you tried to type PRINT 7FFFH you'd get: 

7 0 

since BASIC would think you were asking it to print the value of 7 (which is 7) and then 
print the value of the variable FFFH, which would be zero unless you had by chance as
signed it another value previously. 

However, if you treat this operation as a calculation, BASIC will oblige with higher 
numbers. Enter: 

PRINT &H7FFF+l 

and BASIC will return: 

32768 

Try: 

PRINT &H7FFF+&H7FFF 

and you '11 get: 

65534 

You can go the other way, from decimal to hex, without such headaches. Type in: 

PRINT HEX$(64206) 

and BASIC will respond with: 

FACE 

(&HFACE is a valid hex number). -Xou can go all the way up to: 

PRINT HEX$(65535) 

which will produce: 



140 PC Magazine DOS Power Tools 

FFFF 

Try anything higher, such as: 

PRINT HEX$(65535+1) 

and BASIC will simply print the error message "Overflow." 
To figure out the ASCII value of any character, nestle it inside parentheses and quotes, 

and preface it with ASC. Type: 

PRINT ASC("A") 

and you '11 get its decimal ASCII value: 

65 

To convert numbers from 0 to 255 into their respective ASCII characters, put the 
decimal ASCII value inside parentheses and preface it with CHR.$. Enter: 

PRINT CHR$ (65) 

and you'll see: 

A 

You can also use hex notation when producing ASCII characters. You could have 
typed: 

PRINT CHR$ (&H41) 

to produce the same: 

A 

since hex 41 is equal to decimal 65. 
But if all you have to do is add or subtract hex numbers, which is usually the case, you 

can do it for free by using DEBUG. Just get into DOS, type DEBUG, and at the DEBUG 
hyphen (-) prompt, type in the letter H followed by any two hex numbers of four digits 
or less, and press the Enter key. DEBUG will print out the sum of your numbers and the 
difference. 

It might look something like this: 



-H FFFF 0001 
0000 FFFE 

Hex Class 141 

DEBUG reports sums in four digits only, as you can see from the example above, since 
FFFFH + 1 equals lOOOOH, not OOOOH. But that doesn't matter much, because four digits 
is plenty for what you '11 have to do with hex. 



142 PC Magazine DOS Power Tools 

Chomping at the Bits, or How Transistors Add 

Logical operations such as AND and OR are fundamental building blocks of 
digital computers. Virtually every hardware interconnection in the PC is a hit 
carrier. The wires, the connections between chips on the circuit boards, and the 
connections within the chips themselves all carry signals in the form of voltages. 
In most cases a 1 bit is represented by a five-volt signal and a 0 bit is repre
sented by a zero-volt signal. The 8088 CPU in the PC and PC-XT uses 20 pins 
to address it~ memory chips. If you could freeze the operation of the PC and 
measure the instantaneous voltage of these 20 pins, you would find that each 
would be very close to either zero volts or five volts. If you were real fast, and 
handy with a voltmeter, you could figure each 20-bit address the 8088 was out
putting to memory. All chips inside a PC manipulate data in the form of bits. 
Regardless of the complexity of the chips, all contain transistors that are wired 
together into small fundamental logic gates. These gates receive two input sig
nals (two bits) and use them to create one output signal (another bit). 

The input to an OR gate is two signals (here called A and B), each of which 
can be either a 0 or a 1. The output is a 1 if either A or B is a 1. You can repre
sent this by the formula: 

AORB 

and can show all the possible results in the table: 

A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

A OR B 
0 
1 
1 
1 

In theory, you need only two transitors to construct an OR gate within an in
tegrated circuit. Think of the transistors as light switches - one for each input 
- wired in parallel so that the output is "on" (a 1 bit) if either switch is turned 
on. 

The output to an AND gate is a 1 only if both inputs are 1. The formula looks 
like: 

AANDB 

and you can show all the possible results in the table: 



Hex Class 143 

A B AANDB 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

You could (at least in theory) construct this gate from just two transistors wired 
in series. Just as with light switches wired in series, the output will be "on" (a 1 
bit) only if both are turned on. 

The important, although seemingly trivial, NOT operator takes just one input 
(here called A). If A is a 0, NOT changes it to a 1. If A is a 1, then NOT changes 
it to a 0. Within a circuit, the output from an OR gate can be the input to a NOT, 
so they can function together, as represented by the formula: 

NOT(AORB) 

Incidentally, since operations work from left to right, you need to put paren
theses around A OR B in the above example. If you didn't, what you'd be 
saying is (NOT A) ORB. 

This is called a NOR gate, which you can represent as: 

ANORB 

Here's what the table looks like: 

A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

ANORB 
1 
0 
0 
0 

You may have noticed that the NOR table is simply the inverted result shown 
in the OR table the Os in the OR table are ls in the NOR table, and ls in the 
OR table become Os in the NOR table. 

Similarly, an output from an AND gate can feed into a NOT to construct a 
NAND gate. The formula: 

ANANDB 

is the same as: 

NOT(AANDB) 



144 PC Magazine DOS Power Tools 

with the following table: 

A B ANANDB 
0 
0 
1 
1 

0 
1 
0 
1 

1 
1 
1 
0 

You may start to see some relationships between all these tables. For in
stance, if you tum the third column of the OR table upside down, it looks like 
the third column of the NAND table. Therefore: 

A ORB= (NOT A) NAND (NOT B) 

Similarly: 

A AND B =(NOT A) NOR (NOT B) 

These logical operations are not just mathematical exercises; they perform 
vital functions in the PCs hardware, where transistors are wired together to 
form tiny logic gates. The individual logic gates are then wired together to do 
more complex tasks, often within the same chip. 

As everyone knows, computers can add two numbers together. And while we 
take this for granted nowadays, once you start looking at the computer in terms 
of logic gates, it no longer seems trivial. How can transistors add? 

First you have to wire together an OR gate, an AND gate, and a NAND gate. 
You start with two inputs and run them into both the OR gate and the NAND 
gate. The output from the OR gate and the output from the NAND gate become 
the inputs to the AND gate. This connection can be symbolized by the formula: 

(A ORB) AND (ANAND B) 

This is called an exclusive OR gate, often abbreviated XOR. Instead of writing 
the whole expression, we can simply use: 

AXORB 

The table for the XOR gate is shown below: 



A 
0 
0 
1 
1 

B 
0 
1 
0 
1 

AXORB 
0 
1 
1 
0 

Hex Class 145 

This table is similar to the OR gate except that when both A and B are 1, the 
result is a 0. What makes the XOR gate interesting is that it adds the two bits 
together, producing the following results: 

0 
+O 

0 

0 
+1 

1 

1 
+O 

1 

This lets you create a formula that says: 

SUM=AXORB 

1 
+1 
10 

To demonstrate this, trying adding two four-bit numbers together, such as 3 and 
6. The addition (shown in both decimal and binary form) is shown below: 

3 0011 
+6 +0110 

9 1001 

To add multidigit binary numbers together, start at the right most or least sig
nificant pair of bits and proceed to the left, just as you do when you add together 
multidigit decimal numbers. 

Since adding 1+1 produces a two-digit binary number (10), you end up with 
a carry-out bit that you have to include in the next calculation over to the left as 
a carry-in bit. Because of this carry bit; the formulas become a little more com
plex: 

SUM= 
CARRY-OUT= 

(AXOR B) XOR (CARRY-IN) 
(A AND B) XOR ((A XOR B) AND (CARRY-IN)) 

If you want to verify that these formulas work for the calculation shown 
above, you can put together a table that shows the bits to be added, the SUM 
from each calculation, the CARRY-OUT from the calculation, and the CARRY
IN from the previous calculation. Start with the rightmost column and proceed 
toward the left: 



146 PC Magazine DOS Power Tools 

A: 0 0 1 1 
B: 0 1 1 0 
CARRY-IN: 1 1 0 0 
CARRY-OUT: 0 1 1 0 
SUM: 1 0 0 1 

Humans may require several minutes to plug the bits into the formulas and 
determine the final result. Transistors do it in well under a millionth of a second. 

- Charles Petzold 



Chapters 

The Keys to the Kingdom 

Sure, sure. You're an old handat the keyboard, and your fingers automatically reach for 
the home row when you climb out of bed in the morning. But you may not know all the 
PC keyboard's basic tricks. 

First, a quick history: the earliest PC sported an 83-key keyboard that divided the user 
community into two camps. Most of us loved it, since it had the best "feel" of any 
keyboard ever made. IBM spends a lot of time sticking people in chairs and watching 
them work, and all this ergonomic research paid off handsomely. 

The few ragtag complainers and malcontents who hated it did have one valid point
the placement of some of the keys was nonstandard. The Enter key was somewhat small 
and too far to the right. The left Shift key was a little far to the left. The whole right side 
of it was a bit crowded. And you couldn't tell what state the Shift keys happened to be 
in. 

The original 84-key PC-AT keyboard fixed all these woes, and bcame an instant and 
absolute classic. However, IBM didn't know when to stop, and ended up moving the 
function keys from the left side to the top, doing random damage to the Ctrl and Alt keys, 
and using a slightly cheaper mechanism to pop the keys up after you press them down. 

The subsequent generation of 101/102-key keyboards featured separate number and 
cursor pads, stuck on a handful of new keys, and were as wide as your desk. They also 
made it difficult to use some software products. For example, millions of WordStar users 
depended on having the Ctrl key beside the A key. When IBM hid the Ctrl key these users 
either had to retrain their fingers, or run a program like IBMFIX.COM (on the accom
panying disk) to put things back to normal. 

But all the IBM keyboards shared the same glorious feel. Each had exactly the right 
amount of "overstrike" so that you had to build up a certain amount of pressure to reach 
a trigger point before the key sprang into action. Each clicked on the way down and on 
the way up, giving users unparalleled tactile feedback and boosting their morale by sub
consciously making them think they were typing twice as fast Every key was bounce-

147 



148 PC Magazine DOS Power Tools 

free; pallid plastic clone keyboards commonly stuttered extra characters onto the screen, 
but not IBM's. IBM's was angled perfectly, and expertly scooped and dished so that your 
fingers fit precisely onto the wide keytops. It was also heavy, so that muscular typing 
wouldn't chase it around the desktop. 

Some users liked competitors' keyboards because they were silent That's like prefer
ring beer to vintage champagne because the bottles are easier to open. The IBM keyboard 
is so good that it's almost reason enough to stick with IBM (unless you can't resist in
creased power from a company like Compaq or low price from a mail order vendor). 
Using anything else is like kneading gummy marshmallows or typing on a pocket cal
culator. 

Users switching from typewriters to computers are often stymied by the welter of extra 
PC keys. After all, four separate ones have left arrows on them. Function keys are in
timidating to new users, as are such foreign-looking characters as: 

"(}I\-'<> 

And labels like SysReq, PgDn, and PrtSc can initially confound anyone. However, until 
someone comes up with a flawless voice recognition device, IBM's crisp, solid, elegant 
keyboards will remain the best ways to digitize your thoughts and data. 

The keys to the kingdom come in four families: 

1. The normal typewriter keys (and their less familiar cousins such as<,>, and I). 
2. The shift and special purpose keys. 
3. The cursor-movement and number-pad keys. 
4. The grey function keys (Fl through FlO on older models, Fl through Fl2 on newer 

ones). 

Typewriter Keys 

Nothing is really different about these on the PC keyboard except that you get a few ex
tras thrown in - and some common keys, such as the cents sign, are missing. 

This is because computer keyboards are designed to work with the ASCII character 
set As mentioned earlier, IBM adopted (and enhanced) a character-numbering system 
called ASCII (American Standard Code for Information Interchange). Deep down, com
puters don't know anything about letters. But they're terrific at juggling numbers. So 
when it has to move an A from one place to another, your computer actually uses the 
number 65 to represent the A. Programs in your ROM chips translate these values into 
the dot patterns that draw the actual characters on your screen. But to the computer, an 
A is always a 65 (unless it's a lowercase a, in which case it's a 97). 

You can type in 95 of the ASCII characters shown in Figure 5.1 from your keyboard. 
In the chart, the number in each lefthand column is the ASCII value of the character be
side it. 



The Keys to the Kingdom 149 

ASC CUR ASC CUR ASC CUR ASC CUR ASC CUR ASC CUR 

*32 (SPC) 48 0 64 @ 80 p 96 ' 112 p 
33 ! 49 1 65 A 81 Q 97 a 113 q 
34 " 50 2 66 B 82 R 98 b 114 r 
35 # 51 3 67 c 83 s 99 c 115 s 
36 $ 52 4 68 D 84 T 100 d 116 t 
37 % 53 5 69 E 85 u 101 e 117 u 
38 & 54 6 70 F 86 v 102 f 118 v 
39 ' 55 7 71 G 87 w 103 g 119 w 
40 ( 56 8 72 H 88 x 104 h 120 x 
41 ) 57 9 73 I 89 y 105 i 121 y 
42 * 58 74 J 90 z 106 j 122 z 
43 + 59 ' 

75 K 91 [ 107 k 123 { 
44 

' 
60 < 76 L 92 \ 108 1 124 I 

45 - 61 = 77 M 93 ] 109 m 125 } 
46 62 > 78 N 94 A 110 n 126 -
47 I 63 ? 79 0 95 - 111 0 **127 fl. 

Figure 5.1. ASCII Typewriter Keys 

*Character 32 is a space, and is generated when you tap the spacebar. 
**IBM calls character 127 a delta but it's actually shaped like a small house. 

The characters you see onscreen will differ slightly from system to system. Characters 
on IBM monochrome sereens are made up of lots of dots. Those on EGA displays are 
nearly as sharp and clear as monochrome characters. But CGA character sets are crude. 
The dot patterns for each monitor are contained on special ROM chips attached to the 
respective display adapters. But IBM keeps a set of these CGA patterns in the main sys
tem ROM so it can draw characters when you're in BASIC graphics screens 1and2. The 
characters are crude because they're drawn in a grid eight dots wide and eight dots high 
- not very conducive to graceful curves and tricky angles. 

Youcan'teasilylookinsideyourmainsystemROMbuttheBASICROMPRINT.BAS 
program below can (starting at address FOOO:FA6E). It reads the values stored there and 
interprets them as light and dark blocks on your screen. The main ROM stores the pat
terns for each character as a sequence of eight binary numbers, one per row. ROMPRINT 
retrieves the decimal value of each number and translates it into the binary pattern for 
each row. It lets you strike actual keys from the keyboard, or enter ASCII values between 
0 and 127 from the chart shown in Figure 5 .1. If you want to see the dot patterns for the 
digits 0-9, enter their ASCII values (0 = 48, 1=49 ... 9 = 57). If you do type in ASCII 
numbers, press the Enter key after entering any values with fewer than three digits. When 
you're all done, press the FlO function key to end the program. 



150 PC Magazine DOS Power Tools 

100 'ROMPRINT - displays ROM ASCII dot patterns 
110 SCREEN O:COLOR 2,0,0:LOCATE ,,O:KEY OFF:DEFINT A-Z:CLS 
120 DEF SEG=O:POKE l047,PEEK(1047) OR 32:KEY 10, "" 
130 ' --- points to ROM; sets up print characters ---
140 DEF SEG=&HFOOO:A$=STRING$(2,219) :B$=STRING$(2,176) 
150 ' --- gets ASCII value ---
160 PRINT "Type a key, or enter any number between" 
170 PRINT "000 and 127 (press the <FlO> key to end): "; 
180 I$=INKEY$:IF I$="" THEN 180 ELSE IF I$=CHR$(0)+"D" THEN END 
190 IF I$=CHR$(13) THEN IF C$="" THEN D=l3;GOTO 240 ELSE 220 

200 IF I$>CHR$(57) OR I$<CHR$(48) THEN D=ASC(I$) :GOTO 240 
210 C$=C$+I$:PRINT I$;:IF LEN(C$)<3 THEN 180 
220 IF VAL(C$)>127 THEN C$="":CLS:GOTO 160 ELSE D=VAL(C$) 

230 ' --- draws dot pattern ¥g~ by row ---
240 CLS:FOR E=l TO 8 
250 F=PEEK(&HFA6D+(8*D)+E) 
260 IF F=O THEN PRINT STRING$(16,176) :GOTO 300 
270 FOR G=7 TO 0 STEP -1 
280 IF F<2AG THEN PRINT B$; ELSE PRINT A$;:F=F-2~G 
290 NEXT:PRINT 
300 NEXT:PRINT:IF D<>ll AND D<>12 THEN PRINT TAB(8);CHR$(D) 
310 PRINT:C$="":GOTO 160 

The program also displays the actual life-size character beneath the enlarged dot pat
tern. It won't display the whole character set, since the system uses some with values like 
7, 10, 12, and 13 to control the position of the cursor, clear the screen, beep, and manage 
other display chores. But ROMPRINT will show you tf1e actual patterns stored in ROM 
for every single one. 

High-Bit Characters 

Display adapters are designed to zap the appropriate character dot patterns onto the screen 
very rapidly. BASIC's graphics modes have to go in and draw text characters a dot at a 
time. And in all 1.x and 2.x versions of DOS, users couldn't put any of the high-bit foreign 
language, math, and border-drawing characters (with ASCII values over 127) onto 
BASIC graphics screens, since the patterns for these weren't stored on the system ROM 
chips. 

But DOS version 3.0 offered a new utility called GRAFT ABL.COM that made it pos
sible to display the high-bit characters. All you had to do was type in GRAFT ABL before 
loading BASIC and DOS would create a memory-resident lookup table containing the 
proper values. GRAFf ABL.COM remained the same in versions 3.1 and 3.2, but when 
IBM introduced its confounding foreign language features in version 3 .3 it made GRAF-



The Keys to the Kingdom 151 

TABL.COM five times larger to accommodate slight differences in foreign character 
sets. 

The GRAFPRNT.BAS program below looks inside GRAFT ABL.COM, reads the 
character patterns into an array, and uses ROMPRINT's binary pattern printer to display 
an enlarged version of any ASCII character from 128 through 255. It checks to make sure 
you have a proper version handy, and automatically sniffs out whether it's dealing with 
an older GRAFI' ABL.COM or a fat new one, since the internal sttuctures are different. 

100 ' GRAFPRNT - prints GRAFTABL.COM hi-bit ASCII patterns 
110 SCREEN O,O:KEY OFF:COLOR 2,0,0:CLS:DEFINT A-Z 

120 DEF SEG=O:POKE 1047,PEEK(1047) OR 32:DEF SEG:KEY 10,"" 

130 DIM H(128,8) :M$=STRING$(2,176) :N$=STRING$(2,219) 

140 ' --- open GRAFTABL, get version, validate, fill array 

150 OPEN "GRAFTABL.COM" AS U LEN=l:FIELD U,l AS A$ 

160 IF LOF(l)=ll69 THEN S=4 ELSE S=48 

170 GET #1,l+S:IF ASC(A$)<>120 THEN CLOSE:GOTO 360 

180 FOR B=l TO 128:LOCATE 1,1,0:PRINT 128-B:FOR C=l TO B 

190 GET #1, (B-1)*8+C+S:H(B,C)=ASC(A$) :NEXT:NEXT:CLOSE:CLS 

200 ' --- gets ASCII value ---
210 PRINT "Enter any number between 128 and 255" 

220 PRINT "or (press the <FlO> key to end): "; 

230 I$=INKEY$:IF I$="" THEN 230 ELSE IF I$=CHR$(0)+"D" THEN END 

240 IF I$>CHR$(57) OR I$<CHR$(48) THEN BEEP:GOTO 230 

250 C$=C$+I$:PRINT I$;:IF LEN(C$)<3 THEN 230 

260 IF VAL(C$)<128 OR VAL(C$)>255 THEN C$="":CLS:GOTO 210 

270 ' --- draws dot pattern row by row ---
280 CLS:FOR E=l TO B 

290 F=H(VAL(C$)-127,E) 

300 IF F=O THEN PRINT STRING$(16,176) :GOTO 340 

310 FOR G=7 TO 0 STEP -1 

320 IF F<2AG THEN PRINT M$; ELSE PRINT N$;:F=F-2AG 

330 NEXT:PRINT 

340 NEXT:PRINT:PRINT TAB(B);CHR$(VAL(C$)) :PRINT:C$="":GOTO 210 

350 ' --- if correct file is not found ---
360 PRINT "Put DOS 3.0 or later GRAFTABL.COM on disk and restart" 

If you want to see the cents sign that's missing from the IBM keyboard, just run 
GRAFPRINT and type in 155. (If your printer can handle it, you can insert this charac
ter into your documents where needed, by using the Alt-key method described below.) 

The nonalphanumeric typewriter keys have their own ASCII codes: 

• Backspace 8 
•Tab 9 
• Enter 13 



152 PC Magazine DOS Power Tools 

You can see the characters produced by these three by pressing the actual keys. Or you 
could press Ctrl-H to print a backspace, Ctrl- I to print a tab, and Ctrl-M to print a back
space. (Pressing Ctrl-H means holding down the Ctrl key and pressing the H key.) In fact, 
you could also see the lower 26 ASCII characters by running ROMPRINT, and holding 
down the Ctrl key while you type the letters of the alphabet. 

Why? 

Shift and Special Purpose Keys 

A typewriter contains just one set of Shift keys, in which both keys do the exact same 
thing and are duplicated just to make two-handed typing easier. The PC keyboard con
tains three different sets of Shift keys, not just one. Each changes the meaning of an al
phanumeric key just as pressing the A key by itself produces an "a" but pressing it while 
holding the Shift key down produces a capital A. To your computer, a and A are totally 
different characters with different ASCII codes (although certain programs, such as DOS 
and BASIC, automatically translate most lowercase keys to their uppercase versions). 

When you type an A, the keyboard sends two special codes to the CPU - the first a 
hardware interrupt telling it to wake up because a key has been struck, and the second a 
scan code telling it that this particular key happened to be a capital A. Then, when you 
lift your finger off the A, the keyboard actually sends a third release code telling the CPU 
you're all done, which comes in handy when you 're holding down a key to repeat a whole 
row of the same character, such as an underline. 

But your PC needs to keep track of more than just letters, numbers, and punctuation. 
It has to know when you want to go to the next line, or the next page, or tab over to the 
right - or when to beep to get your attention, or to stop when you press the panic but
ton because something is going wrong. And the programs you run have to know lots 
more, such as when text should be underlined or boldfaced. 

To make it easy for you to generate these additional codes, your PC gives you two 
extra Shift keys, Ctrl and Alt. All these extra Shift keys really do is change the codes 
generated by your nonnal alphanumeric typewriter keys. It's up to the program you're 
running to interpret the special codes that you type into meaningful commands. Unfor
tunately, there's virtually no standardization of codes today; just about every program 
uses its own completely unique set. The code that tells one word processor to shift into 
boldfaced text might tell another word processor to change the right margin. 

When you type any letter, your computer looks at a special pair of status bytes at loca
tions 417 and 418 in the very bottom (0000) segment of memory to see if any of the Shift 
keys are engaged. Whenever you hold down a Shift key or toggle one on, your computer 
"sets" (turns from 0 to 1) an individual bit in one of these two bytes to keep track of every 
shift state in the system. It then resets (turns back to 0) the relevant bits when you lift 
your finger or toggle a Shift key off. Later we'll provide tools that give you control over 
these bytes and let you set them in any state you want. 



The Keys to the Kingdom 153 

If the status bytes show that no Shift keys are active, your computer translates the scan 
code sent by the letters on your keyboard into ASCII values somewhere between 97 (an 
a) and 122 (a z). 

If you're holding down the normal Shift key, your computer knows you want a capi
tal letter, and translates the keystroke into an ASCII value between 65 (A) and 90 (Z). 
The ASCII value for each uppercase letter is the same as the value for the lowercase let
ter minus 32, and your computer can instantly turn a lowercase letter into its uppercase 
version simply by turning the sixth bit from a 1 to a 0. In the binary representation of the 
ASCII code for every lowercase letter, the sixth bit over from the right is always on (set 
to 1 ). In every uppercase letter, this bit is turned off (set to 0). When this bit is on, it adds 
a value of 2"6 (or 32) to the ASCII code. Turning the bit on adds 32 and lowercases any 
letter; turning it off subtracts 32 and uppercases the letter. 

You can verify this by looking at Figure 5 .1 above, which is conveniently arranged in 
columns 16 entries long. The uppercase letters in columns 3 and 4 are in the same rela
tive positions as the lowercase versions in columns S and 6. Each is just shifted 32 table 
entries (or exactly two columns) over. 

When you type in letters while holding down the Ctrl key. your computer generates 
codes between 1 (for both A and a) and 26 (for both Zand z). The ASCII value for these 
is the same as the value for the corresponding uppercase letter minus 64. 

Typing Ctrl-A is the same to your computer as typing Ctrl-a; the Ctrl key takes 
precedence over the normal Shift key. (When manuals refer to Ctrl-shifted keys they al
ways use capital letters, so you'll see Ctrl-A and Ctrl-B but never Ctrl-a and Ctrl-b.) 

If you're in DOS, typing Ctrl-A will put a "'A onscreen. The caret("') as a prefix is 
shorthand for Ctrl. As mentioned earlier, some of the Ctrl-shifted keys trigger DOS or 
BASIC operations. You can tell DOS you're done creating a file by typing Ctrl-Z. You 
can make DOS beep by telling it to ECHO a AG. To see this in action, get into DOS, type 
the following line, and press the Enter key. To generate the AG, hold down the Ctrl key 
and type G while the Ctrl key is down: 

ECHO "G 

You could also have typed: 

COPY CON BEEP 
"G" Z 

which would have created a file called BEEP. (To create the AG and the "'Z, hold down 
the Ctrl key and press GZ.) Then type: 

TYPE BEEP 

and you'd hear the familiar tone. If you try this, erase the BEEP file you just created by 
typing ERASE BEEP, or else you'll clutter up your disk. 



154 PC Magazine DOS Power Tools 

The important DOS Ctrl and alphabetic key combinations are: 

EJ~ 
EJc:J 
EJ c:J 
EJD 
EJ c:J 
EJ~ 

Generally breaks out of whatever you happen to be doing at the 
time. Interchangeable most of the time (not in BASIC) with Ctrl
Break. 

Beep (only when used in certain ways). 

Same as backspace. 

Same as Tab. 

Same as Enter. 

Acts as a "toggle,, to turn a feature on and off that sends whatever 
is appearing onscreen simultaneously to your printer. Be sure 
your printer is on before trying this. If your system "hangs,, and 
all you get is an error message, press Ctrl-P again to toggle it off. 
Typing in Ctrl-PrtSc is usually the same as typing Ctrl-P, al
though Ctrl-PrtSc works in BASIC while Ctrl-P doesn't This 
shouldn't be confused with Shift-PrtSc, which dumps an image 
of whatever is onscreen to your printer one whole screen at a 
time. 

Freezes and restarts some DOS operations (like scrolling DIR 
listings); similar to Ctrl-NumLock except that Ctrl-Numlock 
will only suspend things while Ctrl-S will pause and restart them 

DOS end-of-file marker. 

You can see the characters IBM uses to represent all the ASCII codes below 32 by 
running ROMPRINT and typing in Ctrl-A for ASCII character 1, Ctrl-B for character 2, 
etc. Figure 5.2 shows the ASCII Ctrl characters. To extend the ASCII chart, shown in 
Figure 5.1, attach these two columns to the left side: 



The Keys to the Kingdom 155 

ASCII Crtl CHR ASCII Ctrl CHR 

0 "@ 16 Ap ... 
1 AA Q 17 "Q ... 
2 AB e 18 AR t 
3 AC • 19 AS !! 
4 AD • 20 AT qy 
5 AE • 21 AU § 

6 AF • 22 AV 

7 AG 23 AW t 
8 AH a 24 AX t 

9 AJ 0 25 AY .i 

10 AJ I 26 AZ 
__.. 

11 AK § 27 A( +-

12 AL 9 28 A\ 

13 AM ) 29 A] ++ 

14 AN ~ 30 M ... 
15 AQ ~ 31 A T 

Figure 5.2. ASCII Ctrl Characters 

Some of the characters in Figure 5.2 may look a little strange. The M means Ctrl-caret 
and the"- means Ctrl-underline, which look odd, but don't worry, since you'll never 
really have to use them. The"[ represents ASCII character 27, or Esc, and you definite
ly will have lots of reasons to use this one. It plays a critical role in issuing escape codes 
or escape sequences that can put your printer through its paces or help send DOS com
mands to set screen colors or redefine keys using ANSI.SYS. 

The "@ (ASCII character 0) is a null that your system uses to identify plain old func
tion keys, function keys you press while holding down Shift keys (Shift, Ctrl, Alt), or 
various keys you press while holding down the Alt key (such as Alt-A, Alt-5, or Alt-=). 
Some programs, especially communications software, insert nulls as placeholders in data 
files, which can play havoc with noncomprehending applications like old-fashioned word 
processors. 

As mentioned above, the Ctrl key has a special role when used with some of the non
alphabetic keys: 

~ G::l 
LJ~ 

Same as Ctrl-P; toggles simultaneous printing to screen and 
printer. 

Nearly the same as Ctrl-S; suspends some DOS operations (but 
another key has to restart them). 



156 PC Magazine DOS Power Tools 

Nearly the same as Ctrl-C; breaks or stops many DOS opera
tions. Stops BASIC operations while Ctrl-C won't. 

Performs "warm" reboot that restarts system but 
bypasses time-consuming diagnostic tests. Hold 
Ctrl and Alt down first and then press Del. 

interchangeable in DOS, but only Ctrl-PrtSc will echo what's on the screen to the printer, 
Ctrl-NumLock will pause the display but Ctrl-S won't, and Ctrl-Break will stop BASIC 
in its tracks but Ctrl-C won't. 

However, BASIC throws in a few Ctrl-key gifts of its own. Ctrl-Home clears the 
screen, Ctrl-left arrow (or Ctrl-B) moves the cursor to the previous word, Ctrl-right arrow 
(or Ctrl-F) moves the cursor to the next word, and Ctrl-End (or Ctrl-E) erases to the end 
of the current line. Ctrl-K moves the cursor to the home position at the screen's upper 
left corner, Ctrl-L clears the screen Gust like Ctrl-Home), Ctrl-N moves the cursor to the 
end of the current line (like the End key), Ctrl-G really does beep, Ctrl-R toggles between 
insert and overwrite modes, and Ctrl-[ simulates an Esc. The odd quartet of Ctrl-\ Ctrl
], Ctrl-caret, and Ctrl-underline move the cursor right, left, up, and down respectively. 

If you want to prevent users from breaking out of programs by pressing Ctrl-C or Ctrl
ScrollLock, or resetting your system by pressing Ctrl-Alt-Del, you can run the 
CfRLLOCK.COM Ctrl-key disabler on the accompanying disk. 

This program effectively prevents anyone from rebooting the system by using Ctrl
Alt-Del, so if you do want to reboot you have only two choices. You can turn the main 
power switch off and then on again. Or you can run the W ARMBOOT.COM program 
on the accompanying disk. 

Both Shift keys work exactly alike, although your computer can tell whether you've 
pressed the left or right one. Game designers often use the different Shift keys to perform 
different tasks, such as triggering left or right flippers in pinball games. Each Shift key 
doesn't do much more than flip the case ofletters. It turns lowercase letters into upper
case ones, just like the Shift on a typewriter. It also works backwards when the Caps
Lock key is toggled on, so that uppercase keys turn into their lowercase cousins. 

The Shift key also temporarily reverses the state of the cursor/number pad. The Num
Lock toggle is normally off so the pad works in cursor mode when you first boot up (al
though IBM turned it back on when it delivered the 101-key wide-load keyboard, since 
it assumed everyone would use the number pad for numbers and the independent cursor 
pad to move the cursor). Pressing the Shift key switches the state of the cursor/number 
pad for as long as you hold it down, so that if NumLock is toggled on, pressing Shift-8 
will move the cursor up a line rather than putting an 8 onscreen. Dedicated spreadsheet 
users can take advantage of this so they don't have to keep toggling the NumLock back 
and forth to move the cursor between numeric entries. 

And of course, the reverse is also true - holding down the Shift key while the cursor 
pad is in cursor mode will let you type in numbers without having to change the state of 



The Keys to the Kingdom 157 

the pad. This is especially handy on machines that don't have shift indicator lights, since 
it lets users stay in one mode all the time and use the Shift key only when they have to 

switch temporarily to the other mode and back. 
Shift does have one special trick up its sleeve. You can use it to make hard copies on 

your printer of whatever text happens to be on your screen, simply by pressing Shift
PrtSc. This is referred to as a screen dump. The dump will show only the current screen; 
if you want to take every single line on your screen and "echo" it simultaneously to your 
printer, use Ctrl-PrtSc or Ctrl-P instead. (While Ctrl-P will toggle simultaneous printing, 
all Shift-P will do is print a capital S on your screen.) 

The problem with Shift-PrtSc is that if you trigger it inadvertently it will either waste 
a sheet of paper if your printer is currently turned on and online (connected to your PC 
and ready to receive characters), or freeze your system if the printer is either turned off 
or ojfline. If this happens, the easiest thing to do is tum the printer on, let it print the screen 
dump, and then tum it off. If you don't have a printer connected, you may have to wait 
for the system to time out since it will give up and unfreeze the system after a good long 
wait. 

It's fairly simple to deactivate the screen dump feature, since a screen dump is an in
terrupt (INT 5). The first thing such an interrupt does when triggered is look in the Inter
rupt Vector Table to find the address of the actual dumping program. You could poke 
around in the table and change the address to something harmless, but this would disable 
the feature the whole time your system was running, unless you went back and restored 
it. A better way is to use the utility we provide, which puts a message on your screen after 
you press Shift-PrtSc and asks if you really want to go ahead or if you just pressed the 
keys by mistake. If you did press them accidentally, the utility will go away and give you 
back control of your system before it has a chance to lock up. 

Screen dumps don't always work. Text screens often contain high-bit ASCII border 
and box-drawing characters that many printers don't understand. While your screen may 
display a very fancy menu box with shadows on two sides giving it a classy 3-D effect, 
dumping the image to your printer may produce an ugly mess. And true graphics images 
often send printers into fits. If you want to dump unusual characters or fancy graphics 
images to your IBM-compatible printer, load the memory-resident DOS GRAPIDCS 
utility first (simply by typing GRAPHICS at the DOS prompt). Then type Shift-PrtSc. If 
you don't have an official IBM printer, this may not work. Some printer manufacturers 
who persist in using nonstandard codes may supply their own graphics screen dump 
programs. And just about every non-IBM Shift-PrtSc graphics dump will have little white 
horizontal stripes on it, since IBM's official graphics resolution is - surprise-different 
from most other manufacturers'. 

I Shift I Temporarily reverses whatever shift state the keyboard is in. Normally, all 
this does is tum lowercase letters into capital letters. But if CapsLock is on 
and everything you 're typing is capitalized, holding either Shift key down 
lets you type a few lowercase letters. Even better, it flips the state of the cur
sor/number pad, to let you move the cursor while in numeric mode or enter 
numbers while in cursor mode. 



158 PC Magazine DOS Power Tools 

I Shift 11 Pr!~ I Prints a screen dump - a copy of whatever is currently on the 
screen. If you want a graphics image printed, you have to ex
ecute the external DOS GRAPHICS command first, and hope 
when your salesman sold you that "IBM compatible" printer he 
wasn't just blowing smoke. 

The Alt key doesn't really do much on its own, but team it up with the number pad 
and you get a powerful tool. About the only thing the Alt key does, in fact, is provide a 
shorthand way of writing and editing BASIC programs. When you're using the BASIC 
editor, instead of having to type SCREEN. you can just press Alt-S and the word SCREEN 
will pop onto the screen. BASIC supplies Alt-key shortcuts for every letter of the alphabet 
except J, Q, Y, and Z. But not too many programmers really use these. Figure 5.3 shows 
the Alt-key combinations that can be used in BASIC. 

Alt-A 
Alt-B 
Alt-C 
Alt-D 
Alt-E 
Alt-F 
Alt-G 
Alt-H 
Alt-I 
Alt-K 
Alt-L 

AUTO 
BSAVE 
COLOR 
DELETE 
ELSE 
FOR 
GOTO 
HEX$ 
INPUT 
KEY 
LOCATE 

Figure 5.3. BASIC Alt-Key Shortcuts 

Note: No Alt-key combinations for J,Q,Y ,Z 

Alt-M 
Alt-N 
Alt-0 
Alt-P 
Alt-R 
Alt-S 
Alt-T 
Alt-U 
Alt-V 
Alt-W 
Alt-X 

MOTOR 
NEXT 
OPEN 
PRINT 
RUN 
SCREEN 
THEN 
USING 
VAL 
WIDTH 
XOR 

Although these shortcuts are currently built into IBM hardware, they're really out of 
date. The MOTOR command, for instance, is used only to start and stop tape cassette 
operation, and the mechanism for this was discontinued years ago. But the command 
remains. (Actually, early BASIC programmers found a legitimate use for this command. 
All it really did was turn a mechanical switch called a solenoid on or off, and program
mers found that by repeatedly and rapidly turning it on and then off, they could generate 
a motorboat sound.) 

The Alt key's real magic is in generating ASCII characters. By holding down the Alt 
key, typing in a decimal ASCII value on the number pad, and then releasing the Alt key, 
you can make any character appear at the cursor except one - a null, or ASCII charac
ter 0. Null identifies shifted key combinations or nonalphanumeric keys such as Home, 
End, or Fl. (IBM claims you can generate this null character by typing in Alt-2, but that 
doesn't work. However, pressing the F7 function key in DOS will generate an ASCII 0 



The Keys to the Kingdom 159 

and put a"@ onscreen; if you 're using the DOS COPY CON technique to create a small 
file, just tap F7 to insert a null.) This technique works only with the number pad. Hold
ing down the Alt key and typing the numbers on the top-row typewriter keys just won't 
do it. 

The Alt-number pad technique is extremely useful for creating fancy borders, boxes, 
math formulas, foreign language characters, and anything else you can construct out of 
the high-bit ASCII characters - those with values greater than 127. It's also handy for 
exercising the ASCII characters with very low values - less than 32. 

Want to see a smiling face in DOS? Just type ECHO and a space, hold down the Alt 
key, type 1 (or 2), release the Alt key, and press the Enter key. Then have a nice day. You 
could have also typed Ctrl-A in place of Alt-1, or Ctrl-B instead of Alt-2, to generate the 
face character. It's easy to remember that A is the first letter of the alphabet, B the second, 
C the third, and Z the 26th. But quick - which letter do you hold down for V? Ifs far 
easier to type Alt-22. 

And while you can use the Ctrl-key combinations as well as the Alt- key ones for very 
low characters, once you get past Z, you're strictly in Alt territory. 

To generate little boxes in DOS, type the two sets of keystrokes that follow. An in
struction like AL T-201 means: 

1. Hold down the Alt key. 
2. Type 201 on the number pad, not the top row. 
3. Release the Alt key. 

An "Enter" means press the Enter key, "space" means tap the spacebar, and "F6" means 
lean on the grey F6 function key. 

For a small single-line box For a small double-line box: 

COPY CON SINGLE COPY CON DOUBLE 
Enter Enter 
ALT-218 ALT-201 
ALT-196 ALT-205 
ALT-196 ALT-205 
ALT-191 ALT-187 
Enter Enter 
ALT-179 ALT-186 
space space 
space space 
ALT-179 ALT-186 
Enter Enter 
ALT-192 ALT-200 
ALT-196 ALT-205 
ALT-196 ALT-205 
ALT-217 ALT-188 
Enter Enter 



160 PC Magazine DOS Power Tools 

F6 
Enter 

When you're done, type: 

TYPE SINGLE 

for a single-line box, and 

TYPE DOUBLE 

for a double-line box. 
The boxes look like this: 

D D 

F6 
Enter 

Once you have the basic box parts - the four comers, the horizontal line, and the ver
tical line - created, you can work on the files with your word processor and use the 
block copy feature to expand it and change its shape. Some word processors may be con
fused by the high ASCII values, however. 

You can combine single and double-line boxes in four possible ways. The ASCII 
values you need to know to draw these are as follows: 

Single horizontal, single vertical: 

218 196 194 191 
r T 1 

179 I I 179 
195 ~ 197- + 1 180 

L J_ J 
192 196 193 217 

Double horizontal, double vertical: 

201 205 203 187 
r;= = if i1 

186 II II 186 
204 I~ 

Jl 
~I 185 206- ir 

th = :lh :lJ 
200 205 202 188 



The Keys to the Kingdom 161 

Single horizontal, double vertical: 

214 196 210 183 
rr 1T' 11 

186 II II 186 
199 Ir 215- * ~I 182 

u. JL JI 
211 196 208 189 

Double horizontal, single vertical: 

213 205 209 184 
F = :;= 9 

179 I I 179 
198 t= 216- + 9 181 

b = :b d 
212 205 207 190 

You can also use the high-bit solid and shaded characters to draw pictures onscreen. 
You may want to use the GRAFPRNT.BAS program to look at these in more detail. IBM 
provides a kit of eight 

219 solid box 
178 75% grey 
177 50% grey 
176 25% grey 

220 bottom half 
223 top half 
221 left half 
222 right half 

These may not seem like a flexible enough arsenal, but with a little ingenuity you can 
use these and other high-bit characters to draw charts, tables, graphs, and even animated 
pictures. 

You use the Alt key in BASIC instead of the usual CHR$(n) notation. If you wanted 
to print a capital A you could tell BASIC: 

PRINT CHR$ ( 65) 

Or you could say: 

PRINT "A" 



162 PC Magazine DOS Power Tools 

The same is true with high-bit characters. Just type in PRINT and the left quotation mark, 
use the Alt-number pad technique to generate the character you want, and then type a 
closing quotation mark. It's all the same to BASIC. But even if you never want to touch 
a line of BASIC, the Alt key can be very useful, especially if you keep sensitive files on 
your disks. 

One of the very best uses of the Alt key is in adding a special kind of blank character 
in your filenames that can prevent casual users who don't know the trick from gaining 
access to your sensitive files. 

If you keep a file on your disk that you don't want anyone to see, you can do several 
things to keep it out of harm's way: 

1. Lock your system whenever you walk away from it for even a few seconds. 
2. Hide the file from normal directory searches. 
3. Hide the subdirectory in which the file is stored. 
4. Give the file an incomprehensible name such as L VX_l TQY or an innocent one like 

DIAGNOST.PRG. 
5. If your applications software can handle it (some can't), put a Ctrl-Z OOS end-of

file marker as the first character in the file, to prevent casual snoops from using the 
OOS TYPE command to view -the contents. 

6. Slap (mostly) invisible character on the end of it that most users won't figure out. 

Actually, there's only one way to keep your data safe, and that's to maintain it on 
removable media such as floppy disks or Bernoulli cartridges, and keep these locked up. 
{To edit or consult such secret files, security-conscious users frequently copy them from 
floppies to their hard disks and then put them back on floppies when they're done. Then 
they erase the sensitive files from their hard disk. Programs like the Norton Utilities make 
it easy for someone to come along and "unerase" these files. But Norton also provides a 
utility called WIPEFILE that can totally obliterate any traces of your secret data. If you 
do use a program like WIPEFILE, be sure to check your hard disk for all erased files, 
since many applications create temporary work files without your knowledge that remain 
hidden on your disk. These can be just as dangerous in the wrong hands as the originals.) 

Trick #6 above is easy. To try it, create a dummy file called DUMMY .BAT by typing 
the program below and pressing the Enter key at the end of each line. Press the F6 func
tion key where it says <F6>, and then press the Enter key again at the very end. Note -
don't actually enter the@ sign shown in the filename. In place of the@ after the word 
DUMMY, enter Alt-255 by holding down the Alt key, typing 255 on your number pad, 
and then releasing the Alt key. What looks like a space will appear above the cursor. Then 
continue typing the letters .BAT that follow this character. 

COPY CON DUMMY@.BAT 
ECHO OFF 
ECHO Most users couldn't get this far 
<F6> 

Verify that the file is on your disk by typing: 



The Keys to the Kingdom 163 

DIR OUM*.* 

and you'll see something like: 

DUMMY BAT 49 9-08-89 10:59p 

Since this is a batch file, you should be able to execute it simply by typing the part of the 
filename before the BAT extension. But if you type just: 

DUMMY 

all you'll get is an error message that says: 

Bad command or filename 

This is because the name of the file isn't DUMMY.BAT; it's DUMMY@.BAT, where 
the@ represents the ASCII 255 blank character. Now press the F3 key, which will dredge 
up the last command you typed, and put the letters DUMMY at the DOS prompt- but 
don't press the Enter key yet Instead, use the Alt-key trick to type in the Alt-255 charac
ter, and then press the Enter key. You should see: 

ECHO OFF 
Most users couldn't get this far 

Remember, this filename has six characters before the BAT extension, not five. The sixth 
is ASCII character 255, which is a blank. It may be annoying to have to use the Alt-255 
technique every time you want to do anything with the file, but it will keep the honest 
people from snooping into it. 

Unscrupulous users will always find a way. They may know the Alt-key trick. If they 
don't, they'll realize something is fishy when they try the DOS TYPE command: 

TYPE DUMMY.BAT 

and nothing happens. If they're smart, they'll know another way to display the contents 
of files. All they have to do is type: 

COPY OUM*.* CON /B 

This command tells DOS to display the full contents every file beginning with the letters 
OUM. Adding a /B at the end gets around the trick of putting a Ctrl-Z as the first charac
ter of the file. 

This trick works fairly well with directory listings, since DOS puts spaces between the 
left half of the filename and its extension rather than a period. But if you copied a file 



164 PC Magazine DOS Power Tools 

that had an Alt-255 character in its filename, DOS would tip its hand. If this file were the 
only one on your disk that started with the letters DUM, and you typed: 

COPY DUM*.* ZUM*.* 

DOS would print: 

DUMMY .BAT 
1 File(s) copied 

which would reveal the extra blank character before the period. Still, it will keep casual 
users from causing problems. 

If you already know what subdirectories are, you might want to use this Alt-255 trick 
the next time you create one. (If you don't, refer to Chapter 3, and then come back here 
and try this.) When you type MD (or MKDIR) to create a subdirectory, add an Alt-255 
to the end of the subdirectory name just as you did with the DUMMY filename above. 
Once you've created it, you won't be able to log into it, or remove it, or do anything to 
it unless you tack on the Alt-255. The only problem with this is that if you change your 
DOS prompt (with a command like $P:) the blank space will look odd. If you created a 
subdirectory called C:\DOS* (again, where the* represents an Alt-255), and your prompt 
was indeed $P:, when you logged into it you'd see: 

C: \DOS : 

Still, casual users would think the blank was a space, and wouldn't be able to log into 
the subdirectory unless they knew how to generate an AL T-255. 

I E~d 11 uZme 11 P:Dn I 

Holding down the Alt key and typing an ASCII code 
on the number pad, and then releasing the Alt key 
produces an ASCII character for that code, here an 
upside down jfor ASCII character 173. 

You don't have to type in all three numbers; Alt-1 works just like Alt-001. And if you 
type more than three numbers, the PC first does a mod 256 operation on the it (converts 
it to an integer between 0 and 255). One interesting note about the Alt key- if you press 
it and the Ctrl key and either Shift key at the same time, the PC gives the Alt key priority, 
and then Ctrl. It works alphabetically. 

While you can't use the top row numbers to generate Alt-key ASCII codes, they'll 
work just as well as the number pad when it comes to entering numbers in most applica
tions. But numbers aren't the only characters that you can enter in different ways. 



The Keys to the Kingdom 165 

Cursor Movement and Number Pad Keys 
Your keyboard sports two pluses and two minuses, as well as two periods and two 
asterisks. This redundancy makes sense, since IBM had to keep users happy who were 
accustomed to typewriter layouts, while appealing to green eyeshade types who use ad
ding machine keypads all day long. IBM's new wide-body keyboard goes even further 
in this direction. 

One thing that confuses legions of new users are the four keys with arrows on them 
pointing left These do four very different things: 

Backspace - moves the cursor left one character at a time, erasing charac
ters as it plows through them. 

Enter- tells DOS (and most applications) to process the line you just typed. 

Tab - moves the cursor a preset number of spaces. DOS tabs only to the 
right, but some applications let you use Shift-Tab to move to previous tab 
stops. 

Left Arrow (or Cursor Left) - moves the cursor left, like the backspace, but 
nondestructively, sliding under characters without erasing. 

But these aren't the only potentially troublesome pairs or trios of keys. 

New users have to learn that they can't type a lower
case L when they want to enter the digit 1. Some 
typewriter keyboards don't have ls on them, since 
"ell" and 1 are so similiar. But to a computer, these 
are totally different classes of characters that it treats 
in two distinct ways. And the PC even provides two 
keys to enter the digit 1. 

Similarly, the digit 0 is not a capital 0. Since these 
are often hard to distinguish on some systems, ex
perienced users put a slash through zeros whether 
entered from the top row or the number pad. 



166 PC Magazine DOS Power Tools 

ITJ ITJ 

EB CJ[] 
DD 

DD 

DGJ 
DD 

Everybody uses slashes, in fractions, in dates, or in 
constructions like either/or. But unless you've spent 
much time with integer division or with DOS sub
directories, you probably haven't had to use a back
slash much. Don't worry, you will. 

In school, we learned to use an x as a multiplication 
operator. Your computer prefers an asterisk(*). In 
fact, it insists on it. Either* key will do. 

Many computer operations let you substitute a 
single quote (') for a double quote (") and vice versa 
(although there are times when this won't work). 
The ' is a grave accent, and is definitely not a quota
tion mark. Although you may get away with using 
it in a word processor as a single left quote, if your 
computer is expecting a quotation mark of some sort 
and sees an accent, it will balk. 

The underline isn't actually much longer than the 
hyphen or minus sign, unless you look at it very 
carefully. Of course, it's down at the bottom of the 
line, so you can't miss it But is its lowercase ver
sion a hyphen or a minus? It doesn't really matter, 
since it's usually interchangeable with the grey 
minus key. 

Similarly, is a period different from a decimal point? 
Not when you type it in using either of these two 
keys. 

Isn't there a song about these two? "You must 
remember thus, a plus is just a plus ... " Here, that's 
very true. 

The funny thing is that when most new users first get their hands on a PC keyboard, they 
complain about all the extia keys. Once they master the new keyboards, if they ever have 
to use a typewriter again they end up echoing Ronald Reagan's line "where's the rest of 
me?" 

The NumLock key - which toggles the cursor pad between its numeric and cursor
moving states - is the source of much user consternation. Somehow it always seems to 
wriggle itself into the opposite state from the one you want. If you' re trying to move your 
cursor up the screen, for instance, you may end up with a row of 888888s instead, since 
Up Arrow and 8 share the same key. 



Bit: 

The Keys to the Kingdom 167 

The disk that accompanies this book contains three programs that help you work with 
Shift Lock keys. For example, it's possible to set the state of a Shift Lock key more or 
less permanently, and then run a short program that disables it for as long as you want. 
A second program is for users who don't ever enter numbers on the cursor pad and causes 
the PC to beep if NumLock is set wrong. A third program can change any shift state with 
a single command. But most users want the flexibility to shift it back and forth, and they 
don't need any extta beeps. If you want to take our word for this, and skip the slightly 
technical explanation that follows, jump ahead in this chapter right now to the section on 
freezing your display. 

Since IBM's 101/102-key keyboard provides a number pad and a separate cursor pad, 
it designed the keyboard to start operating with the number pad already in numeric mode. 
Some users hate this. If you 're among them, you can create a tiny program that will reset 
the NumLock state for you. You can add the name of this tiny file to your 
AUTOEXEC.BAT program to do the resetting right after you boot up. Figure 5.4 shows 
you how. 

7 6 s 4 3 2 1 0 
0 0 0 0 0 0 0 0 

I 
l l t 

Right Shift 
Left Shift 

Ctr I 
Alt 

ScrollLock 
NumLock 

CapsLock 
Insert 

PC If bit If bit 6th Line Replacement for Shift-
Shift Bit is set is set Key Script 
Key to 1 toO turns on turns off 

Insert 7 on off ORAL,80 ANDAL,7F 
CapsLock 6 on off ORAL,40 ANDAL,BF 
NumLock 5 on off ORAL,20 ANDAL,DF 
ScrollLock 4 on off ORAL,10 ANDAL,EF 
Alt 3 down up ORAL,08 ANDAL,F7 
Ctrl 2 down up ORAL,04 ANDAL,FB 
Left Shift 1 down up ORAL,02 ANDAL,FD 
Right Shift 0 down up ORAL,01 ANDAL,FE 

Figure S.4. Keyboard Status Control Bytes at Address 0000:0417 



168 PC Magazine DOS Power Tools 

The PC keeps track of the state of each Shift key by setting (turning to 1) and onset
ting (turning to 0) individual bits in the Keyboard Status Control Byte at address 
0000:0417 in RAM. It's easy to adapt an all-purpose assembly language program to set 
or unset any of these Shift keys. The basic framework is a file called SHIFfK.EY.SCR: 

N UNAMEIT.COM 
A 

MOV DX,0040 
MOV DS, DX 
MOV AL, [0017] 
AND AL,DF 
MOV {0017],AL 
INT 20 

RCX 
F 

w 
Q 

<- 1. REPLACE THE FILENAME. 

<- 2. CHANGE THIS LINE. 

Use a word processor to create the basic SHIFTK.EY.SCR, starting with the N UN
AMEIT .COM line and ending with the Q. Be sure to leave the blank line above the RCX, 
and press the Enter key after each line, especially the last line. 

Then, to create a particular assembly language file to set one of the Shift keys the way 
you want it, all you have to do is: 

1. Make a copy of the SHIFfKEY.SCR file and call it WORKFILE.SCR, by typing: 

COPY SHIFTKEY.SCR WORKFILE.SCR 

2. Change the UNAMEIT.COM in the top line to reflect what you're going to use the 
program for. If you want to set the CapsLock key on, you might pick a name like 
CAPSON.COM. If you want to set the NumLock key off, choose a name like 
NUMOFF.COM. 

3. Here's the only slightly tricky part. Replace the entire sixth line-the one that now 
says 

AND AL,DF 

with a line from the chart above. If you look at the two righthand columns in the chart, 
you'll see that the AND AL,DF turns NumLock off (if this is what you want, leave 
it alone). If you want to do something like tum the CapsLock on, however, you'd 
change it to 

OR AL,40 



The Keys to the Kingdom 169 

4. Then save this WORKFILE.SCR file with the changes you just made, and put it on 
the same disk as DEBUG.COM version 2.0 or later. To create the file, type: 

DEBUG < WORKFILE.SCR 

Obviously, this isn't much use in changing the status of a key like Alt or Ctrl. But these 
individual files are very useful for toggling the shift locks on your keyboard the exact 
way you want just as if you manually leaned on them yourself. You can put these in batch 
files that first set the appropriate shift state and then load your favorite commercial 
software, so the program comes up with all the shifts properly set and ready to go. 

The assembly language utilities that you create this way all use the same technique. 
First they load the segment (0040) and the offset (0017) addresses. As mentioned earlier, 
you can express just about every address in many different ways. The address 0040:0017 
is the same as 0000:0417, which is the same as absolute address 417. IBM calls the byte 
at this address the Keyboard Status Control Byte, or the Status Byte, and you '11 often 
hear this important location referred to as the byte at address 417. 

The utility then looks up the value at this address, and puts it into a workspace called 
a register. It performs a logical bit-mask operation on this value, forcing one particular 
bit to turn on or off, and then moves the newly changed value back to its old 417 address. 

All a bit mask does is tum a single specified bit on (so it's a 1) or off (so it's a 0) while 
making sure the other seven bits in the byte aren't disturbed. The logical operation process 
itself is interesting since it has to be smart enough to switch the state of a bit when the 
bit is set incorrectly, but leave the state of the bit alone if it's already set properly. (Bit 
masks are explained in detail in Chapter 4.) 

Remember that either Shift key will temporarily switch the state of the cursor/number 
pad. So if you 're entering a series of numbers with NumLock set on, and you see a mis
take and want to move the cursor up a few rows, just hold down either the left or right 
Shift and tap the Up Arrow key a few times. When you're done, release the Shift and 
you're back in numeric mode. And this works just as well the other way around. 

But be careful. If N umLock is on and you 're entering figures into the number pad, and 
you decide to hold down the Shift key to move the cursor, don't type in a perioo, since 
a shifted perioo is the same as a tap of the Delete key and something will vanish. 

Incidentally, you can perform several bit mask operations at once. If you want to turn 
CapsLock and NumLock on at the same time, just add the two hex numbers in the OR 
column. 

CapsLock 
+ NumLock 

Both 

ORAL,40 
ORAL,20 
ORAL,60 

(Remember that these are hex numbers. Adding 40 + 20 equals 60 both in decimal and 
hexadecimal notation. But adding 80 + 20 equals AO in hex.) 

Figuring out the combination AND numbers to tum shift states off isn't really all that 
hard. If you'll notice, the numbers in the AND column are just hex FF minus the num-



170 PC Magazine DOS Power Tools 

bers in the OR column. If OR AL,60 turns both the CapsLock and NumLock on, you can 
figure out which values will tum them off when used with a logical AND: 

FF 
-&> 

9F 

So to tum CapsLock and NumLock off with the same command, use: 

AND AL, 9F 

jc;l ~ 
LJ~ 

Freezing the Display 

And of course you freeze DOS displays in mid-scroll by press
ing Ctrl-NumLock. But to restart things you have to press a let
ter or number key. Ctrl-S is a better bet because the two keys are 
close together and because you can unfreeze the paused display 
just by pressing Ctrl-S again. 

"Now hold on a minute," you might say, "let me get this straight If I want to freeze my 
display while it's scrolling I have to hold down the Ctrl key and press NumLock? The 
key right next to NumLock on most systems is ScrollLock, but it doesn't seem to have 
anything to do with scrolling. You mean IBM named one key ScrollLOck but didn't give 
it any connection with scrolling, and then went ahead and assigned a key the power to 
stop scrolling, but called it NumLock? Does IBM make up this stuff as it goes along?" 

Well, you said it, we didn't. 
To make matters worse, written below the ScrollLock label almost as an afterthought, 

and invisible in poor light, is the word "Break." Now ask yourself this: If you 're new at 
this, and someone's just spent a pile of money on a system that's taken you and an in
staller a week to get working, and you already have a deadline staring you in the face, 
are you going to let any of your fingers even close to a key named Break? Especially a 
key that's somehow supposed to lock scrolling but doesn't do anything of the sort? 

If you think about it for a second or two you 'II realize that a panic button key isn't such 
a bad idea, since it's so easy for a computer to start running madly off in the opposite 
direction, and you need a device to get its attention again. But when your system is crank
ing madly away processing something you don't want it to, or scrolling through a long 
list that suddenly reveals the items you were searching for, the last thing you want to have 
to do is grope for two different keys. Imagine if a huge stamping press had a two-part red 
emergency stop button. If OSHA ever bought a PC they'd have the guy who designed 
the Break feature making little rocks out of big ones. 

But remember, IBM provides an easier way to hit the brakes, with Ctrl-C, even through 
Ctrl-C and Ctrl-ScrollLock aren't exactly the same. The one thing they both may do is 
put a AC on the screen if they manage to bring a process to its knees. Why didn't IBM 
use the far more mnemonic Ctrl-B to trigger this? They thought Ctrl-C was easy to 



The Keys to the Kingdom 171 

remember, since by the time you find the two proper keys to press you're screaming 
"Come on already, break!" 

The worst thing about having to grope blindly for Ctrl-ScrollLock or Ctrl-NumLock 
is that if your fingers slip a bit you may end up pressing Ctrl-PrtSc, which may indeed 
stop everything in its tracks as your system tries to send output to a printer that's turned 
off. 

Break isn'tjust for emergencies. Some programs, like the current versions of EDLIN 
distributed along with DOS, are so primitive that they make you use Ctrl-ScrollLock to 
stop nonnal editing commands. Give us a break. 

Pawing at Ctrl-ScrollLock or Ctrl-break won't always stop what you're doing. Some 
programs use these key combinations to trigger their own commands. Typing Cttl-C in 
WordStar is the same as pressing the PgDn key. And if you press Ctrl-ScrollLock all 
WordStar 3 .3 will do is put a 

(Vp6w6n? 

on your screen. 
Programmers can write software using a variety of keyboard-reading techniques that 

explicitly check or refrain from checking to see whether the user pressed Ctrl-C. DOS 
checks to see whether a user typed Ctrl-C only during standard input/output such as ac
cepting keystrokes or displaying a file using the TYPE command, and when it's in con
trol of printing or communications. But version 2.0 let users add the command: 

SET BREAK=ON 

to their CONFIG .SYS system configuration file, which forces DOS to check for this com
bination of keystrokes more frequently. However, forcing DOS to do anything usually 
slows it down a bit, and increased break-checking is no exception. 

You can tum the extra break-checking on and off at the DOS prompt.Just type BREAK 
ON to enable the additional checks and (surprise) BREAK OFF to disable them. Typing 
just BREAK by itself will report the current ON or OFF status. 

EJ 
Scroll 
Lock 

Caps Lock 

Scroll 
Lock 

Mostly interchangeable with Ctrl-C, and both stop or"break out" 
of DOS operations most of the time. 

Used alone, this key exercises the finger muscles only. 

New users often gripe that the CapsLock key doesn't work properly. On typewriters it 
usually hunkers down a quarter inch or so and stays there to let you know it's set Early 



172 PC Magazine DOS Power Tools 

Esc 

PCs offered a feature to let you know as well. It was called looking at the screen to see 
whether everything you were typing was iN tHE wRONG sT A TE. (We '11 provide a utility 
later that educates the CapsLock key to smarten it up so it never does this to you again.) 

The AT changed all this, by providing status lights to display the current state of the 
CapsLock, NumLock, and ScrollLock shifts. For some inexplicable reason, IBM left 
these off some of its later keyboards, even though the spaces for them were clearly visible. 
And with enough fancy fingerwork, you can knock these status lights out of synch, so 
they blink on when they should be off and vice versa. We'll explain how to reset them 
later. 

The other complaint most often voiced by novices is that CapsLock doesn't shift "up
percase" punctuation marks properly. Toggle the CapsLock on and press the comma key 
expecting to see its upstairs < sign, or type the top row 1 when you want a ! and all you 
get is the unshifted version of each. Presumably IBM either felt the downstairs keys were 
more important, or thought that the only keys the CapsLock should adjust were the ones 
with just one character stamped on them - the alphabetic keys. Any key with two charac
ters on it needs a tap on the Shift key to produce its upper version. 

The Esc key is another (smaller scale) panic-button. In DOS, it stops what you 're typing, 
prints a backslash, drops the cursor down to the next line, and gives you a chance to start 
over. It won 'tgive you back your DOS prompt though, because it figured if you wanted 
to do that you'd pound on Ctrl-C. Instead, it assumes you interrupted your earlier com
mand and want to try entering it again. 

In most commercial applications, Esc steps you backwards through a succession of 
hierarchical menus or commands, or cancels operations. It's one of the few conventions 
adopted by a large number of program designers; the only other one is that Fl will sum
mon some sort of help screen. If you 're ever using a new application and the manual isn't 
handy or isn't indexed (hard to believe but true) or was written by the programmer and 
not a professional manual writer, and you're stuck, try drumming on the Esc key until 
you land in a familiar place. 

ASCII character 27, generated by the Esc key, wakes up certain printers and screens. 
When you print a page all you're really doing is sending a stream of characters out the 
back of your system and down a cable to another set of processors in another hardware 
box. These other processors watch the data go by and convert it into printed characters 
by moving the printer's motors, gears, or mirrors. But they also watch for special con
trol or escape codes that trigger the printer's processor to change the current configura
tion. 

Commands like these can tell your printer to use larger or smaller characters, change 
paper trays or ribbon colors, adjust spacing measurements, shift to different type fonts, 
even print sideways (in landscape mode rather than portrai.t - these tenns were bor
rowed from the art world where portraits are generally taller than they are wide and 
landscapes the other way around). 

Escape sequences can also tell DOS you're trying to send it a special ANSI.SYS com
mand. Few users take advantage of ANSI (which stands for the American National Stan-



The Keys to the Kingdom 173 

dards Institute and is pronounced ANN-see), since its commands are nasty to deal with 
and don't work all the time. When everything is properly set, they can turn drabs screens 
into lush, colorful ones. But if you're not expecting an ANSI file brimming with escape 
characters and left brackets, and you try to do anything with it, you end up with a mess. 

DOS screens are usually a dull grey on black, and work only one line at a time. And 
even if you've set your screen colors using a small utility like any of the ones we provide 
later, as soon as you type CLS to clear the screen, DOS jumps back to grey on black. The 
ANSI screen commands can position your DOS cursor anywhere you want it and set any 
character to any color. And the colors stick, so that CLS simply erases characters but 
doesn't meddle with any colors you've chosen. 

You can also use the ANSI codes to redefine and add primitive macro features to your 
keyboard. And you can get at much of its magic through the underused DOS PROMPT 
command. 

Function Keys 

Function keys (Fl through FIO on older systems, Fl through Fl2 on newer ones) fall 
neatly into two categories - underused and overused. Some software, like WordPerfect, 
makes such extensive use of the these keys that it can be hard to remember whether to 
press F8, Ctrl-F8, Shift-PS, or Alt-F8 to get something done. Other software, like DOS, 
makes such feeble use of function keys that a few keys remain unassigned and most that 
are assigned remain unpopular with users. 

Actually, function keys can be helpful in two ways. They can compress lots ofhard
to-remember or tricky-to-type keystrokes onto one single key. And they can act as dedi
cated command keys so that pressing Fl brings up a help screen, or striking F9 jumps 
you to the beginning of a file and FIO to the end. 

DOS uses the first seven function keys, Fl through F7, to make life a little easier at 
the keyboard. One key, F3, is indeed a terrific tool. The others are occasionally handy. 
(BASIC gives function keys far more intrinsic power.) You can harness ANSI's redefini
tion abilities to make function keys more useful, but few users bother. Most either don't 
use function keys much, or else purchase a full-fledged keyboard macro package like 
ProKey or SuperKey to redefine keys. 

The majority of DOS' s built-in function keys let you re-execute the previous DOS 
command you just entered, either exactly as you entered it earlier, or with changes. DOS 
puts all the keystrokes you type for each command into a template. If you typed in: 

DIR 

the template would contain just the letters D, I, and R. If you typed: 

COPY C:\DOS\UTILITY\*.PRG B:\BACKUP\DOS\PROGS *.PBK /V 

that whole long string of characters from the intial COPY to the final N would be in the 
template. The ability to re-execute commands isn't such a big deal when all you 're doing 



174 PC Magazine DOS Power Tools 

is typing DIR repeatedly. But even then, it's easier to press one key than three, and when 
you're dealing with long and thorny commands this can be an absolute blessing. 

Some of the examples below use the same sample template, and assume you are logged 
onto drive C: 

COPY A:ABCD B:WXYZ 

c 

Both of these take one key at a time from the pre
vious command and copy it to the current command. 
So if you had finished executing the sample COPY 
command shown here, and were back again at the 
DOS prompt, the first time you press either of these 
keys, you'd see: 

Press either key once again and the screen would look like: 

co 

Press either one of these seven more times and you'd see: 

COPY A:AB 

So if you wanted to repeat the previous command, you could simply hold down the Fl 
or right-arrow key until DOS displayed the entire previous template. If you then press 
the Enter key, DOS would execute this command just as if you had typed it in. But there's 
a far easier way than dredging up all the keystrokes one at a time. 

One tap on F3 zaps the last command entered back onscreen. This is one of 
the best things the designers of DOS ever did. Since users frequently find 
themselves repeating DOS commands, and since many commands involve 
hard-to-type combinations of slashes, backslashes, colons, and hierglyphic 
filenames, F3 is a genuine boon. 

Even better, you can use these keys to "fill out" the rest of a command Here's a good 
example: Once you copy critical files, you may want to check the validity of the copies 
by using the COMP command to compare them to the originals. Both COPY and COMP 
are four letters long, and both share the same basic syntax. So once you type in: 

COPY A:ABCD B:WXYZ 

and press the Enter key to make the copies, you can simply type in: 

COMP 



The Keys to the Kingdom 175 

and then press the F3 key. OOS will fill in the rest of the template for you, supplying 
drives and filenames of both the original files and the copies: 

COMP A:ABCD B:WXYZ 

You may have to edit the command slightly. If you used a N suffix, or switch, at the 
end of the original COPY command to verify the accuracy of your copies, you 'II have to 
delete it from the COMP command. But this is simple; just backspace it away. (Inciden
tally, adding a N to verify the copying process - which is the same as giving OOS a 
VERIFY ON command - doesn't compare the two files byte by byte. Instead, it simp
ly makes sure that OOS can read the appropriate sectors that contain the copy of your 
fde, and then does a CRC check a crude test for errors that catches flagrant mistakes 
but can be fooled. To compare two files more precisely, use the limited PC-OOS COMP 
or the better MS-OOS FC commands.) 

Pressing F3 to COMP a file after you COPY it isn't really necessary unless your drives 
are acting up and generating error messages. But it doesn't hurt, especially when you're 
copying a vitally important file from a RAMdisk or hard disk to a single backup floppy. 
We've had lots of trouble with IBM's awful 1.2 megabyte floppy drives, where COPY 
N bubbles blithely along without reporting any errors but COMP catches them by the 
fistful. 

Fl/right arrow and F3 can also turn a: 

DISKCOPY A: B: 

command into a: 

DISKCOMP A: B: 

with a few simple keystrokes. Just tap Fl six times, type in MP to replace the final two 
PY characters of DISK COPY, and then press F3. (You really shouldn't use DISK COPY 
to back up your files, for reasons we'll get to later.) But again, DOS provides an easier 
way. o plus 

LJ 
C>DISKCO 

any 
char
acter 

The first six letters of DISKCOPY and DISK COMP 
are identical. You can have OOS copy those six let
ters from the old template into the new one by enter
ing F2 and the seventh letter (in this case, the P in 
DISKCOPY). Typing F2 and the P would produce: 

You could then type MP and then press F3 to finish changing the DISKCOPY A: B: into 
a DISKCOMP A: B:. 

Typing F2 and then a character will look inside the template created by the previous 
command and copy everything up to (but not including) that character onto the screen. 



176 PC Magazine DOS Power Tools 

In the unlikely event that you want to do the reverse - copy everything after a specific 
character - DOS will happily oblige. 

SWEEP .COM, a program on the accompanying disk, lets you execute commands in 
all the sulxlirectories on your disk. You can see all the backup files that end with a .BAK 
in all of your subdirectories, by typing: 

SWEEP DIR *.BAK 

While this will display the backup files in every subdirectory, you might want to focus 
on the ones in the subdirectory you're currently working in (you can be in only one sub
directory at a time). You could re-enter the command: 

DIR *.BAK 

but DOS provides a slightly easier way. 

o plus 

LJ 
any 

char
acter 

Just type F4 and then D, and DOS will skip over all 
the characters up to the Din the word DIR. However, 
you won't see anything onscreen. But then press F3 
and DOS will put the rest of the previous command 
onscreen, from the D onward. The F4 key works like 
the F2 key in reverse. 

So, if the previous command was: 

SWEEP DIR *.BAK 

and you typed F4, then D, then F3, you'd see: 

DIR *.BAK 

The F2 and F4 keys will always jump over or to the first occurrence of the character 
you specify. If you want to jump over or to a second or third occurrence of that charac
ter you can repeat the command a second or third time. But this gets confusing, especial
ly when you're working with F4 and can't see what you're doing. Few users rely on the 
F2 key, and virtually nobody uses F4. 

If you 're trying any of the above tricks and you get hopelessly lost or confused, you 
can always press Ctrl-ScrollLock or Ctrl-C to abort, and start again on the next line. 
However, if you want to make some corrections in the current line, and keep working on 
it, you can do so. 

Pressing F5 replaces the old template from the previous command with the 
new one you 're working on. You can then continue to edit this new one, using 
the Fl, F2, F3, and F4 keys. This is another fairly useless and unpopular func
tion key. 



The Keys to the Kingdom 177 

While DOS provides the Fl through F5 keys to edit the command line template, it tos
ses in two more simple tools. 

When you create files in DOS you have to tell it when you 're done. You do this by ad
ding an end-of-file marker as the very last character. This special character is a Ctrl-Z, 
with an ASCII value of 26 - easy to remember since Z is the 26th letter of the alphabet. 
You can generate this character using three different techniques. First, you could hold 
down the Ctrl key and press Z. Second, you could hold down the Alt key, type 26 on the 
number pad (not the top row number keys), and then release the Alt key. Or third, you 
could simply press F6. Each will put a "Z onscreen and an end-of-file marker (which may 
show up under certain circumstances as a small right-pointing arrow) in your file. 

Pressing F6 isn't much more efficient than typing Ctrl-Z. But it's there, and lots of 
users are accustomed to ending files by pressing F6 and then the Enter key. 

r-::-1 Puts an ASCII character 26 (Ctrl-Z end-of-file marker) onto the screen at the 
L.:_j current cursor position. 

The only other function key that does anything at all is F7, which sticks a null - with 
an ASCII value of 0 - onto the screen at the current cursor position. Pressing F7 prints 
a A@ and can generate a CHR$(0) if you need one. You probably won't But if you do, 
be glad F7 is there, since this null character is the only one you can't create using the Alt
key-plus-number-pad technique. 

r-::-1 Puts an ASCII character 0 (null) onto the screen at the current cursor posi
L:J tion. 

Several other keys can help you edit in DOS: 

Pressing the Esc key cancels whatever you 're doing, prints a backslash (\), 
and drops the cursor down one line without disturbing the contents of the old 
template. You can often get a similar interrupted result by pounding on Ctrl
ScrollLock or Ctrl-C. 

Pressing the Ins key lets you insert characters at the cursor position without 
wiping out any characters in the template. DOS is normally in overstrike or 
overwrite mode, which means that if you put the cursor in the middle of a 
word and start typing, DOS will obliterate the old characters with any new 
ones you type. The Ins key will tell DOS to go into insert mode, which pushes 
existing text to the right as you type in new characters. 

You '11 find yourself using the Ins key often. If you were currently logged into drive 
C: and you tried to execute the example mentioned earlier: 

COPY A:ABCD B:WXYZ 



178 PC Magazine DOS Power Tools 

but you forgot the A: before ABCD, you'd end up with: 

COPY ABCD B:WXYZ 

This would tell DOS to copy the file ABCD from your current drive (which in this case 
would be C:) to drive B: and rename it WXYZ. What you really wanted to do however 
was copy the ABCD file on drive A:, but you forgot to specify the A:. If DOS found a 
file on drive C: called ABCD it would copy C:ABCD to B: and rename it during the 
process. But if DOS couldn't find it (which was probably the case) it would print an error 
message. To fix the command, you'd either lean on the Fl or the right arrow key to read 
the: 

COPY 

out of the old template, or you'd press F2 A, which would do the same thing a little faster. 
Then, press Ins to put DOS into insert mode and type A: 

COPY A: 

and finally, press F3 to put the rest of the old template onscreen: 

COPY A:ABCD B:WXYZ 

Del simply deletes keys from the template one by one. If you spelled COPY 
COPPY, you'd just position the cursor on one of the Ps and press Del to erase 
it You need to use the Del key when dealing with characters inside words. 
(COPY isn't the same thing as COPY.) The Del key lets you close up the 
word and get rid of the extra space. 

However. if the letter you have to erase happens to be at the beginning or end of a 
word, you can usually just press the space bar to get rid of it, since DOS interprets one 
space the same way it treats many continuous spaces. So: 

C> COPY A:ABCD B:WXYZ 

will do the same thing as the original example. If you spelled COPY mistakenly as 
COPYY, you could simply position the cursor on the second Y and press the spacebar. 

If you realize you've made a typing mistake while you 're working on the same line, 
you could either press FS to replace the old template with the new one, and then move 
to the offending character and write over it, or you could backspace to the mistake, cor
rect it, and then re-enter the rest of the command. The left arrow key will do the same 
thing. Both backspace "destructively" since they erase everything as they move. 



The Keys to the Kingdom 179 

Erases characters and moves the cursor to the left. 

Of all the OOS function keys, the best is clearly F3. You 'II find yourself using it all 
day long. One of the handiest F3 tricks lets you verify wildcard deletions. If you 're work
ing on a corporate contest, and have a lot of old files on your disk like CONTEST.RUL, 
CONTEST.TXT, CORP.LOO, and CORP.TXT, and you wantto delete them all with the 
command: 

DEL CO*.* 

you'd better be careful, since this command would also erase files such as COM
MAND.COM and COMP.COM. To see what files you would erase with such a wildcard 
command, first type: 

DIR CO*.* 

If all you see is something like: 

CONTEST RUL 1920 8-17-87 8:00p 
CONTEST TXT 26624 9-08-87 3:07p 
CORP LOG 3968 9-12-87 9:03p 
CORP TXT 7552 8-21-87 1:02p 

Then just type: 

DEL 

and press the F3 key, which will add the remaining characters.from the previous template: 

DEL CO*.* 

However, if you see files like COMMAND.COM in the directory listing, you can avoid 
potential trouble by making the DEL command more specific. In this case you might 
want to try it in two stages, first: 

DEL CON*.* 

and then: 

DEL COR*.* 



180 PC Magazine DOS Power Tools 

But even then itdoesn'thurt to try DIR CON*.* and DIR COR*.* first and then useF3 
when you're satisfied you won't erase any unexpected files. 

F2 can be a real lifesaver as well. Whenever you tell DOS about a disk drive you have 
to use a colon. Unfortunately, the colon is a shifted character, and it's common when 
typing rapidly or working late to press the lowercase semicolon instead. If you end up 
with a command such as: 

COPY A;ABCD B:WXYZ 

DOS will become confused, since it treats a semicolon like a space (tabs, equals signs, 
and commas are also turned into delimiters that work like spaces). It will think that you 're 
trying to copy a file called A on your current drive and rename it to ABCD in the process. 
But it won't understand the B: WXYZ and will print an "Invalid number of parameters" 
message. 

To fix this, simply press F2 and then a semicolon, which will put a: 

COPY A 

onscreen. Then type a colon and press F3 and the command will be ready to go. 
Figure 5.5 summarizes the keys that will execute certain DOS functions. 

Key 

Fl* 
F2 
F3 
F4 
F5 
F6** 
F7 
Esc 
Ins 
Del 
Bksp ••• 

DOS Function 

Copies characters one by one from old template to new 
Copies up to specified character from old template 
Copies all remaining characters from old template 
Skips up to specified character from old template 
Replaces old template with existing one 
Generates ASCII 26 end-of-file marker ("Z) 
Generates ASCII 0 null ( "@) 
lqterrupts and cancels changes in current line 
Switches DOS from overwrite mode into Insert mode 
Erases character at cursor and skips over it in template 
Erases one character to the left 

Figure S.S. Keys that Produce Selected DOS Functions. 

• Same as right arrow key 
•• Same as Ctrl-Z 
••• Same as left arrow key 

Assuming that you 're logged onto drive C: and that the previous command was COPY 
A:ABCD B:WXYZ, here's what you can do with function keys: 



Pressing 

Fl 
F2+W 
F3 
F4+W+F3 

Produces 

c 
COPY A:ABCD B: 
COPY A:ABCD B:WXYZ 
WXYZ 

The Keys to the Kingdom 181 

If you then press F5, DOS would replace the old COPY A:ABCD B: WXYZ template 
with these. 

AT Keyboard Tricks 

IBM started letting users program their keyboards with the first AT. By issuing a few 
simple BASIC commands you can experiment with IBM's programmable keyboards to 
see how they work, or to customize the key action. 

To change the keyboard's LED shift-lock indicators, just issue an OUT &H60,&HED 
(the SET /RESET LEDS command), and follow this immediately with an OUT &H60,nn 
(where nn is a binary value indicating which LEDs to turn on). Bit 0 is for the ScrollLock 
indicator, bit 1 is for NumLock and bit 2 is forCapsLock. The LEDCYCLE.BAS program 
below cycles the Ars LEDs through a binary counting sequence: 

100 , LEDCYCLE.BAS - by Dan Rollins 
110 DEF SEG=&HFFFF:IF PEEK(14)=252 THEN 130 
120 PRINT "Try this on an AT only!":END 
130 FOR J=O TO 7 
140 OUT &H60,&HED:OUT &H60,J 
150 FOR DELAY=l TO lOOO:NEXT 
160 IF INKEY$ > "" THEN STOP 
170 NEXT 
180 GOTO 130 

However, turning an LED on or off does not change the ScrollLock, NumLock, or Caps
Lock keyboard shift states. These actual shift states are controlled by bits 4, 5, and 6 of 
the BIOS KB_FLAG at address 0040:0017. To see this in action, run the TOGGLE.BAS 
program below, which turns on the NumLock LED and sets the NumLock state: 

100 ' TOGGLE.BAS - by Dan Rollins 
110 DEF SEG=&HFFFF:IF PEEK(14)=252 THEN 130 
120 PRINT "Try this on an AT only!":END 
130 NUM.LED=4:NUM.FLG=&H10 



182 PC Magazine DOS Power Tools 

140 CPS.LED=2:CPS.FLG=&H20 
150 SCR.LED=l:SCR.FLG=&H40 
160 DEF SEG=&H40 
170 POKE &H17,PEEK(&Hl7) OR NUM.FLG 
180 OUT &H60,&HED:OUT &H60,NUM.LED 

It's simple to program any AT or later keyboard to change the amount of time to wait 
before sending the first repeat (the delay) and the time between repeats (the rate). 

First, output a command ( &HF3), then output a delay-and-rate value. Bits 5 and 6 con
trol the delay, ranging from 250 ms up to 1 second. The lowest five bits (bits 0 through 
4) identify the repeat rate, ranging from about 30 repeats per second to two repeats per 
second. The following two commands set the keyboard to a one-quarter second delay 
and 20 repeats per second: 

OUT &H60,&HF3:0UT &H60,4 

Important Be sure to enter both commands on the same line. 
After receiving the &HF3 command, the keyboard locks up until it receives the rate 

and delay data byte. 
You can use the KEYRATE.BAS program below to set the keyboard typematic 

parameters. It includes the logic to display the exact delay and rate you select: 

100 ' KEYRATE.BAS - by Dan Rollins 
110 DEF SEG=&HFFFF:IF PEEK(l4)=252 THEN 130 
120 PRINT "Try this on an AT only!":END 
130 PRINT "=low values are fastest=" 
140 INPUT "initial delay (0-3): , "ID 
150 INPUT "repeat rate (0-31): ,"RR 
160 OUT &H60,&HF3:0UT &H60, (ID*32) OR RR 
170 PRINT "initial delay is"; 
180 PRINT (ID+l)*.25;"seconds" 
190 A=(RR AND 7) :B=(RR AND 24)\8 
200 P=(8+A)*(2AB)*.00417 
210 PRINT "repeat rate is"; 
220 PRINT 1/P;"per second" 

The default power-on settings are a one-half second delay and a repeat rate of ten per 
second. A better setting is a one-quarter second delay and 15 to 20 repeats per second. 
You can set the keyboard to output up to 30 repeats per second which after a little prac
tice is perfectly manageable and a boon to your throughput. 

You can also create two assembly language files, FAST.COM and SLOW.COM, that 
will set the rates without forcing you to use BASIC. Just make sure DEBUG.COM is 
handy and type in the following ten lines, pressing Enter at the end of each one. 



The Keys to the Kingdom 183 

DEBUG 
E 100 BO F3 E6 60 B9 00 10 90 E2 FD BO 00 E6 60 C3 
N FAST.COM 
RCX 
F 
w 
E lOB 7F 
N SLOW.COM 
w 
Q 

When you're done, you'll have two new files on your disk. For a laugh, type: 

SLOW 

and press Enter. See what your typematic rate is like. You won't believe it Then, to speed 
things up considerably, type: 

FAST 

and press Enter. If you've never speeded up your keyboard before, you won't believe 
this either. 

To change the rates, patch the byte in either SLOW.COM or FAST.COM at address 
lOB. 



184 PC Magazine DOS Power Tools 

Keyboard Operation 

The standard IBM keyboard contains a dedicated Intel 8048 microprocessor that 
monitors all key action and reports any activity to the CPU. When a key is 
pressed, the keyboard generates an interrupt 9 and puts a make code - the scan 
code of the key just sttuck - in the keyboard data port. Releasing a key 
generates a break code. The break code is simply the scan code with its high bit 
set (which is equal to the value of the make code plus 128). For the most part, 
keyboard scan codes are numbered sequentially from left to right, beginning at 
the top row of the old PC keyboard. Exceptions include the function keys and 
cursor keys. 

The 8048 also issues repeated make codes when a key is held down. After 
key contact has been maintained for about a half second, interrupts are 
generated several times per second just as if the key were being alternately 
pressed and released. This results in the keyboard's typema.tic action. BIOS 
masks out the repetition both of Shift keys (e.g., Ctrl and Alt), and of those (like 
Ins) that toggle a state. Starting with the AT, users could change both the delay 
before any typematic effect started, and the typematic rate itself. 

Instead of using interrupts to process keystrokes, some non-PC systems detect 
keystrokes by having the CPU poll or periodically check the keyboard to see if a 
key has been typed. Since it has to poll the keyboard many times per second to 
make sure nothing is missed, a significant portion of the CPU's time is diverted 
from other tasks. Thanks to the architecture of the PC and its smart keyboard, 
the 8048 can sit quietly in the background and grab the attention of the 8088 
only when keyboard action is detected. 

When you press a key, the keyboard's microprocessor generates a keyboard 
interrupt called IRQ 1, which normally has the second highest priority of all the 
PC hardware interrupts. {The highest priority interrupt is IRQO, which is the 
clock timer. Some of the other hardware interrupts are used by the serial ports, 
the parallel port, and the disks on your system.) 

The PC's 8259 interrupt controller translates IRQl into interrupt 9. When the 
microprocessor receives a hardware interrupt it stops what it's doing and jumps 
to the interrupt service routine. For interrupt 9, this routine is located at hex ad
dress 0000:0024. If you boot up without loading any resident programs this ad
dress points to a routine in the ROM BIOS. 

The BIOS interrupt 9 routine reads the scan code of the key from the 
hardware. This routine is responsible for converting the scan code into an ASCII 
code, maintaining shift state information, pausing on Ctrl-NumLock, executing 
an interrupt 5 (print screen) when it detects a Shift-PrtSc, and rebooting on Ctrl
Alt-Del. 



The Keys to the Kingdom 185 

The assembly language code for interrupt 9 (including the several tables it 
uses) takes up about nine pages in the listing of the BIOS contained in the/BM 
Technical Reference manual. 

After deccxling the keystroke, interrupt 9 stores both the scan code and the 
ASCII code in a circular buffer located in the BIOS data area. The buffer is 16 
words (32 bytes) long and can hold 15 keystrokes (since each keystroke requires 
two bytes), which lets you type up to 15 characters ahead of what your program 
has pulled from the buffer. 

BIOS maintains four parameters in its own data area that pertain to the buff
er: the address of the buffer head, the address of the buffer tail, and the starting 
and ending addresses of the buffer itself. The tail is where the next character 
will be written to; the head is where the next character will be read from. The 
BIOS routines that handle a call to interrupt 9 place characters into the buffer. 
Entries are read when a program invokes interrupt 16H with the AH register set 
to zero. 

The buffer is empty when the address of the head is the same as that of its 
tail. It's full when the tail lags behind the head by only two bytes. If you type a 
character with the buffer full, a short beep warns you that the PC can't accept 
another character until one is read to make room. When interrupt 16H is re
quested to perform a read, it effectively deletes the entry after reading it by ad
ding two to the head address. When a character is inserted, the tail address is 
incremented by two so that the next entry won't overwrite the last. The tail and 
head wrap around to the start when the most recent advance causes one of them 
to overshoot the end of the buffer. Thus the tail forever chases the head but is 
never allowed to overtake it. 

The BIOS uses the starting and ending buffer addresses when it wraps the 
head or tail around to the beginning. But rather than being hardwired into the 
code, these values are maintained in a memory location where they can be al
tered by the user. Such a design allows the buffer to be modified. By changing 
the starting and ending addresses, a program can relocate the buffer to any free 
area of memory (including inside its own allocated area) and can make it as 
short or as long as it chooses. There are many utilities available that extend the 
buffer's 16-character capacity to something greater. That's useful if you want to 
type ahead when the computer is involved in another task (like compiling a 
program to disk) and, for the moment, can't take time out to process keystrokes. 

Programs can directly manipulate the keyboard buffer, but only with caution. 
Interrupts must be disabled so that one routine won't attempt to insert an entry 
at the same time that another routine is involved in modifying the head and tail 
addresses. Hardware interrupts like the one generated by the keyboard are fun
neled through a chip called the 8259 Programmable Interrupt Controller (PIC 
for short). The 8259 acts as a sort of secretary for the main microprocessor, 



186 PC Magazine DOS Power Tools 

screening its calls and holding those that come while another interrupt is being 
processed. A pending interrupt 9 is delayed until the current interrupt 9 routine 
fonnally ends the interrupt hold state by OUTing the value 20H to port 20H. 

If the keystroke is a "shift,, key (Ctrl, Alt, left and right Shift keys) or a toggle 
key (CapsLock, NumLock, and Scroll Lock), the interrupt 9 routine does not 
store the key in the buffer, but instead adjusts two other bytes in lower memory 
to reflect the current shift states. If the key you've pressed has no ASCII value 
(e.g., if it's a function key or a cursor key), the ASCII code stored in the buffer 
will be zero, and the scan code registered will either be an actual scan code (if 
the key was struck without shifts), or an extended key code. If the BIOS inter
rupt 9 routine detects a keystroke that is not defined, such as the number pad 5 
key when NumLock is off, it simply ignores it The two-byte keystroke code will 
stay in this buffer until some other program removes it. 

If you program in BASIC or another high-level language, you probably use 
statements such as INPUT or INKEY for reading the keyboard, without worry
ing much about how the program gets the actual keystrokes. Assembly language 
programmers, however, know about several ways to read the keyboard. The 
easiest way is to use one of the several DOS function calls for keyboard input 
that are documented in the IBM Technical Reference manual. 

When DOS receives a request to read the keyboard through one of the DOS 
function calls, it usually calls a routine in the CON device driver. (CON stands 
for "console," and refers to the keyboard and display.) The CON device driver is 
loaded automatically when DOS is booted. 

However, if you've executed a command on the DOS command level that 
uses redirection of standard input (to get input from a file, for example), DOS 
will not call a routine in CON, but will instead call a routine in the device driver 
that accesses your disk. Similarly, if you've executed the CTTY command to use 
a tenninal connected to a serial port as your console, DOS will instead call a 
routine in the AUX device driver. 

Under normal conditions, however, DOS calls the CON device driver, and the 
CON device driver calls the interrupt 16H routine in the ROM BIOS. The code 
for BIOS interrupt 16H is very short. Its main functions are to retrieve the 
keystroke from the buffer where it's been since interrupt 9H put it there, and to 
return it to the calling program. All the real work has already been done by inter
rupt 9H. 

The BIOS interrupt 16H returns two bytes, one for the ASCII code and one for 
the scan code. If the keystroke is a non-ASCII extended key, the ASCII code 
will be zero. For ASCII keys, the CON device driver simply ignores the scan 
code and returns the ASCII code to DOS, which then passes it on to the program 
that made the DOS call. For extended keys, the CON device driver returns a zero 
and saves the extended keyboard code. It returns the scan code when it is called 
a second time. So reading extended keys through DOS requires calling 
DOS twice. 



The Keys to the Kingdom 187 

Many large application programs, such as spreadsheets and processors, don't 
use DOS to read the keyboard; instead, they bypass DOS and use the BIOS inter
rupt 16h directly, for several reasons. 

For one thing, interrupt 16H can also return shift infonnation and DOS can
not Many large programs display shift infonnation on the screen; if they use the 
BIOS to get this infonnation, they might as well use the BIOS to get other 
keyboard information as well. Again, for reading function keys and cursor keys, 
using the BIOS is somewhat easier because it requires only one call instead 
of two. 

Again, some programs need to distinguish between the plus and minus keys 
on the top row of the keyboard and the plus and minus keys to the right of the 
cursor pad. Using DOS calls to get keyboard infonnation makes this distinction 
impossible, since the CON device driver returns the same ASCII plus and minus 
codes for both pairs of keys. The BIOS interrupt 16H, however, returns unique 
scan codes for these two sets of keys, so programs can treat them differently, if 
desired. 

Some programs use the keyboard on a more fundamental level, by redirecting 
the hardware keyboard interrupt (interrupt 9) and interpreting keystrokes them
selves. There are certainly some advantages to doing this. First, the program gets 
keyboard infonnation faster, since it doesn't have to keep checking if a 
keystroke has been typed. Second, as mentioned earlier, interrupt 9 ignores 
keystrokes that are not defined, so programs can use undefined keystrokes (such 
as Alt-Tab) for their own purposes. 

Some programs use their own interrupt 9 handlers to supplement the one in 
the BIOS, and just add their own decoded keystrokes to the nonnal buffer that 
the BIOS maintains. They can then read the keystrokes through interrupt 16H. 
Other programs take over interrupt 9 completely. 

Many pop-up resident programs intercept interrupt 9 and check each 
keystroke that you type. If your keystroke is anything but the special key that has 
been defined to trigger the pop-up, the program simply lets the regular BIOS in
terrupt 9 process the key. The keyboard hardware of the PC is quite amenable to 
this procedure, since a program can read a key through an input port ( 60H) 
without actually removing it from the hardware. This lets the interrupt 9 routine 
still process the key even though another program has already taken a look at it. 

There are several places where a resident program could insert itself, to 
change one key into another or to define a whole string of characters that are to 
be triggered by a single keystroke. The choice of where to insert the keyboard 
redefinition routine depends on what programs are to be affected by the 
redefined keys. For instance, with a high-level keyboard redefiner that works at 
the DOS level, programs that use the BIOS for getting keystrokes will not be af
fected by it. 

Indeed, the fact that many application programs bypass DOS can be an ad
vantage, since this lets you define function keys for use at the DOS command 



188 PC Magazine DOS Power Tools 

level without having to worry that they'll maintain those functions within an ap
plication program. For example, if you define FlO to be "DIR," you don't want it 
to replace the "Graph" function in Lotus 1-2-3. 

All DOS versions since 2.0 have included a replacement for CON that makes 
it easy to redefine the keyboard for programs that use DOS to obtain keyboard in
formation - the ANSI.SYS device driver. DOS uses the CON device driver to 
obtain keystrokes, and the CON device driver uses the BIOS interrupt 16H. The 
CON device driver is also used by DOS for console output, which is the video 
display. 

ANSI.SYS replaces the normal CON device driver with one that provides ex
tended screen and keyboard control. It implements a subset of American Nation
al Standards Institute (ANSI) document X3.64-1979, entitled American National 
Standard Additional Controls for Use with American National Standard Code 
for Information Interchange. The acronym ASCII is derived from this. Essential
ly, the X3.64-1979 standard defines the control sequences that allow programs to 
control a video display (e.g., position the cursor or set high intensity) in addition 
to just writing to it. 

Once you've loaded ANSI.SYS by including it in your CONFIG.SYS file, all 
you have to do to redefine a keystroke or create a keyboard macro is send an 
ANSI control sequence to the display through DOS. 

These ANSI redefinitions work on the DOS command level and within 
programs that use DOS for keyboard input (such as EDLIN and DEBUG), but 
they will not work in BASIC or in most large applications. Programs that are not 
affected by these redefined keys use BIOS rather than DOS to obtain keyboard 
input. If you tried turning your grey plus key into an Enter key by issuing the 
ANSI redefinition command, this will redefine both of your plus keys as Enter: 

ESC[43;13p 

(43 is the decimal ASCII code for the plus sign, 13 is the ASCII code for Enter, 
and ESC means the ESC character and not the actual letters E-S-C.) Moreover, it 
probably wouldn't work in a spreadsheet program where it would be of most use. 

But it's possible to create a dedicated program that will redefine the grey plus 
key as an Enter key. 

The NEWENT program intercepts interrupt 9, which is the hardware 
keyboard interrupt routine. It reads the keystroke from an input port and also 
checks the shift status states stored in lower memory. It converts the key only if 
NumLock is toggled, or if either the left or right Shift key is depressed. Like the 
number pad, NEWENT will not convert the key if NumLock is toggled and a 
Shift key is down. 

To create NEWENT.COM, type in the following NEWENT.SCR script file 
using a pure-ASCII word processor or EDLIN. Omit the semicolons and the 



The Keys to the Kingdom 189 

comments following them. Be sure to leave a blank line above RCX, and to 
press the Enter key at the end of each line, especially the last one with the Q: 

A JMP 
DW 
STI 
PUSH 
PUSH 
IN 
CMP 
JNZ 
MOV 
MOV 
MOV 
AND 
JZ 
CMP 
JZ 
CMP 
JA 
IN 
MOV 
OR 
OUT 
MOV 
OUT 
PUSH 
PUSH 
MOV 
MOV 
MOV 
ADD 
CMP 
JNZ 
MOV 
CMP 
JZ 
MOV 
MOV 
POP 
POP 
CLI 
MOV 

0164 
0,0 

AX 
DS 
AL,60 
AL,4E 
015D 
AX,0040 
DS,AX 
AL, [ 0017] 
AL,2F 
015D 
AL,20 
0123 
AL,03 
015D 
AL,61 
AH,AL 
AL,80 
61,AL 
AL,AH 
61,AL 
BX 
DI 
AX,lCOD 
BX, [001C] 
DI,BX 
BX,+02 
BX, [0082] 
0147 
BX, [ 0080] 
BX, [001A] 
0153 
[DI], AX 
[001C],BX 
DI 
BX 

AL,20 

; Jump to Initialize 

Read key 
Check if grey-plus 

Segment at 40H 
Get shift states 
Check if Num Lock 
or Upper Shifts 

Reset keyboard 

Set key to Enter 
Get buffer tail 

Increment 
See if wrap around 

If so, set to beg 
See if buff er full 

If not, save key 
And new pointer 

Re-enable interrupts 



190 PC Magazine DOS Power Tools 

OUT 20,AL 
POP DS 
POP AX 
IRET 
POP DS 
POP AX 
CS: 
JMP FAR [0102] 
MOV AX,3509 
INT 21 
MOV [0102], BX 
MOV [0104],ES 
MOV DX,0106 
MOV AX,2509 
INT 21 
MOV DX,0164 
INT 27 
RCX 
7E 
N NEWENT2.COM 
w 
Q 

Then enter: 

DEBUG < NEWENT.SCR 

and run the program by typing: 

NE WENT 

And exit 

Get Int. 9H address 

Set a new one 

Terminate and 
stay resident 

When NEWENT converts a key, it has to clear the keyboard I/O ports, store 
the key in the the keyboard buffer in lower memory, and re-enable interrupts. 
The only place this is documented is in the assembly language code for the 
BIOS interrupt 9H in any of the IBM Technical Reference manuals for the PC 
family. However you'll find some of the same code in any keyboard macro 
program and in many resident pop-up programs. 

If you're using an older version of DOS, there's even a third method to con
vert one key to another. PC-DOS 3.0 through 3.2 included several resident 
programs called KEYBUK.COM, KEYBGR.COM, KEYBFR.COM, 
KEYBIT.COM, KEYBSP.COM designed for foreign keyboards, that entirely 
replace the BIOS interrupt 9 keyboard handler. These were removed in version 
3.3 and turned into a master keyboard loading routine called KEYB. 



The Keys to the Kingdom 191 

The KEYBxx programs took over interrupt 9 completely and let you flip to 
the U.S. keyboard by typing Ctrl-Alt-Fl or to the foreign language version by 
typing Ctrl-Alt-F2. You can use DEBUG to peek inside these, look at the chart 
of key arrangements, and move the keys around. However, all three versions 
worked a bit differently. 

You can do other interesting things with this like replace a whole set of nor
mal keys with high-bit box and border characters and then toggle back and forth 
between the normal alphabet and the box drawing keys by typing Ctrl-Alt-Fl 
and Ctrl-Alt-F2. Or you could patch the keyboard mapping tables to switch back 
and forth between QWERTY and Dvorak layouts. 

-Charles Petzold and Jeff Prosise 



192 PC Magazine DOS Power Tools 

40:17 (one byte) 

BitO 
Bit 1 
Bit2 
Bit 3 

Right Shift pressed 
Left Shift pressed 
Ctrl pressed 
Alt pressed 

40:18 (one byte) 

BitO 
Bit 1 
Bit2 
Bit 3 

Left Ctrl pressed 
Left Alt pressed 
SysReq pressed 
Pause locked 

Bit4 
Bit5 
Bit6 
Bit 7 

Bit4 
Bit5 
Bit6 
Bit7 

ScrollLock locked 
NumLock locked 
CapsLock locked 
Insert locked 

ScrollLock pressed 
NumLock pressed 
CapsLock pressed 
Insert pressed 

40:1A (two bytes)- pointer to keyboard buffer head 
40:1C (two bytes)-pointer to keyboard buffer tail 
40:1E (32 bytes) - keyooard buffer 
40:80 (two bytes) pointer to keyboard buffer start offset 
40:82 (two bytes)- pointer to keyboard buffer end offset 

40:96 (one byte) 

Bit 0 Last code was E 1 hidden 
Bit 1 Last code was EO hidden 
Bit 2 Right Ctrl key pressed 
Bit 3 Right Alt key pressed 
Bit 4 101/102-key keyboard attached 
Bit 5 Force NumLock if read ID and KBX 
Bit 6 Last character was first ID character 
Bit 7 Read ID in progress 

40:97 (one byte) 

Bit 0 Keyboard LED state 
Bit 1 Keyboard LED state 
Bit 2 Keyboard LED state 
Bit 3 Reserved (0) 
Bit 4 Acknowledgment received 
Bit 5 Resend receive flag 
Bit 6 Mode indicator update 
Bit 7 Keyboard transmit error flag 

Figure 5.6. Important PC and PS/2 Keyboard BIOS Addresses 



Chapter6 

Chips and Memory 

Deep down, all people are pretty much alike. True, some have blue eyes and some have 
brown, some are well over six feet tall and others short and stumpy, and one may pick 
up the Unified Field Theory where Einstein left off while another becomes the nation's 
latest celebrity thrill killer. But their internal parts are basically similar. The same is true 
with PCs. 

The CPU-The Brains of the PC 

At the heart of every microcomputer is a microprocessor, a skinny sliver of purified 
crystaline silicon that has been doped - coated with impurities that give it electronic 
switching abilities -etched with a witch's brew of poisonous gasses, and then entombed 
in a small ceramic block. When people talk about "the chip" inside a PC they mean this 
one. It's often referred to as a CPU or central processing unit, although you never hear 
anyone say "hey, nice unit in that computer." 

The two most popular microcomputer CPUs these days are made by Intel and Motorola 
in "clean rooms" straight out of science fiction movies, where workers pad the halls wear
ing sneeze masks and special dust-free booties. (Chips are fast because they're so small 
and densely packed that signals can move from one place on them to another a few mil
lionths of an inch away in a few billionths of a second. The scale is so infinitesimal that 
a dust speck on a chip would be like an aircraft carrier in your bathtub.) The two biggest 
microcomputer companies are Apple and IBM. Apple switched from chips made by MOS 
Technology to the Motorola 68000 family of CPUs. IBM has stuck with the Intel 
8088/8086 line of chips from the beginning. 

What distinguishes a CPU from humbler chips is its ability to do arithmetic and logi
cal operations, decode special instructions, and issue appropriate controlling signals to 
other chips in the system. One typical instruction might store a character in the computer's 

193 



194 PC Magazine DOS Power Tools 

main memory, while another instruction will fetch the character back when needed. The 
CPU can communicate with the rest of the system through numbered ports. And it comes 
from the chip foundry with a tiny amount of memory aboard, located in places called 
registers. An 8088 CPU has a scant 14 registers, each capable of storing two bytes. A 
byte can hold any eight-bit binary address or a single character like an A or a 4. When 
two bytes are strung together, as they are in registers, they're called a word. Virtually 
everything your computer does is in one form or other shuttled in and out of those registers 
at incredible speeds. 

For their tiny size, registers are power-packed. They do things like store memory ad
dresses (the PC's 8088 registers can handle up to a million different ones), hold data, 
keep track of which instructions to execute next, and maintain status and control in
dicators called flags that report on the success or failure of previous instructions and can 
control how the CPU executes current and future ones. 

The CPU sits astride the computer's bus, a multilane highway of wires that carries 
data, controlling signals, and electrical power to all the major parts under the hood. The 
wider the bus the greater the amount of data a computer can move in a single operation. 
A PC or PC-XT has eight data lines, a PC-AT 16, and a high-end PS/2 a whopping 32. 
(The models 25 and 30 have a 16-bit data bus.) 

The original PC is classed as a 16-bit machine, since its 8088 CPU does indeed manipu
late information in 16-bit chunks - but only inside the CPU itself. When its CPU needs 
raw data to work on, or when it finishes processing some information and wants to store 
it back in memory, it has to break the data into eight-bit pieces so it can squeeze through 
the narrow eight-bit bus. A timer circuit commonly called the clock sends pulses down 
one of the bus lines several million times each second to keep everything synchronized. 
In a PC the timer ticks at4.77 megahertz (MHz). Since mega- means million and Hertz 
means cycles-per-second, that may seem pretty fast. Well, compared to a postal worker 
maybe, but these days 4.77 MHz is a real crawl. Current hardware runs at from two to 
five times the original PC's clock speed. 

A clock is like the big sweaty guy on a galley slave ship in a gladiator movie beating 
out the rowing tempo on a drum. The more energetic his drumming the faster the ship 
moves. However, no microcomputer actually performs calculations at anywhere near the 
clock rate. The PC, like virtually every other computer, is a Von Newnann machine 
(named after mathematician John Von Neumann who contributed to the design of early 
room-sized computers such as ENIAC). Von Neumann machines execute all instructions 
one ata time. Some state-of-the-art supercomputers, like those made by Cray, can process 
similar groups of instructions concurrently in what is called parallel processing. Every 
Von Neumann CPU wastes lots of time waiting for the current instruction to finish so it 
can trigger the next one. And instructions can hog lots of timer cycles. Even the PC's 
NOP (pronounced no-opp) instruction, a placeholder that is expressly there to do noth
ing except wait, takes three clock cycles to execute. 

(The clock in the PC is actually a special Intel chip that oscillates at 14.31818 MHz, 
or three times as fast as the often-quoted 4. 77 MHz clock speed. This is too fast for most 
circuits, so other timer chips inside the PC use every third or fourth or fifth of these ticks 
to slow down the pace for their own needs.) 



Chips and Memory 195 

Most CPUs are pretty capable at doing basic integer arithmetic (remember, they were 
first designed as calculator chips) but stumble over floating point operations, which re
quire juggling of decimal points and so take longer and demand more precision than 
working with whole numbers. Normally, when software has to work with decimal num
bers it uses relatively slow brute-force tricks, and can end up dragging its feet and round
ing off calculations crudely. 

When IBM first introduced the PC it left a large empty socket next to the CPU that it 
eventually filled with a numeric coprocessor chip called an 8087. This number-crunch
ing chip was designed to perform the complex calculations Intel's main 8088 and 8086 
CPUs couldn't handle efficiently. And it included special built-in circuitry to zip through 
things like trigonometric operations in the blink of an electronic eye. As Intel re-en
gineered its 8088/8086 into an 80286 and then an 80386, it made sure the companion 
math coprocessors (80287s and 80387s) kept pace. 

However, just sticking a math chip in the empty socket doesn't make every software 
application run faster. Some applications, such as word processors or data base managers, 
don't do much tricky math. And while some applications, such as CAD (computer aided 
design) packages, engineering programs, and spreadsheets, could run far faster by using 
such a number cruncher, unless the software includes special instructions to wake up the 
math chip and send data to it, the chip will just sit idly by. 

Computers can get things done one of two ways. They can actively and repeatedly go 
out and check whether something has happened yet, or they can lie back and wait for 
events to announce themselves. Continuously polling the hardware to see whether the 
user has hit a key, a disk drive has stopped spinning, or a printer is turned on is incredibly 
wasteful. Today's CPUs are interrupt-driven, somewhat like a hospital emergency room 
staff that's normally in low gear doing routine record keeping but can spring into action 
when necessary. And as in an emergency room, certain interrupts have priority over 
others. If a physician is adjusting one patient's bandage and the local rescue crew wheels 
in a sword swallower who tried shoplifting a chain saw, the focus of attention changes 
instantly. If your computer is leisurely printing out a document and you happen to start 
typing, its attention has to shift quickly or the keystrokes will be lost forever. 

When a computer detects an incoming interrupt, it parks or "pushes" critical informa
tion about what it was originally doing into a section of memory called a stack and at
tends to the interrupt. Then when the CPU is finished handling the interrupt, it retrieves 
or pops the critical information it temporarily stored so it can get back to what it was 
originally working on. And it can stack such information many levels deep, so that if a 
second, more urgent interrupt barges in, the CPU parks information about the first inter
rupt while it works on the second, and so on. 

This temporary storage device is called a stack because it resembles a box-shaped 
device in a cafeteria with a hole in the top for dishes and a spring at the bottom to push 
the dishes upward. Both the cafeteria and the computer stacks are designed so that only 
the top item on the stack is accessible; as you push each new item onto it, it presses all 
the items beneath it down one level each time. And when you remove an item from either 
stack, the one directly under it pops up and rises to the top. It's like a union seniority sys
tem when times are hard: LIFO - last in, first out. 



196 PC Magazine DOS Power Tools 

If you were very methodical and had just finished washing a pile of dishes with the 
letters of the alphabet painted on them, and you wanted to store them in the right order, 
you'd put dish labeled Z in the cafeteria storage device first. 

D 
Empty 

Dish Stacker 
(X-ray view) 

-z
DishZ 

-Y
DishY 

-x
DishX 

Dish Z would then be at the very top of the stack, since it was the only one in the stack. 

D 
Dish Stacker 

-Y
DishY 

-x
DishX 

Then, you'd put dish Y on top of dish Z. Dish Y would push dish Z down inside the 
storage box and then would become the top dish. 

1=~=1 L_J-
Dish Stacker 

-x
DishX 

Continue by putting dish X on top of dish Y, which then disappears down the stack along 
with dish Z. Only dish X is visible. 

-x-
-Y-
-z-

Dish Stacker 

To get to dish Z at this point, you'd have to first pop dish X off, and then pop off dish Y. 



Chips and Memory 197 

As any harried office worker knows, processing interrupts is a tricky business. You 
have to be able to respond quickly to genuine crises, ignore persistent but trivial ones, 
put all such interruptions in proper priority order, and make sure that everything is even
tually dispatched. To take pressure off the main CPU, IBM routed all interrupt requests 
through a chip cleverly named an Interrupt Controller. In the PC and PC-XT this chip 
can juggle as many as eight interrupts at once; by daisy-chaining two of these chips 
together, the PC-AT's designers were able to have it handle up to 15 simultaneously. 

Other semi-intelligent chips control other important aspects of operation, leaving the 
CPU free to chew its way through programs and data while leaving the actual dirty work 
to specialists. Instead of filtering every last byte of your data through its registers, the 
CPU knows how to delegate. Handling data on disks is painfully slow since the system 
has to make sure the disks are spinning at the proper rate, move a magnetic head to a 
directory table to figure out where the data is, wait for that area of the disk to come spin
ning around, move the heads to read it, and maybe even go back and repeat the process 
if the data is scattered over several locations (as it often is). Shuffling data around in 
memory is fast; there are no moving parts. 

One common CPU chore is to move large amounts of information from slow disks to 
fast memory and back. Passing it all through the CPU's skimpy registers would be 
ridiculously inefficient (as it was on the PCjr). The PC's DMA (direct memory access) 
controller can bypass this potential bottleneck; it's like an interstate beltway that skirts a 
city while the main highway chugs its way downtown. When IBM gave the PC-AT a 16-
bit data bus it had to stick in a second DMA controller to help it move data around in 16-
byte chunks. 

Other controller chips manage the disk drives, the keyboard, the video output, and 
some of the input and output. Fortunately, DOS - with the help of some gut-level BIOS 
(basic input/output software) programs built into the PC - takes care of all the messy 
details so you don't have to. 

RAM. 

Some chips, like the CPU and the DMA controller, contain small amounts of onboard 
memory for temporary storage. But all the garden-variety day-to-day storage and retrieval 
activities take place in the main system RAM. 

Every microcomputer comes with two kinds of memory, RAM and ROM. RAM 
originally stood for random access memory, but it really should be called RWM for 
read/write memory. ROM stands for read only memory, which is correct. RAM, ROM, 
and disks are all random-access storage devices since they let you jump directly to any 
point on them to store or look up information. You don't have to slog through storage 
areas 1 and 2 to get to storage area 3. But RAM and ROM chips have several important 
differences. ROM chips contain vital, permanently stored information put there by your 



198 PC Magazine DOS Power Tools 

computer manufacturer. Tum the power off and this infonnation remains intact You 
can't change, or "write" over this infonnation directly (although IBM provided a clever 
way to update it). But you can retrieve, or "read" it. That's why it's called read-only. 

When you tum your system on, programs stored on a ROM chip tell the hardware how 
to begin operating. After sniffing around to figure out what hardware happens to be 
hooked up to your system, a special program on a ROM chip tests your RAM to make 
sure it's working properly. In all but the earliest PCs, as it checks memory, this POST 
(Power On Self Test) diagnostic program displays the amount of RAM it has tested and 
approved. This is the slowly changing number you see in the upper lefthand comer of 
your screen when you start The POST tests memory by writing information into RAM 
and then reading it back and comparing it with the original infonnation to make sure 
RAM hasn't mangled it. You can read from both ROM and RAM. But you can write only 
to RAM. 

ROM never changes. The information on it always stays the same, whether the power 
is on or off. The only way to fix serious bugs on them is to yank them out and replace 
them with newer models. IBM's early PC ROM chips had several annoying deficiencies. 
One chip couldn't divide properly by 10, but that was corrected in a hurry. And the early 
PC RO Ms made it hard for users to stuff the maximum 640K of RAM into their systems, 
or to boot up from hard disks. 

We'll get to where all this memory is located a little later in this chapter. For now, 
think about memory as a concert hall, with several sections, and numbered seats in each 
section. ROM is all the way in the back of the hall. RAM hogs all the good seats, from 
the first row to about two-thirds of the way toward the rear. 

Each new version of DOS contains patches to some of the gut-level programs and 
tables delivered on ROM chips. These patches can't alter the ROM chips themselves. 
But when the PC starts up each day, it takes some of the permanent ROM information 
and copies it into "low" RAM memory - the first rows of theatre seats - and then goes 
to the copy of the information rather than the original ROM chip when it needs to look 
something up. (fhe million or so characters of memory in a PC are arranged in regions 
called segments that will be discussed soon; ROM data is stored in a distant Siberia far 
from the "lower" 640K of RAM where most of the computer's action takes place.) The 
patches provided with each new DOS version can and regularly do overwrite the older 
ROM information that's been copied into low memory. 

As you use your system, you write information into RAM. When RAM fills up, you 
have to erase unwanted information to make room for new data. And, when you turn your 
system off, all the information stored in RAM vanishes forever. Sometimes your local 
power company or a fellow employee turning on an air conditioner or heater that's 
plugged into the same outlet accidentally does this for you while you're working, so you 
have to be fanatical about taking the data stored in memory and copying it onto a more 
or less permanent storage medium like a disk frequently. 

RAM and ROM are both memory chips that store information. The important 
similarities and differences in storage devices are shown in Figure 6.1. 



Storage Devices 

Data already on it when you turn computer on 
Data remains on it when you tum computer off 
Can read information from it 
Can write information to it 
Can change the information on it 
Can handle information very quickly 

Figure 6.1. Characteristics of Storage Devices 

RAM 

No 
No 
Yes 
Yes 
Yes 
Yes 

Chips and Memory 199 

ROM Disks 

Yes Maybe 
Yes Yes 
Yes Yes 
No Yes 
No Yes 
Yes No 

Here's an easy way to remember the difference between memory chips. Let's say you 
walk into a classroom, and see an empty blackboard at one end of the room (RAM), and 
a bulletin board inside a glass display case at the other (ROM). 

The bulletin board may contain schedules, fire drill ccxles, and lists of telephone num
bers. The blackboard has nothing on it. You can write on the blackboard. But you can't 
write on the glass-covered bulletin board. You can read information from both. When 
you fill the blackboard, you have to erase some older information so you have room to 
write down the newer data. When class is over, you erase the blackboard, turn out the 
lights, and leave. The blackboard is again empty. But the bulletin board at the other end 
of the room still contains the information that was on it when you entered. And it will be 
there tomorrow. 

Blackboard Bulletin board 

1. D Backup your 
data often! 

2• ABCDEFGHUK 
abcdefghijk 

3. 1234567890K 
!@#$%A&•o_ 

Backup your 
data often! 

Backup your 
data often! 

When you start, the blackboard is empty. The bul
letin board already has information on it. 

You can write data on the blacklx>ard but not the bul
letin board. 

You can change information on the blackboard by 
writing new data over old data. 

4. D __ B_•c_k_u_p-yo_u_'_ When finished, you erase the data from the black-
data often! board, but not the bulletin board, which remains in-

tact 

RAM ROM 



200 PC Magazine DOS Power Tools 

All data stored in RAM vanishes when you tum the power off; such storage is volatile. 
Information on ROM chips remains intact when the power snaps off; this kind of storage 
is non-volatile. 

Parity Problems 

While there are eight bits in a byte, the PC's RAM normally handles small packages of 
information nine bits at a time rather than eight. The extra bit is called a parity bit and 
it's a crude way to insure the integrity of your data. One bit can make a whale of dif
ference. Here's why: 

To your CPU, the letter U is a just the decimal number 85. The binary representation 
of 85 is: 

01010101 

(If you skipped ahead to here, and you 're mystified by all those ls and Os, go back two 
chapters and read how binary numbers work. It's actually pretty simple.) 

Change just a single bit from one state to the other - say the fourth one over from the 
left - and the binary number becomes: 

01000101 

which translates to decimal 69, or the value of E. 
The problem is that one letter can make a big difference. If you write a computer let

ter to the newly crowned heavyweight boxing champ and the message comes out 
"chump" or "chimp" you'd better take a long and sudden vacation. And switched letters 
are bad enough. If you' re working on a spreadsheet and such an error changes an income 
projection of $7 ,000,000 to $237 ,000,000, you can really lose big. 

To help prevent such disasters, the PC initially adds up the number of ls in the binary 
representation of each byte and then adjusts the ninth bit to tell itself whether the num
ber of 1 s in the byte is even or odd. 

In the example above, the binary value of U was 01010101, which has four ls in it, 
while the binary value of E was 01000101, which has only three ls. As it moves each 
byte around the system, a PC continually looks at this ninth bit to make sure it accurate
ly reflects whether the number of ls in the byte is even or odd. If a single bit somehow 
gets switched around from 1 to 0, or from 0 to 1, the parity bit and the number of 1 s won't 
match any longer, and the system will generate a dreaded "Parity Check" error. 

Actually, the error isn't so bad, it's what the system does when it sees this error that's 
insidious. After displaying the message in the upper left corner of your screen, it just 
plain stops whatever it was in the process of doing and shuts down. At this point you're 
totally locked out of any data stored in RAM. The only thing you can do is turn the power 
off and start everything all over again. If you've been careful about saving your work to 
a disk every few minutes, all you lose are the few changes you made since the last disk 
save. If you haven't saved anything, you say "darn" and learn to save next time. 



ChipsandMemory 201 

The parity error may have occurred because a RAM chip failed- they do mysterious
ly break from time to time. Or a stray cosmic ray may have zapped the chip as it passed 
through you and the earth on its way to Neptune. Or a balky generator at your local power 
company may have burped out some fluctuation in the line voltage that got past your 
computer's power supply. If it was a bad chip you'll get the same message again after 
you reboot, and you either have to figure out which chip went south, yank it out, and 
replace it, or pay your dealer to do it. If a chip on your main system board - the one that 
the CPU is attached to - fails, the system will display PARITY CHECK 1. If it senses 
a broken chip on an add-in board it will display PARITY CHECK 2. While the PC-AT 
is a little less terse, if this happens to you, a cheerier message is not what you want or 
need. 

You'll know you have a bad chip if you reboot and see an error message beginning 
with a string of numbers followed by 201. The four hexadecimal digits that precede the 
201 can pinpoint the exact chip that failed. On a PC, the machine will boot and you'll get 
an instant PARITY CHECK message that overwrites the 201 numbers, so you have to 
look quickly. On an XT, the message is not overwritten. On the newer PS(l systems, IBM 
replaced the PARITY message with two numerical error codes: 

• 110 for PARITY CHECK 1 
• 111 for PARITY CHECK 2 

These are two numbers you won't want to see. 
What the PC really should do when it detects such an error is put the offending data 

onscreen (if it's still able to) with the message: "Error detected in this data. Should I con
tinue (Y /N)?" If the error was in the programming code that puts your software through 
its paces, or in a long list of numbers, you may want to quit and restart. But if all you see 
is the message: 

The bank robber's holdup note said "I have a gub." 

you can fix the error and continue without losing any work. 
What is particularly irritating about parity errors is every one out of nine (11.11 %) 

times such errors occur it's the result of the error-detecting mechanism and not incorrect 
data. All a parity error detector does is compare eight bits to one bit. If the chip with the 
one parity bit on it fails, your data - the other eight bits - may be perfectly fine, but 
the comparison test will indicate a problem and shut down your system. 

Parity-checking can prevent data integrity problems. But only some of them. If one bit 
gets changed in a byte, the system will ferret out the problem. But if two bits in a single 
byte change, the parity detection bit will accurately reflect the oddness or evenness of 
the nwnber of ls. If the original byte was U or 01010101, the number of ls is four, which 
is even. If you flip any two bits from I to 0 or from 0 to 1, you 'II still have an even num
ber of bits, although the new number won't represent a U anymore. 

ROM is not parity checked. Some clone makers let you flick a switch to disable RAM 
parity checking. And some portable computers don't check parity, since that lets the 
manufacturers put in fewer chips that consume less power, and power sipping is the name 



202 PC Magazine DOS Power Tools 

of the game with laptops. If you have the option of turning parity checking on or off, you 
should probably leave it on anyway. But in any case you should save your work to disk 
often. 

Larger computers that can't afford to stop dead in their tracks use a more sophisticated 
system called error correction. But this takes even more space, and incorporating error 
corrections into the PC would mean changing the underlying system architecture. And 
it's not perfect. The common error correcting scheme used today can fix one-bit errors, 
but it can only detect - not fix - errors of two or more bits in a single byte. All PCs 
will have error correction abilities someday, but they don't yet. 

Future microcomputers may also have static RAM. All but a few of today's PCs use 
dynami.c RAM that needs to be recharged or "refreshed" hundreds of times each second, 
which limits memory speeds. Static RAM doesn't need to be continually recharged, and 
is faster than dynamic RAM, but far more expensive. 

ROM-Free Programs 

When you buy a PC you get two sets of free programs. One set, called microcode, is per
manently hard-wired into the circuitry of the CPU and tells it (in the tersest, most in
scrutable machine code possible) how to operate. The other set comes on a few ROM 
chips and provides software routines that help the system function. Programs that are 
delivered on chips are in a netherworld somewhere between hardware and software. 
Hardware is the machinery itself. Software is the list of instructions that tell the hardware 
what to do. 

Your home phonograph, tape deck, or CD player is hardware. The records, disks, and 
tapes contain software. The general rule is if it has a wire coming out of it, it's hardware. 
If it doesn't do anything until you memorize a manual that sounds as if it was translated 
from a foreign language by a bored high school student, it's software. 

Programs (software) that come delivered on ROM chips (hardware) are called 
firmware. Firmware includes copyright information, tests, tables, error messages, and a 
toolkit of useful routines that display characters on the screen in the colors of your choice, 
read information from a disk or keyboard, or send a copy of what's on your screen to 
your printer. ROM chips on IBM computers also include a stripped down version of the 
BASIC language. 

Every piece of commercial software on the market uses at least some of these routines, 
by issuing what are called software interrupts. Software interrupts are different from the 
hardware interrupts mentioned earlier, which let the computer know you're pressing a 
key or that the printer just ran out of paper. And they're also different from the panicky 
interrupts triggered inside the CPU when something truly bizarre or unexpected happens 
like when something tries to divide by zero. 

All programs have to perform the same basic operations such as interpreting 
keystrokes, displaying characters on a screen, or reading information from disks. The 
routines on ROM chips handle the hard part. Some programs, in a mad quest for extra 
speed or control, bypass these routines and control the hardware directly. But most 
programs are content to use the toolkit IBM (and its copycat clone makers) provided. 



ChipsandMemory 203 

To see one of these routines in action, walk over to any IBM computer and turn the 
power on without putting a disk in the drive. If the computer doesn't have a hard disk, 
BASIC will appear onscreen. If it does have a hard disk, load BASIC by typing: 

BASIC 

and then pressing the Enter key. Then type the following line exactly as it appears: 

DEF SEG=61440:R=57435:CALL R 

Press the Enter key and your system will reboot. What this command does is use the 
BASIC language that comes on one IBM ROM chip to run a little firmware program on 
another ROM chip that restarts your system. 

The PC's 8088 CPU can keep track of, or address, slightly more than a million memory 
locations. Just about everything the CPU does use addresses in one form or another. It's 
either looking in one location to see what's there, parking data temporarily in another 
location so it can process other data, or running short programs that are kept at certain 
addresses. 

But a million is a big number, and it's sometimes easier to work with smaller num
bers. If you 're in New York City, which has a telephone area code of 212, and you have 
to call someone nearby, you want to be able to dial just the seven-digit phone number 
and not have to punch in a 1 and the extra three digits of the area code each time you 
make a local call. If most of your calls are indeed local, this saves time as well as wear 
and tear on the dialing finger. When you dial any seven digits (that don't start with a 1), 
the phone company assumes you're calling a number in the immediate vicinity. 

If you want to talk to someone in Seattle, you can add the extra area code numbers, 
and the phone company knows you're not placing a local call. 

The 8088 CPU addresses memory locations in a similar way. It divides the whole one
megabyte range of possible addresses into 16 regional sections called segments that are 
each 64K bytes long. 

The DEF SEG in the example that appeared earlier switches BASIC to one of these 
segments (in this case the very topmost one), which happens to be where IBM keeps track 
of the ROM chip routines that make up its main BIOS input/output toolkit. 

This kind of memory segmentation can be useful, since it can let programs use smaller 
numbers to keep track of important local addresses. Working with most smaller numbers 
is faster than struggling with bigger ones. But they can also be the bane of programmers, 
since the advantage in using smaller, local numbers applies only to whatever 64K seg
ment the programmer happens to be using at that time. Most programs these days are 
considerably larger than 64K, which means jumping repeatedly from one 64K segment 
to another. 

Remember, computers are built around chips that have a really limited perspective. 
The fundamental piece of information in any chip is a bit. And a bit can be in only one 
of two states, on or off. So a one-bit chip (if one existed) could theoretically keep track 
of only two possible locations, at address 0 or address 1. Not very useful. 



204 PC Magazine DOS Power Tools 

A two-bit chip - one with room for twice as many binary digits as a one-bit chip -
could theoretically keep track of 2"2 (2 x 2, or four) locations, at binary addresses: 

00 (decimal 0) 
01(decimal1) 
10 (decimal 2) 
11(decimal3) 
11 

two 
bits 

If you kept on adding bits to the addressing mechanism, you would double the num
ber oflocations each time. A three-bit system could handle 2"3 (2 x 2 x 2, or eight) loca
tions: 

000 (decimal 0) 
001 (decimal 1) 
010 (decimal 2) 
011(decimal3) 
100 (decimal 4) 
101 (decimal 5) 
110 (decimal 6) 
111 (decimal 7) 
111 

three 
bits 

A 16-bit chip like the 8088 can address only 2"16 (65,536) bytes directly. So 17 bits 
could address 2 x 65,536 (131,072) bytes; 18 bits 2 x 131,072 (262,144) bytes; 19 bits 2 
x 262,144 (524,288) bytes; and 20 bits 2 x 524,288 (1,048,576) bytes- the "megabyte" 
used as the standard measure of memory. 

Now hold on .... It says here that the PC can address one megabyte of memory. But 
the calculations above show that it would take 20 bits to address a full 1,048,576 bytes. 
The CPU inside the PC is a 16-bit 8088, and with 16 bits all you can address is 65,536 
bytes. How does a 16-bit CPU handle 20-bit addresses? 

Easy. Well, not exactly. It uses two addresses for each memory location, one for the 
segment itself and one for the offset into that segment If you use the concert hall metaphor 
mentioned earlier, the segment is the section and the offset is the seat. So you could have 
two seats numbered 27 - one in the orchestra and one in the balcony. Just as the full 
number of the seats might be something like 027 and B27, you can express the address 
of any byte in your PC as SEGMENT:OFFSET. 

In the DEF SEG statement, the number 61440 was the segment address. The other 
number, 57435, was the offset So: 



Chips and Memory 205 

DEF SEG=61440:R=57435:CALL R 

was the same as saying "look at the 57,435th byte in from the beginning of the segment 
that begins at address 61440 and run the program that starts there." 

If you think this sounds confusing, you're right Instead of having to wrestle with seg
mented addresses, programmers would much rather have had a chip that could do direct 
linear addressing, where each byte had an address from 0 to 1,048,576. If the PC had a 
linear addressing system, the BASIC program could have said "run the program at ad
dress 1,040,475." 

You may be scratching your head now and wondering two things. First, how did 61440 
and 57435 become 1,040,4 75? Second, do you really have to know all this? 

The answer to the second question is a qualified no. PC users should really never have 
to take the tops off their computers and fiddle with the boards inside. Their systems should 
figure out what equipment is attached and then configure all the important settings 
automatically. DOS should be smart enough to anticipate what the user wants to do next, 
and deal with the user in a far friendlier and more intelligent way. Software should be in
finitely flexible and understanding, and continually customize itself to the user's chang
ing needs and abilities. 

But we're still in the frontier of this business. We're pioneers (although at least we 
don't have to load programs from paper tape and read blinking lights to get our work 
done like the computer scouts who blazed the early trails in the 70s.) It's still the Wild 
West out there. Each new software company gallops onto the scene yelling "My stand
ard is better than your standard." The ensuing Darwinian gunfights weed out the real 
losers but wound a lot of bystanders like us in the process. 

You can have someone else set up and repair your system, and can struggle through 
your favorite software without ever knowing about memory segments. But the more you 
know about your system the better off you '11 be. Most users discover that the longer they 
spend at their systems the more proficient they get and the more they want to be able to 
do. If you know the basics you'll be able to adapt your system and get it to do far more 
things far faster and far more easily. And prevent disasters. 

Here's a specific example: Once a week like clockwork we get a panicky phone call 
from someone who inadvertently exited a word processor without ever having saved the 
file to disk. If the caller was using mainstream word processing software, and dido 't touch 
the computer after realizing what happened, it's usually fairly simple to look inside the 
user's RAM, find the file, and copy it from memory to a disk. 

A rescue job like this starts by having the DOS DEBUG.COM program search through 
memory for the first few words of the user's file. DEBUG is very good at this, but can 
search only one segment at a time. If you know how segments work, finding unsaved 
files is a snap. The "Ooops" sidebar at the end of this chapter will show you how. 

As mentioned earlier, the 14 registers inside the CPU are each two bytes long. A two
byte register can hold 16 bits, so the biggest number any of its registers can manipulate 
is 2"16, or 65,536. (If you want to use signed numbers that could be either positive or 
negative, the largest value would be 32,767 and the smallest-32,768. But take it from us, 
for the purposes of this book you don't want to.) 



206 PC Magazine DOS Power Tools 

"Since there are 16 64K memory segments," you might argue, "the CPU could have 
used a kind of shorthand and called the first segment 0, the second segment 1, the third 
2, and the last one 15. Then our BASIC reboot program could have been written DEF 
SEG=15:R=57435:CALL R." But that won't work. 

The reason is that while the addressable memory in a PC is indeed split into 16 seg
ments each 64K long for certain purposes, programmers need to divide available RAM 
into much finer slices than in such whopping chunks. 

Just about all programs use memory in several standard ways. Some RAM has to store 
the actual program instruction code itself - the part that "runs." Some is needed to store 
the data that the program creates or changes. A little is needed for the stack, a storage 
area that holds addresses and miscellaneous amounts of temporary information. And 
sometimes programs have to work with so much data that they need a little extra room 
for it. 

The 8088 CPU has four different segment registers to keep track of these four kinds 
of segments: 

• Code segment (CS) 
• Data segment (DS) 
• Stack segment (SS) 
• Extra segment (ES) 

Since registers control segment addresses, the maximum number of addresses can't be 
greater than the largest number a 16-bit register can hold-65,536, or 64K. In dealing 
with PCs you keep coming across that 64K number. 64K is the: 

• number of possible segment addresses 
• maximum number of bytes in a segment 
• number of port addresses the CPU can use for I/0 
• maximum size of a COM program 
• maximum size of a BAS (BASIC) program 

all because: 

• the 8088 is a 16-bit chip 
• each bit can be in two states (0 or 1) 
• so 2"16 = 65,536 (64K) 

But while the maximum size of each segment is 64K, the segments can (and do) overlap 
each other. And they can be far smaller than 64K. 

A stack segment can be fairly tiny. Unless you change it with a CLEAR command, for 
instance, the default size of the stack in BASIC is either 512 bytes or one-eighth of the 
available memory, whichever is smaller. If you 're not nesting lots of short routines, or 
trying to fill in or "paint" complex pictures (both of which need more than the usual 
amount of stack space so BASIC can interrupt operations and jump to other operations 



ChipsandMemory 207 

repeatedly and then get back to what it was doing) this 512 bytes will do just fine. If 
programmers had to lop off 64K for each segment, they'd end up wasting tons of space. 

If each segment had to be 64K, it could start at only one of 16 fixed places in memory. 
So to make things more flexible, the CPU lets programmers deals with any one of 65 ,536 
different segment addresses. The only restriction is that each segment has to start at the 
beginning of a paragraph. 

Paragraph? 
In computer parlance, a paragraph is simply a number that is evenly divisible by 16. 

The reason for this is that while the 8088 CPU can address 1,048,576 total bytes, its seg
ment registers can handle only 65,536 possible segment starting addresses. Divide 
1,048,576 by 65,536 and you get 16. You can have a segment start at the very first 
paragraph (0), or at paragraph 1, or at paragraph 65,535. But it can't start at paragraph 
1.5. 

It's sort of like talking about fingers. You like to deal with whole hands, not fractions 
like 1.5 hands. And just as each set of hands is made up of ten smaller parts (fingers), 
each paragraph is made up of hexadecimal 10 smaller parts (bytes). What is written as 
10 in hex notation is equal to 16 in our more familiar decimal system. 

The idea of paragraphs is familiar to anyone who has used DEBUG. If the lower 128 
ASCII characters were loaded into the very bottom part of your system's memory (and 
there's a good reason why they aren't, since other important things are kept there), and 
you used the DEBUG D command to display them, you'd see something like: 

0000:0000 00 01 02 03 04 05 06 07-08 09 OA OB OC OD OE OF 
0000:0010 10 11 12 13 14 15 16 17-18 19 lA lB lC lD lE lF 
0000:0020 20 21 22 23 24 25 26 27-28 29 2A 2B 2C 20 2E 2F 

0000:0030 30 31 32 33 34 35 36 37-38 39 3A 3B 3C 30 3E 3F 

0000:0040 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 40 4E 4F 

OOOO:OOSO SO 51 52 S3 S4 SS 56 S7-S8 S9 SA SB SC SD SE SF 

0000:0060 60 61 62 63 64 6S 66 67-68 69 6A 6B 6C 60 6E 6F 

0000:0070 70 71 72 73 74 7S 76 77-78 79 7A 7B 7C 7D 7E 7F 

1 
f individual 16-byte paragraphs 

offset 
segment 
address 

!"#$%&' ()*+,-./ 

0123456789:;<=>? 

@ABCDEFGHIJKLMNO 

PQRSTUVWXYZ[\]~_ 

'abcdefghijklmno 

pqrstuvwxyz{I }"'. 

+--ASCII-

Each horizontal line is one paragraph, and contains 16 bytes. The two groups of four
digit numbers on the left, separated by the colon, are the segment and offset addresses. 
(Each is only four digits long because DEBUG works exclusively in hexadecimal nota
tion and can cram any number from 0 to 65,536 into four hex digits.) The numbers in the 
middle are the hexadecimal representations of the bytes in each paragraph. DEBUG will 
display the actual characters each byte represents at the right side of its display, if the 
characters have ASCII values greater than 31 (lF in hex) and less than 127 (7F in hex). 
Otherwise it prints dots. 



208 PC Magazine DOS Power Tools 

The decimal number for the segment 61440 is actually FOOO in hex. And the decimal 
57435 offset is hex E05B. The conventional notation for memory addresses is SEG
MENT:OFFSET, so this address is really FOOO:E05B. 

To translate a two-part address like FOOO:E05B into a single linear or absolute address 
that actually points to the precise one byte in the PC's megabyte of memory that you 
want, just shift and add. 

In this case, shifting means bumping the number up by one decimal place, or order of 
magnitude. The decimal orders of magnitude start with 1, 10, 100, 1000, 10000; each 
time you add a zero. What you 're really doing is multiplying the previous number by 10, 
since we use a base-IO number system. 

Shifting over a digit in hex means multiplying by 16. The decimal equivalents of the 
first few hex orders of magnitude are 1, 16, 256, 4096, 65536. In hex, these are 1 H, 1 OH, 
lOOH, lOOOH, lOOOOH; multiplying by 16 is really multiplying by IOH. So first, multi
ply the segment address by 16 to shift it up a notch. This is simple; stick a 0 on the end 
of FOOO and you get FOOOO. Then add the offset to it: 

FOOOO 
+ E05B 

FE05B 

Hex FE05B is indeed equal to decimal 1,040,475. To check it, multiply decimal 61440 
by 16 and add 57435 to it. 

While only the four segment registers mentioned earlier can keep track of the segment, 
your system can calculate and juggle offsets in lots of different ways. Segment and of
fset registers deal with two-byte addresses. General purpose registers (called AX, BX, 
CX, and DX), which can be pressed into action to hold two-byte offsets, can also store 
single byte values. Because of this, the four general purpose registers are often divided 
in halves. If you looked inside AX and found it holding the value E05B, the "low" half 
of that two-byte pair (5B) would be in register AL (L =Low) and the "high" half (EO) in 
register AH (H =High). 

But- are you ready for this? - if you stored the offset address E05B in register AX, 
it would end up switched around, tail first, in the form 5B EO. Why? 

Don't peek inside your system and expect to see all addresses in the form FOOO:E05B. 
Most of the time programs establish the segment they're working in early on and then 
just specify offsets inside that segment - like dialing local phone numbers without the 
area codes. 

But if the segment you're using is FOOO, you'll never see it written that way. FOOO is 
really two bytes, FO and 00. A pair of bytes joined like this is called a word. Your PC 
uses a backwards (or "backwards") method for storing each of these, so FOOO is actual
ly stored OOFO. 

In the word FOOO (or any hex number bigger than a single byte), the most significant 
byte is the larger one (FO) and the least significant byte is the smaller one (00). The PC 
stores such two- byte addresses with the least significant byte first. It stores strings of let
ters such as error messages in the normal non-backwards way, however. 



Chips and Memory 209 

That's because the PC puts the upper half of the number higher in memory and the 
lower half lower in memory, which makes perfect sense. When you scan through 
memory, you generally start from near the bottom and move upward, which also makes 
sense, so you hit the low byte first. When you refer to the address of a word, you always 
mean where the word starts, and it starts at the lower half. 

To simplify things, say you 're storing the word FOOO at absolute memory address 1. 
The normal way to map out on paper how memory works is to put the very bottom part 
at the top of the page and work downward: 

Absolute addr~ 0 

Absolute addr~ 1 ---+ 

Absolute addr~ 2 

Absolute address 3 

Bottom of Memory 

00 

FO 

Toward the top of 
memory 

Lower 

Higher 

Confusing? At first It's especially diabolical when dealing with the 12-bit addresses 
that the PC-XT File Allocation Table (FA 1) uses to keep track of clusters. But for now, 
just remember that if you're using DEBUG to search for segment FOOO, you'll have to 
tell it to hunt for 00 FO. 

One more note about addresses - the same absolute address can be expressed in many 
different ways. This is sort of like saying you could express the decimal number 10 as (5 
+ 5) or (8 + 2). 

The very bottom of memory is at relative address 0000:0000, and absolute address 
00000. (The very top is FOOO:FFFF or FFFFF.) The absolute hex address one paragraph 
up from the bottom of memory (lOH bytes up in hex; 16 bytes up from the bottom in 
decimal) would be 00010. You could express this as 0000:0010. But you could just as 
easily write it as 0001:0000. All three refer to the same location in memory. 

To test this, use the shift-and-add technique mentioned earlier: 

forcxz:IO j 
+ OOIO_J 

00010 

for,1:0000] 

00010 
+ 0000 

00010 

Obviously, the higher up you go into memory the more ways you have of referring to 
paragraph addresses (sometimes called paragraph boundaries) using relative SEG
MENT:OFFSET notation. One is just as good as another in telling your CPU how to 
behave. 



210 PC Magazine DOS Power Tools 

Mapping the Meg 
But you can't get your hands on the whole megabyte of memory. IBM originally divided 
the available megabyte into 16 blocks, each one 64K long, and reserved some for ROM, 
and some for the displays, some for expansion room, which was used eventually by gut
level BIOS extension programs to handle things like hard disks that weren't offered 
originally. It left the remaining ten blocks, or 640K, for your programs. 

Well, almost 640K. DOS takes up a good chunk, and the amount grows with each 
release. BIOS needs a little, to store keystrokes when you type so fast the program you 're 
using can't soak them all up right away, and to keep track of things like whether the Ctrl 
key is being held down, how much memory is installed, the current video mode, the cur
rent time (expressed in clock ticks since midnight), how many lines can fit on your screen, 
or what equipment is supposedly installed in your system. 

Each PC maintains a sort of travel agency called the Interrupt Vector Table at the ab
solute bottom of memory. When something generates an interrupt, it checks this table to 
see where it should go for the routine that will do the actual work. This table is very 
popular; it's used by BIOS, DOS, the interrupt controller chip, the main CPU itself, and 
even the programs you may be running at the time. It's really just a list of up to 256 four
byte addresses, in SEGMENT:OFFSET form. 

When interrupt 0 ("Divide by Zero") needs to know where in the total megabyte to 
look for the special routine to deal with such an error, it checks the first four bytes (table 
entry #0) for the address or vector. When interrupt 1 (used by DEBUG) drops in, it checks 
the next four byte address (table entry# 1 ). When INT 2 (which is usually how interrupts 
are abbreviated) is involved, you have problems, because odds are that's a parity error 
lurching toward its fatal nonmaskable interrupt goodnight kiss. If you poke around in this 
table and replace an existing entry with the address of your own program, the table will 
send the respective interrupt to your program rather than the old one. 

The top segment of the megabyte is taken up by your system ROM, which needs this 
space to store the tests that are performed during the initial power-on diagnostic check 
to make sure things are working properly, and the gut-level BIOS routines that take care 
of the nitty-griUy details in controlling your drives, keyboard, clock, displays, printer, 
serial port, and memory. 

The middle BOOO segment was originally allocated for video. PC displays are memory
mapped, which means that each video memory address corresponds with a small but 
specific area of the screen. If you have a color system, running this program: 

100 DEF SEG=&HB800 
120 POKE 1,78 
130 POKE 0,1 
140 POKE 3999,100 
150 POKE 3998,2 

will put four values into memory at segment B800H that your CRT controller will tum 
instantly into characters and colors onscreen. This particular program will put a small 
yellow-on-red face in the upper lefthand comer of your screen and a red-on-yellow one 



Chips and Memory 211 

in the lower righthand comer. (If you 're using a monochrome screen, omit lines 120 and 
140, and change the cUIB800 in line 100 to cUIBOOO.) 

A rough map of the entire megabyte would look something like: 

Segment 

0000 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

AOOO 

Bottom of Memory 

--INT vector table 
--OOS BIOS low memory tables 

'- 640K user RAM area 

--COMMAND.COM transient part 
--Used by EGA Adapter 

BO 0 0 --Mono Display Adapter 
B800 --------------------------------- --CGA Display Adapter 
COOO --ROM extensions (e.g. PC-XT hard disk BIOS) 

DOOO 

EOOO 

FOOO 
F400 

1--------------1 --Page frame for Expanded Memory 
Manager 

1--------------1 --PC-AT system ROM 
--BASIC and PC system ROM ~---------------------------------· 

Top of Memory 



212 PC Magazine DOS Power Tools 

The lower 640K (segments 0000 through 9000) can get pretty crowded. Users com
monly wedge in the Interrupt Vector Table, the low-memory BIOS control area, the up
dated IBMBIO.COM and IBMDOS.COM system file patches and services (or their 
generic Microsoft equivalents), the guts-level DOS kernel (which manages system func
tions such as file and memory management), any device drivers (such as MOUSE.SYS 
or ANSI.SYS), disk buffers, stacks, environment and file control blocks, the resident slice 
ofCOMMAND.COM(thepartthatprintsthefriendly"Abort,Retry,Ignore,Fail?"mes
sage when your drive door is open), and the transient slice (the part that's responsible for 
the friendly A> prompt and that parses and executes your commands), as well as any 
commercial programs that are currently running or are resident but inactive (such as Side
Kick), the stack and data for these programs, and any DOS TSRs (Terminate-and-Stay
Resident programs) such as MODE and PRINT that lurk in the background. 

When IBM frrst introduced the PC, it left several gaps in the megabyte. The first was 
at segment AOOO, the one directly after the 640K of user memory. Since the next hunk 
of RAM real estate wasn't officially claimed until segment BOOO or B800, this left 64 K 
of prime memory for the taking. Users quickly figured out that they could set the tiny 
and inaccessible DIP switches (which supposedly stands for "dual in-line package 
switches" but really means "damned invisible plastic" since they're so hard to see) to 

turn 640K into 704 K or even more. 
The next 64K memory block after AOOO was for extended video displays, among other 

things. IBM's common monochrome adapter locked up the first available address in this 
block, BOOO. But CG As (color/graphics adapters) used a starting address halfway up the 
block, at B800. This meant that enterprising memory hounds could squeeze out the ad
ditional 32K between BOOO and B800 and use it above the extra 64 K they already swiped 
atAOOO. 

The settings on block 2 of PC and PC-XT dip switch blocks to do this were: 

Switch 704K 736K 

I ON OFF 
2 ON ON 
3 OFF OFF 
4 ON ON 
5 OFF OFF 
6 OFF OFF 
7 OFF OFF 
8 OFF OFF 



Chips and Memory 213 

Users who had IBM's original ROM chip set found it wouldn't recognize more than 
544, but IBM sold a replacement part up until the middle of 1987. And memory hungry 
users had to purchase expansion RAM boards sophisticated enough to let them set the 
addresses of such additional RAM to AOOO and BOOO, so it wouldn't conflict with exist
ing memory, and so that DOS could find it. This undocumented memory enlarger worked 
fine for a few years. The POST memory diagnostic routine would examine this addition
al user memory, and the DOS CHKDSK.COM utility would report it. 

But a new generation of IBM displays created a new problem. IBM's outdated CGA 
was, in a word, pathetic. It produced an image so grainy you thought you were looking 
at it through a screen door. 

Display adapters draw letters and numbers out of dot patterns in a grid called a charac
ter box. The monochrome adapter's relatively detailed character box measures 9 dots x 
14 dots. However, this really works out to 7 x 11 since the leftmost and rightmost columns 
and the top two rows and bottom row are blank, and serve as character separators to 
keep nearby letters from touching. And the bottom two rows are reserved for descenders 
on characters such as q, y, j, g, and p. 

The CGA character box is a crude 8 x 8. The only character separators are the rightmost 
column and the bottom row, so this produces 7 x 7 dot characters. However, the bottom 
row also doubles as space for descenders, so the lower parts of letters such as q and y ac
tually touch the tops of tall letters below them. 

Worse, the CGA adapter didn't have enough memory on it, so that each time it scrolled 
up one line the entire display would go dead and tum black for a fraction of a second and 
then flash back into life. Repeated scrolling meant an extremely disturbing flicker. And 
to top it off, while the memory on the monochrome adapter was dual ported so you could 
write data to it at the same time you were reading other data from it without disturbing 
the onscreen image, trying this on a monitor attached to a CGA card produced a jarring 
burst of visible static called "snow." The monochrome adapter put a total of 720 x 350 
dots onscreen (and came with a long-persistence phosphor that removed any hint of flick
er, and blurred the last traces of dots into what looked like solid lines), while all the CGA 
could muster was 640 x 200. And the mono adapter could form characters faster and 
pump data onto the screen faster. IBM really seemed to have designed the CGA to hook 
up to television sets. As proof, its CGA characters were all constructed of double-dot pat
terns to overcome the inherent fuzziness and imprecision of home TVs. Users could 
change jumper J3 on the CGA itself so that it would produce slightly sharper single-dot 
characters in a 5 x 7 grid. But to do this you had to rip open your system, pull out the 
board, and solder in a wire! Would you? 

IBM wasn't interested in color back then, and still makes life hard for users of color 
systems. The CLS clear screen command still resets any existing colors to grey on black, 
unless the user happens to have ANSI.SYS loaded and properly configured, and ANSI 
can be a pain in the neck, since not all software can handle it. 

However, when IBM introduced the PC-AT it realized it had to upgrade the color dis
play, and eventually introduced an interim color (and monochrome) system called the 
EGA. Chapter 13 covers the EGA, and provides a fat arsenal of color tools. 



214 PC Magazine DOS Power Tools 

The EGA devoured memory, and claimed the block at AOOO for its high-resolution 
graphics modes, which conflicted with users who had reset their system switches to push 
RAM past 640K. 

The Official Way to Expand Memory 

IBM's very first PC came standard with a tiny 16K of RAM, on 16K memory chips. One 
reason DOS was so scrawny back then is that it had to squeeze inside this small scrap of 
RAM. If you were really adventurous you could expand it all the way up to 64K, but all 
that extra memory wasn't cheap back then. 

Several years later IBM started putting 64K RAM chips on its system board, and just 
about everyone bought multifunction/memory expansion cards and shoved the full com
plement of 640K into their machines. Eventually IBM would move to 256K and one 
megabyte chips and let users play with eight megs or more. 

But users quickly found 640K wasn't enough. 
First, programmers who had written very tight, compact assembly language applica

tions software soon found that they could crank out programs faster, and maintain them 
more easily, if they wrote them in a compiled language that ended up taking more disk 
space. And programs began getting feature-crazy, so that software vendors could crow 
about how their packages offered fancy but useless chrome strips and tailfins that 
competitor's products didn't. 

Second, users began creating larger data files. Instead of keeping separate yearly 
spreadsheets on company performance, for instance, they found they could combine the 
last five years into one massive whopper. 

Finally, users discovered memory-resident, or TSR, programs. You'd load these into 
memory and they'd sit idly in the background waiting to spring into the foreground. TSR 
(Terminate-and-Stay-Resident) programs like these turned out to be so useful and popular 
that many users couldn't get any work done unless three or four of them were stuffed into 
RAM. 

SideKick, the granddaddy of them all, provided a pop-up calculator, ASCII table, clip
board/notepad, dialer, and calendar. Others let you create keyboard macros, so that one 
or two keystrokes could trigger hundreds more and pare repetitive tasks down to size; or 
would kick your modem into action periodically to download your electronic mail; or 
back up your hard disk onto a tape drive every night at 5:00. 

All PCs shared three space problems. You couldn't run programs that were larger than 
640K, and even that figure was low, since you also had to take into account the overhead 
required by DOS and BIOS. You couldn't put more than 640K of data into memory, and 
again, you had to leave space for DOS, BIOS, and at least part of your program. And you 
couldn't have DOS handle individual hard disks that were larger than 32 megabytes. 

Lotus Development Corporation, the makers of 1-2-3, finally got tired of listening to 
their customers scream that they couldn't create enormous spreadsheets. So together with 
chip-maker Intel, they developed a variation of an old "bank switching" technique and 
named it the Expanded Memory Specification 3.0. Later, they twisted Microsoft's arm 



Chips and Memory 215 

to endorse a 3.2 mutation of it and called the result the Lotus/Intel/Microsoft (LIM) Ex
panded Memory Specification 3.2, or "LIM spec memory" for short. 

Shortly afterward, board manufacturer AST enlisted two other industry heavyweights, 
Quadram and Ashton-Tate, and published a much more flexible EMS version they called 
EEMS (Enhanced EMS). EEMS was a superset of EMS, which caused problems since 
software designed for EMS boards would run on EEMS hardware but it wouldn't always 
work the other way around. Both gave users up to eight megabytes of additional memory, 
although various headaches with drivers and multiple memory boards prevented the spec 
from being exploited fully. 

The Lotus/Intel/Microsoft trio then enhanced some of AST' s ideas and added a few 
of their own and announced an improved version called LIM 4.0. This new LIM spec 
quadrupled the potential amount of expanded memory in a system from eight megs to 
32, gave developers a whole new set of programming tools, and added better support for 
multitasking and program execution in high memory. This solved the "large data" 
problem temporarily. It didn't solve the "large program" problem. Recent operating sys
tems such as OS/2 and hot chips like the 80386 make short work out of memory problems. 
And both Microsoft and IBM have tricks up their sleeves as larger hard disks become 
common. Compaq was first to smash the 32 meg hard disk barrier with DOS 3.31, al
though other vendors had done it in a wasteful way by increasing sector size past 512 
bytes. 

The original LIM bank switcher used expanded memory that wasn't a part of the PC's 
addressable one megabyte. Just add a bank-switching memory expansion board to your 
system, tell your CONFIG .SYS bootup configuration file about a program called an Ex
panded Memory Manager (EMM), and any LIM-aware software could toss enormous 
data files around in RAM with abandon. 

The trick was to grab (or ma.p) one unused 64 K segment near the top of the PC's ad
dressable megabyte of RAM and use it as a narrow doorway into the far greater amount 
of memory on the bank switching card itself. This doorway was called a page frame and 
contained four smaller 16K sections called windows. 

While the original spec demanded one contiguous 64 K chunk of RAM, later enhance
ments eased the requirements slightly, and made the mapping process far more accom
modating. 

When a program like 1-2-3 needed more space in RAM for a growing spreadsheet, it 
could put information into expanded memory, and retrieve it later, by shuttling it up and 
back 16K at a time through one of the windows. The EMM had to be smart enough to 
know when 1-2-3 needed something that wasn't currently in one of these little windows, 
and shuffle things around to snag it and bring it down to the page frame. 

Expanded memory is like a research department in a small office using a bank of four 
elevators connected to a vast warehouse of archives. Whenever they need a single docu
ment from the warehouse, they can send the elevator up to retrieve it. But if they want 
several hundred volumes, they're going to have to use all the elevators and make several 
trips. The elevators are all one size, which makes it wasteful to get just one scrap of paper, 
and slow to retrieve large amounts of data. Since the warehouse manager doesn't want 
his precious data to get lost, and since there isn't much room to spare in the research 



216 PC Magazine DOS Power Tools 

department office, when the researchers want something new they have to send some of 
the older stuff back. 

Expanded vs. Extended 

Who names these things? Few enough users really understand what's going on under 
their hoods anyway, and you'd think the folks who invent all this stuff would go out of 
their way to make it clear and unconfusing. Then again, these are the same people who 
created a multibillion dollar industry based around a computer system so hostile to 
novices that if brand new users somehow manage to get their systems hooked up proper
ly and figure out which one of eight possible ways to insert their DOS floppy disks is 
right, their reward is a black screen with nothing on it but an A> in the comer. 

Some rascals decided to call bank-switched RAM expanded memory, while calling the 
special kind of RAM available in 80286 and 80386 machines (like the PC-AT and most 
PS/2s) extended memory. These even sound the same if you say them both fast enough. 

Working on one of today's hot chips in a normal everyday one-megabyte configura
tion with 640K or less of usable RAM is called running in real mode. However, you can 
tweak chips like the 80286 to run in a special, enhanced state called protected mode. A 
protected mode system lets users directly address more than one megabyte of memory, 
and lets them multitask, or run several programs simultaneously. 

Previous attempts at multitasking ran into lots of trouble. The usual bugaboo was that 
if three programs were churning through their paces at the same time and one crashed, 
the whole house of cards would tumble down. That's bad enough in real mode when one 
program with one set of data crashes and bums; it's downright evil when a crashed mul
titasking system does two or three times the normal damage. Protected mode protects the 
user from this nightmare - when one program crashes, the others keeping humming 
blithely away. 

When people mention the bit-size of a computer, they're really talking about the 
microprocessor register size used for storing data within the CPU. (However, if they men
tion two numbers, the second one is the width of the bus.) The register size was eight bits 
(one byte) for the ancient generation of 8080 and Z-80 chips popular before the PC was 
introduced; 16 bits (one word) for the 8088, 8086 chips, and 80286, which are used in 
the PC, AT, and some of the PS/2 systems; and 32 bits (a long word or double word) for 
the 80386. These chips can often divide larger registers into several smaller ones. 

The CPU includes an arithmetic logic unit (ALU) that can do addition and subtrac
tion, logical ANDs and ORs, bit shifts, and negation on the data in the registers. To be 
efficient, the ALU has to operate on whole registers at once. Microprocessors also 
generate addresses to access data from memory, and perform arithmetic operations on 
these addresses. Ideally, the microprocessor should use the same ALU to operate on both 
data and addresses. 

The early eight-bit 8080 chip would have been simpler if it had used only eight bits 
for addressing. But this would have limited its addressing abilities to just 256 bytes (2"8). 
Instead, the 8080 forms addresses by sticking two bytes together. This chip has minimal 
16-bit arithmetic capabilities. 



Chips and Memory 217 

Both the 8086 and 8088 CPUs handle data internally in 16-bit chunks, although the 
8088 used in the PC and XT accesses memory externally only eight bits at a time. The 
easiest way for the designers of the PC to handle memory addresses would have been to 
limit the machine to 64K (2A 16) so the CPU could address everything directly. But 64K 
is just too small. Instead, they had the CPU in the PC and XT calculate physical address
es by adding a 16-bit offset register to a 16-bit segment register that has been shifted to 
the left four bits. The result is a 20-bit address that can access one megabyte. But the chip 
is really only working with 16 its for both data and address. 

With the advent of the 80286 chip things got even more complex. In real mode, the 
80286 works the same as the 8086 and 8088. In protected mode, however, the segment 
registers are selectors for accessing a 24-bit base address from memory. The chip then 
adds this to the 16-bit offset address. This yields a 24-bit address that can handle 16 
megabytes of memory. 

The 80386 is a full-fledged 32-bit microprocessor. It stores data in 32-bit registers and 
can do full 32-bit arithmetic. It uses a 32-bitaddress that can directly access four gigabytes 
(four billion bytes) of memory. Like the 80286 in protected mode, the 80386 uses a selec
tor to reference a base address that it adds to an offset address, but the base address and 
offset address are both 32 bits. The only time the 80386 uses 64 bits is when doing double 
word multiplication and division. 

The 80286 chip at the heart of the PC-AT can theoretically address 16 megabytes of 
RAM directly. Anything past the normal one megabyte is extended. The PC-AT' s design
ers figured that three megabytes would be enough, but recent developments have given 
power users several times that amount. Still, there really aren't very many programs that 
can take advantage of this extended RAM. The most common is the OOS 3.x VDISK 
RAM disk. 

Because of significant differences between real mode and protected mode, current ver
sions of OOS and most application programs cannot use this additional 15 megabytes of 
extended memory. Getting access to it requires OS/2 or one of the many protected mode 
operating systems trying to compete with it. 

Lots of clones these days brag about how they come straight from the factory with a 
megabyte of RAM while IBM's machines sport a relatively meager 512K or 640K. What 
they don't explain is that this additional 384K can't be addressed directly. In fact, about 
all you can do with the excess RAM is make a large RAMdisk out of it, which isn't such 
a bad idea. 

RAMdisks are nothing more than areas of memory that your system treats just like 
physical disk drives. You don't have to format them, and at least with the VDISK ver
sion supplied by IBM, you can't use the DISKCOPY or DISKCOMP utilities with them 
(although you can ·do this with RAMdisk software supplied by other manufacturers such 
as AST). RAMdisks are extremely fast, since they have none of the arms and motors and 
other moving parts that slow down mechanical disk drives. But they're volatile, so that 
you have to take any information temporarily stored on a RAMdisk and copy it to a flop
py or hard disk before you tum your system off or you'll lose it all. 

You can use this kind of extra clone memory for a RAMdisk by making sure the OOS 
3.x VDISK.SYS device driver is on your disk in a subdirectory called \DOS. Then put 
this line in yourCONFIG.SYS file: 



218 PC Magazine DOS Power Tools 

DEVICE=\DOS\VDISK.SYS 384 /E 

The VDISK driver uses a BIOS call that temporarily switches to protected mode, access
es the extended memory, and then switches back to real mode. 

To make things even more confusing, vendors eventually introduced products to use 
extended memory that emulated LIM expanded memory. Clear? 

Memory and the Bus 
One last note about chips and memory: The PC used a 16-bit chip but an eight-bit bus. 
The PC-AT came with an interim 16-bit chip that used 16-bit bus (Intel later revealed 
that it was sort of a mistake and that the 80386 was really the chip the 80286 should have 
been). The new top-level generation of PS/2s use a 32-bit chip and a 32-bit bus. 

One of the big speed advantages of the PC-AT was that it could move memory around 
on the bus twice as efficiently as the PC. New 16-bit memory boards came with a small 
stub that fits into a special plug on the system board to handle the extra data lines. And 
users who upgraded from PCs to PC-ATs thought that they'd have to throw their old 
memory boards away when they switched. Well, it turns out that they didn't have to. But 
maybe they should have. 

The PC and XT expansion board bus connectors carry 62 signals including the 20 ad
dress lines (which allow the 8088 microprocessor to access one megabyte of memory) 
and eight bidirectional data lines. The PC-AT has eight expansion board slots. Six of 
these have a second bus connector with 36 signals, including four additional address lines 
(for the total 16-megabyte memory space) and eight more bidirectional data lines, be
cause the 80286 accesses data in words rather than bytes. 

The 62-signal connector on the PC-AT is highly compatible with that on the PC and 
XT. The two PC-AT expansion board slots that have only the old 62-signal connector 
are designed for older boards with byte-accessible memory and I/O. Existing video cards 
work in these slots, for instance. However, the 62-signal connectors on the other six slots 
are wired exactly the same as these two. Here's the catch: The 36-signal bus connector 
on the PC-AT has two signals called "MEM CS16" and "I/O CS16." These signals must 
be generated by any AT board that can handle 16-bit memory or J/O transfers. If these 
signals are not present - and they won't be if the board doesn't use this second connec
tor - the AT will access memory (or J/0) with eight-bit transfers. 

This means the PC-AT can indeed handle old memory boards. But users will notice a 
significant speed penalty for programs that run in this memory space or use data in it It's 
just not worthwhile to spend the money for a PC-AT and then slow it down by inhibit
ing 16-bit memory transfers, which is one of the major speed advantages of the 80286 
over the 8088. 

---"-"'--••rn•••••••- ---



Chips and Memory 219 

Resurrecting "Lost" Files from RAM 

It happens to everyone. It's well after midnight and you're typing furiously to 
meet a critical deadline. The muscles in your back stopped throbbing hours ago 
and have now tied themselves into an icy clove hitch. Your fingertips are flat
tened and numb, and you're so bleary-eyed you can't tell whether you're staring 
at a color or a mono screen. 

Then your system starts making a dry wheezing sound and you realize you 
had better save your last few hours of work to disk, so you punch in a series of 
commands. One of three things happens: 

• You entered the command properly and your system copied the file safely 
from RAM to a more permanent storage medium. 

• You entered the command properly but your disk was nearly full and your 
word processor became angry at you for trying such a pinheaded move and 
decided to quit and drop you out of the program and back into DOS without 
saving anything. 

• You entered some thick-fingered command from out of the Twilight Zone that 
your software interpreted as "quit without saving" and happily obliged, leav
ing you at the DOS prompt with a funny expression on your face. 

If either of the latter two scenarios ever spoiled an evening for you, you probab
ly thought that all your work was forever lost. But unless you were using some 
oddball word processor with a proprietary non-ASCII format, you could have 
saved most or all of your file. The most important rule if this ever happens is 
don't turn your system off or run any other programs. Then follow the instruc
tions below. 

Word processors generally keep a large dollop of your file in RAM, and spill 
or move parts of it to disk when RAM fills up. These temporary spill files usual
ly have extensions like$$$ or TMP, and your word processor combines, 
renames, erases, and cleans up such files when you tell it to save things and quit. 
(Temporary files are sometimes "hidden" from normal directory searches, and 
since they vanish when you exit, you don't normally see them.) But while ap
plications erase temporary disk files when you exit, they don't usually get rid of 
the parts of your file they keep in memory. 

So if you ever find yourself staring at a DOS prompt with an unsaved file 
floating around somewhere in the electronic ether, don't panic. It's fairly simple 
to retrieve most of the file from memory, and the rest of it from hidden or erased 
$$$ files on your disk. 

Here's how: Open your desk drawer and take out your emergency file resus
citation kit, which consists of: 



220 PC Magazine DOS Power Tools 

• A copy of your DOS disk with DEBUG.COM on it 
• Two blank, fonnatted disks 
• The Norton Utilities (or equivalent) 
• A pencil and pad of paper 

Your first and most important job is to rescue your file from memory. Once 
that's done you can begin looking for other parts of it that may be scattered 
across your disk. Again, if you ever do find yourself unexpectedly back in DOS 
without having saved your file to disk, be absolutely sure you do not run any 
other programs, or turn your system off. 

This example assumes you save your files periodically, and that you don't 
have some enonnous unsaved whopper file sprawling across several memory 
segments. The process isn't really difficult, but it can be tricky enough to some
one who has never seen a hex number or used DEBUG. If your file does extend 
across two or more segments, the process gets a lot more complicated. 

It is convenient here to slice up the PC's one megabyte (1,048,576 bytes) of 
RAM into 16 segments, each 64K (65,536 bytes) long. You can nonnally ad
dress only the lower ten 64K segments (for a total of 640K). The other six are 
for ROM programs, video displays, hard disk interfaces, network connections, 
and other special functions provided by your system. A map of these ten seg
ments of "user memory" would look like this: 

RAM SEGMENT 
l ADDRESS 

+=======+·0000 - start of lowest segment; bottom of RAM 
+=======+· 1000 
+=======+-2000 
+=======+-3000 -
+=======+-4000 
+=======+-5000 
+=======+-6000 
+=======+· 7000 
+=======+-8000 

your "lost" or unsaved file is probably some
where in here 

+=======+-9000 -
+=======+ 

+=======+·FOOO 
+=======+ 

- top of user memory; all memory segments past 
here are used by the system, not the user's 
programs 

- top of the highest segment; top of RAM 

Follow these instructions carefully: 

I. If DEBUG.COM is on your hard disk, just type DEBUG. If it's not, stick 
the floppy with DEBUG.COM on it in drive A:, type DEBUG, and press the 



Chips and Memory 221 

Enter key. In either case all you 'II see is the DEBUG prompt, which is just a 
hyphen at the left edge of your screen. (Note: type in the following DEBUG in
structions exactly as they appear, carefully substituting the addresses that apply 
to your system for the ones used in the examples. Using the S (Search) and D 
(Dump) commands can't really do any damage, but other DEBUG commands 
can. If you're careful, you'll be fine. But don't start playing indiscriminately 
with DEBUG tools like E (Enter) or M (Move) unless you know what you're 
doing. Also note that you can enter DEBUG commands in uppercase or lower
case, although all the examples here will be in uppercase to avoid confusion be
tween characters like l and 1.) 

2. Think hard and try to remember a keyword near the very beginning of 
your file. If you were writing a report on Yamigazi Industries, the word 
"Y amigazi" will do just fine. If it's on platinum futures, use "platinum." Pick a 
word that's distinctive and not too short. Chop off the last letter, since some 
word processors modify final letters slightly. (This would leave you with 
Yamigaz and platinu.) 

3. Give DEBUG the command to search for this word, memory segment by 
memory segment. DEBUG will search every nook and cranny of each 64K seg
ment (and help you extract the file when you find it), but it can't handle more 
than one segment at a time. For the purposes of this example, use the word 
"platinu" (remember, without the final letter, and in lowercase unless you're 
sure all references to the word were in uppercase). And start at the top of your 
640K workspace and work downward; the order doesn't really matter so long as 
you try every segment. Type in everything below except the hyphen: 

-s 9000:0 LFFFF "platinu" 

and then hit the Enter key. (Obviously, substitute the particular word you want 
to find in place of "platinu" in the example above.) What this command says is 
"search through memory starting at the beginning of segment 9000, and continu
ing for 65,535 (hex FFFF) bytes, and report the address each time it finds the let
ters 'platinu."' 

DEBUG will zip all the way through segment 9000 searching for this exact 
string of letters. If it finds the string it will print one or more eight-digit hex num
bers with a colons in the middle, something like this: 

9000:2F3D 
9000:301E 
9000:317F 

These hex numbers would represent the addresses in memory segment 9000 of 
any occurrences of the letters "platinu." DEBUG may print one of these num-



222 PC Magazine DOS Power Tools 

bers or a whole list of them. Or it may print nothing except another hyphen. If it 
prints one or more of these hex numbers, go to step 5. If it doesn't print anything 
except another hyphen, it didn't find anything, so you have to tell it to search the 
next lower segment of memory. 

4. Since DEBUG didn't find the word in segment 9000, work your way 
down the following commands one by one (remembering not to type the 
hyphen): 

-s 8000:0 LFFFF "platinu" 
-s 7000:0 LFFFF "platinu" 
-s 6000:0 LFFFF "platinu" 
-s 5000:0 LFFFF "platinu" 
-s 4000:0 LFFFF "platinu" 
-s 3000:0 LFFFF "platinu" 
-s 2000:0 LFFFF "platinu" 
-s 1000:0 LFFFF "platinu" 
-s 0000:0 LFFFF "platinu" 

It's extraordinarily unlikely that it would find something in the lowest seg
ments, but when you're desperate, you can't lose and should try anything legal. 

Here's a shortcut- after typing: 

s 9000:0 LFFFF "platinu" 

just type in: 

s 8 

but don't press Enter yet - instead, press the grey F3 function key. DOS will 
fill in the rest of the line for you. Then press Enter. If DEBUG doesn't find any
thing in segment 8000, type in 

s 7 

and press F3, and then Enter, etc. 
(If you work your way down the ladder far enough DEBUG will definitely 

find something, since it will stumble over itself. When you tell DEBUG to do 
something, it uses a part of memory to hold the insttuctions you gave it, and at 
some point it will find these instructions and end up telling you its own address.) 

If you get to the end of the list without having DEBUG print out any hex ad
dresses, something is wrong. Make sure you removed the l~t letter of the word 
you're searching for, that you spelled the word properly, and that you entered it 



Chips and Memory 223 

in the exact uppercase or lowercase form in which it originally appeared in your 
document If you swear that you followed every instruction to the letter, pick 
another word and try the whole process again. 

5. It's a good idea to work all the way down the list for two reasons (and it's 
easy when you use the F3 trick mentioned in step 4). First, one of the addresses 
DEBUG reports will be an artifact of the search itself, since it will uncover its 
own workspace and find the search command that you just typed in. Second, it's 
possible that a duplicate copy of the word might be lurking in memory from 
another file you created earlier. Jot down the addresses DEBUG reports. If it 
prints out a whole long string of them, the first in the list is the most important. 
If it scrolls the list off the screen too fast for you to note the first few, use the fol
lowing pause technique: 

• Position your left hand on the Ctrl key and your right band over the letter S. 
Holding down the Ctrl key and pressing S will alternately freeze and unfreeze 
the display. (The first Ctrl-S will freeze it, the next will start it up again, the 
third will freeze it again, etc.) 

• Then press F3 and then the Enter key, and punch Ctrl-S as soon as the 
addresses start to scroll. This will pause the display so you can write the first 
address in the list down. Press Ctrl-S when you 're done to start scrolling again. 

6. Once you've written down the list of addresses that DEBUG reported, you 
have to figure out which one represents the address of the first occurrence in 
your file of the word you are seeking. Look at the list and pick the lowest ad
dress. Each address comes in two halves. The segment is on the left and the 
off set on the right. In the example above, 

9000:2F3D 

/" SEGMENT : OFFSET 

9000 is the segment and 2F3D is the offset. (Think of the segment as an area 
code and the offset as a local phone number.) It's easy to put the segments in 
order, since 9000 is the highest and 0000 is the lowest If you wrote down the ad
dresses inside each segment in the order in which DEBUG reported them, the 
lowest should be at the top. 

7. Now that you've identified the lowest address reported by DEBUG, ex
amine the area in memory specified by that address. If the lowest address you 
found was 4000:D 1F6, you would change the rightmost digit (here it's a 6) to a 
0, then type in everything below except the hyphen: 

-D 4000:D1FO 



224 PC Magazine DOS Power Tools 

and press the Enter key. (The DEBUG D command stands for Dump and will 
display the contents of the 128 bytes of memory immediately following the hex 
address you specified.) Again, you would substitute the lowest address you 
found in your own search for the 4000:D lFO used above. You should see a 
three-part display that looks something like this: 

4000:D1FO 57 68 69 6C 65 20 70 6C-61 74 69 6E 75 6D 20 73 While platinum s 

4000:D200 68 61 72 65 73 20 6D 61-6E 79 20 6F 66 20 74 68 hares many of th 

4000:D210 65 20 70 72 6F 70 65 72-74 69 65 73 20 6F 66 20 e properties of 

4000:D220 67 6F 6C 64 2C 20 69 74-20 68 61 73 20 6E 65 76 gold, it has nev 

4000:D230 65 72 20 8D OA 62 65 65-6E 20 61 20 70 6F 70 75 er •. been a popu 

4000:0240 6C 61 72 20 6D 61 74 65-72 69 61 6C 20 66 6F 72 lar material for 

4000:0250 20 6A 65 77 65 6C 72 79-20 6F 72 20 65 78 70 65 jewelry or expe 

4000:D260 6E 73 69 76 65 20 74 61-62 6C 65 77 61 72 65 2C nsive tableware, 

address hex values of the actual bytes ASCII version 

The lefthand column shows the address of each paragraph - 16-byte section of 
memory - which is represented by one horizontal row in the DEBUG desplay 
above. The middle column contains the actual hex values of each of the 16 bytes 
in the paragraph. The righthand column displays the ASCII text representation 
of what's in memory at those addresses. When DEBUG finds any value that 
isn't a letter, number, or punctuation symbol, it will print a period in the right
hand column. The two periods before the word "been,, above are examples of 
this, since DEBUG couldn't easily print the characters that 8D and OA- a high
bit carriage return and line feed - represent. 

If you do see something like this display, congratulations. The hard part is 
over. Now you simply have to find the beginning and ending addresses of your 
file and copy the information from the memory area between these two address
es to a disk. 

(If all you see is something like: 

4000:6FCO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ••..•••••..•.... 

4000:6FDO 00 00 00 00 00 00 00 00-44 OD 34 30 30 30 3A 36 •••••••. D.4000:6 

4000:6FEO 46 30 30 OD 46 46 20 22-70 6C 61 74 69 6E 75 22 FOO.FF "platinu" 
4000:6FFO OD 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 .•••.•••....•... 

keep looking, since that's just a partial regurgitation of the DEBUG command 
you typed in. It means DEBUG just found itself.) 

But for our example assume you did find what you think is the actual begin
ning of the text, at address 4000:D1FO. Make sure this indeed is the beginning, 
and that you checked all the lower addresses to see if there were any earlier oc
currences of the word platinum. 



Chips and Memory 225 

Then, tiptoe backwards in memory a bit just to see where your text actually 
starts. You may not have used the word "platinumn until the second or third sen
tence, and the goal here is to recover as much of your file from memory as pos
sible. This means figuring out increasingly lower hex offset addresses (the four 
hex numbers to the right of the colon). If you 're utterly befuddled by hex num
bers see Chapter 4 or try this: 

• Leave the four hex numbers to the left of the colon alone. Don't change them. 
And leave the first two hex numbers to the right of the colon alone as well. 

• But replace the rightmost two hex numbers with Os. In the example above, 
you would change: 

4000:01F6 

to: 

4000:0100 

(The two rightmost zeros were changed from F6 to 00.) 
Then type in everything except the hyphen: 

-D 4000:0100 

and press the Enter key. Look at the rightmost column. If it's still filled with 
your text, you may want to subtract 1 from the third digit over from the right (in 
the above example this would be the 1 directly after the 4000:D) and start the 
process again. In this case if you want to keep moving backward you'd change 
4000:D100 to 4000:0000. 

If the righthand column of the DEBUG display is filled with gibberish, type 
in just 

0 

and press the Enter key. Keep typing D and pressing Enter repeatedly and 
DEBUG will work its way upward through memory 128 characters at a time. 
It's tedious, but worth it Stop when you see the very beginning of your text. 
Look at the eight-digit hex address at the left edge of your screen in the same 
row as the beginning of your text and write it down on your notepad next to the 
word "ST ART." Here it was 4000:D1FO. 

Then, to find the end of your text, keep hitting D and Enter and checking the 
righthand column of the DEBUG display. So long as you see your text there, 
keep typing D and pressing Enter. 



226 PC Magazine DOS Power Tools 

When you do finally reach the end, look at the eight-digit hex address at the 
left edge of your screen that's in the row directly after the very last sentence of 
your text and write down the rightmost four digits on your notepad next to the 
word "END." (You needed all eight digits for the starting address but only four 
digits are significant here.) In this example your text ends in the line with the ad
dress 4000:FB60, so you'd write down the rightmost four digits of the address of 
the following line, FB70. 

4000:FB30 73 20 61 20 76 65 72 79-20 61 74 74 72 61 63 74 s a very attract 

4000:FB40 69 76 65 OD QA 61 6E 64-20 63 75 72 72 65 6E 74 ive •• and current 

4000:FB50 6C 79 20 75 6E 64 65 72-70 72 69 63 65 64 20 60 ly underpriced m 

4000:FB60 65 74 61 6C 2E lA lA lA-lA lA lA lA lA lA lA lA etal ..•••....••. 

4000:FB70 lA lA lA lA lA lA lA lA-lA lA lA lA lA lA lA lA ••.••.•.....•..• 

Still, try typing D and pressing Enter a few more times to make sure there isn't 
any text hiding a little farther up in memory. 

8. Now you know the starting and ending addresses of your file. It may be a 
little chopped up, and the entire file may not be there, but you can breathe easier 
knowing you' re about to recover everything you just found. 

But first you have to do a little hex math. DEBUG's free built-in hex cal
culator can help. For the time being, ignore the segment portion of the two ad
dresses you found (they should be the same). Type in the letter H, then the last 
four hex digits of the ending address, and finally the last four hex digits of the 
starting address, so it looks like: 

-H FB70 DlFO 

(Again, don't type in the hyphen.) Press the Enter key and DEBUG will respond 
with: 

CD60 2980 

The first number is the sum of the two hex numbers you typed in; the second is 
the difference. You're interested in the second one, the difference between the 
ending address and the starting address - because this is equal to the length of 
the file in RAM. Jot down this second number (2980) on your notepad next to 
the word "LENGTH." 

9. Now that you know the length of the file, the starting address in memory, 
and the ending address in memory, you 're ready to copy, or "write" the file from 
memory to a disk. 



ChipsandMemory 227 

Always be extremely careful in using the DEBUG W (Write) command, since 
writing files to the wrong place can destroy good data by writing bad data over 
it. Check your typing carefully before you press the Enter key. 

It's best to copy your file to a floppy disk, especially if you're a hard disk 
user. This is because your word processor may have "spilled" some of the file 
from RAM to your hard disk when memory began to get a little crowded. Later 
you might want to try using a program like the Norton Utilities to browse 
around on your hard disk and find $$$ or TMP files that your word processor 
had hidden there or created and then erasoo. If you were to write to your hard 
disk (under certain older versions of DOS) you might obliterate these files and 
ruin your chances of recovering them. So use floppies instead. 

Put a blank formatted disk in drive A:. Since you're going to create a file on 
this disk, you have to give it a name, like PLA TINUM.TXT. Be sure to put the 
drive letter in front of the name, so ifs really A:PLATINUM.TXT. To have 
DEBUG assign this name, type: 

-N A:PLATINUM.TXT 

(but omit the hyphen). Press the Enter key. 
Next you have to tell DEBUG how much memory to copy to this file, and 

where to start. Telling it how much is a two-step operation. First type in 
(without the hyphen): 

-RBX 

and press the Enter key. DEBUG will respond with: 

BX 0000 

Since this example assumes your entire file was within a single 64K segment, 
you want the value in BX to be 0000 as shown. Just press Enter. Otherwise enter 
0 then press Enter. 
Then type (no hyphen): 

-RCX 

and press the Enter key. When DEBUG responds with: 

ex 0000 



228 PC Magazine DOS Power Tools 

type in the four-digit hex length, 2980, after the colon and press the Enter key. It 
will look like: 

ex 0000 
:2980 

Remember - the 2980 is just for the purpose of this example. You would actual
ly type in the length of the file you were trying to restore. 

10. One more step and you're done. When you see the DEBUG prompt 
again, type in a W followed by the starting address. In this example the starting 
address was 4000:D lFO so you would type everything but the hyphen: 

W 4000:D1FO 

and press the Enter key. 
Now exit DEBUG by typing Q and then pressing the Enter key, and look at 

the PLATINUM.TXT file on drive A:. You can use the'DOS TYPE command to 
do this: 

TYPE A:PLATINUM.TXT 

Or you can copy it to your printer with the command: 

COPY A:PLATINUM.TXT PRN 

Don't use any programs to examine the file, since these may overwrite part of 
memory, and you want to be sure you recovered everything before disturbing 
what's in memory. If you made a mistake, and the PLA TINUM.TXT file con
tained gibberish, you can go back and step through the instructions again. 

After what it's been through, the file will probably will need some fussing and 
cleaning up. Once you've determined that you rescued as much of it as you can, 
you can load your word processor and comb through the file to remove ex
traneous characters, fill in gaps, move the parts around to their proper positions, 
and generally spruce things up. You may not recover every last word (especially 
if the file in memory was very long) but you '11 be far better off than you were 
when you first realized what had happened. 

Note: if you are repeatedly typing D and pressing Enter (step 7) to find out 
where your text ends, and you suddenly see that the rightmost four digits change 
from FFFO to 0000, this means that your file crosses a segment boundary. If this 
happens, the easiest thing to do is to extract your file from memory and save it 
to disk in separate chunks (such as A:PLA TINUM. l and A:PLATINUM.2) and 



Chips and Memory 229 

then use your word processor later to combine these individual files into one big 
file. Use FFFF as the ending address for the first chunk and step through the 
whole rescue process described above, saving the file as PLATINUM.1. Then in
crease the segment by 1000 (in the above example you would change 4000 to 
5000), and use 0000 as the starting address. To resume the search for the end of 
your file you would then type: 

D 5000:0 

and press the Enter key, and then keep typing D and pressing Enter until you 
find the end of your text. Then you'd save this second part as PLA TINUM.2. 

While this should work with word processor and other text files, it probably 
won't do very well with spreadsheet or database files, since these are often in 
non-ASCII formats with non-text control information hopelessly interspersed 
with the data. The rule is back up such files early and often. 

If you didn't recover your entire file, and you walked through the above 
process a second time to make sure you didn't miss anything, load a copy of a 
program like the Norton Utilities and search through your original disk for spill 
files. It's a fairly straightforward process and is worth your time; the programs 
will do all the work once you've given them proper instructions. 

One more point - the fact that you can go in and retrieve files from memory 
or from parts of a disk that you thought were empty means that others can walk 
over to your system and do the same thing when you're not there. Programs like 
the Norton Utilities can uncover and obliterate any unwanted hidden or pre
viously "erased" files that are actually still intact. If you are security conscious, 
tum your system off when you walk away from it, or lock the keyboard and 
remove any mice that may be connected, to prevent unauthorized users from 
looking in your system's RAM and recovering data the way you just did. 





PART II 

The DOS Tools 





Chapter7 

EDLIN 

The single most popular microcomputer application is word processing. Nearly every 
serious user has one handy, and the people who don't own one use text entry functions 
of programs such as 1-2-3 to create memos and batch files. Virtually no one uses EDLIN, 
the text editor that comes with DOS, and with good reason. EDLIN is a line editor rather 
than a full-screen editor, which means you can edit only one line at a time rather than 
jumping all over the screen. And it's far from friendly. But if you're accustomed to one 
word processor, and you find yourself on someone else's system and all that's handy is 
a word processor you've never used, you can always boot up EDLIN to create or change 
ASCII files. We'll let you in on some interesting things you can do with EDLIN, and 
provide an armload of shortcuts. 

Don't get us wrong, however. EDLIN won't do any fancy text formatting. It doesn't 
have an adjustable right margin that will automatically wrap your text down to the next 
line the way every word processor does. You can't use it to create double-spaced docu
ments. It makes you use truly awful DOS brute-force commands such as Ctrl-Z and Ctrl
Break to get serious work done. It can't handle any lines longer than 254 characters (the 
manual says 253 but 254 works on our systems), or any file with more than 65,529 lines 
in it. It can't back up to the previous screen line once you've wrapped the cursor around 
from the right edge of your screen to the next line. And you have to switch constantly 
back and forth from command mode to editing mode. But you can copy or move groups 
of lines, search for particular strings of characters, or even replace one chunk of text with 
another. And the price is right. 

You need to specify a filename when starting EDLIN from DOS. EDLIN has two 
modes, command mode andedit/insertmode. When you 're in command mode the EDLIN 
prompt - an asterisk (*) - hugs the lefthand screen margin; when you 're in edit/insert 
mode this prompt is indented eight spaces. To switch from command mode to edit/insert 
mode, enter a command such as I, to add new text, or a valid line number, to edit the line 

233 



234 PC Magazine DOS Power Tools 

with the number you specified. The easiest way to switch from edit/insert mode to com
mand mode is to hit Ctrl-Break or Ctrl-C. 

Every example below starts with an asterisk to show you what the screen should look 
like. However you don't ever have to type an asterisk; EDLIN will take of that for you. 

EDLIN numbers all lines only for your and its own convenience; the line numbers that 
appear before each line aren't put into the actual file. Since EDLIN is a line editor rather 
than a full-screen editor it can really edit only one line at a time. It refers to the line it's 
working on as the current line, and puts an asterisk on this single line, after the line num
ber and before the text. This current-line asterisk is different from the asterisk EDLIN 
uses as a prompt. 

In virtually all cases you may enter EDLIN commands in uppercase or lowercase (or 
a combination of the two), and you can usually insert spaces inside the command. These 
three commands will all do the same thing: 

*l,2P 
*1,2p 
* 1'2 p 

However, EDLIN's Search (S) and Replace (R) commands are pickier about extra 
spaces, since they let you search for spaces and replace them. And when using these com
mands you have to make sure that you specify the exact strings you want to search for 
- if you ask EDLIN to find "HELLO" it will catch every HELLO but ignore variations 
such as "Hello" and "hello." 

With commands that can work with ranges of lines, EDLIN lets you omit the actual 
line numbers and accept default settings. 

However, with operations such as Move or Copy, you still have to include the comma 
separating the beginning and end of the range, even if you omit the line numbers them
selves. Other EDLIN commands such as List, Page, Delete, Search, and Replace, are less 
fussy, and don't require either line numbers or commas. You can specify lines one at a 
time or in ranges, or you can refer to them in relative terms. To edit line 3, just type: 

*3 

To list just line 3 you could type: 

*3,3P 

(which tells EDLIN to start and stop with just line 3). Once you issue either of these com
mands, EDLIN makes line 3 the current line. If you then wanted to edit line 5, you could 
type either: 

*5 

or: 



EDUN 235 

*+2 

as the+ 2 tells EDLIN to edit the line with a line number two higher than the current line. 
Or if you had just listed line 3. and wanted to broaden the display one line on either side, 
you could either type: 

*2,4P 

or: 

*-1,+lP 

To exit prematurely from a long process (such as a Replace Text command) hit Ctrl
Break or Ctrl-C. To quit and save your changes, type E. To quit without saving your chan
ges, type Q and then tell EDLIN you're sure you want to abort your file, by typing Y. Be 
careful when using Ctrl-Break or Ctrl-C when inserting or editing text, since this tells 
EDLIN to cancel any changes made in the line. To register a change, you have to press 
the Enter key. If you want to insert a special control character, preface it with a AV. Nor
mally you can't enter an Escape character in your file, since OOS interprets this as a sig
nal to interrupt what you're doing. But if you're trying to create an ANSI file that needs 
a CHR$(27) Esc prefix, simply type: 

"V [ 

If you need to put any other control character (such as AA or AB) into your file to trigger 
a special effect on your printer. just enter the uppercase version of the letter after AV (or 
the Ctrl- shifted version). Be sure not to enter the lowercase version. To put a AA in your 
file, you could type either: 

"VA 

or: 

"V"A 

If you want to put high-bit ASCII math, border, or foreign language characters into your 
file, use the Alt-plus-number-pad technique: Just hold down the Alt key, type the ASCII 
value on the number pad (not the top row number keys), and release the Alt key. If you 
wanted to put the pi symbol in your text, you'd simply hold down Alt, type 227 on the 
number pad while holding it down, and then release the Alt key. A pi sign would then 



236 PC Magazine DOS Power Tools 

appear at the cursor. Unfortunately, not all printers can reproduce such high-bit charac
ters accurately. Nor will this Alt key technique let you put a CHR$(0) null in your text. 
If you need to do this, just press the F7 key. A"@ will appear at the cursor, and an ASCII 
character 0 will be inserted into your text. 

It's possible to put more than one command on a single line by separating the com
mands with a semicolon. If you wanted to display lines 7-8 and lines 12-14 together, you 
could do it with the single command: 

7,8L;12,14L 

If you want to add a second command to the same line as a search, you have to separate 
the commands with a Ctrl-Z or else EDLIN will think that the second command, semi
colon and all, is part of the string involved in the search. 

While EDLIN can help you put your files into shape, it's not designed to print any
thing. You could use your word processor to print the file, or you could use the DOS 
PRINT or COPY commands. To use the PRINT command, make sure the DOS 
PRINT.COM file is on the disk you're using, or is in a drive or subdirectory that your 
PATH command knows about. Then just type PRINT FILENAME (substitute the name 
of your own file for FILENAME). Or just type COPY FILENAME PRN. 

Finally, one simple tip that can save lots of keystrokes- make a copy ofEDLIN .COM 
and call it E.COM. You could simply rename EDLIN .COM to E.COM, but it's a good 
idea to keep all the files on your \DOS subdirectory intact if someone else has to use your 
system, and doing so makes it easier to upgrade from one version of DOS to the next. 
You may decide EDLIN is so clanky and unintuitive that you'd rather use your word 
processor or a vastly better quick editor like SideKick's notepad instead. But if you do 
plan to use EDLIN, it's a lot easier and faster to type: 

E CONFIG.SYS 

than: 

EDLIN CONFIG.SYS 

especially if you use it all day long. If you try this, either keep E.COM on your main flop
py disk (the file is so small you should be able to squeeze it on), or put it in your hard 
disk \BIN subdirectory along with the rest of your important utilities. 

All examples below assume the file you started out with consists of the following five 
lines. The current line is always line 1, unless otherwise specified: 

l:*line 1 
2: line 2 
3: line 3 
4: line 4 
5: line 5 



EDUN 237 

Starting EDLIN 

Format: EDLIN F1LENAME 

You can't start EDLIN without specifying a filename. If you enter the name of an exist
ing file, EDLIN will try to load the whole file into memory. However, EDLIN will stop 
loading a file if it determines that RAM is filling up so fast that only 25 percent of avail
able memory is free. If this happens, you '11 have to edit the file in pieces, then use the 
Write Lines (W) and Append Lines (A) commands to write the beginning of the edited 
file to disk and load the unedited part of the file into memory. You really shouldn't have 
to worry about this, since you shouldn't be editing long files with EDLIN. It's really best 
for batch files, short memos, and other miscellaneous OOS tasks, like changing your 
CONFIG.SYS system configuration file or creating an ANSI string to change colors. For 
longer files, use your word processor instead. 

EDLIN is actually an external OOS program called EDLIN.COM. Some commands 
such as DIR or TYPE are internal, which means they're part of COMMAND.COM and 
are always available to you whenever you see the OOS prompt. But you have to tell OOS 
where the EDLIN.COM program is on your disk, so OOS can find and load it if you are 
currently in a subdirectory that doesn't contain a copy of EDLIN.COM. If you're using 
a hard disk, the best way to handle this is to have a dedicated \DOS subdirectory that con
tains all your OOS files, including EDLIN.COM, and nothing else. To make sure OOS 
knows where all its important files are kept, include the \DOS subdirectory in your PATH 
command. By setting your disk up this way, you '11 be able to use EDLIN no matter what 
subdirectory you happen to be· using. Either issue this PATH command at the OOS 
prompt, or include a variation of it in your AUTOEXEC.BAT bootup file. 

If you start EDLIN by specifying the name of a file that's not on your disk, EDLIN 
will create a new one, and tell you so, with a "New file" message. This means that if 
you're trying to edit an existing file and you see the "New file" message you either made 
a typing mistake when you entered the filename, or you' re in the wrong subdirectory. 
Quit (by typing Q and then Y) and when you're back at the OOS prompt, type DIR 
FILENAME and press the Enter key (but of course substitute the actual name of your 
file). If you see the file, restart EDLIN and watch your typing. If you don't see the file, 
you're probably in the wrong subdirectory. Use the CD (Change Directory) command to 
log into the correct one. 

Even if there's plenty of free memory in your system, EDLIN will stop loading any 
existing file when it sees a special character (with an ASCII value of26) called a Ctrl-Z 
end-of-file-marker. EDLIN makes sure this special character is at the end of each file it 
edits, and puts one there if none exists, along with an extra carriage return and line feed. 
It doesn't expect to stumble over this character in the middle of a file. 

But EDLIN can remove such nasty Ctrl-Z end-of-file characters that have somehow 
crept into your files by mistake. If you know you have a file that's 100 lines long, but 
EDLIN will display only the first three lines, odds are that an ASCII character 26 
mysteriously found its way into the beginning of line 4. Other OOS commands such as 
TYPE will also screech to a halt when they see this end-of-file character, as will some 
commercial products such as WordStar. 



238 PC Magazine DOS Power Tools 

If you think this has happened, add a /B to the end of the EDLIN FILENAME com
mand. So if you have a file called PHONE.LST and EDLIN seems to be loading only the 
beginning of it, type Q and then Y to quit, and then reload the file with the command: 

EDLIN PHONE.LST /B 

(DOS almost always lets you enter switches such as /B either in uppercase or lowercase. 
But version 3.3 contains a bug that doesn't recognize /b, so it's always safe to use /B. In 
fact. version 3.3 has a hard time with uppercase and lowercase commands in general. 
Normally, if you try to edit a backup file that ends in BAK, EDLIN will refuse to load it 
and will just print a "Cannot edit .BAK file - rename file" message. If you try this with 
version 3.3 and enter a filename that ends in BAK you '11 indeed get such an error mes
sage, and EDLIN will drop you back into DOS. But enter the extension using lowercase 
characters (bak) and EDLIN will blithely edit and save the file.) 

You can either page through your document using the Page (P) command to see if any 
lines contain a stray AZ, or you can have EDLIN' s Search (S) hunt for it To have EDLIN 
do the work, as soon as you load the file type: 

*S"V"Z 

When you first load a file, EDLIN makes line 1 the current line. Using the S command 
without line numbers will search from the line immediately following the current one 
(since the current line is 1, the search would start with line 2), and continue all the way 
to the last line loaded in memory. This won't catch any Ctrl-Z characters in line 1, but 
there probably wasn't an end-of-file marker there since in the above example EDLIN 
managed to display the first few lines. If you wanted to broaden the search to include the 
first line, just add a 1, prefix to the command right before the S. 

You couldn't just enter the command as *SAZ since EDLIN uses AZ in search com
mands to mark the end of the command, and not as a literal keystroke to hunt for. For
tunately, EDLIN lets you enter control characters by prefacing them with a AV. So when 
you tell it to search for AVAZ you're really saying "try to find a AZ character." 

If you do find a Ctrl-Z character in your file you can edit the line to remove it, and then 
continue searching for others. Or you can simply use the Replace (R) command to delete 
every Ctrl-Z in your file. The command: 

*R "V" Z "Z 

will do just that. (Again, to include line 1 in the search, add a 1, at the beginning of the 
command.) Then save and exit the file with the E command. 

Let's get right into EDLIN's commands. Then, at the end of the chapter you'll find 
more advice on using EDLIN. 



EDUN 239 

The EDLIN Commands 

Append Lines 

Format: [n] A 

This command loads additional lines from disk to memory. You need to do this only 
when EDLIN wasn't able to load your entire file into memory when you started. EDLIN 
will stop loading your file if it figures out that 3/4 of your available memory is full. If 
this happens, and you want to edit the rest of your file, first use the Write Lines command 
(W) to write the beginning of your file from memory to a disk. Then use Append to read 
in [n] additional lines from your disk to the end of the file in memory. You probably 
won't have to use this, since you should edit large files with your word processor rather 
than EDLIN. (See Write Lines.) 

Copy Un.es 

Format: [line],[line],line[,count]C 

This command copies one line or a block of lines from one place in your file to another. 
Copying lines leaves the original lines alone and simply duplicates them elsewhere. If 
you want to copy lines from one place to another and delete the originals, use the Move 
command instead. The optional [,count] lets you make multiple copies of the block of 
lines you specified - if you omit this number EDLIN will make only one copy. If you 
omit either of the first two [line] numbers, EDLIN will assume you want to copy the cur
rent line (but you have to type in the commas even if you omit the numbers). And you 
have to specify where you want the copied block to go. The line number you want the 
block copied to has to be outside the range of the block you want copied, so you can't 
tell EDLIN to take lines 3 through 5 and copy them to line 4. 

For example: 

*3,4,Sc 

makes one copy of lines 3 and 4 and puts these two lines before line 5. It will then make 
the second line 3 the current line and renumber all the lines: 

1: line 1 
2: line 2 
3: line 3 
4: line 4 
S:*line 3 



240 PC Magazine DOS Power Tools 

6: line 4 
7: line 5 

*,,6,3c 

makes three copies of the current line (here it's line 1) and adds these after line 5. It will 
then make the first of these three copied lines the current line, and renumber all your 
lines: 

1: line 1 
2: line 2 
3: line 3 
4: line 4 
5: line 5 
6:*line 1 
7: line 1 
8: line 1 

Delete Lines 

Format: [line][,line]D 

This command deletes the current line and moves all following lines up a notch, when 
used without any line numbers. Specifying just one line number deletes that particular 
line. Omitting the first parameter (but leaving in the initial comma) deletes all lines from 
the current one to the one specified. Specifying two numbers deletes everything between 
them, including the specified lines themselves. EDLIN then makes the line immediately 
following the deletion the current one. 

If you want to get rid of several lines in a row, it's best to specify the beginning and 
end of the range you want deleted rather than erasing them one at a time. Users often for
get that EDLIN renumbers their documents each time a line is deleted. So if you use the 
P or L command to view your text, and see that you want to erase lines 10 and 11, issu
ing the commands: 

*lOD 
*llD 

won't do it. After the first command (lOD) gets rid of line 10 it will then move the old 
line 11 down a notch and turn it into the new line 10, move the old line 12 down and 
make it the new line 11, etc. The second command (I ID) would mistakenly end up eras
ing what used to be line 12, since everything moved down a notch after the first deletion. 
If you did want to erase lines 10 and 11 one at a time you could type: 

*lOD 
*lOD 



EDUN 241 

An e.asy way to do this is to type in the command the first time and press Enter, then press 
F3 to repe.at the previous command, and then press Enter. 

For example: 

*,3D 

deletes everything from the current line (in this case line 1) up to and including line 3: 

l:*line 4 
2: line 5 

*2,4D 

deletes everything from lines 2 through 4, including lines 2 and4: 

1: line 1 
2:*line 5 

*2D 

deletes line 2: 

1: line 1 
2:*line 3 
3: line 4 
4: line 5 

*D 

deletes the current line only (in this case line 1): 

Edit Line 

l:*line 2 
2: line 3 
3: line 4 
4: line 5 

Format: [line] or [special symbol] or [Enter key alone] 

This command lets you edit any existing line. If you're in the command mode (with the 
asterisk hugging the left margin) and you simply press the Enter key without specifying 
a number, EDLIN will assume you want to edit the line following the current one. If 
you're not at the end of the file, it will take the line following the current one and display 



242 PC Magazine DOS Power Tools 

it in edit mode (indented eight spaces), and treat this new line as the current one. So if 
the current line happens to be line 2, and you simply press the Enter key in command 
mode, EDLIN will display line 3 in edit mode and tum line 3 into the current line. Typing 
a question mark(?) and then pressing the Enter key is the same as pressing the Enter key 
by itself. 

If you 're in command mcxle and you want to edit the current line, just type a period 
(.),a minus sign(-), or a plus sign(+) and then press the Enter key. If you want to edit a 
specific line, just enter the number of that line and press Enter. Although it's not docu
mented, if you want to edit the next two lines, just type a semicolon (;) and press Enter. 
Typing a pound sign (#) and then pressing Enter will take you past the last line of your 
file; if you then type I and press the Enter key to go into insert mode, EDLIN will let you 
append text to the end of your file. 

Once you've edited a line, pressing the Enter key replaces the original version of the 
line with the edited version. Once you've switched from command mode to edit mode, 
if you want to abort the process and leave the original line intact, either press the Enter 
key before making any changes, or press either Ctrl-Break or Ctrl-C. You can also press 
Esc and then the Enter key to avoid making any changes. 

When you 're in edit mode you can use all the familiar DOS editing keys, such as F2 
plus a character to display everything from the beginning of the original version of that 
line to the first occurrence of the specified character in the line. 

If you 're not comfortable with the F2-plus-a-character technique, you can edit an ex
isting line simply by pressing F3 to have DOS type in the previous version of the line 
automatically for you, and then use the backspace or left arrow keys to erase the part of 
the line you want to change. Or instead of hitting F3 to reproduce the entire line, you can 
hold down the Fl or right arrow keys to retype the previous version of the line one charac
ter at a time. If you 're careful about it, you can use the Insert and Delete keys to add and 
remove individual characters in the middle of the line, and then press F3 when you're 
done, to type in the rest of the line for you. 

For example: 

* 

or: 

*+ 

or: 

*-

brings the current line (in this case line 1) into edit mode: 

l:*line 1 

* 



EDUN 243 

Just pressing the Enter key by itself when in command mode brings the following line 
into edit mode. In this case the current line is line l, so the following line is line 2: 

2:*line 2 

*3 

Specifying any valid line number brings that line (in this case line 3) into edit mode: 

*• , 

3:*line 3 

Typing a semicolon and then pressing the Enter key brings the two following lines into 
edit mode. In this case the current line is line 1 so the two following lines are 2 and 3. 
This example assumes you then press the Enter key twice and didn't make any changes: 

End Edit 

2:*line 3 
2:* 
3:*line 3 
3:* 

Format:E 

This command saves the file to disk and exits. (If you want to exit without saving any 
changes you made, type Q to quit.) If you' re editing an existing file called OLDFILE. TXT 
and exit EDLIN with an E command, EDLIN will save the newly edited version as 
OLDFILE.TXT and tack a BAK extension onto the old, unchanged version, renaming 
the old version to OLD FILE.BAK. If you 're just starting a file, EDLIN won't create such 
a backup file. Each subsequent time you edit the file, EDLIN will get rid of the previous 
BAK version of it and create a new BAK version. EDLIN makes sure there is a carriage 
return/line-feed/end-of-file marker trio of characters (ASCII characters 13, 10, and 26) 
at the end of any file it saves. 

If your disk doesn't have enough room to save all the changes you made, EDLIN will 
save as much as it can onto your disk. and discard the rest. If this happens, EDLIN will 
give the partially saved version a$$$ extension, and it won't give the original version of 
your file a BAK entension. 

(See Quit Edit.) 

Import Files 

See Transfer Lines. 



244 PC Magazine DOS Power Tools 

Insert Lines 

Format: [line]I 

This command lets you start adding text to a new file, or insert new text in an existing 
file directly before the line you specified. When you type I, EDLIN assumes you want 
to insert multiple lines, and will keep displaying the next higher line number each time 
you press the Enter key. If you want to stop inserting lines, you have to press Enter to 
lock in the last line you inserted, and then press either the Ctrl-Break or Ctrl-C keys to 
abort the insertion process. If you don't press the Enter key at the end of your last line of 
inserted text before aborting, EDLIN will think you want to abort this last line, and dis
card it. 

If you type I by itself and then press Enter, or type a period(.), and then I, and then 
press Enter, EDLIN will start inserting text directly before the current line. If you type a 
valid line number, then I, and then Enter, EDLIN will insert any text you type directly 
before the line number you specified. If you type a pound sign (#) and then I and press 
Enter, or a ridiculously high number such as 65000 and then I and Enter, EDLIN will 
move to the end of your file and start appending text there. 

If you type a semicolon (;), then I, and then press Enter, strange things will happen 
depending on what you do next In all cases, EDLIN will increase the number of the cur
rent line by 1. If you press the Enter key without entering any text, EDLIN will give you 
a second chance to insert text on that same line. Type in a line of text at that point and 
EDLIN will accept it and move on to the next line. But if you enter text at the first op
portunity, EDLIN will accept it, make it look as if you have a second chance to enter text 
on that same line, accept that as well, and put the second line before the first. 

In fact, the insert function gets confused and will do all sorts of odd things if you fol
low I with a plus (+)or minus (-) sign before pressing Enter, or type several Illls in a row 
before you press Enter. None really helps you very much. 

The following examples assume the new single line you insert is always "This is a new 
line" and ignore the curious but useless variations such as I+ and ;I: 

*.I 

or: 

*I 

lets you insert new lines before the current line. In this case the current line is line 1: 

l:*This is a new line 
2:*""C 

produces: 



1: This is a new line 
2:*line 1 
3: line 2 
4: line 3 
5: line 4 
6: line 5 

*3I 

lets you insert new lines directly before line 3: 

3:*This is a new line 
4: *"C 

produces: 

1: line 1 
2: line 2 
3: This is a new line 
4:*line 3 
5: line 4 
6: line 5 

*65000! 

or: 

*II 

EDUN 245 

lets you append new lines at the very end of your file, assuming your file is smaller than 
65000 lines: 

6:*This is a new line 
7:*"C 

produces: 

1: line 1 
2: line 2 
3: line 3 
4: line 4 
5: line 5 
6: This is a new line 



246 PC Magazine DOS Power Tools 

UstUnes 

Format: [line][,line]L 

This command lists, or displays, one or more lines without changing which line EDLIN 
thinks is the current one. If you type L by itself and then press Enter, EDLIN will try to 
display a screenful (23) of lines, with the current line in the middle of the screen. The 11 
lines preceding the current line will appear above the current line, and the 11 lines fol
lowing the current line will appear below it. If EDLIN can't find 11 lines that precede 
the current line, it will try to add extta lines at the end until it can display a total of 23. 

If you type one valid line number followed by L, and then press Enter, EDLIN will try 
to display 23 lines beginning with the line you specified. Type a single line number, and 
then a comma, and then Land press Enter, and EDLIN will do the same thing. Both varia
tions of this command tell EDLIN to display the specified line and up to 22 lines that fol
low it. 

If you type a comma, and then a valid line number, and then press Enter, EDLIN will 
try to display the 11 lines preceding the current one, and all the lines following the cur
rent one up to and i~cluding the specified line. However, if you try this and the specified 
line is very far after the current line, EDLIN will end up displaying too many lines and 
will scroll the display off the screen. Worse, if the specified line is more than 11 lines 
before the current line, EDLIN will ignore your numbers and treat the command as if you 
had simply typed in a naked L. 

If you type two valid line numbers separated by a comma and followed by an L, and 
then press Enter, EDLIN will display the lines starting with the first line number and 
going up to and including the second line number. Since EDLIN uses a pound sign (#) 
to mean "the last line in the file," you can view a 6()-line file in one big continuous gulp 
by typing: 

*1,tL 

to produce: 

l:*line 1 

60: line 

1110 lines total 

60 __J 
The following examples assume a 60-line file in which each line is simply the word 

"line" followed by the appropriate line number, and where line 30 is the current line: 

*L 

lists the 11 lines before the current line (30), plus the current one itself, and then the 11 
lines after the current line. If EDLIN finds fewer than 11 lines before the current line it 



EDUN 241 

will try to display more than 11 lines after the current line. However, if you had just 
started to edit, and hadn't yet identified a current line, typing L would list the first 23 
lines of your file. 

19: line 19 

29: line 29 
30:*line 30 
31: line 31 

41: line 41 

*25L 

~ 11 lines berore the current line 

--- current line 

~ 11 lines after the current line 

displays the line specified (25) plus the 22 lines that follow it. 

25: line 25 

29: line 29 
30:*line 30 
31: line 31 

47: line 47 

*,25L 

displays lines starting 11 lines before the current one, and ending at the line specified 
(25). Since the current line in this case is line 30, the display begins 11 lines earlier (line 
19). H you had just started to edit, and hadn't yet identified a current line, typing ,25L 
would list the first 25 lines of your file (scrolling the first few off the top of your screen): 

19: line 19 
20: line 20 
21: line 21 
22: line 22 
23: line 23 



248 PC Magazine DOS Power Tools 

24: line 24 
25: line 25 

*25,28L 

lists everything from the first specified line to the second specified line, inclusive: 

25: line 25 
26: line 26 
27: line 27 
28: line 28 

See Page. 

Merge Files 

See Transfer Lines. 

Move Lines 

Format: [line ],[line ],lineM 

This command moves a line or lines, in the range defined by the first two numbers, to a 
position in your text directly before the third line number. The new location (the third 
number) must be outside the range defined by the first two numbers, so you can't move 
lines 3 through 5 to a position directly before line 4. If you omit either of the first two 
numbers, EDLIN will assume you want to move the current line- but you'll still need 
to type in the commas, and you must specify a third (destination) line number. 

For example: 

*3,5,lM 

moves all the lines from 3 through 5 to a new location directly before line 1: 

l:*line 3 
2: line 4 
3: line 5 
4: line 1 
5: line 2 

*5,5,lM 



EDUN 249 

moves the single line 5 directly before line 1: 

l:*line 5 
2: line 1 
3: line 2 
4: line 3 
5: line 4 

*1,1,SM 

or: 

*,,SM 

moves the single line 1 directly before line 5. Omitting the first two numbers tells EDLIN 
to assume that you want to move the current line, which in this case is line 1: 

1: line 2 
2: line 3 
3: line 4 
4:*line 1 
5: line 5 

*1,1,6M 

or: 

*1,1,tM 

or: 

I, #M 

moves line 1 to the end of the file, since in this case line 1 is the current line and line 5 
is the last line: 

1: line 2 
2: line 3 
3: line 4 
4: line 5 
S:*line 1 



250 PC Magazine DOS Power Tools 

Page 

Format: [line][,line]P 

This command displays lines, and changes the number of the current line. The similar 
List Line (L) command also displays lines - though according to slightly different rules 
- but doesn't alter the number of the current line. When you use the P command without 
any line numbers, EDLIN will display the 23 lines following the current line (but won't 
show the current line itself), and will change the current line in the process. This is very 
handy for examining your file a screen at a time; when you start EDLIN if you just keep 
tapping P and Enter you '11 page all the way through from beginning to end. You can't do 
this with repeated L commands, since L won't change the number of the current line and 
will keep displaying the same screen over and over. (See List.) 

The following examples assume a 6<l-line file where each line is simply the word "line" 
followed by the appropriate line number, and where line 30 is the current line. The ex
amples are identical to those presented for the List command, to make it easy for you to 
compare the Page and List commands: 

*l,iP 

displays the entire file just as List (L) does, except that P will turn the last line in the file 
into the current one, while L will leave the current line alone. 

1: line 1 

60:*line 60 

I 60 lines total 

__J +-- this becomes the new current line 

*P 

displays the line immediately after the original current line plus the 22 lines following it, 
and will then turn the last line displayed into the new current line. While List (L) will 
also display 23 lines, it will try to show the 11 lines before and after the current line, and 
will not change the current line. 

31: line 31 

23 lines total 

53:*line 53 this becomes the current line 

*25P 



EDUN 251 

displays the line specified (in this case it's line 25) and the 22 lines following it, and will 
make the very last line displayed (in this case 25 + 22, or line 47) the current one. Here, 
Page (P) works about the same as List (L) except that L doesn't change the current line. 

25: line 25 

47:*line 47 

I 23 lines total 

__J - this becomes the current line 

*,25L 

produces only an "Entry error" message if the current line is 30, since in effect you're 
asking it to display from lines 30-25, and EDLIN can't page backwards. However, the 
List (L) command can indeed handle such a command, since it tries to start displaying 
text starting 11 lines before the current one, and ending at the line specified. So if the cur
rent line is 30, the command ,25L will display from line 19 (30 - 11) through 25. If the 
current line was line 1, both the ,25L and ,25P commands would display the first 25 lines 
of your file, and would end up scrolling the first few off the top of your screen. The only 
difference would be that the P version would make line 25 the current line, while the L 
version would leave the current line as line 1. 

1: line 1 

25:*line 25 

*25,28P 

I 25 lines total if current line was 1 

__J - this becomes the new current line 

lists everything from the first specified line to the second specified line, inclusive. In this 
case P works just like L except that P will tum the last displayed line into the current one. 

25: line 25 
26: line 26 
27: line 27 
28:*line 28 

Note: The EDLIN P (Page) command displays just 23 lines when arguments are not 
specified. By changing the line count byte it's possible to have EDLIN display any num
ber of lines from 1 to 128. For instance, since 43-line screens are becoming more popular, 
you may want to patch EDLIN so the P command displays 41 lines rather than just 23. 

The hex offset address of the line count byte varies according to the DOS version: 



252 PC Magazine DOS Power Tools 

Version 
2.0 
2.1 
3.0 
3.1 
3.2 
3.3 

Offset 
700 
700 

102B 
105C 
IOSC 
lOSC 

The default value at this address is 16, since this is part of the instruction: 

ADD DX,+16. 

The value of this byte cannot exceed 7F hex, unless you want your whole document to 
streak past. Values lower than hex 16 will cause the P command to display fewer than 
23 lines. Note that the actual number of lines EDLIN will display is one greater than the 
value at this byte. 

Screen 
Size 

25 
35 
43 

Hex Value 
at Offset 

16 
20 
28 

To patch EDLIN so the P command lists 41 lines, be sure DEBUG.COM is handy. Make 
a copy of EDLIN.COM called EDLIN41.COM. Then use the E command to make the 
change at the address appropriate for the DOS version you 're using. 

For versions 3.1 through 3.3 the process would look like: 

C>COPY EDLIN.COM EDLIN41.COM 
1 File(s) copied 

C>DEBUG EDLIN41.COM 
-E 105C 
30F9:105C 16.28 
-w 
Writing 1D66 bytes 
-Q 

Once you've copied EDLIN.COM to EDLIN41.COM, DEBUG prints the hyphens, this 
line (the 30F9 right before the colon is a hex number that will vary from system to sys
tem and doesn't matter here): 

30F9:105C 16. 

and the "Writing 1D66 bytes" message. You type everything else. 
See List. 



EDUN 253 

Quit Edit 

Forma.t: Q 

This command lets you abort a file - quit EDLIN without saving any changes you may 
have made - and return to DOS. To make sure you don't lose your work inadvertently 
by typing Q when you don't mean it, EDLIN displays an "Abort edit (YIN')?" message 
to allow you to confirm the action. If you type Y, EDLIN will quit and all your changes 
will be lost. Type N (or any character other than Y or y) and EDLIN returns you to com
mand mode with your file intact. 

Read In Files 

See Transfer Lines. 

Replace Text 

Format: [line][,line][?]R[oldstring][<F6>newstring] 

This command replaces one string of characters with another. EDLIN can replace strings 
in just one line or throughout your entire document, with confirming prompts or without, 
and can handle multiple occurrences of a string in the same line. (Each time it replaces 
a string it will print the entire revised line, so if it's making multiple changes in the same 
line you'llsee thatlineonscreen several times.) EDLIN identifies the last line that it chan
ges as the current line. 

The R command can replace one single character or a whole series of words, but as 
with the Search Text (S) command, the matches have to be exact If you tell EDLIN to 

find every "the" it will skip over "THE" and ''The" =-but it w_ill find imbedded strings 
such as the letters t-h-e inside "them" and "whether" and "Goethe." If you want to find 
whole words only, you can try putting a space on either side of the word when you specify 
it in the R command. This will work most of the time with a word like "the,, which is al
most never followed by punctuation. But many words could be followed by commas, 
periods, or question marks, so this technique is far from foolproof. And since EDLIN 
can't ignore cases, you may have to search through once for each "the" and repeat the 
command to catch any "The" that happens to start a sentence. If you do try putting a space 
on either side of the old string, remember to put spaces on either side of the replacement 
string as well. Note that quotes are used here to make the examples clearer - don't use 
quotation marks in the actual EDLIN commands unless a quote mark is indeed part of 
the string you 're replacing. 

You can ask to preview each potential replacement, with the change already in place, 
by putting a question mark (?) before the R. If you do this, EDLIN will show you what 
the replacement would look like and then print a very terse "O.K. ?" prompt. If you type 
either Y or y or press the Enter key, EDLIN will make the change. If you type any other 
character EDLIN will leave that particular string alone. In either event it will then con-



254 PC Magazine DOS Power Tools 

tinue searching. If you use this prompt feature, make sure you put the ? before the R, not 
after it, since EDLIN interprets anything after the Ras part of the old string you want to 
replace, and will end up hunting for a string beginning with a question mark. 

EDLIN uses a Ctrl-Z to separate the old string from the new one. You can generate a 
Ctrl-Z either by tapping once on the F6 function key; by holding down the Ctrl key and 
typing Z; or by holding down the Alt key, typing 26 on the number pad (not the top row 
keys), and then releasing the Alt key. Be sure not to put any extra spaces on either side 
of the Ctrl-Z or EDLIN will interpret them as part of the string to replace. 

You may use this feature to delete strings of text. After the R in the command, simp
ly enter the old string you want deleted, press the F6 function key, and then press Enter 
instead of specifying a new string. In effect you' re telling EDLIN to replace something 
(the old string) with nothing. If you try this, be sure to consider any leading or trailing 
spaces around the string you' re deleting. 

If you omit the first line number, EDLIN will start trying to replace strings in the line 
immediately following the current line. Omit the second line number and EDLIN will 
scan through to theend of the document, or at least as much of it as is currently in memory. 
Omit both line numbers and EDLIN will start the replacement process with the line fol
lowing the current one and stop only when it reaches the final line in memory. 

Each time you specify a Search string or a Replace string, EDLIN stores it in a special 
buffer. If you omit either string the next time you issue the command, EDLIN will use 
the strings from the previous command. If you wanted to find every occurrence of the 
word "flower" and replace it with "Zantedeschia aethiopica" between lines 1 and 50 of 
your document, you would type: 

*1,SORflowerAZZantedeschia aethiopica 

(where "Z represents a Ctrl-Z character, not a" and a Z). If you then wanted to replace 
the same old string with the same new one in lines 51through100, all you'd have to type 
is: 

*51,lOOR 

If you omit the first string (the old text that you want to replace), EDLIN will look in its 
buffers and try to dredge up either the previous initial R (Replace Text) string, or the pre
vious S (Search Text) string, whichever is more recent. But if you omit the second string 
(the new text that replaces the old), EDLIN will try to hunt down the last R string. 

Since EDLIN can't work with lines longer than 254 characters, it won't be able to 
handle such lengthy lines when you 're replacing a short string with a longer one. 

The following examples assume the file is the simple five-line file used above, and 
that the current line is line 1. And don't forget that the "Z represents a Ctrl-Z character, 
not a " and a Z. See the text above for the three ways to generate this character. 



EDUN 255 

starts the replacement process on the line following the current one (line 2 in this case, 
since the current line is line I), and replaces each "line" it fmds with a new "LINE" string. 

2: LINE 2 
3: LINE 3 
4: LINE 4 
5: LINE 5 

*1,3Rline"ZLINE 

limits the replacement process to all lines between I and 3, and changes each "line" it 
finds there to "LINE." 

1: LINE 1 
2: LINE 2 
3:*LINE 3 
4: line 4 
5: line 5 

*,3Rline"ZLINE 

since no beginning line is specified, EDLIN starts the replacement process with the line 
following the current one. The current line is line I, so this starts at line 2 and ends with 
line 3, changing each "line" it finds to "LINE." 

1: line 1 
2: LINE 2 
3:*LINE 3 
4: line 4 
5: line 5 

*1,#Rline"Z 

searches through the entire document from line I to the final line loaded in memory and 
replaces every "line" string with a null string, effectively deleting the word "line" 
throughout the document. 

1:* 1 
2: 2 
3: 3 
4: 4 
5: 5 

*l,f?Rline"ZLINE 



256 PC Magazine DOS Power Tools 

searches through the entire document from line 1 to the final line loaded in memory and 
asks whether or not to replace every occurrence of "line" that it finds with "LINE." When 
EDLIN prompts the user in this way it displays what the replacement would look like if 
the user answered the prompt with Y or y or Enter. It interprets any other character 
keypress as a No. In the example below, the user responded to the five prompts with: Y 
Ny A Enter. EDLIN replaced strings in the first, third, and fifth lines, but not the second 
and fourth, since only Y or y or Enter tells EDLIN to go ahead with the change. 

l:*LINE 1 
O.K.? Y 

2: LINE 2 
O.K.? N 

3: LINE 3 
O.K.? y 

4: LINE 4 
O.K.? A 

5: LINE 5 
O.K.? 

1: LINE 1 
2: line 2 
3: LINE 3 
4: line 4 
S:*LINE 5 

Search Text 

Format: [line][,line][?]S[string] 

This command scans through the file for occurrences of a specified string. Just about all 
the tricks and caveats that apply to the Replace Text command also apply here. Since 
searches are case-sensitive you have to specify search strings exactly. You can often iso
late words by specifying spaces before and after. If you omit line numbers EDLIN starts 
with the line immediately following the current one and searches until it finds the last 
line in memory. Once you've specified a search string using the Sor R commands, you 
can repeat the search without having to type in that string. 

And, as with the Replace command, you can insert a question mark (?) in the com
mand to have EDLIN prompt you by asking "O.K.?" when it finds a match. At that point 
if you do anything other than type Y or y or just press Enter, EDLIN will search for the 
next occurrence of the string. If you don't use a question mark, EDLIN will stop the first 
time it finds the string and make the line with the string the current one. If you do use a 
prompt EDLIN will tum the first line you accept into the current one. 

EDLIN will print a "Not found" message if it can't locate the string you specified, or 
if you ask it to prompt you and it finishes searching through a range without having you 
accept any of the matches it uncovered. 



EDUN 251 

It's possible to add a second command to Search Text, by tacking a Ctrl-Z and then 
the new command (with no intervening spaces) onto the end. For instance, if you knew 
you had used the word "banana" only once in your document and wanted to see the line 
it was in along with the 23 lines following it, you could issue the command: 

1,#"Sbanana"ZP 

and EDLIN would execute a P (Page) command as soon as it found the word banana. 
The following examples assume the file is the simple five-line file used above, and 

that the current line is line 1: 

*S3 

searches from the line after the current one to the last file in memory for the first occur
rence of the string "3." Here the current line is line 1, so the search begins at line 2: 

3: line 3 

*Sline 

searches from the line after the current one to the last file in memory for the first occur
rence of the string "line." Here the current line is line 1, so the search begins at line 2: 

2: line 2 

*lSline 

or: 

*l,Sline 

or: 

*1,#"Sline 

searches from line 1 to the last file in memory for the first occurrence of the string "line." 

l:*line 1 

*,3Sline 

since no beginning line is specified, EDLIN starts the replacement process with the line 
following the current one. In this case the current line is line 1, so this starts at line 2. As 
specified, EDLIN would continue searching until line 3, but it stumbled over the string 
it was looking for in line 2. 



258 PC Magazine DOS Power Tools 

2: line 2 

*l?Sline 

searches through the entire document from line 1 to the final line in memory for occur
rences of the string "line" and asks whether each is the one the user wants. In the example 
below, the user responded to the four prompts with: N n A Enter. EDLIN will stop sear
ching only when it reaches the end of the range specified, or when the user types a Y or 
y or presses Enter in response to the "0.K. ?"prompt. In this case, the user didn't respond 
positively until the fourth request: 

l:*line 1 
O.K.? N 

2: line 2 
O.K.? n 

3: line 3 
O.K.? A 

4: line 4 
O.K.? 

See Search Text. 

Transfer Lines 

Format: [line]T[d:]filename 

This command merges an existing file from disk into memory directly before the 
specified line, or before the current line if no line number is specified. 

The following examples assume that the current line is line I and that you have a file 
on drive A: called ONELINE.TXT that contains the single line "IBM keyboards are the 
best:" 

*3TA:ONELINE.TXT 

merges the file ONELINE.TXT from drive A: into the current file directly before line 3. 

1: line 1 
2: line 2 
3:*IBM keyboards are the best 
4: line 3 
5: line 4 
6: line 5 

*TA:ONELINE.TXT 



EDUN 259 

merges the file ONELINE.TXT from drive A: into the current file directly before the cur
rent line. In this case the current line is line 1, so EDLIN reads the new file in at the very 
beginning of the existing one. 

l:*IBM keyboards are the best 
2: line 1 
3: line 2 
4: line 3 
5: line 4 
6: line 5 

*fTA:ONELINE.TXT 

merges the file ONELINE.TXT from drive A: into the current file at the very end of the 
current file. 

1: line 1 
2: line 2 
3: line 3 
4: line 4 

5: line 5 
6:*IBM keyboards are the best 

Write Lines 

Format: [n)W 

This command writes lines to disk to provide space for EDLIN to load an additional part 
of a file that was originally too large to fit into memory. If you tried to edit a file that 
EDLIN couldn't load in one gulp, you have to edit the part that it could load, use this 
command to write the beginning of the file to disk and automatically renumber the 
remaining part of the file, and then read in more of the file from disk using the Append 
(A) command. This command won't work if more than 25 percent of memory is avail
able. If needed, EDLIN will write lines to disk starting with line I and continue until 25 
percent of memory is free. (See Append Lines.) 

Using EDLIN 

Be careful when mixing EDLIN output with redirected DOS output. For instance, if you 
redirect the output of ECHO to create a sample TEST .TXT file: 

ECHO Line 1 > TEST.TXT 
ECHO Line 2 >> TEST.TXT 
ECHO Line 3 >> TEST.TXT 



260 PC Magazine DOS Power Tools 

and then enter: 

TYPE TEST.TXT 

to see what's in the new file, DOS will display: 

Line 1 
Line 2 
Line 3 

Load TEST.TXT into EDLIN and save it with the E command. Now append another line 
onto the file: 

ECHO Line 4 >>TEST.TXT 

and do another TYPE command: 

TYPE TEST.TXT 

and all you'll see is the first three lines: 

Line 1 
Line 2 
Line 3 

What happened here was that EDLIN added an end-of-file marker to the file, and the next 
redirection command appended the line after that end-of-file marker. Line 4 was still in 
the file, but was located after the end-of-file marker. When the DOS TYPE command hit 
the end-of-file marker it quit before it reached the new line. DOS lets you get around this 
by using a/B switch (the/B stands for binary since binary, or nontext, files treat ASCII 
character 26 as just another character and not a signal to quit). 

Programs written for DOS should not really need an end-of-file marker because the 
exact size of the file is contained in the directory entry. This was not always the case. 
Before DOS, the most popular eight-bit microcomputer operating system was CP/M, 
which stored files in blocks of 128 bytes. The CP/M directory entries indicated only the 
number of 128-byte blocks and not the exact size of the file. ASCil text editors needed 
an end-of-file marker to determine what was actually part of the file and what was junk. 
When you redirect standard output to a file, DOS does not append an end-of-file marker 
to the file it writes. And if the file already contains an end-of-file marker, DOS does not 
remove it However, EDLIN always adds an end-of-file mark to files it saves. And the 
DOS TYPE command always stops at the first end-of-file marker it finds. 

To see what's going on, add a /B when you load the file into EDLIN: 

EDLIN TEST.TXT /B 



EDUN 261 

(Some versions of EDLIN contain a bug that won't let EDLIN recognize a lowercase /b 
switch. To be safe, make sure any /B you enter is a capital letter.) This tells EDLIN to 
load in the entire file regardless of imbedded end-of-file marks. You 'II see the whole file 
with the fourth line if you do an L (list) in EDLIN. You can also see the whole file by 
entering: 

COPY /B TEST.TXT CON 

or: 

COPY TEST.TXT CON /B 

both of which do a binary mode copy of the file to CON (the screen, or console). The 
end-of-file markers show up as little right arrows. 

But even if you use EDLIN in binary mode, it will still append an end-of-file marker 
to the end of the file. To get rid of it you could execute the following commands right 
after you exited EDLIN: 

TYPE TEST.TXT >TEMPFILE 
DEL TEST.TXT 
REN TEMPFILE TEST.TXT 

The TYPE command normally displays the file TEST.TXT up to (but not including) the 
end-of-file marker. Redirecting the output of this TYPE process into a temporary file like 
TEMPFILE will copy everything in the TEST.TXT file except the end-of-file marker. 
Then just delete the original TEST.TXTfile, rename the new TEMPFILE to TEST.TXT, 
and then delete TEMPFILE. You could automate the whole process with a batch file: 

ECHO OFF 
IF %1!==! GOTO OOPS 
EDLIN %1 
TYPE %1 >TEMPFILE 
DEL %1 
REN TEMPFILE %1 
GOTO END 
:OOPS 
ECHO Enter a filename after %0 
:END 

You can try using EDLIN to remove end-of-file characters one at a time. If there aren't 
too many in your file you may be able to get away with a global replacement operation. 
Since you can't specify a Ctrl-Z directly, you have to enter it as Ctrl-V Ctrl-Z, which 
looks like "V"'Z. 

However, EDLIN will choke if you try a R (Replace) command and the end-of-file 
markers are too thick. If this happens, use DEBUG to ferret out the offending ASCII 26 



262 PC Magazine DOS Power Tools 

characters. (The process described here is for files less than 64K in length; for longer 
ones you'll have to work with the CX and BX registers. See Chapter 8 on DEBUG for 
details.) DEBUG works exclusively in hex, so use the hex lA notation for decimal ASCII 
26. First, make a copy of the file, and work with the copy of the file rather than the original. 
If you make a mistake you can start the whole process again. 

Load the file into DEBUG. See how large it is by typing RCX and pressing Enter twice. 
Then take the hex number that DEBUG prints out in response, and plug it into a S (Search) 
command. The whole process will look something like: 

C>OEBUG TESTFILE 
-RCX 
ex OOAC 

-S 100 LOOAC lA 
3000:0102 
3000: 0105 ' 
3000:0108 
3000:010B 
3000:010E 
3000: 0111 
3000: 0114 
3000: 0117 
3000: OllA 
3000:01AB 
-E 0102 20 
-w 
-Q 

- This uses a file called TESTFILE. 
- You type RCX and pr~ Enter twice. 
- DEBUG responds with a tile length in 

hex; here it's OOAC. 
- Plug the length into this S command. 

These are all addresses of hex IA end-of. 
file markers DEBUG found. 

- This replaces the first IA with a space 
(hex 20); W writes it to disk. 

- And Q quits. 

The example used only one E command to fix just the first occurrence of the hex lA. To 
get rid of all the end-of-file markers you'd have to repeat the E command with every ad
dress DEBUG reported. 

Note: If you're good at hex, and you se.e that all the addresses of the lA characters are 
in one continuous block, you can use a single DEBUG F (Fill) command to repair the 
damage. So if you se.e something like: 

3000:l0C9 
3000:l0CA 
3000:l0CB 
3000:10CC 
3000:10CO 
3000:l0CE 
3000:10CF 

You can issue the command: 



EDUN 263 

F 10C9 lOCF 20 

which will fill the range of addresses from IOC9 (the first one on the list) to IOCF (the 
last one on the list) with hex 20 characters - spaces. Then type W (and press Enter) and 
Q (and press Enter) to save the changes. However, in the main example above, the ad
dresses aren't in one continuous block. 

Ignore the four digits to the left of the colon in the long list of addresses DEBUG prints 
out (here it's 30DD). This will vary from system to system and doesn't matter here. The 
four hex numbers to the right of each colon are the DEBUG offsets of each hex I A charac
ter (remember, DEBUG works in hex - a hex IA is the same as a decimal 26). 

Then, use the E command with each address to replace the IA with a 20 (a hex 20 is a 
space): 

E 0102 20 

and work your way through. When you 're done, enter W to write the changes to disk and 
Q to quit. Again, work only on a copy of your file, not the original. And note that the 
above procedure is for files 64K or less in length only. 

ECHO Version Madness 

If you created batch files before DOS version 3.1 and used the trick of printing a blank 
line by following the ECHO command with two spaces, when you upgrade to a newer 
DOS version these ECHO commands will simply print "Echo is off' messages rather 
than blank lines. A batch file and EDLIN can fix the problem. ECHO will print a blank 
line if you follow it with a space and then an ASCII 255 character rather than with two 
spaces. ASCII 255 shows up as a blank on the PC screen, but to DOS, it's nonblank, so 
you won't get the "Echo is off' message. You can enter an ASCII 255 by holding down 
the Alt key, typing 255 on the number pad (not the top row number keys), and then releas
ing the Alt key. 

Some text editors and word processors will have trouble with this ASCII 255, but the 
DOS EDLIN editor can handle it without any problems. 

To fix the double space problem with EDLIN, use the R command to replace the final 
space with the a character 255,by entering this line: 

1. Type: 1,RECHO (with two spaces after the ECHO). 
2. Press the F6 function key. 
3. Type just: ECHO. 
4. Generate a character 255 by holding down the Alt key, typing 255 on the number 

pad, then releasing Alt. 

The line looks like this: 



264 PC Magazine DOS Power Tools 

*l,RECHO "ZECHO 

The first number tells EDLIN to start at line 1. Since you didn't enter a second number 
after the comma, this tells EDLIN to repeat the operation on every line loaded in memory. 
The R is EDLIN's Replace command, and here it's followed immediately by the old 
string - ECHO and two blanks. When you press the F6 key after entering the old string, 
you'll see a AZ. Then type the new string -ECHO followed by a blank followed by the 
ASCII code 255. Character 255 will appear as a blank on your display. EDLIN's search 
and replace is case-sensitive, so you'll have to repeat the command for occurrences 
ECHO, echo, and Echo. 

Since EDLIN gets keyboard input through DOS (unlike most word processors and text 
editors), you can use it with redirection of standard input Begin by creating a small script 
file (in EDLIN, of course) called REPLACE that looks like: 

1,RECHO <F6>ECH0<255> 
1,REcho <F6>Echo<255> 
1,Recho <F6>echo<255> 
E 

To enter the above four lines, first enter: 

I 

to put EDLIN into Insert mode. Then type each line, but press the F6 key where each one 
has an <F6> and generate a character 255 where each has a <255>. Be sure to observe 
the capitalizations carefully. 

If you ever have to edit REPLACE after you create it, use the /B option with EDLIN. 
Since F6 is the same as a Ctrl-Z, which normally means "end of file/' EDLIN will stop 
reading the file at the first Ctrl-Z unless it has the /B flag. 

After typing the fourth line (with the solitary E), press Ctrl-C to get back to command 
mode and then enter E to save the file and quit. 

To change a particular batch file (here called OLDFILE.BA n, all you have to do is 
enter the command: 

EDLIN OLDFILE.BAT < REPLACE 

DOS will take its input from REPLACE to do the search-and-replace operations 
automatically for you. 

If you have lots of batch files with two spaces after ECHO, you can change them all 
with a pair of one-line batch files. First, create a one-line batch file called CHG BAT .BAT: 

EDLIN %1 < REPLACE 

Then create another one-line batch file call CHG ALL.BAT that looks like: 



EDUN 265 

FOR %%X IN (*.BAT) DO COMMAND /C CHGBAT %%X 

If you run CHG ALL.BAT, it will execute CHG BAT.BAT for every batch file on the disk 
(or subdirectory). Each time CHGBAT runs, it loads another batch file into EDLIN and 
uses REPLACE for the keystrokes to do the search-and-replace. 

One interesting side effect of this process is that some batch files get edited twice. 
EDLIN renames the old version of an edited file with an extension .BAK, and creates a 
new directory entry to save the new version. Because of this, the FOR command in 
CHGALL.BAT stumbles over the file a second time. Note that CHGALL.BAT and 
CHG BAT .BA Twill themselves be edited by EDLIN during this process. Neither of these 
peculiarities should cause a problem. 





Chapters 

DEBUG 

Don't be put off by the name or the fonnidable set of commands: DEBUG is a serious 
computer user's best friend. Those of you who are already familiar with DEBUG may 
wish to go directly to the summary of commands in the second part of this chapter. 

IBM and Microsoft need some real help when it comes to being friendly. They 
shouldn't have called this wonderful program DEBUG, which sounds as if it's for 
programmers only and that it involves something that's broken. Instead, they should have 
named it something like POWERUSR, or SLIKTOOL, or DOIT ALL. Well, maybe not. 

It's almost as ifthese two companies tried to scare users away. Okay, DEBUG can be 
used as a high-level tool for fixing broken programs. But most real programmers have 
moved on to more powerful debugging aids produced by Microsoft and others. IBM 
would like us to believe that DEBUG is there mostly to "provide a controlled testing en
vironment so you can monitor and control the execution of a program to be debugged" 
and "execute object files." Lost in the shuffle is a fragment admitting that it can "load, 
alter, or display any file." Totally ignored is its crude but useful ability to assemble and 
unassemble code - to translate assembly language instructions used by programmers 
into the machine language your CPU speaks, and back again. 

Actually, DEBUG is for two sets of users. It's true that a handful of its commands are 
only for hard-core programmers who really need to trace though the underlying chip in
structions one step at a time, or set breakpoints so that a program will screech to a halt 
and display the contents of the main CPU registers, or suck in data from a computer port. 

But to the average power user, DEBUG is the ultimate program generator, analyzer, 
and customizer. Once you learn its few simple rules you can create short, powerful new 
programs and add flash to existing ones. 

Unfortunately, because DEBUG is so incredibly powerful, it's also incredibly 
dangerous. (And, like every other part of DOS, it's frequently counterintuitive.) It's sort 

267 



268 PC Magazine DOS Power Tools 

of like a carpenter's shop - filled with sharp tools you can use to build or fix just about 
anything safely, so long as you wear goggles and watch out for your fingers. 

Most users are smart enough to work with copies of their programs rather than the 
originals when trying any sort of customization, so they won't end up ruining a $500 
program with an errant keystroke. But certain madcap copy protection schemes can cause 
trouble because the programs they "protect" often don't play by the rules even if you and 
DEBUG do. Worse, because DEBUG lets you write information to absolute addresses 
on your disk rather than forcing you to have DOS take care of this safely for you, you 
can wipe out an entire hard disk with one simple erroneous command. 

The general DEBUG safety rules are: 

1. Always work with copies of your programs, never the originals. 
2. Don't fool around with copy protected programs unless you 're positive you know ex

actly what you're doing. 
3. Whenever you are about to write sector information (with the W command) stop and 

triple-check your typing and your intentions. If you had read information from drive 
B:, had changed it slightly, and are about to write it back to the same drive, be sure 
your drive specification is correct. DEBUG uses a 0 to represent drive A:, a 1 to rep
resent drive B:, and a 2 to represent drive C:. If you're trying to alter the disk direc
tory, or (heaven forbid) the File Allocation Table (FAT) on drive B:, and it's late at 
night, and you inadvertently write the new information to drive 2, well, that's what 
backups and four-letter words (like "oops") are for. 

4. If you have any doubt whatsoever about what you 're doing, get back to the DEBUG 
prompt (by hitting Ctrl-Break or Ctrl-C), type Q on a line by itself to quit, and then 
press the Enter key to return to the main DOS prompt. You can always go back later 
and try your DEBUG work again. If you're at all hesitant about a change you made 
or a value you entered, make absolutely sure that you don't enter the W (Write) com
mand. And avoid using the DEBUG G (Go) command to execute the program you 're 
fiddling with, since unpredictable things can happen if you haven't reset all the 
registers properly, or if you've entered some but not all the changes you're working 
on. 

5. While it may be tempting to change real gut-level aspects of the program, such as 
timing settings, again, don't, unless you're an expert. It's true that you can goose up 
the performance of your system by altering table settings that control such things as 
floppy disk head movement. It's also true that putting the wrong value in the wrong 
part of a table can send a disk head mechanism careening into someplace noisy and 
destructive. 

6. There's a saying that "software can't destroy hardware." Unfortunately, it's not true. 
Apart from sending sensitive disk drive mechanisms into never-neverland, it's pos
sible to blow out monitors or transformers. Again, if you simply follow reliable in
structions to the letter and heed all of the warnings, you should be safe. 

If you're in doubt about a particular DEBUG trick, don't try it. We hear lots of horror 
stories where users say "I know the instructions said 'for IBM hardware only' but my 
salesman told me this Yamagazi AT was virtually identical to an IBM." Or where the 



DEBUG 269 

user says "I know it said 'for color monitors only, but my monochrome was a color -
green. Now it's black." 

Every DEBUG technique discussed in this book has been tested extensively on IBM 
equipment. However it is impossible to test every technique presented here on every 
single nonstandard system, given all the combinations and permutations on the market. 
Again, if you're not using an IBM system and you have any doubts whatsoever, don't 
even think of trying these! 

At PC Magazine we receive barrels of potentially dangerous tips and tricks for IBM 
machines, some of which are quite useful, if a bit flashy. But if a tip appears at all 
troublesome we don,t print it. The tips that make it into print are the ones we feel are 
safe. Most of the tips we publish simply create assembly language programs that use com
binations of standard DOS and BIOS instructions to search for files, change colors, con
vert lowercase text to uppercase, etc. Others change harmless settings - to suppress 
screen clutter in batch files, or allow more than ten mismatches when DOS is comparing 
two files, for example. 

Now that that's out of the way, we have to mention one more nasty thing - DEBUG 
works exclusively in hex. Hexadecimal notation is pretty basic stuff, and it's not hard to 
master. If you,re uncomfortable with it, see the earlier chapter on hex and binary. 

Addresses 

The smallest four-digit hex number is 0000 (same as decimal 0). The largest is FFFF 
(same as decimal 65,535). This means that four hex digits can represent 65,536 different 
decimal values (1 through 65,535, plus 0). Decimal 65,536 is often abbreviated as 64K. 
lKisequal to2AlQ,or 1024(not1000,assomeusersthink).64 * 1024=2"16,or65,536. 

The PC can address one megabyte of memory. One megabyte is equal to 2"20, or 
decimal 1,048,576. 16 * 65,536 is also equal to 1,048,576. The lowest address is address 
0. The highest is 1,048,576. 

For many common tasks it's easier and quicker to work with smaller numbers rather 
than larger ones. Anyway, the original PC came with a 16-bit chip, and the biggest num
ber this chip could address "directly" was 2" 16, or 65,536. 

But since 65,536 is 1/l6th of 1,048,576, being able to handle only 65,536 addresses 
directly meant working with only 1/16th of the available memory at any one time. To 
give users access to the rest, IBM designers employed relative addressing. They chopped 
the one megabyte into 16 chunks called segments, each 64K long. Once you specified 
which of the 16 segments you wanted to work with, you could address any of the 65,536 
bytes in that segment directly. 

If you have to know what's at address 5, you can tell DEBUG simply to report the 
value at address 5. Because you didn't mention any particular segment, it will tell you 
the value at address 5 of whatever segment you 're in at the time. If you want to look at 
address 5 in another segment, you have to specify both the address and the segment you 
want. 

Manuals sometimes provide maps that show the one meg of memory divided neatly 
into 16 even chunks 64K apart from each other, starting out: 



270 PC Magazine DOS Power Tools 

addre~ OOOOH (decimal 0000) 
segmentO 

addre~ lOOOH (decimal 65536) 
segment 1 

addr~2000H (decimal 131072) 
segment2 

address 30008 (decimal 196608) 

It doesn't really work like that. Segments can have any starting absolute address from 
0 to 1048560, so long as the address is evenly divisible by 16. So 16 and 32 and 524288 
are all valid absolute addresses, but 1 and 17 are not. And segments can overlap, either 
partially or totally. 

Relative, or segmented, addresses are usually expressed as a pair of two four-digit hex 
numbers separated by a colon: 

XXXX:YYYY 

The XXXX represents the segment. The YYYY stands for the offset into that segment. 
Once you've mastered hex, start putting it into action. DEBUG.COM is usually on the 

DOS Supplemental or Operating disk, depending on the version. If you have a hard disk, 
be sure to copy it into your main DOS subdirectory, and be sure you're using a PATH 
command that includes this DOS subdirectory. This will let you use DEBUG anywhere 
on your hard disk. If you don't have a hard disk, you should put DEBUG.COM on your 
main bootup or utilities disk and keep it handy at all times. 

The DEBUG prompt is simply a hyphen hugging the left edge of your screen: 

All of DEBUG' s commands are single letters. You may enter them in upper- or lower
case, or a mixture of both. The examples here will use uppercase text to avoid confusing 
1 with "ell." And you don't have to separate the single-letter commands from the 
parameters that follow them. Typing: 

RCX 

to see what's in the CX register (this will be covered shortly) is the same as typing: 

R ex 

Similarly, you can use either: 

0120 



DEBUG 271 

or: 

D 120 

to display the values of the 128 bytes of memory starting at offset 120H (again, we '11 get 
to displaying memory a bit later). 

When entering a lot of information or making extensive changes using DEBUG, it's 
often best to create pure-ASCII scripts and then redirect these scripts into DEBUG. DOS 
versions 2.0 and later treat such redirected files as if they were actual keystrokes. 

Scripts are handy because they make it easy for you to proofread your typing before 
executing actual DEBUG commands. If you find a typo in your script it's a whole lot 
easier to correct it with a word processor or EDLIN than to end up with a real mess that 
you created while in DEBUG because you typed something incorrectly. 

Scripts are also valuable because in some cases you can add nonexecutable comments 
that DEBUG ignores but that can remind you much later of what you did. And if you 
store your scripts on disk, you can cannibalize them and use them to create other slight
ly different scripts. They're also handy for transmitting via modem. Many telecom
munications services work with text files only, and won't let you send programs. But you 
can send scripts, since they 're just ASCII files, and have the recipient redirect these scripts 
into DEBUG to create the program you wanted to send. 

Redirectable scripts have to be pure-ASCII files, without any extra word processing 
formatting commands imbedded in them. The easiest way to create them is with a pure
ASCII editor like SideKick' s notepad, or with a word processor that can export DOS files 
(such as WordPerfect or Word), or with a word processor that has a built-in ASCII mode 
(such as WordStarin nondocument mode). EDLIN isn't bad for shorter scripts, and you 
could even use the DOS COPY CON command. 

DEBUG doesn't execute a command until you press the Enter key. So any script you 
create has to have a carriage return at the end of every line - especially the last one, 
which is always Q on a line by itself to quit. If you don't end every script file with a Q 
that has a carriage return after it, redirecting it will hang your system. So be sure you 
press the Enter key at the very end of any DEBUG script, or you'll have to reboot. 

Most DEBUG commands perform just one task and then return you to the DEBUG 
prompt If the task takes too long to execute (displaying the contents of a huge chunk of 
memory, for instance), you can hit Ctrl-Break or Ctrl-C to interrupt it and return to the 
DEBUG prompt If you 're using the DEBUG mini-assembler to turn assembly language 
statements into machine readable code, press the Enter key twice after you enter your 
final statement, to return to the DEBUG prompt. 

Since many DEBUG scripts contain assembly language commands and statements, 
you can simulate pressing the Enter key at the end of the final statement by leaving a 
blank line after that statement If you don't do this, DEBUG will try to interpret every
thing that follows as additional assembly language statements. If you try typing in the 
example scripts that follow, be sure to copy them exactly as they appear, blank lines and 
all. 

Here's an example of a DEBUG script file, called BEEP.SCR: 



272 PC Magazine DOS Power Tools 

N BEEP.COM 
A 

MOV DL,7 
MOV AH,2 
INT 21 
RET 

RCX 
7 
w 
Q 

gives the file a name 

ASCII 7 is the beep character 
the DOS "display output" function 
kicks DOS into action 
return to DOS - next line is blank! 

DEBUG ignores any text following semicolons, and the semicolons themselves. 
They 're included just to remind you later what the program is doing. You have to be care
ful when you use them, since DEBUG may interpret such comments as part of a com
mand to execute, and get thoroughly confused. Ifs pretty safe to use them with assembly 
language instructions like the ones above, and very unsafe when you 're entering single 
letter commands. 

You can type this script in using any of the tools mentioned above. If by some crazy 
circumstance you don't have a word processor handy and refuse to learn EDLIN, you 
could create the script by adding a COPY CON BEEP.SCR line before the first "N 
BEEP.COM'' line, and pressing Enter, then the F6 function key, and then Enter when 
you're done. 

In any case, be sure to leave the blank line above RCX. You can do this by pressing 
the Enter key twice after RET. And double check that you press the Enter key at the very 
end, after the Q. If you did, the cursor will be on the line below the Q. Call the file 
BEEP.SCR. When you're all done, get back to your main DOS prompt and type: 

DEBUG < BEEP.SCR 

DOS will feed the BEEP.SCR commands into DEBUG a line at a time, and you'll be 
able to see DEBUG processing them one by one. If everything goes the way it should, 
near the bottom of the screen you'll see the message: 

Writing 0007 bytes 

If you make a typing mistake, DEBUG will show you where the trouble is by pointing 
to it and printing the word Error. If you had typed "MOV LD,7" insteadof"MOV DL,7," 
you'd see: 

33DB:0100 MOV LD,7 
" Error 

If DEBUG detects such a syntax error, it may or may not continue and create the file, 
depending on the severity of the problem. Watch the screen closely as DOS redirects the 



DEBUG 273 

script file into DEBUG. If you see any error messages do not try to execute the program 
you were trying to create! Instead, erase any erroneous file it may have created, check 
yom typing, and try again. 

If you type the BEEP.SCR file correctly and redirect it properly into DEBUG, you'll 
end up with a seven-byte program on your disk called BEEP.COM. Type BEEP to run 
itand DOS will beep. Here's how it works: 

The first "N BEEP.COM" line tells DEBUG to give the file a name. DEBUG can't 
create a file unless you specify a filename. Since you want to create an executable file, 
you have to give the file a COM or EXE extension. When creating any kind of files with 
DEBUG, use COM extensions only. 

The "A" command turns on DEBUG's mini-assembler, which will convert any as
sembly language statement(s) that follow into a machine-level form your CPU can readi
ly understand. If you haven't used the Assemble command previously and you enter an 
A without specifying an address after it, DEBUG will start assembling these machine
level instructions at address 100. If you're using the A command more than once in a par
ticular DEBUG session, or you want to have DEBUG put the assembled ccxle at an offset 
higher than 100, be sure to include the proper addresses. 

The next four lines are the actual assembly language statements. "MOV DL,7" moves, 
or puts, the value 7 into the register DL. "MOV AH,2" moves, or puts, the value 2 into 
the register AH. INT 21 is the main interrupt that kicks DOS into action. When your 
program invokes INT 21, DOS looks at the value in the AH register to figure out which 
of its dozens of function calls it's supposed to execute. Other values in other registers 
provide the raw material for the specific DOS function call to process, or narrow how 
some of the more flexible function calls should act. In this example, the value of 2 in 
register AH tells DOS to use function call 2 to print one character onto the screen. When 
you trigger DOS with an INT 21 and it sees a 2 in AH, it looks in the DL register for a 
number and displays onscreen the ASCII character represented by that number. Printing 
an ASCII 7 character beeps. As it's used here, the final "RET' will jump control of the 
system back to COMMAND.COM when the program finishes executing. 

Registers are tiny storage areas inside the main CPU chip, and virtually every instruc
tion or slice of data in your computer either passes through these registers or is in some 
way controlled by what's temporarily stored there. Chips in the Intel 8088 family con
tain 14 registers, each of which is 16 bits (two bytes) long. Four of these are general pur
pose, or scratch-pad registers: AX, BX, CX. and DX. Each of these four two-byte 
scratch-pad registers can be divided into high and low bytes. Remember, one byte con
tains eight bits. Two bytes together form what's called a word, so each of these 16-bit 
registers is actually a word. And each word has high and low halves, the way the decimal 
number 27 does - in this case the 2 would be the high half since it's actually 2 x 10 (or 
20), while the 7 is the low half, since it's actually 7 x 1 (or 7). The number on the left, in 
the tens column, is always higher, or worth more than, the lower number on the right, in 
the ones column. 

The high bytes are referred to as AH, BH, CH, and DH, and the low bytes as AL, BL, 
CL, and DL. Each of these high and low registers can store a single byte; the full AX, 
BX, CX, and CX registers can store two bytes (one word) in a single gulp. If you need 
to manipulate just one byte, you generally use the high or low registers. If you have to 



274 PC Magazine DOS Power Tools 

handle two bytes together, you use the full-size registers. The above example used AH 
to tell DOS which function call you wanted, and DL to store the value of the character 
you wanted to display. 

Four additional segment registers tell the CPU the starting address of four important 
64K memory segments: the code segment (CS), data segment (DS), stack segment (SS), 
and extra segment (ES). Another five registers provide the necessary offsets: the instruc
tion pointer (IP), stack pointer (SP), base pointer (BP), source index (SI) and destination 
index (DI). The final one, called the flags register, maintains the on-off status of 16 in
dividual bits. Processes can change individual bit settings to ke.ep track of events, or refer 
to the settings changed by other processes or events and act accordingly. 

When you initially load DEBUG, it sets the addresses of the CS, DS, ES, and SS seg
ments so they're all located in memory directly after the space taken up by the DEBUG 
program itself. It also normally sets the values of the main registers you'll be using -
AX, BX, CX, and DX (as well as some of the others) to zero. If you loaded a file shorter 
than 64K bytes from the DOS command line at the same time that you started DEBUG, 
DEBUG will set the CX register to reflect the length of this file. If the file is larger than 
64K, DEBUG will use both the CX and BX registers to maintain the file length. If you 
later load a file using the N (Name) and L (Load) commands, DEBUG will then put the 
file's length into the CX register (and the register BX if necessary). 

The last four lines of the example above reset the ex register to 7 (since ex is a two
byte register, this actually set CX to 0007 - the high byte is 00 and the low one 07), 
write the file to disk (W), and then quit (Q). When you ask DEBUG to write a file, you 
have to specify a filename and a file length. You tell it the filename either by using the 
N (Name) commandt or by including the name on the command line when you first start 
DEBUG (as in C>DEBUG BEEP.COM). You specify the file length by putting a value 
in the ex register. 

At times you may want DEBUG to process strings of characters. When entering such 
strings, you can use pairs of either single quotes (') or double quotes ("). This lets you 
include the opposite kind of quote in the string you're entering. So if you entered "The 
word 'gub' will appear in quotes ti or 'The word "gub ti will appear in quotes,' sure enough 
both statements will be true. It gets tricky, but you can also use the same type of quota
tion marks inside and outside the string, if you double them inside: "This uses the ""double 
quote" .. mark twice." 

The purpose of the DEBUG examples in this chapter is not to teach you every last 
thing you have to know about assembly language, but to familiarize you with the kinds 
of things DEBUG can do. If you really want to learn about assembly language, purchase 
the IBM or Microsoft MASM programs and read the manuals. The programs you '11 leam 
to create here are all very short and single-minded, and they use a lot of shortcuts and 
defaults. 

Also, unless you're a serious assembly language programmer, you don't really have 
to know every last command in DEBUG. All you ne.ed to learn are the basic commands 
to create and modify programs. For the purpose of working more productively you don't 
have to learn how to use DEBUG as a "controlled testing environment" Commands that 
execute programs from within DEBUG, or trace through them one instruction at a time 
are extremely helpful to professional programmers, but they're not necessary here. And 



DEBUG 275 

virtually all the following examples will concentrate on creating and customizing files 
rather than tearing into your disk sectors and fooling around with underlying system struc
tures. 

You can make a permanent record of any DEBUG activity either by redirecting your 
efforts to a file, or by echoing them simultaneously to your printer. To get a printed copy 
of your DEBUG session, tum your printer on, then type Ctrl-P or Ctrl-PrtSc. Anything 
that appears onscreen will also be sent to your printer a line at a time, although your 
printer may have a hard time trying to reproduce some of the non text characters that your 
screen can handle with ease. To turn this printer echo feature off when you 're done, just 
type Ctrl-P or Ctrl-PrtSc one more time. 

While it's often useful to redirect a DEBUG output to a file, this can be a bit tricky 
since you won't be able to see what you're doing. Redirecting output to a file is the op
posite of the script file process mentioned earlier. When you redirect input (such as a 
script file) into DEBUG, DOS feeds characters from the script file into DEBUG just as 
if you were typing at the keyboard. When you redirect the output from DEBUG into a 
file, DOS takes all the characters that would normally show up on your screen and in
stead reroutes them into a file on your disk. Because DOS will intercept each character 
before it gets to your monitor, you won't see be able to see what's going on until you 
fmally type Q to quit, press Enter, and return to the main DOS prompt. So if you try 
redirecting the DEBUG output with the simple command: 

DEBUG > OUTPUT.FIL 

you have to know exactly what you want to type, because you'll be flying blind. 
A better way to end up with a DEBUG output file on disk is to first step through the 

exact DEBUG process you want - without worrying about redirection. Write down 
every keystroke you use, or have a screen-capture utility like SideKick's notepad record 
your keystrokes for you. Then type all these keystrokes into a script file called 
DEBUG.SCR (or edit the file SideKick created). Remember to insert blank lines in the 
script file if necessary, and be absolutely sure to press the Enter key at the very end after 
the final Q. 

Then review the DEBUG.SCR file carefully. It should contain all the keystrokes you 
would normally enter in the particular DEBUG session you want to capture on disk. and 
nothing else. Put this script file on the same disk as DEBUG and type: 

DEBUG < DEBUG.SCR > DEBUG.OUT 

Your disk will chum for a second or two as DOS feeds the DEBUG .SCR keystrokes into 
DEBUG and then creates a file on your disk called DEBUG .OUT that contains every
thing DEBUG would have displayed on your screen. 

For example, let's say you wanted to see the text parts of the main DOS command 
processor, COMMAND.COM. These include internal commands, error messages, 
prompts, etc. 



276 PC Magazine DOS Power Tools 

As we've seen, DOS commands come in two flavors - internal and external. Exter
nal commands are individual programs (with COM or EXE extensions) delivered on your 
DOS disks. Commands like CHKDSK and SORT are external commands, since you ex
ecute them by running programs called CHKDSK.COM and SORT .EXE. However, the 
instructions for executing commands like DIR and TYPE are internal, since they're ac
tually imbedded inside COMMAND.COM. 

When you enter something at the DOS prompt, DOS first looks inside COM
MAND.COM to see if what you typed is an internal command. If not, it tries to find a 
file with the name you specified ending with COM, then EXE, or finally BAT in the cur
rent subdirectory. If it doesn't locate one, it wilt scan through all the other subdirectories 
listed in your PA TH statement for COM, EXE, or BAT files, in that order. As soon as it 
finds one it will stop looking and execute it. If it doesn't, it will issue a "Bad command 
or filename" error message. 

So, let's look inside COMMAND.COM. The following example uses version 3.3 of 
DOS, but any version 2.0 or later will work the same way. If you are using a DOS ver
sion other than 3.3, some of the numbers shown below will be different. And while it as
sumes you're on drive C:, the process is the same on any drive so long as 
COMMAND.COM and DEBUG.COM are on a disk in that drive. 

First, at the main DOS prompt, start DEBUG and tell it you want to load the COM
MAND.COM program into memory: 

DEBUG COMMAND.COM 

Then, when you see the DEBUG hyphen prompt, find out how long the program is by 
typing: 

RCX 

DEBUG will respond by printing: 

ex 62DB 

(The hex number after CX will be different if you're trying this on a version other than 
DOS 3.3. Note this number, since you'll have to use it shortly.) 

Typing RCX (or R CX, or r ex, or rcx) tells DEBUG to display the value currently in 
register CX and then pause and wait to see if you want to change this value. If you do 
want to enter a new value, type a hex number immediately after the colon and then press 
the Enter key. If you don't want to change the value, but just wanted to see what the value 
was, just press the Enter key without entering a new value. 

You could also type just an R by itself, and then press the Enter key. Doing this right 
after you typed DEBUG COMMAND.COM would print: 



DEBUG 277 

AX=OOOO BX=OOOO CX=62DB DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO 
DS=33F7 ES=33F7 SS=33F7 CS=33F7 IP=OlOO NV UP EI PL NZ NA PO NC 
33F7:0100 E92DOD JMP OE30 

Entering R without anything after it will display the contents of all your system's 
registers, the state of all its flags, and the actual instruction that will be executed next. In 
the above display, the registers are the 13 blocks of characters with equals signs in the 
middle, the flags are the eight pairs of letters, and the bottom line indicates that the JMP 
OE30 instruction at address 100 is the next one to execute. For the purpose of this ex
ample, all you need is the value in register CX. The third number in the top row tells you 
this value is 62DB. 

Once you learn the file's length, have DEBUG search all the way through the COM
MAND.COM file that's currently loaded in memory for the string "Batch." COM
MAND.COM stores its main messages, commands, and prompts in a lump near the very 
end of the file. The first bit of text stored there is a "Batch file missing" error message, 
so if you find the address of this particular message you can jump to this address and 
browse through all the text that follows. 

DEBUG needs to know where it should start and stop searching for something (in this 
case the "Batch" string). You can specify the search parameters one of two ways. Either 
give DEBUG explicit starting and stopping addresses, or tell it the starting address and 
then provide a number representing how many bytes after this address DEBUG should 
scan through. 

The starting address is simple; DEBUG always loads COM files so they start at 
memory offset 100 (remember, all these numbers are in hex, not decimal). Since you 
want to search a file from beginning to end that is 62DB bytes long, starting at 0100, the 
ending address is 63DB. So you would specify explicit starting and stopping addresses 
by typing: 

-s 100 63DB "Batch" 

In the procedure above, you snooped inside the R register to learn how long the COM
MAND.COM file was. DOS version 3.3 DEBUG will report 62DB; this number will be 
different if you're using a different version of DOS. But notice that while the length of 
the file is 62DB bytes, you have to enter 63DB as the explicit ending address. Why? 

The number 63DB is 100 higher than the actual file length 62DB. DEBUG normally 
loads files at address 100, not at address 0 (unless they're EXE files), and this moves all 
the addresses in the file up by 100. If you want to look at the first two bytes in a file -
bytes 0 and 1 - you actually have to tell DEBUG to look at the contents of addresses 
lOOand 101. 

The first byte in the file is loaded into address 100, the second byte at address 101, and 
the 62DBth byte at 63DB. So you have to add 100 to the length of the file if you want 
DEBUG to search all the way through to the last byte loaded in memory. To do this, just 
add 1 to the third hex digit over from the right The third digit from the right in this ex
ample is 2, so you add 1 to it and it becomes 3. 



278 PC Magazine DOS Power Tools 

The process of adding 100 like this is trivial unless the third digit over is hex F. In the 
decimal number system, if you add: 

1 
+ 9 

you end up with a 0 in the column that has the 9 in it, and you carry a 1 over to the column 
immediately to its left. In the hexadecimal number system, if you add: 

1 
+F 

you end up with a 0 in the column that has the Fin it, and you carry a 1 over to the column 
immediately to its left If DEBUG had reported a file length of 1111, adding 100 to it 
would give you 1211. But if the file length were lFll, adding 100 to it would produce 
2011. And if the file length were 9Fl 1, adding 100 would yield AOl 1. Don't mix hex 
and decimal numbers when in DEBUG; be careful to work exclusively in hex. 

If you feel squeamish alx>ut adding hex numbers, let DEBUG do it for you. If you 
wanted to add 100 to 62DB, all you have to do is make sure you see the DEBUG hyphen 
prompt and then type: 

H 62DB 100 

DEBUG will respond by printing: 

63DB 61DB 

The first number (63DB, the one you're looking for) is the sum of 62DB + 100. The 
second number (61DB) is the difference of 62DB - 100. You don't need to use the sub
traction feature of this H (hex math) command here, but if you ever do, make sure you 
enter the numbers in the proper order. Adding numbers in either order will produce the 
same result (3 + 5 and 5 + 3 will lx>th yield 8). But this even-handedness doesn't apply 
to subtraction; 3 - 5 is definitely not the same as 5 - 3. 

DEBUG makes it even easier to specify a search range. All you really have to do is 
enter the starting address and the number of bytes to search. Since you want to scan 
through the entire COMMAND.COM file, the number of bytes to search is equal to the 
length of the file. So instead of entering explicit starting and stopping addresses, you 
could issue a variation of the search command used earlier: 

-s 100 L 62DB "Batch" 

This command tells DEBUG to start a search for the string "Batch" at address 100 and 
continue searching for a length of 62DB bytes. You '11 get the same results whether you 
use an "L" like this to specify the search length, or instead specify the explicit starting 
and stopping addresses. But this way you don't have to do any hex math. 



DEBUG 279 

DEBUG will search through the file and report all occurrences of the "Batch" string. 
Since searches are case sensitive, DEBUG will ignore any "batch" or "BATCH" strings 
it may find. It's important in this example to specify all lowercase letters except for the 
initial capital B, since COMMAND.COM does indeed contain other "batch" strings that 
you don't want to examine. 

If you had wanted DEBUG to locate every occurrence of this word including all-lower
case versions ("batch") as well as lowercase versions with initial capital letters ("Batch") 
you could have changed the search command to: 

-s 100 L 62DB "atch" 

or: 

-s 100 63DB "atch" 

Of course, this would also find words like patch, or snatch, or potlatch if any existed in 
the file you were scanning. However, COMMAND.COM contains only three strings with 
"atch" in them. If you tried either of these "atch" search commands in version 3.3, 
DEBUG would report something that looked like: 

33F7:0A51 
33F7:4DCA 
33F7:4DF4 

Try this yourself with version 3.3 and you'll see the same three numbers to the right 
of the colons, but different numbers to the left. The number to the left (in this case 33F7) 
is the segment address, and it will vary from system to system depending on how much 
memory your computer has and what else you currently have loaded in memory. Manuals 
sometimes replace the varying segment addresses with a row of "xxxx" characters, so if 
you see something that looks like: 

xxxx:OA51 
xxxx: 4DCA 
xxxx: 4DF4 

all it really means it that any four-digit hex number can appear where the xxxx charac
ters are. 

But since you really wanted DEBUG to look for just the string "Batch" it will find just 
one occurrence: 

33F7:4DC9 

Jot down the offset address - the righbnost four bytes, or 4 DC9 - because you'll need 
it for the next process. 



280 PC Magazine DOS Power Tools 

To make sure you've found the proper string, use the DEBUG Display (D) command. 
You can use the same basic syntax rules for the Display command that you used with the 
search command. The display range can either be an explicit starting and stopping ad
dress, or a starting address and a length of bytes for DEBUG to display. Since the word 
"Batch" is five characters long, both of the following commands will display the string 
at the offset address the above search command located: 

D 4DC9 4DCD 

or: 

D 4DC9 L 5 

The top command first lists the starting address and then the stopping address. Note that 
the stopping address is the starting address+ 4. not the starting address+ 5. This is be
cause you want DEBUG to display the value of the byte at address 4DC9 (the "B" in 
"Batch") plus the next four characters ("atch "). Again, if you 're a little shaky on hex math 
(hex 9 + 4 = D, not 13), you can use the DEBUG H command to add the two numbers 
together for you. 

The bottom command first lists the starting address and then tells DEBUG to display 
five bytes starting with that address. In this case you specify five rather than four, since 
you're asking DEBUG to display a total of five bytes. 

Either way, you'll see something like: 

33F7:4DCO 42 61 74 63 68 Batch 

Every DEBUG D display has three parts. The first part, at the lefthand edge of your 
screen, is the address of the memory that DEBUG is displaying, in SSSS:OOOO seg
ment:offset format. The second, in the middle of your screen, are the individual values 
of the chunk of memory DEBUG is displaying, in hexadecimal notation. The third, at the 
righthand edge of your screen, is the ASCII representation of what's in memory at the 
addresses you specified. To avoid cluttering up this part of the display with things like 
happy faces, musical notes. or Greek and math characters, DEBUG will print a period(.) 
when it sees any value below hex 20 (decimal 32) or above hex 7E (decimal 126). 

DEBUG will often display what looks like random letters. numbers, and punctuation 
in the rightmost third of the screen. These are just artifacts, and don't mean anything. 
DEBUG isn't smart enough to know what parts of a program are text that should be dis
played and what parts are actually me.achine-level instructions that shouldn't be dis
played. Whenever it sees a hex value of 50 (decimal 80), for instance, DEBUG will 
display a "P." If this value of 50 happens to be in a message such as "Path not found" 
you '11 be glad it did. But the SO could just as easily have been part of an address or value 
in a gut-level instruction. 

------------



DEBUG 281 

For instance, if the internal code of a program moved a value of 5000 into register AX 
(with the command MOV AX,5000), the actual machine-level version of this instruction 
would be: 

B80050 

DEBUG would display the B8 and the 00 as periods, since B8 is above hex 7E and 00 is 
below hex 20. But it would display the 50 in the righthand third of the screen as a P. In 
fact, one particular assembly language command (PUSH AX) is represented in machine
level code as the single value: 

50 

which would show up in a DEBUG display as a solitary P. 
Artifacts like these occur because your system has a small, 256-unit vocabulary. Every 

message, prompt, command, instruction, and address has to be made up of single-byte 
values between 0 and 255. Your CPU is smart enough to sort it all out when it processes 
the stream of bytes, but DEBUG isn't. So ignore these random characters in DEBUG dis
plays. 

You can't use the Search (S) command without specifying an address range and some
thing to search for. So typing S by itself at the DEBUG prompt would be meaningless. 
and would only generate an error message. But you can (and will frequently want to) 
issue a Display (D) command on a line by itself. 

If you start DEBUG, load COMMAND.COM into it, then type D by itself and press 
Enter, DEBUG will display the first 128 bytes of the file, from address 100 through ad
dress 17F. Each subsequent time you type D without any parameters after it and press 
Enter, DEBUG will display the next 128 bytes in memory immediately following the 
previous block. If you keep pressing just D and then Enter enough times - 512 to be 
exact - you' II work all the way to the end of the current segment and start over again at 
the beginning of the segment. 

DEBUG displays such blocks of memory information in a grid 16 bytes wide. and 
either eight or nine rows tall. (If you specify a starting address at the beginning of a 
paragraph - one that ends in a 0 such as 100 or 300 - you'll see a tidy block of bytes 
eight rows high. But if you specify any other address DEBUG will stagger the display 
into a ninth row.) So if you type the following two lines to display the beginning of COM
MAND.COM version 3.3: 

C>DEBUG COMMAND.COM 
-D 

(don't type the DOS C prompt or the DEBUG-prompt; these are just included toil
lustrate what your screen should look like) you'll see: 



282 PC Magazine DOS Power Tools 

33F7:0100 E9 2D OD BA DA DA 3D D5-DD 74 lB BA BF DA 3D D2 .- .••. = .. t .... =. 
33F7:0110 DO 74 13 BA 85 DA 3D D8-00 74 OB BA 71 OA 3D OB .t .... = .• t .. q.=. 

33F7:0120 00 74 03 BA 62 OA OE 1F-E8 6A 06 EB OC CD 21 72 .t .. b .•.. j .•.. !r 

33F7:0130 D2 B4 4D CD 21 2E A3 EA-OB E9 76 01 2E F6 06 59 .. M.! ..... v •.•• Y 

33F7:0140 OC 01 74 OC 2E F6 06 59-0C 02 74 03 E9 01 13 CF .• t .... Y •• t .... . 

33F7:0150 2E F6 06 59 OC 04 74 11-80 FC 01 72 F2 80 FC OC .•• Y .. t •... r ... . 
33F7:0160 77 ED 83 C4 06 F9 CA 02-00 2E 80 OE 59 OC 04 FB w •...••...•. Y ..• 

33F7:0170 OE lF Al F3 OB OB CO 75-06 50 B4 OD CD 21 58 F7 •.••..• u.P ••. !X. 

Again, if you try this on your own DOS 3.3 version of COMMAND.COM the only dif
ference will be the 33F7 segment at the left edge of the display. 

Each row of 16 bytes is called a paragraph. DEBUG doesn't label the individual 
columns, but if it did, you'd see something like: 

0 1 2 3 4 5 6 7- 8 9 A B C D E F 

33F7:0100 E9 2D OD BA DA OA 3D 05-00 74 lB BA BF OA 3D 02 .- •••• = .. t •... =. 
33F7:0110 00 74 13 BA 85 OA 3D 08-00 74 OB BA 71 OA 3D OB .t .... = •• t .. q.=. 

It's simple to find a value at a particular address. First, locate the paragraph (the row) 
with the offset address at or just below the precise address you 're seeking. Then count 
over from left to right one byte at a time. As you can see from the column labels above, 
the address of the first byte in each paragraph ends with 0, the second byte with 1, the 
third with 2, and the last (16th) byte with F. (Remember, these labels don't actually ap
pear in DEBUG displays. Neither do the pairs of xx characters below; they simply mean 
that here you should ignore everything marked xx.) In the above example the value at 
address 100 is E9 since this is the number at the intersection of the row starting with 0100 
and the column with the label of 0: 

0 1 2 3 4 5 6 7- 8 9 A B C D E F 

33F7:0100 E9 xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx .- •.•. = •• t ...• =. 
33F7:0110 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx .t .... = .. t .. q.=. 

The value at address 112 is 13, since this number appears at the intersection of the row 
beginning 110 and the column with the label 2: 

0 1 2 3 4 5 6 7- 8 9 A B C D E F 

33F7:0100 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx .- ••.• = •• t .... =. 
33F7:0110 xx xx 13 xx xx xx xx xx-xx xx xx xx xx xx xx xx .t .... = .. t .. q.=. 

While DEBUG doesn't show column labels, it does make the process of counting over 
somewhat easier by putting a hyphen halfway across the display, between columns 7 and 

-----------~· 



DEBUG 283 

8. So if you want to see the value at an address ending with a 7, find the appropriate row 
and look at the number directly to the left of the hyphen. The value at 107 is 05: 

0 1 2 3 4 5 6 7- 8 9 A B C D E F 

33F7:0100 xx xx xx xx xx xx xx 05-xx xx xx xx xx xx xx xx .- ...• = .. t .... =. 
33F7:0110 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx .t .... = .. t .. q.=. 

Once you've used the D command to verify that the "Batch" search address is correct, 
start displaying the next few 128-byte blocks of memory following that address. Your 
displays will be neater if you round the address down to an even paragraph address. To 
do this just replace the righunost digit with a 0. 

Since the Search command found the "Batch,, string at address 4DC9, replace the 
righunost 9 with a 0 and enter the command: 

D 4DCO 

You should see a chunk of memory that contains OOS error messages: 

33F7:4DC0 37 6E 44 09 00 63 37 OD-OA 42 61 74 63 68 20 66 7nD .. c7 .. Batch f 

33F7:4DDO 69 6C 65 20 6D 69 73 73-69 6E 67 OD OA 00 67 37 ile missing ... g7 

33F7:4DEO OD OA 49 6E 73 65 72 74-20 64 69 73 6B 20 77 69 •• Insert disk wi 

33F7:4DFO 74 68 20 62 61 74 63 68-20 66 69 6C 65 OD OA 61 th batch file •. a 

33F7:4EOO 6E 64 20 70 72 65 73 73-20 61 6E 79 20 6B 65 79 nd press any key 

33F7:4E10 20 77 68 65 6E 20 72 65-61 64 79 OD OA 00 80 37 when ready ...• 7 

33F7:4E20 42 61 64 20 63 6F 6D 6D-61 6E 64 20 6F 72 20 66 Bad corrunand or f 

33F7:4E30 69 6C 65 20 6E 61 6D 65-0D OA 00 CO 37 44 75 70 ile name •... 7Dup 

Ignore the segment addresses, which will be different on your system. Keeping pressing 
just D and the Enter key a few times and you' 11 see more error messages: 

33F7:4E40 6C 69 63 61 74 65 20 66-69 6C 65 20 6E 61 6D 65 licate file name 

33F7:4E50 20 6F 72 20 46 69 6C 65-20 6E 6F 74 20 66 6F 75 or File not fou 

33F7:4E60 6E 64 OD OA 00 DD 37 46-69 6C 65 20 6E 6F 74 20 nd ...• 7File not 

33F7:4E70 66 6F 75 6E 64 OD OA 00-07 38 50 61 74 68 20 6E found .... 8Path n 

33F7:4E80 6F 74 20 66 6F 75 6E 64-0D OA 00 lA 38 41 63 63 ot found .... 8Acc 

33F7:4E90 65 73 73 20 64 65 6E 69-65 64 OD DA 00 2D 38 49 ess denied .•. -8I 

33F7:4EAO 6E 73 75 66 66 69 63 69-65 6E 74 20 64 69 73 6B nsufficient disk 
33F7:4EBO 20 73 70 61 63 65 OD OA-00 3F 38 4F 75 74 20 6F space ... ?80ut o 

and then, later, some prompts, and finally a list of internal OOS commands: 

33F7:5440 SF 86 19 24 OB 14 00 03-4E 4F 54 84 09 OA 45 52 •• $ •••• NOT ... ER 
33F7:5450 52 4F 52 4C 45 56 45 4C-48 OA 05 45 58 49 53 54 RORLEVELH .. EXIST 



284 PC Magazine DOS Power Tools 

33F7:5460 DB 09 00 03 44 49 52 03-CB OE 04 43 41 4C 4C 02 .•.. DIR ••.• CALL. 

33F7:5470 BO OA 04 43 48 43 50 02-02 15 06 52 45 4E 41 40 ..• CHCP ..•• RENAM 

33F7:5480 45 01 OB 12 03 52 45 4E-01 OB 12 05 45 52 41 53 E •..• REN ••.. ERAS 

33F7:5490 45 01 A2 11 03 44 45 4C-01 A2 11 04 54 59 50 45 E .... OEL .••. TYPE 

33F7:54AO 01 83 12 03 52 45 40 02-04 01 04 43 4F 50 59 03 .... REM ..•. COPY. 

33F7:54BO 15 2A 05 50 41 55 53 45-02 95 11 04 44 41 54 45 . *.PAUSE .•.. DATE 

33F7:54CO 02 20 21 04 54 49 40 45-00 38 22 03 56 45 52 00 ! • TIME.8,.. VER. 

33F7:54DO 79 13 03 56 4F 4C 01 23-13 02 43 44 01 C2 18 05 y •• VOL.#. .CD •..• 

33F7:54EO 43 48 44 49 52 01 C2 18-02 40 44 01 05 19 05 40 CHOIR •..• MD •... M 

33F7:54FO 4B 44 49 52 01 05 19 02-52 44 01 49 19 05 52 40 KDIR .... RD.I .. RM 

33F7:5500 44 49 52 01 49 19 05 42-52 45 41 4B 00 F5 28 06 DIR. I. .BREAK .• (. 

33F7:5510 56 45 52 49 46 59 00 27-29 03 53 45 54 02 M 16 VERIFY.') .SET ..• 

33F7:5520 06 50 52 4F 40 50 54 02-90 16 04 50 41 54 48 02 .PROMPT ..•. PATH. 

33F7:5530 93 14 04 45 58 49 54 00-62 16 04 43 54 54 59 03 ... EXIT .b •• CTTY. 

33F7:5540 60 15 04 45 43 48 4F 02-B2 28 04 47 4F 54 4F 02 m .. ECHO .• (.GOTO. 

33F7:5550 Fl OA 05 53 48 49 46 54-02 76 OA 02 49 46 02 34 ... SHIFT. v •. IF. 4 
33F7:5560 09 03 46 4F 52 02 4E OD-03 43 4C 53 00 02 15 00 .. FOR.N .. CLS •..• 
33F7:5570 41 7C 3C 3E 24 28 29 29-00 49 4E 44 4F 2A 2D 2B Al<>$()) .INDO*-+ 

33F7:5580 4C 6C 61 7A 44 43 53 58-2E 3F 2E 2C 3A 2E 70 00 LlazOCSX.?.,: .p. 

33F7:5590 00 2E 43 4F 40 2E 45 58-45 2E 42 41 54 56 42 41 •. COM.EXE.BATVBA 

33F7:55AO 50 57 20 00 00 00 00 00-00 00 00 00 00 00 00 00 PW •....•...•..• 

33F7:55BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

As you can see, the interesting text parts of DOS 3.3 COMMAND.COM start at the 
even paragraph address 4DCO and end at address 556B. Now you can create a script file 
called DEBUG.SCR that contains the commands: 

D 4DCO 556B 
Q 

Be sure to press the Enter key after the final Q. Put this DEBUG.SCR script file on the 
same disk as DEBUG.COM and type: 

DEBUG COMMAND.COM < DEBUG.SCR > DEBUG.OUT 

Since this process creates a file, make sure you have room on your disk for a new file 
and that if you're using a floppy disk the write-protect notch isn't covered. When DOS 
finishes redirecting the files in and out of DEBUG it will simply print a new DOS prompt 
onscreen. It won't tell you that it created a new file, but you can verify that it did by 
typing: 

DIR DEBUG.OUT 



DEBUG 285 

You'll see something like: 

DEBUG OUT 9733 10-14-88 4:52p 

You can examine this file with your word processor, or with the EDLIN text editor on 
your DOS disk. Or you could simply type: 

MORE < DEBUG.OUT 

This command will redirect the DEBUG.OUT output file into MORE.COM, which will 
display a screenful of the file at a time. You can either type any character key to see each 
additional screenful, or press Ctrl-Break or Ctrl-C to alx>rt the display and return to the 
DOS prompt. 

Notice that the command: 

DEBUG COMMAND.COM < DEBUG.SCR > DEBUG.OUT 

(1) (2) (3) (4) 

had four parts. The first part started running DEBUG. The second had DEBUG load 
COMMAND.COM into memory. The third provided the necessary DEBUG Display and 
Quit commands, and the fourth told DOS to send the output to a file rather than to the 
screen. 

You could remove the second step and shorten the process a bit, by changing the 
DEBUG.SCR file. Add two lines to the beginning and call this new file DEBUG
NEW.SCR: 

N COMMAND.COM 
L 

D 4DCO 556B 
Q 

Then then issue the shorter command: 

DEBUG < DEBUGNEW.SCR > DEBUG.OUT 

The N (Name) command in the first line of DEBUGNEW.SCR tells DEBUG that a 
future Write or Load command will apply to the file whose name follows. The L (Load) 
command on the second line loads that file into memory just as if you had typed it in after 
the word DEBUG at the DOS prompt. 

Be careful when dealing with files that end in EXE. Both DOS and DEBUG have to 
shuffle things around a bit in memory when working with EXE files. You '11 notice a dif
ference right away if you load one (try the DOS SORT.EXE file, for instance) into 



286 PC Magazine DOS Power Tools 

DEBUG and type D. Instead of starting the display at address 100, DEBUG will begin 
at address 0. And if you try to change the file and write it back to disk, DEBUG won't 
let you. 

It is possible to change the contents of an EXE file with DEBUG. If you read about an 
interesting patch for an EXE file, copy the file and give the copy an extension other than 
EXE, such as XXX. (Put the original safely away on another disk or in another subdirec
tory so you don't accidentally write over it later.) Then load this copy into DEBUG, and 
treat it like any other file. After you make the changes in the file with the XXX exten
sion, write them to disk and quit. When you're back at the main DOS prompt, make sure 
you put the original EXE file on another disk or in another subdirectory, and use the 
RENAME (or REN) command to change the extension from XXX to EXE. Then run it 
to check your changes. Finally, decide whether you want to use the newer version or the 
older version of the program - don't keep two similarly named versions of a file on any 
hard disk. If you prefer the older version, erase the newly changed one. If you like the 
new, patched version better, rename the old one by giving it an OLD suffix, or copy it to 
an archive floppy disk and make sure it's gone from your hard disk. 

As was shown earlier with the BEEP.COM program, DEBUG makes it a snap to create 
small programs. All BEEP.COM really does is use DOS function call 2 to display a single 
character onscreen. It just so happens that printing this ASCII 7 character onscreen makes 
your system beep. 

But printing one character isn't very dramatic. Fortunately, iCs nearly as easy to print 
a whole screenful. You wouldn't actually want to fill the entire screen, since the DOS 
prompt that appears after such a program finishes running will scroll some of the lines 
off the top. So we'll settle for 23 lines. And we'll fill these lines with hearts. 

One of the hallmarks of topnotch programming these days is the ability to make screens 
"pop." It's much more dramatic to have a screenful of information flash instantaneous
ly onto your screen than to watch it flicker slowly down the glass a line at a time. However, 
speedy displays and DOS don't mix. Virtually all the fast screen techniques involve low
level BIOS or memory-shuffling routines. The HEART.COM program below is designed 
to extend the DOS-based BEEP.COM example, not break any speed limits. Type in the 
following HEART.SCR script file: 

N HEART.COM 
A 
MOV CX,730 
MOV DL,3 
MOV AH,2 
INT 21 
LOOP 107 
RET 

RCX 
c 
w 
Q 

repeat 1,840 times (23 lines x BO chars) 
ASCII 3 is a heart character 
DOS "display output" function 
gets DOS rolling 
jumps back a line 1,839 times 



DEBUG 287 

(If you don't have a word processor or EDLIN available, you can create this file in DOS 
by adding a line at the very top that says: 

COPY CON HEART.SCR 

Then type the above script, omitting the comments after the semicolons and the semi
colons themselves. When you're all done, press the Enter key an extra time, then press 
the F6 function key, then Enter again.) 

Once you've created the script file, put it on the same disk as DEBUG and type: 

DEBUG < HEART.SCR 

This will create a slightly enhanced version of the BEEP .COM file called HEART.COM. 
It prints a heart-shaped character instead of a character that beeps, and does it 1,840 times 
(23 rows x 80 characters per row). Run it and 92 percent of your screen will fill up with 
hearts. Put it in someone's AUTOEXEC.BAT file on Valentine's Day. 

(Okay, nobody likes slow programs. If you really want to see how must faster it can 
be to use BIOS services than DOS routines, type in the following script 

N FILLFAST.COM 
E 100 B4 02 BA 00 00 B7 00 CD 10 B4 OB CD 10 BB E7 BB 
E 110 00 06 B9 00 00 BA 4F lB CD 10 B4 02 BA 00 00 B7 
E 120 00 CD 10 B9 30 07 BB 03 OA B7 00 CD 10 B4 02 BA 
E 130 00 17 B7 00 CD 10 C3 
RCX 
37 
w 
Q 

This program, FILLFAST, reads the attribute in the upper lefthand comer of the screen 
and fills most of the screen instantly with hearts in that color.) 

Let's look at the original HEART.COM program closely to see what's going on. To 
do this, use DEBUG's U (Unassemble) command. Get the ball rolling by typing: 

DEBUG HEART.COM 

When you see the familiar DEBUG prompt. find out how long the file is by typing: 

RCX 

and pressing the Enter key twice. Or, cheat by looking at the line in the HEART.SCR 
script between RCX and W. Either way, you'll figure out that it's OC bytes (decimal 12) 
in length. 

As with most of DEBUG, you could issue an Unassemble command using one of two 
syntaxes. The easy way is entering the starting address and the length: 



288 PC Magazine DOS Power Tools 

U 100 L C 

This looks cryptic, but it simply means "try to convert the 12 (hex C) bytes of machine
level code starting at memory offset 100 into recognii.able assembly language com
mands." Finally, type Q to quit and press Enter. The whole process look like: 

C>DEBUG HEART.COM 
-RCX 
ex oooc 

-U 100 L C 
33F7:0100 B93007 MOV CX,0730 
33F7:0103 B203 MOV DL,03 
33F7:0105 B402 MOV AH,02 
33F7:0107 CD21 INT 21 
33F7:0109 E2FC LOOP 0107 
33F7:010B C3 RET 
-Q 

(Ignore the 33F7 segment address, as always.) The harder way to issue the Unassemble 
command is to enter explicit starting and stopping addresses. The starting address is easy 
since DEBUG loads all COM files at offset 100. And since the file is OC bytes long, the 
ending address is starting address + length - 1, or: 

lOO+C-1 = IOB 

Technically you don't have to subtract the 1, since all leaving it in will do is stretch out 
the display one extra line. But the file starts at address 100, not address 101. The first 
byte of the file is at address 100, the second at 101, the third at 102, and the last (12th) 
at address lOB. So the command: 

U 100 lOB 

would have produced the same display as U 100 LC. 
You may have noticed that the display produced by the U command is almost identi

cal to the HEART.SCR script file that created it. The Unassemble command usually 
produces a reasonable facsimile of the original, although since certain assembler 
programs tum slightly different assembly language instructions into the same machine
level code, DEBUG may not be able to tum things back exactly the way they were. But 
it'll almost always be close enough. 

DEBUG's U display does provide something very useful that wasn't in the script
the addresses of each instruction. In this case you really need to have the addresses handy 
to see what's going on. 

The middle of both the BEEP.COM and HEART.COM programs are pretty much the 
same: 



BEEP.COM 

MOV DL,7 
MOV AH,2 
INT 21 

HEART.COM 

MOV DL,3 
MOV AH,2 
INT 21 

DEBUG 289 

Both programs use the DOS "display output" function call 2, which looks at the value 
in the DL register and prints the ASCII character with that value onscreen. With 
BEEP.COM the value here is 7; with HEART.COM it's 3. And both programs use the 
RET instruction to jump control back to COMMAND.COM when they're finishing ex
ecuting. 

But HEART.COM adds two additional lines that work hand in hand: 

MOV CX,730 

LOOP 107 

Ifyou'rehandywithBASIC,theMOVCXandLOOPinstructionsaresimilartoBASIC's 
FOR ... NEXT commands. Both tell your program to repeat a process a certain number of 
times. The BASIC version of HEART.COM would look something like: 

100 FOR A=l TO 1840 
110 PRINT CHR$(3); 
120 NEXT A 
130 SYSTEM 

In assembly language you can specify how many times you want something to repeat by 
moving that number into the CX register. Filling 23 lines, each 80 characters long, means 
printing the heart character 1,840 times (730 in hex). The first time the HEART.COM 
program executes, it stuffs this hex 730 value into CX, displays the ASCII 3 character, 
and then executes the LOOP 107 instruction. At this point LOOP does two things. First, 
it subtracts 1 from the number in the CX register, turning the original 730 into 72F (since 
hex 730 - 1 = 72F). Then it checks to see if this number is equal to 0 (after subtracting 1 
from the current value enough times it will be}. Since 72F is greater than 0, LOOP tells 
the program to loop back to the address specified after the word LOOP - off set 107. 

As you can see from the unassembled listing, address 107 contains the instruction INT 
21, which tells DOS to execute a function call again. Nothing has changed in any of the 
registers, so DOS looks in register AH, sees the 2 that was there earlier, and starts ex-



290 PC Magazine DOS Power Tools 

ecuting the same "display output" function call 2. It looks in register DL to see which 
character to display, finds the 3 that was there before, and prints a character 3 heart. Then 
it reaches the LOOP instruction once more, reduces the value in the CX register by 1 
from 72F to 72E, sees that this number is not yet equal to 0, and loops back to address 
107. 

After 1,839 loops the value in the CX register will be 1. This time (after printing the 
l,840th heart), when the program hits the LOOP instruction, LOOP will subtract 1, check 
and see that the value in the CX register is finally 0, and end the looping process. The 
program will have its first opportunity to execute the instruction on the line following 
the LOOP 107; each previous time LOOP jumped it back to address 107. Since this in
struction is RET, the program finishes running and hands control back to COM
MAND.COM. 

But this program gets boring after you run it a few times. So to spice it up, change the 
character it prints. If you like music, you might want to see a screen full of notes. All you 
have to do is change the value in the DL register from 3 to E (decimal 14 ). You can change 
this value one of two ways. But first you have to figure out where in memory the value 
is. By looking at the Unassemble listing you can spot it in a second: 

33F7:0103 8203 MOV DL,03 

The Unassemble listing is made up of three parts. The lefthand column contains the 
address of the instruction in memory, in segment:offset form. (Yes, ignore the 33F7 seg
ment address. But jot down the 103 offset address.) Immediately after the address is the 
second part of the listing - a hexadecimal representation of the actual machine-level 
code that puts the CPU through its paces. In this case it's B203. B2 is shorthand that tells 
the CPU to move a value into the DL register. The 03 is the value it moves. At the right 
edge of the listing is DEBUG's best guess at what the programmer's original assembly 
language instruction was. 

Each address in memory contains a single byte that DEBUG displays as a two-digit 
hex number (it pads a single digit value like A with a 0, turning it into OA). The B203 
machine-level code actually represents two bytes, B2 and 03. Since the two-byte B203 
code begins at offset 103, the actual hex value at address 103 is B2. The address of the 
03 value is 104. 

So to change the HEART.COM program so it displays musical notes instead of hearts, 
all you really have to do is put a value of OE at address 104, and then use the Write com
mand to make the change stick. You'll probably also want to give the file a new name 
like MUSIC.COM or NOTE.COM. 

The easiest way to do this is to use the E (Enter) command (although you could also 
manage with the somewhat similar F (Fill) command). You can use the Enter command 
in expert or nervous mode. In expert mode you enter the address and the new value blind
ly at the same time and then write the changed file to disk. In nervous mode you first 
enter just the address and have DEBUG report what's there before you make the change. 
If you see a value there that tells you you 're at the wrong address, you just press the Enter 
key to cancel the command and return to the DEBUG prompt. 



DEBUG 291 

Here's what the process would look like in expert mode, assuming you're absolutely 
sure the value you want changed is at address 104, and assuming you want to save the 
new file as MUSIC.COM: 

C>DEBUG HEART.COM 
-E 104 OE 
-N MUSIC.COM 
-w 
Writing OOOC bytes 
-Q 

You would type everything shown except the C and - prompts and the "W riling OOOC 
bytes" message. And you could enter the new value after the 104 as E instead of OE if 
you liked. 

Because you specified a new name with the N command, DEBUG will create a brand 
new file called MUSIC.COM the same length as the HEART.COM program you started 
out with, and otherwise identical except for the one change at address 104. It won't alter 
the original HEART.COM program; all it did was borrow HEART.COM's code. You'll 
end up with two programs on your disk, HEART.COM and MUSIC.COM. 

If you're the cautious type, you'll probably want to use the nervous mode. Type 
DEBUG HEART.COM to get the ball rolling, and when you see the DEBUG - prompt, 
just type: 

E 104 

and press the Enter key. When you specify an address after the E command but not a new 
value, DEBUG displays the address and the value that's currently there and then prints 
a period(.). It parks the cursor directly to the right of the period, ready for you to enter a 
new value that will replace the existing one: 

33F7:0104 03. 

If you're satisfied that this is where you want to make the change, just type in the new 
value and press Enter. If you realize you're at the wrong address, you can press Enter 
without putting in a new value, to abort the process. 

If you do type in a new value at this point and then lock it in by pressing the Enter key, 
you can check to make sure you entered the correct number at the correct address by 
pressing F3. DEBUG uses the same function key tricks as DOS and EDLIN. So when
ever you hit the F3 key, DEBUG will type in the previous command for you automati
cally. If you did enter a new value, pressing the F3 key will display the address and the 
new value, and a period, and sit there waiting to see if you want to change it again. Since 
you probably don't, just tap the Enter key and you'll be right back at the DEBUG prompt. 

If you entered the new value in nervous mode, and then pressed F3 to check on your 
handiwork, the screen would look like this: 



292 PC Magazine DOS Power Tools 

C>DEBUG HEART.COM 
-E 104 
33F7:0104 03.0E 
-E 104 
33F7:0104 OE. 
-N MUSIC.COM 
-w 
Writing OOOC bytes 
-Q 

The E command is actually far more flexible than these simple changes indicate. The fol
lowing few examples are just dwnmies; don't try typing them in since they won't do any
thing except illustrate the proper E command syntax. 

You can use E to enter a new string of characters: 

E 4D3 "This is a test" 

Or you can enter a series of bytes in hex notation: 

E A27 41 7C 3C 3E 24 28 29 29 

Or you can mix strings and bytes: 

E 2FO 41 7C "A test" 3C 3E 24 28 29 29 

If you use the E command in nervous mode (okay, it's not actually called nervous mode) 
instead of working a single byte at a time, you can move forward and backward through 
your entire file by pressing the space bar or the minus key. Each time you tap on the space 
bar DEBUG will print the value of the next higher address onscreen and skip to it. When 
it has printed eight values onscreen it will jump down to the next line and start to print 
another eight. If you hit either of the minus keys, DEBUG will start marching in the other 
direction and print the next lower address onscreen, one to a line. (If you lean on the space 
bar or minus key long enough, you '11 reach the top or bottom of the segment and DEBUG 
will cycle through the entire segment again.) 

To try scanning forward and then backward through the NOTE.COM file, load it into 
DEBUG with the command: 

DEBUG NOTE.COM 

and then type: 

E 100 

to get the ball rolling. Then start tapping on the space bar and minus keys to navigate 
your way through. The following example steps all the way through the 12-byte file from 



DEBUG 293 

front to back (by pressing the space bar 11 times) and then from back to front (by hitting 
the minus key 11 times): 

-E 100 
33F7:0100 B9. 30. 07. B2. OE. B4. 
02. CD. 
33F7:0108 21. E2. FC. C3.-
33F7:010A FC.-
33F7:0109 E2.-
33F7:0108 21.-
33F7:0107 CD.-
33F7:0106 02.-
etc. 

When you're all done, press the Enter key by itself, or Ctrl-Break or Ctrl-C to return 
to the DEBUG prompt. 

DEBUG' s Fill (F) command is especially handy for replacing a large chunk of memory 
with one repeating character. If you wanted to put a 0 in every memory address from off
set 100 to offset DOOO- nearly 53,000 (decimal) zeros -you could do it instantly with 
the command: 

F 100 DOOO 0 

You could also use the Fill command to change the one value at address 104 so the 
program displays a musical note rather than a heart The command: 

F 104 L 1 OE 

would do it. This tells DEBUG to start at address 104 and fill a range of memory 1 byte 
long with the value OE. 

DEBUG provides another way to change BEEP.COM. When you originally created 
the file you used a script file that turned on DEBUG's mini-assembler with an A com
mand and then fed assembly language instructions (such as MOV AH,2 and INT 21) into 
it You can use the A command to make selective patches as well. The assembly lan
guage instruction that tells the DOS "display output" function call 2 which character to 
display is: 

33F7:0103 B203 MOV DL,03 

As you can see from the Unassemble (U) listing, this instruction is located at address 103 
in memory. To insert one or more new assembly language instructions in memory, enter 
the A command followed by the address where the new instructions will start, and then 
enter the new lines. When you're done, just press the Enter key by itself to exit the mini
assembler and return to the DEBUG prompt. Finally, use the Unassemble command to 
check your work. To tum HEART.COM into MUSIC.COM using this technique, first 



294 PC Magazine DOS Power Tools 

Unassemble the code to see which address to alter, then enter the A command along with 
this address to make the change, then use Unassemble again to check your typing. Enter 
the new name (with N), write the new file to disk (with W), and quit (Q). The whole 
process would look like: 

C>DEBUG HEART.COM 
-U 100 L C 
33F7:0100 893007 MOV CX,0730 
33F7:0103 B203 MOV DL,03 
33F7:0105 8402 MOV AH,02 
33F7:0107 CD21 INT 21 
33F7:0109 E2FC LOOP 0107 
33F7:010B C3 RET 
-A 103 
33F7:0103 MOV DL,OE 
33F7:0105 
-U 100 L C 
33F7:0100 B93007 MOV CX,0730 
33F7:0103 B20E MOV DL,OE 
33F7:0105 B402 MOV AH,02 
33F7:0107 CD21 INT 21 
33F7:0109 E2FC LOOP 0107 
33F7:010B C3 RET 
-N MUSIC.COM 
-w 
Writing oooc bytes 
-Q 

If you're not crazy about hearts or notes, you can substitute just about any character 
at address 104. For an interesting effect, try values BO, Bl, or B2 (which produce inter
esting textures), or F8, F9, or FA, which will fill your screen with dot patterns. The IBM 
character set has some other interesting possibilities as well. Once you've created 
HEART.COM, type in the following PICTURE.SCR script file to see some of the pos
sibilities: 

N HEART.COM 
L 
E 104 BO 
N PATTERNl.COM 
w 
E 104 Bl 
N PATTERN2.COM 
w 
E 104 82 



N PATTERN3.COM 
w 
E 104 F8 
N DOTl.COM 
w 
E 104 F9 
N DOT2.COM 
w 
E 104 FA 
N DOT3.COM 
w 
E 104 OB 
N MAN.COM 
w 
E 104 OC 
N WOMAN.COM 
w 
E 104 01 
N FACEl.COM 
w 
E 104 02 
N FACE2.COM 
w 
Q 

DEBUG 295 

To create the files, make sure HEART .COM, PICTURE.SCR, and DEBUG.COM are 
on your disk, that your disk has room on it for a few files, and that if you're using a flop
py disk, that the write-protect notch isn't covered. Then type: 

DEBUG < PICTURE.SCR 

When it finishes, run PATTERNl, PATTERN2, PATTERN3, OOTl, DOT2, OOT3, 
MAN, WOMAN, FACEl, and FACE2 to see what these look like. 

While DEBUG offers a handful of additional commands, the only other one serious 
power users probably need to know about is Move (M). Microsoft and IBM misnamed 
this command since it really copies memory values instead of moving them. The term 
"move" incorrectly suggests that DEBUG gets rid of the original after relocating it to a 
new place. In fact, DEBUG leaves the original alone, unless the new place you move it 
to overlaps itself. 

If your file contains the message "This is a test" at address 100 and you move (copy) 
this block of 14 characters to a new location 15 bytes later (at address lOE), you'll end 
up with: 

"This is a testThis is a test" 



296 PC Magazine DOS Power Tools 

at address 100. But if you take the same block of text and instead move it up just five 
bytes (to address 104), you'll gee 

"ThisThis is a test" 

since the new address overlaps most of the old one. 
Moves can be a bit tricky, because you have to make sure you don't accidentally 

obliterate any existing parts of your program, and because you have to remember to ad
just the value in the CX register to compensate for any change in length. 

To see Move in action, first create a small file called MOVETEST.COM, by typing in 
the following MOVE I .SCR: 

N MOVETEST.COM 
A 
MOV AH,09 
MOV DX,0108 
INT 21 
RET 

E 108 "DEBUG is",D,A 
E 112 "very",D,A 
E 118 "powerful.",D,A,24 
RCX 
24 
w 
Q 

Be sure to leave the blank line after RET, and to press the Enter key after the final Q. 
Then redirect this script file into DEBUG with the command: 

DEBUG < MOVEl.SCR 

When you run MOVETEST.COM (by typing MOVETEST at the DOS prompt), all it 
will do is print 

DEBUG is 
very 
powerful. 

MOVETEST.COM takes advantage of the DOS "display string(s)" function call 9. 
When DOS sees a value of 9 in the AH register, it looks in the CX register for an address 
that tells it where the text strings are located. Then it displays any ASCII strings it finds 
starting at that address and continuing until a character 24 ($) tells it to stop. (If you try 
this yourself, remember that you need to put an: 



DEBUG 297 

,OD,OA 

or simply: 

,D,A 

at the end of each string when you want a carriage return and line feed.) 
When you use the Move command you have to give DEBUG two pieces of informa

tion -what you want copied, and where you want it copied to. You can tell DEBUG 
what part of memory you want copied either by specifying explicit starting and stopping 
addresses, or by listing the starting address and telling it how many bytes to copy. In 
either case you then have to specify the new destination address (where you want this 
copied chunk of memory to go). 

All of the examples below use starting addresses and lengths rather than explicit start
ing and stopping addresses, but either technique will work. The number immediately fol
lowing each M is the starting address. The number following each L is the length - the 
number of bytes to move. The final number in each line is the new destination address. 

Let's say that after looking at everything DEBUG can do, you want to change the 
MOVETEST.COM message to be more emphatic. To do this, create the following 
MOVE2.SCR script file: 

N MOVETEST.COM 
L 
M 118 L c 130 
M 112 L 6 118 
M 112 L 6 llE 
M 112 L 6 124 
M 112 L 6 12A 
RCX 
3C 
w 
Q 

Then redirect the file into DEBUG with the command: 

DEBUG < MOVE2.SCR 

Finally, run the changed version MOVETEST and you'll see the new message: 

DEBUG is 
very 
very 
very 
very 



298 PC Magazine DOS Power Tools 

very 
powerful. 

The MOVE2.SCR script file contains five Move instructions that copy small blocks 
of information from one place to another in memory. First it summons the old 
MOVE1EST.COM file by using the N command to tell DEBUG which file you want to 
work on, and then the L command to load this file into memory. Then it uses the Move 
command to insert an additional copy of the line: 

"powerful.",D,A,24 

18 hex (24 decimal) bytes higher (later) in memory. Here's a step-by-step scorecard of 
what happens: 

Original arrangement of 
MOVE1EST.COM text: 

Address 

108 
112 
118 

Text starting at 
this address 

"DEBUG is" ,D,A 
"very",D,A 
"powerful." ,D,A,24 

After the first Move instruction: 

Address Text starting at 
this address 

108 "DEBUG is" ,D,A 
112 "very",D,A 
118 "powerful.",D,A,24 

130 "powerful.",D,A,24 

MOVE2.SCR has to copy the line containing "powerful" before it makes any other 
moves, to get it safely out of the way. The second Move instruction copies the word 
"very" (plus the OD and OA carriage return and line feed characters ) on top of it This 
obliterates the first six letters of the original "powerful" at address 118: 

After the second Move instruction: 

Address Text starting at 
this address 

108 "DEBUG is" ,D,A 
112 "very" ,D,A 
118 "very",D,A,"ul.",D,A,24 

130 "powerful." ,D,A,24 

The third Move instruction finishes wiping out the tail end of the original "powerfur' at 
address 118: 



After the third Move instruction: 

Address Text starting at 
this address 

108 "DEBUG is" ,D,A 
112 "very" ,D,A 
118 "very" ,D,A, 
1 lE "very" ,D,A, 

130 "powerful." ,D,A,24 

The final two Move instructions fill in the gap: 

After the fifth Move instruction: 

Address Text starting at 
this address 

108 "DEBUG is" ,D,A 
112 "very" ,D,A 
118 "very",D,A, 
1 lE "very" ,D,A, 
124 "very" ,D,A, 
12A "very",D,A, 
130 "powerful.",D,A,24 

DEBUG 299 

All these five Move commands really do is push the word "powerful'' up to a higher 
address in memory, and then fill in the gap by making four additional copies of the word 
"very" (plus the OD and OA carriage return and line feed characters that follow it). Each 
of the four new occurrences of "very" (and its OD,OA) takes up six characters. So the file 
has to be 4 x 6 = 24 bytes longer (decimal 24 = 18 in hex notation). The old 
MOVETEST.COM file was 24 (hex) bytes long. MOVE2.SCR reset the CX register to 

3C to reflect the increased length (hex 24 + 18 = 3C). 
Now that you lengthened the file, what about making it smaller? Shortening a file with 

the Move command is even easier than stretching it out. Let's say you want to change 
the display so it says simply: 

DEBUG is 
powerful. 

All you have to do is move the "powerful" line down from its 130 address so it over
writes the first "very" at address 112. Actually, since the string "powerful" (along with 
the OD,OA,24 characters that follow it) is twice as long as each "very" string (and its 
OD,OA characters), this will overwrite the first two occurrences of "very." 



300 PC Magazine DOS Power Tools 

This short MOVE3.SCR script file will do it: 

N MOVETEST.COM 
L 
M 130 L C 112 
RCX 
lE 
w 
Q 

Once you've created MOVE3.SCR, redirect it into DEBUG with the command: 

DEBUG < MOVE3.SCR 

Moving the line "powerful" (and its OD,OA,24 suffix) from address 130 down to ad
dress 112 actually leaves a lot of unneeded text still in memory - three orphaned occur
rences of "very" at addresses I IE, 124, and 12A as well as the original "powerful" at 
address 130. The DOS display string function call won't even get to all this extra text, 
because it will stop printing when it hits the first character 24 ($). When you moved the 
"powerful" line down from address 130 to address 112, you brought the$ with it. DOS 
will stop dead in its tracks when it reaches this $, even though more text is in memory 
beyond it. 

In order to get rid of all this unneeded MOVETEST.COM text, the MOVE3.SCR script 
file adjusted the value in the CX register from 3C (decimal t50) bytes down to IE (decimal 
30) bytes. Technically it really dido 't have to make the file any smaller. Because of the 
way DOS allocates disk space, even a one-byte file takes up a minimum of 2,048 (2K) 
bytes, and can hog as much as 8,192 bytes (8K) on an XT. So making the file 30 bytes 
shorter isn't going to save any disk space. And since the DOS display text function call 
will stop working as soon as it reaches the first $, it will ignore the unneeded text that 
follows. But why be sloppy? 

Here's what your system's memory looked like after MOVE3.SCR shortened the 
MOVETEST.COM file: 

After the single MOVE3.SCR 
Move instruction: 

Address 

108 
112 
llE 
124 
12A 
130 

Text starting at 
this address 

"DEBUG is" ,D,A 
"powerful." ,D,A,24 
"very" ,D,A, 
"very" ,D,A, 
"very" ,D,A, 
"powerful." ,D,A,24 

]- All of this is unused. 



DEBUG 301 

Starting Up DEBUG 

Format: DEBUG or DEBUG d:[path]FILENAME 

To start DEBUG, type either: 

DEBUG 

or: 

DEBUG [d:] [path]filename[.ext] 

substituting the name of the file you want to examine or change in place of 
[d:][path]filename[.ext]. 

If you type just DEBUG and press Enter all you'll see is the DEBUG-hyphen prompt. 
If you type DEBUG and then the name of a file DOS can locate, you '11 still see nothing 
but the DEBUG hyphen prompt. However, when you specify a filename on the DOS 
command line (e.g., DEBUG COMMAND.COM), DEBUG will load that file into 
memory. You can then display or modify any part of that file. If you do make any chan
ges you can then write the modified file back to disk. You can start DEBUG without in
cluding a filename on the command line, and then later use the N (Name) and L (Load) 
commands to load a file for DEBUG to examine or change. 

Most of the time you '11 want to start DEBUG by specifying a filename on the DOS 
command line. The only times you wouldn't want to are when you need to examine what's 
already loaded in memory or create a brand new file. But even then you still may want 
to include a filename on the command line. 

If you specify a file DEBUG can't locate, such as a brand new file you're trying to 
create, you '11 see a "File not found" message, followed on the next line by the normal 
hyphen prompt. If you're trying to load an existing file and you see this message, you 
either typed in the filename incorrectly or you were trying to load a file in another sub
directory or on another disk that DOS couldn't locate. If this happens, type Q and hit 
Enter to quit, then make sure that file is handy and restart. 

If you are trying to create a brand new file, you have to tell DEBUG what to name it. 
While you can do this with the N (Name) command, specifying the new name on the 
DOS command line will have the same effect. You'll still see the "File not found" mes
sage, but this will let you Write (W) the new file to disk later without having to re-enter 
it with the DEBUG N command. 

For example, if you were on drive C: and you wanted to look inside your system ROM 
to see the copyright date, or if you wanted to examine any other part of memory, you'd 
start by typing simply DEBUG. All you'd see is the DEBUG prompt: 

C>DEBUG 



302 PC Magazine DOS Power Tools 

If you then entered D to display the contents of memory, DEBUG would show you 
whatever happened to be loaded at offset 100 (hex) of DEBUG' s data segment. 

If you wanted to examine the copy of COMMAND.COM in your \DOS subdirectory, 
you'd type DEBUG and the path and filename: 

C>DEBUG \DOS\COMMAND.COM 

Type D and then press Enter at this point and you'd see the first 128 bytes of COM
MAND.COM. 

If you wanted to create a brand new file called NEWHEART.COM, you could either 
specify it on the command line: 

C>DEBUG NEWHEART.COM 
File not found 

or you could use the N (Name) command: 

C>DEBUG 
-N NEWHEART.COM 

Naming a File for Loading or Writing 

Format: N [d:][path]filename[.ext] 

You can't load or write a file unless you first specify a filename one of two ways. You 
can either enter a filename on the DOS command line (e.g., DEBUG COM
MAND.COM), or you can use the N command to do it later. For example, 

DEBUG GREEN.COM 

or 

-N GREEN.COM 

If you try to use the W command to write a file without having first specified a name, 
DEBUG won't oblige, and will simply print the error message "(W)rite error, no destina
tion defined." 

If you start DEBUG without specifying a filename, and want to load an existing file 
(like YELLOW.COM) later, you have to use the N command to give DEBUG the 
filename you want it to load: 



DEBUG 303 

C>DEBUG 
-N YELLOW.COM 
-L 

The N command comes in very handy when you 're modifying a file and you want to save 
the modified version without destroying the original. Let's say you had a file on your 
disk called RED.COM that cleared your screen, set the colors (on a CGA, VGA, or EGA 
only) to red text on a white background, and even set the border to red if you were using 
a CGA (and did nothing if you weren't). Don't have such a file handy? Then make sure 
DEBUG is on your disk, and at the DOS prompt type: 

DEBUG RED.COM 
E 100 BS 00 06 B9 00 00 BA 4F 18 B7 74 CD 10 B4 02 
E lOF BA 00 00 B7 00 CD 10 BO 04 BA D9 03 EE C3 
RCX 
lD 
w 
Q 

Ignore the "File not found" message DEBUG prints when you start. If you wanted to 
change the file slightly so it set the text and border colors to blue instead of red, you could 
patch the program at locations lOA for the text color and 117 for the border. To do this, 
you'd use the E command and type the following: 

DEBUG RED.COM 
E lOA 71 
E 117 01 
N BLUE.COM 
w 
Q 

Notice that after entering the patches with the E command, you used the N command to 
give the modified file a new name. By doing this you created a second file called 
BLUE.COM and left the first RED.COM file alone. If you hadn't done this you would 
have saved the changed file as RED.COM- and RED.COM would have set your colors 
to blue. 

You could also have created a file called PURPLE.COM at the same time you created 
RED.COM, by adding two new E instructions and another N and W command. If you 
had typed: 

DEBUG RED.COM 
E lOA 71 
E 117 01 
N BLUE.COM 



304 PC Magazine DOS Power Tools 

w 
E lOA 75 
E 117 05 
N PURPLE.COM 
w 
Q 

the first W would have written the changes to a file called BLUE.COM that set your 
colors to blue on white. The second W would have written the second set of changes to 
a file that the second N named PURPLE.COM. 

Displaying Memory Contents 

Format: D [address][address] or D address length 

Microsoft and IBM call the D command "Dump" but you may want to think of it as "Dis
play." Use it to examine from 1 to 65,536 bytes of memory at a time. 

Issuing a D command on a typical 80-column screen will display three things: 

1. At the left edge of your screen, the segment and offset addresses of the memory you 
want to examine, in even-paragraph chunks. A paragraph is a slice of memory 10 hex 
(decimal 16) bytes long that is evenly divisible by hex 10; in other words a chunk of 
memory that starts at an offset address ending in a 0. 100 and 110 and FEO and CCO 
are all paragraph addresses. 101and112 and FE9 and CCF are not. 

2. In the middle part of your screen, the hex values of the bytes in that paragraph. If you 
ask DEBUG to display the whole paragraph, you 'II see decimal 16 bytes. If you ask 
it to start displaying memory at an address that's not a paragraph boundary, you'll 
see fewer than decimal 16. DEBUG will insert a hyphen between bytes 7 and 8. (Since 
the first byte in each paragraph is byte 0, the hyphen is smack in the middle, between 
the 8th and 9th byte in each row.) 

3. At the right edge of your screen, the ASCII representation of any values between hex 
20 and 7E (decimal 32 and 126). DEBUG displays a period(.) for any value below 
hex 20 or greater than hex 7E. 

If you issued the command: 

-D FOOO:O L 30 

to display the hex 30 (decimal 48) bytes starting at offset 0 of segment FOOO on an IBM 
AT (this address happens to be the beginning of the AT' s BIOS), you'd see: 



FOOO:OOOO 36 36 31 31 38 38 31 31-30 30 32 32 38 39 20 20 
FOOO:OOlO 43 43 4F 4F 50 50 52 52-2E 2E 20 20 49 49 42 42 

F000:0020 4D 40 20 20 31 31 39 39-38 38 34 34 FA B4 DD EB l Jset lalue at address F000:0020 

Segment 

DEBUG 305 

66118811002289 

CCOOPPRR. • I IBB 

MM 11998844 ••.. 

t 
ASCII representation 
or 4D value at address 
F000:0020 

Note that in this case DEBUG displayed periods after 11998844 because the values 
there (FA B4 DD E8) are higher than 7E. But it displayed periods after CCOOPPRR be
cause the values there (2E 2E) are the hex representation of actual periods. 

The double letters in the message are there because of the way display memory is ar
ranged, in odd- and even-address chunks. To see what this really says, you can copy this 
message from the part of memory where it normally sits - the very beginning of seg
ment FOOO- to the part of memory that controls your video display. On a color system 
the beginning of video memory is located at address B800:0. On a monochrome system 
it's BOOO:O. (If you have a mono system, substitute BOOO for B800 in the statement 
below.) Load DEBUG and type: 

-M FOOO:O L 2C 8800:0 

The M command (Move) copies the first 2C (decimal 44) bytes of memory from offset 
0 of segment FOOO - the beginning of the AT ROM BIOS - to offset 0 of segment 
B800 (the beginning of color video memory, and the upper lefthand comer of a color 
screen). On the upper lefthand comer of either screen you '11 see a crazy- quilt of attributes 
and the letters: 

6181028 COPR. IBM 1984 

The long number is the part number for the ROM chip that contains the message. The 
rest is IBM's copyright notice. The unusual colors (or mono attributes on a mono sys
tem) are artifacts. 

Video memory is arranged so that the even-numbered bytes contain the values of the 
characters you want to display, and the odd-numbered ones hold the attributes. Since 
each value appears twice, the system will display the even-numbered ones as the charac
ters these represent, and then translate the odd-numbered versions of each into the at
tributes for these characters. You may enter D commands in four slightly different ways: 

1. If you enter D by itself, DEBUG will display 128 bytes of memory. If you begin the 
display on an even paragraph boundary, as you would if you had just loaded DEBUG 
and issued no other commands, DEBUG will display these 128 bytes in eight even 
rows (paragraphs). If you had previously displayed a part of memory that didn't start 



306 PC Magazine DOS Power Tools 

on a paragraph boundary (an offset that ends in a 0), DEBUG would stagger the 128 
bytes over nine rows. 

Once you enter D and see 128 bytes of memory, entering D by itself will display 
the next 128 bytes. If the display reaches the top of a 64K segment, DEBUG will 
cycle back to the bottom; if it reaches the bottom DEBUG will begin again at the top. 

If you start DEBUG and do not specify an address, DEBUG will generally start 
displaying memory at offset 100 of the current data segment. 

However, if you enter a D without any address after it, and display a few succes
sive memory blocks by entering just D a few more times, and then later load a COM 
file (by entering an Nanda filename that ends with .COM and then an L), and then 
enter a D all by itself, DEBUG will start displaying bytes at 100 again, instead of 
remembering the last address it displayed. 

2. If you enter a D with a single address after it, DEBUG will display the 128 bytes 
beginning with that address. If you follow this immediately by entering just a D with 
no address after it DEBUG will show you the very next 128 bytes after the first 128 
that you specified. 

If you enter an address in segment:offset form, DEBUG will show you the con
tents of memory in the segment you specified. If you omit the segment and simply 
enter the offset, DEBUG will assume you want it to look inside its default data seg
ment - the one it will load your programs into if you ask it to. 

You can also enter segment:offset addresses by using the alphabetical shorthand 
form of the segment (such as DS: 100 when you want to specify offset 100 of the data 
segment), but this is really just for serious programmers. 

3. If you enter a D followed by an address, then an Land a hex number range from 1 to 
0000 (0000 is shorthand for 10000), DEBUG will display the number of bytes in the 
range specified, starting at the address specified. This will let you examine just one 
single byte (if the range number is 1), or an entire 64K segment (if the range number 
is 0000 and you're starting at offset 0) in one continuous scrolling list. If you want 
to break out of an overly long display, just type Ctrl-Break or Ctrl-C. 

4. If you enter a D followed by two addresses, DEBUG will display the contents of 
memory starting at the first and continuing to the second. You may specify a segment 
and offset for the first address, but only an offset for the second. 

For example, to display the single byte of memory starting at offset 0 of segment FOOO, 
you could enter either: 

-D FOOO:O 0 

which tells DEBUG to display memory starting and stopping at offset 0 of segment FOOO, 
or: 

-D FOOO:O L 1 



DEBUG 307 

which tells DEBUG to display one byte of memory starting at offset 0 of segment FOOO. 
To display the entire FOOO 64K segment of memory, you could enter either: 

-D FOOO:O FFFF 

or: 

-D FOOO:O L 0000 

Or you could type: 

-D FOOO:O 

and press the Enter key 512 times. The first two examples will scroll the display in one 
continuous gulp. The third will do it in 128-byte slices. 

All of the following examples assume you loaded COMMAND.COM version 3.3 into 
memory either by typing DEBUG COMMAND.COM at the DOS command line, or by 
entering DEBUG, then using successive N COMMAND.COM and L commands to take 
care of it. 

To view COMMAND.COM from the beginning of the file in even eight-paragraph 
chunks, you'd simply keep typing D and pressing the Enter key: 

-D 
30F9:0100 E9 2D OD BA DA OA 3D 05-00 74 lB BA BF OA 3D 02 

30F9:0110 00 74 13 BA 85 OA 3D 08-00 74 OB BA 71 OA 3D OB 

30F9:0120 00 74 03 BA 62 OA OE 1F-E8 6A 06 EB OC CD 21 72 

30F9:0130 D2 B4 4D CD 21 2E A3 EA-OB E9 76 01 2E F6 06 59 

30F9:0140 OC 01 74 OC 2E F6 06 S9-0C 02 74 03 E9 01 13 CF 

30F9:0150 2E F6 06 59 OC 04 74 11-80 FC 01 72 F2 80 FC OC 

30F9:0160 77 ED 83 C4 06 F9 CA 02-00 2E BO OE 59 OC 04 FB 

30F9:0170 OE lF Al F3 OB OB CO 7S-06 SO B4 OD CD 21 SS F7 

-D 

30F9:01BO 06 97 OB FF FF 74 4B OB-CO 7S 47 EB SF 02 EB A8 
30F9:0190 03 73 39 53 SE 06 97 OB-26 BB lE 04 00 83 FB 00 

30F9:01AO 74 OB 06 BE C3 B4 49 CD-21 07 26 BA OE 01 00 26 
30F9:01BO BB lE 02 00 B4 49 CD 21-89 lE 97 OB FF OE FC OB 

30F9:01CO 75 D2 SB BB OE ED OB C6-06 SA OC 00 EB C3 OS EB 

30F9:01DO 40 02 33 CO BB EB A2 FB-OB A2 F9 OB EB lC 00 39 

30F9:01EO 06 F3 OB 74 06 C7 06 F3-0B FF FF BO 26 S9 OC FB 
30F9:01FO 3B 06 E9 OB 75 03 E9 25-01 F9 CB 50 33 CO 2E B6 

and so on. Not really much to look at here. 

.- •..• = •. t .... =. 

.t .... = •• t .. q.= • 

. t •• b •••• j .... !r 

•• M. ! ••... v •••• Y 

.. t .... y •• t ..... 

••• Y •• t .... r ...• 

w ••••••••••• y ••• 

••••••• u.P ••• !X. 

••••• tK •• uG •••• 

• s9S •••. & ••••••• 

t ..... I.! .& •••• & 

..... I.! ....... . 

u. [ ..•••. z •••••• 
@.3 •••••••••••• 9 

... t ........ &Y •• 

B ••• u •• % ••• P3 ••• 

To view a continuous list of internal DOS commands, you would enter: 

-D 5448 556B 



308 PC Magazine DOS Power Tools 

which tells DEBUG to display everything from offsets 5448 through 556B: 

30F9:5440 4E 4F 54 84 09 OA 45 52 

30F9:5450 52 4F 52 4C 45 56 45 4C-48 OA 05 45 58 49 53 54 

30F9:5460 DB 09 00 03 44 49 52 03-CB OE 04 43 41 4C 4C 02 

30F9:5470 BD OA 04 43 48 43 50 02-D2 15 06 52 45 4E 41 4D 
30F9:5480 45 01 OB 12 03 52 45 4E-01 OB 12 05 45 52 41 53 
30F9:5490 45 01 A2 11 03 44 45 4C-01 A2 11 04 54 59 50 45 
30F9:54AO 01 83 12 03 52 45 4D 02-04 01 04 43 4F 50 59 03 
30F9:54BO 15 2A 05 50 41 55 53 45-02 95 11 04 44 41 54 45 
30F9:54CO 02 20 21 04 54 49 4D 45-00 38 22 03 56 45 52 00 
30F9:54DO 79 13 03 56 4F 4C 01 23-13 02 43 44 01 C2 18 05 
30F9:54EO 43 48 44 49 52 01 C2 lB-02 4D 44 01 05 19 05 4D 

30F9:54FO 4B 44 49 52 01 05 19 02-52 44 01 49 19 05 52 4D 

30F9:5500 44 49 52 01 49 19 05 42-52 45 41 4B 00 F5 28 06 
30F9:5510 56 45 52 49 46 59 00 27-29 03 53 45 54 02 AA 16 

30F9:5520 06 50 52 4F 4D 50 54 02-90 16 04 50 41 54 48 02 
30F9:5530 93 14 04 45 58 49 54 00-62 16 04 43 54 54 59 03 

30F9:5540 6D 15 04 45 43 48 4F 02-82 28 04 47 4F 54 4F 02 

30F9:5550 Fl OA 05 53 48 49 46 54-02 76 OA 02 49 46 02 34 
30F9:5560 09 03 46 4F 52 02 4E OD-03 43 4C 53 

NOT ... ER 

RORLEVELH •. EXIST 

•••• DIR •••. CALL. 

.•• CHCP •.•• RENAM 

E •••. REN .•.• ERAS 
E ••.. DEL •... TYPE 
..•. REM ...• COPY. 
• *.PAUSE .••. DATE 

• ! .TIME.8". VER. 
y •• VOL.# •. CD •... 

CHDIR .•.• MD •.•• M 
KDIR ••.. RD.I .. RM 

DIR.I •• BREAK •. (. 
VERIFY.') .SET ... 

.PROMPT ••.. PATH. 

... EXIT .b .. CTTY. 

m •• ECHO •. (.GOTO. 

••. SHIFT.v .. IF.4 
.• FOR.N •• CLS 

Remember that since DEBUG loads COM files at address 100, these offsets are hex 
100 bytes higher than they actually appear in the file. Here's a BASIC program to dis
pJay the internal commands for any IBM COMMAND.COM version from 2.0 through 
3.3. Note that the offsets the BASIC program uses are hex 100 lower than the ones you'd 
enter in DEBUG: 

100 I DBUGLIKE.BAS - Displays internal DOS commands 
110 ' (for IBM COMMAND.COM versions 2.0-3.3 only) 
120 DEFINT A-Z:CLS:DIM T(16),W(6),X(6),Y(6),Z$(6) 
130 FOR A=l TO 6 
140 READ W(A) :READ X(A) :READ Y(A) :READ Z$(A) :NEXT 
150 OPEN "COMMAND.COM'' AS U LEN=l:FIELD U, 1 AS A$ 
160 FOR B=l TO 6:IF LOF(l)=W(B) THEN 180 ELSE NEXT 
170 PRINT "For IBM versions 2.0-3.3 only!":CLOSE:END 
180 PRINT "COMMAND.COM VERSION ";Z$(B) 
190 PRINT "(DEBUG addresses are &HlOO bytes higher!)" 
200 PRINT:FOR C=X(B) TO Y(B) STEP 16 
210 PRINT "XXXX:";HEX$(C);SPC(2); 
220 FOR D=O TO 15:GET fl,C+D+l 
230 H$=HEX$(ASC(A$)) :T(D)=ASC(A$) 
240 IF LEN(H$)=1 THEN H$="0"+H$ 
250 PRINT H$; 
260 IF D=7 THEN PRINT "-"; ELSE PRINT " "; 



270 NEXT:PRINT SPC(2); 
280 FOR E=O TO 15 

DEBUG 309 

290 IF T(E)<32 OR T(E)>l27 THEN PRINT ".";:GOTO 310 
300 PRINT CHR$(T(E)); 
310 NEXT:PRINT:NEXT:CLOSE:END 
320 DATA 17664,&H39A0,&H3AC0,2.0 
330 DATA 17792,&H39C0,&H3AD0,2.l 
340 DATA 22042,&H4940,&H4A60,3.0 
350 DATA 23210,&H4BF0,&H4D00,3.l 
360 DATA 23791,&H4El0,&H4F20,3.2 
370 DATA 25307,&H5340,&H5460,3.3 

You could have viewed the same list of version 3.3 internal commands by typing: 

-D 5448 L 124 

This would display hex 124 bytes of memory starting at offset 5448. 
Or, you could examine these commands simply by typing: 

-D 5448 

and pressing Enter, and then typing just D and pressing Enter twice. Entering D and a 
single address will display 128 bytes starting at that address. Typing D by itself after that 
will keep displaying consecutive 128-byte chunks following the one you specified. 

Note that while you can enter a range (using the L command to specify a length of 
bytes to display) after you enter an address, you can't just enter a range by itself. The 
command: 

-D Ll24 

will produce an error message. 
DEBUG remembers which addresses you specified most recently when using the D 

command. If you use D to view memory between offsets 100 and 200, then use the U 
command to unassemble the code between offsets 600 and 700, and then enter D by it
self, DEBUG will display memory starting at 201 rather than 701, because the last byte 
the D command displayed was at offset 200. 

Entering New Memory Contents 

Forma.t: E address [list] 

The versatile Enter command lets you insert new memory values and modify existing 
ones. You can use it in one of two modes: 



310 PC Magazine DOS Power Tools 

1. You may specify an address and a value and have DEBUG blindly enter that value 
at that address. 

2. Or you may enter an address, have DEBUG display the value currently stored at that 
address, and change the value only if you want to. 

The first brute-force technique lets you enter a block of new information at one time. 
This comes in handy when you're entering strings of characters, or when you're follow
ing a script. 

The second technique lets you confirm your modifications by verifying the current 
values before you make any changes. And it lets you jump forward or backward through 
the file a byte at a time. For example, many users rely on the E command to enter small 
COM programs. Try typing in the following REMINDER.SCR file using a pure ASCII 
word processor: 

N REMINDER.COM 
E 100 B4 09 BA 08 01 CD 21 C3 42 61 63 6B 20 75 70 20 
E 110 79 6F 75 72 20 77 6F 72 6B 20 64 61 69 6C 79 21 
E 120 OD OA 24 
RCX 
23 
w 
Q 

Of course, since all this program does is print a message that says: 

Back up your work daily! 

it's actually easier to use the E command to enter the message directly than to type in the 
individual hex values of the letters in the string: 

N REMINDER.COM 
E 100 B4 09 BA 08 01 CD 21 C3 
E 108 "Back up your work daily!" 
E 120 OD OA 24 
RCX 
23 
w 
Q 

In both cases you 're creating a new file, so you really don't care what memory values 
your brand new program is overwriting. And since you're following a published script 
you can pretty much enter the values without worrying about damaging anything. 

But when you're changing values inside an existing file you really should verify that 
you're modifying the proper bytes. 



DEBUG 311 

Let's make a simple change in the REMINDER.COM file so it beeps at you to drive 
the "Back up ... " message home. One easy way is to replace the exclamation point (charac
ter 21 hex) with an ASCil character 7. Printing a character 7 onscreen causes a beep. 

To do this you have to find the memory address that currently stores a value of 21, and 
enter a 7 at that address. You can see from looking at the script file you typed previously 
that the file is hex 23 bytes long (this is the value entered below the RCX command that 
sets the file length), and that the exclamation point is very near the end of the file. 

To figure out the exact address, look at the middle of the second script file: 

E 108 "Back up your work daily!" 
E 120 OD OA 24 

Notice that the actual message starts at address 108, and that the three characters that 
follow the message begin at address 120. Since the exclamation point is the last charac
ter in the string, its location is right before the three characters that start at offset 120. 

(You could, of course, zero in on the exact address by counting from the "B" in "Back" 
- at address 108 - and working your way one byte at a time across to the "!" at the 
end. Each character represents one byte, so you'd simply count 108 ... 109 ..• lOA etc. But 
it's easier to assume that the exclamation point is at the address directly before the three 
characters starting at 120.) 

Here's where the the interactive mode of the E command comes in handy: New 
DEBUG users sometimes forget that in hex the number right before 20 is lF, not 19. So 
if you used the interactive E mode to change 21 to 7 and you thought the right address 
was 119, when you entered the 119 address you'd see: 

-E 119 
30F9:0119 20. 
-Q 

(If you try this yourself, remember that you'll see another number in place of the 30F9 
to the left of the colon, because this is the segment address, which will vary depending 
on your system configuration.) 

Notice that the E 119 command reported that the value at address 119 was 20. Since 
you wanted to replace an existing value of21, not 20, offset 119 is the wrong address. 

Fortunately, the interactive E mode lets you scan ahead in the file byte by byte until 
you reach the proper value. To scan ahead, just tap the space bar until you see the value 
you 're looking for. This would look like: 

-E 119 
30F9: 0119 20. 64. 61. 69. 6C. 79. 21. 

The value of 21 is actually located six bytes later, at address llF. Once you found it 
by leaning on the space bar, you could enter a new value of 7 to the right of the period 
DEBUG displays, then use the W and Q commands to write the changed file to disk and 
quit: 



312 PC Magazine DOS Power Tools 

-E 119 
30F9:0119 20. 
21. 7 
-w 
Writing 0023 bytes 
-Q 

64. 61. 69. 6C. 79. 

If you wanted to keep the original REMINDER.COM file (with the exclamation point) 
intact and create an additional file that beeped, you could add a line to give the modified 
file a new name like REMINDR2.COM: 

-E 119 
30F9:0119 20. 
21. 7 
-REMINDR2.COM 
-w 
Writing 0023 bytes 
-Q 

64. 61. 69. 6C. 79. 

It's easy to get too far ahead in the file when jumping byte by byte by tapping the space 
bar. If this happens you can move backward by hitting the minus (hyphen) key. You'll 
know you went too far if you see the three final characters - the OD, OA, and 24. If this 
happens, hit the minus key several times to back up to the 21, enter the new value, then 
execute the same closing commands as above. 

-E 119 
30F9: 0119 20. 
30F9:0120 OD. 
30F9:0121 OA.-
30F9:0120 OD.-
30F9: OllF 21. 7 
-REMINDR2.COM 
-w 
Writing 0023 bytes 
-Q 

64. 61. 69. 6C. 79. 21. 
OA. 24.-

The interactive E command also comes in handy when you have to replace several 
characters in a row. 

Some commercial word processing programs stick hex IA (decimal 26) end-of-file 
markers onto the back of text files to pad out their lengths. If you combine two such files 
into one, it's possible to end up with end-of-file markers in the middle of the file-which 
will confuse these programs (and DOS as well) into thinking the files end prematurely. 
If this happens, you can use DEBUG to scan through the file byte by byte. Whenever you 
see a value of IA in the middle of your text, you can replace it with a space (a hex 20). 



DEBUG 313 

Whenever you see any other value you can press the space bar to skip over it and leave 
it untouched. 

If you know that you combined two files, but when you try to load them into your word 
processor or examine them with the DOS TYPE command, the file seems to end with: 

This is the end of the first little file. 

Examine the file with DEBUG. Figure out the hex file length by typing RCX, and then 
use the Search (S) command to look for any lA characters that aren't right at the end. 
You may see something like: 

-RCX 
ex 0780 

-S 100 L 780 lA 
30DD:062B 
30DD:062C 
30DD:062D 
30DD:062E 
30DD:062F 
30DD:087C 
30DD:087D 
30DD:087E 
30DD:087F 

The four addresses at the end (087C, 0870, 087E, and 087F) are where they belong 
- at the end. Remember, if RCX tells you the file is hex 780 bytes long, the file will ac
tually end 100 hex bytes highter, since DEBUG loads files at address 100, not address 0. 
So these are the last four addresses in the file. 

The other five occurrences of lA that DEBUG 's Search command uncovered-062B, 
062C, 062D, 062E, 062F - shouldn't be there, since lA characters don't belong 
anywhere in a text file except at the very end. You can see them by using the D com
mand. Here these IA characters are at the end of the third paragraph (row): 

-D 600 

30DD:0600 54 68 69 73 20 69 73 20-74 68 65 20 65 6E 64 20 This is the end 

30DD:0610 6F 66 20 74 68 65 20 66-69 72 73 74 20 6C 69 74 of the first lit 

30DD:0620 74 6C 65 20 66 69 6C 65-2E OD OA lA lA lA lA lA tle file •••...•• 

30DD:0630 41 6E 64 20 74 68 69 73-20 69 73 20 74 68 65 20 And this is the 

30DD:0640 62 65 67 69 6E 6E 69 6E-67 20 6F 66 20 74 68 65 beginning of the 

30DD:0650 20 73 65 63 6F 6E 64 20-6C 69 74 74 6C 65 20 6F second little o 

It's easy to get rid of them. You could use the E or Fill (F) commands to do it without 
confinnation, but if you 're the cautious type you might want to make sure you 're making 
changes at the proper addresses. To do so, type: 



3I4 PC Magazine DOS Power Tools 

-E 620 
30DD:0620 74. 6C. 65. 20. 66. 69. 
6C. 65. 
30DD:0628 2E. 
lA.20 lA.20 
30DD:0630 41. 
-w 
Writing 0780 bytes 
-Q 

OD. OA. lA.20 lA.20 lA.20 

When DEBUG displayed any character other than IA, simply press the Enter key to 
leave it unchanged and skip to the next one. When you do finally see the string of IA 
characters, change them by entering hex 20 values (spaces) beside the periods DEBUG 
prints. Then write the modified file to disk and quit, using the W and Q commands. 

If you used the DOS TYPE command now, you'd see something like: 

This is the end of the first little file. 
And this is the beginning of the second little one. 

The second line is pushed over several spaces to the right because you changed the 
end-of-file characters separating the two lines into space characters. You can use your 
word processor to remove these extra spaces, or you could have used the DEBUG Move 
(M) command to wipe them out by moving everything five addresses lower from the 
word "And" on up. 

Filling a Block of Memory 

Format: F range list 

The Fill command can double as a brute-force, noninteractive Enter command. 
Here are two similar ways to create a program called FOOTBALL.COM. The first 

uses the Enter (E) command: 

N FOOTBALL.COM 
E 100 B4 09 BA 08 01 CD 21 C3 "Hi Mom!" OD OA 24 
RCX 
12 
w 
Q 

The second uses the Fill (F) command: 

N FOOTBALL.COM 
F 100 L 12 B4 09 BA 08 01 CD 21 C3 "Hi Mom!" OD QA 24 



RCX 
12 
w 
Q 

You can see that these two programs are almost identical. 

DEBUG 315 

The Fill command is useful for converting data files to text files. Many database 
managers produce ASCII files that contain nontext information in a "header" at the begin
ning of the file. If you try to read this file into your own database program, word proces
sor, or spreadsheet, you'll end up with a mess. Sometimes database programs even put 
end-of-file markers at the beginning of such files to prevent nonauthorized users from 
peeking at the contents of the file. But you can have DEBUG examine the beginning of 
the file to see where the ASCII data actually starts, then cover over any nontext informa
tion. Just use the Fill command to put spaces (hex 20 characters) over anything before 
your data. Then use your word processor to remove the spaces. (An even better way is 
to use the DEBUG Move command to move the part of the file with your data over the 
nondata part, obliterating anything non-ASCII.) 

You can also use the Fill command to wipe out a whole block of troublesome repeat
ing characters in a file. Some word processors insert large numbers of end-of-file markers 
into text files. And some communications programs stick nulls - character Os - into 
files. Both can confound certain commercial programs. 

To get rid of these, browse through the file with the Display (D) command or scan 
through with the Search (S) command to find out where the block of 00 or lA characters 
is located. Then use the Fill command to change these characters into something harm
less like spaces. (Again, the Move command does this even better.) 

If nulls creep into a text file, you might load a file and see nothing but: 

signs. Worse, once your cursor hits these null signs your word processor may choke to a 
halt and force you to reboot To get rid of these, figure out where they start and stop: 

C>DEBUG EXPAND.RPT 
-D 
3482:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
3482:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
-D 

3482:0180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3482:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 



316 PC Magazine DOS Power Tools 

3482:01AO 00 00 00 00 00 00 DO 00-00 00 00 DO 00 00 DO 00 ................ 
3482:01BO 00 00 00 00 00 00 DO 49-74 20 73 65 65 6D 73 20 ••••••• It seems 

3482:01CO 74 68 65 20 66 69 67 75-72 65 73 20 77 65 27 76 the figures we'v 

3482:0100 65 20 62 65 65 6E 20 75-73 69 6E 67 20 74 6F 20 e been using to 

3482:01EO 70 6C 61 6E 20 6F 75 72-20 77 65 73 74 65 72 6E plan our western 

3482:01FO 20 65 78 70 61 6E 73 69-6F 6E 20 61 72 65 20 6F expansion are o 

When you tell DEBUG to fill an area of memory you can specify explicit starting and 
stopping addresses. Or you can enter a starting address and then tell DEBUG how many 
bytes it should fill beginning with that address. 

The 00 null characters start at address 100 and continue to address 1B6. You could 
change these to asterisks (hex 2A) with either of the following Fill commands: 

-F 100 186 2A 

or: 

-F 100 L B7 2A 

In either case, if you used the: 

-D 100 

command to examine the changes, you'd see: 

-D 100 

3482:0100 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A **************** 

3482:0110 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A **************** 

3482:0120 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ********~******* 

3482 :0130 

3482 :0140 

3482:0150 

3482:0160 

3482:0170 

-D 

2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A 

2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A 

2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A 

2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A 

2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A 

**************** 

**************** 

**************** 

**************** 

**************** 

3482:0180 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A **************** 

3482:0190 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A **************** 

3482:01AO 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A **************** 

.3482:01BO 2A 2A 2A 2A 2A 2A 2A 49-74 20 73 65 65 6D 73 20 *******It seems 

3482:01CO 74 68 65 20 66 69 67 75-72 65 73 20 77 65 27 76 the figures we'v 

3482:0100 65 20 62 65 65 6E 20 75-73 69 6E 67 20 74 6F 20 e been using to 

3482:01EO 70 6C 61 6E 20 6F 75 72-20 77 65 73 74 65 72 6E plan our western 

3482:01FO 20 65 78 70 61 6E 73 69-6F 6E 20 61 72 65 20 6F expansion are o 

Later you can use your word processor to get rid of these extra asterisks. 



DEBUG 317 

You can also use Fill to clean out a block of memory. If you want to do some serious 
DEBUG string moving on a file called FIXIT.TXT, it's hard enough to figure out where 
all the important strings start and stop. If you load a file into a part of memory that al
ready contained similar strings you can get hopelessly lost. To prevent this, you can wipe 
out any existing values by filling the whole bottom of DEBUG's data segment with 
uniform background characters. If you wanted to fill the entire workspace with 00 charac
ters, you'd load DEBUG without specifying a filename, fill a large chunk of memory 
with 00 characters, then Name and Load the file: 

C>DEBUG 
-F 100 7000 00 
-N FIXIT.TXT 
-L 

Since IBM and IBM-compatible video displays are memory-mapped, you can see how 
fast DEBUG fills memory. If you stick decimal 4000 (hex FAO) characters into the right 
part of memory (address B800:0 for color systems; BOOO:O for mono), your screen will 
instantly fill with the characters you entered. If you have a color system, type: 

C>DEBUG 
-F B800:0 L FAQ "q" 

and 2,000 blue lowercase "q" characters will appear in a flash. Or substitute a lowercase 
"t" to end up with 2,000 red lowercase "t" characters. (Use BOOO:O instead of B800:0 on 
mono systems, and forget about colors. Using "q" will underline the entire screen, 
however.) 

A typical 80-column screen holds 2,000 characters. But hex FAO is equal to decimal 
4,000, not 2,000. Why? The PC video memory is divided into even and odd halves. Put
ting a value at an even address (B800:0, B800:2, etc.) will display the ASCII repre
sentation of that character onscreen. Putting a value at an odd address (B800: 1, B800:3, 
etc.) provides the attribute for the character at the next lower address. The hex value for 
"q" is 71, which produces blue text (blue= 1) on a white background (7 =white). The 
hex value for "t" is 74, which prcxluces red text (red= 4) on a white background. On 
mono screens, blue text ends up as underlined text. 

Moving a Block of Memory 

F orma.t: M range address 

The Move command is misnamed. It really should be called the Copy command, since 
it copies data from one place in memory to another rather than moving it. The term 
"Move" suggests that DOS deletes the original. It doesn't, unless you intentionally over
lap the areas involved so the new location overwrites the old one. 



318 PC Magazine DOS Power Tools 

You can end up with some strange effects by moving strings into video memory. If 
you try this, remember that to be recognizable, text has to load at even bytes and attributes 
for the text at odd bytes. 

To see this in action, create the following three short files. First SCRNTST.BAT: 

ECHO OFF 
DIR 
PAUSE 
DEBUG < SHIFTl 
PAUSE 
DEBUG < SHIFT2 

ThenSIDFTl: 

M B800:0 L FAO B800:52 
Q 

And finally, SmFT2: 

M B800:52 L FAO B800:0 
Q 

Remember to press the Enter key after typing the Qin SmFTl and SHIFf2, or your sys
tem will hang and you'll have to reboot. Also, these files are written to work on color 
systems. For mono screens, change the each of the four B800s to BOOO. 

All this will do is fill your screen with a directory listing, then move one 80 x 25 screen
ful - 4,000 bytes (hex FAO) - of video memory to a slightly higher address and then 
back. The DIR display will shift over to the right side of the screen and then return to its 
normal position. If you change the 52 in both SmFTl and SHIFf2 to an odd number like 
51 or 53, DEBUG will move the even numbered part of memory, your text, into the odd 
part, turning it into attributes. Then it will move it back to text. 

Move is very useful when it comes to eliminating headers on data files. Many database 
managers create pure ASCII fixed·length files that you can import into a word processor 
or spreadsheet, except that these files begin with coded information that tells the database 
the record structure, number of entries, and so on. You can get rid of this header with a 
few simple DEBUG instructions. Here's a simplified example, using a very small file: 

Let's say someone gives you a file called ADRSBOOK containing names and addres
ses that you need. If you don't have the database program that created the file, and your 
own database program won't import it, you can't really do much with it Unless you fix 
the problem with DEBUG. 

First, load the file into DEBUG. Use the RCX command to see how long it is, then 
plug this length into the Search (S) command to see if it contains a hex lA end·of-file 
marker: 



C>DEBUG ADRSBOOK 
-RCX 
ex 0400 

-S 100 L 400 lA 
30DD:03B4 

DEBUG 319 

Now you know that the file is 400 bytes long and that it may end at offset 3B4. (Ob
viously, not all database file formats will be this easy. But this example uses a genuine 
database file.) Type D and press the Enter key a few times until you see where the actual 
data begins: 

-0 

3000:0100 02 03 00 06 06 58 39 00-4C 41 53 54 00 00 00 00 

3000:0110 00 00 00 43 OF 09 'AA 00-46 49 52 53 54 00 00 00 

3000:0120 00 00 00 43 08 E8 'AA 00-53 54 52 54 41 44 52 53 

3000:0130 00 00 00 43 12 FO 'AA 00-43 49 54 59 00 00 00 00 

3000:0140 00 00 00 43 08 02 AB 00-53 54 00 00 00 00 00 00 

3000:0150 00 00 00 43 02 OA AB 00-5A 49 50 00 00 00 00 00 

3000:0160 00 00 00 4E 05 OC AB 00-0D 00 00 00 00 00 00 00 

3000:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

-D 
3000:0180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

300D:01AO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30D0:01BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:01CO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

300D:01EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:01FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

-D 

3000:0200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:0210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:0240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:0250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:0270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

-D 
3000:0280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:02AO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:02BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

30DD:02CO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

...•. X9.LAST ••.. 

••• C •••• FIRST ••• 

••• C •••• STRTADRS 

... C .... CITY .••. 

•.. C •... ST ...•.. 

••• C •••• ZIP ••••• 

••• N •••••••••••• 



320 PC Magazine DOS Power Tools 

3000:0200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD:02EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
300D:02FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
-0 

3000:0300 00 00 00 00 00 00 00 00-00 20 54 65 6E 6E 79 73 ••.•••.•. Tennys 

3000:0310 6F 6E 20 20 20 20 20 20-20 41 6C 20 20 20 20 20 on Al 

3000:0320 20 31 38 20 48 6F 67 62-6F 6E 65 20 4C 61 6E 65 18 Hogbone Lane 

3000:0330 20 20 20 54 68 75 64 77-65 6C 6C 47 41 33 30 32 ThudwellGA302 

3000:0340 37 33 20 41 72 6E 6F 6C-64 20 20 20 20 20 20 20 73 Arnold 

3000:0350 20 20 40 61 74 74 20 20-20 20 31 31 31 20 57 69 Matt 111 Wi 

3000:0360 6E 65 64 61 72 6B 20 53-74 2E 20 20 54 68 69 72 nedark St. Thir 

3000:0370 73 74 79 20 54 58 37 37-36 31 39 20 44 75 6E 6E sty TX77619 Dunn 

The data starts at address 30A. And it presumably stops at the end-of-file marker at 
address 3B4. (Remember, it's a short file.) What you then have to do is move this block 
of data down into memory to the beginning of the file so the data overwrites the header: 

-M 30A 3B4 100 

You can use the D command to display the new memory contents at address 100: 

-0 100 
3000:0100 54 65 6E 6E 79 73 6F 6E-20 20 20 20 20 20 20 41 

3000:0110 6C 20 20 20 20 20 20 31-38 20 48 6F 67 62 6F 6E 
3000:0120 65 20 4C 61 6E 65 20 20-20 54 68 75 64 77 65 6C 
3000:0130 6C 47 41 33 30 32 37 33-20 41 72 6E 6F 6C 64 20 
3000:0140 20 20 20 20 20 20 20 20-40 61 74 74 20 20 20 20 
3000:0150 31 31 31 20 57 69 6E 65-64 61 72 6B 20 53 74 2E 

3000:0160 20 20 54 68 69 72 73 74-79 20 54 58 37 37 36 31 

3000:0170 39 20 44 75 6E 6E 65 20-20 20 20 20 20 20 20 20 

Tennyson A 
1 18 Hogbon 
e Lane Thudwel 
1GA30273 Arnold 

Matt 
111 Winedark St. 

Thirsty TX7761 

9 Dunne 

Now you want to write this new file to disk. You don't want to destroy the old one, in 
case you made a mistake, so give the new file a name like NEWDB.FIL: 

-N NEWDB.FIL 

If you want, you can adjust the length. The data used to start at address 30A, but you 
moved it down to address 100. So you can now make the file 30A minus 100, or 20A 
bytes shorter. The old file length was 400. If you subtract 20A from 400, you get a new 
length of 1F6. Use the DEBUG H (Hex math) command if you're shaky about hex cal
culations: 

-H 30A 100 
040A 020A 



-H 400 20A 
060A 01F6 

DEBUG 321 

(After you type in the numbers after the H, DEBUG prints first the sum of the two num
bers and then the difference.) 

If you've been paying close attention, you might think this file length of 1F6 is too 
long. After all, if the data started at address 30A and stopped at the end-of-file marker at 
address 3B4, 3B4 minus 30A is OAA bytes. Actually, the data in this example is just 
about this short. What happened was that the database manager padded out the end of 
the file. 

Finally, use the W command to write the new NEWDB.FIL file to disk and the Q file 
to quit. In this case you were fortunate - the process got rid of the header and left you 
with a perfectly readable ASCII file. You won't always be so lucky. Sadly, the structure 
of every database file is different. Some don't even contain ASCII text. But in most cases 
you can use DEBUG to extract the important data. The critical thing here is to give any 
files you write to disk a new name so you don't wipe out the old. (Instead of using the N 
command, you could copy the file before you started working with DEBUG, then load. 
modify, and write the copy to disk.) 

While you can use the Move command to copy text, you may have a harder time 
moving program instructions. Unless you're really sure you know what you're doing, 
don't start slicing and dicing your programs by moving blocks of instructions around. 
For example, if you 're starting out with a file that looks like this when displayed with the 
Dcommand: 

30DD:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO ABCDEFGHIJKLMNOP 

30DD: 0110 Sl S2 S3 S4 SS S6 57 S8-S9 SA 31 32 33 34 3S 36 QRSTUVWXYZ1234S6 

30DD:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD: 0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD:01SO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
30DD:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

you could copy this text by specifying explicit starting and stopping addresses (100 and 
l IF respectively) and then telling DEBUG where to put the copy (120). After issuing 
this command, check your work by using the Display command (but tell it to start dis
playing at address 100): 

-M 100 llF 120 

-D 100 

30DD:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO 

30DD:0110 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36 

30DD:Ol20 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO 

30DD:0130 Sl S2 53 S4 S5 S6 S7 S8-S9 SA 31 32 33 34 3S 36 

30DD:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

ABCDEFGHIJKLMNOP 

QRSTUVWXYZ1234S6 

ABCDEFGHIJKLMNOP 

QRSTUVWXYZ123456 



322 PC Magazine DOS Power Tools 

3000:01SO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

You can also give DEBUG a starting address and a range of bytes to copy. The first 
M command took 20 (hex) bytes and copied them without any overlap, yielding 40 bytes. 
To copy these 40 bytes (again without any overlap) by using an address and a range 
length, specify the starting address (100), the range length (40), and the destination ad
dress (140). The use the D 100 command to view your work: 

-M 100 L 40 140 

-0 100 

3000:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 40 4E 4F SO ABCOEFGHIJKLMNOP 

3000: 0110 Sl S2 S3 S4 SS S6 S7 S8-59 SA 31 32 33 34 35 36 QRSTUVWXYZ1234S6 

3000:0120 41 42 43 44 4S 46 47 48-49 4A 4B 4C 40 4E 4F SO ABCOEFGHIJKLMNOP 

3000:0130 Sl 52 S3 S4 SS 56 S7 S8-S9 SA 31 32 33 34 35 36 QRSTUVWXYZ1234S6 

3000:0140 41 42 43 44 4S 46 47 48-49 4A 4B 4C 40 4E 4F SO ABCOEFGHIJKLMNOP 
3000:01SO 51 S2 53 54 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36 QRSTUVWXYZ1234S6 

3000:0160 41 42 43 44 4S 46 47 48-49 4A 4B 4C 40 4E 4F SO ABCOEFGHIJKLMNOP 

3000:0170 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36 QRSTUVWXYZ1234S6 

Both of the examples above assumed you wanted to move text without overlapping 
anything. Let's assume you wanted to copy just the first line (ABCDEFGHIJKLMNOP) 
and get rid of the second (QRSTUVWXYZ123456). The Move command makes it easy. 
First, start with the original file again: 

3000:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 40 4E 4F SO ABCOEFGHIJKLMNOP 

3000:0110 Sl S2 S3 S4 S5 56 S7 SB-S9 SA 31 32 33 34 3S 36 QRSTUVWXYZ1234S6 

3000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:01SO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
3000:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

Then move just the first line down so it overwrites the second one. Both of the follow-
ing commands would do it: 

-M 100 lOF 110 

or: 

-M 100 L 10 110 



DEBUG 323 

The first tells it to take everything from addresses 100 through lOF and copy it to address 
110. The second says to take the hex 10 bytes starting at address 100 and copy them down 
to address 110. In either case, use the D 100 command afterward and you'd see: 

3000:0100 41 42 43 44 45 46 47 48-49 4A 4B 4C 40 4E 4F 50 

3000:0110 41 42 43 44 45 46 47 48-49 4A 4B 4C 40 4E 4F 50 

3000:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

3000:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OA 

Searching for Characters 

Format: S range list 

ABCOEFGHIJKLMNOP 
ABCDEFGHIJKLMNOP 

The Search command will scan through up to 64K of memory at a time for a list of 
specified characters and report the starting addresses of any it finds. If DEBUG stumbles 
over lots of occurrences, it will scroll the addresses off the screen. If it doesn't find any 
matches it will simply print another DEBUG - prompt. 

You can search for individual hex values such as 49 42 4D or for text strings "IBM" 
or for combinations of both such as "IBM" 41 54. Make sure you specify the precise 
characters you want DEBUG to find. Looking for "IBM" won't find "I.B.M." and "DIR" 
won't find "Dir" or "dir" or any other inexact match. To look for such variations, execute 
multiple searches. 

What you see onscreen is not necessarily what you get. Word.Star, for instance, adds 
decimal 128 to the ASCII value of the last character in most words. If you search for the 
word "bullnose" in a WordStar file, you may never find it But if you lop off the last let
ter, and search for "bullnos" you probably will. 

If you 're searching all the way through your main 640K of memory, you '11 end up 
seeing reports of phantom matches. When you type in the Search command, DOS enters 
the command itself in memory, and DEBUG will find occurrences like these as it scans 
through. So if you make an extensive all-sector search and then go back and use the D 
command to verify the occurrence, you may not see why DEBUG reported it in the first 
place. For example, to search through the top segment of memory (ROM BIOS segment 
FOOO) for the string "/84" - the copyright date of an early AT - you could use explicit 
starting and stopping addresses: 

-S FOOO:O FFFF "/84" 

This tells DEBUG to start searching at address FOOO:OOOO for the string "/84" and con
tinue the search until offset FFFF in that same segment. You could also use a starting ad
dress and a range to perform the same search: 



324 PC Magazine DOS Power Tools 

-S FOOO:O L 0000 "/84" 

This has DEBUG scan 10,000 bytes for the same string, starting at address FOOO:OOOO. 
When searching for text, ifs easiest to wrap it in quotes. But you could have specified 
the actual hex representation for the characters I and 8 and 4 ("/" = 2F; "8" = 38; and "4" 
= 34): 

-S FOOO:O L 0000 2F 38 34 

And, obviously, you don't have to scan through an entire segment each time. To search 
for this string in the first hex 100 bytes of segment FOOO, you could enter: 

-S FOOO:O FF "/84" 

or: 

-S FOOO:O L 100 "/84" 

DEBUG searches through memory very quickly. If it finds lots of occurrences of the 
string you 're looking for, it will scroll the addresses rapidly off the top of the screen. You 
can get around this problem by echoing everything to your printer, or by redirecting the 
output to a file. 

To send the output to both your screen and printer, turn on your printer and type Ctrl
p or Ctrl-PrtSc. To stop this echoing process, type Ctrl-P or Ctrl-PrtSc again. 

To redirect the output to a file, type: 

DEBUG > OUTPUT.FIL 

then type in the command that produced the overly large output and press Enter. (Be care
ful; since DOS is redirecting all of DEBUG's output, you won't be able to see what you 
type.) Then type Q and press Enter. You should see the DOS prompt again. To view the 
list of addresses, load the OUTPUT.FIL into your word processor, or use the DOS TYPE 
command (TYPE OUTPUT.FIL). If the file is long, make sure the DOS MORE.COM 
utility is handy and type: 

MORE < OUTPUT.FIL 

You could also create a tiny file with the single DEBUG command and a Q (to quit) 
and call the file INPUT .FIL. It might look like: 

S FOOO:O L 100 "/84" 
Q 

(Be sure to include the Q and to press the Enter key after typing the Q or your system 
will freeze and you'll have to reboot.) Then get into DOS and type: 



DEBUG 325 

DEBUG < INPUT.FIL > OUTPUT.FIL 

To search through version 3.3 COMMAND.COM for the DIR command, load COM
MAND.COM into DEBUG. use the RCX command to find out how long the file is, then 
specify this length in the Search command: 

C>DEBUG COMMAND.COM 
-RCX 
ex 62DB 

-S 100 L 62DB "DIR" 
30FB:5170 
30FB:5464 
30FB:54E2 
30FB:54Fl 
30FB:5500 

You can check to see exactly what the Search command found by using the D com
mand. To make the screen tidy, replace the very last digit in the addresses DEBUG 
reported with a 0. So if DEBUG reported a match at 30FB:5464, ask it to look for the 
hex 10 bytes starting with 5460. (When you're searching through a file and then using 
the D command to verify the matches, you don't have to specify the segment- the offset 
address will do fine by itself.) 

-D 5170 L 10 

30FB:5170 44 49 52 3E 20 20 20 00-0E 3B 49 42 4D 20 50 65 DIR> .. ;IBM Pe 

-D 5460 L 10 

30FB:5460 DB 09 00 03 44 49 52 03-CB OE 04 43 41 4C 4C 02 .••. DIR •.•• CALL. 
-D 54EO L 10 

30FB:54EO 43 48 44 49 52 01 C2 18-02 4D 44 01 05 19 05 4D CHDIR •... MD •••. M 
-D 54FO L 10 

30FB:54FO 4B 44 49 52 01 05 19 02-52 44 01 49 19 05 52 4D KDIR •.•• RD.I .• RM 
-D 5500 L 10 

30FB:5500 44 49 52 01 49 19 05 42-52 45 41 4B 00 FS 28 06 DIR.I .. BREAK •. (. 

If you want to scan all the way through a segment such as 3000 for a string like "IBM" 
you can issue the command: 

-S 3000:0 0000 "IBM" 

If you want to scan through every one of the ten segments in main memory (the main 
640K is made up of ten individual 64K segments), you can use the DOS function keys 
to streamline the process of entering so many similar commands. First look through the 
lowest segment (0000): 



326 PC Magazine DOS Power Tools 

-s 0000:0 0000 "IBM" 

Then tap either the right arrow key or the Fl key twice, which repeats the S and the 
space that follows it from the previous command. Assuming DEBUG didn't find any 
matches in segment 0000, the screen will look like: 

-s 0000:0 0000 "IBM" 
-s 

Type in a 1 and press F3, which fills in the rest of the previous command. The screen 
will look like: 

-s 0000:0 0000 "IBM" 
-s 1000:0 0000 "IBM" 

You can also use the DOS F2 key plus a character, which repeats the previous com-
mand up to the specified character. Pressing F2 and the 1 at this point would print the 
previous S and space and stop before the 1. You could then enter a 2 and press F3 to com-
plete the command. 

An easier way to search through all 16 of your system• s segments (including things 
like ROM BIOS and video areas) is to use a SCAN.BAT batch file: 

ECHO OFF 
IF %1!==! GOTO OOPS 
ECHO s 0000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 > RAWFILE 
ECHO s 1000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 2000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 3000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 4000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 5000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 6000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 7000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 8000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s 9000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s AOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s BOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s COOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s DOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s EOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO s FOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> RAWFILE 
ECHO Q >> RAWFILE 
DEBUG < RAWFILE I FIND /V "-" > HITLIST 
DEL RAWFILE 
ECHO The results are in a file called HITLIST 
GOTO END 



:OOPS 
ECHO Specify something for %0 to search 
ECHO such as hex bytes, eg : %0 45 3B 61 FF 
ECHO or text in quotes, eg: %0 "qwerty" 
ECHO or both, eg: %0 "qwerty" 45 61 
END 

Be sure to include the line: 

ECHO Q >> RAWFILE 

DEBUG 327 

If you omit this, the script won't execute the proper instruction to quit DEBUG, and your 
system will freeze, forcing you to reboot. 

The SCAN.BAT batch file starts out by using the line: 

IF !%1==! GOTO OOPS 

to make sure you entered a string to search for. DOS substitutes the first thing that you 
typed on the command line after the name of the batch file, in place of each % I replace
able parameter that it sees inside the batch file. If you typed: 

SCAN "IBM" 

DOS will replace every occurrence of % 1 in the batch file with the string "IBM". If you 
typed: 

SCAN "IBM" 20 31 

DOS would still replace every % 1 with "IBM". But it would also replace any %2 it finds 
with the hex value 20, since 20 is the second thing you typed after the name of the batch 
file, and any % 3 with 31. It replaces any %0 in the batch file with the name of the batch 
file itself. So in: 

SCAN "IBM" 20 31 

DOS would replace any occurrences of %0, %1, %2, and %3 as follows: 

SCAN %0 
"IBM" %1 
20 %2 
31 %3 

If you entered just: 

SCAN 



328 PC Magazine DOS Power Tools 

the %1 replaceable parameter would be equal to (nothing), since you didn't type any
thing in after SCAN. The test: 

IF !%1==! GOTO OOPS 

means that if you did type something in after SCAN (such as SCAN "IBM"), the % 1 
would be replaced by "IBM" and the test would become: 

IF !"IBM"==! GOTO OOPS 

Now since !"IBM" is clearly not equal to! the test fails. (Remember, you have to use 
a double equals sign in batch file tests.) If you didn't enter anything, the test becomes: 

IF !==! GOTO OOPS 

This test is true since ! does equal ! and the batch file then executes the rest of the com
mand, jumping to a label named OOPS. Labels are short words starting with colons. When 
the batch file jumps to the OOPS label it executes the three lines following it, printing a 
message onscreen that tells the user to enter a parameter next time. 

You don't have to specify the colon before the label in a GOTO command (although 
it won't hurt), but you do have to include it at the point in the batch file where it actual
ly serves as a label. Labels and conditional GOTO commands let you jump around, or 
branch, inside a batch file, adding tremendous power and flexibility. 

If you entered just a single parameter, such as "IBM", the batch file would replace 
every % 1 it finds with it, turning a line such as: 

ECHO S 0000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 > RAWFILE 

into: 

ECHO S 0000:0 LOOOO "IBM" > RAWFILE 

(If your batch file included a line such as: 

ECHO %1 %1 %1 

DOS would translate this to: 

ECHO "IBM" "IBM" "IBM" 

since it would replace all three instances of% 1.) 
If you entered only one parameter on the command line after the name of the batch 

file, DOS would make the rest of the replaceable parameters - %2 through %9 - equal 
to (nothing) and would effectively discard them. 



DEBUG 329 

The single > redirection sign followed by a filename (RA WFILE) tells DOS to send 
the characters following the ECHO command into the file specified instead of printing 
them on the screen. A single > command will wipe out an existing file with the name 
specified; a double >> sign will append the new infonnation without destroying the old 
one. By starting out with a single > sign you erase any old RA WFILE file that happens 
to be on your disk. And by following this with a succession of double>> signs, you build 
up the new RA WFILE file one line at a time. 

The SCAN.BAT batch file creates a new script file called RA WFILE. RA WFILE con
tains instructions to search through all 16 memory segments one by one for the string or 
hex characters that you entered. In this particular case the file will look like: 

s 0000:0 LOOOO "IBM" 20 31 
s 1000:0 LOOOO "IBM" 20 31 
s 2000:0 LOOOO "IBM" 20 31 
s 3000:0 LOOOO "IBM" 20 31 
s 4000:0 LOOOO "IBM" 20 31 
s 5000:0 LOOOO "IBM" 20 31 
s 6000:0 LOOOO "IBM" 20 31 
s 7000:0 LOOOO "IBM" 20 31 
s 8000:0 LOOOO "IBM" 20 31 
s 9000:0 LOOOO "IBM" 20 31 
s AOOO:O LOOOO "IBM" 20 31 
s BOOO:O LOOOO "IBM" 20 31 
s COOO:O LOOOO "IBM" 20 31 
s DOOO:O LOOOO "IBM" 20 31 
s EOOO:O LOOOO "IBM" 20 31 
s FOOO:O LOOOO "IBM" 20 31 
Q 

(You '11 never see RA WFILE, since the batch file erases it before it exits.) 
SCAN.BAT uses two kinds of redirection- sending a file into DEBUG and captur

ing the output from DEBUG. First, it redirects the contents ofRAWFILE into DEBUG 
just as if you had typed in all the search instructions yourself. Then, it redirects the 
DEBUG output to a file called HITLIST. When it's all done, all you have to do to see 
the address of each occurrence of the infonnation you were hunting for is look at HIT
LIST. The best way to do this is to load HITLIST into your word processor or, use the 
DOS TYPE command. IfHITLIST is long, use the MORE command; make sure the DOS 
MORE.COM program is handy and type: 

MORE < HITLIST 

The SCAN.BAT batch file also pipes the DEBUG output through a FIND filter with 
the line: 

DEBUG < RAWFILE I FIND /V "-" > HITLIST 



330 PC Magazine DOS Power Tools 

As DOS sends each line of output through its FIND.EXE filter utility, it checks to see 
if the line contains a specified character or string of characters. In this case the specified 
character it looks for is a hyphen (-). The N switch after the FIND tells DOS to discard 
any line it finds that happens.to have a hyphen anywhere in it The FIND utility can either 
screen out lines that do contain the specified string, or those thatdon'tcontain it (As it's 
used here the command excludes anything with a hyphen. All DEBUG commands have 
a hyphen as the first character in each line and you don't want your file cluttered with 
these commands -you want just the results.) However, filtering the text this way takes 
a bit more execution time and means you have to have the DOS FIND.EXE program 
handy. If you don't mind seeing the actual commands in the output, and you want to 
speed things up slightly, change the line to: 

DEBUG < RAWFILE > HITLIST 

This means that once you put the SCAN.BAT file and DEBUG.COM in the same 
directory you can search all the way through memory for any string, or (up to 9) hex 
values, or combinations of both simply by typing the word SCAN and the infonnation 
you're looking for. Make sure that you enclose any text you're hunting for inside quota
tion marks, and that any values you enter on the command line are in hex notation rather 
than decimal. 

As mentioned earlier, DEBUG will report some phantom addresses where it or DOS 
temporarily puts copies of the string you specified. 

Assembling ASM Instructions 

Forma.t: A [address] 

DEBUG's mini-assembler is an extremely powerful tool. As with all power tools, 
however, you have to be careful how you use it If you're carefully copying a program 
out of a book or magazine, or you 're an old hand at assembly language, this DEBUG fea
ture can be incredibly useful. Otherwise, don't experiment, unless you 're absolutely sure 
every last file on your system is backed up-and be especially wary about fooling around 
with anything that deals with disks, and especially anything that writes. 

Serious assembly language programmers will use the IBM/Microsoft full-fledged as
sembler, which is far more powerful and sophisticated. The mini-assembler is for creat
ing and fixing short programs like the ones in this book. 

You can use most of the standard 8086/8088 assembly language syntax in DEBUG. 
But DEBUG's mini-assembler is not built to handle complex programs. For instance 
when you want the program flow to jump from one place to another you have to furnish 
precise addresses of where to go; with full-fledged assemblers you can use "labels" in
stead of addresses. And DEBUG isn't as flexible or understanding about certain kinds of 
instructions. But for quick-and-dirty programs it's just what the doctor ordered. 

To figure out what to do with it, you'll have to get your hands on a book specially writ
ten for serious users who want to pick up the fundamentals of programming. One of the 



DEBUG 331 

best for beginners is Peter Norton, s Programmer's Guide to the IBM PC from Microsoft 

Press. 
To use the mini-assembler for the first time, just get into DEBUG and type A at the 

main DEBUG - prompt. DEBUG will print an address in segment:offset form starting 
with offset 0100: 

C>DEBUG 
-A 
30DD:0100 

(Ignore the four hex digits to the left of the colon. This will vary from system to system 
and won't affect what you're doing.) 

At this point DEBUG expects you to enter an assembly language instruction. If you 
don't want to, just press the Enter key and you'll return to the DEBUG prompt. If you 
do want to, go ahead and enter it. Type MOV AH,05 and press the Enter key: 

C>DEBUG 
-A 
30DD:0100 MOV AH,05 
30DD:0102 

DEBUG will accept what you typed, assemble the instruction into machine-readable 
code at that address, and skip ahead the proper number of bytes to the next free space in 
memory waiting for you to enter another instruction. Here it translated the MOV AH,05 
instruction into something two bytes long, since the next address it displayed was 0102. 
If you type something DEBUG doesn't understand, it prints an error message and lets 
you try again at the same address. For instance, if you had accidentally typed: 

C>DEBUG 
-A 
30DD:0100 MOV HA,05 

"' Error 
30DD:0100 

DEBUG would have caught the mistake and indicated where it was by pointing to it. 
Then it would put the same 0100 address onscreen a second time to let you enter the cor
rected version of this instruction. 

But since DEBUG liked the MOV AH,05 (you could have just as easily typed MOY 
AH,5 by the way), it asked you to enter another instruction at address 102. So type in 
MOVDL,OC: 

C>DEBUG 
-A 
30DD:0100 MOV AH,05 



332 PC Magazine DOS Power Tools 

3000:0102 MOV OL,OC 
3000:0104 

Again, you can tell it liked what you typed, since it dropped down a line and offered 
you the chance to enter another instruction at an address two bytes higher, 0104. 

(DEBUG is smart enough to know what's legal and what isn't. But it obviously can't 
tell what's ridiculous. So long as you enter the proper syntax, it will blithely let you create 
a program to wipe out all the files on your hard disk, or spin into an endless loop that will 
crash your system. Be extremely careful about all this; one mistyped digit can have 
catastrophic results. For instance, BIOS interrupt 13 lets you read disk sectors by putting 
a value of 2 in the AH register. But it lets you write disk sectors by putting a value of 3 
in AH. If you accidentally type a 3 instead of a 2, you can kiss your data goodbye.) 

To finish the sample program, enter INT 21 to launch DOS into action, and then RET 
to return to the DOS prompt. You could use INT 20 instead of RET to end short COM 
programs, but they'll both have the same effect, and RET is easier to type: 

C>OEBUG 
-A 
3000:0100 MOV AH,05 
3000:0102 MOV OL,OC 
3000:0104 INT 21 
3000:0106 RET 
3000:0107 

When you've entered the last assembly language instruction, you'll see the next ad
dress - 0107. Just press the Enter key and you'll return to the main DEBUG prompt. 
Note the 0107 address, however, since you'll need it for the next step. 

You can check your typing by using the Unassemble (U) command. DEBUG will look 
at the machine-readable code it just assembled, and try to take it apart and reproduce the 
assembly language instructions you typed in. Since you just started entering instructions 
at address 0100 and stopped right before 0107, you could type either: 

-u 100 106 

or: 

-U 100 L 7 

Since you stopped entering instructions right before address 0107, the assembled code 
occupies seven bytes of memory, not six. Remember that the first byte is at address 100, 
not 101. And the last byte is at address 106. The first version of the Unassemble com
mand above tells DEBUG to unassemble everything from addresses 100 through 106. 
The second tells it to unassemble the seven bytes starting at address 100. Both will 
generate the same display: 



DEBUG 333 

30F9:0100 B405 MOV AH,05 
30F9:0102 B20C MOV DL,OC 
30F9:0104 CD21 INT 21 
30F9:0106 C3 RET 

The leftmost column contains the segment:offset memory addresses that you wanted 
to examine. The next column shows the hexadecimal representations of the actual 
machine-level code that DEBUG translated the assembly language instructions into. 
Sending the two bytes B4 and 05, here stuck together as B405, to the CPU tells it to put 
a value of (MOV) 05 into register AH. The rightmost column is DEBUG's best guess 
about which instructions you originally typed. 

If you saw at this point that you had made a mistake, you could use the A command 
to correct it. The program you're in the process of creating will send an ASCII decimal 
character 12 to the printer, which should generate a form feed. Since DEBUG works ex
clusively in hex, you have to enter the character in its hex form, OC (or just plain C). If 
you forgot this, and entered a decimal 12 instead of a hex C, you'd be telling the program 
to send a hex 12 (decimal 18) to the printer. If you unassembled your typing, you'd see 
something like: 

30F9:0100 B405 
30F9:0102 B212 
30F9:0104 CD21 
30F9:0106 C3 

MOV AH, 05 
MOV DL, 12 
INT 21 
RET 

To fix this, tell DEBUG you want to re-assemble the instruction beginning at address 
102, since you'll have to re-enter the entire MOV DL,OC and this starts at offset 0102: 

-A 102 

DEBUG will respond with: 

30F9:0102 

Just type in the correct instruction: 

30F9:0102 MOV DL,OC 

and press the Enter key. DEBUG doesn't know if you wanted to fix just one instruction 
or enter several new ones, so it will print the next memory address and offer you the 
chance to change it as well: 

30F9:0102 MOV DL,OC 
30F9:0104 



334 PC Magazine DOS Power Tools 

Since all you wanted to re-enter was the single instruction at address 102, press the 
Enter key to exit the mini-assembler and return to the main DEBUG prompt. Then repeat 
the unassemble command to verify the correction. 

{You could have also used the Enter (E) command to make the change. By looking at 
the unassembled code you could see that the erroneous value of 12 was at address 103: 

30F9:0102 B212 MOV DL, 12 

/ "' addre~ addre~ 
102 103 

You could then have typed: 

-E 103 

and pressed the Enter key. DEBUG would have responded with: 

30F9:0103 12. 

Then enter the correct value of OC by typing it in and hitting Enter. Use either the Unas
semble or Enter commands to verify the change.) 

To create the program you just entered, you have to name it, using N FF.COM. First 
tell DEBUG how long it is, by typing RCX and pressing Enter, then enter 7 when DEBUG 
displays the colon, and write it to disk {with W), and quit {Q): 

-N FF.COM 
-RCX 
ex 0000 
:7 
-w 
Writing 0007 bytes 
-Q 

This program will send a form-feed character {decimal 12, hex OC) to LPTI:, unless 
you rerouted printer output somewhere else . 

. If you go back later to work with the mini-assembler again in the same DEBUG ses
sion, DEBUG will remember the last address you used. If you type A without specify
ing an address after it, DEBUG will assume you want to continue entering new 
instructions where you left off. Since you left off at address 107 in the above example, 
you can do some other DEBUG chores and then type: 

-A 



DEBUG 335 

to have DEBUG would respond with: 

30DD:0107 

Keeping track of the last memory address is handy if you want to continue working 
on a program in progress. But if you want to create a brand new, unrelated program, 
you'll have to tell the mini-assembler to start again at address 100: 

-A 100 

The mini-assembler is terrific at handling text To do so, just prefix the text with a DB 
opcode: 

C>DEBUG 
-A 
30DD:0100 MOV AH,09 
30DD:0102 MOV DX,108 
30DD:0105 INT 21 
30DD:0107 RET 
30DD:0108 DB "Common sense is not so common.",OD,OA 
30DD:0128 DB " - Voltaire",OD,OA,24 
30DD:0149 
-RCX 
ex 0000 
:49 
-N HOWTRUE.COM 
-w 
Writing 0049 bytes 
-Q 

DEBUG will calculate how long each string is and automatically start the next instruc
tion (or string) at the next available location. So after you entered: 

30DD:0108 DB "Common sense is not so common.",OD,OA 

DEBUG figured out that the next string would begin at address 128, and printed: 

30DD:0128 

Each line of text is followed by an OD,OA (or D,A) carriage-return and line-feed com
bination. The commas separating these from the text are optional; spaces will work just 
as well. Note also that when you use function 9 of interrupt 21 you have to put a final 
"$" after the end of the last string. You could have just as easily entered: 



336 PC Magazine DOS Power Tools 

30DD:0108 DB "Common sense is not so common." DA 
30DD:0128 DB II - Voltaire" D A "$" 

If you put your strings at the end of the program, DEBUG makes it a snap to figure 
out how many bytes to tell the CX register to write. Just look at the address the mini-as
sembler prints after you enter the last string. In this case it's 149. Since DEBUG began 
assembling instructions at offset 100, subtract 100 from 149 and tell the CX register to 
write 49 bytes. 

Unassembling Instructions 

Format: U [address] or U [range] 

-RCX 

Just as DEBUG lets you translate assembly language instructions into machine-readable 
code (with the Assemble (A) command), it will reverse the process and tum a stream of 
hex bytes only a CPU can understand back into recognizable assembly language state
ments. Or at least it will try to. 

One of the main problems is that the Unassemble command can't distinguish program 
instructions from data, and will try to translate the data back into assembly language state
ments instead of roping it off and indentifying it as something other than program in
structions. Another problem is that different assembler programs can tum different 
variations of assembly language instructions into the same basic code. The DEBUG Un
assembly command has no idea which one of the original variations the programmer 
used, and may not translate every byte back to the exact source code used to create the 
program. A third problem is' that if you give the Unassemble command the wrong start
ing address, it will start translating things in mid-instruction, and end up with gibberish. 
And finally, it's best at translating the kinds of short and sweet COM programs DEBUG 
can create. Long complex programs, and code created by compilers jump around so much 
and use so many intertwinoo libraries of subroutines that you really won't be able to make 
much sense of most Unassembled output. 

But this command can be extremely useful in fixing short programs you or someone 
else creatOO with DEBUG' s mini-assembler. Let's say that someone put a program called 
WARNING.COM on your disk that was supposed to print the message "DO NOT 
ERASE YOUR FILES NOW!" Unfortunately, the programmer goofed. When you run 
it, the program prints "ERASE YOUR FILES NOW!" 

The first thing to do is load WARNING.COM into DEBUG, see how long it is (by 
typing RCX and hitting Enter twice), and display the program using the D command: 

ex 0021 

-D 100 L 27 

30F9:0100 B4 09 BA OF 01 CD 21 C3-44 4F 20 4E 4F 54 20 45 .••... !.DO NOTE 



DEBUG 337 

30F9:0110 52 41 53 45 20 59 4F 55-52 20 46 49 4C 45 53 20 RASE YOUR FILES 

30F9:0120 4E 4F 57 21 OD OD 24 NOW! .. $ 

What this tells you is that the actual message inside WARNING.COM is accurate, but 
that something is wrong with the program portion. You can see by looking at the ASCII 
display and counting over that the text begins at address 108. But the machine-readable 
program code from addresses 100 to 107 is inscrutable. Until you use the Unassemble 
command: 

-u 100 107 
30F9:0100 B409 MOV AH,09 
30F9:0102 BAOFOl MOV DX,OlOF 
30F9:0105 CD21 INT 21 
30F9:0107 C3 RET 

Now you have to do a little detective work. How does the program work? The first 
thing to do is look for the workhorses of the programming world - interrupts. In this 
case the program contains just one instruction that begins with INT. The 21 after the INT 
tells you the program uses the main DOS interrupt. 

By consulting a book such as Norton's Programmer's Guide to the IBM PC or IBM's 
DOS Technical Reference Manual, you can look at the description of INT 21 and see that 
this key interrupt executes dozens of individual function calls and identifies which one 
to execute by putting the hex value of that function call into the AH register. Sure enough, 
the very first instruction puts a value of 09 there. 

If you then jump to the section detailing function call 09H, you'll see all the important 
facts that govern its operation. DOS refers to this function call as "Print String" while 
Norton cautions that it really should be called "Display String." Both sources provide the 
following information: 

1. The string must end in a$ (hex character 24). 
2. DOS will send the string to the standard output device (Norton adds that the default 

is the screen). · 
3. The value in the data segment's DX register "points" to the beginning of the string. 

The second line of the unassembled code shows that the value in DX is 0 lOF. But when 
you used the D command to display the contents of the program you saw that the text ac
tually started at address 108. So in the erroneous WARNING.COM program, the DX 
register is pointing somewhere inside the text string rather than at the very beginning of 
it: 

DO NOT ERASE YOUR FILES NOW! 

t t 
address address 

108 lOF 



338 PC Magazine DOS Power Tools 

To fix the problem, change the value in the DX register from lOF to 108. You can do 
this by using the Assemble (A) command to create a whole new MOV DX,OlOF instruc
tion at address 102: 

-A 102 
30F9:0102 MOV DX,0108 
30F9:0104 

and then pressing the Enter key when DEBUG prints the following 104 address. Or you 
can look at the actual ~achine-level hex byte code, figure out which bytes store the in
correct OlOF value, and use the Enter (E) key to replace the old incorrect number with 
the correct one. 

Using the E command on two-byte addresses is a bit tricky. If you look carefully at 
the unassembled line beginning at address 102: 

30F9:0102 BAOFOl MOV DX, OlOF 

you'll notice that the BAOFOl machine-level code seems to have scrambled the OlOF ad
dress into OFOl. This happens because of the seemingly backwards (or "backwords") 
way your computer stores two-byte numbers, words. 

Each offset address is two bytes long. Two bytes together make up what is called a 
word. In any word, one byte is higher, or worth more than, the other.just as in the decimal 
number 39, the 3 is worth more than the 9, since the 3 digit actually stands for 30, not 3. 
The byte that is worth more is called the most-significant byte and the one that's worth 
less is the least-significant byte. These are sometimes abbreviated as MSB and LSB. 
Grammarians might quibble that these should really be called "more-significantu and 
"less-significant,, but engineers designed this system, not grammarians. 

Here's the important part: It takes two bytes in memory to store a word. One byte has 
a higher address than the other. Your computer stores the most-significant byte of any 
word at the higher address of the two (and, obviously, the least-significant byte at the 
lower address). 

The word OIOF is actually made up of two individual bytes, 01 and OF. The 01 byte is 
the most significant, and the OF the least significant. So the higher 01 byte is at the higher 
address and the lower OF at the lower address. 

By looking at the output of the D command you issued earlier: 

30F9:0100 

addres.§: 

B4 09 BA OF 01 CD 21 C3-44 4F 20 4E 4F 54 20 45 

1~ f 1l2 f 1J4 
101 103 I 

I MSB 
LSB 

...... ! .DO NOT E 

you can count over from the left and see that the lower OF byte is indeed at the lower ad
dress (103) and that the higher 01 byte is at the higher (104) address. 



DEBUG 339 

To replace the old incorrect OlOF value with the proper 0108 value, first divide the 
0108 word in half. Then enter the least-significant byte (the 08 part) at the lower address 
(103) and the most-significant byte (the 01 part) at the higher address (104). Since the 
value at address 104 is already 01, you can just replace the OF at address 103 with 08. 

It doesn't matter whether you use the Assemble (A) or Enter (E) command to change 
the MOV DX,OlOF instruction to MOV DX,0108. Each has its advantages. In any case, 
go back and unassemble the beginning part of WARNING.COM again. This time you 
should see: 

-u 100 107 
30F9:0100 B409 MOV AH,09 
30F9:0102 BA0801 MOV DX,0108 
30F9:0105 CD21 INT 21 
30F9:0107 C3 RET 

Use the W command to write the changed program to disk and the Q command to quit. 
If you 're nervous about all this, you may want to add another line: 

-N WARN.COM 

before you write the modified version. This will create a new file called WARN.COM 
that won't overwrite the existing WARNING.COM program. If you goofed when 
modifying the original program, you can erase WARN.COM and try again on the un
damaged original. Another way to safeguard the original is to make a copy of WARN
ING.COM called WARN.COM (or whatever) before making any changes, and then load 
the WARN.COM copy into DEBUG rather than the WARNING.COM original. 

If you had used the Unassemble command on the text part of WARNING.COM (the 
part that started at address 108), DEBUG would have ended up displaying a meaning
less series of instructions. First figure out how long the program is, by typing RCX and 
pressing Enter twice. Then use the D command to display everything from address 108 
(where you know the text starts) to the end: 

-RCX 
ex 0021 

-D 108 126 

30F9:0100 44 4F 20 4E 4F 54 20 45 DO NOT E 

30F9:0110 52 41 53 45 20 59 4F 55-52 20 46 49 4C 45 53 20 RASE YOUR FILES 

30F9:0120 4E 4F 57 21 OD OD 24 NOW! .. $ 

Then Unassemble the same range of addresses: 

-u 108 126 
30F9:0108 44 
30F9:0109 4F 

INC SP 
DEC DI 



340 PC Magazine DOS Power Tools 

30F9:010A 204E4F AND [BP+4F],CL 
30F9:010D 54 PUSH SP 
30F9:010E 204552 AND [DI+52], AL 
30F9: 0111 41 INC ex 
30F9: 0112 53 PUSH BX 
30F9: 0113 45 INC BP 
30F9: 0114 20594F AND [BX+DI+4F],BL 
30F9: 0117 55 PUSH BP 
30F9: 0118 52 PUSH DX 
30F9: 0119 204649 AND [BP+49], AL 
30F9: OllC 4C DEC SP 
30F9: OllD 45 INC BP 
30F9: OllE 53 PUSH BX 
30F9: OllF 204E4F AND [BP+4F],CL 
30F9:0122 57 PUSH DI 
30F9:0123 210D AND [DI] ,ex 
30F9:0125 OD2461 OR AX,6124 

ils I l 
126 

127 

Junk. That's why when you're trying to fix a program you have to use the D and U 
commands together. In many cases neither the U or D will help, since programs often in
sert (or hard-wire) important data into the program code. Programmers use such data to 
set defaults, provide lookup tables, etc. 

Incidentally, you may have noticed that in the above example even though you asked 
DEBUG to unassemble memory between addresses 108 and 126, DEBUG went all the 
way to address 127. If you didn't notice, look at three bytes in the unassembled listing at 
address 125. (They're all lumped together here, but the first is OD, the second 24, and the 
third 61. The second value - 24 - is the actual end of the program. Hex 24 is the code 
for the final "$" you used to mark the end of the string.") 

So why did DEBUG display more memory than you specified? It interpreted the 
OD2461 clump of bytes that started at address 125 as one big instruction, and displayed 
the entire instruction rather than lopping the end of it off prematurely. In fact, the Unas·· 
semble listing would have been the same if you had used any of the three following ran
ges: 

-u 108 125 

or: 

-u 108 126 



DEBUG 341 

or: 

-u lOS 127 

In each case, once the Unassemble command sniffs out what it thinks is even a single 
byte of an instruction it will print the entire instruction. 

The Unassemble command can interpret the same stream of hex codes in different 
ways depending on where you tell it to start. Begin at the beginning, and DEBUG will 
get it right: 

-U 100 LS 
30F9:0100 6409 MOV AH,09 
30F9:0102 BA0801 MOV DX,OlOS 
30F9:0105 CD21 INT 21 
30F9:0107 C3 RET 

But start at an address one byte too high and DEBUG will turn the first two instructions 
into mush: 

-U 101 LS 
30F9:0101 09BAOS01 OR [BP+SI+OlOS], DI 
30F9:0105 CD21 INT 21 
30F9:0107 C3 RET 
30F9:0108 44 INC SP 

Start even farther up and you get equaJly meaningless results: 

-U 104 LS 
30F9:0104 OlCD ADO BP,CX 
30F9:0106 21C3 ANO BX,AX 
30F9:010S 44 INC SP 
30F9:0109 4F DEC DI 
30F9:010A 204E4F AND [BP+4F], CL 

If you're trying to unassemble something and you just know the program is in there 
somewhere, try a few different starting addresses until you see a display that contains 
recognizable instructions. It can be especialiy confusing when you're just a byte or two 
off. If you 're looking for a specific address, start a dozen or so bytes earlier so the Unas
semble command has a chance to get properly on track. 

When you first start DEBUG, if you enter the U command without any address or 
range after it, DEBUG will unassemble the first 32 bytes starting at offset 100 (and pos
sibly a few more than 32, if the 32nd byte is in the middle of a single instruction iC s trying 
to display). Each successive time you then hit U without any parameters after it, DEBUG 



342 PC Magazine DOS Power Tools 

will unassemble the next 32 or so bytes. DEBUG will always remember the last byte it 
unassembled. If you enter another command, such as D, between two U commands, the 
second U command will start displaying code right after the address where the first U 
command stopped-ignoring whatever you happened to do with D. For example, if you 
want to unassemble the first 32 bytes of COMMAND.COM (version 3.3): 

C>DEBUG COMMAND.COM 
-u 
30F9:0100 E92DOD JMP OE30 
30F9:0103 BADAOA MOV DX, OADA 
30F9:0106 300500 CMP AX,0005 
30F9:0109 741B JZ 0126 
30F9:010B BABFOA MOV DX,OABF 
30F9:010E 300200 CMP AX,0002 
30F9: 0111 7413 JZ 0126 
30F9:0113 BA850A MOV DX,0A85 
30F9: 0116 300800 CMP AX,0008 
30F9:0119 740B JZ 0126 
30F9: OllB BA710A MOV DX,OA71 
30F9: OllE 3DOB00 CMP AX,OOOB 

DEBUG will actually display the first 33. If you then entered U again without any 
parameters after it, DEBUG would continue the unassembly process with address 121. 

You don't ever have to specify a stopping address. And you can tell DEBUG to start 
anywhere. If you entered: 

-u 121 

DEBUG would display the 32 bytes (and actually end up showing you 33) starting at ad
dress 121 and stopping at address 141. If for some perverse reason you wanted to unas
semble all of COMMAND.COM version 3.3 you would first find out how long the 
program is by typing RCX and pressing Enter twice. DEBUG would report a length of 
62DB bytes. Then you'd enter the command: 

-U 100 62DB 

and sit back and watch for a long while. To stop the display,just hit Ctrl-Break or Ctrl
C. 

If you wanted to see the assembly language code for the first two instructions, you 
could type either. 

-u 100 105 

or: 



-U 100 L 6 

Both would display the same unassembled code: 

30F9:0100 E92DOD 
30F9:0103 BADAOA 

JMP OE30 
MOV DX, OADA 

DEBUG 343 

Fine, fine, you may be saying. But what can you really do with this command that's 
useful? 

Here's something: 
It's really incredible that DOS is still back in the dark ages (well, maybe the black and 

white ages) when it comes to color. Even after half a decade of changes, DOS still clears 
the screen to grey on black. But it doesn't have to. In fact, the code to set the foreground 
and background colors to anything you want is already in COMMAND.COM. It's just 
that the folks who maintain the code have decided they want you to see everything in at
tribute 07 - and that translates to whitish-grey (the 7) on a black (0) background. 

Some programmers feel that you should never patch COMMAND.COM. They say 
that if you start getting patch-happy you may change something that will have unexpec
tedly awful results later. But the truth is that if you keep your patches to the barest min
imum, it's not so terrible. The only thing you do have to guard against, however, is mixing 
versions of COMMAND.COM on the same disk, which confuses DOS. 

DOS and most other programs do video tasks such as clearing the screen by using 
BIOS interrupt 10 (hex). Some fancy programs come with their own proprietary screen 
utilities. But not DOS. When you type CLS, COMMAND.COM scans its list of internal 
commands, sees that CLS is indeed an internal command, then executes the screen-clear
ing routine inside itself. 

BIOS interrupt 10 provides two similar services called Scroll Window Up (Service 6) 
and Scroll Window Down (Service 7). These will both open just about any size window 
onscreen and insert blank lines at the top or bottom to scroll the existing text away. You 
can tell it exactly how big a window to scroll and what color to make the blank lines by 
using the following registers: 

• AH= the service itself (6 means up, 7 means down) 
• AL= how many lines to scroll (a 0 here clears the window) 
• BH = the color of the blank lines 
• CH = upper lefthand window row 
• CL= upper lefthand window column 
• DH= lower righthand window row 
• DL = lower righthand window column 

To clear an entire 25 x 80 screen to blue text on a white background using Service 6, 
you could create the following code fragment: 

MOV AX,0600 
MOV BH,71 

AH=6 means up; AL=O means clear screen 
color (7=white bkgnd; l=blue frgrnd) 



344 PC Magazine DOS Power Tools 

MOV CX,0000 
MOV DX,184F 
INT 10 

start at row O, column 0 (top left corner) 
stop at row 18 (dee 24; col 4F (decimal 79) 

(The reason this fragment tells interrupt 10 to stop the window on the 79th column of 
the 24th row is that since the screen actually begins on column 0 of row 0, the lower righ
thand comer is indeed column 79 of row 24. In wouldn't hurt anything to specify row 25 
and column 80 unless you 're doing something fancy such as using more than one screen 
"page." You 're probably not.) 

This code fragment uses a sort of shorthand in filling the appropriate registers. Instead 
of putting two separate byte values into the AH and AL registers, it combined the single
byte values (06 and 00) into one double-byte word (0600) and moved this word into the 
AX register. In this example: 

MOV AX,0600 

t t 
AHAL 

the 06 fills the AH register and the 00 fills the AL register. This is the same as saying: 

MOV AH,06 
MOV AL,00 

except that the first way is shorter. The example fills the CX and DX registers using the 
same kind of shorthand. 

You can even assemble this if you want. If you do, be sure to stick a RET command 
onto it below the INT 10. Tell DEBUG it will be OE bytes long (with the RCX command). 
Name it BLUE.COM. Then write it and quit, and when you're back at the DOS prompt 
type BLUE. To make this really effective you'd have to add some cursor positioning code 
too, but that's not the point of this exercise. 

COMMAND.COM uses a variation of this code fragment to do its screen clearing. To 
find this COMMAND.COM screen clearing mechanism, use DEBUG's Search (S) com
mand to look for interrupt 10. Load COMMAND.COM into DEBUG. Find out how long 
your version is by typing RCX and pressing Enter twice (this example uses version 3.3). 
Then search the whole file for all occurrences of CD 10, the machine-readable code for 
interrupt 10: 

C>DEBUG COMMAND.COM 
-RCX 
ex 62DB 

-S 100 L 62DB CD 10 



30F9:2B88 
30F9:2B94 
30F9:2B9B 
30F9: 2B9F 
30F9:2BB0 
30F9:2BB8 

DEBUG 345 

Fortunately these addresses are clumped closely together, which makes it easy to dis
play them all with the Unassemble command in one gulp. Start a few bytes before the 
first match that the Search command found, and continue a bit past the last one: 

-U 2B80 2BCO 
30F9:2B80 8CCO MOV AX,ES 
30F9:2B82 3BDO CMP DX,AX 
30F9:2B84 7735 JA 2BBB 
30F9:2B86 B40F MOV AH,OF 
30F9:2B88 CDlO INT 10 
30F9:2B8A 3C03 CMP AL,03 
30F9:2B8C 7609 JBE 2B97 
30F9:2B8E 3C07 CMP AL,07 
30F9:2B90 7405 JZ 2B97 
30F9:2B92 B400 MOV AH,00 
30F9:2B94 CDlO INT 10 
30F9:2B96 C3 RET 
30F9:2B97 B40B MOV AH,OB 
30F9:2B99 33DB XOR BX,BX 
30F9 :2B9B CDlO INT 10 
30F9:2B9D B40F MOV AH,OF 
30F9:2B9F CDlO INT 10 
30F9:2BA1 8AD4 MOV DL,AH 
30F9 :2BA3 FECA DEC DL 
30F9 :2BA5 B618 MOV DH,18 
30F9:2BA7 33CO XOR AX,AX 
30F9:2BA9 8BC8 MOV CX,AX 
30F9 :2BAB BB0007 MOV BX,0700 
30F9:2BAE B406 MOV AH,06 
30F9:2BBO CDlO INT 10 
30F9:2BB2 3302 XOR DX,DX 
30F9: 2BB4 B700 MOV BH,00 
30F9:2BB6 B402 MOV AH,02 
30F9 :2BB8 CDlO INT 10 
30F9: 2BBA C3 · RET 
30F9:2BBB BEBA3D MOV SI,3DBA 
30F9: 2BBE AC LODSB 
30F9 :2BBF 8AC8 MOV CL,AL 



346 PC Magazine DOS Power Tools 

This display may look a bit daunting, but you '11 see how easy it is to map it out. Inciden
tally, this whole process is easier when you do it on paper. To get a printout of it, tum 
your printer on and type either Ctrl-P or Ctrl-PrtSc before you issue the U 2B80 2BCO 
command. DOS will print each line both on the screen and on the printer. Then type Ctrl
P or Ctrl-PrtSc one more time to tum this printer "echoing" feature off. 

The first thing to do is to figure out what each of the six INT 10s does. Get out your 
copy of Norton's Programmer's Guide to the PC or any other reference book that lists 
the various BIOS services. Scan through the instructions right before each INT 10 until 
you see a MOV AH. In some programs you may have to look for a MOV AX, since it 
may use the same kind of "shorthand" mentioned earlier. When the program gets to an 
INT 10 it looks at the value in the AH register to figure out which interrupt 10 service to 
execute. Here's an annotated version of the unassembled listing, trimmed on the top and 
bottom: 

30F9:2B86 B40F 
30F9:2BB8 CDlO 

MOV AH,OF ; Service OF= 
INT 10 ; get video mode 

============~=========================================== 

30F9:2B8A 3C03 CMP AL,03 
30F9:2B8C 7609 JBE 2B97 
30F9:2B8E 3C07 CMP AL,07 
30F9:2B90 7405 JZ 2B97 
30F9:2B92 B400 MOV AH,00 ; Service 00 = 
30F9:2B94 CDlO INT 10 ; set video mode 
======================================================== 
30F9:2B96 C3 
30F9:2B97 B40B 
30F9:2B99 33DB 
30F9:2B9B CDlO 

30F9:2B9D B40F 
30F9:2B9F CDlO 

30F9: 2BA1 8AD4 
30F9:2BA3 FECA 
30F9:2BA5 B618 
30F9:2BA7 33CO 
30F9:2BA9 8BC8 
30F9 :2BAB BB0007 
30F9:2BAE B406 
30F9:2BBO CDlO 

RET 
MOV AH, OB 
XOR BX, BX 
INT 10 

MOV AH, OF 
INT 10 

MOV DL,AH 
DEC DL 
MOV DH,18 
XOR AX,AX 
MOV CX,AX 
MOV BX,0700 
MOV AH,06 
INT 10 

Service OB = 
set palette 

; Service OF = 
; get video mode 

Service 06 = 
scroll window up 

======================================================== 
30F9:2BB2 3302 
30F9:2BB4 B700 
30F9:2BB6 B402 
30F9:2BB8 CD10 

XOR DX,DX 
MOV BH, 00 
MOV AH, 02 
INT 10 

Service 02 
set cursor position 



DEBUG 347 

The one we're hunting for is the large Service 06 near the bottom. This doesn't look 
exactly like the BLUE.COM example mentioned above, but all the necessary values and 
settings are there, even if COMMAND.COM does things differently. For instance, when 
BLUE.COM put a 00 in register AL to tell interrupt 10 to clear the window it did it with 
the instruction: 

MOV AX,0600 

(The 00 at the end of 0600 filled AL.) COMMAND.COM does it with the command: 

XOR AX,AX 

since using a XOR operation on any value cancels out that value and turns it into 0. It 
followed this with a MOV AH,06 instruction to put the 6 into AH. 

The register that controls color settings for Service 06 is BH. BLUE.COM put a 71 
there: 

MOV BH,71 

The left digit of the value in BH (here it's 71) controls the background. The right digit 
controls the foreground (text). The basic IBM color scheme is: 

0 Black 
1 Blue 
2Green 
3 Cyan (light blue) 
4Red 
5 Magenta (purple) 
6 Brown (dark yellow) 
7 White (light grey) 

8 Dark grey 
9 Bright blue 
A Bright green 
B Bright cyan 
C Bright red 
D Bright magenta 
E Yellow 
F Bright white 

So 71 will produce blue text on a white background. 
COMMAND.COM puts a value of 07 into this register, which means grey-white text 

on a black background. All you have to do to patch this permanently is to change the 
value to something more colorful. A value of 4E will clear your screen to bright yellow 
text on a red background, so try it Once you know the technique you can always change 
it to something else. 

Look at the annotated listing again. The 07 byte is at address 2BAD (easy to remem
ber for version 3.3 - "too bad''). So to patch COMMAND.COM so that it will clear the 
screen and print bright yellow text on a red background in version 3.3, type: 

C>DEBUG COMMAND.COM 
-E 2BAD 

and press the Enter key. Make sure you see something like: 



348 PC Magazine DOS Power Tools 

30F9:2BAD 07. 

(Remember, ignore the first four hex digits to the left of the colon; they'll vary from 
system to system and don't affect anything here.) If you don't see an 07, press Enter to 
return to the DEBUG prompt, then type Q and Enter to quit and make sure you 're using 
version 3.3. Then start again. If you do see an 07, type in the new value (4E) next to the 
period and press Enter. 

Then, give the file a new name. Use the N command to name it COMMAND I.COM. 
Then type W and Enter to write the file and then Q and Enter to quit 

-N COMMANDl.COM 

-w 
Writing 62DB bytes 
-o 

Type CLS and the screen will still clear to an ugly grey on black. But load the new 
COMMAND I.COM by typing: 

COMMANDl 

at the DOS prompt. You'll see the familiar DOS sign-on message: Then type CLS and 
the screen should clear to the colors you wanted. 

You can get back to your boring old grey on. black CLS by exiting this secondary com
mand processor.Just type: 

EXIT 

at the DOS prompt. Now try CLS and you '11 be back to grey on black. 
Once you're convinced you like the new colors, you can rename the patched COM

MANDl.COMtoCOMMAND.COMandputitonyourstart-updisktoreplacetheolder 
version. Boot up with the patched version and type CLS to set the colors properly. You 
can also set colors by using ANSI.SYS (see Chapter 9). 

The instructions above are for DOS 3.3 only. For other versions of DOS use these ad
dresses to patch COMMAND.COM to add color to CLS: 

DOS Version 
2.0 
2.1 
3.0 
3.1 
3.2 
3.3 

Address 
2346 
2359 
2428 
2642 
282E 
2BAD 



DEBUG 349 

If you have a CGA system these patches won't set the border color. EGA and VGA 
screens don't have borders that can be set, and, anyway, adding code to set CGA borders 
is far more complex than just changing a byte value. 

Displaying Register and Flag Contents 

Format: R [registername] 

This command is primarily for hard-core programmers, but all users need to understand 
one very important aspect of it it shows the current state of the CPU registers and flags 
and lets you change them. 

The R command can work three different ways: 

1. Typing R by itself will print the hex values in all 14 of the system registers, show all 
eight flag settings, and display the next instruction DEBUG is poised to execute. 

2. Typing R with an F after it will display just the flag settings. 

3. Following R with the name of a specific register will display the contents of that 
single register and let the user either enter a new value or just press the Enter key to 
keep the old one. 

If you 're not a serious programmer you never really have to see the state of your sys
tem flags. And while you do need to examine and change one or two system registers, 
you really don't need to see them all at once. So you can pretty much ignore mcxles 1 and 
2 above. But here's what they look like, if you 're curious: 

C>DEBUG COMMAND.COM 

-R 
AX=OOOO BX=OOOO CX=62DB DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO 

DS=30F9 ES=30F9 SS=30F9 CS=30F9 IP=OlOO NV UP EI PL NZ NA PO NC 

30F9:0100 E92DOD 

-R F 

JMP OE30 

NV UP EI PL NZ NA PO NC -

DEBUG initially sets the value of the four general-purpose or scratch-pad registers 
(AX, BX, CX, and DX) to zero. However, when you tell DEBUG to load a typical (short) 
program into memory it moves the program's length into register CX. COM
MAND.COM version 3.3 is decimal 25307 bytes long, or 62DB in hex, so these four 
registers would look like: 

• AX=OOOO 
• BX=OOOO 



350 PC Magazine DOS Power Tools 

• CX=62DB 
• DX=OOOO 

Each register can hold two-byte values from hex 0000 (0 decimal) to FFFF (65535 
decimal - or 64K). If a program is larger than 64K, DEBUG uses both the CX and BX 
registers to store the length. 

Remember, a pair of bytes together is word. You can manipulate each of these registers 
one word (two bytes) at a time by referring to them as AX, BX, CX, and DX. Or you can 
chop each in half and manipulate just a single byte at a time: the high half and the low 
half. The high halves are called AH, BH, CH, and DH. The low halves are AL, BL, CL, 
andDL. 

I AH AL = AX 

I BH BL = BX 

I CH CL = ex 

I DH DL = DX 

t t t J 
1 byte lword 

If the two-byte value in CX is 62DB, then CH holds the high 62 byte and CL the low 
DB byte. Used by itself, DEBUG's R command will show you all the two-byte registers. 
And it will let you examine, and change, any single two-byte register. But you can't use 
it to see just the high or low halves; you have to look at the value of the whole word. 

Virtually all the examples in this book use the CX register to set or change program 
lengths. Many of the programs use one or more of these general-purpose registers to feed 
parameters into interrupts. For instance, if you 're using Service 6 of BIOS interrupt 10 
to clear the screen (or scroll a window of any size upward) you put the following values 
into the following registers: 

• The number of the service itself into AH 
• The number of lines to scroll into AL 
• The color of the new blank lines into BH 
• The upper lefthand row number into CH 
• The upper lefthand column number into CL 
• The lower righthand row number into DH 
• The lower righthand column number into DL 

In this case you simply put the appropriate values' inputs into the proper registers and 
execute the interrupt without having to worry about the state of the registers afterward. 



DEBUG 351 

In other cases, interrupts perform operations for you and leave the results in certain 
registers. 

For instance, to find out what character and color are at the current cursor position 
(with Service 8 of BIOS interrupt 10) you put the following numbers into the following 
registers: 

• The number of the service itself 
• The video page number 

into 
into 

AH 
BH 

(In most cases, the page - the slice of video memory that displays the image - is 0.) 
After you execute this interrupt you can look into two registers to get the information 
you need: 

• The ASCII value of this character 
• The attribute of this character 

is in 
is in 

AL 
AH 

To master most of the techniques in this book you won'thave to work much (or at all) 
with the other registers. The PC's one megabyte of main memory is segmented (divided) 
into slices 64K bytes or smaller. Segment registers tell the system which slice you're 
working with. Offset registers specify the precise location in each segment slice. 

If you want to look at the value at offset 62DB, you have to tell the system which 62DB 
address you want to examine. If you don't specify a distant segment, the system will as
sume you 're talking about the one you've been using, the one you 're currently in, or the 
one it normally checks for similar requests. 

Each of the four segment registers (CS, DS, SS, and ES) has a special role. CS tells 
the system where to find the code segment, the slice of memory where your program is 
loaded. DS contains the address of the data segment, the place your program stores its 
data. SS points to the stack segment, a special storage area where the program can tem
porarily park information it needs to function properly. And ES lets the system know 
where to find an extra segment it can use to squirrel away working data. 

These CS, DS, SS, and ES segments may be at different parts of memory, or they may 
overlap. When DEBUG loads a program like COMMAND.COM, all four of these seg
ments share the same exact area of memory, starting at the first unused memory space 
- in this case right after where DEBUG itself is loaded: 

• DS=30F9 
• ES=30F9 
• SS=30F9 
• CS=30F9 

While you '11 use the four general-purpose registers frequently, and the four segment 
registers on occasion, you probably won't need to worry about the other five - the seg
ment registers. One special offset register, the instruction pointer (IP), specifies where 
inside the c<Xle segment to find the very next executable instruction. The other offset 
registers are divided into pointer and index registers. 



352 PC Magazine DOS Power Tools 

The stack pointer (SP) and base pointer (BP) help programs manage the flow of in
fonnation onto and off of the stack. A computer like the PC can handle only one tightly 
focused task at a time. A seemingly simple task such as printing one character onscreen 
can actually be made up of lots of smaller, discrete ones such as moving values around 
in memory, checking modes, looking up dot patterns, setting attributes, deciding whether 
or not to scroll the screen, advancing the cursor, and doing other miscellaneous 
housekeeping. As your computer executes one main task it frequently has to pause and 
execute others, and then return to the original task at hand. When it puts one thing on 
hold so it can do another, it stores the values, addresses, and other settings needed by the 
first task temporarily in the chunk of memory called the stack. Then when it's done with 
the second task, it can retrieve all this needed infonnation from the stack and resume 
working on the first task. Pointer registers keep track of offsets in the stack segment. 

The source index (SI) and destination index (DI) registers work somewhat like the 
pointer registers, except that index registers nonnally maintain offsets into the current 
data segment rather than the stack segment. They're used for things like moving strings 
from one place in memory (the source) to another (the destination). 

DEBUG initially sets the index registers and base pointers to zero. Unless it's work
ing with an EXE file, DEBUG sets the stack pointer to FFFE, or as high as the available 
memory allows. And it usually puts a value of 100 in IP, since the instruction pointer in
itially stores the address of the first executable instruction at the very beginning of the 
program. After DEBUG loaded COMMAND.COM (at offset 100), these looked like: 

• SP=FFFE 
• BP=OOOO 
• Sl=OOOO 
• DI=OOOO 
• IP=OlOO 

Apart from the four general-purpose registers, four segment registers, and five offset 
registers, the PC maintains a special two-byte storehouse of data called the flags register. 
A flag is an individual bit (a 1 or a 0) that can show the status of - or control - gut
level operations. Six of these are status flags that act as a scoreboard to report what hap
pened during recent arithmetic and logical operations. Three are control flags that 
influence the behavior of certain processes. (In Intel's early CPUs, the other seven bits 
in the flag register remain unused; more advanced chips take advantage of a few other 
flags.) 

The status flags report on the outcome of events. Programs constantly test to see 
whether two numbers have the same value, or whether numbers are equal to zero. If they 
are, the system sets the zero flag bit; turns it "on'' by giving it a value of 1. If they're not, 
the system clears the zero flag, turns it off by giving it a value of 0. Flags can also tell 
whether the result of an arithmetic process was so big that the system had to carry a digit 
out of a register. And they can specify whether a number is negative, or so huge that it 
totally overflows the system's working range. The system also monitors parity by set
ting a flag if the binary number representing a value has an even number of ls in it. And 
it maintains a special auxiliary carry flag to help straighten out the messy conversions 



DEBUG 353 

required when dealing with binary-coded decimal (BCD) calculations. (Take our word 
for it-you don't want to know.) 

Control flags can send certain repeated operations in one direction or another, or tell 
the system whether or not it may use external interrupts, or let programmers step through 
(trap) executable code one instruction at a time. 

Packing all these flags into a single register lets you treat them as a single unit This 
makes it easier to save, examine, or change the state of your system with special flag in
structions. When you first load a program such as COMMAND.COM into DEBUG and 
enter Rall by itself, or R followed by F, all you'll see is: 

NV UP EI PL NZ NA PO NC 

The abbreviations are vaguely mnemonic. NV, the least obvious abbreviation, stands 
for "No o Verflow" (the reverse OV would spell trouble). UP reveals that the direction is 
UP (the opposite is DN for DowN). EI stands for "Enable Interrupts" (DI would indicate 
that external interrupts were temporarily Disabled). PL is used when the sign of a num
ber is a PLus; if the number were NeGative the abbreviation would be NG. NZ obvious
ly says "Not ZerQ" (and ZR would mean a number was equal to ZeRo or that two numbers 
were equal to each other). NA tells us "No Auxiliary" carry correction is necessary (AC 
would let us know one was needed). PO spells out "Odd Parity;" even would trigger a 
·PE. And NC infonns us "No Carry" was involved; a CY would tell us a CarrY did occur. 
The codes are summarized in the following chart: 

Flag 
Overflow (yes/no) 
Direction (down/up) 
Interrupt (enabled/disabled) 
Sign (negative/positive) 
Zero ( equaVnot equal) 
Auxiliary carry (yes/no) 
Parity (even/odd) 
Carry (yes/no) 

Set (=1) 
ov 
DN 
EI 
NG 
ZR 
AC 
PE 
CY 

Clear (=0) 
NV 
UP 
DI 
PL 
NZ 
NA 
PO 
NC 

DEBUG's R command will display the state of all six status flags, and two of the three 
control flags (direction and interrupt). If you want to single-step your way through a 
program, you have to turn the trap flag on by invoking DEBUG's Trace command. 

At any point you can examine the state of all the registers and flags by typing R and 
pressing Enter: 

-R 
AX=OOOO BX=OOOO CX=62DB DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO 

DS=30F9 ES=30F9 SS=30F9 CS=30F9 IP=OlOO NV UP EI PL NZ NA PO NC 

30F9:0100 E92DOD JMP OE30 



354 PC Magazine DOS Power Tools 

If you want to display just the flags, add an F: 

-R F 
NV UP EI PL NZ NA PO NC 

(The spaces between the R command and any register after it are optional. RF is the same 
as RF. RCX and R CX will both work.) If you issue an RF command, DEBUG will wait 
for you to change one or more flag settings. If you want to leave things exactly as they 
were (and most of the time you probably should), just press the Enter key. If not, enter 
the opposite code(s), shown in the table above. 

For example, if you wanted to disable external interrupts and switch parity from odd 
to even, you could type: 

NV UP EI PL NZ NA PO NC DI PE 

or: 

NV UP EI PL NZ NA PO NC PE DI 

or: 

NV UP EI PL NZ NA PO NC PED! 

or: 

NV UP EI PL NZ NA PO NC DIPE 

and then press Enter. The order, spacing, and uppercasing are optional. To check your 
typing, enter R F again and you should see: 

-R F 
NV UP DI PL NZ NA PE NC 

The only time you '11 probably ever have to use the R command is when you create or 
modify a program. If you used the Assemble (A) command to create a tiny program called 
AMERICA.COM: 

C>DEBUG 
-A 
30DD:0100 MOV AH,9 
30DD:0102 MOV DX,108 
30DD:0105 INT 21 
30DD:0107 RET 
30DD:0108 DB "Back in the US" OD OA 24 
30DD: 0119 



DEBUG 355 

-N AMERICA.COM 
-w 

and tried to write the file to disk without specifying a length, DEBUG would create a file 
zero bytes long: 

Writing 0000 bytes 

To have DEBUG create the file you wanted, you have to tell it how many bytes to write. 
Whenever you use its mini-assembler to assemble a program, DEBUG figures out how 
many bytes the machine-level version of the previous command would fill in memory 
and prints the very next address onscreen as a prompt. In this case the last line of the 
program was: 

30DD:0108 DB "Back in the US" OD OA 24 

so DEBUG assembled that line and then printed: 

30DD:0119 

To exit the mini-assembler and return to the main DEBUG prompt, you would note this 
address (119) and press the Enter key. Then, since the file starts at offset 100, tell DEBUG 
how long the file is by subtracting 100 from 119 and entering the result, 19, in the CX 
register: 

-RCX 
ex 0000 
:19 

Now use the W command to write the file to disk (and then Q to quit). You should see: 

-w 
Writing 0019 bytes 
-Q 

New users sometimes forget to subtract the 100. It usually won't hurt a program to 
make it a bit longer, since programs stop when they reach instructions like INT 20 or 
RET, and anything past that is ignored. The AMERICA.COM program uses the DOS 
"Display String" function call 9, which stops when it sees a$ (here this is entered as a 
hex 24). So DOS would ignore anything after the equals sign. 

However, it can be dangerous to make programs too short. If the final instruction were 
INT 20 or RET (to quit the program and return to the main COMMAND.COM prompt), 
and you entered a length in the CX register that was one byte too short, DOS wouldn't 
be able to execute this last instruction, and would never be able to exit the program. You'd 
then have to reboot. 



356 PC Magazine DOS Power Tools 

You also may have to use the RCX command when you modify a program. If you run 
the AMERICA.COM program, it will simply print: 

Back in the US 

To add a few characters to the string this program displays, load AMERICA.COM into 
DEBUG, type RCX and press the Enter key twice to find out how long the program is, 
then use the Display (D) command to show you the contents: 

C>DEBUG AMERICA.COM 

-RCX 

ex 0019 

-D 100 L 19 

30F9:0100 B4 09 BA 08 01 CD 21 C3-42 61 63 6B 20 69 6E 20 ....•. !.Back in 

30F9:0110 74 68 65 20 55 53 OD OA-24 the US .. $ 

The actual string that AMERICA.COM displays ends at address 115, and is followed 
at addresses 116 through 118 by an OD OA 24 - a carriage return, a line feed, and a $ 
string terminator. So add two more letters to the existing string, starting at address 116, 
and .then slap on the required OD OA 24: 

-E 116 "SR" OD OA 24 

If you tried to write the program to disk at this point, you'd end up with a mess, since 
DEBUG still thinks the program is 19 hex bytes long and will truncate it prematurely, 
omitting the final two characters from the file. The final few characters of the original 
and new programs would look like: 

Address 
114 

Original u 

New u 

(CR)= carria e return g 
(LF) = line reed 

Address Address 
115 116 

s (CR) 

s s 

Address Address Address Address 
117 118 119 llA 

(LF) $ 

R (CR) (LF) $ 

end of program 

(Remember, the program starts at address 100, not address 101. So the last-hex 19th 
- byte is at address 118, not 119.) 



DEBUG 357 

In the original program, the final character was a $ that DOS needed to tenninate the 
string. But in the modified version, the two new bytes of text pushed the fmal two charac
ters - the line feed and the $ - into addresses 119 and 1 lA. The new program is 1B 
bytes long (hex 19 + 2 = lB), but since you didn't tell DEBUG the program was larger, 
it wrote only the first 19 bytes to the new file. So when DOS executes the new one, it 
won't find a $ to tell it to stop, and will keep printing whatever garbage is in memory 
until it inevitably stumbles onto a random value of 24 that just happens to be in memory. 

To prevent this from happening, tell DEBUG the program is now 1B bytes long in
stead of 19. And since you're modifying an existing file, give the new one a new name 
so you don't wipe out the old one. Then write the file and quit 

-RCX 
ex 0019 
:lB 
-N BEATLES.COM 
-w 
Writing OOlB bytes 
-Q 

This time when you run BEATLES.COM you'll see: 

Back in the USSR 

If all you want to do is examine the contents of a register like CX, you can type RCX and 
press the Enter key twice, or you can just type R and press Enter once. The second way 
involves a bit less typing, but it clutters up your screen by showing you the contents of 
all the registers and flags. Either way will work. 

Performing Hexadecimal Arithmetic 

Format: H value value 

Counting in hex is daunting for beginners, who commonly forget that the number after 
19 is lA, not 20, and that the number right before 20 is lF, not 19. Doing even simple 
math, especially with hex numbers several digits long, can be hair-raising. 

But the only real math you have to do is add and subtract hex numbers. To help, 
DEBUG gives you a free hex calculator. Just get to the DEBUG prompt, type Hand two 
numbers, and DEBUG will print first the sum and then the difference. 

You can'tenternumberslargerthan FFFF (about65,000decimal). And DEBUG can't 
handle sums larger than FFFF, or negative numbers. If you ask it to add FFFF and 1 it 
will print 0000: 



358 PC Magazine DOS Power Tools 

-H FFFF 1 
0000 FFFE 

Tell it to subtract 1 from 0 and you '11 get FFFF: 

-H 0 1 
0001 FFFF 

While these examples are trivial, this command really comes in handy when you 're fum
bling with two thorny numbers such as: 

-H C79B E8AF 
B04A DEEC 

Note that the order in which you specify the raw hex numbers is critical. Entering: 

-H 2 3 

will produce: 

0005 FFFF 

while switching the numbers around: 

-H 3 2 

will print 

0005 0001 

The additions will always be the same, but subtracting 3 - 2 is far different from subtract
ing 2 - 3. 

If you keep DEBUG.COM and the DOS FIND.EXE filter on your disk, you can write 
a small batch file to do hex addition and subtraction for you automatically. Create the 
following batch file using a pure ASCII word processor, or EDLIN: 

ECHO OFF 
IF !%2==! GOTO OOPS 
ECHO H %1 %2 > DEBUG.SCR 
ECHO Q >> DEBUG.SCR 
ECHO The sum and difference of %1 and %2 are: 
DEBUG < DEBUG.SCR I FIND /V "-" 
DEL DEBUG.SCR 
GOTO END 



:OOPS 
ECHO You have to enter %0 followed by 
ECHO 2 hex numbers each FFFF or less 
ECHO (e.g. %0 4D7F 5A4) 
:END 

DEBUG 359 

(You can also create this file by using the DOS COPY CON command. To do so, add a 
line at the top that says: 

COPY CON HEX.BAT 

When you're done typing the last line, press the Enter key, then press the F6 function 
key, and then press the Enter key a final time.) 

To use it at the main DOS prompt, make sure you have DEBUG.COM, FIND.EXE, 
and this HEX.BAT batch file handy. Then type the word HEX followed by the two hex 
numbers (hex FFFF or smaller) that you want to add or subtract. 

After issuing the ECHO OFF command to suppress screen clutter, the batch file first 
makes sure you entered two hex numbers. When you execute a batch file, DOS looks for 
any delimiters such as spaces or commas that separate what you typed into groups of 
characters. It then takes these groups and uses them to set the values of up to ten replace
able parameters. 

The first replaceable parameter is always the name of the batch file itself, and DOS 
refers to this as o/oO. DOS calls the second discrete thing you type % l, the third one %2, 
etc. If you put a %0or%1 in your batch file, DOS will replace these with what you typed 
on the command line. So if you execute the batch file HEX.BAT by typing: 

HEX lA 3B 

DOS will make the following substitutions: 

%0 HEX 
%1 IA 
%2 3B 

To make sure you entered two hex numbers after the word HEX on the command line, 
the batch file checks to see if parameter %2 contains something or not If you entered 
just one hex number on the command line after the word HEX, or didn't enter any hex 
numbers at all after the word HEX, %2 would be equal to nothing. The test: 

IF !%2==! GOTO OOPS 

would replace the %2 with nothing, leaving: 

IF !==! GOTO OOPS 



360 PC Magazine DOS Power Tools 

Since ! is indeed equal to ! (you could have used another symbol such as @ if you 
don't like exclamation points), the test is true, and the batch file executes the command 
following the test (GOTO OOPS). The batch file will look for a label called :OOPS and 
jump directly there without executing any inteivening instructions. In this batch file, the 
commands following the :OOPS label will provide a reminder about the proper syntax. 

If you did enter two hex numbers, such as lA and 3B, DOS will replace the %2 with 
3B and make the test 

IF !38==! GOTO OOPS 

Since !3B is clearly not the same as!, the test will fail (which is what you want), and the 
batch file will grind into action. 

The lines: 

ECHO H %1 %2 > DE8UG.SCR 
ECHO Q >> DE8UG.SCR 

will first redirect the letter H, plus the two hex numbers you entered on the DOS com
mand line after the word HEX, into a file called DEBUG.SCR. (The double>> symbol 
appends the redirected characters to an existing file rather than creating a new one.) 

What this will end up doing is creating a temporary file called DEBUG .SCR that con
tains two DEBUG commands and the hex numbers you entered. If these hex numbers 
were lA and 3B, the contents of the DEBUG.SCR file would be: 

H lA 38 
Q 

The batch file will then display a message onscreen to clarify what's happening. 
DEBUG will replace the % 1 and %2 here as well, and end up printing: 

The sum and difference of lA and 38 are: 

It then takes the DEBUG.SCR file it just created and redirects the characters in this 
file into DEBUG just as if you had typed them at the keyboard. These characters issue 
the DEBUG commands to perform hex arithmetic on the numbers you entered. The same 
batch file line then sends the resulting DEBUG output through a FIND filter to get rid of 
the actual DEBUG commands. If you didn't use this filter, you'd see 

The sum and difference of lA and 38 are: 
-H lA 38 · 
0055 FFDF 
-Q 

However, the: 



DEBUG 361 

/V "-" 

at the end of the FIND command tells DOS to display only those lines that do not con
tain a"-." Since all DEBUG commands contain a hyphen, this filters out the actual com
mands and cleans up the display. All you see is: 

The sum and difference of lA and 3B are: 
0055 FFDF 

Finally, the batch file deletes the temporary DEBUG.SCR file and exits. While 
HEX.BAT can check to make sure you entered two hex numbers, it can't check to see if 
these numbers are valid. So if you enter something DEBUG can't handle, you'll see an 
error message. 

Comparing Two Blocks of Memory 

Format: C range address 

This command is useful in isolating file differences, though you probably won't use it 
much (if at all). The pathetic PC-DOS COMP command (Microsoft's MS-DOS FC is far 
superior) will refuse to work if you ask it to examine two things of unequal length. And, 
the DOS COMP utility will stop in its tracks after ten mismatches, while the DEBUG C 
command will grind merrily away reporting them by the screenful. 

To use the C command, type in C, then a first range of memory, and then a second 
starting address. When entering the first range you can use explicit starting and stopping 
addresses, or you can specify a starting address and a length of bytes to check. When 
specifying the second block of memory you want to check, all you have to enter is the 
starting address. DEBUG will calculate the length of the first block and apply that length 
to both comparisons. 

The two commands below will each direct DEBUG to compare two blocks of memory 
each 10 hex (16 decimal) bytes long-one starting at address 100 and the other at ad
dress 110: 

-C 100 L 10 110 

and: 

-C 100 lOF 110 

If you had used the E command to enter the following values into addresses 100 and 
110: 



362 PC Magazine DOS Power Tools 

-E 100 0 1 2 3 4 5 6 7 8 9 A B C D E F 
-E 110 0 1 2 3 4 5 6 8 7 9 A B C D E F 

you could then view these values by using the D command: 

-D 100 L 20 
30DD:0100 00 01 02 03 04 05 06 07-08 09 OA OB OC OD OE OF 
30DD:0110 00 01 02 03 04 05 06 08-07 09 OA OB OC OD OE OF 

Notice that the seventh and eighth bytes are switched. The C command tells DEBUG 
to look at every byte in the first range you specified and compare it to the corresponding 
byte in the second chunk. If it finds mismatches, it will sandwich them between the two 
addresses of the differing bytes, so the two Compare commands above would each yield 
the report: 

30DD:0107 07 08 30DD:0117 
30DD:0108 08 07 30DD:0118 

If DEBUG doesn't find any mismatches it will simply print another hyphen prompt. 
If you had two programs on your disk of the same length called REDWIIlTE.COM 

and WIIlTERED.COM that cleared the screen to different colors (red on white vs. white 
on red), to find the differences in the files; you could use the DOS COMP utility 

C>COMP REDWHITE.COM C:WHITERED.COM 
C:REDWHITE.COM and C:WHITERED.COM 
Compare error at OFFSET A 
File 1 74 
File 2 = 47 

Or you could use the DEBUG C command. But since DEBUG will load any file with 
a COM extension at address 100, you'd have to rename one of the files. Then get into 
DEBUG, Name (with N) and Load (with L) the file that still had the COM extension, 
and find out its length by entering RCX and pressing the Enter key twice. DEBUG will 
load this COM file at address 100. Then load the other file (without the COM extension) 
at address 200. Issue a Compare command that tells DEBUG to check two blocks of 
memory ID bytes long, starting at addresses 100 and 200. Then enter Q to quit 

C>RENAME WHITERED.COM,WHITERED 
DEBUG 
-N REDWHITE.COM 
-L 
-RCX 
ex OOlD 

-N WHITERED 



-L 200 
-C 100 L lD 200 
30F9:010A 74 47 30F9:020A 
-Q 

DEBUG 363 

The COMP command reported that the files were the same except for the bytes at off
set A. Since DEBUG loaded the files at offsets 100 and 200, it found the same mismatches 
at addresses 1 OA and 20A. 

(If you want to try this, you can create the two color setting files with the following 
DEBUG script. Type it in using a pure-ASCII word processor or the DOS EDLIN utility. 
Name the script COLOR.SCR: 

N REDWHITE.COM 
E 100 BS 00 06 B9 00 00 BA 4F 18 B7 74 CD 10 B4 02 
E lOF BA 00 00 B7 00 CD 10 BO 04 BA D9 03 EE C3 
RCX 
lD 
w 
E lOA 47 
N WHITERED.COM 
w 
Q 

Be sure to press the Enter key at the end of each line, especially the last one, with the Q. 
Then put COLOR.SCR and DEBUG on the same disk and type: 

DEBUG < COLOR.SCR 

(If you don't have a pure-ASCII word processor handy, use the DOS COPY CON 
command. Add a line to the very beginning of the program that says: 

COPY CON COLOR.SCR 

When you're all done, press the Enter key after the final Q, then press the F6 function 
key, and then press Enter again.) 

Loading Disk Information into Memory 

Format: L [address [drive sector sector]] 

This powerful command lets you take just about any information from any part of a disk 
and put a copy of it in memory. You can then use DEBUG's editing commands to modify 
it and very carefully write the new information back to the disk. 

DEBUG lets you load information in two forms - files and disk sectors. 



364 PC Magazine DOS Power Tools 

Loading files is safe and easy. Loading sectors is trickier. Users often load something 
so they can change it and then write the changes back to disk, so working with sectors is 
playing with fire: 

WARNING! 
Unless you know exactly what you're doing, are sure your disks are complete
ly backed up, take every possible prudent measure to safeguard your system, 
and triple-check every command before you execute it, be extraordinarily 
careful when loading and working with sectors, and utterly paranoid and 
overcautious when writing them. Be sure you always work on copies of your 
files, never the originals. If you're the least bit nervous or uncertain about this 
kind of activity, don't do it. Just type Q and press the Enter key to Quit. 

Loading Files 

The easiest way to load a file is to specify it on the DOS command line after the word 
DEBUG. To load a copy of the DOS MODE.COM utility that's in your\DOS subdirec
tory on drive C: you could do it from any subdirectory on any disk by typing: 

DEBUG C:\DOS\MODE.COM 

(This of course assumes that DEBUG.COM is itself in the current subdirectory or is in a 
directory that your PATH command knows about.) 

If you're loading a copy of MODE.COM that's in the subdirectory you're currently 
logged into, just type: 

DEBUG MODE.COM 

If DEBUG can locate the file it will usually load it into memory at offset 100 and then 
just print the DEBUG hyphen prompt to tell you it's ready for a command. If DEBUG 
can't find the file it will print the "File not found" error message to let you know it had 
trouble, and then display the hyphen prompt. It won't be able to find files in other direc
tories unless you specify the precise subdirectory the file is in, even if it's in a subdirec
tory you've included in your system's path. While you can run any executable file in any 
subdirectory that your path knows about, DEBUG won't let you load a file in another 
directory unless you explicitly include the file's path on the DOS command line. 

So if your normal PATH command is: 

PATH C:\BIN;C:\DOS;C:\;D:\ 

and you're currently in a subdirectory called C:\WORK and you want to load 
C:\DOS\MODE.COM into DEBUG, just typing: 



DEBUG 365 

DEBUG MODE.COM 

won't do it. But: 

DEBUG \DOS\MODE.COM 

would. 
Incidentally, when you want to write a file to disk, you have to make sure DEBUG 

knows the file's name beforehand. You can load a file from the DOS command line (by 
putting the filename after DEBUG), or you can use the N and L commands together: 

DEBUG 
-N \DOS\MODE.COM 
-L 

If DEBUG can't find the file you specified using this Name and Load technique, it 
will tell you so by printing a "File not found" message. But be careful-even if DEBUG 
prints this message, it will use the name of this file that it couldn't find the next time you 
issue a Write (W) command, unless you enter a new name later. 

So if you type: 

DEBUG PI.FIL 

and it comes back and tells you: 

File not found 

it will still register the name "PLFIL." If you forget to enter a different name later, and 
you use the W command to Write some information to disk, DEBUG will use the filename 
PI.FIL for the file it creates. 

So if you originally loaded DEBUG by typing DEBUG PI.FIL, and had DEBUG tell 
you it couldn't find a file with that name, but you went ahead anyway and entered some 
information and then told the CX register how many bytes to write, and used the W com
mand to write it: 

-E 100 "PI=3.14159265" 
-RCX 
ex 0000 
:D 
-w 
Writing OOOD bytes 
-Q 

DEBUG will create a brand new file called PI.FIL. If you later issue the DOS command: 



366 PC Magazine DOS Power Tools 

TYPE PI.FIL 

you'll see: 

PI=3.14159265 

Loading any file is easy. Just type an N and then the filename (and its path, if the file 
is located in another subdirectory) and then an L. You can see if DEBUG knows the 
filename by peeking at the address where DEBUG stores it- offset 82 of the code seg
ment. To check, just type: 

D CS:81 

DOS uses the area at this offset in its Program Segment Prefix control block to store 
the characters you entered on the command line after the main program name - often 
called the command tail. When you type CHKDSK /F. for instance, everything after the 
final K in CHKDSK - the space, the slash, and the F - goes here. When you load a 
file into DEBUG by specifying it after the DEBUG name on the command line, DOS 
puts this filename at offset 81, and it uses the single byte at offset 80 to tell it how many 
characters you typed after the main program name. Using the DEBUG Name (N) com
mand also puts the name you entered at this offset. 

If you load one file and then later load a different one, DEBUG will load them both at 
offset 100, and the second one will ovexwrite the first. DEBUG normally loads files at 
offset 100, so if you want to load two files at different addresses, you can do so by in
cluding the addresses after the L command. 

If you also have a file on your disk called E.FIL that contains the text E=2. 71828, you 
could load both PI.FIL and E.FIL into memory at the same time with the commands: 

C>DEBUG 
-N PI.FIL 
-L 100 
-N E.FIL 
-L 110 

Then, typing: 

D 100 L 20 

would display something like: 

30DD:0100 50 49 3D 33 2E 31 34 31-35 39 32 36 35 00 00 00 PI=3.14159265 ... 

30DD:0110 45 3D 32 2E 37 31 38 32-38 00 00 00 00 00 00 00 E=2.71828 •.....• 

You really didn't have to specify the address of 100 when you loaded the first PI.FIL 
file, since DEBUG normally loads files at offset 100. But you did have to tell DEBUG 



DEBUG 367 

to load the second E.Fll.. file at offset 110. If you loaded these two files one after the other 
but forgot to specify addresses, DEBUG would put the second one over the first one. It 
would look like: 

C>OEBUG 

-N PI.FIL 

-L 

-0 100 L 20 

3000:0100 50 49 30 33 2E 31 34 31-35 39 32 36 35 00 00 00 

3000:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

-N E.FIL 

PI=3.14159265 ... 

-L 
-0 100 L 20 

3000:0100 45 30 32 2E 37 31 38 32-38 39 32 36 35 00 00 00 

3000:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

E=2.718289265 ... 

Note that since the PI.FU.. file is longer than the E.FIL file, the contents of the E.FIL 
file overwrite just the beginning of the PI.FIL file; the end of the PI.FIL string is still 
visible after DEBUG plunks the E.FIL file on top of it. 

In addition, you have to be careful when loading COM files, since DEBUG always 
loads files ending with COM at offset 100. So if you try to load a COM file at an address 
other than 100, DEBUG won't let you: 

C>DEBUG 
-N MODE.COM 
-L 110 

" Error 
-L 101 

" Error 
-L 100 

If you do need to loacl two COM files at the same time, you'll have to rename one of 
them before starting DEBUG, and then load the renamed COM file at an address higher 
than 100. If you wanted to load two short color-setting COM files called RED.COM and 
BLUE.COM, you would first rename BLUE.COM to BLUE.TMP. Then you'd load 
RED.COM into memory without specifying an address (DEBUG will load it at offset 
100), and then load BLUE.TMP at a higher address. You can use the RCX command to 
find out how long the RED.COM file is so you don't overwrite it with the BLUE.TMP 
file: 

REN BLUE.COM BLUE.TMP 
DEBUG 
-N RED.COM 
-L 
-RCX 



368 PC Magazine DOS Power Tools 

ex 0010 

-N BLUE.TMP 
-L 120 

The RCX command reported that the RED.COM file was ID bytes long, which means 
the last byte in the file was at address lOE. You could have loaded BLUE.TMP directly 
after it - at address 1 OE - but it's often easier to work with files that are loaded at even 
paragraph boundaries, with offsets that end in 0, such as 100, or 120, or FDO. 

COM vs.EXE 

DEBUG loads different kinds of files in different ways. First, some background. 
DOS can execute only three kinds of files, those with BAT, COM, or EXE extensions. 

Two of these, COM and EXE files, are generally called programs, although frustrated 
users sometimes call them far more colorful things. (Originally, "COM" stood for "com
mand" and "EXE" stood for "executable" but these names don't mean much these days.) 
Files that end in BAT are called batch files. 

Program files contain long sequences of machine-level commands in binary format 
that put your CPU through its paces. If you peeked inside one (with the DOS TYPE com
mand) you'd see lots of seemingly meaningless strings of odd-looking characters. Batch 
files are ASCII files that contain recognizable English-language commands to load and 
run programs or perform certain DOS functions. 

An executable program is simply a collection of instructions (and the data for these 
instructions) kept in a language your system can readily process. Some programs can be 
short and simple; others need to span several different 64 K segments and do fancy foot·· 
work with memory. 

Programs that end in COM are exact images of the instructions in memory that make 
the programs do their magic. And they're relatively short; COM files, their internal data, 
and their temporary stack storage areas, must all squeeze into 64K. Actually, the largest 
size of a COM file is 65,278 bytes, rather than the full 64K (65,536), since each COM 
file must reserve a minumum of two bytes for its stack, and 256 bytes (100 hex bytes) 
for a Program Segment Prefix that contains certain important addresses and data needed 
by DOS. (This is why DEBUG loads most files at offset 100.) Since no translation is re
quired when reading them off a disk and putting them into memory, COM files load and 
start quickly. DOS just copies the block of instructions that constitutes the file to a cer
tain memory address and presses the start button. 

Programs that end in EXE, (pronounced "ex-ee"), are not exact duplicates of what ends 
up in memory. EXE files aren't limited to 64K, and in fact can take up all available 
memory. Each EXE file is prefaced by a block of information called a header that tells 
DOS how to allocate the proper amount of memory space it needs and then load the 
various parts of the file into the proper memory areas. 

DEBUG is more than just a file editor; as mentioned earlier, it's a programming 
development and debugging environment. Programmers can work on a file and then run 



DEBUG 369 

it from inside DEBUG without having to exit to DOS. Because of this, if you load an 
EXE file directly into DEBUG, DEBUG looks at the header and performs all the neces
sary memory allocation, segment juggling, and other fancy DOS tricks. 

When you load a COM file into DEBUG the first byte of the file is at offset 100, the 
second at offset 101, etc. When you load a file with an EXE extension into DEBUG, the 
first few bytes of the actual file are discarded; these tell DOS that it's working with an 
EXE file, and specify how many sectors long the file is, how big the header is, etc. 

If you want to examine or modify an EXE file with DEBUG, you'll have to first make 
a copy of the file that has an extension other than EXE (or no extension at all). Then when 
you load this renamed version of the file, the first byte will indeed be at offset 100, and 
the second at offset 101. (These bytes should be 4D and SA, which are the EXE "file sig
nature" that tells DOS to give them special treatment.) Working with the non-EXE ver
sion of the file will make it easier to modify, but you won't be able to run it while inside 
DEBUG (no great loss). You can see how differently DEBUG treats the versions by look
ing at the shortest DOS file that has an EXE extension- SORT.EXE. Copy SORT.EXE 
to a file named SORT.XXX. Load each into DEBUG and use the RCX command to see 
how long DEBUG thinks the file is. Then look at the first hex 10 (16 decimal) bytes at 
offset 0 - the very beginning of each file, and the hex 10 bytes at offset 100-where 
DEBUG normally loads all files: 

C>DE8UG SORT.EXE 

-RCX 

ex 0589 

-D 0 L 10 

30F9:0000 CD 20 

-D 100 L 10 

30F9:0100 00 00 

-Q 

C>DE8UG SORT.XXX 

-RCX 

ex 0789 

-D 0 L 10 

6A 31 

2F 00 

00 9A 10 06-A8 FF F4 02 2E 2D 2F 03 jl ......... -I. 

00 00 00 00-84 30 CD 21 3D 03 1E 74 .. I ...... o. != .. t 

30DD:OOOO CD 20 00 AO 00 9A EE FE-lD FO F4 02 2E 2D 2F 03 ............ -/. 

-D 100 L 10 

30DD:0100 4D SA 9D 01 04 00 01 00-20 00 01 00 01 00 3D 00 MZ ........... =. 
-Q 

Remember, here you're looking at the exact same file with two slightly different 
names. 

If you do have to modify an EXE file, be sure to make a copy of it with a non-EXE 
extension. Then, when you're done making the changes, rename the changed file back 



370 PC Magazine DOS Power Tools 

to an EXE file again so DOS will run it. DOS will refuse to execute a file called 
SORT.XXX, even though it may be a perfectly executable file. 

Loading Sectors 

Data is data. Whether it's in memory or on your disk, it's just magnetically coded infor
mation. But storing this data is very tricky. You could keep it permanently in memory, 
but you'd need a huge amount of memory to maintain all your programs and data as well 
as a surefire way to prevent it from disappearing when you turned the power off. (You 
could actually do it, if you used very expensive static or battery backed-up CMOS RAM 
chips rather than the cheaper but power-hungry dynamic RAM chips in most systems.) 
And while such a storage system would be blazingly quick, it wouldn't let you transport 
your data easily from machine to machine. 

Disks are a far better way to store data; they're vastly cheaper, more transportable, and 
secure. But you can'tjust throw data onto the surface of a disk. You have to organize it 
so storage and retrieval are fast and reliable. You have to know exactly what's on each 
disk, and which of the different versions of your data is the most recent. And you have 
to allow frequent modification; users are constantly changing their files - making them 
bigger, smaller, editing them, and moving the information in them around. 

The best way to store data is in chunks. But the chunks have to be a workable size. If 
the chunks are too small you'll spend all your time figuring out where each is located. 
Storing just one byte at a time would be a logistical nightmare; the map needed to record 
where each byte is would take up more space than the data itself. Make the chunks too 
large, however, and you'll end up with utter inefficiency. If each chunk is 10,000 bytes 
long and you're storing five 200-byte programs, you'll waste 49,000 bytes of space. 

The standard chunk on a PC disk is called a sector, and the standard sector is 512 bytes 
long. Sectors are actually parts of tracks. Tracks are concentric rings like circles on bull's
eye targets. Each track is divided into wedges shaped like slices of pie. These wedges 
form the disk sectors. 

But your system doesn't always store data in individual sectors. Instead, it uses some
thing called an allocation unit, more commonly referred to as a cluster. A cluster can be 
a single sector (as is it on single-sided 5-1/4 inch diskettes, or the godawful AT 1.2 
megabyte floppies). Or it can be two sectors long (as with the common 360K diskette), 
or four (on the original AT 20-megabyte drive), or even eight (on the original ten
megabyte XT hard disk). 

Manipulating these sectors directly is an elaborate and tedious process, but DOS does 
all the dirty work for you, organizing and keeping track of your files. And it also knows 
where all the little pieces of the file are scattered across your disk. 

When you first create a file on a brand new disk, all the sectors that contain the infor
mation in that file are in the same contiguous area. But as you add and delete files on the 
disk, and make existing files bigger and smaller, DOS ends up storing pieces of your files 
in clusters scattered over the entire disk surface. This kind of fragmentation slows every-



DEBUG 371 

thing down, since DOS has to chum through numerous read and write operations each 
time you load or save a file. One of the best ways to improve performance of your hard 
disk is to back up all your files (very assiduously) to floppies, reformat the hard disk, and 
then copy them back. Doing this will make your files contiguous and do away with frag
mentation - until you start chomping away at them again. 

DOS uses two tables to keep track of where all the individual clusters in every file are 
located. The first one is the disk directory itself, which maintains the name, size, crea
tion date and time, and attribute (which is a label that lets you hide files or prevent them 
from being changed or erased). It also tells DOS where the very first cluster of the file is 
located. The second one, called a file allocation table (or FAT), takes over after the ini
tial directory entry and keeps track of where all the remaining clusters are stashed. 

As we've seen, it's relatively safe and easy to load whole files into DEBUG and then 
write them back to disk, since DOS takes care of the tricky loading and writing proces
ses for you. However, it's extraordinarily risky to load specific sectors into DEBUG, then 
modify and write these back to disk, since one little slip could corrupt your directory or 
FAT. Scramble those two tables (especially the FAT) and you'll make it impossible for 
DOS to figure out where all the little pieces of your files are located. 

The FAT is so important, in fact, that your disks contain two identical versions of it. 
Actually this is a bit short-sighted. Mariners know to take either one compass or three to 
sea, but never two. If two don't agree, which one is wrong? DOS should have allocated 
space for three FATs, on the theory that it's unlikely two will fail spontaneously. Of 
course, with DEBUG, nothing's impossible. 

It's bad enough that you could destroy all the data on a floppy disk with an errant 
DEBUG command. But the same thick-fingered command could eradicate the key FAT 
and directory information on your hard disk, leaving you with a funny expression on your 
face and your foot through the screen. 

So while you can load and write disk sectors, don't experiment unless you 're totally 
backed up, and are the kind of belt-and-suspenders type who checks every action five 
times before he does anything. And be absolutely sure to keep DEBUG away from your 
hard disk sectors - one little slip and goodbye. 

The following examples all apply to floppy disks only. In fact, they all illustrate how 
to work with the floppy disk in drive A:, for two reasons: 

1. Some users with hard disks don't have a floppy disk that's strictly called drive B: (al
though they can simulate it by temporarily renaming drive A:). 

2. Worse, one of the biggest pitfalls in working with sectors is that DEBUG refers to 
drive A: as drive 0, drive B: as drive 1, drive C: as drive 2, etc. It's easy to forget this 
late at night and put something on drive 2 when you really wanted to write to drive 
B:. Accidentally writing a floppy disk FAT sector onto the hard disk FAT will zap 
your data to dust. Your files will still be on your disk, in lots of little scattered pieces, 
but with the FAT gone you won't have any way to find where the pieces are located. 
If you use drive A: exclusively (which DEBUG refers to as drive 0) and you acciden-



372 PC Magazine DOS Power Tools 

tally write something to drive 1 thinking that 1 is A:, you may wreak havoc on the 
floppy in drive B: but at least your hard disk will still be intact. 

So remember: 

Drive 
Letter 

A: 
B: 
C: 
D: 

What DEBUG 
Calls It 

0 
1 
2 
3 

You won ,treally need to load and write absolute disk sectors very often. But this ability 
can come in handy. If you do somehow bomb your FATs, you can put the broken disk 
in drive A: and laboriously go through it sector by sector, loading the information from 
each sector to figure out where your text and data files are located. Then, once you ,ve 
mapped out the contents of each sector, you can load the sectors from the bombed-out 
disk in the proper order and write them sequentially to a blank, formatted disk in drive 
B:. When you,re done, you can load all the sequential sectors from drive B: into higher 
and higher addresses in memory, then use the N and W commands to name and write a 
new file containing all these pieces. It's nasty work, but it beats losing all your files. Bare
ly. 

This technique won,t work with binary files (programs), since you won,t be able to 
tell where all the pieces are, and even if you could, if you ,re off by even one byte when 
you put everything together you ,ll end up with garbage. With text or most data files you 
can always go into the file with your editor or word processor when you,re done and 
clean things up. Better yet, use a program like the Norton or Mace Utilities to handle all 
the drudgery for you. 

A real problem with this kind of rescue operation is that you may end up hopelessly 
confused because of all the slightly different versions of your file scattered over the disk. 
When you create a text file, your word processor generally saves the previous version as 
a backup (BAK) file. Some programs also create working files with extensions like TMP 
or$$$ while they,re operating; they usually erase these or give them BAK extensions 
when you save or quit. When you look at your disk with DEBUG you may find several 
sectors that seem to have nearly identical contents, since they stored temporary or back
up versions of your file. Sorting them all out can give you a big headache. The real answer 
is to back up all your work carefully and often, assuming the worst, since the computer 
definition of "the worst" is "just a matter of time." 

One place where you really can use DEBUG's sector reading and writing abilities is 
with directories. Remember, however, don't try meddling with absolute sectors on your 
hard disk! 

DOS disks are arranged as follows: 



DEBUG 373 

beginning of the disk 
Boot sector 

A pair ofFATs 

Root directory 

-------- •----- beginning of the user area 
Programs and 

user data 

The boot sector does three things: It lets DOS know that the disk is indeed an MS-DOS 
or PC DOS-formatted disk, and not a disk for an Apple, DEC, or other system. It provides 
a table (called the BIOS Parameter Block, or BPB) of important values that DOS needs 
to know, such as the size of the disk's sectors, clusters, and directory. And it runs a 
bootstrap program that looks for the main operating system files and launches them into 
action. 

The two FA Ts keep tabs on every cluster on your disk. When DOS needs to store a 
chunk of information, it looks at the FAT to see where the first available unused cluster 
is on your disk, and puts the data there. When it later has to retrieve the data it consults 
the FAT to see which cluster holds the information. 

The main directory is called the root directory because it's at the beginning of a "tree
structured" (or hierarchical) system with subdirectories branching off it. 

The root directory maintains the name, size, creation (or last modification) time and 
date, and the initial cluster location for a specified number of files - the number varies 
depending on the type of system you 're using. (DOS limits the number of root directory 
entries, but lets subdirectories hold as many files as disk space permits.) Finally, the 
directory maintains a key piece of information about each file called an attribute. 

A file attribute tells DOS what kind of file it's dealing with. Some files contain such 
important gut-level utilities and information that erasing them would bring your system 
to its knees, and DOS prevents you from altering or deleting these. Some files perform 
special services; the volume label and every subdirectory on your disk are just special 
kinds of files that can't be copied or deleted using normal DOS file management com
mands. And DOS lets you "hide" sensitive files from normal directory searches, or stamp 
them as "read only" so users can examine them but not change or erase them. 

Each directory listing takes up 32 (or hex 20) bytes. The file attribute information is 
kept in the 12th byte (byte number 11, or hex OB, since the first byte is byte number 0). 
You can look at the first few directory entries on a 360K floppy disk in drive A: with the 
command: 

C>DEBUG 
-L 100 0 5 1 
-D 100 L CO 



374 PC Magazine DOS Power Tools 

The first command told DEBUG to load the one sector starting at sector 5 on drive A: 
(which DEBUG calls drive 0) into memory at offset 100. The second command had 
DEBUG display the first hex CO bytes starting at offset 100. DEBUG will display some
thing like: 

30DD:Ol00 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 

30DD:Oll0 00 00 OD 00 DO 00 DO 60-72 OE 02 OD 54 56 DO 00 

30DD:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 

30DD:0130 DO 00 00 00 00 OD OD 60-71 OE 18 00 CF 75 OD 00 

30DD:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 

30DD:0160 50 43 20 4D 41 47 41 5A-49 4E 45 28 00 00 00 00 

30DD:0170 OD OD DO 00 DO OD 45 6E-5B OF 00 OD 00 00 00 00 

30DD:0180 48 49 44 44 45 4E 20 20-46 49 4C 22 00 00 00 00 

30DD:0190 00 OD 00 OD 00 00 51 6E-5B OF 4F 00 29 00 DO 00 

30DD:01AO 53 55 42 44 49 52 31 20-20 20 20 10 00 00 00 00 

30DD:01BO 00 DO 00 00 00 00 6A 6E-5B OF 50 00 00 00 00 00 

IBMBIO COM' .... 

....... 'r ... TV •• 

IBMDOS COM' ...• 

....... 'q .... u •• 

COMMAND COM ... . 

....... 'q. 6 •• b •• 

PC MAGAZINE( .... 

•••••• En[ ••••••• 

HIDDEN FIL" ..•. 

•••••• Qn[.O.) ••• 

SUBDIRl 

.....• jn[ .P •••.. 

(Obviously the contents will be different on your own system, but the structure will be 
similar.) 

The first 32-byte entry, for IBMBIO.COM, is made up of the following parts: 

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
0100 49 42 4D 42 49 4F 20 20 43 4F 4D 
0100 

t t t 
Filename Extension 

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
0100 .. 27 .. 
0100 

u 
Attribute 

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
0100 
0110 .. 00 60 72 OE 

LJ LJ 
Time Date 
(in coded form) 



DEBUG 375 

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB QC OD OE OF 
0100 
0110 .. 02 00 .. 

LJ 
First cluster in FAT 

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
0100 
0110 .. 54 56 00 00 

t t 
File size 

(The area from offset QC through 15 is "reserved" for future use; all bytes in this part of 
the entry have a value of zero.) 

By looking at the DEBUG display, you can tell this floppy disk is probably bootable, 
since the first two files in the directory are IBMBIO.COM and IBMDOS.COM. These 
two files have an attribute value of hex 27, which means that the following bits are "set" 
to 1 rather than 0: 

• Read-Only 
• Hidden 
• System 
• Archive 

Most bytes in the directory entry are values that tell DOS what ASCII characters to 
display, or how big something is, or where in a table to look up something. Some are 
coded values - the date and time words (remember, a word is two bytes) compress a lot 
of information into a short space. 

But the attribute byte is just a collection of bits. Its value depends on which bits hap
pen to be set to 1 and which aren't. If the first (0th), second (1st), third (2nd), and sixth 
(5th) bits are set: 

Bit: 7 6 5 4 
0 0 1 0 

l 
set 

3 2 1 0 
0 1 1 1 

l l l 
set set set 

the value of the byte would be 2AQ + 2Al + 2A2 + 2A5, or 1+2 + 4 + 32, or decimal 
39 (hex 27). The value of hex 27 itself means nothing - it just happens to be a con
venient way to store a lot of information, the above bit pattern, in one compressed chunk. 

But how can you tell which bits represent which attributes? Just look them up in Figure 
8.1: 



376 PC Magazine DOS Power Tools 

Bit: 
Dec: 
Hex: 

7 
128 
80 

6 
64 
40 

* * 
(reserved) 

5 
32 
20 

t 
archive 

4 
16 
10 

r 
subdir 

Figure 8.1 Interpretation of Directory Attribute Byte 

Bit = number of bit 
Dec = decimal value of bit 
Hex = hexadecimal value of bit 

3 
8 
8 

2 
4 
4 

1 
2 
2 

voL syL I 
hidden 

0 
1 
1 

read-only 

To use this, you obviously have to be able to know the binary representation of the 
byte. Hex 27 in binary is: 

1 
t 

ARC 

0 0 

(S!B) l 
(VOL) 

1 1 1 

l 
SYS 

HID 
RO 

Translating bytes from hex to binary isn't all that hard, if you know how to count from 
0 to F (0 to 16 decimal) in binary: 

0000 = 0 
0001 = 1 
0010 = 2 
0011 = 3 
0100 = 4 
0101 = 5 
0110 = 6 
0111 = 7 

1000 = 8 
1001 = 9 
1010 = A 
1011 = B 
1100 = c 
1101 = D 
1110 = E 
1111 = F 

Notice that the first column (0-7) has the same bit pattern as the second column (8-F), 
except that on binary numbers lower than 8 the leftmost digit is a 0 and on those from 8 
through F this digit is a 1. 



DEBUG 377 

Now take the hex digit 27, and divide it in half. Translate each half into binary and 
then put the two halves together, to see that hex 27 equals binary 00100111: 

2 7 
I 

I I 
I 

I I 
0 0 1 0 0 1 1 1 

\ I 
00100111 

Here's a decimal/hex/binary table for all hex values from 0 to 3F (decimal 0 through 
63), if you'd rather look things up than puzzle them out: 

Dec Hex Six-Bit Binary Dec Hex Six-Bit Binary 
Val Val Representation Val Val Representation 

0 0 000000 32 20 100000 
1 1 000001 33 21 100001 
2 2 000010 34 22 100010 
3 3 000011 35 23 100011 
4 4 000100 36 24 100100 
5 5 000101 37 25 100101 
6 6 000110 38 26 100110 
7 7 000111 39 27 100111 
8 8 001000 40 28 101000 
9 9 001001 41 29 101001 
10 A 001010 42 2A 101010 
11 B 001011 43 2B 101011 
12 c 001100 44 2C 101100 
13 D 001101 45 2D 101101 
14 E 001110 46 2E 101110 
15 F 001111 47 2F 1 0 1 1 1 1 
16 10 010000 48 30 110000 
17 11 010001 49 31 110001 
18 12 010010 50 32 110010 
19 13 010011 51 33 110011 
20 14 010100 52 34 110100 
21 15 010101· 53 35 1 1 0 1 0 1 
22 16 010110 54 36 110110 
23 17 010111 55 37 1 1 0 1 1 1 
24 18 011000 56 38 111000 
25 19 011001 57 39 111001 
26 IA 011010 58 3A 111010 



378 

Byte: 
0100 
0120 
0140 
0160 
0180 
OlAO 

PC Magazine DOS Power Tools 

27 1B 011011 59 3B 1 1 1 0 1 1 
28 lC 011100 60 3C 111100 
29 lD 011101 61 3D 1 1 1 1 0 1 
30 1E 011110 62 3E 1 1 1 1 1 0 
31 lF 0 1 1 1 1 1 63 3F 1 1 1 1 1 1 

The following BASIC A TTRBUTE.BAS program will do all the work for you by look
ing at which bits are set to 1 in any attribute value you enter, and reporting the appropriate 
attributes. 

100 ' ATTRBUTE.BAS 
110 SCREEN O:COLOR 3,0:KEY OFF:CLS 
120 S$=STRING$(5,32) :PRINT STRING$(56,61) 
130 PRINT "Enter hex attribute value "; 
140 INPUT "(or just hit Enter to end): ",N$ 
150 N=VAL ( "&H"+N$) 
160 IF N>63 THEN BEEP:GOTO 130 
170 IF N=O THEN 
180 PRINT "File 
190 IF N AND 1 
200 IF N AND 2 
210 IF N AND 4 
220 IF N 8 
230 IF N AND 16 
240 IF N AND 32 
250 GOTO 120 

END 
Attributes 
THEN PRINT 
THEN PRINT 
THEN PRINT 
THEN PRINT 
THEN PRINT 
THEN PRINT 

are:" 
S$;"Read-Only" 
S$;"Hidden" 
S$;"System" 
S$;"Volume" 
S$;"Subdirectory" 
S$;"Archive" 

If you examine the attribute byte values for the other files in the above DEBUG dis
play: 

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
.. 27 .. .. IBMBIO COM' .... 
.. 27 .. .. IBMDOS COM' .... 

.. .. .. .. .. 20 .. . . COMMAND COM .... 
.. 28 .. .. PC MAGAZINE( .... 
.. 22 .. .. HIDDEN FII...." .... 

.. .. .. 10 .. .. SUBDIRl 

you can look at Figure 8.1 to figure out which attribute bits are set: 



Filename 
IBMDOS.COM 
COMMAND.COM 
PC MAGAZINE 
HIDDEN.FIL 
SUBDIRl 

Hex value 
27 
20 
28 
22 
10 

Binary value 
100111 
100000 
101000 
100010 
010000 

DEBUG 379 

Attributes 
ARC, SYS, HID, RO 
ARC 
ARC, VOL 
ARC, HID 
SUB 

This tells you that IBMDOS.COM, like IBMBIO.COM, has its archive bit set, and is 
a hidden, system, read-only file. The only bit set in the COMMAND.COM entry is the 
archive bit. PC MAGAZINE is the disk's volume label (which appears in DIR listings, 
CHKDSK output, etc.) since its 2A3 bit is set. The archive bit is also set in HIDDEN.FIL, 
and since the 2A 1 bit is set, this is also hidden from normal directory searches. And SUB
DIR l, with its 2"4 bit set, is a subdirectory. 

Don't start meddling with volume labels or subdirectory entries. And if any file is 
marked as a system file, keep your hands off that as well. But the other attributes are fair 
game. For example: 

• DOS sets the directory archive bit on (to 1) whenever it creates or modifies a file. 
When you use the DOS BACKUP or XCOPY commands with a /M switch, DOS 
onsets (turns off, or sets to 0) this bit after it makes the copy. This lets subsequent 
backup operations skip over any files that you haven't changed since you last back
ed up your disk. By setting the read-only bit on (to 1) you can prevent anyone from 
changing or erasing any file. You'll still be able to read or copy it, but DOS won't 
let you alter its contents. 

• By setting the hidden bit on (to 1) you can keep a file from showing up in DIR sear
ches. Actually, setting the system bit on will exclude it from DIR searches as well. 
(Since a subdirectory is just a special kind of file, you can even hide whole subdirec
tories from DIR listings. You'll still be able to change (CHDIR or CD) and remove 
(RMDIR or RD) and they'll show up if your PROMPT contains a $P.) 

Here's where DEBUG's sector-handling ability can be very useful. DOS maintains 
file attributes in your disk's directory. You can't use the L FILENAME command to load 
your directory into DEBUG as if it were a file. Instead, you have to tell DEBUG to read 
specific sectors off your disk and put them into memory. 

The problem is that directories aren't all the same length, and they don't start at the 
same sector on every disk. DOS supports 160K, 180K, 320K, 360K, 720K, 1.2M and 
1.44M diskettes. The number of possible listings in the root directories of these diskettes 
varies from 64 to 224. And since the directories occupy space on the disks after the two 
FATs of varying sizes, the starting directory sectors vary widely. 

To figure out where each directory starts, and how long it is, you can examine the BIOS 
Parameter Block (BPB) in the boot sector (sector 0- the first one on the disk). 

The root directory is located right after the single boot sector and the two redundant 
FATs. So if you figure out how many sectors each FAT takes up, multiply this number 



380 PC Magazine DOS Power Tools 

by 2 (since FATs come in pairs), and then add 1 (for the boot sector), the directory will 
start at the sector with the very next number. 

The BPB uses the single byte at offset 10 (hex) of the boot record to keep track of how 
many FA Ts are on the disk- one or two. And it uses the two bytes at offset 16 (hex) to 
keep track of how many sectors each FAT contains. 

To examine the boot sector (sector 0) on a 360K diskette in drive A: load DEBUG 
without specifying a filename. Then issue a Load command with four parameters: 

1. The address in memory where you want DEBUG to load the information (any ad
dress will do, but use 100 hex). 

2. The drive number. Remember that drive A: is drive number 0, drive B: is drive num
ber 1, drive C: is drive number 2, etc. To avoid disaster, always think twice when 
specifying DEBUG drive numbers! 

3. The first sector you want loaded. 

4. How many sectors you want to load - starting with the first sector specified in the 
previous step. You can't load more than hex 80 sectors (64K) at once, but this 
shouldn't be a problem. 

To load the single sector 0 on drive A: (drive number 0) into address 100, issue the 
command: 

-L 100 0 0 1 

Then display the first hex 20 bytes. To make life easier, display the one byte at BPB off
set 10 (which is at offset 110 in memory, since you loaded the file at address 100 rather 
than address 0), and the two bytes starting at offset 16 (DEBUG offset 116): 

C>DEBUG 

-L 100 0 0 1 

-D 100 L 20 

30DD:0100 EB 34 90 49 42 4D 20 20-33 2E 33 00 02 02 01 00 .4.IBM 3.3 .... . 

30DD:0110 02 70 00 DO 02 FD 02 00-09 00 02 00 00 00 00 00 .p ............. . 
-D 110 L 1 

30DD: 0110 02 

-D 116 L 2 

30DD: 0110 02 00 

The value of 2 at offset 110 specifies that this disk contains two FA Ts (all DOS disks 
do). And the value of 2 at offset 16 tells you that each FAT sprawls over two sectors. 
Armed with this information, you can figure out that the directory on a 360K floppy 
begins on sector 5: 



DEBUG 381 

• The boot sector starts at sector 0 and stops at sector 1 
• The pair of FA Ts start at sector 1 and stop at sector 4 
• The directory begins at sector 5 

So the formula for figuring out the starting directory sector is: 

(number of sectors in FAT x 2) + 1 

Since all FA Ts on floppy disks use fewer than 256 sectors, you can figure out the num
ber of sectors per FAT with the simple DEBUG commands: 

C>DEBUG 
-L 100 0 0 1 
-D 116 L 1 

This would look on drive A:. To look on drive B: change the first line to: 

-L 100 1 0 1 

Fine. Now you know where the directory starts; but where does it end? The two-byte 
value at offset hex 11 gives you the maximum number of entries in the root directory; 
you can see by looking at the DEBUG display above that the value here is hex 70 (decimal 
112). 

(Two-byte values can be tricky, since they're stored in "backwords" format. Users 
gave IBM's storage system this informal name because two eight-bit bytes combine into 
one 16-bit word and because the low-order byte-the half that's worth less is at the 
lower address, which sometimes seems backward. You'll see why in a second.) 

This book contains many warnings that caution you against fooling around with hard 
disk sectors. To make sure you don't try to fiddle with the real thing yourself, here's what 
one looks like on an old AT: 

30DD:0100 EB 34 90 49 42 40 20 20-33 2E 33 00 02 04 01 00 
30DD:0110 02 00 02 07 A3 F8 29 00-11 00 04 00 11 00 80 00 

LJ 
bytes 11and12 

The number of root directory entries on an AT is obviously more than 2. Since the 
bytes are stored in backwards order, flip 00 02 around and you get 02 00, or hex 200 
(decimal 512). 

The floppy disk directory used in these examples can hold hex 70 (decimal 112) entries, 
and because each entry is 20 hex (decimal 32) bytes long, this particular directory will 
take up EOO hex bytes. Sectors are always 200 hex bytes long, so EOO / 200 = 7, which 
means that the directory will span seven sectors, starting at sector 5. 



382 PC Magazine DOS Power Tools 

The formula for figuring out how many sectors the whole root directory talces up is: 

Number of root directory entries * hex 20 I hex 200 

which translates to: 

Number of root directory entries I hex 10 

And while you're at it, you can figure out the total number of bytes talcen up by the root 
directory either with: 

Number of root directory entries* hex 20 

or: 

Number of sectors talcen up by the root directory * 200 

Since the number of root directory entries on a floppy disk is less than 256, you can 
figure out the number (on drive A:) with the simple DEBUG commands: 

C>DEBUG 
-L 100 0 0 1 
-D 111 L 1 

You could load the entire directory on a 360K floppy disk in drive A: and then display 
it with the command: 

offset where DEBUG loads it 

drive (A:) 

j 
starting sector 

1 iow many sectors yon want loaded 

-L 100 0 5 7 
-D 100 L EOO 

l nlmber of bytes to display 
starting display offset 

Dumping EOO (3,584 decimal) bytes will scroll the listing quickly off the screen, but 
you can stop and restart the display by alternately pressing Ctrl-S. You could also press 
Ctrl-NumLock to halt the display, but you'd then have to press an alphanumeric key to 
restart it. Or, to end up with a printed copy of the listing, you could tum your printer on 



DEBUG 383 

and type Ctrl-P or Ctrl-PrtSc before you start. When you 're finished, press Ctrl-P or Ctrl
PrtSc again to toggle this printer echoing feature off. And if you want a copy of it on your 
disk, you could always create a file called DEBUG.SCR that contained the three lines: 

L 100 0 5 7 
D 100 L EOO 
Q 

Make sure you press the Enter key after each line, especially the last one with the Q! 
Then, at the DOS prompt, type: 

DEBUG < DEBUG.SCR >DIRLIST 

and DOS will redirect the DEBUG listing into a file called DIRLIST. 
To make things easier, Figure 8.2 presents all the necessary DEBUG loading and dis

play addresses: 

Sectors in Sectors Sectors in Entries in DEBUG commands to 
boot record inFATs root DIR root DIR see root directory in A 

s-112 1 2 4 64 L100034 
160K D 100L800 

5-1/2 1 4 4 64 L 100054 
180K D lOOL 800 

5-1/2 1 2 7 112 Ll00037 
320K D lOOLEOO 

5-1/2 1 4 7 112 L 100057 
360K D lOOLEOO 

5-1/2 1 14 14 224 L IOOOFE 
1.2M D lOOL lCOO 

3-1/2 1 6 7 112 L lOOOBE 
720K D lOOLEOO 

3-1/2 1 18 14 224 L100013E 
l.44M D lOOL lCOO 

Figure 8.2. DEBUG Loading and Display Addresses 

Note: All values in decimal format; DEBUG command parameters in hexadecimal 



384 PC Magazine DOS Power Tools 

As an example, here's the DIR listing of a 360K floppy in drive A: 

Volume in drive A is PC MAGAZINE 
Directory of A:\ 

COMMAND COM 25307 3-17-87 
TES Tl FIL 20 10-27-88 
TEST2 FIL 26 10-27-88 
TEST3 FIL 30 10-27-88 
SUBDIRl <DIR> 10-26-88 

12:00p 
10:57p 
10:58p 
10:59p 
12:06a 

5 File (s) 279552 bytes free 

Since the first file is COMMAND.COM, odds are that it's a formatted disk, which means 
the first two files on it are the hidden system files IBMBIO.COM and IBMDOS.COM. 
The disk also has a volume label, which is an additional small file, and one subdirectory 
called\SUBDIRl. Other than those and three small TEST files, it's fairly empty. 

The DEBUG display of this would look something like: 

C>DEBUG 

-L 100 0 5 1 

-D 100 L 100 

3000:0100 49 42 40 42 49 4F 20 20-43 4F 40 27 00 00 00 00 IBMBIO COM' .... 

30DD: 0110 00 00 00 00 00 00 00 60-72 OE 02 00 54 56 00 00 ....... 'r ... TV .. 

3000:0120 49 42 40 44 4F 53 20 20-43 4F 40 27 00 00 00 00 IBMDOS COM' .... 

3000:0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 75 00 00 ....... 'q .... u .. 

30DD: 0140 43 4F 40 40 41 4E 44 20-43 4F 40 20 00 00 00 00 COMMAND COM .... 

3000:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 ....... 'q.6 .. b .• 

3000:0160 50 43 20 40 41 47 41 5A-49 4E 45 28 00 00 00 00 PC MAGAZINE( .... 

3000:0170 00 00 00 00 DO OD 19 B7-5B OF DO 00 00 00 00 DO ........ [ ....... 
30DD:0180 54 45 53 54 31 20 20 20-46 49 4C 20 00 00 00 00 TES Tl FIL .... 

3000:0190 00 00 00 00 DO OD 39 B7-5B 11 4F OD 14 00 00 00 ...... 9. [.O ..... 

30DD:01AO 54 45 53 54 32 20 20 20-46 49 4C 20 00 00 00 00 TEST2 FIL .... 

30DD:01BO 00 00 00 00 00 00 58 B7-5B 11 50 00 lA 00 00 00 ....•. X. [.P ••••• 

30DD:01CO 54 45 53 54 33 20 20 20-46 49 4C 20 00 00 00 00 TEST3 FIL .... 

30DD:01DO OD DO OD OD DO 00 60 B7-5B 11 51 DD 1E 00 00 OD .. . . .. . . \ • [ .Q ••••• 

30DD:01EO 53 55 42 44 49 52 31 20-20 20 20 10 OD OD OD OD SUBDIRl 

30DD:01FO 00 00 DO 00 DO OD DB 00-5A 11 52 00 OD 00 00 00 ........ Z.R ..... 

Since it's potentially dangerous to alter system files, volume labels, or subdirectory 
entries, experiment with the others. COMMAND.COM, TESTl.FIL, TEST2.FIL, and 
TEST3.FIL all have the same attribute- hex 20. Figure 8.1 presented earlier shows that 
the only bit that's set in all these files is the archive bit. 

The first thing to try is hiding a file. To change an attribute, you have to do three things: 



DEBUG 385 

1. Read the existing attribute from the directory. 
2. Figure out what the new attribute value should be. 
3. Very carefully write the new attribute back to the directory. 

You already know that the COMMAND.COM attribute is hex 20. So how do you 
change this so DOS will hide the file? You use logic. 

A synopsis of the attribute bit values and the logical operators you '11 need to change 
them is: 

Attribute Bit Set Unset 
Read-Only 0 OR 1(hex1) AND 254 (hex FE) 
Hidden 1 OR 2 (hex 2) AND 253 (hex FD) 
System 2 OR4(hex4) AND 251 (hex FB) 
Volume 3 OR 8 (hex 8) AND 24 7 (hex F7) 
Subdirectory 4 OR 16 (hex 10) AND 239 (hex EF) 
Archive 5 OR 32 (hex 20) AND 223 (hex DF) 

To set or unset a bit without disturbing any of the other bit values, just look up the ap
plicable logical operation and perform it. It helps if you have a calculator like the one in 
SideKick that can do logical AND and OR operations. But you do have a free one you 
probably never use - BASIC. 

If you want to make sure the hidden bit is set on, all you have to do is have the current 
byte value handy - let's say it's decimal 53 - then load BASIC (by typing either 
BASICA or GWBASIC, depending on what system you're using), and type: 

PRINT 53 OR 2 

You could even use shorthand and type: 

? 53 OR 2 

In either case, BASIC will respond with: 

55 

You may be wondering why we didn'tjustadd 2 to 53. Easy answer: If the hidden bit 
(the 2A 1 bit) wasn't already set, adding 2 to the number would work just fine. But if the 
hidden bit was already set, adding 2 would utterly confuse things. 

If you tried this OR operation with a number like 4 7: 

PRINT 47 OR 2 

BASIC would respond with: 



386 PC Magazine DOS Power Tools 

47 

because the 2A 1 bit is in fact already set in the number 47. If you just added 2 to decimal 
47 you'd end up with decimal 49. The binary representation of these looks like: 

• decimal 47 (hex 2F) 101111 
• decimal 49 (hex 31) 110001 

The first set of attributes (decimal 47, or binary 101111) would be: 

1 
t 

ARC 

0 

l 
(SUB) 

1 

r 
VOL 

1 1 1 

l 
SYS 

HID 
RO 

which wouldn't really exist, since a volume label isn't an archived, read-only, hidden 
system file. 

The second set of attributes (decimal 49, or binary 110001) would be: 

1 
t 

ARC 

1 

l 
SUB 

0 

r 
(VOL) 

0 0 1 

(11 
(HID) 

RO 

Again, you wouldn't really see this exact configuration. It's meant only to show you 
that you can't just blindly add a number to an attribute value. You have to first see if the 
bit you want to set is already set. If it is already set, leave it alone. 

Incidentally, BASIC is terrific at handling hex numbers as well as decimal ones. But 
you have to preface them with an "&H" prefix. Decimal 47 =hex 2F, so you could have 
gone into BASIC and typed: 

i 
PRINT HEX$(&H2F OR 2) 

and BASIC would have responded with: 

2F 



DEBUG 387 

If you had simply tried: 

PRINT &H2F OR 2 

without the HEX$(), BASIC would have performed the logical OR operation and would 
have then converted the result to decimal, yielding: 

47 

You could look up the binary representation of each number, see if the particular bit 
was set, and leave the value alone if it already was set, or add the proper value (in this 
case 2A 1, or 2) if it wasn't yet set. But this is time-consuming, and you have to have a bi
nary chart handy (or be facile with binary numbers). 

Using logical operations is a far better method, since these will automatically do the 
job you want on a particular bit only if the bit is in the opposite state. Otherwise it will 
leave things they way they are. It lets you set any bit to 1 if it's 0, but leave the bit alone 
if it's already 1. And if you want to reverse the process, it will unset a bit to 0 if it's 1, 
but leave it alone if the bit is already a 0. 

Logical operations are pretty straightforward. All you have to know here is that 1 means 
true and 0 means false, and then learn some simple rules: 

1 AND 1 = 1 (true) 
1 OR 1 = 1 (true) 
1 OR 0 = 1 (true) 
0 OR 1 = 1 (true) 

0 AND 0 = 0 (false) 
1 AND 0 = 0 (false) 
0 AND 1 = 0 (false) 
0 OR 0 = 0 (false) 

Think about it. An AND operation means: 

Something will be true only if both thefirst thing AND the second thing are true. 

An OR operation means: 

Something will be true if either the first thing OR the second thing is true. 

Here's a shortcut: 

1. The only AND operation that can be true is if both the first thing AND the second 
thing are true. So if you AND any number with a 0 you end up with a 0. 



388 PC Magazine DOS Power Tools 

2. Any OR operation is true if it has a 1 somewhere in it So if you OR any number with 
a 1 you get a 1. 

To do the proper logical operation on a single bit you have to isolate the bit you want 
to change. You can isolate any bit by using a bit mask to screen out all other interference. 
(A bit mask is a number that forces a bit to a desired state without changing any other bit 
values, when used with a logical operator like AND or OR.) A binary mask to set the 
hidden bit (the 2" 1 bit) on would look like: 

OR 00000010 

No matter what binary number you use with this OR mask, when you 're done the 2" 1 
bit will be a 1 and all the other bits will be the way they were originally. 

The opposite bit mask to set this bit off would look like: 

AND 11111101 

No matter what binary number you use with this AND mask, when you're done, the 
2" 1 bit will be a 0 and all the remaining bits will remain unchanged. 

Try this with the decimal 53 and 47 examples used earlier. The OR 00000010 opera
tion will set the hidden bit in 53 (where it's not set) but le~ve the bit alone in 47 (where 
it's already set). The opposite AND 11111101 instruction will unset the hidden bit in 47 
(where it's set) and leave it alone in 53 (where it's already unset): 

decimal 53: 00110101 00110101 
OR 00000010 AND 11111101 

= 00110111 (55) = 00110101 (53) 

(bit not Jt;this (bit already uuslt; this 
sets it) leaves it alone) 

decimal 47: 00101111 00101111 
OR 00000010 AND 11111101 

= 00101111 (47) = 00101101 (45) 

(bit already slt; this (bit not uns.lt; this 
leaves it alone) onsets it) 

If you want to change several bits in an attribute just perform successive AND and OR 
operations unless you 're really handy with binary calculations. 

You can learn the value by looking at the 12th byte over (byte number 11, or hex OB) 
in the directory display DEBUG provides: 



DEBUG 389 

attribute byte 

l 
3000:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM .... 

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 .•..... 'q.6 .. b .. 

So here's how you can hide COMMAND.COM: 
The value of the COMMAND.COM attribute byte is hex 20. To turn on its attribute 

byte, you have to OR this value with 00000010, or hex 2. Hex 20 expressed in binary 
notation is 00100000. So: 

OR 

= 

00100000 
00000010 
00100010 

(hex 20) 
(hex 2) 
(hex 22) 

To change the meaning of the drive A: COMMAND.COM attribute byte from "ar
chive only" to "archive and hidden:" 

1. Load the sectors containing the directory into DEBUG. 
2. Make sure the value that you want to change is indeed at offset 14B (and if it's not, 

jot down the correct offset). 
3. Use the E command to enter the new 22 value in place of the old 20 value. 
4. Check your work to make sure everything is correct. 
5. Write the sectors very carefully back to drive A:. 

Here's how the whole process would look: 

1. Start DEBUG and load the first directory sector from the 360K floppy in drive A: 
into memory at address 100: 

DEBUG 
-L 100 0 5 1 

2. Make sure the attribute byte for COMMAND.COM is at address 14B. Here it's the 
number surrounded by asterisks (these asterisks won't show up in the actual listing): 

-D 100 L 60 

30DD:Ol00 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 IBMBIO COM' .... 

30DD: 0110 00 00 00 00 00 00 00 60-72 OE 02 00 54 56 00 00 ....... 'r ... TV •• 

30DD:Ol20 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 IBMDOS COM' .... 
30DD:0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 75 00 00 ..•.... 'q .... u •• 
30DD: 0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D*20*00 00 00 00 COMMAND COM .... 
30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 ....... 'q. 6 •. b .. 



390 PC Magazine DOS Power Tools 

3. Change the value of the byte at offset 14B from 20 to 22: 

-E 14B 
30DD:014B 20.22 

4. Check your typing (again, asterisks are included here to show you where you should 
be looking; they won't appear in the actual DEBUG display): 

-D 140 L 20 

30DD:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D*22*00 00 00 00 

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 

COMMAND COM" •••. 

. . . • . . . 'q.6 •• b .. 

5. Write the sectors to disk and quit. To write sectors, use the exact same syntax that 
you used to load them, but substitute a "W"for the original 11L" - and don't press 
the Enter key until you've checked your typing to make sure that the parameters you 
entered for the W command match the L parameters exactly. Also, be absolutely sure 
that that number following the 100 is 0 so you write to drive A: rather than any other 
drive: 

-w 100 0 5 1 
-Q 

Then, when you 're done, look at the directory again: 

DIR A: 

Volume in drive A is PC MAGAZINE 
Directory of A:\ 

TES Tl FIL 20 10-27-88 10:57p 
TEST2 FIL 26 10-27-88 10:58p 
TEST3 FIL 30 10-27-88 10:59p 
SUBDIRl <DIR> 10-26-88 12:06a 

4 File (s) 279552 bytes free 

This time, no COMMAND.COM. But you can tell it's still on your disk by execut
ing the command: 

CHKDSK A: /V 

The N switch will display every file on your disk, hidden or not. so you '11 see some
thing like: 

Volume PC MAGAZINE created Oct 27, 1988 10:56p 
Directory A:\ 



A:\IBMBIO.COM 
A:\IBMDOS.COM 
A:\ COMMAND. COM 
A: \PC MAGAZ. INE 
A:\TESTl.FIL 
A:\TEST2.FIL 
A:\TEST3.FIL 

Directory A:\SUBDIRl 

362496 bytes total disk space 
78848 bytes in 4 hidden files 

1024 bytes in 1 directories 
3072 bytes in 3 user files 

279552 bytes available on disk 
655360 bytes total memory 
471200 bytes free 

DEBUG 391 

The standard CHKDSK report tells you that the disk contains four hidden files. By com
paring the CHKDSK N report with the DIR listing, you can tell that the hidden files are 
IBMBIO.COM, IBMDOS.COM, COMMAND.COM, and the volume label, PC 
MAGAZ.INE (DOS displays a period near the end, since the volume label is actually a 
small file, and CHKDSK tries to turn the final three characters of the label's name into 
an extension). 

The disk will boot normally, even though no COMMAND.COM appears when you 
examine the disk with DIR. Hiding COMMAND.COM is not very useful, except that 
you could theoretically hide all three files you'd normally have in your root directory
COMMAND.COM, CONFIG .SYS, andAUTOEXEC.BAT -as well as yourmainroot
level subdirectories. Everything would work the same, but if you logged into the root 
directory of such a disk and tried a DIR command you'd see the "File not found" mes-

. sage. 
If you 're using a variety of security tricks to keep nosy co-workers out of your files, 

this may help a bit They'll still be able to figure out what's on the disk by using CHKDSK 
N, or by loading DEBUG and looking at the directory the way you did to make the chan
ges. And they can still look at your AUTOEXEC.BAT and CONFIG.SYS files by using 
the TYPE command. 

DEBUG can load hidden files. In fact, if you wanted to copy the three system files 
from drive A: to a formatted disk in drive B: that didn't contain these files - and you 
didn't have SYS.COM or FORMAT.COM handy-you could do so by typing: 

C>DEBUG 
-N A:IBMBIO.COM 
-L 
-N B:IBMBIO.COM 
-w 
-N A: IBMDOS .COM 



392 PC Magazine DOS Power Tools 

-L 
-N B:IBMDOS.COM 
-w 
-Q 
C>COPY A:COMMAND.COM B: 

(This example is for IBM DOS versions; substitute the generic MS-DOS names for 
your system files if you're not using PC-DOS.) 

If you try this, you '11 notice that the newly written IBMBIO.COM and IBMDOS.COM 
system files on drive B: are no longer hidden. These files don't have to be hidden to boot 
your system. When DEBUG writes a file to disk, it ignores any previous directory at
tributes and turns on just the archive bit. 

Of course, you now know how to hide those two files. If you put the 360K floppy with 
the unhidden system files into drive A: you could load the beginning of the directory into 
DEBUG with the command: 

C>DEBUG 
-L 100 0 5 1 

The first three files on this disk should be: 

• IBMBIO.COM 
• IBMDOS.COM 
• COMMAND.COM 

or their generic MS-DOS equivalents. Check to make sure this is the case with the com
mand: 

-D 100 L SF 

which should produce a listing very similar to: 

30DD:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 20 00 00 00 00 IBMBIO COM •••• 

30DD:0110 00 00 00 00 00 00 38 OD-66 OF 02 00 54 56 00 00 .••••• 8.f .•• TV •• 

30DD:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 20 00 00 00 00 IBMDOS COM •••• 

30DD:0130 00 00 00 00 00 00 44 OD-66 OF 18 00 CF 75 00 00 •.•••. D.f •••• u •• 

30DD: 0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM •••• 

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 ....... 'q. 6 .• b. 

The attribute bytes for the first two files should be at addresses lOB and 12B, and the 
value should be hex 20 (which means just the archive bit is set). To make sure the hid
den bit is set in any attribute byte, simply OR it with 2: 

20 OR 2 = 22 



DEBUG 393 

Use the DEBUG E command in interactive mode to enter the new value of 22 in place 
of the old 20: 

-E lOB 
30DD:010B 20.22 
-E 12B 
30DD:012B 20.22 

Then check your work with the same D command that you used earlier: 

-D 100 L SF 

30DD:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 22 00 00 00 00 IBMBIO COM" .... 

30DD:0110 00 00 00 00 00 00 38 OD-66 OF 02 00 54 56 00 00 ...•.. 8.f ••. TV •. 

30DD:0120 49 42 40 44 4F 53 20 20-43 4F 4D 22 00 00 00 00 IBMDOS COM" .... 

30DD:0130 00 00 00 00 00 00 44 OD-66 OF 18 00 CF 75 00 00 .....• D.f •... u .. 

30DD:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM .••• 

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 .•..•.. 'q.6 .. b. 

When you're all done, very carefully write the new directory sector back to drive A: 
by duplicating the Load command you used initially, but substituting a W for the earlier 
L: 

-w 100 0 5 1 

Check your typing before you press the Enter key. When you 're sure everything is ac
curate, press Enter, then type Q and press Enter to quit, and the normally hidden system 
files will once again be hidden. 

Writing Information from Memory to Disk 

Format: W [address [drive sector sector]] 

Write is potentially the most dangerous tool in DEBUG's arsenal. It lets you write infor
mation to any part of any disk in your system. If you 're not extremely careful, you can 
destroy good data on your disk by writing bad data over it. Worse, if you accidentally 
write the wrong data over the two key tables that DOS uses to organize every disk - the 
pair of FA Ts and the directory - you can pretty much just kiss your data goodbye. 

DEBUG lets you load and write information in two forms - as files and as absolute 
disk sectors. 

Working with files is relatively safe and easy, so long as you always work with copies 
of your important files rather than the originals. This way you can start over again if the 
DEBUG changes you made weren't exactly right. But working with sectors is playing 
withfire. Once again, a warning: 



394 PC Magazine DOS Power Tools 

WARNING! 
Unless you know exactly what you're doing, and are sure your disks are com
pletely backed up, and take every possible prudent measure to safeguard your 
system, and triple-check every command before you execute it, be extraor
dinarily careful when loading and working with sectors, and utterly paranoid 
and overcautious when writing them. And be sure you always work on copies 
of all your files, never the originals. If you're the least bit nervous or uncer
tain about this kind of activity, don't do it. Just type Q and press the Enter key 
to Quit. 

The easiest way to use the Write command is to load an existing file (either with the 
N and L commands or by specifying it at the end of the DOS command line), then change 
it and write the modified file back to the same disk with the simple command: 

-w 

You can't write a file to disk unless DEBUG knows the name and size of the file. When 
you load an existing file 64K or smaller, DEBUG keeps track of the filename at offset 
hex 82 of the code segment and puts the number of bytes (the file size) into the ex 
register. If the file is larger than 64K, DEBUG uses the ex and BX registers to store the 
file size. 

To patch version 3.3 of COMMAND.COM so CLS clears the screen to red text on a 
white background, you could issue just three commands: 

C>DEBUG COMMAND.COM 
-E 2BAD 74 
-w 
Writing 62DB bytes 
-Q 

Since you specified the name of a file at the end of the DOS command line, after the word 
DEBUG, DEBUG knows the name of the file and how many bytes to write. 

But if you tried to create a file from scratch, you'd have to make sure you gave DEBUG 
a proper name and size. If you simply typed: 

C>DEBUG 
-E 2BAD 74 
-w 

DEBUG wouldn't know what you wanted to name the file, and would respond with a 
"(W)rite error, no destination defined" message. And if you specified a brand new 
filename like XYZ.COM without telling DEBUG how long the file was, either by typing: 



C>DEBUG XYZ.COM 
File not found 
-E 2BAD 74 
-w 
-Q 

or: 

C>DEBUG 
-E 2BAD 74 
-N XYZ.COM 
-w 
-Q 

DEBUG 395 

DEBUG would create a directory entry, but wouldn't write anything to the file. You'd 
see the message "Writing 0000 bytes:· A subsequent DIR listing would display the 
XYZ.COM filename, the correct creation time and date, but a file size of 0. 

So when creating a new file, specify both the name (either at the end of the DOS com
mand line after the word DEBUG, or by using the N command), and the size (with the 
RCX command - and the RBX command if you're creating a real monster). Here's a 
sample script file: 

N DRIVE.COM 
E 100 B4 09 BA 14 01 CD 21 B4 19 CD 
E lOA 21 04 41 88 C2 B4 02 CD 21 C3 
E 114 "Current drive is $" 
RCX 
26 
w 
Q 

Type this in using a pure-ASCII word processor or EDLIN, and call the file DRIVE.SCR. 
Or, if you don't have either of those tools handy, make sure you're at the DOS prompt 
and insert the line: 

COPY CON DRIVE.SCR 

at the very top, and when you're all done, press the F6 function key and then the Enter 
key at the very end. In either case, be sure to press the Enter key after each line. especial
ly the final one (with the Q). Then put this DRIVE.SCR file in the same directory as 
DEBUG (unless DEBUG .COM is in a subdirectory that your path knows about) and type: 

DEBUG < DRIVE.SCR 



396 PC Magazine DOS Power Tools 

This will create a simple program that reports the current drive. Nothing special. In 
fact, you could do the same thing with the DOS PROMPT command: 

PROMPT Current drive is $n$_ 

Note that the script file starts off by naming the file that DEBUG will create. You can 
put this N command just about anywhere before the W command (except in the middle 
of a set of continuous Assemble (A) instructions). The RCX command near the end sets 
the value in the CX register to hex 26- the length of the file. You always need to specify 
the length. But you could also have named the file by omitting the: 

N DRIVE.COM 

line and instead issuing a: 

DEBUG DRIVE.COM < DRIVE.SCR 

command at the DOS prompt. In either case a simple, unadorned W will write the file to 
disk. 

Using a naked W without anything after it tells DEBUG to write the information start
ing at offset 100 of the code segment If the information you plan to write starts else
where, you can tell DEBUG where to start looking by specifying W and then the 
appropriate address. So if DRIVE.SCR used the E command to Enter information 100 
hex bytes higher than normal, at offset 200, you would type: 

N DRIVE.COM 
E 200 B4 09 BA 14 01 CD 21 B4 19 CD 
E 20A 21 04 41 88 C2 B4 02 CD 21 C3 
E 214 "Current drive is $" 
RCX 
26 
w 200 
Q 

You'd have to use the W 200 command to tell DEBUG where to look in memory for the 
information you want it to write to disk. You might want to do this if you have two 
programs loaded into different places in memory and you wanted to write the one to disk 
that dido 't start at offset 100. Or you might want to write a module of a larger program 
to disk. 

If you do plan to change the contents of an existing file, always make sure you're work
ing on a copy of the file, never the original. Mistakes do happen. Or you might decide 
you liked the older version better. This is especially necessary when patching files that 
end in EXE. DEBUG loads EXE files differently from other files. DEBUG doesn't load 
the first byte of an EXE file at offset 100 the way it does with COM files or virtually 



DEBUG 397 

every other kind of file. When customizing an EXE file, change the extension to some
thing other than EXE at the same time you're copying it. So if you wanted to patch off
set 1A5 of ABCD.EXE, do it this way: 

C>COPY ABCD.EXE ABCD.XXX 
1 File(s) copied 

C>DEBUG ABCD.XXX 
-E lAS 41 
-w 
Writing 2BCO bytes 
-Q 
C>REN ABCD.XXX ABCDNEW.EXE 

Then experiment with the ABCDNEW.EXE program to make sure you like it before 
you replace the older AB CD.EXE with it. In any case, save the original ABCD .EXE safe
ly on a floppy disk somewhere. Or name it ABCOOLD.EXE. But don't patch originals. 
And don't try to write EXE files in DEBUG - it won't let you. 

While we 're at it, unless you' re a programming ace, refrain from using commands like 
Trace (1), Proceed (P), or Go (G) to run programs from inside DEBUG. Doing this can 
alter the values in the CX and BX registers. If you're not careful about resetting these 
registers later so they contain the proper file sizes, DEBUG can end up writing the wrong 
number of bytes to disk. And it can do very strange things with EXE files, even if you've 
renamed them. These commands are really for serious programmers only. 

If you forget to make a copy of your COM or text file before you start slashing away 
at it from inside DEBUG, you can prevent DEBUG from overwriting the original. Just 
use the N command to give a new name to the program currently loaded in memory. So 
if you 're modifying a series of bytes in XYZ.COM and you don't want to obliterate the 
original version of the program by writing the patched versiop over it, you could rename 
the program before you wrote it Or you could write it to another disk: 

DEBUG XYZ.COM 
-E 111 34 
-E 12D CO 
-E 20A 4F 
-N XYZNEW.COM 
-w 
Writing 302 bytes 
-Q 

or: 

DEBUG XYZ.COM 
-E 111 34 
-E 12D CO 



398 PC Magazine DOS Power Tools 

-E 20A 4F 
-N A:XYZ.COM 
-w 
Writing 302 bytes 
-Q 

The first example gives the file a new name before it writes the file to disk. The second 
example writes a file with the same name but to a different disk. 

Always be sure you 're writing the proper number of bytes. If you use the Move (M) 
command to make a file larger, add instructions to a program, or increase the size of mes
sages that are stuck at the end, be sure to specify the new length with the RCX command. 
You may have to use the Unassemble (U) and Dump (D) commands to see exactly where 
the new file ends. Even if you're a single byte too short you can cause problems, espe
cially since the last bytes of a program often jump control of the program back to DOS 
with code like CD 20 or C3. Truncate those and the program will hang, and you'll have 
to reboot It usually doesn't hurt to make programs a bit longer than necessary. And 
remember when calculating lengths that files generally start at address 100 rather than 
101- so to be on the safe side, add 1 to the length you specify with RCX. 

You can't really do much harm when writing entire files, so long as you 're working 
with copies rather than originals. But you can cause devastating heartache if you're not 
careful when using DEBUG to write absolute sectors. 

If you want to create or patch a file, DEBUG will take care of all the dirty DOS work 
for you. But if you want to alter a directory listing, or work with other fundamental disk 
underpinnings, you have to manipulate specific sectors directly. And while DEBUG is 
superb at doing delicate sector surgery, it won't stop you from destroying your disk if 
you issue a bone-headed or thick-fingered command at the wrong time. 

The problem with writing sectors is that iC s easy to wipe out or corrupt two key disk 
structures. DOS relies on two tables - the directory and the duplicate pair of FATs -
to tell it where all the little pieces of your file are located. All programs and data are stored 
in small chunks called clusters, which are in tum made up of disk sectors. On just about 
all systems where users are constantly making changes to their data, and adding and delet
ing files, these clusters end up scattered in various places all over the disk surface. 

The directory tells DOS where the initial cluster is on your disk, and the FAT maps 
out where all the remaining clusters (containing the rest of the file) are located. Without 
these, DOS won't know where to find the pieces of your programs and files. When you 
ask DOS to load a file, it consults these tables, figures out where the pieces are, and jumps 
around the disk gathering them all in the correct order and stringing them together proper
ly in memory. 

What makes writing sectors especially tricky is that all the parameters have to be in 
hexadecimal notation, and that DEBUG refers to the first number in any series as O rather 
than 1. 

Here's where the trouble happens: 
Users sometimes forget what they're doing and mix hex and decimal numbers. Or 

worse, they forget that DEBUG calls drive A: drive 0 rather than drive L If you 're trying 



DEBUG 399 

to write to drive A: and you accidentally specify a I when you meant to type a 0, you 
may damage the disk in drive B:, since DEBUG treats drive I as drive B: and will write 
the sectors to drive B: when you really wanted them to go to drive A:. That's bad, but 
presumably you have up-to-date backup copies of all your floppy disks, so you won't 
really lose anything. 

However, if you're trying to write sectors to drive B: and you accidentally specify 
drive 2 when you really meant drive 1, DEBUG will happily oblige and write the sectors 
to drive C:, since it thinks of drive 2 as drive C:. Unfortunately, drive C: is usually a hard 
disk. If you're working with sectors from a floppy disk directory, and you inadvertently 
write these to a hard disk, that one errant keystroke will cost you days or weeks of 
reconstruction anguish. The data and program pieces will still be on your disk but you 
won't have any way to find out where they are or be able to assemble them into useful 
units. To be absolutely safe make sure every last byte of every important file is totally 
backed up before you start using DEBUG to fiddle with sectors. 

Above all, etch into your consciousness how DEBUG refers to drives. 
Then, pause whenever you 're about to write absolute sectors, and then triple-check 

your typing and your intentions. Be especially careful if you decide to write to drive B: 
or your hard disk. If you're at all nervous about it - don't. Just erase your Write com
mand (with the backspace or left arrow keys) or press Esc, Ctrl-C, or Ctrl-ScrollLock, 
then type Q and press Enter to quit. 

The following examples all apply to floppy disks only. To keep things as safe as pos
sible, they all illustrate how to work with the floppy disk in drive A:. 

You don't often need to manipulate absolute disk sectors. One time you do is when 
you've stupidly destroyed your FA Ts and are scanning through all your disk sectors one 
by one looking for the pieces to pick up. This kind of emergency reconstruction is tedious, 
nasty work, and you'll barely be able to use it to put your text files back together in 
reasonable form. Splicing your programs or any other binary files together is pretty much 
out of the question. In fact, doing any work like this is such an arduous undertaking that 
you're probably better off using commercial utility programs such as Peter Norton's or 
Paul Mace's to rescue your files. 

But if you 're adventurous and extraordinarily careful, you can do things like alter your 
disk directory by patching the relevant sectors. See the Load (L) section for details. 

To reduce the risk when working with sectors, use the exact same syntax for loading 
and writing. So to load an entire directory on a 360K floppy disk in drive A:, you would 
specify the seven directory sectors starting with sector 5 with the command: 

L 100 0 5 7 

You can later write these back to the same disk by changing the initial L to a W: 

w 100 0 5 7 

Here's what this particular Write command tells DEBUG: 



400 PC Magazine DOS Power Tools 

r:;: :::i::::: :or 7 sectors 

w 100 0 5 7 

lite J 
t 

onto drive A: 

the contents of memory 
beginning at offset 100 

A sector is 512 (hex 200) bytes. When you use the D command without any parameters 
after it, DEBUG normally displays eight paragraphs, or 128 (hex 80) bytes at a time. So 
each four times you type D and press the Enter key, you display one sector. 

It's a good idea when you're working with sectors to jot down on a notepad the 
parameters you used to load the sectors, and then refer to your notes and very carefully 
type the same exact parameters when you 're ready to write them back to disk. Then, when 
you 're ready to issue any Write command, always stop and check your typing - and be 
sure to verify that the disk you've specified is the one you want DEBUG to write to. 

You can't write more than hex 80 sectors (64K) at once or write any sectors when 
using a network drive. And if DEBUG senses a problem when it's trying to write (if a 
drive door is open, for instance), it will print an error message and halt If this happens, 
fix the problem, then press F3 to repeat the previous command and try again to write the 
file. But the single most important thing to remember is to pause and check all Write 
commands several times before actually writing any sectors to disk. It may take an extra 
few seconds. But it sure beats trying to piece together a bombed hard disk. 

Quitting DEBUG 

Format: Q 

You can't exit DEBUG and return to DOS unless you issue this simple Quit command. 
DEBUG doesn't process any commands until you press the Enter key. So if you 're using 
ASCII script files to redirect keystrokes into DEBUG, make sure you press the Enter key 
after typing in the Q. When you do press Enter after the final Q, the cursor will drop down 
a line and hover directly below the Q. If you don't do this, your system will freeze and 
you '11 have to reboot. 

Quitting does not automatically save your work. If you use the Q command before is
suing any W commands, all the work you did in the DEBUG session will be lost If this 
happens you may be able to load DEBUG again and hope everything is intact in memory 
and then use the W command to save - but you can't rely on this technique. 



DEBUG 401 

If you realize that you've made a mistake or are afraid you're about to write bad in
formation over good information, you can abandon your work by quitting DEBUG. Or 
you can use the N command to give the file in memory a different name or write it to a 
different drive. It's better to redo things than to end up with a mess on your disk. 

To wriggle out of a command you 're typing, either backspace the command away with 
the backspace or left arrow keys and press the Esc key to cancel the line, or press Ctrl-C 
or Ctrl-ScrollLock to cancel everything and return to the DEBUG hyphen prompt. If 
you're using the Assemble (A) command, once you've cancelled the current line you 
may have to press the Enter key once to return to this prompt. Then just type Q and press 
the Enter key to get back to DOS. 

It's entirely possible that you'll end up using all 14 of the above DEBUG commands 
to examine and modify files and parts of your disk- and create brand new files. But un
less you 're a serious programmer, you probably won't ever need the following five bare
metal commands. So they're included here in abbreviated form just so you know that 
they exist. 

Advanced Commands 

Input/Display a Single Byte from a Port 

Format: I portaddress 

and 

Output/Send a Single Byte to a Port 

Format: 0 portaddress byte 

PCs use ports to control and determine the status of various timers, controllers, coproces
sors, printer and communications gateways to the outside world, expansion units, and the 
keyboard. Each port has a unique number. You can read the current values at some (but 
not all) ports, and can send, or write, new values to some (but not all) ports. In many 
cases, consecutive ports work together as pairs. First you send a value to the port with 
the lower address to tell it which function you want to read or write, then you send a value 
to or read a value from the port with the higher address. 

The various AT models (and many newer systems) use a battery-backed-up slice of 
CMOS memory to store your system's configuration. To see the stored CMOS values 
you first use the DEBUG 0 command to tell port hex 70 which function you want to ex
amine, and then use the DEBUG I command to read the specified value from port hex 
71. 

Type in the following CMOS.SCR script using a pm:e-ASCII word processor, or 
EDLIN: 



402 PC Magazine DOS Power Tools 

E 0 "Century is:" 
0 70,32 
I 71 
E 0 "Year is:" 
0 70,9 
I 71 
E 0 "Month is:" 
0 70,8 
I 71 
E 0 "Day is:" 
0 70,7 
I 71 
Q 

Note that the first character in the lines with 70s in them is a capital 0 (although a lower
case one will work just fine) and not a zero. Be sure to press the Enter key after the final 
Q. You can also create the file at the DOS prompt by adding a line at the very beginning: 

COPY CON CMOS.SCR 

Then enter each line as shown- making sure you press the Enter key after the final Q. 
When you 're done, after you typed the last Q and press Enter, press the F6 key, and then 
Enter one more time. 

The E 0 commands are just dummy labels to let you know what's going on. You should 
see something like: 

-E 0 "Century is:" 
-.o 70,32 
-I 71 
19 
-E 0 "Year is:" 
-o 70,9 
-I 71 
88 
-E 0 "Month is:" 
-0 70,8 
-I 71 
11 
-E 0 "Day is:" 
-o 70,7 
-I 71 
08 
-Q 



DEBUG 403 

This tells you that the date stored in CMOS is 08-11-1988. You can read lots of im
portant information this way, but you'll have to interpret some of it by turning it into bi
nary and looking at which bits are 1 and which are 0. 

For instance, the fixed disk type is maintained at CMOS port hex 12. (Be very careful 
if you have to examine anything having to do with your fixed disk! Follow instructions to 
the letter. And don't experiment unless you truly know what you're doing.) So if you 
wanted to see your hard disk type you could enter: 

DEBUG 
-o 70,12 
-I 71 
20 
-Q 

In this case the value stored at this address is hex 20, which doesn't tell you much. To 
make sense out of it you have to translate the hex 20 into high and low binary nibbles (a 
nibble is four bits, or half a byte): 

HEX 20 = 0 0 1 0 

driJe C: 

0 0 0 0 

driJe D: 

The high nibble on the left represents the first hard disk (drive C:). The low nibble on 
the right represents the second hard disk (drive D:). If the value of a nibble is 0000 you 
don't have the appropriate hard disk installed, or at least your CMOS RAM doesn't know 
about it. 

In this case, a hex 20 means the system contains only one hard disk (since the low nib
ble is 0000) and that the drive C: hard disk type is type 2 (because binary 0010 =decimal 
2). 

You could similarly examine the equipment byte at port hex 14 with the commands: 

DEBUG 
-o 70,14 
-I 71 
43 
-Q 

Again, translate the 43 that DEBUG reported in this case into its binary representation: 

43 = 01000011 

but split up the binary number as follows: 



404 PC Magazine DOS Power Tools 

Bytes: 76 54 32 1 
01 00 00 1 

nJrnber or l (lot used) l 
floppy drives 

0 
1 

l 
any floppies? 

primary display math coprocessor? 

Then consult a table that explains what's going on (like the one in the Technical 
Reference manual): 

• Bits 6,7: 

• Bits 5,4: 

• Bit 1: 

• Bit 0: 

A 00 means 1 floppy drive 
A 01 means 2 floppy drives 

A 00 means no monitor or an EGA or better 
A 01 means primary display is 40-column color 
A 10 means primary display is 80-column color 
A 11 means primary display is monochrome 

A 0 means math coprocessor is not installed 
A 1 means math coprocessor is installed 

A 0 means no floppy drives installed 
A 1 means flopp~drives are installed 

So a value of hex 43 means: 

• 2 floppy drives are installed. 
• Either no monitor or something fancier than a CGA. 
• A math coprocessor is installed. 

Execute Program in Memory (Go) 

Format: G [=address][address[address ••. ]] 

and 

Execute and Show Registers/Flags (Trace) 

Format: T [=address][value] 

and 



DEBUG 405 

Execute One Instruction (Proceed) 

Format: P [=address][value] 

DEBUG is really two tools in one. To most power users it's a handy tool for examining 
and modifying files and parts of disks, as well as for creating new files from scratch. But 
to programmers it's also a testing and debugging environment. You can load a program 
into DEBUG and watch it run step by step, which lets you trace the flow of execution 
from one instruction to the next, and look at the values of all the registers and flags in the 
process. 

Once you've loaded a program (by specifying it at the end of the DOS command line 
after the word DEBUG, or by using the N and L commands), issuing a Go (G) instruc
tion will execute it. If the program doesn't have any serious programming problems, and 
is designed to exit gracefully to DOS, DEBUG will print a "Program terminated normal
ly" message onscreen. Don't issue another G at this point, or your system may hang. If 
you want to execute it a second time, reload the program first by typing: 

L 

Then re-enter the G command to run it again. 
You may set breakpoints by specifying one, or as many as ten, addresses after the G. 

If the program execution flow reaches any of these breakpoint addresses while it's run
ning, the program slams on its brakes and DEBUG displays the register and flag settings 
in force at that instant. You may also tell DEBUG to start the program execution at an 
address other than the default offset 100 of the code segment. To do so, you would add 
an equals sign ( =) and an address right after the G. 

Here's a script for the tiny program BEEP.COM we saw at the beginning of the chap
ter. (It beeps the speaker by printing a character 7.) Type in the script using any pure
ASCII word processor or EDLIN and call it BEEP.SCR: 

A 

MOV AH,02 
MOV DL,07 
INT 21 
RET 

RCX 
7 
N BEEP.COM 
w 
Q 

Make sure you leave the blank line above RCX, and that you press the Enter key after 
each line (especially the last one with the Q). You could also create the file at the DOS 
prompt by inserting one line at the very beginning: 



406 PC Magazine DOS Power Tools 

COPY CON BEEP.SCR 

Then type in all the lines indicated, and be sure you press the Enter key after each one. 
When you 're done, press the F6 function key, and then tap the Enter key one final time. 

Either way, put BEEP.SCR on the same disk as DEBUG (or make sure DEBUG is in 
a subdirectory that your PATH knows about) and then type: 

DEBUG< BEEP.SCR 

To execute BEEP, just type BEEP at the DOS prompt. Then try running it from inside 
DEBUG. Load BEEP.COM either by typing: 

DEBUG BEEP.COM 

or: 

DEBUG 
-N BEEP.COM 
-L 

and then type G and press the Enter key. The program will run and you'll hear a beep. 
DEBUG will then display the message "Program terminated normally." 

At this point if you want to run it again, first type L and press the Enter key to reload 
it. Then type G and press Enter to re-execute it. 

DEBUG lets you trace through a program one or more steps at a time, displaying the 
state of the registers and flags after each instruction. You can single-step your way 
through by repeatedly pressing T and then Enter, or can specify a number directly after 
the T (without an equals sign) that tells DEBUG how many consecutive instructions to 
execute in a row. If you don't specify a starting address (with an equals sign and an ad
dress, just like G) DEBUG will begin tracing through the program at offset 100 of the 
code segment or at whatever offset address the Instruction Pointer (IP register) is point
ing to. 

The T command will trace through every single instruction - including those in each 
interrupt, loop, subroutine, call, etc. If you want to execute these separate processes but 
not step your way through them one instruction at a time, you can jump to the end of each 
process with the P command.Twill slog through every last step of your program, while 
P will jump over the repetitive and tangential steps. Some programmers even refer to P 
as the jumP command. 

Using T can get very complicated even in tiny programs, since when it reaches an in
terrupt, DEBUG will start tracing through the complex code that makes up the actual in
terrupt instead simply executing it and jumping to the next step in your program. It's 
useful if you need to see how a particular subroutine or interrupt changes your system's 
registers. But for nonprogrammers, Pis definitely the one to use. 

If you took a trip from New York to Portland, Oregon, the P equivalent description of 
the trip might be: 



DEBUG 407 

I. Took cab from home to JFK airport. 
2. Took flight to Chicago. 
3. Changed planes and took flight to Portland. 
4. Took cab from PDX airport to Intel office. 

The T instruction would look like: 

I. Went out door to hail cab. 
2. Located cab. 
3. Gotin. 
4. Told driver to go to JFK. 
5. Driver muttered softly and made U-tum. 
6. Driver ran first red light. 
7. Driver made illegal left tum onto CPW. 
8. Driver ran second red light. 
9. Driver swerved and narrowly avoided oncoming bus. 

and so on. If you need to know the details of each operation, you would use T. If you 
want just the main points, use P. 

Proceed will display the same registers and flags as the Trace command, and let you 
run the command multiple times by specifying a value after the P (but without an equals 
sign). Again, if you don't specify a starting address (with an equals sign followed by an 
address), DEBUG will begin at offset 100 of the code segment. If you try this with 
BEEP.COM you'll see something like: 

-P 5 

AX=0200 BX=OOOO 

DS=3131 ES=3131 

3131:0102 B207 

AX=0200 BX=OOOO 

DS=3131 ES=3131 

3131:0104 CD21 

AX=0207 BX=OOOO 

DS=3131 ES=3131 

3131:0106 C3 

AX=0207 BX=OOOO 

DS=3131 ES=3131 

3131:0106 CD20 

CX=0007 DX=0007 SP=FFFE 

SS=3131 CS=3131 IP=0102 

MOV DL,07 

CX=0007 DX=0007 SP=FFFE 

SS=3131 CS=3131 IP=0104 

INT 21 

CX=0007 DX=0007 SP=FFFE 

SS=3131 CS=3131 IP=0106 

RET 

CX=0007 DX=0007 SP=OOOO 

SS=3131 CS=3131 IP=OOOO 

INT 20 

Program terminated normally 

BP=OOOO SI=OOOO DI=OOOO 

NV UP EI PL NZ NA PO NC 

BP=OOOO SI=OOOO DI=OOOO 

NV UP EI PL NZ NA PO NC 

BP=OOOO SI=OOOO DI=OOOO 

NV UP EI PL NZ NA PO NC 

BP=OOOO SI=OOOO DI=OOOO 

NV UP EI PL NZ NA PO NC 



408 PC Magazine DOS Power Tools 

Note that the original BEEP.COM program consisted of the four lines: 

MOV AH,02 
MOV DL,07 
INT 21 
RET 

The first line is missing in the P display, and DEBUG added a final INT 20 line. 
The first line isn't there because the tracing process didn't kick in until after the first 

instruction. You can see the first instruction, and the state of things at the very beginning 
of the process, by typing R. The last INT 20 line is listed because a coded version of this 
instruction makes up the first two bytes - offset 0 - of the Program Segment Prefix 
that DOS uses to keep track of important information it needs to run the program proper
ly. Under certain circumstances, such as ending a program with RET, execution jumps 
to offset 0, which executes INT 20. INT 20 shuts things down and returns to DOS. 

If you do find yourself creating short assembly language programs to set colors, change 
file attributes, handle odd inputs for IF ERRORLEVEL batch tests and the like, you '11 
invariably end up making mistakes. By loading your ailing (or developing) program into 
DEBUG - complete with command line parameters - you can use P to step through 
the code and diagnose the trouble. The P command will usually pause at the right places 
and ask for input, print any of the executing program's built-in messages onscreen, and 
execute chores like changing colors. 

A program like the screen-clearer mentioned elsewhere in this book accepts color num
bers from the user on the command line. If you 're writing a program like this, you can 
watch it read in and process the actual user input. Just enter something like: 

DEBUG COLOR.COM 4e 

(with the COM extension) and press P repeated to step through the program, keeping 
your eyes on the registers that are supposed to be affected. You might have constructed 
the program to process uppercase letters only and see that the value in a certain register 
is hex 20 too high, since the hex ASCII value for "e" is 65 while its uppercase version is 
45. DEBUG's P command won't fix the problem for you, but it will help you spot it, 
which is often the hardest part of finishing something. 



Chapter9 

ANSI and Other DOS 
Drivers 

You can clear your screen on a color system to a color other than the dull default grey 
on black by running a short program. Likewise, you can redefine your keys with another 
set of programs that would, for example, put the Ctrl key back where it belongs on IBM's 
unpopular 101-key keyboards. And you can switch from one screen width to another with 
the DOS MODE command, if you happen to have MODE.COM handy. 

But DOS provides one direct way to accomplish all these tasks- with ANSI.SYS. 
And it even tosses in a few special new tricks. ANSI's abilities are a bit cumbersome to 
work with, and horribly documented, but once you start fiddling with ANSI you may find 
it hard to stop. We'll present ANSI (and other DOS drivers) in this chapter, and show 
you how to master all of its commands. 

ANSI.SYS is a device driver. DOS uses device drivers as bridges between the operat
ing system and the vast array of hardware gadgets on the market. In an ideal world, 
hardware manufacturers would get together and agree on one set of immutable standards. 
This way, users would need to learn only one command to set any printer's right margin, 
or move a cursor on a screen. 

But the reverse has occurred. Manufacturers are loathe to tell each other what they're 
up to. And they often try to widen their markets by producing hardware that can run on 
dozens of different computers and dozens of operating systems. In addition, many 
hardware designers simply invent new standards either because they think their way of 
doing things is better, or because they want to lop off a share of the market and make all 
other vendors' products incompatible. Even if everyone agreed on one existing set of 
commands, vendors would undoubtedly slap on brand new features so often that any 
standard would need frequent and constant upgrading. 

409 



410 PC Magazine DOS Power Tools 

DOS couldn't possibly keep up with this perplexing vendor shivaree by maintaining 
internal tables of codes and instructions. The tables would be huge. and would slow lots 
of operations down. And they'd be out of date as soon as they were compiled. So the 
desigiters pf DOS came up with an ingenious solution - they published a specification 
that all hardware manufacturers could use to develop their own hooks to the operating 
system. Any vendor who wanted his hardware to plug into DOS would provide a program 
called a driver that purchasers could copy onto their disks. Then, the user would simply 
tell DOS which drivers were there, and DOS would attach the driver and sniff out the 
necessary information. 

Device drivers come in two classes - block drivers and character drivers. Block 
drivers move data around in relatively large chunks and are used to c~ntrol random I/0 
on mass-storage devices such as hard disks, tape drives, and optical disks. Character 
drivers shuttle data in and out of systems serially (one character at a time), and deal with 
things like screens, printers, mice, keypads, and modems. 

To install such a device all a user has to do is include the name and path of the device's 
driver in a CONFIG .SYS file. So if you 're hooking up a mouse, you need to have a CON
FIG .SYS file in the main root directory of your bootup disk that contains a line like (with 
the correct path for the file, of course): 

DEVICE=MOUSE.SYS 

When your computer boots up, your IBMBIO.COM system file (or IO.SYS file in non
IBM systems) checks for a CONFIG.SYS file, and loads the appropriate drivers into 
memory. 

DOS provides several drivers of its own: DRIVER.SYS and VDISK.SYS (aka 
RAMDRIVE.SYS on some systems), as well as a pair to handle its confounding "code 
page switching" abilities-DISPLAY.SYS and PRINTER.SYS. We'll introduce these 
drivers before we get to the most important one of all: ANSI.SYS. 

DRIVER.SYS 

DRIVER.SYS lets you do for any diskette drive what DOS does automatically for a sys
tem with a single floppy. If you need to copy files from one 3-l{l inch diskette to another, 
for instance, the best way is to trick your system into thinking you have two logical drives 
for the same physical drive. 

The most common use for this driver is in hooking up an external 3-1/2 inch diskette. 
You have to tell DOS the drive number. But apart from that, if you don't specify any
thing to the contrary, the default is: 

• 80 tracks per side 
• 9 sectors per track 
• 2 sides 
• no changeline support required 



ANSI and Other DOS Drivers 411 

DRIVER.SYS: Fonnat 

Here's the form DRIVER.SYS should follow in the CONFIG.SYS file: 

DEVICE=[d:] [path] DRIVER.SYS /D:ddd 

[/T:ttt] [/S:ss] [/H:hh] [/C] [/N] [/F:f] 

where: 

/D:ddd is the drive number, from 0 to 255 (if you're up to 255 we'd like to see 
your system). A 0 here refers to the first diskette drive (A:), a 1 to the second 
diskette drive, and a 2 to the third diskette drive. To specify the first hard disk, 
use a value of 128; to refer to the second hard disk, use 129, etc. (However, it's 
far easier to pse the SUBST command than this mess to reshuffle hard disk 
designations.) 

/T:ttt is the number of tracks on each side, from 1 to 999. If you omit this 
switch, DOS uses a default of 80 tracks. 

/S:ss is the number of sectors per track, from 1to99. Omit this and DOS as
sumes 9 sectors. 

/H:hh is the number of read/write heads per drive, from 1to99. Leave this out 
and DOS will use 2 heads. (In virtually all cases the number of heads is the 
number of disk surfaces, or sides.) 

IC means you need changeline support. This is a special hardware feature of 
AT-class and above systems that knows when you've changed the disk in a 
particular drive. You don't really have to worry about this. 

IN means the drive is not removable. You won't need this since it's best not to 
use DRIVER.SYS with hard disks. 

/F:f tells DOS what type (form factor) of drive you 're talking about. Omit this 
and DOS assumes you want a 720K 3-1/2-inch diskette (type 2). However, you 
could also specify any one of these values for f, depending on the type of drive: 

0 160/180/320/360K 5-1/411 floppy 
1 1.2M 5-1/4" AT floppy 
2 720K 3-lfl" diskette 
7 l.44M 3-1/2" diskette 



412 PC Magazine DOS Power Tools 

• removable medium 
• 3-1/2 inch 720K diskette 

If you need to specify another type of diskette, you should consult the documentation 
furnished with it. 

Since the defaults are set for a 3-1/2 inch 720K external diskette, to hook one up to a 
system with a single hard disk (assuming you stored the DRIVER.SYS file in your \DOS 
subdirectory), you would use the simple CONFIG.SYS command: 

DEVICE=C:\DOS\DRIVER.SYS /D:2 

You could then treat this external device as drive D:. Some of the more popular laptops 
on the market come with a cable that attaches to the external floppy disk controller port 
on a PC or XT. By using a command like the one above, and then running a special 
program on the laptop, you can temporarily turn the laptop diskette drive into a slave 
drive. Your PC or XT will then use this remote laptop drive as an additional floppy drive, 
which it will refer to as C: on a PC or D: on an XT. This makes it a snap to move infor
mation back and forth from your desktop and laptop systems, and transfer files from 5-
1/4 to 3-1/2 inch formats and vice versa. 

A generation of original XT users learned that they could treat the single floppy drive 
as both A: and B:, which made it less of a chore to copy diskettes. DRIVER.SYS makes 
it possible for users to give any internal or external drive an additional drive letter. If you 
installed one external 3-1/2 inch 720K diskette and want to refer to it both as drive D: 
and E: just use the above command twice: 

DEVICE=C:\DOS\DRIVER.SYS /D:2 
DEVICE=C:\DOS\DRIVER.SYS /D:2 

Your system will bump up the drive letter one notch each time it processes this com
mand. You could then copy files from one 3-1/2 inch 720K diskette to another with a 
command like: 

COPY D:*.* E: 

Similarly, if you're using an AT with a 1.2 megabyte 5-1/4 inch diskette in drive A:, and 
you want to copy files from one of these dead-end disks to another, you can have the 
DRIVER.SYS command customize your system so you can refer to this drive both as A: 
andD: 

To do this, you have to use a 0 after the /D: switch to tell DOS to work its magic on 
the first diskette drive in the system. And remember that the default switch settings are 
designed for 720K diskettes: 

/T:80 /S:9 /H:2 /F:2 

while 1.2M floppies require these settings: 



ANSI and Other DOS Drivers 413 

/T:80 /$:15 /H:2 /F:l 

The number of tracks and heads is the same on both, but you '11 have to redefine the other 
parameters. So on an AT with a 1.2M floppy as drive A:, a second floppy, and a hard 
disk, and all the DOS files in a subdirectory called C:\DOS, you could treat the 1.2M 
drive both as A: and D: with the command: 

DEVICE=C:\DOS\DRIVER.SYS /D:O /$:15 /F:l 

When DOS assigns drive letters, it always refers to the first diskette drive as A:. If it finds 
a second internal diskette drive, DOS calls this B:. If it finds only one internal diskette 
drive it refers to this single drive both as A: and B:. The lowest drive designation for a 
hard disk is C:, but since you can have such a welter of hard disks, external floppies, 
RAMdisks, and external block devices of all sorts, once it gets past the floppies, DOS 
starts checking out your configuration and assigns drive letters in the order in which it 
finds things. If you 're using VDISK.SYS to set up RAM disks, put the VDISK commands 
after the DRIVER.SYS commands. 

VD/SK.SYS 

VDISK.SYS is used to create a RAMdisk, by fooling your system into treating part of 
RAM like a disk. DOS won't install VDISK if it detennines that you have less than 65K 
of memory free. And even if you specify a smaller value (for bbb), the smallest virtual 
drive it will try to set up is 64 K. However, if you 're short on memory, DOS may reduce 
the size of the virtual disk that you specified since it will always leave a minimum 64K 
of memory free after the VDISK is in place. The size specified for the RAMdisk includes 
space allocated for nonnal disk structures (the boot sector, file allocation table (FAT), 
and directory), so you won't be able to use the entire space you specified for data. 

If you have a system with one or two floppies and a single hard disk and low memory 
to spare, and you keep your DOS files in a \DOS subdirectory on drive C:, and you ac
cept all the defaults by including the line: 

DEVICE=C:\DOS\VDISK.SYS 

in your CONFIG.SYS file, DOS will set up a 64K VDISK on drive D: with the follow
ing specifications: 

Total sectors: 
Bytes per sector: 
Sectors per cluster: 
Bytes per cluster: 
Reserved (boot record) sectors: 
Sectors per track: 
Number of heads: 

512 
128 
1 
128 
1 
8 
1 



414 PC Magazine DOS Power Tools 

VD/SK.SYS: Format 

Here's the syntax ofVDISK.SYS in the CONFIG.SYS file: 

DEVICE=[d:] [path]VDISK.SYS [bbb] [sss] [ddd] [/E[:m]] 

where: 

bbb is the size of the virtual disk, expressed as the decimal number of kilobytes, 
ranging from 1 to the maximum amount of free memory in your system. The 
default is 64K. 

sss is the sector size in bytes. The default is 128 bytes, but you can use 128, 
256, or 512. 

ddd is the number of directory entries, from 2 to 512. The default is 64. 
Obviously the number of directory entries determines the number of files you 
can store on this virtual disk (except that one entry is used to store the volume 
label). 

Note: You may stick in "comments" (text such as "buffer size=") before the 
bbb, sss, and ddd parameters, but why bother? 

IE installs the virtual disk in extended memory. The optional :m tells DOS how 
many sectors to transfer in a single gulp, from 1 to 8, with a default of 8. 



Tracks per side: 
Number of FA Ts: 
Sectors per FAT: 
Total sectors used by FA Ts: 
Maximum root directory entries: 
Sectors used by root directory: 
Total bytes available on disk: 
Total bytes available for data: 

ANSI and Other DOS Drivers 415 

64 
1 
6 (@ 128 bytes) 
6 (@ 128 bytes) 
64 
16 (@ 128 bytes) 
65536(64K) 
62592 

DOS normally uses 512-byte sectors on physical disks, but sets up sectors one-quarter 
that size on a typical virtual disks created by VDISK. Larger sectors are slightly more ef
ficient for larger files, but are a bit wasteful if you're storing lots of tiny files. 

DOS may fiddle with the number of directory entries you specify, since it will fill up 
directory sectors completely. Each directory entry is 32 bytes long. If the sector size is 
the default 128 bytes, DOS will create directory entries in multiples of four (128 I 32). It 
always rounds up to the next higher multiple. Four entries will use one sector. Since five 
entries require two sectors, DOS has to use a second sector and will set up space for eight 
entries. 

If you specify a tiny VDISK and DOS discovers it can't cram the FAT and directory 
into it and have two sectors left over, it will try reducing the directory size a sector at a 
time. If this slimming-down process continues until the directory is a single sector long, 
and VDISK still has problems, DOS will abort the setup process. 

VDISK is one of the only DOS functions that uses extended memory. Most other ap
plications that go past 640K use expanded rather than extended RAM. Extended memory 
works only on ATs and later hardware with properly configured memory above the 1 
megabyte address space. You can use up to 4 megabytes for each VDISK in extended 
memory. You may have to experiment with the :m setting, reducing it if you discover 
that interrupts are going unprocessed. 

A VDISK operating in extended memory shuts out interrupts when it moves data. The 
bigger the amount of data that it moves, the longer it ignores interrupts. You can reduce 
both the sector size (down to 128) and the number of sectors moved at once (down to 
one) to prevent interrupts from vanishing. 

You can't use the DOS DISKCOPY command with a virtual disk created by VDISK. 
You can't format VDISK's virtual disks, but they come already formatted so you don't 
have to. And if you create multiple virtual disks, DOS will automatically give them in
creasingly higher drive letters. 

DISPLAY.SYS and PRINTER.SYS 

Both DISPLAY.SYS and PRINTER.SYS are for specialized font loading, which IBM 
perversely calls code page switching. You can wrestle with this pair of drivers to add 
multilingual, Portugese, French-Canadian, or Norwegian touches to your work. As IBM 
sheepishly points out, "The U.S. user normally does not need" this aggravation. Skip it. 



416 PC Magazine DOS Power Tools 

DISPLAY.SYS and PRINTER.SYS: Format 

Here's the syntax of DISPLAY .SYS and PRIN1ER.SYS in CONFIG.SYS. 

DEVICE=[d:] [path] DISPLAY.SYS CON[:]=(type[, [hwcp] (,n]]) 

or 

DEVICE= [d: l (path] DISPLAY. SYS CON [:]=(type [, (hwcp] [I (n, m)]]) 

where: 

type is the display (MONO, CGA, EGA, or LCD). 

hwcp is the hardware code page (437, 850, 860, 863, or 865). 

n tells how many additional "prepared" code pages you want, from 0 to 12, 
although on MONO or CGA systems this number has to be 0. The default is 0 
for MONO and CGA, and 1 for everything else. 

m defines the number of "sub-fonts" per code page. The default is 1 for the 
LCD screen on IBM's Convertible laptop, and 2 on EGA and VGA screens. 

DEVICE=[d:] [path]PRINTER.SYS LPT#[:]=(type[, [hwcp] [,n]]) 

or 

DEVICE=[d:] (path]PRINTER.SYS LPT#(:]=(type(, [(hwcpl,hwcp2, •.. )] (,n]]) 

where: 

LP'f# is the printer, from LPTl to LPT3 (you may use PRN instead of LPTl). 

type is either 4201 (for the IBM Proprinter) or 5202 (for the IBM Quietwriter 
III). 

hwcp is the hardware code page (437, 850, 860, 863, or 865). 



ANSI and Other DOS Drivers 417 

ANSI.SYS 

While VDISK.SYS can help you by speeding up disk-intensive operations, and 
DRIVER.SYS is useful in certain hardware configurations, the one real gem of a DOS 
device driver is ANSI.SYS. But although users of all types could benefit from the ex
tended screen and keyboard control that ANSI offers, this feature is documented poorly 
and hard to implement with the meager tools DOS provides. Worse, IBM took its turgid 
but factual descriptions of how to use this driver out of the DOS manual and put them 
instead in the DOS Technical Reference manual, which few users own. 

In some respects DOS hasn't changed much since its early days on tiny 16K single
sided floppy hardware. Even on today's capable color systems the default DOS display 
is a dingy grey text against a black background. DOS normally doesn't make it easy to 
use foreign language alphabets, symbols like cents signs, or common characters like 1/2. 
And its macro abilities are limited to repeating and editing previous commands. 

DOS treats screens as TIY (teletype) devices, displaying just one line at a time. It can't 
handle graphics (apart from clumsy ASCII border characters), or put characters anywhere 
other than the line the cursor is currently on, and it can't back up past the left margin. In 
fact, DOS behaves as if it were driving a printer instead of a full-sized screen. 

ANSI fixes all that (well, most of it). By installing the ANSI driver, and coming up 
with an automated method for issuing its thorny commands, you can dress your color 
screen in a rainbow of attributes, put text anywhere you like, redefine any alphanumeric 
key on the keyboard (sorry, it won'talterkeys likeAltorCapsLock), and even give your 
system primitive macro powers. 

CONFIG.SYS is the place to tell your system that you want to use ANSI.SYS. (You 
should already have a CONFIG.SYS configuration file on your bootup disk to specify 
how many disk buffers you want, increase the number of files you can open at one time 
if you 're using a large database, expand the number of drive designations, specify a much 
larger environment size than the wimpy 160 bytes DOS normally allots, and load drivers 
for devices like mice or fancy hard disks.) Just include this line in CONFIG.SYS: 

DEVICE=ANSI.SYS 

If you're using a hard disk, you should keep all your DOS files - including the DOS 
device drivers-in their own subdirectory called\DOS. If ANSI.SYS is properly in your 
\DOS subdirectory on drive C:, the CONFIG.SYS command to load it would actually 
look like: 

DEVICE=C:\DOS\ANSI.SYS 

Be sure to include the SYS extension in this command. If.you haven't ever used ANSI, 
copy the ANSI.SYS file from your DOS diskettes into your \DOS subdirectory. If you 're 
using a floppy disk system (and these days there's little reason to do so), copy ANSI.SYS 
onto your main system disk - once DOS loads ANSI it will keep it in memory so you 
can replace your bootup disk with an applications disk if you need to. Either way, if you 're 
changing your CONFIG.SYS file or creating one for the first time, reboot your system 



418 PC Magazine DOS Power Tools 

when you're done since it has to read the CONFIG.SYS file at bootup to load and set 
everything properly. If you're using a 2.x version of DOS, and this line is the last (or 
only) one in your CONFIG.SYS file, be sure to press the Enter key at the end of the line 
or else DOS may become hopelessly confused, refuse to load ANSI.SYS, and print a 
garbled message onscreen. (DOS 3.x fixes this problem. It fixes lots of problems. You 
really should upgrade.) 

When you load ANSI.SYS, DOS will grab the module containing the ANSI code, and 
grow slightly in size. Under version 3.3, DOS by itself takes up 55,200 bytes of system 
RAM. With ANSI.SYS attached, DOS uses 56,784 bytes (1.5K more). 

Once ANSI is hooked up and ready to go, every DOS command will filter through it. 
The ANSI driver will assiduously look for two special "signature" characters and execute 
whatever legal ANSI instructions follow. 

All ANSI commands must begin with the same two characters: 

1. The ESC character - decimal 27, hex 1B 
2. The left bracket (''['') - decimal 91, hex SB 

If it doesn't see these two characters it will pass everything on to be processed normally. 
Because every ANSI command begins with an ESC, the ANSI commands are some

times referred to as escape sequences. If you don't have ANSI loaded, and you display 
these escape sequences, you'll see a small arrow pointing left followed by a left bracket 
and a tangle of other characters. If you do have ANSI loaded, you'll never see these 
characters since the ANSI driver will intercept them and act on the commands they 
contain. 

The rest of the commands are combinations of upper- and lowercase letters, decimal 
numbers, text, and punctuation. DOS usually doesn't care whether you type commands 
in uppercase or lowercase, since it generally turns everything into capital letters. 
However, ANSI is case-sensitive. If the command calls for a small "u" and a capital "K" 
you have to type these in exactly as specified or they won't work. Its syntax is precise 
and a bit jarring, so be careful to type everything in exactly as it appears here. 

Since every ANSI command starts off with an ESC character, you can't just type in 
the appropriate escape sequence at the DOS prompt. This is because DOS interprets any 
tap on the Esc key as an instruction to abort whatever you happened to be doing. Regard
less of what you were typing, as soon as you press the Esc key, DOS will print a back
slash (\), cancel the command you were trying to execute, and drop down a line waiting 
for a new one. 

DOS does let you issue an ESC by following its PROMPT command with the meta
string $E or $e. (A meta-string is just a fancy name for a sequence of characters begin
ning with a dollar sign.) But using this technique makes your existing system prompt 
disappear, leaving you with a blank, promptless screen. And it forces you to work with 
raw, unfriendly ANSI codes. 

It's fairly easy to create COM or BAT files that execute ANSI strings. All the major 
word processors, including WordPerfect, Microsoft Word, and WordStar, let you insert 



ANSI and Other DOS Drivers 419 

an ASCII 27 in your text. (To do it in WordStar, for instance, type APAEsc - hold down 
the Ctrl key and while you 're holding it down, press the P key and then the Esc key. Then 
release the Ctrl key.) In some cases you'll see a A( onscreen if you're successful. 

Don ,t be confused by the left bracket following the caret if you do see A( - this just 
happens to be one way to display the single ASCII 27 ESC character (another way is a 
little arrow pointing left). This has nothing to do with the real left bracket character that 
follows ESC in every ANSI command. If your word processor uses A( to signify an ESC, 
it will make the beginning of every ANSI command look like: 

A [ [ 

So on some word processors, an ANSI command to clear the screen, ESC[2J, would ac
tually look like: 

A [ [2J 

(Remember, the ESC in ESC[2J and all the other examples shown here actually stands 
for the ASCII 27 escape character, not the letters "ESC. ") 

With many other word processors, you can insert an ESC character by holding down 
the Alt key, typing 27 on the number pad while you 're holding it down, and then releas
ing the Alt key. (This technique works only with the numbers on the cursor/number pad, 
not with the top row number keys.) 

You can also use EDLIN or DEBUG to create files that contain ANSI commands, with 
all the required ESC characters. With EDLIN, type Cttl-V and then type a left bracket to 
enter the ESC character. EDLIN will display AV[ if you do this properly. Again, this left 
bracket is part of the representation of the ESC character; you '11 have to type an addi
tional left bracket (without the Cttl-V this time) to enter the second character of each 
ANSI command. EDLIN will show the pair of characters as AV[[. Note that some 3.x 
versions of EDLIN have trouble displaying this pair. 

To execute an ANSI command, you first have to make sure you booted your system 
with a CONFIG.SYS file that ~ncluded a line that loaded ANSI.SYS. Then you have to 
check that the ANSI command you want to issue begins with an ESC character and a left 
bracket, and that you typed the rest of the command precisely. If you're following in
structions that say 2J and you type 2j instead, all that will happen when you execute the 
command is that DOS will display the erroneous "j." 

You then have to print the correct ANSI insttuction onscreen for it to take effect. You 
can use a DOS command like TYPE or COPY or MORE to do this. Or you can put the 
ANSI command in a batch file and use the ECHO batch command. Or issue a PROMPT 
command either at the DOS command line or inside a batch file. But doing so will wipe 
out your normal C> or other customized DOS prompt, so you'll have to follow it with 
another PROMPT command to reset it. 



420 PC Magazine DOS Power Tools 

Creating ANSI Commands with EDLIN and DEBUG 

Using the DOS EDLIN.COM utility to create ANSI files is a bit tricky. First, 
make sure EDLIN.COM is on your disk. Ifnot, copy it from the DOS disk into 
your \DOS subdirectory. To have EDLIN create a new file, type EDLIN and 
then the name of the file you want to create. (You can't start EDLIN unless you 
enter a filename after it on the command line.) This example will produce a 
small file called CLEAR that clears the screen. So you start off by typing: 

C>EDLIN CLEAR 

EDLIN will then respond with a message indicating that it can't find an existing 
file with the name CLEAR, and then print an asterisk on the next line: 

New file 

* 

An asterisk hugging the lefthand edge of your screen is EDLIN's prompt, just as 
A> or C> is DOS's prompt and a hyphen("-") is DEBUG's prompt. The prompt 
tells you EDLIN is waiting for a command. 

If you don't see the "New file" message, or see something like "End of input 
file" this means you do have a file called CLEAR on your disk. Abort the 
process by typing Q (then Enter) and then Y (and Enter). Then pick another 
filename and start over. 

To start entering characters in this file, just type I and press the Enter key. 
You'll see: 

*I 
l:* 

The "l:" tells you that you're working on line 1. EDLIN is a line editor that can 
work only one line at a time. The asterisk fol,owing the 1: is EDLIN's way of in
dicating the current line- the one it's working on at the moment. (See Chapter 
7 for the details on EDLIN.) 

Now you start entering characters. The ANSI command to clear the screen is 
only four characters long: 

1. The first character has to be: ESC 
2. The second character has to be: [ 
3. The third character is: 2 
4. The fourth character is: J 



ANSI and Other DOS Drivers 421 

So the entire command looks like: 

ESC[2J 

To enter the ESC character, type AV and then a left bracket (''[''). This combina
tion of AV[ inserts an ESC character into your file. Note however that the left 
bracket that follows the AV is different from the actual left bracket character re
quired by ANSI. It just so happens that you create an ESC character by typing 
AV and then[. But all that typing AV[ does is put an ESC character in your text. 
It has nothing to do with the [that DOS requires in all ANSI commands. So 
you'll have to type a SECOND [character. Then type the remaining 2 and J 
characters. Be careful to type a capital J rather than a lowercase one, since ANSI 
is case-sensitive. Line 1 would now look like: 

l:*"V[(2J 

This tells you that line 1 contains four characters: 

1. AV[ (ESC character) 
2. [ ([character) 
3. 2 (2 character) 
4. J (J character) 

Press the Enter key to enter the four characters. EDLIN won't accept anything 
you typed on a particular line until you press Enter at the end of that line. Once 
you press Enter, it will offer you the chance to type in something on line 2: 

2:* 

You don't want to, so type Ctrl-C or Ctrl-Break to tell EDLIN both that you're 
done entering characters and that you want it to go back to command mode. 
This will look like: 

2:*"C 

* 

To save the text you just created, type E and press Enter: 

*E 

C> 



422 PC Magazine DOS Power Tools 

Then, assuming you had previously loaded ANSI.SYS by including a line in 
your CONFIG .SYS file that said something like: 

DEVICE=ANSI.SYS 

or: 

DEVICE=C:\DOS\ANSI.SYS 

you can test the file you just created by typing: 

TYPE CLEAR 

If you did everything properly the screen should clear. If DOS simply prints a 2J 
on the screen, you probably forgot to type the second left bracket character. 

If you didn't originally have a DEVICE=ANSI.SYS line in your CON
FIG .SYS file, and you just added it, you 'II have to reboot for it to take effect. 
DOS has to see this line in your CONFIG.SYS file when it boots up, or else it 
won't load ANSI or process ANSI commands. 

The whole process looks like: 

C>EDLIN CLEAR 
New file 
*I 

*E 

C> 

l:*"V[[2J 
2:*"C 

The only problem with using EDLIN is that it automatically puts a carriage 
return and line feed (as well as AZ end-of-file marker) at the end of the files it 
creates. So when you execute an ANSI command created with EDLIN it may 
bounce the DOS prompt down an extra line. You could fix this by using 
DEBUG to subtract the last three bytes from the file. 

First, make sure the DEBUG.COM file is in the current directory or is in a 
subdirectory that your PA TH knows about If it's not, copy it from your DOS 
diskette into your\DOS subdirectory. 

Load the CLEAR file into DEBUG with the command: 

C>DEBUG CLEAR 



ANSI and Other DOS Drivers 423 

You should see just the DEBUG hyphen prompt. If DEBUG prints a "File not 
found" message above the hyphen, abort the process by typing Q and then press
ing Enter. Make sure CLEAR is in the subdirectory you're currently logged 
into, and try again. 

To have DEBUG report the length of the file in hexadecimal representation, 
just type RCX and press the Enter key. In this case you should see: 

-RCX 
ex 0001 

Typing RCX instructs DEBUG to display the contents of the CX register. When 
you load a typically short file like CLEAR into DEBUG, DEBUG looks at the 
directory entry for this file, figures out how many bytes the file contains, and 
then puts this number of bytes into the CX register. So typing RCX right after 
you load the file will display this number (in hex notation). 

The 0007 following the ex tells you that the value in ex is hex 7' or that the 
file is seven bytes long. 

The colon on the next line is a special DEBUG prompt that offers you the op
portunity to change the value of a register, which is exactly what you want to do. 

If you had used the DEBUG Display (D) command to view the seven bytes of 
the file, you would have seen something like: 

-D 100 L7 
34E5:0100 lB SB 32 4A OD OA lA • [2J ... 

The D 100 L 7 command tells DEBUG to display seven bytes starting at memory 
offset 100. Ignore the 34E5; this number is the segment address and varies from 
system to system. The 0100 is the starting address of the memory contents 
DEBUG is displaying. And: 

lB SB 32 4A OD OA lA 

is the hexadecimal representation of all seven bytes in the file, as follows: 

1B - ESC character 
SB - [ character 
32 - 2 character 
4A -J character 
OD - carriage return 
OA - linefeed 
lA - 11.z end-of-file marker 



424 PC Magazine DOS Power Tools 

EDLIN added three extra characters (a carriage return, a linefeed, and an end-of
file marker), so if you subtract 3 from the length of the file, DEBUG will make 
the file three characters shorter, chopping those extra meddlesome characters 
off. DEBUG reported that the length of the file (the value in register CX) is 7, 
and 7 - 3 = 4. So type a 4 to the right of the colon and press the Enter key: 

ex 0007 
: 4 

You might want to check your work by examining the new value in the CX 
register. Just type RCX again and press the Enter key: 

ex 0004 

Since this is the value you wanted, just press the Enter key again without enter
ing a new number, and you'll return to the DEBUG hyphen prompt. Then, save 
the truncated file and quit DEBUG by typing W (then Enter) and then Q (and 
then Enter). The whole process looks like: 

C>DEBUG CLEAR 
-RCX 
ex 0007 
: 4 
-w 
Writing 0004 bytes 
-Q 

C> 

However, if you're going to use DEBUG to trim the extra characters off, you 
might as well use it to create the whole file. 

Remember that DEBUG works exclusively in hex. But once you get the hang 
of it, you can bang out ANSI commands in seconds. To create the ESC[2J clear
screen instruction in DEBUG you would type everything following the DEBUG 
hyphen prompts: 

C>DEBUG 
-E 100 lB "[2J" 
-N CLEAR 
-RCX 
ex 0000 



: 4 
-w 
Writing 0004 bytes 
-Q 

The line: 

E 100 lB "[2J" 

ANSI and Other DOS Drivers 425 

tells DEBUG to enter a group of characters starting at memory offset 100. The 
characters it enters are 1B (the hexadecimal represention of the ESC character it
self), then a left bracket, a 2, and a capital J. Normally you make DEBUG 
entries in hex as you did with the lB. But when entering normal letters and num
bers, you can put them in quotes and have DEBUG translate them into hex for 
you. 

You specify a filename with the DEBUG N command. The line: 

N CLEAR 

tells DEBUG to name the file that you'll eventually save as CLEAR. You also 
have to tell DOS how long to make the file. The 1B ESC counts as one charac
ter, and the [2J add up to three more, for a total of four. You specify the length 
by typing: 

RCX 

and then entering: 

4 

when you see the cursor blinking beside a colon. Then, write the CLEAR file to 
disk and quit DEBUG by typing Wand pressing Enter and then typing Q and 
pressing Enter. 



426 PC Magazine DOS Power Tools 

NOTE 
All examples presented use the abbreviation "ESC" to represent the decimal 
ASCII 27 (or hexadecimal lB) escape character. Don't type in the letters "E-S-C" 
since this won't do anything except exercise your fingers. Use the techniques men
tioned above to insert this ESC character in each command. And remember that 
each ESC character is always followed by a left bracket ([) character, so every 
ANSI string begins with the two characters ESC[. 

If you're looking at an ANSI string in DEBUG, you'll see that every one begins 
with 1B SB, since 1B is the hex value for the ESC character, and SB the hex value 
of the left bracket character. 

The methods DOS provides are all relatively primitive and cumbersome: 

1. Putting the commands in a file (called something like ANSI.FIL, although you can 
give it any legal filename) and then using any DOS command that displays text, such 
as one of these: 

TYPE ANSI.FIL 
MORE < ANSI.FIL 
COPY ANSI.FIL CON 

2. Putting the commands after the word ECHO in a batch file, e.g. ECHO ESC[2J (to 
clear the screen). This ECHO ANSI.BAT batch file will make setting colors a bit less 
painful (remember to substitute the actual escape character for the ESC below): 

ECHO OFF 
IF %1!==! GOTO OOPS 
:TOP 
ECHO ESC[%1m 
SHIFT 
IF %1!==! GOTO END 
GOTO TOP 
GOTO END 
:OOPS 
ECHO You have to specify at least 
ECHO one parameter, eg: 
ECHO %0 0 to reset all attributes, or 
ECHO %0 34 47 for blue text on white 
:END 



ANSI and Other DOS Drivers 427 

3. Using a $E or $e meta-string with the DOS PROMPT command, in the form $c 
(where c =meta-string). Remember that meta-strings are not case-sensitive, and you 
can combine them, so that a sample sequence like: 

PROMPT $P {Time is $T$H$H$H$H$H$H) : 

at 3:20 PM in directory \DOS on drive C: yields: 

C:\DOS {Time is 15:20): 

Here are the meta-strings and their purposes: 

Meta-String 
t 
d 
p 
v 
n 

$ 
g 
I 
b 
q 

h 
e 

DOS Functions 
Time 
Date 
Current directory on default drive 
DOS version number 
Default drive letter 

Drawing Characters 
$character 
>character 
<character 
I character 
=character 

Special Characters 
Backspace (erases previous character) 
Escape character (ASCII 27 decimal, 1B hex) 
Carriage return/line feed (drops down one 

(line and moves to left edge of screen) 

As an example, you could reset any previous screen attributes (with ESC[Om), then set 
the colors to bright (with ESC[lm) cyan text (with ESC[36m) on a blue background (with 
ESC[ 44m), then clear the screen (ESC[2J) and reset your prompt to show the current sub
directory, by using: 

PROMPT $E[0;36;1;44m 
PROMPT $E[2J 
PROMPT $P: 

An even better way to use the PROMPT meta-strings is to create and run the follow
ing ANSIPROM.BAT batch file: 



428 PC Magazine DOS Power Tools 

ECHO OFF 
IF %1!==! GOTO OOPS 
SET OLDPROM=%PROMPT% 
ECHO ON 
PROMPT $E[%1 
ECHO OFF 
SET PROMPT=%0LDPROM% 
SET OLDPROM= 
GOTO END 
:OOPS 
ECHO You forgot to specify an ANSI string, eg: 
ECHO %0 34;47m (for blue text on white) :END 

The ANSIPROM.BA T batch file will let you enter ANSI codes without having to 
worry about the ESC or left bracket characters. And it will reset the PROMPT automati
cally for you. If does this by using environment variables (%PROMPT% and 
%0LDPROM% ), so be sure your environment can handle the few extra bytes this process 
requires. You can expand your environment in later versions of DOS with the CON
FIG .SYS SHELL command, which will look something like: 

SHELL=C:\COMMAND.COM /E:512 /P 

(This particular example expands the default 160-byte environment to 512 bytes.) 
To use ANSIPROM.BAT, enter the part of the ANSI command that follows the ESC 

and left bracket. To clear the screen, just type: 

ANSIPROM 2J 

Note: You can't use PROMPT to generate ANSI sequences when ECHO happens to be 
off. If you remove the: 

ECHO ON 

line from the ANSIPROM.BAT batch file above, DOS won't set any colors. Most users 
routinely set ECHO OFF at the beginning of their batch files so commands in the batch 
file don't clutter up the screen as they execute. But if one of the commands is a PROMPT 
that is supposed to set attributes, and ECHO is off, nothing will happen. To set colors 
with PROMPT when ECHO is off, include an ECHO ON line directly above the 
PROMPT color-setting line, and an ECHO OFF line right below it. 

If you do want to keep ECHO off for the duration of your batch file, have ECHO issue 
your ANSI commands Gust as ECHOANSI.BAT does) instead of using PROMPT. 

But it's fairly simple to learn a few simple techniques that can really tame ANSI. 



ANSI and Other DOS Drivers 429 

Working with Color 

One of the easiest ways to use ANSI is to create a small COM file that writes ANSI es
cape sequences to standard output (as IBM suggests half-heartedly). Here's a 
COLORl.SCR DEBUG script that creates such a file: 

A 
MOV BX,l 
MOV CX,E 
MOV AH,40 
MOV DX,lOE 
INT 21 
RET 
DB 1B,"[0;34;47m",1B,"[2J" 

N ANSCOLOR.COM 
RCX 
lC 
w 
Q 

Every attribute-setting ANSI command ends with a lowercase "m." You can issue just 
one color-changing command at a time, or you can stack several together. But you need 
only one "m" per line. So the command: 

ESC[34m 

by itself will change the foreground to blue, while the longer: 

ESC[0;34;47m 

will also undo any existing attributes, and set the background to white at the same time. 
The COLORl.SCR DEBUG script will create a file called ANSCOLOR.COM that 

will set your screen colors to blue text on a white background and then clear the screen. 
You can substitute other colors by replacing the 34 with the foreground color of your 
choice, and 4 7 with the background color of your choice. The line: 

DB 1B,"[0;31;43m",1B,"[2J" 

would yield red text (31) on a yellow background (43). 
The first 0 in either color version resets all the existing attributes. This is necessary be

cause ANSI adds attributes in layers. If your text is red and blinking, changing the color 
to green will yield green blinking text; it won't do away with the blink. The 0 will first 
reset everything before it changes the colors the way you want them. So the string that 
this program sends to your screen contains three parts: 



430 PC Magazine DOS Power Tools 

ESC[O; 34;47m ESC[2J 

re1set T clea)screen 

colors 
(blue on white) 

You can create both a blue-on-white ANSCOLOR.COM and a special black-on-black 
INVIS.COM with the following COLOR2.SCR DEBUG SCRIPT: 

E 100 BB 01 00 B9 
E lOE 1B SB 30 
N ANSCOLOR.COM 
RCX 
lC 
w 
E 104 8 
E 110 38 
M 117 LS 111 
N INVIS.COM 
RCX 
16 
w 
Q 

3B 
OE 00 
33 34 

B4 40 BA OE 01 CD 21 C3 
3B 34 37 60 1B SB 32 4A 

Type in either of these DEBUG script files with a pure-ASCII word processor, or EDLIN. 
If you don't have one handy, add a line at the very top of each that says: 

COPY CON COLORl.SCR 

or: 

COPY CON COLOR2.SCR 

and then carefully enter the lines at the DOS prompt. When you ,re all done typing, press 
the Enter key after the final Q (very important!), then press the F6 function key, then 
press the Enter key one final time. You should see the message "1 File(s) copied." If 
you,re creating the COLORl.SCR script, be sure to leave the blank line directly above 
N ANSCOLOR.COM. 

Then put either script file in the same directory as DEBUG.COM (or make sure you 
have DEBUG in a subdirectory your path knows about) and type: 

DEBUG < COLORl.SCR 



ANSI and Other DOS Drivers 431 

or: 

DEBUG< COLOR2.SCR 

If you later want to use DEBUG to substitute your own colors in ANSCOLOR.COM, 
put the hex ASCII value of the last digit of the foreground color of your choice at address 
113 and the hex ASCII value of the last digit of the background color of your choice at 
address 116. You can figure out the values to patch ANSCOLOR.COM from this table: 

Color 

Black 
Red 
Green 
Yellow 
Blue 
Magenta 
Cyan 
White 

Hex ASCII Value to Use at 
DEBUG Addresses 113and116 

of "O" is 30 
of 11 111 is 31 
of "2" is 32 
of "3" is 33 
of "4" is 34 
of "5" is 35 
of "6" is 36 
of*'?'' is37 

So if the ANSCOLOR.COM you originally created set the colors to blue on white, and 
you wanted yellow text on a red background instead, you would use DEBUG to put a 
value of 33 at address 113 and a value of 31 at address 116. Then you'd give the file a 
new name like REDYEL.COM (so you don't wipe out the existing ANSCOLOR.COM 
file): 

C>DEBUG ANSCOLOR.COM 
-E 113 33 
-E 116 31 
-N REDYEL.COM 
-w 
-Q 

Or you could do the same thing with: 

C>DEBUG ANSCOLOR.COM 
-E 113 "3" 
-E 116 "1" 
-N REDYEL.COM 
-w 
-Q 

This may seem confusing at first, because you're entering the hex representation of the 
last digit of the color numbers, and not the value of the numbers themselves. The hex 



432 PC Magazine DOS Power Tools 

representations of the digits 0 through 7 happen to be 30 through 37 ("0" is ASCII 30, 
"1" is ASCII 31, etc.). When you patch the original ANSCOLOR.COM file to set new 
colors, what you're really doing is replacing just the second digit of the foreground and 
the second digit of the background. The first digits of each remain the same. 

Languages like BASIC use the same color numbers for foreground and background, 
but ANSI has a different set for each. All ANSI color numbers have two digits. The first 
digit of all foregrounds is "3" and the first digit of all backgrounds is "4" in the ANSI 
color system. In each case the second numbers specify the color (O=black, l=red, 
2=green, etc.). So a green foreground is 32, and a green background would be 42, for ex
ample. These ANSI numbers are slightly different from IBM's standard color values, as 
is shown here: 

Color IBM ANSI 

Black 0 0 
Red 4 1 
Green 2 2 
Yellow 6 3 
Blue 1 4 
Magenta 5 5 
Cyan 3 6 
White 7 7 

For high-intensity IBM colors, add 8 to the value of the color. So high-intensity yel
low is 6 + 8, or 14 decimal; E hex. For high-intensity ANSI colors the command ESC[lm 
will do it. 

The special INVIS.COM program will tum your colors to black on black and then 
clear the screen. This is useful when you have to leave your system unattended and you 
don't want anyone else to look through your directories. When you get up to take a break, 
just type: 

INVIS 

Unauthorized users will still be able to meddle by typing DEL *. * or COPY *. * A: for 
instance, but they'll have to do it on a totally blank screen. If they're smart, and they 
know you have a program such as WordStar that isn't affected by ANSI color settings, 
they can use the directory-reporting and file manipulation abilities of the program to poke 
around. 

When you return, type ANSCOLOR (or REDYEL or whatever you've named your 
real color-setting program to) to unblank the screen. You can use a variation of this tech
nique to keep nosy co-workers from using the TYPE command to examine things like 
your CONFIG.SYS or AUTOEXEC.BAT files. Just put the INVISIBLE ANSI string it
self at the beginning of the file. When your system tries to execute it you '11 get either a 
"Unrecognized command in CONFIG.SYS" message or a "Bad command or filename" 



ANSI and Other DOS Drivers 433 

message, which won't hurt anything. But if someone tries to use the TYPE command to 
see what's in your text files, ANSI will intercept the string and tum the display off. 

You can create this invisible string with the DEBUG INVIS.SCR script: 

E 100 lB SB 38 6D lB SB 32 4A 
N LINEONE 
RCX 
8 
w 
Q 

(Or just get into DEBUG and type each of the six lines.) This will create a tiny file 
called LINEONE. You can then blank out your screen with the command: 

TYPE LINEONE 

But the trick here is to use your word processor to read the LINEONE file into the begin
ning of your CONFIG .SYS or AUTOEXEC.BAT or related files. If you do this and you 
see a string of"@"@"@"@"@ characters, erase these. 

One final variation of this technique will make it very easy to prevent anyone from 
getting into your hard disk when you're not there. Rename both the color-setting file 
(ANSCOLOR.COM, REDYEL.COM or whatever you call it) to something innocuous 
like WRDCOUNT.COM. Put this file in a directory that your PA TH knows about (such 
as \DOS). And rename the INVIS.COM program to an equally uninteresting name like 
SETMODEM.COM. 

Then add a line to your AUTOEXEC.BAT that says something like: 

SETMODEM /1 /12 /N81 

When DOS reaches this line of the batch file it will execute SETMODEM (and ignore 
the innocent-looking parameters after it), which will blank the screen. The only way to 
unblank it is to type WRDCOUNT, or whatever you named ANSCOLOR.COM to. 
Remember, WRDCOUNT.COM either has to be in the root directory or a subdirectory 
that's included in your PATH setting for this to work properly. 

This isn't foolproof, since another user could boot off a diskette in the floppy drive 
and circumvent your AUTOEXEC.BAT file. But, as they say in the locksmith business, 
it will keep the honest people out. 

Okay, okay. Just one more. But you have to promise that you'll check your typing 
very, very carefully and that you won't try this on your hard disk. And if you haven't 
read about DEBUG in Chapter 8, you might want to give it a quick scan. The following 
instructions are designed for a floppy disk in drive A: only. 

If you have a hard disk system that loads ANSI.SYS, you can keep prying eyes from 
seeing what's on your floppies. All you have to do is put the INVIS code into your flop
py disk directory. A good place is in the directory entry that holds the disk's volume label. 



434 PC Magazine DOS Power Tools 

This example will use a 360K 5-1/4 inch floppy and add the system files to it. This 
way you can put ANSI.SYS on your diskette along with a CONFIG.SYS file that con
tains the line: 

DEVICE=ANSI.SYS 

Then you can copy your DOS files to the disk and label it "DOS 3.3" (or whatever ver
sion you happen to be using). If you've locked intruders out of your hard disk, the first 
thing they'll probably try to do is boot off a floppy disk with the DOS system files on it. 
If you leave this disk around they '11 find it, try to boot off of it, and end up temporarily 
stymied. First, format a blank disk, using the: 

FORMAT A: /S /V 

syntax, which will copy the system files onto it and then prompt you to enter a volume 
label. If you 're using an AT high-density drive you can either add a /4 switch to the end 
of the above command, or format the disk in drive B:. IBM admits that the /4 option is 
unreliable, so format the floppy in drive B: and then switch it into drive A:. 

After DOS finishes, it will tell you the format was successful and then ask for a volume 
label: 

Format complete 
System transferred 

Volume label (11 characters, ENTER for none)? PC MAGAZINE 

As the example illustrates, type in: 

PC MAGAZINE 

or any other 11-letter name. 
Make sure this formatted disk is in drive A:, and that DEBUG.COM is in a directory 

that your PATH knows about (if it's not, put it there). Load it by typing: 

DEBUG 

Now very carefully load the first four directory entries from drive A: by typing: 

-L 100 0 5 1 

(Note: The 0 in this command refers to drive A:. Be very careful not to have anything 
other than a 0 in this position!) 

Tell DEBUG to display these four directory entries by typing: 



ANSI and Other DOS Drivers 435 

-D 

You should see something like: 

3140:0100 49 42 40 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 IBMBIO COM' •••• 

3140:0110 00 00 00 00 00 00 00 60-72 OE 02 00 S4 S6 00 00 ....... 'r ... TV •• 

3140:0120 49 42 40 44 4F S3 20 20-43 4F 40 27 00 00 00 00 IBMDOS COM' •••• 

3140:0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 7S 00 00 ....... 'q ..•• u .• 

3140:0140 43 4F 40 4D 41 4E 44 20-43 4F 40 20 00 00 00 00 COMMAND COM •••• 

3140:01SO 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 ..•...• 'q.6 •• b •. 

3140:0160 so 43 20 40 41 47 41 SA-49 4E 4S 28 00 00 00 00 PC MAGAZINE( •... 

3140:0170 00 00 00 00 00 00 09 B3-74 OF 00 00 00 00 00 00 ........ t ....•.. 

Ignore the first four characters in each row (here they're 3140); these will vary from sys
tem to system and don't affect this. Note that the fourth entry is PC MAGAZINE. The 
28 in the same row tells you that this entry is the disk's volume label. Use DEBUG's E 
command to replace all 11 characters in "PC MAGAZINE" with the INVIS string plus 
three ASCII 7 beep characters. Type this very carefully: 

-E 160 1B,"[8m",1B,"[2J",7,7,7 

This will overwrite all the letters in "PC MAGAZINE." Use a variation of the D com
mand to check your work: 

-D 160 L 10 

Apart from the 3140 at the beginning of the line, your screen should look exactly like 
this: 

3140:0160 lB SB 38 6D lB SB 32 4A-07 07 07 28 00 00 00 00 . [8m.[2J ••• ( ••.• 

If it doesn't, type Q and press Enter to quit. Then start again. 
If it does, write the file to disk. Be extraordinarily care/ ul and type this exactly as it 

appears! Type this in wrong on a hard disk and you could lose everything, so check your 
typing several times before finally pressing the Enter key. Above all, make sure that the 
number between the 100 and the 5 is a 0: 

-w 100 0 5 1 

Then type Q to quit and press Enter. Make sure you included the line: 

DEVICE=ANSI.SYS 



436 PC Magazine DOS Power Tools 

(or a variation with your particular system's path to ANSI.SYS in it) in your CON
FIG .SYS file. Also, be certain you have your ANSI color-setting program 
(ANSCOLOR.COM or REDYEL.COM) handy. And type DIR A:. 

As soon as DOS tries to display the directory and prints the volume label onscreen, 
ANSI.SYS will intercept the code and blank the screen. Then DOS will beep three times. 
This should deter any unauthorized user, who's probably wondering if he or she just broke 
your system. Again, you can get around this by booting up from a factory-fresh DOS 
disk. 

If you want to see the files on drive A:, just be sure the DOS FIND .EXE utility is in a 
subdirectory your PA TH knows about, and type: 

:DIR A: I FIND "-" 

This will filter out everything that doesn't have a hyphen in it, which means the volume 
label won't print onscreen but all the filenames will. 

The entire FORMAT and DEBUG process looks like this, for DOS version 3.3: 

FORMAT A: /S /V 

Format complete 
System transferred 

Volume label (11 characters, ENTER for none)? PC MAGAZINE 

362496 bytes total disk space 
78848 bytes used by system 

283648 bytes available on disk 

Format another (Y/N)?n 

C>DEBUG 

-L 100 0 5 1 

-D 

3140:0100 49 42 4D 42 49 4F 20 20-43 4F 40 27 00 00 00 00 IBMBIO COM' ...• 

3140:0110 00 00 00 00 00 00 00 60-72 OE 02 00 54 56 00 00 ......• 'r ... TV .. 

3140:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 IBMDOS COM' ..•• 

3140:0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 75 00 00 ....... 'q ..•. u .. 

3140:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 

3140:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 

3140:0160 50 43 20 4D 41 47 41 5A-49 4E 45 28 00 00 00 00 

3140:0170 00 00 00 00 00 00 09 B3-74 OF 00 00 00 00 00 00 

-E 160 1B,"[8m",1B,"[2J",7,7,7 

-D 160 L 10 

COMMAND COM .... 

....... 'q. 6 •• b •. 

PC MAGAZINE ( .... 

.•..•.•. t .....•• 



ANSI and Other DOS Drivers 437 

3140:0160 lB SB 38 6D lB SB 32 4A-07 07 07 28 00 00 00 00 . [Sm. [2J ... ( •.•• 

-w 100 0 s 1 

-Q 

If you want to do something particularly sensitive in DOS, and you don't want to have 
it appear on your screen, ANSI can tum off the display if you set the colors to ESC[8m 
{where ESC represents a decimal 27 or hex lB character), clear the screen with ESC[2J, 
and then reset the screen to your default colors when you 're done. If you like blue text 
on a white background, you'd reset them to ESC[34;47m, so the batch file would look 
like: 

ECHO ESC[8m;ESC[2J 
REM (sensitive things happen here) 
ECHO ESC[34;47m 

Obviously, replace the "REM {sensitive things happen here)" line with the actual sensi
tive command{s). 

If you're not using ANSI, you could get the same basic effect with two small COM 
programs, BLANK.COM and UNBLANK.COM. Create them both by typing in the fol
lowing BLANK.SCR with a pure ASCII word processor or EDLIN: 

A 100 
MOV DX,184F 
MOV CX,0000 
MOV AX,0600 
MOV BH,00 
INT 10 
MOV AH,02 
MOV BH,00 
MOV DX,0000 
INT 10 
RET 

RCX 
17 
N BLANK.COM 
w 
E lOA 71 
N UNBLANK.COM 
w 
Q 

;80 x 25 
;Top left corner 
;Scroll window up 
;00 = black on black 
;Do it 
;Set cursor position 
;Main page 
;Top left corner 
;Do it 
;Back to DOS 

Omit the semicolons and the text following them. Be sure to leave a blank line above 
RCX, and to press the Enter key at the end of each line, especially the last one with the 
Q. Be certain DEBUG.COM is handy and type: 



438 PC Magazine DOS Power Tools 

DEBUG < BLANK.SCR 

Then put lines in your batch file that look like: 

BLANK 
REM (sensitive things happen here) 

UNBLANK 

Both of these techniques use the same color settings. BLANK will clear your screen to 
black on black, and UNBLANK will restore it to blue on white. You may change either 
of these as follows: 

To change the BLANK.COM program, make sure you set the foreground and back
ground to the same color. If you use the BLANK.SCR script, change: 

MOV BH,00 ;00 =black on black 

by replacing the 00 with any other pair of digits. Using 11 would give you a solid blue 
screen, 22 a solid green screen, 33 solid cyan, 44 solid red, 55 solid magenta, (i6 solid 
brown, and 77 solid white. 

To change the color of the UNBLANK.COM program, replace the 71 in the 
BLANK.SCR script line: 

E lOA 71 

with any other color you like. The lefthand digit is the background color, and must be in 
the range 0 to 7. The righthand digit is the text (foreground) color and must be a hex num
ber bewteen 0 and F. Once again, here are the available colors: 

Value 
0 
1 
2 
3 
4 
5 
6 
7 

Color 
Black 
Blue 
Green 
Cyan (Lt Blue) 
Red 
Magenta 
Brown 
White 

- background only -

Value 
8 
9 
A 
B 
c 
D 
E 
F 

Color 
Grey 
Bright blue 
Bright green 
Bright Cyan 
Brightred 
Bright magenta 
Yellow 
Bright white 

---------foreground---------

Changing the hex number from 71 to 74 would give you red text on a white background. 
Changing it to 4E would give you yellow text on a red background. The advantage to 



ANSI and Other DOS Drivers 439 

using the ANSI method is that typing CLS when the black on black setting is in effect 
would keep things black on black. However, typing CLS when BLANK.COM had tem
porarily made things black on black would reset your attributes to the default DOS grey 
on black, so you'd be able to see what you were doing. If you use BLANK.COM in a 
batch file, you won't have to worry about this. 

A completely different (and more flexible) way to master ANSI is to enter commands 
via the ESCAPE.COM program below. You can create this program either of two ways. 
You could type in the following DEBUG ESCAPE.SCR script: 

A 100 

MOV DX,0120 ;point to device name CON at offset 120 

MOV AX,3D01 ;open the standard input device 

INT 21 ;do it 

MOV BX,AX ;save file handle in BX 

MOV SI,0080 ;point to buffer containing inputed string 

MOV CL, (SI] ;get count of characters in string 

INC CL ;adjust count for prefix 

XOR CH,CH ;zero out high byte of count 

MOV WORD PTR (SI],SBlB 

MOV DX,SI 

MOV AH,40 

INT 21 

MOV AH,3E 

INT 21 

RET 

;put ANSI ESC[ sequence at beginning 

;point to start of string 

;output string to the standard input device 

;do it 

;close handle 

;do it 

;back to DOS 

DB "CON",20,20,20,20,20,0 

RCX 

N ESCAPE.COM 

2B 

w 
Q 

While this lets you enter ANSI escape sequences from the command line, it uses a 
slow and slightly cumbersome trick (writing to standard output). A faster way is simply 
to have DOS display the string. Here's an adaptation of the above program that uses an 
undocumented DOS interrupt 29 "Quick TTL" display: 

A 

MOV SI,0080 

MOV CL, (SI] 

INC CL 

XOR CH,CH 

;point to buffer containing inputed string 

;get count of characters in string 

;adjust count for prefix 

;zero out high byte of count 



440 PC Magazine DOS Power Tools 

MOV WORD PTR [SI],SBlB 

MOV AL, [SI] 

INT 29 

INC SI 

LOOP OlOD 

RET 

RCX 

15 

N ESCAPE.COM 

w 
Q 

;put ANSI ESC[ sequence at beginning 

;put character from string into AL 

;undocumented "quick TTL" interrupt 

;point to next character in string 

;go back and put next character into AL 

;return to DOS 

But since running undocumented commands can be potentially troublesome, try this 
slightly longer, legal version thaCs nearly as fast: 

A 

MOV SI,0080 

MOV CL, [SI] 

INC CL 

XOR CH,CH 

MOV WORD PTR [SI],SBlB 

MOV AH,02 

MOV DL, [SI) 

INT 21 

INC SI 

LOOP OlOD 

RET 

RCX 

17 

N ESCAPE.COM 

w 
Q 

;point to buffer containing inputed string 

;get count of characters in string 

;adjust count for prefix 

;zero out high byte of count 

;put ANSI ESC[ sequence at beginning 

;DOS "display output" function 

;put character from string into DL 

;execute main DOS interrupt 

;point to next character in string 

;go back and put next character into AL 

If you try any of these ESCAPE.SCR methods, use a pure-ASCII word processor or 
EDLIN, call the file ESCAPE.SCR, and be sure that you leave a blank line above RCX, 
and that you press the Enter key after each line- especially the last one with the solitary 
Q. You may omit the comments following the semicolons and the semicolons themselves. 
Then put the ESCAPE.SCR script file in the same directory as DEBUG .COM (or be sure 
DEBUG is in a directory that your path knows about) and type: 

DEBUG < ESCAPE.SCR 



ANSI and Other DOS Drivers 441 

The ESCAPE.COM program that these techniques creates will let you enter ANSI 
commands without having to worry about the ESC character or the left bracket that fol
lows it. So to clear the screen, just type: 

ESCAPE 2J 

or: 

ESCAPE J 

To reset all attributes to grey on black: 

ESCAPE Om 

or: 

ESCAPE m 

To set the foreground to bright red, type: 

ESCAPE 31;1m 

Or to redefine Alt-1 so it prints the Spanish upside-down exclamation point, type: 

ESCAPE 0;120;173p 

(To save wear and tear on your typing fingers, you might want to rename ESCAPE.COM 
to E.COM. Then you could simply type: 

E 0;120;173p 

to redefine Alt-1, or: 

E J 

to clear the screen, etc. 
And if you don't want to deal with ANSI numbers (such as 34 for a blue foreground, 

or 1 for highlighting) you can use the following FORE.BAT, BACK.BAT, and SPE
CIAL.BAT batch files: 

First, FORE.BAT, to change foreground colors. Just type FORE and then a color -
black, red, green, yellow, blue, magenta, cyan, or white. You may enter the colors in up
percase, lowercase, or a combination of both: 



442 PC Magazine DOS Power Tools 

ECHO OFF 
REM This is FORE.BAT 
IF %1!==! GOTO OOPS 
GOTO %1 
ECHO ON 
:BLACK 
ECHO ESC[30m 
GOTO END 
:RED 
ECHO ESC[31m 
GOTO END 
:GREEN 
ECHO ESC[32m 
GOTO END 
:YELLOW 
ECHO ESC[33m 
GOTO END 
:BLUE 
ECHO ESC[34m 
GOTO END 
:MAGENTA 
ECHO ESC[35m 
GOTO END 
:CYAN 
ECHO ESC[36m 
GOTO END 
:WHITE 
ECHO ESC[37m 
GOTO END 
:OOPS 
ECHO You must enter a new text color, eg: 
ECHO %0 WHITE or %0 red 
:END 

Next, BACK.BAT. This works exactly the same as FORE.BAT except that it lets you 
set the background color. Again, enter the color you want on the command line after the 
name BACK: 

ECHO OFF 
REM This is BACK.BAT 
IF %1!==! GOTO OOPS 
GOTO %1 
ECHO ON 
:BLACK 
ECHO ESC[40m 



GOTO END 
:RED 
ECHO ESC[41m 
GOTO END 
:GREEN 
ECHO ESC[42m 
GOTO END 
:YELLOW 
ECHO ESC[43m 
GOTO END 
:BLUE 
ECHO ESC[44m 
GOTO END 
:MAGENTA 
ECHO ESC[45m 
GOTO END 
:CYAN 
ECHO ESC[46m 
GOTO END 
:WHITE 
ECHO ESC[47m 
GOTO END 
:OOPS 

ANSI and Other DOS Drivers 443 

ECHO You must enter a new background color, eg: 
ECHO %0 WHITE or %0 red 
:END 

Finally, SPECIAL.BAT, to give you control over ANSI's other attributes (blinking, un
derlining on mono systems, high-intensity, etc.). You can also use it reset all your exist
ing attributes back to plain white on black. You'll need to do this if you want to turn off 
blinking, or high-intensity, or any of the other special features: 

ECHO OFF 
REM This is SPECIAL.BAT 
IF %1!==! GOTO OOPS 
GOTO %1 
ECHO ON 
:RESET 
:NORMAL 
ECHO ESC [Om 
GOTO END 
:BOLD 
:BRIGHT 
:HIGHLIGHT 
ECHO ESC[lm 



444 PC Magazine DOS Power Tools 

G.OTO END 
:UNDERLINE 
ECHO ESC[4m 
GOTO END 
:BLINK 
ECHO ESC[Sm 
GOTO END 
:REVERSE 
ECHO ESC [7m 

GOTO END 
:CANCEL 
:BLANK 
ECHO ESC[8m 
GOTO END 
:CLS 
ECHO ESC[2J 
GOTO END 
:OOPS 
ECHO You must enter a special attribute from this list: 
ECHO RESET, NORMAL, BOLD, BRIGHT, HIGHLIGHT, CLS 
ECHO UNDERLINE, BLINK, REVERSE, CANCEL, BLANK 
ECHO eg: %0 RESET or %0 CLS 
:END 

This trio lets you set attributes by typing in words rather than codes. So to set the 
foreground to blue, you'd type: 

FORE blue 

or: 

FORE BLUE 

or even something like: 

FORE bLuE 

To set the background to white, type: 

BACK white 

or: 

BACK WHITE 



ANSI and Other DOS Drivers 445 

And you can use the SPECIAL.BAT batch file to re~et everything back to the default 
grey on black, or make the foreground blink or become bold. To reset everything to nor
mal, just type: 

SPECIAL reset 

or: 

SPECIAL RESET 

or: 

SPECIAL normal 

or: 

SPECIAL NORMAL 

The choices are listed at the end of the SPECIAL.BAT file- and they appear onscreen 
if you simply type SPECIAL with nothing following it. Some definitions are duplicates. 
Here's the full slate of special ANSI attributes: 

Action Code 
Nonnal grey-on-black (cancels 

any attributes currently in effect) 0 
Bold (bright, or high-intensity; works 

on foreground only) 1 
Underline (on IBM-compatible mono 

screens only; blue foreground on color 
systems) 4 

Blink (foreground only) 5 
Reverse video (white on black) 7 
Canceled (black on black; invisible) 8 

Most non-ANSI color-setting programs simply invoke one of the two BIOS INT 10 Scroll 
Window video services (Scroll Up or Scroll Down). But the colors these set aren't 
"sticky." If you run a program to give yourself bright magenta text on a cyan background, 
and then type CLS, DOS will reset your colors to grey on black, although you can patch 
the Scroll Window BIOS routine buried inside COMMAND.COM so that CLS will clear 
the screen to a predefined set of colors. But when you set colors and then clear the screen 
with ANSI, any subsequent CLS commands will wipe away existing text while main
taining the attributes you specified. 



446 PC Magazine DOS Power Tools 

In fact, when you type a normal CLS command, DOS sends an ESC[2J to your BIOS 
to clear the screen. You can see this in action by redirecting the output of the CLS com
mand into a file called CLRSCRN: 

A>CLS > CLRSCRN 

Then use the DOS TYPE command to display the contents of the file: 

A>TYPE CLRSCRN 

and the screen will clear. 
Actually, this gives you one more way to create ANSI files that contain the elusive 

ESC character. Once you've redirected the CLS command into a file, you can edit that 
file with your word processor or EDLIN and change the command following the ESC[ 
to execute whatever ANSI sequences you like. You can even add an ECHO to the begin
ning of the line and then rename the file by adding a BAT extension, which will turn it 
into a batch file that can set your colors or redefine your keys. 

You could also have the following ANSICOLR.BAT batch file create individual files 
called COL.COM that you can run whenever you need to set your screen attributes to the 
predefined colors that you like. For this to work, your DEBUG.COM utility has to be in 
the same directory or in a directory that your path knows about: 

ECHO OFF 
IF %1!==! GOTO OOPS 
IF EXIST COL.COM GOTO RENAME 
ECHO N COL.COM 
ECHO E 100 B4 9 BA 8 1 CD 21 C3 lB "[" 
IF %4!==! GOTO THREE 
ECHO E lOA "%1;%2;%3;%4m$" 
GOTO FINISH 
:THREE 
IF %3!==! GOTO TWO 
ECHO E lOA "%1;%2;%3m$" 
GOTO FINISH 
:TWO 
IF %2!==! GOTO ONE 
ECHO E lOA "%1;%2m$" 
GOTO FINISH 
:ONE 
ECHO E lOA "%1m$" 
:FINISH 
ECHO RCX 
ECHO 16 
ECHO W 
ECHO Q 

> COL.SCR 
>> COL.SCR 

>> COL.SCR 

>> COL.SCR 

>> COL.SCR 

>> COL.SCR 

>> COL.SCR 
>> COL.SCR 
>> COL.SCR 
>> COL.SCR 



DEBUG < COL.SCR 
DEL COL.SCR 

ANSI and Other DOS Drivers 447 

ECHO Now run COL to set your color(s) to %1 %2 %3 %4 
GOTO END 
:OOPS 
ECHO Enter from one to four ANSI color values after %0 
ECHO eg: %0 34 for a blue foreground 
ECHO or: %0 34 47 for blue text on a white background 
ECHO or: %0 0 1 37 44 to reset the existing attributes 
ECHO then set your colors to bright white on blue 
ECHO (And you must have ANSI loaded) 
GOTO END 
:RENAME 
ECHO First rename your existing COL.COM so this 
ECHO doesn't write over it, then restart %0 
:END 

Once you've typed in ANSICOLR.BAT, you could create a small program called 
COL.COM that would set your text color to blue, by typing: 

ANSICOLR 34 

The ANSICOLR batch file would redirect a customized script into DEBUG and create 
the appropriate COL.COM file. Typing: 

COL 

at the DOS prompt would set the foreground to blue. The: 

IF EXIST COL.COM GOTO RENAME 

in this batch file prevents it from overwriting any COL.COM you may have created pre
viously. If ANSICOLR.BAT finds an existing COL.COM it will print a message telling 
you to rename the one you already have and then restart. 

You may enter from one to four attributes on the command line after the name of the 
batch file itself. So: 

ANSICOLR 5 35 42 

would create a version of COL.COM that sets your colors to blinking magenta on green 
- a combination so horrid you would immediately erase COL.COM and type something 
like: 

ANSICOLR 0 1 37 44 



448 PC Magazine DOS Power Tools 

to create a COL.COM that would cancel any existing attributes and set the colors to bright 
white on a blue background. 

One nice thing about having a program like COL.COM around is that you can stick it 
in your AUTOEXEC.BAT startup file and have DOS set your colors automatically. And 
if something accidentally resets your colors, you can run the COL.COM version you've 
created to put them back the way you like. 

Full Screen Displays 

While DOS ordinarily keeps you confined to the single line your cursor is on, ANSI gives 
you full control over the screen. You can move anywhere you want by issuing either of 
the commands: 

ESC(row;columnH 

or: 

ESC[row;columnf 

substituting the row you want for "row" and the desired column for "column." So 
ESC[l3;35f and ESC[l3;35H will both position the cursor on row 13, column 35, rough
ly in the center of the display. This doesn't do much good unless you display something 
at that location. So you could print a centered "WARNING!" either with: 

ESC(l3;35fWARNING! 

or: 

ESC[13;35HWARNING! 

You can make this even more dramatic by adding: 

ESC[Sm 

on the previous line to make the message blink. If you do this, you '11 later have to get rid 
of the blink (with ESC[Om) and then reset your colors (with something like ESC[34;47m) 
on the line following it. Or you could combine the reset and color-setting operations into 
one line. The whole process would look like: 

ESC(34;47m 

ESC(5m 

ESC[13;35fWARNING! 

ESC[0;34;47m 



ANSI and Other DOS Drivers 449 

The first line sets the colors; in this case to blue on white. The second makes the 
foreground blink. The third positions the message and prints it. The fourth gets rid of the 
blink by resetting everything back to white on black (with ESC[O), and then resets the 
colors to blue on white. 

Actually, you could put all of these on the same line. The following short batch file 
would do it: 

ECHO ESC[34;47mESC[5mESC[13;35fWARNING!ESC[0;34;47m 

You don't have to put spaces between ANSI commands when you concatenate them like 
this. In fact, ANSI will print any leading and trailing spaces you specify, and these will 
show up if you print the message in a color that contrasts with the background. The fol
lowing variation of the above command would put two spaces on either side of the 
WARNING message, and print the message in magenta on green: 

ECHO ESC(34;47mESC[5;35;42mESC[13;35f WARNING! ESC[0;34;47m 

ANSI uses decimal numbers only. If you omit both parameters when using the 
ESC[row;columnH positioning command, DOS will move the cursor to the home posi
tion, in the upper lefthand comer. Include just a single parameter and ANSI will use a 
default of 1 for either missing value. So: 

ESC[fWARNING! 

will print the word WARNING! in the upper lefthand comer, since both the row and 
column parameters are missing. ANSI treats this as if you entered the command: 

ESC(l;lfWARNING! 

If you type: 

ESC[lO;fWARNING! 

ANSI will fill in a 1 for the missing column and print the message on column 1 of row 
10. If you issue the command: 

ESC[;lOfWARNING! 

ANSI will insert a default value of 1 for the row, and print the message on column 10 of 
row 1. 

The PCMAG .BAT batch file below will put the letters "PC' in all four comers of the 
screen, and position the word "MAGAZINE" dead center. It will print these in contrast
ing, blinking, screen colors: 



450 PC Magazine DOS Power Tools 

ECHO OFF 
ECHO ESC[37;44m 
ECHO ESC[2J 
ECHO ESC[34;47;5m 
ECHO ESC[24;2f PC 
ECHO ESC[24;76f PC 
ECHO ESC[2;2f PC 
ECHO ESC[2;76f PC 
ECHO ESC[13;35f Magazine 
ECHO ESC[0;37;44m 

To make the text stand out better, put one space on each side of the words " PC " and " 
Magazine ."The following ANYWHERE.BAT batch file will let you position one word 
of text anywhere on your screen: 

ECHO OFF 
IF %3!==! GOTO OOPS 
IF %4!==! GOTO START 
ECHO ESC[2J 
:START 
ECHO ESC[s 
ECHO ESC[%1;%2f%3 
ECHO ESC[u 
GOTO END 
:OOPS 
ECHO You must specify three parameters 
ECHO (row, column, word) after %0, eg: 
ECHO %0 10 15 Hello 
ECHO (Adding any 4th parameter clears screen) 
:END 

If you enter: 

ANYWHERE 10,20,Hello 

or: 

ANYWHERE 10 20 Hello 

it will print the word "Hello" on column 20 of row 10. Include any dummy fourth 
parameter, to clear the screen first. So: 

ANYWHERE 10,20,Hello,1 

or: 



ANSI and Other DOS Drivers 451 

ANYWHERE 10 20 Hello Sports Fans 

will print the word "Hello" on row 10, column 20 of a blank screen. This works because 
DOS scans across the command line when you enter any batch file command and assigns 
replaceable parameter values to each successive chunk of text separated by a space, 
comma, colon, or other delimiter. All replaceable parameters begin with percent signs. 
DOS would assign five of these to the command: 

C>ANYWHERE 10 20 Hello Sports Fans 

l l l l l l 
%0 %1 %2 %3 %4 %5 

The very first chunk of text DOS sees after the C> or A> prompt is always a command 
or the name of an executable file, and it gives this special string of characters the 
parameter %0. The next chunk becomes % 1, the one following that %2, etc. If your batch 
file doesn't use replaceable parameters, DOS ignores this special feature. But whenever 
it does see a % sign followed by a number from 0 to 9 it will try to replace it with the 
respective chunk of text from the command line. So if you execute the ANYWHERE 
batch file using the above command syntax, whenever DOS sees a %0 in the batch file 
it will replace the %0 and print out "ANYWHERE" instead. 

If the batch file included the line: 

ECHO The password is %0 

DOS would print: 

The password is ANYWHERE 

If the line said: 

ECHO The password is %1 

DOS would display: 

The password is 10 

since 10 is the second discrete lump of text on the command line, and DOS assigns the 
second chunk of text on the command line a parameter of % 1. 

The ANYWHERE.BAT batch file uses a %0 at the bottom to print out the name of the 
batch file itself. This ~ay if you rename it to something like POSITION.BAT, it will print 
out the new batch file name. This batch file also uses replaceable parameters % 1 through 
%4. It will replace % 1 with the first thing it found after the name of the batch file itself 



452 PC Magazine DOS Power Tools 

(here this is 10), %2 with the second thing (here it's 20), and %3 with the third thing 
(Hello). It doesn't really care what %4 is, since it uses this simply to test whether or not 
you specified any additional parameters after %3. If you did enter a word there like 
"Sports," DOS will turn the: 

IF %4!==! GOTO START 

test into: 

IF Sports!==! GOTO START 

The characters "Sports!" are clearly not equal to the single character"!" so the test fails 
(note that batch file tests like this use double equals signs). Since the test failed, DOS 
won't execute the command that follows at the end of the line (in this example the con
ditional command is GOTO ST ART). If you hadn't entered anything on the command 
line after Hello, %4 would be equal to (nothing), and DOS would have translated the test 
into: 

IF !==! GOTO START 

Sure enough,"!" does equal"!" so DOS will jump to the label named START. (A label 
is a short word preceded by a colon). So if you didn't enter a parameter for %4, DOS will 
jump around the line that follows the test and go directly to :ST ART. As illustrated here, 
this will skip the following clear-screen command. 

Before it does anything else, the ANYWHERE.BAT batch file checks to see if the user 
entered any third parameter. The first two parameters are the row and column, but these 
won't do much if the user didn't enter anything on the command line to display. So DOS 
checks to make sure %3 isn't equal to (nothing) with the test: 

IF %3!==! GOTO OOPS 

If it finds nothing there, it will jump to the OOPS label and print a message displaying 
the proper syntax and reminding the user to enter a row, a column, a message, and an op
tional fourth parameter to clear the screen. 

While ANSI's ESC[row;columnH and ESC[row;columnf positioning commands let 
you print messages at a precise location, there are times when you want to print text at 
relative locations. For example, if you want to display a message below the prompt, you 
could position the prompt at a certain predefined place on the screen and then print the 
message. However, if you didn't want to disturb what was on the screen, you could tell 
ANSI to figure out where the prompt happened to be at the time, and print the message 
directly below wherever that location was. 

To make such relative positioning commands easy, ANSI lets you move the cursor up, 
down, left, or right one or more characters at a time with the following commands: 



Up 
Down 
Left 
Right 

ESC(#A 
ESC[#B 
ESC[#C 
ESC[#D 

ANSI and Other DOS Drivers 453 

The# in each command equals the number ofrows or columns to move; the default is I. 
ANSI will ignore these commands if further movement in the specified direction is im
possible. So if the cursor is already at the left edge of the screen, issuing an ESC[2C com
mand won't do anything. If you leave out a number, ANSI will move just one row or 
column, so ESC[B will move down one row. When ANSI moves the cursor left or right 
it maintains the original row; when it moves up or down it keeps the original column 
position. 

It's possible to blank a line by moving up and then printing spaces over it You can 
use the ECHO command to do this in a batch file if you want to obliterate the initial com
mands. But you can't just put spaces after ECHO or DOS will think you're asking it 
whether ECHO currently happens to be set on or off. 

The following CLEARSLF.BAT batch file will erase both the command line and the 
ECHO OFF message it prints. The line of xxxx' s represents spaces; if you try this be sure 
to type a space in place of each x (you may have to vary the number of spaces to suit your 
screen). You have to use a character like a colon or period directly after the the ECHO 
for this to work. 

ECHO OFF 
ECHO ESC[2A 
ECHO:xxxxxxxxxxxxxxxxxxxxxxxxxxx 
ECHO ESC[4A 
ECHO:xxxxxxxxxxxxxxxxxxxxxxxxxxx 

Wiping out text with spaces isn't very efficient. ANSI provides two erasing commands 
to make it far easier. Many of the above examples above use one of these commands, 
ESC[2J, to clear the entire screen. (Incidentally, the DOS manuals say to use ESC[2J, 
but ESC[J works just as well; both will clear the screen to the foreground and background 
colors currently in effect. It doesn't really matter what reasonably sized number precedes 
the J .) But ANSI gives you finer erasing control than that. It lets you erase any line from 
and including the cursor position and extending to the right edge of the screen.Just issue 
the command: 

ESC[K 

You might want to position the cursor first and then erase to the end of the line. To get 
rid of everything to the right of column 40 on row 5, type: 

ESC[5;41fESC[K 

or: 



454 PC Magazine DOS Power Tools 

ESC[5;41HESC[K 

A better CLEARSLF.BAT batch file that incotp0rated this technique looks like: 

ECHO OFF 
ECHO ESC[2A 
ECHO ESC[K 
ECHO ESC[4A 
ECHO ESC[K 

While you're jumping all around the screen printing messages in various places it's 
handy to return to your original position when you finish. ANSI makes this a snap. Just 
issue this command: 

ESC[s 

to store the current cursor position, and then a: 

ESC[u 

command to put it back where it originally was when you stored it. 
ANSI provides a set of commands called CPR (Cursor Position Report) and DSR 

(Device Status Report) that you almost certainly won't ever need. Issuing a DSR: 

ESC[6n 

will trigger a CPR in the form: 

ESC[row,colurnnR 

where row and column represent the current cursor position. 

Mode-Setting Commands 

You probably won't use ANSI's mode-setting commands either, since most users do all 
their DOS work exclusively in their system's 80 x 25 default text mode. And ANSI is 
way behind the times, since it offers only seven primitive screen modes. It also lets you 
disable and enable line wrapping. something most users just don't have a burning desire 
to do. 

To set screen widths and modes, use the similar commands ESC[ =#1 or ESC[ =#h, sub
stituting a number from 0 to 6 in place of the#. Note that the 1 in the first version is a 
lowercase L, not a 1. 



Screen Mode 
40 x 25 black and white 
40 x 25 color 
80 x 25 black and white 
80 x 25 color 
320 x 200 color graphics 

ANSI and Other DOS Drivers 455 

# 
0 
1 
2 
3 
4 
5 
6 

320 x 200 black and white graphics 
640 x 200 black and white graphics 

While the 1 and h suffixes work exactly the same with values from 0 through 6, they be
have very differently when used with a value of 7. To set line wrap off, issue the com
mand: 

ESC[?71 

or: 

ESC[=71 

To turn it back on, type: 

ESC[?7h 

or: 

ESC[=7h 

If you 're typing something long and you reach the right edge of your screen, DOS nor
mally wraps the text down one line and over to the left edge of the screen. Turning line 
wrap off means that once you reach the right edge of a typical 80-column screen, instead 
of bouncing down a line, DOS will print each character on the 80th column. Every let
ter will overlap the previous letter. You won't lose any keystrokes, but you won't really 
be able to see what you've typed. Turning line wrap off may have made sense once, but 
it's an anachronism today. 

Redefining Keys 

ANSI's attribute-handling abilities are extremely welcome on today's increasingly com
mon color screens. But equally handy is its talent for redefining keys. 

You can harness ANSI's formidable key definition abilities to: 

• create duplicate keys 
• switch keys around on the keyboard 
• configure or redefine function keys to execute commands and cut down on typing 



456 PC Magazine DOS Power Tools 

For example, some people need to type quotation marks far more often than they need 
the apostrophe that's on the same physical key as the quote mark. Or they may use ques
tion marks frequently but never have to type slashes. Nonnally you have to hold down 
the shift to have your keyboard gen°rate quotation and question marks. But it's simple 
for ANSI to swap the uppercase and lowercase versions of these keys. 

And some new users keep pressing the forward slash I key when they really mean to 
type the backslash \key. ANSI can turn the slash key into a duplicate backslash. Then 
whenever the user pressed either key his system would think he typed a backslash. The 
only problem is that this would prevent him from using a nonnal slash, unless the slash 
function was moved somewhere else. 

Finally, if you're tired of having to issue repetitive, long-winded DOS commands full 
of tricky syntaxes, you can assign these commands to single keys. This makes it easier 
to handle daily DOS chores - and far more accurate. 

Redefining keystrokes can be dangerous, so be very careful, and think about what 
you're doing. Users often give their files shorthand names to save typing. If you're writ
ing a massive report on the 1990 plans for the Atlanta regional office, you may temporari
ly call the file just A rather than ATLOFC90.RPT. This makes it easier to work with, 
since it's faster to lo:.:id the file into your word processor by typing: 

WS A 

(for WordStar) than: 

WS ATLOFC90.RPT 

When you 're all done with the report, you can rename the file to give it its properly in
scrutable but far more descriptive name. These same time-pressured users may also use 
ANSI to switch the semicolon (which they don't use in DOS) with the colon (which they 
do use frequently). This way they don't have to hold down the shift key when referring 
to a drive like C:. 

If you have a long file on your C: drive that you've temporarily named A, and you've 
switched the colon and semicolon keys, and it's late at night, and you 're tired, you could 
wipe out the whole file with an innocent command. How? If you want to copy a small 
file called C:MEMO to drive A: and you accidentally hold down the shift key, you '11 end 
up with: 

C>COPY MEMO A; 

DOS will interpret the semicolon as a space, and copy the short MEMO file on top of the 
long file you've named A. Okay, maybe it's not a good idea to use single-letter names 
(especially names you could confuse with disk drive letters), and of course you should 
have backed up your work, and anyway DOS should alert you when you 're about to copy 



ANSI and Other DOS Drivers 457 

one file onto another one (but it doesn't). These things happen. Back up often and be 
careful. 

ANSI isn't perfect when it comes to redefining keys. It limits the number of keys you 
can redefine and the amount of information you can assign to them. Most programs come 
with their own keyboard handlers that bypass DOS, so your macros won't work in all 
cases. But you can use them at the DOS prompt, in DEBUG, EDLIN, or in certain editors 
such as IBM's Personal Editor. 

You also have to make sure you don't reset a key such as Enter or space, or replace a 
letter of the alphabet that would prevent you from issuing normal DOS commands. You 
can reassign uppercase letters while leaving the lowercase ones intact (or vice versa), 
which lets you type practically anything. But if you reassign both the uppercase "I" and 
lowercase "i" you won't be able to execute commands like PRINT or DIR. And if you 
fool around with character 13 - the Enter key-you're dead in the water. 

Finally, while DOS does let you reset any ANSI key redefinitions back to normal, it 
doesn't provide any method for listing the current key reassignments or clearing them 
out of memory to make room for others. Fortunately, you can do it yourself, if you' re ex
tremely careful and you follow the directions below. 

First, however, move some keys around to see what ANSI can do. 
If you never ever use square brackets - the "[" and "]" characters - but you rely 

heavily on normal parentheses and you hate having to hold the Shift key down to type 
them, just have ANSI tum the brackets into a duplicate set of parentheses. 

You'll still be able to type them the old way, by leaning on Shift and pressing the 9 
and 0 keys. But once you've executed a short ANSI script you'll also be able to generate 
parentheses by tapping the lowercase bracket keys. However, this will temporarily 
prevent you from putting brackets into your text - a minor drawback if you have to 
create any new ANSI sequences, since the second character of every ANSI command is 
a left bracket. Any key redefinitions you make using this technique will stay in effect 
until you reboot, unless you know the trick below for doing an ANSI lobotomy. 

The decimal ASCII codes for the characters involved in this particular redefinition 
process are: 

[ =91 
] =93 
(=40 
) =41 

To redefine any key, issue the usual ANS I ESC[ prefix, follow it with two ASCII codes 
separated by a semicolon, and tack a lowercase p onto the end. The first ASCII code is 
the key you want to press and the second is the character you want that key to produce. 
To redefine the [and] keys so they'll generate parentheses rather than brackets, for ex
ample, run the following two-line batch file: 

ECHO ESC[91;40p 
ECHO ESC[93;41p 



458 PC Magazine DOS Power Tools 

Remember, this ANSI command has five parts: 

ESC[ 

l 
normal 

ANSI prefix 

93 

t 
key you want 

to hit 
l 

semicolon 

41 p 

t 
character you l 

want key to ANSI 
generate reassignment 

suff"ix 

You can enter the characters themselves in quotes rather than the ASCII codes if you 
like, but this can look confusing, especially when you're assigning lots of characters to 
a single key as you will a bit later. The following two lines will do the exact same redefini
tion as the ones above: 

ECHO ESC["(";"("p 
ECHO ESC["]";")"p 

If you redefine these keys, and you discover that you do need to type brackets, you can 
reset the keys back to normal by putting the same ASCII code on both sides of the semi
colon. This will do the trick: 

ECHO ESC[91;91p 
ECHO ESC[93;93p 

You could also reset things by running a batch file that you created previously contain
ing the two lines: 

ECHO ESC("[";"["p 
ECHO ESC["]";"]"p 

However, you can't create these lines in DOS while the old redefinitions are in effect, 
because reassigning parentheses to the bracket keys temporarily did away with the brack
ets. (If you really had to do it. you could run a word processor such as WordStar that dis
regarded any ANSI changes.) 

Redefining keys often ends up preventing you from typing certain characters, as it did 
above with brackets. However, ANSI makes it just as easy to swap one set of characters 
for another. If you use quotation marks more often than apostrophes. both of which share 
the same physical key, you can switch them so a tap on the unshifted key generates a 
quotation mark, while holding down the Shift and pressing the key yields an apostrophe. 
The ASCII values of these two keys are: 



n 34 
39 

So you could run the following two-line batch file: 

ECHO ESC[34;39p 
ECHO ESC[39;34p 

ANSI and Other DOS Drivers 459 

To switch both characters you have to execute both lines. Running just the first one by 
itself: 

ECHO ESC[34;39p 

would assign the apostrophe character to the shifted version of the key - the one that 
nonnally produces a quotation mark. This would cause the key to produce an apostrophe 
regardless of whether you were holding the Shift key down, which isn't what you want. 

Again, you could also use the actual characters themselves in the ANSI command 
rather than the ASCII codes. But this gets tricky when one of the keys you're trying to 
redefine is a quotation mark, since you have to use quotation marks to identify the charac
ters you want to change. 

DOS can treat pairs of single quotation marks (which are really just apostrophes) the 
same way it handles pairs of double quotation marks. So you can run the following, two
line batch file to make the swap: 

ECHO ESC['"';"'"p 
ECHO ESC["'";'"'p 

and then either: 

ECHO ESC[34;34p 
ECHO ESC[39;39p 

or: 

ECHO ESC['"' ;'"'p 
ECHO ESC["'";"'"p 

to reset things to their original state. 
Swapping or duplicating alphanumeric keys is straightforward and easy. But ANSI 

can also assign characters to dozens of special key combinations that generate what IBM 
calls extended codes. 



460 PC Magazine DOS Power Tools 

ANSI deals with normal "typewriter" keys like A, a, 1, or $ by manipulating single 
ASCII values between 32 (a space) and 126 (a Spanish tilde). A capital "A" has an ASCII 
value of 65, and a lowercase "a" an ASCII value of 97. Refer back to the chart of ASCII 
values for the typewriter keys in Chapter 5. Any of these values can be plugged into the 
examples above to move the keys around the keyboard. 

ANSI can also handle nonalphanumeric keys such as the Fl function key, the Home 
key, and the Ins key. And it can work with less common shifted key combinations such 
as Ctrl-End, Alt-E, or Shift-Fl. All of the special key combinations in Figure 9 .1 generate 
a pair of ASCII values rather than just a single value. The first value in the pair is always 
an ASCII 0, or NUL character. Figure 9.2 is an index of all key combinations and their 
values. 

Miscellaneous Key 
Code* 

Function Key 
Code* Combination Combination 

NUL 0;3 Fl 0;59 
Shift-Tab 0;15 F2 0;60 
Alt-A 0;30 F3 0;61 
Alt-B 0;48 F4 0;62 
Alt-C 0;46 F5 0;63 
Alt-D 0;32 F6 0;64 
Alt-E 0;18 F7 0;65 
Alt-F 0;33 F8 0;66 
Alt-G 0;34 F9 0;67 
Alt-H 0;35 FlO 0;68 
Alt-I 0;23 Shift-Fl 0;84 
Alt-J 0;36 Shift-F2 0;85 
Alt-K 0;37 Shift-F3 0;86 
Alt-L 0;38 Shift-F4 0;87 
Alt-M 0;50 Shift-F5 0;88 
Alt-N 0;49 Shift-F6 0;89 
Alt-0 0;24 Shift-F7 0;90 
Alt-P 0;25 Shift-F8 0;91 
Alt-Q 0;16 Shift-F9 0;92 
Alt-R 0;19 Shift-FlO 0;93 
Alt-S 0;31 Ctrl-Fl 0;94 
Alt-T 0;20 Ctrl-F2 0;95 

continued 



612 PC Magazine DOS Power Tools 

N UPPERIT.COM 
RCX 
A 

w 
Q 

The program looks like: 

MOV AH,0 BIOS read a character and 
INT 16 puts its ASCII code into AL 
AND AL,DF uppercase all letters 
MOV AH,4C ready to exit with code 
INT 21 do it 

And you'll have to change the HALFTEST.BAT demonstration batch file slightly: 

ECHO OFF 
ECHO Press any letter key 
ECHO Or press Enter to quit 
:TOP 
UPPERIT 
IF ERRORLEVEL 91 GOTO TOP 
IF ERRORLEVEL 78 GOTO BACK 
IF ERRORLEVEL 65 GOTO FRONT 
IF ERRORLEVEL 14 GOTO TOP 
IF ERRORLEVEL 13 GOTO END 
:BACK 
ECHO N-Z 
GOTO TOP 
:FRONT 
ECHO A-M 
GOTO TOP 
:END 

ANDing any ASCII value with 223 (hex DF) will capitalize lowercase letters and leave 
uppercase letters alone. The logical AND operation works by comparing two values (the 
example below will compare one bit ata time) and returning a "1" only when both values 
are nonzero. 

• lANDl=l 
• 1 ANDO=O 
• OANDl=O 
• OANDO=O 



DEBUG 
E 100 B4 00 CD 16 OC 20 B4 4C CD 21 
N LOWERIT.COM 
RCX 
A 

w 
Q 

Batch Techniques 611 

Then run the following sample HALFfEST.BAT demonstration batch file: 

ECHO OFF 
ECHO Press any letter key 
ECHO Or press spacebar to quit 
:TOP 
LOWER IT 
IF ERRORLEVEL 123 GOTO TOP 
IF ERRORLEVEL 110 GOTO BACK 
IF ERRORLEVEL 97 GOTO FRONT 
IF ERRORLEVEL 33 GOTO TOP 
IF ERRORLEVEL 32 GOTO END 
:BACK 
ECHO N-Z 
GOTO TOP 
:FRONT 
ECHO A-M 
GOTO TOP 
:END 

Type in any uppercase or lowercase letter and the batch file will tell you which half of 
the alphabet it's in. 

You could, of course, go the other way and make all letters uppercase. Instead of the 
line: 

OR AL,20 

substitute: 

AND AL,DF 

Create UPPERIT.COM by typing: 

DEBUG 
E 100 B4 00 CD 16 24 DF B4 4C CD 21 



.. 

• 

610 PC Magazine DOS Power Tools 

Letter Dec Hex Letter 

A 65 41 a 
B 66 42 b 
c 67 43 c 
0 68 44 d 
E 69 45 e 
F 70 46 f 
G 71 47 g 
H 72 48 h 
I 73 49 i 
J 74 4A j 
K 75 4B k 
L 76 4C l 
M 77 40 m 
N 78 4E n 
0 79 4F 0 
p 80 50 p 
Q 81 51 q 
R 82 52 r 
s 83 53 s 
T 84 54 t 
u 85 55 u 
v 86 56 v 
w 87 57 w 
x 88 58 x 
y 89 59 y 
z 90 SA z 

So to make all letters lowercase, just add the line: 

OR AL,20 

to the GETKEY.COM program: 

MOV AH,0 
INT 16 
OR AL,20 
MOV AH,4C 
INT 21 

Dec Hex 

97 61 
98 62 
99 63 

100 64 
101 65 
102 66 
103 67 
104 68 
105 69 
106 6A 
107 6B 
108 6C 
109 60 
110 6E 
111 6F 
112 70 
113 71 
114 72 
115 73 
116 74 
117 75 
118 76 
119 77 
120 78 
121 79 
122 7A 

You could create the small LOWERIT.COM program by typing: 



Batch Techniques 609 

While IF ERRORLEVEL works exclusively in decimal notation, DEBUG handles 
only hex. The ASCII value for character 0 is 30, and for 9 is 39. 

Digit Decimal Hex 
0 48 30 
1 49 31 
2 50 32 
3 51 33 
4 52 34 
5 53 35 
6 54 36 
7 55 37 
8 56 38 
9 57 39 

If you press any number key between 0 and 9, GETNUM.COM transfers its ASCII 
value to the exit code. If you press any other key GETNUM simply rejects it and goes 
back for another. 

The MENUl.BAT program accepts only the choices 1, 2, or 3. The topmost: 

IF ERRORLEVEL 52 GOTO MENU 

bounces any exit code of 52 or higher, screening out any digit from 4 through 9. 
You could narrow the test by going into DEBUG and changing the: 

CMP AL,30 ; is character < 0 ? 

and: 

CMP AL,39 is character > 9 ? 

lines so they were more restrictive, but it's really not necessary. 
Many users prefer working with letters rather than numbers. 
But if you want to create a menu with options A, B, and C you have to worry about 

uppercase and lowercase entries. 
Actually this isn't much of a problem. All you have to do is perform a logical OR 

operation on the key, which turns uppercase letters into lowercase ones and leaves lower
case ones alone. 

The lowercase letters have ASCII values 20 hex (32 decimal) higher than their upper
case counterparts: 

,,-----~--------------



• 

608 PC Magazine DOS Power Tools 

ECHO +-----------------------+ 
ECHO 1 - Run 123 
ECHO 
ECHO 

2 - Run WordStar 
3 - Return to DOS 

ECHO +-----------------------+ 
:MENU 
ECHO Select 1, 2 or 3 
GETNUM 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
GOTO MENU 
:LOTUS 
123 
GOTO TOP 
:STAR 
ws 
GOTO TOP 
:END 

52 GOTO 
51 GOTO 
50 GOTO 
49 GOTO 

MENU 
END 
STAR 
LOTUS 

You could just run a program like GETKEY .BAT that returns an exit code for any key 
on the keyboard. But it's not much more difficult to create a small program called GET
NUM.COM that rejects all keystrokes other than 0 through 9: 

DEBUG 
E 100 B4 00 CD 16 3C 30 72 FB 3C 39 77 F4 B4 4C CD 21 
N GETNUM.COM 
RCX 
10 
w 
Q 

This program looks like: 

MOV AH,00 BIOS read a character 
INT 16 puts ASCII code into AL 
CMP AL,30 is character < 0 ? 
JB 100 yes; get another key 
CMP AL,39 is character > 9 ? 
JA 100 yes; get another key 
MOV AH,4C exit code 
INT 21 do it 



Batch Techniques 607 

Just use DEBUG to patch GETYES.COM and make a new copy of it called 
GETNO.COM: 

DEBUG GETYES.COM 
E 105 4E 
E 109 6E 
N GETNO.COM 
w 
Q 

Then adapt the above batch file and tum it into NOYES.BAT: 

ECHO OFF 
:TOP 
ECHO Hit n or N or another key: 
GETNO 
IF ERRORLEVEL 255 GOTO NO 
GOTO YES 
:NO 
ECHO You said no. 
GOTO CONTINUE 
:YES 
ECHO You didn't hit n or N. 
:CONTINUE 
ECHO Now, want to quit (Y/N)? 
GETNO 
IF ERRORLEVEL 255 GOTO TOP 
:END 

GETYES.COM and GETNO.COM behave quite differently, as you can see from ex
perimenting with the YESNO.BAT and NOYES.BAT batch files. These batch files are 
designed to do one task if the user presses one specific letter, and another task if he or 
she presses any other key. If you're asking whether a user is sure he or she wants to FOR
MAT a hard disk, you'd better be sure you accept only a Y or y answer. Having programs 
handy that operate only on Y (or y) and only on N (or n) gives you flexibility in phras
ing such potentially dangerous questions. 

It's simple to turn a handful of IF ERRORLEVEL tests into a menu system. If you 
want to write your own keyboard processor, one of the easiest ways is to use numeric 
entries, since you don't have to worry about uppercase and lowercase variations. Of 
course you 're limited to ten entries. 

A very simple MENUl .BAT menu system might look like: 

ECHO OFF 
:TOP 

-·----·--------



606 PC Magazine DOS Power Tools 

DEBUG 
E 100 B4 00 CD 16 3C 59 74 04 3C 
E 109 79 75 02 BO FF B4 4C CD 21 
RCX 
12 
N GETYES.COM 
w 
Q 

The program it creates looks like: 

MOV AH,00 
INT 16 
CMP AL,59 
JZ OlOC 
CMP AL,79 
JNZ OlOE 
MOV AL,FF 
MOV AH,4C 
INT 21 

BIOS read a character 
puts ASCII code into AL 
is character a 'Y' ? 
yes; go to 255 stuffer 
is character a 'y' ? 
if not, skip next step 
make exit code 255 
exit with code 
do it 

You can see this in action by running the following YESNO.BAT batch file: 

ECHO OFF 
:TOP 
ECHO Hit y or Y or another key: 
GETYES 
IF ERRORLEVEL 255 GOTO YES 
GOTO NO 
:YES 
ECHO You said yes. 
GOTO CONTINUE 
:NO 
ECHO You didn't hit y or Y. 
:CONTINUE 
ECHO Now, want to quit (Y/N)? 
GET YES 
IF ERRORLEVEL 255 GOTO END 
GOTO TOP 
:END 

GETYES.COM checks for Y (hex 59) and y (hex 79). You could substitute 4E (the 
hex code for N) and 6E (the hex code for n) for 59 and 79 and create GE1NO.COM. 



Batch Techniques 605 

Function Keys Keypad Keys 
Fl...FlO unshifted = 59 ... 68 Unshifted Ctrl 
Fl...FlO +Shift = 84 ... 93 Home 71 119 
Fl...FlO +Ctrl = 94 ... 103 Up 72 
Fl...FlO +Alt =104 ... 113 Pg Up 73 132 

Left 75 115 
Right 77 116 

Alt +Regular Key End 79 117 
QWERTYUIOP 16 ... 25 Down 80 
ASDFGHJKL 30 ... 38 PgDn 81 118 
ZXCVBNM 44 ... 50 Ins 82 
1234567890-= 120 ... 131 Del 83 

A typical batch EXTENKEY .BAT file that used extended keys would look something 
like this: 

ECHO OFF 
:START 
ECHO INS - See a sorted DIR 
ECHO DEL - Return to DOS 
ECHO *** Hit Ins or Del *** 
GETFKEY 
IF ERRORLEVEL 84 GOTO START 
IF ERRORLEVEL 83 GOTO 2 
IF ERRORLEVEL 82 GOTO 1 
GOTO START 
:1 
DIR I SORT 
PAUSE 
GOTO START 
:2 

This uses the Ins (82) and Del (83) keys, and rejects anything else. 
While the previous examples demonstrate how ERRORLEVEL can manage menus, 

IF ERRORLEVEL can also come in handy when a batch file gives a user a two-way 
choice - continue or not, load a program or not, echo something to the printer or not, 
and soon. 

In all these cases, the batch file pauses and asks a Yes or No question, and then proceeds 
with the option only if the user answers with Y or y. 

The GETYES .COM program below checks for Y or y and puts an ASCII 255 value 
into the AL register if it finds one. Batch files that use this technique can get away with 
just a single IF ERRORLEVEL test- for a value of 255 only. 

You can create GETYES.COM by typing: 



• 

604 PC Magazine DOS Power Tools 

The easiest way to create IF ERRORLEVEL-based menus is probably to limit your
self to ten choices - the digits 0 through 9. Or you could use letters rather than num
bers, since letters offer 26 single-digit choices rather than ten. But you'd have to test for 
both uppercase and lowercase entries, and all the ASCII characters in between, which 
means lots of IF tests or a clever assembly language. program to do all the work. 

You could expand the GETKEY.COM program slightly to handle function keys, 
which don't have uppercase and lowercase versions. Or, you could limit all your ER
RORLEVEL decisions to Yes/No questions. This second method works very well in 
some cases, but not in menus. 

Typing in the following few lines will create a GETFKEY .COM program designed to 
work with extended key combinations: 

DEBUG 
E 100 B4 00 CD 16 3C 00 74 04 BO 
E 109 FF EB 02 88 EO B4 4C CD 21 
N GETFKEY.COM 
RCX 
12 
w 
Q 

The GETFKEY program looks like: 

MOV AH,00 
INT 16 
CMP AL,00 
JZ OlOC 
MOV AL,FF 
JMP OlOE 
MOV AL,AH 
MOV AH,4C 
INT 21 

BIOS read a character 
puts ASCII code into AL 
is character extended? 
yes; go to register mover 
no; so make exit code 255 
and skip next step 
make extended code the exit code 
exit with code 
do it 

It works just like GETKEY .COM, except that it can handle function keys and shifted 
key combinations as well as normal alphanumeric keys. When you press an alphanumeric 
key, BIOS puts the ASCII value of the key in the AL register and the scan code in the 
AH register. When you trigger an extended key combination, BIOS puts the ASCII code 
in the AH register and a NUL, or character 0, in the AL register. 

GETFKEY .COM waits until the user presses a key, then checks to see if the AL register 
is set to 0. If not, GETFKEY assumes the key was a normal garden-variety letter or num
ber, makes the exit code 255, and quits. If it does see a 0 in AL it moves the ASCII code 
down from AH to AL and makes it the exit code. At this point any normal key has an 
exit code of255; anything less means the user pressed an extended key combination. 

On IBM's old reliable keyboards you actually have a lot of possible extended keys 
from which to choose (the newer IBM Chinese typesetting version offers even more): 



Batch Techniques 603 

CMP AL,OD 
JZ lOC 
CMP AL,lB 
JNZ 100 
MOV AH,4C 
INT 21 

is character an Enter? 
yes; goto exit code 
is character an Esc? 
no; go back and get another 
exit code 
do it 

These tiny exit-code setters can really enhance the operation of your system. Earlier a 
program called FORMAT .COM used string tests to screen out attempts to format any 
drive higher than B:. You could adapt a batch file like that to use a small drive-sensing 
program called DRIVE.COM together with a few IF ERRORLEVEL tests to exit 
automatically if it found that you were on drive C: or D:. To create DRIVE.COM, just 
type: 

DEBUG 
E 100 B4 19 CD 21 B4 4C CD 21 
N DRIVE.COM 
RCX 
8 
w 
Q 

DRIVE.COM is somewhat similar to GETKEY.COM: 

MOV AH,19 
INT 21 
MOV AH,4C 
INT 21 

get current drive 
do it (A=O, B=l, etc) 
put drive in exit code 
do it 

A DRIVER.BAT batch file to show how this worked might look like: 

ECHO OFF 
DRIVE 
IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 ECHO Drive 
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Drive 
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Drive 
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Drive 
IF ERRORLEVEL 4 ECHO Higher than Drive D 

A 

B 
c 
D 

You could add a DRIVE command at the beginning of your FORMAT batch file, and 
if the following IF ERRORLEVEL test detected a value of 2 or more, just have it GOTO 
END. 



602 PC Magazine DOS Power Tools 

ECHO by pressing Enter. Or press 
ECHO any other key to continue . 
GETKEY3 
IF NOT ERRORLEVEL 255 GOTO TOP 

GETKEY3.COM sets the exit code to 255 if the user presses the Enter key. It leaves 
all other values intact, so that if the user happened to press the space bar, which has an 
ASCII value of 32, the exit code would be 32. But testing for an ERRORLEVEL of 255 
heads all other lower exit codes off at the pass. 

The only problem with this is that if the user happened to enter character 255 (by hold
ing down the Alt key, typing 255 on the number pad, and then releasing the Alt key), ER
R TES TI .BAT would treat it as if the user had pressed the Enter key. Both would end up 
with an exit code of 255. Screening this out would be trivial, but seriously, how many 
users are going to enter character 255? 

You could have the assembly language program do even more work by rejecting any 
keystrokes other than the ones your batch file is designed to handle. GETKEY4.COM 
will sit and wait for the user to press a key, and will discard all keypresses other than 
Enter (with a code of decimal 13, or hex OD) and Escape (with an exit code of decimal 
27, or hex lB): 

DEBUG 
E 100 B4 00 CD 16 3C OD 74 04 3C lB 75 F4 B4 4C CD 21 
N GETKEY4.COM 
RCX 
10 
w 
Q 

If you ran theERRTEST4.BATbatch file: 

ECHO OFF 
:TOP 
ECHO Press Esc to loop again 
ECHO or Enter to quit 
GETKEY4 
IF ERRORLEVEL 27 GOTO TOP 

pressing Esc would loop through the batch file and repeat the message, pressing Enter 
would quit, and pressing any other key would do nothing. GETKEY 4.COM looks like: 

MOV AH,00 
INT 16 

BIOS read a character 
puts ASCII code into AL 



MOV AH,4C 
INT 21 

ready to exit with code 
do it 

Batch Techniques 601 

The exit code that the program sets doesn't have to be the same as the ASCII code of 
the key that the user pressed. GETKEY3.COM sets a code of 255 if the user pressed 
Enter. Create it by typing: 

DEBUG 
E 100 B4 00 CD 16 3C OD 75 02 BO FF B4 4C CD 21 
N GETKEY3.COM 
RCX 
E 
w 
Q 

This is almost identical to GETKEY2.COM: 

MOV AH,00 BIOS read a character 
INT 16 puts ASCII code into AL 
CMP AL,OD is character an Enter? 
JNZ OlOA no; skip next step 
MOV AL,FF make the exit code a 255 
MOV AH,4C ready to exit with code 
INT 21 do it 

The ERRTEST3.BAT batch file to use this program might look like: 

ECHO OFF 
:TOP 
ECHO You may break out of this loop 
ECHO by pressing Enter. Or press 
ECHO any other key to continue 
GETKEY3 
IF ERRORLEVEL 255 GOTO END 
GOTO TOP 
:END 

or even simpler: 

ECHO OFF 
:TOP 
ECHO You may break out of this loop 



600 PC Magazine DOS Power Tools 

MOV AH,4C ; ready to exit with code 
INT 21 ; do it 
DB 'Enter a number from 1 to 5: $' 

Narrowing the Search 

In any IF ERRORLEVEL process something has to screen out erroneous keystrokes. You 
can have the batch file do it by including a series of IF ERRORLEVEL tests. Or you can 
have the assembly language program do it, either by refusing to budge unless the user 
presses certain keys, or by setting one kind of exit code for correct responses and another 
kind for incorrect keypresses. You can adapt GETKEY.COM to do either. 

This version will set a code of 13 if the user presses Enter, and a code of 0 otherwise: 

DEBUG 
E 100 B4 00 CD 16 3C OD 74 02 30 CO B4 4C CD 21 
N GETKEY2.COM 
RCX 
E 

w 
Q 

You can run this with a shorter version ofERRTEST.BAT called ERRTEST2.BAT: 

ECHO OFF 
:TOP 
ECHO You may break out of this loop 
ECHO by pressing Enter. Or press 
ECHO any other key to continue 
GETKEY2 
IF ERRORLEVEL 13 GOTO END 
GOTO TOP 
:END 

Here you don't need to test for·any exit code other than 13, since GETKEY2.COM 
does all the keystroke screening by making sure that the exit code for every key other 
than Enter is 0. The assembly language program for this looks like: 

MOV AH,00 
INT 16 
CMP AL,OD 
JZ OlOA 
XOR AL,AL 

BIOS read a character 
puts ASCII code into AL 
is character an Enter? 
yes; skip next step 
make the exit code a 0 



Batch Techniques 599 

CTTY CON 

IF NOT %1!==! ECHO Now type %1 

To use PROGMAKR.BAT, you need to have DEBUG.COM in the current directory 
or in one your path knows about. It lets you enter a program name (such as GETKEY or 
BATCHKEY) and then a prompt of up to eight words after it. So if you entered: 

PROGMAKR BATCHKEY Enter a number from 1 to 5: 

it will automatically create a small file called BATCHKEY.COM that displays the 
prompt: 

Enter a number from 1 to 5: 

and waits for a key. When you press any normal (nonextended) key, BA TCHKEY will 
tum its ASCII value into an exit code that IF ERRORLEVEL can process. 

This is a very powerful little batch file. But if you use it, note: 

1. Be sure you have DEBUG.COM handy. 
2. It uses a CITY NUL command to shut off the display temporarily while it's work

ing. If something unexpected happens before the batch file gets to the restorative 
CITY CON command at the end, you '11 be frozen out of your keyboard. Check your 
typing carefully and make sure you don't have any unsaved files lurking around when 
you try this for the first time. 

3. You can enter up to eight discrete words or clumps of characters, but don't enter any 
single quotes or dollar signs, since DOS treats these specially. 

4. Type in everything exactly as it appears, and watch for small but im}X>rtant charac
ters like the single quote marks in the ECHO E lOF '%2 %3 %4 %5 %6%7%8 %9$' 
line. 

5. Remember that directly below the CTTY NUL the first ECHO line ends with a single 
> DBG.ZZZ while the others have double>> DBG .ZZZ signs. A single> sign creates 
a file and a double>> sign appends data to an existing file. 

6. Remember to type in the name of the program you want to create before you start 
entering the message. And be sure to leave off the .COM extension; the batch file 
will add it for you automatically. 

PROGMAKR.BAT will create a file that looks (at least for the sample prompt above) 
like: 

MOV AH,09 

MOV DX,OlOF 

INT 21 

MOV AH,00 

INT 16 

DOS message printer 

address of the message 

print it 

BIOS read a character and 

puts its ASCII code into AL 



598 PC Magazine DOS Power Tools 

CASETEST.BAT first uses a test for 123 to screen out anything higher than the top 
range of lowercase values. The second test will detect anything from 97 through 122 and 
jump to the label that identifies this as a lowercase letter. The next test screens out the 
few odd characters with values from 91 through 96. It's followed by a test that detects 
anything from 65 through 90 and jumps to a label identifying these as uppercase letters. 

Finally, a test for 33 screens out any key with a value greater than a space (remember, 
a space is 32) but lower than the bottom range of uppercase letters. Then a test for 32 iso
lates spaces, and a last test for 0 traps any other keystrokes. 

Most single keys on your keyboard generate single ASCII codes. But key combina
tions like Ctrl-End, Ins, or F7 generate two-character values called extended codes, where 
the first value is always a 0. Key-sniffing programs more sophisticated than GET
KEY.COM can detect these; GETKEY thinks all such keys are returning codes of 0. 
Later you 'II see how you can soup up GETKEY to handle such keys. 

More sophisticated key-processing programs, like the ones on the accompanying disk, 
let you print customized onscreen prompts telling the user which of several keys to press. 
If the program doesn't do this, you have to have an ECHO command display a message 
prompting the user. 

The following PROGMAKR.BAT batch file will actually create a version of GET
KEY .COM that displays its own customized message: 

ECHO OFF 

REM PROGMAKR.BAT 

IF %2!==! GOTO ERROR 

CTTY NUL 

ECHO E 100 B4 09 BA OF 01 CD 21 

ECHO E 107 B4 00 CD 16 B4 4C CD 21 

ECHO E lOF '%2 %3 %4 %5 %6 %7 %S %9$' 

ECHO N %1.COM 

ECHO RCX 

ECHO 100 

ECHO W 

ECHO Q 

DEBUG < DBG.ZZZ 

DEL DBG.ZZZ 

GOTO END 

:ERROR 

ECHO The correct syntax is: 

> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

>> DBG.ZZZ 

ECHO %0 PROGNAME WORDl [WORD2] . . . [WORDS] 

ECHO Where: PROGNAME is the name of the .COM file and 

ECHO WORDl to WORDS are words the program will print. 

ECHO eg: %0 BATCHKEY Enter a number from 1 to 5: 

ECHO Notes: 1) DON'T use single quotes (') or dollar signs. 

ECHO 2) DON'T put a .COM extension on PROGNAME! 

ECHO (%0 will do it for you automatically.) 

:END 



Batch Techniques 591 

GETKEY 
IF ERRORLEVEL 123 GOTO ERR 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
IF ERRORLEVEL 
:LOWER 
ECHO Lowercase 
GOTO TOP 
:UPPER 
ECHO Uppercase 
GOTO TOP 
:END 

97 GOTO LOWER 
91 GOTO ERR 
65 GOTO UPPER 
33 GOTO ERR 
32 GOTO END 
0 GOTO ERR 

All lowercase letters have decimal ASCII values from 97 through 122. All uppercase 
letters have decimal ASCII values from 65 through 90. The chart below shows all the IF 
ERRORLEVEL ASCII Characters. 

Characters 255-224: math, Greek letters, symbols 
Characters 223-219: blocks 
Characters 218-179: box and border elements 
Characters 178-176: shaded blocks 
Characters 175-169:. miscellaneous symbols 
Characters 168-155: miscellaneous currency signs and symbols 
Characters 154-128: various diacritical marks and symbols 
Characters 127-123: miscellaneous exotic punctuation 
Characters 122-97: lowercase alphabet (z=122; a=97) 
Characters 96-91: more miscellaneous exotic punctuation 
Characters 90-65: uppercase alphabet (Z=90; A=65) 
Characters 64-58: punctuation 
Characters 57-48: digits (9=57; 0=48) 
Characters 47-33: punctuation and symbols 
Character 32: space 
Character 27: escape 
Character 26: end-of-file marker ("Z) 
Character 13: enter ("M) 
Character 10: line feed.("J) 
Character 9: tab ("I) 
Character 8: backspace (AH) 
Character 7: beep(AG) 
Character 0: null 



596 PC Magazine DOS Power Tools 

usually want to do in menu systems - or process one only if it's there waiting. And it 
can handle attempts to break out of the operation, or ignore them.) 

Then create a batch file called ERRTEST.BAT: 

ECHO OFF 
:TOP 
ECHO You may break out of this loop 
ECHO by pressing Enter. Or press 
ECHO any other key to continue . . . 
GETKEY 
IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 GOTO END 
GOTO TOP 
:END 

This batch file simply tests to see whether the user pressed the Enter key, which has 
an ASCII value of decimal 13. 

When ERRTEST executes, it will print the three-line message and then run GET
KEY.COM. GETKEY.COM waits for the user to press a single alphanumeric key, and 
sets the return code to the ASCII value of that key. The single line: 

IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 GOTO END 

in the batch file tests whether the return code was 13, and at the same time screens out 
any higher values. You could just as easily change the batch file to: 

ECHO OFF 
:TOP 
ECHO You may break out of this loop 
ECHO by pressing Enter. Or press 
ECHO any other key to continue 
GETKEY 
IF ERRORLEVEL 14 GOTO TOP 
IF ERRORLEVEL 13 GOTO END 
GOTO TOP 
:END 

The following CASETEST.BAT batch file uses GETKEY.COM to fetch keystrokes 
and pass the ASCII value for each one to a "cascade,, of IF ERRORLEVEL tests: 

ECHO OFF 
:ERR 
ECHO Enter a lowercase or 
ECHO an uppercase letter 
ECHO (Or spacebar to quit) 
:TOP 



Batch Techniques 595 

IF ERRORLEVEL 0 ECHO True 

will always work, since all 256 possible exit codes are equal to or greater than 0. So this 
test will always print the message ''True." You don't even need a batch file to test this. 
Just type it in at the DOS prompt. 

At the other end of the spectrum: 

IF ERRORLEVEL 255 ECHO True 

will work in only one case - when the exit code happens to be 255. 
If you want to isolate a character like a space (which has an ASCII value of decimal 

32), you have to first screen out any higher exit codes: 

IF ERRORLEVEL 33 ECHO Nonspace 
IF ERRORLEVEL 32 ECHO Space 

You can combine such tests into one long line: 

IF ERRORLEVEL 32 IF NOT ERRORLEVEL 33 ECHO Space 

The most primitive example of a keystroke processing program is GETKEY .COM, 
which you can create by making sure DEBUG.COM is handy and then typing these seven 
lines: 

DEBUG 
E 100 B4 00 CD 16 B4 4C CD 21 
N GETKEY.COM 
RCX 
8 
w 
Q 

Here's the assembly language program that this creates: 

MOV AH,00 
INT 16 
MOV AH,4C 
INT 21 

BIOS read a character and 
puts its ASCII code into AL 
ready to exit with code 
do it 

(Both DOS and your system's BIOS can process keystrokes for you. This particular 
example uses BIOS, but you could just as easily have substituted a DOS function call. 
In fact, DOS is better for certain applications because it offers several options. It can dis
play the character you entered, or discard it. It can wait for a keystroke - which you 



594 PC Magazine DOS Power Tools 

ERRORLEVEL avoids every one of these problems, and lets you create menus that 
are smart, easy, and compact. 

An ideal menu system would display the options and wait for the user to enter a 
(preferably) single-digit choice, then execute that choice, without forcing him or her to 
hit the Enter key. 

It would be single-minded, preventing the user from stumbling into some other com
mand. This defect alone makes the primitive I.BAT, 2.BAT system worthless, since it 
returns to the DOS command line after displaying its choices. If the user enters a com
mand like DIR, DOS will scroll the menu choices off the screen. 

And it would retain control by looping back to the beginning every time a program 
finished running. One of the menu options would be to exit gracefully. and the menu sys
tem would restore the screen back to normal. 

IF ERRORLEVEL is one of the worst-named and most powerful of all DOS com
mands. According to IBM, all it really does is let your batch files know whether DOS 
successfully completed commands such as BACKUP, KEYB, REPLACE, RESTORE, 
or FORMAT. These programs set exit codes (also called return codes) depending on 
whether the programs were able to work completely or partially. And they can tell if the 
user or some system error interrupted the program in midstream. 

The IF ERRORLEVEL command can read these exit codes and act accordingly. So 
you could create a batch file to execute BACKUP or FORMAT and have provisions in 
the batch file to print customized messages onscreen if something goes wrong. IBM 
spends a lot of space in its manuals on this, and nobody uses it. 

On the other hand, IBM doesn't talk at all about how to send user input into batch files, 
which is something that DOS desperately needs. And DOS doesn't provide any direct 
utilities for putting IF ERRORLEVEL to work this way. 

But it's simple to harness IF ERRORLEVEL and make your batch files truly interac
tive. All you need is a version of a short assembly language program that reads keystrokes 
and translates them into exit codes that IF ERRORLEVEL can process. Then you just 
include the name of the program in your batch file and follow it with tests for the ap
propriate exit codes. These tests can jump to different labels inside the batch file, or they 
can execute programs or commands directly if the codes match. 

The basic test is in the format: 

IF ERRORLEVEL number action 

or: 

IF NOT ERRORLEVEL number action 

where number is the decimal value of the exit code, and action is the command to ex
ecute. 

Note: The tricky part of this is that IF ERRORLEVEL will execute the action if the 
exit code is equal to - or greater than - the number after the word ERRORLEVEL. 

DOS allows 256 possible exit codes from 0 to 255, so the command: 



Batch Techniques 593 

IF ERRORLEVEL 

One of the single most powerful DOS batch file tools is also one of the most poorly docu
mented - IF ERRORLEVEL. 

ERRORLEVEL makes your batch files truly interactive, and lets you create slick, 
friendly, foolproof menus that can run your whole system - or help a beginner through 
a complex task. 

Before users knew about IF ERRORLEVEL techniques, they'd slap together primi
tive menu systems that involved lots of little batch files. The main batch file would do 
nothing other than use the DOS TYPE command to display the contents of a text file like: 

Menu 

1 - Spreadsheet 
2 - Wordprocessor 
3 - Database 

Pick a number (1·3) then press Enter 

Then they'd write short batch files called 1.BAT, 2.BAT, and 3.BAT. Each would con
tai.n just the name of the software they wanted to load, and perhaps a CD\ command to 
jump into the proper subdirectory. 

While this worked, it had many drawbacks. After the batch file used TYPE to display 
the menu, it dropped back to DOS. The user saw a DOS prompt, and wasn't sure whether 
to type in a number or enter a command. You could get around this by using the PROMPT 
command to change the DOS prompt itself from C> or A> to: 

Type a number from 1 to 3 then press Enter ==> 

But when you were done running a particular program, the prompt would still ask you 
to pick a number. Then again, you could have the individual I.BAT, 2.BAT, 3.BAT batch 
files reset the prompt back to normal, but you might want to make another menu selec
tion. 

Worse, if the user entered the wrong kind of response, the menu would scroll up off 
the screen. In addition, the user had to press the Enter key after typing in the proper 
response, and some couldn't figure that out. And when the user was finished running the 
program he or she had chosen, the menu had long since vanished, leaving a bare screen. 
Again, the individual batch files could redisplay the menu when they finished, but that 
might be confusing to users who wanted to do something other than what was listed. 

Finally, dozens of little menu batch files, each with its own array of program-loading 
files, can waste a tremendous amount of space, especially on a system like an XT with 
its greedy 4K clusters. 



592 PC Magazine DOS Power Tools 

Case Insensitivity 

DOS is flexible about combinations of uppercase and lowercase text when it processes 
labels, but it's rigid and inflexible when comparing strings. 

This means that if you want to test all the possible ways to enter something as short as 
a three-letter word you'd have to make eight tests (2" number of letters). And longer 
words mean dramatically longer tests. 

To speed things up, you can use the CO:MP ARE.COM utility on the accompanying 
disk. COMPARE.COM compares two strings and ignores the case of the alphabetic 
characters. On return, it sets ERRORLEVEL 255 if both strings are equal and ERROR
LEVEL 0 if they are not equal or if a syntax error has occurred. After executing COM
P ARE.COM, your batch file may take appropriate action with the statement: 

IF ERRORLEVEL 255 action 

You can try this out by creating a sample batch file called COMPTEST .BAT: 

ECHO OFF 
IF %2!==! GOTO OOPS 
COMPARE %1==%2 
IF ERRORLEVEL 255 GOTO MATCH 
ECHO The strings are not equal 
GOTO END 
:MATCH 
ECHO The strings are equal 
GOTO END 
:OOPS 
ECHO The format required is: 
ECHO COMPTEST STRINGl STRING2 
:END 

Then, at the DOS prompt, type: 

COMPTEST hello HELLO 

and it will respond with the message: 

The strings are equal. 

But type something like "COMPTEST hello HELLOE" and the batch file will let you 
know the strings don't match. 



Batch Techniques 591 

Some users have complex batch file schemes to rename various versions of their CON
FIG .SYS and AUTOEXEC.BAT files and then reboot, in an effort to load ANSI or start 
their systems without it, and it's possible to have the batch file that triggers the whole 
process create a file called YESANSI when it does this. Then you could use an IF EXIST 
YESANSI command to detect whether ANSI is loaded. If you did try this, you'd have to 
make sure you erased YESANSI when you weren't starting your system with ANSI ac
tive. A lot of bother. 

Once your AUTOEXEC.BAT file executed a line like: 

SET ANSI=OFF 

or: 

SET BIOS=ON . 

or: 

SET ANSI=ON 

later batch files could include a line like IF ANSI=ON GOTO ANSISET or IF 
BIOS==ON GOTO BIOSSET. If ANSI was loaded, you could then jump to the ANSI 
color setter rather than the BIOS color setter. When you weren't using ANSI, the test 
would look at the environment and see that ANSI was not equal to ON, and branch to 
the BIOS setter rather than the ANSI one. 

Being able to phrase tests using negative conditions adds flexibility. The AN
SI1EST.BAT batch file could be written: 

ECHO OFF 
IF NOT !%ANSI%==!0N GOTO BIOSSET 
:ANSISET 
ECHO ANSI color setter goes here 
GOTO END 
:BIOSSET 
ECHO BIOS color setter goes here 
:END 

The exclamation points are needed to prevent a syntax error if no ANSI variable exists 
in the environment. Without something there (you could use any two other identical sym
bols such as IF NOT@%ANSI%==@0N) you would end up with a line that translated 
to 

IF NOT ==ON 

which would trigger a syntax error. 



590 PC Magazine DOS Power Tools 

Another clever way to allow multiple inputs but screen out invalid keystrokes is to use 
the FOR command. The FORTEST.BAT batch file will accept A, B, or C, or the lower
case version of each, while rejecting everything else. And it does this all on one line: 

ECHO OFF 
FOR %%A in (A B C a b c) DO IF !%1 == !%%A GOTO OKAY 
ECHO No, Enter: %0 A or %0 B or %0 C 
ECHO (or the lowercase versions of these) . 
GOTO END 
:OKAY 
ECHO Entering %1 is okay 
:END 

It's often necessary to avoid long strings of IF commands, especially on slower sys
tems. EASY AS.BAT tests three conditions in a single line: 

ECHO OFF 
IF NOT %2!==! IF %1==123 IF %2==456 GOTO YES 
ECHO Sorry, you entered the numbers wrong 
GOTO END 
:YES 
ECHO Yes, you entered both numbers correctly 
:END 

If you enter just the name of the batch file, the first test, for a missing second parameter 
(if not %2!=!) will jump execution down to the "Sorry ... " line. The same is true if you 
enter just one number, or any two numbers other than the correct ones, after the name of 
the batch file. However, if you enter: 

EASYAS 123 456 

the file will print the correct "Yes, you entered ... " message. 
One of the best places to use string tests is in dealing with environment variables. If 

you have two color-setting routines on your disk, one that uses direct BIOS calls (like 
the programs on the accompanying disk) and one that uses ANSI.SYS commands, you 
can have your batch file figure out which color system is active and execute the ap
propriate setting program. 

To do this, make sure you issue a batch file command SET ANSI=OFF (or BIOS=ON) 
when you configure your system to run without ANSI.SYS. Here it's easier to test for 
the absence rather than the presence of ANSI.SYS, since you load ANSI through your 
CONFIG.SYS file and not through a batch file. If you happened to have a batch file that 
loaded ANSI, it could set ANSI=ON at the same time. 



Batch Techniques 589 

IF %1==B: GOTO OKAY 

will become: 

IF B:==B: GOTO OKAY 

Since the replaceable parameter string B: is indeed equal to the preset string B:, the 
batch file will jump to the :OKAY label and run the real FORMAT.COM program -
which you've named to FMT.COM- and pass the B: drive letter to it. 

FORMAT .BA Twill accept only four parameters -A:, a:, B:, and b:. If the user enters 
anything other than one of these, all four tests will fail and the batch file will eventually 
reach the error message "ECHO You can't format drive % 1 ! ! ". Again, it will replace the 
% 1 with whatever the user entered. If he or she entered FORMAT C:, the batch file will 
take the C: and replace the % 1 with it, producing the message "ECHO You can't format 
drive C: !!".Then it will exit by jumping to the :END label. 

FORMAT.BAT contains an initial IF % 1 !==! GOTO OOPS test to make sure that the 
user entered something on the command line after the name of the batch file. If the user 
didn't enter anything at all after the name of the batch file, the test becomes: 

IF !==! GOTO OOPS 

Since ! clearly does equal ! the batch file jumps to a message at the :OOPS label that 
gives the user instructions. You may use any character on both sides of the double == 
sign, but make sure it's something unusual such as!,#, or$. So: 

IF $%1==$ GOTO OOPS 

is just as valid a test. 
DOS offers considerable flexibility in writing batch files like these. For example, you 

could rephrase the tests to make them negative and nest them all on one line in NEST.BAT 
if you wanted: 

ECHO OFF 
IF %1!==! GOTO OOPS 
IF NOT %1==A: IF NOT %1==a: IF NOT %1==B: IF NOT %1==b: 
GOTO NOPE 
FMT %1 
GOTO END 
:NOPE 
ECHO You can't format drive %1 ! ! 
GOTO END 
:OOPS 
ECHO Enter FORMAT then a drive letter A: or B: only 
:END 



588 PC Magazine DOS Power Tools 

GOTO ENO 
:EXTEN 
DIR I SORT /+10 
GOTO ENO 
:OOPSl 
ECHO Enter %0 S to sort by size, %0 F to sort by 
ECHO filename, or %0 E to sort by extension 
GOTO ENO 
:OOPS2 
ECHO Set up a proper PATH 
:ENO 

String Handling 

You can also use the IF command to compare two sets of character strings. For the com
parison to be valid, the strings must be identical in length, content, and case. 

One of the most important uses for this type of IF test is in processing replaceable 
parameters. If you want to protect your hard disk against accidental formatting, you can 
rename your FORMAT.COM command to something like FMT.COM, and run it out of 
a batch file called FORMAT.BAT: 

ECHO OFF 
IF %1!==! 
IF %1==A: 
IF %1==a: 
IF %l==B: 
IF %1==b: 
ECHO You 
GOTO ENO 
:OKAY 
FMT %1 
GOTO END 
:OOPS 

GOTO OOPS 
GOTO OKAY 
GOTO OKAY 
GOTO OKAY 
GOTO OKAY 

can't format drive %1 ! ! 

ECHO Enter FORMAT then a drive letter A: or B: only 
:ENO 

Note that you have to use a double equals sign in a string coi:nparison test. 
Since users can enter text in uppercase or lowercase, you need two IF tests (IF% l==A: 

GOTO OKAY and IF % l==a: GOTO OKAY) to catch both variations of each drive 
letter. 

If the user enters FORMAT B:, DOS will make replaceable parameter% 1 equal to B: 
and then plug this into the IF tests. The test: 



Batch Techniques 587 

You need both versions of the FOR test since your path can include directories that 
end in a backslash (such as C:\) as well as those that don't (such as C:\DOS). Fortunate
ly, DOS won't choke on the inevitable syntax errors that result from some of the tests. 
Unfortunately, DOS versions earlier than 3.0 won't do an IF EXIST test outside the cur
rent directory. And 3.0 has trouble with environment variables such as %PATH%. 

You'd obviously have to adapt this demonstration CHEKP A TH.BAT batch file to look 
for the specific files your particular batch file needs. 

If you're writing this for someone else you may want to include a test to make sure 
that a path does in fact exist. You could do this with a line: 

IF %PATH%!==! GOTO NOPATH 

:NOPATH 
ECHO Set up a proper path! 
GOTO END 

The following DIRSORT.BAT batch file will check to make sure that the DOS 
SORT.EXE utility is either in the current directory or a directory that your path knows 
about, that you have a path, and that you entered a parameter after the name of the batch 
file to tell it how to sort If everything is okay it will then sort your directory by name, 
size, or extension. If it finds something wrong it will print the appropriate error message: 

ECHO OFF 
IF %1!==! GOTO OOPSl 
IF %PATH%!==! GOTO OOPS2 
IF EXIST SORT.EXE GOTO YES 
FOR %%A IN (%PATH%) DO IF EXIST %%A\SORT.EXE GOTO YES 
FOR %%A IN (%PATH%) DO IF EXIST %%ASORT.EXE GOTO YES 
ECHO Put SORT.EXE on your disk for this to work 
GOTO END 
:YES 
IF %1==S GOTO 
IF %1==s GOTO 
IF %l==F GOTO 
IF %l==f GOTO 
IF %1==E GOTO 
IF %1==e GOTO 
GOTO OOPSl 
:SIZE 

SIZE 
SIZE 
FILEN 
FILEN 
EXTEN 
EXT EN 

DIR I SORT /+14 
GOTO END 
:FILEN 
DIR I SORT 



586 PC Magazine DOS Power Tools 

will create a new file and put a line of text in it only if no file with the specified name 
existed previously. Or, if you've kept a blank LOGFILE file in a subdirectory called 
C:\MISC, you could copy it to the current directory, if none existed, with the command: 

IF NOT EXIST LOGFILE COPY C:\MISC\LOGFILE 

Batch files often use DOS filters like MORE.COM, FIND.EXE, and SORT.EXE. It's 
simple to have a batch file check whether these happen to be in the current directory. But 
you can also tell it to see whether these files happen to be in a directory that your path 
knows about. If these executable files are either in the current directory or one specified 
by your path, a batch file that needs them will be able to do its job. If they're not in either 
of those places the batch file will stumble. You can test whether a file is in a directory 
your path can handle with a CHEKP ATH.BAT batch file like: 

ECHO OFF 
IF %1!==! GOTO OOPS 
FOR %%A IN (%PATH%) DO IF EXIST %%A\%1 GOTO YES 
FOR %%A IN (%PATH%) DO IF EXIST %%A%1 GOTO YES 
GOTO END 
:YES 
ECHO %1 is in a directory your PATH knows about 
GOTO END 
:OOPS 
ECHO Enter a file (with extension) to search for 
:END 

DOS replaces the %PATH% in the FOR commands with your actual path, then has 
each FOR command execute an IF EXIST check in every directory your path specifies. 
All elements in a set specified by a FOR command have to be separated by normal DOS 
delimiters. Usually this delimiter is a space, and you end up with a set like: 

(*.COM *.EXE *.BAT) 

l l 
space space 

However, a semicolon works just as well as a space, and path directories happened to be 
separated by semicolons. So DOS translates a (%PATH%) set to something like: 

(C:\;C:\DOS;C:\DOS\BIN) 

which is the same as: 

(C:\ C:\DOS C:\DOS\BIN) 



IF 

Batch Techniques 585 

SHELL [d:] [path]COMMAND.COM /E:n /P 

command in your CONFIG.SYS file, where n represents the number of 16-byte 
paragraphs. For versions 3.2 and later, use the same SHELL command but specify the 
actual number of bytes rather than paragraphs. The default in all cases is 160 bytes (ten 
paragraphs). You can increase it all the way to 32K in DOS 3 .2 and 3.3, but you' re limited 
to 62 paragraphs (992 bytes) in earlier versions. 

Format: 

IF EXIST [d:] [path]filename[.ext] command 
IF NOT EXIST [d:] [path]filename[.ext] command 

IF stringl==string2 command 
IF NOT stringl==string2 command 

IF ERRORLEVEL number command 
IF NOT ERRORLEVEL number command 

IF allows conditional command execution. It is invaluable for finding files, string hand
ling, and other uses including IF ERRORLEVEL, DOS's undocumented gem. 

File Finding 

One of OOS's most powerful tools, IF rulows batch files to execute specific commands 
or branch to specific batch routines depending on external conditions. This lets you make 
your batch files smarter and interactive, with the addition of a tiny utility to process user 
input (which DOS neglected to provide). 

The simplest IF command tests whether a file is present. Under DOS 2.x, you couldn't 
specify a path, so all tests had to be within the current directory. However, DOS 3.x 
remedied this glaring oversight. The command: 

IF EXIST HELP.TXT TYPE HELP.TXT 

will display a HELP.TXT file only if one exists in the current directory. This can come 
in handy if you want to create a log file and check that the header in the file says what 
you want. 

A section of a batch file like: 

IF EXIST LOGFILE GOTO FOUNDIT 
ECHO This is a new file > LOGFILE 
:FOUND IT 



584 PC Magazine DOS Power Tools 

And watch your typing if you reset environment variables. If you initially set 
ECHO=ON and you tried to reset the value to OFF by typing: 1 

SET ECHO =OFF 

DOS would think you were trying to establish an additional environment variable with 
a space as the fifth character, and you'd end up with two variables: 

ECHO=ON 
ECHO =OFF 

The first one would be %ECHO% and the second would be %ECHO %. 
However, while extra spaces are always a concern, you don't have to worry about case 

on the left side of the equals sign when setting a variable. The three commands: 

• SET ECHO=OFF 
• SET echo=OFF 
• SET eChO=OFF 

will all set an environment variable ECHO to OFF. 
You can put all these tests into a batch file that would look like: 

ECHO OFF 
IF %ECHO%!==! GOTO NOTSET 
IF %ECH0%==0N GOTO OKAY 
IF %ECHO%==on GOTO OKAY 
IF %ECH0%==0n GOTO OKAY 
IF %ECH0%==0FF GOTO OKAY 
IF %ECHO%==of f GOTO OKAY 
IF %ECH0%==0f f GOTO OKAY 
ECHO %ECHO% is an invalid ECHO setting 
GOTO END 
:NOTSET 
ECHO Set your ECHO variable 
GOTO END 
:OKAY 
ECHO ECHO is current set to %ECHO% 
:END 

Note: If you insert too many strings into your environment you can run out of environ
ment space. The default is a paltry ten 16-byte paragraphs, or 160 bytes. 

Under DOS 2.0 and 2.1 you can patch COMMAND.COM at hex address ECF to rep
resent the number of 16·byte memory paragraphs that will make up your new environ· 
ment (For DOS 2.11 the address is hex DF3.) 

For DOS 3.0 and 3.1, there's a much better way. Just put a: 



Batch Techniques 583 

Once you've added a variable to your environment, you can change it simply by using 
another SET command: 

SET SCREEN=VGA 

You can remove the variable from the environment by entering the variable name and 
an equals sign with nothing after it: 

SET SCREEN= 

If you have two screens and you're changing to a monochrome display, the batch file 
that does the changing can also reset the SCREEN variable: 

SET SCREEN=MONO 

Then any other programs and batch files can tell which screen is active by looking at the 
%SCREEN% variable. 

The ability to keep track of a state and pass the information to a batch file can help you 
debug batch files. When you're creating and testing a batch file you often want ECHO 
to be ON so you can see where any potential problems are. But when you run the batch 
file you want ECHO to be off so it doesn't clutter your screen with commands. To solve 
this, make the first line in your batch file: 

ECHO %ECHO% 

Then, at the DOS prompt, type: 

SET ECHO=ON 

when you want to see all the commands execute, and: 

SET ECHO=OFF 

when you want to suppress them. 
Be careful when setting environment variables since they're case-sensitive and space

sensitive. If you set ECHO=ON you'll have to test for: 

IF %ECH0%==0N GOTO OKAY 
IF %ECHO%==on GOTO OKAY 
IF %ECH0%==0n GOTO OKAY 

In addition. you should first test to see whether you've given the %ECHO% variable 
any setting at all, with a test like: 

IF %ECHO%!==! GOTO NOTSET 



582 PC Magazine DOS Power Tools 

MAXSHIFT A B C D E F G H I J K L M N 0 P Q R S T U V 

and continue all the way through the uppercase and lowercase alphabets and MAXSHIFT 
would display every letter. It knows when to stop because it runs a: 

IF %1!==! GOTO END 

test each time it shifts. This test will be true (and it will stop displaying characters) only 
when % 1 is finally equal to nothing because all the parameters have been used up. When 
this happens the test will become: 

IF !==! GOTO END 

Until then, % 1 ! will always be equal to A! or B ! or z! or whatever variable just shifted 
over. And something like: 

IF A!==! GOTO END 

will not be true, because "A!" is not equal to just"!" by itself. 

Environment Variables 

Format: SET ENVVAR=V ALUE (to create an environment variable) 
ECHO %ENVVAR % or IF %ENVVAR %==PRESET GOTO LABEL 
(to use it) 

Although it wasn'tdocumented until PC-DOS version 3.3, doesn'talways work proper
ly with earlier versions, and doesn't work at all under 3 .0, you may use a special section 
of memory called the environment as a storage area for variables. 

You can see what DOS currently stores in your environment by typing SET at the DOS 
prompt. You '11 always see a line beginning COMSPEC= which tells your system where 
to look for the COMMAND.COM command processor. And you'll probably also see 
your path, your PROMPT, and possibly an APPEND path and a few variables set by 
some commercial software (such as WordPeifect). 

Entering the word SET followed by a variable name of your choice, then an equals 
sign, then a character string: 

SET SCREEN=EGA 

will add: 

SCREEN= EGA 

to your environment. 



SHIFT 
ECHO %NAME% %0 %1 %2 %3 
SHIFT 
SET NAME= 

Batch Techniques 581 

DOS will still wipe out the name of the batch file originally stored as %0 the first time 
it executes the SHIFT command, but it will still be able to remember and display it since 
you stored it as an environment variable called NAME with the: 

SET NAME=%0 

command, and then dredged it back up when you used the: 

ECHO %NAME% 

command. This time, using the same four parameters after SHIFTIT2.BAT: 

SHIFTIT2 A B C D 

would yield: 

C>ECHO OFF 
SHIFTIT2 A B C 
SHIFTIT2 A B C D 
SHIFTIT2 B C D 

retaining the name of the batch file each time even though the SHIFT command wrote 
over it. Unfortunately, because of a DOS bug, environment variables won't work in ver
sion 3.0. 

The SHIFT command can read as many parameters off the command line as you 
entered, and you can type in only 127 characters including the name of the batch file it
self. If your batch file had a name that was just one letter long and you entered only single
character parameters, with spaces between them, you could have SHIFT squeeze out 63 
of them. The MAXSHIFT.BAT batch file below: 

ECHO OFF 
:TOP 
IF %1!==! GOTO END 
ECHO %1 
SHIFT 
GOTO TOP 
:END 

will keep reading all the parameters off the command line and ECHOing them one by 
one until they've all been processed. You could enter: 



580 PC Magazine DOS Power Tools 

DOS prompt). If you want to use more than nine replaceable parameters you have to use 
the SHIFT command. 

SHIFT Parameters 

Each time DOS executes the SHIFT command it moves each replaceable parameter down 
in value one notch. So the value that was stored as %3 moves down and becomes %2, 
and the value stored at %2 becomes %1, and %1 becomes %0 (which originally held the 
name of the batch file). Each time you execute SHIFT the old %0 value disappears. 

If you had a batch file called SHIFTIT.BAT: 

ECHO OFF 
ECHO %0 %1 %2 %3 
SHIFT 
ECHO %0 %1 %2 %3 
SHIFT 
ECHO %0 %1 %2 %3 
SHIFT 

and you typed: 

SHIFTIT A B C D 

DOS would print: 

C>ECHO OFF 
SHIFTIT A B C 
A B C D 
B C D 

as it shifted all the parameters down one by one. 
In the first line DOS replaced %0 with the name of the batch file and printed three of 

the four letters entered Of1 the command line. After the first shift, the name of the batch 
file disappears as DOS moves everything down a notch, but this time the batch file prints 
the fourth parameter entered on the command line (the D) even though the fourth 
parameter dido 't appear the first time. 

If you want to preserve the name of the batch file itself when using the SIDFf com
mand, you have to set an environment variable as this new SHIFTIT2.BAT batch file 
does: 

ECHO OFF 
SET NAME=%0 
ECHO %0 %1 %2 %3 
SHIFT 
ECHO %NAME% %0 %1 %2 %3 



Batch Techniques 579 

ECHO OFF 
ECHO %0.BAT is the name of the batch file 
ECHO %1 
ECHO %2 
ECHO %3 
ECHO %4 
ECHO %5 

and you entered at the DOS prompt 

READBACK This message 

you'd end up with: 

C>ECHO OFF 
READBACK.BAT is the name of the batch file 
This 
message 
ECHO is off 
ECHO is off 
ECHO is off 

DOS would substitute "READBACK" for %0, "This" for %1, and "message" for %2. 
But since you dido 'tenter any other text, DOS would make the parameters %3, %4, and 
%5 equal to nothing. When it got around to executing the lines: 

ECHO %3 
ECHO %4 
ECHO %5 

DOS would tum them into: 

ECHO 
ECHO 
ECHO 

and report the current ON/OFF ECHO state. 
To prevent this from happening, you can put an ASCII character 0 at the end of each 

of the bottom five lines (by using EDLIN to create READ BACK.BAT and pressing the 
Fl key and the end of each line). 

Adding a character 0, which will appear onscreen as a blank, to each line will make 
sure that DOS will ECHO something and not interpret a missing parameter as just an 
ECHO command on a line by itself. 

DOS can handle up to nine replaceable parameters % 1 through %9 in one gulp, and 
will always replace %0 with the name of the batch file itself Gust as it was entered at the 



578 PC Magazine DOS Power Tools 

There is a way to get around this (DOS is nothing if not flexible), but it's preposterous. 
Add a few lines so the TEXT.BAT file looks like: 

ECHO OFF 
IF %1!==! GOTO OOPS 
ECHO :%1 > TEMPFILE 
ECHO COPY %0.BAK %0.BAT >> TEMPFILE 
ECHO DEL %0.BAK >> TEMPFILE 
COPY %0.BAT %0.BAK > NUL 
COPY %0.BAT+TEMPFILE > NUL 
DEL TEMPFILE 
GOTO %1 
:OOPS 
ECHO Enter %0 BLUE or %0 RED or %0 BLACK 
GOTO END 
:BLUE 
ECHO ESC[0;47;34m 
GOTO END • 
:BLACK 
ECHO ESC[0;47;30m 
GOTO END 
:RED 
ECHO ESC[0;47;31m 
:END 

This uses the ECHO command and DOS redirection to create a temporary file called 
TE11PFILE containing a brand new label that matches whatever you typed in, as well as 
some commands to copy and delete backup versions of the main file. TEXT .BAT then 
appends this new file to the end of itself. Since the new file contains a valid label, you 
won't get a "Label not found" message. 

If you typed in an invalid color such as PUCE, you'll end up with a meaningless :PUCE 
label at the very end that won't change any colors and is there simply to guard against 
error messages. If you typed in a valid color such as RED, you'll end up with two :RED 
labels. However, since (1) this process appends the phony label at the end, (2) DOS starts 
looking for labels at the beginning of the file, and (3) DOS will execute the first occur
rence of a label if a batch file contains more than one, TEXT.BAT will jump to the first 
:RED label and execute the proper command to set the foreground to red. 

This enhancement will clean up after itself by making a backup copy of the original 
file, copying this unblemished backup copy onto the changed one, and then erasing the 
extra backup. But it's not really worth it. For one thing, DOS 2.x can become confused 
if you enter a label name that's longer than eight characters. And this won't work with 
any version of DOS if you enter an invalid label, such as one with a period in it. But it 
shows what you can do to get around a DOS bottleneck. 

If you had a batch file on your disk called READ BACK.BAT: 



Batch Techniques 577 

If you didn't mind slogging through a cascade of case-sensitive tests, and you were 
willing to forego tests for unusual capitalizations such as bLuE, you could change the 
top of the batch file so that TEXT.BAT looked like: 

ECHO OFF 
IF %1!==! GOTO OOPS 
IF %1==BLUE GOTO COLl 
IF %1==blue GOTO COLl 
IF %1==BLACK GOTO COL2 
IF %1==black GOTO COL2 
IF %l==RED GOTO COL3 
IF %1==red GOTO COL3 
:OOPS 
ECHO Enter %0 BLUE or %0 RED or %0 BLACK 
GOTO END 
:COLl 
ECHO ESC[0;47;34m 
GOTO END 
:COL2 
ECHO ESC[0;47;30m 
GOTO END 
:COL3 
ECHO ESC[0;47;31m 
:END 

In this case if the user entered a color that TEXT.BAT wasn't able to handle, such as: 

TEXT MAUVE 

the batch file would pass the first IF %1!==! test, but fail all six IF %1==COLOR tests. 
Execution would "fall through" this sieve of tests and end up at the :OOPS label, where 
the batch file would display the message about which colors were allowed, and then exit. 

Unfortunately, if the user entered: 

TEXT Blue 

the batch file would think this was a disallowed color, since the only versions of color 
entries that TEXT.BAT is prepared to accept are all uppercase and all lowercase. It would 
be easy to add an additional test for each color that accepted variations where the first 
letter was uppercase and all the remaining ones were lowercase. But then if the user 
~~~ . 

TEXT BLue

(which is a common typing mistake). the batch file wouldn't recognize this variant.

576 PC Magazine DOS Power Tools

Enter TEXT BLUE or TEXT RED or TEXT BLACK

The line that prints the instructions:

ECHO Enter %0 BLUE or %0 RED or %0 BLACK

uses %0 rather than the name TEXT.BAT, so if you rename TEXT.BAT to something
like FOREGRND.BAT or COLORSET.BAT the instructions will always print out the
correct new batch filename.

This batch file uses labels that are the same as the replaceable parameters entered by
the user. Labels are not case-sensitive, so this technique eliminates the long list of tests
normally required to see whether a user entered Red, RED, or ReD, for example.

To see whether you did enter a color on the command line, TEXT.BAT uses the line:

IF %1!==! GOTO OOPS

If you entered something like:

TEXT RED

DOS would assign replaceable parameter% 1 the value RED. It would then replace each
occurrence of %1 in the batch file with RED, so the test would become:

IF RED!==! GOTO OOPS

Since the characters "RED!" obviously do not equal the single character"!" the test
fails and the batch file does not jump execution to the :OOPS label.

However, if the user didn't enter any color, and simply typed:

TEXT

on the DOS command line, % 1 would be equal to (nothing) and the test would become:

IF ! ! GOTO OOPS

Clearly,"!" is equal to"!" so the batch file will execute the command at the end of the
line, which jumps execution to the :OOPS label. The commands at this label will print
instructions on how to use the program and then quit.

You don't have to use exclamation points; any pair of characters will do. The test could
just as easily have been:

IF %1@==@ GOTO OOPS

abc

LMNOP

! ! ! ! ! ! !

PC

Magazine

Batch Techniques 575

If you have ANSI.SYS loaded, and you use a color monitor and like white back
grounds, but you sometimes want black text, red text, or blue text, you could create a file
called TEXT.BAT:

ECHO OFF

IF %1!==! GOTO OOPS

GOTO %1

:OOPS

ECHO Enter %0 BLUE or %0 RED or %0 BLACK

GOTO END

:BLUE

ECHO ESC[0;47;34m

GOTO END

:BLACK

ECHO ESC[0;47;30m

GOTO END

:RED

ECHO ESC[0;47;31m

:END

Note: Don't type this in exactly as shown - instead, substitute the actual Esc charac
ter, decimal ASCII 27 (or hex lB) in place of the three occurrences of "ESC." Also, be
sure your CONFIG .SYS file includes a line like:

DEVICE=ANS I.SYS

If you've loaded ANSI.SYS and have inserted actual Esc characters in place of each
ESC, you can change your foreground color to red simply by typing:

TEXT RED

just as shown, or in mixed case or lowercase - it doesn't matter.
Typing TEXT BLACK will give you black text on a white background, and TEXT

BLUE will yield blue letters against white. However, if you typed simply:

TEXT

without any color after it, TEXT.BAT would print out instructions on how to use this
file, and quit. You'd see something like:

574 PC Magazine DOS Power Tools

assign replaceable parameters to anything past the ninth one. But by using the SHIFT
command, you can have DOS gradually work its way through them all.

If you enter fewer than nine discrete parameters after the name of the batch file, DOS
assigns null strings that are zero characters long to any variables for which there isn't
any text.

The first discrete chunk of text is assigned to %0. This is always the name of the batch
file itself. The next is assigned to %1, and the one after that to %2, etc.

If you run the simple ENDLESS.BAT batch file, the sole contents of which are the
two characters:

%0

DOS will substitute the name of the batch file itself - ENDLESS - for the %0, and
then execute it, which will rerun itself until you press Ctrl-C or Ctrl-ScrollLock and then
type Y to stop.

When DOS replaces the variables with the actual text from the command line, it's sen
sitive about spacing. So if you created a batch file called OVER.BAT:

%1%2%3%4 %1 %2 %3 %4

and then ran it by typing:

OVER 0 V E R

DOS would keep repeating the batch file endlessly since it would concatenate the 0, the
V, the, E, and the R that you entered after the batch file name itself, and lump them
together into OVER.

You can display all the replaceable parameters you entered with the following short
SEEALL.BAT batch file:

ECHO OFF

FOR %%A IN (%0 %1 %2 %3 %4 %5 %6 %7 %8 %9) DO IF NOT %%A!==! ECHO %%A

If you type in just SEEALL, all you'll get is:

SEEALL

But enter something like:

C>SEEALL 12345 abc LMNOP ! ! ! ! ! ! ! PC Magazine

and the batch file will print out:

SE ALL

12345

By adding a message after NEWP AUSE:

ECHO OFF
DIR

Batch Techniques 573

NEWPAUSE Press any key to see this again:
DIR

DOS will display the line:

Press any key to see this again:

when it pauses after the initial DIR listing.
The TICKER.COM program on the accompanying disk will display a moving ticker

tape display across the bottom of your screen. It's a bit gimmicky, but it's also a way to
liven up your batch files.

You can use PAUSE or any of these other utilities to break out of an otherwise end
less loop:

CD \MEMO
ws
PAUSE
DEL *.BAK
%0

This file switches into your MEMO directory and runs WordStar. Then when you exit
WordStar it pauses temporarily. If you want to continue you can press any key and the
batch file will erase any BAK backup files, then reload the batch file and start the process
all over again. However, if you don't want to continue, you can press Ctrl-ScrollLock or
Ctrl-C and answer Y or y to the confirming question it asks and you 're back at the DOS
prompt.

A better way is to use IF ERRORLEVEL, which is discussed in detail later, and ask
the user to press one key to continue or another to abort.

Replaceable Parameters

%0%1%2%3%4%5%6%7%8%9

These handy tools let batch files use text entered on the DOS command line to control
how the batch files work or display custom messages and prompts.

When you execute a batch file, DOS scans the command line, looks for delimiters such
as spaces, equals signs, semicolons, commas, and tabs that separate what you entered
into discrete chunks, and then assigns the text that makes up these chunks to ten variables
-%0through %9.

DOS can handle up to 127 characters typed on the command line. If you enter more
than nine separate clumps of text after the name of a batch file, DOS can't immediately

572 PC Magazine DOS Power Tools

PAUSE is helpful if you have to change disks, turn on a printer, or perform some other
time-consuming task, since it puts the batch file on hold until you press a key to continue:

ECHO Put a blank formatted
ECHO diskette in drive A:
PAUSE

Used on a line by itself, this command temporarily halts the batch file execution, then
prints a "Strike a key when ready ... " message, and waits for the user to press any non
shift key other than Ctrl-C or Ctrl-ScrollLock. If the user presses either of those "break"
key combinations the process aborts and DOS displays the usual interruption message
"Terminate batch job (Y /N)?".

If you type Y or y DOS will abort the batch file and return you to whatever you were
doing before. If you type N or n, DOS will continue running the batch file as if nothing
had happened. Press any other key and DOS will stubbornly repeat the "Terminate ... "
message.

It's possible to put a message after the word PAUSE, but this message displays only
when ECHO is off, which means that the user also sees the DOS prompt and the word
PAUSE. Very unsightly.

Users of version 3.x can replace the normal "Strike a key when ready" message with
an ECHO command and then redirect the normal PAUSE output to NUL with a trio of
lines like:

ECHO OFF
ECHO Make sure your printer is on, then press any key
PAUSE > NUL

but this won't suppress the "Strike" message on older versions. If users of DOS 2.x want
to display a message, they can at least prevent the word PAUSE from showing up
onscreen by putting five backspaces directly after it. They can add backspace characters
using most good word processors (with WordStar, for example, they'd simply type Ctrl
p Ctrl-H five times).

An even better method that works under all versions of DOS is to run the NEW
P AUSE.COM program on the accompanying disk, or one of the fancier PAUSE utilities
such TICKER.COM.

Use NEWP AUSE either on a line by itself or by following it with text you want dis
played. A sample batch file that included just the lines:

ECHO OFF
DIR
NEWPAUSE
DIR

would display a directory listing, then pause without putting anything onscreen, and then
display another directory listing as soon as the user pressed any key.

PAUSE

C>ECHO 1 A

1 A

C>ECHO 1 B

1 B

C>COMMAND/C FOR %B IN (A B) DO ECHO 2 %B

C>ECHO 2 A

2 A

C>ECHO 2 B

2 B

Batch Techniques 571

You could reduce the clutter a bit by adding an initial ECHO OFF, but this won't sup
press the bulk of the display since DOS turns ECHO back on when it loads the second
copy of COMMAND.COM. This nesting technique works only with COMMAND /C,
so if you're using a DOS version 3.3 or later, don't try replacing the COMMAND JC
with CALL.

Commands like COPY and DIR don't take multiple arguments. A way around this is
to have DOS execute the command multiple times, each with a different argument. For
example, to copy all COM and EXE files to a floppy disk, you could type directly at the
DOS prompt:

FOR %F IN (*.COM *.EXE) DO COPY %FA:

While this works, DOS will grind through the process one file at a time rather than
ganging things up as it does with wildcards.

Using a FOR loop on the command line isn't limited to just filenames. Commands can
also be used as FOR loop variables as in:

FOR %C IN (COPY ERASE) DO %C A:*.EXE

to copy .EXE files from a floppy disk, then erase them from the disk.
Another way to do multiple copies on the same command line is to use piping. The

following command will copy all your COM and EXE files to drive A:

COPY *.COM A: I COPY *.EXE A:

Format: PAUSE [message]

This momentarily halts execution. Nothing more.

570 PC Magazine DOS Power Tools

1:c:HO OFF

IF !%2==! GOTO OOPS

COMMAND /C UNIQ %1 %2 > LOGFILE

GOTO END

:OOPS

ECHO Syntax: %0 A: C: where C: is the default drive

:END

Combining the FOR command with both replaceable parameters and environment
variables gives it real power. If your path included the root directory (which is why the
NOT test is required) and it specified subdirectories on one disk only, a batch file called
PATHDIR.BAT containing the command:

FOR %%A IN (%PATH%) DO IF NOT %%A==C:\ DIR %%A\%1

would let you find all your COM files in all the subdirectories in your PA TII by typing:

PATHDIR *.COM

DOS would replace the %PATH% variable with the actual list of subdirectories
specified by your PATH command, and the FOR command would perform a DIR search
through each for any *.COM files. Elements in the set must be separated by delimiters
such as spaces, but the semicolons used in path specifications will work admirably.

To use the FOR command directly at the DOS prompt, replace the twin %% signs with
single % signs. However, double %% signs are required for use in batch files.

DOS won't normally let one FOR command execute another FOR command. Try it
and DOS will print a "FOR cannot be nested" error message. However, you can make
an end run around this restriction by having the first FOR load a secondary command
processor right before the second FOR.

If you try nesting these without COMMAND IC in a batch file called
FORNESTLBAT:

FOR %%A IN (1 2) DO FOR %%B IN (A B) DO ECHO %%A %%B

you'll just get a "FOR cannot be nested" error message. But create a file called
FORNEST2.BAT that adds a COMMAND IC to invoke a secondary command proces
sor:

FOR %%A IN (1 2) DO COMMAND/C FOR %%B IN (A B) DO ECHO %%A %%B

and sure enough DOS will execute it, nest the two commands, and print:

C>FOR %A IN (1 2) DO COMMAND/C FOR %B IN (A B) DO ECHO %A %B

C>COMMAND/C FOR %B IN (A B) DO ECHO 1 %B

CTTY CON

GOTO END

:HELP

Batch Techniques 569

ECHO %0 copies files from a source disk or directory to a

ECHO destination if they're NOT already on the destination.

ECHO Syntax: %0 *·* c:

ECHO %0 *.DOC \subdir

ECHO You must be in the directory you want to copy from.

:END

This batch file uses CTTY NUL to disconnect the keyboard and screen temporarily so
you don't see a long line of "l File(s) copied" messages. The CTTY CON command puts
things back the way they were. Unfortunately, if something goes wrong after the CITY
NUL but before the CTTY CON has a chance to return control to you, you'll be locked
out of your system. If you want to avoid this potential problem, without having to con
coct a scheme where this batch file loads another batch file, just remove the two lines
that begin with CITY.

You can adapt this technique to help make various directory chores a whole lot easier.
For instance, if you want to compare the contents of two disks or a disk with a subdirec
tory to see which files are in one and not in the other, you can use the UNIQ.BAT batch
file:

ECHO OFF

IF %2!==! GOTO HELP

ECHO Files on %1 but not on %2

FOR %%A IN (%1*. *) DO IF NOT EXIST %2%%A ECHO %%A

ECHO Files on %2 but not on %1

FOR %%A IN (%2*. *) DO IF NOT EXIST %1%%A ECHO %%A

GOTO END

:HELP

ECHO %0 lists files that are not on both disks

ECHO Syntax: %0 A: C: where C: is the default drive

:END

To have UNIQ.BAT tell you what files are on drive C: but not drive B: and vice versa,
jusuype:

UNIQ C: B:

This won't work with DOS versions earlier than 3 .0, since these can't handle IF EXIST
searches with paths in them.

If you want to log the list of files reported by UNIQ.BAT to disk rather than just dis
playing them on the screen, create a small file called LOG .BAT:

568 PC Magazine DOS Power Tools

FOR %%A IN (*.BAK) DO DEL %%A

and:

FOR %%a IN (*.BAK) DO DEL %%a

will erase all your BAK files, but:

FOR %%a IN (*.BAK) DO DEL %%A

and:

FOR %%A IN (*.BAK) DO DEL %%a

won't.
If you had a lot of quarterly expense reports on your disk, with names like

S8Q1EXP.RPT, 88Q2EXP.RPT, 88Q3EXP.RPT, 88Q4EXP.RPT, 87Q4EXP.RPT,
87Q3EXP.RPT, 87Q2EXP.RPT, and 87Q1EXP.RPT, and you wanted to print out just
the ones from the first and second quarters, you could run a batch file with the single line:

FOR %%A IN (1 2) DO COPY 8?Q%%AEXP.RPT PRN

DOS would replace the ? with the last digit of the year (7 or 8) and replace the %%A
with 1or2.

One of the simplest and most useful FOR applications can check to see whether you've
backed up your files, and will make backup copies only when you haven't. Just create a
one-line batch file, called BACKCHEK.BAT:

FOR %%A IN (*.*) DO IF NOT EXIST B:%%A COPY %%AB:

This is far from the perfect backup tool, since it won't copy newer versions of files over
older ones, or pause when your B: diskette is full and prompt you to insert another flop
py. And it works within one directory only. But it can come in handy for quick brute
force backups and puts a lot of DOS intelligence into one line.

By adding replaceable parameters you can enhance this one-line backup command to
accept filespecs from the command line and copy files to another disk or subdirectory
only if they're not already there. The following COPYFAST.BAT batch file will do it:

ECHO OFF

IF %2!==! GOTO HELP

ECHO Copying files from %1 that are not already on %2

CTTY NUL

FOR %%A IN (%1) DO IF NOT EXIST %2%%A COPY %%A %2

Batch Techniques 567

(set) is the filespec or collection of filespecs that DOS will act on, and can be a wildcard
such as:

(*. *)

or:

(*.BAK)

or a group of files such as:

(MORE.ASM MORE.OBJ MORE.COM)

So a batch file command such as:

FOR %%A IN (*.*) DO DEL %%A

would erase all the files in your directory one by one without asking for a confirming:

Are you sure (Y/N)?

the way DEL *. * does.
However, a batch file that used a FOR command to delete all your files would end up

erasing itself, and you'd get a "Batch file missing" error message. To avoid this, put a
drive letter or path in front of the *. * and run it from another directory or drive.

To see a directory listing of all you COM and EXE files, you'd type:

FOR %%A in (*.COM *.EXE) DO DIR %%A

Be sure to add the final %%A. If you leave it off, DOS won't do a DIR *.COM and a
DIR* .EXE. Instead it will just do a plain old DIR, since there wouldn't be any parameters
after it. When you don't enter any parameters after DIR, DOS assumes you mean:

DIR*·*

The command:

FOR %%A in (*.COM *.EXE) DO DIR

would sniff out all the files that ended in COM and EXE, but would end up doing the
same repeated DIR *. * listing for each occurrence of a COM or EXE file. So if there are
two COM files and three EXE files, DOS will do a DIR *. * command five times. You
must add the %%variable command onto the end for the FOR command to act on what
you've specified in the (set).

Be sure that the %%variable matches in case at the beginning and end of the line:

566 PC Magazine DOS Power Tools

You can also pass values to other batch files without having to first load them with
COMMAND /C or CALL. Just use SET to store the value as an environment variable.

You can have your batch files detect whether any specified settings are currently in
force with a test like:

IF %MONITOR%!==! GOTO NOSETTNG

You could test to see if you had previously set any variables, check the validity of the
setting, and act on it with a batch file like this:

ECHO OFF
IF %MONITOR%!==! GOTO SETMON
IF %MONITOR%==MONO GOTO GREENCOL
IF %MONITOR%==mono GOTO GREENCOL
IF %MONITOR%==COLOR GOTO NORMLCOL
IF %MONITOR%==color GOTO NORMLCOL
ECHO %MONITOR% monitor setting invalid
GOTO END
:SETMON
ECHO No monitor variable in use
GOTO END
:GREENCOL
ECHO Mono attribute setter would go here
GOTO END
:NORMLCOL
ECHO Color setter would go here
:END

FOR ... IN ... DO

This integrated trio allows repeated execution of a command on a specified set of files.
The format is :

FOR %%variable IN (set) DO command [%%variable]

inside batch files, and:

FOR %variable IN (set) DO command [%variable]

outside of batch files. (Note that you use double %% signs inside batch files and single
% signs outside batch files.)

%%variable and %variable are variable names, generally single letters such as %%a
or %Z. You can't use the digits 0-9 for variable names, since DOS reserves these for
replaceable parameters.

ECHO This is TEST2
ECHO %1

if you ran 1EST1, you'd see:

This is TESTl
This is TEST2
TESTPARM
Back to TESTl

Batch Techniques 565

The first batch file passed the parameter TESTP ARM to the second by including it
after the name of the file it called. The second batch file picked up the parameter with
%1. .

If you 're using a version of DOS earlier than 3.3, substitute COMMAND IC in place
of CALL, and add an additional ECHO OFF line at the very beginning ofTEST2.BAT.

You can make this process more useful by blitzing out parameters repeatedly with a
FOR command.

If you run the following FILI .BAT batch file:

@ECHO OFF
Echo Starting out in FILl.BAT
FOR %%A in (*.BAK) DO CALL FIL2 %%A
ECHO Back to batch file #1

the third line will CALL the next FIL2.BA T batch file:

ECHO OFF
ECHO ***********************
ECHO Now you're in FIL2.BAT
ECHO The contents of %1 are:
TYPE %1
ECHO ***********************
PAUSE

and pass parameters from FILI.BAT to FIL2.BAT using the %%A in FILI.BAT and the
% 1 in FIL2.BAT.

FILI.BAT will seek out all the files that have BAK extensions and FIL2.BAT will
ECHO the name of each one and then use TYPE to display the contents of each one.
After FIL2.BAT has displayed the last *.BAK file, it will stop running and DOS will
return command to the line in FILI.BAT following the line with the CALL. If you try
this yourself and you're using an older version of DOS, substitute COMMAND /C for
CALL.

Later you'll see how you can construct some very useful disk management utilities by
combining FOR commands with CALL or COMMAND /C.

564 PC Magazine DOS Power Tools

So you can have a line in your program like:

IF NOT EXIST ABC ABORT ABC not found.

If DOS doesn't find ABC, the batch file will quit without executing any GOTO state
ments and display:

ABC not found.
Operation aborted.

If the words after ABORT had been omitted, then the only closing message would be
"Operation aborted."

You can combine the two techniques into one big #.BAT batch file:

ECHO OFF
REM #.BAT
IF NOT EXIST ABC ABORT ABC not found.
IF %1!==! DO TYPE C:\DATA\PHONE.DAT
FIND "%1" C:\DATA\PHONE.DAT

In this case, whether or not you type anything after the #, the program simply won't
proceed if ABC isn't on your disk. If you create a dummy ABC file (that contains just
the word REM), the program will bypass this test and look up numbers with aplomb. If
you erase ABC, all you 'II get is the:

ABC not found.
Operation aborted.

message and the #.BAT file will grind to a halt.
These examples assume that you have a list of your phone numbers called

PHONE.DAT in your C:\DAT A directory, and that this file is in a form, with each entry
on one line with a carriage return at the end of it, that FIND can handle.

Passing Parameters

You may pass parameters from one batch file to another. Just include a parameter after
the filename on the line with the CALL or the COMMAND /C.

If you had a file on your disk called TEST 1.BAT:

@ECHO OFF
ECHO this is TESTl
CALL TEST2 TESTPARM
ECHO Back to TESTl

and another called TEST2.BAT that was called by TEST LB AT:

Batch Techniques 563

As an example, you could use DO.BAT in a program called #.BAT that displays either
a selected phone number or your entire phone list, depending on whether you specify a
parameter when you run it. So:

Nixon

or:

* (212)

would find all listings with Nixon or (212) in them, while:

by itself would display the entire list. The batch file looks like:

ECHO OFF
REM #.BAT
IF %1! DO TYPE C:\DATA\PHONE.DAT
FIND "%1" C:\DATA\PHONE.DAT

Of course, #.BAT is short and doesn't really need such a trick. But DO.BAT does save
time and space. Without it, the original batch file would have been written:

ECHO OFF
REM .#.BAT
IF !%1==! GOTO SEELIST
FIND "%1" C:\DATA\PHONE.DAT
GOTO END
:SEELIST
TYPE C:\DATA\PHONE.DAT
:END

You can adapt this technique with two other speedy batch files-ABORT.BAT and
CO:MPLETE.BAT - that can branch absolutely. These will quickly quit any batch file
after an IF check, with the option of including a message:

REM ABORT.BAT
IF NOT %1!==! ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9
ECHO Operation aborted.

REM COMPLETE.BAT
IF NOT %1!==! ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9
ECHO Operation completed.

562 PC Magazine DOS Power Tools

C>ECHO OFF
This is BATCHl.BAT
Now you're in BATCH2.BAT
Now you're back to BATCHl

If you try the COMMAND IC version, be sure you have a copy of COMMAND.COM
handy for the batch file to load. And also note that when you load a secondary command
processor you have to turn ECHO OFF again in the second batch file.

DOS is very liberal about handling different COMMAND IC syntaxes. All of the fol
lowing versions will work identically:

• COMMAND IC BATCH2
• COMMANDIC BATCH2
• COMMAND ICBATCH2
• COMMANDICBATCH2

Don't assume that DOS will be so cavalier about spacing with most other commands.
It's not.

Fast Exits

Users often want to have DOS treat direct calls to batch programs the same way it handles
other executable commands from within batch files - as subroutines. You can call
another batch file by loading a secondary command processor that runs the second batch
file and then returns to the first, or you can use CALL to turn batch branches into sub
routines (in versions 3.3 or above).

However, calls to executable programs and system commands always act as subroutine
calls, returning processing to the next line in the batch file. Many times it's necessary for
a batch file to branch to one other command after an IF test and then exit. This is usual
ly done with a cumbersome and clutter-producing GOTO command that branches to
another part of the batch program, runs the desired command, and then branches again
to a common exit point, such as a final line called :END.-

All this branching, especially in long batch programs, can be time-consuming and con
fusing to edit. An quick alternative is to capitalize on DOS' s absolute branching feature
by calling a batch file that simply runs a program or an internal DOS command and then
quits. A tiny DO.BAT batch file can accomplish this for you with just one line:

@%1 %2 %3 %4

(The initial@ will prevent the line from displaying, and works only in versions 3.3 or
later. Omit it if you 're using an older version of DOS.)

This technique works very quickly. Just have an IF test (or an IF ERRORLEVEL
check) branch to an executable DOS command or COM or EXE program and then quit.

If you have a file on your disk called BATCHl.BAT:

ECHO OFF
ECHO This is BATCHl.BAT
COMMAND /C BATCH2
ECHO Now you're back to BATCHl

and another one called BA TCH2.BAT:

ECHO OFF
ECHO Now you're in BATCH2.BAT

Batch Techniques 561

and you run BATCHl.BAT in either DOS 2.x or 3.x, DOS will:

1. Start executing BATCHl .BAT by turning ECHO OFF and printing just the "This is
BATCHl.BAT" message.

2. Load a second copy of COMMAND.COM.
3. Have this additional copy of COMMAND.COM start running BATCH2.BAT.
4. Tum ECHO OFF and print just the "Now you 're in BATCH2.BAT" message.
5. Exit both BATCH2.BAT and the second copy of COMMAND.COM.
6. Return to BATCHl.BAT.
7. Print the final "Now you 're back to BATCHl" message.

This will take a few seconds, since DOS has to find a copy of COMMAND.COM to
load, read it off the disk into memory, and then load and run the second batch file. The
whole process will look like:

C>ECHO OFF
This is BATCHl.BAT

C>ECHO OFF
Now you're in BATCH2.BAT
Now you're back to BATCHl

If you 're using a DOS version 3.3 or later, you can change BATCHl .BAT to read:

ECHO OFF
ECHO This is BATCHl.BAT
CALL BATCH2
ECHO Now you're back to BATCHl

This time DOS doesn't have to hunt for a version of COMMAND.COM to load. And
itdoesn'tneedtheadditionalECHOOFFatthebeginningofBATCH2.BAT. The process
takes far less time and will look like:

560 PC Magazine DOS Power Tools

CALL

You'd then make the label names the same as the parameters that the user might enter.
So if you had a :JFK label (or one spelled :jfk or :Jfk, etc.) in a batch file called
FLIGHT.BAT, and the user entered:

FLIGHT JFK

or:

FLIGHT jfk

or even something like:

FLIGHT jFk

the GOTO %1 dispatcher would branch immediately to the :JFK label without having to
wade through dozens of tests.

However, while the IF% l==STRING method lets you screen out every possible right
or wrong entry, a GOTO % 1 command won't test for invalid entries or errant keystrokes.
If a label exists that exactly matches the letters in the parameter the user entered, the batch
file will jump execution to it. But if the user entered a parameter for which there was no
matching label, DOS would panic, print a "Label not found" error message, and abort
the batch file.

Format: CALL [d:][path]filename

Starting with version 3.3, this lets you execute one batch file from inside another and
return execution to the original batch file when the second one finishes. When DOS
returns command to the original batch file it will jump to the line immediately following
the CALL. Beginning with version 2.x, users had been able to nest batch files by using
COMMAND IC to load additional command processors, but this had environment draw
backs, and ate up unnecessary space.

Each time you load another command processor, it makes the default ECHO ON. This
means that if you tum ECHO OFF in the first line of a batch file, and then use COM
MAND IC to load a second batch file, you'll have to include a second ECHO OFF in the
second batch file to keep DOS from cluttering up your display. But when you use CALL
the ECHO state is maintained in any nested batch files so you don't have to keep reset
ting it.

However, COMMAND IC has its uses. While DOS claims you can't nest FOR com
mands, you can do it by inserting a COMMAND IC at the right place. This technique
won't work with CALL.

Both COMMAND IC and CALL let you nest batch files several levels deep. You may
have a batch file CALL itself, so long as you're certain you'll be able to exit properly
and avoid an endless loop.

ECHO OFF
GOTO END
GOTO ABCD
:END
ECHO This is the end

Batch Techniques 559

will execute flawlessly, since DOS will never have the chance to see that the :ABCD
label is missing.

You may mix GOTO commands with conditional IF commands:

IF %l==RED GOTO COLOR

or:

IF NOT ERRORLEVEL 255 GOTO END

This lets you include provisions for many different potential user responses or system
configurations in one large batch file, and branch to the one that's appropriate.

You can easily exploit the case-insensitivity of labels. It's common to ask a user to
enter information from the command line and then have your batch file process this in
formation so it can branch properly. This is usually done by handling the user input as a
replaceable parameter (such as % 1 or %2) and then passing it through a series of IF
% l=S1RING tests. If the user entered a parameter n characters long, you would nor
mally have to set up 2"n tests to trap every possible combination of uppercase and lower
case letters.

Even if the user entered a three-letter parameter from the command line, you'd have
to examine eight potential variations. If you were testing for JFK to jump to the :AIR
PORT label, this would mean a cascade of tests:

IF %l==JFK GOTO AIRPORT
IF %l==JFk GOTO AIRPORT
IF %l==JfK GOTO AIRPORT
IF %l==jFK GOTO AIRPORT
IF %l==jFk GOTO AIRPORT
IF %l==jfK GOTO AIRPORT
IF %l==jfk GOTO AIRPORT

And all these tests are for just one possible user parameter. If you had to test for other
airports the batch file would quickly grow long and ponderous.

Because labels are case-insensitive, you could eliminate all these tests by having one
"dispatcher" line at the beginning of your batch file:

GOTO %1

558 PC Magazine DOS Power Tools

ECHO OFF
GOTO MAGAZINl
REM Dummy line
:MAGAZIN2
ECHO This is the wrong place.
GOTO END
:MAGAZINl
ECHO This is the right place.
:END

and then ran it under any version of DOS, you'd see:

This is the right place.

Be sure to put a colon in the leftmost column when you actually use a label on a line
by itself to tell the batch file where to jump. You don't have to attach the colon to the
label name in the GOTO command, but it won't hurt. The original NONSTOP.BAT batch
file could would work either way:

ECHO OFF ECHO OFF
:TOP

or
:TOP

DECIDE DECIDE
GOTO TOP GOTO :TOP

l l
(no colon) (colon)

Batch files often boast multiple GOTO commands that share the same label destina
tion. It's common practice to end complex batch files with an ":END" label and include
lots of different GOTO END commands that will jump execution there when appropriate.

DOS doesn't mind if you include labels in your batch files that aren't matched with
GOTO commands. Such unreferenced labels are treated as REM statements, except that
DOS will never display them. (It will display REM statements if ECHO is turned on.)

Labels are not case sensitive, so a batch file such as:

:top
ECHO This line will keep printing.
GOTO ToP

will loop until you press Ctrl-C or Ctrl-ScrollLock. Later you '11 see how useful this can
be in branching user input to the right label without having to do all sorts of repetitive
tests for TOP, top, Top, ToP, TOp, toP, etc.

If your batch file does contain an error such as a missing label, DOS won't detect the
mistake unless it tries unsuccessfully to execute it. So a batch file like:

Batch Techniques 551

:THIS IS

So under 2.x, running the above batch file would simply display ''Label not found."
If you tried using long, similar label names, in the following variation of the above

NEVER.BAT batch file under 3.x:

ECHO OFF
GOTO MAGAZINEl
REM Dummy line
:MAGAZINE2
ECHO This is the wrong place.
GOTO END
:MAGAZINEl
ECHO This is the right place.
:END

DOS would print out:

This is the wrong place.

because it would interpret the GOTO MAGAZINE 1 command simply as GOTO
MAGAZINE, and truncate the :MAGAZINE2 label (which is nine characters long) to
simply MAGAZINE. So to this version of DOS, the NEVER.BAT batch file really looks
like:

ECHO OFF
GOTO MAGAZINE
REM Dummy line
:MAGAZINE
ECHO This is the wrong place.
GOTO END
:MAGAZINE
ECHO This is the right place.
:END

But try to run this new NEVER.BAT batch file under DOS 2.x and all you'll get is a
nasty "Label not found" error, since DOS will chop off the end of the instruction "GOTO
MAGAZINE 1" and turn it into "GOTO MAGAZINE." It will then scan through the batch
file looking for a ":MAGAZINE" label but will find only ":MAGAZINE I" and
":MAGAZINE2" and it will consider these to be different from plain old
":MAGAZINE."

If you shortened the labels in NEVER.BAT down to the maximum eight characters
long:

-----· -----

556 PC Magazine DOS Power Tools

when DOS sees the GOTO MAGAZINl label it will jump to the first instance of it and
never get to the second one. Even if you moved the GOTO command below the first oc
currence of the label it specifies:

ECHO OFF
REM Dummy line
:MAGAZINl
ECHO It will keep printing this
GOTO MAGAZINl
:MAGAZINl
ECHO It will never print this
:END

DOS will still circle back to the beginning of the file and jump to the fust :MAGAZINl
label. In this particular case it would display the "It will keep printing this" line and then
loop back endlessly - or at least until you type Ctrl-C or Ctrl- ScrollLock and then Y to
stop it.

While you can use very long label names in your batch files, such as:

:THIS IS WHERE THE PROGRAM WILL GO NEXT -- - - - --

all that DOS really cares about is the first eight letters, not including the colon, which
isn't actually part of the label.

So under version 3.x, running the LONG.BAT batch file:

ECHO OFF
GOTO THIS IS
GOTO END
:THIS_IS_WHERE_THE PROGRAM WILL GO NEXT
ECHO Yes, the program did get here.
:END

will print out:

Yes, the program did get here.

since DOS whittles the THIS_IS_ WHERE_ THE_PROGRAM_ WILL_GO_NEXT label
down to THIS_IS_.

Unfortunately, different versions of DOS handle long label names differently. While
DOS 3.x truncates extra long labels, DOS 2.x doesn't. Under version 2.x, the long

:THIS_IS_WHERE_THE_PROGRAM_WILL_GO_NEXT

label is totally different from:

Batch Techniques 555

:CONTINUE
ECHO This is the bottom line

DOS is fussy about not allowing reserved devices names (such as CON and NUL) in
filenames, so it won't let you create a file such as NUL.BAT or PRN.TXT. But you can
use these as batch labels. So the RESERVED.BAT file:

ECHO OFF
GOTO CON
:NUL
ECHO This is NUL
GOTO PRN
:AUX
ECHO This is AUX
GOTO END
:CON
ECHO This is CON
GOTO NUL
ECHO This is the right place
:PRN
ECHO This is PRN
GOTO AUX
:END

would print ouc

This is CON
This is NUL
This is PRN
This is AUX

When DOS hunts for labels it starts at the top of the batch file and works down toward
the end. So if you try the following NEVER.BAT batch file with duplicate labels:

ECHO OFF
GOTO MAGAZINl
REM Dummy line
:MAGAZINl
ECHO It will print this
GOTO END
:MAGAZINl
ECHO It will never print this
:END

554 PC Magazine DOS Power Tools

GOTO

Format: GOTO [:]LABEL

This is a powerful command that sends control of a batch file (or branches) to another
location in the batch file identified by a unique label.

A batch file label is simply a string of characters with a colon prefix in the leftmost
column. (DOS 2.x is fussier than 3.x about what constitutes the leftmost column; under
2.x the colon has to be at the very left edge of the screen. Version 3.x simply wants a
colon as the first character, and can handle leading spaces and indentations.) The rules
for naming labels are virtually the same as for naming files, except that for some reason,
DOS version 3.x accepts question marks as labels. If you ran the following QUES·
TION.BAT batch file using version 3.x:

ECHO OFF
ECHO This is the first line
GOTO ???
ECHO This middle line won't appear
:???
ECHO This is the bottom line

The middle line won't ever appear, since the GOTO ??? command skips around it and
jumps execution directly to

1 the :??? label. However, other illegal filename characters
such as<>[]I;,*=." won't work.

Run QUESTION.BAT under version 2.x, however, and DOS would display the first
line onscreen but stumble over the ??? and print a "Label not found" error message. If
DOS scans all the way through a batch file and can't locate a label specified by a GOTO
command, it prints this message and stops the batch file in its tracks.

If you hadn't exactly matched the NONSTOP.BAT label with the reference in the
GOTO command:

ECHO OFF
:TOPP
DECIDE
GOTO TOP

or

ECHO OFF
:TOP
DECIDE
GOTO TOPP

or

each example would run the DECIDE program once then grind to a halt.

ECHO OFF
:TOP
DECIDE
GOTO

ICs smart to give your labels names that help you debug, enlarge, or otherwise adapt
them later. So you'd be better off changing QUESTION.BAT to read:

ECHO OFF
ECHO This is the first line
GOTO CONTINUE
ECHO This middle line won't appear

Batch Techniques 553

REM "I" is the Piping Symbol

The text following REM may actually be longer. than 123 characters, but DOS will
display only the first 123 when ECHO is turned ON.

You can also add comments to your batch files by prefacing them with a colon and
treating them as unreferenced labels - labels for which there is no corresponding GOTO
command (see GOTO). DOS treats any line beginning with a colon as a label, and won't
display it or process it regardless of whether ECHO happens to be ON or OFF. (This
means you don't have to wrap operators such as I or< inside quotation marks when using
them as label-type comments.) Comments can be far longer if you treat them as labels
than if you preface them with REMs.

If you do use labels to insert comments, be sure that the first word of the comment is
not the same as any of the real labels paired with a GOTO statement. DOS always starts
searching for labels at the beginning of a batch file, and will stop as soon as it finds a
match. If you have two identical labels in the same batch file, DOS will always jump to
the first one and will never get around to any others with the same spelling.

DOS 2.x was fussy about having labels begin at the left edge of the screen, and it in
sisted that colons be in column 1. DOS 3.x is far more liberal.

Some users include a REM and the name of the batch file in each batch file:

ECHO OFF

REM This is DIRSORT.BAT

DIR I SORT

Not too many people ever want their REM statements to display, and most generally
use colons instead to fool DOS into treating remarks like labels, which never print
onscreen.

If you do want to print a message, it's probably better to use ECHO. But if you insist
on sticking with REM, you can eliminate the actual word REM from the display. Just
add a string of backspaces after the word REM. You can't do this when using COPY
CON to create your batch files, since DOS uses the backspace key for making correc
tions. But any word processor that allows embedded control codes (such as Word.Star)
makes the process a snap. With WordStar you can enter a backspace by typing Ctrl-P
then Ctrl-H.

If your word processor can't imbed ASCII character 8 backspaces in your file, try run
ning the following BASIC program, which will create a RE1\.1LESS .BAT demonstration
file:

100 ' REMLESS.BAS creates REMLESS.BAT test batchfile

110 OPEN "REMLESS.BATn FOR OUTPUT AS #1

120 PRINT #1,"CLS"

130 PRINT #1,"REM this is a remark"

140 PRINT #l,"REM0 ;STRING$(3,8);"this is a REMless remark"

150 CLOSE:END

552 PC Magazine DOS Power Tools

Automated ECHO Entry

ECHO can come in very handy when you have to simulate user response in a batch file,
or when you want to combine commands. You can delete all your files, for instance, by
using ECHO to send DOS a Y as if you had typed it in response to the "Are you sure
(YIN)?" prompt:

ECHO Y I DEL *·*

Use this command sparingly, since it will wipe out all your files.
A similar trick will print the time or date without any user intervention. Just type:

ECHO I MORE I TIME

Normally you'd have to press Enter when you just want to print the time or date
onscreen, since DOS always asks you if you want to change the current settings. ECHO
helps do this for you. ·

ECHO will trigger the MORE command, which sends a carriage return into the TIME
command. Sounds complicated, but it's actually very simple, and it lets you harness
TIME and DA TE without having to be there to bang on the Enter key. You can use this
to redirect the output of TIME and DATE into a log file:

ECHO MORE DATE FIND "C" > LOGFILE

ECHO MORE TIME FIND "C" >> LOGFILE

The extra FIND command screens out the DOS update requests and cleans up LOG
FILE by looking only for the lines with the word "Current" in them and tossing anything
else. Without them you'd end up with a file that looked like:

Current date is Sun 1-14-1990

Enter new date (mm-dd-yy) :

Batch Techniques 551

really care whether you have an extra space at the end of the line, while 2.x won't budge
unless you include this final space. DOS is consistently inconsistent.

You can also generate blank lines by following ECHO with a space, and then one of
a short list of characters. In DOS 2.x you can use this method with characters 0, 8, 9, 32,
and 255. Under DOS 3.x, characters 9 and 32 won't work. In both cases you don't need
to slap on an additional space at the end of the line.

However, the safest way in just about every version is to use ASCII character 0 and a
space, in either order. Type:

ECHO
(then press the space bar)
(then press the F7 function key)

or type:

ECHO
(then press the F7 function key)
(then press the space bar)

Following ECHO with just a character 0 will work under DOS 3.x but not 2.x.
When you press F7 at the DOS prompt, DOS will display a@ sign. Don't confuse this

with the@ character itself, and don't try entering a@ by typing the shifted 2 key.
Some versions of DOS also insist that every line that begins with an ECHO end with

a carriage return. Recent editions have gotten around this problem, but if you 're using an
older version and DOS prints the ECHO command itself as well as the message it's sup
posed to ECHO, try inserting a carriage return at the end of the offending line.

This is especially true if an ECHO command is the last line of a batch file. If you use
the ECHO+ space+ ASCII 0 technique (which will appear as ECHO@):

550 PC Magazine DOS Power Tools

You type everything following the DEBUG hyphen(-) prompts; DEBUG prints out
all the rest. Typing RCX and pressing the Enter key twice reports how long the file is.
The D 100 L 71 command tells DEBUG to display (D) the contents of the file starting at
address 100 and continuing for a length (L) of 71 bytes (you have to start at address 100
because DEBUG loads just about all files at that address rather than at address 0).

One way to figure out where the a, b, and c are located is just to eyeball the display,
but DEBUG's search (S) command can do it for you automatically. A command like S
100 L 71 "a" tells DEBUG to Search for the character "a" starting at address 100 and
continue searching for 71 bytes. In the example above, DEBUG found an "a" at address
30DD:Ol29. When you're dealing with virtually any batch file you can ignore the four
hex digits to the left of the colon; these will vary from system to system and don't mat
ter here. The 0129 number does matter - it's the address of the "a."

To replace the "a" with a character 0, use the Enter command in the form E 129 0. This
tells DEBUG to Enter (E) a value of 0 at address 0129.

Remember to use hex notation exclusively. Consult a decimal-to-hex chart if you need
to. So when entering decimal ASCII character 27, you have to first convert it to its hex
form, lB. If you tried to enter a 27 rather than a lB, DEBUG would think you meant a
hex 27, which is equal to decimal 39.

When you're all done, use the Wand Q commands to write the file to disk and then
quit. If you 're not an experienced DEBUG user, work on a copy of DUMMY .BAT called
DUMMY2.BAT (or whatever). That way if you make a mistake you can always make
another copy of the original and try again.

You can type some version 3.x blank-producing characters directly:

ECHO"
ECHO+
ECHO.
ECHO/
ECHO:
ECHO[
ECHO]

Again, this will work only in 3.x versions. (Under DOS 3.x you can also follow ECHO
with a space and then one of the ASCII characters 0, 8, or 255.)

Unfortunately, earlier versions of DOS behave very differently.
Under version 2.x you can print a blank line by following ECHO directly with any of

the ASCII characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 43, 44, 47, 58, 59, 61, 91, 92, and 93 - and
then adding an extra space. If you forget the extra space at the end this technique won't
work at all.

Note that this list is different from the 3 .x list above. You can generate a blank line in
version 3.x by putting a period (character 46) directly after ECHO, but this won't work
with 2.x. However, under version 2.x, putting characters 9, 10, 32, 44, 59, and 61 (tab,
line feed, space, comma, semicolon, or equals sign) and then a space after ECHO will
display a blank line while these won'tdo the trick in version 3.x. And version 3.xdoesn't

Batch Techniques 549

140 PRINT fl,"ECHO USING CHARACTER";B;"--"
150 PRINT tl,"ECHO";CHR$(B)
160 NEXT:CLOSE
170 DATA 0,8,27

Or you could type in dummy characters and use DEBUG to patch them. If you created
a file called DUMMY .BAT that looked like:

ECHO OFF
ECHO USING CHARACTER 0
ECHO a
ECHO USING CHARACTER 8
ECHOb
ECHO USING CHARACTER 27 --
ECHOc

You could then go into DEBUG and replace the a, b, and c with 0, 9, and 1B (IB is the
hexadecimal representation of decimal 27 and DEBUG works exclusively in hex):

C>DEBUG DUMMY.BAT

-RCX
ex 0071

-D 100 L 71

30DD:0100 45 43 48 4F 20 4F 46 46-0D OA 45 43 48 4F 20

30DD:0110 53 49 4E 47 20 43 48 41-52 41 43 54 45 52 20
30DD:0120 20 2D 2D OD OA 45 43 48-4F 61 OD OA 45 43 48

30DD:0130 20 55 53 49 4E 47 20 43-48 41 52 41 43 54 45
30DD: 0140 20 38 20 2D 2D OD OA 45-43 48 4F 62 OD OA 45

30DD:0150 48 4F 20 55 53 49 4E 47-20 43 48 41 52 41 43

55

30

4F

52

43

54

30DD:0160 45 52 20 32 37 20 2D 2D-0D OA 45 43 48 4F 63 OD
30DD:0170 OA
-S 100 L 71 "a"
30DD:0129
-E 129 0
-S 100 L 71 "b"
30DD:014B
-E 14B 8
-S 100 L 71 "c"
30DD:016E
-E 16E lB

-w
Writing 0071 bytes
-Q

ECHO OFF .. ECHO U

SING CHARACTER 0

-- .. ECHOa .. ECHO

USING CHARACTER

8 -- .. ECHOb •• EC

HO USING CHARACT

ER 27 -- •. ECHOc.

548 PC Magazine DOS Power Tools

ECHO OFF
CTTY NUL
DIRR
DIR !@#$
CTTY CON

nothing will display except ECHO OFF.
The normal DOS default setting is ECHO ON. You can tum ECHO off directly at the

command line if you want, which makes the prompt disappear. Executing a subsequent
CLS wipes everything off your screen.

Some users patch COMMAND.COM to flip the default to ECHO on. If you aren't
comfortable doing this (and there are valid reasons for being squeamish about it), you
can suppress initial ECHO OFF commands in batch files several ways. The obvious one
is to prefix the command with an@ sign, but this won't work in versions prior to 3.3.

If you have ANSI.SYS loaded, you can follow ECHO off with the ANSI sequence:

ESC[lA ESC[K ESC[B

on the line below (being sure to substitute an actual ASCII character 27 - hex 1B - in
place of the three ESCs in the example). ESC[lA moves up a line, ESC[K erases that
line, and ESC[B moves down a line when done.

However, most users don't load ANSI. The alternative is to use the NOECHO.COM
program on the accompanying disk, which does essentially the same thing without forc
ing the user to deal with ANSI codes.

NOECHO.COM moves cursor up one line on the current video page, then erases that
line. To use this, make the first line in your batch file ECHO OFF and make the second
NOECHO.

Adding blank lines to your batch files is a bit trickier. Under later versions of DOS,
you can print blank lines in your batch files by typing any of 35 different characters
(ASCII values 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 31, 34, 43, 46, 47, 58, 91, or 93) right after the word ECHO, without any
intervening space (as in ECHO: or ECHO[).

Many of these ASCII values represent control characters that you can enter in DOS
by using the Alt-keypad method. Just hold down the Alt key, type in the ASCII value on
the number pad (not the top row number keys), then release the Alt key. You won't be
able to do this with all of them, however. DOS will interpret entries like ASCII 3 as Ctrl
Break, 8 as a backspace, and 27 as Esc. You can enter a character 0 in DOS by pressing
theF7key.

To enter such difficult characters, you could use a BASIC program such as
ECHOMAKR.BAS:

100 ' ECHOMAKR.BAS -- for blank lines
110 OPEN "ECHOBLNK.BAT" FOR OUTPUT AS #1
120 PRINT #1,"ECHO OFF"
130 FOR A=l TO 3:READ B

Batch Techniques 547

COPY /B %1 +,,

line to read:

COPY /B %1 +,, > NUL

Then when you enter UPDATE COMMAND.COM, all you'll see is:

C>ECHO OFF
COMMAND.COM'S date and time now updated.

(And in versions 3.3 or later, you can change the first line in the batch file to@ECHO
OFF to suppress the initial ECHO OFF message.)

If you try this yourself, be sure to include the/Bin the COPY line. The COPY+,,
process actually copies the file onto itself, and updates the directory listing in the process.
By adding a /B switch, you tell DOS to copy the entire length of the file specified by the
number of bytes in the directory listing. If you don't include this, DOS will stop copy
ing if it sees an ASCII character 26, since it interprets this as an end-of-file marker. Many
text files slap on such an end-of-file indicator, but program files treat occurrences of these
ASCII 26 characters differently. If you forget to add the /B parameter you 'II end up trun
cating your program files, which makes them utterly worthless - so be careful.

If you really want to shut things down, you can sandwich any potential screen-clut
terers between the lines:

CTTY NUL

and:

CTTY CON

But if you try this, be very careful, since CTIY NUL effectively disconnects your
keyboard and screen from what's going on, and unless you're absolutely certain that the
batch file is going to make it back to the restorative CTTY CON line, you 're playing with
fire.

Assuming you don't have a file in your current directory called!@#$, running the fol
lowing ERROR.BAT batch file:

ECHO OFF
DIRR
DIR !@#$

will display two error messages- "Bad command or file name" since DIR is misspelled,
and "File not found" since the !@#$ file isn't on your disk. But if you add CTTY NUL
and CTTY CON commands:

546 PC Magazine DOS Power Tools

ECHO ==========
ECHO ; ; ; ; ; ; ; ; ; ;
ECHO %%%%%%%%%%

will produce:

ECHO is off
ECHO is off
ECHO is off
%%%%%

The addition of the message-suppressing@ symbol is welcome, but still won't prevent
DOS from printing messages such as "l File(s) copied." The way to suppress these is to
add a NUL after any DOS command that would normally generate a message onscreen:

COPY C:\DOS*.COM D: > NUL

The following UPDATE.BAT batch file will change the date and time in the directory
listing for any file you specify:

ECHO OFF
IF %1!==! GOTO OOPSl
IF NOT EXIST %1 GOTO OOPS2
COPY /B %1 +,,
ECHO %l's date and time now updated.
GOTO END
:OOPSl
ECHO You must specify a filename to update.
GOTO END
:OOPS2
ECHO There is no file called %1 in this directory.
:END

If COMMAND.COM is in the current directory and you enter:

UPDATE COMMAND.COM

you'll see:

C>ECHO OFF
COMMAND.COM

1 File(s) copied
COMMAND.COM's date and time now updated.

To clean this up, change the:

Batch Techniques 545

Back Up Your Disks Often

regardless of whether ECHO is currently on or off. IfECHO is off, just the text will ap
pear. If ECHO is on, the actual ECHO command will appear first, followed on a separate
line by the message ifs printing, so you'll see something like:

C>ECHO Back Up Your Disks Often
Back Up Your Disks Often

Actually, ECHO can display any printable ASCII character. This lets you print fancy
borders and boxes around your text, or display foreign language characters or math sym
bols. However, DOS doesn't make it easy to generate these characters except by using
the Alt-keypad technique or by letting you harness ANSI.SYS to redefine certain shifted
keys so they print characters with ASCII values greater than 127.

To ECHO a message with a DOS operator symbol (such as I, <, or >) in it, wrap the
symbol between quotation marks, as in:

ECHO "I" is the Piping Symbol

You may dress up your screen by using ECHO to display fancy box and border high
bit ASCII characters (with values over 127). Some of the accompanying utilities will
make it easy to work with such characters, or you can use the Alt+ numeric keypad tech
nique or redefine your keyboard using ANSI.SYS or a commercial keyboard macro
program.

To create or append data to a file, use:

ECHO data > filename

which creates a brand new file called filename, or:

ECHO data >> filename

which appends data to an existing file.
Entering ECHO on a line by itself, or with nothing after it other than spaces, tells DOS

to report whether ECHO currently happens to be set ON or OFF.
Be careful when using ECHO to display characters that DOS treats as delimiters (com

mas, semicolons, or equals signs) to separate parameters and commands. DOS will treat
these as blanks and, if nothing else is on the same line other than the word ECHO, will
think you 're asking for a report on the current ON/OFF state.

Also, since batch files use percent signs to indicate environment variables or replace
able parameters, DOS will display every other one if you try to ECHO a string of them.
So a batch file like:

ECHO OFF
ECHO ,,,,,,,,,,

544 PC Magazine DOS Power Tools

ECHO

• Batch filenames must end in BAT. Make sure that no COM or EXE file shares the
same filename as your batch file. If you have a file on your disk called RUN.COM
or RUN.EXE, and you create a batch file called RUN.BAT, DOS will always ex
ecute the RUN.COM or RUN.EXE file first, and never get around to running the
RUN.BAT file.

• DOS processes batch files differently in versions 2.x and 3.x. Earlier versions can
not use IF EXIST tests outside the current subdirectory or redirect PAUSE mes
sages, insist that labels begin in column 1, and become confused if label names are
longer than eight characters.

• Versions 3.x and later offer the ability to CALL other batch files without having to
run an additional copy of COMMAND.COM, can suppress line displays by prefac
ing them with@ signs, and in recent editions document the use of environment vari
ables (although these won't work in 3.0). .

• Finally, each version of DOS uses slightly different (but overlapping) techniques
for generating blank lines with the ECHO command.

Format: ECHO [ONIOFFlmessage]

Controls display of onscreen messages and can create files or append data to existing
files by redirecting ECHO output.

ECHO ON displays all commands as they execute. This is the normal default.
ECHO OFF suppresses commands (including REM remark statements) from display

ing as DOS executes them. But messages and errors will still appear. To prevent screen
clutter and suppress as many messages as possible, make ECHO OFF the first line in
your batch file.

If you nest batch files by using COMMAND JC to jump back and forth from one to
the other, you'll have to put an ECHO OFF at the beginning of each. When COMMAND
JC loads a secondary command processor, the new command processor turns ECHO on
again, forcing you to turn it off manually. The CALL command introduced in version
3.3 maintains the ECHO state when jumping from one batch file to another.

In versions 3.3 or later, prefacing any command with an@ sign tells DOS not to dis
play the command, as if ECHO were turned off. By starting all your batch files with
@ECHO OFF you not only prevent subsequent commands from displaying, but you also
keep the ECHO OFF command itself from showing up onscreen.

You probably don't use any programs that begin with a@ character. But if you do,
and you want to execute one in a version 3.3 or later batch file, add an extra @ sign to
the beginning of the filename, when you refer to it in the batch file.

Following ECHO with up to 122 characters of text displays this text, so that:

ECHO Back Up Your Disks Often

would print:

Batch Techniques 543

got to enter something it sets the variable to "*. *" and assumes you want to look at
all the files on your disk.

If you haven't increased the size of your environment, and you have a long PA TH and
some other space-eaters, setting a new variable may fill up the environment It's easy to
run out of space, since the default is a paltry ten 16-byte paragraphs, or 160 bytes.

To increase the environment size under DOS 3.0 and 3.1, just put this command in
your CONFIG.SYS file:

SHELL [d:] [path]COMMAND.COM /E:n /P

where n represents the number of 16-byte paragraphs. For versions 3.2 and later, use the
same SHELL command but specify the actual number of bytes rather than paragraphs.
The default in all cases is 160 bytes (ten paragraphs). You can increase it all the way to
32K in DOS 3.2 and 3.3, but are limited to 62 paragraphs (992 bytes) in earlier versions.

If you're using DOS 2.0 or 2.1 these techniques won't work. You'll have to patch
COMMAND.COM at hex address ECF to represent the number of 16-byte memory
paragraphs that will make up your new environment. (For DOS 2.11 the address is hex
DF3.)

Now that you have a taste of what batch files can do, read the list of guidelines below,
and then roll up your sleeves and plunge in by learning the nuances of each command.
Then when you're done, try the very useful examples provided.

The Batch Commands

This section describes each batch command in detail, with lots of sample programs to
show you just how the commands work. The commands are presented roughly in the
order in which they are usually crop up in a file.

First, some rules and advice:

• The general format for executing a batch file is:

[d:] [path]filename[.BAT] [parameters]

• Each line in a batch file must be shorter than 128 characters.
• Generally, all lines must end with carriage returns. However, a carriage return may

be omitted from the very last line in cases when including it would print a double
DOS prompt upon exiting.

• Since DOS processes batch files one line at a time, it's best to run them from fast
hard disks or RAMdisks for optimal performance.

• When branching conditionally, batch files will always start searching for labels at
the beginning of the file, so duplicate labels are ignored.

• Labels are not case sensitive, but all other aspects of batch file operations are.

542 PC Magazine DOS Power Tools

• REPORT88.BAK
• MEMOPC.BAK
• INCOME88.BAK

and you enter:

CLEANUP *.BAK

DOS will begin by printing:

Examine/Delete/CheckDIR/Skip REPORT88.BAK (E/D/C/S)?

At this point you have four choices. Press E and DOS will display the first 22 (or fewer)
lines of REPORT88.BAK and then print the:

Examine/Delete/CheckDIR/Skip REPORT88.BAK (E/D/C/S)?

prompt again.
If you want to delete it, type D. You'll get a confirmation message "Are you sure you

want to delete REPORT88.BAK (Y /N)?" Here you'll have to type Y or y to erase the
file. Typing any other key will abort the deletion process, print a "REPORT88.BAK NOT
deleted ... " message to keep you posted, and move on to the next file:

Examine/Delete/CheckDIR/Skip MEMOPC.BAK (E/D/C/S)?

If you have no idea what MEMO PC.BAK was, and you want to see the size of the file
or the date you created it, type C to Check the DIR listing:

MEMO PC BAK 6253 12-18-88 2:57a

You '11 then again see the familiar:

Examine/Delete/CheckDIR/Skip MEMOPC.BAK (E/D/C/S)?

This process uses environment variables, which won't work in DOS 3 .0, and can work
erratically in earlier versions. The main CLEANUP.BAT file does only two jobs:

1. It uses a FOR command to execute the DOIT command repeatedly, once for each
element in the filespec. If you wanted to look at all the *.BAK files and you had four
of these on your disk, the FOR command would execute DOIT four times.

2. It also looks at the filespec you entered, and substitutes*.* if you didn't enter any
thing. It does this by setting an environment variable - here called VAR - to the
filespec you enter, and then testing to make sure you entered something. If you for-

Batch Techniques 541

Don't actually type "[Alt-255 or Character 0]" after the ECHO and the space. This
simply tells you to put either an ASCII 255 blank character or ASCII 0 null character
here; both are impossible to display. By following the word ECHO with a space and then
either an ASCII 255 character or an ASCII 0 character you can have DOS print a blank
line when the batch file executes.

If you're entering these batch files with a word processor, you're probably better off
trying to create a character 255. Most good word processors let you enter ASCII charac
ters by holding down the Alt key, typing the ASCII value (in this case 255) on the num
ber pad - not the top row number keys - and then releasing the Alt key. So type in:

ECHO

then press the spacebar once, then hold down Alt, tap 255 on the number pad, and then
let the Alt key up.

If you're entering the batch files using EDLIN or the DOS COPY CON command,
you may use the same technique to insert an ASCII 255, or you may use a simpler trick
to put an ASCII 0 in your file. To enter an ASCII 0 in DOS (or EDLIN) just press the F7
function key. Again, remember first to type in the word ECHO, then press the spacebar
once, then press F7.

Now that you've got all the files you need, you can clean up any disk. Make sure
CLEANUP.BAT, DOIT.BAT, GETANS.COM, PEEK.COM, and FIND.EXE - and
COMMAND.COM if you're using a version of DOS older than 3.3 - are handy, and
type:

CLEANUP [filespec]

Omitting filespec and typing simply:

CLEANUP

has the same effect as typing:

CLEANUP *·*

If you wanted to clean up all your TXT files, for example, you could type:

CLEANUP *.TXT

Or if you wanted to clean up all files that began with the letter T you could type:

CLEANUP T*.*

Once you've entered your choice, the batch files will click into action and start dis
playing one by one the names of all files that match the filespec you specified. So if you
have three BAK files on your disk:

540 PC Magazine DOS Power Tools

FOR %%I IN (%VAR%) DO COMMAND /C DOIT %%I

shown above. If you do use CALL instead of COMMAND IC the process will run a bit
more smoothly. However, CALL won ,t work in any version of DOS older than 3.3.

And finally, DOIT.BAT:

ECHO OFF
IF %1!==! GOTO WRONG
:TOP
ECHO [Alt-255 or Character 0]
ECHO Examine/Delete/CheckDIR/Skip
GE TANS
IF ERRORLEVEL 102 GOTO
IF ERRORLEVEL 101 GOTO
IF ERRORLEVEL 100 GOTO
IF ERRORLEVEL 99 GOTO
:SKIP
ECHO %1 NOT deleted ...
GOTO END
:DELETE

SKIP
EXAMINE
DELETE
DIRLIST

%1 (E/D/C/S)?

ECHO Are you sure you want to delete %1 (Y/N)?
GE TANS
IF ERRORLEVEL 121 IF NOT ERRORLEVEL 122 GOTO DOIT
GOTO SKIP
:DIRLIST
DIR %1 I FIND "-"
GOTO TOP
:DOIT
DEL %1
ECHO %1 deleted ...
GOTO END
:EXAMINE
ECHO The first 22 lines (or fewer) of %1 look like:
PEEK < %1
ECHO [Alt-255 or Character 0]
GOTO TOP
:WRONG
ECHO Run the accompanying CLEANUP.BAT first
:END

The fourth line from the top and the fifth line from the bottom in DOIT .BAT look like:

ECHO [Alt-255 or Character 0]

Batch Techniques 539

the number. For DOS 3.3, 1C3 - 1 = 1C2. For versions 2.0 through 3.2, ICS - 1 = 1C4.
The number you 're left with is the patching address.

Use the DEBUG E command to examine the value at this address:

-E 1C2

When you press Enter you should see something like:

30FA:01C2 21.

If you don't, press Enter, type Q and press Enter to quit, then start again. But if you do
see a 21 with a period after it, type in a 20 and then press Enter:

30FA:01C2 21.20

Then rename the file to something like MORENEW.COM:

-N MORENEW.COM

Write this new file to disk and quit by typing W and pressing Enter and then typing Q
and pressing Enter.

Then, when you want to view just the first screenful of any file, type:

MORENEW < filename

Unfortunately, however, both MORE.COM and its patched MORENEW .COM cousin
display files exactly as they appear. If you happen to be using a word processor such as
WordStar that meddles with the high bit and makes the text unreadable in DOS, MORE
and MORENEW will keep it unreadable. But PEEK will straighten it out. So use either
PEEK or a patched version of MORE.COM.

In any event, create CLEANUP.BAT next:

ECHO OFF
SET VAR=%1
IF %1!==! SET VAR=*.*
FOR %%I IN (%VAR%) DO COMMAND /C DOIT %%!
SET VAR=
:END

If you're using DOS version 3.3 or later, you may want to substitute the line:

FOR %%I IN (%VAR%) DO CALL DOIT %%I

in place of:

538 PC Magazine DOS Power Tools

PEEK< BIGRPT8.TXT

and you '11 see a screenful of it.
You could save typing by using the DOS MORE.COM utility in place of PEEK.COM.

However, MORE.COM will display the entire file one screenful at a time rather than just
showing you the beginning of the file and then quitting, the way PEEK does.

If you want, you can patch one byte in the DOS MORE.COM utility to display just a
single screenful and then quit. In all DOS versions from 2.0 through 3.2, this patching
address is 1C4. In version 3.3 it's 1C2. To find this address, type:

DEBUG MORE.COM

You should see the DEBUG hyphen (-)prompt. Look at the following chart and pick
the hex representation of the length:

MORE
Version

2.0
2.1
3.0
3.1
3.2
3.3

HEX
Length

180
180
140
llA
127
139

If you're using a version not listed, type RCX and press the Enter key twice. The num
ber DEBUG prints to the right of the CX is the length.

Plug the hex length into the line:

-S 100 L 139 B4 OC

l
length

So if you're using a version like 3.2, change the line to:

-S 100 L 127 B4 -OC

DEBUG should report something like:

30FA:01C3

Ignore the four hex digits to the left of the colon. Jot down the four rightmost hex digits.
This is the address of the byte directly after the one you want to patch, so subtract 1 from

Batch Techniques 531

4. A PEEK.COM file that DOIT.BAT uses to display the beginnings of files.
(PEEK.COM is on the accompanying disk.)

You also should make sure the DOS FIND.EXE program is in the same directory as
these four files, or is in a directory that your path knows about. If you 're using a floppy
disksystem,copytheFIND.EXEfileontoyourfloppyandmakesureCOMMAND.COM
is also on the diskette if you're running a version of DOS earlier than 3.3.

GET ANS .COM is an example of a customized keystroke-sniffing program that returns
exit codes that the DOS IF ERRORLEVEL command can process. Power users often
end up writing their own variations of programs like this, or customizing similar ones.

To create GET ANS.COM, type in the following eight lines:

DEBUG
E 100 BS 00 08 CD 21 oc 20 3C 79 74 oc 3C 63 74
E lOE 08 3C 64 74 04 3C 65 75 04 B4 4C CD 21 C3
N GETANS.COM
RCX
lC
w
Q

The actual GETANS.COM program looks like:

MOV AX,0800 ;Get keystroke
INT 21 ;Do it
OR AL,20 ;Make sure it's lowercase
CMP AL,79 ;See if it's a , y'
JZ 0117 ;Yes, so goto exit with code
CMP AL,63 ;See if it's a , c,

JZ 0117 ;Yes, so goto exit with code
CMP AL,64 ;See if it's a , d'
JZ 0117 ;Yes, so goto exit with code
CMP AL,65 ;See if it's an 'e'
JNZ OllB ;No, so go to exit no code
MOV AH,4C ;Exit with code
INT 21 ;Do it
RET ;Exit without code

You can use PEEK.COM instead of the DOS TYPE command to see the first 22 lines
of any file, with the command:

PEEK < filename

So if you see a file in your directory called BIGRPT8.TXT and you have no idea what
it is, you can type:

536 PC Magazine DOS Power Tools

The mechanism that prevented this was an IF STRING l=STRING2 test. Each line
contains one. The first line with a test is:

IF NOT %1!==! ECHO Parameter 1 is %1

If you entered:

SHOWPARM XXX

DOS would make %0 equal to SHOWPARM, and %1 equal to XXX. So when it ex
ecuted the test it would substitute XXX for % 1 and end up with:

IF NOT XXX!==! ECHO Parameter 1 is XXX

Since XXX! is not equal to!, the test fails. However, it's a negative test, so you want
it to fail. Note that you have to use double equals signs in IF tests like these.

If you had entered just

SHOWPARM

without anything after it, DOS would have made %0 equal to SHOWP ARM, and % 1
equal to nothing. So the test would have turned into:

IF NOT !==! ECHO Parameter 1 is XXX

Here the single ! on the left side of the == is equal to the single ! on the right side. The
test passes. The "NOT" in the test means that DOS won't execute the ECHO command
that follows the test at the end of the line.

Putting It All Together

By combining environment variables, replaceable parameters, FOR commands, ECHO
statements, fancy branching, nested batch file calling, and IF ERRORLEVEL tests you
can do something that will make cleaning up cluttered disks a joy.

This CLEANUP process will queue up selected groups of files and present them to
you one file at a time with a simple menu that makes it a snap to examine them, delete
them, or leave them intact.

For this to work you need four files:

1. A small assembly language program called GETANS.COM that makes your batch
files interactive. (You '11 create GET ANS.COM below.)

2. A main CLEANUP.BAT batch file that screens unwanted files from the cleanup
process. (You 'II also create CLEANUP.BAT.)

3. A secondary DOIT.BAT batch file loaded by CLEANUP.BAT that does most of the
work and is the part the user ends up interacting with.

Parameter 2 is b

Parameter 3 is c

Parameter 4 is d

Parameter 5 is e

Parameter 6 is f

Parameter 7 is g

Parameter 8 is h

Parameter 9 is i

Various collections of delimiters will have predictable results:

C>SHOWPARM a=bb=ccc

Parameter 0 is SHOWPARM

Parameter 1 is a

Parameter 2 is bb

Parameter 3 is ccc

C>SHOWPARM a,,,b====c;;;;;;d

Parameter 0 is SHOWPARM

Parameter 1 is a

Parameter 2 is b

Parameter 3 is c

Parameter 4 is d

Parameter 5 is e

Parameter 6 is f

e,=; ;=, f

Batch Techniques 535

You may have noticed that SHOWPARM displayed a message like "Parameter 6 is"
only when you typed a seventh entry on the command line that required it. The batch file
was smart enough to know how many entries you had typed so it could print the ap
propriate number of"Parameter N is ... " messages.

If DOS weren't able to do this, and you had entered just one parameter, the display
would have looked something like:

C>SHOWPARM a

Parameter a is SHOWPARM

Parameter 1 is a

Parameter 2 is

Parameter 3 is

Parameter 4 is

Parameter 5 is

Parameter 6 is

Parameter 7 is

Parameter 8 is

Parameter 9 is

534 PC Magazine DOS Power Tools

Add a final 2 and press the Enter key:

4:*IF NOT %1! ECHO Parameter 1 is %1

4:*IF NOT %2!==! ECHO Parameter 2 is %2

Then try this with line 5, this time replacing the 1 s with 3s. It looks more complicated
than it actually is. All you have to do to fix line 5 is:

1. Type 5 (and press Enter).
· 2. Press F2 and type 1 then type 3 (do this three times).

It really goes quickly once you get the hang of it. Be sure to press Enter when you 're
all done and you reach the very end of each line, since EDLIN won't register any chan
ges until you do.

After editing the last line (line 11), type:

*E

to save and exit Then type SHOWP ARM at the DOS prompt and try following it with
different kinds of parameters. First enter SHOWP ARM with nothing after it:

C>SHOWPARM

Parameter 0 is SHOWPARM

Try it with nine other entries on the command line:

C>SHOWPARM a b c d e f g h i j

Parameter 0 is SHOWPARM

Parameter 1 is a

Parameter 2 is b

Parameter 3 is c

Parameter 4 is d

Parameter 5 is e

Parameter 6 is f

Parameter 7 is g

Parameter 8 is h

Parameter 9 is i

Since SHOWPARM.BAT displays only ten parameters, you'll see the same result as
the one directly above if you try:

C>SHOWPARM a b c d e f g h i k 1 m n o p q r s t u v w x y z

Parameter 0 is SHOWPARM

Parameter 1 is a

Batch Techniques 533

If you had pressed the F2 key and typed an uppercase E, DOS would have displayed:

A>ONC

since the F2 key is case·sensitive and will stop right before the first uppercase E it finds.
This technique makes it a snap to replace all the ls with 2s and 3s and 4s when you 're

using EDLIN.
Tell EDLIN you want to edit the first line that needs changing - line 4 - by typing:

*4

EDLIN will respond by printing the current contents ofline 4 and then dropping down a
line to let you edit it:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*

If you were to type F3, DOS would fill the lower line with an exact duplicate of the upper
one:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %1!==! ECHO Parameter 1 is %1

But this isn't what you want. Instead, press the F2 key and type a 1. EDLIN will display
the beginning of the upper line right up to but not including the first occurrence of a 1:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %

Now, type in a 2 to replace the 1:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2

But don't press the Enter key yet. Instead, repeat the same process to get to the next 1
- press F2 and type a 1. You should see:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2!==! ECHO Parameter

Type another 2 and press F2 one more time, so your screen looks like:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2!==! ECHO Parameter 2 is %

532 PC Magazine DOS Power Tools

*L

which would list

1: ECHO OFF
2: ECHO Parameter 0 is %0
3: IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %1!==! ECHO Parameter 1 is %1
5: IF NOT %1!==! ECHO Parameter 1 is %1
6: IF NOT %1!==! ECHO Parameter 1 is %1
7: IF NOT %1!==! ECHO Parameter 1 is %1
8: IF NOT %1!==! ECHO Parameter 1 is %1
9: IF NOT %1!==! ECHO Parameter 1 is %1

10: IF NOT %1!==! ECHO Parameter 1 is %1
11: IF NOT %1!==! ECHO Parameter 1 is %1

Now all you have to do is increase the number references in each of the lines you just
copied, so that all the 1sbecome2s in line 4, 3s in line 5, and so on. Again, EDLIN makes
this surprisingly easy. Actually, the DOS function keys make it easy, and EDLIN is one
of the few programs that knows how to use them.

While the arsenal of DOS editing tricks is not exactly overwhelming, its function keys
can really cut down on repetitive keystrokes. Most users know that tapping the F3 key
once will repeat the previous DOS command. But they rarely use the powers of the F2
key, probably because they'd rather just press F3 and backspace the errant characters
away.

While the F3 key will repeat the entire command that you typed previously at the DOS
prompt, entering the F2 key followed by a character will repeat just part of the previous
command - up to but not including the character you entered. So if the previous com
mand was:

A>ONCEMORE abcdefghijklmnopqrstuvwxyz

and you pressed the F3 key, you'd end up again with:

A>ONCEMORE abcdefghijklmnopqrstuvwxyz

But if you pressed the F2 key and then typed a lowercase e you would see:

A>ONCEMORE abed

since this tells DOS to display the part of the previous command starting from where the
cursor currently is and ending right before the first occurrence of the letter you entered.
When you're staring at a bare DOS prompt, the cursor is at column 1, so tapping the F2
key and then typing eat that point will display everything from column 1 right up to (but
not including) where the first lowercase e is located.

Batch Techniques 531

ECHO OFF
ECHO Parameter 0 is %0
IF NOT %1!==! ECHO Parameter 1 is %1
IF NOT %2!==! ECHO Parameter 2 is %2
IF NOT %3!==! ECHO Parameter 3 is %3
IF NOT %4!==! ECHO Parameter 4 is %4
IF NOT %5!==! ECHO Parameter 5 is %5
IF NOT %6 !==! ECHO Parameter 6 is %6
IF NOT %7!==! ECHO Parameter 7 is %7
IF NOT %8!==! ECHO Parameter 8 is %8
IF NOT %9!==! ECHO Parameter 9 is %9

EDLIN makes it easy to create a batch file like this one with so many similar lines. To
start the process, type:

EDLIN SHOWPARM.BAT

When you see the EDLIN "New file" message and asterisk prompt, type:

I

to start inserting lines, then enter the first three lines. This should look like:

New file
*I

l:*ECHO OFF
2:*ECHO Parameter 0 is %0
3:*IF NOT %1!==! ECHO Parameter 1 is %1

Then hold down the Ctrl key and press either the C or ScrollLock keys while you 're
holding it down. You'll see a:

4: *"'C

and you'll return to EDLIN's command mode, where the asterisk is in column 1. Then,
make nine more copies of the:

3:*IF NOT %1!==! ECHO Parameter 1 is %1

line you just typed by issuing the EDLIN command:

*3,3,4,8C

If you wanted to make sure you had copied line 3 the correct number of times, you
could type:

530 PC Magazine DOS Power Tools

A>ONCEMORE
Well, Henry

The answer is ... yes.

But once DOS reached the %0, replaced it with ONCEMORE, and executed the batch
file a second time, the % 1 would no longer be equal to "Henry." When you executed the
batch file the first time, you entered something ("Henry") on the command line that DOS
could use in place of %1. But when DOS re-executed the batch file it didn't enter any
thing after the %0. So you'd see:

C>ONCEMORE Henry
Well, Henry --

The answer is ... maybe.
Well,

The answer is ... yes.
Well,

etc. You can remedy this by forcing DOS to enter the same % 1 parameter that you did.
Just change the ONCEMORE.BAT file to:

ECHO OFF
ECHO Well, %1 -
DECIDE
%0 %1

When DOS reached the bottom line, instead of just re-executing %0 as ONCEMORE,
it would execute %0 % 1 as ONCEMORE Henry and you'd end up with the result you
wanted:

C>ONCEMORE Henry
Well, Henry --

The answer is ... yes.
Well, Henry --

The answer is ... maybe.
Well, Henry --

etc.
If you want to experiment with replaceable parameters, run the following SHOW

p ARM.BAT batch file:

Batch Techniques 529

This is a batch file called OnCeMoRe.BAT.
You typed OnCeMoRe to start it.
Now OnCeMoRe is going to run the DECIDE program.

You can use replaceable parameters to personalize your batch files. If you changed
ONCEMORE.BAT so it contained the lines:

ECHO OFF
ECHO Well, %1 -
DECIDE

then you ran this batch file by typing: .

A>ONCEMORE Henry

DOS would substitute two replaceable parameters:

• %0 = ONCEMORE
• %1 =Henry

This newly modified version of ONCEMORE.BAT doesn't use the %0 parameter, but
it does use %1. It will replace the %1 in the second line with Henry, yielding:

ONCEMORE
Well, Henry

The answer is ... no.

You'd run into trouble if you tried adding a %0 at the end of ONCEMORE.BAT:

ECHO OFF
ECHO Well, %1 -
DECIDE
%0

If you then ran this by typing:

A>ONCEMORE Henry

DOS would would substitute "Henry" in place of the % 1 and "ONCEMORE" in place
of the %0 the first time through the batch file:

528 PC Magazine DOS Power Tools

will always print something after the word "typed." But it you changed the line to:

ECHO You typed %8

DOS would replace the %8 with the ninth thing you typed on the command line (remem
ber, the first thing on the command line is %0 rather than % l, so %8 prints the ninth com
mand line entry). If you didn't type nine separate things (and you probably wouldn't
have), DOS would print a blank after the word "typed:"

You typed

Note that DOS replaces the %0 with the actual command you typed, not the whole
filename. Since you typed ONCEMORE at the DOS prompt, it makes %0 = ON
CEMORE, not ONCEMORE.BAT.

You can tell your batch file to add the BAT extension to an ECHO display by tacking
it on after the %0:

ECHO This is a batch file called %0.BAT.

Technically you could execute the batchfile by typing either:

ONCEMORE

or:

ONCEMORE.BAT

However, virtually no one adds the BAT extension when they run a batch file, and there's
really no reason to. But if you did enter ONCEMORE.BAT rather than just plain ON
CEMORE, and your batch file included the line:

ECHO This is a batch file called %0.BAT.

DOS would print:

This is a batch file called ONCEMORE.BAT.BAT.

The %0 parameter will duplicate exactly what you typed. So it you start the ball roll
ing by typing:

OnCeMoRe

You'll end up with:

Batch Techniques 527

You actually could have typed:

ONCEMORE INTO;THE=BREACH,G-G-GUYS,SAID;;;PFC==;;,,Al21763

and DOS would have assigned the same parameters, since it treats all the delimiters shown
above as spaces. And it treats repeating delimiters just the same as single ones.

(If you renamed ONCEMORE.BAT to DOIT AGIN.BAT or XYZ.BAT and ran either
of those files, they too would repeat endlessly, since DOS would substitute the new
DOITAGIN or XYZ names for the %0 on the third line.)

DOS will replace every single occurrence of %0 with the name of the batch file itself,
so if you modified ONCEMORE.BA T to contain the lines:

ECHO OFF
ECHO This is a batch file called %0.BAT.
ECHO You typed %0 to start it.
ECHO Now %0 is going to run the DECIDE program.
DECIDE
ECHO And %0 will now start over again
%0

running it would produce something like:

C>ONCEMORE
This is a batch file called ONCEMORE.BAT.
You typed ONCEMORE to start it.
Now ONCEMORE is going to run the DECIDE program.

The answer is ... maybe.
And ONCEMORE will now start over again
This is a batch file called ONCEMORE.BAT.
You typed ONCEMORE to start it.
Now ONCEMORE is going to run the DECIDE program.

The answer is ... yes.

etc.
If DOS sees a replaceable parameter on any line beginning with an ECHO, it will try

to substitute the appropriate parameter that you typed on the command line. If the replace~
able parameter following ECHO is %0, something will definitely appear in place of the
%0 since you had to enter some filename to run the batch file in the first place, and since
%0 always represents that filename.

So the command:

ECHO You typed %0

526 PC Magazine DOS Power Tools

this returns you to the DOS prompt, but since batch files can in turn run other batch files,
as you '11 see soon, breaking out of the second one will return you to the first one.)

If you type anything other than a Y, y, N, or n, DOS will stubbornly keep repeating
the "Terminate batch job (Y /N)?" message.

As it's written above, the REPEAT batch file will keep invoking itself and looping
only if you keep its name REPEAT.BAT. If you renamed it to AGAIN.BAT, it would
execute normally the first time through until it reache.d the third line. Then it would try
to run a command or file calle.d REPEAT. But since you renamed it, it wouldn't find such
a command, and would simply print a "Bad command or file name,, error message and
crash to a halt.

DOS provides an easy way to solve this problem. Create a new file called ON
CEMORE.BAT containing the three lines:

ECHO OFF
DECIDE
%0

The %0 is a replaceable parameter. When DOS starts running any batch file, it looks
at what you entered on the command line and parses it into as many as ten separate parts
separated by the standard DOS delimiters.

A command line delimiter is a character that DOS uses to separate entries that you
type at the DOS prompt. You may use spaces, commas, tabs, semicolons, or equals signs
as delimiters.

DOS scans through whatever you typed at the DOS prompt and assigns replaceable
parameters %0 through %9 to the first ten things it identifies as separate, discrete entries.
The first entry on the command line is always the name of a command or file, and DOS
assigns a %0 to this. So if you type:

A>ONCEMORE

DOS will make %0 equal to ONCEMORE. It will execute the first line by turning
ECHO off, then will run the DECIDE program specified on the second line, and finally
will replace the %0 on the third line with the ONCEMORE that you typed directly after
the DOS prompt. Since this is the name of the batch file itself, it will re-execute itself
and continue looping until you press Ctrl-C or Ctrl-Break.

If you typed:

ONCEMORE INTO THE BREACH G-G-GUYS SAID PFC A121763

DOS would assign the following parameters:

ONCEMORE INTO THE BREACH G-G-GUYS SAID PFC A121763

l l l 1 l l t l
%0 %1 %2 %3 %4 %5 %6 %7

DEBUG BLUWHITE.COM
E lOA 4E
N YELRED.COM
w
Q

Breaking Out of a Batch Job

Batch Techniques 525

The DECIDE.COM program prints each Maybe, Yes, and No fairly randomly. If you
want to verify this you could run it once by typing:

DECIDE

and then keep pounding away alternately at the F3 and Enter keys to repeat the process.
But DOS provides an easier way. Just create a batch file called REPEAT.BAT by typing:

COPY CON REPEAT.BAT
ECHO OFF
DECIDE
REPEAT

Then press F6 and then the Enter key. Run this new batch file by typing:

REPEAT

and you should see:

The answer is . maybe.

The answer is ... no.

The answer is ... maybe.

The answer is . yes.

scroll endlessly down your screen. DOS executes each batch file one line at a time. The
first line turns off the ECHO feature to prevent screen clutter. The second line runs the
DECIDE program. And the third line starts the whole process all over again by execut
ing its own name.

Once you start REPEAT it will loop endlessly until you turn your system off or "break"
out of it. To break out, hold down the Ctrl key and press either the C key or the Scroll
Lock key. DOS will temporarily halt the scrolling, display a AC onscreen, and then print
the message: "Terminate batch job (Y /N)T' If you answer No by typing an Nor n, DOS
will resume where it left off and continue scrolling. If you tell it Yes by typing a Y or y,
DOS will break out of the loop and return to what you were doing previously. (Usually

524 PC Magazine DOS Power Tools

The MENU.BAT batch file clears the screen each time it displays a menu. If you don't
have ANSI.SYS loaded, this will cancel any attribute settings you may have in effect,
and tum the screen to a drab grey on black. Issuing the CLS command with ANSI loaded
will clear the screen but retain the preset colors.

To avoid this, either load and use ANSI.SYS (see Chapter 9 on ANSI techniques), or
replace the CLS line with a line such as BLUWHITE or WHITEBLU and then make sure
you have a short COM program handy to clear the screen to the colors you like. The fol
lowing COLOR.SCR DEBUG script will create both BLUWHITE.COM (blue text on a
white background) and WHITEBLU.COM (the reverse):

N BLUWHITE.COM
E 100 BB 00 06 B9 00 00 BA 4F 18 B7
E lOA 71 CD 10 B4 02 BA 00 00 B7 00
E 114 CD 10 BO 04 BA D9 03 EE C3
RCX
lD
w
E lOA 17
N WHITEBLU.COM
w
Q

Type this in using a pure-ASCII word processor, or EDLIN, or else insert a COPY
CON COLOR.SCR script at the very top, then after typing the final line with the Q, press
Enter, then the F6 function key, then Enter again.

In any event, make sure you press Enter at the end of each line, especially the last one.
Then get into DOS, make sure DEBUG.COM is handy, and type:

DEBUG < COLOR.SCR

The byte that actually sets the color is at DEBUG offset lOA - the first entry on the
second line, directly after E IOA. In the above script this value is 71.

This byte is a two-digit hex number where the first digit is the background color and
the second digit is the foreground color. The choices for each are: 0 =black, I =blue, 2
= green, 3 = cyan (light blue), 4 = red, 5 = magenta (purple), 6 = brown or yellow, and 7
= white. You can make the foreground number (but not the background) high intensity
by using: 8 = grey, 9 = bright blue, A = bright green, B = bright cyan, C = bright red, D
= bright purple, E = yellow, or F = bright white as the second digit.

To change the color, either replace the 71 directly after the E lOA on the second line
with a different color value, and then change the name in the first line from
BLUWHITE.COM to something that reflects your new colors, Or, once you've created
the above files, you can change the color by using DEBUG directly. This series of com
mands would produce a program called YELRED.COM with bright yellow text on a red
background:

240 PRINT "Now type TYPE MENU"
250 CLOSE:SYSTEM

Batch Techniques 523

When you've created the :MENU with MAKESCRN.BAS and entered text with
EDLIN or your word processor, replace the lines:

ECHO
ECHO
ECHO
ECHO
ECHO
ECHO

A Run dBase
B Run WordStar
C Run 123
Z - Quit

in :MENU.BAT with a single line:

TYPE MENU

Or use the MAKECOM.BAS program on the accompanying disk. Create a fancy menu
or text screen and call it something like SCREEN! - but make sure it's no larger than
24 rows by 79 columns. Then run the MAKECOM program and when prompted for a
filename, enter SCREEN!. MAKECOM will attach an assembly language program to
your text screen that makes it leap instantly onto your display. And it retains the existing
screen colors.

You could create several text screens, with fancy boxes and.borders, and call them
HELPl.COM, HELP2.COM, HELP3.COM. Put a centered message at the bottom of
each one that says "Press any key for the next screen " Then add a section to a batch
file that looks like:

ECHO Instructions follow
PAUSE
HELPl
PAUSE > NUL
HELP2
PAUSE > NUL
HELP3

The fancy text screens will flash onto the display one by one. When the user presses
a key he'll instantly get the next one. You can also use this to display menus, introduc
tory sign-on screens, etc. Redirecting the output of PAUSE to NUL with the command:

PAUSE > NUL

will suppress the normal DOS "Strike a key when ready ... "message in version 3.x.
However, version 2.x will display this message even if you try to get rid of it, so if you
try this on a 2.x system, allow for this intrusive message.

522 PC Magazine DOS Power Tools

lowest new invalid entry - E) rather than 100. And you'll also have to insert the D
module directly after the test that executes the menu choice. The code that replaces the
above section will look like:

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 101 GOTO OPTION4
ECHO You typed E - Y; no options here
GOTO TOP
:OPTION4
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO This would run ProComm
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2
ECHO This would run 123
GOTO TOP
:OPTION2

Two final cosmetic notes - the MENU.BAT file echoes a very small menu onscreen.
You may prefer to use the DOS TYPE command to display a separate, fancier menu file.
A tiny program such as MAKESCRN.BAS can create a template called MENU with a
little 3-D shadow behind it; you can use your pure-ASCII word processor to add text to
it. Actually, EDLIN is terrific at this, once you know how to use the F3 and arrow keys.

100 , MAKESCRN.BAS -- makes MENU
110 ' screen you can TYPE in DOS
120 CLS
130 OPEN "MENU" FOR OUTPUT AS #1
140 S$=STRING$(26,219)
150 T$=S$+STRING$(2,177)
160 U$=STRING$(26,177)
170 FOR A=l TO 5:PRINT #1, :NEXT
180 PRINT #1,TAB(27);S$
190 FOR A=lO TO 20
200 PRINT #1,TAB(27);T$
210 NEXT
220 PRINT #1,TAB(29);U$
230 FOR A=l TO 3:PRINT #1, :NEXT

Batch Techniques 521

6. And the "ECHO Ok, you typed Z; quitting ... " message it triggers at the very end of
MENU.BAT

You don't have to patch the program to limit the choices, since the W AIT4A-Z.COM
program filters out anything that isn't a letter, and the MENU.BAT batch file "traps" any
keystrokes that aren't currently menu choices. Here's how to add another menu option:

First, make the little menu larger by adding a D option:

ECHO *************************
ECHO A Run dBase
ECHO B Run WordStar
ECHO c Run 123
ECHO D Run ProCorrun
ECHO z - Quit
ECHO *************************

Then, change the message that said D was out of range from:

ECHO You typed D - Y; no options here

to:

ECHO You typed E - Y; no options here

Finally, (and this is the only tricky part), add a module near the top of the batch file to
accommodate D entries. The top of the batch file currently looks like:

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO You typed D - Y; no options here
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2
ECHO This would run 123
GOTO TOP
:OPTION2

Since D (with a lowercase decimal value of 100) is now the highest legal value, you'll
have to change the test for invalid entries so it starts at 101 (the decimal value of the

520 PC Magazine DOS Power Tools

WAIT4A-Z.COM rejects all keystrokes that aren't letters of the alphabet. To modify
the range of acceptable inputs, you'll have to change the actual values that the program
tests. W AIT4A-Z.COM automatically turns uppercase letters into lowercase ones (and
leaves lowercase letters alone) to reduce the number of tests it has to make. The test for
the lower limit is the line:

CMP AL,61 ;Is letter lower than 'a' ?

You probably don't want to change this. If you do, the 61 is the hexadecimal number
of a lowercase 'a.' To change this to 'b' you'd replace the 61witha62. But again, you
probably shouldn't.

The test for the upper limit is:

CMP AL,7A ;Is letter higher than 'z' ?

The 7 A is the hexadecimal representation of a lowercase 'z.' If you do want to limit
the range, and change the program so it rejects anything other than the letters A through
H, substitute the hex value of lowercase 'h' (which the chart a few pages back tells you
is hex 68):

CMP AL,68 ;Is letter higher than 'h' ?

You don't have to modify the comments, but it doesn't hurt, and it makes it far easier
later to see what you did.

Obviously if you chop the top off the range, you won't be able to have the user type
Z to quit. You'll probably want to make the highest letter H the exit key. MENU.BAT
tests for a 'z' with the line:

IF ERRORLEVEL 122 GOTO END

To change this so H quits, replace the 122 (the decimal value of lowercase 'z') with
the decimal value for lowercase 'h' - 104. Unfortunately, DEBUG requires hex nota
tion but the DOS IF ERRORLEVEL command works exclusively with decimal num
bers. One more thing - if you do limit the range to something like A-H, make sure you
modify all references to it. This means changing:

1. The CMP AL,hexvalue test(s) for upper/lower limits in the W AIT4A-Z.SCR script.
2. The DB 'Enter a letter from A to Z: $'message at the bottom of the WAIT4A-Z.SCR

script.
3. The decimal number in the MENU.BAT exit test that normally reads ":IF ERROR

LEVEL 122 GOTO END."
4. The "You typed D- Y; no options here" MENU.BAT error message two lines below

the test in #3 above.
5. The "ECHO Z - Quit" menu choice itself.

Batch Techniques 519

CLS CLS

ECHO ************************* ECHO *************************
ECHO A -- Run dBase ECHO 1 -- Run dBase

ECHO B -- Run WordStar ECHO 2 Run WordStar

ECHO C -- Run 123 ECHO 3 -- Run 123

ECHO Z - Quit ECHO 9 - Quit

ECHO ************************* ECHO *************************
WAIT4A-Z WAIT41-9

IF ERRORLEVEL 122 GOTO END IF ERRORLEVEL 57 GOTO END

IF NOT ERRORLEVEL 100 GOTO OPTION3 IF NOT ERRORLEVEL 52 GOTO OPTION3

ECHO You typed D - Y; no options here ECHO You typed 4 - 8; no options here

GOTO TOP GOTO TOP

:OPTION3 :OPTION3

IF NOT ERRORLEVEL 99 GOTO OPTION2 IF NOT ERRORLEVEL 51 GOTO OPTION2

ECHO This would run 123 ECHO This would run 123

GOTO TOP GOTO TOP

:OPTION2 :OPTION2

IF NOT ERRORLEVEL 98 GOTO OPTIONl IF NOT ERRORLEVEL 50 GOTO OPTIONl

ECHO This would run WordStar ECHO This would run WordStar

GOTO TOP GOTO TOP

:OPTIONl :OPTIONl

ECHO This would run dBase ECHO This would run dBase

GOTO TOP GOTO TOP

:END :END

ECHO Ok, you typed Z; quitting... ECHO Ok, you typed 9; quitting ..•

This example will assume you 're using the A-Z letter version. Note that in both cases,
the :MENU.BAT batch file only simulates running programs. To make the batch file use
ful, substitute the actual commands that execute your programs instead of the messages
telling the programs would have run. So where the batch file says something like:

ECHO This would run WordStar

replace the line with the actual command that runs WordStar. Here you'd replace this
line with:

ws

The W AIT4A-Z.COM program works by printing a message on the screen, waiting
for the user to enter a keystroke, testing the keystroke to make sure it's in an acceptable
range, and then putting the keystroke in a special place when it exits so the DOS IF ER
RORLEVEL command can handle it.

The message it prints is "Enter a letter from A to Z:". If you wanted, you could limit
the range to something like "Enter a letter from A to H:".

518 PC Magazine DOS Power Tools

ECHO This would run 123

GOTO TOP

:OPTION2

IF NOT ERRORLEVEL 98 GOTO OPTIONl

ECHO This would run WordStar

GOTO TOP

:OPTIONl

ECHO This would run dBase

GOTO TOP

:END

ECHO Ok, you typed Z; quitting ...

You could change this to ask the user to type a number between 1 and 9 rather than a
letter between A and Z. To do this, replace four lines in the W AIT4A-Z.COM program:

1. Change: CMP AL, 61 ; Is letter lower than 'a'?

to: CMP AL, 31 ; Is number lower than '1' ?

2. Change: CMP AL, 7A ; Is letter higher than 'z'?

to: CMP AL, 39 ; Is number higher than '9'?

3. Change: DB 'Enter a letter from A to Z: $'

to: DB 'Enter a number from 1 to 9: $'

4. Change: N WAIT4A-Z .COM

to: N WAIT41-9 .COM

To make the patches, type everything below:

DEBUG WAIT4A-Z.COM

E lOF 31

E 113 39

E 132 "numb"

E 13E 31

E 143 39

N WAIT41-9.COM,

w
Q

If you prefer the W AIT4 l-9 .COM number version to the W AIT4A- Z.COM letter ver
sion, you'll have to change the MENU.BAT batch file as well:

ECHO OFF

:TOP

PAUSE

ECHO OFF
:TOP

PAUSE

JA 107
PUSH AX
MOV DL,AL
MOV AH,02
INT 21

;Yes, so exit
;Save keystroke
;Then get ready to
;Print it
;Do it

Batch Techniques 517

MOV
INT

DL,OD
21

;Now print carriage return
;Do it

MOV
INT
POP
MOV
INT

DL, OA
21
AX
AH,4C
21

;And line feed
;Do it
;Retrieve keystroke
;Terminate with code
;Do it

DB 'Enter a letter from A to Z: $'

RCX
47
N WAIT4A-Z.COM
w
Q

When you're done, put the W AIT4A-Z.SCR file in the same directory as
DEBUG.COM, or make sure DEBUG.COM is in a directory your PATH knows about,
and at the DOS prompt type:

DEBUG < WAIT4A-Z.SCR

Then you'll need a batch file like MENU.BAT that handles all the other menu details:

ECHO OFF
:TOP
PAUSE
CLS ECHO *************************
ECHO
ECHO
ECHO
ECHO
ECHO
WAIT4A-Z

A

B
c

Run dBase
Run WordStar
Run 123

z - Quit

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO You typed D - Y; no options here
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2

516 PC Magazine DOS Power Tools

IF ERRORLEVEL 109 IF NOT ERRORLEVEL 110 GOTO MENU
DECIDE
GOTO TOP
:END
ECHO Ok, you typed Q; quitting ...

LETIER2.BAT will also run DECIDE.COM repeatedly. But it will quit if the user
enters Q, or print the menu if the user enters M. Okay, it's a short menu, but you could
make it much longer.

All of the above keystroke-sniffing programs - KEYSTROK.COM,
TEST4ESC.COM,TEST4A.COM,andANYLETR.COM-willsitbackandletabatch
file loop, acting only if the user types a key. This is definitely a plus if you have to run a
program continuously and you don't want your batch file stopping at frequent intervals
to ask users if they want to continue.

But if you want to create a simple menu system that waits patiently for the user to enter
a menu choice, and screens out invalid choices, you'll need a keystroke-sniffer such as
W AIT4A-Z.COM that's a bit more sophisticated. Type in these ten lines:

DEBUG
E 100 BA 2A 01 B4 09 CD 21 BS 07 oc CD 21 oc 20
E lOE 3C 61 72 F5 3C 7A 77 Fl 50 88 C2 B4 02 CD
E llC 21 B2 OD CD 21 B2 OA CD 21 58 B4 4C CD 21
E 12A 'Enter a letter from A to Z: $'
N WAIT4A-Z.COM
RCX
47
w
Q

Since you may want to modify this program later, you could create W AIT4A-Z.COM
by turning the assembly language instructions below into a DEBUG script file called
W AIT4A-Z.SCR. Type it in exactly as shown (although you may omit the semicolons
and the comments following them), being careful to leave a blank line above RCX and
to press the Enter key at the end of each line - especially the last one.

A
MOV DX,12A
MOV AH,09
INT 21
MOV AX,OC07
INT 21
OR AL,20
CMP AL,61
JB 107
CMP AL,7A

;Address of 'Enter a letter ... '
;Ready to print message
;Do it
;Flush buffer then input char
;Do it
;Make sure letter is lowercase
;Is letter lower than 'a' ?
;Yes, so exit
;Is letter higher than 'z' ?

INT 21

JZ 117

OR AL,20

CMP AL, 61

JB 117

CMP AL, 7A

JA 117

MOV AH,4C

INT 21

RET

;Do it

;No key pressed, so exit

;Make sure letter is lowercase

;Is letter lower than 'a' ?

;Yes, so exit

;Is letter higher than 'z' ?

;Yes, so exit

;Terminate with code

;Do it

;Back to DOS

Batch Techniques 515

Once you've created ANYLE1R.COM, type in the following LETfERI.BAT batch
file:

ECHO OFF

ECHO Type Z to quit

:TOP

ANYLETR

IF ERRORLEVEL 122 GOTO END

IF ERRORLEVEL 0 IF NOT ERRORLEVEL

IF ERRORLEVEL 97 IF NOT ERRORLEVEL

IF ERRORLEVEL 98 IF NOT ERRORLEVEL

IF ERRORLEVEL 99 IF NOT ERRORLEVEL

IF ERRORLEVEL 100 IF NOT ERRORLEVEL

IF ERRORLEVEL 101 IF NOT ERRORLEVEL

GOTO TOP

:END

ECHO Ok, you typed Z; quitting ...

1 DECIDE

98 ECHO You typed A

99 ECHO You typed B

100 ECHO You typed C

101 ECHO You typed D

121 ECHO You typed E-Y

This will repeat the same old DECIDE.COM program, but will also quit if the user
types in a Z (or a z), and will report any other letter he or she types. Each letter requires
a separate test on a separate line, so to keep things short, LETTER I .BAT explicitly echoes
back A, B, C, or D (or a, b, c, or d) but will lump together E through Y. Otherwise it
would have to contain 21 additional lines of tests.

While reporting which letter the user typed may be interesting, it's not really all that
practical. But if you want to include a menu in your batch file that gives a user several
choices, this technique comes in very handy, as the following LETfER2.BAT batch files
suggests:

ECHO OFF

:MENU

ECHO Type Q to quit, M for this menu

:TOP

ANYLETR

IF ERRORLEVEL 113 IF NOT ERRORLEVEL 114 GOTO END

514 PC Magazine DOS Power Tools

ECHO OFF

ECHO Press A to Abort

:TOP

DECIDE

TEST4A

IF NOT ERRORLEVEL 255 GOTO TOP

To change the trigger key from A to any other letter key, replace the hex 61 in the
TEST4A.SCR script line:

CMP AL,61

or if you're typing the eight lines directly into DEBUG,replace it in the second line direct
ly after E 1 OC. To figure out the new values, consult the chart below, which contains the
hexadecimal ASCII representation of the lowercase version of each letter. The program
converts uppercase values to lowercase ones, and leaves lowercase ones alone.

Hex Lowercase ASCII Values

a-61
b-62
c-63
d-64
e- 65
f-66
g-67
h-68
i - 69

j-6A
k-6B
l-6C
m-6D
n-6E
o-6F
p-70
q-71
r-72

s-73
t- 74
u-75
v-76
w-77
x-78
y-79
z-7A

You may take this even one step further, and allow the user to enter any letter of the
alphabet. Type:

DEBUG

E 100 BS 00 06 B2 FF CD 21 74 OE QC 20 3C

E lOC 61 72 08 3C 7A 77 04 B4 4C CD 21 C3

N ANYLETR.COM

RCX

18

w
Q

to produce the ANYLETR.COM program:

MOV AX,0600

MOV DL,FF

;Direct-console I/0 function

;Select input request

Batch Techniques 513

You,can change the trigger key from Esc to Enter, space, or tab, or any other single
purpose key that doesn't have different uppercase and lowercase versions, simply by
changing one byte. Notice that the TEST4ESC.SCR script contained a line:

CMP AL,lB

The 1B is the hexadecimal representation of decimal 27, which is the ASCII value of
Esc. To change this so a user would have to press the Enter key to stop, substitute an OD
(the hex version of decimal 13) in place of the lB. To change the trigger to the spacebar,
substitute a 20 (the hex representation of decimal 32) in place of the lB.

If you 're typing in the lines that begin with E 100, replace the 1B directly after the E
lOA.

The process becomes a bit trickier if you want the user to type a letter, such as Q (for
Quit), A (for Abort), X (for eXit), or S (for Stop), since the uppercase and lowercase ver
sions of these letters have different ASCII values. However, by adding an additional logi
cal OR instruction, you can create a program that will recognize both the uppercase and
lowercase versions of any alphabetic character.

Type in the following eight lines:

DEBUG
E 100 BB 00 06 B2 FF CD 21 74 OC OC 20 3C
E lOC 61 75 06 BO FF B4 4C CD 21 C3
RCX
16
N TEST4A.COM
w
Q

This produces a TEST4A.COM program that looks like:

MOV AX,0600 ;Direct-console I/O function
MOV DL,FF ;Select input request
INT 21 ;Do it
JZ 0115 ;No key pressed, so exit
OR AL,20 ;Make sure the letter is lowercase
CMP AL,61 ;Was it an , a, ?
JNZ 0115 ;No, so exit
MOV AL,FF ;Yes, so put FF in AL for ERRORLEVEL
MOV AH,4C ;Terminate with code
INT 21 ;Do it
RET ;Back to DOS

Again, change NONSTOP.BAT to read:

512 PC Magazine DOS Power Tools

100 PRINT "Press any key to stop"
110 REM (The repeating command goes here)
120 IF INKEY$="" GOTO 110

You can fine-tune the KEYSTROK.COM program to work only if the user presses a
specific key. If you want to limit this process so the user has to press the Esc key to stop,
you could create a file called TEST4ESC.COM by typing in the following eight lines:

DEBUG
E 100 BB 00 06 B2 FF CD 21 74 OA 3C
E lOA lB 75 06 BO FF B4 4C CD 21 C3
N TEST4ESC.COM
RCX
14
w
Q

This jazzes up the KEYSTROK.COM program slightly:

MOV AX,0600
MOV DL,FF
INT 21
JZ 0113
CMP AL, lB
JNZ 0113
MOV AL,FF
MOV AH,4C
INT 21
RET

;Direct-console I/O function
;Select input request
;Do it
;No key pressed, so exit
;Key was pressed; was it Esc?
;No, so exit
;Yes, so put FF in AL for ERRORLEVEL
;Terminate with code
;Do it
;Back to DOS

Then change the NONSTOP.BAT batch file to read:

ECHO OFF
ECHO Press the Esc key to stop
:TOP
DECIDE
TEST4ESC
IF NOT ERRORLEVEL 255 GOTO TOP

The version of NONSTOP.BAT that used KEYSTROK.COM let you quit by press
ing any key, and required a value of 1 after the word ERRORLEVEL. The new NON
STOP.BAT that uses TEST4ESC won't quit unless you press the Esc key, and needs a
value of 255 after the word ERRORLEVEL.

Batch Techniques 511

at the increased power and flexibility of DOS when you grab the assembly language front
end reins.

We'll explore every aspect of the IF ERRORLEVEL command later on in this chap
ter. For now, just type in the examples that follow to get a sense of what DOS can do in
the right hands. They'll show you how to really make DOS purr when you're trying to
create your own menu systems or run a complex series of tasks with lots of options.

The above COUNTIT.BAT batch file assumes you know ahead of time how many
loops you want. In cases like these, you want the user to be able to stop the program at
the appropriate time by pressing a key. But you don't want the stopping mechanism to
interfere with the loop, and you don't want to force the user to press something as
awkward as Ctrl-ScrollLock.

To solve this problem, create a tiny KEYSTROK.COM program by typing in the fol
lowing seven lines:

DEBUG
E 100 B8 00 06 B2 FF CD 21 74 04 B4 4C CD 21 C3
N KEYSTROK.COM
RCX
E

w
Q

The program it creates looks like this:

MOV AX,0600
MOV DL,FF
INT 21
JZ OlOD
MOV AH,4C
INT 21
RET

;Direct-console I/O function
;Select input request
;Do it
;If no key pressed, exit
;Otherwise, terminate with code in AL
;Do it
;Back to DOS

Then, create a brand new version of NONSTOP.BAT:

ECHO OFF
ECHO Press any key to stop
:TOP
DECIDE
KEYSTROK
IF NOT ERRORLEVEL 1 GOTO TOP

Now NONSTOP.BAT will loop continuously until you press any key (other than a
shift key such as Ctrl or NumLock). If you don't press a key it will keep looping. If you're
familiar with BASIC, this is similar to:

----···,--..--~-----·---'"'""' ------·

·I ,,

510 PC Magazine DOS Power Tools

DECIDE >> DECIDE.LOG

This instruction uses a pair of> DOS redirection signs. Using just a single> sign would
have created a brand new file each time DOS executed this instruction. This isn't what
you want, since DOS would end up writing each new line over each older one (so the
second would wipe out the first, the third would wipe out the second, and the 255th would
write over the 254th). When you were all done all you'd have is a one-line log file con
taining just the single 255th line of output.

When DOS sees a>> pair of these signs it adds or appends each new line onto the ex
isting file of older ones. If no older file exists, the first time DOS runs this command it
creates a new one, and then appends all subsequent output to it. But if it finds an exist
ing file with the name you specified, it adds the new output onto the end of this existing
file.

This means that if you run COUNTIT.BAT once, you'll end up with 255 repetitions.
But since the double redirection sign adds new output onto existing output, you can run
COUNTIT .BAT several times to increase the number of repetitions to a point where the
division of "maybe," "yes," and "no" responses starts to become statistically meaning
ful. Run COUNTIT.BAT twice and your log file will contain 510 entries, four times and
it will hold 1,020, etc.

This technique works like a charm when you know exactly how many times you want
the loop to repeat. Just be sure you include a line before the the loop starts that says:

LOOP /S

and then add the command:

LOOP

by itself somewhere near the bottom of the loop, and follow it with an IF ERRORLEVEL
or IF NOT ERRORLEVEL line. Adjust the value after ERRORLEVEL to reflect the
number of repetitions.

ERRORLEVEL-Best Command, Worst Name

Knowing how to use ERRORLEVEL is vital if you want to turn ordinary batch files into
screaming power tools. Don't be thrown off by its rotten name; it's the only real method
DOS provides for making batch files dynamically interactive. But while the framework
is there, it needs a little help. DOS does let you use replaceable parameters to pass infor
mation from the command line into a batch file when you first execute it, but this won't
let you or your system talk to a batch file while it's running.

The only problem is that while ERRORLEVEL provides the raw muscle, DOS doesn't
give you any convenient way to harness it So you have to create your own tiny assembly
language programs to help. It's easy once you get the hang of it. And you'll be amazed

Batch Techniques 509

LOOP.COM works by storing an ever-increasing value at low memory address
0040:006B. This location is reserved for the cassette recorder and is unused on most sys
tems (unless you're one of the two people in the known universe using a cassette). Each
time LOOP runs, it retrieves the counter, increments it, and exits with the new value.

The largest number of repetitions you can specify is 255. If you use a number higher
than 255, your system will perform a modulo operation on it, which means it will start
over again at 1. So 254 will repeat 254 times, and 255 will repeat 255 times, but 256 and
257 will repeat just one time, 258 will repeat two times, 259 will run three times, and so
on.

Incidentally, if you wanted to have DOS count how many times the DECIDE.COM
program printed "maybe" vs. "yes" vs. "no" the following COUNTIT.BAT batch file
would do it for you automatically:

ECHO OFF
ECHO Running DECIDE 255 times ...
LOOP /S
:TOP
DECIDE >> DECIDE.LOG
LOOP
IF NOT ERRORLEVEL 255.GOTO TOP
ECHO Counting ...
ECHO Number of "maybe" lines:
FIND /C "maybe" DECIDE.LOG
ECHO Number of "yes" lines:
FIND /C "yes" DECIDE.LOG
ECHO Number of "no" lines:
FIND /C "no" DECIDE.LOG

For this to work, you'll need to have the DOS FIND.EXE program in the same sub
directory as COUNTIT.BAT, LOOP.COM, and DECIDE.COM, unless it's in a direc
tory that your path knows about. COUNTIT.BAT will use the LOOP.COM utility to run
DECIDE.COM 255 times, but instead of printing each:

The answer is ... maybe.

response onscreen, it will redirect the output to a file called DECIDE.LOG. Then, when
it's all done, it will use the line-counting abilities of the DOS FIND filter and add up ex
actly how many lines have the words "maybe," "yes," or "no" in them.

Running COUNTIT.BAT may take a minute or two. If you have a fast hard disk sys
tem it's not so bad, but if you're using floppies, you're much better off creating a
RAMdisk, copying COUNTIT.BAT, FIND.EXE, LOOP.COM, and DECIDE.COM into
it, and then running it on the RAMdisk. Otherwise your diskettes will grind for an aw
fully long time.

Onemorepoint-COUNTIT.BATredirectsDECIDE.COM'soutputintoafilecalled
DECIDE.LOG with the line:

508 PC Magazine DOS Power Tools

To use it, first insert a line near the very beginning of your batch file - before the loop
actually starts - containing the command:

LOOP /S

This initializes the loop counter by putting a zero in a certain place in memory, and
prevents you from running into trouble if you use the LOOP.COM utility more than once.

Then, simply put the command:

LOOP

on a line by itself somewhere inside the loop. Then follow this line with another line that
says:

IF ERRORLEVEL (number) GOTO (label)

or:

IF NOT ERRORLEVEL (number) GOTO (label)

substituting the number of times you want to loop in place of the (number), and the ac
tual LABEL you want the batch file to jump to in place of (label).

Each time the batch file executes it, LOOP.COM will increase a value that DOS can
measure with this oddly named IF ERRORLEVEL command. The following version of
the NONSTOP.BATbatch file will execute the DECIDE program 15 times and then stop:

ECHO OFF
LOOP /S
:TOP
DECIDE
LOOP
IF NOT ERRORLEVEL 15 GOTO TOP

Using IF NOT ERRORLEVEL to check a negative (NOT) condition saves steps, but
you could accomplish the same exact thing with a non-negative version of NON
STOP.BAT that reads:

ECHO OFF
LOOP /S
:TOP
DECIDE
LOOP
IF ERRORLEVEL 15 GOTO END
GOTO TOP
:END

Batch Techniques 501

But you could also write a short NONSTOP.BAT batch file to rerun the program
automatically until you teH it to stop:

ECHO OFF
:TOP
DECIDE
GOTO TOP

(Be sure to put a carriage return at the end of the last line, or else the batch file will ex
ecute the DECIDE program once and then quit.) Run NONSTOP.BAT and you'll see
something like:

The answer is yes.

The answer is maybe.

The answer is maybe.

The answer is yes.

The answer is yes.

The answer is no.

scrolling endlessly down your screen. The only way to stop it (other than rebooting your
system) is to press Ctrl-C or Ctrl-ScrollLock, at which point DOS will print a message
that says "Terminate batch job (Y /N)?"

If you type Y or y the batch file will abort and you'll return to the DOS prompt. If you
type N or n the batch file will continue doing whatever it was doing. Type anything else
and DOS will stubbornly keep printing the same (YIN) request.

(Obviously you'll have to run the program lots of times to see a fairly even distribu
tion. Very small samples like these can be misleading.)

The mechanism that repeated the NONSTOP.BAT batch file output - a loop - is
one of the fundamental computer tools. Remember, computers aren't smart, they're just
fast. They're especially good at executing the same basic instruction over and over. This
comes in handy more often than you might think, since computer programs are loaded
with loops. Even something as simple as figuring out what you typed on the DOS com
mand line is a loop. since what DOS really does is examine and interpret the first charac
ter and then move on to examine the next character, and the next, until it's reached the
end of the line and processed each one.

Loops are terrific tools. But endless loops that force you to break out of them by typing
Ctrl-C or Ctrl-ScrollLock aren't so terrific.

If you know exactly how many times you want part of your batch file to loop, you can
control the process with a small utility on the accompanying disk called LOOP.COM.

506 PC Magazine DOS Power Tools

While using the TYPE command to display text in a separate file is far faster than
ECHOing it to the screen a line at a time, you'll have to remember to keep both the batch
file with the TYPE command and the file to be typed together. If you want to give your
batch file to a co-worker, you may forget to pass along the text file. Or the co-worker
may see the file, not know what it is, and unwittingly erase it. And if your batch file uses
TYPE to display the contents of multiple message files, you complicate things even more.

One final problem is that small files take up more space than you think. On an old PC
XT, even a two-line file can waste 4K of disk space.

The best solution in this case (and in just about every other one) is to get yourself a
jet-propelled hard disk, and a speedy CPU. Speed is addictive. One of the reasons you
started using a computer in the first place was to do more chores in less time, and a neck
snapping system makes this easier. The highly competitive hardware market ensures that
hot, muscular new systems are always coming down in price. Or you can purchase an ac
celerator board. And in any event, stuff your system with memory, then have your start
up AUTOEXEC.BAT file copy your important batch files to a RAMdisk and run them
directly out of memory.

Jumping, Skipping, Looping, and Branching

The DECIDE.COM program prints "yes," "no," or "maybe" answers in a fairly even ran
dom distribution. If you keep running it you'll see that each response appears about a
third of the time.

How does it work? It uses the DOS Read Time function (hex 2C) to sniff out num
bers from your system's clock. DOS will report the current time by putting four values
- hours, minutes, seconds, and hundredths of seconds - into four registers (CH, CL,
DH, and DL). Actually, since this clock "ticks" approximately 18.2 times per second, the
finest resolution is about five-hundredths of a second (1/18.2). But all 100 values be
tween 0 and 99 eventually appear in the hundredths register (DL) in even enough propor
tion that DECIDE.COM can use whatever number happens to be there as a random
number.

DECIDE.COM starts dividing this random number into even chunks by first lopping
off the top third - any number from 64 to 99. It does this by testing whether the seventh
bit in the value it finds is set to 1 (turned on). Since this bit is equal to 2"6, or decimal
64, any number with this bit set has to be equal to or greater than 64. If DECIDE finds
the bit set - and it should about a third of the time it prints the "maybe" message and
exits.

If it sees that the seventh bit is not set, the value has to be in the two-thirds of the
remaining numbers between 0 and 63. Dividing these numbers in half to yield the two
remaining thirds is easy; they're either odd or even. Odd numbers all have their first or
21\Q bit set to 1, while in even numbers this bit is always a 0. DECIDE prints a "yes" or
"no" depending on whether or not it sees this first bit set.

If you wanted to test this theory and make sure DECIDE printed out "yes," "no," and
"maybe" in roughly equal proportions, you could type DECIDE and press the Enter key
and then sit there banging on the F3 and Enter keys to execute the program over and over.

C>ECHO Hello there
Hello there

Batch Techniques 505

So a better version of the FORMAT-cautioning batch file would be:

ECHO OFF
ECHO Be very
ECHO very
ECHO
ECHO

very
very

ECHO careful
ECHO when you use the FORMAT corrunand

DOS will display:

Be very
very

very
very

careful
when you use the FORMAT corrunand

The indentation trick that staggered REM statements across the screen won't work
with ECHO commands. To indent text that ECHO displays you'll have to add spaces be
tween the word ECHO and the text that it prints.

ECHO can print boxes and borders onscreen as well as text. The BOXMAKER.BAS
program on the accompanying disk will create a BOX.BAT batch file that displays a
single-line or double-line box any size you want, and indented wherever you want it. You
can use your word processor or EDLIN to add text inside the box.

DOS executes batch files one line at a time. If you have a system with a fast hard disk
or RAMdisk, you can get away with using the ECHO command to print a large block of
text onscreen. But on a floppy disk system all you'll get is a lot of disk grinding and a
painfully slow display as DOS churns the floppy line by line to see what it should ECHO
next.

If you don't have a hard disk, set up a RAMdisk and copy your batch files onto it. The
DOS VDISK.SYS virtual disk driver supplied with versions 3.0 and later works well, or
you can use the program furnished with your system's memory expansion card.

An alternative method is to use the TYPE command to display any really large text
blocks. If you want your batch file to print a long involved set of instructions, you could
type these into a separate file called INS1RUCS and then insert a line into your batch
file at the appropriate place that said:

TYPE INSTRUCS

504 PC Magazine DOS Power Tools

The second example above would, of course, clear the screen first. If you don't tum
ECHO off, and you indent the lines in your batch file, DOS will maintain the indentation
when it displays them. So a batch file that contained the lines:

REM Be very
REM very

REM very
REM very

REM careful
REM when you use the FORMAT command

would show up onscreen as:

C> REM Be very

C> REM very

C> REM very

C> REM very

C> REM careful

C> REM when you use the FORMAT command

Since DOS won't display any lines beginning with REM if ECHO is off, adding an
ECHO OFF at the beginning of the above batch file would end up spinning your disk but
displaying nothing except a blank line or two.

If you wanted to print a warning message like the one above, and you didn't want it
cluttered with REMs and DOS prompts and extra spaces, you could use the ECHO com
mand to display it.

Putting the word ECHO at the beginning of a line tells DOS to print onscreen every
thing that follows it on the same line.

If you included the line:

ECHO Hello there

in a batch file, DOS would print:

Hello there

When using ECHO command to display messages, be sure to turn ECHO off before
you print the first one. Otherwise you '11 end up printing both the words you want dis
played and the command to display them. If you didn't first turn ECHO off, the "ECHO
Hello there" line would appear as:

Batch Techniques 503

simply as ECHO commands with nothing after them other than meaningless spaces, and
think you 're asking it to report whether ECHO happens to be toggled off or on.

REMinding Yourself

Running the DECIDE.COM program from the D.BA T batch file rather than renaming
DECIDE.COM to D.COM does help prevent your disk from filling up with mysterious
sounding programs like A.COM, BB.EXE, and Z.COM that don't really tell you what
they do.

However, months from now if you stumble across D.BAT you may forget what
DECIDE.COM does. It sounds harmless enough, but if you have a few dozen megabytes
of critical information on your hard disk, and, well, one of these days you 're definitely
going to back up every last file, don't take chances.

To make life easier, use the DOS REM (Remark) batch command to add a nonexecut
ing comment to D.BAT:

ECHO OFF

REM decide.com provides yes/no/maybe answers to questions

CLS

DECIDE

Lines beginning with REM can contain up to 123 characters of text. If you turn ECHO
off earlier in the batch file they won't appear onscreen. If you don't turn ECHO off, or
if you turn ECHO back on before the REM line, DOS will display it onscreen, REM and
all. So a batch file such as:

REM decide.com provides yes/no/maybe answers to questions

DECIDE

or:

ECHO OFF

CLS

ECHO ON

REM decide.com provides yes/no/maybe answers to questions

DECIDE

would display:

C>REM decide.com provides yes/no/maybe answers to questions

C>DECIDE

The answer is ... yes.

502 PC Magazine DOS Power Tools

However, if you 're using DOS version 3.3 or later, you can prevent any batch file com
mand from appearing onscreen by putting a @ sign at the beginning of the line. So if
you're using a later DOS version and you changed D.BAT to read:

@ECHO OFF

DECIDE

when you ran this version all you'd see is:

C>D

The answer is ... yes.

Still, while this prevents the DECIDE filename from appearing onscreen, and suppres
ses the ECHO OFF command, it makes you stare at the name of the batch file itself,
D.BAT. You can get rid of this by clearing the screen with a CLS command. So adding
a third line to D.BAT:

ECHO OFF

CLS

DECIDE

will clear the screen and print:

The answer is •.. maybe.

in the upper lefthand comer.
You can tell whether or not ECHO is off or on by typing ECHO on a line by itself and

pressing Enter. If your batch file ever displays a line that says:

ECHO is off

or:

ECHO is on

it means that the batch file either had the command ECHO on a line by itself with noth
ing following it, or thought it did. Since DOS treats equals signs, tabs, semicolons, and
commas as spaces, it will interpret lines such as:

•ECHO=
• ECHO;
•ECHO,

Batch Techniques 501

time trying to run it, since DOS would see that you wanted to execute something called
TYPE or DIR and think you were referring to the internal command with the same name.

Well, okay, DOS provides a tricky way to run a file with a name similar to an internal
command, by letting you put a drive letter or pathname in front of it. When you add a
drive or path, DOS knows you can't be talking about an internal command. To try it,
make a copy of D.BAT called DIR.BAT. Then enter:

.\DIR

(The ".\' prefix tells DOS that the filename after the prefix is in the current directory.)
But spare yourself the trouble and avoid such names.

Turning ECHO Off

Running a batch file like D.BAT really clutters up your screen. You type:

D

You should see:

C>DECIDE

The answer is ... maybe.

When DOS executes the contents of any batch file, it normally prints, or echoes, each
line onscreen just as if you had typed it. But you can prevent most commands from echo
ing onto your screen with the batch file command:

ECHO OFF

So if you enhanced the D.BAT batch file by adding a line at the very beginning, so it
looked like this:

ECHO OFF
DECIDE

when you ran the batch file you'd see:

C>ECHO OFF

The answer is ... no.

This is a bit better than the original version, because it suppresses the name of the
program the batch file executes when you run it. But you do have to look at the initial
ECHO OFF command.

500 PC Magazine DOS Power Tools

l:*DECIDE
2:*

Now EDLIN is telling you that line 2 is the current line. But all you wanted to do was
create a one-line batch file, so to tell EDLIN you're done inserting text, just hold down
the Ctrl key and press either C or ScrollLock while you 're holding it down. You should
see:

l:*DECIDE
2:*"C

*

Then End the EDLIN file creation process by typing:

*E

(ore).
Whether you used EDLIN or the COPY CON approach, after you get back to the

familiar DOS prompt, type D to execute the batch file. DOS executes a batch file one
line at a time. The first (and only) line in D.BAT is:

DECIDE

DOS tries to execute this line by first seeing if DECIDE is an internal DOS command.
The instructions to execute common DOS commands such as DIR, TYPE, or COPY are
buried inside the DOS COMMAND.COM program, and Microsoft refers to these as in
ternal commands. External commands, like SORT.EXE or CHKDSK.COM, are separate
programs, and are not a part of COMMAND.COM at all. You can always execute an in
ternal command like TYPE or DIR, since they're built into COMMAND.COM. But you
won't be able to run an external command such as FORMAT unless the FORMAT.COM
program happens to be on your disk.

DOS maintains a list of all the internal commands inside COMMAND.COM, and it
won't find one called DECIDE there. So it then looks for a program called DECIDE.COM
in the current directory. Since you just put this file there, DOS will run it.

Incidentally, if you created the D.BAT file and you happen to have a file in the same
directory called D.COM or D.EXE, you'll never be able to run D.BAT. Whenever you
enter a command or the name of a file you want to run, COMMAND.COM first checks
to see if you entered an internal DOS command. If it doesn't find an internal command
that matches what you typed, it next checks for a file with the same name but with a COM
extension. If it doesn't find a COM file with the same name, it looks for a similarly named
file with an EXE extension. It will run a batch file with the name you typed only if it can't
find an internal command, a COM file, and an EXE file with the same filename.

Similarly, don't ever try giving any executable file a name that duplicates an internal
command. If you tried to create a file called TYPE. COM or DIR.BAT you'd have a hard

To use the EDLIN technique, type:

EDLIN D.BAT

You should see a message that says:

New file

*

Batch Techniques 499

When EDLIN displays an asterisk hugging the left margin, it means it's waiting for you
to enter a command. An asterisk in column I like this is the EDLIN "prompt" just as A>
or C> is the default DOS prompt.

If you don't see this "New file" message, or you see something that says:

End of input file

*

this tells you that you 're editing an existing file rather than creating a new one, which is
definitely not what you want to do. If this happens, type Q to quit, and when you see the
message:

Abort edit (Y/N)?

type Y to confirm that you do indeed want to quit. Then restart the process, but pick a
different name, such as A.BAT (which is short for Answer).

However, if you did see the:

New file

*

message, type an I (or an i) to start Inserting text. EDLIN will indent itself and print:

1:*

Here EDLIN uses the asterisk to tell you that line 1 is the "currenf' line. EDLIN can
work on only one line at a time (which it refers to as the current line) and it signifies
which line is the current one by putting an asterisk beside its line number.

Type in:

l:*DECIDE

either in uppercase or lowercase; DOS isn't picky when it comes to ordinary batch file
commands. Press the Enter key and you should see:

498 PC Magazine DOS Power Tools

C>DECIDE

Then type the F3 key and press Enter a few more times. The program simply checks your
computer's internal clock, and helps you make decisions based on the numbers it hap
pens to find there, like a high-tech version of the "Magic 8-Ball" many of us owned as
kids.

Having to type the six-letter program name DECIDE each time you want your com
puter to help you select a course of action is tedious. You could rename DECIDE.COM
to something shorter like D.COM. Then all you'd have to do to run the program is type:

D

However, the program would then show up in your DIR listings simply as D.COM, and
if you didn't use it for a long time and then happened to see the not-very-descriptive
D.COM filename several months later, you might forget what the program did.

You could run it to find out, but some programs don't do anything immediately ap
parent when you execute them. For instance, try running the DOS GRAPHICS .COM
program. Your disk will spin for a second or two and nothing will appear onscreen to tell
you what just happened. All programs should at least put a message onscreen to keep you
informed, but many don't. In this case the message should have been something like
"Graphics print screen function (Shift-PrtSc) now properly configured for IBM com
patible printers."

Even worse, a program could have potentially destructive results. That D.COM
program could have once been named DESTROY .COM and you may have used it long
ago to erase all the files on your disk for security purposes.

Easy Batch File Creation

But you can execute the DECIDE.COM program with a single keystroke without having
to rename it. Just create a one-line batch file called D.BAT that will do all the typing for
you. You could use your word processor to create this file, but DOS provides two quick
er, easier ways-the COPY CON command and EDLIN.

To use the COPY CON technique, type:

COPY CON D.BAT

and press Enter. The cursor will simply drop down a line. Then type:

DECIDE

and press the F6 function key, then the Enter key. When you press F6 you'll see a "Z ap
pear, and when you press Enter you should see a message that says "1 File(s) copied." If
you make a mistake while using COPY CON, hold down the Ctrl key, and press either
C or ScrollLock to abort the process. Then press the F3 key and then Enter to restart.

Chapter 10

Batch Techniques

A batch file is simply a file with a BAT extension that contains a list of DOS instructions
you want to execute and programs you want to run. When you execute the batch file,
DOS looks at each line and executes the instruction or runs the program specified on that
line just as if you had typed it in directly.

Once you master its dozen or so batch commands, you can have DOS automate all
your daily chores and chop tedious file management tasks down to size. You can even
use these commands to dial your phone, look up names and addresses, or keep track of
your appointments. All at the touch of a key or two.

Batch files are really just computer programs, written in DOS. All programming lan
guages share certain basic features. One is the conditional ability to execute commands
only when the proper conditions are met. Other features are the ability to loop repeated
ly, or use variables with changeable values, or divide jobs into small subroutines.
Microsoft's batch file language isn't elegant, and it needs a little help. But it packs a wal
lop into its few commands and gives you astonishing control over your system.

Batch File Basics

To illustrate how a batch file works, you need a program for it to run. The examples that
follow will use a program on the accompanying disk called DECIDE.COM.

Batch file creation and operation are complex and exacting. It's a little like trying to
write a novel in a language with only a handful of words - or commands. To give you
a feel for how the commands work and what you have to do whip them into shape, this
section will start out by providing a brief overview of the most important commands.
Then it will explore each command in painstaking detail, fleshing out the fundamentals
where necessary. Finally, it will provide a slate of useful samples.

Once you have DECIDE.COM handy, run it by typing:

497

PART III

Power User's
Secrets

ANSI and Other DOS Drivers 493

OOOO:A250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A2AO 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C • $0<

-Q

What happens when you redefine a key? The old 2.BAT batch file assigned
BBBBBBBBBB to the 2 key. The 4.BAT batch file reassigns the 2 key so it prints
bbbbbbbbbb instead.

t; DOS will discard the definition for the old 2 key, move everything that followed it up
toward the beginning of the buffer to save valuable space (in this example the only defini-
tion that followed was the one that assigned CCCCCCCCCC to 3), and then stick the
new definition for the 2 key at the end:

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 oc [.... r •.

OOOO:AlEO 31 41 41 41 41 41 41 41-41 41 41 oc 33 43 43 43 1AAAAAAAAAA.3CCC

OOOO:AlFO 43 43 43 43 43 43 43 OC-32 62 62 62 62 62 62 62 CCCCCCC.2bbbbbbb

OOOO:A200 62 62 62 00 00 00 00 00-00 00 00 00 00 00 00 00 bbb •••••••••••••

OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 "'
OOOO:A290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A2AO 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C ...•••...•..• $0<

-Q

Armed with SEE.BAT and CLR.BAT and any of the above programs that send escape
characters directly to DOS, you can do some real screen and keyboard magic.

492 PC Magazine DOS Power Tools

OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A2AO 00 00 00 00 00 OD 00 00-00 00 00 CD 11 24 30 3C

-Q

••••••••••••• $0<

Next, run 2.BAT, which assigns ten Bs to the 2 key. DOS will use up 12 more charac
ters of buffer space:

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 OC
OOOO:AlEO 31 41 41 41 41 41 41 41-41 41 41 OC 32 42 42 42

OOOO:AlFO 42 42 42 42 42 42 42 00-00 00 00 00 00 00 00 00

OOOO:A200 00 00 00 00 00 00 00 00-00 00 00 00 DO 00 00 00

OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 DO 00 00 00 DO
OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 DO 00

OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A250 00 00 DO 00 00 00 00 00-00 00 00 OD 00 00 00 00

OOOO:A260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A290 00 00 00 00 00 DO 00 00-00 00 00 00 00 00 00 00

OOOO:A2AO 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C

-Q

Finally, run 3.BAT, which assigns ten Cs to the 3 key:

C>DEBUG < SCRIPT.SEE
-D O:AlDO LEO

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 OC

OOOO:AlEO 31 41 41 41 41 41 41 41-41 41 41 Oc 32 42 42 42
OOOO:AlPO 42 42 42 42 42 42 42 OC-33 43 43 43 43 43 43 43
OOOO:A200 43 43 43 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A230 00 00 00 DO 00 OD 00 00-00 00 00 00 00 00 00 00

OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

........ [.... r ..

lAAAAMAAAA. 2BBB

BBBBBBB •.••...••

••••••••••••• $0<

........ [.... r ..

1AAAAMAAAA.2BBB
BBBBBBB.3CCCCCCC
CCC •...........•

ANSI and Other DOS Drivers 491

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO

0000 :AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 00 ..•..... [•... r •.

OOOO:AlEO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:AlFO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A24D DD OD 00 OD 00 00 DD DD-OD DO DD 00 DO OD DO OD
DDOO:A250 00 OD 00 OD 00 00 OD 00-00 00 00 OD 00 OD DO OD
DDDO:A26D 00 OD DO 00 00 DD 00 00-0D 00 DD DO 00 OD 00 OD
DOOO:A270 DD 00 DD 00 00 OD DO DD-00 00 OD DO OD OD DO 00
ODDD:A280 DD DD OD DO OD DO OD DO-DO OD DO DD OD DD OD DD
DOOD:A290 OD 00 00 DO 00 00 OD DO-OD DO 00 OD DO 00 DO 00
DOOO:A2AO 00 00 00 00 DO 00 00 00-00 00 00 CD 11 24 30 3C . • • . . • • • . • • • . $0<

-Q

You can use SEE.BAT and CLR.BAT to watch ANSI in action. First, make sure the
buffer is empty, by running CLR.BAT. Then create four one-line batch files, 1.BAT,
2.BAT, 3.BAT, and 4.BAT:

ECHO This is 1.BAT ESC[49;"AAAAAAAAAA"p

ECHO This is 2.BAT ESC[SO;"BBBBBBBBBB"p

ECHO This is 3.BAT ESC[Sl;"CCCCCCCCCC"p

ECHO This is 4.BAT ESC[50;"bbbbbbbbbb"p

Run l.BAT, which tells ANSI to reassign character 49 (the digit 1) so pressing it will
print a string of ten As onscreen. DOS will first insert a hex OC (decimal 12) into the
buffer to tell itself that it's using up 12 buffer spaces - ten for the AAAAAAAAAA,
one for the "l" that it assigns these As to, and one for the length counter (the OC) itself.
Then it will put the reassigned key into the buffer, and finally the characters you're reas-
signing:

C>DEBUG < SCRIPT.SEE
-D O:AlDO LEO
OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 oc [.... r ..

OOOO:AlEO 31 41 41 41 41 41 41 41-41 41 41 00 00 00 00 00 lAAAAAAAAAA •....
OOOO:AlFO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

490 PC Magazine DOS Power Tools

CASESW AP will now create a file called RESET, then automatically TYPE it for you
to trigger a new set of ANSI definitions that effectively resets things back to normal.

The actual RESET file looks like:

ESC[65;65p
ESC[66;66p
ESC[67;67p

ESC[94;94p
ESC[38;38p
ESC[42;42p
ESC[40;40p

(Again, this shows just the beginning and end of it; the real RESET file is longer.)
Type any letters or the uppercase versions of the top-row keys and you '11 see that things

are indeed back to normal. Run SEE.BAT again and you '11 see:

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO

OOOO:AlDO FE OE 06 01 EB EB 81 C3-SB OS C3 04 00 72 10 03

OOOO:AlEO 41 41 03 42 42 03 43 43-03 44 44 03 4S 4S 03 46
OOOO:AlFO 46 03 47 47 03 48 48 03-49 49 03 4A 4A 03 4B 4B

OOOO:A200 03 4C 4C 03 40 4D 03 4E-4E 03 4F 4F 03 SO SO 03

OOOO:A210 Sl Sl 03 S2 S2 03 S3 S3-03 S4 S4 03 SS SS 03 S6
OOOO:A220 S6 03 S7 S7 03 S8 S8 03-S9 S9 03 SA SA 03 61 61

OOOO:A230 03 62 62 03 63 63 03 64-64 03 6S 6S 03 66 66 03

OOOO:A240 67 67 03 68 68 03 69 69-03 6A 6A 03 6B 6B 03 6C

OOOO:A2SO 6C 03 60 60 03 6E 6E 03-6F 6F 03 70 70 03 71 71

OOOO:A260 03 72 72 03 73 73 03 74-74 03 7S 7S 03 76 76 03

OOOO:A270 77 77 03 78 78 03 79 79-03 7A 7A 03 3E 3E 03 3F

OOOO:A280 3F 03 29 29 03 21 21 03-40 40 03 23 23 03 24 24

•••••••• [•••• r ••
AA.BB.CC.DD.EE.F

F.GG.HH.II.JJ.KK

.LL.MM.NN.00.PP.

QQ.RR.SS.TT.UU.V

V.WW.XX.YY.ZZ.aa

.bb.cc.dd.ee. ff.

gg.hh.ii.jj.kk.l

l.mm.nn.oo.pp.qq

.rr.ss.tt.uu.vv.

ww.xx.yy.zz.>>.?
? •)) • ! ! .@@. ##. $$

0000:A290 03 2S 2S 03 SE SE 03 26-26 03 2A 2A 03 28 28 00 .%%.AA.&&.**·((.

0000:A2AO 28 28 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C ((...•.•••... $0<
-Q

The extra ((at the end is an artifact. ANSI gets cranky when you start to fill it up. If you
had assigned 65 new definitions and then reassigned them, ANSI would have choked.

To clear all these definitions out of memory, run CLR.BAT. Try typing the keys that
were just redefined and you '11 notice that they're back to normal. Then run SEE one last
time and the screen should look again like:

ANSI and Other DOS Drivers 489

(The actual file is longer; this shows just the beginning and end of it.)
Try typing some of these keys to make sure ANSI did in fact redefine them. Then run

SEE.BAT again and you '11 see:

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO
OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 03 [.... r ..

OOOO:AlEO 41 61 03 42 62 03 43 63-03 44 64 03 45 65 03 46 Aa.Bb.Cc.Dd.Ee.F

OOOO:AlFO 66 03 47 67 03 48 68 03-49 69 03 4A GA 03 4B 6B f.Gg.Hh.Ii.Jj.Kk

OOOO:A200 03 4C 6C 03 4D 6D 03 4E-6E 03 4F 6F 03 50 70 03 .Ll.Mm.Nn.Oo.Pp.

OOOO:A210 51 71 03 52 72 03 53 73-03 54 74 03 55 75 03 56 Qq.Rr.Ss.Tt.Uu.V

OOOO:A220 76 03 57 77 03 58 78 03-59 79 03 5A 7A 03 61 41 v.Ww.Xx.Yy.Zz.aA

OOOO:A230 03 62 42 03 63 43 03 64-44 03 65 45 03 66 46 03 .bB.cC.dD.eE.fF.

OOOO:A240 67 47 03 68 48 03 69 49-03 6A 4A 03 6B 4B 03 6C gG.hH.iI.jJ.kK.l

OOOO:A250 4C 03 6D 4D 03 6E 4E 03-6F 4F 03 70 50 03 71 51 L.mM.nN.oO.pP.qQ

OOOO:A260 03 72 52 03 73 53 03 74-54 03 75 55 03 76 56 03 .rR.sS.tT.uU.vV.

OOOO:A270 77 57 03 78 58 03 79 59-03 7A SA 03 3E 2E 03 3F wW.xX.yY.zZ.> •. ?

OOOO:A280 2F 03 29 30 03 21 31 03-40 32 03 23 33 03 24 34 /.)0.!1.@2.#3.$4

OOOO:A290 03 25 35 03 SE 36 03 26-37 03 2A 38 03 28 39 00 .%5."6.&7.*8. (9.

OOOO:A2AO 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C•. $0<

-Q

Each of the 64 one-character redefinitions takes up a three-space chunk of the buffer:

• one for the key you assigned the new character to
• one for the new character you assigned to the key
• one for a counter that tells ANSI how long the chunk is

The first redefinition assigns "a" to "A" so when you type a capital A you'll end up with
a lowercase one. In the buffer this looks like:

OOOO:AlDO

OOOO:AlEO

The length of this chunk

l
03

41 61•.•....

J Jhe new "a" character you are reassigning to it

he old "A" character you are reassigning

Aa •.......•.•...

Now run the CASESW AP program again, but this time when it asks whether you want
to switch cases or reset them, type:

R

488 PC Magazine DOS Power Tools

when it asks whether you want to switch cases or reset them. It will create a file called
SWITCH, then automatically TYPE it for you to trigger the actual ANSI definitions:

100 ' CASESWAP.BAS - creates ANSI file to switch/reset cases

110 ' Make sure your DOS CONFIG.SYS file contains line:

120 ' DEVICE=ANSI.SYS

130 DEF FNST$(Y)=RIGHT$(STR$(Y),LEN(STR$(Y))-SGN(Y))

140 PRINT "Switch cases or Reset them (S/R): "

150 I$=INKEY$:IF I$="" THEN 150 ELSE I$=CHR$((ASC(I$) AND 95))

160 IF I$="R" THEN N$="RESET":P=O:ELSE N$="SWITCH":P=32

170 PRINT N$:0PEN N$ FOR OUTPUT AS #1

180 FOR A=65 TO 90

190 PRINT #l,CHR$(27);"[";FNST$(A);";";FNST$(A+P);"p"

200 NEXT

210 FOR A=97 TO 122

220 PRINT #l,CHR$(27);"[";FNST$(A);";";FNST${A-P);"p"

230 NEXT

240 FOR A=l TO 12

250 READ B

260 PRINT #l,CHR${27);"[";FNST$(B);";";

270 IF I$="R" THEN PRINT #l,FNST$(B); ELSE PRINT #1,FNST$(A+45);

280 PRINT #1,"p":NEXT:CLOSE

290 IF I$="R" THEN SHELL "TYPE RESET" ELSE SHELL "TYPE SWITCH"

300 PRINT "(Now type: SYSTEM and press Enter key)"

310 DATA 62,63,41,33,64,35,36,37,94,38,42,40

The SWITCH file turns all the lowercase alphabetic keys into uppercase ones and vice
versa. And it also effectively disables the uppercase functions of all the number keys as
well as the greater-than and question mark keys. So typing any normal lowercase letter
will produce its uppercase version, and typing the top-row number keys, the slash, or the
period (the one on the main part of the keyboard, not on the number pad) in either shifted
or unshifted states will generate the lowercase versions of those keys.

The actual SWITCH file looks like:

ESC[65;97p

ESC[66;98p

ESC[67;99p

ESC[94;54p

ESC[38;55p

ESC[42;56p

ESC[40;57p

ANSI and Other DOS Drivers 487

3.1 E0:861B4
F 0:8A83 LCC 0
Q

D0:8A80LDO
Q

3.2 E0:9C9B4
FO:Al03LCCO
Q

DO:AIOOLDO
Q

3.3 E0:9D7B4
F O:AIDF LCC 0
Q

DO:AIDOLEO
Q

SEE.BAT= DEBUG< SCRIPT.SEE
CLR.BAT =DEBUG< SCRIPT.CLR

Once you've created the four files: SEE.BAT and SCRIPT.SEE; and CLR.BAT and
SCRIPT.CLR, get into DOS and type:

SEE

This will execute SEE.BAT, which will redirect the SCRIPT.SEE file into DEBUG. You
shoul4 see something like:

C>DEBUG < SCRIPT.SEE

-D O:AlDO LEO

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 00

OOOO:AlEO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:AlFO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

OOOO:A2AO 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C
-Q

........ [.... r ..

••••••••••••• $0<

Now fill the buffer by executing 64 key redefinitions. Since doing it by hand would take
too long, run the following BASIC CASESW AP.BAS program, and type:

s

486 PC Magazine DOS Power Tools

DOS Version

2.1

3.0

3.1

3.2

3.3

Then for the AT:

DOS Version

2.0

2.1

3.0

SCRIPT.CLR SCRIPT.SEE

E 0:519B 4 D 0:55EOLDO
F 0:55E5 LC4 0 Q
Q

E0:7EEB4 D0:8340LEO
F 0:8349 LCC 0 Q
Q

E0:7EAB4 D 0:8310LDO
F 0:8313 LCC 0 Q
Q

E 0:97DB 4 D0:9C40LDO
F 0:9C43 LCC 0 Q
Q

E0:97CB4 D0:9C20LEO
F 0:9C2F LCC 0 Q
Q

SEE.BAT= DEBUG < SCRIPT.SEE
CLR.BAT =DEBUG< SCRIPT.CLR

SCRIPT.CLR

E 0:519B 4
F 0:55E5 LC4 0
Q

E 0:519B 4
F 0:55E5 LC4 0
Q

E0:84EB4
F 0:8949 LCC 0
Q

SCRIPT.SEE

D 0:55EOLDO
Q

D0:55EOLDO
Q

D 0:8940LEO
Q

continued

ANSI and Other DOS Drivers 485

In SCRIPT.CLR:

DEBUG Enter
command

1
Segment 0000

!
E 0:9D7B 4

t l Original value of 4

Pointer offset

DEBUG Fill
command

Buffer length - number of
bytes to fill

l SlginentOOOO l

F

Q

I

0 :AlDF LCC

l
Buffer start

Instruction to quit ·-
Be sure to press Enter after this!

0

l
Character to fill buff er

The actual values you enter for these script files can vary for lots of reasons -you might
be working with different hardware, different versions of DOS, different loading require
ments, and so on. But the following charts show our popular files - SCRIPT.CLR and
SCRIPT .SEE - as they would appear for different DOS versions. The files assume the
line DEVICE=CONFIG.SYS is the only line in your CONFIG.SYS file. First, for the
PC:

DOS Version

2.0

SCRIPT.CLR

E 0:519B 4
F 0:55E5 LC4 0
Q

SCRIPT.SEE

D0:55EOLDO
Q

continued

484 PC Magazine DOS Power Tools

DEBUG < SCRIPT.SEE

Finally, make sure DEBUG.COM and these four files are in the directory you're likely
to be using when you work on ANSI. Or put them in a directory that your DOS PA TH
and (version 3.3 and later) APPEND commands know about.

Running these two batch files will redirect the SCRIPT.SEE and SCRIPT.CLR files
into DEBUG and execute DEBUG commands just as if you had typed them from the
keyboard. But these files are far faster and more accurate than commands you'd have to
type yourself.

The SCRIPT.SEE file simply displays hex E (decimal 14) rows, or paragraphs of
memory that contain the buffer. It rounds the buffer start address down to an even
paragraph boundary by changing the rightmost digit from an F to a 0, which makes the
display look better. If you 're using a different version of DOS, replace the rightmost digit
with a 0 and substitute it for the Al DO in this example.

The LEO command (which could also be written as L EO) specifies the length of the
DEBUG display - EO bytes, which simply means hex E rows (hex 10 bytes in a
paragraph or row, so E x 10 = EO). Depending on the where the buffer start address hap
pens to be in the first line of the display, you would want to have DEBUG show either
DO or EO lines. It's always safer to pick the larger number, EO. (Note: this number is dif
ferent from the buffer length value that's shown in Figure 9.4.)

The SCRIPT.CLR file is more complicated. It has to change two parts of memory.
First, it has to reset the pointer back to the starting value of 4. Then it has to fill the buff
er with 00 characters.

SCRIPT.CLR resets the pointer simply by using the DEBUG Enter (E) command to
put a value of 4 at the pointer address. Then it uses the DEBUG Fill (F) command to fill
the entire buffer with OOs. You tell it where to start putting the 00s by specifying the buff
er start address directly after the F command. And you tell it how many 00s to insert at
that address by specifying the buffer length number for that particular version of DOS.
If you 're substituting your own values, remember:

In SCRIPT.SEE:

DEBUG Display
command

1
D
Q

Segment 0000

l
O:AlDO

1

LEO

f
Length of bytes to display l Buffer start offset with 0 as rightmost value

Instruction to quit -
Be sure to press Enter after this!

ANSI and Other DOS Drivers 483

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 00
OOOO:AlEO 02 00 2F 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:AlFO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOOO:A240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-H AlDB 4

AlDF A1D7

-H AlDF 464

A643 9D7B

-D 0: 9D7B Ll

0000:9070
-Q

04

........ [. • •• r .•

.. /

Now you can create two script files that will make it a snap to see what ANSI charac
ter definitions are currently active, and to clear all those definitions out of the buffer. But
you need one more piece of information - the buffer length (number of bytes in the buff
er) - and you can get this from the same chart you used to look up the subtraction value.
For all DOS 3.x versions this number is hex CC; for DOS 2.x versions ifs C4.

Assuming you've written down the same buffer start, pointer, and buffer length num
bers as the ones in the above example, type the following SCRIPT.CLR file:

E 0:9D7B 4
F O:AlDF LCC 0
Q

Then type this SCRIPT.SEE file:

D O:AlDO LEO
Q

Be sure to press the Enter key after each line, especially the last ones with the Q. If you
don't press Enter after the Q, your system will freeze when you try to execute these.

Now create two one-line batch files that will make working with ANSI a joy. First,
CLR.BAT:

DEBUG < SCRIPT.CLR

Then, SEE.BAT:

482 PC Magazine DOS Power Tools

Again, use the DEBUG Hex Math (H) command to do the calculation. The buffer start
address for an AT running DOS 3.3 is ADlF, and the value you have to subtract is 464.
So the DEBUG command to figure out the difference is:

-H AlDF 464

DEBUG will again print the sum and difference of the two hex numbers that you entered
after theH:

A643 9D7B

This time you're interested in the difference (the second of the two numbers DEBUG
printed out) - 9D7B.

When you first load ANSI, the value at this pointer address is 4. Use DEBUG's Dis
play (D) command to make sure the value at the pointer address you just calculated is
also 4:

-D 0:9D7B Ll

DEBUG should print:

0000:9070 04

If you don't see this, or you're using a version of DOS that's not on the chart, you can
have DEBUG 's Search (S) command uncover the pointer address for you. Issue the com
mand:

S 0:0 LOOOO CF 0 4 0

and then add 2 to the offset that DEBUG reports.
Either way, write down the pointer address, then quit DEBUG by typing Q and then

pressing Enter.
The whole process for an AT running DOS 3.3 that loaded ANSI.SYS before it loaded

any other drivers or set up any other buffers would look like:

C>DEBUG

-s 0:0 LOOOO 4 0 72 10

OOOO:AlDB

-D O:AlDO

ANSI and Other DOS Drivers 481

If you're not comfortable adding hex numbers, don't worry. DEBUG can do it for you.
Just use the DEBUG Hex Math (H) command and follow it with both numbers:

-H AlDB 4

DEBUG will respond by printing first the sum and then the difference of the two hex
numbers you entered:

AlDF A1D7

The sum of the two numbers that you entered is on the left The difference of your two
numbers is on the right:

AlDF A1D7

t
difference of AlDB • 4

f
sum of AlDB + 4

Here you're interested.in the sum (ADlF).Jotitdown safely and label it "Buffer Start."
You '11 need this address shortly.

Now calculate the other important address. ANSI maintains a one-byte pointer into its
buffer that keeps track of where the next available chunk of free storage space is located.
If you tell ANSI to create a macro for Fl that's 15 characters long, and then you have it
create a second macro for F2, this pointer tells ANSI where to store the information for
F2 so it doesn't write over the data already stored in the buffer for Fl.

You can figure out where this pointer address is by looking up a value in Figure 9 .4
and subtracting it from the buffer start address you just calculated.

Value to Subtract from
DOS Buffer Start Address Number of Bytes

Version to Get Pointer Address in the Buffer

2.0 44A C4
2.1 44A C4
3.0 45E cc
3.1 468 cc
3.2 468 cc
3.3 464 cc

Figure 9.4. ANSI Memocy Display and Clearing Parameters

480 PC Magazine DOS Power Tools

DEBUG would display the contents of whatever segment it happened to be loaded in,
rather than the 0000 segment that you wanted. So don't forget the 0: or 0000: before the
offset address (0: in this case works just as well as a 0000:).

Since the offset address that DEBUG's Search (S) command found on an AT using
DOS 3.3 was OOOO:AlDB, replace the rightmost digit - here this is a B - with a 0.
DEBUG reported:

OOOO:AlDB

change the Bat the end to a 0, then type:

-D OOOO:AlDO

or:

-D O:AlDO

You should see something like:

OOOO:AlDO FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 00 •....•.. [.... r ..

OOOO:AlEO 02 00 2F OD DO DO 00 00-00 00 OD 00 OD 00 DO 00 .. /

OODO:AlFO 00 DO DO DO 00 00 00 00-DO 00 00 00 OD 00 00 00

DOOD:A200 00 00 00 00 DO 00 OD DO-DO 00 00 OD 00 00 00 OD

ODOO:A210 00 00 00 00 OD 00 OD 00-00 00 00 00 00 00 00 00

OOOO:A220 00 00 00 DO OD OD 00 00-00 00 00 00 00 00 00 00

ODOO:A23D DO DD DD DD DO DO DO DD-00 00 00 00 00 00 00 00

OOOO:A24D 00 00 OD OD OD 00 00 00-00 00 00 00 00 00 00 DO

The 04 00 72 10 bytes appear at the end of the top row, and are followed by a block of
ODs. If you're using different versions of DOS, the 04 00 72 10 numbers will be located
in different positions on the line (and at different addresses), but will always be followed
by lots of OOs. If you don't see a large block of 00s following them, you 're at the wrong
address. Try any other offset address that DEBUG's Search (S) command may have
reported, or type Q to Quit DEBUG, check your typing, and start again.

You need to figure out and write down the address of the first 00 in that large block of
00s that follows the 04 00 72 10 pattern. The easy way to calculate the address is to add
4 to the actual offset address that DEBUG reported. In this case DEBUG's Search (S)
command reported an address of:

OOOO:AlDB

(The 0000 on the left is the segment address. The AlDB on the right is the offset ad
dress.) Add 4 + AIDB and you get AIDF.

ANSI and Other DOS Drivers 479

Make sure that your CONFIG.SYS includes a line that loads ANSI:

DEVICE=ANSI.SYS

and that ANSI.SYS is indeed on your disk. Then boot up normally.
If you examine the above buffer display you '11 see that the last four bytes near the end

of the top row before all the 00s are:

04 00 72 10

You can find where DOS maintains its ANSI buffer by. having DEBUG scan through the
lowest (0000) segment of RAM for that specific four-byte pattern.Just load DEBUG and
issue the command:

DEBUG
-S 0:0 LOOOO 4 0 72 10

DEBUG should print one or two addresses. If you're using DOS 3.3 on an AT and the
first line of your CONFIG.SYS file is:

DEVICE=ANSI.SYS

you should see something like:

0000 :AlDB

If you're using DOS 3.3 on a PC, you might see two addresses:

0000:9C2B
OOOO:F9F8

The addresses will be different if you're using different versions of DOS. And even if
you're using version 3.3 on an AT, if your CONFIG.SYS file loaded other drivers and
set up buffers before it loaded ANSI.SYS, the address may vary.

If you do see two addresses, odds are that the lower of the two is the one you 're inter
ested in. You can check to see if the address is indeed the ANSI buffer by replacing the
rightmost digit of the addresses DEBUG reported with a 0 and then using the Display
(D) key to display the contents of memory at that location.

DEBUG handles addresses in the form XXXX:YYYY where XXXX is the segment
and YYYY is the offset. In most DEBUG operations you don't have to worry about the
segment, but here you do. If you wanted to examine the area of memory at offset AIDO
of segment 0000, and you simply typed:

-D AlDO

478 PC Magazine DOS Power Tools

ECHO ESC[0;59;"It worked"p

Boot your system with this custom-made disk, and then run the MESSAGE.BAT batch
file. Press Fl and you should see:

It worked

Total ANSI Management

DOS sorely needs two ANSI utilities - one to show you what key definitions are cur
rently active, and one to clear out all existing definitions so you can start over.

ANSI stores all its key definitions in a small internal buffer. When you first load it, the
buffer is filled with zeros. You can create a pair of tiny utilities that will give you total
control over this storage area. One will display the contents of the ANSI buffer, and the
other can reset all the entries back to zeros. The utilities are quick and powerful, but be
cause DOS comes in many different versions and can run on so many hardware con
figurations, you'll have to do some simple detective work to ferret out two important
addresses that the utilities need.

If you look inside ANSI.SYS (version 3.3), you can see what an unused buffer looks
like:

3140:0650 FE OE 06 01 EB EB 81 C3-5B 05 C3 04 00 72 10 00

3140:0660 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0670 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0680 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0690 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:06AO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:06BO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:06CO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0600 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:06EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:06FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0700 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0710 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

3140:0720 00 00 00 00 00 00 00 00-00 00 00 CD 11 24 30 3C

••..•.•. [•... r ..

.. ·~

.•••••••••••• $0<

(The 3140: segment address at the right edge of your screen will vary from system to sys
tem and doesn't matter here.)

When DOS boots up, it looks inside the CONFIG .SYS configuration file (unless
you've renamed this file and the reference to it in your IBMBIO.COM or IO.SYS sys
tem files) to see what device drivers to load. If you've included ANSI.SYS in the list, it
reads the file off the disk and copies it to the lowest memory segment (segment 0000).

To view or erase the contents of the buffer, you have to know where DOS loaded
ANSI.SYS on your particular system. You can use DEBUG's search abilities to find the
location.

ANSI and Other DOS Drivers 4 77

-w 100 0 5 1

One more time - be certain the character between the 100 and the 5 is O! Check it
several times before you press the Enter key.

Finally, quit DEBUG:

-Q

and execute a DIR command to make sure the IBMBIO.COM doesn't appear:

A:\:DIR

Volume in drive A has no label
Directory of A:\

COMMAND
DOS

COM 25307
<DIR>

2 File (s)

3-17-87 12:00p
11-28-88 4:27p

282624 bytes free

Step5
Now log into the \DOS subdirectory, and create a file called TES TIT that contains the

information you'd normally put into your CONFIG.SYS file:

A>CD\DOS
A>COPY CON TESTIT
DEVICE=C:\DOS\CONFIG.SYS
"Z

1 File(s) copied

and issue a DIR command to make sure that the file is there:

A>DIR

Volume in drive A has no label
Directory of A:\DOS

<DIR> 11-28-87
<DIR> 11-28-87

ANSI SYS 1678 3-17-87
DEBUG COM 15897 3-17-87
TEST IT 24 11-28-88

4:27p
4:27p

12:00p
12:00p

4:33p
5 File (s) 263168 bytes free

Then add a MESSAGE.BAT batch file to execute an ANSI command to make sure this
worked:

476 PC Magazine DOS Power Tools

and you should now see:

31SC:S3AO 4F 4E 00 41 SS S8 00 SO-S2 4E 00 SC 44 4F S3 SC ON.AUX.PRN.\OOS\

31SC:S3BO S4 45 S3 54 49 S4 00 41-3A SC 43 4F 5S 4E S4 S2 TESTIT.A:\COUNTR

If you do, save your changes by typing Wand pressing Enter, then quit by typing Q and
then pressing Enter:

-w
Writing 5654 bytes
-Q

Step4
Now you have to give IBMBIO.COM back its original directory attribute of 27. You

really don't have to, but the idea was to prevent clutter, and this will hide it. It will also
prevent you from inadvertently erasing it.

So reverse the process shown in step 2. Load DEBUG and read the infonnation from
the beginning of your directory into memory.

A>\DOS\DEBUG
-L 100 0 5 1

Display the first hex 10 (decimal 16) bytes:

-D 100 L 10

which should look like:

3140:0100 49 42 40 42 49 4F 20 20-43 4F 40 20 00 00 00 00 IBMBIO COM' .•..

Again, if it doesn't, type Q to quit, then press Enter, and restart. If this is what you see,
you want to replace the value of20 at address lOB with the original value of27:

-E lOB 27

Check your typing:

-D 100 .L 10

You should see:

3140:0100 49 42 40 42 49 4F 20 20-43 4F 40 27 00 00 00 00 IBMBIO COM .•••

Very carefully write the directory infonnation back to the diskette in drive A: by typing:

ANSI and Other DOS Drivers 475

315C:53AC
315C:5612

(Once again, ignore the 315C to the left of the colon. This number will be different on
your own system.)

Next, peek inside the 20 hex (decimal 16) bytes of memory starting at the first address:

-D 53AO L 20

DEBUG should display something like:

315C:53AO 4F 4E 00 41 55 58 00 50-S2 4E 00 SC 43 4F 4E 46 ON.AUX.PRN.\CONF

31SC:S3BO 49 47 2E S3 S9 53 00 41-3A SC 43 4F 5S 4E 54 S2 IG.SYS.A:\COUNTR

When DOS finishes booting up, it will look at the filename and path specified here for
the name and location of the configuration file. As it's delivered from the factory, this
information is:

31SC:S3AO

31SC:S3BO 49 47 2E 53 S9 53

offset53AB

!
SC 43 4F 4E 46 \CONF

IG.SYS ...•.....•

You can change this to anything you want, provided the new name and path are the same
length as the existing ones. This example will substitute \DOS\TESTIT:

\CONFIG.SYS
\DOS\TES'l'IT

t t
I

same length

You don't have to enter the\ at offset 53AB where \CONFIG .SYS currently starts, since
\DOS\TESTIT also begins with a\. So you can start entering the rest of the new charac
ters - DOS\TESTIT - at the following address, 53AC:

-E 53AC "DOS\TESTIT"

Use the Display (D) command again to check your typing:

-D 53A0 L 20

4 74 PC Magazine DOS Power Tools

Make absolutely sure that the character between the 100 and the 5 is O! ! DEBUG thinks
of drive A: as drive 0, so check your typing before you press Enter to make sure there's
a 0 after the 100 and not any other number. Then quit DEBUG and get back to DOS:

-Q

This time if you type DIR you should see:

A:\:DIR

Volume in drive A has no label
Directory of A:\

IBMBIO
COMMAND
DOS

Step3

COM 22100
COM 25307

<DIR>
3 File(s)

3-18-87 12:00p
3-17-87 12:00p

11-28-88 4:27p
282624 bytes free

Now, look for the mention of CONFIG.SYS inside IBMBIO.COM and change the
name and location of the configuration file IBMBIO.COM will look for. Load
IBMBIO.COM into DEBUG:

A>DEBUG IBMBIO.COM

Find out how long the IBMBIO.COM file is by typing RCX and pressing the Enter key
twice:

-RCX
ex 5654

The number to the right of the CX is the file length in hex notation. This number will dif
fer if you're using a version of DOS other than 3.3. Plug the number that you see into a
DEBUG search command:

-S 100 L 5654 "CONFIG.SYS"

This tells DEBUG to search through the entire length of the IBMBIO.COM file for the
characters CONFIG.SYS. It should find several occurrences and report the starting
memory address of these character strings:

A>\DOS\DEBUG
-L 100 0 5 1

ANSI and Other DOS Drivers 4 73

Then display the first hex 10 (decimal 16) bytes of the directory listing with the com
mand:

-D 100 L 10

You'll see something like:

3140:0100 49 42 40 42 49 4F 20 20-43 4F 40 27 00 00 00 00 IBMBIO COM'

If you don't, type Q to quit and then press Enter, and restart. Make sure you're using
a 360K diskette in drive A: and that you formatted it with the DOS system files on it.
(The 3140 number at the left edge of the screen will vary from system to system and
doesn't matter here.)

The 27 to the left of the four pairs of 00s - at memory off set lOB - is the value of
the directory attribute byte that tells DOS the file is:

• Read-only value of hex 1
• Hidden value of hex 2
• System value of hex 4
• Archive value of hex 20

You want to temporarily remove the first three, which will reduce the value there from
27 to 20:

-E lOB 20

Then, check your typing to make sure the value that used to be a 27 is now a 20:

-D 100 L 10

You should see:

3140:0100 49 42 40 42 49 4F 20 20-43 4F 40 20 00 00 00 00 IBMBIO COM

(again, ignore the 3140 at the beginning of the line). If you don't, be sure to press Q to
quit and then press Enter, because the next line is the one you really have to type extreme
ly carefully.

Write the directory information back to the diskette in drive A: by typing:

-w 100 0 5 1

472 PC Magazine DOS Power Tools

Part of the process involves changing a DOS directory entry. DOS uses the disk direc
tory to record each file's name, its size, the time and date you created or last modified it,
and where the actual data begins on the disk. It also relies on one byte in the directory to
keep track of what kind of file each is - so DOS can determine things like whether it
will display the filename in directory searches and whether it will let you modify the data
in the file.

Try this ONLY on a diskette in drive A: since writing absolute sectors is incredibly
dangerous on your hard disk. Follow the directions precisely and check your work care
fully as you proceed. The most dangerous command here is Write (W), so when you're
ready to execute any lines starting with:

-w

check your typing and make absolutely sure it matches the example here. Finally, don't
try this on your hard disk. The instructions below are for a 360K diskette running under
DOS 3.3 in drive A: only!

Stepl
Format a 360K floppy disk and put the DOS system files on it, using the command:

C>FORMAT A:/S

Then log onto drive A: and create a subdirectory on it called \DOS:

A>MD\DOS

Copy DEBUG.COM and ANSI.SYS from your hard disk or main DOS disk into this
\DOS subdirectory.

If you type DIR you should see something like:

A:\:DIR

Volume in drive A has no label
Directory of A:\

COMMAND
DOS

Step2

COM 25307
<DIR>

2 File (s)

3-17-87 12:00p
11-28-88 4:27p

282624 bytes free

The DOS utilitythatsniffsoutyourCONFIG.SYS iscalledIBMBIO.COM(orIO.SYS
on generic systems). DOS marks the directory entry for this file so it's hidden from nor
mal DIR searches and so you can't alter it. But we will. Load DEBUG into memory and
have it load the part of your diskette that stores the beginning of the DOS directory:

ANSI and Other DOS Drivers 471

free by filtering the output through FIND.EXE, and pauses a screenful at a time. The
NEWDIR.BAT batch file:

ECHO ESC[0;46;"DIR C: I SORT /R /+14 I FIND ";34;"-";34;" I MORE";13p

lets you run this command simply by typing AL T-C.
The pair of 34s on the above line provide the two quotation marks that you need to

surround the"-" in the FIND command, since 34 is the decimal ASCII value of". The
13 at the end is the ASCII representation of a carriage return, which executes the com
mand. If you omitted the 13, ANSI would print the command but not execute it.

What makes this especially handy is that you can add two more lines to the batch file
so the three keys Alt-A, Alt-B, and Alt-C, will execute this command on the three drives
A:, B:, and C:

ECHO ESC[0;30;"DIR A: SORT /R /+14 FIND ";34;"-";34;" MORE";13p
ECHO ESC[0;48;"DIR B: SORT /R /+14 FIND ";34;"-";34;" MORE";13p
ECHO ESC[0;46;"DIR C: SORT /R /+14 FIND ";34;"-";34;" MORE";13p

You can attach any text to any key, if there's room. The following ADDRESS .BAT batch
file would print a three-line return address each time you typed Alt-P:

ECHO ESC[0;25;"PC Magazine";13;"0ne Park Avenue";13;"New York, NY 10016";13p

You won't be able to use this with any word processor that has its own internal keyboard
handling routine. But if you create a letter using the DOS COPY CON command, or
EDLIN, or a commercial product like IBM Personal Editor, tapping Alt-Ponce will put:

PC Magazine

One Park Avenue
New York, NY 10016

at the cursor position.
The only real problems with having ANSI assign text and commands to specific keys

are that you normally can't see what key assignments you've previously made, and that
you run out of space for new commands very quickly. And, while ANSI lets you reset
keys to their original values, it doesn't provide a way to clear everything out of memory
and start afresh. Fortunately, we do.

Customizing Your Configuration

Actually, the configuration file doesn't have to be called CONFIG.SYS, and it needn't
be located in the root directory. If you want to keep your root directory spare and unclut
tered, you can name the file something like TES TIT and store it in your \DOS subdirec
tory.

470 PC Magazine DOS Power Tools

ESC[98;"BB

BBBBBBBBBBBBB"p

(Obviously you would type these on one long line each, but we can't show that on this
page.)

However, if you want a true macro processor, get your hands on a powerful commer
cial package like SuperKey, ProKey, SmartKey, KeyWorks, or any of the other similar
products crowding the market. For quick and dirty macro work, ANSI does just fine. If
you miss having a cent sign at your fingertips, ANSI can put one there. To define Alt-C
so that it prints a cent sign (which is ASCII character 155), run this one-line batch file:

ECHO ESC[0;46;155p

Or you could define a group of keys at once. The following CHARS.BAT batch file will
give you direct keyboard access to the ten characters shown. It's sometimes handy to add
text as this batch file does to keep you (or other users you give the file to) informed. ANSI
won't start processing commands in a line until it sees an ESC[, so the initial descriptive
labels won't affect the definition process:

ECHO OFF

ECHO Defining keys as follows:

ECHO ALT+l=square-root radical sign ESC[0;120;251p

ECHO ALT+2=degree sign ESC[0;121;248p

ECHO ALT+3=old-fashioned division sign ESC[0;122;246p

ECHO ALT+4=pi ESC[0;123;227p

ECHO ALT+5=infinity ESC[0;124;236p

ECHO ALT+6=(squared)A2 ESC[0;125;253p

ECHO ALT+7=1/2 ESC[0;126;171p

ECHO ALT+8=1/4 ESC[0;127;172p

ECHO ALT+9=pound sterling ESC[0;128;156p

ECHO ALT+O=yen ESC[0;129;157p

You can, of course, attach more than one character to a key. So after running
EINSTEIN.BAT:

ECHO ESC[0;18;"E=MC";253p

typing Alt-E will display the familiar formula.
A more practical application would give you one-key execution of a complex com

mand that you perform all day long, such as:

DIR C: I SORT /R /+14 I FIND "-" I MORE

This displays the contents of the current directory on drive C: with the largest files at the
top of the list. It also screens out extraneous information about volume labels and bytes

ANSI and Other DOS Drivers 469

(The double quote marks are necessary only because of the way the batch file interacts
with DEBUG; if you attach this definition to this key using a technique other than AN
SICHAR.BATyou'd use only one set. And if you entera string, be sure not to insert any
spaces in it, so:

""DIR/W""

will work just fine, while:

""DIR /W'"'

won't work at all.)
The 13 at the end of the line represents the Enter key (which has an ASCII value of

decimal 13). If you include this at the end of a redefined key command, DOS will print
the command out when you press the appropriate key and then execute it. If you leave
the 13 off, DOS will simply print out the command without running it.

As with COL.COM, iCs handy to have versions of CHAR.COM around to put in your
AUTOEXEC.BAT startup file so DOS will redefine your keys automatically each time
you boot up. Be sure to rename previous versions of CHAR.BAT each time you create
new ones. It's helpful to give them descriptive names like CHARPI.COM if it types a pi
symbol, or CHARDIRW if it executes a DIR/W.

Macro Magic

If you want to assign a text string or a command to any key, ANSI will let you if there's
room left DOS maintains an area inside the ANSI.SYS code itself as a table of redefini
tions. This table is absurdly small. DOS 2.x provides only 196 bytes of space for this pur
pose, and DOS 3.x a mere 204 - and some of this space at the end of the table can't be
used.

In fact, even in the larger DOS 3.x versions, you can cram in a maximum of 64 redefini
tions-assuming you 're not using any extended keys (which take up slightly more space)
and that each redefinition is only a single key long. Wedging in a 65th starts to create
problems.

Worse, if you try using ANSI to attach text messages to your keys you'll run out of
space almost before you begin. If you try hard you can define a maximum of 191 charac
ters - by creating two macros, one 127 characters or less, and the other 191 characters
minus the length of the first one. For instance, you could define one that turned "a" into
127 capital As:

AAAAAAAAAAAAAAAAA.AAAAAA"p

and another that turned "b" into 64 capital Bs:

468 PC Magazine DOS Power Tools

ECHO - and note you CAN'T have spaces in strings, so

ECHO you cannot enter: %0 0 67 ""DIR /W"" 13)

GOTO END

:RENAME

ECHO First rename your existing CHAR.COM so this

ECHO doesn't write over it, then restart %0

:END

Once you've typed in ANSICHAR.BAT, you could create a small program called
CHAR.COM that would turn your dollar sign into an English pound sterling sign, by
typing:

ANSICHAR 36 156

The ANSICHAR batch file would redirect a customized script into DEBUG and create
the appropriate CHAR.COM file. Typing:

CHAR

at the DOS prompt would redefine your dollar sign key so it printed a pound symbol in
stead.

As with ANSICOLR.BAT, the:

IF EXIST CHAR.COM GOTO RENAME

line in this batch file prevents it from overwriting any CHAR.COM you may have created
previously. If ANSICHAR.BAT finds an existing CHAR.COM it will print a message
telling you to rename the one you already have and then restart. If you 're redefining ex
tended keys such as function keys, cursor-pad keys, or Alt-key combinations, be sure to
include the 0 prefix that ANSI requires.

So, to turn F8 into an additional Insert key, you'd type:

ANSICHAR 0 66 0 82

Then you'd run the CHAR program it created to do the actual redefining. Or if you wanted
to have DOS print a pi symbol whenever you typed Alt-P, you'd enter:

ANSICHAR 0 25 227

and then type CHAR to finish the process. If you want to define a function key like FlO
so it executes a command such as DIR/W, you'd type:

ANSICHAR 0 67 ""DIR/W'"' 13

ANSI and Other DOS Drivers 467

When dealing with extended keys you have to use ASCII codes exclusively since DOS
doesn't provide any method for referring to these keys in quotes. You can't make Fl
duplicate the function of F3 with a command like:

ECHO ESC["Fl";"F3"p

All this will do is assign the character string "1F3" to the uppercase F key.
You could also have the following ANSICHAR.BAT batch file (similar to the at

tribute-setting ANSICLOR.BAT file above) create a series of individual files called
CHAR.COM that you can run whenever you need to redefine a key. Again, for this to
work, your DEBUG.COM utility has to be in the same directory or in a directory that
your PATH knows about:

ECHO OFF

IF %2!==! GOTO OOPS

IF EXIST CHAR.COM GOTO RENAME

ECHO N CHAR. COM > CHR. SCR

ECHO E 100 B4 9 BA 8 1 CD 21 C3 lB "[" » CHR.SCR

IF %4!==! GOTO THREE

ECHO E lOA "%1;%2;%3;%4p$"

GOTO FINISH

:THREE

IF %3! ! GOTO TWO

ECHO E lOA "%1;%2;%3p$"

GOTO FINISH

:TWO

ECHO E lOA "%1;%2p$"

:FINISH

ECHO RCX

ECHO 7F

ECHO W

ECHO Q

DEBUG < CHR.SCR

DEL CHR.SCR

>> CHR.SCR

>> CHR.SCR

>> CHR.SCR

>> CHR.SCR

>> CHR.SCR

» CHR.SCR

>> CHR.SCR

ECHO Now run CHAR whenever you want to reset this key

GOTO END

:OOPS

ECHO Enter two ANSI key codes after %0

ECHO eg: %0 126 155 to have the ~ key print a

ECHO cent-sign (And you must have ANSI loaded)

ECHO Remember to use a 0 for extended characters

ECHO eg: %0 0 68 0 61 to make FlO work like F3, or

ECHO %0 0 67 ""DIR/W"" 13 to make F9 do a wide DIR

ECHO (Note the double quotes around character strings!

466 PC Magazine DOS Power Tools

As an example, if you have ANSI.SYS loaded and want to redefine the Fl 1 key to do
a DIR command, just issue the command:

ESC[0;133;"DIR";13p

(where ESC is a hex 1B or decimal 27 Esc character, not the letters ESC).
You can examine the ASCII values of all the keys on the keyboard - except for the

Ctrl, Alt, CapsLock, NumLock, ScrollLock, Sys Req, and Shifts - by running this
BASIC KEYCODE.BAS program:

100 ' KEYCODE.BAS

110 DEF SEG=O:POKE 1047,PEEK(1047) AND 223

120 DEF SEG:KEY OFF:COLOR 2,0:CLS

130 FOR A=l TO lO:KEY A,"":NEXT

140 PRINT "Press a key (or Enter to end):",

150 I$=INKEY$:IF I$="" THEN 150

160 IF I$=CHR$(13) THEN END

170 IF LEN(I$)>1 THEN PRINT "ext", :GOTO 190

180 PRINT I$,

190 IF LEN(I$)>1 THEN PRINT "0 +";

200 PRINT ASC(RIGHT$(I$,l))

210 GOTO 140

' turns cursor pad on

' sets screen

' disables function keys

' instructions

' waits for key to be hit

' ** hit Enter to end **
' is it extended code?

' print character

' again, is it extended?

' print ASCII code

' loop back for new key

BASIC has trouble displaying certain characters such as ASCII 7, 10, 11, and 12, since
it interprets these as commands to beep, clear the screen, and so on. But you'll be able to
see the ASCII values for all the alphanumeric and extended keys.

The ASCII code method for swapping or duplicating extended keys is exactly the same
as for normal alphanumeric keys except that you have to include an extra "O;" prefix. To
to swap Fl and F3, run the following two-line batch file:

ECHO ESC[0;59;0;6lp

ECHO ESC[0;61;0;59p

In notation that ANSI can understand, the extended ASCII codes for Fl and F3 are 0;59
and 0;61. At the DOS prompt, pressing the Fl key normally repeats the previous DOS
command one character at a time, while F3 reproduces the entire previous command with
a single tap. But after you run the two-line ANSI command above, the functions will
reverse.

You can restore the original functions of these two keys with the two lines:

ECHO ESC[0;59;0;59p

ECHO ESC[0;61;0;61p

ANSI and Other DOS Drivers 465

Miscellaneous Key
Code• Combination

Fll 0;133
F12 0;134
Shift-Fl 1 0;135
Shift-F12 0;136
Ctrl-Fll 0;137
Ctrl-F12 0;138
Alt-Fll 0;139
Alt-F12 0;140
Ctrl-Up-Arrow 0;141
Ctrl - 0;142
Ctrl-5 0;143
Ctrl-+ 0;144
Ctrl-Down-Arrow 0;145
Ctrl-Insert 0;146
Ctrl-Delete 0;147
Ctrl-Tab 0;148
Ctrl-/ 0;149
Ctrl-* 0;150
Alt-Home 0;151
Alt-Up-Arrow 0;152
Alt-Page-Up 0;153
Alt-Left-Arrow 0;155
Alt-Right-Arrow 0;157
Alt-End 0;159
Alt-Down-Arrow 0;160
Alt-Page-Down 0;161
Alt-Insert 0;162
Alt-Delete 0;163
Alt-/ 0;164
Alt-Tab 0;165
Alt-Enter 0;166

Figure 9.3. IBM 101/102-Key Keyboard Extended Codes

* In the form ASCII O;code.

464 PC Magazine DOS Power Tools

MOV AH,11 GetStatus:
PUS HF
CS:
CALL FAR (0102] ; Call Oldint16
JZ 012E
CALL 0131 Call FixUp
RETF 0002
CMP AL,EO FixUp:
JNZ 0139
SUB AL,AL
CMP AL,01
RET
MOV AX,3516 Initialize:
INT 21 Get Oldint16
MOV (0102], BX Save it
MOV (0104],ES
MOV DX,0106
MOV AX,2516
INT 21 Set Newint16
MOV DX,013A
INT 27 Stay Resident

RCX
54
w
Q

Create NEWKEYS.COM by typing the lines shown into a file called NEWKEYS.SCR.
(Don't type the semicolons or the comments that follow them.) Then type:

DEBUG < NEWKEYS.SCR

to creates the program.
NEWKEYS.COM is a Terminate and Stay Resident (TSR) program so you need to

load it only once dwing your PC session. Like most TS Rs, it may have some compatibility
problems with other programs. If everything seems to work OK once you load it, then
you're probably in good shape.

When NEWKEYS is loaded, you can use the extra keyboard codes for ANSI.SYS
redefinitions. The new codes are shown in Figure 9.3.

Cursor Up
Pg Up
Cursor Left
Cursor Right
End
Cursor Down
PgDn
Ins
Del
Shift-Fl

0;72
0;73
0;75
0;77
0;79
0;80
0;81
0;82
0;83
0;84

ANSI and Other DOS Drivers 463

Alt-5
Alt-6
Alt-7
Alt-8
Alt-9
Alt-0
Alt-

Alt-=
Ctrl-PgUp

0;124
0;125
0;126
0;127
0;128
0;129
0;130
0;131
0;132

Figure 9.2. Index of Extended ASCII Codes

...
In the form ASCII O;code.

When IBM designed the BIOS support for the enhanced keyboard, it added over 30
new extended keyboard codes starting at 133. However, it did not make these keyboard
codes available to programs through the normal BIOS keyboard interface. To do so would
have created incompatibilities with some existing programs. For instance, some keyboard
macro programs define their own extended keys and these may conflict with the new
IBM codes. DOS (and most programs) get keyboard information from the BIOS through
interrupt 16H, function calls 0, 1, and 2. For the enhanced keyboard, IBM defined new
function calls numbered lOH, llH, and 12H that duplicated 0, 1, and 2 except that the
new calls also return the new extended keyboard codes in addition to the old ones.

Here's a DEBUG script for a NEWKEYS.COM program you can create that allows
DOS access to the new codes and lets you use these new keys with ANSI.SYS:

N NEWKEYS.COM
A
JMP 013A Jmp Initialize
DW 0,0
CMP AH,00 Newint16:
JZ 0115 Jmp Get Key
CMP AH,01
JZ 0121 Jmp Get Status
CS:
JMP FAR [0102] Jmp Oldint16
MOV AH,10 GetKey:
PUS HF
CS:
CALL FAR [0102] Call Oldint16
CALL 0131 Call FixUp
IRET

462 PC Magazine DOS Power Tools

Key Combination Code• Key Combination Code•

NUL 0;3 Shift-F2 0;85
Shift-Tab 0;15 Shift-F3 0;86
Alt-Q 0;16 Shift-F4 0;87
Alt-W 0;17 Shift-F5 0;88
Alt-E 0;18 Shift-F6 0;89
Alt-R 0;19 Shift-F7 0;90
Alt-T 0;20 Shift-PS 0;91
Alt-Y 0;21 Shift-F9 0;92
Alt-U 0;22 Shift-PIO 0;93
Alt-I 0;23 Ctrl-Fl 0;94
Alt-0 0;24 Ctrl-F2 0;95
Alt-P 0;25 Ctrl-F3 0;96
Alt-A 0;30 Ctrl-F4 0;97
Alt-S 0;31 Ctrl-F5 0;98
Alt-D 0;32 Ctrl-F6 0;99
Alt-F 0;33 Ctrl-F7 0;100
Alt-G 0;34 Ctrl-F8 0;101
Alt-H 0;35 Ctrl-F9 0;102
Alt-J 0;36 Ctrl-FlO 0;103
Alt-K 0;37 Alt-Fl 0;104
Alt-L 0;38 Alt-F2 0;105
Alt-Z 0;44 Alt-F3 0;106
Alt-X 0;45 Alt-F4 0;107
Alt-C 0;46 Alt-F5 0;108
Alt-V 0;47 Alt-F6 0;109
Alt-B 0;48 Alt-F7 0;110
Alt-N 0;49 Alt-F8 0;111
Alt-M 0;50 Alt-F9 0;112
Fl 0;59 Alt-FlO 0;113
F2 0;60 Ctrl-PrtSc 0;114
F3 0;61 Ctrl-Cursor Left 0;115
F4 0;62 Ctrl-Cursor Right 0;116
FS 0;63 Ctrl-End 0;117
F6 0;64 Ctrl-PgDn 0;118
F7 0;65 Ctrl-Home 0;119
F8 0;66 Alt-1 0;120
F9 0;67 Alt-2 0;121
FlO 0;68 Alt-3 0;122
Home 0;71 Alt-4 0;123

continued

ANSI and Other DOS Drivers 461

Alt-U 0;22 Ctrl-F3 0;96
Alt-V 0;47 Ctrl-F4 0;97
Alt-W 0;17 Ctrl-F5 0;98
Alt-X 0;45 Ctrl-F6 0;99
Alt-Y 0;21 Ctrl-F7 0;100
Alt-Z 0;44 Ctrl-F8 0;101
Alt-1 0;120 Ctrl-F9 0;102
Alt-2 0;121 Ctrl-FlO 0;103
Alt-3 0;122 Alt-Fl 0;104
Alt-4 0;123 Alt-F2 0;105
Alt-5 0;124 Alt-F3 0;106
Alt-6 0;125 Alt-F4 0;107
Alt-7 0;126 Alt-F5 0;108
Alt-8 0;127 Alt-F6 0;109
Alt-9 0;128 Alt-F7 0;110
Alt-0 0;129 Alt-F8 0;111
Alt-- 0;130 Alt-F9 0;112
Alt-= 0;131 Alt-FlO 0;113
Home 0;71
Cursor Up 0;72
Pg Up 0;73
Cursor Left 0;75
Cursor Right 0;77
End 0;79
Cursor Down 0;80
PgDn 0;81
Ins 0;82
Del 0;83
Ctrl-PrtSc 0;114
Ctrl-Cursor Left 0;115
Ctrl-Cursor Right 0;116
Ctrl-End 0;117
Ctrl-PgDn 0;118
Ctrl-Home 0;119
Ctrl-PgUp 0;132

Figure 9.1. Extended ASCII Codes for Special Key Combinations

* In the form ASCII O;code

Batch Techniques 613

223 equals binary 11011111. Capital A (decimal 65) is binary 01000001, while lower
case a (decimal 97) is binary 01100001. The AND operation on these numbers could be
represented as

01000001 (65)
AND 11011111(223)

01000001 (65)

01100001 (97)
AND 11011111(223)

01000001 (65)

ANDing either a 0 or a 1 with 1 in effect leaves the value alone, and ANDing both a
0 and a 1 with 0 in effect turns the value into a 0. The binary number 11011111 forces
the 2"5 bit - the sixth one from the right - to become a 0 and leaves all the other bits
the way they were. (The rightmost bit is 2"0; the leftmost is 2"7.)

The only difference between a lowercase letter and its capital counterpart is that the
2"5 bit is set (equals 1) in the lowercase version. ANDing it with 11011111 unsets the
bit, changing it to a 0 and lowering the ASCII value by 32.

To reverse the process and tum capital letters into lowercase ones, use the logical OR
operation to OR a value with 32:

• 1OR1=1
• 1ORO=1
• OOR 1=1
• OORO=O

32 equals binary 00100000. Since ORing either a 1ora0 with 0 in effect leaves the
value alone, and ORing either a 1ora0 with 1 in effect turns the value into a 1, the bi
nary number 00100000 forces the 2"5 bit to become a 1 and leaves all the other bits the
way they were.

This sets the unset 2"5 bit in an uppercase letter, changing it to a 1 and raising the
ASCII value by 32.

01000001 (65)
OR 00100000 (32)

01100001 (97)

01100001 (97)
OR 00100000 (32)

01100001 (97)

One problem with blanket logical operations like the OR AL,20 and the AND AL,DF
is that they switch uppercase to lowercase and vice versa, but end up changing the values
of many of the nonletter keys as well.

614 PC Magazine DOS Power Tools

The solution is to test each letter to make sure it's in the right range before perform
ing the logical operation on it. GETLE1R.COM does just that:

MOV AH,08 get a keystroke

INT 21 do it

CMP AL, lB is it escape?

JE llE bye

CMP AL, 7A higher than 'z' ?

JA 0102 get another one

CMP AL,60 lower than 'a' ?

JBE 0114 then try next test

AND AL,DF otherwise uppercase it

JMP OllC and jump to subtract

CMP AL, 5A higher than 'Z' ?

JA 0102 get another one

CMP AL,41 lower than 'A' ?

JB 0102 get another one

AND AL,3F subtract 64

MOV AH,4C exit with code

INT 21 do it

GETLE1R.COM is on the accompanying disk. But you could create it easily by add
ing an:

A

on a line by itself at the very beginning, a blank line, and then the following five lines:

RCX

22

N GETLETR.COM

w
Q

at the end (don't forget the blank line above RCX).
This won't accept nonletter entries, and is case insensitive. It will generate a ccxle of

I for A, 2 for B, and 26 for Z. It will also generate a 27 for Esc, which lets you use Esc
as an exit.

It takes advantage of a DOS keyboard-reading routine rather than the BIOS interrupt
16H used in the GETKEY.COM series. Either will do.

Then create a sample batch file like MENU2.BAT:

ECHO OFF

:TOP

ECHO Enter a letter from A to E (or type Esc to quit) :

:START

GETLETR

IF ERRORLEVEL 27 GOTO END

IF ERRORLEVEL 6 GOTO START

IF ERRORLEVEL 5 GOTO LABELE

IF ERRORLEVEL 4 GOTO LABELD

IF ERRORLEVEL 3 .GOTO LABELC

IF ERRORLEVEL 2 GOTO LABELS

:LABELA

ECHO (this simulates menu choice A)

PAUSE

GOTO TOP

:LABELS

ECHO (this simulates menu choice S)

PAUSE

GOTO TOP

:LABELC

ECHO (this simulates menu choice C)

PAUSE

GOTO TOP

:LABELD

ECHO (this simulates menu choice D)

PAUSE

GOTO TOP

:LABELE

ECHO (this simulates menu choice E)

PAUSE

GOTO TOP

:END

Batch Techniques 615

This example uses only five choices. When you start adding lots more, the tests can
become cumbersome.

As mentioned above, it's possible to shorten long cascades ofIFERRORLEVEL tests
by using a FOR command to dispatch the branching operation correctly.

The demonstration LEVEL.BAT batch file uses seven programs called ER
RTESTO.COM through ERRTEST6.COM that simulate the errors in their filenames. It's
a little complicated, but the batch file crams a ton of performance into a relatively small
space:

ECHO OFF

IF %1!==! GOTO OOPS

FOR %%A IN (0 1 2 3 4 5 6) DO IF %1==%%A GOTO NEXT

GOTO OOPS

:NEXT

ERRTEST%1

616 PC Magazine DOS Power Tools

FOR %%E IN (1 2

ECHO Everything

GOTO END

:LABELl

ECHO ERROR

GOTO END

:LABEL2

ECHO ERROR

GOTO END

:LABEL3

ECHO ERROR

GOTO END

:LABEL4

ECHO ERROR

GOTO END

:LABELS

ECHO ERROR

GOTO END

:LABEL6

u

#2

#3

#4

#5

3 4 5 6)

is okay

DO IF ERRORLEVEL %%E GOTO LABEL%%E

ECHO ERRORLEVEL GREATER THAN 5

GOTO END

:OOPS

ECHO Enter %0 and then a number from 0 to 6

:END

The line:

IF %1!==! GOTO OOPS

tests to make sure you entered something after the name of the batch file, and the:

FOR %%A IN (0 1 2 3 4 5 6) DO IF %1==%%A GOTO NEXT

screens out any entries that aren't the digits 0 through 6.
When you enter a valid digit, the line:

ERRTEST%1

tacks on (concatenates) the appropriate number in place of the % 1 replaceable parameter,
turning the ERRTEST string into something like ERRTEST2 or ERRTEST4. DOS then
executes one of the seven error-simulating files on the disk. and the line:

FOR %%E IN (1 2 3 4 5 6) DO IF ERRORLEVEL %%E GOTO LABEL%%E

Batch Techniques 617

reads the error the small program generated and branches to the appropriate comment
line in the batch file.

While LEVEL.BAT simply prints a message and exits, you could easily modify it to
include specific actions to be taken for each error type. Also, note that ifERRORLEVEL
is some value larger than any in the list, control will transfer based on the last value in
the list.

To test this out, make sure DEBUG is handy and type in the following 24 lines. Or use
a pure ASCII word processor to type them into a script file called ERR.SCR, and when
you're done; get back to the DOS prompt and type:

DEBUG < ERR.SCR

This creates seven small files, ERRTESTO.COM through ERRTEST6.COM. Sub
stitute them one at a time for the ERRTEST line in the LEVEL.BAT batch file. Each will
set an ERRORLEVEL equivalent to the number in its name.

E 100 B8 00 4C CD 21

RCX

5

N ERRTESTO.COM

w
E 101 1

N ERRTESTl.COM

w
E 101 2

N ERRTEST2.COM

w
E 101 3

N ERRTEST3.COM

w
E 101 4

N ERRTEST4.COM

w
E 101 5

N ERRTESTS.COM

w
E 101 6

N ERRTEST6.COM

w
Q

All of the key-processing programs above discard the keystroke after reading it and
setting an exit code. Since batch files execute painfully slowly on a slow system, an im
patient user may repeatedly press the key several times until he or she sees something

618 PC Magazine DOS Power Tools

happen. The computer stores these extra keystrokes in the keyboard buffer, and they may
cause problems.

You could adapt the basic GETKEY.COM program to display the key entered by
changing it to:

MOV AH,0 BIOS read a character and
INT 16 puts its ASCII code into AL
MOV DL,AL ready to display character
MOV AH,02 DOS display output
INT 21 do it
MOV AH,4C ready to exit with code
INT 21 do it

Type the following to create it:

DEBUG
E 100 B4 00 CD 16 88 C2 B4 02 CD 21 B4 4C CD 21
N GETNEWl.COM
RCX
E
w
Q

If you wanted to adapt this to display uppercase letters for any uppercase or lowercase
letters you entered, type:

E 100 B4 00 CD 16 24 DF 88 C2 B4 02 CD 21 B4 4C CD 21
N GETNEW2.COM
RCX
10
w
Q

This creates a program called GETNEW2.COM that will automatically uppercase any
lowercase letter you enter while leaving uppercase entries alone. However, it works by
performing a logical AND operation on the value in register AL:

AND AL,DF

If you entered a lowercase "a" (with a hex value of 61), ANDing this value with DF
will turn it into 41, which is the hex value of uppercase "A." Enter an uppercase "A" and
the AND DF operation will leave it alone.

Since this process forces the 2"5 bit to become unset (turning it into a 0), it will sub
tract a value of 32 from any number that has its 2"5 bit set, and leave any number that
already has a 0 in that bit position alone.

• FromO to 31
• From 32 to 63
• From 64 to 95
• From 96 to 127
• From 128to159
• From 160 to 191
• From 192 to 223
• From 224 to 255

- values remain the same
it subtracts 32 from the value

- values remain the same
- it subtracts 32 from the value
- values remain the same
- it subtracts 32 from the value
- values remain the same

it subtracts 32 from the value

So use a program like GETNEW2.COM with care.

Batch Techniques 619

Incidentally, as mentioned earlier, DOS offers a variety of key-processing functions,
some of which display the key you press and some of which don't. Function 1 of inter
rupt 21 does. So you could just as easily have used:

MOV AH,l
INT 21
MOV AH,4C
INT 21

DOS read a character and
displays it
ready to exit with code
do it

to echo the keystroke to the screen.

Speeding Things Up

You may notice a lag when running batch files containing long strings of IF ERROR
LEVEL tests on a slow system. The first rule of batch files is to execute them from
RAMdisks or fast hard disks.

But you can also streamline the operation by designing your batch files properly. One
method for speeding things up is to limit the number of choices. But this isn't really prac
tical for many applications.

The second rule of batch files is that it's always better to do processing outside of the
batch file. DOS executes batch files one slow line at a time. But an assembly language
program can process keyboard information virtually instantly. You '11 be able to take out
almost all the potential delays by putting the tests you want in the key-processing program
rather than in the batch file. That's why this section included so many examples and
provided the assembly language code for each. You should be able to adapt one of the
above programs to do all the testing you need.

But if you do have to put a cascade of IF ERRORLEVEL tests in your batch files,
you '11 find one method is indeed faster than the other. Tests generally work in one of two
ways. You either put the muscle on each line or spread it over a dispatching cascade:

To put it on each line, test for a value, and make sure the next higher value isn't valid:

ECHO OFF
:TOP
ECHO Type a letter key (A-Z) or Esc to quit:
GETLETR

620 PC Magazine DOS Power Tools

IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 26 IF NOT ERRORLEVEL 27 ECHO Z
IF ERRORLEVEL 25 IF NOT ERRORLEVEL 26 ECHO Y
IF ERRORLEVEL 24 IF NOT ERRORLEVEL 25 ECHO X

and so on. To dispatch the command execution, try something like:

ECHO OFF
:TOP
ECHO Type a letter key (A-Z) or Esc to quit:
GETLETR
IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 26 GOTO Z
IF ERRORLEVEL 25 GOTO Y
IF ERRORLEVEL 24 GOTO X

:Z
ECHO z
GOTO TOP
:Y
ECHO y

GOTO TOP
:X
ECHO x
GOTO TOP
:W

etc. The second way is faster.
Two programs on the accompanying disk - OPTION.COM and ASK.COM - add

even more power to batch file IF ERRORLEVEL tests.
You supply OPTION.COM with pairs of parameters on the command line. The first

character in each pair is the key pressed and the second is the ERRORLEVEL code
generated. For example, if you entered:

OPTION A1B2

OPTION would return an ERRORLEVEL of 1 if you typed A or 2 if you typed B. To
allow uppercase and lowercase entries, you would change it to:

OPTION Ala1B2b2

OPTION can also display onscreen prompts. Follow the parameter pairs with a hyphen
and the message to be displayed. For example:

Batch Techniques 621

OPTION ylYlnONO-Enter Y or N:

with two spaces at the very end displays the prompt Enter Y or N: and positions the cur
sor two spaces from the colon.

OPTION also lets you use the Enter key by representing it as a plus sign. So you could
enter:

OPTION +1 0-Hit Enter for 1, Space for 0

Be careful not to insert extra spaces in the string of argument pairs unless you actual-
1 y want the spacebar to count as a valid key. For more details see OPTION in the manual
section of this book.

If OPTION sounds too complicated, just use ASK.COM, which combines ERROR
LEVEL setting and dynamic user prompting in a single command.

ASK.COM, like ECHO, prints the text following it on the same line. However, unlike
ECHO, ASK.COM waits for the user to enter a keystroke. It ANDs each input character
with DF to turn everything uppercase and make all entries caSe insensitive, and it echoes
the keystroke (in its uppercase version) to the screen. Finally, it handles "y" and "n" spe
cially, displaying "Yes" and "No" in response to single keystrokes.

Use ASK.COM the same way you'd use ECHO. So if your batch file includes the line:

ASK Want to back up your files (Y/N)?

ASK will display the line:

Want to back up your files (Y/N)?

onscreen and wait for a reply.
One last BASIC program on the accompanying disk, MAKEMENU.BAS, will create

a full-fledged menu system for you automatically, including a custom-made batch file
with up to 26 choices, an attractive onscreen display, and an assembly language program
to process the keystrokes correctly.

Batch File Applications

The small demonstration programs above were designed to exercise the various batch
commands and show you how they operate. But if you really want to put these commands
to work, try some of the following batch file applications.

DOS Notepads

Batch files make it easy to harness the DOS COPY CON command and tum it into a
quick notepad. One method for doing this is to type in the BUILD.BAT batch file below,
and then enter:

622 PC Magazine DOS Power Tools

BUILD filename

when you're in DOS (substituting the name of your own file). BUILD.BAT will clear
the screen, display a ruler line, and save all your input in an ASCII file called filename.
When you 're finished entering text, simply hit the Z key while holding down the Ctrl key
and then press the Enter key- or just press the F6 function key, which does the same
thing. If a file with the same name as filename already exists, BUILD.BAT will rename
it to have a BAK extension.By specifying PRN as the filename, all text entered is dumped
to your default printer. This is useful for short memos or notes.

Since BUILD.BAT allows only the current line to be edited, it won't replace your word
processor. In fact, even EDLIN leaves it in its dust. But it does allow you to create tiny
batch files or memos quickly and painlessly in DOS. And it's forgiving enough not to
write over an existing file.

ECHO OFF

IF %1!==! GOTO OOPS

IF %1==PRN GOTO START

IF EXIST %1.BAK GOTO OOPS2

IF NOT EXIST %1 GOTO START

REN %1 *.BAK

:START

CLS

ECHO** Press F6 and then the Enter key when you're all done to save %1 **

ECHO 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ECHO ----!----!----!----!----!----!----!----!----!----!----!----!----!----!----!----

COPY CON %1

GOTO END

:OOPS

ECHO Enter a filename after %0

GOTO END

:OOPS2

ECHO You already have a file called %1.BAK

ECHO Rename or erase it so this can proceed

:END

Another memo maker, QUIKNOTE.BAT, creates a small memo file and lets you up
date it automatically without having to use a word processor.

After you've entered any information, typing QUIKNOTE will display it. To update
the information, just type QUIKNOTE followed by up to nine words of text. The next
time you type QUIKNOTE the new text will appear, appended to the old.

QUIKNOTE.BAT also prints instructions even if you don't enter anything after the
filename:

ECHO OFF

IF %1!==! GOTO DISPLAY

ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> %0.DOC

:DISPLAY

CLS

IF NOT EXIST %0.DOC GOTO OOPS

TYPE %0.DOC

GOTO END

:OOPS

ECHO You haven't entered anything yet ...

ECHO To enter data, type %0 and then type

ECHO up to 9 words on each line

ECHO (You can enter up to 23 lines.)

ECHO

ECHO To see what you've typed, just type %0

:END

A Date with DOS

Batch Techniques 623

You can adapt the above techniques to create a small appointment book that lets you add
and delete entries, sorts your appointments for you automatically, and can show you in
just a few seconds what you have lined up on any day:

ECHO OFF

IF %1! GOTO LIST

IF %2! GOTO TODAY

ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> NEW.DAT

SORT < NEW.DAT > TODO

ECHO (%1 %2 %3 %4 %5 %6 %7 %8 %9 ADDED)

GOTO DONE

:LIST

IF NOT EXIST TODO GOTO FIRSTIME

ECHO ******* APPOINTMENTS ********
MORE < TODO

:FIRSTIME

ECHO *****************************
ECHO To enter appointments, type:

ECHO -----------------------------
ECHO %0 DATE TIME MEMO

ECHO -----------------------------
ECHO WHERE DATE = MM/DD

ECHO TIME HH/MM

ECHO MEMO = 7 OR FEWER WORDS

GOTO DONE

:TODAY

ECHO *** TODAY'S APPOINTMENTS ***
IF NOT EXIST TODO GOTO FIRSTIME

624 PC Magazine DOS Power Tools

FIND "%1" TODO
:DONE

To use APPT.BAT just type:

APPT APPTDATE APPTTIME APPTMEMO

where APPTDATE is in MM/DD format (and you pad out single digit months and days
with zeros), APPTTIME is in HH:MM format (and you pad out single digit hours and
minutes with zeros here also), and APPTMEMO is text from one to seven words long.

If you simply type:

APPT

the batch file will type all your appointments. And if you type:

APPT MM/DD

(substituting a real date, such as 01/05 for MM/DD), the batch file will display all the ap
pointments for that particular date.

For APPT.BAT to work, you must either have the DOS SORT.EXE, MORE.COM,
and FIND.EXE files on your disk or have them properly pathed to. Still, it's not perfect.
If you ask it to find 2/1 it will also show any line with a 2/11 or 12/11 date at the begin
ning, as well as any line with a 2/1 in the memo part of a listing that starts with a totally
unrelated date.

However, you can also use it to display all your appointments on all dates with Mr.
Jones, by typing APPT Jones (it's case sensitive, so it won't find JONES if you ask for
Jones), or all your meetings with different people on the subject of taxes if the word taxes
appears in the memo area of several different appointments with those different people.
If you try searching for key words rather than dates, remember these have to be single
words -you can search for "Jones" but not "John Jones."

You can indeed have DOS remove names as well as add them. APPT.BA T keeps track
of things with the files NEW.BAT and TODO. REMOVE.BAT uses the FIND N com
mand to expunge any date you don't want from these two files:

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V "%1" NEW.DAT I FIND /V "-" I FIND " " > TEMP
DEL NEW.DAT
DEL TODO
REN TEMP NEW.DAT
COPY NEW.DAT TODO > NUL
GOTO END
:OOPS
ECHO Enter the date you want removed after

ECHO the word %0
:END

To remove everything on 6/12, type:

REMOVE 6/12

Or to remove all references to Mrs. Smith, type:

REMOVE Smith

Batch Techniques 625

(observing case sensitivity and remembering that this will also remove any references to
Mr. Smith if one exists).

Free Dialer

Now that you have a memo pad and an appointment book, you '11 need a telephone dialer.
By using features of the Hayes Smartmodem and the output redirection capabilities of
DOS, you can turn a simple batch file into your own telephone dialer with its own built
in directory,

DIAL.BAT will automatically dial the phone (with a 1200 baud modem), disconnect
the modem, and allow you to continue the call. In addition, it lets you set up an exten
sive dialing directory by expanding the conditional tests for names within the program.
You'll need to have the DOS MODE.COM and FIND.EXE programs in the same direc
tory as the dialer program or in a directory your PA TH command knows about.

ECHO OFF
MODE COM1:1200 >NUL
IF %1!==! GOTO OOPS
IF %1 i GOTO LIST
IF %1 TOM GOTO TOMi
IF %1
IF %1

IF %1

IF %1

Tom GOTO TOMi
tom GOTO TOMi
DICK GOTO DICKi
Dick GOTO DICKi

IF %1 dick GOTO DICKi
IF %1 HARRY GOTO HARRYi
IF %1 Harry GOTO HARRYi
IF %1 harry GOTO HARRYi
ECHO ATDT%1; >COMl:
GOTO END
:TOMi
ECHO ATDTlll-1111; >COMl:
GOTO END
:DICKi

626 PC Magazine DOS Power Tools

ECHO ATDT222-2222; >COMl:
GOTO END
:HARRY#
ECHO ATDT9-333-3333; >COMl:
GOTO END
:LIST
ECHO The %0 batch file currently
ECHO contains numbers for:
FIND "#" %0.BAT I FIND /V "%%"
GOTO BYE
:OOPS
ECHO You have to enter a number or a name that
ECHO you've put in the batch file after %0
ECHO eg %0 555-1212 or %0 TOM
ECHO OR - Type %0 # to see a list of names
ECHO currently in the %0.BAT directory
GOTO BYE
:END

ECHO --------------------------------
ECHO When the dialing is done, press
ECHO any key to disconnect the modem.

ECHO ---------------------------------
PAUSE
ECHO ATH >COMl:
:BYE

To use DIAL.BAT, just type:

DIAL number

or:

DIAL name

where number is the telephone number you wish to dial, and name is the name of some
one in the batch file's directory. Listen to the speaker in the modem to determine when
the dialing is done, lift the handset, and then press any key to disconnect the modem and
reconnect the handset. Complete your call as usual.

So if you want to call your friend Tom, and you've put his name in the directory, you
can enter:

DIAL TOM

(or DIAL Tom or DIAL tom). If you haven'tputhis name in the directory, but you know
his number is 123-4567, enter:

Batch Techniques 627

DIAL 123-4567

You can see which names are currently included in your DIAL.BAT batch file by
typing:

DIAL :fl:

The names TOM, DICK, and HARRY in the sample DIAL.BAT batch file and the
phone numbers that follow are obvious dummies. Replace them with your own entries.
Note the following rules, however:

1. You should add three tests for each name, so you can type them in in uppercase,
lowercase, or with an initial capital letter.

2. Make sure you put a# at the end of each label, as shown by :TOM# or :DICK#, as
well as in the GOTO TOM# or GOTO DICK# commands. This lets the FIND com
mand isolate the names if you enter DIAL# to see which names are currently listed
in the batch file.

MODE insures that the right COM port is set to the proper baud rate. If you 're using
COM2 or a different baud rate, change the values in the program accordingly. MODE
usually prints a message to the screen; DIAL.BAT gets rid of this by redirecting it to the
NULdevice.

When using modems by manufacturers other than Hayes, be sure the RS-232-C lines
CTS (clear to send) and DSR (data set ready) from the modem are on, or else you'll get
a DOS error. And although some non-Hayes modem options can be set for DSR and CTS
on, the lines may be disabled until the "wake up" signal is sent to the modem. DOS,
however, aborts the transmission to the modem before it sends any characters at all since
the modem does not appear to be ready.

Free Telephone Directory

Hate to look up numbers in your telephone book or Rolodex? You don't ever have to
again; DOS can do all the work for you.

The trick is to whip together three batch files - ADD.BAT, REMOVE.BAT, and
LOOKUP.BAT. Then create a subdirectory called \PHONES that contains these batch
files and room for the NAivlE.LST list of names.

ADD.BAT is very straightforward:

ECHO OFF
IF %1!==! GOTO OOPS
IF %1==:#= GOTO SEELIST
ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> NAME.LST
SORT < NAME.LST > TEMP
DEL NAME.LST
REN TEMP NAME.LST

628 PC Magazine DOS Power Tools

GOTO END

:OOPS

ECHO To add data, enter up to 9 words after %0:

ECHO ---
ECHO LASTNAME FIRSTNAME PHONENUMBER ADDRESS MEMO

ECHO ---
ECHO (Try to avoid spaces, so use 212-555-1212

ECHO rather than (212) 555 1212)

ECHO ---
ECHO ** Or enter %0 # to see the whole list **
GOTO END

:SEELIST

IF NOT EXIST NAME.LST GOTO OOPS

MORE < NAME.LST

:END

You either type ADD followed by up to nine words:

ADD Cleaver Theodore 312-555-1111 34 Elm, Chicago, IL 34567

or:

ADD 1t-

to see the whole list.
REMOVE.BAT is also simple:

ECHO OFF

IF %1!==! GOTO OOPS

FIND /V "%1" NAME.LST I FIND /V "NAME.LST" I FIND " " > TEMP

COPY NAME.LST NAME.OLD > NUL

DEL NAME.LST

REN TEMP NAME.LST

GOTO END

:OOPS

ECHO Enter a key word from the line you want

ECHO removed after the word %0

:END

To delete a name, just type:

REMOVE Cleaver

Batch Techniques 629

But be careful, since this will remove any line that has the character string Cleaver in
it. However, if you find you've made a mistake, you won't lose anything since
REMOVE.BAT creates a backup file each time called NAME.OLD.

LOOKUP.BAT is the simplest of all:

ECHO OFF

IF %1!==! GOTO OOPS

IF %1==# GOTO SEELIST

FIND "%1" NAME.LST I MORE

GOTO END

:OOPS

ECHO To look up data, enter %0 then a single key word

ECHO ** Or enter %0 # to see the whole list **
GOTO END

:SEELIST

IF NOT EX~ST NAME.LST GOTO OOPS2

MORE < NAME.LST

GOTO END

:OOPS2

ECHO First use ADD.BAT to create your NAME.LST

:END

You can retrieve information in all sorts of useful ways. You could, of course, hunt
for a name by typing something like:

LOOKUP Benway

But you could also get a list of all the names and numbers in NY by typing:

LOOKUP NY

Or if you remember that someone has a telephone number containing a 98 in it, but you
can't remember the name or anything else, you could type:

LOOKUP 98

You can also add "keys" like BB to indicate business, or HH to tell you the listing is
a home address.

Obviously this isn'tperfect. It's case sensitive, so it wouldn'treport Dr. Benway if you
typed the lowercase:

LOOKUP benway

But it would find him if you entered an abbreviated form, like:

630 PC Magazine DOS Power Tools

LOOKUP enwa

since it looks for occurrences of character strings. In any event, it's fast and handy, and
it can retrieve names and numbers when all you have to go on is a scrap of information
such as part of a phone number or a recollection that the person was on the west coast
(with a 90xxx Zip code).

Again, to make this work, you have to have FIND.EXE, SORT.EXE, and MORE.COM
in the same subdirectory, or in one your path knows about.

Daily Chores

If you need a way to run your systems unattended overnight to reindex data base files,
print repons, and get your electronit mail, or if you want to run certain programs on cer
tain days only, you can have batch files do all the dirty work for you.

You need a few small utilities to help. GETDATE.COM returns an ERRORLEVEL
of 1 to 31 equal to the current date-of-month. GETMONTH returns an ERRORCODE
of 1 to 12, equal to the current month. DOW .COM returns an error code related to the
day of the week, where Sunday equals 0 and Saturday equals 6.

To create the three programs, type in the following 1 S lines:

DEBUG
E 100 B4 2A CD 21 88 FO B4 4C CD 21 CD 20
N GETMONTH.COM
RCX
c
w
E 105 DO
N GETDATE~COM
w
E 104 B4 4C CD 21 CD 20
N DOW.COM
RCX
A

w
Q

Then create the three batch files below: SHOWMON.BAT, SHOWDATE.BAT, and
WEEKDAY .BAT. Substitute your own commands in place of the dummy ECHO state
ments to execute your programs at specified times. First, SHOWMON.BAT:

ECHO OFF
REM This is SHOWMON.BAT
GETMONTH
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Month Jan
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Month Feb

Batch Techniques 631

IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Month Mar
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Month Apr
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Month May
IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 ECHO Month Jun
IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 ECHO Month Jul
IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 ECHO Month Aug
IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 ECHO Month = Sep
IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 ECHO Month Oct
IF ERRORLEVEL 11 IF NOT ERRORLEVEL 12 ECHO Month Nov
IF ERRORLEVEL 12 ECHO Month = Dec

Next, SHOWDATE.BAT:

ECHO OFF
REM This is SHOWDATE.BAT
GETDATE
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Date
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Date
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Date
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Date
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Date
IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 ECHO Date
IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 ECHO Date
IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 ECHO Date
IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 ECHO Date
IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 ECHO Date
IF ERRORLEVEL 11 IF NOT ERRORLEVEL 12 ECHO Date
IF ERRORLEVEL 12 IF NOT ERRORLEVEL 13 ECHO Date
IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 ECHO Date
IF ERRORLEVEL 14 IF NOT ERRORLEVEL 15 ECHO Date
IF ERRORLEVEL 15 IF NOT ERRORLEVEL 16 ECHO Date
IF ERRORLEVEL 16 IF NOT ERRORLEVEL 17 ECHO Date
IF ERRORLEVEL 17 IF NOT ERRORLEVEL 18 ECHO Date
IF ERRORLEVEL 18 IF NOT ERRORLEVEL 19 ECHO Date
IF ERRORLEVEL 19 IF NOT ERRORLEVEL 20 ECHO Date
IF ERRORLEVEL 20 IF NOT ERRORLEVEL 21 ECHO Date
IF ERRORLEVEL 21 IF NOT ERRORLEVEL 22 ECHO Date
IF ERRORLEVEL 22 IF NOT ERRORLEVEL 23 ECHO Date
IF ERRORLEVEL 23 IF NOT ERRORLEVEL 24 ECHO Date
IF ERRORLEVEL 24 IF NOT ERRORLEVEL 25 ECHO Date
IF ERRORLEVEL 25 IF NOT ERRORLEVEL 26 ECHO Date
IF ERRORLEVEL 26 IF NOT ERRORLEVEL 27 ECHO Date
IF ERRORLEVEL 27 IF NOT ERRORLEVEL 28 ECHO Date
IF ERRORLEVEL 28 IF NOT ERRORLEVEL 29 ECHO Date
IF ERRORLEVEL 29 IF NOT ERRORLEVEL 30 ECHO Date

1st
2nd
3rd
4th
5th
6th
7th
8th

9th
10th
11th
12th
13th
14th
15th
16th
17th
18th
19th
20th
21st
22nd
23rd
24th
25th
26th
27th
28th
29th

632 PC Magazine DOS Power Tools

IF ERRORLEVEL 30 IF NOT ERRORLEVEL 31 ECHO Date 30th
IF ERRORLEVEL 31 ECHO Date = 31st

(This long batch file is actually easy to create using the copy commands of your word
processor or EDLIN.) And finally WEEKDAY.BAT:

ECHO OFF
REM This is WEEKDAY.BAT
DOW
IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 ECHO Sun
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Mon
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Tue
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Wed
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Thu
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Fri·
IF ERRORLEVEL 6 ECHO Sat

The sample batch files are based on pairs of IF ERRORLEVEL tests on each line.
Since IF ERRORLEVEL tests are true if the exit codes they test are equal to-or greater
than - the value after IF ERRORLEVEL, you have to screen out the next higher one to
isolate any exit code.

You could put just one test on each line, interspersed with GOTO statements. The fol
lowing WEEK2.BAT would yield the same results as WEEKDAY.BAT, but it's far
longer:

ECHO OFF
REM This is WEEK2.BAT
DOW
IF ERRORLEVEL 1 GOTO 1
ECHO It's Sunday
GOTO END
: 1
IF ERRORLEVEL 2 GOTO 2
ECHO It's Monday
GOTO END
:2
IF ERRORLEVEL 3 GOTO 3
ECHO It's Tuesday
GOTO END
:3
IF ERRORLEVEL 4 GOTO 4
ECHO It's Wednesday
GOTO END
: 4
IF ERRORLEVEL 5 GOTO 5

Batch Techniques 633

ECHO It's Thursday
GOTO END
:5
IF ERRORLEVEL 6 GOTO 6
ECHO It's Friday
GOTO END
: 6
ECHO It's Saturday
:END

You could also try setting environment variables rather than ECHOing directly. The
following WEEKDA Y2.BAT batch file will cycle through the choices, resetting the en
vironment variable DAY until the IF test is no longer true, and then retrieve the current
setting and ECHO it to the screen.

ECHO OFF
REM This is WEEKDAY2.BAT
DOW
IF ERRORLEVEL 0 SET DAY=Sun
IF ERRORLEVEL 1 SET DAY=Mon
IF ERRORLEVEL 2 SET DAY=Tue
IF ERRORLEVEL 3 SET DAY=Wed
IF ERRORLEVEL 4 SET DAY=Thu
IF ERRORLEVEL 5 SET DAY=Fri
IF ERRORLEVEL 6 SET DAY=Sat
ECHO Day is %DAY%

The advantage here is that once you've run WEEKDAY2.BAT, other programs and
batch files can grab the DAY variable directly from the environment without having to
rerun the WEEKDAY2.BAT and DOW.COM. The DAY variable and its value don't
take up much environment space, but you should consider expanding your environment
just to make sure you don't run out. Or insert a placeholder:

SET DAY=XXX

command in your AUTOEXEC.BAT file to reserve the few bytes needed.
It's simple to adapt this process to report on anything DOS can sniff out. For instance,

create the ID.COM and MODEREAD.COM programs by typing in this MODEID.SCR
file:

A
MOV AX,FOOO top segment
MOV DS,AX ready to use it
MOV BX,FFFE ID off set
MOV AX, [BX] ready to read it

634 PC Magazine DOS Power Tools

MOV AH,4C

INT 21

RCX

E

N ID.COM

w
A 100

MOV AH,OF

INT 10

MOV AH,4C

INT 21 ; do i.t

RCX

8

N MODEREAD.COM

w
Q

exit with code

do it

get video mode

do it

exit with code

Be careful to leave the two blank lines above each RCX, and to press the Enter key at
the end of each line - especially the last one. Then, at the DOS prompt, type:

DEBUG < MODEID.SCR

Or, just type the following 12 lines:

DEBUG

E 100 B8 00 FO BE DB BB FE FF 8B 07 B4 4C CD 21

N ID.COM

RCX

E

w
E 100 B4 OF CD 10 B4 4C CD 21

N MODEREAD.COM

RCX

8

w
Q

Then run HARDWARE.BAT:

ECHO OFF

REM This is HARDWARE.BAT

ID

Batch Techniques 635

IF ERRORLEVEL 255 ECHO System = PC

IF ERRORLEVEL 254 IF NOT ERRORLEVEL 255 ECHO System XT or Portable

IF ERRORLEVEL 253 IF NOT ERRORLEVEL 254 ECHO System PCjr

IF ERRORLEVEL 252 IF NOT ERRORLEVEL 253 ECHO System AT

IF ERRORLEVEL 251 IF NOT ERRORLEVEL 252 ECHO System Model 50, 60 or

new XT

IF ERRORLEVEL 250 IF NOT ERRORLEVEL 251 ECHO System Model 30

IF ERRORLEVEL 249 IF NOT ERRORLEVEL 250 ECHO System Convertible

IF ERRORLEVEL 248 IF NOT ERRORLEVEL 249 ECHO System Model 80

or SHOWMODE.BAT:

ECHO OFF

MOD ERE AD

IF ERRORLEVEL 19 IF NOT ERRORLEVEL 20 ECHO 640x480 256 colors

IF ERRORLEVEL 18 IF NOT ERRORLEVEL 19 ECHO 640x480 16 colors

IF ERRORLEVEL 17 IF NOT ERRORLEVEL 18 ECHO 640x480 2 colors

IF ERRORLEVEL 16 IF NOT ERRORLEVEL 17 ECHO 640x350 16 colors

IF ERRORLEVEL 15 IF NOT ERRORLEVEL 16 ECHO 640x350 Mono

IF ERRORLEVEL 14 IF NOT ERRORLEVEL 15 ECHO 640x200 EGA 16 color graphics

IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 ECHO 320x200 EGA 16 color graphics

IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 ECHO 640x200 EGA 64 color graphics

IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 ECHO 50x25 PCjr color

IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 ECHO 20x25 PCjr color

IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 ECHO 80x25 Mono B&W text

IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 ECHO 640x200 CGA B&W graphics

IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO 320x200 CGA 4 greys graphic·s

IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO 320x200 CGA 4 color graphics

IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO 80x25 CGA 16 color text

IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO 80x25 CGA B&W text

IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO 40x25 CGA 16 color text

IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 ECHO 40x25 CGA B&W text

to tell your batch files what the current CPU and video mode are.
Obviously these are demonstration programs and not workhorse batch files. To put

them to use, you'd have to jump to different system-handling and screen-handling
routines instead of just printing messages as these do here.

Time of the Month

Or, you may want to execute a specific program at boot-up on a specific day, perhaps to
run CHKDSK.COM once each week and Peter Norton's DISKTEST.EXE once each
month to monitor the condition of a fixed drive. Batch files make it easy.

First, create the DA TECHEK.COM program by typing in the DATECHEK.SCR
script:

636 PC Magazine DOS Power Tools

A
MOV AH,2A get date
INT 21 do it
CMP AL,02 is it Tues?
JNZ 0113 no, AL=2
MOV AL,00 yes, AL=O
CMP DL,08 first week?
JNB 0115 no, AL=O
MOV AL,01 yes, AL=l
JMP 0115 skip next line
MOV AL,02 set level
MOV AH,4C exit with code
INT 21 do it

RCX
19
N DATECHEK.COM
w
Q

Again, be careful to leave the blank line above RCX and to press Enter after each line,
especially the last one. Then get back into DOS and type:

DEBUG < DATECHEK.SCR

Or just type the following eight lines:

DEBUG
E 100 B4 2A CD 21 3C 02 75 OB BO 00 80 FA 08
E lOD 73 06 BO 01 EB 02 BO 02 B4 4C CD 21
N DATECHEK.COM
RCX
19
w
Q

Then create a CHKDATE.BAT batch file:

ECHO OFF
DATECHEK
IF ERRORLEVEL 2 GOTO 2
IF ERRORLEVEL 1 GOTO 1
ECHO It's Tues (not the 1st)
GOTO END

:2
ECHO It's not Tuesday
GOTO END
: 1
ECHO It's the first Tuedsay
:END

Batch Techniques 637

DA TECHEK program requests the system date via function 2AH, looks for the day
of the week and, if it is Tuesday, then checks to see if it is the first Tuesday of the month.
The program terminates with function 4CH, which returns a value in AL that the IF ER
RORLEVEL command can test in a batch file.

You can alter the day of the week to be tested by changing the line:

CMP AL,02

in the listing (00 = Sun, 02 = Tues, 06 = Sat). If you wanted to patch an existing
DA TECHEK.COM program with DEBUG, change the value at offset 105. So to change
it to Wednesday, which has a value of 3, type:

DEBUG DATECHEK.COM
E 105 3
w
Q

The day of the month is reported in DL. Tuesday was chosen to avoid missing the
monthly test due to a holiday (July 1 and January 1 present problems only infrequently).

The CHKDA TE.BAT uses the ERRORLEVEL returned by DA TECHEK.COM to
branch to the appropriate test. It's a dummy file for demonstration purposes; substitute
your own commands for the ECHO messages shown.

Current Events

It's usually difficult to give DOS access to the date or time when running batch files. But
there's a way to get around this problem.

Assume you want to run a program called ONCEONL Y.COM only once a day. Add
the following line to your AUTOEXEC.BAT:

ECHO I MORE I DATE > READDATE.BAT

and make:

READ DATE

the last line in your AUTOEXEC.BAT. Then create a batch file called CURRENT.BAT:

638 PC Magazine DOS Power Tools

ECHO OFF
IF !%TODAY%==!%4 GOTO END
SET TODAY=%4
REM ONCEONLY program goes here
:END

You can even arrange that it runs only once a week, say every Friday, by adding a line:

IF NOT %3==Fri GOTO END

after the line SET TODAY=o/o4. And as a bonus, you wind up with today's date in the
environment.

This works by creating a file READDA TE.BAT, containing the output of DA TE:

Current date is Sun 9-30-1990
Enter new date (mm-dd-yy) :

DOS tries to run the line beginning with "Current date is" by looking for an executable
file (with an extension COM, EXE, or BAT) called CURRENT - and finds the one we
created called CURRENT.BAT. DOS then interprets the groups of words and numbers
following the word "Current" as parameters for CURRENT.BAT. So it reads "date" as
% 1, "is" as %2, the day of the week as %3, and the actual numeric date as %4.

One special trick that's worth noting is the use of the MORE command in the middle
of the ECHO I MORE I DA TE> READ DATE.BAT line. All this does is supply the extra
carriage return that the DA TE command needs to execute properly. (To make this work,
MORE.COM has to be in the same directory or be in one your path knows about.) Note
also that adding READDA TE as the final line in your AUTOEXEC.BAT means that as
soon as AUTOEXEC.BAT finishes, DOS will load and execute READDA TE.BAT.

You could adapt this process slightly if you didn't have an internal clock but needed
to reboot frequently. First, put these lines near the top of your AUTOEXEC.BAT file:

ECHO OFF
IF NOT EXIST D.BAT GOTO SETIT
COMMAND /C D
:SETIT
DATE
DATEMAKE

and then a final AUTOEXEC.BAT line:

DATEMAKE

The COMMAND IC allows one batch file to run another batch file and then jump ex
ecution back to the first when the second is done. Users of DOS 3.3 could substitute

Batch Techniques 639

CALL for COMMAND /C. D.BAT is a short batch file created by DATEMAKE.BAT,
containing the lines

Current date is Sun 9-30-1990
Enter new date (mm-dd-yy) :

(or whatever the last set date was).
The DA TE command below COMMAND /C D lets you correct the date the first time

you run AUTOEXEC.BAT each day. DA TEMAKE.BAT contains the single line:

ECHO I MORE I DATE > D.BAT

Again, MORE.COM has to be in the current subdirectory or in one your PA TH knows
about. The only other file you need for this to work is a tiny one called, you guessed it,
CURRENT.BAT:

DATE %4

Real-Time Batch File Entries

If you could send a command from the keyboard to a batch file while it was executing,
you could enter a switch or a command as needed during execution. To do this, include
a line:

COPY CON TEST.BAT

in your batch file. As soon as DOS reaches this line it will pause and let you enter any
thing you want. Then when you type Ctrl-Z and press Enter, DOS will resume process
ing the batch file.

To see this in action, type in the SAMPLE.BAT batch file below:

ECHO OFF
REM SAMPLE.BAT.
ECHO To edit or create a file
ECHO using WordStar, type:
ECHO WS followed by a filename
ECHO Then Enter, Ctrl-Z, then Enter
ECHO example: ws MYFILE.LET
ECHO (then Enter, Ctrl-Z, Enter)
COPY CON TEST.BAT
COMMAND /C TEST
ECHO end of demo

640 PC Magazine DOS Power Tools

The COMMAND IC command (you may substitute CALL if you're using DOS 3.3)
executes the new JEST.BAT file that you just created. Then, when IBST.BAT finishes
running, DOS returns control to the main SAMPLE.BAT batch file.

This is handy for giving instructions to new users and then executing the commands
they type.

You can adapt this technique to create a real-time log that will keep track of who's
using your system. Just create the following LOGIT.BAT batch file:

ECHO OFF
IF EXIST LOG GOTO ~EXT
ECHO === Logf ile === > LOG
:NEXT
ECHO This will add your name to the logf ile
ECHO Instructions:
ECHO 1. Enter your name
ECHO 2. Hit the Enter key
ECHO 3. Hit the F6 key
ECHO
CTTY NUL

4. Hit the Enter key again

COPY CON ADD
COPY LOG+ADD /B
ECHO I MORE I TIME I FIND "Current" >> LOG

ECHO --------------------------- >> LOG
CTTY CON
MORE < LOG

Run it by typing LOGIT. When prompted, enter your name, then press Enter, then
press F6, then Enter. Your name and the current time will be added to the log. You may
also add comments below your name, on separate lines - just be sure to press Enter,
then F6, then Enter when you're done.

More Efficient Copies

DOS doesn't make it easy to copy groups of files from the current directory to another
directory or disk with a single command - unless you do it with a batch file. The
COPYEASY .BAT batch file lets you use as many as eight shorthand filespecs on a single
command line:

ECHO OFF
IF "%2" == "" GOTO HELP
ECHO This will copy %2 %3 %4 %5 %6 %7 %8 %9
ECHO from
CD
ECHO to %1
ECHO Hit Ctrl-Break to abort, or

PAUSE
SET MYVAR=%1
SHIFT
:AGAIN
ECHO Copying %1 to %MYVAR%

Batch Techniques 641

FOR %%A IN (%1) DO COPY %%A %MYVAR% > NUL
SHIFT
IF NOT "%1" == "" GOTO AGAIN
SET MYVAR=
GOTO END
:HELP
ECHO To use this %0 utility, enter:
ECHO %0, DESTINATION, and up to 8 filespecs
ECHO in current directory. For example:
ECHO -----------------------------------
ECHO %0 B: *.BAT *.D?? MYFILE.TXT TEST.*
ECHO -----------------------------------
:END

This batch utility provides help if it's needed and specific feedback on what to type on
the command line; it also requests confirmation before proceeding. This version uses
only DOS commands, but you can streamline it by adding IF ERRORLEVEL branch
ing.

COPYEASY really takes advantage of DOS variables. It starts out by using replace
able parameters to read everything off the command line, and then has the DOS SHIFT
command process them one by one. Each time the SHIFT command executes it moves
all the replaceable parameters up a notch, so %3 becomes %2 and %2 becomes % 1 and
the old value for % 1 is discarded.

So if you entered:

COPYEASY D: *.BAT C*.COM ??.EXE

• %1 would= D:
• %2 would=* .BAT
• %3 would= C* .COM
• %4 would= ?? .EXE

Execute SHIFT once and:

• %1 would= *.BAT
• %2 would= C* .COM
• %3 would= ?? .EXE

The old D: value of %1 would vanish, and %4 wouldn't have any value. Remember,
the %0 parameter is a special case - it represents the name of the batch file itself.

642 PC Magazine DOS Power Tools

The % 1 parameter originally represents the destination for all the copies, and this is
used the whole time the batch file runs. But the first time SHIFr executes, it wipes out
the old value of% 1 and replaces it with what used to be %2. COPYEASY gets around
this by taking the original value of% 1 and setting it to an environment variable, with the
command:

SET MYVAR=%1

It can then use this destination at any subsequent time in the batch file by referring to
it as %MYV AR% rather than % 1. And it cleans up when finished by removing the vari
able from the environment with the command:

SET MYVAR=

If you do try this, make sure your environment is large enough to hold the extra vari
able. Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address ECF to rep
resent the number of 16-byte memory paragraphs that will make up your new
environment. (For DOS 2.11 the address is DF3.) For DOS 3.0 and 3.1, use a SHELL
[d:] [path]COMMAND.COM /E:n IP command in your CONFIG .SYS file, where n rep
resents the numberof 16-byte paragraphs. For versions 3.2and later, use the same SHELL
command but specify the actual number of bytes rather than paragraphs. The default in
all cases is 160 bytes (ten paragraphs). You can boost it all the way up to 32K in DOS
3.2 and 3.3, but are limited to 62 paragraphs in earlier versions.

AUTO EXEC.BAT

Virtually all users start their systems with AUTOEXEC.BAT files. But there are times
when you want to start without all of the various programs your AUTOEXEC.BAT nor
mally loads.

A combination of resident programs loaded by your AUTOEXEC.BAT might cause
your machine to hang. Or, you might not want to run a product your AUTOEXEC.BA T
installs (for example, you might not want to bring up the PC Network before doing back
ups).

You could simply begin the file with a PAUSE command, but this means you'd have
to sit by and watch the disks grind until you reached the PAUSE. And you'd end up just
banging the space bar to proceed 99 percent of the time.

Or, you could boot off a floppy disk in your A: drive, or do what most users do - con
tinually press Ctrl-Break while your machine is booting, hoping your AUTOEXEC.BAT
will be aborted before the critical instructions occur. Either solution is fine if you only
run into the problem once in a while, but neither solution is ideal.

A far better method is to use a small program called KBFLAG .COM to monitor your
keyboard as you boot up, and send a code to your AUTOEXEC.BAT file that an IF ER
RORLEVEL instruction can trap. Once you install this program, you can press one single
key while your machine is booting to avoid running your AUTOEXEC.BAT.

To create KBFLAG.COM, type in the following KBFLAG.SCR script:

A
MOV
MOV
MOV
MOV
INT

RCX
c

AX,40
DS,AX
AL, [17]
AH,4C
21

N KBFLAG.COM
w
Q

segment 0040
get it ready
get value at offset 17
exit with code
do it

Batch Techniques 643

Be sure to leave a blank space above RCX, and press the Enter key at the end of each
line, especially the last one. Then get into DOS and type:

DEBUG < KBFLAG.SCR

Or just type in the following seven lines:

DEBUG
E 100 B8 40 00 8E D8 AO 17 00 B4 4C CD 21
N KBFLAG.COM
RCX
c
w
Q

Then, add these two lines at the very beginning of your AUTOEXEC.BAT:

KB FLAG
IF ERRORLEVEL number GOTO END

(replacing "number,, with one from the chart below).
You'll also need a label at the end of your batch file that says simply:

:END

KBFLAG sets the DOS ERRORLEVEL to the value of the KBFLAG in the ROM
BIOS area. You can use different keys to trigger KBFLAG. These keys, and the codes
read by IF ERRORLEVEL, are:

1 =
2 =
4 =

Right shift
Left shift
Ctrl key

644 PC Magazine DOS Power Tools

8 = Alt key
16 = ScrollLock
32 = NumLock
64 = CapsLock

128 = Insert

For example, you can avoid running AUTOEXEC.BA T if you press and hold a Shift
keywhileyourmachineboots,orifyousimplypressNumLockwhileyourCONFIG.SYS
is running.

You can add the above key values together. If you wanted the trigger to be the Right
and Left Shift keys plus the Ins key (toggled on), you would use an ERRORLEVEL trap
of 131(1+2 + 128 = 131).

You could make your batch file test for several ERRORLEVELs, and act differently
when different keys are pressed. For example, CapsLock could mean abort the
AUTOEXEC.BAT, while NumLock could do everything but load a couple of resident
programs. KB FLAG can be used in any BAT file, not just AUTOEXEC.BAT.

A handy way to do this is to use a value of 128. Then you can avoid running your
AUTOEXEC.BAT file by toggling the Ins key when you boot up. KBFLAG will send a
128 to the IF ERRORLEVEL trap, which will branch to the :END label.

This is a far more elegant solution to avoiding AUTOEXEC.BA T than pounding on
the keyboard, which can generate bootup errors and force you to press the Fl key and
then restart the whole operation. Using the Ins (or NumLock, ScrollLock, or CapsLock)
toggle means that you can branch out of the program with one simple key press, or start
running normally by keeping your fingers off the keyboard.

Chapter 11

The DOS Environment

The DOS environment is a memory pool of information that is available to all batch files
or programs in your system. You can place virtually any kind of information in it. The
Microsoft C compiler, for example, takes advantage of the environment to pass file hand
ling information from one program to another. And you can put your own variables there
to store values or transmit them from one executable file to another.

The actual memory area where the environment information is stored is known as the
master environment block. Each item there is stored as a series of characters known as a
string. Environment strings consist of a variable name, an equals sign(=), and a word or
phrase of information, in the form:

variable=phrase

As used here, variable is the name of an environment variable, and phrase is the in
formation stored with that variable.

The environment normally contains the familiar PROMPT and PATH descriptor
strings, and the important COMSPEC variable. While DOS creates COMSPEC and
PATH by default, you can manipulate all three directly from the DOS command line or
from a batch file by using the SET, PATH, or PROMPT commands. You can also use
the SET command to create, delete, and modify "user-defined" environment variables.
These variables let you store your own information with variable names of your own
choosing, and can really supercharge some aspects of batch file operation.

Richard Hale Shaw's series of articles on the DOS environment were among the very first to discuss some of
the finer points involved. The up.lated section here also contains contributions by Charles Petzold and several
PC Magazine readers.

645

646 PC Magazine DOS Power Tools

The SET Command

The most convenient way to modify the environment is via the SET command. You can
use SET at the DOS prompt or in a batch file. The full syntax for using SET on the DOS
command line is:

SET [variable=[phrase]]

where variable is the name of the environment variable you want to modify, and phrase
is the string of characters you want the variable to refer to.

If you enter SET by itself, DOS will display the current environment strings on the
screen. You can redirect these into a file with the command like this one:

SET > ENVFILE.TXT

which will write a copy of the current environment strings to a file called ENVFILE. TXT.
If you enter SET, then a variable name, then an equals sign with nothing following it,

DOS will remove the variable from the environment.
Note that when you use SET to define an environment variable, any spaces between

the end of the variable name and the equals sign will become part of the variable name
itself. So the command:

SET x =y

will create a variable called "X ."Similarly, any spaces found after the= sign become
part of the phrase, so:

SET x= y

will set the variable X to the phrase" y." DOS always capitalizes the variable name
passed to it by SET, regardless of whether you entered it in upper- or lowercase. But it
maintains the case of the variable value exactly as you entered it.

The DOS command line processor limits the length of environment strings entered on
the command line or in a batch file to 127 characters. Actually, most environment strings
are limited to 123 characters because "SET "takes up four spaces on the command line.
Since PATH andPRO:MPT don't require the use of SET, they alone can use the full 127
characters. An environment variable name or phrase can be any length as long as the en
tire string's combined length, including the equals sign, does not exceed 127 characters.

To see SET in action, enter:

SET PASSWORD=SHERLOCK

This will create an environment variable called PASSWORD that is equal to the string
"SHERLOCK." You can change the phrase that PASSWORD points to at any time simp
ly by entering the change with SET. So the command:

The DOS Environment 64 7

SET PASSWORD=WATSON

will change PASSWORD so it's equal to "WATSON." And the command:

SET PASSWORD=

will remove PASSWORD from the environment altogether. If you 're trying to get rid of
a variable, be sure not to put any spaces after the equals sign. If you do accidentally in
clude a space there, the variable will remain in the environment, since DOS will think
you 're trying to make the variable equal to a single space. To verify that you've removed
an environment string, just enter SET by itself, which will produce a display like:

COMSPEC=D:\COMMAND.COM
PATH=D:\;C:\;C:\BIN;C:\DOS
PROMPT=$p:

The PROMPT Environment Variable

One of the first things a serious user learns is how to modify the DOS prompt from C>
or A> to something slightly more descriptive. PROI\1PT is not an independent DOS com
mand; it's actually shorthand for SET PROI\1PT. You can use either PROI\1PT or SET
PROI\1PT when customizing the PROI\1PT variable.

You can create all sorts of different prompts by using symbols that IBM calls meta
strings. Meta-strings all begin with an initial dollar sign, and are immediately followed
by the meta-string symbol or character. For example, the default DOS prompt itself is
simply the meta-string ng. The $n displays your current drive letter, and the $g dis
plays the greater-than (>) sign.

DOS provides a variety of meta-strings that can be used singly or in combinations to
configure your prompt. (See Chapter 9 on ANSI.SYS for the full list.)

DOS will ignore any "nullu meta-strings that are created by following the initial dol
lar sign with a character that's not a meta-string symbol. But DOS will print, as part of
the prompt itself, any characters that immediately follow a null meta-string. This gives
you an opportunity to include almost anything in the prompt. To print a name or a phrase
as part of a prompt, you simply precede it with a null meta-string like "$a." For instance,
the PROMPT command:

$aGood Morning:

will produce the prompt:

Good Morning:

You don't really need the use null strings however. The command:

648 PC Magazine DOS Power Tools

PROMPT Hi there

will turn your DOS prompt from C> or A> into:

Hi there

You may add an optional SET and an equals sign. These will both produce the same "Hi
there,, prompt:

PROMPT Hi there
SET PROMPT=Hi there

To illustrate the use and selection of a variety of prompts, try running SWPROMPT.BAT,
which makes it easy to switch among five different DOS prompts. To make it work you
first have to run STPROMPT.BAT:

ECHO OFF
IF !%PROMPT6%==! SET PROMPT6=%PROMPT%
SET PROMPT1=$$
SET PROMPT2=Date is $d; Time is $t hhhhhh$h:
SET PROMPT3=$p:
SET PROMPT4=This is $v:
SET PROMPT5=$1PC$g

This will create five environment variables:

• a single dollar-sign prompt
• a date-and-time prompt
• a prompt that displays the current directory
• a "This is IBM Personal Computer DOS Version 3.30" prompt
• a prompt containing the initials <PC>

Then create SWPROMPT.BAT:

ECHO OFF
IF !%1==! GOTO END
IF %1==0 PROMPT=
IF %1==1 PROMPT=%PROMPT1%
IF %1==2 PROMPT=%PROMPT2%
IF %1==3 PROMPT=%PROMPT3%
IF %1==4 PROMPT=%PROMPT4%
IF %1==5 PROMPT=%PROMPT5%
IF %1==6 PROMPT=%PROMPT6%
:END

The DOS Environment 649

Once you've created SWPROMPT.BAT, and run S1PROMPT.BAT (which you need
do only once in a DOS session), just enter:

SWPROMPT n

at the DOS prompt, where n is a number from 0 to 6. If you enter a number from 1 to 5,
SWPROMPT will change your prompt to one of the five described above. If you do not
enter a number, no change will take place. Entering a 0 brings back the standard DOS
A> or C> prompt, and entering a 6 will reset the prompt to what it was when you first
ran S1PROMPT.

Obviously you should modify S1PROMPT.BAT to set up your own series of custom
prompts. If you change the number of prompts being initialized, simply modify
SWPROMPT to handle the right number.

Since these strings normally begin with a dollar sign, you have to use a pair of dollar
signs if you want one to appear in the prompt. Also note that the line of hhhhhh$h
characters after the $t time meta-string will erase the seconds and hundredths of seconds
normally reported by DOS.

Unfortunately this won't work under version 3.0. A bug in that version of DOS
prevents it from understanding environment variables such as %PROMPT I% ..

PC Magazine contributor Ethan Winer points out that apart from the usual custom
prompts, such as:

PROMPT pg

which will show the current path, followed by a">" sign, or something a bit more com
plex like:

PROMPT d_t_ng

which will show the current date, time, and drive on separate lines, you can experiment
with more frivolous ones. Try:

PROMPT "B$g

(Enter the "B character by holding down the Ctr! key while typing the letter B.) Or, if
you want to see something truly strange, type in:

PROMPT YoYohoohoohoohoohohhohhoh

For clarity, all of the repetitions for this PROMPT command are not shown above. After
the initial PROMPT Yo Yo, enter 13 groups of $hoo, followed immediately by 12 groups
ofhoh.

One of the best uses of PROMPT is in entering escape sequences for ANSI.SYS. See
Chapter 9 on ANSI for details.

650 PC Magazine DOS Power Tools

The COMSPEC Environment Variable

COMSPEC, an acronym for COMmand SPECification, defines the drive, path, filename,
and extension of the DOS COMMAND.COM command interpreter.

When DOS initially boots your system, it loads different parts of COMMAND.COM
into high and low memory addresses. The portion in high memory controls the use of
batch files and internal commands, things your programs don't normally use while
they're running. Programs that need the additional memory space can overwrite the part
of COMMAND.COM stored in high memory. When such a program terminates, DOS
checks to see if the high memory portion of the command interpreter has been overwrit
ten by the program. If so, it reloads that part from the disk. The COMSPEC environment
variable tells DOS where to find the COMMAND.COM file.

The DOS default for this variable is:

COMSPEC=C:\COMMAND.COM

on a system booted from a hard disk, and:

COMSPEC=A:\COMMAND.COM

on any system initially booted from a floppy disk, regardless of whether a hard disk is
attached. This means that the drive and path to the command interpreter can point to any
valid copy of COMMAND.COM (or any other command interpreter).

To change the COMSPEC with SET, enter.

SET COMSPEC=[d:] [path]filename.ext

where d: is the drive, path is the directory path and filename.ext is the name of the com
mand interpreter to be used.

Reloading the command interpreter after a program tenninates may tie up your sys
tem an extra 1 to 4 seconds before the DOS prompt appears. This is a good reason to
change COMSPEC. If you're using a RAMdisk under DOS 3.0 or above (for example,
as drive D:), you can pare down this time by putting the following two lines in your
AUTOEXEC.BAT file:

COPY COMMAND.COM D:\
SET COMSPEC=D:\COMMAND.COM

Substitute the drive letter of your RAMdisk in place of D: After you make this change,
if DOS has to reload a copy of COMMAND.COM it will take it from the RAMdisk,
which will be a whole lot faster and quieter than before.

Application programs that let you load DOS without leaving the program itself use
COMSPEC to load COMMAND.COM. If your programs take advantage of this, or if
you load COMMAND.COM in your batch files, changing COMSPEC will make every
thing go faster.

The DOS Environment 651

If you do change the COMSPEC variable, remember that this is the only way DOS
will know where the command processor is located. Be careful that you actually have a
copy of COMMAND.COM where you just told DOS to look for it, on the drive pointed
to by the new COMSPEC setting. Otherwise, you may get the dreaded "Cannot load
COMMAND, system halted" message from DOS, which means you'll have to reboot
and lose any data that wasn't saved to disk.

The PATH Environment Variable

The path is a list of directories that DOS searches to find programs or batch files. Al
though you may occasionally want to try it on a floppy disk system, path is a necessity
on any computer with a hard disk.

Path lets you organize your disk by placing your most frequently used programs and
utilities in unobtrusive, out-of-the-way subdirectories. It will show DOS exactly where
they're located.

To change the PATH variable, enter:

SET PATH=[d:]directory[;directory]

where d: is an optional drive specification. As with the PROMPT command, the SET and
the = need not be entered, saving extra characters if you need a very long path specifica
tion.

Whenever you enter anything at the DOS prompt, COMMAND.COM first checks to
see if what you typed was an internal command. DOS keeps a table of these common
commands (such as DIR, COPY, and TYPE} inside the COMMAND.COM command
processor itself.

If it searches all the way through the list and doesn't find a match, it assumes that what
you typed is an external command (a program or a batch file). It then searches the cur
rent directory first for a file with an extension of COM, then for one that ends with EXE,
and finally one with a BAT extension. If it finds one that fits the bill it loads and executes
il

However, if it doesn't find an external command in the current directory with a COM,
EXE, or BAT extension, DOS then looks for a PA TH variable in the environment. If no
PA TH variable has been defined, the search ends there and DOS prints its "Bad com
mand or file name" message. But if it does see a PA TH variable, DOS will look for COM,
EXE, or BAT files with the filename you specified in each of the directories listed in the
path.

Since DOS runs COM files before EXE files, if you have two programs called
PROO .COM and PROO.EXE in the same directory, DOS won't ever get a chance to run
PROO.EXE. And since it runs EXE files before BAT files, if PROO.EXE and
PROO.BAT are in the same directory, DOS won'tever get a chance to run PROO.BAT.
However, if you have a program in the current directory called PROO .BAT and one called
PROO.COM in another directory that your PATH knows about, DOS will run

652 PC Magazine DOS Power Tools

PROO.BAT, since it always tries to run a COM, EXE, or BAT file in current directory
before running any files in other directories.

Some users mistakenly place. or .\in their PATH list. These symbols represent the
current directory. But since the current directory is searched before the PATH is even
examined by DOS, they just slow down the search process.

When DOS first creates the environment, the path is initialized to a null (empty) string
of characters, just as if you had cancelled your current path by entering:

PATH=

Your AUTOEXEC.BAT file should contain an appropriate path statement as one of its
first commands. Then DOS can find programs this batch file specifies later.

You should put all your most frequently used COM, EXE, and BAT files in a direc
tory called\DOS, \UTILS, or\BIN, and then include this directory in your path. It's often
useful to keep your DOS files together in a directory called \DOS, and your non- DOS
utilities in one called \BIN. This makes it easy to update from one version of DOS to
another.

If you used both of these subdirectories, your path might look like:

PATH=C:\;C:\DOS;C:\BIN

DOS uses semicolons to separate path directory entries. The first directory on the list
(C:\), is simply the root directory. You shouldn't have any visible files in your root direc
tory other than AUTOEXEC.BAT, CONFIG.SYS, and COMMAND.COM.

If you want to speed things up you can set up a RAMdisk (on drive D: if you have a
typical one-drive hard disk system) and have your AUTOEXEC.BAT file copy your most
frequently used utilities there. In this case, you'd have a PA TH that looked like:

PATH=D:\;C:\;C:\DOS;C:\BIN

You'd put the D:\first, since it's faster for DOS to look at a RAMdisk than even a speedy
hard disk.

This will let DOS load any COM, EXE, and BAT files stored in any of the directories
included in your path, no matter which directory you happen to be logged into. Without
it you could run only the COM, EXE, and BAT files in the current directory. It's impor
tant to use drive letters in your path if you jump around between drives. If you never
switch drives, you don't need to specify them.

The SWP A TH.BAT batch file below lets you change your path from within a batch
file:

ECHO OFF
IF !%1==! GOTO EXIT
IF %1==1 PATH=%PATH1%
IF %1==2 PATH=%PATH2%
IF %1==3 PATH=%PATH3%

IF %1==4 PATH=%PATH4%
:EXIT

To switch PA THs, just enter:

SWPATH n

where n is a number from 1 to 4.

The DOS Environment 653

For this'to work you first have to run SETPATH.BAT before using SWPATH (you
need run SETPATH only once per DOS session). Make sure you modify the examples
shown in SETP A TH so thatP A THI, PATH2, and PA TH3 define meaningful paths based
on your current subdirectory structure. The subdirectory names used here are just dum
mies:

ECHO OFF
PATHl=C:\WP\LTRS
PATH2=C:\LOTUS\PAYROLL
PATH3=C:\;C:\UTIL;C:\WP
PATH4=%PATH%

If you enter a number from 1 to 3 following SWP ATH on the command line, your path
will be reset to a path pointed to by PATHl, PATH2 or PATH3. If you enter a 4, your
path will be reset to its original state at bootup- the way it was before you ran SWP A TH.

There are some limits to what path can do, however. It can't find all of your programs.
Application programs like WordStar (which is really WS.COM) use overlay program
files, which usually have OVR or OVL file extensions. If you tell DOS where your Word
Star files are located, it can find and load the WS.COM file but not the overlay files.
Similarly, if your programs create nonexecutable data files, DOS will be able to look at
the path and find the program that creates the data but not the data files themselves. paths
are designed to work with executable files only.

If you 're using DOS version 3.3 you can take advantage of the APPEND command to
take care of this limitation. In fact, you may use APPEND with or without putting it in
your environment; a IE switch adds the APPEND strings to the environment. APPEND
works just like the PATH command except that it helps DOS find nonexecutable files.
If you 're using a version of DOS earlier than 3 .3, you'll have to purchase a PA TH ex
tender such as Filepath or File Facility.

Batch Files and the Environment

You may add to or modify the environment by entering commands directly at the DOS
prompt or by including these SET, PROMPT, or PA TH commands in batch files. To read
environment variables in batch files, you have to wrap them in percent signs(%), as the
%PROMPT% variables demonstrated above. You can't use these percent signs directly
on the DOS command line.

654 PC Magazine DOS Power Tools

The batch file FOR command makes it easy to print out parts of environment variables
that have been delimited by semicolons. So the single-line batch file:

FOR %%I IN (%PATH%) ECHO %%I

will produce a list of directories in the PATH. If the PATH variable were
PATH=D:\;C:\;C:\BIN;C:\DOS, the batch file would display:

D:\
C:\
C: \BIN
C: \DOS

One advantage of using environment variables in batch files is that they can be redefined
on the fly. For instance, you might have used your AUTOEXEC.BAT file to define en
vironment variable PASSWORD as:

SET PASSWORD=ANYONE

If a batch file that loads an accounting package contains the lines:

ECHO OFF
IF %PASSWORD%==ROSEBUD GOTO START
ECHO INVALID PASSWORD!!
GOTO END
:START
REM This will now run the ACCT.EXE accounting program
ACCT
:END

then only users who entered:

SET PASSWORD=ROSEBUD

prior to running the batch file would be able to get into the accounting system. This isn't
much of a security measure for experienced users, but it can keep beginners honest.

If you modify the environment from the DOS command line or from a batch file, the
changes you make will be available for all subsequent programs. The exception is with
batch files that run under a secondary copy of COMMAND.COM.

It's a common practice to "nest" batch files by having one batch file load a second
copy of COMMAND.COM that runs a second batch file. If you wanted A.BAT to run
B.BATandreturn to A.BAT, you'djust put a line in A.BAT that said:

COMMAND /C B.BAT

The DOS Environment 655

Assuming B .BAT executed without a hitch and didn ,t load still one more batch file, when
B.BAT finished it would exit the second copy of COMMAND.COM and return to the
first copy and A.BAT.

However, when you load B.BATwith an additional copy of COMMAND.COM, DOS
gives it a copy of the environment. And changes made to that copy are lost when the BAT
file terminates.

If you had a line in B.BA T like:

SET SIGNAL=OK

this won,t let B.BAT pass environment information back to A.BAT by putting the en
vironment variable "SIGNAL,, in the master environment block. SIGNAL would be set
only in B.BAT's copy of the environment. Any modifications that B.BAT makes to the
environment copy will be lost on returning to A.BAT. Since it runs under a secondary
command processor, B.BATcan,t add the variable SIGNAL to the master environment
block.

Again, DOS 3.3 solved this by letting you nest batch files by using the CALL com
mand. CALL doesn,t have to load a second copy of.COMMAND.COM, which means
that any nested batch files can create of change environment variables that the original
batch file can use.

If A.BAT contained the lines:

ECHO OFF
SET > SETOLD
CALL B
SET > SETNEW
TYPE SETOLD
TYPE SETNEW

and B.BATcontained simply:

SET PC=MAGAZINE

when A.BAT finished running it would display two copies of the environment, and the
second one (SE1NEW) would contain a line:

PC=MAGAZINE

that the first didn,t.
Hard disk users often create a subdirectory for each new project they begin. These can

end up being several subdirectory levels deep. After changing to another directory, return
ing to the deeply buried one means typing (and often mistyping) a long path over and
over again.

If you,re going to keep a new subdirectory called:

656 PC Magazine DOS Power Tools

\WORK\JOBl\ACCT\SMITH

on your hard disk, you can just create a batch file called SMITH.BAT that contains the
single line:

CD \WORK\JOBl\ACCT\SMITH

After you put this small batch file in a \BIN or\BAT subdirectory that was included in
your path, you could type:

SMITH

and DOS would change into that directory.
But you may not want to create a permanent file, especially if you're using an ineffi

cient hard disk like the one on the early XTs that wasted 4K of space for even the smal
lest files.

By setting a single environment variable and using a two-line batch file called
HOME.BAT that's in a directory your path knows about, you can get immediately to
your project subdirectory by simply entering:

HOME

HOME.BAT consists of two lines:

ECHO OFF
IF NOT !%HOMEDIR%==! CD %HOMEDIR%

Assuming your project directory is C:\LOTUS\P A YROLL \PROJECT, at the DOS com
mand prompt enter

SET HOMEDIR=C:\LOTUS\PAYROLL\PROJECT

Now whenever you've been working in another directory and want to get back to your
project, just enter HOME and DOS will automatically switch to the directory name
pointed to by the environment variable HOMEDIR.

When DOS sees an environment variable in a batch file, it tries to find that variable in
the environment. If it finds one there, DOS substitutes what's to the right of the equals
sign for the variable itself and executes the batch file line.

The IF test makes sure you entered an environment variable. IF you didn't, DOS
replaces %HOMEDIR % with (nothing) and turns the line into:

IF NOT !==! CD

The IF NOT !==! test fails, since ! is indeed equal to !. In this case nothing awful would
happen if you omitted the IF test. Changing it to:

The DOS Environment 651

ECHO OFF
CD %HOMEDIR%

would switch to your home directory if you had defined one with the SET command, and
would simply execute a CD, which reports the current directory, if you hadn't. You could
get fancy (as was done in the batch section of this book) and print a message if no vari
able was found:

ECHO OFF
IF !%HOMEDIR%==! GOTO OOPS
CD %HOMEDIR%
GOTO END
:OOPS
ECHO Enter a HOME directory using the
ECHO SET= command, eg SET HOMEDIR=\DOS\BAT
:END

The nice thing about this (apart from saving keystrokes) is that you can redefine the
HO:MEDIR variable whenever you want, just by typing in another SET HO~DIR com
mand.

Programs and the Environment

Unlike batch files, which can access the master environment block directly, programs
(including memory resident programs) can get only one copy of the environment, either
from DOS or from the program that loaded them.

Many popular application programs let users load a second copy of COM
MAND.COM without leaving the program (with commands like d.BASE's RUN,
BASIC's SHELL, and 1-2-3's IS). Any changes made to the environment in this way are
made only to the copy of the environment that DOS provides, and are lost as soon as you
type EXIT command to return to the application program.

All programs require two important DOS memory structures - a Program Segment
Prefix (PSP) and a Memory Control Block (MCB). The PSP provides a program with in
formation like command-line arguments, file-handling data, and the location of the next
instruction to execute when the program terminates. The MCB is set by DOS to mark off
different parts of memory - specifically the memory allocated to a program.

These memory structures lie directly above a program's copy of the environment. If
either one is accidentally altered by a program that is trying to make changes to its copy
of the environment, some very serious errors could occur, including damage to data files.

Your program can read the copy of its environment, but it has to be careful about
making changes. If changes are made, they will be available to any programs loaded by
your program, but they will be lost when the program terminates. And if the changes do
not 'fit precisely into the space allocated to the program's copy of the environment, you
face the probable disaster of overwriting a critical portion of memory.

658 PC Magazine DOS Power Tools

640K

nt
m

The memory map below shows that a program's copy of the environment is always
located below the program, its PSP, and its MCB. This is why the space provided for the
copy is limited: only a few bytes higher in memory are areas that are vital to the program.
Changes made to a copy of the environment must fit in the space provided.

High memory portion of COMMAND.COM
\
'

Current program data space

Current program code space

Current program's PSP, includes:
Corre
progra
begin shere Address of this program's environment at offset 2CH in PSP

nt Corre
progra
PSPbe
here

m's
gins

OK

DOS memory control block (MCB)

Current program's environment

If the current program was loaded and run by a program other
than DOS, the parent program and its environment will reside here.

It's possible to have several programs, one loaded on top of the
other, in this space. Memory resident programs and their

environments will also be here.

Master environment block

Low memory portion of COMMAND.COM

PSP of COMMAND.COM

(Any device drivers loaded from CONFIG.SYS)

BIOS areas

To find a program's copy of the environment, you need to look into the PSP. All
programs are allocated one or more 64K memory blocks, or segments, for their code. The

The DOS Environment 659

actual code for a program begins at offset lOOH in its first segment The area from 0 to
lOOH is reserved for the PSP. Among the many important items of information stored in
the PSP is the memory segment address of the program's copy of the environment, stored
at offset 2CH in the PSP. You can use the DOS DEBUG utility both to find the address
of a program's environment copy and to display the actual environment copy in memory.

To see the contents of your DOS environment, load DEBUG (by typing DEBUG at
the DOS prompt). When you see the DEBUG hyphen (-) prompt enter:

D2C 2D

DEBUG will display something like:

-D 2C 2D
37E6:0020 OB 34 • 4

When you loaded DEBUG, DOS made a copy of the environment available to it and
placed the segment address of the copy at offset 2CH in DEBUG's PSP. Segment ad
dresses like this occupy two bytes of memory (a "word"), and are stored in "back-words"
format. You have to reverse the bytes to get a meaningful segment address.

The command you typed told DEBUG to display the contents of memory at offsets
2CH through 2DH (only two bytes). In the example above, the contents are OBH and
34H. Since these are stored in reverse order, flip them round to make them 340BH. The
H suffix just reminds you that you 're dealing with hex notation. This is obvious when
you're working with a number with a letter like Bin it. But it's not so obvious when you
see a number like 100. Hex 100 is equal to 256 decimal.

To have DEBUG display the contents of memory at segment 340BH, at the prompt
enter

D340B:O

The ":O" tells DEBUG to treat this as a segment address, starting at offset 0 in the seg
ment If you use an unusually large environment, you may have to enter D several times
to page through the whole environment. The DEBUG display will look something like:

-D340B:O

340B:OOOO 43 4F 4D S3 SO 4S 43 30-43 3A SC 43 4F 4D 4D 41 COMSPEC=C:\COMMA

340B:0010 4E 44 2E 43 4F 4D 00 S0-41 S4 48 3D 42 3A SC 3B ND.COM.PATH=B:\;

340B:0020 44 3A SC 3B 43 3A SC 3B-43 3A SC 42 49 4E 00 48 D:\;C:\;C:\BIN.H

340B:0030 4F 4D 4S 44 49 S2 3D 63-3A SC 64 73 SC 62 72 SC OMEDIR=c:\ds\br\

340B:0040 6E 6S 78 74 62 72 00 SO-S2 4F 4D SO S4 3D 24 70 nextbr.PROMPT=$p

340B:OOSO 24 SF 00 00 01 00 43 3A-SC 44 4S 42 SS 47 2E 43 $_ C:\DEBUG.C

340B:0060 4F 4D 00 43 4D SO 3D 64-3A SC 63 38 38 2E 6S 78 OM.CMP=d:\c88.ex

340B:0070 SA 13 34 ED 6B 3D 64 3A-SC 61 73 6D 38 38 2E 6S Z.4.k=d:\asm88.e

660 PC Magazine DOS Power Tools

As you can see by looking at the ASCII part of the DEBUG display (at the extreme right
side of it), each environment string is stored as a series of characters terminated by a null,
or zero byte. So the first string, for COMSPEC, actually looks like:

C 0 M S P E C = C \ C 0 M M A N D . C 0 M

tttt tt tttt ttt tt t ttt tt tt
43 4F 4D 53 50 45 43 3D 43 3A SC 43 4F 4D 4D 41 4E 44 2E 43 4F 4D 00

The null byte of the first string, COMSPEC, is on the second line of the center display,
at 340B:0016. A string of ASCII characters that ends with an ASCII character 0 is called
an ASCIIZ string. When you use SET to modify the environment, the internal DOS pro
cedures invoked by SET supply this terminating null byte automatically.

The 00 appears as a dot, since DEBUG displays any character with an ASCII value
higher than 126 or lower than 32 as a period.

Each one of the series of strings in the environment is similarly terminated by a null.
The very last string, PROMPT, ends with an additional null byte. The two null bytes
together mark the end of the environment.

At the end, DOS places a copy of the complete file specification (drive, path, filename,
and extension) of the current program. This is the string "C:\DEBUG .COM" shown at
340B:0056, followed by a NULL terminator. (The address you get will, of course, differ
from the one shown.) The remainder is garbage left over in memory from a previous
program process.

To end your DEBUG session, just type Q to quit and press the Enter key.

Memory-Resident Programs

Like other programs, the environment block used by a memory-resident program (also
called a TSR, for Terminate and Stay Resident) is a copy of the master environment block,
made by DOS at the time the memory-resident program is loaded. Since this copy is never
updated, a memory-resident program will never see any changes made to the master en
vironment block at a later time.

This has several immediate implications. If a memory-resident program needs to refer
to an environment variable to operate properly, that variable should be set before the
memory-resident program is loaded.

Furthermore, every memory-resident program gets a complete copy of the environ
ment, so using several memory-resident programs will eat up additional memory. This
may be important if you have expanded the size of your environment significantly.

Finally, the DOS manual contains a puzzling warning that DOS cannot expand the en
vironment beyond 127 bytes if you have loaded a memory-resident program, such as
MODE or SideKick. It implies that if you intend to expand the environment you would
have to reserve a larger size and fill that extra memory space with dummy temporary
strings before your AUTOEXEC.BAT encountered its first memory-resident command.
This isn't correct. Using the techniques explained below you can safely expand your en-

The DOS Environment 661

vironment space without worrying about how they'll affect any TSR programs your
AUTOEXEC.BAT file loads.

Expanding the Environment

You can't really create utilities and batch files that use the environment if your environ
ment doesn't have enough space to add new variables and information. The DOS default
limit on environment space is 160 bytes, of which the PATH and COMSPEC variables
take up a minimum of29 bytes. It's easy to expand the size, but the techniques for making
your environment larger vary according to DOS version.

DOS did not offer environment capabilities prior to version 2.0. Since then, the default
environment block size has been set at 160 characters. DOS sets the environment size in
units of 16 bytes each, known as paragraphs, and ten paragraphs (160 bytes) are allocated
for the environment.

DOS 3.2

The simplest way to increase the size of the environment past 160 bytes is to use a
DOS version 3.2 or later, which lets you make your environment as large as 32K. Simp
ly put a line in your system's CONFIG.SYS file that says:

SHELL=COMMAND.COM /E:xxxxx /P

where xxxxx represents the size, in bytes, of the master environment block you want to
reserve (a number from 160 to 32768), and IP means "load AUTOEXEC.BAT automati
cally." If you forget to add the IP switch, DOS will not load AUTOEXEC.BATeven if
it's in the right place on your startup disk.

If you 're using a DOS version older than 3.2, first, consider upgrading. If you have the
DOS SETENV utility (Microsoft distributes it with some of its C and some other lan
guages) you can patch COMMAND.COM to reserve an environment from 160 to 992
bytes. If you don't have SETENV, you can use DEBUG to patch your working copy of
COMMAND.COM yourself, as described below. It's actually a simple and painless
operation.

Warning: While the SETENV technique and the patches presented below have been
tested on versions 2.0, 2.1, 3.0, and 3.1 of IBM's PC-DOS version of MS-DOS, and on
Compaq's MS-DOS versions 3.0 and 3.1, and should work on MS-DOS for close com
patibles, they can't be guaranteed. Some "compatible" vendors have rewritten COM
MAND.COM, so the data to be changed with DEBUG or SETENV may not be in the
same locations across versions of MS-DOS. So whether you use SETENV or try one of
the COMMAND.COM patches described below, try it on a new diskette formatted with
the /S option. After you make the changes, run TESTENV .BAT (see below) to make sure
that your environment has been expanded as you expected. Then copy the modified
COMMAND.COM to your work diskettes or hard disk. Don't overwrite your original
copy of COMMAND.COM.

662 PC Magazine DOS Power Tools

DOS 3.0and3.1

If you have DOS version 3.0 or 3.1, you can try an undocumented solution similar to
the one described above. To increase the environment under DOS 3.0 or 3.1, add the fol
lowing line to your CONFIG.SYS:

SHELL=COMMAND.COM /E:xx /P

where xx refers to the number (from 10 to 62) of 16-byte memory paragraphs to reserve
for the environment. Note that this process is slightly different from the one above, since
it makes you specify the number of 16-byte memory paragraphs you want, rather than
the absolute number of bytes. Again, make sure you add a IP so DOS will load your
AUTOEXEC.BAT file when booting up.

DOS 2.0 to 3.1

If you have Microsoft, s SETENV .EXE handy, just enter:

SETENV COMMAND.COM <size>

where <size> is the size (in bytes) of the environment block you want, from 160 to 992.
SETENV will round this up to an even paragraph value (am ultiple of 16). You can specify
a larger number if you wish, but versions 2.0 to 3 .1 of DOS limit the environment block
size to a maximum of 992 bytes even if you try to exceed that figure.

Patching COMMAND.COM with DEBUG

Ifyou,re not using a version of DOS higher than 3.1, and you don,t have SETENV, and
the other solutions for expanding the environment don ,t suit your taste, you can use
DEBUG to patch COMMAND.COM.

To do this, format a blank diskette with the /S option to add the system files to it. Then
copy DEBUG to the diskette, and enter the appropriate command for the version of DOS
you,re using.

For DOS 2.0 or 2.1 only, enter:

DEBUG COMMAND.COM
E ECF 3E
w
Q

This will patch DOS 2.0 and 2.1 COMMAND.COM to set the environment size at the
maximum 992 bytes. If you,d like a smaller environment, change the last number on the
first line to the hexadecimal value of the number of 16 byte paragraphs you want your
environment size to be. Refer to this chart:

Decimal Hex Decimal
Para- Decimal Value Para-

graphs Bytes to Use graphs

10 I60 QA 28
11 I76 OB 29
I2 I92 QC 30
I3 208 OD 3I
I4 224 OE 32
I5 240 OF 33
I6 256 IO 34
I7 272 11 35
I8 288 12 36
19 304 13 37
20 320 14 38
2I 336 15 39
22 352 16 40
23 368 17 41
24 384 18 42
25 400 19 43
26 416 IA 44
27 432 1B 45

For DOS 3.0 only, enter:

DEBUG COMMAND.COM
E F2C 3E
w
Q

For DOS 3.1 only, enter:

DEBUG COMMAND.COM
E Dll 3E
w
Q

Hex
Decimal Value

Bytes toUse

448 IC
464 ID
480 IE
496 IF
5I2 20
528 2I
544 22
560 23
576 24
592 25
608 26
624 27
640 28
656 29
672 2A
688 2B
704 2C
720 2D

If you're using generic MS-DOS 2.11, tty:

DEBUG COMMAND.COM
E DF3 3E
w
Q

The DOS Environment 663

Decimal Hex
Para- Decimal V aloe

graphs Bytes to Use

46 736 2E
47 752 2F
48 768 30
49 784 3I
50 800 32
5I 8I6 33
52 832 34
53 848 35
54 864 36
55 880 37
56 896 38
57 912 39
58 928 3A
59 944 3B
60 960 3C
61 976 3D
62 992 3E

664 PC Magazine DOS Power Tools

If you do patch COMMAND.COM, be sure you don't mix patched and unpatched ver
sions on your disk, since doing so can end up confusing DOS.

To test your changes, reboot your system with the diskette containing the newly
modified COMMAND.COM. This removes any programs (including memory-resident
programs) from memory that might alter the test results. Then run TESTENV .BAT.

The easiest way to create TESTENV.BATis to run the TESTENV.BAS program:

100 ' TESTENV.BAS - creates TESTENV.BAT

110 OPEN "TESTENV.BAT" FOR OUTPUT AS #1

120 PRINT #1,"ECHO Initializing Test Strings"

130 FOR A=O TO 15

140 PRINT #1,"SET ";HEX$(A);"=";STRING$(78,A+65)

150 NEXT

160 PRINT #1,"ENVCOUNT"

170 PRINT #1,"PAUSE"

180 FOR A=O TO 15

190 PRINT #1,"SET ";HEX$(A);"="

200 NEXT

210 PRINT #1,"ECHO Test complete"

220 CLOSE

You can run this by entering:

BASICA TESTENV.BAS

(or GWBASIC TESTENV.BAS if you're using a generic system.) It creates a batch file
that looks like:

ECHO Initializing Test Strings

SET O=Bi-1.,1-lliJ~VU'li'l..tl.H.fittBJ~~li'l..tl.H.fittBJ~~li'l..tl.H.fittBJ~~li'l..tl.H.fittft<~~li'l..tl.H.fittBJ~~li'l..tl.H.fi~~~VU'~

SET l=BB
SET 2=CC
SET 3=DD
SET 4=EE
SET 5=FF
SET 6=GG
SET 7=HH
SET 8=II
SET 9=JJ
SET A=,u~IU'-l:UUUU'UU'~~IU'-l:UUUU'UU\~IU'-1"-"-'UU'UU\~IU'-l:UUUU'UU\~nn.J:UUUU'UU\~IU'-l:UUUU'UU\~nn.J:UUUU'UU'~

SET B=LL
SET C MMMMll1W~1MMIMMMMll1W"1Ml-~IMMMMll1W"1Ml-~IMMMMll1W-1M1'1MMIMMMMll1W-1M1'1MMIMMMMlMMl"1Ml-~!MMMMlMMl"lM1'~~
SET D=NN
SET E=OO
SET F=PP

The DOS Environment 665

ENVCOUNT

PAUSE

SET 0=

SET 1=

SET 2=

SET 3=

SET 4=

SET 5=

SET 6=

SET 7=

SET 8=

SET 9=

SET A=

SET B=

SET C=

SET D=

SET E=

SET F=

ECHO Test complete

TESTENV.BAT runs a program that's on the accompanying disk, ENVCOUNT.COM,
which counts the number of bytes used in the environment. You could also create
ENVCOUNT.COM by assembling the ENVCOUNT.ASM code:

ENVCOUNT.ASM - Counts number of bytes in Environment

CSEG

ENTRY:

MAX COUNT EQU 4

BEGIN:

NEXT BYTE:

FOUND_END:

SEGMENT

ASSUME CS:

ORG

PUSH

MOV

MOV

MOV

XOR

CMP

JE

INC

JMP

MOV

ADD

CSEG, DS:CSEG, ES:CSEG, SS:CSEG

lOOH ; For COM file

OS Save OS on stack

AX,CS:[2CH] Get Environment address

DS,AX into OS

DI, 0 Set DI to offset 0

SI,SI Clear SI to 0

WORD PTR[SI],0000 Check for End of Environment

FOUND END If found, break out of loop

SI Point to next byte

NEXT BYTE Loop back to check next byte

AX,SI

AX, 4 Add for current bytes

and "word-count"

666 PC Magazine DOS Power Tools

POP DS Restore DS from stack

; The size of Environment space in use is now in AX

CX,MAX_COUNT

DI,OFFSET COUNT+4

SI,10

DX,DX

Length of count into CX

Point DI to End of string

Set SI to divide AX by 10

Clear DX

ANOTHER:

MOV

MOV

MOV

XOR

DIV

ADD

MOV

DEC

XOR

CMP

JAE

ADD

MOV

MOV

MOV

INT

INT

SI Divide AX by 10, rem. in DX

Convert DX to ASCII DX,'0'

BYTE PTR [DI],DL

DI

DX,DX

AX,SI

ANOTHER

AX, '0'

Move Ascii value to buffer

Decrement Pointer

Clear DX

If AX is >= 10

Loop back

PRINT RESULT:

BYTE PTR [DI),AL

DX,OFFSET MESSAGE

AH,9

Else Convert DX to ASCII

Move ASCII value to buffer

Load Message address

Function to print message

Call DOS

EXIT:

21H

20H Back to DOS

DB 'Copyright 1988 Ziff-Davis Publishing Co.'

DB 'Programmed by Richard Hale Shaw'
NOTICE

NOTICE2

MESSAGE

COUNT

DB 'The Environment is currently using: ' ; message to print

DB '

ENDPROG LABEL BYTE

CSEG ENDS

bytes,'13,10,'$' ; Place for count

End of program

END ENTRY

Or, type in the following 14 lines:

DEBUG

E 100 lE 2E Al 2C 00 8E D8 BF 00 00 33 F6 83 3C

E 110 03 46 EB F8 8B C6 05 04 00 lF B9 04 00 BF

E 120 BE OA 00 33 D2 F7 F6 83 C2 30 88 15 4F 33

E 130 C6 73 F2 05 30 00 88 05 BA 88 01 B4 09 CD

E 141 'Copyright 1988 Ziff-Davis Publishing Co.'

E 169 'Programmed by Richard Hale Shaw'

E 188 'The Environment is currently using: '

E lAB 20 20 20 20 20 20 20 'bytes,'OD,OA,24

RCX

BA

N ENVCOUNT.COM

w
Q

00 74

BO 01

D2 3B

21 CD 20

The DOS Environment 667

TESTENV.BAT creates a series of temporary environment strings in an attempt to fill
up environment space. Then it runs ENVCOUNT.COM to report how much space is used
(make sure ENVCOUNT.COM is in the current directory or is in one that your path
knows about). If you see the "Out of environment space" message, you know you've
filled up your environment, which is what you want. If you don't see the message, modify
the file to add more strings.

TESTENV will add up to 1,280 bytes of strings to the environment, which will over
flow it under DOS versions earlier than 3.2, which can't handle more than 992 bytes. To
test larger environments under DOS 3.2 or later, increase the 15 at the end of lines 130
and 180 of the TESTENV.BAS program. Each time you increase this number by 1 you'll
take up an additional 80bytes (or more) of memory. If you want to increase it above 190,
change:

STRING$(78,A+65)

at the end of line 140 to:

STRING$ (78, 65)

If you do make the batch file too large, you won't hurt anything by trying to overflow
your environment.

ENVCOUNT.COM counts the number of bytes actually occupying the environment.
After counting, it prints the message: "The environment is currently using: XX bytes,"
where XX is the number it counted. You can also run ENVCOUNT as a standalone
program at the DOS prompt.

PC Magazine contributor Charles Petzold has another approach. As he points out,
COMMAND.COM maintains the environment in an area of memory that you don't have
direct access to. Whenever COMMAND.COM loads an executable program into
memory, it makes a copy of the environment table for use by that program. The segment
address of this copy is stored at offset 2CH in the program's PSP. As mentioned earlier,
any changes a program makes to this environment alter this copy and not the original.

If you need to add a new directory path to your existing path string, and you 're not
using the buggy DOS 3.0 version, you can do so very easily with a one-line batch file
called ADDPATH.BAT:

PATH=%PATH%;%1

You• d execute it like this:

ADDPATH C:\SUBDIR

where SUBDIR is a subdirectory on drive C: that you want to add to your path string.

668 PC Magazine DOS Power Tools

It would be better to have full editing capabilities with a path string and not have to
load secondary copies of COMMAND.COM. You could do it with a batch file called
EDPATHB.BAT (EDPATHB stands for "EDit PATII with Batch file"):

ECHO PATH=%PATH% >NEWPATH.BAT
EDLIN NEWPATH.BAT
NEWPATH

The first line creates a file called NEWP A TH.BAT that contains a PA TII command with
your current path. (Once again, you can't use this under DOS 3.0.) The second line loads
it into EDLIN. Once you're in EDLIN you can press 1 to edit the first (and only) line.
You can then use the DOS editing keys (right arrow to recall characters, DEL to delete
them, INS to go into insert mode, etc.) and change the path. Then press Enter and E to
end EDLIN. EDPATHB then executes the NEWPATII.BAT batch file with your new
path. If you don't like EDLIN, you can have this batch file load NEWPATII into the
ASCII text editor of choice.

DOS provides another way to change COMMAND.COM's environment from within
a program without reloading a secondary copy of COMMAND.COM. However, doing
so requires an undocumented and little known DOS interrupt called interrupt 2EH. This
interrupt passes a command line addressed by DS:SI to COMMAND.COM. The com
mand line must be formatted just like the unformatted parameter area of a PSP. The first
byte must be a count of characters, and the second and subsequent bytes must be a com
mand line with parameters. The whole thing is terminated by a carriage return.

When this command line is passed to interrupt 2EH, COMMAND.COM executes it.
If the transient part of COMMAND.COM is not present in memory, the resident part will
reload it However, it does not load a new copy of COMMAND.COM into memory.

Interrupt 2EH is very strange. If interrupt 2EH is called from a program executed from
within a batch file, it will abort the batch file. If it's executed in a program run from a
"Run a Program" or "Shell" option in an application that has itself been executed from
a batch file, it aborts the whole chain and will probably crash your system. Interrupt 2EH
is also difficult to use because it destroys the contents of all registers including the stack
pointer.

CharlesPetzold'sEDPATHA.COM("EDitPATHwithAssemblyprogram")program
on the accompanying disk uses this interrupt to make changing your path a breeze. Or
you could create it with DEBUG by typing the following instructions:

A
MOV BX,0368 Above top of program
MOV SP,BX New stack pointer
ADD BX,+OF
MOV CL,04
SHR BX,CL Convert BX to segment
MOV AH, 4A Deallocate memory
INT 21
PUSH ES

MOV
SUB
MOV
CLD
ES:
CMP
JZ

ES, [002C]
DI,DI
SI,016A

BYTE PTR [DI],00
0133

PUSH SI
MOV
REPZ
CMPSB
POP
JZ
SUB
MOV
REP NZ
SCASB
JMP
MOV
MOV
ES:
MOV
INC
OR
JZ
INC
MOV
INC
JMP
MOV
MOV

CX,0005

SI
0133
AL,AL
CX,8000

OllB
BX,016F
CL,05

AL, [DI]
DI
AL,AL
0147
CL
[BX] ,AL
BX
0138
BYTE PTR [BX],OD
[0169],CL

POP ES
DX,0168
AH, OA
21
SI,0168
AL, [SI+Ol]
AL

The DOS Environment 669

Points to environment

Points to "PATH="

SEARCH:
See if end
JZ TRANSFER

5 bytes ot compare
Compare them

JZ TRANSFER
Search for next 0

JMP SEARCH
TRANSFER:
Number of chars already
TRANSLOOP:
Get byte
Kick up pointer

JZ DONE
Kick up counter
Save byte

JMP TRANSLOOP
CR at end

; Save count

Let user edit it

Fix it up

MOV
MOV
INT
MOV
MOV
INC
MOV
MOV
INT
INT

[SI] I AL
BYTE PTR
2E

[SI+Ol] I 20

20
DB 80,00
DB "PATH="
RCX

Execute new path
; terminate

670 PC Magazine DOS Power Tools

6F
w
Q

EDPA THA searches the environment for a PA TH, saves it in an area of memory fol
lowing the characters "PATH=," and passes this string to DOS function call OAH. You
can then use the DOS editing keys to edit it. For instance, if you want to add something
to the end, press F3, which will recall the whole line onscreen and let you type the addi
tion. You could also try normal DOS editing insertions and deletions. When you 're done,
press the Enter key and EDPATHA will send the string to interrupt 2EH. COM
MAND.COM then executes it like a regular PATH command.

Incidentally, if you start experimenting with your environment, you may end up cor
rupting your PATH or APPEND settings. And if you 're working on someone else's sys
tem you may want to change the PATH or PROMPT temporarily, but clean up when
you're done and put things back to normal.

The solution for both of these problems is to type:

SET > RESET.BAT

before you make any changes. This puts all the environment settings into a RESET.BAT
batch file. When you're done, just type RESET and DOS will put things back the way
they were. COMSPEC and other environment variables require SET COMSPEC=xxxx
phrasings, so RESET .BAT will produce a brief flurry of harmless error messages as it
executes. On the rare occasions when you do need to change these you can always cus
tomize RESET.BAT with your word processor.

And if you end up with a long list of space-hogging variables in your environment and
want to get rid of them in one operation, you can type:

SET > FIX.BAT

and then use your word processor to wipe out all the settings like:

A=XYZ
B=C:\DOS\UTILS\ADDTO
C=12345

by changing these to:

SET A=
SET B=
SET C=

and then running FIX.

The DOS Environment 671

You can also keep your PA TH safe if you use a technique like the ADD PA TH.BAT
batch file mentioned above, by first typing:

PATH > OLDPATH.BAT

Then, to reset your PA TH back to normal, just type OLDPATH.

Chapter 12

Screens and Color

Okay, you,ve worn the letters off your keytops, and you,ve ground the heads on your
disk drives down to the bare metal, but the one part of your system you probably know
better than any other is your screen. If you 're like most avid users, you 're glued to it hyp
notically each day for hours on end. So you might as well make staring at it as pleasant
as possible.

The first important thing to learn is that color is a true productivity tool. You can cram
2,000 characters onto a typical 80-column, 25-line screen (and 72 percent more text on
newer 43-line displays). With information this dense, you need a way to highlight im
portant information without making it blink or drawing little boxes around it.

The only method DOS provides for setting screen colors is through ANSI.SYS.
However, ANSI is cumbersome because it makes you deal with escape characters that
DOS normally treats as abort commands, and its color numbering scheme is different
from the standard one used by BIOS and BASIC. But without ANSI, DOS consigns users
of color systems to a drab grey-on-black existence.

According to insiders, IBM designers considered color frivolous, and were reluctant
to produce a color system for the original PC. Colors were for games, they reasoned, and
adding color meant handling lots more information - you not only had to put a charac
ter at a certain location on the screen, but had to worry about setting its display attribute
at the same time.

Anyway, the PC's high-resolution monochrome adapter produced crisp, detailed
characters on IBM,s rock-solid mono monitor. The cool green persistent phosphor was
touted as ergonomic perfection. To sweeten the monochrome deal, IBM threw in a paral
lel printer port for free.

(Way back then IBM didn't even offer a color display; you had to spend close to a
thousand dollars to buy a third-party monitor. And when IBM did eventually advertise
one, serious business users dismissed it as a toy. Besides which, coaxing color out of ex
isting software was next to impossible. For users accustomed to the razor-sharp

673

674 PC Magazine DOS Power Tools

monochrome output, IBM's gritty, flickery color hardware made work on it nearly im
possible. It was like reading text through a twitching screen door.)

But the IBM design team caved in at the last minute and offered a board called the
CGA (Color Graphics Adapter) that offered several low-resolution color text and
graphics modes, and a small selection of available colors. If you knew the right tricks,
you could run a few applications in color, and you could use the system's built-in BASIC
language to write graphics routines that addressed 320 x 200 pixels (short for "picture
elements" - really just dots) in three colors, or 640 x 200 pixels in grey on black.

Trouble is, whether you bought an early CGA card and a grainy color monitor, or one
of the newest high-tech color systems on the market, you'll still end up with a grey-on
black DOS. If you set colors with ANSI.SYS, typing CLS will clear the screen to those
colors. But without ANSI, COMMAND.COM is hard-wired to use the color attribute
number 07 when clearing the screen. The 0 yields a black background, and 7 is IBM's
number for grey.

You can use DEBUG to patch COMMAND.COM so that typing CLS will clear the
screen to any color you choose.Just pick the background and foreground colors you want,
look up their single-digit hex values on the charts below, and combine the individual
digits into a two-digit hex number. The background goes on the left and the foreground
on the right. If you wanted bright yellow (hex E) text on a red (hex 4) background, for
instance, you'd use the number 4E. Bright white text on a dark blue background would
be 17. Then pick the appropriate patching address:

DOS Version
2.0
2.1
3.0
3.1
3.2
3.3

DEBUG Address
2346
2359
2428
2642
282E
2BAD

To patch version 3.3 so CLS will change your colors to bright yellow text on a red
background, just type:

DEBUG COMMAND.COM
E 2BAD 4E
w
Q

If you're not using version 3.3, substitute the proper addresses in place of the 2BAD.
Then either reboot, or load the patched version of COMMAND.COM by typing COM
MAND. When you type CLS, DOS should clear your screen and print the prompt in
bright yellow on red. Don't pick a background color (lefthand digit) higher than 7 unless
you want your screen to blink.

This procedure won't set the border color, however. It's possible to move things around
inside COMMAND.COM and add a routine to set the color of the border, but it's really

Screens and Color 615

not worth it these days, since the EGA and VGA screens don't support borders. And
while patching one attribute byte in COMMAND.COM is really not all that dangerous,
moving chunks of instructions around can cause problems. (Remember, if you do try
patching COMMAND.COM, don't mix patched and unpatched versions on the same
disk, and work only with copies of COMMAND.COM, never your original.)

If you 're using a CG A system and you 're desperate to set the border color, type in the
following 12 lines. Omit the semicolons and the comments that follow them. Be certain
to leave a blank line after the RET (just press Enter twice after typing RET), and make
sure you press the Enter key at the end of each line, especially the last one with the Q:

DEBUG
A

MOV AH,OB
MOV BL,4
INT 10
RET

RCX
7
N REDBORDR.COM
w
Q

set color palette on CGA
to produce a red (4) border
have BIOS do it
back to DOS

This will create a tiny program called REDBORDR.COM that sets CGA borders to
red. To have it use a different color, substitute the hex value of the color you want in
place of 4 in the fourth line. So to have a bright cyan border (with a value of hex B),
change the fourth line to:

MOV BL,B

Or you could type in the following 14 lines:

DEBUG
A
SUB
MOV
AND
MOV
INT
INT

RCX
F

BH,BH
BL, [SD]
BL,OF
AH,OB
10
20

N BORDRSET.COM

color ID=O
get paramter from FCB
keep 4 low bits
BIOS palette setter
do it
back to DOS

676 PC Magazine DOS Power Tools

w
Q

to create a program called BORDRSET.COM. Again, omit the semicolons and the com
ments that follow them. Be certain to leave a blank line after the INT 20 Gust press Enter
twice after typing INT 20), and make sure you press the Enter key at the end of each line,
especially the last one.

You can enter the border color you want on the DOS command line directly after the
name of the program. So:

BORDRSET 1

will give you a dark blue border, and:

BORDRSET E

will produce a bright yellow one.
Even better is to use Charles Petzold's memory-resident KBORDER.COM program

on the accompanying disk, which lets you reset border colors on the fly, and works on
"PCjr systems (the above REDBORDR.COM program won't). For more behind-the-scene
details, see Chapter 8 on DEBUG. And for advanced techniques involving the EGA and
beyond, see Chapter 13.

Even if your color screen can't handle borders, it can use KBORDER to adjust the
colors of graphics screens. Just install KBORDER, and load BASIC by typing either
BASICA (for IBM systems) or GWBASIC (for generic systems). Then enter:

SCREEN 1

for medium-resolution graphics, or:

SCREEN 2

for what IBM laughingly refers to as high-resolution (640 x 200) graphics (real high
resolution is at least 1,000 X 1,000 pixels). Press Ctrl-< and Ctrl-> to change colors. In
medium resolution this will change the background; in high res it will modify the
foreground.

One last note about ANSI and the CLS command. If you type CLS, DOS will generate
the ANSI command to clear the screen - ESC2J (where ESC stands for the decimal 27
or hex 1B escape character and not the letters E-S-C). To see this, type:

CLS > SEEIT

which redirects the output of the CLS command into a file called SEEIT. If you then ex
amine the SEEIT file by typing:

Screens and Color 677

TYPE SEEIT

you '11 see a little arrow pointing left (the escape character) followed by a 2 and a J. If you
have ANSI loaded, using TYPE to display the file will end up clearing the screen instead,
since ANSI will see its CLS command onscreen, and process it. If you need to work with
ANSI or printer escape sequences, you can use EDLIN or your word processor to cus
tomize this SEEIT file, since the hard-to-type ESC character will already be in the file
and you can simply add any other non-ESC commands after it.

The first thing most decent programs do these days when they start up is figure out
whether or not a color adapter (CGA, EGA, or VGA) is active, and set the screen colors
accordingly. Other programs simply use one set of colors that works on both monochrome
and color systems.

Basic CGA text screens can use only eight possible colors (including black). IBM as
signed the following numbers to these:

Color Dec Hex Binary
Black 0 0 000
Blue 1 1 001
Green 2 2 010
Cyan 3 3 011
Red 4 4 100
Magenta 5 5 101
Brown 6 6 110
White 7 7 111

Cyan is otherwise known as light blue; magenta as purple. Brown is the hardest color
to produce on many monitors, and may end up appearing as dingy yellow or purplish
orange.

All of these numbers can be expressed in three binary digits (bits) as varying combina
tions of Os and ls. Three of these - red, green, and blue - have just a single 1 in them:

• Red 100
• Green 010
• Blue 001

Early IBM color displays were often referred to as "RGB" monitors since they had
three electron guns behind the CRT that handled individual red, green, and blue signals.
A binary color 100 meant that only the red gun was active; 001 turned on just the blue
gun. By mixing and matching IBM came up with the other five. Black (000) meant that
all guns were off, and white (111) that all were on.

Tum the rightmost bit (001) on by itself and you get blue. Tum the middle bit (010)
on and you end up with green. Set the leftmost bit to 1 (100) and the screen displays red.
Tum both the red and blue bits on (101) and your monitor activates the red and blue guns
and ends up with purple (which IBM calls magenta).

678 PC Magazine DOS Power Tools

By slapping one additional bit of information onto the three other color bits, IBM in
creased the number of color choices to 16. It named the leftmost bit the "intensity" bit,
and when this bit was turned on, the screen displayed a brighter version of the color deter
mined by the other three bits.

Turning this fourth bit on (setting it to 1) is the same as adding 8 to the value of the
other three bits. So if the value of a normal color happened to be 5 (binary 101), turning
on the intensity bit would add 8 to the color value, yielding 13:

101
+ 1000

1101

(magenta = decimal 5)
setting the intensity bit (adding 8)
(bright magenta= decimal 13 or hex D)

This chart shows the decimal, hex, and binary values for the high-intensity colors:

High-Intensity
Color Dec Hex Binary

Bright black 8 8 1000
Bright blue 9 9 1001
Bright green 10 A 1010
Bright cyan 11 B 1011
Brightred 12 c 1100
Bright magenta 13 D 1101
Bright brown 14 E 1110
Bright white 15 F 1111

Bright black turned into grey. Bright red became a sort of salmony pink color, and
bright brown emerged as yellow.

Displays that could handle the intensity bit were called "IRGB" monitors. Some dis
plays were blind to this intensity bit and made a color like bright magenta (color 13) look
exactly like normal magenta (color 5). Others had trouble with the intensity circuitry and
made bright colors too bright or too close to normal colors.

However, by limiting the color information to four bits - half of a byte, or a nibble
- IBM could put the color information for both the foreground and background into one
byte. It specified that the text or foreground data would be in the rightmost ("low") nib
ble and the background data in the leftmost ("high") nibble. So bright blue text (1001)
on a cyan background (0011) would be coded as:

0011 1001

l l
bright blue (foreground)

cyan (background)

Screens and Color 679

The value of this byte would be 00111001, or decimal 57 (hex 39). This is one case
where hex numbering is clearly easier to work with than decimal. The binary number for
bright blue text on cyan is 0011 1001. Again, the high nibble is the four bits on the left,
while the low nibble is the four bits on the right. (The left half is called high because it's
worth more than the right half, just as in the decimal number 57, the 5 is the high half be
cause it's really equal to 5 x 10, or 50, and the 7 is the low half because it's equal to 7 x
1, or 7.)

The high nibble - cyan - is equal to 3. The low nibble - bright blue - is equal to
9. Together the hex value for this byte is 39:

00111001
(3) (9)

Each nibble can be one of 16 values, from 0 (0000) to 15 (1111). So a color byte can
have 256 possible values, from a low of 0 (0000 0000) to a high of 255 (1111 1111). In
cidentally, these examples insert a space between the high and low nibbles for clarity;
but your system doesn't. To it, 255 is just 11111111.

But IBM wanted this one byte to store all the attributes, not just the color. By turning
on the leftmost bit in the low (foreground) nibble it could highlight text the same way
boldface type stands out on a page. And by rotating the foreground and background
around, it could produce the reverse of a normal display so that text appeared black against
white (or black on green in monochrome).

IBM felt that two other attributes - blinking and underlining - wer~ important But
virtually no room was left in the byte, since three bits in each nibble were taken up by
red/green/blue color information, and the remaining bit in the low nibble served as a high
intensity on/off switch.

After puzzling over underlines, IBM's designers gave up and cheated. They realized
that the resolution of the original CGA color screen was truly rotten. Every one of the
255 possible displayable characters had to be made up out of a crude box or grid eight
dots wide and eight dots high. That's eight rows and eight columns (actually one of the
eight columns was left blank in most cases so adjacent letters wouldn't touch, and one
of the eight rows was reserved for descenders on lowercase letters, yielding a 7 x 7 box).
Try making characters like@, &, and % on such a small grid yourself and see how hard
it is.

Worse, the bottom of one 8 x 8 CGA character box touched the top of the one below
it. This meant that descenders, like the tails on the letters y or j or p, actually touched the
tops of capital letters and ascenders on lowercase letters like 1, d, or b. The only way to
add an underline would have been to sacrifice one of the eight rows that made up the
characters. Things were so tight already that the engineers decided to allow underlining
on monochrome screens only, where the character box measured 9 x 14. They assigned
the first nonzero value - 0001 - as a switch to turn on underlining. This value of 1 hap
pens to be the setting for blue on a color monitor. So anything designed to appear in blue
text on a color monitor ends up underlined on a mono display and vice versa.

680 PC Magazine DOS Power Tools

Probably after staring at a high-intensity purple background for too long, IBM en
gineers realized they could sacrifice the high-intensity bit in the background (high) color
nibble and use it instead to control blinking. Nobody would want to look at a glaring
bright green or pulsing purple background anyway. So the lefunost bit in the low nibble
controls intensity, while the leftmost bit in the high nibble controls blinking.

Actually, you can disable blinking and use high-intensity backgrounds. The easiest
way to see this is in BASIC. Load BASIC by typing either BASIC (for IBM systems) or
GWBASIC (for generic systems). Then type:

COLOR F,B

substituting a foreground color from 0 to 15 in place of the F, and a background color
from 0 to 7 in place of the B. Entering COLOR 15,1 will produce bright white text on a
dark blue background. If you add 16 to the foreground color, it will blink. Entering
COLOR 31,1 will yield blinking bright white text on a blue background. Now, assum
ing you 're using an SO-character screen, type:

OUT &H3D8,9

The text should stop blinking, and the background will turn high-intensity blue.
This technique won't work on all color systems or on all color monitors; the older your

system the more likely this command will disable blinking and brighten your background.
And note that BASIC actually lets you enter three color numbers (COLOR F,G,B) where
the B sets the border color - the area between the 80 x 25 screen and the bezel of your
monitor. IBM stopped using border colors with the EGA and continued to ignore them
with the VGA, so borders are pretty much passe by now.

Since the background nibble is on the left, and the text nibble on the right, this meant
that the very lefunost bit - the eighth one - would determine whether or not blinking
was turned on. The eighth bit is equal to 128 (2A7 or 1000 0000). So if this bit is on, or
set to 1, the text color blinks. Turning this bit on is the same as adding 128 to the exist
ing combination of color and intensity attributes. So the bright-blue-on-cyan hex 39 ex
ample above:

0011 1001

doesn't blink. But adding 128, or binary 1000 0000 to it:

00111001
+ 10000000

10111001

Screens and Color 681

would produce a blinking bright blue on cyan display. The decimal value of 10111001
is 185. The nonblinking version of this was 57. 57 + 128 = 185.

But againt it ts easier to work with hex. 1011 is equal to hex B. 1001 is equal to hex 9.
So the hex notation for this is B9. Any hex number with a lefthand digit higher than 7
will blink.

In summary, an attribute byte looks like this:

Blink bit

1
0 0 0 0

L background _J
color

Intensity bit

!
0 0 0 0

L roreground_t
color

If the value of this byte is over 7F hex (127 decimal), the blink bit will be set and the
text color will blink. If the blink bit is 0, it won't. In both cases the lefthand hex digit is
the background color and the righthand digit is the foreground (text) color.

Most programs that set colors or clear the screen use BIOS interrupt 10. (Some
programs bypass BIOS and go straight to the hardware, but such ill-behaved software
won't be discussed here.) DOS doesn 'toffer any underlying color facilities, and uses the
BIOS functions itself. It can write individual characters, or strings of characters, but these
will appear in whatever attribute happens to be set at the time.

BIOS INT 10 offers a fat toolkit of character-based functions to handle just about
everything you'll need to add sparkle to your display. While IBM enhanced INT 10 when
it released the AT, and then jazzed it up even more when it brought the PS/2 series to
market, the original services are still very capable. Figure 12.1 summarizes the standard
text arsenal available (though it doesn't include pixel-oriented services, and ones that
deal with things like light pens).

Since BIOS is your system's hardware specialist, just about all video tools use BIOS
interrupt 10. However, DOS gets into the act a bit with a scant few teletype-oriented in
terrupt 21 routines (Figure 12.2).

682 PC Magazine DOS Power Tools

Name of Service What You Specify What You Get Back Notes

Set mode (text) AH=O (nothing) Modes:
AL= mode 0 = 40x25 no color

1 = 40x25 color
2 = 80x25 no color
3 = 80x25 color
7 = 80x25 monochrome

Set cursor type AH=l (nothing) Largest mono cursor is:
and size CL=starting line 0 starting line

CH=ending line D ending line
Largest CGA cursor is:

0 starting line
7 ending line

See later discussion on
EGA cursor

Default mono is:
CH=OBCL=OC

Default CGA is:
CH=06CL=07

Setting CH=20 may make
the cursor vanish

A start line larger than
its ending line will
produce a 2-part cursor.

Set cursor AH=2 (nothing) Upper lefthand comer is
position DH=row 0,0, so DX=OOOO

DL=column Unless you're really
BH=page(O) tricky, page is always 0

Read cursor AH=3 DH=screen row Again, assume the page
position BH=page(O) DL=screen column is 0, although BIOS

CH=starting line maintains positions
CL=ending line for each page

Set active page AH=S (nothing) AL=0-3 for 80-column
AL=page screens (modes 2,3)

AL=O-7 for 40-column
screens (modes 0,1)

Screens and Color 683

Name of Service What You Specify What You Get Back Notes

Scroll up AH=6 (nothing) To clear 80x25 screen use:
window AL=number of lines AL=O

to scroll I CH=O
CH=upper lefthand CL=O

window row DH=18
CL=upper lefthand DL=4F

window column BH=color
DH=lower righthand DH and DL are 1 less

window row than 80x25 (hex 4F and
DL=lower righthand 18 since these start

window column at 0, not 1)
BH=attribute to Use AL=O to clear screen

fill window

Scroll down AH=7 (nothing) To clear 80x25 screen use:
window AL=number of lines AL=O

to scroll CH=O
CH=upper lefthand CL=O

window row DH=18
CL=upperlefthand DL=4F

window column BH=color
DH=lower righthand DH and DL are 1 less

window row than 80x25 (hex 4F and
DL=lower righthand 18 since these start

window column at 0, not 1)
BH=attribute to Use AL=O to clear screen

fill window

Read attribute, AH=8 AL=ASCII value Use 0 for page. This comes
character at BH=page(O) of character in handy for clearing
cursor AH=attribute screen to existing color.

Write attribute, AH=9 (nothing) Use 0 for page. This can fill
character at BH=page(O) an 80x25 screen instantly
cursor CX=number of by putting a hex 700

characters to (same as decimal 2000) in
write RCX.

AL=ASCII value Have to worry about moving
of character the cursor yourself.
to write

BL=attribute of
character

684 PC Magazine DOS Power Tools

Name of Service What You Specify What You Get Back Notes

Write character AH=OA (nothing) Use 0 for page. You can use
at cursor BH=page(O) this without having to

CX=number of worry about getting the
characters to existing color or coming
write up with a new one.

AL=ASCII value of
character to
write

Set color palette AH=OB (nothing) Works on CGAs only
(border in text BH=O Border may be 0-16.
mode) BL=border color (Function OB has other

graphics abilities.)

Write character AH=OE (nothing) Advances cursor
asITY AL=ASCII value automatically but can't
(teletype) of character to handle colors and treats

write ASCII 7, 8, 10, and 13
characters specially

Get current AH=OF AL=mode
video state AH=number of

columns
BH=active page

Figure 12.1. Original INT 10 Tools

Name of Service What You Specify What You Get Back Notes

Display output AH=2 (nothing) One character
DL=eharacter at a time

Display String AH=9 (nothing) Must end string with a
DS:DX=pointer to $ which means you can't
output string display a$

Figure 12.2. INT 21 Tools

Screens and Color 685

DOS's INT 21 tools are far more feeble than INT lO's. While DOS lets you display
single characters, or strings of characters, it doesn't let you set or change the colors. It
just displays them in whatever colors happen to be active. And since its Display Output
function 9 uses a dollar sign to indicate the end of the string, you can't have function 9
display a dollar sign.

You could also use some of the other slightly more exotic DOS services such as the
output half of Direct Console I/0 function 6, or Write to File or Device function 40, or
you could even use Open File 3D and write to the CON (console) device rather than a
file. (The discussion of ANSI in Chapter 9 showed how to use the undocumented INT
29 "Fast TTY" function.) But the Display Output (function 2) and Display String (func
tion 9) services, or the speedier BIOS services, can handle just about anything you'll
need.

To create a short program that will display the letters "PC" you could try several dif
ferent approaches. Each of the examples below uses the DEBUG (2.0 or later) mini-as
sembler. DEBUG works exclusively in hex, so be careful not to mix hex and decimal
notation. If you're confused about registers, read the chapters on memory and DEBUG
first.

After starting DEBUG (by typing DEBUG) you tum on the assembler by typing A at
the DEBUG hyphen(-) prompt. You '11 be creating COM files that start at hex offset 100.
If you' re creating several COM files in succession without leaving DEBUG, use the com
mand:

A 100

to start each new one at offset 100. After you've created the first one, don't just use A
without adding a 100 after it or else you'll end up telling DEBUG to begin the next
program at the wrong starting address.

When you 're done entering the interrupt 10 BIOS or interrupt 21 DOS instructions, be
sure to include an instruction to exit your small program and return to DOS. If you don't,
the program will freeze, or "hang" your system. There are all sorts of ways to exit. Most
experts tell you that you should use function 4C of interrupt 21, the code for which looks
like:

MOV AH,4C
INT 21

This approach is handy when you have to set an exit code (or return code) that a batch
file can process. Adding a line before the INT 21:

MOV AH,4C
MOV AL,FF
INT 21

686 PC Magazine DOS Power Tools

will set an exit code of hex FF (decimal 255). Your batch file can then include a line that
says:

IF ERRORLEVEL 255 GOTO LABELl

so the batch file jumps, or branches to :LABELl if your display program worked proper
ly. See Chapter 10 for more information on batch techniques.

However, you can also exit a program and return to DOS with a simple:

INT 20

And with short programs like the ones below, you can use a still simpler:

RET

After you enter the final instruction to return your program to DOS, you'll have to
press the Enter key twice to exit DEBUG's mini-assembler. Then just give DEBUG a
name that ends with a COM extension (by using the N command), tell DEBUG how long
the program is (by using the RCX command), write the program to disk (with a W), and
quit (by typing Q).

To use DOS service 2 of Interrupt 21, the process would look like:

C>DEBUG
-A
30DD:0100 MOV AH,2
30DD:0102 MOV DL,50
30DD:0104 INT 21
30DD:0106 MOV DL,43
JODD:0108 INT 21
30DD:010A RET
30DD:010B
-N SERVICE2.COM
-RCX
ex 0000
:B
-w
Writing OOOB bytes
-Q

You type DEBUG to start.
Then type A at the hyphen prompt.

Here DEBUG prints the AAAA:BBBB
addresses; you type in the instructions
like MOV AH,2 or INT 21 and press
Enter after each.

Just press Enter here.
You type N and the filename.
You enter RCX.
DEBUG responds with this.
And you enter the length (B bytes) here.
Then you enter W to write the file.
DEBUG prints this message.
And you type Q to quit.

The 30DD before the colon on seven of the lines is the segment address, and will probab
ly be different on your system. It doesn't matter here.

Each time you enter an instruction, DEBUG figures out how many bytes it took and
offers you a chance to enter an additional instruction at the next available address. When
you're all done entering instructions, just press Enter. In the above example, you'd do
this when you see the line:

Screens and Color 687

30DD:0108

To figure out how long your program is, just look at the offset address of this line (the
one following your last instruction). Ignore the leftmost four digits. Since DEBUG starts
all files at address 100, subtract 100 from the rightmost four digits:

3000:0108

l l
subtract 100 from this

ignore this

With small programs, hex subtraction is easy:

OlOB
100

B

If even this scares you, use the free hex calculator supplied with DEBUG. Just enter
H (for "H math") then the rightmost four digits (here these are OlOB) and finally the 100
you want to subtract. The whole command looks like:

-H 0108 100
0208 0008

You type everything after the hyphen.
DEBUG responds with this.

The first number DEBUG prints is the sum of the two numbers. The second number
is the difference. You want the difference (OOOB). You can skip the leading zeros; OOOB
is the same as just plain B. Hex numbers are often expressed as pairs of digits, so you'll
often see hex B written as OB.

If you enter everything as it appears above, you' 11 end up with a small program on your
disk called SERVICE2.COM that uses DOS service 2 to display a P and then a C and
then exit. Once you've created it, just type SERVICE2 at the DOS prompt.

This program uses service 2 twice- once to print the P (which has a hex value of 50),
and once to display the C (with has a hex value of 43). You tell the program you want to
use service 2 of interrupt 21 by putting a 2 into the AH register with the MOV AH,2 in
struction. Then you put the hex values of the characters you want to display into the DL
register one at a time, with the MOV DL,50 and MOV DL,43 instructions. Then you
issue an INT 21 to put DOS to work. DOS will look in the AH register to see what you
want it to do, figure out that you'd like it to display a character, then get the value in
register DL and display the character with that value.

This example used only one:

MOV AH,2

instruction, but two:

688 PC Magazine DOS Power Tools

MOV OL,50
MOV OL,43

instructions. This is a shortcut; the first MOV AH,2 instruction lasts for both of the MOV
DL,50 and MOV DL,43 instructions since the program doesn't meddle with the AH
register at all after putting the 2 into it. Sometimes this won't work and you '11 have to
specify the MOV AH,2 twice:

MOV AH,2
MOV OL,50
INT 21
MOV AH,2
MOV OL,43
INT 21
RET

You could modify this SERVICE2.COM program and turn it into SERVICE6.COM,
by repeating the process but changing the line:

3000:0100 MOV AH,2

to:

3000:0100 MOV AH,6

and then changing the line:

-N SERVICE2.COM

to:

-N SERVICE6 .COM

Both will work almost identically. About the only difference is that while you can break
out of the SERVICE2.COM program by pressing Ctrl-C (very quickly), you can't do this
to the SERVICE6.COM program. However, these programs are both so short this doesn't
really make any difference.

If you then wanted to see what the actual assembly language instructions looked like,
you could use DEBUG's U (Unassemble) command:

C>OEBUG SERVICE2.COM
-U 100 LB
30F9:0100 B402 MOV
30F9:0102 B250 MOV
30F9:0104 C021 INT

AH,02
OL,50
21

30F9:0106 B243
30F9:0108 CD21

MOV
INT

DL,43
21

Screens and Color 689

30F9:010A C3 RET

To use the U command, specify the starting address (on programs like these it will al
ways be 100), then the letter L, then the hex length. If you don't know the hex length of
a file you just loaded into DEBUG (with a command like DEBUG SERVICE2.COM),
you can have DEBUG tell you - just type RCX and press Enter twice. The number
DEBUG prints after the CX is the length. The process will look something like:

-RCX
ex OOOB

Both SERVICE2.COM and SERVICE6.COM printed one character at a time. If you
wanted to print both at once, you could use service 9, which prints a string of characters.
Just type:

C>DEBUG
A
30DD:0100 MOV AH,9
30DD:0102 MOV DX,108
30DD:0105 INT 21
30DD:0107 RET
30DD:0108 DB 'PC$'
30DD:010B
-N SERVICE 9 . COM
-RCX
ex 0000
:B
-w
Writing OOOB bytes
-Q

You type DEBUG to start.
Then type A at the hyphen prompt.

J
Here DEBUG prints the AAAA:BBBB
addresses; you type in the instructions
like MOV AH,9 and INT 21 and press
Enter after each.

Just press Enter here.
You type N and the filename.
You enter RCX.
DEBUG responds with this.
And you enter the length (B bytes) here.
Then you enter W to write the file.
DEBUG prints this message.
And you type Q to quit.

When you use service 9 of DOS interrupt 21, all you have to do is:

1. Put a 9 in register AH (with MOV AH,9).
2. Use register DX to point to the address in memory of the string that you want to print

(with MOY DX,108 for instance, if the string starts at offset address 108).
3. Make sure the string you want to print starts at the address you specified in step 2,

and ends with a$ (a hex 24 character).
4. Issue an INT 21 to have DOS do it for you.
5. Use one of the exit commands (such as RETor INT 20) to return to the DOS prompt

once you're done.

690 PC Magazine DOS Power Tools

When entering a string with the DEBUG A (Assemble) command, put it inside a pair
of single or double quotation marks, and precede it with a DB. And be sure you end the
string with a dollar sign, which won't appear onscreen when DOS displays the rest of the
string.

You could have used the hex value of the dollar sign (24) instead of putting the $ be
tween the quotes. Both:

30DD:0108 DB 'PC$'

and:

30DD:0108 DB 'PC' 24

will work the same.
With simple programs like this the dollar sign is often the last character in the file. If

you forget to add the dollar sign, or if you specify a file length that's a byte too short so
DEBUG doesn't include the final dollar sign when it writes the file to disk, you can run
into problems. When you run the file DOS will print the string (in this case, PC), but
since there's no dollar sign to tell it to stop it will keep printing whatever characters hap
pen to be loaded in memory after the string until it hits a character 24 by chance. DOS
may stumble over a character 24 right away, or it may print a screen or two of beeping,
flashing garbage before it finally stops.

Technically, the MOV DX,108 instruction that points to the string skips a step. If you
were writing a longer program, you'd have to specify an additional value, for DS, since
the address of the string is pointed to by DS :DX, where DS is the segment address and
DX is the offset address. (See the discussion of segmented addressing in Chapter 6 for
details.) With tiny programs like these you don't have to worry about the DS segment
address.

However, this time, if you try to use the DEBUG Unassemble command, you'll see:

C>DEBUG SERVICE9.COM
-U 100 LB
30DD:0100 B409 MOV
30DD:0102 BA0801 MOV
30DD:0105 CD21 INT
30DD:0107 C3 RET
30DD:0108 so PUSH
30DD:0109 43 INC
30DD:010A 2426 AND

The first four lines are correct, but the:

30DD:0108 DB 'PC$'

AH,09
DX,0108
21

AX
BX
AL,26

Screens and Color 691

instruction that specifies the string disappeared and was replaced by three other assemb-
1 y language instructions:

30DD:0108 50
30DD:0109 43
30DD:010A 2426

PUSH
INC
AND

AX
BX
AL,26

DEBUG' s U command tries to tum everything into instructions. It isn't smart enough
to see that you're using a Display String instruction and that you're telling it that the
string begins at address 108. So it looks at the bytes that make up the string (and the final
dollar sign) and translates these into meaningless instructions rather than identifying them
as data.

If you used the DEBUG D (for Dump or Display) command instead of the U com
mand, you'd see your string:

-D 100 LB
30DD:0100 B4 09 BA 08 01 CD 21 C3-50 43 24 !.PC$

The SERVICE2.COM, SERVICE6.COM, and SERVICE9 .COM programs all use dis
play services of DOS interrupt 21. They don't meddle with the color settings, and will
display the characters.you specified in whatever colors happen to be active at the time.
They essentially treat your screen like a teletype device (abbreviated as TIY).

In this respect, they 're similar to the BIOS Write Character as Teletype service E of
interrupt 10. You could adapt the SERVICE2.COM program above very easily to use
this BIOS function:

C>DEBUG
-A
30DD:0100 MOV AH,E
30DD:0102 MOV AL,50
30DD:0104 INT 10
30DD:0106 MOV AL,43
30DD:0108 INT 10
30DD: OlOA RET
30DD:010B
-N SERVICEE.COM
-RCX
ex 0000
:B
-w
Writing OOOB bytes
-Q

692 PC Magazine DOS Power Tools

Service E of BIOS interrupt 10 lets you use screen pages on a color system. In fact,
you could add a line before the first INT 10 that says:

MOV BH,0

This tells your system to write the characters to screen page 0 - the one you normal
ly work with. If you did this you'd have to increase the length of the program that you
specified with the RCX command. Fortunately, you shouldn't have to worry about this,
since just about nothing takes advantage of screen pages other than page 0.

What's a page?
It's far easier to display a screenful of characters than a screenful of dots. A 25-row,

80-column screen can hold 2,000 characters (25 x 80 = 2,000). It takes one byte to store
the value of each character, and one additional byte to store the color of each character.
So displaying one complete 25 by 80 screenful of text requires 2,000 bytes of memory
to store the characters, plus another 2,000 bytes to store the colors of each character.

However, IBM's original four-color 320 by 200 medium-resolution graphics screen
required 16,000 bytes of memory. The system has to keep track of 64,000 dots (320 x
200) and the colors of these dots. It does this by using two bits - a quarter of a byte -
to represent the color of each dot (pixel). Two bits yields four possible colors (actually
three colors plus color 00, which is the same as the background color):

Bits Decimal Result
00 0 no color
01 1 first color
10 2 second color
11 3 third color

These four values (0-3) will produce different colors depending on which "palette" of
possible colors is active. You can see this palette by typing in the following PAL
SHOW .BAS BASIC program, using a pure ASCII word processor or EDLIN. Omit the
single quotation (') marks and the comments following them

100 'PALSHOW.BAS - shows different graphics palettes

110 SCREEN 1 ' 320 x 200 graphics

120 COLOR 1,0

130 CLS

140 FOR A=l TO 3

150 CIRCLE (60+A*50,50),25,A

160 PAINT (60+A*50,50),A,A

170 NEXT

180 LOCATE 20,4

' blue background, palette 0

' clear screen

' draw three circles

' color them with colors 1, 2, and 3

190 PRINT "Press any key to switch palettes"

200 LOCATE 21,9

210 PRINT "(or press Esc to end)"

Screens and Color 693

220 I$=INKEY$:IF I$="" THEN 220

230 IF I$=CHR$(27) THEN END ELSE K=K+l

240 COLOR 1,K

250 GOTO 220

switch to the other palette

Once you've created the program, run it on any color system by typing BASICA PAL
SHOW (or GWBASIC PALSHOW if you're not using IBM hardware). Press any key
and you'll see the three circles change from palette 0 (where they're green, red, and
brown/yellow) to palette 1 (where they're cyan, magenta, and white). Press the Esc key
to quit.

The location of the dot onscreen is simply its relative position in the 16,000 possible
bytes of memory. The very first of the 16,000 bytes of display memory represents the
first four dots on the screen (since each byte contains eight bits and each dot takes up two
bits), starting in the upper lefthand comer. The second byte represents the next four dots,
and so on. It actually gets fairly complicated, since the odd-numbered rows and even
numbered rows are maintained separately. More on that later.

Originally, IBM also offered a "high resolution" graphics screen measuring 640 by
200. This meant keeping track of 128,000 dots (640 x 200). Each bit of each of the 16,000
bytes stood for one dot. A dot was either on (white) or off {black), and no color was al
lowed unless you knew how to program the graphics controller directly.

The total 16,000 bytes x 8 bits per byte= 128,000 bits. In high resolution, all the bits
were used up just telling your system whether each of the 128,000 dots was on or off. In
medium resolution, you could use two bits to specify one of four colors (with binary
values 00, 01, 10, or 11) so 64 ,000 dots x 2 bits= 128,000. And if you knew how to tweak
your system, you could even experiment with a low-resolution screen that displayed 160
x 200 dots in 16 colors.

Each CGA system came with 16K of display memory on the display adapter. Graphics
used it all. But a full 80-column screen of text used only 4,000 of the 16,000 bytes. IBM
let you use the rest by dividing the 16,000 total bytes into four screen pages each 4,000
bytes long. The default was always page 0. But you could write on any of the four pages
and then switch instantly to any of them.

With 40-column screens you could use eight pages. Nobody really ever uses 40-
column text screens, which were developed originally so that users could hook up their
systems to home television sets. Home TVs didn't have decent enough resolution to dis
play 80-character text, but they could handle 40-character text decently. You can't or
dinarily mix 40-character text and 80-character text on the same screen. The following
BASIC SIZEMIX.BAS program will do it, however, on most color systems:

100 ' SIZEMIX.BAS

110 SCREEN 2:0UT 985,2:CLS

120 LOCATE 5,30:PRINT "This is small type"

130 DEF SEG=O:POKE l097,4:POKE 1098,40:DEF SEG

140 LOCATE 7,12:PRINT "This is large type"

150 DEF SEG=O:POKE 1097,6:POKE 1098,BO:DEF SEG

160 LOCATE 9,30:PRINT "And back to small type"

694 PC Magazine DOS Power Tools

Screen pages are potentially very useful, since you could put things like menus and
help screens on pages 1, 2, and 3, and then flip to these instantly without disturbing the
contents of your main page 0. Unfortunately, few (if any) programs ever use this. Why?
Because users with monochrome screens don't have any extra screen memory, so they
don't have any extra pages. And software vendors don't like to create programs that
owners of some systems can't use properly.

Also, by putting slightly different images on different screen pages and then switch
ing rapidly from one page to another you can create the illusion of movement or anima
tion.

The DAZZLER.COM program on the accompanying disk uses this technique to
produce a fast kaleidoscopic image. When the program starts it creates a pattern onscreen
in the first two video pages. Then, alternating between pages 0 and l, it increments or
decrements every character's color on the inactive page, and makes the inactive page the
active page. And the HORSE.BAS program on the disk shows how you can put slightly
different images on different pages and then riffle quickly through them to produce a
very realistic animation.

You could also see how pages work by running the small PAGEDEMO.BAS program
below:

100 ' PAGEDEMO.BAS - shows color screen pages
110 ' --- set up array of 200 screen positions
120 DIM R(200),C(200)
130 FOR A=l TO 200
140 R(A)=INT(RND*23+1)
150 C(A)=INT(RND*79+1)
160 NEXT
170 CLS
180 LOCATE 12,30
190 PRINT "Building screens . . . "
200 ' --- fill array with arrows
210 FOR C=3 TO 0 STEP -1
220 IF C>l THEN E=C+2 ELSE E=C
230 SCREEN ,,C,O
240 COLOR E,7:CLS
250 FOR D=l TO 200
260 LOCATE R(D),C(D)
270 PRINT CHR$(24+C)
280 NEXT
290 LOCATE 25,13
300 PRINT "Press any key to switch to ";
310 PRINT "another page (or Esc to end)";
320 NEXT
330 ' --- switch from one page to next ---
340 I$=INKEY$:IF I$="" THEN 340

-----·--·-----··-

Screens and Color 695

350 IF I$=CHR${27) THEN 380 ELSE K={K+l) MOD 4
360 SCREEN ,,,K
370 GOTO 340
380 SCREEN 0,1,0,0:SYSTEM

PAGED EMO first figures out 200 random screen coordinates, then puts four different
sets of arrows in four different colors on the four 80 x 25 video pages. It lets you flip from
one to the next by pressing any key. Pressing Esc sets things back to normal and quits.

Or you could run the PAGE.COM program on the accompanying disk to switch among
pages 0 to 3 in DOS on an 80 x 25 color screen. To use it, type PAGE followed by a num
ber from 0 to 3. So entering:

PAGE 2

will switch you to video page 2. If you want to find out what page you 're currently in,
type:

PAGE ?

If you type PAGE without any parameters after it, or with parameters that are out of
range, PAGE will print instructions. It also removes the extra space DOS inserts when
displaying a new prompt. This is because the only real use for PAGE.COM is to jump to
a page other than the default 0, put something on that page (like a directory listing), and
then jump back and forth between it and page 0. Each time you execute a command to
jump away, DOS will scroll up a line of your display, chopping away at the directory
listing or whatever you wanted to put on the alternate pages.

After you switch into any of these pages you can clear the screen by typing CLS. But
if you've set the colors previously, and you want to clear the screen to those preset colors,
you have to be careful. Many of the programs that set colors and clear the screen assume
you want to be in video page 0. To get around this, run the PAGECLS.COM program on
the accompanying disk.

This program will clear the screen to the existing colors. If you want to modify it so it
will set a specific color while it clears the screen, load the program into DEBUG and
change the two values starting at address 109. So to have PAGECLS.COM set the colors
to bright yellow on red and then clear the screen to those colors, you would type:

DEBUG PAGECLS.COM
E 109 B7 4E
w
Q

If you want to change the colors to white on blue, you'd substitute:

E 109 B7 17

696 PC Magazine DOS Power Tools

for:

E 109 B7 4E

Whether you customize PAGECLS.COM to set a specific color, or run it unpatched
to clear the screen to the existing colors, the program will refrain from changing the cur
rent video page.

After you patch it, part of the PAGECLS.COM program would look like:

MOV BH,4E ;put 4E attribute in BH
MOV AX,0600 ;scroll up and els
MOV CX,0000 ;starting at 0,0
MOV DX,184F ;25 x 80
INT 10 ;do it

You can have a version of this routine set the colors and clear the screen. This uses
service 6 of BIOS interrupt 10 to "scroll up" a window. You specify the upper lefthand
row and column of the area you want cleared by putting the row number register CH and
the column number in register CL. And you tell it the lower righthand corner of the win
dow you want cleared by putting the row in register DH and the column in DL.

Since most of the time you want to clear an entire 80 x 25 screen, you use the follow
ing values:

• CH=O
• CL=O
• DH=18
• DL=4F

0000 __..,II
L___J_ 184F

BIOS refers to the upper lefthand corner as row 0 and column 0. You specify 18 and
4F as the row and column numbers of the lower righthand corner, since hex 4F is the
same as decimal 79, and hex 18 is equal to decimal 24. The numbering system starts with
0 rather than 1, so subtract 1 from the size of the window you want cleared.

If you want to get fancy, you can read the number of rows from the low-memory BIOS
area (at address 40:84) and have service F of interrupt 10 tell you how wide the screen
is (it reports the number of columns in register AH), and then move these values into the
appropriate registers so the scroll up routine clears the whole screen no matter how it's
set.

You don't have to clear the whole screen at once. The WINDOWS.COM demo
program on the accompanying disk will clear successively smaller and smaller windows
each to a different color.

Once you've run the program (on a color monitor only), enter:

DIR /W

Screens and Color 697

to produce a wide directory listing, and you'll see that the text in the center blinks, since
the background color for the few central windows is higher than 7.

Services 6 and 7 of BIOS interrupt 10 are identical except that service 6 will scroll
down and service 7 will scroll up. When clearing windows this really doesn't matter
much. Most programs use service 6.

With 16 possible foreground colors and eight possible background colors, you can mix
and match 128 color combinations. The COLRSHOW.COM program on the accompany
ing disk uses service 9 to show them all. (Actually, it shows only 120, since it skips any
combinations that have the same background and foreground colors.) When you run it.
press the up arrow repeatedly to increase the color value, or the down arrow key to
decrease it. Or type in any letter other than a space to jump directly to the color value
specified by that key. Pressing Esc will quit. Since it needs to print something in the
foreground. it fills the entire screen with the ASCII character that happens to represent
each color value.

In the Cards

When the PC was first introduced, just about everyone purchased IBM's monochrome
display adapter (MDA), which could be hooked up only to IBM's monochrome display.
A handful of pioneers purchased IBM's color graphics adapter (CGA), which they used
to drive either an RGB monitor (which cost over $1,000 way back then), or a home
television set.

Hooking up a PC to a TV set meant having to purchase a separate RF modulator, or
trying to run the signal through the RF circuitry of a video tape recorder. The results were
totally unsatisfactory, since the definition was crude. If you were lucky you could just
about make out text in 40-column modes. When the CGA was attached to an RGB
monitor it used separate outputs for the red, green, and blue (and intensity) signals. When
it was attached to a TV, it used a composite output that blurred all the information into
one signal. The burst parameter that turns color on and off with things like BASIC's
SCREEN command applies to composite output only.

Composite screens often have trouble displaying colors other than black (0) and white
(7 or F). However, if you know what you 're doing, you can produce interesting artifact
color displays by experimenting with different black-and-white line patterns.

PCs use memory-mapped displays. The system builds an image of the screen in
memory, which the video circuitry reads and turns into recognizable text or graphics. The
adapter card translates the information in video memory into signals that control one or
more electron guns. These scan beams of electrons onto chemical phosphors painted on
the monitor glass that glow when energized.

The CGA had several nasty habits. It occasionally produced a random pattern of in
terference called "snow" when programs tried to write directly to this video memory
memory at the same time that the display electronics was putting the image onscreen.
(The MDA and most recent video adapters have dual-ported video RAM that lets the

698 PC Magazine DOS Power Tools

CPU update memory without interfering with the reading process.) Relatively sophisti
cated programs write data to CGA video memory only during the 1.25 millisecond ver
tical retrace interval.

The electron beam sweeps from left to right and from top to bottom as it zigzags its
way across the entire surface of the screen. Each time it reaches the right edge it has to
scurry down a line and over to the left edge again. This is the horizontal retrace. And
each time it reaches the very bottom righthand comer of the screen it has to jump all the
way back to the upper lefthand comer and start over. This is the vertical retrace. In ad
dition, the beam always overscans each line a hair past the edge, which wastes a tiny bit
of time.

CGA screens also flickered when they scrolled up a line, which produced a disturbing
strobe effect if you were reading through a long document. The display circuitry was sup
posed to paint images onto the screen 60 times each second, but the CGA put just 30 im
ages onto the screen and alternated these with all-black screens. This wasn't that
noticeable when the image dido 't change much. or when the background was black. But
if you used a light-colored background and scrolled lines repeatedly, you ended up gog
gle-eyed.

The CGA was also slower and fuzzier than the MDA. The MDA could handle more
dots (720 across and 350 up and down compared to the CGA's maximum 640 x 200
resolution). And it boasted a long-persistence phosphor that blurred the individual dots
together into solid-looking characters and did away with just about all flicker. The MDA
also had a higher bandwidth than the CGA. which let the mono adapter pump more in
formation per second to a mono screen than the CGA could send to a color screen.

But while the MDA and CGA could both juggle 2,000 characters on each screen. the
CGA could manipulate discrete dots, which let users draw lines, circles, and other graphic
images.

One year after the PC hit the market, an independent hardware manufacturer developed
a display adapter called the Hercules Graphics Card (HGC) that handled monochrome
text on mono monitors just like the MDA but added dot-addressable graphics abilities
like those on the CG A. This was followed four years later by an upgraded Hercules
Graphics Card Plus (HGC+) that could work with different customized onscreen fonts,
and a year after that with a proprietary Hercules lnColor Card that could display 16 colors
out of a palette of 64 in graphics mode, in 720 x 348 resolution.

In 1985 IBM introduced a display card called the Enhanced Graphics Adapter (EGA)
that produced text and dot-addressable graphics on both color and IBM monochrome
screens. It could drive a higher resolution color screen than the CGA, could juggle more
colors, didn't flicker when it scrolled, and didn't have problems with snow. It could use
customizable fonts, and could display a very readable 43 lines of text onscreen, 72 per
cent more than the CGA or MDA. IBM's original EGA card was expensive, and didn't
come with the full complement of memory required. But manufacturers soon began
stamping out inexpensive clones with the full 256K of video RAM, and the EGA became
an instant standard. See Chapter 13 for details on the EGA.

These early adapters had digital outputs. When IBM brought out its PS/2 computer
series, it stunned the monitor industry by using analog graphics systems. Analog outputs

Screens and Color 699

can handle color gradations more adroitly than digital ones. But all of the monitors sold
by IBM were digital. Some of the popular multisynching monitors sold by companies
like NEC and Sony could handle both digital and analog inputs.

IBM's integrated a new standard called Multi-Color Graphics Array (MCGA) - a
sort of beefed-up CGA - into the main circuit board of the bottom-of-the-line PS(l
Models 25 and 30. Maximum MCGA resolution was decent (640 by 480 dots) and it
could put 256 colors onscreen at once, out of a palette 256K colors wide, in 320 by 200
resolution. And it could produce 64 shades of grey on IBM's newer monochrome dis
plays.

But the MCGA was overshadowed by a more capable system named after a chip called
the Video Graphics Array, or VGA. The VGA handled all MDA, CDA, and EGA modes,
and tossed in a few new ones of its own. It also worked with an IBM enhancement add
in card with the euphonious name 8514-A that boosted performance even more.

Figure 12.3 compares the various types of monitors.

System

MDA
HGC
CGA
EGA color
EGA mono
MCGA
VGA

Bandwidth
(MHz)

16.257
16.257
14.318
14.318-16.257
16.257
25.175
25.175-28.322

Horizontal
Scan Rate

(KHz)

18.432
18.432
15.75
15.75-21.85
18.432
31.5
31.5

Figure 12.3. Video Hardware Specifications

Vertical
Scan Rate

(Hz)

50
50
60
60
50
60-70
60-70

Dot Box
(width x
height)

9xl4
9xl4
8x8
8x8,8xl4
9xl4
8xl6
8x8,8xl4,
9xl4,9xl6

The bandwidth determines the maximum number of dots each system can handle per
second. The relatively slow CGA can push just 14,318,000 dots down the line each
second, while the sprintier VGA can shuttle nearly twice than number in the same amount
of time. The horizontal scan rate tells how many lines each system can display per second.
Again, the PS(l displays can handle double the number oflines (31,500 per second) com
pared to the older CGA. The vertical scan rate is the number of fully refreshed screens
each system produces per second. The dot box is the dimensions of the box in which a
character is formed.

The horizontal scan rate divided by the vertical scan rate yields the maximum display
able lines per screen. (Some of these are used for other things, however, such as vertical
retrace intervals and overscan margins.) The bandwidth divided by the horizontal scan
rate yields the number of dots per line (although some of these are used for the horizon-

700 PC Magazine DOS Power Tools

tal retrace and overscan). You can then divide these by the various dot widths and heights
to see how many characters each could handle.

You can put combinations of these display adapters into the same system. IBM
originally assigned different memory and port addresses to the MDA and CGA cards:

System

MDA
CGA

Video Memory
Address
BOOO
B800

Port
Addresses
3B0-3BF
3D0-3DF

Since an EGA can drive either a color or mono display, you can add it to a system that
alreadyhasanMDAorCGAattached. YoucanalsomixanMDAwitha VGAorMCGA.
Hercules monochrome cards will work with just about everything (other than an IBM
MDA). However, since Hercules cards use 64K of video RAM starting at address BOOO:O,
32K of this overlaps memory allotted to the CGA that begins at address B800:0. You can
use the two together if you configure the Hercules video memory to avoid conflicts with
theCGA.

The EGA (and VGA) can use 32K of video RAM beginning either at the normal mono
address of BOOO:O, or the normal color address of B800:0. Or it can start at AOOO:O and
use just the 64K AOOO segment, or take 128K by spanning both the AOOO and BOOO seg
ments. The MCGA uses the 64K AOOO segment.

Storage Schemes

PCs store text in character/attribute pairs of ASCII values. The position of each charac
ter onscreen depends on its position in video memory. Since each 80-column, 25-line
screen can display 2,000 characters, it takes 4,000 bytes of memory to hold the charac
ters and attributes for a full screen. The first of the 4,000 bytes in video memory stores
the ASCII value of the text character in the upper lefthand comer. The second byte stores
the attribute of that character. The third byte stores the ASCII value of the second charac
ter on the top line. The fifth byte stores the value of the third character on the top line.

So if you 're using a color system with blue text on a white background, and you have
the letters ABC in the upper lefthand comer of your screen, the hex representation of the
contents of memory starting at address B800 would look like:

Address
B800:0000
B800:0001
B800:0002
B800:0003
B800:0004
B800:0005

Value
41
71
42
71
43
71

Contents
the letter A
the color for A
the letter B
the color for B
the letter C
the color for C

Screens and Color 701

The hex value for "A" is 41, so this is the first value in video memory. This is followed
at the very next address by the color in which the "A" appears (71 is blue on white). The
third memory address contains a value of 42 ("B") which is again followed by the color
(71), and so on.

You can see this better by using DEBUG. If you're using a color system, just clear
your screen, make sure DEBUG.COM is handy, and at the DOS prompt, type:

DEBUG
D B800:0 LBO

Depending on what your prompt looks like, you should see something like:

B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 •.

B800:0010 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0020 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0030 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 .

B800:0040 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 .

B800:0050 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 .

B800:0060 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0070 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 ..

B800:0080 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07 .

B800:0090 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:00AO 43 07 3E 07 44 07 45 07-42 07 55 07 47 07 20 07 C.>.D.E.B.U.G .•

Then type Q and press the Enter key to quit. (If you 're trying this on a mono system,
substitute BOOO for B800 in the example.) Clearing the screen with CLS on many sys
tems actually puts the DOS prompt on the second line, as is the case here, so the first line
is blank. A blank line is made up of 80 spaces, which takes 160 bytes of storage - 80
for the space characters themselves and another 80 for the color of the spaces. The ASCII
character for a space is hex 20. The first, third, fifth, etc. characters above are all hex 20
spaces.

When you type CLS, COMMAND.COM normally clears the screen to white (color
7) on black (color 0). The second, fourth, sixth, etc. characters above are all 07 white
on-black attributes.

The command you typed:

DEBUG

appears hex AO (decimal 160) characters into the DEBUG display.
Again, each character is followed by its attribute. These show up as dots in the right

hand column of the DEBUG display, since DEBUG uses dots to represent anything with
ASCII values lower than hex 20 (decimal 32) or higher than hex 7E (decimal 126).

702 PC Magazine DOS Power Tools

You can use DEBUG to write information to video memory, which is a lot more in
teresting than just reading from RAM.

If you 're using a color system, type:

DEBUG
F B800:0 LAO 41

This will put the value hex 41 into the first AO (decimal 160) bytes of video memory.
Each 80-column screen line uses 80 spaces in RAM to store the character values and
another 80 addresses to maintain the attributes for these characters, for a total of decimal
160 bytes. So this command will fill the top line of your screen with the hex character
41-uppercase A. And since the attribute 41 happens to be blue (color 1) on red (color
4), the line of AAAAAAAs will appear in blue on red.

If you enter:

F B800:0 LAO 61

you'll geta top row oflowercase "a'' characters in blue (color 1) on a yellow (color 6)
background. If you enter:

F BBOO:O LAO FE

the top row will fill with blinking bright yellow boxes (character hex FE) on a white back
ground, since the E produces a high-intensity yellow foreground and the F makes the
background white and blinks the foreground. Or try:

F BBOO:O LAO DD

which produces a top line of blinking alternate light and dark purple horizontal stripes.
The LAO in each of these tells DEBUG to fill just hex AO (decimal 160) bytes, or one
line. By expanding this to hex FAO (decimal 4,000), you can fill the entire screen. The
command:

F BBOO:O LFAO DD

will blanket your entire screen with these blinking purple stripes.
If you type:

E BBOO:O "aabbccddeeffgghhiijjkkllmrnnnooppqqrrssttuuvvwwxxyyzz"

you'll end up with a lowercase alphabet in various foreground colors on brown and white
backgrounds. The hex ASCII values of the letters "a" through "z" are all between 61 and

Screens and Color 703

7 A. The color for brown is 6 and for white is 7, which happens to be the lefthand digits
of the character values.

If you tried:

E 8800:0 "AAB8CCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUWWWXXYYZZ"

you'd see an uppercase alphabet in assorted text colors on a red and purple background,
since the hex ASCII values of the letters "A" through ''Z" are all between 41 and SA.
The color for red is 4, and the color for purple (magenta) is 5.

Since the position in memory dictates the position onscreen, you could put a string
anywhere you want by varying its address. The following three DEBUG commands will
put three messages in three colors in three places on screen:

E 8800:0 "TGOGPG"

E 8800:7CA "MVIVDVDVLVEV"

E 8800:F94 "8aOaTaTaOaMa"

The top command will put the letters "TOP" in white text on a red background in the
upper lefthand corner of the screen. The first, third, and fifth characters of "TGOGPG"
are the ones that show up onscreen. The second, fourth, and sixth "ff' characters don't
actually appear; instead, these set the color to white (7) on red (4), since the hex ASCII
value of "G" is 47. The 0 address after B800: tells DEBUG to put the "TGOGPG" string
at the very beginning of color video memory.

"TGOGPG" "TGOGPG"

t t t t t t
TOP GGG

characters attributes

The second command will put the word "MIDDLE" in the middle of your screen. The
alternate "V" characters will make the word appear in brown (6) text on a purple (5) back
ground, since the value of "V" is hex 56. And the 7CA offset address after the B800: told
DEBUG to insert the "MVIVDVDVL VEV" string hex a little less than halfway through
the 4,000 bytes of video memory. Hex 7CA is equal to decimal 1994.

Similarly, the third command will put the word "BOTTOM" in the lower righthand
corner of a 25-line, 80-column screen. The lowercase "a" characters in the "BaOaTaTa
OaMa" string set the color to blue (1) on brown (6), since the hex ASCII value of "a" is
61. The F94 offset address following the B800: starts the string near the very end of the
4,000 bytes of video memory, since F94 is equal to 3,988.

The attribute value for blue text on a white background is 71, which is also the hex
value of the "q" character. To print "THIS IS A TEST' in the upper lefthand corner of
your color screen, just type:

704 PC Magazine DOS Power Tools

DEBUG
E B800:0 "TqHqiqSq qiqSq qAq qTqEqSqT"

DEBUG will put the values for all these characters into the beginning of color video
memory, which will interpret the hex 71 "q" characters as blue-on-white attributes.
Remember that your system stores characters first and then attributes. If you accidental
ly started the string off with a "q" rather than a text character:

DEBUG
E B800:0 "qTqHqiqSq qiqSq qAq qTqEqSqT"

all you'd end up with is a multicolored string of qqqqqqs. Memory numbering systems
start with 0. Even-numbered addresses contain ASCII values of characters. Odd-num
bered addresses store the attribute values for these characters.

This technique provides a quick and dirty way to set the screen attributes while using
DEBUG. If you normally prefer blue text on a white background, and you're using
DEBUG to trace through a program, you can run into color trouble. Programs often con
tain routines to clear the screen, and if you stumble over one of these yoilr screen may
suddenly turn a dismal grey on black (unless you have ANSI.SYS loaded). To fix it, just
issue a command like:

F B800:0 LFAO "q"

and your screen will instantly be filled with blue-on-white lowercase "q,, characters. Lean
on the Enter key until the "q" characters disappear off the top, and you '11 be left with a
cleared blue-on-white screen. Substitute "t" for "q" if you want a red-on-white screen,
since the hex ASCII value for "t" is 74.

If you want to clear your screen to a color such as cyan (3) on dark blue (1), you won't
be able to enter a character such as "t" or "q." So just e~ter the hex number directly:

F B800:0 LFAO 13

As an added bonus, when you 're all done working with DEBUG and you enter Q to
return to DOS, the colors this trick set will remain in effect until something else changes
them.

Note that you can put a red-on-white"$" character at the very bottom righthand comer
of a 25-line, 80-column screen, by typing:

E B800:F9E "$t"

Since video memory starts at page 0, this will display a red dollar sign character on the
default 0 page. And, as mentioned earlier, page 1 follows page 0. You might think that

Screens and Color 705

since F9E (the address of the$) and F9F (the address of the red-on-white attribute value)
were the last two memory addresses of page 0, you could print a blue-on-white dollar
sign at the top of the following video page - page 1 - by using an address two bytes
higher:

E B800:FA0 "$q"

Try this and nothing visible will happen. Page 1 does indeed follow page 0 - but not
directly. The second video page starts at the even hex address 1000, which is equal to
decimal 4096, not 4000. The:

E B800:FA0 "$q"

command put the blue dollar sign in an unused area between page 0 and page 1. To put
this blue dollar sign at the top of page 1, type:

E B800:1000 "$q"

To see that the blue dollar sign actually appeared at the top of page 1, use the
PAGE.COM program on the accompanying disk. Or create a tiny program called
PAGE I .COM by typing:

E 100 B4 05 BO 01 CD 10 C3
N PAGEl.COM
RCX
7
w
Q

The PAGEi.COM program looks like:

MOV AH,5
MOV AL,1
INT 10
RET

set video page
to page 1
have BIOS do it
back to DOS

You can return to the default page 0 by using the PAGE.COM program or, if you're
using a color system, by making sure the DOS MODE.COM utility is handy and typing:

MODE COBO

706 PC Magazine DOS Power Tools

The video page map for an 80 x 25 display would look like:

0000-a
PageO

- OF9F 1000-EJ
Page 1

-1F9F 2000-EJ
Page2

-2F9F 3000-EJ
Page3

- 3F9F

Your system wastes the hex 60 (decimal 96) bytes of memory between each of the
pages.

While the focus of this book is on text rather than graphics, it, s interesting to note that
IBM uses odd-even distinctions in graphics areas as well.

If you run the following BASIC HIRES.BAS program:

100 ' HIRES.BAS
110 KEY OFF:SCREEN 2:CLS
120 FOR A=200 TO 1 STEP -2
130 LINE (0,A)-(639,A) :NEXT
140 FOR E=l TO 150
150 A=RND*600+1:B=RND*180+1:C=RND*20+5
160 LINE (A,B)-(A+C,B+C),0,BF
170 LINE (A+4,B+l)-(A+C+4,B+C+l),,BF
180 NEXT
190 DEF SEG=&HB800
200 BSAVE "IMAGE,"0,&H4000

BASIC will create a 640 x 200 graphics image, and store it on disk as a 16K file contain
ing a bank of even-numbered lines and a bank of odd-numbered lines.

Once you've run HIRES.BAS, run the short RELOAD.BAS program to load the disk
file onto the screen:

100 SCREEN 2
110 BLOAD "IMAGE"

You'll see BASIC recreate the image in two passes. You can have the HIRES.BAS
program store only one bank by changing line 200 to:

Screens and Color 707

200 BSAVE "IMAGE,"0,&H2000

RELOAD.BAS will then only restore every other line.

Blanking Out the Screen

Of course, black is a color too. And it's very useful. If you're using a CGA, for instance,
you can reduce (but not eliminate) the effects of scroll-flicker by using a black back
ground. A black background also makes foreground colors look brighter. But one of the
best uses for black is in blanking screens.

It's possible to "bum" a permanent image into the long-persistence phosphor on an
IBM monochrome display. If you use one program all day long on a mono system, and
the software has certain screen elements in the same place all the time - such as the
1-2-3 grid or the WordStar function keys - you can actually etch this element into the
screen so you see it even when the monitor is turned off.

Lots of utilities can shut off monochrome displays attached to monochrome adapters
if a certain period has elapsed when nothing has been typed on the keyboard. These
utilities usually won't work on other video boards such as the EGA. Screen blanking
programs for the mono adapter shut off the display by writing a 0 to bit 3 of output port
3B8H, which disables the video signal. Port 3B8H does not exist on boards like the EGA.
And although these screen-blanking utilities have no effect on the EGA, some of them
have very serious effects when used with a Hercules Monochrome Graphics Adapter.

You can tum an IBM or compatible CGA display off by using the BASIC statement:

OUT 984,1

To tum it back on, type:

OUT 984,41

While this works on a CGA, it will run into problems on something like a Hercules
Graphics Card, or a regular IBM mono system. This OUT command manipulates the
"Mode Control Port Register," which has a different address on color adapters and
monochrome adapters (including the Hercules Graphics Card). The control port for
monochrome displays is at address 952 rather than 984. (In hexadecimal, these addres
ses are 3B8 and 3D8.)

You can blank an IBM Monochrome Adapter or Hercules Graphics Card with the state
ment:

OUT 952,1

and unblank it with:

708 PC Magazine DOS Power Tools

OUT 952,41

but that's not the best way to do it.
The control port address is always four higher than the 1/0 address of the 684S video

chip. That port address is a word (two bytes) stored at hexadecimal address 0040:0063
in the BIOS data area. So, you can define a variable for the control port with the BASIC
commands:

DEF SEG=&H40
CTRLPORT = 4 + 256 * PEEK(&H64) + PEEK(&H63)

Now you can simply use the variable CTRLPORT instead of 984 or 9S2.
Or, you can simply clear the screen to black on black. The BLANKINS .COM program

on the accompanying disk will:

1. Figure out the existing screen colors and store them.
2. Blank the screen by clearing the display to black on black.
3. Sit there waiting for you to press a certain key (in this case the Ins key).
4. Clear the screen back to the existing colors as soon as the Ins key is pressed.

It's easy to change the key that reactivates things by substituting a new value at ad
dress 12C. If you wanted to create a new version of the program called
BLNKAL TR.COM that used Alt-R to restore the screen, just type:

DEBUG BLANKINS.COM
E 12C 13
N BLNKALTR.COM
w
Q

You can choose other shifted or nonalphanumeric key candidates from those shown
in Figures 12.4a, 12.4b, and 12.4c.

Function Key Combination

Fl through
Shift-Fl through
Ctrl-Fl through
Alt-Fl through

Alt-1 through

FlO
Shift-FlO
Ctrl-FlO
Alt-FlO

Alt-10

Extended Hex Value

3B through 44
S4 through SD
SE through 67
68 through 71
78 through 81

Figure 12.4a. Hex Codes for Extended Keys - Function Keys

Screens and Color 709

Key Hex Key Hex

Alt-A 1E Alt-N 31
Alt-B 30 Alt-0 18
Alt-C 2E Alt-P 19
Alt-D 20 Alt-Q 10
Alt-E 12 Alt-R 13
Alt-F 21 Alt-S lF
Alt-G 22 Alt-T 14
Alt-H 23 Alt-U 16
Alt-I 17 Alt-V 2F
Alt-J 24 Alt-W 11
Alt-K 25 Alt-X 2D
Alt-L 26 Alt-Y 15
Alt-M 32 Alt-Z 2C

Figure 12.4b. Hex Codes for Extended Keys - Alt Keys

Miscellaneous Key Hex

Shift-Tab OF
Alt - 82
Alt-= 83
Home 47
Cursor Up 48
Pg Up 49
Cursor Left 4 B
Cursor Right 4D
End 4F
Cursor Down 50
PgDn 51
Ins 52
Del 53
Ctrl-PrtSc 72
Ctrl-Cursor Left 73
Ctrl-Cursor Right 74
Ctrl-End 75
Ctrl-PgDn 76
Ctrl-Home 77
Ctrl-PgUp 84

Figure 12.4c. Hex Codes for Extended Keys - Miscellaneous

710 PC Magazine DOS Power Tools

Cursor Words

The blinking onscreen cursor is controlled by hardware. Some users would prefer that
the cursor be a different size, or refrain from blinking. Changing the size is easy. Turn
ing off the blinking isn't. It's possible to write a routine that continuously figures out
where the cursor is, makes the cursor invisible, temporarily stores the value and attribute
of the character at the cursor position, writes a solid unblinking block ASCII 219 charac
ter over that character, and then restores the old character and attribute when you move
the cursor to another position. It's not worth it.

Monochrome display adapters use a 9 x 14 dot box to form all characters. Uppercase
letters actually take up a maximum of nine rows and seven columns. The two outside
columns provide interletter spacing. Descenders on letters such as y and g use the 10th
and 11th lines. The 12th and 13th lines (hex OC and OD, since the first line is 00) are used
by the cursor. The 14th (bottom) line keeps the lines of text separated from each other.

CGA display adapters use an 8 x 8 dot grid. Uppercase letters take up a maximum of
seven rows and seven columns. The rightmost column keeps letters separated. The bot
tom two lines do double duty - they display descenders on lowercase letters, and also
display the cursor.

You can change the size of the cursor by using service 1 of BIOS interrupt 10. And
you can read the size of the cursor by using service 3 of interrupt 10. But there's a serious
catch with the EGA that's explained in detail in Chapter 13.

When dealing with cursors you have to keep track of two values - the starting line
and the ending line. On monochrome systems, the default starting line is hex OC (decimal
12) and the default ending line is hex OD (decimal 13). On CGA systems, the default
starting line is 6 and the default ending line is 7.

You can make the cursor larger by widening the distance between the starting and
ending lines. Using values of 0 (start) and OD (end) will produce a full-size cursor on
mono systems. Settings ofO (start) and 7 (end) will do the same on CGA systems. You
can experiment with different settings by using the BASIC LOCATE statement:

LOCATE ,,,S,E

where S represents the starting line and E represents the ending line.
Some settings will produce bizarre effects, such as two-part wraparound cursors, or

no cursor at all.
IBM's newer hardware is a little trickier. The MCGA doubles the CGA starting line

and ending line, then adds 1 to the ending line in an effort to map 8 x 8 settings onto an
8 x 16 box. The EGA and VGA try to scale monochrome and CGA values into settings
appropriate to the dot box that happens to be in use - but with slight differences.

The EGA cursor starts at the starting line but ends one line sooner than the specified
value of the ending line. This means that you have to specify an ending line that's actual
ly 1 greater than the one you really want. If the ending line is less than the starting line,
the cursor wraps around from the bottom to the top and splits into two parts. If the values
of the starting and ending lines are the same, the cursor takes up just one line instead of

Screens and Color 711

the usual two. And if the ending line is larger than the total number of rows in the dot
box, the EGA displays a full-block cursor.

The VGA extends from the specified starting line to the ending line. You don't have
to worry about adding 1 to the value of the ending line as you do with the EGA. And if
you specify a starting line that's larger than the ending line, the cursor won't wrap.

(The newer PS{l hardware offers many more options than earlier systems, and the PS{l
BIOS provides a far richer assortment of interrupt 10 tools to handle it all.)

BIOS tries to keep track of the starting and ending lines at offsets 60 and 61 of seg
ment 0040. The CURSREAD.COM program on the accompanying disk will report these
values.

If CURS READ finds a starting or ending value greater than hex F, it gives up.Wouldn't
you?

BIOS interrupt 10 service 3 reports the same information. You can patch
CURSREAD.COM so it uses this service instead of peeking inside the BIOS data area.
Just type:

DEBUG CURSREAD.COM
E 107 B4 03 CD 10
F lOB 114 90
w
Q

This changes the lines:

PUSH DS
MOV DX,40
MOV DS,DX
MOV BL,61
MOV CH, [BX]
DEC BX
MOV CL, [BX]
POP DS

to:

MOV AH,3
INT 10
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

save segment
new segment is 0040
put this into DS
put off set 61
into CH
next off set
next value into CL
restore segment

712 PC Magazine DOS Power Tools

NOP
NOP

You can run the CURSOR.COM and CURSOR2.COM programs on the accompany
ing disk to experiment with cursors of different sizes. CURSOR.COM lets you enter the
start and stop lines as two hex digits on the command line.

CURSOR2.COM lets you use the arrow keys interactively to adjust the start line and
the end line. The up-arrow and down-arrow keys will adjust the start line, and the left
arrow and right-arrow keys will change the end line. You '11 be able to see the size of the
new cursor as you press the keys. When you see a cursor that you like, you can press the
Enter key to lock it in. Or, if you press the Esc key, you can exit the program without
making any changes.

These programs all assume you 're using page 0. BIOS actually keeps track of the dif
ferent cursor positions on each video page, although it will use the same cursor shape for
all pages. But these demonstration program are busy enough without having to worry
about other pages.

If you want to try especially large values you can use Charles Petzold's CUR
SOR3.COM. To create it, type:

A

MOV AX, [005D]
CALL 0116
MOV CH,AL
MOV AX, [006D]
CALL 0116
MOV CL,AL
MOV AH,01
INT 10
INT 20
CALL 0125
XCHG AL,AH
CALL 0125
MOV CL,04
SHL AH,CL
ADD AL,AH
RET
OR AL,20
SUB AL,57
JNB 012D
ADD AL,27
RET

RCX
2E
N CURSOR3.COM

1st Parameter
Call ASC2HEX
Save in CH
2nd Parameter
Call CONVERT
Save in CL
Set Cursor
through BIOS
Terminate
ASC2HEX:
Subroutine to
convert ASCII
digits in AX
to one-byte
value in AL

ASC2HEX: Converts
one ASCII digit
to hexadecimal

w
Q

To use it, enter:

CURSOR3 SN EN

Screens and Color 713

where SN represents a two-digit hex starting number, and EN represents a two-digit hex
ending number. Typing:

CURSOR3 05 06

will create a normal color cursor that begins on line 5 and ends on line 6. Typing just
plain:

CURSOR3

will make the cursor disappear, since the program will think you entered:

CURSOR 00 00

It's possible to get rid of the cursor by using large, out-of-range values, or by using a
hex 20 as the starting line value. But getting rid of it is easy; trying to put the cursor back
later on an EGA can run into trouble.

The best way to get rid of the cursor is to "hide" it by moving it off the screen. Just
peek into the BIOS data area, see how long the screen is, and park the cursor on the line
below the bottom line. This way it still retains its original shape, but simply isn't visible.
To restore it, just use brute-force to move it from its "hidden" location to one that's back
on the screen. Unfortunately, this means lots of shifting back and forth from the active
screen area to the parking lot.

Clear Colors

Many of the programs on the accompanying disk make it easy to fiddle with your screen's
colors. COLOR.COM uses service 6ofINT10 to set colors while it clears a standard25-
line screen. COLOR2.COM takes advantage of a different technique that changes just
the video attribute bytes in memory and leaves the text bytes alone, which lets you set
any foreground and background colors without disturbing the text onscreen. (It too is
written for a 25-line screen.) The COLORSET.BAS program lets you create programs
that set colors and either clear the screen or leave the text on it intact. And it lets you
specify just about any screen size.

COLORPIK.COM lets you use the arrow keys to chum through different color set
tings without altering your text. When you see a color you like you can press Enter to
lock it in. And COLRSHOW.COM displays all the available color combinations.

714 PC Magazine DOS Power Tools

REVERSE.COM will swap the foreground and background colors - very useful on a
color system, since CLS will normally set the colors to white on black and you can then
use REVERSE to flip them so you '11 end up with the kind of "paper-white" system that's
growing in popularity these days.

Jeff Prosise's DOSKEY.COM, the swiss-army knife of utilities, will, among other
things, let you change foreground and background colors in DOS by pressing function
keys. It also prevents the CLS command from resetting your colors to the default DOS
grey on black, and makes it operate properly on screens that have more than 25 lines.
STICK.COM, another piece of programming wizardry by Jeff Prosise, will lock your
screen settings into place and prevent other programs from altering them.

Several other color programs on the disk, mostly written by programming master
Charles Petzold, tame the EGA and really show off its abilities. And PCM agazine Senior
Technical Editor Robert Hummel's popular SPECTRUM.COM gives you total control
in remapping the EGA colors. These techniques are all described in Chapter 13.

Chapter 13

EGA and Beyond

IBM's introduction of the Enhanced Graphics Adapter (EGA) and Enhanced Color Dis
play (ECD), in the fall of 1984, came with little warning. Initially, the rest of the industry
was slow in providing software support and compatible hardware. After several years,
however, the EGA (and its emulation by the newer VGA) finally established itself as the
high-resolution color graphics standard for all but specialized applications. And it con
verted hundreds of thousands of diehard monochrome users who had turned up their noses
at IBM's initial CGA (Color Graphics Adapter) standard.

Unfortunately,thedocumentationIBMsuppliedwithitsEGAboarddidn'tcovermuch
more than installation. And most manufacturers of EGA-compatibles didn't do any bet
ter. Virtually no EGA boards even came with a single demonstration program. Although
the improved resolution of the EGA was obvious to the eye, it was certainly not clear to
many users what other magic was packed into the board.

Compared to earlier IBM color systems, the EGA in its normal default modes was im
pressive enough. But once you understand a few important techniques and have a slate
of short assembly language programs handy you'll find it's capable of far more magic
than you thought possible. To harness the raw abilities of the EGA, you first have to un
tangle the confusion of video modes, resolutions, colors, pages, and fonts. Then you need
to create a powerful set of utilities that will tailor the EGA• s operations to your needs and
make the whole process painless.

Many experts feel that Charles Petzold's PC Magazine series on the inner workings of the EGA was the most
salient and useful ever published on the subject. It's a true classic, and the utilities that accompanied the articles
have become industry standards. The edited and updated section here also contains contributions by another
PC Magazine technical wizard, Jeff Prosise, as well as several sent in by readers.

715

716 PC Magazine DOS Power Tools

Virtually all of the programs presented in this chapter use the BIOS interrupt lOH video
routines to communicate with the EGA. However, it's possible to incorporate the tech
niques into programs written in high-level languages, since many of them (such as Turbo
Pascal) also support BIOS calls. (BASIC, of course, is the most notable exception.)

Our assembly language programs were designed so that users could type the contents
directly into DEBUG, or create script files that they could later redirect into DEBUG.

If you have a macro assembler and some experience in assembly language program
ming, you may want to convert these SCR listings into ASM programs. To make this
easier, the script listings include jump and call labels in the comment sections. However,
there are lots of other considerations involved in converting script files to ASM format
(such as using SHORT jumps, specifying numbers with the H suffix for hexadecimal, or
substituting labels for data references) so try this only if you know what you're doing.

If you have device drivers or memory-resident programs that do things with the dis
play, particularly with colors, try out these EGA utilities first without loading those other
programs. You'll see later, for instance, that the EGA has alternative methods for color
ing your display.

In particular, try out these utility programs without having ANSI.SYS loaded.
ANSI.SYS always assumes that the display is 25 lines long, and one of the EGA's best
features is the ability to display nearly twice that many (or half as many in special large
text modes). ANSI.SYS also does not correctly determine the starting address for dif
ferent video pages.

Changing Video Modes

The Enhanced Graphics Adapter supports a variety of video modes, including all those
supported by the original CGA and the Monochrome Adapter. Additional EGA modes
provide higher resolution graphics with more colors.

IBM's EGA offers considerably more power and flexibilty than any of its earlier
graphics adapters, as shown in Figure 13.1.

The video modes available on your EGA depend upon the type of monitor attached
and the amount of memory installed on the adapter board. The "resolution" column in
Figure 13.1 indicates the number of displayable scan lines (going down the screen) and
the number of displayable dots (going across the screen).

The number of scan lines that the EGA displays is either 200 (which is the same as the
CGA) or 350 (which is the same as the Monochrome Adapter). An EGA attached to a
regular color display cannot use the 350-line modes. An EGA attached to an ECD can
use either 200 or 350 lines. The difference between 200 and 350 scan lines is obvious on
the screen: you can count the individual scan lines on your screen in a 200-line display,

EGA and Beyond 717

Mode Type Display Resolution Characters Box Colors Pages

0&1 Text CD 200x320 25x40 8x8 16 8
ECO 350x320 25x40 14x8 16/64 8

2&3 Text CD 200x640 25x80 8x8 16 8
ECO 350x640 25x80 14x8 16/64 8

4&5 Graphics CD&ECD 200x320 25x40 8x8 4 1
6 Graphics CD&ECD 200x640 25x80 14x8 2 1
7 Text Mono 350x720 25x80 14x9 4 8

8 PCjr modes not supported by EGA
9 PCjr modes not supported by EGA

10 PCjr modes not supported by EGA
11 Used internally by EGA for loading fonts
12 Used internally by EGA for loading fonts

13 Graphics CD&ECD 200x320 25x40 8x8 16 2 (64K)

4 (128K)
8 (256K)

14 Graphics CD&ECD 200x640 25x80 8x8 16 1 (64K)
2 (128K)
4 (256K)

15 Graphics MONO 350x640 25x80 14x8 4 1 (64K)
2 (128K)

16 Graphics ECO 350x640 25x80 14x8 4/64 1 (128K)
(64K)
16/64 2 (256K)

(128K)

Figure 13.1. The EGA Video Modes

Note: Modes and other features vary depending on the type of monitor attached to the EGA and
the amount of memory on the adapter.

but with 350 lines you cannot. These two basic modes of operation are also very different
in ways other than resolution that will be discussed later.

718 PC Magazine DOS Power Tools

If your screen displays 25 lines of characters (the normal method for using an EGA
but definitely not the only way), the "Box" column in Figure 13.1 shows the resolution
available for each character. If an ECD (or compatible) attached to an EGA produces
only an 8 x 8 character box, the EGA DIP switches are not set correctly. Fortunately,
most EGA card manufacturers put these DIP switches on the rear of the circuit board, so
you can set or reset them without having to open your system.

The following EGAMODE.COM program will let you switch to any video mode sup
ported by your monitor:

N EGAMODE.COM
A 100
JMP OllB ; Skip Label
DB "Current Video Mode is 00$"
MOV BX,005D Parmeter
MOV DH, OA Set DH to 10
SUB AL,AL Accumulate number
MOV CX,0003 Up to 3 numbers
MOV DL, [BX] GETLOOP:
SUB DL,30 Subtract "0"
JB 0138 Jump if not number
CMP DL,09 See if over 9
JA 0138 Jump if not number
MUL DH Multiply by 10
ADD AL,DL Add to accumulation
INC BX Point to next one
LOOP 0125 LOOP GETLOOP
CMP BX,+5D See if no parameter
JZ 0141 JZ SKIPSET
SUB AH,AH Set video mode
INT 10 through BIOS
MOV AH,OF SKIPSET:
INT 10 Get video mode
AND AX,007F Wipe out high bit
DIV DH Divide by 10
ADD [0118] ,AX Save in text
MOV DX,0102 Point to text
MOV AH,09 Write to screen
INT 21 through DOS
INT 20 Terminate

RCX
57
w
Q

EGA and Beyond 719

The easiest way to create this and all the utility programs that follow is to turn them
into script files using a pure-ASCII word processor or EDLIN. Give each file a SCR ex
tension. Make sure you observe the following extremely important rules:

1. Always leave a blank line above the line that says RCX.
2. Press the Enter key at the end of each line, especially the last one with the Q.

Then when you're all done, make sure DEBUG.COM version 2.0 or later is handy
(either in the same ·directory as the script file you just created or in a directory that your
path knows about). At the DOS prompt, type:

DEBUG < EGAMODE.SCR

(substituting different filenames for the EGAMODE.SCR). This will redirect the
keystrokes from the script file into DEBUG just as if you had typed them yourself. Using
a script file makes a lot of sense since it lets you check your typing, and since you can
often adapt one script file slightly and create another similar program without much fuss.
After you create EGAMODE.COM, run the program by typing:

EGAMODE mode

where mode is the video mode (expressed as a decimal number) to which you want to
switch. The normal modes for the DOS command level and most programs that use text
are 3 for color displays and 7 for monochrome. You can run EGAMODE without a
parameter to see what your current mode is.

You can also use the PC DOS MODE command to switch between video modes, but
that command is limited to the text modes and uses keywords rather than numbers. The
MODE parameters and the corresponding video modes are:

• BW40 (mode 0)
• C040 (mode 1)
• BW80 (mode 2)
• C080 (mode 3)
• MONO (mode 7)

Modes 0 through 6 are the CGA modes. Mode 7 is the monochrome adapter mode. All
of these modes are supported by the EGA when it is connected to the proper monitor.

Modes 8, 9, and 10 are the additional PCjr graphics modes that are not supported by
the EGA BIOS. Modes 11 and 12 are used internally by the EGA BIOS to load fonts into
the adapter.

You '11 notice that Figure 13.1 shows pairs of modes that are the same: 0 and 1, 2 and
3, 4 and 5. On the EGA, both modes in each pair are identical, as they were identical on
the CGA if you used its regular, direct drive connector. However, if you used the com
posite video output on the CGA with a black-and-white monitor, modes 0, 2, and 5 dis
abled the color-burst signal. The EGA does not support composite monitors.

720 PC Magazine DOS Power Tools

If you experiment with EGAMODE, you may be surprised that the EGA BIOS allows
you to change the mode to one that your monitor doesn't support. If you happen to do
this accidently, close your eyes and enter EGAMODE 3 (if you have a color monitor) or
EGAMODE 7 (for monochrome) to get things back to normal.

While you can switch to graphics modes at the DOS command level, the screen opera
tions are significantly slower. This is because the BIOS has to construct the dot patterns
of each character on the screen instead of just writing the ASCII code of the character to
display memory. If you run an application program that does not set the video mode but
writes directly to the display, you'll get garbage on your screen if you enter it in a graphics
mode.

Normally when the EGA switches to a new mode it clears out all video memory.
However, if you add 128 to the mode number when running EGAMODE, the EGA BIOS
will set the mode but will retain the contents of the screen memory buffer so the screen
will not be cleared. (The PCjr BIOS functions similarly.) However, the cursor will be
returned to its home position in the upper lefthand comer. If you're in mode 3, try:

EGAMODE 131

to see what happens. The screen will still have the same contents as before, but the cur
sor will no~ be up at the top. For a more interesting effect, try:

EGAMODE 144

This sets the EGA to mode 16 without clearing memory. You'll see some snowy "gar
bage" scattered on your display. These are the characters stored in the EGA memory,
which are now being interpreted as dots. As you can see, the text and graphics modes are
very different. Now go back to mode 3 with:

EGAMODE 131

The characters from the graphics mode now appear as various colored blocks on the
screen.

You shouldn't run other programs after resetting the mode with 128 added to it. When
a program reads the mode through the BIOS, the BIOS reports this high-numbered mode.
This may completely confuse an application program.

The EGA and Other Adapters

If your EGA is connected to a color monitor, you can still have a Monochrome Adapter
in your system as well. Similarly, if your EGA is connected to a monochrome display,
you can also have a CGA attached. EGAMODE will not switch between the two adap
ters, however. Use the MODE command to do that.

EGA and Beyond 721

If you have a Hercules Graphics Card attached to a monochrome monitor, it, too, can
co-exist with an EGA attached to a color display. However, you'll want to use
EGAMODE before running any program that uses the "page 1" graphics of the Hercules
card. Here's why: Monochrome mode 7 uses memory starting at segment address BOOOH
for the display. Color modes 0 through 6 use memory starting at segment address B800H.
No conflict so far. However, the Hercules card can use both "page O" (starting at BOOOH)
and page 1 (at B800H) for graphics. Many programs that support the Hercules card use
page 1 graphics. You may know about this because some of these programs require that
you run HGC FULL before you use them to enable this second graphics page. Hercules
page 1 graphics would normally conflict with a CGA (and hence an EGA) board.
However, the EGA graphics modes 13 through 16 all use display memory beginning at
AOOOH. This allows you to move the EGA out of the way before you use Hercules
graphics. To do this, you would enter:

MODE COBO
EGAMODE 16
MODE MONO

The first program switches to the EGA in mode 3 (in case you're not already there); the
second sets the EGA mode to 16 (which uses segment AOOOH); and the third program
switches to the monochrome display. (If your EGA is attached to a regular color display,
use EGAMODE 14 instead.) Now you can use Hercules graphics without any restric
tions. If you have some batch files with HGC FULL statements, you can add these three
lines to the batch file before the HGC FULL line.

After you 're done and want to return to the EGA, use:

MODE COBO

This statement can be placed after an HGC HALF statement in a batch file.
You won't need to do this for all programs that use Hercules graphics. But if you ever

see garbage appear on a color display attached to an EGA while graphics appear on a
monochrome display attached to a Hercules Graphics Card, it means there's a memory
conflict.

Pages and Pages

The column headed "Pages" in Figure 13.1 shows thenumberofvideopageson the EGA
for various modes and memory sizes. Particularly in character modes, the display you
see on your screen takes up only a small amount of the total EGA memory. The extra
memory is used for other video pages.

The EGAPAGE program below lets you change the video page from the DOS com
mand level:

722 PC Magazine DOS Power Tools

N EGAPAGE.COM
A 100
JMP
DB
MOV
SJJB
JB
CMP
JA
MOV
INT
MOV
INT
ADD
MOV
MOV
INT
INT

RCX
3A
w
Q

OllA
"Current Video
AL, [OOSD]
AL,30
0129
AL,07
0129
AH,05
10
AH,OF
10
(0118], BH
DX,0102
AH,09
21
20

; Jmp BEGIN
Page is 0$"

BEGIN: Convert
Parameter
JC GETPAGE
See if above 7
JA GETPAGE
Set page
through BIOS
GETPAGE:
through BIOS
Store in string

And display it

Terminate

BIOS keeps track of cursor positions for eight separate video pages. When a video
mode is first set, all of the cursors are positioned in the upper lefthand comer. To switch
to page 1, type:

EGAPAGE 1

To go back to page 0, type:

EGAPAGE 0

The EGAPAGE program doesn't accept page numbers higher than 7, but it doesn't
check to see whether the current video mode supports fewer than eight pages. Without a
parameter, EGAPAGE tells you the current video page.

EG AP AGE is useful when you have something on your screen that you want to return
to later.Just change the video page, do your other task, and then come back to the original
video page. Resetting the video mode, however, blanks out the contents of all video pages.

ANSI.SYS users, take note: The EGA uses starting addresses for these video pages
that are different from those used by the CGA. Although the starting address is stored in
the BIOS data area, ANSI.SYS doesn't use it and will not correctly handle anything other
than page 0 on the EGA.

EGA and Beyond 723

The 64 Color Palette

Notice in Figure 13.1 that the number of available colors for the 350 line modes is 16/64.
This means that only 16 colors can be displayed simultaneously on the screen, but these
16 colors may be selected from 64 colors. In the video modes that use 200 scan lines,
only 16 colors are possible.

That 64 colors are available only on the ECD in 350-line modes is not a coincidence
or the whimsy of the people who designed the EGA. The Enhanced Color Display runs
at a faster horizontal sync rate in order to fit in all 350 lines. The display is triggered to
use this higher horizontal sync rate by the polarity of the vertical sync signal. At the same
time, it uses six color signals on the video connector instead of just the four that the regular
color display uses. {The monochrome display uses two signals for color, called "Video"
and "Intensity.")

The four-bit color code in 200-line modes is called/RGB. TheRGB part of this stands
for red, green, and blue, and I stands for Intensity. Thus, 16 colors are available: low and
high intensity versions of eight colors.

The six-bit color code in 350-Iine modes can be represented as rgbRGB with both
primary (RGB) and secondary (rgb) red, green, and blue signals. The lowercase letters
are sometimes referred to as "1/3 intensity" (which are darker) and the uppercase letters
are ''2/3 intensity" (brighter). In both cases, these are digital signals, either on or off, so
the 350-line modes have a total of 64 colors.

To understand how color works on the EGA, and what you can do with it, consider
first how IBM handled color on its earlier CGA:

In CGA text modes, each character stored in the adapter memory has a corresponding
one-byte attribute that controls the foreground and background colors of the character.
The lower four bits of this attribute contain an IRGB code for the foreground color, which
is the color of the character.

The next highest three bits of the attribute contain a nonintensified RGB code for the
background color. The highest bit controls blinking.

In this respect, the EGA works the same way and uses the same attribute codes. (On
the CGA, you could disable blinking, and thus make the higher four bits a full IRGB code
for the background, by writing the value 09H to register 3D8H. The EGA does not sup
port this register but you can do the same thing with a BIOS call:

MOV AX, 1003H
MOV BL, 0
INT lOH

This enables background intensity. A value of 1 in BL enables blinking, as shown in the
script for the small EGABLINK.COM program:

N EGABLINK.COM
A 100
MOV BL, [OOSD]
AND BL,01

Get Parameter
Only last bit

724 PC Magazine DOS Power Tools

MOV AX,1003
INT 10
INT 20

RCX
E

w
Q

Set Blink/Intensity

But there's a big difference between how the CGA and the EGA handle color. On the
CGA, the four color bits represented by the IRGB code go directly to the video connec
tor and then the monitor. On the EGA, the four-bit color code passes through an attribute
controller before going out to the monitor. In 200-line modes, this attribute controller
can translate a four-bit IRGB code into any other four-bit IRGB code. In 350-line modes,
the attribute controller can translate it into any six-bit rgbRGB code. The attribute con
troller functions as a lookup array. The translation is controlled by values loaded into the
EGA palette registers.

Figure 13.2 illustrates the default mapping of the IRGB codes into rgbRGB codes in
the EGA 350-line modes. The binary representation is helpful because it shows how the
bits correspond directly to the letters in IRGB or rgbRGB. The octal (base 8) repre
sentation for the rgbRGB code is actually more useful because the first digit represents
the 1/3 intensity rgb signal and the second digit is the 2/3 intensity RGB signal.

IRGBCode Default rgbRGB Mapping

Color Binary Octal Hex Binary Octal Hex

Black ()()()() 00 ()() 000000 ()() 00
Blue 0001 01 00 000001 01 01
Green 0010 02 02 000010 02 02
Cyan 0011 03 03 000011 03 03
Red 0100 04 04 000100 04 04
Magenta 0101 05 05 000101 05 05
Brown 0110 06 06 010100 24 14
White 0111 07 07 000111 07 07
Dark Grey 1000 10 08 111000 70 38
Light Blue 1001 11 09 111001 71 39
Light Green 1010 12 OA 111010 72 3A
Light Cyan 1011 13 OB 111011 73 3B
Light Red 1100 14 oc 111100 74 3C
Light Magenta 1101 15 OD 111101 75 3D
Yellow 1110 16 OE 111110 76 3E
Bright White 1111 17 OF 111111 77 3F

Figure 13.2. Mapping of IRGB Codes to rgbRGB. Codes in the EGA 350-Line Modes

•

EGA and Beyond 725

Note that for the intensified colors, the default mapping combines the 2(3 intensity sig
nal with all three 1(3 intensity signals so that, at the bottom of the chart, the "bright white"
color has all bits turned on. Note also that the EGA brown is faked: it uses a dark green
and light red signal. Forty-eight other possible rgbRGB codes aren't used at all in this
default mapping.

On the DOS command level, and in many programs that don't use color, characters
are represented with an attribute code of 07H (hexadecimal). This means the background
is black (0) and the foreground is white (7). However, the EGA maps these two codes
into black and white only by default By loading different values into the EGA palette
registers you can map these drab colors into any other color combinations available.
That's what EGACOLOR.COM does:

N EGACOLOR.COM
A 100
MOV AX, (0050] 1st Parameter
CALL 0117 CALL CONVERT
MOV BL,AL Save in BL
MOV AX, (0060] 2nd Parameter
CALL 0117 CALL CONVERT
MOV BH,AL Save in BH
MOV AX,1000 Change Palette
INT 10 through BIOS
INT 20 Terminate
SUB AL,30 CONVERT:
CMP AH,20 Check if one digit
JZ 0127 i JZ ALLDONE
SUB AH,30 Convert to binary
MOV CL,03 Three bit shift
SHL AL,CL
ADD AL,AH Put two together
RET ALLDONE:

RCX
28
w
Q

It takes two arguments, both of them octal numbers. The first two-digit number is the
IRGB color value from 0 through 17. The second is the rgbRGB color value from 00
through 77 that you want the IRGB code translated into. Leading zeros aren't required.

For instance, entering:

EGACOLOR 00 01
EGACOLOR 07 76

726 PC Magazine DOS Power Tools

changes everything normally displayed as black to dark blue, and everything normally
white to high-intensity yellow. If you 're not using any other program to control color and
run these two programs, your screen will suddenly flash into yellow on blue. The color
translation is done in the EGA hardware.

If your EGA is connected to a regular color display (which only supports 200 scan
lines and 16 colors), you can still use EGA COLOR but only with the four-bit IRGB codes
in octal (i.e., 00 through 17) for the second argument.

If you change the video mode with EGAMODE, the colors go back to normal. A mode
reset always loads the EGA palette registers with the default mapping. The best thing
about using the EGA palette registers to control color is that programs that do not reset
the video mode will still use the colors you've set. Later on, you'll see how to load the
palette registers even for programs that set the video mode.

By running EGACOLOR 64 times with the command:

EGACOLOR 0 XX

where XX is an octal number from 00 through 77, you can see all 64 colors as background
colors. But don't waste your time. There's a better method.

The EGA 64 Varieties

As mentioned previously, you can't display all 64 colors at once on the EGA. It's just
impossible. But with a little "gonzo programming," even the impossible is possible.

The EGAP ALET program displays all 64 EGA colors on an ECD. Note - if you 're
using an AT, substitute a value of2B for 22 in the line near the top that begins with DB:

N EGAPALET.COM
A 100
JMP 0103 JMP SHORT BEGIN
DB 22
CLD BEGIN:
MOV AX,0003 Set Mode to 3
INT 10 through BIOS
MOV AX,B800 Set ES to B800
MOV ES,AX display segment
SUB DI,DI Start at top
MOV AL,DB Use block character
MOV BH,19 Number of lines
SUB AH,AH LOOP2:
MOV BL,08 Colors per line
MOV CX,OOOA LOOPl: 10 chars
REPZ Write to display
STOSW
INC AH Next color

EGA and Beyond 727

DEC BL Decrement counter
JNZ 0118 JNZ LOOPl
DEC BH Decrement counter
JNZ 0114 JNZ LOOP2
MOV BH, [0102] Get "Count" value
MOV DX,03DA Status Poia
MOV AX,0040 Set DS to BIOS
MOV DS,AX data area
STI MAINLOOP:
SUB AH,AH Start colors at 0
MOV BL,01 Temporary "Count"
CLI VERTWAIT:
IN AL,DX Wait for vertical
TEST AL,08 retrace
JZ 0138 JZ VERTWAIT
IN AL,DX ENDVERT:
TEST AL,08 Wait for end of it
JNZ 013E JNZ ENDVERT
IN AL,DX HORIZWAIT:
SHR AL,1 Wait for horizontal
JNB 0143 JNB HORIZWAIT
DEC BL Decrement "Count"
JZ 0153 JZ BLITZ
IN AL,DX ENDHORIZ:
SHR AL,1 ; Check horiz. retrace
JB 014C JC ENDHORIZ
JMP 0143 JMP HORIZWAIT
MOV CX,0008 BLITZ:
MOV DL,CO Palette register
MOV AL,AH BLITZLOOP:
AND AL,07 Output palette
OUT DX,AL number 0 - 7
MOV AL,AH Output color value
OUT DX,AL 00 - 3FH
INC AH Next color
LOOP 0158 LOOP BLITZLOOP
MOV AL,20 Enable video
OUT DX,AL
MOV DL,DA Reset DX
MOV BL,BH "Count" value
CMP AH,40 See if end of colors
JNZ 0143 JNZ HORIZWAIT
MOV ex, [OOlA] Check if key struck
CMP ex, [OOlC]
JZ 0133 JZ MAINLOOP

728 PC Magazine DOS Power Tools

MOV AX,0003
INT 10
INT 20

RCX
81
w
Q

Reset video mode

Terminate

When you run the program, you should have eight rows with eight different colors in
each. The display is much more stable on an AT; the flickering and wavy lines between
the rows of color on a PC or XT is normal. If the bottom row is larger than the rest on
your machine, increase the number following DB a bit. If the bottom row is smaller than
the rest (or if you don't see rows at all) decrease the number. Make it no bigger than 2BH.

You may have to tum up your contrast and brightness controls to see the full range of
colors. Even then, some of the colors may appear very similar. If you have a magnifying
glass or camera close-up lens, you can check that they do indeed use different dots. Press
any key to leave the program.

The EGAP ALET program actually uses only eight color values, 0 through 7, and dis
plays eight columns of blocks using these values. However, every l/480th of a second,
EGAP ALET changes these eight palette registers so the colors on your screen change. It
controls the timing by counting horizontal scan retraces.

The default EGA color mapping uses the top row and bottom row of EGAP ALET' s
64 colors, except for brown, which is in the third row, fifth from the left If you see a
color you'd like to use in EGACOLOR, you can determine its octal code in this way:
Count down to the row from the top, starting at zero. That's the first digit. Count over to
the column from the left, starting at zero. That's the second digit. Octal notation may be
confusing to users who have just managed to master hexadecimal numbering, but it is a
better way to represent these colors.

BASIC's PALETTE statement lets you map any of the normal 16 attribute codes into
any of the 64 colors available on the EGA when attached to an ECD (or compatible) and
running in a video mode that uses 350 scan lines. (The 64 colors are not available on the
older color display, or with video modes that use 200 scan lines.)

The PALTEST.BAS program below runs under both BASICA 3.x and QuickBASIC
2.0 or later:

100 ' PALETTE.BAS - FOR EGAs ONLY
110 DEFINT A-Z:CLS:KEY OFF:COLOR 1
120 LOCATE 23:PRINT " Hit keys to cycle ";
130 PRINT "colors, or enter numbers <64 ";
140 PRINT "(Hit Enter after 1-digit mnbrs)"
150 FOR R=S TO 20:LOCATE R,6
160 PRINT STRING$(70,219) :NEXT:COLOR 7
170 PALCOLOR=(PALCOLOR+l) MOD 64
180 PALETTE 1,PALCOLOR

190 LOCATE 2,30:COLOR 1
200 PRINT "Color value";PALCOLOR;
210 PRINT "(octal ";OCT$(PALCOLOR);") "
220 I$=INKEY$:IF I$="" THEN 220
230 IF I$=CHR$(13) AND J$<>"" THEN 260
240 IF I$<"0" OR I$>"9" THEN 170
250 J$=J$+I$:IF LEN(J$)<2 THEN 220
260 PALCOLOR=VAL(J$)-l:J$='"':GOTO 170

EGA and Beyond 729

PAL TEST.BAS draws a large block using attribute code I (normally blue), maps that
into palette color 0 (black) and waits for you to press a key. Pressing any key increments
the palette color through the 64 possible palette colors. Ctrl-Break exits. If you run this
program under BAS I CA 3.x, you '11 want to execute CLS and PALETTE statements after
you exit the program to return things back to normal.

If many of the colors look identical when you run PAL TEST, you may want to adjust
the brightness and contrast of your monitor. The colors look most distinct with a bright
ness level higher than you'll probably find comfortable for normal work. You'll notice
that this program does not change the video mode and uses just the default SCREEN 0.
The tables in the early QuickBASIC 2.0 manuals were somewhat inaccurate. If your EGA
is attached to an ECD you can use the 64 colors with either SCREEN 0 or SCREEN 9.
In the other color modes (SCREEN I, SCREEN 2, SCREEN 7, and SCREEN 8) you can
map any of the available attributes to any of 16 palette colors. For instance, in SCREEN
2 (normally 640 by 200 black and white) you can set the background and foreground
colors to any of 16 colors.

It's not possible to see more than 16 colors at once. This is rather frustrating if you're
trying to compare the colors. To translate the BIOS video mode numbers into the BASIC
video modes, use this table:

BIOS Video Mode
O&l
2&3
4&5

6
7
13
14
15
16

BASIC Video Mode
SCREEN 0 : WIDTH 40
SCREEN 0 : WIDTH 80
SCREEN l
SCREEN2
SCREEN 0 (on monochrome)
SCREEN?
SCREENS
SCREEN 10 (on monochrome)
SCREEN9

The EGA Border Problem

In 350-line mode the EGA allows you to set the border (called the overscan register) to
any of the 64 colors. A program called EGABORD.COM will do this for you:

730 PC Magazine DOS Power Tools

N EGABORD.COM
A 100
MOV AX, [0050]
SUB AL,30
CMP AH,20
JZ 0113
SUB AH,30
MOV CL,03
SHL AL,CL
ADD AL,AH
MOV BH,AL
MOV AX,1001
INT 10
INT 20

RCX
lC
w
Q

Run this program by typing:

EGABORD XX

Get Parameter
Convert to binary
Check for blank
JZ ALLDONE
Convert 2nd digxt
Shift it 3 spaces

Stick two together
ALLDONE:
Set border through
BIOS
Terminate

where XX is the two-digit octal code for an rgbRGB color.
However, the results are pathetic. Not only is the border very skimpy, but using it

causes some shading problems in the left two-thirds of the display. (If your EGA is at
tached to a regular color display, you don't have this problem. But again, you can only
set your border to one of the 16 IR.GB colors.)

Borders on the EGA are a problem, and the best way to solve the problem is to con
vince yourself that an EGA cannot display borders in 350-line modes. When you know
something is impossible, it may cease to bother you. You may even learn to prefer the
black border. The display arithmetic can prove it to you, and you'll be able to relax know
ing that you 're not missing out on anything.

In 200-line compatibility modes, the EGA (like the CGA) uses the 14.318 MHz clock
available on the system bus for the. dot clock. At each pulse of the dot clock the adapter
sends a color signal to the display. But, in 350-line enhanced modes, the EGA has to write
more dots to the display in the same amount of time, so the EGA uses an on-board 16.257
MHz crystal for the dot clock.

This already looks ominous: the EGA displays 75 percent more scan lines with only
a 13.5 percent higher dot clock frequency.

In 200-line compatibility modes, the horizontal scan rate is 15. 75 KHz. This is the rate
at which each scan line of the screen is displayed. Dividing the dot clock (14.318 MHz)
by the horizontal scan rate results in 909 dots, the equivalent of 114 characters. The dis
playable area uses only 640 dots for 80 characters. The horizontal retrace requires about

EGA and Beyond 731

eight characters. The 26 characters left over are in the border area. If you divide the
horizontal scan rate (15.75 KHz) by the vertical scan rate (60 Hz) you get 262 lines. The
displayable area needs only 200 lines (25 character rows with eight scan lines each).
Again, some of the leftovers occur during the vertical retrace (when the signal jumps
from the lower right to the upper left corners of the display), but the rest are available for
the top and bottom border region.

In 350-line modes on the ECD both the dot clock and the horizontal scan rate are slight
ly higher. The 16.257 dot clock divided by the 21.85 KHz horizontal scan rate results in
744 dots or 93 characters, of which 80 are displayed and about ten occur during the
horizontal retrace. That leaves about three characters for the left and right borders. The
horizontal scan rate (21.85 KHz) divided by the vertical scan rate (60 Hz) shows that the
EGA can display 364 lines. Three-hundred fifty of them are used in the display and 13
occur during the vertical retrace. That leaves about one scan line for a top and bottom
border.

The reason why the EGA can't do borders in 350-line modes is thus very simple: very
soon after it finishes a scan line, it begins the horizontal retrace. Almost immediately
after completing the last scan line, it makes a vertical retrace. The border area is un
touched by the dot gun.

In fact, because of the very tight timing restrictions, the display is not fully blanked
during the whole horizontal retrace. That's why you get a faint background shading when
you try to display a border. The unwanted shading is actually the border color being dis
played during the horizontal retrace. It's faint because it's stretched out.

Now that you know a border is impossible in 350-line modes, you can skip the next
section. Unless you 're just so accustomed to the CGA border that you can't be swayed.

Sooner or later, you are going to read about a way to do a real border on the EGA, so
you might as well read about it here. Opinion is divided over whether this technique can
damage your monitor. Enough said? You don't really want a border, do you? Still, if
you're nervous, just read along and soak up the theory. Try these tricks at your own risk.

Okay, so you like to take chances. Here's the premise: although the ECD is designed
for a horizontal sync rate of 21.85 KHz, it has some tolerances. Most ECDs can run about
5 percent lower. If you program the EGA to do so, you'll be able to fit in enough dots to
make a border.

While the ECD normally runs at a vertical sync rate of 60 Hz. it's actually rated for
vertical syncs between 50 Hz and 60 Hz. Because of this, it's fairly easy to add a top and
bottom border. It's the left and right borders that cause the problem.

The EGA TlME program below is designed to be run in mode 3 with an ECD attached,
but it does not check to make sure you are doing so:

N EGATIME.COM
A 100
JMP 01A3
DW 6000,5602,2003,5604,SC05,8C06,6El0,2Bll,6El5,1A16
DW 5F00,5502,3F03,5504,SB05,8C06,6El0,2Bll,6El5,1A16
DW 5E00,5402,3E03,5404,5A05,8C06,6El0,2Bll,6El5,1A16
DW 5D00,5302,3D03,5304,5905,8C06,6El0,2Bll,6El5,1A16

732 PC Magazine DOS Power Tools

DW 5C00,5302,3C03,5304,5805,8C06,6El0,2Bll,6El5,1A16
DW SF00,5502,3F03,5504,SBOS,7C06,6610,2Bll,6615,1216
DW 5D00,5302,3D03,5304,5905,7C06,6610,2Bll,6615,1216
DW SB00,5302,3703,5104,SBOS,6C06,5El0,2Bll,5El5,0Al6
MOV AL, [OOSD] Get parameter
AND AL,07
MOV AH,14
MUL AH
ADD AX,0103
MOV SI,AX
MOV DX,0304
MOV CX,OOOA
CLD
LODSW
OUT DX,AX
LOOP 01B8
INT 20

RCX
BE
w
Q

Use lowest 7 bits
Multiply by 20

Add off set of beginning
Make that the source
CRT Controller Register
10 words to load

OUTLOOP: Get byte
Output to register
Loop OUTLOOP
Terminate

EGA TIME.COM takes a one-digit parameter from 0 to 7 to select from eight sets of
possible values to load into the EGA's CRT controller registers. These change the basic
timings of the EGA. The lower the number you give to EGA TIME, the better the border,
but the less chance your ECD can handle it. The parameter of seven loads the normal
values.

You can experiment with EGA TIME by first running:

EGABORD 1

to select a blue border. Then try:

EGATIME 6

and if that doesn't make your screen look like a television that needs a trip back to the
shop, try something lower. You can always return to normal with:

EGATIME 7

If you really want a border, using EGATIME to create one is up to you. But if you do
decide to use it, you may also want to add the following EGABORDR.COM program to
your AUTOEXEC.BAT file:

N EGABORDR.COM
A 100
JMP 013A
DB 0
DW 0, 0
PUSH AX
PUSH BX
CS:
MOV
IN
CMP
JZ
CMP
JNZ
INC
JMP
DEC
AND

MOV
INT

BH, [0102]
AL,60
AL, lA
OllC
AL,lB
0133
BH
OllE
BH
BH,3F
AH,02
16

TEST AL,08
JZ 0133
MOV AX,1001
INT 10
CS:
MOV [0102],BH
POP BX
POP AX
CS:
JMP
MOV
INT
MOV
MOV
MOV
MOV
INT
MOV
INT

RCX
54
w
Q

FAR [0103]
AX,3509
21
[0103],BX
[0105],ES
DX,0107
AX,2509
21
DX,013A
27

EGA and Beyond 733

JMP SHORT !NIT

NEWINT9:

Get current color
Get scan code of key
Check if [
JZ DECREMENT
Check if]
JNZ SKIPALL
Increment the color
JMP SHORT CONTINUE
DECREMENT:
Only last six bits
Check for ALT key

JZ SKIPALL
Set border
through BIOS

Save new color

Do old Int. 9
!NIT: Get old
Int. 9
Save it

Set new Int. 9

Terminate and
stay resident

734 PC Magazine DOS Power Tools

EGABORDR.COM is a remain-resident program that lets you change your border to
any of the 64 colors from your keyboard. Alt-] advances through the 64 colors, and Alt
[goes backwards.

Permanent Color Mapping

The EGACOLOR program maps attribute colors into screen colors, but these color map
pings revert to the defaults whenever a program changes the video mode. You may be
wondering if there's a way to write a resident program that would intercept interrupt 1 OH,
watch for a mode change, and then set the colors you want right after the BIOS has
changed the video mode. But you can use a much better trick to do this.

When the BIOS resets the video mode it loads the EGA registers and sets the values
in the BIOS data area based on a set of video parameters that include the default colors.
These video parameters are normally located in the EGA BIOS. However, you can direct
the BIOS to use an alternate set of video parameters by creating a remain-resident
program with the parameters and setting a pointer located in the BIOS data area to point
to it. This may sound tricky but it's not: the EGA BIOS is set up to allow you to do things
like this legitimately and easily.

The BIOS listing in the EGA Technical Reference mentions a pointer called
SA VE_PTR stored at memory location 0000:04A8. It points to a set of seven other double
word (i.e. segment and offset) pointers, called DWORD_l through DWORD_7.
DWORD _5 through DWORD _ 7 are reserved for future use.

DWORD _1 points to a 14 72 byte location in memory that contains 64 video parameters
for each of the 23 video modes supported by the EGA. Twenty-three? Where did 23 video
modes come from?

First, there are 17 video modes 0 through 16 that are the same as those in the video
mode chart above. Although the EGA does not support modes 8 through 10 (the PCjr
modes), and uses modes 11 and 12 internally when loading fonts, these are still included
in the table. But modes 0 through 3 at the beginning of the table are for the 200-scan line
versions when a regular color display is attached to the EGA. Modes 15 and 16 are for
EGAs with only 64K of memory. So, after these 17 modes, the table next contains values
for modes 15 and 16 when 128K or more is attached to the EGA. Finally, 350-scan line
versions of modes 0 through 3 are included when an EGA is equipped with an ECD. That
makes 23.

(Note: Although the first version of the EGA Technical Reference (page 103) indicates
in large letters that the Interrupt 43H vector points to the Video Parameters table, this is
not so. Interrupt 43H actually points to the Graphics Character Table, which is the font
used to construct characters in graphics modes. Interrupt 44H, which the EGA Technical
Reference mistakenly indicates as pointing to this Graphics Character Table, is not used
by the EGA BIOS. This change may seem odd, since interrupt 44H is used by the PCjr
to point to the Graphics Character Table, but that's the way it is.)

For each video mode, the 64 video parameters include the values loaded into the palette
registers. But you can't change the table directly, since these are stored in the EGA ROM
BIOS, and you can't write into ROM.

EGA and Beyond 735

So, what you have to do is use a remain-resident program such as EGAPRMOV .COM
("EGA Parameter Move") that simply moves the set of seven pointers and the entire video
parameter table into RAM:

N EGAPRMOV.COM
A 100
CLD
SUB AX,AX
MOV ES,AX
ES:
LDS SI, [04A8]
MOV DI,013C
ES:
MOV [04A8] ,DI
ES:
MOV [04AA],CS
PUSH cs
POP ES
MOV CX,OOOE
REPZ
MOVSW
ES:
LDS SI, [013C]
MOV DI,0158
ES:
MOV [013C] ,DI
ES:
MOV [013E], CS
PUSH cs
POP ES
MOV cx,osco
REPZ
MOVSB
MOV
INT

RCX
3C
w
Q

DX,0718
27

Set ES to 1st segment

Get SAVE PTR
Set up for transfer

New SAVE PTR

14 Double Words

Get DWORD_l pointer
Set up for transfer

New DWORD 1

23 * 64 bytes

Keep resident
and exit

You need to execute EGAPRMOV .COM only once during your PC session.
Once you've loaded EGAPRMOV you can manipulate the video parameters. The fol

lowing EGACOSET ("EGA Color Set") program replaces the default palette values for
video mode 3 (in 350-line mode) with those of your own choosing:

736 PC Magazine DOS Power Tools

N EGACOSET.COM
A 100
CLD
SUB AX,AX
MOV ES,AX
ES:
LES DI, [04A8]
ES:
LES DI, [DI]
MOV SI,OllB
ADD DI,05A3
MOV CX,0010
REPZ
MOVSB
INT 20

ES to low memory

Get SAVE PTR

Get DWORD 1
Values to move in
Off set for mode 3
16 bytes

DB OO,Ol,02,03,04,05,14,07
DB 38,39,3A,3B,3C,3D,3E,3F

RCX
2B
w
Q

The two lines near the bottom, beginning with DB, can be customized. For instance, if
you use:

DB 01, 01, 02, 03, 14, 05, 06, 3E
DB 30, 31, 32, 33, 34, 35, 36, 32

the EGA will map color 00 (black) to 01 (blue), color 07 (white) to 3E (bright yellow),
and color OF (bright white) to 32 (bright green). You may find it slightly confusing to go
back to hexadecimal after you've mastered the octal representations of EGACOLOR,
but DEBUG can't handle octal.

If your EGA is attached to a regular color display, change the line reading ADD
DI,05A3 to ADD DI,OOE3 and use only color values that range from 00 through IF in
the DB lines.

When you first execute EGACOSET, nothing will happen. But if you then change the
video mode with an:

EGAMODE 3

your screen will display yellow on blue.
Once EGACOSET is executed, the EGA BIOS will load these values into the palette

registers whenever mode 3 is set. When a program tries to displays white-on-black

EGA and Beyond 737

characters, yellow-on-blue will show up instead. EGACOSET is not a resident program
like EGAPRMOV, so you can experiment by running different versions of it without
using additional memory.

If you put both EGAPRMOV and EGACOSETin your AUTOEXEC.BAT file, almost
every program that uses black-and-white in video mode 3 will use your colors instead.
It's as simple as that. There are exceptions, however. Some "EGA-aware" programs from
technologically capable companies like Microsoft and Lotus load the palette registers
themselves after they load.

If you've found an EGATIME setting that works for you, here's a utility called
EG ABOS ET that will also adjust the CRT controller registers to these values when mode
3 is set:

N EGABOSET.COM
A 100
CLO
SUB AX,AX
MOV ES,AX
ES:
LES DI, [04A8]
ES:
LES DI, [DI]
ADD DI,0580
MOV SI,012B
MOV CX,OOOA
LODSW
MOV BL,AL
SUB BH,BH
MOV AL,AH
ES:
MOV [BX+DI+OA],AL
LOOP 0117
LODSB
ES:

ES to low memory

Get SAVE PTR

Get DWORD 1
Off set for mode 3
Values to move in
10 bytes first
STORELOOP: Get byte
Use low byte
for off set
Use high byte for value

Save it
Loop STORELOOP
Get border color

MOV [DI+34],AL Save it
INT 20 Terminate
DW 6000,5602,2003,5604,5C05,8C06,6El0,2Bll,6El5,1A16
DB 01

RCX
40
w
Q

EGABOSET assumes that EGAPRMOV has been loaded. It's set up for the same
values as EGA TIME 0 and a blue border. IfEGA TIME 0 didn't work but something else

738 PC Magazine DOS Power Tools

did, count down the lines of numbers beginning with DW in EGATIME.SCR (starting
at 0) and substitute the number in the line beginning with DW in EGABOSET.SCR. If
you want a border color other than blue, change the number after the line that begins DB
in EGABOSET to the hexadecimal rgbRGB code for the border color you want.

Important warning/or people with a regular color display attached to an EGA: do not
use EGABOSET. If you want a border color set automatically, go back to EG ACOSET.
Change the line reading MOV CX,0010 to MOV CX,0012. At the end of the second line
of numbers that start with DB, add a comma, 08, another comma, and the color value of
the border you want. The line after RCX should be changed from 2B to 2D.

Background on Fonts

As with the old CGA, the EGA supports both text and graphics video modes. In text
modes, the ASCII codes of the displayed characters are stored in video memory. The
adapter hardware translates these characters into dots through the use of a font table that
contains the dot patterns for all 256 characters. In graphics modes the dots themselves
are stored in memory, and the adapter hardware simply translates these dots into video
signals. For programs that need display only normal text, text modes are preferable be
cause they require less video memory and can be manipulated more rapidly by applica
tion programs.

The CGA and the IBM Monochrome Adapter use a font table stored in ROM on the
adapter board. This ROM is not accessible from software, and programs may not load a
different font in text modes. The only way to change the font is to remove the ROM chip
from the adapter board and substitute your own. These adapters are also generally limited
to 25 lines of text on the screen. (The 6845 CRT controller chip on these boards can be
programmed for a 50 line interlace mode, but it looks awful.)

EGA text modes work a little differently. The adapter memory contains both the font
table and the ASCII codes of the displayed characters. The EGA BIOS downloads the
appropriate font into the EGA memory when it sets the video mode. The fonts are stored
in the EGA BIOS and programs have complete access to them through a BIOS call that
returns a pointer to the stored fonts. Following a video mode set, you can also call the
BIOS to download your own font into EGA memory. At the same time, you can change
the number of displayable character rows on the screen.

(Of course, in EGA graphics modes a program can write whatever dots it wants to the
screen and could even create proportionally spaced fonts. In character modes you don't
have quite this same flexibility.)

EGA text mode fonts have some limitations. The most severe restriction is that the
width of each character is fixed at eight dots. This includes the space between charac
ters, so in most cases characters will be only seven dots wide.

The character height, however, may range from one to 32 scan lines. The maximum
number of displayable character rows on the screen is equal to the total number of dis-

EGA and Beyond 739

playable scan lines (200 for the old color display and 350 for the monochrome display
and ECD) divided by the number of scan lines per character. The EGA BIOS contains
complete fonts for an 8 x 8 character set (eight scan lines per character) and for an 8 x
14 character set (14 scan lines). You can get the starting address of these fonts in the EGA
BIOS by simple interrupt lOH calls.

These fonts are stored in the BIOS in a simple format. The order of the characters is
sequential by ASCII code. Each character is defined by a series of bytes, with the num
ber of bytes used in each character equal to the height of the character in scan lines. The
first byte contains the dot patterns for the top scan line. The most significant bit of each
byte corresponds to the leftmost dot of the character. The least significant bit is usually
0 to allow for the space between characters. So the character box is eight dots wide while
the characters are generally seven dots wide. The line- and box-drawing characters
(ASCII codes COH through DFH) are eight dots wide, which lets them connect horizon
tally to form continuous shapes.

The monochrome display requires separate mention here, as its character box is ac
tually nine dots wide. For most characters, however, the ninth dot will be displayed as
background. For the block- and line-drawing characters the EGA makes the ninth dot the
same as the eighth dot, so the characters connect horizontally. The EGA BIOS stores
what is called a 9 x 14 font, but isn't really a complete font. For all but 20 characters, the
EGA uses the same 8 x 14 font used for the ECD. The 9 x 14 font contains alternate dot
patterns for these exceptions.

The storage format is different from that of the other fonts: Each character requires a
one-byte ASCII code, followed by 14 bytes for the dot patterns. The entire 9 x 14 font is
terminated by a zero. This 9 x 14 font allows monochrome characters to be eight dots
wide, since the nine-dot width of the character box still leaves a space between charac
ters. If you plan to create your own fonts, you may want to forget about this peculiarity.
For greatest versatility, you can use an eight-dot wide character box with a seven-dot
wide character for both the ECD and the monochrome display.

In text modes that use 200 scan lines on the screen (video modes 0 through 3 when an
EGA is connected to on old color display) the EGA normally uses the 8 x 8 font, putting
25 character rows on the display. Connected to an ECD or monochrome display, the EGA
displays 350 scan lines, so the text modes (monochrome mode 7 and color modes O
through 3) use the 8 x 14 font, again creating 25-character rows.

However, if you use the 8 x 8 font in a 350-scan line video mode, you can display 43-
character rows, since 43 times 8 equals 344. A font that is ten scan lines high {which can
be the 8 x 8 font with two blank scan lines) allows 35 displayable rows. If you create your
own 8 x 6 font, you can fit 58 lines on the screen.

These alternative displays are supported by the EGA BIOS. What this means is very
simple: the EGA stores the current number of lines per screen (less 1) at address
0000:0484H. An application can also obtain this information by an interrupt lOH call.
The BIOS Teletype routine (interrupt lOH, function call OFH), which is normally used
for screen output at the DOS command level (except when ANSI.SYS is loaded), uses
this value to determine when to scroll the screen.

740 PC Magazine DOS Power Tools

Font Changes Through the BIOS

Even if you•re not the type of person who lives to see everything on the screen in italics,
try the following EGAIT AL program:

N EGAITAL.COM
A 100
CLD
MOV BH,02 Get 8x14 font
MOV AX, 1130
INT 10 Returns ES:BP
PUSH ES
POP DS
MOV SI,BP DS:SI points to font
PUSH cs
POP ES
MOV DI,0159 ES:DI = destination
MOV BX,0100 Number of characters
MOV CL,03 MAINLOOP:
CALL 0147 Call SHIFTRIGHT
CALL 0147 Call SHIFTRIGHT
CALL 0147 Call SHIFTRIGHT
CALL 0150 Call SHIFTLEFT
CALL 0150 Call SHIFTLEFT
CALL 0150 Call SHIFTLEFT
CALL 0150 Call SHIFT LEFT
DEC BX Decrement char count
JNZ 0114 Loop if not zero
MOV BP,0159 Point to font
SUB DX,DX Starting character
MOV CX,0100 Character count
MOV BH,OE Bytes per character
CS:
MOV BL, [0050]
AND BL,03 Block to load
MOV AX,1100 Load font
INT 10
INT 20 Terminate
LODSW SHIFTRIGHT:
SHR AL,CL
SHR AH,CL
STOSW and store
DEC CL
RET
LODSW SHIFTLEFT:

SHL AL,CL
SHL AH,CL
STOSW
INC CL
RET

RCX
59
w
Q

EGA and Beyond 741

and store

Note: because it loads a 14 scan line character font, EGAIT AL.COM can be used only
with EGAs that are attached to ECO or monochrome displays.

The first EGAITAL INT lOH call (where AX equals 1130H) returns a pointer to the
8 x 14 font stored in the EGA BIOS. You can get a pointer to the 8 x 8 font by setting
BL to 3, and to the 9 x 14 font extension by setting BL to 5. This function call also returns
the current number of character rows (less one) in register DL and the current scan lines
per character (called points in the BIOS documentation) in register CX.

Next, EGAIT AL transfers the font to local memory and, in the process, shifts each
byte to tilt the character to the right (If you think that doing bit manipulations on exist
ing fonts is a flaky way to create new fonts, that's how Microsoft Word does italics in
EGA graphics modes, though Word uses a different algorithm that is not quite as ex
treme.) Finally, EGAIT AL makes another BIOS call to load the font-function call 1 lH
(in AH), subfunction OOH (in AL), which is used to load a user font when the number of
displayable rows does not change. Although you 're loading all 256 characters starting at
ASCII code 00, you can load only part of a character set by setting registers CX and DX
appropriately.

You can go back to the normal font by resetting the video mode with
EGAMODE.COM or by executing the tiny EGA8X14 utility below:

N EGA8X14.COM
A 100
MOV AX,1101
MOV BL,0
INT 10
INT 20

RCX
9
w
Q

Load 8x14 font
Block to load
Call BIOS

EGA8X14.COM uses another, simpler, BIOS call in which register AH again equals
l lH but in which AL equals 01. This loads the normal 8 x 14 font. If AL were 02, the 8
x 8 font would be loaded, but you wouldn't be happy with the way it looks. Since the

742 PC Magazine DOS Power Tools

EGA is still using 14 scan lines per character, the bottom six scan lines will display the
bottom of the 8 x 14 font.

Incidentally, when you execute these programs, you may see a brief contraction of
your display (and it may even roll over once) when the font is loaded. This is normal.
The EGA BIOS has to change the video mode to one of the internal modes (11 and 12)
so it can access the video memory to load the font. Then it must change the mode back
to the original mode.

Changing the Displayable Rows

The interrupt lOH function calls used in the previous examples (where AH is 1 lH and
AL equals 00, 01, or 02), simply load the font. When AL equals lOH, 1 lH, or 12H, BIOS
loads the font and recalculates the number of displayable rows on the screen based on
the new character height.

BIOS also recalculates the cursor and monochrome underline position, but it does so
incorrectly, causing the cursor on an ECD and the underline on the monochrome display
to disappear. Most of the EGA-compatible boards seem to duplicate this bug.

Note also that the video page size is recalculated. Programs that directly access video
memory of different pages should use the "CRT_LEN" value stored at memory location
0000:044CH for the length of a video page. Programs should not follow the example of
ANSI.SYS, which hard codes a page size.

Because of the recalculations the BIOS must make when using these function calls,
the IBM documentation recommends you execute them right after a video mode set.
That's not really necessary, but you should be using video page 0 (which is normal) and,
if you 're changing to a smaller number of displayable lines, your cursor should be some
where near the top of the display, on a row lower than the number of rows you'll be
changing to. In any case, if you 're fooling around with these programs and your cursor
ends up somewhere below the bottom of the displayable screen, just enter EGAMODE
3 (for color) or EGAMODE 7 (for monochrome) to return to normal.

The most popular of the new EGA screen formats is the 43-line mode. The
EGA43.COM program implements it:

N EGA43.COM
A 100
MOV AX,1112 Load 8x8 Font
MOV BL,00
INT 10
SUB AX,AX
MOV DS,AX
PUSH [0487] Save INFO byte
OR BYTE PTR [0487],01
MOV CX,0600 Set cursor size
MOV AH,01
INT 10

POP
MOV
MOV
OUT
INT

RCX
28
w
Q

[0487]
DX,03B4
AX,0714
DX,AX
20

EGA and Beyond 743

Restore INFO byte
Fix up underline

EGA43.COM also fixes the cursor on the ECD and the underline on the monochrome
display. If you haven't loaded ANSI.SYS (or some other resident program that messes
around with the screen), you'll see that commands such as DIR work fine with 43 rows.
Any program that uses DOS for simple teletype screen output (such as EDLIN and
DEBUG) will also use the 43 rows, although some of the commands are hard-wired to
fill one 25-line screen at a time.

For instance, DIR /P (which pauses after a full screen) assumes the display has 25 rows.
Until the EGA, there was no BIOS call that returned the number of displayable rows on
the screen, so most programs that need to know the number of rows on the screen still
just use 25. If the developers of the original PC BIOS had had the foresight to allow for
an adapter capable of more than 25 rows, this would not be a problem.

Because of this deficiency in the original system board BIOS, you'll find that full
screen application programs will react to the 43-line mode in one of three ways. If the
program resets the video mode on entry, the display will go back to 25 lines. If the
program does not reset the mode, it will probably use only the top 25 lines of the screen.
However, EGA-aware programs are starting to appear that will pick up the information
from the EGA BIOS and use all 43 lines. Increasing numbers of commercial programs,
such as XyWrite, Microsoft Word, and even WordStar, offer an option to use the EGA in
its 43-line mode.

If you've loaded ANSI.SYS, you'll see that it assumes the display has 25 rows.
ANSI.SYS users might want to look up Hersey Micro Consulting' s F ansi-Console, ver
sion 1.15 which, along with many other features, supports ANSI functions on the EGA
in different screen formats.

EGA Aware MORE

PC Magazine reader Johnny Y. Chin pointed out that the DOS MORE filter pauses every
25 lines even though the EGA is capable of displaying more, and discovered how to patch
the DOS MORE.COM utility (versions 3.1 or later) to handle this. Just use the
EGAMORE.SCR script below:

N MORE.COM
L

I II

744 PC Magazine DOS Power Tools

A 112
JMP lEE
NOP
NOP

A lEE
MOV AX, 1130
INT 10
INC DL
MOV [lES],DL
JMP 117

A lBA
JBE lDC
MOV DL,7
MOV AH,2
INT 21
NOP

A 1C9
MOV DL,D
MOV AH,2
INT 21
NOP

;use 114 for DOS 3.1 and 3.2
;jmp to patch code

;same for DOS 3.1 and 3.2
;invoke video BIOS character generator
;routine to return information; current
;number of rows returns in DL
;use [1E7] for DOS 3.1 and 3.2
;use 119 for DOS 3.1 and 3.2

;use lBC for DOS 3.1 and 3.2
;use lDE for DOS 3.1 and 3.2
;change code to issue beep
;instead of More -

;use lCB for DOS 3.1 and 3.2
;send carriage return only
;to save one line

E 13F 80 ;use 141 for DOS 3.1 and 3.2
N EGAMORE.COM ;increase buffer size to 32K
w
Q

The addresses in this script are for version 3.3 only; for versions 3.1and3.2 note the
slightly different offsets mentioned after the semicolons on some of the lines.

Type in the script using a pure ASCII word processor, EDLIN, or the DOS COPY
CON command (and make sure you're entering the right addresses and values for your
particular version of DOS). Press the Enter key after each line, especially the last one
with the Q. And be sure to leave the four blank lines; this won't work without them. Then
make sure DEBUG.COM is handy, put EGAMORE.SCR in the same directory as your
DOS MORE.COM, and type:

DEBUG < EGAMORE.SCR

The script will create a new version of MORE.COM called EGAMORE.COM.
This patch is useful for EGA systems since it uses the character generator routine

provided by INT 10 to figure out the proper number of rows. The patch codes are located

EGA and Beyond 145

where the "- More - " message was. EGAMORE.COM will beep instead of printing
this message. Finally, this patch increases the size of the buffer from 4K to 32K.

All utilities should use this technique to sniff out the actual screen size. But few do.
Worse, most DOS utilities don't. Shameful. Remember, don't have ANSI.SYS loaded
when you try to expand your EGA screen size, since ANSI hardwires the screen size to
25 lines.

You can create an adaptation of Charles Petzold' s 43-line setting utility that will clear
an EGA screen to blue text on a 43-row white background, by typing in the following 11
lines:

DEBUG
E 100 BS 12 11 B3 00 CD 10 29 co SE DS FF 36 S7 04 so
E 110 OE S7 04 01 B9 00 06 B4 01 CD 10 SF 06 87 04 BA
E 120 B4 03 BS 14 07 EF BS 00 06 B7 71 31 C9 BA 4F 2A
E 130 CD 10 B4 02 30 FF 31 D2 CD 10 CD 20 74 03 C6 07
E 140 00 AO 67 46 32 06 69 46 22 cs 22 Cl 74 03 C6 07
N CLSEGA.COM
RCX
50
w
Q

Once you've created it you may patch the color by using DEBUG to change the byte
at address 12A. The lefthand digit represents the background and the righthand digit the
foreground; changing it from the existing 71 to 25 would produce purple text on a green
background. To do so, and create a new file called PURPLE.COM, you'd type:

DEBUG CLSEGA.COM
E 12A 25
N PURPLE.COM
w
Q

See the EDLIN chapter for another 43-line EGA patch.

Creating Custom Screens

If 43 lines seem too cramped for you, how about 35 lines with EGA35.COM?

N EGA35.COM
A 100
CLD
MOV BH,03
MOV AX, 1130

SxS font pointer

I 1•

746 PC Magazine DOS Power Tools

INT 10
PUSH ES
POP DS
MOV SI,BP
PUSH cs
POP ES
MOV DI,0152
MOV BX,0100
MOV CX,0008
REPZ
MOVSB
SUB AX,AX
STOSW
DEC BX
JNZ 0114
MOV BP,0152
MOV DX,0000
MOV CX,0100
MOV BH, OA
MOV BL,00
MOV AX, 1110
INT 10
SUB AX,AX
MOV DS,AX
PUSH [0487]
OR BYTE PTR
MOV CX,0800
MOV AH,01
INT 10
POP [0487]
MOV DX,03B4
MOV AX,0914
OUT DX,AX
INT 20

RCX
52
w
Q

DS:SI points to font

ES:DI to destination
Number chars
Bytes per char
Move them

Store two zeroes

Next character
Points to font
Starting char

; Number of chars
Bytes per char
Block to load
Load user font

; Fix up cursor
[0487],01

Fix up underline

EGA35.COM retrieves a pointer to the 8 x 8 font from the BIOS but stores the font in
local memory with two blank scan lines at the end of each character. It then loads the
font (which is now, since we've changed it, a user-defined font) into the EGA through
another BIOS call.

EGA and Beyond 747

On the other hand, if 43 lines are not quite enough, you may want to try out
EGA50.COM:

N EGA50.COM
A 100
CLO
MOV BH,03
MOV AX,1130
INT 10
PUSH ES
POP DS
MOV SI,BP
PUSH cs
POP ES
MOV DI,0150
MOV BX,0100
MOV CX,0007
REPZ
MOVSB
INC SI
DEC BX
JNZ 0114
MOV BP,0150
MOV DX,0000
MOV CX,0100
MOV BH,07
MOV BL,00
MOV AX, 1110
INT 10
SUB AX,AX
MOV DS,AX
PUSH [0487]
OR BYTE PTR
MOV CX,0600
MOV AH,01
INT 10
POP [0487]
MOV DX,03B4
MOV AX,0614
OUT DX,AX
INT 20

RCX
50

[0487],01

8x8 font pointer

DS:SI points to font

ES:DI to destination
Number of chars
Bytes per char
Move them

Skip over last byte

Next character
Points to font
Starting char
Number of chars
Bytes per char
Block to load
Load user font

Fix up cursor

Fix up underline

748 PC Magazine DOS Power T9ols

w
Q

EGA50.COM loses the descenders on the lowercase letters and makes commas look like
periods, but it's still readable.

Going the other way, perhaps you'd like something a little taller on your screen, such
as EGA12.COM:

N EGA12.COM
A 100
CLD
MOV BH,02
MOV AX,1130
INT 10
PUSH ES
POP DS
MOV SI,BP
PUSH cs
POP ES
MOV DI,014C
MOV CX,OEOO
LODSB
STOSB
STOSB
LOOP 0114
MOV BP,014C
MOV DX,0000
MOV CX,0100
MOV BH,lC
MOV BL,00
MOV AX,1110
INT 10
SUB AX,AX
MOV DS,AX
PUSH [0487]
OR BYTE PTR
MOV CX,1619
MOV AH,01
INT 10
POP [0487]
MOV DX,03B4
MOV AX,1B14
OUT DX,AX
INT 20

Get font pointer

DS:SI points to font

ES:DI is destination
14 bytes per char
Get bytes
Store it twice

Keep going
Points to font
Starting char
Number of chars
Bytes per char
Block to load
Load font

; Fix up cursor
[0487],01

Fix up underline

RCX
4C
w
Q

EGA and Beyond 749

The EGA12.COM program doubles up the dots of the 8 x 14 font and creates a 12-
character line display. While its output looks a little strange in an 80-column mode, try
executing it after EGAMODE 1, and you'll end up with a 12 line by 40 column display.
Once again, commands like DIR are very happy with this format.

Finally, EG A25 returns things to normal:

N EGA25.COM
A 100
MOV AX, 1111 Load 8x14 font
MOV BL,00
INT 10
SUB AX,AX
MOV DS,AX
PUSH [0487] Fix up cursor
OR BYTE PTR [0487],01
MOV CX,OBOD
MOV AH,01
INT 10
POP [0487]
MOV DX,03B4 Fix up underline
MOV AX,0014
OUT DX,AX
INT 20

RCX
28
w
Q

You may run the above size-changing programs on EGAs attached to ECD or mono
chrome displays. If you have your EGA attached to a regular old color display, you have
only 200 scan lines to work with. EGA43 will make your display use the normal 25 lines,
EGA50 will tum it into a 28-line display, EGA35 will do 20 lines, EGA12 will do seven
lines, and EGA25 will do 14 lines.

The Problems of Cursor Emulation

Our size-changing programs required the addition of some code to fix the monochrome
underline and the color cursor. The fix to the monochrome underline is necessary be-

750 PC Magazine DOS Power Tools

cause of a simple bug in the EGA BIOS. The fix to the color cursor is necessary because
of a more complex bug.

Programs that set a cursor size usually assume that each character in a color mode has
eight scan lines; setting the cursor to scan lines 6 and 7 normally creates the familiar un
derline cursor. On the EGA, however, this would put the cursor in the middle of the
character. For this reason, the EGA BIOS uses cursor emulation logic to translate a cur
sor size into something appropriate for a 14 scan line character. (fhe cursor registers in
the EGA also function a little differently from those in the CGA.) This cursor emulation
algorithm, however, is based on the presence of an ECD rather than the size of each
character. The sample programs above first turn off cursor emulation by flagging a bit in
lower memory, then restore the bit when they're done.

You probably won't want to turn off cursor emulation entirely because programs that
set the cursor size through the BIOS will then put the color cursor on scan lines 6 and 7
when your normal character set is 14 scan lines high. Even with cursor emulation on, you
may see this problem with programs that go directly to CRT registers to set the cursor
size.

Once again, this is a problem that could have been avoided had the designers of the
original system board BIOS foreseen an adapter that had a variable number of scan lines
per character and created a memory location (like the one the EGA BIOS maintains) to
store this value.

A New Print Screen Routine

If you tried a Shift-PrtSc while in 35- or 43-line mode you were probably surprised that
only the top 25 lines appeared on your printer. That happens because the interrupt 5 print
screen routine in effect is still the one in the system board BIOS, which is locked into
using 25 lines per screen.

Fortunately, the EGA has its own print screen routine. It's virtually identical to the one
in your system board BIOS except that it uses a variable number of lines per screen.
However, when the EGA boots up, this new print screen routine is not automatically sub
stituted for the old one.

The following EGAPRTSC.COM utility rectifies this oversight by substituting the
EGA print screen routine for the one in your system board BIOS:

N EGAPRTSC.COM
A 100
MOV AH,12
MOV BL,20
INT 10
INT 20

RCX
8.

Select Alternate
Print Screen

w
Q

EGA and Beyond 751

If you intend to use regularly the various alternate screen fonnats presented here, you
should make EGAPRTSC.COM a part of your AUTOEXEC.BAT file, and it should be
very close to the top. It should be executed early because if you load EGAPRTSC after
any resident program that also uses interrupt 5 (e.g. the PC-DOS GRAPHICS program
and some print buffers) these other programs will be locked out.

Of course, the EGA print screen routine does not support the printing of graphics
screens created in EGA graphics modes. (Neither does the PC-DOS GRAPHICS
program.) Nor will you be able to print alternate fonts that you load into the EGA.

EGA Screen Dumps

There is no real standard for implementing graphics on printers. If someone were to write
an EGA graphics screen dump program it would have to be for the IBM Graphics Printer
and compatibles, because that's as close to a standard as exists right now. This would be
fine for people with IBM Graphics Printers but not for everybody else. Even for people
with Graphics Printers, that printer is not going to do very well printing 16-color graphics.
It does not even have enough resolution to use different dot densities for the different
colors. The usual method - printing dots for every color except background - some
times looks OK and sometimes doesn't.

If you'd rather have a graphics screen dump routine triggered by a Shift-PrtSc, you
could use the following EGAGRAF.SCR script file to create EGAGRAF.COM - a
remain-resident program that prints EGA 640 by 350 graphics displays on an IBM
Graphics Printer or compatible only. Type it in using a pure-ASCII word processor or
EDLIN. Omit the semicolons and the comments after them. Make sure you leave the
blank line above RCX and that you press the Enter key at the end of each line, especial
ly the last one with the Q:

N EGAGRAF.COM
A

JMP 01C2
ow 00,00
DB 02,0D,OA

Jump INITIALIZE

DB 09,09,20,20,20,20,1B,4C,80,02
DB 03,1B,4A,18
PUSH AX ; NEWINTS:
PUSH BX
PUSH DS
MOV AH,OF
INT 10
AND AL,7F
CMP AL,OF

Get Video Mode

Strip High Bit
If below 15

752 PC Magazine DOS Power Tools

JB
CMP
JA
MOV
MOV
CMP
JNZ
POP

0135
AL,10
0135
AX,0050
DS,AX
BYTE PTR [0000],01
013D
DS

POP BX
POP AX
CS:
JMP FAR [0103]
MOV BYTE PTR [0000],01
STI
PUSH ex
PUSH DX
MOV BX,0107
CALL 0199
SUB DX,DX
MOV BX,OlOA
CALL 0199
SUB CX,CX
MOV BX,0800
PUSH BX
SUB
MOV
INT
POP
CMP
JNB
CMP
CMC

BH,BH
AH,OD
10
BX
DX,015E
0169
AL,01

RCL BL,1
INC DX
DEC BH
JNZ 0158
MOV AL,BL
CALL 01A8
SUB
INC
CMP
JB

DX,+08
ex
CX,0280
0155

MOV BX,0114
CALL 0199
ADD DX,+08

do OLDINT5
If above 16
do OLDINT5
Print-Screen data

If busy, do not
print

Do OLDINT5
Set busy

Initial String
Call PRINTSTRING
Row Register
Row Beginning String
Call PRINTSTRING
Column Register
Dots per byte

Read dot

See if above row 350
If so, no dot
See if dot is black

Slide in bit
Next row
1 less row
Do next row
8 row byte
Call PRINT
Back 8 rows
Next column
See if below 640

End of row string
Call PRINTSTRING
Up 8 rows

EGA and Beyond 753

CMP DX,015E See if above 350
JB 014D If not, next 8 rows
MOV BYTE PTR [0000],00 Not busy
POP DX
POP ex
POP DS
POP BX
POP AX
IRET Return
CS: PRINTSTRING:
MOV CL, [BX]
SUB CH,CH
INC BX
CS:
MOV AL, [BX]
CALL 01A8 Call PRINT
LOOP 019E
RET
PUSH AX PRINT:
PUSH DX
SUB DX,DX
SUB AH,AH
INT 17 BIOS Print Char
TEST AH,29
POP DX
POP AX
JZ OlCl
MOV BYTE PTR [0000],FF Error
ADD SP,+02
JMP 0193 And exit
RET
MOV AX,3505 INITIALIZE:
INT 21 Get Old Int 5
MOV [0103], BX Save it
MOV [0105],ES
MOV DX, 0118 Set NEWINT5
MOV AX,2505
INT 21
MOV DX,01C2 Terminate and
INT 27 remain resident

RCX
DC
w
Q

' ,,

754 PC Magazine DOS Power Tools

Then make sure DEBUG.COM is handy and type:

DEBUG < EGAGRAF.SCR

This creates EGAGRAF.COM. Load EGAGRAF.COM and it will remain resident in
memory until you reboot. When you press the Shift-PrtSc combination in video mode 15
(equivalent to BASIC's mode 9-EGA640 by 350 graphics on a monochrome display)
or 16 (BASIC's mode 10-EGA 640 by 350 graphics on anECD), the resident program
will print the screen.

EGAGRAF.COM prints a dot for every color except the background. This causes
white-on-black graphics (or, in the case of the monochrome display, green-on-black
graphics) to be printed as black on white. This reversal of colors is normal for printing
graphics. If you want black printed as black and all other colors not printed (which is the
way it actually looks onscreen), make a copy of EGAGRAF.COM called
EGAGRAF2.COM and use DEBUG to change the value of the byte at address 168 to 90
by typing:

COPY EGAGRAF.COM EGAGRAF2.COM

DEBUG EGAGRAF2.COM

E 168 90

w
Q

If you need to put an image onscreen, run this sample BASIC program:

100 'EGACIRCL.BAS adapted from Charles Petzold program

110 DEFINT A-Z

120 SCREEN 9 ' Use 10 for EGA on monochrome

130 CLS

140 FOR I=l TO 75

150 A=INT(640*RND) :B=INT(350*RND) :C=INT(40*RND)+5:D=INT(16*RND)

160 CIRCLE (A,B),C,D

170 PAINT (A,B),C MOD 15+1,D

180 CIRCLE (A,B),C-5,D

190 PAINT (A,B),0,D

200 NEXT

210 WHILE INKEY$='"' :WEND

220 SCREEN 0

A New Screen Clearer

When using screen lengths of more than 25 lines, you'll find that CLS no longer works
right, either. It also suffers from the curse of the original PC, in that it has to assume 25

EGA and Beyond 155

lines on the screen. A new EGA-aware clear screen program (called CS) fixes this
problem:

N CS.COM

A 100

MOV DL,18

SUB BH,BH

MOV AX, 1130

INT 10

MOV AH,OF

INT 10

DEC AH

MOV CH,DL

MOV CL,AH

MOV AH,00

CMP AL,07

JZ OllD

CMP AL,03

JA 0120

MOV DL,20

MOV AH,02

INT 21

MOV AL,08

MOV AH,OE

INT 10

MOV AH,08

INT 10

PUSH BX

MOV BH,AH

MOV DX,CX

SUB ex, ex
MOV AX,0600

INT 10

POP BX

SUB DX,DX

MOV AH,02

INT 10

INT 20

RCX

42

w
Q

24 columns default

Get number of columns

Get video information

ex = maximum row and col

Graphics attribute

See if monochrome mode

See if text mode

Write space to display

Backspace

Read attribute

Save video page

Clear screen

Get back video page

Home cursor

CS.COM program uses the BIOS call to determine the number of lines on the screen
(actually one less than the total). To maintain compatibility in case the program is used

756 PC Magazine DOS Power Tools

on a system without an EGA, it first sets DL to 24 before making the call. If an EGA is
not installed, the system board BIOS will just return all registers unchanged.

The program is different from CLS in some other ways. It doesn't ignore the screen
color attribute currently in effect and doesn't wipe out a border (as CLS does when
ANSI.SYS is not loaded) and it doesn't turn the screen white for graphics modes (as the
ANSI.SYS CLS does).

Blanking Out the Screen

If you have an EGA attached to a monochrome display and you spend most of your time
with the same basic image onscreen - a Lotus grid or a WordStar menu, for instance -
you may end up with traces of this image permanently burned into the display.

You can avoid this problem by running EGABLANK, a memory-resident program
that turns the screen off automatically to prevent this from happening if nothing has been
typed for 7 .5 minutes. Typing anything on the keyboard will bring it back to normal.

To create EGABLANK.COM, type in the following EGABLANK.SCR script file
using a pure-ASCII word processor or EDLIN. Omit the semicolons and the comments
following them. Be sure to leave a blank line above RCX and to press the Enter key after
each line, especially the last one:

N EGABLANK.COM
A
JMP 0153
DW 0, 0
DW 0, 0
DW 0
CS:
CMP WO [OlOA],+00
JZ 0122
CS:
DEC WO [0 lOA]
JNZ 0122
PUSH AX
MOV AL,00
CALL 0142
POP AX
CS:
JMP FAR [0102]
CS:
CMP WO [OlOA],+00
JNZ 0136
PUSH AX
MOV AL,20
CALL 0142

JMP INITIAL

NEWINT8:
Check COUNTDOWN
If zero, DONOTHING

Decrement COUNTDOWN
If not 0, DONOTHING

Byte to turn off
Call ONOFF

Jmp OLDINT8
NEWINT9:
Check COUNTDOWN
If non-zero, OK

Byte to turn on
Call ONOFF

POP
CS:
MOV
CS:
JMP
PUSH
PUSH
MOV
IN
MOV
IN
MOV
POP
OUT
POP
RET
MOV
INT
CS:
MOV
CS:
MOV
MOV
MOV
INT
MOV
INT
CS:
MOV
CS:
MOV
MOV
MOV
INT
MOV
INT

RCX
86
w
Q

AX

WO [OlOA],2000

FAR [0106]
DX
AX

DX,03BA
AL,DX
DX,03DA
AL,DX
DX,03CO
AX
DX,AL
DX

AX,3508
21

[0102],BX

(0104],ES
DX,OlOC
AX,2508
21
AX,3509
21

(0106],BX

[0108],ES
DX,0127
AX,2509
21
DX,0153
27

I Ii

OK:
Set COUNTDOWN

Jmp OLDINT9
ONOFF:

Reset flip-flop
for monochrome
Reset flip-flop
for color
Attribute Port

Turn on or off

INITIAL:

Save OLDINT8

Set NEWINT8

Save OLDINT9

Set NEWINT9

EGA and Beyond 151

Bytes for resident
Terminate

Then be certain DEBUG .COM is handy and type:

DEBUG < EGABLANK.SCR

I 14

758 PC Magazine DOS Power Tools

You may alter the amount of time EGABLANK waits before blanking the screen, by
changing the current hexadecimal delay value of 2000. A value of 1 will blank the screen
every 55 milliseconds. Going up to FFFF gives you about an hour before the lights go
out.

To change the value to 1000 (3.25 minutes), change the "SET COUNTDOWN" line
in the EGABLANK.SCR script file from:

MOV WO [OlOA],2000

to

MOV WO [OlOA],1000

and repeat the above process.
Or, if you've already created EGABLANK.COM and don't have the script file handy

(this is one good reason to keep them around on a floppy disk), load the program into
DEBUG by typing:

DEBUG EGABLANK.COM

Then type:

A 137

and press the Enter key. Enter:

MOV WO [lOA],1000

and press Enter twice. Then type Wand press Enter to save the changes to disk, and then
type Q and press Enter to quit DEBUG.

Note that this program is for EGA and EGA compatibles only. It will not work with
other adapters, but it will not harm them either. Although it is really for the monochrome
display (since monochromes are the ones susceptible to phosphor burn), it will also work
with a color display attached to an EGA. Under extremely unusual circumstances, it could
interfere with a program engaged in setting the EGA palette registers, so use it at your
own risk.

EGABLANK will not work well with programs that entirely steal the keyboard inter
rupt, since it has no way of knowing when keys have been struck. If you have any of
these programs, you probably know about this since other resident programs won't work
with them either. Some more sophisticated commercially available screen blankers con
tinually check the contents of the screen for changes to get around this problem.

EGA and Beyond 159

43-Line WordStar
Classic Word.Star 3.3, of course, is one of the few application programs that can be easi
ly patched for different screen formats. The patch points have been well documented and
have remained consistent (in most cases) from version to version. Many WordStar users
have switched to other word processors or have tried more recent versions of it packaged
by MicroPro, but the classic edition of this program still has a huge following.

If you '11 be using DOS in a 43-line mode, all you have to do to get WordStar to use 43
lines is change the value at offset 248H from 18H (which is 24 decimal) to 2AH (42) or
2BH (43). Using the latter value eliminates the display of the function keys down at the
bottom of the screen.

If you'll be using DOS with 25 lines but want to use WordStar with 43 lines, it's easy
to patch WordStar version 3.3 so that it switches to the 43-line mode on entry and re
stores 25 lines on exit by resetting the video mode. This WS43.SCR patch assumes that
nothing else is located in the WordStar patch area at offset 2EOH:

N WS.COM
L
N WS43.COM
E 248 2A
A 2A4
JMP 2El
NOP
JMP 300

A 2El
MOV AH, OF
INT 10
MOV [2E0], AL
SUB BL,BL
MOV AX,1112
INT 10
MOV CX,0007
MOV AH, 1
INT 10
RET

A 300
MOV AL, [2EO]
SUB AH,AH
INT 10
RET

w
Q

Initialize Screen

De-Initialize

Get Video Mode

Save it
Use 43 column mode

Set cursor to block

Get back mode
And re-set

I "

760 PC Magazine DOS Power Tools

Note: If you create this WS43.SCR script file, be absolutely sure you leave the blank
lines where indicated.

To patch your copy ofWS.COM and create a version ofWordStarcalled WS43.COM,
type in the WS43.SCR script and put it, DEBUG.COM, and a copy (never the original!)
of WS .COM in the same subdirectory. Properly executed, this script doesn't change the
original WordStar program (it makes a copy of it that has a new name), but if you make
a typing mistake in the process, you'd better be safe than sorry. Then type:

DEBUG < WS43.SCR

If you'd rather get an extra line of text instead of the function key definitions down at the
bottom, change the line reading:

E 248 2A

to

E 248 28

A few editors at PC Magazine still use classic (and very highly patched) versions of
WordStar for both writing and program development. Before we bought EGAs, we used
to print things out to do extensive editing or to get a better perspective on program flow.
With 43 lines, however, in many cases we have enough information right on our screens
to avoid doing this. The increase in productivity with a 43-line mode is very real, and it
can save lots of trees, as well.

The 512 Character Set

The font techniques presented above worked by making simple substitutions for the font
normally loaded by the BIOS. However, an EGA equipped with 256K can actually store
four entire 256-character fonts in its memory. If your EGA has 128K, it can hold two
fonts. A 64K EGA is limited to one font. These days virtually all cards come with the
maximum amount. Usually only one of these fonts is active at any one time, but you can
tell the EGA which one you want to be active by using a simple BIOS call.

In addition, you can select any two of the four fonts to be active at the same time on
the same screen. Instead of a normal 256 character set, this lets you use a 512-character
set. Since the ASCII code for each character is still limited to one byte, something else
outside the character code has to specify which font is to be used for each character.

This "something else" is the attribute bit that normally indicates foreground color in
tensity. Instead of (or in addition to) making a character high intensity, this bit selects the
alternate font. So if your word processor can display all 256 normal characters and can
also use high intensity to represent boldface on the screen, you can use boldface instead
to select an additional 256 different characters on your screen.

EGA and Beyond 761

You may have noticed that in the previous font-loading examples, register BL was al
ways set to zero. This register specifies what theEGA BIOS calls the Block to Load. You
can set it to any value from 0 through 3, and it corresponds to the four fonts you can load
into a 256K EGA. If the value of BL is set to 1, the font is loaded into block 1 instead of
block 0. Since block 0 is normally used for both low-intensity and high-intensity charac
ters, you won't immediately see any change in your display until you tell the EGA to use
the intensity bit to select the alternate font.

An example will make this clearer. The earlier EGAITAL.COM loaded an italic
character set. This program can actually take a parameter that specifies the block (0
through 3) into which to load the font. If no parameter is specified, it loads the font into
block 0. But now try running:

EGAITAL 1

Running EGAIT AL earlier with no parameter italicized the text onscreen. But when you
type EGAIT AL 1, nothing happens. The italics font has been loaded into the EGA
memory, but in block 1 instead of block 0. Block 0 still contains the normal font.

Now you have to tell the EGA two things:

1. That you want block 0 to be used for low intensity characters and block 1 to be used
for high intensity;

2. That we want to suppress the normal use of the intensity bit in the attribute byte.

The EGAS 12.COM will do this for you automatically:

N EGA512.COM
A 100
MOV BL, [OOSD] 1st Parameter
AND BL,03 Lower 3 bits
MOV BH, [006D] 2nd Parameter
AND BH,03 Lower 3 bits
MOV CX,BX Save in CX
SHL BH,1 Shift BH left
SHL BH,1
OR BL,BH Combine with BL
MOV AX,1103 Set block spec.
INT 10
MOV BX,OF12 Enable all planes
CMP CL,CH but only if
JZ 0124 blocks are equal
MOV BH,07 Otherwise low
MOV AX,1000 Enable planes
INT 10
INT 20

762 PC Magazine DOS Power Tools

RCX
2B
w
Q

EGA512.COM takes two parameters that may range from 0 through 3. The first is the
font to use on low-intensity characters, the second the font to use for high-intensity
characters. If you enter:

EGA512 0 1

anything that is high intensity on your screen will become low-intensity italics. Anyth
ing that is low-intensity will remain the same.

To prove this, execute TEST512:

N TEST512.COM
A 100
MOV AH,OF Get video page
INT 10
MOV AH,03 Get cursor
INT 10
MOV BP,0128 String 1
MOV CX,OOOF Number of chars
MOV BL,07 Attribute
MOV AX,1301 Write String
INT 10
MOV AH,03 Get cursor
INT 10
MOV BP,0137 String 2
MOV ex, 0010 Number of chars
MOV BL,OF Attribute
MOV AX,1301 Write String
INT 10
INT 20
DB "Low Intensity,"OD,OA
DB "High Intensity,"OD,OA

RCX
47
w
Q

This program prints two lines, one in low intensity and one in high intensity. The high
intensity line will not be high intensity, but will instead be italics. Now if you type:

EGA and Beyond 763

EGA512 1 0

everything in low intensity will be italics (the block 1 font), and everything in high in
tensity will be the normal font (block 0).

Finally, typing:

EGA512 0 0

turns everything back to normal. It makes both low intensity and high intensity share the
same font. The EGA512 program checks if the two parameters are the same and, if so,
restores the meaning of the attribute bit to specify high intensity.

If your word processor works in text mode, does onscreen display of boldface, and
doesn't reset the video mode on entry, try entering:

EGA512 0 1

and see if you can get italics in your word processor instead of boldface. (Of course, then
you'll have trouble printing those extra 256 characters on your printer. But that's a whole
other problem.)

You may be distressed that you lose a high-intensity character display when you use
the 512-character set, but there's a way around that, too.

Earlier, you saw how to use the EGA palette registers to map the four-bit IRGB code
into a six-bit rgbRGB code. With this technique you can map the low-intensity IRGB
codes (where the "I" intensity bit is 0) into high-intensity rgbRGB codes. The only thing
you're really limited to with a 512-character set is eight foreground colors instead of 16
for the two fonts, since only the RGB bits of the attribute (and not the I bit) are used for
foreground intensity. Using the palette registers, you can map these into anything you
want.

Another alternative to restoring the high intensity-foreground is to invert all the bits
of the two fonts and use another BIOS call (AX = 1003H and BL = 0) to enable back
ground intensity instead of blinking. Now, since your characters are really background,
you have all 16 colors available for the two fonts. Your background is now limited to
eight colors (which is normal) and you can't use hardware blinking.

The underline on the monochrome display presents another problem. If you decide to
remap palette registers to give you low and high intensity for each font, you'll only be
able to use an underline in low or high intensity, but not both.

The Poor Person's Font Editor

Now that you've seen how you can load fonts into the EGA, you may want to create your
own fonts. There are two ways to do it. You could start off with a piece of graph paper,
draw each character by coloring in the appropriate blocks, translate each row of dots into
a two-digit hexadecimal number, and then type these numbers into a file. This is the long
way.

764 PC Magazine DOS Power Tools

It's easier to use an onscreen "font editor" program. You can then begin with an ex
isting font and make modifications to it. Of course, font editors can be complex, but it's
possible to take an inexpensive approach by turning your own text editor into a font editor.
You'll be editing an assembly language file that contains a series of assembler "DB"
statements. You can then convert this file back into bytes with the IBM or Microsoft
Macro Assembler.

The FONT2DB.COM program below retrieves an existing EGA font and translates it
into these DB statements:

N FONT2DB.COM

A 100

MOV BH,02

MOV AX, 1130

INT 10

MOV CX,0100

MOV BH,OE

ES:

MOV DH, [BP+OO]

INC BP

MOV BL,08

MOV DI,013C

MOV BYTE PTR [DI],00

RCL DH,1

ADC BYTE PTR [DI],30

INC DI

DEC BL

JNZ 0116

MOV DX,0139

MOV AH,09

INT 21
DEC BH.

JNZ OlOC

MOV DX,0145

MOV AH,09

INT 21

03 for 8x8 Font!

ES:BP points to font

Number of characters

08 for 8x8 Font!

Get Byte

Point to next

8 bits

Destination

Zero it out

Get the bit

Put in 0 or 1

Next bit

Bit counter

Loop around

Point to output

And print it

Bytes per character

Loop around

Print out return

LOOP OlOA ; Get next character

INT 20

DB "DB 01234567b,"0D,OA,"$"

RCX

48

w
Q

The file that FONT2DB.COM creates is quite long: there are 256 characters and 14
bytes per character (for the 8 x 14 font), and each byte uses one line. The bytes are shown

EGA and Beyond 765

in binary format as Os and 1 s so you get a visual representation of the font on your screen.
Although FONT2DB is set up to list the 8 x 14 font, the comments in the FONT2DB.SCR
listing shown which values to change to use it for the 8 x 8 font.

If you simply execute:

FONT2DB

you '11 get a listing of the font on your screen. If you use redirection of standard output:

FONT2DB > MYFONT

the font will be saved in a file called MYFONT. Now you can load MYFONT into your
text editor, turn off Insert mode, and make changes to the font by replacing Os with ls
where you want a dot, and ls with Os where you don't want a dot.

To make the font a different height, simply delete or add additional lines. You can use
between one and 32 lines per character. Make sure each character has the same number
of bytes, however, or your font will look quite strange.

After you've created your own font, the next step requires the IBM or Microsoft Macro
Assembler. A shell program called FONTI..OAD.ASM will make the process easier:

; FONTLOAD.ASM - Loads a customized font

CSEG Segment

Assume CS:CSEG, DS:CSEG, ES:CSEG

Org OlOOH

Entry:

Font

Include

CSEG

Mov

Mov

Mov

Mov

Mov

Mov

Int

Int

End

AX, llOOH

BH, OEH

BL, OOH

ex, OlOOH

DX, OOOOH

BP, Offset Font

lOH

20H

Label Byte

MYFONT

Ends

Entry

Load font

Bytes/Char

Block

Number Chars

Start Char

Address

Your font file name goes here

The INCLUDE statement includes your edited font in the assembly. For more versatility,
you may want to assemble your fonts independently and rewrite the loader program to
load them from disk files.

766 PC Magazine DOS Power Tools

EGA Underlines

One of the minor annoyances of using a program like WordPerfect with an EGA is that
underlined characters are displayed on the screen in a color of your choice rather than as
characters with a line under them. This forces you to remember which colors are installed
as underline, boldface, and underlined-boldface, and turns many popular programs into
somewhat less than "What-You-See-Is-What-You-Get."

Using several of Charles Petzold's techniques, Peter N. Howells developed the
program UNDERLN.COM, created by the UNDERLN.SCR DEBUG script below, for
systems with an IBM (or compatible) EGA:

N UNDERLN.COM

A 100

CLD

PUSH DS

PUSH ES

MOV AL, [OOSD] get first character of parameter

CMP AL, 4F is it 'O'?

JZ 0118 yes, jmp 2ndChar

CMP AL,6F is it 'o'?

JZ 0118 yes, jmp 2ndChar

MOV DX,0194 BADPARM

MOV AX,0900 print message

INT 21

INT 20 exit

MOV AL, [OOSE] 2ndChar

CMP AL, 4E is it 'N'?

JZ 013A yes, jmp TURNON

CMP AL,6E is it 'n'?

JZ 013A yes, jmp TURNON

CMP AL,46 is it 'F'?

JZ 012D yes, jmp 3rdChar

CMP AL,66 is it 'f'?

JZ 0120 yes, jmp 3rdChar

JMP OlOE no, jmp BADPARAM

MOV AL, [OOSF] 3rdChar

CMP AL,46 is it 'F'?

JZ 013D yes, jmp TURNOFF

CMP AL,66 is it 'f'?

JZ 0130 yes, jmp TURNOFF

JMP OlOE no, jmp BAOPARAM

STC TURNON - set carry flag

JMP 013E jmp FontPointer

CLC TURNOFF

MOV BH,02 FontPointer - get 8x14 font

MOV AX, 1130

INT 10

PUSH ES

POP OS

MOV SI,BP

PUSH cs

POP ES

MOV DI,0194

MOV CX,OOEO

LODSW

STOSW

LOOP 0151

MOV CX,0060

PUSH ex
MOV CX,0006

LODSW

STOSW

LOOP 015C

LODSW

JNB 0165

MOV AH,FF

STOSW

POP ex
LOOP 0158

MOV CX,0380

LODSW

s·rosw
LOOP 016C

MOV BP,0194

MOV CX,0100

XOR DX,DX

MOV BX,OEOl

MOV AX, 1100

INT 10

MOV BX,0001

MOV AX, 1103

INT 10

MOV BX,0712

MOV AX,1000

INT 10

POP ES

POP OS

INT 20

DB OA OD 'Type:

DB OA OD \

EGA and Beyond 767

returns ES:BP

DS:SI points to font

ES:DI destination

32 control chars @ 7 word/char

NEXTWORDl - get 2 bytes

224 words

store them, unmodified (not underlined)

loop NEXTWORDl

96 "printable" characters

NEXTCHAR - save character counter

get and store 1st 12 bytes of character

NEXTWORD2 get 2 bytes

store them

loop NEXTWORD2

get last 2 bytes

underlining on? no, jmp STORELASTWORD

yes, underline the character

STORELASTWORD store last 2 bytes

restore character counter

loop NEXTCHAR

128 "foreign" chars 896 words

NEXTWORD3 - get 2 bytes

store them

loop NEXTWORD3

point to new font

character count

starting character

BH = bytes/char BL

load font

block to load

MOV BX,0004: HIGH INTENSITY UNDERLINE

set block spec

enable only low planes

enable planes

UNDERLN ON to load the underline font'

UNDERLN OFF to unload the underline font'

768 PC Magazine DOS Power Tools

DB OA OD '$'

RCX

F4

w
Q

Type this UNDERLN.SCR file in using a pure-ASCII word processor, then create the
UNDERLN.COM program by making sure DEBUG.COM is handy and typing:

DEBUG < UNDERLN.SCR

UNDERLN will generate an underlined character font from the EGA BIOS resident 8 x
14 font and load it as the EGA low-intensity characters. Only the "printable" characters
with ASCII values from 32 through 127 will be underlined.

Typing UNDERLN ON from the DOS prompt (or in a batch file) causes any low-in
tensity characters on the screen to be underlined and any high-intensity characters will
not be underlined. Or, if you prefer, changing the line near the bottom of the script from:

INT 10
MOV BX,0001
MOV AX,1103

to
INT 10
MOV BX,0004
MOV AX,1103

will underline the high-intensity characters and use the normal EGA 8 x 14 font with the
low-intensity characters.

Typing UNDERLN OFF restores the normal font. Resetting the display mode will also
eliminate the underlined characters. The command line parameters, ON and OFF, are not
case sensitive. Since WordPerfect does not reset the video display mode upon entry into
the program, the following batch file will tum on underlining while running WordPerfect
and tum it off upon exiting.

CD\WP

UNDERLN ON

WP

UNDERLN OFF

Once in WordPerfect, you may define the screen colors using the Ctrl-F3, 4 key. Pick
foreground and bold colors from the high- intensity colors, I (dark grey) toP (white); and
underline and bold underline colors from the low-intensity colors, A (black) to H (grey).
Background A (black), foreground L (bright cyan), underline D (cyan), bold M (bright
red), bold underline F (magenta) is a pleasing color scheme.

This patch makes WordPerfect magical on EGAs; no one likes to look at one color for
bold; another for underlining, and so on. But you can adapt the program to underline the

EGA and Beyond 169

output of any other application that doesn't completely take over the hardware and that
lets you give underlined text its own attribute.

A more modest EGA underline program was submitted by reader Brian O'Neill, of
Boston, Massachusetts, whose UNDERLN2.COM utility, created by the UNDER
LN2.SCR script below, will underline any text with a blue-on-black attribute:

N UNDERLN2.COM

A 100

MOV AL, [005DJ

XOR BX,BX

MOV DS,BX
MOV AH, [0485]
CMP AL,4E

JZ 0111

DEC AH
MOV DX, [0463)

MOV AL, 14

OUT DX,AX

INT 20

RCX

lA
w
Q

1st char of argument, if any

AH = bytes/char

'N'
don't underline
underline at last scanline

DX port address, video ctrlr

AL Underline Loe data register

You can create this program by redirecting the script into DEBUG:

DEBUG < UNDERLN2.SCR

Typing UNDERLN2 Nor UNDERLN2 n will turn underlining off; typing just UNDER
LN2 will toggle it on.

The EGA can display fonts with more or less than 25 lines onscreen, so the number of
scan lines per character is not fixed at 14. The scan line that displays the underline depends
upon how many "bytes per character" are in the currently displayed font. UNDER
LN2.COM fetches this information from 0040:0085H of the BIOS data area.

The program also looks up the port address of the video controller; this address will
vary, depending upon whether the EGA card is being used with a color or a monochrome
monitor. UNDERLN2.COM will work in either case.

The only attributes that UNDERLN2 will underline are 1 and 9 (blue on black, both
normal and high intensity). However, EGACOLOR.COM can be used to change colors
0, 1, and 9 to whatever colors you want. You can see the program in action by using the
EGAUNDER.SCR script to create the sample EGA UNDER.COM program:

770 PC Magazine DOS Power Tools

N EGAUNDER.COM
A
MOV AX,0600 scroll window up
MOV BH,02 green-on-black
MOV CX,0000 upper lefthand corner
MOV DX,1950 25 x 80 screen
INT 10 do it
MOV AH,02 set cursor
MOV BH,00 page 0
MOV DX,0000 upper lefthand corner
INT 10 do it
MOV AX,0950 write character 'P'
MOV BX,0001 page 0; blue on black
MOV CX,0028 40 of them
INT 10 do it
MOV AH,02 set cursor
MOV DX,0028 after 40th 'P'
INT 10 do it
MOV AX,0943 write character 'C'
MOV BL,02 green on black
INT 10 do it
INT 20 back to DOS

RCX
31
w
Q

Type this using the same pure-ASCII word processor, then enter:

DEBUG < EGAUNDER.SCR

EGAUNDER.COM will display a string of 40 Ps in blue and 40 Cs in green. Then use
UNDERLN2 and UNDERLN2 N to toggle the blue text underlining on and off.

An Introduction to EGA Graphics

All of the examples and techniques we've presented deal exclusively with the EGA's
text modes. The EGA is capable of producing some very impressive graphics. But, as
Charles Petzold points out, programming your own graphics on the EGA is no picnic.

If you are interested in creating graphics applications for the EGA, you should serious
ly consider using a virtual device interface, such as that found in Microsoft Windows or
IBM's Graphics Development Toolkit. The Graphics Development Toolkit, for instance,

EGA and Beyond 771

contains routines that can be accessed from IBM Pascal, IBM FORTRAN, the IBM
BASIC Compiler, or Lattice C (but not the BASIC interpreter). So far, the BASICA in
terpreter included with DOS does not support EGA graphics.

If you have lots of time to waste while waiting for your screen to be painted, you could
also use the BIOS for graphics. The EGA BIOS supports the same read dot and write dot
function calls used by the system board BIOS for CGA graphics. The only difference is
that register BH must contain the video page. The BIOS Write Dot call is extremely slow,
about 0.5 milliseconds per dot on a normal 4. 77 MHz PC or XT, so it takes a little under
two minutes to refresh an entire 640 x 350 screen in the simplest case. You can run the
WRITEDOT.COM program below to see for yourself how incredibly pokey BIOS is:

N WRITEDOT.COM
A 100
MOV AX,0010 Set video mode
INT 10 to 16
SUB BH,BH Page 0
SUB DX,DX Row 0
SUB cx,cx Column 0
MOV AL,01 Blue
MOV AH,OC Write Dot
INT 10
INC ex Next Column
CMP CX,0280 See if 640
JB OlOB If below, loop
INC DX Next Row
CMP DX,OlSE See if 350
JB 0109 If below, loop
MOV AX,0003 Set video mode
INT 10 to 3
INT 20 Terminate
RCX
26
w
Q

If none of these methods is good enough and you want to program your own graphics,
you'll have to write directly to the video memory and program the EGA registers. There
is no better way to learn EGA graphics than to stick your head in the EGA Technical
Reference and sweat it out. But ifs not too difficult to get started once you know a few
basics.

You'll get the fastest graphics routines by programming in assembly language. You
can also program EGA graphics routines directly in any high-level language that sup
ports BIOS calls, register output commands, and direct access of memory in a far seg
ment.

I 14

772 PC Magazine DOS Power Tools

When you program graphics on the EGA, you write directly to the screen memory.
This memory is organized differently from the memory in CGA graphics modes.

In the CGA compatible graphics modes (4 through 6) the display memory occupies
16K of RAM, beginning at segment address B800H. In medium resolution modes (4 and
5), the 320 dots of each scan line require 80 bytes. Each byte represents four pixels, with
two bits each for the four colors. In high resolution black-and-white mode 6, where the
640 horizontal dots also require 80 bytes, each byte represents eight pixels. In either case,
200 scan lines require 16,000 bytes of memory. The only complication is that all the even
scan lines are at the top of this memory, and are followed by all the odd scan lines.

The display memory in EGA graphics modes 13 through 16 occupies the 64K segment
beginning at segment address AOOOH. In graphics mode 16 (350 scan lines with 640 dots
each and 16 colors), one screen's worth of data requires 80 bytes per scan line times 350
scan lines times 4 (for the 16 colors), or 112,000 bytes. Two video pages are available,
bringing total memory to 224,000,just below the maximum 256K on the EGA.

IBM wedged this 256K of display memory into a 64K memory space by organizing it
into four 64K color planes. The four color planes represent the blue, red, green, and in
tensity bits that define the 16 colors. Each of the four color planes is addressed the same
way: You specify which color plane you want to write to or read from by using the EGA
registers accessible through output ports.

The byte at address AOOO:OOOO is the leftmost eight bits in the first scan line of the dis
play. The byte at address AOOO:OOO 1 is the next eight bits in the top scan line. For graphics
modes 14 through 16 the byte at address A000:0050 is the first eight bits in the second
scan line. For graphics mode 13, the second scan line begins at address A000:0028. The
most significant bit always represents the leftmost dot.

Although the division ofEGA graphics memory into identically addressed color planes
initially appears clumsy, it has some distinct advantages. Since you can write to all four
color planes simultaneously, you can actually write up to 32 bits of data (eight bits of
four colors) by writing one byte to the display memory. Partially for this reason, the wrong
way to program EGA graphics is to start off with a simple "Write Dot" routine and base
all other graphics routines on this one function. You '11 speed thing up dramatically if you
try to take advantage of the EGA's memory organization rather than work against it.

Video Wrinkles

The EGA BIOS has a bug in it that prevents the interrupt lOH cursor mode function from
working reliably. This problem becomes acute in modes that display more than 25 lines
onscreen. EGA users who take advantage of the special 35-line and 43-line modes
provided by the adapter know all too well that the cursor often vanishes when a TSR win
dow is popped up and back down.

When an EGA is connected to an ECO and 25 lines of text are displayed, each charac
ter cell has 14 scan lines. The same EGA running in 43-line mode has eight scan lines
per cell. A standard CGA does the same in any text mode. A monochrome adapter gives
you 14 lines per character.

I 11

EGA and Beyond 773

However, an EGA supporting 350 scan lines in text mode (14 per line) doesn't default
its cursor to scan lines 13 and 14. The characters themselves use lines 1 through 11, so a
cursor at the extreme bottom of the block would leave an almost unnoticeable gap of one
line between itself and the character above it Instead, the EGA cursor uses lines 12 and
13, which makes it look pretty much identical to its CGA cousin.

Cursor Registers

Both the CGA and the monochrome display adaptor are designed around Motorola's
6845 CRT controller. This smart chip provides a set of 18 internal registers supporting a
wide variety of video modes and video support functions. All 18 registers are accessed
through only two ports in PC address space. The first port, located at 3D4H if a CGA is
installed (or 3B4H for monochrome), is the address register. The second, found at 3D5H
for color (or 3B5H for monochrome), is the data register. Values are written by first
OUTing the internal register number (0 through 17) to the address register, then sending
the data to be written to the data register.

The BIOS defines cursors by their starting and ending scan lines. (If the starting scan
line is greater than the ending one the cursor "wraps around" the character cell and splits
into two halves.) The 6845 sets aside an internal register for each of these parameters;
the starting scan line is held in register 10 and the ending scan line in register 11. When
the BIOS sets a cursor shape by executing interrupt lOH with AH equal to 1 and the cur
sor definition in CX, it simply transfers the values in CH and CL to the CRT controller's
cursor registers.

This was a straightforward process until the EGA was introduced. Both the EGA and
the VGA implement a custom CRT controller similar to the 6845. To retain some degree
of compatibility with older adapters, the EGA designers arranged the array of CRT con
troller registers in a manner almost identical to the 6845. The cursor registers are located
again at 10 and 11, and are accessed through the same manipulations of the address
register and data register that were required with the CG A and MD A. As a result,
programmers can deal directly with the hardware cursor registers without having to iden
tify the adapter first.

A problem arises, however, because of the EGA's different interpretation of the end
ing scan line. With a CGA, MDA, or VGA (which handles the cursor very much like its
predecessors), setting the cursor to scan lines 6 and 7 meant writing values of 6 and 7 to
the cursor registers. This positioned the cursor on the seventh and eighth scan lines, since
the first scan line is numbered zero.

On an EGA, however, you must write the value of the ending scan line plus 1. So if
there are eight scan lines per character, the cursor registers are set to 6 and 0 to obtain
the standard two-line underline cursor.

You can create a block cursor on a CGA by specifying starting and ending values of
0 and 7 (or 0 and 13 on an MDA). It follows that an EGA would require a value of 0 and
0. Not so. Like the other video adapters, the EGA leaves you with a single scan line cur
sor if the starting line and ending line are the same. To produce a block cursor when using
the EGA, you give the ending line an "out-of-range" value of lEH.

I It

774 PC Magazine DOS Power Tools

The VGA behaves much like a CGA, even though its design isn't based on the 6845
chip. Starting and ending scan lines are interpreted the same way, and the cursor registers
are located at the same addresses. Setting the starting scan line greater than the ending
scan line, however, destroys the cursor. The VGA alone among the video adapters
prohibits a wrap-around cursor.

Bug in the BIOS

The built-in BIOS functions have traditionally been a wellspring of help and important
information when things start getting overly complex. Video BIOS provides a convenient
function for setting the cursor shape that worked very well with the first generation of
adapters. Unfortunately, because of good intentions rendered useless by poor execution,
this source of ready assistance has proved unreliable with the EGA.

Before the days of the EGA, applications commonly defined their own cursor shape
by checking to see whether they were running on a CGA or an MDA, setting values for
the starting and ending scan lines accordingly, and either calling interrupt lOH or writ
ing to the 6845 to initialize a cursor. So that existing programs would not have to be
rewritten for the EGA, the EGA BIOS authors included cursor emulation logic in their
code. These cursor emulation routines checked the values of CH and CL when the cur
sor mode function was called and made adjustments as necessary to fit the cursor to a 14
scan line block. An application designed to create an underline cursor on the CGA with
scan lines of 6 and 7 works quite well on an EGA because the values are transparently
remapped to 11 and 12 before being sent on to the CRT controller.

The EGA BIOS makes a valiant if somewhat misguided attempt to maintain software
compatibility across the CGA-EGA line. If emulation mode is toggled on (determined
by the state of the emulation bit, bit 0 of the EGA information byte at absolute address
0000:0487H), then cursors designed to fit in the eight-line CGA character box are scaled
to conform to the EGA's normal 14-line box.

However, there are two flaws in the emulation logic. The first and more serious is that
the new BIOS assumed that an EGA connected to an ECO would always have 14 scan
lines per character box. Yet the EGA supports programmable modes, including the
popular 43-line mode that uses only eight scan lines per character. So a call to set the cur
sor to scan lines 6 and 7 in 43-line mode destroys the cursor because the BIOS routines
blindly intercept it and erroneously increase the values beyond the bounds of the true
number of scan lines. This is one reason why SideKick often leaves users without a cur
sor when it pops down in 43-line mode.

The second flaw in the emulation is that the record of the current cursor mode kept in
the BIOS data area reflects the values sent by the calling routine, not those that the BIOS
actually sets for the cursor. If there are 14 scan lines per character and the BIOS correct
ly translates a call for a 6-7 cursor into an 11-12 cursor, it stores away the bytes 6 and 7.
Since the cursor registers are write-only, an application that comes along at a later time
has no way of determining how the cursor really appears.

EGA and Beyond 115

Making that detennination is critical to a TSR as well as to some transient applica
tions. Even programs that aren't memory resident are forced to reset the cursor to an un
derline because they can't be certain where the cursor's starting and ending scan lines
are when they take control. Nor can they assume that the cursor emulation state (which
can be enabled and disabled by toggling bit 0 of the byte at absolute address 0040:0087H)
is the same as it was the last time the cursor was set.

Going hand-in-hand with the EGA's cursor emulation function is the emulation bit
stored in the BIOS data area. The EGA provides its own facility for enabling and disabling
cursor fixups by clearing or setting the emulation bit, respectively. Note that setting this
bit to 0 turns emulation on. In a reversal of traditional on/off roles, a value of 1 disables
the emulation. To maintain compatibility with the EGA BIOS, programs should follow
the lead of the emulation bit and refrain from manipulating cursor calls when the bit is
toggled on.

If you use an EGA or VGA, cursor emulation is active by default when your machine
is powered on (the emulation bit is zeroed). The emulation bit is rarely changed, but a
few applications do set it in order to perfonn cursor shaping without the risk of BIOS in
terference.

So, while reading the cursor mode from the BIOS data area and following it with a
BIOS call to set the same configuration was once a safe and reasonable task, with the ad
vent of the EGA it has become something of a crapshoot. (The VGA BIOS also uses
emulation logic, but the details are sketchy.) Because of this BIOS mess, programmers
have little choice except to bypass it and go directly to the cursor registers.

An intelligent cursor setter will query the BIOS for the number of scan lines per charac
ter (called points in BIOS parlance) before scaling the cursor shape. It first examines the
specified ending scan line to detennine whether or not the call was intended for a CGA.
If the value is greater than 7 or is equal to 0 (an ending line of 0 defines a true underline
cursor on the EGA), the program assumes that the definition was in fact intended for an
EGA. If it doesn't satisfy this criteria and the emulation bit is 0, the program can begin
its own scaling process.

First, interrupt lOH is generated with AH set to 1 lH and AL equal to 30h. The num
ber of points is returned in CX. The difference in the number of scan lines actually allo
cated to each line and the scan lines indicated in the cursor call is used as an adjustment
offset, and the original values of CH and CL passed to set the cursor shape are incre
mented by that offset. As a result, an underline cursor on the CGA (scan lines 6 and 7)
is interpreted to mean lines 12 and 13 on an EGA showing 14 points. At the same time,
if there are 43 lines displayed with eight scan lines per character box, the values aren't
adjusted at all. Thus, popping a TSR up and down in 35- or 43-line mode will no longer
destroy the cursor.

It's important to increment the ending scan line by 1 to satisfy EGA cursor register
protocol. If this last operation produces a 0 in both CH and CL, CX is changed to 00 lEH,
representing the EGA's version of a block cursor. And if the end result is a value in CX
ofOCOOH, the specifier for a true underline cursor in 25-line text modes, CH and CL are
decremented to move the cursor up a single scan line (since the normal EGA underline
cursor resides on scan lines 11and12 rather than 12 and 13).

776 PC Magazine DOS Power Tools

Identifying Adapters

The new VGA adapter adds still another step to the process of identifying the video adapt
er installed and active in a system at any given moment.

The BIOS of the IBM Personal System/2 machines retains all of the interrupt IOH
video functions of its predecessors and appends a few of its own. Function lAH returns
a display code that reveals, with certain limitations, what kind of video hardware is in
stalled. If calling interrupt 1 OH with AH set to lAH and AL set to 0 returns a 0 in AL, it
means that the function is not supported and, by inference, that there's no VGA. If AL
comes back as 1, BL contains the display code. A display code of 7 means that a VGA
is installed, active, and connected to an analog monochrome display. A display code of
8 signals the calling routine that a VGA is linked to an analog color monitor. Like the
EGA, a VGA can co-reside with other video adapters, and as a result can be present in
the system but not active at the time of detection.

The EGA search method recommended in IBM's Personal System/2 and Personal
Computer BIOS Interface Technical Reference is to first call the interrupt lOH with AH
equal to 12H and BL set to 1 OH. If this function returns BL unchanged, then it is unsup
ported and an EGA cannot be present in the system (see the EGATEST.COM program
below). If an EGA is detected, the EGA information byte at offset 87H in the BIOS data
area (this is the the same byte that holds the cursor emulation status bit) must be con
sulted to determine whether the EGA is currently active or has yielded control to another
adapter. If bit 3 is clear, theEGA is active; a 1 means it's not. You could look at the base
address of the CRT controller at offset 63H (a word) to see whether the EGA is connected
to a color or monochrome monitor. Or you could read bit 1 of the EGA information byte
for the same information.

When both the VGA and the EGA tests fail, a program can assume it's dealing with
either a CGA or an MDA. The CRT controller base address provides the answer, just as
it reveals whether an EGA is running in monochrome or color. The 6845 address register
is mapped into port address 3D4H for a CGA and into 3B4H for an MDA, a difference
of one bit. You can examine the single bit with a TEST instruction and ferret out the in
formation you need.

PC Magazine reader Terry P. Sanderson noted that one of the first major programs to
take advantage of the EGA, Microsoft Word 2.0, used a method that was both awkward
and unsupported by IBM to detect whether an EGA was attached. Embedded near the
beginning of IBM's EGA ROM BIOS, at location COOO:OOlE, are the letters "IBM."
Word 2.0 tested for the presence of these letters in the copyright notice, and if it found
them assumed an EGA was available.

It's curious that Microsoft chose this method, Sanderson points out, because IBM in
cludes a warning in the EGA Technical Reference manual about a similar misuse of its
BIOS. At location COOO:OOOO, a two-byte signature appears (AA55H) that identifies a
valid adapter ROM module to the POST routine. IBM explicitly states in the documen
tation that this signature is not to be used as an EGA presence test. However, if you were
to disassemble the MODE command (which allows the user to, among other things, set
the mode of the video adapter or change monitors in a two-monitor system), you would
find the following code fragment.

AZ,OCOOOH
ES,AX

EGA and Beyond 777

move segment address ..
into es register

MOV
MOV
CMP

JNZ
WORD PTR ES:O,OAASSH is it the signature ?

jump if true

Here, IBM disobeyed its own warning and uses the BIOS signature to test for the presence
of an EGA card.

As mentioned above, a far more conventional test for the presence of an EGA is to use
the extended BIOS features available in the EGA's ROM. When an EGA is present, BIOS
video interrupt IOH is vectored to the EGA's ROM, and interrupt 42H is used to revec
tor the old planar ROM video interrupt. This means that the extra EGA features are avail
able through interrupt IOH. One of these extended features is called Alternate Select. Its
major function is to select the Alternate Print Screen routine, but another of its functions
is to return EGA information. The following assembler code segment can be used to re
quest EGA information.

MOV
MOV
INT

AH,12H
BL,lOH
lOH

function 12H
subfunction lOH
video interrupt

This function returns the following information:

Register
BH
BL
CH
CL

Description
mode in effect (color or mono)
memory on EGA (01H=64k, 02H=128k, etc.)
feature bits
EGA switch settings

Note that the BL register is used both on input and to return a value. The standard ROM
BIOS interrupt IOH does not have a function 12H, so the BL register is returned intact if
there is no EGA. Fortunately, if there is an EGA, the BL register will return a value of
OH, IH, 2H, or 3H, depending on the memory size, but cannot return a value of IOH. If
the BL register has changed, an EGA is present.

This procedure can be used to identify the presence of an EGA, but does not report
whether the EGA is active. If the EGA is connected to a color or Enhanced Color Dis
play, you can also have a monochrome adapter and monitor installed. Conversely. if the
EGA is connected to a monochrome display, you can also install a CGA and color
monitor. If you are going to write any hardware dependent routines, you must take into
consideration the possibility of a two-monitor system.

IBM does not provide a video function that lets you determine which adapter is active
if there is more than one installed. However, you can use the information in the ROM
BIOS data area to determine if the EGA is the active adapter. At absolute location 487H,
IBM defines a byte used to store EGA information. Bit 3 of this byte (using the notation
that bit 0 is the low-order bit) lets you know if the EGA is the active adapter. If this bit
is 0, the EGA has the active monitor; if it is 1, another adapter card is active.

778 PC Magazine DOS Power Tools

After doing this, look again at the values returned by the previous video function call.
Register BH returns a value of OH if the EGA is connected to a color monitor, and a value
of lH if a monochrome monitor is attached. Combining this information, you can final
ly detennine which adapter is active.

To create Sanderson's EGA IBST.COM program that checks for the presence and ac
tivity of an EGA, type in the EGA IBST.SCR script below:

A
PUSH cs
POP DS
MOV AH,12
MOV BL,10
INT 10
CMP BL,10
JNZ 0113
LEA DX, [013E]
JMP 0138
MOV AX,0040
MOV DS,AX
MOV AH, [0087]
PUSH cs
POP DS
AND AH,08
JNZ 012E
CMP BH,00
JNZ 0134
LEA DX, [0198]
JMP 0138
LEA DX, [0152]
JMP 0138
LEA DX,[0171]
MOV AH,09
INT 21
INT 20
DB OD,OA,'EGA
DB OD,OA,'EGA
DB OD,OA,'EGA
DB OD, OA, 'EGA

RCX
BA
N EGATEST.COM
w
Q

data segment = code segment

function 12h (alternate select)
sub-funct lOh (return ega info)
video interrupt
has bl changed?
yes, so we have an ega present
no, load no-ega message

move the bios_data segment to ax.
.. and into the data segment
get info byte from rom data area

return to data seg code seg
isolate+Oga active bit
ega does not have active monitor
is monochrome connected to ega?
yes, so display mono message
no, so display color message

load not-active message

load address of mono message
function 9h (print)
do it
done

not present',OD,OA,24
present but not active',OD,OA,24
active with monochrome monitor' ,OD,OA,24
active with color monitor',OD,OA,24

I I•

EGA and Beyond 119

Programmers can adapt this to put appropriate error codes into AL, terminate with
function 4CH, and trigger an IF ERRORLEVEL test. Or they can incorporate this basic
code into their own programs. Either way, it's a shame IBM or Microsoft didn't make
the process a whole lot easier.

Chapter 14

Favorite Tips

Over the years readers have sent us basketfuls of their favorite tips, and PC Magazine
editors such as Charles Petzold and Robert Hummel have answered hundreds of reader
questions. These thoughtful answers actually receive their own fan mail. We've as
sembled (and enhanced) the most popular ones below. You '11 find tips here on the DOS
commands, filters, printers, security, communications, and more.

DOS Commands

RECOVER

Just about everyone knows that the FORMAT command can be dangerous if it's used
indiscriminately or carelessly. However, few users know about another potentially
destructive DOS command - RECOVER.COM.

The DOS manual says RECOVER.COM is supposed to "recover files." Novice users
who have lost or corrupted files may try this command in desperation without fully un
derstanding what it does, and accidentally type RECOVER C: at the DOS prompt. Even
though DOS prints a warning message most users will probably type Y to proceed with
the recovery.

RECOVER then does the following:

1. Removes the subdirectory structure from the disk.
2. Places all the files into the root directory.
3. Renames all files FILEOOOl.REC, FILE0002.REC, etc.

781

' "

782 PC Magazine DOS Power Tools

You're then forced to back up all of these similarly named REC files, reformat the
disk, and then filter through the files to try and discover which file is which. It's nearly
impossible to recover from RECOVER.

The description in the DOS manual is truly inadequate, and doesn't provide nearly
enough warning about how potentially dangerous the command is is. It's another case of
the moronic names in DOS. DEBUG really ought to be called something friendlier like
PATCHER or TOOLBOX. The IF ERRORLEVEL command should be called some
thing like TEST. It's no wonder that a panicky and inexperienced user might think a com
mand named RECOVER will fix his disk right up.

RECOVER isn't so bad if you ask it to dig out the pieces of just one file that had a sec
tor go south somewhere. And if you've somehow wiped out your whole directory,
laboriously sorting out the puzzle pieces of your text files is better than losing everything.
But it's far too easy to wipe out a whole disk with it. Back up often, plod through the
manual before trying anything you 're not familiar with, and take RECOVER.COM off
your hard disk.

CHKDSK

When used with a N parameter, CHKDSK churns out a long list of all the directories
and files on the specified or default disk. This can come in very handy when you have to
locate a file or group of files. To see every file with MAG in it, for instance, you could
type:

CHKDSK /V I FIND "MAG"

However, if you start experimenting with this feature, you'll notice that the filenames are
sometimes not listed under the directory where they are actually located.

The problem results from the confusing and downright deceptive manner in which
CHKDSK lists directories and files. To illustrate this, start with a formatted blank disk
in drive A: and run the following four commands:

COPY CHKDSK.COM A:
MD A:\SUBDIR
COPY TREE.COM A:\SUBDIR
COPY BACKUP.COM A:

Now execute a CHKDSK A:N command. You'll probably see the listing shown below:

Directory A:\
A:\CHKDSK.COM

Directory A:\SUBDIR
A:\SUBDIR\TREE.COM
A:\BACKUP.COM

I I!

Favorite Tips 783

It sure seems like BACKUP.COM is in the SUBDIR directory, doesn't it? But look
closer. The files are listed with the full path name. So A:\BACKUP.COM means that
BACKUP.COM is in the root directory, which is absolutely correct. CHKDSK lists the
files and directories in the order that it finds them in the directory. Since SUBDIR is the
second entry of the root directory, CHKDSK lists all files in the SUBDIR directory and
then finishes listing the files of the root directory.

Whenever you do a DIR command and see files listed below directory entries, be aware
that CHKDSK N will list those files after it lists the files in the directory.

On a disk where a lot of deletion and creation of directories and files has taken place,
the CHKDSK IF listing may be almost unreadable. Use the TREE IF command instead
for seeing what files are in what directories.

CHKDSK can also let you know about potential disk problems. Almost nothing is as
terrifying as seeing a list of unfamiliar messages from CHKDSK (except perhaps a zinger
such as "General Failure Error Reading Drive C:"). Sometimes CHKDSK messages in
dicate very serious problems with the data on the disk. Sometimes they don't.

Among other things, CHKDSK checks for consistency between a disk's directory list
ing and its file allocation tables (FATs)- the critical maps that tell DOS how a disk's
clusters are chained together. Files are stored in separate chunks, and the redundant FA Ts
keep track of where these individual pieces are located on the disk.

When you get a message from CHKDSK indicating "lost clusters," it's usually not
much to worry about. It simply means that an area on the disk had been allocated for a
file, but the file was never properly closed. The lost clusters are "orphaned" -the FAT
says they've been allocated, but they don't belong to any file. This sometimes happens
if the program creating the file terminates abnormally, or runs out of disk space and
doesn't clean up afterwards.

If you run CHKDSK with a IF parameter, it will convert the lost clusters to files with
the extension CHK in the root directory. If your normal files are missing something, the
data could be in one of the CHK files. You can take a look at the CHK files with the
TYPE command, but unless they 're in ASCII format and came out of a word processing
document, you probably won't be able to do much with them.

If you 're missing entire files from your directory, these CHK files may correspond to
the missing files. This could result from a damaged directory. The FAT still allocates
chained clusters as if they belonged to a file, but the directory doesn't indicate where the
chains begin.

Messages from CHKDSK indicating "cross-linked files" are cause for concern. Cross
linking means that the FAT' s cluster chain for two or more files intersects at some point,
so that some clusters seem to belong to multiple files. In other words, your FAT or direc
tory has probably been badly mangled. Although cross-linking is relatively rare, it could
be caused by gremlins (i.e., a power surge or line drop during a disk write operation).

You can easily create a cross-linked FAT and a mangled directory yourself by replac
ing a diskette before typing an answer to an "Abort, Retry, Ignore" message.

For instance, if you 're running a program and you try to save something to a diskette
that has a write-protect tab, DOS will try to write to the disk and will end up displaying
a "Write Protect Error" message followed by "Abort, Retry, Ignore." If instead of remov
ing the write-protect tab from the disk you insert another disk in the drive and press R

784 PC Magazine DOS Power Tools

COPY

for Retry, you can kiss that data goodbye. This often happens when you realize you're
trying to save a file on the wrong disk.

The problem is that DOS keeps FAT and directory information in memory, but doesn't
check to make sure that it's writing data back to the original disk it thinks is still in the
drive. If you switch disks without telling it, it will write the FAT and directory map (or
part of it) from the first disk onto the second disk, and you'll end up with an unusable
mess.

Sometimes you can salvage chunks of mangled files by using disk surgery programs
like the Norton Utilities to piece them back together, but ifs hard work and you need to
know what you 're looking for.

To prevent this, don't switch disks in the middle of a program unless you're very care
ful about it. And if you're about to write data to a floppy and you get an "Abort, Retry"
message, choose abort, then make sure the disk you originally read from is in the drive
you want to write to. If it's not, try to execute a DIR command to read the new directory
information into memory.

COPY will usually detect when you are trying to copy a file to itself. For instance, if you
have a file called MYFILE and you enter:

COPY MYFILE MYFILE

it will tell you it can't do it. But COPY can be fooled. If MYFILE is located in the root
directory and you enter:

COPY MYFILE \MYFILE

COPY gets confused and doesn't realize you're referring to the same file two different
ways. This can be a serious problem if the file is larger than 64K.

Here's what will happen in that second case: COPY will open the frrst file for read
ing. It will read 64K of the file into memory (or less if the full 64K is not available). It
will then tell DOS to create the second file. If the second file already exists (as it does in
this case), the file gets truncated to zero bytes and the space in the FAT is freed up. Then
COPY writes the 64K buffer to the second file. Now COPY goes back to read the next
chunk of the first file. DOS takes a look at the FAT for the frrst file and finds out all the
clusters have been freed up. It says "Hey, what happened?" and generates an error
message.

You can also run into trouble if you try a command like:

COPY FILEl FILE2

If FILE2 already exists, but FILEl is much larger than available disk space, DOS aborts
the COPY with an "Insufficient disk space" message, but also deletes FILE2. It may seem
like a "Shoot first, ask questions later" approach.

Favorite Tips 785

To determine whether enough disk space exists to copy FILEl to FILE2, COM
MAND.COM would have to check if the space available on the disk plus the size of
FILE2 is less than or equal to the size of FILE I. Instead, the COPY command creates the
destination file FILE2 (erasing the old one in the process) and then tries to copy the con
tents of Fll..El to it. If this fails, FILE2 is gone. Usually this won't create a serious
problem, since you were intending to get rid of the existing Fll..E2 anyway.

But one other COPY problem can cause heartache. Let's say you 're trying to copy all
your programs to a subdirectory called SUBDIR, and you issue the two commands:

COPY A:*.COM SUBDIR
DEL A:*.COM

If you make a mistake and type something like SUBDIT (rather than SUBDIR), which
is not an existing directory name, COPY will create a file called SUBDIT and copy all
the COM files into it. Since this is an ASCII copy, because the syntax implies you 're con
catenating the files, it stops copying after the first ASCII end-of-file marker in each on
the COM files. Result garbage.

Here's another COPY quirk - you can display an ASCII file to the screen with:

COPY filename CON

because the output device CON is the display. This command does basically the same
thing as:

TYPE filename

Likewise, you can copy a file to the printer with:

COPY filename PRN

The file goes to the printer and a "1 file(s) copied" message appears on the screen. Using
redirection of standard output, you can also copy a file to the printer with the command:

TYPE filename >PRN

So far, so good. Based on this, you might think that the command:

COPY filename CON >PRN

would copy the file to the printer, because the COPY command is copying it to the screen,
and the screen is redirected to the printer. But it doesn't. Instead, it just copies the file to
the screen and puts the "file(s) copied" message on the printer.

I ti

786 PC Magazine DOS Power Tools

While the results look a little peculiar, DOS is actually working consistently. To see
why, you have to understand the distinction between devices (CON and PRN) and the
handles that programs use to refer to these files and devices.

Beginning with version 2.0, DOS adopted a handle approach to working with files and
devices. When a program such as COMMAND.COM opens a file or device for the COPY
or TYPE commands, it tells DOS the filename and DOS returns a handle (which is simp
ly a number) that refers to the file.

DOS maintains two tables that correlate the handles and the files or devices they refer
to. The first table is located in the program's Program Segment Prefix starting at offset
18H. The number at address [18H +handle] refers to a second table internal to DOS that
contains the file or device name and other information that DOS needs to read from or
write to the file. (This is not documented, by the way.)

The restriction of 20 file handles per program derives from the length of this table in
the Program Segment Prefix. The maximum number of open files that DOS can main
tain depends upon the space allocated for the internal DOS tables and is governed by the
FILES statement in a CONFIG .SYS file.

When a program begins execution, five file handles are already defined. Normally,
handle 1 (which is defined as standard output) is mapped to the output device CON, which
is the display.

The internal workings of the TYPE command are simple. It reads a file and writes it
with function call 40H using a handle of 1, so output normally goes to the CON device.
However, when you specify on the command line that standard output should be
redirected to PRN with the command:

TYPE filename >PRN

COMMAND.COM opens the PRN device to get a handle for it, and then uses the
FORCDUP function call (46H) to make handle 1 refer to the PRN device. So, TYPE is
still writing the file using handle 1, but the handle refers to a device other than CON.

When you specify CON or PRN as the destination in a COPY command, COM
MAND.COM opens that device through DOS, gets back a handle for it (which will not
be one of the predefined handles), and uses that handle for writing the file. So, the two
commands:

COPY filename PRN

and:

TYPE filename > PRN

are not really the same thing. In the first case, the COPY command uses a handle that
refers to the device PRN. In the second case, the TYPE command uses handle 1, but this
handle has been redirected to the device PRN. Because of this, when COMMAND.COM
executes the command:

Favorite Tips 787

COPY filename CON >PRN

it first redirects handle 1 to the PRN device. But then COPY opens the device called CON
for the destination and DOS returns a new handle that refers to this device. The file ap
pears on the screen because the COPY command is writing it using this new handle. It
then writes the "file(s) copied" message to standard output (the handle 1), but this mes
sage goes out to the printer because the handle has been redirected.

Copying files to devices can come in handy when you want to scan through several
files one after the other, or peek inside executable files.

If you use the TYPE command on a binary, nontext file like COMMAND.COM, DOS
will stop when it reaches the first ASCII character 26, since it will erroneously think this
is an end-of-file marker and grind to a halt.

But you can see the whole COMMAND.COM file by typing:

COPY /B COMMAND.COM CON

The /B (for "Binary" file) tells DOS to look up the length of the file in the disk direc
tory and copy that number of bytes. Using CON as a destination tells DOS to copy these
bytes to the console (screen) rather than a file.

Get to know the /B switch. It can prevent lots of COPY problems. For instance, you
can use the COPY command to update (or backdate) the time and date in the directory
listing of any file. But be extremely careful when using this update feature. If you have
a short text file on your disk called OLDFILE that you created a long time ago, you can
make the date and time in its directory listing current by typing:

COPY OLDFILE +,,

However, DOS thinks all files it copies this way are ASCII files unless you tell it other
wise, and will stop copying the contents if it sees an ASCII character 26, which it inter
prets as an end-of-file marker. If you 're not careful, you can end up with a copy of just
the beginning of a non-ASCII file.

Most text files don't contain any ASCII 26 characters (except at the very end), but just
about every COM or EXE file contains several. You can tell DOS to bypass this problem
by making copies based on the file's true length, as reported by the directory listing.

While adding a /B after the word COPY tells DOS to make copies based on file length
rather than the detection of an ASCII 26, adding a I A (for "ASCII" file) does the reverse.
When you tack on a /B or I A switch, DOS will handle all files listed after the switch in
that particular COPY command with these rules in mind.

You can mix-and-match /A and /B switches, file by file, if you are concatenating
several smaller ASCII and binary files into one big one. When you don't specify any
switches, DOS assumes all concatenations are for ASCII files, while all non concatenat
ing (nonnal) copies are for binary files.

The"+" sign in the "COPY filename+,," updating command makes DOS treat the
process like a concatenation, even though it is really dealing with only one file at a time.
Because of this, it is important to add a /B switch to the command.

788 PC Magazine DOS Power Tools

So the final command to update the directory listing for both ASCII and binary files
is:

COPY /B filename+,,

You can create a one-line batch file called UPDATE.BAT that uses a replaceable
parameter:

COPY /B %1 +,,

Then, you can make the date of any file current by typing:

UPDATE filename

You can also use this technique to change the date backwards or forwards. Before you
run UPDATE.BAT, just reset the DATE (and TIME, if you want) commands.

You can't update all your files using wildcards. The command:

COPY /B *·* +,,

won't work. But you can bring all your files up to date using FOR ... IN ... DO. To enter
the command directly in DOS, type:

FOR %F IN (*.*) DO COPY /B %F +,,

To put this into a batch file called REDATE.BAT, substitute a %%F for each %F, and
redirect the output to NUL to suppress the one-by-one executions and "1 File(s) copied"
messages produced by the FOR. .. IN ... DO command. The contents of REDA TE.BAT
would be:

FOR %%F IN (*.*) DO COPY /B %%F +,, > NUL

An even better way is to use the TOUCH.COM program on the accompanying disk.
If you 're nervous about making copies, and you want to verify that the backup is in

deed valid, don't bother with the N COPY option. All this does is make sure that DOS
can read the copied file; it doesn't check the copy against the original to make sure that
every byte is the same. And it slows the whole process down.

A better way is to use the COMP command immediately after you make any copies.
Since the actual commands COPY and COMP are the same length and use the same syn
tax, once you've copied the files you can check the accuracy of the copies by pressing
Fl or the right cursor arrow key twice, typing "MP" to replace the "PY" in the word
COPY, and then pressing F3 to finish repeating the command. So:

COPY *·* B:

Favorite Tips 789

with just a few keystrokes becomes:

COMP *. * B:

If you're using XCOPY, just insert an extra space at the beginning, so the process
would look like:

C>XCOPY * * B:
C> COMP * . * B:

DOS will ignore the space directly after the prompt.
If you want to look at lots of files - such as a collection of your small batch files -

in succession, you can adapt this technique with:

COPY *.BAT CON

Another good way to do this is to create two short batch files called SCANBATS.BAT
and READ.BAT. First, SCANBATS.BAT cycles through all the BAT files on your disk:

ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READ %%F

Then, READ.BAT, which is called by SCANBATS.BAT, does the actual displaying:

ECHO OFF
CLS
ECHO %1
MORE < %1
PAUSE

If you create these files using EDLIN or the DOS COPY CON command, you may
want to add a line before the final PAUSE in READ.BAT that says:

ECHO <F7>

But instead of actually typing <F7>, press the F7 key. If you 're in DOS, this will generate
an ASCII 0 null character (unless you've redefined the F7 key). Following ECHO with
a null will put a blank line onscreen. You may need this if the files you 're trying to dis
play don't end with carriage returns. If they don't, the "Strike a key when ready ... "
message generated by the PAUSE command will appear at the end of the last line of the
batch file rather than on a line by itself.

To try SCANBATS and READ, create both batch files, then enter:

SCANBATS

I !4 I

790 PC Magazine DOS Power Tools

If you're using a 3.3 or later version of DOS you can make the process slightly more
efficient by changing the second line of SCANBATS.BAT to:

FOR %%F IN (*.BAT) DO CALL READ %%F

If you are using a more recent DOS version, you can also omit the ECHO OFF at the
top of READ.BAT. And you '11 find that using CALL instead of COMMAND JC makes
it easier to break out of the process prematurely if you want.

Users often ask about turning their computers into typewriters. It's hard to have each
letter appear on your printer as you type it, but you can harness the COPY command and
end up with something halfway close. At the DOS prompt, try typing:

COPY CON PRN

CON refers to both the keyboard and screen, although here DOS will use the keyboard
half of the device. PRN refers to your printer. After you enter this command, start typing.
Press the Enter key at the end of each line. If you make a mistake on a screen line, you
can use the backspace or left arrow key to correct it, but after you've pressed Enter, or
wrapped down to the next screen line, you're stuck with it (which is why it's better to
use a word processor or EDLIN). And don't try any lines longer than 127 characters.

The text won'tappearon the printer until you're done. To finish, press theF6 key (or
Ctrl-Z) and then press Enter one final time. The text will then be printed.

You may have to add a Ctrl-L before the Ctrl-Z to issue a form feed after the text is
printed.

One final note - be careful about the order of filenames or devices when making
copies. Users of non-DOS systems may be accustomed to listing these in reverse order.
If you wanted to send a small file's output to your printer, and typed:

COPY LPTl filename

instead of the correct:

COPY filename LPTl

you'll end up with a "O file(s) copied" message and a deleted file.

VERIFY

The DOS VERIFY option often confuses users, who wonder whether running their sys
tems with VERIFY on actually does anything. They also want to know if their word
processor, data base, and spreadsheet programs take advantage of whatever protection
VERIFY provides.

The good news is that because most applications do their file handling by calling DOS
functions, the VERIFY option is invoked whenever data is written to the disk. The bad

Favorite Tips 791

news is that turning the VERIFY option on in DOS actually does little more than slow
down your disk operations.

The syntax of the VERIFY switch is easy to understand. You turn it on with the com
mand VERIFY ON, and off with VERIFY OFF. Entering VERIFY with no argument
displays the current status. But while the syntax is fairly obvious, the effect of the com
mand isn't.

Common sense would lead you to expect that VERIFY makes sure the correct data
had been written to the disk. A logical procedure for the operation might be: write the
data to the disk, read it back from the disk, and compare the returned data to the original.
If it isn't the same, retry the operation a specified number of times. If the process con
tinues to be unsuccessful, signal an error. Logical as this may seem, in reality, it doesn't
happen that way.

One of the reasons for creating DOS was to free applications from the burden of having
to include code for handling disk 1/0 directly. Consequently, most programs interact with
the disk by going through DOS. DOS, in turn, accesses the disk hardware through your
system's hardware-specific BIOS routines.

Consider what happens when you save a file from inside an application program. The
program first calls DOS with the request to save the file. DOS must then move the data,
which is stored in a buffer in memory, to the disk. This is accomplished by providing the
correct parameters to the BIOS disk write routine. BIOS, in turn, then sends the correct
commands to the disk controller. Before the data is written onto the disk, however, some
additional information is appended. This extra information is used to detect errors, and
it is written to the disk at the same time as the data. The most common addition is called
a Cyclical Redundancy Check (CRC), which is a halfway sophisticated type of check
sum. The same. data will always generate the same CRC value. So, by calculating the
CRC and writing it to the disk along with the data, two independent representations of
the same data are recorded.

The read function is simply the reverse of the write function. It causes data to be trans
ferred from the disk to a memory buffer. Each time the data is read, however, the CRC
is again calculated and compared with the CRC that was recorded when the data was
originally written. If the two CRCs match exactly, the data is assumed to be correct, and
is copied to the buffer. If not, the operation may be retried several times, but if the old
CRC and the new CRC still don't match, the BIOS reports an error and does not return
the data. (This discussion uses a little legerdemain by lumping BIOS and the disk con
troller together. In fact, the disk controller itself can actually detect and correct certain
errors, which provides one more level of defense.)

The verify function operates nearly identically to the disk read operation, except that
no data is moved to a buffer, even if the read is successful. VERIFY causes the data to
be read from the disk and the CRC to be recalculated. The new CRC is compared to the
old CRC to ensure that they match. Again, typically, if they don't match, the operation
is retried a specified number of times, and then an error is returned. The important thing
to note is that at no time is the data itself on the disk compared to anything. Thus, the
verify function serves simply to check the continued readability and integrity of the disk,
not of the data.

792 PC Magazine DOS Power Tools

When you turn on the DOS VERIFY switch, a flag is set inside DOS. From then on,
each disk write operation that DOS is requested to perform is immediately followed by
a similar call to the verify operation. In other words, DOS simply checks to see that the
area of the disk it just wrote your data to is readable - not that it wrote. the correct data!
Excluding bad sections, each normal area of a disk always has a valid CRC. If the data
your program tried to write was somehow sidetracked into the Twilight Zone, and never
made it to the disk, the verify call would still return a good value, and DOS would never
know.

VERIFY has one other effect. The disk drive hardware must always wait for the cor
rect area of the disk to rotate under the head, read the data, and calculate the CRC. The
new CRC must then be compared to the recorded CRC. All this takes a certain amount
of time. In the case of disk access, an operation that might normally have been ac
complished in a single rotation might take three or more to complete. So, VERIFY' s most
obvious effect is to slow down disk I/0.

DISKCOPY

Many new users make backups of their files by using the DISKCOPY command. This
isn't smart. The only times you should use DISKCOPY are when you want to back up a
commercial software disk or when you have a data-integrity problem with a diskette.
Ironically, what could have caused the problem is DISKCOPY itself.

New users like DISKCOPY because it's faster than COPY*.* and because it formats
on the fly. Experienced users know that COPY *. * and the even better XCOPY handle
two problems better - fragmentation and bad tracks.

The more you use a disk the more fragmented the files on it become. Ideally your files
should be contiguous. Having pieces of your files scattered over the disk results in time
consuming head "churning," or "thrashing" as your system retrieves all the far-flung
chunks of each file. This also causes unnecessary wear and tear on the disk and the drive
heads and motor.

You should periodically back up any disk you• ve used for a while onto a freshly for
matted one using the COPY *. * or XCOPY *. * commands.

The second, and more troublesome, reason not to use DISKCOPY is that it puts a mir
ror image of the original disk's contents onto the new one. If the blank disk has internal
defects such as bad sectors. especially bad sectors that have bitten the dust after the FOR
MAT command originally roped off defective areas. DISKCOPY can write a copy of the
original disk's data onto these bad areas, rendering such information unusable on the
copy.

You should use DISKCOPY when you discover that you're having a data-integrity
problem with a floppy, or when you accidentally erase a file on a disk and realize you' re
going to have to perform surgery with something like the Norton Utilities to recover the
data. If this happens, you can use DISKCOPY to make a perfect copy of the affected
disk, and first try the surgery on the copy. If you make a mistake in the recovery process
and end up ruining it, you can make another DISKCOPY of the original and try again.

When you open a fresh package of floppy disks, format them all, without the system
files (you can always add these later with SYS). It's always a good idea to have a box of

Favorite Tips 793

blank formatted disks around, since you somtimes need one when you're in the middle
of a program and can't quit to format one then or you'd lose data.

Then use XCOPY (or COPY if you're using an older version of DOS) to make back
ups onto these blank, formatted disks.

ASSIGN

Sometimes users expect DOS to be a whole lot smarter than it actually is, especially when
they try to outfox it. So beware of dangerous collisions when using "alias" commands
such as ASSIGN that trick DOS into treating one drive as another.

The ASSIGN program included with PC-DOS is potentially bad news. ASSIGN is a
remain-resident program that intercepts most DOS file calls and simply swaps disk drive
letters. It was included with DOS 2.0 and later to deal with pre-XT programs that as
sumed every PC had only drives A: and B: and nothing more. All of the PC-DOS manuals
include warnings about using ASSIGN.

If you must use ASSIGN with certain programs, don't issue the ASSIGN commands
manually. Put them in a batch file like this:

ASSIGN A=C B=C

[then execute the program that can't use drive C:]

ASSIGN

The second ASSIGN undoes all the ASSIGNments so you don't accidently do something
dangerous with a command such as COPY. For instance, if you had typed:

ASSIGN A=C

and then later had tried to copy a hard disk file to a floppy disk with the command:

COPY C:filename A:

DOS would have attempted to copy the file on top of itself. If the file was larger than
64K you could end up with a "File Allocation Table Error" and a truncated version of
the original.

APPEND

Since version 2.0, you've been able to tell the DOS PA TH command which subdirec
tories to check for executable files (ending in COM, EXE, or BAT). But nonexecutable
files remained immune to even the most comprehensive search.

DOS executes internal commands such as DIR, VER, or TYPE directly, since the in
structions for these are imbedded inside COMMAND.COM. If DOS doesn't recognize
the command you typed, it. first checks the current directory (if you entered something

I I•'

794 PC Magazine DOS Power Tools

like CHKDSK), or any directory you may have specified (if you typed something like
D:\BIN\CHKDSK). It then looks in each of the subdirectories that you included in your
path. So if you added a line to your AUTOEXEC.BAT file that read:

PATH C:\;C:\DOS;D:\

if DOS didn't immediately find the file you specified it would hunt for one by that name
with a COM, EXE, or BAT extension in the root and \DOS subdirectories on drive C:,
and on the root directory of drive D:.

However, if you or your program needed to find a file that had an extension other than
COM, EXE, or BAT, you had to purchase a path extender program. Or, if you were work
ing with DOS 3.1 or 3.2, you could use the SUBST command to trick DOS into think
ing a subdirectory was actually a logical drive with its own drive letter.

For example, the main clru;sic WordStar 3.3 WS.COM file always needed to know
where you'd stored its two .OVR overlay files. If these files were kept in C:\PROGS you
could use DEBUG to patch WS .COM so that it looked on drive E:

DEBUG WS.COM
E 2DC 5
w
Q

and then tell DOS about it with the command:

SUBST E: C:\PROGS

(For anything higher than drive E: you also had to add a LASTDRIVE command to your
CONFIG.SYS.) If your MEMO file was stored in C:\STAR\WORK and you had used
SUBST to turn that subdirectory into F: you could then type WS F:MEMO.

APPEND makes the process relatively easy-and a lot cleaner. Just follow the PA TH
command in your AUTOEXEC.BAT file with an APPEND command using similar syn
tax and telling DOS where your important nonexecutable files are located. If you keep
overlays in the subdirectory mentioned above, and correspondence with royalty in
\KING\L TRS, your APPEND command could be:

APPEND C:\PROGS;C:\KING\LTRS

DOS gives you two ways to keep tabs on your APPEND list. You can start off with
an extra APPEND IE command, which loads APPEND strings into your environment
and lets you change them with the SET command, just as with PA TH. But, if you or your
programs switch command processors (by exiting the one you're currently using) such
strings become inaccessible. With long PA TH and APPEND strings, you may have to
expand your environment size by using the SHELL command. In fact, these days the
default 160 byte environment is straining at the seams.

Favorite Tips 195

You can also add an additional APPEND fX command to spiff up the way DOS looks
for files. Or you can add both IE and /X, but you then have to run APPEND twice - first
with any switches, and then with the actual list of subdirectories DOS will search.

The DOS manual contains all sorts of dire warnings on using APPEND with BACK
UP and RESTORE, running it with ASSIGN, or having it anywhere near IBM LAN com
mands of the same name (hard to believe IBM didn't change the name, but true). And as
with any path extender, you have to be careful that you're not accidentally pulling in a
long-forgotten file from a distant subdirectory that APPEND knows about but that you
don't.

EXE2BIN

When IBM first delivered DOS 2.0 it included some very valuable programs and
documentation. But it gradually did away with some key tools. First, it removed all men
tion of ANSI.SYS from the DOS manual. Then in version 3.3 it got rid of the manual
section on DEBUG and replaced it with some turgid prose about using foreign character
sets.

And, for some incomprehensible reason, IBM removed the EXE2BIN.EXE program
from the DOS program diskettes; to obtain a copy of this program, you have to buy the
DOS 3.3 Technical Reference manual. If you try using the old 3.2 version under 3.3,
you'lljust get an "Incorrect DOS Version" message.

EXE2BIN version 3.2 checks the DOS version number right after it's loaded, and exits
if it finds itself running under any version of DOS greater than 3.2. Changing the byte at
offset 30D converts a JZ instruction to a JMP, causing the program to jump to the right
place regardless of what the version test found.

To patch the 3 .2 version ofEXE2BIN .EXE so it runs under DOS 3 .3, copy and rename
your 3.2 version ofEXE2BIN.EXE to EXE2BIN.XXX. Then patch the byte at address
30D from 71 to EB. Finally, rename the EXE2BIN .XXX file EXE2BIN.EXE. The whole
process looks like:

KEYBxx

COPY EXE2BIN.EXE EXE2BIN.XXX

DEBUG EXE2BIN.XXX
E 30D EB
w
Q
REN EXE2BIN.XXX EXE2BIN.EXE

DOS 3.0 to 3.2 came in five international flavors. By executing the appropriate KEYBxx
command you could tweak the keyboard into British, German, French, Italian, or Spanish
modes. Actually, since you could toggle back and forth between the standard keyboard
and the foreign variants, you could adapt the KEYBxx command to print just about any
thing onscreen.

I 14 I<

796 PC Magazine DOS Power Tools

For instance, you could patch KEYBUK.COM (the smallest of the five KE YB xx files)
so that the:

QWE
ASD
zxc

block of keys would produce either a single line box (with lowercase letters) or a double
line box (with capital letters). To try this (with DOS 3.2 on an old AT keyboard), type in
the following SCRIPT.KBD file:

N KEYBUK.COM
L

E 9AB DA C2 BF
E 9B9 C3 CS B4
E 9C7 co Cl 09
E 9E5 C9 CB BB
E 9F3 cc CE B9
E AOl ca CA BC
N KEYBOX.COM
w
Q

For other 3.x versions of DOS, replace the address column directly after the initial Es
as follows:

3.0
S92
SAO
SAE
sec
SDA
SE8

DOS Version
3.1
662
670
67E
69C
6AA
6B8

3.2
9AB
9B9
9C7
9ES
9F3
AOl

Once you've created the appropriate KEYBOX.COM file, run it. You can toggle back
and forth between the normal keyboard and the new one by hitting Ctrl-Alt-Fl and Ctrl
Alt-F2.

With version 3.3, IBM totally revamped the way DOS handles foreign alphabets. But
it did so in the most confusing way possible. First, instead of calling the process some
thing clear and simple like "font loading," IBM referred to it as "code page switching."
Then, it forced the user to digest three different and seemingly contradictory chunks of
the manual- a whole chapter relegated to the rear between Error Messages and EDLIN,
an abstruse few pages under"DEVICE" in the CONFIG.SYS section, and several other

Favorite Tips 797

dense dollops under MODE, NLSFUNC, and CHCP. Manual writers everywhere should
be forced to plod their way through these sections to see the ultimate example of how not
to explain things. PC Magazine's resident DOS expert Charles Petzold took one long
look, shook his head, and said ''Thank God we're Americans."

Code page switching will show new fonts only with DOS 3.3 or later and only on
EGAJECD monitors, PS/2 displays, and IBM Convertible LCD screens. (You can print
the new character fonts only on IBM Model 4201 Proprinters and Model 5202 Quietwriter
Ills.) If you want to see all the new characters, assuming both that the 3.3 or later DIS
PLAY.SYS file is in your C:\DOS subdirectory and that you're using an EGA, first in
clude a line in your CONFIG.SYS file:

DEVICE=C:\DOS\DISPLAY.SYS CON=(EGA,437,5)

Then create a small SHOWFONT.COM file that will display the high-bit ASCII
characters DOS tinkers with, by loading DEBUG.COM and typing in:

ElOO B4 OE BO 84 CD 10 FE
E107 co 3C FC 75 F8 BO OD
El OE CD 10 BO OA CD 10 C3
N SHOWFONT.COM
RCX
15
w
Q

Finally, type in the following CODEPAGE.BAT batch file (assuming
COUN1RY.SYS is in your C:\DOS subdirectory and that MODE, NLSFUNC, and the
SHOWFONT.COMfileyoujustcreatedareinadirectoryyou'veincludedinyourpath):

C:\DOS\COUNTRY.SYS
MODE CON CP PREP=((850,860,863,865) EGA.CPI)
ECHO Hit any key 4 times
MODE CON CP SEL=865 >NUL
SHOWFONT
PAUSE>NUL
MODE CON SP SEL=850 >NUL
PAUSE>NUL
MODE CON SP SEL=860 >NUL
PAUSE>NUL
MODE CON SP SEL=863 >NUL
PAUSE>NUL
MODE CON SP SEL=437 >NUL

798 PC Magazine DOS Power Tools

COMP

While code pages 865, 863, and 860 will be interesting only to residents of Norway,
French-speaking Canada, and Portugal, Multilinpal CP 850 can display some long
needed characters, such as ®, ©, ~, x, ¢, 3/4, and and 3.

IBM's COMP.COM DOS utility can use a lot of help. If you try to compare files of dif
ferent sizes, COMP just shuts down and gives up. And even if you compare files the same
exact size, COMP will beep at you and stop in its tracks if it uncovers more than ten mis
matches. The generic MS-DOS FC utility is far better than the one provided by IBM.

If you have two identical files with just a handful of words different in each, COMP
will give up trying to sort out the differences after just the second or third unidentical
word. For all practical purposes, this means that COMP is useless unless the differences
in your files are tiny.

But you can use DEBUG to fix COMP so it works far better.
COMP keeps track internally of the number of mismatches it finds, and checks them

against a preset limit of ten. You can use DEBUG to change the preset limit from 1 to
255. Or you can do away with the limit entirely.

The assembler instruction for checking the limit looks like:

CMP BYTE PTR (0779],0A

although the number inside the brackets (here it's 0779) will vary depending on what
version of DOS you're using; all eXan1ples here apply to version 3.3.

This instruction tells the program to compare the accumulated number of mismatches
that COMP .COM stores at offset 779 with the preset limit of hex OA, or decimal 10. You
can have DEBUG search through COMP.COM's code for this instruction.

The actual machine-language code for it is 80 3E 79 07 OA:

maximum number
of mismatches

J
80 3E 79 07 OA

I l:t
CMP instruction

The OA at the end is the maximum number of mismatches COMP.COM will ordinari
ly allow before stopping. The 79 07 right before it is the hex offset address 0779 in reverse
format. The 80 3E at the beginning represents the actual CMP "opcode" that does the
comparison.

Favorite Tips 799

To find all occurrences of this opcode, first find out how long the COMP.COM file is.
But first make a copy of the COMP.COM file called ZOMP.COM. Then, at the DOS
prompt, type:

DEBUG ZOMP.COM

and when you see the DEBUG hyphen prompt, type:

RCX

and then press the Enter key twice. Then type Q to quit and press the Enter key again.
You should see something like:

C>DEBUG ZOMP.COM
-RCX
ex 1076

-Q
C>

The hex number after the CX is the program's length. Once you know this, you can
create a script that will do the actual detective work. Make sure you're using a pure
ASCII word processor, EDLIN, or the DOS COPY CON command, and create a file
called ZOMP.SCR that contains the three lines:

S 100 L 1076 80 3E
U 100 L 1076
Q

(Replace the 1076 in the top two lines with the actual hex number following the ex if
the number you uncovered in your version is different.)

Note: Be sure to press the Enter key at the end of each line, especially the last one with
the Q, or you'll freeze your system later when you try to use this.

Then make sure you have about 150K of vacant disk space, and that DEBUG.COM,
ZOMP.COM, and theZOMP.SCRyoujustcreatetlareall in the same directory, and type:

DEBUG ZOMP.COM < ZOMP.SCR > ZOMP.LST

After the disk stops spinning, you'll have a new, long file on your disk called
ZOMP.LST. Use a word processor with a search function to examine it. At the top of the
ZOMP.LST file you'll see something like:

-S 100 L 1076 80 3E
30F9:0235
30F9:0250

I 14 I•

800 PC Magazine DOS Power Tools

30F9:0269
30F9:02AO
30F9: 02EA
30F9:02FB
30F9:07A9
30F9:07CO
30F9:07D8
30F9:07E2
30F9:086A
30F9: OAEF
30F9:0B06
30F9:0COF
30F9:0DB9
-U 100 L 1076

In this example, ignore the four hex numbers to the left of the colon (here they 're 30F9).
These will differ from system to system and don't matter here.

Use your word processor's search command to search for the rightmost four hex num
bers at the top of the list, which in this case are 0235. Your word processor will scan
through the ZOMP.LST file and stop when it gets to something like:

30F9:0235 803E090100 CMP BYTE PTR (0109],00

This isn't the instruction you want, since the final two digits here are 00 and you're
looking for OA. So continue searching down the list. The next address is 0250, and your
word processor's search command will find:

30F9:0250 803E050100 CMP BYTE PTR [0105],00

Wrong again. But after you've worked your way down to the bottom, you'll eventually
reach the one you want:

30F9:0AEF 803E79070A CMP BYTE PTR (0779],0A

(Since this is near the bottom, it's actually smarter and faster to use your word proces
sor to start searching from the bottom of the list and work your way up to the top.) This
tells you that the assembly language instruction that prevents COMP.COM from going
past ten mismatches is located at the hex offset address OAEF.

To patch ZOMP.COM so it doesn't care how many mismatches it finds, get rid of this
instruction. At the DOS prompt type:

DEBUG ZOMP.COM

and then when you see the DEBUG hyphen prompt, type:

Favorite Tips 801

F OAEF LS 90

and press the Enter key. Type Wand press the Enter key to write the changed file to disk,
and then Q and Enter to quit.

Replace the OAEF in this example with the address that you found when you used your
word processor to search, if the address is different.

To see if this patch worked, create two test files called FORWARD and BACKWARD.
FORWARD looks like:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

and BACKWARD looks like:

ZYXWVUTSRQPONMLKJIHGFEDCBA

Each file is 26 bytes long. Compare them with COMP .COM and the process will stop
at ten mismatches. Then try it with ZOMP .COM and it should find all 26 differences. If
you're uncovering lots of differences with ZOMP.COM, it's best to redirect the results
into a file, with something like:

ZOMP FORWARD BACKWARD > COMPFILE

Then examine the COMPFILE file at your leisure. If you want to get rid of all the extra
spaces that DOS throws in, try:

ZOMP FORWARD BACKWARD I FIND "e" > COMPFILE

GRAPHICSandGRAFTABL

If you 're working with text and you want a permanent copy of what's on the screen, you
can just tum your printer on and press Shift-PrtSc.

But if you're working with a language like BASIC or Pascal and you have a fancy
graphics image on your screen and want to send a copy of this image to your printer, you
can'tjust use the Shift-PnSc technique unless you first run the DOS GRAPHICS utility.

The print screen routine coded in ROM BIOS works only with characters. If the dis
play is in a graphics mode, the routine will print only the ASCII characters that it can
recognize, but won't translate the graphics. This is a reasonable restriction, since graphics
protocols for printers vary a great deal and the ROM BIOS can't support them all.

The GRAPHICS.COM program (or GRAPHICS.EXE in some versions) supplements
the ROM BIOS print screen routines. It remains resident in memory, so you need load it
only once during your PC session. Once it's loaded, your system can print 320 x 200
four-color graphics (video modes 4 and 5), and 640 x 200 black and white graphics (video
mode 6) on an IBM Graphics Printer or compatible.

I 14 I'

802 PC Magazine DOS Power Tools

GRAPHICS uses different dot densities for the four colors of the 320 x 200 mode to
simulate color. More recent DOS versions of GRAPHICS also support various IBM
printers that can actually reproduce the colors.

GRAPHICS.COM doesn't support the additional video modes of the IBM Enhanced
Graphics Adapter (EGA). Fortunately, Charles Petzold's EGAGRAF.COM program on
the accompanying disk provides new screen-dump routine for EGA 640 x 350 graphics
displays on an IBM Graphics Printer or compatible.

Petzold's EGAPRTSC.COM program replaces the normal BIOS print screen routine
to let you make text screen dumps of EGA displays that use more than 25 lines. EGA and
later video adapter ROMs can look in the BIOS data area (at address 0040:0084) to see
how large the screen is and how many lines of text to send to the printer.

If you're using a graphics screen on a CGA system and you try to generate ASCII
characters with values above 127, you'll end up with a mess unless you first load the
DOS GRAFT ABL utility.

The PC ROM stores the bit patterns for ASCII characters with values from 0 through
127 starting at address FOOO:FA6E. Each character is represented by eight successive
bytes. Interrupt IF at the very bottom of memory (address 0000:007C) stores the address
of an optional table of bit patterns for the high-bit ASCII characters with values from 128
to 255. GRAFT ABL loads such a table into RAM and adjusts the address at 0000:007C
to point to this table.

If GRAFT ABL isn't loaded, the address at 0000:007C will be 0. If you then try to print
an ASCII value over 127 in graphics mode, your system will assume the table of high
bit character patterns is stored at address 0, or 0000:0000. This happens to be where your
system stores interrupt vectors, not character patterns, so your system will end up trying
to make characters out of vector addresses. The result is junk.

Each new hardware release changes the rules. EGA and later video adapter BIOS
provide bit patterns for all 255 characters. In the most recent version of DOS, GRAF
T ABL can also load the hodgepodge of foreign language code page data into memory.

Starting with the EGA, IBM made it easy to use alternate character sets. The CGA and
monochrome adapter ROMs contained character dot patterns that only the adapter could
use. But the EGA and all subsequent adapters put copies of the dot patterns into the nor
mal megabyte of the PC's address space, where they're fairly easy to reach.

(Actually, the CGA contains two sets of dot patterns. The normal one draws charac
ters out oflines that are two pixels wide. If you yank out your CGA adapter, find jumper
P3, and connect the jumper's two pins, you can see the alternate single-pixel character
set. It's not worth the trouble.)

Chapter 13 on the EGA explains how to load and activate an alternate character set
through software control. Two simple programs (again written by Charles Petzold) can
switch you back and forth between a pair of different 256-character fonts with ease.

STACKS

If you're stuck using DOS version 3.2, watch out for a nasty but easily correctible bug
- an "Internal Stack Error" message. Simply pressing the Pause key on the new IBM

Favorite Tips 803

keyboard rapidly ten times will produce this message and lock your system, forcing a
power-down restart.

The DOS manual states that this error is caused by a "rapid succession of recursive
hardware interrupts," and suggests adding the command "STACKS=N,S" to your CON
FIG.SYS file. N represents the number of stack frames, where the default is 9 and the
range is 8 to 64. S is the size in bytes of each frame, where the default size of each stack
frame is 128 bytes and the range is 32 to 512. Using this STACKS statement reduces
available memory.

While most users don't pound on the Pause key, a fast typist entering data into a Lotus
1-2-3 spreadsheet can easily trigger the error, halting your system and resulting in lost
data, time, and effort.

You can eliminate the problem by adding a line like:

STACKS=32,256

to your CONFIG .SYS file, which lets you pound on the Pause key about 25 times before
causing an error.

XCOPY

Sometimes a new DOS version isn't much of an improvement over the previous one. At
other times, however, the new DOS version contains a real gem. One of the most daz
zling is the XCOPY command introduced with version DOS 3.2. It's an extended COPY
command that includes some of the features of BACKUP, as well.

XCOPY is fast. It reads as many files as will fit into memory from the source disk,
then writes the files to the destination disk in one speedy gulp. COPY, on the other hand,
reads and writes each file individually, continually switching back and forth between the
drives.

When used with its optional /S switch, XCOPY will also copy files from nested sub
directories, creating new subdirectories on the target disk as needed. While subdirectories
are more common on hard disks than diskettes, some floppies contain subdirectories to
organize the data on them better or to store more than the maximum 112 or 224 files that
a diskette root directory can hold. To copy such a diskette type:

XCOPY A:*.* B: /S

To copy all the diskette files to a subdirectory of your hard disk while maintaining the
same directory structure, try:

XCOPY A:*.* C:\SUBDIR /S

where SUB DIR is a subdirectory of your hard disk.
Similarly, if you need to copy a directory of your hard disk (including subdirectories

within just that directory) to a diskette, XCOPY also comes to the rescue:

804 PC Magazine DOS Power Tools

XCOPY C:\SUBDIR*.* A: /S

Sometimes you may want to copy selected files from one disk to another. You could
COPY each of these files individually, or you could use the /P (prompt) switch with
XCOPY:

XCOPY C:\SUBDIR*.* A: /P

In this case, XCOPY will ask file by file whether you want to copy each. You simply
type Y or N. And, you can use the /S and /P switches together.

XCOPY is extremely useful for making backups. The ID switch followed by a date
copies just those files created or changed on that date or later. So:

XCOPY C:\SUBDIR*.* A: /0:04-15-88

copies to A: only those files created or changed on or after April 15, 1988.
Another aid in backing up files is the file archive bit, which is set to 1 when the file is

first created and every subsequent time you change it. When you tack on a /M parameter,
XCOPY will copy only those files whose archives bit are set to 1. After it copies each
file,· XCOPY resets the archive bit to 0. The next time you use XCOPY with a /M
parameter, XCOPY will skip over any file with an archive bit value of 0, which avoids
cluttering up your backup disks with duplicate copies of files that you haven't changed.

You can use XCOPY to back up your C: hard disk with the command:

XCOPY C:*.* A: /S /M

When drive A: runs out of space, simply put in a new diskette and rerun the command.
Those files already copied will not be recopied to the next diskette.

The advantage of using XCOPY instead of BACKUP for this chore is that the copies
on the diskette remain normal useable files. While BACKUP can also copy files selec
tively, you have to use the RESTORE command on copies made with BACKUP before
you can use them. The one advantage of BACKUP is that it can split huge files over
'\everal floppy disks. But until version 3.3, BACKUP and RESTORE could create havoc
1n your hard disk by copying older versions of your DOS system files over newer ver
sions.

COMMAND

If you 're like most users, you know that COMMAND.COM is a part of DOS needed to
operate your system properly. Erase it from your root directory and you won't be able to
boot your system.You may also know that one of COMMAND.COM's roles is to process
the commands you type, like DIR, CHKDSK, or 123. But you may not know that COM
MAND.COM itself is also a useful command.

Favorite Tips 805

To understand how this works, you have to know what the various parts of DOS do.
When you make a disk bootable (by formatting it with a /S parameter, or later using SYS
and COPY COMMAND.COM), you're adding three files to it:

• IBMBIO.COM
• IBMOOS.COM
• COMMAND.COM

The first two files (which may be called IO.SYS and MSDOS.SYS on non-IBM sys
tems) are "hidden" since they won't show up in normal directory searches, although you
can see them by typing CHKDSK N or running a program on the accompanying disk
like DR.COM.

In DOS 2.0 and above, IBMBIO is essentially a series of device drivers that let DOS
communicate with the hardware of the PC, including the display, the keyboard, the disk
drives, and the printer. In many cases, these IBMBIO.COM device drivers use the ROM
BIOS interrupts.

IBMDOS.COM contains the code needed to execute the DOS function calls that ac
tually do the behind-the-scenes file, disk, and basic system work. If a particular function
call needs to use a hardware device, it calls a device driver routine in IBMBIO.COM.
This is why Chapter 12 on screens deals almost exclusivt(lY with BIOS calls rather than
DOS calls, since video is hardware-based. ,

In most cases, programs issue DOS calls to IBMDOS.COM, then IBMOOS.COM is
sues device driver calls to IBMBIO.COM, then the device drivers issue interrupts to the
ROM BIOS, and the ROM BIOS talks to the hardware.

COMMAND.COM is the program that is running when no other program is running.
It asks for the date and time when you boot up, displays the DOS prompt, reads in what
you type at the DOS prompt, and searches to see if what you typed in is an internal com
mand (DIR, COPY, ERASE, etc.). If so, it will execute that command, often using lots
of interrupt 21H DOS function calls. If the command you typed is not an internal com
mand, then COMMAND.COM will search the current directory for a COM, EXE, or
BAT file of that name, and then use directory paths set by path to do further searches.
COMMAND.COM then loads the program, and takes over when the program is done.

COMMAND.COM also executes batch file programs, including AUTOEXEC.BAT
when DOS is first loaded. And it assumes control during critical hardware errors and is
sues the much-loved "Abort, Retry, Ignore?" message.

To further complicate matters, COMMAND.COM divides itself into two pieces when
it is first loaded into memory. The "resident" part of COMMAND.COM, about 3K bytes,
sits in the lower end of memory above the other two DOS files. The "transient" part of
COMMAND.COM - the bulk of the program - resides up at the very top of user
memory.

The transient part of COMMAND.COM interprets and executes the DOS internal com
mands and does batch file processing. These facilities are not needed when other
programs are running. By sitting at the top of memory, the transient COMMAND.COM
does not take up valuable memory space. It can be overwritten by other programs if they
need the space.

806 PC Magazine DOS Power Tools

When a program exits, it returns control to the resident part of COMMAND.COM,
which performs a simple checksum calculation of the memory area normally occupied
by the transient COMMAND.COM. This way it can tell whether the information loaded
in that area of memory is indeed its own transient part or whether the transient part was
overwritten. If it was overwritten, the resident part then reloads the transient part of COM
MAND.COM back into memory.

That's why exiting from a large program can cause a disk access while COM-
MAND .COM is reloaded into memory. Some programs like 1-2-3 and many com-
pilers - always use that top area, so this may happen often.

You can execute any DOS internal command (or any COM, EXE, or BAT program
for that matter) from within an assembly language program by loading a secondary copy
of COMMAND.COM and passing to it a parameter containing the command or program
name. COMMAND.COM will then handle all the complicated details and return control
back to your program.

If you want, you can load a secondary version of COMMAND.COM directly from the
DOS command level. First, figure out how much memory is available by typing:

CHKDSK

Then type:

COMMAND /C CHKDSK

and you'll see that a smaller amount of memory is available.
Under DOS 3.3 the memory-reporting part of the listing will look something like:

C>CHKDSK

655360 bytes total memory
471200 bytes free

C>COMMAND /C CHKDSK

655360 bytes total memory
467456 bytes free

The 3,744-byte difference is the amount of memory used by the second resident por
tion of COMMAND.COM. When you add a /C and the name of an executable file (such
as CHKDSK), COMMAND.COM will execute the file and then terminate just like any
other program by returning control to the previously executing program, which in this
case is the primary copy of COMMAND.COM.

This can come in very handy with batch files. Normally if a line in one batch file ex
ecutes a second batch file, control won't return to the first batch file. But if the first batch
file contains a line like:

-----------·

Favorite Tips 807

COMMAND /C BATFILE2

then the second BATFILE2.BAT batch file will be executed by the secondary command
processor. When BA TFILE2 finishes, DOS returns control to the original copy of COM
MAND.COM, which continues processing the initial batch file at a point directly follow
ing the COMMAND IC BA TFILE2 line.

(The CALL batch command, introduced with version 3.3, handles this task somewhat
more efficiently.)

However, if BA TFILE2 contains a PROMPT, PA TH, or SET command, then this will
affect the environment of the secondary COMMAND.COM which will be lost when
BA TFILE2 completes execution and control is returned to the primary COM
MAND.COM.

If you foad a secondary copy of COMMAND.COM without the /C you can see how
this works, by having the two versions juggle different prompts. Try typing in these four
commands, one after the other:

PROMPT [LEVELl]
COMMAND
PROMPT [LEVEL2]
EXIT

The first command changes your normal prompt to [LEVEL l]. The second command
loads a secondary version of COMMAND.COM. The third command changes the prompt
to [LEVEL2]. This [LEVEL2] prompt is effective only for the second copy of COM
MAND.COM. Typing EXIT at that point returns you to your original version of COM
MAND.COM, so the prompt returns to [LEVEL l].

Programs often load secondary versions of COMMAND.COM themselves. First, they
make sure that enough memory is available for DOS to load another version of COM
MAND.COM. When a program first begins executing, all available memory is allocated
to it. So, some of this memory must be freed up. Before the memory is freed up, the stack
pointer may have to be moved from the area of memory being freed, so the stack isn't
destroyed in some way.

Then, the program has to figure out where you've stored COMMAND.COM on your
disk. In DOS 2.0 and above, programs have access to your system• s environment, which
is designed to keep track of things like the current DOS prompt, any path you may have
set with the PATH command, and the drive, directory, and filename of your current com
mand processor.

You can see the current environment setting by typing SET. One of the lines displayed
will begin with "COMSPEC=" and will show the drive, directory, and filename of the
command processor COMMAND.COM. Any program can get at its environment by ac
cessing the memory beginning at the segment address stored in offset 002CH of the
Program Segment Prefix.

Once the program that needs to load COMMAND.COM figures out where it's stored,
it can perform a PC-DOS EXEC function call 4BH of interrupt 21H, which loads any
COM or EXE file, executes it, and then passes control back when finished.

808 PC Magazine DOS Power Tools

COMMAND.COM can generate slightly confusing errors based on which parts of it
are handy and which are not. If you run programs that use disks without DOS on them,
you may see one of the following three messages on the screen:

or

or

Non-system disk or disk error.
Replace and strike any key when ready.

Insert disk with COMMAND.COM
and strike any key when ready.

Insert disk with batch file
and press any key when ready.

The first message occurs when the PC is booting and the disk in drive A: does not have
a copy of all the required operating system files on it. If you get the first message after
you run a program, it means the program is terminating by rebooting your system. That's
not very polite, but some primitive programs do it that way.

The transient section of COMMAND .COM that includes all the internal commands is
not needed while another program is running. But once a program terminates, your sys
tem does need this section, so the resident part of COMMAND .COM performs the check
sum calculation mentioned above. If it can't find COMMAND.COM on the disk, it prints
the message:

Insert disk with COMMAND.COM
and strike any key when ready.

Usually, the transient part of COMMAND.COM looks for COMMAND.COM on the
disk it was originally loaded from. For a floppy system, this will be drive A:. You can
change this, however, if it will later be more convenient to keep COMMAND.COM
somewhere else. With DOS 3 .x versions you can tell DOS to look for COMMAND.COM
elsewhere by changing the COMSPEC variable in the environment string. If you 're using
a RAMdisk as drive C:, for instance, you can enter:

COPY COMMAND.COM C:
SET COMSPEC=C:\COMMAND.COM

Under DOS 2.x, this won't work. You have to load a secondary copy of COMMAND
and specify the search path as a parameter:

I I•

Favorite Tips 809

COPY COMMAND.COM C:
COMMAND C:\COMMAND.COM

Copying COMMAND.COM onto a RAMd.isk and then telling your system you've
done so can speed up operation significantly after memory-hungry programs have
finished.

The third error message from the above list:

Insert disk with batch file
and press any key when ready.

means that the program was invoked from a batch file and COMMAND.COM needs the
rest of the batch file to continue. What's annoying is that you'll get the third message
even if the batch file has just executed its last line. But this message is the easiest to get
rid of. Just press Ctrl-Break. You'll be asked if you want to terminate the batch file.
Answer with a Y.

If you have a batch file called SAMPLE.BAT and you want a permanent record of its
execution, you can't get one by redirecting the output with a command like:

SAMPLE.BAT > LOGFILE

However, 2.x versions of DOS let you use COMMAND.COM to do it. First, add a
final line to your batch file that says:

EXIT

Then type:

COMMAND > LOGFILE

This will load a second version of COMMAND.COM and redirect all activity into it.
You won't be able to see anything on your screen at this point. Type in the name of your
batch file very carefully. The batch file will run normally, then execute the EXIT com
mand when it's done and return to the first version of COMMAND.COM. To see what
went on, just inspect the LOGFILE file.

With later versions of DOS, you can try:

COMMAND /C SAMPLE.BAT > LOGFILE

(replacing SAMPLE.BAT with the actual name of the batch file you want to execute and
any parameters you want to pass to it).

You can also record batch activity by typing Ctrl-PrtSc or Ctrl-P to toggle on your
system's printer echo feature. Press Ctrl-PrtSc or Ctrl-P when you're done to turn this

8 I 0 PC Magazine DOS Power Tools

SYS

feature off. While it's on, everything that appears onscreen will also be sent to your printer
(unless you're doing something tricky that your printer can't figure out).

These days there's no excuse for doing anything with floppy disks other than using them
to back up your data or move information to another system.

However, some diehards still work on floppy-based systems, and some pesky copy
protected software still forces users to boot from floppies. Booting from a diskette means
that the floppy has to have the three DOS system files on it. However, each new, im
proved version of DOS is even more bloated than the one before it. And sometimes there's
almost no room left on your floppies for the fat new system files.

To upgrade the DOS version on a bootable disk, you'd normally use SYS to transfer
the new IBMBIO.COM and IBMDOS.COM files (or their generic equivalents) to the
old disk, then use COPY to install the new version of COMMAND.COM.

But this may not always be so easy.
Each disk contains a tiny single-sector 5I2-byte boot record that reads IBMBIO and

IBMDOS from the disk and loads them into memory. It's handicapped greatly because
IBMBIO and IBMDOS know all about using files and the disk, but the boot record can't
use them because the files aren't in memory yet.

Because of this handicap, the boot record requires that IBMBIO.COM and
IBMDOS.COM be the first two directory entries and that IBMBIO.COM be at the begin
ning of the disk data area in contiguous sectors. (The IBMDOS.COM can be anywhere
on the disk.)

The problem is that DOS has grown so much that diskettes prepared for earlier DOS
versions do not have enough room for the later IBMBIO files. A floppy containing a
once-popular version of 1-2-3 (IA) allocated I,920 bytes for IBMBIO.COM and 6,400
bytes for IBMOOS.COM. Under DOS version 3. I IBMBIO.COM grew to 9,564 bytes.
For PC-DOS 3.2, it ballooned to I6,368 bytes. The 3.3 version was a whopping 22,IOO.

To fix a situation like this, you have to get rid of the file temporarily that prevents
IBMBIO.COM from being stored in contiguous sectors. In the case of the 1-2-3 (IA)
system disk, this file is the first one you see when you do a DIR command, or run
I23.EXE.

So you would first use the COPY command to transfer I23.EXE to another diskette.
Next (assuming you have the DOS disk in the default drive A: and the 1-2-3 system disk
in drive B:) you'd execute the following commands:

DEL B: 123 .EXE
SYS B:
COPY COMMAND.COM B:

Finally, you would copy the I23.EXE file back to its old floppy.
The copy protection used in 1-2-3 (IA) is innocuous so you can safely copy files to

other diskettes and then copy them back. Other copy-protected software may require that
all the files be in certain sectors, and the above technique won't work with those disks.

FDISK

t I!

Favorite Tips 811

Fooling around with your hard disk can be very dangerous. Don't even think of doing it
if you 're not totally backed up or if you 're the least bit nervous about it Charles Petzold
is a true wizard on these topics, and the following advice of his can be trusted utterly.
But because you may have a strange hardware configuration, a funny version of DOS,
or some other bizarre and potentially troublesome system quirk, don't try these tricks un
less you follow every instruction to the letter and take full responsibility for anything that
happens.

When you first tum on your PC or reboot with Ctrl-Alt-Del, ROM BIOS first checks
out and initializes your system. BIOS then attempts to load into memory the first sector
of the first surface of the first track of the diskette in drive A. The first sector on a disk
ette contains a single-sector bootstrap loader program. If the diskette is bootable, the
bootstrap loader loads the rest of the operating system into memory. The operating sys
tem is effectively pulling itself up by its own bootstraps, which is why a system reset is
called a boot.

On a hard disk system, the BIOS will first attempt to boot from drive A:. If drive A:
does not contain a diskette or the drive door is open, the BIOS then attempts to boot from
the hard disk. Again, it reads into memory the first sector of the first surface of the first
cylinder of the hard disk. If this sector contained a bootstrap loader like the one on a disk
ette, the hard disk could accommodate only one operating system.

Instead, the first sector on a hard disk contains another small partition loader program
and some partition information. The format of this partition information is documented
in IBM's DOS Technical Reference manual. Only 16 bytes are required for each parti
tion. These 16 bytes contain a code to identify the operating system, the starting and
ending sectors of each partition on the hard disk, and which partition is bootable.

The partition loader searches through the partition information to determine which par
tition is marked as bootable. Each partition contains its own bootstrap loader in the first
sector of the partition. So, all the partition loader need do is load the bootstrap loader for
the bootable partition and then let the bootstrap loader take over.

In summary, for a diskette, the BIOS loads the bootstrap loader and the bootstrap loader
loads the operating system. For a hard disk, the BIOS loads the partition loader, the par
tition loader loads the bootstrap loader for the bootable partition, and the bootstrap loader
loads the operating system.

The program that lets you juggle hard disk partitions is FDISK, which can divide a
hard disk into one, two, three, or four separate partitions. Each of these partitions can ac
commodate a different operating system. Most people use the whole hard disk for DOS
and thus have only one partition on the hard disk. When you first set up a system with a
hard disk, you have to use FDISK to define a DOS partition even before you use FOR
MAT. (Often this is done by the computer store, so if you 're using a hard disk and have
never used FDISK, don't worry about it.)

If you use FD ISK to define more than one partition on your hard disk, FD ISK lets you
mark one (and only one) of these partitions as "active," which means that it's bootable.
If you boot from the hard disk, the operating system in that partition will be the one that
comes up.

j !t'

812 PC Magazine DOS Power Tools

For a partitioned hard disk, you have several ways to choose one operating system over
another when you boot up your machine:

Even if the DOS partition is not marked as bootable, you can still access the DOS par
tition if you boot DOS from a diskette. So, if you had two partitions on your hard disk
- DOS and something else - you could use the DOS partition if you boot DOS from
a diskette and the "something else" partition if you boot from the hard disk. The choice
between the two partitions simply depends upon the drive A: door being open or not.

Or, you could boot up DOS from a diskette, use FDISK to change the partition, then
reboot from hard disk. This is fairly fast and if you do it a lot, you may want to set up a
special disk that calls FDISK from an AUTOEXEC.BAT file.

Be very careful - experimenting with hard disk partitions is best done with a clean
hard disk or a hard disk with disposable data. Changing the size of the DOS partition with
FDISK wipes out the DOS partition (or at least the FAT and directory information).
FDISK will warn you about this. Heed the warning.

If you 're using a hard disk that seems to devour more than its share of space, you might
be able to make things more efficient by reducing the cluster size. Might. And again, you
have to very careful about this.

The entire data area of a hard disk is divided into smaller areas called clusters. Files
on a disk are always stored in one or more clusters. If the file does not fill up the last
cluster it occupies, then the rest of the space in that cluster is lost. The number of bytes
in each file reported by the DIR command is the size of the file when it was created or
last modified. The amount of space that file actually requires on the disk is the size of the
file rounded up to the next multiple of the cluster size.

On average, you would probably lose about half a cluster for each file on the disk. It
might be more if you have a lot of small files less than half the cluster size.

You can easily determine the cluster size for a particular disk. First, do a DIR and note
the "bytes free" value. Then create a very small file. The easiest method is with the com
mand:

ECHO > SMALLFIL

Do another DIR and see how much space you've lost That's your cluster size.
The cluster size is always a power of 2 and for most normal disks, a multiple of 512.

Some RAMdisks may have cluster sizes of 128 or 256, but real disks have cluster sizes
of 512, 1,024, 2,048, 4,096, and 8,192 bytes. For a single-sided floppy diskette, the cluster
size is 512 bytes. For a double-sided diskette, it's 1,024 bytes. For a ten-megabyte hard
disk, the cluster size is 4,096 bytes.

For hard disks larger than ten megabytes, the cluster size is dependent upon the DOS
version used when originally configuring the disk using FDISK and FORMAT. A 20-
megabyte hard disk originally configured under DOS 2.x has a cluster size of8,192 bytes.

A cluster size of 8,192 bytes is absurdly large, and is the result of the method intro
duced way back in DOS 1.0 for storing files on a disk. This method limited the total num
ber of clusters on a disk to 4,078 (4,096 minus a handful of cluster numbers used for
special purposes).

Favorite Tips 813

With DOS 3.0, the total number of clusters possible on a hard disk was increased to
65,518, which let users make the cluster size on a hard disk smaller. A 20- or 30-megabyte
hard disk that has been FDISKed and formatted under DOS 3.x has a cluster size of 2,048
bytes, because DOS 3.x allows cluster sizes on a hard disk to be represented by 16-bit
values instead of 12-bit values. However, DOS 2.x can work only with the old 12-bit
FAT.

It's a good thing that DOS 2.x doesn't even recognize the 20-megabyte hard disk for
matted under DOS 3.x. If it assumed that the FAT contained 12-bit values, it could easi
ly scramble up the FAT beyond recognition. Since the FAT is the most critical part of a
disk, this would be a very serious problem.

How does DOS 2.x know enough to leave the disk alone? It's all in the partition table.
A hard disk can be divided into one to four partitions, each of which may contain a dif
ferent operating system. (Most XT and AT users allocate the entire hard disk for a single
DOS partition.) A table with the partition information is stored on the first sector of the
disk. Each partition has a system indicator, which is a one-byte value that denotes the
operating system of the partition. DOS 2.x uses a 01 to indicate a DOS partition. DOS
3.x uses a value of 01 for a DOS partition with a 12-bit FAT and 04 for a DOS partition
with a 16-bit FAT. So, when DOS 2.x looks at the hard disk partition table and sees only
that 04 system indicator, it thinks the partition is non-DOS even though it really is a DOS
partition.

You'll experience this DOS 2.x incompatibility only with hard disks greater than ten
megabytes formatted under DOS 3.x. A normal PC-XT ten-megabyte disk can be used
by either DOS 2.x or DOS 3.x regardless of the formatting.

With 65,518 clusters available, it's theoretically possible to have a cluster size of 512
bytes for a 20- or 30-megabyte disk, but you really don't want a cluster size that small.
Since files are stored in noncontiguous areas of a disk, a small cluster size would mean
that files could become overly fragmented, which could slow down file access time.

Prior to DOS 3.0 (which was introduced at the same time as the IBM PC-A1) IBM
did not sell a hard disk over ten megabytes. The original PC-AT had IBM's first 20-
megabyte hard disk. Although it's possible to install a 20- or 30-megabyte drive on a PC
or XT running DOS 2.x, nobody working with strict IBM parts ever had a cluster size
over 4,096 bytes. The problem of these excessively large cluster sizes was fixed only
when IBM introduced a 20-megabyte hard disk. In one sense, it's not even IBM's problem
if you have a 8, 192 byte cluster size.

So, what can you do about this? If you have a hard disk over ten megabytes original
ly configured under DOS 2.x, you can usually reconfigure it under DOS 3.x to get a
smaller cluster size.

Warning: don't even think of trying the techniques mentioned in this section unless
every single one of your files is absolutely currently backed up, and you 're working with
a brand new blank hard disk, and you know what you're doing, and you take all the
responsibility for any bizarre effects. Otherwise, just read along.

This assumes that your C: hard disk is connected to a hard disk controller card that has
its own ROM BIOS, that you don't need anything special in a CONFIG.SYS file to use
the hard disk, and that you (or somebody at your computer store) originally configured

814 PC Magazine DOS Power Tools

the hard disk by running the nonnal FD I SK and FORMAT command included in IBM's
PC-DOS. It also assumes you're using a version of PC-DOS 3.2 or later.

First, you must back up your entire hard disk with BACKUP. Do it twice to play it
safe. For your 12 megabytes of files, you'll need about six boxes of diskettes for two
backups. Buy high quality diskettes for this. Fonnat them all before you begin. Don't use
any that have bad sectors.

The BACKUP command you want is:

BACKUP C:*.* A: /S

which backs up everything on drive C: in all subdirectories. BACKUP will prompt you
to put in new diskettes. Label them in sequence.

When you're done with the backup, boot up PC-DOS from drive A:, and run FDISK
by typing:

FD I SK

One of the FDISK menu options is to delete the existing DOS partition. Do this first.
Then create a DOS partition, which is another menu option. You probably want to use
the entire hard disk for DOS, so answer yes to that question. Your system will now reboot.
Make sure the DOS diskette is still in drive A:.

When you get back to the DOS prompt, fonnat the hard disk with:

FORMAT C: /S/V

After this is done, you can verify that everything is running smoothly by doing a DIR
and a CHKDSK on drive C:. You can try rebooting with the drive A: door open. You
machine should boot from the hard disk. At this point, you can create a small file to see
if your cluster size is indeed smaller. It should be 2,048 bytes.

Boot up again from the floppy. Now you can proceed to RESTORE the backed-up
files onto your hard disk with the RESTORE command:

RESTORE A: C:*.* /S /P

This whole process can be very scary and you may encounter some "gotchas" along
the way. Here are some of them:

First, some copy-protected programs installed on a hard disk may not work after a
BACKUP and RESTORE. Others will. Some of the problem programs (Lotus 1-2-3
Release 2, for instance) can be deinstalled. If you have any of these programs, deinstall
them from the hard disk before you begin and reinstall them when you 're all done. When
in doubt, contact the manufacturer. (After they give you the infonnation you need, tell
them what you think about copy protection. Use whatever language you feel appropriate.)

Second, people have sometimes had problems with BACKUP and RESTORE. Some
times RESTORE chokes in the middle of restoring from a bunch of diskettes. That's why
you should do two BACKUPs. You may want to take other precautions: your hard disk

Favorite Tips 815

probably has a number of purchased programs on it and a number of your own data files
in various subdirectories. You can probably recreate those purchased programs from the
original diskettes. For your own data files, particularly the ones most valuable to you,
use the regular COPY command to copy them to diskettes.

Third, if you're using a version of DOS older than 3.3, BACKUP will back up hidden
and read-only files, including the DOS files called IBMBIO.COM and IBMDOS.COM.
When you run RESTORE, you want to use the /P switch as shown above, which prompts
you when it is about to backup over existing read-only files. When you get the prompt
for IBMBIO.COM and IBMDOS.COM, answer NO.

Older versions of RESTORE will copy the old version of COMMAND.COM from the
backed up floppies to your hard disk. When you are done with the RESTORE, copy
COMMAND.COM from your newest DOS floppy diskette to the root directory of the
hard disk with the command:

COPY COMMAND.COM C:\

If you booted from the newly formatted hard disk before running RESTORE, DOS
will try to load the COMMAND.COM from the hard disk after RESTORE is completed.
But this would be the old COMMAND.COM. This is why you should boot from your
latest DOS floppy before beginning RESTORE. When RESTORE ends, you will be
prompted to put the DOS disk in drive A:, so it can find the correct version of COM
MAND.COM.

DOS 3.3 solved these system-file problems by modifying RESTORE so it won't re
store IBMBIO.COM, IBMDOS.COM, or COMMAND.COM. However, because it
won't restore these files, you have to use SYS to put these system files back on your hard
disk, and then use the COPY command to put COMMAND.COM back. Nobody said it
would be easy.

Fourth, after you're done with the RESTORE, your hard disk will still contain copies
of all the external DOS programs (such as CHKDSK and MODE) from your old DOS
version. You should replace these with the latest DOS versions. More recent copies of
DOS have a command called REPLACE that automates this process.

Fifth, sometimes after all this, funny things happen. For instance, you may not be able
to boot from drive C:. If this is the case, boot from a new DOS floppy and get into FDISK
again. Choose "Change the Active Partition" in the menu. If the status of the DOS par
tition is marked "N," it means it's nonactive and you can't boot from it. Make it active.
Sometimes just entering and leaving FDISK fixes the problem.

If you think that your hard disk still has the old DOS IBMBIO, IBMDOS, or COM
MAND files on it, you can boot from your new DOS floppy and execute the commands:

SYS C:

and:

COPY COMMAND.COM C:\

J lC 1 •

816 PC Magazine DOS Power Tools

This will reinstall the newest version of DOS on your hard disk.
Sixth, if you have a tape backup unit and you would rather use that instead of BACK

UP and RESTORE, you should determine whether it does a file-by-file backup or an
"image" backup. Many tape backup units give you a choice. You want to do a file-by
file backup. If your tape backup unit can only do an image backup. don't use it. The image
stored on the tape will include the hard disk's FAT and this will be a different format
under DOS 3.x. When you restore the hard disk from the imaged tape, the old File Al
location Table will be copied back to the disk. No good. If you do a file-by-file backup
and restore, it will probably copy over the DOS files. Boot your new version of DOS
from drive A: and do the SYS command and COPY of COMMAND.COM before you
try booting from the hard disk.

Seventh, after you've used DOS 3.x FDISK on a 20-megabyte or bigger disk, you can
not use the hard disk with any DOS version prior to 3.0. If you boot up from a DOS 2.x
floppy, DOS simply will not recognize the hard disk. Some people (program developers,
mainly) need to test programs under several DOS versions. These people may need to
have their hard disks recognizable by DOS 2.x. They shouldn't reconfigure their hard
disk.

Finally, this whole discussion is based on the IBM version of MS-DOS (which is called
"Personal Computer DOS" by IBM and commonly called "PC-DOS" by the rest of us).
Some versions of MS-DOS for other manufacturer's machines may not support the
smaller cluster size, so doing this will not have any effect. Again, when in doubt, contact
the manufacturer.

DOS Filters

One of the most useful features of DOS versions starting with 2.0 is the ability to pipe or
redirect data.

These later versions of DOS provide five standard input and output devices (standard
input, output, error, auxiliary, and printer) and let you reshuffle the way these devices
handle their input and output. For instance, while programs normally receive input from
the keyboard and display output on the screen, you could easily reroute things so that a
program receives input from a disk file and sends output to your printer.

To give you added power, DOS provides three special programs called filters that can
comb through the data on its way from one part of your system to another: MORE.COM,
SORT.EXE, and FIND.EXE. You can use MORE to display text a screenful at a time,
SORT to arrange the contents of your files in sorted order, and the multitalented FIND
to hunt through files for specific strings of characters, count the number of lines in your
files, and even add line numbers to your text.

The accompanying disk contains several other useful filters that do things like skip
certain lines when displaying files, or turn whole text files uppercase or lowercase.

DOS uses three command-line operators to handle redirection and piping: <,>,and I.
The command:

DIR > DIRLIST

Favorite Tips 817

redirects output by taking the directory information that would normally appear onscreen
and sending it instead into a disk file called DIRLIST. Similarly, the command:

SORT < DIRLIST

would redirect input by using the contents of the DIRLIST file as input for the SORT fil
ter rather than keystrokes from the keyboard. The output of this process would go to the
screen, and you'd see a directory listing sorted in alphabetical filename order.

(You could even combine redirected input and output on the same line, by adapting
this command to:

SORT < DIRLIST > DIRLIST.SRT

DOS would then take the raw, unsorted DIRLIST file, redirect it as input into the SORT
program, and redirect the output into a new alphabetically sorted file called DIR
LIST.SRT.)

By executing the first two commands one after the other, you could produce a sorted
directory listing:

DIR > DIRLIST
SORT < DIRLIST

However, this would leave a file on your disk called DIRLIST that you'd have to erase
later. What you really want to do is combine the two lines into one command. But you
can't do it with a command like:

DIR > SORT

Instead, use the I piping symbol:

DIR I SORT

When you pipe the output of DIR into SORT, DOS will create its own temporary files
in the root directory of your disk to hold the information normally sent to standard out
put by the DIR command. Then it will redirect standard input so this temporary file feeds
into the SORT program. When it's done, DOS will automatically delete the temporary
files it created.

If you 're in the root directory when you try this, you may see two strange files with
names like:

OD102A1F
0D102A25

0
0

6-01-88
6-01-88

1:16p
1:16p

These zero-length files with eight-digit hexadecimal filenames are the temporary files
DOS creates during the redirection process.

I JI I

818 PC Magazine DOS Power Tools

DOS 3.x uses the PC's clock to derive names for the temporary files, which is why
they look like numbers. DOS 2.x gave the temporary files names with the word PIPE in
them, which is at least a hint at what they did:

%PIPE1
%PIPE2

$$$
$$$

0
0

6-01-88
6-01-88

1:16p
1:16p

All temporary PIPE files have 0 bytes lengths since DOS displays the directory list
ings after it created the files and opened them for input but before it had a chance to close
them.

You can also use piping to execute several programs or commands in sequence. For
instance, if you had a \GAMES subdirectory and a program in it called CHESS.COM,
you could first change directories and then run CHESS by typing:

CD \GAMES I CHESS

If you had another game called CHECKERS.COM in the same subdirectory, you could
do the above and then run CHECKERS immediately after CHESS by typing:

CD GAMES I CHESS I CHECKERS

While this doesn't work with all DOS commands, it does let you combine certain
operations together into one line. To see how this works, type in the following one-line
batch file called THISFILE.BA T that creates a subdirectory called TEMP one level lower
than the directory you are currently using, copies itself into this new subdirectory, logs
into it, and then does a directory listing:

MD TEMP I COPY THISFILE.BAT TEMP I CD TEMP I DIR

Actually, DOS provides a fourth redirection operator:>>. When you use the double
» symbol, DOS will create a new file for output if the specified file doesn't already
exist, but will append information to an existing file without overwriting any old infor
mation already in the file. If you use a single > symbol, DOS will always overwrite any
existing information.

So if you don't already have a file called DIRLIST on your disk, both of these com
mands will work identically:

• DIR I SORT> DIRLIST
• DIR I SORT>> DIRLIST

But if your disk already contains a DIRLIST file, the first command will wipe it out
and replace it with the sorted directory listing, while the second command will just tack
the new sorted directory listing onto the end of the existing DIRLIST file.

When you issue a command like DIR I SORT without any parameters after it, DOS
assumes you want to sort alphabetically starting with the first character on each line. If

Favorite Tips 819

SORT finds lines with the same first character, it will look at the second character to
break the tie. If these are the same, it will keep looking at the next column until it finds
a difference.

SORT arranges text by looking at the ASCII value of each character. The decimal
ASCII value of a lowercase "a" is 97 while the value of an uppercase "A" is 65. However,
DOS 2.x and 3.x sort characters differently. DOS 2.x was case-sensitive, and would ar
range a character string like "AAA" before one like "aaa" since the ASCII value of ini
tial uppercase "A" is lower than its lowercase counterpart. DOS 3.x gives lowercase
letters the same value as their uppercase versions. (DOS 3.x also treats high-bit accented
foreign-language characters the same as their normal low-bit unaccented cousins.)

So if you asked DOS 2.0 or 2.1 to sort a file called DA TA.RAW that contained the
three lines:

banana
AVOCADO
apple

with the command:

SORT < DATA.RAW

you'd end up with:

AVOCADO
apple
banana

But if you tried the same command under DOS 3.x, you'd get:

apple
AVOCADO
banana

You can use two different syntaxes for many identical filter operations. For example,
if your disk contains a long text file called LONG TEXT, and you tried to view the con
tents with the command:

TYPE LONGTEXT

DOS would scroll the display rapidly off your screen before you had a chance to read
it. You could pause and then restart the scrolling process by pressing Ctrl-S repeatedly,
but this takes too much concentration and is too imprecise. Instead, just send the output
of the TYPE command through the MORE.COM filter with:

TYPE LONGFILE I MORE

820 PC Magazine DOS Power Tools

DOS will start displaying information, then pause automatically when the screen fills.
If you press just about any key, DOS will then display another screenful, and repeat the
process until it reaches what it thinks is the end of the file.

You could do the same thing with the command:

MORE < LONGFILE

Similarly, if you wanted to sort the above DATA.RAW file, you could do it either
with:

TYPE DATA.RAW I SORT

or:

SORT < DATA.RAW

But be very careful about which way you point the redirection symbol. While:

SORT < DATA.RAW

will sort the contents of your DATA.RAW file, turning the symbol around:

SORT > DATA.RAW

will wipe out your DAT A.RAW file. This is because DOS thinks you want a new file
called DAT A.RAW to be the output of the SORT process rather than to serve as the input.
So it opens the DAT A.RAW file and erases everything already in it.

Similarly, typing:

DIR I MORE

will display your files a screen at a time (as will DIR /P), but typing:

DIR > MORE

will create a new file called MORE and redirect your directory listing into it. It won't
damage the MORE filter, since its real name is MORE.COM.

When a redirection symbol is pointing into a filter, DOS will treat the file on the other
side of the symbol as a source of input. When a redirection symbol is pointing out of, or
away from, a filter, DOS will treat any filename on the other side of the symbol as an
output file.

If you're using a redirection symbol rather than a piping symbol, the name of the DOS
filter has to be the first thing after the DOS prompt. So:

C>SORT < DATA.RAW

Favorite Tips 821

will work just fine, while:

C>DATA.RAW > SORT

won't do anything other than generate a "Bad command or filename,, error, since DOS
will view the period between DAT A and RAW as a space, and look for a command or
executable file named DATA. If you happened to have a file called DATA.COM,
DAT A.EXE, or DATA.BAT handy, DOS would run it.

When you have the choice, it's more efficient to use redirection than piping. To see
the comparison, try running two slightly different sets of batch files that display the con
tents of all the batch files in your current subdirectory one at a time. Once you've created
all four files, see the difference in speed by first running SCANBA Tl and then running
SCANBA T2. The first pair, SCANBATl.BAT and READ 1.BAT, use piping:

REM SCANBATl.BAT
ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READl %%F

REM READ 1 . BAT
ECHO OFF
CLS
ECHO %1
TYPE %1 I MORE
PAUSE

The second pair, SCANBAT2.BAT and READ2.BAT, use redirection:

REM SCANBAT2.BAT
ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READ2 %%F

REM READ2.BAT
ECHO OFF
CLS
ECHO %1
MORE < %1
PAUSE

The workhorse line in READ2.BAT:

MORE < %1

is far faster than its equivalent in READl.BAT:

TYPE %1 I MORE

822 PC Magazine DOS Power Tools

(Again, you can speed things up even more by substituting CALL in place of COM
MAND IC for any DOS version 3.3 or later.)

You can have the SORT command start sorting on a column other than the frrst one..
Just add a/+ and a column number after the SORT command.

A normal directory listing looks something like:

FILE 001 11759 10-01-87 5:34p
FILE 002 2176 10-02-88 2:45p
FILE 003 11454457 10-03-86 11 :27p

l l l t l l
coll col 10 col 14 col 24 col 30 col 34
name ext size month year time

The filename itself starts on column 1. The filename extension begins on column 10,
its size on column 14, its date on column 24, and its time on column 34.

To sort this list of files by size, type:

DIR I SORT /+14

If you wanted to sort them by size, but in reverse order, just add a /R:

DIR I SORT /+14 /R

or:

DIR I SORT /R /+14

These numbers are hard to remember. You can create one big SD.BAT (for Sorted
Directory) batch file that makes it easy to see any sort of directory listing you want:

ECHO OFF
SET DEV=CON
IF %1!==! GOTO OOPS
FOR %%A IN (N n E e s s D d T t) DO IF %1==%%A GOTO OKAY
GOTO OOPS
:OKAY
IF %3!==! GOTO NOTHIRD
SET DEV=%3
IF %2==/r GOTO CHEKNAME
IF %2==/R GOTO CHEKNAME
GOTO OOPS
:CHEKNAME
ECHO This will create a file called %3

ECHO If this is not what you want, press
ECHO Ctrl-C then answer Y. Otherwise,
PAUSE
GOTO MAIN
:NOTHIRD
IF %2!==! GOTO MAIN
IF %2==/r GOTO MAIN
IF %2==/R GOTO MAIN
ECHO This will create a file called %2
ECHO If this is not what you want, press
ECHO Ctrl-C then answer Y. Otherwise,
PAUSE
SET DEV=%2
:MAIN
GOTO %1
:N
DIR I SORT %2 > %DEV%
GOTO END
:E
DIR I SORT /+10 %2 > %DEV%
GOTO END
:S
DIR I SORT /+14 %2 > %DEV%
GOTO END
:D
DIR I SORT /+24 %2 > %DEV%
GOTO END
:T
DIR I SORT /+34 %2 > %DEV%
GOTO END
:OOPS

Favorite Tips 823

ECHO You can sort by name, extension, size, date or time
ECHO by following %0 with a N or E or S or D or T, eg:
ECHO %0 N or %0 n or %0 E
ECHO To sort in reverse order, add a /R, eg:
ECHO %0 N /R or %0 n /r or %0 E /r
ECHO To put the results into a file, add a filename, eg:
ECHO %0 S /R DIRSORTR.FIL or %0 S DIRSORT.FIL
:END
IF %DEV%==CON GOTO BYE
IF %DEV%!==! GOTO BYE
ECHO Now enter: TYPE %DEV%
:BYE
SET DEV=

I Jt I

824 PC Magazine DOS Power Tools

Early versions of DOS may erroneously turn ECHO back on at the end of the batch
file. If this happens, stick an ECHO OFF at the offending point.

This batch file is somewhat complicated because it can accept so many different syn
taxes and because it tries hard to screen out invalid entries.

If you enter just SD without any parameters, or with invalid parameters, the batch file
will jump to the :OOPS label and print instructions. Here's a summary of what the
program will do for you:

Sort in Order Of
Name
Extension
Size
Date
Time
Reverse name
Reverse extension
Reverse size
Reverse date
Reverse time

Syntax
SDN(or) SD n
SDE(or)SDe
SD S (or) SD s
SD D (or) SDD
SD T (or) SD T
SD N /R (or) SD n/R
SD E/R (or) SD e/R
SD S /R (or) SD s/R
SD D /R (or) SD D /R
SD T /R (or) SD T /R

(Actually, you could substitute fr in place of /R.)
The %0 variables in the ECHO statements following the :OOPS label will make sure

that the instructions accurately reflect the batch file's name if you decide to rename it to
something like DIRSORT.BAT.

The long test line:

FOR %%A IN (N n E e S s D d T t) DO IF %1==%%A GOTO OKAY

screens out any sorting parameters that aren't valid. Then it uses the:

GOTO %1

command to jump execution to the proper batch label, so if you enter S because you
wanted to sort by size, the batch file will jump to the :S label. DOS is normally case-sen
sitive about everything, but it automatically capitalizes labels, so it will jump to the :S
label whether you typed SD S or SD s.

The lines that look like:

IF %1!==! GOTO OOPS

and:

IF %2!==! GOTO MAIN

and:

I 11

Favorite Tips 825

IF %3!==! GOTO NOTHIRD

test to see how many parameters you entered. When you enter a command at the DOS
prompt, DOS sets the value of a replaceable parameter called %0 with the name of the
command (or executable file) itself. Then it sees if you typed anything after the name of
the command or file and sets additional replaceable parameters values accordingly. So
if you entered:

SD E /R

DOS would set the following parameter values:

%0 SD
%1 E
%2 /R

SD.BAT gives you two options for handling the results of the various directory sorts.
You can either have it display the results on screen (the default) or redirect the results into
a file. If you specify a valid filename as a third parameter, SD.BAT will create a file and
redirect the sorted listing into it. You may also skip the /R parameter and add a filename
as the second parameter.

To give you the option of sending the sorted results to the screen or to a file, SD.BAT
uses an environment variable called %DEV%. It first sets the value of %DEV% to CON.
If you didn't enter a filename, DOS will substitute CON for %DEV: and tum the line:

DIR I SORT /+14 %2 > %DEV%

into:

DIR I SORT /+14 %2 > CON

Here the CON output device stands for the screen, so redirecting output to CON dis
plays the sorted listing on your monitor.

However, if you stuck a filename onto the end:

SD S DIRSORT.FIL

or:

SD S /R DIRSORT.FIL

SD.BAT will redefine %DEV% to the filename you entered. The tricky part is that
this filename can either be the second or third thing that you enter on the command like
after the SD, since you can add an optional/Ras the second parameter.

826 PC Magazine DOS Power Tools

The %DEV% variable doesn't hog much room in the environment, but if yours is al
ready crammed to the gills you may get an error message telling you you 're out of en
vironment space. If so, you '11 have to make your environment a bit bigger. See the chapter
on environments for details.

You can try the same kind of device switching if you program in BASIC. Many
programmers who write routines that send output to the printer first write them to dis
play on the screen. This saves paper and makes debugging a lot easier.

The technique involves using PRINT# instead of the normal PRINT command. Before
executing any of these PRINT# statements OPEN the screen (SCRN:) for output (e.g.,
OPEN "SCRN:" FOR OUTPUT AS #1).

Then, whenever the PRINT# statement executes, the output will go to the screen just
as it would if it were using an ordinary PRINT statement. If you want a hardcopy ver
sion of the same output, CLOSE the file and OPEN it again using your printer as the out
put device (e.g., OPEN "LPTl:" FOR OUTPUT AS #1).

If you try this, avoid using commands like LOCATE statements that would confuse
your printer. A sample routine might look like:

100 ' DEVSHIFT.BAS
110 ,
120 PRINT "Where should the output go - "
130 PRINT TAB(10);"1 - Screen"
140 PRINT TAB(10);"2 - Printer
150 I$=INKEY$:IF I$="" THEN 150
160 ON VAL(I$) GOTO 180,190
170 BEEP:GOTO 150
180 OPEN "SCRN:" FOR OUTPUT AS U:GOTO 230
190 OPEN "LPTl:" FOR OUTPUT AS U
200 ,

210 ' ** program continues here **
220 ,
230 PRINT 11, "This is a test"

Unfortunately, SORT isn't perfect. The date entry in a directory listing begins on
column 24. The U.S. date format is MM-DD-YY, so if you try to sorta directory listing
by date:

DIR I SORT /+24

DOS will put the month and day sequence in the correct order but not the year. You can
have DOS sort properly by year with:

DIR I SORT /+30

but this won't get the month and day columns sorted'properly.

Favorite Tips 827

Getting a directory listing that's correctly sorted by date requires three steps. First you
have to create a temporary file in month/day order:

DIR I SORT /+ 24 > TEMPFILE

Next you have to use a word processor or EDLIN to remove the time information from
the 1EMPFILE file. It's best to use a word processor that can delete columns, and have
it delete everything after column 31.

Finally, redirect the edited TEMPFILE file into another SORT command that looks at
the year column:

SORT /+30 < TEMPFILE

While it's possible (and common) to combine different filter operations on the same
line, if you tried:

DIR I SORT /+24 I SORT /+30

you wouldn't end up with a listing properly sorted by date. To see how this works, as
sume you had these four files on your disk:

FILE 001 60032 12-14-88 9:00a
FILE 002 1021 6-01-88 12:00p
FILE 003 22528 12-22-87 11: 31p
FILE 004 125056 1-16-88 9:17a

If you tried either:

DIR I SORT /+24

or:

DIR I SORT /+30 I SORT /+24

you'd end up with:

FILE 004 125056 1-16-88 9:17a
FILE 002 1021 6-01-88 12:00p
FILE 001 60032 12-14-88 9:00a
FILE 003 22528 12-22-87 11: 31p

The months and days would be correct, but not the year. And if you tried either:

DIR I SORT /+30

828 PC Magazine DOS Power Tools

or:

DIR I SORT /+24 I SORT /+30

DOS would spit out:

FILE
FILE
FILE
FILE

003
001
004
002

22528
60032

125056
1021

12-22-87
12-14-88
1-16-88
6-01-88

11: 31p
9:00a
9:17a

12:00p

with the entries sorted properly by ye.ar but with a 12/88 file arranged before a 1/88 file.
If you do try sorting your files, make sure that similar entries all begin in the same

column. SORT will work well with a fixed-field data base but not with a random access
file. Fixed field files look like:

Allenovitch Paul
Ballmerski Steve
Kingstein Adrian

345 Hilltop Lane
10 Maple Avenue
98612 Hideaway Heights

A random-access or comma-delimited version of this might be:

Allenovitch,Paul,345 Hilltop Lane
Ballmerski,Steve,10 Maple Avenue
Kingstein,Adrian,98612 Hideaway Heights

If you wanted to sort on first names, you'd be able to do it on the fixed-field version.
SORT also won't work on any file longer than 63K. A pity. And it needs to see car

riage returns at the ends of the lines it's sorting. Many applications have their own sort
ing routines that use faster algorithms, but for quick and dirty DOS tasks, SORT works
just fine.

FIND is one of the most versatile DOS commands. When combined with other DOS
commands and features, it can track down long-forgotten files, scan across hundreds of
files in a subdirectory for matching strings, and even give you a rudimentary address
book with an automatic lookup feature.

Most users clutter their root directory with dozens of miscellaneous or temporary files.
The ideal root directory, however, should contain only your first level of subdirectories
and the critical files COMMAND.COM, CONFIG.SYS, and AUTOEXEC.BAT. This
way, typing:

DIR \

will give you an index to the main subdirectory structure of your hard disk.
While DOS will print out a list of subdirectories if you type:

Favorite Tips 829

DIR*·

the list will also include any filename that lacks an extension. The DOS manual provides
a better way. using FIND:

DIR I FIND "<DIR>"

Actually. to prevent wear and tear on your fingers, all you have to enter is:

DIR I FIND "<"

However, this will show you only the subdirectories in your root directory. For a quick
onscreen list of all your subdirectories. type either:

TREE I FIND "Path"

or:

CHKDSK /V I FIND "Dir"

For a permanent copy, redirect the output into a SUBDIR.LST file:

TREE I FIND "Path" > SUBDIR.LST

or:

CHKDSK /V I FIND "Dir" > SUBDIR.LST

In fact. since CHKDSK N reports every file on your disk in every subdirectory. along
with the full path, you can use it to locate a file buried in a subdirectory many levels deep.
The FINDFILE.BAT batch file mentioned in Chapter 3 can find any file on your disk.
It's built around the single line:

CHKDSK / V I FIND "%1" I MORE

FINDFILE.BAT isn't as fast as dedicated assembly language utilities such as WHERE
or SEARCH but it's slightly easier to use. since it lets you locate files by entering just a
fragment of the filename. FINDFILE will uncover any matches containing the specified
fragment. regardless of whether the match is to the left or right of the dot in the filename.

If you normally use FIND to uncover single words or parts of single words, and you
hate typing in the required quotation marks, you can create another small batch file called
F.BAT:

ECHO OFF
IF %2!==! GOTO OOPS

I 14 I

830 PC Magazine DOS Power Tools

FIND "%1" %2
GOTO END
:OOPS
ECHO The format is: %0 STRING FILE
ECHO where STRING is the one-word
ECHO string you want, and FILE is
ECHO the file you're searching
:END

While this saves typing, it won'~ let you hunt for any strings with spaces in them, since
it will interpret the word after the first space as the name of the file you want to search.
Remember, too, that FIND is case-sensitive, so it won't locate "String" if you tell it to
find "string" or "STRING."

DOS can't handle wildcards when executing a normal FIND command, although you
can tell it to look through several files in one operation. To have it search through the
first three chapters of a book for the text "DOS version" you would use a command like:

FIND "DOS version" CHAPTER.1 CHAPTER.2 CHAPTER.3

You can have FIND snoop through every file on your disk by using a FOR. .. IN ... DO
command in a batch file like the following PINDALL.BAT:

ECHO OFF
IF %1!==! GOTO OOPS
FOR %%A IN (*.*) DO FIND "%1" %%A
GOTO END
:OOPS
ECHO You must enter a one-word
ECHO string you want to find
:END

This batch file will uncover every matching single-word string in every file in the
logged subdirectory. Unfortunately, while it will print each match it finds, it will also
print the name of every file it checks, along with a"----------" whether or not it locates a
match.

You can normally get rid of such unwanted lines by piping text through a FIND com
mand that includes a N parameter. If you wanted to see a listing of all the files in a par
ticular directory, but didn't want to see any subdirectories, you could type:

DIR I FIND /V "<DIR>"

or the shorthand version:

DIR I FIND /V "<"

Favorite Tips 831

If you 're currently in a subdirectory bursting with files and you want to see all the files
with the letters "COM» in them, you can type:

DIR I FIND "COM"

and you may see something like:

COMFILES <DIR> 6-05-88 7:46p
WELCOME HOM 21376 8-27-88 11: 32a
INCOMING MAL 6925 2-22-88 10:22p
MORE COM 313 3-17-87 12:00p
COMMON LST 1561 5-22-88 12:00p
PRINT COM 9026 3-17-87 12:00p
PROCOMM <DIR> 6-05-88 7:46p

To remove the subdirectories from this list, add a FIND N command:

DIR I FIND "COM" I FIND /V "<"

and you 'II get:

WELCOME HOM 21376 8-27-88 11: 32a
INCOMING MAL 6925 2-22-88 10:22p
MORE COM 313 3-17-87 12:00p
COMMON LST 1561 5-22-88 12:00p
PRINT COM 9026 3-17-87 12:00p

(If all you wanted was the COM files, you could of course type:

DIR *.COM

But this FIND command would do it as well:

DIR I FIND " COM"

You need the extra space between the quotation marks, since DOS sticks a space between
the filename and the extension in all directory listings.)

However, you can't combine FIND commands in a FOR. . .IN ... DO batch command.
Changing the third line in FIND ALL.BAT to:

FOR %%A IN (*.*) DO FIND "%" %%A I FIND /V "---"

wouldn 'tremove the extraneous filenames and"----------" bars. You could do it by adapt
ing PINDALL.BAT so it passes parameters to a second batch file called FA.BAT that
does the actual work:

832 PC Magazine DOS Power Tools

First, the revised PINDALL.BAT:

ECHO OFF
IF %1!==! GOTO OOPS
FOR %%A IN (*.*) DO COMMAND /C FA %1 %%A
GOTO END
:OOPS
ECHO You must enter a one-word
ECHO string you want to find
:END

Next, FA.BAT:

ECHO OFF
FIND "% 1" %2 I FIND /V "---"

If you're using a DOS version 3.3 or later, you could improve performance slightly by
substituting CALL for COMMAND /C.

It's important to time- and date-stamp your files so you 'II always know which versions
are most current. And by doing so, you can have the DOS FIND filter help locate recent
files for you.

If you have a crowded subdirectory that contains an important file you know you
created in January, but you can't remember what you named the file, you can isolate all
your January files by typing:

DIR I FIND " 1-"

DOS is finicky about what's inside the quotation marks. FIND "1-" would display
dates like "11-23-8T' and" 3-21-86" since the "1-" string is part of each. The leading
space (directly after the initial quotation mark and before the 1) in " 1-" is unique to
January. However, if your subdirectory contains files created over several years, FIND
" 1-" may display files created in 1/85, 1/86, 1/87, 1/88, etc. To toss out all but 1/88 files,
use FIND twice:

DIR I FIND " 1-" I FIND "-88"

This pipes the entire directory through the January filter, and then filters out every
thing that doesn't have an 88 in it. If you suspect that this process would uncover lots of
files, you can pause the display a screenful at a time by sending the output through the
MORE filter:

DIR I FIND " 1-" I FIND "-88" I MORE

Piping output through one or two filters in a row doesn't degrade performance very
much, but a long chain of successive FINDs could drag on for quite a while. Copy the

Favorite Tips 833

files to a RAMdisk if you can. And if you try it on a crowded floppy disk, you may as
well just go out for lunch.

Directory output contains more infonnation than just a listing of files and subdirec
tories. If want to see your files without the volume and directory information at the top:

Volume in drive A is PC MAGAZINE
Directory of A:\SUBDIR

or the "bytes free" data at the bottom:

5 File (s) 295936 bytes free

you can type:

DIR I FIND /V "e"

All three lines of text contain lowercase "e" characters but no filenames can, and the /V
will suppress anything with an "e" in it.

One of FIND's least used features is its ability to count your lines. If you were sure
every line of all your files contained something common like a space, you could have
FIND look for spaces (by specifying" ") and count them. Unfortunately, many files con
tain lines with nothing on them except carriage returns, or single unspaced words at the
end of paragraphs.

However, since presumably no line in any of your files has a ridiculous string like
"&@#$"you can use the /V to count how many lines don't contain this. This NUM
BER.BAT file will use this trick to give you an accurate line count:

ECHO OFF
IF %1!==! GOTO OOPS
ECHO Number of lines:
FIND /C /V "&@:!;$" %1
GOTO END
:OOPS
ECHO Enter a filename after %0
:END

Run this batch file on the revised PINDALL.BAT batch file above and you'll see:

Number of lines:
---------- FINDALL.BAT: 8

The FIND command can also number all your lines. Again, use the trick of having the
/V report all lines without an unlikely string:

834 PC Magazine DOS Power Tools

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V /N "&@#$" %1 I FIND /V "-----"
GOTO END
:OOPS
ECHO Enter a filename after %0
:END

Run this batch file on the new PINDALL.BAT and you'll see:

[l]ECHO OFF
[2]IF %1!==! GOTO OOPS
[3]FOR %%A IN (*.*) DO COMMAND /C FA %1 %%A
[4]GOTO END
[5] : OOPS
[6]ECHO You must enter a one-word
[?JECHO string you want to find
[8] :END

You can create a brand new file where each line is individually numbered, by redirect
ing the output to a file (here called NMBRFILE):

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V /N "&@#$" %1 I FIND /V "-----" > NMBRFILE
GOTO END
:OOPS
ECHO Enter a filename after %0
:END

You can use FIND to clean up many displays and reports. For instance, if you want to
see how many bad sectors are on your hard disk and type CHKDSK, DOS will bury this
bad-sector information in with a report on the volume name, the amount of free memory,
the number of hidden files, etc. But if you filter the output through FIND with:

CHKDSK I FIND "bad"

all you'll see is how many bytes of bad sectors that DOS uncovered. By putting other
strings inside the quotes, you could use this same technique to report just the number of
subdirectories, the amount of free space on your disk, the number of files on your disk,
etc.

One of the more annoying aspects of DOS is that it won't ordinarily report the time
and date without asking you whether you want to reset them. By using FIND, however,
you can create two files, T.BAT and D.BAT, that will print the current time and date
without any fuss.

Favorite Tips 835

T.BAT contains the single line:

ECHO ONE I MORE I TIME I FIND "Cu"

Similarly, D.BAT is:

ECHO ONE I MORE I DATE I FIND "Cu"

If you 're using a version of DOS 3.3 or later, put a@ at the very beginning of the line
so it doesn't display onscreen as it executes. Using the ECHO command starts the whole
process, but it doesn't actually print the word ONE. The MORE command supplies the
carriage return needed to trigger the DA TE and TIME. And the FIND command screens
out everything other than the line with the word "Current" on it.

Many RAMdisk users reset their COMSPEC so that DOS looks on the correct drive
if it needs to reload COMMAND.COM. What's your current COMSPEC? A single-line
batch file called COMSPEC.BAT will let you know:

SET I FIND "SP"

If you've ever used the TYPE command to snoop inside a COM file to see what text
messages it contains, you've probably been annoyed by a profusion of beeps. Whenever
TYPE stumbles across an ASCII character 7 it tells DOS to beep the speaker. You can
avoid this in examining a beep-filled file like COMMAND.COM, by typing:

FIND /V ""G" COMMAND.COM

(Note: You don't actually enter the "G in the above example, although one will show up
onscreen when you enter the ASCII 7 bell character. To enter it, after typing in the FIND
N and the initial quotation mark, type Ctrl-G, then type the second quotation mark and
the COMMAND.COM filename.)

The above techniques assume you 're hunting for single strings only.By piping the out
put of one FIND command through another FIND command, you can limit your search
to the few instances where two specified strings occur in the same line.

Suppose you have a file called NAMEF~E with the following contents:

Buddy Jones, 3 Main Street, Soneville, OK
Mary Smith, 1 Park Lane, Washington, DC
Sam Jonesbury, 21 M Street, Washington, DC

If you wanted to locate just the Jones who lived in Washington, typing:

FIND "Jones" NAMEFILE

would report both the Jones you were looking for and the Jonesbury you weren't. You
could limit the search to lines containing both "Jones" and "DC" with the command:

I If

836 PC Magazine DOS Power Tools

FIND "Jones" NAMEFILE I FIND "DC"

While SORTrequiredfixed-fieldrecords,FIND isn'tpicky. But it is fussy about quota
tion marks. If you 're searching for these you have to wrap each one in its own set of quote
marks. Assume you're hunting through a MORETEXT file covering the MORE filter
that contains the passages:

Unfortunately, the MORE command isn't
really very friendly. After it fills a
screen with text, it prints a terse
message at the bottom: "- More -"
What it really means at this point is
"Hit a key to see additional text."

If you want to find occurrences of the string "-More-" you'd have to use a command
like:

FIND """- More -""" MORETEXT

FIND also makes it easy to print a list of files that you've either created or changed on
a particular day. If you've been toiling away all day on 12/9/87, and you want to check
a particular file you updated early in the morning but have forgotten its name, you can
simply type:

DIR I FIND "12-09-87" I FIND "a"

The first FIND will search for everything created on 12/9 (you must remember to pad
single-digit dates with zeros), and the "a" will limit the search only to files created before
noon. This assumes, of course, that you properly date- and time-stamp your files.

While you can pipe the output of one FIND search through several others, such
repeated FIND sieves can take an awfully long time unless you 're working on a fast hard
disk or RAMdisk.

The classic use of FIND is to give yourself a lightning-fast address book. First, to build
up your NAMEFILE file of names and addresses, create an ADDNAME.BAT batch file
with the following contents:

ECHO OFF
ECHO Enter up to one line of name
ECHO and address info at a time
ECHO
ECHO When all done, press Enter, then
ECHO the F6 key, then Enter again
ECHO
ECHO Enter names and addresses now:
COPY NAMEFILE + CON NAMEFILE > NUL

Favorite Tips 837

Then, whenever you want to adda new name to your master NAMEFILE list, just type
ADDNAME and follow the directions onscreen. When you 're all done entering new
names, be sure to hit the Enter key and then the F6 function key and then the Enter key
one last time. The> NUL in ADDNAME.BAT prevents unnecessary text from showing
up onscreen.

The actual LOOKUP.BAT batch file that searches through your address book looks
like:

ECHO OFF
IF %1!==! GOTO OOPS
FIND "%1" NAMEFILE I MORE
GOTO END
:OOPS
ECHO Enter the string to look up after the %0
:END

Again, putting quotation marks in the batch file saves you from having to type them
in yourself each time you want to look something up, but it also limits you to single-word
entries. If you don't mind typing quotation marks from the command line, and you want
the ability to search for strings with spaces in them, remove the quotation marks that sur
round the % 1.

If you create your master NAMEFILE properly, you can use this technique to print
out the listings for those people living in NY, or with Zip Codes that start with 100 .. , or
who have area codes beginning with 212. And if you add discrete codes to the
NAMEFILE listing, such as XM to indicate that the person should be on your Christmas
card list, you can sort such listings out easily.

Remember, though, that FIND is case sensitive, and that if you 're hunting for Empire
State listings by searching for "NY,,, LOOKUP.BAT would also print out a listing for
the "PONY RIDERS ASSOCIATION!'

You could create a DELNAME.BAT batch file that used redirection and the N FIND
option to delete names:

COPY NAMEFILE NAMEFILE.BAK
FIND /V "%1" NAMEFILE.BAK I FIND /V "---" > NAMEFILE

This DELNAME.BATprocedure is far from foolproof, however, since it's all too easy
to delete an inadvertent match (which is why the batch file creates an automatic backup
file). And this process can pile up extra carriage returns in your files.

One more trick: If you don't want to have to enclose FIND strings between quotation
marks you can modify FIND.EXE so that quotes aren't necessary. The only drawback is
that this new version of FIND won't be able to search for strings containing spaces.
However, the easy way around this is to keep two versions of FIND - an unmodified
version called FIND .EXE that needs quotes and can handle several words separated by
spaces, and a patched version called FINDNOQ.EXE that just hunts for single words
without requiring quotes.

I 14 I

838 PC Magazine DOS Power Tools

Make a copy of FIND.EXE and be absolutely sure to remove the EXE extension. Just
call it FIND. (DEBUG will treat EXE files specially, and you don't want it to in this
case.) Then load it into DEBUG:

DEBUG FIND

Figure out how long the file is by typing:

RCX

and pressing the Enter key twice. You should see something like:

ex 1922

The 1922 is the length in hexadecimal notation (for version 3.3). This length will vary
from version to version. Jot it down to use in the next command.

Search for all occurrences of the pair of bytes 3C 22. This is the code that FIND uses
to see if the character you typed is a quotation mark (which has a hex value of 22). Take
the length from the previous step and use it in the middle of the commmand, substitut
ing it for 1922 if necessary:

S 100 L 1922 3C 22

l
(length goes here)

Again, you'll see different numbers in different versions, but DEBUG should report
three addresses:

30DD:03AF
30DD:03CD
30DD:03D2

Ignore the four digits to the left of the colons; they'll vary from system to system and
don't matter here. You have to make three small patches in each of these general areas.
On a sheet of paper, mark these addresses 1, 2, and 3:

03AF Address 1
03CD Address 2
03D2 Address 3

Patch 1: Take the four righthand digits from address 1 (03AF in this case, but sub
stitute the one you found if yours is different) and type:

U 03AF L4

t
(address 1 goes here)

You should see something like:

30DD:03AF 3C22
30DD:03Bl 750A

t
(use the address you find here)

CMP
JNZ

AL,22
03BD

Favorite Tips 839

The 03BD following the JNZ will vary from version to version, but it doesn't matter,
since you're going to change it. Replace the 750A with 4E90. Do this by taking the ad
dress directly to the left of the 750A (here it's 03Bl, but substitute the one you see if
yours is different) and typing:

E 03Bl 4E 90

t
(plug the address you found into here)

Then press the Enter key to register the change.
Patch 2: Take the four righthand digits from address 2 (03CD in this case, but sub

stitute the one you found if yours is different) and type:

U 03CD L2

You should see something like:

30DD:03CD 3C22 CMP AL,22

You 're going to replace the 22 with 20. Do this by taking the address you just entered
(here it's 03CD) and typing:

E 03CD 3C 20

t
(address 2 goes here)

Press the Enter key to register the change.
Patch 3: Take the four rightmost digits from address 3 (03D2 in this case,

but substitute the one you found if yours is different) and subtract 1 from it. This is easy.

840 PC Magazine DOS Power Tools

3D2- 1=3Dl. If you need help with hex math, DEBUG can do the subtraction for you.
Type an H, then the address, then a 1, then press Enter:

H 03D2 1
03D3 03Dl

l
(difference)

DEBUG will print a pair of hex values. The first is the sum of the two numbers you
entered, and the second is the difference. You want the difference. Take this difference
and plug it into the following command:

U 03Dl L6

l
(address 3 [minus 1] goes here)

When you press the Enter key you should see something like:

30DD:03Dl AC
30DD:03D2 3C22
30DD:03D4 740F
30DD: 03D6 4E

LODSB
CMP
JZ
DEC

AL,22
03E5
SI

Again, the address after the JZ will be different from 03E5 in different versions, but it
doesn't matter since you're going to replace all of this. Do it by taking the address-minus
one that you used in the U 0361 L6 command, and typing:

F 03Dl L6 90

l
(address 3 [minus 1] goes here)

Press Enter to make the change final. Now save your changes to disk and quit DEBUG
by typing:

w
Q

and pressing Enter after each. When you see the DOS prompt, rename the FIND file you
just patched to FINDNOQ.EXE. Then try using it to find a single word, but leave off the
quotation marks.

Favorite Tips 841

While you're at it, if you hate the---------- line that FIND.EXE prints out at the top of
each report, and you don't like using FIND N "-----" to screen it out, you can use DEBUG
to remove it once and for all.

To do so, before you write the above changed file and quit DEBUG, search for the
----------line by plugging the length of your FIND.EXE file into the following command:

S 100 L 1922 "----------"

l
(length goes here)

Substitute the length of your particular version if it's different from 1922. DEBUG
should respond with a single address:

30DD:l9F7

l
(use this address)

Ignore the numbers to the left of the colon. Plug the four digits to the right of the colon
(19F7 in this case, but substitute the one you found if yours is different) into the follow
ing command:

F 19F7 LA 8

l
(plug it in here)

This replaces the ten hyphens that FIND normally prints with ASCII 8 backspace
characters. Then type Wand press the Enter key to write the changed file and Q and Enter
to quit. When you're all done, rename the file and give it back its EXE extension.

You could, of course, eliminate the need for quotes by creating a batch file called
F.BAT containing the one line:

FIND "%1" %2

Then to find every occurrence of DIR in COMMAND.COM you just type:

F DIR COMMAND.COM

Printers

When ROM-BIOS tries to send something to your printer, it checks whether the printer
is ready to receive characters. If the printer isn't ready, BIOS sits there continually

I jf I

842 PC Magazine DOS Power Tools

rechecking the status. To avoid getting trapped in an endless loop, BIOS will give up
after a predetermined "timeout" interval, and report that the printer is busy. If you 're
printing from DOS, you'll be greeted with the friendly "Abort, Retry, Ignore" message.

On early PCs, timeouts sometimes occurred during form feeds on the IBM's slow dot
matrix printer, so IBM increased the timeout interval starting with version 1.1 of DOS.
These delay values are stored in the BIOS data area beginning at hex address 0040:0078.
This area contains four-byte values for the four parallel printers that the BIOS (in theory)
supports. The current PC ROM BIOS initializes the time-out values to hex 14 (decimal
20).

You can experiment with different timeout values in DEBUG. To double the LPTl
timeout value to 40 (28 hex), for instance, just load DEBUG and enter the following pair
of lines at the DOS prompt:

E 0040:0078 28
Q

Be careful with memory addresses; if you get them wrong, you can write over some
other important settings or instructions and get into trouble.

Once you find a value that works well, you can add a line to your AUTOEXEC.BAT
file to change it everytime you boot up. Just adapt the two lines shown above and put
them into a file called TIMEOUT.SET. Then add the following line to your
AUTOEXEC.BAT:

DEBUG < TIMEOUT.SET

When your system boots up, BIOS sniffs through your hardware trying to figure out,
among other things, how many parallel printer adapters are attached. It uses three pos
sible 1/0 port addresses to communicate with up to three adapters - hex 278, 378, and
3BC.

When it finds a valid printer adapter, it inserts the adapter's port number into a table
starting at BIOS data area 0000:0408. The table has room for four 16-bit entries. BIOS
puts the first port address at offset 408, the second (if it exists) at 40A, and the third (if
there is one) at 40C. Then it encodes the number of printers it found into the high two
bits of the BIOS Equipment List word at offset 410.

DOS uses four device names to refer to printers-PRN, LPTl, LPT2, and LPT3. PRN
is the default, and is the same as LPTl.

Many commercial applications are designed to work with LPTl. If you have two
printers - LPTl and LPT2 - hooked to your system and want to swap them, all you
have to do is exchange the port addresses at offsets 408 and 40A of low memory. Charles
Petzold's tiny PRNSW AP.COM on the accompanying disk makes it easy.

Many of the programs on the accompanying disk are designed to tame your printer.
Some let you generate form feeds from the keyboard. Others make it easy to send com
mands to your printer or prevent accidental print-screen attempts.

It's really frustrating to hit Shift-PrtSc accidentally. If your printer is on you have to
wait until it finishes typing the contents of the screen, and then readjust the paper to the

Favorite Tips 843

top of the next page. If it's off, your system will hang until DOS realizes that the printer
is not going to respond.

When you type Shift-PrtSc, DOS issues an interrupt 5, which first looks at a location
in low memory called STA TUS_BYTE to see whether your system is already dumping
a screen to the printer. If STATUS_BYTE is equal to 1, DOS thinks a screen dump is
taking place, and exits the routine without dumping another screen to the printer. If
STA TUS_BYTE is equal to 0, the routine sets STA TUS_BYTE to 1 so that it cannot in
terrupt itself, then does the actual dump, and finally resets STATUS_BYTE equal to 0
and exits the routine.

This means you can disable the Shift-PrtSc routine with a simple assembly language
routine, DISABLE.COM, that sets STATUS_BYTE to 1. A similar routine,
ENABLE.COM, can turn it back on by setting STA TUS_BYTE to 0. Both are on the ac
companying disk.

Most printers are capable of doing fancy tricks with fonts, spacing, and unusual operat
ing modes of one sort or another. But sending codes to your printer isn't always easy.

First, many printer command codes begin with an escape character (hex lB, decimal
27). But if you try to issue an escape character in DOS, you won't be successful, since
DOS interprets this character as a signal to abort whatever you were trying to do.
However, you can use DEBUG, or EDLIN, or a good word processor, or even BASIC
to generate these escape sequences. See the chapter on ANSI.SYS for tips on how to do
it (ANSI codes also begin with Escape characters).

To make creating custom printer control files easy, you can use the PRCODER.BA T
below. You '11 need to have DEBUG .COM in your current subdirectory, or in a directory
that your PATH knows about.

PRCODER.BAT reads parameters from the command line and inserts them into a
DEBUG script (to send the hex values lBH, 49H, and 03H you would type PRCODER
lB 49 3). You can enter several dozen codes on the same command line; the SHIFT com
mand reads them in and substitutes them one by one for the % 1 replaceable parameter in
the:

ECHO MOV DL,%1 >> PR.SCR

line. PRCODER.BAT then loops back and uses the:

IF %1!==! GOTO FINISH

test to see if there are any more command-line parameters to process. If it finds any, it
concatenates them to the existing DEBUG script. If it doesn't find any, it jumps to the
:FINISH label, adds the necessary DEBUG instructions to write the file, redirects the
script into DEBUG by loading a secondary command processor with:

COMMAND /C DEBUG < PR.SCR

to create a COM file, and then erases the DEBUG script.

844 PC Magazine DOS Power Tools

If the user doesn't enter any parameters, PR CODER.BAT prints instructions and then
quits. DOS substitutes the actual name of the batch file for the %0, so you can rename
PR CODER.BAT to whatever you want. The process will make each PRCODE.COM file
284 bytes long, the maximum length this process can handle. Be sure to rename existing
PRCODE.COM files before creating new ones so the older version isn't obliterated by
the new.

While some users might argue that it really isn't necessary to rewrite the MOV AH,5
line each time, it's a good idea to do so since you can't always be sure the AX register
will remain intact after an INT 21.

Note also that the line:

ECHO. >> PR.SCR

won't work properly in some versions of DOS. Its purpose in this batch file is to generate
a solitary carriage return. If your version of DOS stumbles over this, see the comments
on ECHO in the chapter on batch files. If you 're creating this batch file in DOS, you can
press the F7 key instead of typing the period, which will generate a null.

ECHO OFF
IF %1!==! GOTO OOPS
ECHO N PRCODE.COM > PR.SCR
ECHO A >> PR.SCR
:TOP
IF %1!==! GOTO FINISH
ECHO MOV DL,%1 >> PR.SCR
ECHO MOV AH, 5 >> PR. SCR
ECHO INT 21 >> PR.SCR
SHIFT
GOTO TOP
:FINISH
ECHO INT 20 >> PR.SCR
ECHO. >> PR.SCR
ECHO RCX >> PR.SCR
ECHO llC >> PR. SCR
ECHO W >> PR.SCR
ECHO Q >> PR.SCR
COMMAND /C DEBUG < PR.SCR
DEL PR.SCR
ECHO PRCODE.COM created
GOTO END
:OOPS
ECHO Enter %0 and then the HEXADECIMAL
ECHO values (each FF or less) of the
ECHO printer codes you want to send, eg:

ECHO %0 18 49 3
:END

Favorite Tips 845

The DOS PRINT utility, introduced with version 2.0, is a resident program that lets
you print out disk files while you 're running other programs. It's fundamentally different
from other background (or spooler) printing programs, since most software print buffers
lop off a large chunk of user memory as a holding area for text being sent to the printer.
The print buffer program intercepts printer output, stores it in this memory buffer, and
then later transfers it to the printer. This frees up the system for other activities.

PRINT, however, transfers disk files to the printer and takes up much less memory
than a print buffer program. The size of these files is limited only by disk space. Once a
regular print buffer becomes full, printing slows down to the speed of the printer.

Although PRINT can be used with a diskette system (if you don't change the diskette
containing the print file while printing is in progress), it's best suited for a hard disk sys
tem.

The PRINT.COM program in DOS versions 2.0 and 2.1 had some real problems. You
couldn't specify directory paths with the filename or optimize operation for particular
printers. PRINT version 3.0 corrected these problems and added a slate of new parameters
designed to make the process far more efficient and painless. Unfortunately, the PC-DOS
manual discusses these parameters in an obscure and generally unhelpful manner. It took
PC wizard Charles Petzold to sort it all out

PRINT' s syntax looks mystifying:

[d:] [path] PRINT [/D:device] [/B:buffsiz] [/U:busytick]
[/M:maxtick] [/S:timeslice] [/Q:quesiz] [/C] [/T] [/P]
[[d:] [path] filename [.ext]]

The /D (device name) and /Q (queue size) parameters are simple enough. Most of the
time you'll just specify /D:PRN or /D:LPTl to send output to the first parallel printer. IQ
can be set to the largest number of files you'll want to print at one time.

The /B parameter specifies the buffer size; its default is 512 bytes. This is the amount
of memory PRINT sets aside for reading the disk file. The default value means that the
print file will be read 512 bytes at a time. If the buffer is too small, you'll see frequent
disk accesses, particularly with a fast printer. If the buffer is too large, the disk accesses
will be less frequent but slightly longer, and PRINT will occupy more memory.

For a hard disk system with 640K, the best buffer size is probably something like 4096
or 8192, both of which are multiples of 512.

To understand the /S, /M, and /U parameters, you have to understand how PRINT
works.

During operation of the PC, the 8253 timer chip invokes a hardware interrupt (08H)
18.2 times per second, or about once every .055 seconds. This interrupt executes a short
routine in ROM BIOS that counts the numberof times it's called so DOS can know what
time it is. The interrupt 08H routine also invokes an interrupt 1 CH, often called the "Timer
Tick." PRINT intercepts the Timer Tick interrupt to trigger it into operation.

I jf I

846 PC Magazine DOS Power Tools

The /S parameter, which IBM calls the timeslice, is the number of timer ticks during
which PRINT will do nothing. When PRINT is doing nothing, the rest of the PC system
will operate as normal, so the /S parameter should really be called the "System Time
Slice."

The /M parameter, which IBM calls the maxtick, is the number of timer ticks during
which PRINT will attempt to shovel characters out to the printer. This is really the time
slice allocated to PRINT. Assuming that the printer is ready for these characters, PRINT
will have nearly total control during this period and other programs may do nothing.

The default maxtick and timeslice settings are /M:2 and /S:8, which means that PRINT
will be alternately active for 0.11 seconds and inactive for 0.44 seconds (assuming that
the printer is always ready to accept characters). Consequently, PRINT will be working
20% of the time; any other program will be working at 80% of normal speed.

The /U parameter, which IBM calls the busytick, comes into play only if the printer is
busy when PRINT attempts to print a character. The default value is /U:l, which means
that PRINT will wait one clock tick (.055 seconds) before giving up its /M time slice.
The rest of the system can then work for /S timer ticks before PRINT makes another at
tempt to print.

PRINT also gives up its time slice if a disk access is in progress. The reason for this is
obvious - if PRINT has to get another piece of the file during this time, then real
problems could develop if another program is accessing the disk. The time slice is also
forfeited if a DOS function call is in progress. If/Mis very high in relation to /S, you'll
notice a significant degradation of system speed. If/Mis too low, printing will not proceed
as fast as the printer can manage. If /U is too high, PRINT may spend too much time just
checking the printer without actually printing anything if the printer is busy.

However, these parameters may be specified only when PRINT is first loaded. So, un
less you like doing little three-finger exercises repeatedly, you would normally have a
very difficult time optimizing the parameters for your system.

The IBM Graphics Printer that most print utilities consider to be the standard has an
80-character internal buffer. It will not begin printing until the buffer is full or the printer
receives a carriage return or a form feed. When the printer begins printing, it is busy and
cannot accept any more characters until the internal buffer is empty.

The optimum parameter settings for this printer are an /M value equal to the number
of timer ticks needed for PRINT to fill up the printer's buffer, and a /S value equal to the
timer ticks required for the printer to print the contents of the buffer.

For the IBM Graphics Printer printing 80 character lines, the optimal values are /S:20,
/M:4, and /U:2. These values caused better performance than the default values, even
though for most lines, PRINT is active only l/6th of total system time. The PRINT com
mand would look like:

PRINT /D:PRN /Q:20 /B:8192 /S:20 /M:4 /U:2

Unlike the IBM Graphics Printer, many other printers have internal buffers larger than
80 characters. If you attempted to set JM equal to the time it takes for PRINT to fill up a
large buffer, you may find it to be something like 20 clock ticks or more. In operation,

Favorite Tips 84 7

this would be intolerable, because 20 clock ticks is over one second and the rest of your
system would halt during that time.

For printers with large internal buffers, set /U equal to I, and /M. equal to 4 or 5 (about
I/4 second), and experiment with /S. For very fast printers, you may find /S to be low in
relation to /M.. You may want to deliberately slow down the printing so you can get some
work done, or speed up the printing if that's what's important.

You can use PRINT to print any text file, with or without control characters, stored on
a disk. It expands tabs and assumes that an ASCII 26 (hex IA) character represents the
end of the file, so you can't use PRINT for graphics. PRINT will be active during any
program that does not steal interrupt IC. (Some compiled BASIC programs do this.)

Programs that let you go to the DOS command level and then return when you 're done
make this process a lot easier. Be sure, though, to load PRINT before you use it from
within another program, because you don't want to make it resident on top of some other
application.

Here's the real kicker: On the DOS command level, and during execution of any
program using DOS function calls to obtain keyboard input, PRINT operates in a total
ly different manner, and none of the above information about timer ticks applies.

You could set completely wrong values for PRINT (JS to 255 and /M. to I) and when
you jump into DOS, the printer will chum away, printing your text as fast as possible.
To understand why this happens, you have to look at the internal guts of PRINT.

PRINT works with disk files, so it must make DOS calls to pull these files into memory.
During a DOS function call, DOS switches to an internal stack. DOS actually maintains
three stacks - one for function calls 01 through OC, another for function calls OD and
above (which includes the file accesses), and a third for function calls OI through OC
when a critical error is in progress.

Because of this internal stack, PRINT (or any other multitasking utility triggered by a
hardware interrupt) cannot arbitrarily make DOS function calls to access a disk file. If
another program is making a DOS function call, PRINT' s function calls may clobber the
internal stack and eventually cause the system to crash.

To prevent this, PRINT use the undocumented DOS interrupt 2I function call 34 when
it first loads. This function call returns registers ES:BX pointing to a byte in DOS.
Whenever this byte is nonzero, a DOS function call is in progress. When PRINT is trig
gered by a timer tick, it checks this byte. If it's nonzero, PRINT just returns from the in
terrupt without attempting to print anything.

This creates a real problem, because on the DOS command level, COMMAND.COM
executes a DOS function call OA for keyboard input, and this DOS call is in progress
until the user presses the Enter key at the end of a line. Many other DOS programs. such
as DEBUG or EDLIN, also use this function call.

So, PRINT takes advantage of another undocumented feature of DOS - interrupt 28.
PC-DOS itself continually executes an interrupt 28 whenever it is in a wait state (i.e.,
when it is waiting for keyboard input) during a function call of OI through OC.

When an interrupt 28 is invoked, PRINT knows that a function call of 01 through OC
is in progress. Because a separate stack is used for function calls of OD and above, which
includes all the file access calls, PRINT knows that it's safe to retrieve a file if necessary.

I !t I•

848 PC Magazine DOS Power Tools

PRINT will always grind to a halt during any disk access. But you'll also see it stop
during a TYPE command after the disk has been accessed. This is because TYPE uses
function call 40 to write the file to the display, and PRINT cannot use DOS during that
time.

Anyone who believes that multitasking is simple to implement in PC-DOS should try
dissassembling PRINT.COM and take a look at the backflips and contortions required
for simple background printing from disk files.

Security

The more information you can store on your system, the more vulnerable you are to
security problems. Hard disks are a treasure of valuable data- about your company,
your job, even your personal activities.

It's not bad enough that someone could make unauthorized copies of your important
files. What's worse is that he could change or destroy the data. You would certainly know
if someone had erased a critical file. But you might never know if someone altered an
important record or two.

Starting with its AT, IBM wised up and wired its systems to a lock and key. You don't
think IBM added it for show, did you?

Unfortunately, many users are cavalier about security. They leave floppy disks in
drawers or plastic disk caddies, and often wouldn't miss a valuable diskette if it vanished.
One of the penalties of such portability is that someone could walk out of your office
with several file cabinets' worth of confidential information hidden in a pocket or brief
case.

And while you can catalog your floppies and keep sensitive ones locked in a safe, your
hard disk is just a sitting duck for anyone who wants to pry. An unbreachable system is
certainly not impossible to put together. Legions of government users have to forego the
convenience of conventional hard disks for removable mass storage devices that can be
locked up at night.

There's even a government standard for erasing files and then writing over them to
obliterate any last magnetic trace. The Norton Utilities WIPEDISK and WIPEFILE
programs use these.

If you really need grade-A security, DOS can't help. And most power users can break
into any system in seconds. Encryption is also a possible solution, but a genuine nuisance.
However you can keep casual snoops from getting at your files.

Most tricks involve preventing unauthorized users from booting your hard disk. The
only drawback with such techniques is that a snoop can start an otherwise unstartable
hard disk system by bringing his own diskette along and booting off it. Still, the follow
ing tricks are like locks on desk drawers they keep the honest people out. If someone
wants to get in, he or she will.

When DOS boots, it looks to see whether AUTOEXEC.BAT is in your root directory.
If it is, DOS passes control to it So an easy way to keep the honest people out is to patch
COMMAND.COM so it looks for another file, especially one that doesn't have a BAT

Favorite Tips 849

extension. In fact, if you're the cautious type, it shouldn't. (See the "Booting Up With
BERNIE" discussion in the hard disk chapter.)

Once you patch COMMAND.COM to start from a hidden AUTOEXEC.BAT file, the
AUTOEXEC.BAT clone can then do the magic you want.

An easy example would be to run an IF ERRORLEVEL program that looked for a
strange key combination - such as Shift-Tab- to continue. If you press Shift-Tab (or
whatever you set the IF ERRORLEVEL test to detect) the program would forge ahead,
and would set things up properly.

But if a user typed any other key, like the Enter key, another IF ERRORLEVEL test
in the list of IFs would detect it and jump to a batch file command that would execute a
small file that reboots your system.

When a PC boots, its BIOS checks aflag word at location 0040:0072. (One word equals
two bytes; a flag is a part of memory used to keep track of a condition, such as whether
something is set off or on.) If the value of the flag is 1234H, BIOS does a warm boot
the fast Ctrl-Alt-Del type. However, if it finds the value of the flag is not 1234H, BIOS
does a cold slow boot, going through its tedious memory and equipment checks.

If you use DEBUG to look at low memory addresses 472 and 473 you'll see 34 12
rather than 12 34, since the PC stores words backwards. The high order byte (12) goes
into the higher memory address (473), while the low order byte (34) goes into the lower
memory address (4 72). Despite this, the word takes the lower memory address as its own.

You can use the W ARMBOOT.COM and COLDBOOT.COM programs on the ac
companying disk for this. The effect is the same. Actually, it's probably more infuriat
ing to a data snooper to make him sit through a long memory diagnostic or two.

To further confound unauthorized users, you can do additional mischief. Make sure
you've permanently set your COMMAND.COM to ECHO OFF, or use the ECHO-sup
pressing techniques mentioned in the chapter on batch techniques. Then, since you no
longer have a startup file called AUTOEXEC.BAT, create one with the five lines below
and leave only it and COMMAND.COM on your root directory:

CLS
ECHO ===== Unauthorized Access =====
ECHO Damage to computer will result if
ECHO it is not turned off immediately.
PROMPT Error

If the user tries to run this file, he '11 get a warning and a blank screen. If he just TYPEs
it, he'll know you mean business. The last line - customizing the PROMPT to say
"Error" - is a nice touch, since every time the user tries something, the screen will balk
and then just print:

Error

Even more diabolical is preventing the unauthorized user from trying any of the stand
ard DOS commands. The way to do this is simply to rename the important commands
inside COMMAND.COM using DEBUG.

850 PC Magazine DOS Power Tools

COMMAND.COM maintains a table of internal commands for RENAME, ERASE,
etc. Two of these, DIR and TYPE, are the ones a snooper would use in trying to figure
out what's going on.

If you rename DIR to something like RID or XYZ, and TYPE to EPYT or QRST,
whenever the unauthorized user tries the normal version of these, all he'll get is their
ritating message "Bad command or file name" since COMMAND.COM will no longer
recognize TYPE or DIR.

You can use DEBUG to change the names of the commands stored inside COM
MAND.COM. Load COMMAND.COM into DEBUG and find the file length using
RCX. Specify a search from 100 to the length reported by RCX for something like "REN"
or "TYPE." Use E to replace them, making sure your new commands are the same size
as the old ones. Verify with D, write (W), and quit (Q).

You should keep a real copy of COMMAND.COM somewhere on your disk. Once
you've gotten past your IF ERRORLEVEL test and screened out the unauthorized users,
you can load a copy of the real COMMAND .COM, as a secondary command processor.
(If you ever want to, you can drop down to the phony one by entering EXIT.) Using a
secondary command processor like this lets you run all the normal DOS commands. But
be careful if you try this since DOS sometimes gets mad if you mix different versions of
COMMAND.COM.

But the best simple DOS security tip of all lets you hide all your files - including
COMMAND.COM, AUTOEXEC.BAT, CONFIG.SYS, and all your subdirectories -
with a very short illDE.COM program that adjusts the directory listing so DIR won't
show them. And you can bring them all back just as easily with UNHIDE.COM. This
means that you can hide everything in your root directory, presenting the snooper with a
bare disk. The files are still there, and they still work, but DIR won't report any.

Of course, CHKDSK N will still be able to see them, but not all users know this, and
you can rename CHKDSK.COM to something like CH.COM, which is far easier to type
anyway. Still, any serious user can bring his own DOS disk up to your system and figure
out what you did.

This lets you hide and rename your key files and subdirectories, pretty much locking
out anyone who doesn't know how to unhide files using DEBUG.

You can hide all your files at once with the command:

FOR %F IN (*.*) DO HIDE %F

But you won't be able to unhide them this way, since global characters like * or? can't
handle hidden files. If you do try the mass-hide technique, remember to keep UN
HIDE.COM (preferably a renamed version of it) on a separate disk or subdirectory. You
can't use a hidden UNHIDE.COM file to unhide itself.

The IBDE and UNIBDE programs are on the accompanying disk. An even better
program is Charles Petzold's ATTR attribute setter.

The Norton Utilities (and other similar programs) make it child's play for anyone to
"unerase" a file that you've deleted from your disk. With the latest iteration of Norton's

Favorite Tips 851

software, all you have to do is type QU (for Quick Unerase) and your data is back unless
something else has written over it in the interim.

This is because DOS doesn't actually erase the file; it simply changes the first charac
ter in the directory listing (to tell itself that the old file's space on the disk is available for
new files) and adjusts the disk's internal location tables accordingly.

If you start to overwrite the file before you get a chance to unerase it, you may lose
the beginning of the deleted file, and may have to puzzle over the pieces somewhat, but
if it was a text file you can usually rescue much of it.

Norton's WIPEFILE and WIPEDISK programs can obliterate any trace of deleted files
by writing a new file over their entire length. You can even have these programs write
specially designed bit patterns over the old data area, and re-execute themselves multi
ple times to make sure what's gone is gone.

So once you've used a program like WIPEFILE on your deleted files, you can breathe
easy, right? Don't be so sure. Such programs expunge only those files you know about.
But what about the secret copies of your files you don't know about?

Many programs, especially word processors, create temporary files during their nor
mal operation. They all erase these files before they shut down in normal use, so you al
most never see them.

But if something unexpected happens and you crash out of the program, you may see
a file with a similar filename to one you were just working on, but with a $$$ or TMP
extension.

The trouble is that your word processor almost certainly isn't going to erase the temp
file any better than the DOS ERASE (or DEL) command, which, as we've seen, doesn't
do a very thorough job. And unless you know they're there, you can't obliterate them
with a WIPEFILE-type program.

The solution is simple. Before using WIPEFILE, try to use an unerase program like
QU. You should before someone else does.

This means UN erasing all the little tiny orphan clusters too that end up strewn around
your disk. When it's time to use WIPEFILE, do a maximum disk-wide unerase first, and
follow it up with a maximum text search (Norton again). Then wipe out all the files you
didn't know existed, and all the little leftover pieces.

For maximum hard disk security, periodically copy all your files to floppies or tape,
or to a Bernoulli Box, and WIPEDISK the entire disk. Then reformat the hard disk and
copy everything back. The added benefits to this time-consuming task make the project
worth the effort. First, you end up with current backups, which you obviously should lock
in a safe place. Also, you do away with the inevitable disk fragmentation that results
when you write pieces of files over each other. Your files will fly on a newly formatted,
nonfr~gmented disk.

Another security technique is to keep a large harmless file around, and copy it over
the file you want to erase before you erase it. This way if someone unerases a file with a
name like SECRET they'll see the contents of the harmless file that you used to obliterate
the actual sensitive one.

To keep the honest people out of your files, hide a Ctrl-Z, or decimal ASCII charac
ter 26 end-of-file marker, near the beginning of a file. When a DOS TYPE command

I ~ ' I

852 PC Magazine DOS Power Tools

trips over one of these, it stops in its tracks, no matter how long the directory listing says
the file actually is.

You can try using DEBUG to imbed an end-of-file hex IA at the beginning of your
files; it will always stop the DOS TYPE command, but it also may stop the file from
working properly.

A better tip is to give your files bizarre, high-bit names. This will freeze beginners out
of your files, since they won't be able to figure out how to enter the characters to TYPE,
load, or run the filenames. (You know - just use Alt+ the numeric keypad.)

Or you can try something odd like inserting spaces in the middle of your filenames.
DOS chokes on these, but you can use BASIC to manipulate them. And in a pinch, you
can substitute wildcards for spaces in DOS and rename any spaced-out file.

You can also use DEBUG to substitute high-bit characters for COMMAND.COM in
ternal commands if you really want to confuse snoopers. Carrying this one step further,
you can turn your normal DOS messages, like:

Volume in drive C is PC Magazine
Directory of C:\PROGRAM

34 File (s) 1677312 bytes free

into the same kind of high-bit gibberish. If someone boots up and sees undecipherable
messages and filenames, odds are he '11 give up pretty quickly, thinking you 're using some
sort of very exotic operating system he couldn't possible figure out.

High-bit messages and filenames, coupled with selectively hidden subdirectories and
files, wild-goose-chase AUTOEXEC files, renamed DOS commands, and totally
obliterated disk surfaces, should let you sleep a tiny bit easier at night But they can end
up being a pain in the neck for you too.

PC users in corporations often live by a simple rule: if the file contains confidential
information, it must be stored on a diskette and kept in a locked desk. Typically some
paranoia accompanies this rule, requiring users to turn off the PCs after using a confiden
tial file so nobody can DEBUG the data out of memory, but this is a little extreme out
side the CIA.

Another potential trouble area is a print spooler or buffer. Some spoolers hang onto
copies of the most recently printed file. If you 're nervous about this, reboot after print
ing something sensitive, and turn any hardware buffers off and on again.

While you 're at it, be careful about communications programs that store your password
or other secret information in plain ASCII. These days most "comm" software encrypts
such information, but users often take advantage of keyboard macro programs to put
things like bank account numbers and access codes onto single keys to avoid having to
type them in when doing electronic banking. Make sure any program you use for this
doesn't make it easy for others to learn more about you than you want them to know.

If you're using a sensitive data base that's much too big and complex for diskettes,
another solution is a removable storage medium like the one on !omega's popular
Bernoulli Box.

---------~---·-·

Favorite Tips 853

Another possibility is to use an encryption and decryption program. After using a con
fidential file, you• d run the encryption program with a password, which scrambles up the
file. When you want to use it again, you'd run the decryption program with the same
password to unscramble it.

Such encryption schemes are very difficult to break without knowing the password,
even if you have access to the decryption program. Moreover, if someone maliciously
tries to scramble up the encrypted program, it should be obvious when it's decrypted. For
such events you should be keeping diskette backups anyway.

Users often want to know how they can install some sort of password protection on
their systems. Infortunately, because of the PC's open architecture, password security is
very difficult to implement Unless you put a special ROM in your system, any smart
user can defeat just about any password scheme on a hard disk by booting off a floppy.

It is technically possible to install a password program that cannot be circumvented by
a drive A: boot. But this program has to be executed before the PC even attempts to boot.
Here's how it works:

When the PC is first turned on, it executes a Power-On Self Test (POSn program
coded in the PC's ROM BIOS. This program initializes the system, checks memory, and
ultimately boots the operating system from a diskette or hard disk. Before the boot,
however, the POST program checks memory locations between hex addresses C8000
and F4000 for the presence of additional ROM programs. Generally these programs must
perform some extra system initialization before the PC is booted. In fact, the extra BIOS
for the XT hard disk is at hex address C8000. You would have to program a small
password routine somewhere in that memory space where it wouldn't conflict with any
thing else. Moreover, the program must stay in memory when the PC is turned off.

Getting the password program encoded in ROM is a bit extreme. An easier approach
is to code it into random access memory on a CMOS RAM memory board with battery
backup. CMOS RAM uses very little power - almost none at all while inactive - so a
rechargeable battery backup should last for many months.

The board's memory address would be set up to begin at DOOOO, 08000, EOOOO or
E8000. The program must be in a special format, explained in the ROM BIOS section of
the PC or XT Technical Reference manuals under the heading "Adapter Cards with Sys
tem-Accessible ROM Modules." The code must start off with a hex 55 and AA, to tell
the BIOS that it is executable. The third byte is the number of 512 byte blocks in the
program (probably 1 for a simple password routine). The program itself begins at the
fourth byte. It must return to the BIOS with a far return. You should write the program
in assembly language and not use any DOS calls (interrupts 20 and up) because DOS will
not be loaded when the program runs. You may use all the BIOS resources for the
keyboard and display.

The ROM BIOS does a checksum of the bytes of the program and gives you a terse
"ROM" message if they don't add up to zero ignoring overflow above 256. So, you're
going to have to add up all the bytes in your program, take the negative, and put that byte
somewhere in the file.

One final tip if you have a security system that disables your keyboard when you
walk away from it, be sure to lock up any other input devices, like mice. If you 're using

I !4 I•

854 PC Magazine DOS Power Tools

Windows, for instance, someone could come along and use the mouse to do all sorts of
damage. Be careful out there.

Communications

We don't really end up printing too many communications tips, but Charles Petzold's
TINY COMM program is a real gem.

As Petzold points out, communication software doesn't have to be complex. And his
tiny 49-byte assembler program, when coupled to a five-line BASIC program, will let
you hook two computers together in a flash.

One reason a communications program can be so small and still pack a punch is that
today's smart, programmable modems do the lion's share of the work. But the program
still has to handle the 1/0 details.

To create TINY COMM, the smallest "functional" assembly language communications
program possible, type in the following TINYCOMM.SCR script using a pure-ASCII
word processor or EDLIN. Omit the semicolons and the comments following them. Be
sure to leave a blank line above RCX, and press the Enter key after each line, especially
the last one with the Q:

A
MOV
AND
MOV
INT
TEST
JZ
MOV
INT
PUSH
MOV
MOV
INT
POP
JMP
MOV
INT
OR
JZ
MOV
INT
MOV
INT
JMP

DL, [005D]
DX,0001
AH,03
14
AH,01
OllF
AH,02
14
DX
DL,AL
AH,02
21
DX
0108
AH,OB
21
AL,AL
0108
AH,08
21
AH,01
14
0108

Get Parameter

Get Comm Status

If nothing, go on

Read character

Write to display

Loop around
Check Keyboard

If char, read it

Send to modem

Loop around

RCX
31
N TINYCOMM.COM
w
Q

Favorite Tips 855

When you're all done, make sure DEBUG.COM is handy, and type:

DEBUG < TINYCOMM.SCR

TINYCOMM uses the ROM BIOS interrupt 14H to read incoming data from the
modem and to write outgoing data to the modem. It uses DOS interrupt 21H function
calls to read what you type at the keyboard and to write to the display.

TINYCOMM first makes a status call to interrupt 14H. If the status word returned in
register AX indicates that the modem has received a character, TINYCOMM calls inter
rupt 14H again to get the character and then displays it to the screen through DOS. If no
character has been received yet, TINYCOMM goes on to check if anything has been
typed at the keyboard. If so, it sends the typed character to the modem, again by inter
rupt 14H. Then it goes back to the top. Notice that in both cases (reading the modem and
reading the keyboard), TINYCOMM first checks if anything is ready. It doesn't want to
get stuck waiting for a character from either source if none is available.

To use TINYCOMM, first turn on your modem and execute the PC-DOS MODE com
mand to set it up for 300 baud, no parity, 8 data bits, and 1 stop bit

MODE COM1:300,N,8,1

Don't try 1200 baud just yet. (If your modem is connected to COM2, substitute that in
place of COMl in the MODE command above.) Now run TINY COMM by entering:

TINYCOMM

for a modem connected to CO Ml, or:

TINYCOMM 1

for COM2. You 're not online yet, but you are in direct connection with your modem.
If you have a Hayes SmartModem or compatible, you can now type in any of the AT

attention codes documented in the User's Guide or Technical Reference that came with
the unit. For instance, with the SmartModem 1200 or 1200B, you can enter

ATIO

to see the product's revision number;

f I ii

856 PC Magazine DOS Power Tools

ATil

for the modem,s ROM checksum, and (with the 1200, but not the 1200B):

ATI2

to check the integrity of its internal memory. This last instruction will return either "OK"
or "ERROR."

The "Smart" in "SmartModem" refers to the modem,s ability to interpret such AT
codes and to send back appropriate responses. If your phone happens to ring while you 're
experimenting like this, TINYCOMM will display the word "RING." Similarly, when
using your normal communications programs, you may have noticed the words "CON
NECT" or "NO CARRIER" displayed when you attempt to place a telephone call. These
messages are not prc~:luced by your communications package; they all come straight from
the modem, whose internal programming generates them.

Try making a call to the PC Magazine Interactive Reader Service bulletin board. To
do this, enter:

ATD 1-212-696-0360

on the east coast, or:

ATD 1-415-598-9100

on the west coast.
If you have touch-tone service, you can use ATDT instead of ATD. (Even if you have

pulse dialing, you might try this command anyway.)
If you 're using an external modem, you 'II see your modem's OH (Off Hook) light go

on and you'll hear the dialing. If the PC-IRS has a free line, you'll hear the PC-IRS car
rier signal, quickly followed by your modem answering that carrier signal with its own.
The CD (Carrier Detect) light on your modem will go on, you '11 see the word CONNECT
on the screen, and then the modem will go silent. You're online. When you eventually
want to get out ofTINYCOMM,just press Ctrl-Break.

If you get a busy signal, eventually your modem will give up and you '11 get a NO CAR
RIER message. You can redial by typing A/, which is the only Hayes control sequence
that does not require a preceding AT.

Notice that TINYCOMM is really doing very little in establishing this connection. Al
most everything is handled by the modem itself. After you enter A TD and the phone
number, the modem waits a couple of seconds for the dial tone before dialing the num
ber and, if it doesn't detect a carrier, it waits another period of time before sending back
the NO CARRIER message and placing the phone back on the hook.

You can set these two timings, and many other variable aspects of the S martModem,
with modem control sequences. ATS6, followed by the time in seconds, controls the dial

Favorite Tips 857

tone wait; ATS7 similarly controls the carrier detect wait. If you want to listen con
tinuously to the carrier signals while you're online, you can enter ATM2 before making
the call.

You can't enter these AT codes directly while you're online, because the modem has
no way of determining that you want to talk to it instead of to the remote computer. To
issue commands while online, you first enter the Hayes escape sequence - three plus
signs (+++) in a row typed quickly. You must wait a second before typing in the first
plus sign, and wait a second afterwards before typing anything else. (The modem uses
these brief pauses to distinquish its escape sequence from three plus signs that may occur
in transmitted data.) If you entered the+++ code properly, you'll get an OK from the
modem, indicating that you 're in the command state instead of online. After you 're done
giving commands, ATO returns the modem online.

If you want to use an escape sequence other than three plus signs, that too is program
mable, as the Hayes manual explains.

TINYCOMM uses the DOS function call 08H for reading your keystrokes. Accord
ing to the DOS Technical Reference manual, this function call does not echo keystrokes
to the screen. So why then can you see your keystrokes as you type them?

Some of the characters you enter at the keyboard will be modem AT control sequen
ces. The modem itself "echoes" these characters back, so TINYCOMM reads them as
characters coming from the modem. (You can turn off this modem echoing with the com
mand A TEO. Then when you type an AT code, you won't see it on the screen. Turn this
type of modem echoing back on with A TE 1.)

When you get online with a remote computer, however, whether it's an information
service (such as CompuServe or Dow Jones News Retrieval) or with a bulletin board
such as PC Magazine's IRS, the host computer echoes back most of the characters it
receives. That's why you'll sense a slight delay between the time you type characters and
their display on the screen.

This echoing is often inaccurately referred to as full-duplex communication. A better
term is remote-echo or echoplex. It requires that the two computers handle data different
ly. On your end, your communications program is reading the keyboard and sending the
characters out to the modem without echoing them to the display. The host computer to
which you are connected sends most of these characters back to you (with a few excep
tions) in addition to sending you its own data.

On your receiving end, your program really can't tell whether a particular character
was sent by the remote computer or echoed. If you also echoed back to the host computer
everything you received, you'd really be thrown for a loop, because the characters would
continually be tossed back and forth between the two computers.

When you use a modem to communicate with another PC or some other small com
puter, you '11 probably want to use local echo (often inaccurately called half-duplex). With
local echo, each communications program handles the data the same way, by echoing
keyboard characters to the screen as they are being typed and sending them out to the
modem at the same time.

If you're online but find that you can't see what you type, it simply means that your
software is set up for remote echo, but the computer you're talking with thinks you're
using local echo. If you see two of every character you type, the cause is just the opposite.

f I

858 PC Magazine DOS Power Tools

To connect with another PC over the telephone lines, you'll probably want to use local
echo. You can do this in one of two ways. First, you can change TINYCOMM to use
function call 01 instead of function call 08 for reading from the keyboard. A better way,
however, is to instruct the modem itself to echo what you type by entering the control
sequence ATFO. (You can later return to remote-echo with ATFl.)

Communicating modems use two separate sets of carrier frequencies, called" Answer"
and "Originate," which are independent of which modem is making the phone call. When
you call an information service or bulletin board, by convention your modem uses the
Originate frequencies. When you connect with another PC, however, you must decide
which PC will use Answer and which will use Originate.

The easiest way to establish a connection between two PCs over the telephone lines is
to first establish a voice communication. After you decide upon a common baud rate,
data bits, parity, and stop bit and have everything set up, the person using Originate fre
quencies enters:

ATD

and the other person (using Answer frequencies) enters:

ATA

The Answer carrier will sound first, followed by the tone from the Originate modem.
Now hang up the phones and start typing.

You also must consider how you 're going to handle line feeds. When you press the
Enter key, you generate only one character, ASCII 13, the carriage return. When your
screen receives this character its proper response is simply to move the cursor to the
beginning of the current line. The Carriage Return code does not tell the cursor to move
down to the beginning of the next line, as well. You need an additional character - a
line feed (ASCII 10) - to move the cursor down one line.

Most real communications programs will add the extra line feed, but TINYCOMM
will not. Unless you want to change TINYCOMM to do this, you can get around it by
typing a Ctrl-J (line feed) after every Enter. Or, instead of pressing Enter, you can press
Ctrl-M Ctrl-J. Yes, you can get accustomed to it.

When you use TINYCOMM to go online with another microcomputer, you'll have
the opportunity to try out CTTY, one of DOS's most interesting commands.
TINY COMM is ideal for CTTY for two reasons. First, TINY COMM will not break the
modem connection when you leave it by using Ctrl-Break. Many other communications
programs will. Second, unlike other communications programs, TINY COMM just uses
interrupt 14 H instead of doing anything fancy. (You' 11 see later this is a deficiency when
it comes to more serious communications work.)

To try out CTTY, first use TINY COMM to establish a modem connection with another
microcomputer operated by a friend you trust. This friend does does not need to be using
TINYCOMM or even an IBM PC.

Favorite Tips 859

Now, instruct your friend to turn off his or her local echo. Then, exit TINY COMM
with Ctrl-Break, and at the DOS command level simply enter:

CTTY COMl

(or COM2 if that's where your modem is). Your DOS prompt will then appear on your
friend's screen and not on yours. If your friend enters DIR, you won't see it but your disk
drives will whirr, and the directory listing will appear on the other computer's display.
(Now you see why this person should be someone you trust. That DIR could just as easi
ly be a DEL*.*.)

After your friend has been fully amused by using your PC over the telephone line, he
or she can enter:

CTTY CON

At this point, your DOS prompt will appear back on your screen and you can re-enter
TINY COMM to continue your online communication.

CITY allows another device (in this case the communications port) to be substituted
for DOS's normal standard input device (the keyboard) and standard output device (the
screen). Any program that uses DOS function calls for keyboard and screen display will
then use this alternate device instead of the default CON device. Any of the DOS inter
nal commands (with the exception of CLS) will work, as well as most of the DOS
programs such as CHKDSK, EDLIN, and DEBUG.

If your friend tries to run Lotus 1-2-3, however, it will appear on your screen and ac
cept input from your keyboard. This is because 1-2-3 (like most spreadsheet and word
processing programs) does not use DOS for keyboard input and screen output. The
BASIC interpreter also does not use DOS for keyboard and screen activities and will not
work with CITY.

For a real treat, if your friend• s communications program supports terminal emulation
(ANSI or VT-100, for example) you can patch WordStar to tell it that it's not running on
an IBM PC. WordStar will then use DOS for the keyboard and screen function, and you
can customize it to use screen control sequences for positioning the cursor and anything
else the terminal emulation program allows. Your friend can then use W ordStar over the
telephone lines, even on a Macintosh. To work with WordStar at a 300 baud screen up
date rate is a fascinating experience and one that will allow you to catch a few winks after
every Page Down.

TINYCOMM will produce some problems. If you've been using it to communicate
with information services or bulletin boards, you've probably already noticed some of
these oddities already.

Although TINY COMM is programmed in assembler and thus, in theory, is very fast,
you can't use it at 1200 baud. Try it out by changing the baud rate with MODE and con
necting to an information service or bulletin board. If you start at the top of the screen,
things seem to go fairly well, but once you get down to the bottom of the screen, you'll

f I 14 I

860 PC Magazine DOS Power Tools

notice that TINYCOMM starts missing the first few letters of each line sent from the
remote computer.

Communications programs do not normally use interrupt 14H, as TINYCOMM does.
This is because interrupt 14H is missing two very important ingredients of normal com
munication software: buffering and interrupt control. Instead, TINY COMM simply polls
the serial port for data, and if it can't do its polling fast enough, it misses characters. This
is what happens when the screen scrolls at 1200 baud. During the time it takes the screen
to scroll, several characters at the start of the line are coming through. Real communica
tions programs don't have this problem because they use the serial port's interrupts and
buffer all the data.

The interrupt 14H code in the ROM BIOS is not very big as assembly language goes
- just a bit over two pages in IBM's Technical Reference manual. It works by access
ing the 8250 UART (Universal Asynchronous Receiver Transmitter) through I/0 ports.
These ports are at address 3F8H through 3FFH for COMl and 2F8H through 2FFH for
COM2.

Where you can find documentation on these serial I/0 ports depends upon what type
of modem you have. The Hayes 1200B internal board modem comes with a hardware
reference manual that discusses the ports in detail, since the UART is part of the board.
The standalone modem connects by cable to an asynchronous communications port, and
the registers involved are also discussed in the documentation for the serial board in any
of the technical reference manuals for the PC.

If you are new to UART programming and want to learn how to do it right (instead of
using interrupt 14H), be prepared to spend many hours with these few pages of documen
tation, with the interrupt 14H code (until you understand every line), and in doing lots of
experimentation.

The greatest advantage to programming the UART directly through the IJO ports is
the ability to enable its interrupts. Instead of polling the UART status, as TINY COMM
does, a real communications program is hardware interrupt driven. The UART can be
programmed to generate an interrupt whenever it receives a character or is ready to send
another character.

A real communications program will also buffer outgoing and incoming data. When
a new character is received, the interrupt routine stores it in a circular buffer. When the
main communications program accesses incoming data, it retrieves it from this buffer in
stead of from the port. Similarly, typed keyboard input goes into another circular buffer.
As the UART sends this data, it generates a hardware interrupt when it's done with one
and ready for another. That way, the main program can shovel a lot of data to the buffer
and not wait for the UART to transmit it all.

If you want to try programming something like this, you might also benefit from look
ing at the code for keyboard interrupts 9 and 16H, in the ROM BIOS listing. That will
show you how circular buffers work. You could add direct UART programming, inter
rupt control, and buffering to TINYCOMM. But it wouldn't be tiny for long.

Instead, you could try using software supplied with PC-DOS that already has builtin
data buffering and interrupt-driven communications logic. You didn't know you already
had such software? Sure you do. It's all there in the BASIC interpreter.

Favorite Tips 861

Type in the following BASCOMM.BAS program, using a pure-ASCII word proces
sor. Be sure to press the Enter key at the end of each line:

100 ' BASCOMM.BAS - Charles Petzold
110 OPEN "COM1:300,E,7,1" AS #1
120 OPEN "SCRN:" FOR OUTPUT AS #2
130 IF NOT EOF(l) THEN PRINT #2,INPUT$(1,1);
140 A$=INKEY$:IF A$ <> "" THEN PRINT #1,A$;
150 GOTO 130

Or, load BASIC by typing GWBASIC (if you're using an IBM system) or BASICA
(if you 're not). Then type in the lines as shown. When you 're finished, type:

SAVE "BASCOMM,"A

to store the program on your disk in ASCII format.
BASCOMM also has a few deficiencies, some of which are repeated from

TINY COMM and some of which are new. Otherwise, it works in almost the same way
as TINYCOMM. You enter the modem control sequences directly and press Ctrl-Break
when you want to get out.

The new problem you '11 encounter is double spacing of all incoming lines of data. This
is BASIC "helping" you out by sticking a line feed onto each carriage return. Unfor
tunately, in remote-echo communications, you don't want that extra line feed.

You 'II also notice (as you probably did with TINYCOMM) that at various times you 'II
see two odd characters appear on your display, the double exclamation point (ASCII 19
or Ctrl-S) and the left pointing triangle (ASCII 17 or Ctrl-Q). These characters have for
mal ASCII names of DC3 and DCl. The DC stands for Device Control, but in modem
communications they are more commonly referred to as XOFF and XON.

When your communications program receives a Ctrl-S (XOFF) character, it interprets
this as a signal to stop sending data. The computer you are connected to is telling you (by
sending XOFF) that it is doing something else and may suffer a buffer overflow if you
continue. Likewise, when the remote computer sends a Ctrl-Q (){ON), it is signaling that
it can resume receiving data from you.

Your communications program might also want to send XOFF and XON to the remote
computer. With the simple BASCOMM program, you can do that yourself simply by
pressing Ctrl-S and Ctrl-Q. Generally you stop the flow of data to give yourself time to
read it.

XOFF and XON become more important during ASCII file transfers. For instance, if
you add some file transfer logic to the BASCOMM program, you must send XOFF when
beginning a disk access. This prevents a buffer overflow while you are using the disk.
When you are done with the file access and have read enough characters from the buff
er to deplete it, you can then send an XON to signal that data transfer may be resumed.

' I It I

862 PC Magazine DOS Power Tools

BASIC has several other built-in functions that will help you manage the input buff
er. These include LOC (which tells you the number of characters in the input buffer) and
LOF (the free space in the buffer). Check out Appendix F of IBM's BASIC 2.0 manual
or Appendix C of the BASIC 3.0 manual. Under the heading "An Example Program,"
you'll find a 20-line BASIC program (documented with lots of comments) that handles
both the line feed problem and the XON/XOFF protocol.

Although it's tough to beat the power of several recent (and large) communications
programs, you may find a smaller communications program is sometimes preferable, for
the same reasons that people sometimes prefer riding a bicycle to driving a car. You're
more in control, closer to the ground, unsheltered, and feel every bump.

Chapter 15

When It All Goes Wrong

Funny, isn't it. You get up one perfect morning and the air is crisp and clear, you're full
of energy, bubbling with ideas and enthusiasm. You roll up your sleeves and snap on
your PC to get some real work done. Along about half a disk later you notice a faint odor
of toasting plastic. Nothing to worry about, right? The citizens of Pompeii and Her
culaneum probably shrugged it off too, when they caught the first slight whiff of sulphur
hissing down the slopes of Vesuvius.

Unlike the ancient Romans, however, you have some control over your fate - at least
when it comes to your computer. You can protect yourself from obvious problems simp
ly by exercising some care. The following pages contain some important common sense
rules.

Don't erase files blindly. And avoid unnecessary shortcuts. If you want to erase the
BAK backup files that are cluttering up your disk, typing:

DEL *.B*

will take all your BAT batch files and BAS basic files with it. Whenever you're using
wildcards to delete files, make it a two-step process. First do a directory listing, with
something like:

DIR *.B*

or whatever the wildcard filespec happens to be. If you see any surprises you can make
the filespec more specific (*.BAK for instance) and try again. But if everything is fine,
just type:

DEL

863

f I ii '

864 PC Magazine DOS Power Tools

and press the F3 function key. DOS will fill in the wildcard filespec from the previous
DIR command.

If you ,re trying to delete all EXE files with names ending with ABC and you acciden
tally issue the command:

DEL *ABC.EXE

DOS will get rid of all your EXE files. This is because DOS stops looking at characters
after a wildcard, and interprets the command as:

DEL *.EXE

If you entered:

DEL *ABC . *XE

DOS would read this as:

DEL *·*

You, d know you were in trouble when it prompted you with" Are you sure (Y /N)T which
is the sign it's about to get rid of everything.

Back up every day. There are three kinds of backups: the perfectly organized,
meticulously verified kind that nobody does; the adequate "throw it all on a disk and sort
it out later" kind that's a lot more common; and the "I'll definitely back up everything
tomorrow" lie that freezes you in your seat when you see the inevitable "General failure
error reading drive C:" message instead of the DOS prompt.

Remember, even expensive hard disks are just aluminum coated with iron oxide.
Would you trust your future to a rusty pie plate? You can purchase lots of fancy com
mercial backup packages to automate the process. Or you could use the BAC.COM utility
on the accompanying disk. And the sensational PC-DOS XCOPY command first intro
duced with version 3.2 is a real treasure.

XCOPY is speedy and powerful. While the older COPY command reads files from
the source disk and then writes them laboriously to the target disk one at a time, XCOPY
soaks up as many files as memory can handle, and blasts them onto your backup disk en
masse.

If you add an JS switch it can copy all the files from all your buried subdirectories, and
will duplicate any subdirectory structure on the fly so you don't have to sit there and
fumble with MD and CD commands.

Adding a IP will automate the decision-making process by pausing at each file and
asking whether you want to copy it. Type a Y and it will make the copy, type a N and it
will prompt you for the next file. You can use the/Sand IP switches in tandem.

When It All Goes Wrong 865

Best of all, by adding a ID switch followed by a date you can have it copy only those
files created or changed on the specified date or later. And, of course, it can make back
ups based on whether the archive bit is set, which lets you skip over files that you haven't
changed since the last backup.

DOS has gradually improved the BACKUP and RESTORE commands over the years
(so they work faster and won't do idiotic things like write old system files back onto your
hard disk over newer ones). And BACKUP is ideal when you 're copying files to diskettes
that are bigger than the diskette, since it can break them up and have RESTORE put them
back together later. But BACKUP stores files in a format that's nonexecutable; you have
to run them through RESTORE before you can use them again. XCOPY doesn't change
a bit; it keeps files in executable form. The astonishing thing is that XCOPY was writ
ten by IBM, which is not noted for producing wonderful PC software. This one is a win
ner, however. Use it every day.

Don't experiment with original copies of files. If you feel adventurous and want to
reformat a data file with unusual margins, or replace carriage returns with something else,
or if you decide to see just what DEBUG can do to a program, do it to a copy. Originals
are sacred.

Be extremely wary of DOS commands like ASSIGN, FORMAT, and RECOVER.
Everyone knows that you have to be careful when using the FORMAT command on a
hard disk, and DOS has grown more careful over the years, by asking you to enter volume
labels, refusing to proceed unless you enter a drive letter, and printing scary boldface
warnings in the manuals.

But if you get fancy and start shuffling your drive letters with ASSIGN, JOIN, and
SUB ST, and then try to run BACKUP, RESTORE, or PRINT, or if you change the con
figuration of your system drives frequently by putting RAMdisks in odd places, you 're
just asking for trouble.

Always stop before you FORMAT and check your intentions, especially late at night
or when you've been pounding away at the keyboard for so long you're starting to hear
voices from the speaker. And if any beginners ever share your system, use one of the
tricks described elsewhere in this book to give yourself added protection. One of the slick
est tricks is to patch COMMAND.COM so it thinks FORMAT is an internal command,
which will head off any FORMAT requests at the pass unless someone boots your hard
disk system off a floppy.

And avoid the RECOVER command entirely. It's nothing but trouble, and can turn
every file and subdirectory on your hard disk into an undecipherable puzzle piece that
will take you days to reconstruct. If you absolutely must use it, make sure you enter a
filename after it. Otherwise, pray your backups are current. To be safe, remove it from
your system altogether.

DOS makes it almost too easy to delete files, but there's always the Norton Utilities to
bring your files back from the netherworld. If you discover that you've just erased a key
file or used too broad a wildcard and expunged a whole slate of files, be absolutely sure

f I 1t

866 PC Magazine DOS Power Tools

you don't create or change any other files. Immediately stop what you 're doing and drag
out your Norton disk (or equivalent), and "unerase" the temporarily lost files.

An innocent-looking command like COPY can also do real damage if you're not care
ful. First, you could copy an older version of a file over a newer one. Second, if you 're
concatenating several small files into one big one, and you try combining binary and
ASCII files, you can end up mangling the result. You can also end up wiping out a smaller
file you 're trying to join with others if you use its filename as the name of the fmal big
file. Third, if you're trying to copy a list of program files into another directory (like
\BACKUP) and you make a typing error (like COPY *.COM \BAKUP), you may end
up concatenating them into one useless mess of a file. Fourth, if you try copying a file
over itself and the process somehow gets interrupted, you can end up with garbage where
your file used to be. Fifth, if you've been making backup copies of a file to a floppy disk,
and the original grows larger than the amount of available space, and you try to copy the
oversized file anyway, DOS will erase the previous copy on the floppy. Sixth, if you've
forgotten you have an old file on your disk with the same name as the one you're giving
to the copy of a file you 're about to make, you '11 lose the contents of the old file. Seventh,
if you try copying a file to another drive with a command like COPY MYFIL B: and you
accidentally type a semicolon rather than a colon after the B, you '11 end up with a copy
on the same drive as MYFIL called B. Think before you copy.

You may think this one's obvious, but guard against stupid power problems. Don't
plug your system into a rat's nest of cubetaps and four-way plugs thatare so heavy they're
falling out of the wall socket. Don't string your power cord across the room. Don't plug
into a circuit shared with power-greedy appliances like air conditioners and heating ele
ments. And don't put a power director or power strip on the floor beneath your desk where
your toe is going to tapdance on the on/off switch.

Don't ever change add-in boards with the power on. And be careful about static
electricity - touch your stereo, a radiator, or a lamp when you shuffle over to your sys
tem after petting the cat in the winter. A spark may not seem like much, but those hundreds
of thousands of volts can really do damage when they're hurtling down pathways a
micron or two wide.

Don't buy floppy disks that are so cheap you can't believe the price. Your data is worth
the extra few cents. If you format them and see "bad sector0 messages, throw them out,
or use them for emergencies. One of the worst sounds known to mankind is the noise of
a cheap sandpaper disk grinding down your drive heads.

Watch out when redirecting commands andfiles. The command:

SORT < DATA.FIL

will sort the contents of the DATA.FIL file on column one and display the results
onscreen. But:

When It All Goes Wrong 861

SORT > DATA.FIL

will trash your DAT A.FIL and give it a length of 0. Be careful when using MORE (which,
when used backwards, will wipe out your file and replace it with a two-byte file contain
ing just a solitary carriage return and line feed) or any other filter. Redirection is a power
ful tool. But learn the rules first- so you can avoid doing things like using the TYPE
command to redirect the contents of a file that contains an ASCII 26 somewhere in it,
since this tells TYPE to screec.h to a halt. Also, don't use>,<, or I signs in batch files. If
you put a line in your batch file that says:

ECHO ----> Enter a key:

DOS will think you are asking it to create a file called Enter and use ECHO to redirect
text from that line into the file. Even something as innocent as:

REM Now returning to the C> prompt

ends up generating a file called PROMPT. In later DOS versions you can include such
signs in batch files if you put quotes around them:

ECHO The "I" is a pipe sign

Caveats are usually given for a reason. When you see a program listed somewhere
that says "use this on color monitors only,, you might as well place the call to your in
surance agent before you try it on your monochrome display. Contrary to popular belief,
software can indeed destroy hardware. You can break a hard disk activator arm by slam
ming it into a place where it wasn't supposed to go, or bum out a monitor in an instant
by fiddling with the video controller.

If you ever see the message "Are you sure (YIN)?" when you don't expect it, the answer
is always NO. If you 're trying to erase a file and you make a typing mistake you can ac
cidentally be telling your operating system to erase everything in a subdirectory. That's
what these warnings are for.

Don't mix hex and decimal. The single easiest mistake to make when working with
DEBUG is to slip in a decimal value, or subtract 1 from a number like I 00 and think the
result is 99 when it's really FF. Work with copies of your files, never originals. Educate
your fingers so they type only in hex.

And, whenever you're using DEBUG to work with absolute sectors rather than files,
and you 're about to use the W command - pause and stare at what you're about to enter
before going near the Enter key. Remember too that DEBUG treats drive A: as O rather
than 1. One little slip here, especially when you 're fooling with something like the FAT
or directory, and it's time to hunt for the backup disks.

t I II •

868 PC Magazine DOS Power Tools

Be extremely careful when trying new me1'Wry-resident software, especially when you
already have other resident software loaded. These things can be tricky and unpredictable
enough by themselves; throwing a few together in memory and watching them fight for
the same interrupts is not a pretty sight. It's also a recipe for a power.switch reboot. Don't
work with any unsaved data files when you're testing out resident software interactions.
And to be really safe, use a TSR manager like the INST ALL/REMOVE duo on the ac
companying disk, or any of the similar commercial packages available.

Don't mix utilities from different DOS versions, and avoid having different, patched
versions of COMMAND .COM on your disk. One of the most chilling messages you can
see is "Cannot load COMMAND, system halted." And you're a lot more likely to see it
when you mix and match DOS parts.

If you use a RAM disk, stop working at least once or twice an hour and copy your work
to a 1'Wre tangible medium. RAMdisks are fast. But they can also lose data in the blink
of an eye if you bump the power cord, or if the generator at your local power company
burps, or if your software just decides to lock up. RAMdisk software ought to come with
a little clock that beeps every 15 minutes to remind you to back up your ephemerall files.

Treat hard disks as if they contained little booby-trapped bottles of nitroglycerine.
Don't bang, drop, nudge, tap, stomp, poke, jostle, smack, shove, whack, thump, pound,
or otherwise knock into any system with a humming hard disk. One little bump is all it
takes to send the drive heads plowing into the disk surface. From then on you can just
kiss your data goodbye. Be especially careful with systems that are mounted on the floor,
since these tend to attract a disproportionate share of kicks, hammer blows from vacuum
cleaners, and other miscellaneous assaults.

Don't mix high-density and low-density floppies, especially when dealing with 720K
and l .44M diskettes. It shouldn't be a problem, but because of the way these disks are
formatted, it is. Label potentially confusing disks after you format them, and don't inter
mingle high- and low-density formats.

Take care in using the CITY NUL command in batch files. This disconnects your
keyboard until the batch file sees a restorative CTTY CON command. If something un
expected happens in the interim, all you can do is reach for the power switch.

It's a great convenience to redirect keystroke scripts into DEBUG rather than having
to type each command. This lets you check your typing before you proceed, and modify
long, previous DEBUG instructions just by changing the file.But be sure to include blank
lines where indicated (after ending A commands) and to include a carriage return at the
end of each line, especially the last one that quits.

If you have sensitive files on your disk, don't leave words like "CONFIDENTIAL" or
"SECRET' in them if any other users have access to your system. It's easy to scan across

When It All Goes Wrong 869

the disk for such text, which lets anyone pinpoint such files. And give any sensitive files
or subdirectories innocent-sounding names, not names like SECRET. l or CONFDN1L.

While you shouldn't make it too easy for someone to get at your confidential files,
don't make it too hard. If you encrypt your files, don't use keys like F$J#DV!N&1E@
unless you're sure you can remember them later.

If you erase sensitive files, make sure they're gone. Use a utility like Norton's
WIPEFILE, or else someone may use Norton's UNERASE utilities to bring the files back
to life. And while you 're at it, tell Norton's program to wipe out all erased files. You may
get rid of the latest version of a confidential report, but if you 're not careful, you can end
up leaving previously erased BAK or$$$ copies lurking on the disk. Some word proces
sors create backup or temporary work files without your knowledge, and erase them
before you exit the program. A snooping co-worker can revive these just as easily as any
other "erased" file.

If you lock your system and you have mouse attached, hide the mouse or lock it up too.
A mouse is simply an alternate input device, and a knowledgeable user can use it instead
of the locked keyboard to change or examine your files.

If you have to print a sensitive document, turn off the printer when you're done, and
reset your system as well. It's possible that parts or all of the file are still buffered in
memory when you finish.

Be careful when "unerasing" hidden files left by commercial software. Sqme
benighted software, in an effort to be as greedy and hostile as possible, scrambles your
disk sectors and then hides a file in these sectors. If you have software like this installed
in a subdirectory, and you want to get rid of it, and you try deleting all the files and then
using the RD command to remove the subdirectory, you'll get some version of a:

Invalid path, not directory,
or directory not empty

message. You can see the file by running CHKDSK N or by using some of the utilities
on the accompanying disk. And you can unhide it and delete it. But the sectors will remain
scrambled, which can bring your operating system to its knees later. If commercial
software comes with a deinstallation program, use it instead of trying to erase all the files
yourself. It will usually repair any damage it's caused during installation.

Assume any software that you download from any source other than one that rigorous
ly tests everything, such as Compuserve or PC Magazine's Interactive Reader Service,
is dangerous until proven otherwise. You can use some of the utilities on the accompany
ing disk to peek inside any just-downloaded programs and look for messages such as
"Gotcha!" Or you can run it on a floppy disk system with a RAMdisk configured as drive
C: and watch what it does.

• f If 1

870 PC Magazine DOS Power Tools

If someone wants to corrupt your system, and you like to experiment with downloaded
software, you really can't protect yourself entirely. Most bulletin boards are careful to
screen out such potentially dangerous software, and much of the electronically distributed
software available today is sensational. But nasty "virus" software and "trojan horse"
programs do get around. Unless you trust your source implicitly. watch out for programs
that intentionally wipe out the files on your hard disk.

Don't use DISK COPY except in two cases-when you' re making a backup copy of a
new commercial software disk, or when you've somehow damaged a disk and want to
work on it with DEBUG or Norton Utilities-type products. For all other copies. format a
blank disk and use the COPY *. * or XCOPY command to make the backups.

Except when copy protection schemes are involved, DISKCOPY will make an exact
replica of the original disk. This is bad for two reasons:

When you put a lot of wear and tear on a a diskette - erasing, adding, and changing
data frequently - you end up fragmenting your files. DOS ends up chopping them into
small pieces and pigeonholes the pieces in lots of different locations. Then when it has
to load or write a fragmented file, DOS takes a long time to sort everything out. In fact,
if you use floppies extensively, you should periodically format a blank disk and copy the
files from the older disk to the newly formatted one to enhance performance. Copying
them gets rid of the fragmentation - at least until you start slicing and dicing them again.

Also, while DOS is supposed to protect against it, it's possible when using DISKCOPY
to copy good information from one disk onto a magnetically unsound area on another
without knowing it. The disk formatting process guards against this. but DISKCOPY
won't reformat a disk unless it has to. If a sector has gone bad since the disk was for
matted, it's possible to write good information onto a bad sector and lose it.

Using DISK COPY to make exact replicas of commercial disks is certainly a good idea.
And if you somehow mangle a disk and want to dig beneath the surface and try to fix it,
you should use DISK COPY to duplicate the broken disk and try to repair the copy. This
way if you make matters worse, you can always create another DISKCOPY and try the
process again.

It's not always smart to set BREAK to ON. The default DOS setting is OFF, which
means DOS will check to see if you pressed Ctrl-C or Ctrl-ScrollLock only during a hand
ful of routine screen, output, and keyboard operations. If you're running a program that
chews data all day long and doesn't do much I/0, and you have to break out of it peri
odically, you may want to set BREAK to ON so DOS will check for Ctrl-C or Ctrl-Scroll
Lock presses far more frequently.

But this can have a down side as well, since a break signal can grind certain programs
to a halt. If you're running WordStar, for instance, and you pound incessantly on Ctrl-C
you can crash out of the program without saving the file you were working on. Since
Ctrl-C happens to be a WordStar command to scroll the screen up (same as a PgDn). this
can be dangerous when you're paging through a long file. Worse, this may bypass the
program's normal cleanup operations (such as resetting interrupt vectors). which can
clobber subsequent programs you try to run.

When It All Goes Wrong 871

Don't assume you've copiedfiles correctly just because the VERIFY command is ac
tive. DOS lets you add a N switch to the COPY and XCOPY commands, or issue a
VERIFY ON command, that supposedly ensures data integrity by verifying that the
original and copy are the same.

Unfortunately, this process uses a CRC check, which can catch gross errors but is not
utterly foolproof. The COMP command, on the other hand, compares both files byte-by
byte and is more reliable. Unfortunately, COMP.COM is crude and slow, and will stop
working if it stumbles over a scant ten mismatches. The generic DOS PC.EXE File Com
pare utility is vastly better, and it's a real mystery why IBM gave users the pathetic COMP
command instead of the far superior FC.

In any event, if you're validating copies, COMP should work just fine, and will un
cover potential problems that can fool N or VERIFY.

Using your computer in a thunderstorm is a bit risky, since lightning strikes can foul
up the power lines. If you're nervous about direct lightning hits and you put a lightning
arrester in the power circuit, don't forget to isolate the phone line to your modem. A
wire's a wire.

Never switch diskettes in the middle of an aborted operation. If you try to copy files
to a floppy and DOS for some reason interrupts the process and pauses, and you realize
you put the wrong diskette in the drive, don't just remove the wrong floppy and put in
the right one. DOS may still think the old one is there and copy data to the wrong place
on the new one, which will damage it. Instead, to be safe, stop what you were doing and
issue a nonwriting command for that drive like DIR to let DOS know you've switched
disks.

' I ll

P A R T I V

The Utilities DOS
Forgot

' j !4 i

PART4 The Utilities DOS Forgot 815

Over the past few years, PC Magazine has published one or more sophisticated assemb
ly language utilities in each issue. While many of these are extremely powerful (and even
rival commercial software packages in some cases) they were meant to be educational
as well as useful. Each utility is accompanied by detailed text explaining how a particular
aspect of the PC works, and revealing how each program was constructed. And a profuse
ly commented copy of the assembler code for each is normally published along with the
article.

The editors put every program through an extensive testing and refining process before
it's published. Each utility is commissioned because it fills a specific need that DOS (and
sometimes even commercial software packages) can't handle. Readers download over
15,000 copies of these utilities each day, seven days a week, from PC Magazine's
electronic Interactive Reader Service. And the number is constantly climbing.

While the programs are powerful, useful, and extremely popular, space limitations in
the magazine prevent us from adding things like fancy opening screens and extensive
help systems. And while we torture-test them on a wide range of hardware running all
important versions of the operating system, we can't possibly try these on every last clone
and every possible configuration.

In addition, new hardware and software releases occasionally do unexpected things
that step on these programs• toes. Some of these utilities make assumptions based on in
formation that is reliable at the time they are developed. but may later change. And since
they can't devote huge sections of code to handling some of the more ill-behaved
memory-resident programs, be sure to try our programs on your system with all your nor
mal resident programs and utilities in place, and no data files open, to make sure every
thing will coexist smoothly before you install them permanently.

Many of these programs - such as DR, RN, CO, BROWSE, SPECTRUM, VTREE,
A TIR, KEY-FAKE, NO, SWEEP, DOSKEY, SETUP, BAC, and INST ALL/REMOVE
- have become instant classics and are collectively hard at work on millions of systems
today. (And they've made celebrities out of PC Magazine programmers like Charles Pet
zold, Michael Mefford, Jeff Prosise, Robert Hummel, and John Dickinson.) They really
are, as one grateful user put it, "the utilities that DOS forgot."

This disk contains the most popular programs from the magazine's Programming,
Utilities, and Lab Notes columns, as well as a few from other technical sections, and some
never published before. (Many of the manual entries for the larger programs from PC
Magazine's Programming and Lab Notes columns were written by PC Magazine Tech
nical Editor Craig Stark.)

The disk also contains lots of smaller, single-purpose programs from PC Magazine's
User-to-User and PC Tutor columns. Many of these are designed to attack one specific
problem and provide effective, often ingenious solutions. We've collected the very best
of these compact, power-packed utilities, tweaked them to work even a bit better, and
put them into a handy toolkit that will help boost your productivity through the roof. And
we've added a slate of new ones never before published to fill in the gaps.

Some of these utilities are very slick indeed, and show a lot of polish and dazzle. Others
aren't so fancy- it's hard to put glittery opening screens or miles of menus in some
thing that's 200 bytes long. Some are tiny and rely on DOS or BIOS to do all the hard
work. But each one gets a specific job done. Once you try these power tools you'll end

' I If

876 PC Magazine DOS Power Tools

up using some of them every day and wondering how you ever worked productively
without them.

We've tested and refined these program over the years, but again, as with any new
utilities, test them first before you start using them with unsaved files floating around in
RAM. You wouldn't plug a dozen electric saws and drills into the same outlet, and you
shouldn't blindly use these software tools without testing them with the software that you
use every day. Strange interactions sometimes take place, especially if you're working
with memory-resident software. Take special pains if you 're running a program like Side
Kick that takes over your system, or if you 're trying a lot of the memory-resident programs
from this disk at the same time. You can use INSTALL and REMOVE to juggle any
memory-resident programs, and PCMAP to see what's loaded where.

These utilities were all written before DOS 4.0 was released. The vast majority of them
will work just fine under any version of DOS from 2.0 through 4.0. However, a few of
them use undocwnented tricks that version 4.0 just doesn't understand. RN, for instance,
relies on a clever technique to read the contents of your hard disk far faster than DOS would
normally allow. DOS 4.0 doesn't support this trick-but you don't really need RN with
later versions since DOS 4.0 provides a utility much like RN in its Shell. PCMAP works
a bit differently as well, but again, users of version 4.0canrely on the DOS MEM/DEBUG
command instead. SCROLL2/W AIT ASEC, WINDOWS, and BOOTREC.PCM also
chafe under version 4.0.

If some of the programs don't seem to work, odds are that it's either because you have
other TSR programs already resident in memory, or because you're using a non-IBM
system with a fussy BIOS. You can't do anything about the second problem, but
INST ALL and REMOVE can help you sort out most memory conflicts.

PART 4 The Utilities DOS Forgot 877

Summary of Programs

Chapter 16: Assembly Language Programs

APPBK Pop-up appointment book. 889

ASC Pop-up ASCII chart. 892

ASK Keyboard input facility. 892

ATSIZE Calculates file storage requirements. 894

ATTR Modifies and displays file attributes. 894

BAC Backs up files intelligently. 896

BIOS Displays BIOS values for keys. 897

BLANKINS Blanks the screen. 898

BLOAD DRAW.COM picture loader. 901

BOOTREC.PCM Displays an opening screen on non-DOS
system disks. 901

BORDER Sets CGA border colors. 909

BOXDRAW Creates boxes and borders. 909

BROWSE Scrolls forward and backward through a file. 911

BSA VE DRAW.COM image saver. 913

CALC Pop-up programmer's calculator. 914

CAMERA Saves screens to disk. 914

CAPSLOCK Turns the CapsLock key off. 916

CAPS OFF Sets the CapsLock shift off. 917

CAPS ON Sets the CapsLock shift on. 917

CAPTURE Captures screen pop-up files. 918

,, I ,, I

878 PC Magazine DOS Power Tools

CARD FILE Name, address, and phone number database
with dialer. 920

CFPRINT CARDFILE.COM printer utility. 922

CHANGE Search-and-replace text strings or ASCII codes. 923

CHD DOS CD (CHOIR) command enhancement. 924

CHECK Intelligent batch file parameter utility. 925

CLICK Toggles keyboard click on and off. 931

CLSEGA Sets and clears the EGA screen for 43-line
display. 932

CMOSGET Saves AT CMOS configuration settings. 933

CMOSPUT Resets AT CMOS configuration settings. 934

co Copies, sorts, moves, or deletes files. 935

COLD BOOT Reboots with power-on diagnostic tests. 936

COLOR Sets colors from the command line. 937

COLOR2 Sets colors but leaves screen contents intact. 938

COLORPIK Changes screen colors interactively. 939

COLORSET Sets and maintains foreground, background,
and border colors. 939

COLRSHOW Shows all possible color combinations. 940

COMPARE Case-sensitive string comparison test. 941

CONFIRM Intercepts Shift-PrtSc, asks for confirmation. 943

CONTROL Sends decimal values to your printer. 945

COPY SAFE Stops COPY from overwriting files. 946

CPU-NDP Identifies CPU and coprocessor chips. 947

PART4 The Utilities DOS Forgot 879

cs Clears displays of more than 25 lines. 947

CTRLLOCK Disables the Ctrl key. 948

CTYPE Customizes and redraws the cursor. 948

CURSOR Sets cursor shape. 949

CURSOR2 Create custom cursors. 951

CURS READ Reports the starting and ending cursor lines. 952

DATECHEK Runs program on specific day and month. 953

DAZZLER Exercises color systems. 956

DDIR Displays sorted directory entries in double
columns. 957

DECIDE Helps you make decisions. 958

DELETE Deletes files, reports files erased. 958

DIR COMP Sorts and compares directories. 959

DIRNOTES Lets you add comments to DIR listings. 960

DISABLE Turns Shift-PrtSc off. 961

DISKPREP Makes disks self-booting. 961

DISKSCAN Locates and identifies disk errors. 962

DOS-EDIT Provides full-screen DOS command editor. 964

DOS KEY Multitalented memory-resident utility. 965

DOSLEVEL Tests for DOS version from batch files. 968

DOWN Changes directory away from the root. 969

DR Integrated file management facility. 970

DRAW Provides drawing capabilities in DOS. 971

,, I !I '

880 PC Magazine DOS Power Tools

DRIVES Reports active drives. 975

DRIVSPEC Reports status of selected drive. 975

DRNEW Enhanced DR.COM. 976

ECOH ECHOes messages in reverse video. 977

EDPATHA Edits the DOS PATH directly. 978

EGA12 Resets the number of EGA screen rows to 12. 981

EGA2S Resets EGA display to default font and 25-rows. 982

EGA3S Sets the number of EGA screen rows to 35. 983

EGA43 Sets the number of EGA screen rows to 43. 984

EGASO Sets the number of EGA screen rows to 50. 985

EGAS12 Lets EGA switch between two fonts. 986

EGABLANK Tums off EGA screens to prevent "burning." 987

EGA COLOR Remaps EGA colors. 988

EGACOSET Loads a customizable 16 color palette. 989

EGAGRAF Screen-dump routine for EGA 640 by 350
graphics. 991

EGAITAL Produces an italic font onscreen. 992

EGAMODE Reports or changes current video mode. 993

EGAPAGE Reports or changes current video page. 994

EGAPALET Displays all 64 EGA colors. 995

EGAPRMOV Moves the EGA ROM BIOS parameter table
into RAM. 996

EGAPRTSC Provides Shift-PrtSc function for EGA displays. 996

EGATEST Detects EGA adapter and reports active monitors. 997

• j "

PART4 The Utilities DOS Forgot 881

EGA UNDER Demo program for UNDRLIN2.COM utility. 999

ENABLE Turns Shift-PrtSc function on. 999

ENTER Simulates Enter character in batch files. 1000

ENTER2 Simulates a pair of Enter characters. 1001

ENVCOUNT Counts the bytes used by the DOS environment. 1002

FASTATKB Spe.eds up PC-AT programmable keyboards. 1004

FASTOFF Spe.eds up floppy disk operations. 1006

FFEED Sends form feeds following Shift-PrtSc
screen dumps. 1007

FFEED2 Sends form feeds to your printer. 1008

FILL Sets screen attributes without disturbing text. lOOCJ

FREE Reports free space on floppy or hard disks. 1010

FREEZE Ensures confidentiality of in-memory data. 1010

GET CLOCK Handles the CMOS clock. 1011

HELP Pops up help or reference screens. 1012

HEX Hexadecimal calculator. 1013

HIDE Hides files from directory searches. 1017

HIGHRES DRAW.COM mode setter. 1020

HIGRAF-L Generates large graphics screen dumps. 1020

HIGRAF-S Generates tiny graphics screen dumps. 1020

IBMFIX Switches the Ctrl and CapsLock keys. 1022

INSTALL With REMOVE.COM, loads and unloads
TSR programs. 1023

KB ORDER Resets CGA (and PCjr) border colors. 1026

"" l ••

882 PC Magazine DOS Power Tools

KBX Enters extended-ASCII symbols into word
processors. 1027

KEY-FAKE Initializes application programs on boot-up. 1028

KEYLOCK Disables the CapsLock, NumLock, and
ScrollLock keys. 1029

KEYPRESS Creates automatic IF ERRORLEVEL tests. 1030

KEYSUB Redefines keyboard key layout. 1032

LOCATE Positions or erases text onscreen. 1033

LOCK Toggles shift off and on. 1035

LOOP Provides loop control for batch files. 1036

LOWER Converts most text files to all lowercase. 1039

LOWRES DRAW.COM mode setter. 1039

LOX Sets shift toggles from the command line. 1039

MEM512 Limits available RAM for older programs. 1041

MEMORY Reports available memory. 1042

MID$ Batch file string-handling and editing functions. 1042

MOUSEKEY Lets mouse act as cursor keys. 1045

NEWKEYS Accesses 101-key enhanced keyboard codes. 1045

NEWPAUSE Improved version of the DOS PAUSE command. 1047

NEXT Changes the logged directory to the next
one over. 1047

NO Excludes specified files from DOS commands. 1048

NO BOOT Disables Ctrl-Alt-Del. 1049

NOECHO Suppresses initial ECHO OFF display in
batch files. 1050

PART4 The Utilities DOS Forgot 883

NOINTS Disables Shift-PrtSc function. 1051

NOPRINT Disables Shift-PnSc screen dump and Ctrl-PrtSc
printer echo functions. 1052

NOREPEAT Disables keyboard auto-repeat. 1053

NOS CROLL Pauses and restarts scrolling via the
ScrollLock key. 1053

NUMCLICK Generates sound when number pad is in use. 1054

NUMOFF Sets the NumLock shift off. 1055

NUMON Sets the NumLock shift on. 1055

ONCL Character-display and file-creation utility. 1056

OPTION Provides tools for IF ERRORLEVEL tests. 1059

PAGE Switches between text pages 0-3, identifies current
video page. 1061

PAGECLS A page-aware CLS command. 1062

PAINT Creates custom help or reference screens. 1063

PARSE Counts characters, words, and sentences in
ASCII files. 1064

PC MAP Lists programs currently loaded in memory. 1065

PCPARK Parks hard drive heads (ATs and later
systems only). 1066

PEEK Examines the first screenful of any file. 1072

PLAY DOS music functions. 1074

POP-CAL Pop-up calendar. 1075

PO PD IR With PUSHDIR.COM automatic directory return. 1076

PR Formats and prints program listings. 1076

,, I 1•

884 PC Magazine DOS Power Tools

PRN2FILE Redirects printer output to a file. 1077

PRNBYLIN Sends partial screens to your printer. 1078

PRNSWAP Swaps printer ports LPTl and LPT2. 1079

PRSWAP Converts odd IBM text·graphics characters. 1079

PRT2SCR Redirects printer output to the screen. 1080

PRTSCRFF Adds form feed to Shift·PrtSc screen dump. 1081

PUSHDIR With POPDIR.COM, automatic directory return. 1081

QUICKEYS Speeds up all keyboards. 1082

REBOOT Does warm or cold boot. 1083

REBOOTB Does cold or warm reboot from batch file. 1084

RED Transfers files from one subdirectory to another. 1085

REMOVE With INST ALL.COM, lets you load and unload
TSR programs. 1086

RENDIR Renames subdirectories. 1086

REPEATS Reports duplicate filenames. 1087

RESET Resets clock to 0 for batch file timings. 1087

REVERSE Flips foreground and background colors. 1088

RFD Removes directory and all files. 1088

RHCTRL Tums cursor key into a second Ctrl key. 1090

RN Simplifies subdirectory operations. 1091

ROMINFO Reports ROM BIOS date, copyright notice,
and ID. 1092

RUN Executes COM, EXE, or BAT files from any
disk directory. 1094

PART4 The Utilities DOS Forgot 885

SAY Extends the DOS ECHO command. 1095

SCAN Displays the make/break scan code for any key. 1096

SCANDIR Side-by-side comparison of two directories. 1097

SC LEAN Searches, erases, or retains files selectively. 1098

SCRLLOFF Sets the ScrollLock shift off. 1099

SCROLL Controls scrolling portion of the screen. 1099

SCROLL2 WAITASEC screen capture utility. 1100

SCROLLON Sets the ScrollLock shift on. 1100

SEARCH Searches for filenames or character strings. 1101

SETUP Sends printer control codes from application
programs. 1102

SHOW CHAR Displays all 256 ASCII characters. 1103

SET CLOCK Sets the CMOS clock on PC-AT and
later systems. 1106

SIZE Calculates disk and file storage requirements. 1107

SKIPLINE Displays or prints a range of lines. 1107

SLOWDOWN Slows down a fast system: useful for games. 11()<)

SNIPPER An interapplication clipboard and text printer. 1110

SPECTRUM Remaps EGA colors. 1112

STATLINE Displays 26th-line key status indicators. 1113

STATUS Reports the system configuration information. 1114

STICK Locks and unlocks the cursor and EGA
screen colors. 1114

STRIP Filters out high bits from WordStar-type files. 1115

,, I lt

886 PC Magazine DOS Power Tools

SUGGEST Flashes messages on the screen. 1116

SWEEP Executes a command in all subdirectories. 1117

TEST1980 Tests the system clock to make sure it's set. 1118

TICKER Attention-getting variation of PAUSE prompt. 1120

TIMEKEY Inserts the date and/or time into documents. 1121

TINY COMM Very small communications program. 1122

TOUCH Changes file date and/or time in directory. 1125

TY PEA Looks inside program files to examine messages. 1126

UN CRASH Breaks out of endless loops. 1127

UNDERLIN Provides flexible EGA screen underlining. 1129

UNDRLIN2 Provides simple EGA screen underlining. 1130

UNHIDE Unhides files. 1131

UP Changes logged directory to parent directory. 1132

UPPER Converts text files to uppercase. 1133

VT REE Provides visual representation of
subdirectory trees. 1133

WAIT Delays batch file execution. 1134

WAITASEC Allows backwards scrolling in DOS. 1135

WARMBOOT Performs a fast reboot. 1136

WHERE Searches directories for specified filename. 1137

WINDOWS Shows BIOS window-clearing abilities. 1137

XDEL Provides selective file deletion with confirmation. 1138

XDIR Memory-resident directory utility. 1138

PART 4 The Utilities DOS Forgot 887

Chapter 17: BASIC Programs

BA TMAKR1.BAS/
BATMAKR2.BAS Creates files that switch between

subdirectories. 1142

BOOTREC.BAS Reads the BIOS Parameter Block. 1144

BOXMAKER.BAS Creates a single- or double-line box. 1145

CAMLOAD.BAS With CAMERA.COM. loads screen images. 1146

COLORSET.BAS Creates files that set display colors. 1148

FROG.BAS Demonstrates character-animation techniques. 1149

GRAFPRNT.BAS Displays bit patterns for ASCII graphics
characters. 1149

HORSE.BAS Demonstrates screen-page animation. 1150

MAKECOM.BAS Creates pop-up screen messages. 1151

MAKEMENU.BAS Creates custom DOS menu system. 1154

MAKESCRN.BAS Provides simulated-3D menu for batch files. 1157

ROMPRINT.BAS Prints ASCII text character bit patterns. 1158

SAMPLE.BAS Generates sample screens for CAMERA.COM. 1159

SECTORXL.BAS Translates BIOS and DOS sector numbers. 1159

SOUNDER.BAS Demonstrates unusual sounds. 1160

f' I \4 '

Chapter 16

Assembly Language
Programs

APPBK
Command

Michael J. Mefford

Purpose: Reminds you of appointments at the times you specify; provides addi
tional optional hourly chime and continuous on-screen date/time display.

Format: [d:] [path] APPBK

or

[d:] [path]APPBK [f,] [b,] [s,] [h,] [a]

Remarks: APPBK is a memory-resident utility that is normally loaded through
your AUTOEXEC.BAT file. It must be loaded after any system
time/date setting routines, and before loading SideKick (if used).

Pressing Alt-R opens the onscreen APPBK window, in which you enter
your appointments. Enter times as 2:00, not 02:00, and include the A or
P before the M in the window. You can edit your appointment list using
the Fl and F3 keys, by overstriking letters, and with the deleting back
space key. F2 toggles an hourly chime on and off; F4 similarly toggles a
continuous onscreen display of the time and date.

889

• I 1• '

890 PC Magazine DOS Power Tools

An alarm will sound at the appoinunent times specified. Additionally,
should you be away from your desk and not hear the reminder, your first
keystroke following the alarm will pop up the reminder window. To
close the window, press Esc or the Alt-R (default) APPBK trigger key.

At the time it is loaded, APPBK may be given alternative parameters for
its color (t), border color (b), trigger-key scan code (s}, hourly chime fre
quency (h), and alarm frequency (a). The default values are
7, 112, 19 ,2217 ,2960. Tables of acceptable alternative parameter values
are contained on the following pages. In entering parameters, separate
each with a comma. Commas alone may be used for initial parameters
you do not wish to change.

Examples: APPBK , , , 1760

Parameter Tables

Foreground

0
1
2
3
4
5
6
7

would change only the frequency (tone) of the hourly chime (the h
parameter).

Color Codes (f and b Parameters)

Color Adaptor
Background Color Foreground Color

0 Black 8 Grey
16 Blue 9 Light blue
32 Green 10 Light green
48 Cyan 11 Light cyan
64 Red 12 Light red
80 Magenta 13 Light magenta
96 Brown 14 Yellow

112 White 15 Bright white

Monochrome Adaptor
Foreground Background Color

0 0 Black
7 112 White

15 na Bright white

Notes:

Assembly Language Programs 891

1. Add foreground color to the background color to arrive at parameter
number. For example, blue letters on cyan (light blue) would be 48 + 1 =
49.

2. Defaults are 7 (white on black) for the reminder field (foreground)
and 112 (black on white) for the frame (border).

Scan Codes for ALT-KEY Combinations (s Parameter)

Code Key Code Key Code Key Code Key

16 Q 30 A 44 z 120 1
17 w 31 s 45 x 121 2
18 E 32 D 46 c 122 3
19 R 33 F 47 v 123 4
20 T 34 G 48 B 124 5
21 y 35 H 49 N 125 6
22 u 36 J 50 M 126 7
23 I 37 K 127 8
24 0 38 L 128 9
25 p 129 0

130 -
Default is 19 (Alt R) 131 =

Tone/Frequency (h and a Parameters)

A 55 110 220 440 880 1760 3520 1740 14080
A# 58 117 233 466 932 1857 3714 7428 14856
B 62 123 247 494 988 1976 3952 7904 15808
c 65 131 262 523 1046 2003 4186 8372 16744
C# 69 139 277 554 1109 2217 4434 8868 17736
D 74 149 294 587 1175 2349 4698 9396 18792
D# 78 156 311 622 1245 2489 4978 9956 19912
E 82 165 330 659 1319 2637 5274 10548 21096
F 87 175 349 698 1397 2794 5588 11176 22352
F# 93 185 370 740 1480 2960 5920 11840 23680
G 98 196 392 784 1568 3136 6272 12544 25088
G# 104 208 415 831 1661 3322 6644 13288 26576

f' I \4

892 PC Magazine DOS Power Tools

Notes:

Note: Middle C is 262. The defaults are 2217 (C#) for the hourly chime
and 2960 (F#) for the alarm chime.

While APPBK is compatible with most applications programs and resi
dent utilities, complete compatibility cannot be assured. It cannot, for ex
ample, be used with XyWrite.

ASC
Command

Jeff Prosise

Purpose: Provides a pop-up ASCII chart showing decimal, hexadecimal, and
character equivalents for the full IBM character set.

Format: [d:] [path]ASC

Remarks: ASC.COM is a memory-resident utility that is normally loaded at boot
up, via your AUTOEXEC.BAT file. Once loaded, pressing Alt-A pops
up the first page (32 ASCII codes) of the display window over any cur
rently active applications program. The Up- and Down-Arrow, PgUp
and PgDn, and Home and End keys access the remaining ASCII display
pages. Pressing Esc closes the window, restoring the original screen dis
play.

Notes:

ASK

In operation, ASC.COM requires approximately 2.5K of RAM. It is com
patible with most applications and TSR (terminate and stay resident)
programs that do not themselves require the Alt-A key combination, and
it may be used with monochrome, color, or EGA monitors.

You may use DEBUG to modify the default border, text, and header
colors of ASC.COM. These values, initially OFH, lFH, and lEH, respec
tively, are located at offsets 014D through 014F in the .COM file. For
use with a composite monochrome display, the values 70H, 07H, and
07H are suggested.

Yan Seiner
Batch file command

Purpose: Combines a keyboard input facility that returns ERRORLEVEL codes
with automatic prompting, in a single command.

Assembly Language Programs 893

Format: [d:] [path]ASK prompt_string

Remarks: Many users take advantage of keyboard input routines that control IF
ERRORLEVEL batch branching. However, in virtually all cases, the
input routines need to be preceded by an ECHO statement prompting the
user to strike a particular key.

ASK.COM combines ERRORLEVEL setting and user prompting in a
single command. Like ECHO, ASK prints the text following it on the
same line. However, unlike ECHO, ASK.COM waits for the user to
enter a keystroke. It ANDs each input character with DF to turn every
thing uppercase and make all entries case IN sensitive, and it echoes the
keystroke (in its uppercase version) to the screen.

In addition, ASK gives "y" and "n" entries special treatment, by printing
out the full words "Yes" and "No."

Examples: Use ASK.COM the same way you'd use ECHO. So if your batch file in
cludes the line:

ASK Want to back up your files (Y/N)?

ASK will display the line:

Want to back up your files (Y/N)?

onscreen and wait for a reply. You can then test the ERRORLEVEL in a
series of IF statements. The CHECK.BAT batch file below shows how
to stack the IF ERRORLEVEL tests, with the largest numbers at the top.

ECHO OFF
:BADCHAR
ASK Do you want to run CHKDSK (Y/N)?
IF ERRORLEVEL 90 GOTO BADCHAR
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
GOTO BADCHAR
:GOODCHAR

89 GOTO RUNCHK
79 GOTO BADCHAR
78 GOTO GOODCHAR

ECHO You didn't want to run it
GOTO END
:RUNCHK
CHKDSK
:END

• j ll I

894 PC Magazine DOS Power Tools

Notes:

This batch file will ask if you want to run CHKDSK; if you answer N or
n it will echo No to the screen and jump to the message saying you
didn't want to run it. If you answer Y or y it will jump to the CHKDSK
command near the bottom and run it.

ASK.COM won't check to see if a keystroke is valid; it will happily
munch on anything you feed it from the keyboard. To modify the
program so that it's case sensitive, replace the:

AND AL,DF

at location 1 lE with two NOPs (the code for a NOP is 90):

DEBUG ASK.COM
E llE 90 90
w
Q

ATSIZE (and SIZE)
Command(s)

Art Merrill

Purpose: Calculates the storage requirements of a file or group of files, based on
the number of DOS clusters necessary to make floppy disk and hard disk
copies. This uses a value of 2K for AT cluster size.

See SIZE.

ATTR (Attribute)
Command

Charles Petzold

Purpose: Lets you display and modify archive, system, hidden, and read-only file
attributes.

Format: [d:] [path]ATTR

or

[d:] [path]ATTR *·*

Assembly Language Programs 895

or

[d:] [path]ATTR [+Al-A] [+S!-S] [+Hl-H] [+Rl-R]
[d:] [path]filename[.ext]

Remarks: Entering A TIR without any parameters, as in the first format shown
above, produces a help display (essentially identical to the third form
above) that shows which file attributes can be changed.

A TIR.COM permits the use of the global ? and * characters (as in the
second format above). Entering AITRfilename displays a specific file's
attributes. For example:

ATTR IBMBIO.COM

returns the display:

IBMBIO.COM Arc Sys Hid R-0

showing that the Archive, System, Hidden, and Read-Only bits of the at
tribute byte are set for this fik.

When wildcards are used to list the attributes of all the files in a direc
tory, subdirectory names are shown as Dir (between the Arc and Sys in
the example above). Unlike the DOS DIR command, ATIR lists hidden
files, whether sought by specified filename or through a *. * listing.
However, ATIR does not show volume names or the dot and double
dot entries in subdirectories.

The syntax for changing file attributes is indicated in the third format
above. After typing ATTR (and a space) you simply precede the file
specification with a plus or minus sign, followed by the letter A (Ar
chive), S (System), H (Hidden), or R (Read-Only). A plus sign turns on
the specified attribute; a minus sign turns it off. More than one attribute
can be changed at once, and the attribute-designating letters may be
entered in any order and in upper- or lowercase. No space may be used
between the plus or minus and the letter that follows it, however.

Examples: To convert the file 88TAX.WKS to hidden and read-only, you would
enter:

ATTR +H +R 88TAX.WKS

Since DOS itself normally sets the Archive bit, entering:

,, ; ,, ,

896 PC Magazine DOS Power Tools

BAC
Command

ATTR 88TAX.WKS

would produce the display:

88TAX.WKS Arc Hid R-0

Since the Hidden attribute has been set, however, the DIR command will
produce the message, "File not found.,, And since the Read-Only flag
has also been set, a DEL command will produce the message, "Access
denied."

John Dickinson

Purpose: Backs up all (or selected) files in a directory to hard or floppy disks, per
mitting disk changes when target disks become full.

Format: [d:] [path]BAC [d:] [path]filename[.ext] [d:] [path]

Remarks: Unlike the DOS COPY command, BAC.COM permits you to change
(formatted) target disks when backing up files to disk. Furthermore, it
backs up only files whose date stamp is later than those of identically
named files on the target disk. Unlike BACKUP, BAC does not change
the setting of the archive bit. Also, files copied with BAC.COM are fully
usable at all times; they do not need to first go through a RESTORE
process.

BAC.COM supports the use of global (* and ?) characters in filenames
and extensions. It does not, however, permit you to REName files during
copying.

Examples: You are working at a PC AT with a hard disk drive (C:) on which you
keep your copy of BAC.COM, and you want to back up all the .DOC
files stored on a 1.2-Mb floppy disk (drive A:) onto regular 360K disks
(drive B:). Since these .DOC files will require approximately 600K, you
must have two formatted blank floppy disks ready to use in drive B:.
From the C> prompt, you enter:

BAC A:*.DOC B:

When the first target disk in drive B: is full, you will be prompted to
change disks.

Notes:

Assembly Language Programs 897

BAC.COM compares the date stamps of identically named files and will
not overwrite a newer version with an older one. This may cause files to
be skipped if you don't keep your date/time current. Also, for best
results, keep the number of files in any directory under 255.

BIOS
Command

Robert L. Hummel

Purpose: Displays the values that BIOS returns for each keypress or key combina
tion.

Format: [d:] [path] BIOS

Remarks: When you press any key, the keyboard controller tells your system BIOS
which physical key was struck by reporting its scan code (a proprietary
number assigned by IBM to identify the physical key layout).

However, scan codes don't directly tell your system what you had in
mind when you pressed a particular key. When you typed an A, you
might have been trying to enter a lowercase a, or an uppercase A, or a
Ctrl-A, or an Alt-A. It's up to your system's BIOS to interpret every
thing proper I y.

BIOS interrupt 9 normally retrieves the scan codes from the keyboard,
looks at the status of the various shift keys, and figures out what you
were trying to type. Certain keys and key combinations (such as Ctrl-3
or the 5 on the numeric keypad when it's in cursor mode) aren't recog
nized by the BIOS, and any program that depends on BIOS keyboard ser
vices can't use these.

However, if you typed something simple - like a lowercase a - that
translates to a normal ASCII character, the BIOS places the single-byte
ASCII code for it in the keyboard buffer, followed by the "make" scan
code for that key. (When you press a key the keyboard controller iden
tifies which physical key it was by generating a make code; when you
release it the controller generates a "break" code with a value hex 80
(decimal 128) higher than the make code.)

If BIOS determines that the character is not ASCII, it puts an extended
ASCII code in the keyboard buffer, followed by a zero. BIOS.COM will
display the hexadecimal values that BIOS returns for each key. Pressing

t I !4 r

898 PC Magazine DOS Power Tools

Notes:

the space bar will exit the program and return to DOS, so it won't report
what BIOS returns each time you tap a space (3920H).

Enhanced keyboard users face an additional problem. To access the
added keys (like Fl 1 and F12), the new BIOS keyboard functions (lOH,
1 lH, and 12H) must be used in place of 0, 1, and 2. The NEWKEYS
program by Charles Petzold in this section lets programs take advantage
of these new functions.

(See Robert Hummel's SCAN program in this section for more details
on scan codes.)

The BIOS.COM program was originally written to display codes con
tinuously on the same line, which saved space if you wanted to examine
a lot of keys in a row. However this version inserts carriage returns to
put each code on a line by itself, which makes them easier to examine. If
you want to remove the carriage returns and display everything con
tinuously, use DEBUG to make the following patch:

DEBUG BIOS.COM
F 136 LA 90
w
Q

BLANK.INS
Command

Jozef H. Khoe and Paul Somerson

Purpose: Blanks the screen temporarily by turning the colors to black-on-black
without changing the onscreen text. Pressing the Ins key restores the
original colors (see note) and text.

Format: [d:] [path] BLANKINS

Remarks: You can use this to prevent an image from burning itself into the phos
phor, or to blank the screen temporarily if you have to walk away from
your system and you don't want anyone to see whaCs on your screen.

You can change the key that reactivates things by patching address 12C.
To change the restorative key to Shift-Tab and make a copy of the
program called BLNKSHTB.COM, you'd type:

DEBUG BLANKINS.COM
E 12C OF
N BLNKSHTB.COM
w
Q

Assembly Language Programs 899

The lists of possible reactivation keys and their hex codes are shown in
the charts below.

Function Key Combinations

Fl through
Shift-Fl through
Ctrl-Fl through
Alt-Fl through

Alt-1 through

FlO
Shift-FlO
Ctrl-FIO
Alt-FlO

Alt-10

Key Hex

Alt-A IE
Alt-B 30
Alt-C 2E
Alt-D 20
Alt-E 12
Alt-F 21
Alt-G 22
Alt-H 23
Alt-I 17
Alt-J 24
Alt-K 25
Alt-L 26
Alt-M 32

Extended Hex Value

Key

Alt-N
Alt-0
Alt-P
Alt-Q
Alt-R
Alt-S
Alt-T
Alt-U
Alt-V
Alt-W
Alt-X
Alt-Y
Alt-Z

t I tt I >

3B through 44
54 through SD
SE through 67
68 through 71
78 through 81

Hex

31
18
19
10
13
lF
14
16
2F
11
2D
15
2C

900 PC Magazine DOS Power Tools

Notes:

Miscellaneous Key Hex

Shift-Tab OF
Alt-- 82
Alt-= 83
Home 47
Cursor Up 48
Pg Up 49
Cursor Left 4B
Cursor Right 4D
End 4F
Cursor Down 50
PgDn 51
Ins 52
Del 53
Ctrl-PrtSc 72
Ctrl-Cursor Left 73
Ctrl-Cursor Right 74
Ctrl-End 75
Ctrl-PgDn 76
Ctrl-Home 77
Ctrl-PgUp 84

1. When you press Ins (or any other key you've used to restore the
screen) BLANKINS.COM will reset the colors to the ones in effect at
the cursor when you started the program. If you use lots of different
colors on the screen at once this won't restore them all.

If you want to adapt this so it will clear the screen after you press the res
torative key, you can create a variation of it called BLANKCLS.COM,
by typing:

DEBUG
E 100 30 FF B4 08 CD 10 50 30
E lOB FF EB 10 00 30 E4 CD 16
E 110 3C 00 75 FB 80 FC 52 75
E llB F3 58 BB E7 BB 00 06 31
E 120 C9 BA 4F 18 CD 10 B4 02
E 12B 30 FF 31 D2 CD 10 C3
N BLANKCLS.COM
RCX

BLOAD
Command

2F
w
Q

Assembly Language Programs 901

To patch BLANKCLS so it uses a different restorative key, change the
byte at address 116.

2. BLANK.INS.COM is hard-wired for25 x 80 screens only. It restores
the color by filling every other byte in video memory with the desired at
tribute value. Don't use this on screens longer than 25 lines.

Michael J. Mefford

Purpose: Loads graphics images previously saved by BSA VE.COM onto the
screen.

See DRAW.

BOOTREC.PCM
New boot record

Charles Petzold and Robert L. Hummel

Warning: this is a potentially dangerous command. Read instruc
tions carefully before trying it. If you 're at all nervous, DON'T try
it. If you do try it, check your typing very carefully!.

Purpose: You can't legally distribute a bootable DOS disk, since Microsoft (and
its customers such as IBM) won't allow you to sell or give away the
three system files that every disk needs to start operating. Users who try
to boot disks without these system files will simply see a message:

Non-System disk or disk error
Replace and strike any key when ready

In most cases users can make such disks bootable by putting their own
copies of the system files onto these disks, but the terse error message
above doesn't explain how. And it's so unfriendly that it can create a bad
impression.

f· I ll 1

902 PC Magazine DOS Power Tools

Format:

B001REC.PCM is a brand new boot record that lets a diskette without
the DOS system files display a complete screenful of information instead
of those two nasty lines. If you're distributing a legal disk without the
system files on it you can have B001REC.PCM load an entire, attrac
tive screenful of information welcoming users and telling them how to
proceed.

Assuming you're working with a double-sided 5-1/4 inch diskette in
drive A:, to use this new boot record, you have to do the following:

1. Take a brand new disk from out of the box and format it with a /B
parameter:

FORMAT A: /B

2. Add a volume label to the disk:

LABEL A:

(Then when DOS prompts you for one, type in whatever volume label is
appropriate. At PC Magazine we often just make the label PC
MAGAZINE. The LABEL command works with any version of DOS
3.0 or later.)

3. Copy your introductory screen -which must be called
BOOTSCRN - onto the disk:

COPY BOOTSCRN A:

BOOTSCRN must be the first file to appear in the directory listing, and
it must be an ASCII text file. You may want to copy and edit the sample
BOOTSCRN file on this disk.

4. Make sure the B001REC.PCM file and DEBUG.COM are handy,
load DEBUG by entering:

DEBUG

at the DOS prompt, and then type (very, very carefully) the four lines:

N BOOTREC. PCM
L

w 100 0 0 1
Q

Assembly Language Programs 903

being sure to press the Enter key at the end of each one. However, check ·
your typing several times before entering the line that begins with the W.

5. Once you've completed steps 1through4, test it by making sure the
new disk is in drive A: and pressing Ctrl-Alt-Del to reboot. If you see
your BOOTSCRN screen you've done everything properly. If not, start
over.

6. Then copy all the files that you want to distribute onto this disk.
Write "MASTER" on a pressure-sensitive diskette label, and attach the
label to the diskette. Use only the DISKCOPY command to make dis
tribution copies; don't try making distribution copies with COPY or
XCOPY.

Warning: Be extremely careful when typing the DEBUG instructions in step 41

These instructions copy the BOOTREC.PCM file onto the diskette that
you just formatted with the /B parameter. If you type it exactly as it ap
pears, you'll be safe. But if you have a hard disk system, and you don't
enter the precise numbers that are shown, you could potentially copy it
onto the wrong place on the wrong disk and end up damaging your files.
So be extremely careful.

Also, this technique won't work if you change or skip any of the above
steps. The diskette must be in drive A:, and you have to format it with
the /B paramater and then immediately add a volume label to the disk
and then copy a file named BOOTSCRN onto it. (Actually, you could
switch the order of steps 3 and 4 without affecting anything adversely.)

If you' re using an AT with a two floppy disks, a 1.2M and a 360K, and
you want to use the 360K drive to make your copies, you could adapt the
above instructions to work with drive B: instead of drive A:. If you do,
when you get to step 4 above, change the DEBUG commands to:

N BOOTREC.PCM
L

w 100 1 0 1
Q

But again, be very, very careful when you type the line starting with the
w.

Remarks: The very first sector on every DOS-formatted diskette is called the boot
sector or the boot record regardless of whether the three system files that
DOS needs to boot up are present.

'" I it '

904 PC Magazine DOS Power Tools

At the very beginning of this tiny (512 byte) boot record is an instruction
that identifies the diskette as a DOS disk. If your system doesn't see this
instruction, it can tell ifs dealing with something other than a properly
formatted DOS disk.

Right after this instruction is an "OEM identification" space where the
Original Equipment Manufacturer that licensed your version of DOS can
put an abbreviated form of its name. Next, all disks other than ones for
matted with ancient DOS versions contain a coded chunk of information
that holds the BIOS Parameter Block (BPB) - a table that furnishes
data on things like how many sectors the disk contains, and the maxi
mum number of entries allowed in the root directory.

Finally, after an additional few bytes of configuration data, is the
bootstrap pro gram that sees if the necessary DOS system files are on the
disk in the right place. If they are, it loads them into memory and gets
you up and running. If they 're not on the disk in the exact right location,
this bootstrap program displays the two line "Non-System disk ... " mes
sage.

The boot record is normally written to the first disk sector by the DOS
FORMAT.COM program when you format the disk.

BOOTREC.PCM is a 512-byte file that replaces the existing boot record.
Like the normal boot record, it contains an initial instruction that tells
your system it's dealing with a DOS disk. The OEM ID says:

" PC-MAG "

(with a space at each end) but you may use DEBUG to replace this by
putting your own eight-character label at offset 103H. And the
B001REC.PCM BPB tells DOS it's working with an eight-sector/track
320K floppy rather than the standard nine-sector/track 360K diskette.

The bootstrap loader in BOOTREC.PCM is totally different from the
DOS version. It first loads the disk's directory into memory and makes
sure the fourth directory entry is called BOOTSCRN. If the fourth entry
isn't BOOTSCRN, the loader prints an message that says:

This is not a bootable disk
Put a bootable DOS disk in drive A:
and press any key when ready

Assembly Language Programs 905

If BOOTSCRN is the fourth directory entry, BOOTREC.PCM reads the
four sectors starting at track 7, sector 3, on side 0 of the disk.

DOS refers to sectors sequentially, starting at 0 and going to:

• 319 for 160K diskettes
• 359 for 180K diskettes
• 639 for 320K diskettes
• 719 for 360K diskettes
• 2,399 for 1.2M diskettes
• 1,439 for 740K diskettes
• 2,879 for 1.44M diskettes

However, BIOS maps disk using three coordinates- tracks (sometimes
called cylinders), sides (often referred to as heads), and sectors:

Size Sides Sectors Tracks
160K 0 0-8 0-39
180K 0 0-9 0-39
320K 0-1 0-8 0-39
360K 0-1 0-9 0-39
1.2M 0-1 0-15 0-79
740K 0-1 0-9 0-79
1.44M 0-1 0-18 0-79

The equivalent of BIOS track 7, sector 3, side 0 is DOS sector 114. You
can make sure the BOOTSCRN file actually starts at DOS sector 114 by
putting the disk containing BOOTSCRN in drive A:, then loading
DEBUG and typing:

L 100 0 72 4

This loads four sectors (a 25 x 80 text screen filled with 2,000 characters
requires four 512-byte sectors) starting with sector 72H (the hex
equivalent of decimal 114) on drive A: (which DEBUG calls 0). Then
type:

D 100 L 800

and you should see your BOOTSCRN file. See the SECTOR.BAS
program on this disk if you need to translate sector numbers back and
forth from DOS to BIOS.

906 PC Magazine DOS Power Tools

Notes:

Remember, this new BOOTSCRN file is simply a replacement for the
old two-line "Non-System disk ... " message. If you later use the SYS
command to put the system files onto this disk, and copy COM
MAND.COM onto it, DOS won't display BOOTSCRN again. It's there
only to provide a friendlier, more helpful, and more attractive display
when users try to boot the disk without first putting the system files on it.

1. When you format a disk using the:

FORMAT /B

option to leave space allocated for the two system files, DOS idiotically
turns all such disks into eight-sector/track, 320K floppies. This wastes
40K of precious disk space, considering that virtually everybody uses
nine-sector/track 360K floppies as the preferred distribution medium.

2. The image in your BOOTSCRN file can't be the full 25 rows tall by
80 columns across. The new BOOTREC.PCM loader will in fact display
all 2,048 characters in the four sectors it loaded unless it sees an ASCII 0
character or a character 26 (hex IA) end-of-file marker.

(This means that you need to put one of these characters at the end of
your BOOTSCRN file. If you're creating it with a decent ASCII word
processor, the word processor will probably handle this for you.)

However, the BIOS "Write teletype to active page" or "Write TTY"
OEH function of INT 10 that displays these characters will always move
the cursor to the next screen position after writing each one, and will
scroll down one line after it's written a character at the right edge of the
screen. So you can't display all 2,000 characters on a 25 x 80 screen,
since the last one would be in the 80th column, forcing BIOS to scroll up
one line, which would push the top line of your text off the screen.

If you want to create a border that looks as if it goes all the way around
the screen, you can do it one of three ways:

• Make the box that the border creates 80 columns across but only 24
rows tall.

• Make the box 25 rows tall but only 79 columns across.
• Put small "notches" in the comers of your screen and hide a character

0 or character 26 in the lower righthand comer (the 2,000th character):

Assembly Language Programs 907

Also, be careful if you create the screen with a word processor, since
some put both a carriage return (CR) and a line feed (LF) - decimal 13
and 1 O; hex OD OA - at the end of each line. Function OEH of INT 10
treats the carriage return (the character 13 or OD) as a command to wrap
the display down a line, and won't actually print this character. But it
will interpret a line feed as an additional character that can throw off the
display.

You can create the BOOTSCRN file either as one long 2,000-character
line (actually a 1,999 character line) with no carriage returns whatsoever,
since BIOS will wrap the lines automatically for you. Or you can put a
carriage return without a line feed at the end of each line, which makes
the image easier to create. If you want your lines to be 79 columns
across you don't have to worry about this, since the line feed can sit in
visibly in the 80th column of each row. But if you want your image to
span the full 80 columns, the best way to handle it is to construct it with
your ASCII word processor by entering carriage return/line feeds the
way you normally would, and then use your word processor's search
and-replace command either to remove the CR/LP pair entirely or
change the CR/LP into just a CR.

3. As written, BOOTREC.PCM displays the BOOTSCRN text in
bright yellow (color OEH). If you want to change this, patch the byte at
address 183. Changing the value at 183 to 2 will print the screen in
green; changing it to a hex value above 7 will make it high intensity (so
that putting a C at this address will display the text in bright red).

4. You may not need or want to leave room on the disk for DOS. For
instance, the accompanying disk contains so many programs that there's
just no room left for the DOS system files.

By omitting the space reserved for DOS you can cram more of your own
files onto the disk. To do this, use DEBUG to make a modified version
of BOOTREC.PCM called BOOTREC.BIG:

,, I 1• '

908 PC Magazine DOS Power Tools

DEBUG BOOTREC.PCM
E 14F 74
E lSE 01
E 161 00
N BOOTREC.BIG
w
Q

Then, follow these instructions very carefully:

1. Format a brand new floppy disk in drive A: by typing:

FORMAT A: /8

Note that in this case you 're adding a /8 switch after the FORMAT
command rather than the /B switch used earlier. This earlier /B
parameter left room for DOS files. The /8 parameter that you use in
this case simply formats the disk for 8 sectors per track without setting
aside room for DOS.

2. Then, before doing anything else, copy your BOOTSCRN file -
the 2,048-byte screen you want to display - onto this formatted flop
py disk. It must be the very first file to appear in the disk directory, so
be sure you don't add any volume labels or other files to the disk
before copying BOOTSCRN onto it.

3. Then transfer the BOOTREC.BIG file onto the floppy in drive A:
by typing:

DEBUG
N BOOTREC.BIG
L

w 100 0 0 1
Q

4. Once you've completed the above steps, you can copy any other
files onto the disk. Again, be extremely careful when typing the
DEBUG instructions directly above.

This revised B001REC.BIG boot record checks to see if
BOOTSCRN is the very first directory entry, and if so, loads the ac
tual BOOTSCRN file stored at DOS sector 10 (BIOS sector 3, track 0,
side 1).

BORDER
Command

Assembly Language Programs 909

Paul Somerson

Purpose: Sets border color from the command line on CGA or CGA-compatible
screens.

Format: [d:] [path]BORDER n

where n is the hex value of a border color from 0 to E.

Examples: Type:

BORDER 4

to set the CG A border to red, or:

BORDER E

(or BORDER e) to set it to bright yellow.

Remarks: IBM doesn't support border colors on any systems other than the CGA.
However, if you are using a CGA you may choose any border color from
0 (black) to F (bright white).

Value
0

BOXDRAW
Command

1
2
3
4
5
6
7

Color
Black
Blue
Green
Cyan (Light Blue)
Red
Magenta
Brown
White

Value
8
9
A
B
c
D
E
F

Color
Grey
Bright blue
Bright green
Bright cyan
Bright red
Bright magenta
Yellow
Bright white

Tapio K. Vocadlo

Purpose: Lets you create boxes and borders directly by typing on the cursor/num
ber pad.

f I I. 1 ,

910 PC Magazine DOS Power Tools

Format: [d:] [path]BOXDRAW

to load it, then Alt-B to toggle it on and off. (The CapsLock and Num
lock keys must be on for it to work.)

Once you've toggled the program on, you can select among four
separate palettes of border characters by typing the capital letters A, B,
C, or D. Each lets you work with a different character set:
• A= all single-line borders
• B =all double-line borders
• C = double horizontals, single verticals
• D = single horizontals, double verticals

To print the actual characters, make sure:

1. The CapsLock and NumLock keys are both on.

2. You've toggled Alt-Bon.

Then use the number pad and the plus and minus signs to draw the
boxes. The upper lefthand comer of the number pad (key 7 /Home) will
draw the upper lefthand comer of a box on your screen. The lower
righthand comer of the number pad (3/PgDn) will produce the lower
righthand box character onscreen, etc. The minus sign will draw a
horizontal bar and the plus a vertical bar.

Remarks: Drawing borders with IBM's high-bit character set can take forever,
especially when you're in the middle of an application program. To
produce each character directly onscreen, you have to hold down the Alt
key, type in the three-digit ASCII value of the border character on the
number pad, and then release the Alt key. A simple box can take several
minutes to draw.

You can use keyboard macro programs or ANSI.SYS to redefine your
keyboard, but these each have drawbacks. BOXDRA W.COM is a
memory-resident program that specializes in making it easy to draw four
different sets of box and border characters. It replaces the normal BIOS
keyboard-support routine so it can check on characters being transferred
from the input buffer to any application in use during keystroke requests.

Load it before any of your application programs. You can then toggle
BOXDRA Won and off by pressing Alt-B (holding down the Alt key
and pressing B). To disable BOXDRAW,justpress Alt-B when you're
done to toggle it off. This works with many - but not all - commercial
applications. But make absolutely sure you test it first with your applica-

Assembly Language Programs 911

tions before you start working with unsaved data files. And as with any
resident programs, watch out for strange interactions with programs such
as SideKick. Test thoroughly before you use it.

You can change the characters it draws by using DEBUG to substitute
others (shading characters, Greek letters, etc.):

Palette 1: Trigger is A
Addresses: Hex lFB through hex 205
Characters: 192, 193, 217, 195, 197, 180, 218, 194, 191, 196, 179

Palette 2: Trigger is B
Addresses: Hex 206 through hex 210
Characters: 200, 202, 188, 204, 206, 185, 201, 203, 187, 205, 186

Palette 3: Trigger is C

BROWSE
Command

Addresses: Hex 211 through hex 21B
Characters: 212, 207, 190, 198, 216, 181, 213, 209, 184, 205, 179

Palette 4: Trigger is D
Addresses: Hex 21 C through hex 226
Characters: 211, 208, 189, 199, 215, 182, 214, 210, 183, 196, 186

Charles Petzold

Purpose: Permits scrolling forward and backward throughout a file without use of
a word processing program.

Format: [d:] [path]BROWSE [d:] [path]filename[.ext] [/W]

Remarks: The DOS TYPE command does not permit you to scroll ahead or go
back to previously displayed material in a file. It also exits at the first in
stance of Ctrl-Z (ASCII 26, conventionally used as an end-of-file
marker), making it impossible to scan binary (e.g .. COM) files for error
messages, copyright notices, and the like.

BROWSE.COM overcomes these limitations, giving you the chance to
go immediately to the top or the end of a file (the Home and End keys,
respectively), to the succeeding or previous screen (PgUp and PgDn), or
to move up or down a line at a time (Up Arrow or Down Arrow). To
return to DOS, simply press the Esc key or Ctrl-Break.

912 PC Magazine DOS Power Tools

Notes:

Wide displays, e.g., a spreadsheet file, are not broken at 80 columns, as
with TYPE. BROWSE ignores carriage returns (ASCII 13), breaking
lines only on line feeds (ASCII 10). The Right Arrow key scrolls the dis
play to the right in eight-character increments (see note 3 below) to view
wide displays; the Left Arrow key returns you immediately to column
zero.

BROWSE expands tab characters (ASCII 9) to the next eight-character
boundary. but does no other character processing unless the /W
parameter is specified. Use of the /W option permits using BROWSE
with WordStar files.

1. BROWSE can run under Top View or Windows; specify "writes
directly to screen" in the .PIF and use the default 52K memory require
ment. (The program actually requires only approximately 33K to run.)
For the Top View PIF, specify that the program intercepts interrupt 23H.

2. BROWSE is compatible with the IBM monochrome, CGA, VGA,
and EGA displays, and will even run in the EGA 43-line mode. Files
prepared with word-processors that employ a one-line-per-paragraph for
mat (such as Microsoft Word and XyWrite) may require excessive right
scrolling, however.

3. You can patch BROWSE.COM with DEBUG at address lOF so that
its right-scroll jumps by more than the default eight characters.

Replace the existing value of 8 at that address with any other reasonable
hex number. So for a 40-column jump, enter hex 28. For an 80-column
jump, enter hex 50. For a 1-column jump, enter 1. This will change the
increment from the default 8 to decimal 80 and rename the program to
BROWSE2.COM:

DEBUG BROWSE.COM
E lOF 50
N BROWSE2.COM
w
Q

4. If WordStar users want to patch BROWSE so the high bit is already
toggled off when they begin, and they have to use a IN switch for non
WordStar text, they can create a version called BROWSE3.COM by
typing:

DEBUG BROWSE.COM
E 16A 7F

E lDB 6E
E 1E2 FF

Assembly Language Programs 913

N BROWSE3.COM
w
Q

5. BROWSE attempts to figure out your current screen color to use
when displaying the file. If you'd rather use a unique color for
BROWSE, you can patch the byte at address 108 so BROWSE works in
a predefined color. You must use a 2-digit hex number for the color. The
lefthand digit is the background and can be any value between 0 and 7.
The right digit is the foreground, and can be any digit between 0 and F.
Any background color from 8 through F blinks.

BSA VE
Command

Value Color Value Color
0 Black 8 Grey
1 Blue 9 Bright blue
2 Green A Bright green
3 Cyan (Light Blue) B Bright cyan
4 Red c Bright red
5 Magenta D Bright magenta
6 Brown E Yellow
7 White F Bright white

- background only -
foreground

So to create a new version called BROWSE4 that always appears in
bright red text (C) on a dark blue background (1), type:

DEBUG BROWSE.COM
E 108 lC
N BROWSE4.COM
w
Q

Michael J.Mefford

Purpose: Saves graphics images to disk so you can load them later with BLOAD.

See DRAW.

• I 14 '

914 PC Magazine DOS Power Tools

CALC
Command

Douglas Boling

Purpose: A pop-up programmer's calculator with base conversion, bit-shifting,
logical operator, mod functions, and 32-bit number representation that
also supports a two-decimal place integer arithmetic calculations.

Format: [d: J [path]CALC

Remarks: CALC is a memory resident program that you can load either at the DOS
command line or as a part of an AUTOEXEC.BAT file.

CAMERA
Command

Pressing Alt-S pops up a six-line window for calculations; pressing Esc
exits the calculator and restores the screen to its previous condition. The
program automatically accommodates monochrome, CGA, or EGA dis
plays.

Any number on CALC' s entry line can be successively converted to
hexadecimal, binary, octal, or decimal (default) notion by pressing Fl.
Mixed-base calculations are supported, and the +, -, *, and I functions
conventionally so long as it is realized that CALC operates in integer,
not floating point mode. (Fixed two-decimal place calculations can be
made by pressing F2 before entering the numbers.) In integer mode the
mod function (e.g., 25 mod 8 = 1) is also supported, using either the%
or the\ sign as the operator.

CALC uses full 32-bit number representation and so can be used for ad
dress calculations. The function keys F3, F4, and F5 perform logical
AND, OR, and XOR operations between two numbers. F6 performs a
NOT (invert) function on the number entered. F7 shifts bits left and F8
shifts right. F9 is a change-sign key, and FlO clears the entry line. To
clear the calculator field, press Shift-PIO.

Phillip Cheng

Purpose: Grabs screens and saves them to disk so you can later load them into a
slide show or poor man's presentation-graphics demonstration.

Format: [d:] [path) CAMERA

Assembly Language Programs 915

Once CAMERA.COM is loaded into memory, you can save any text or
graphics screen to disk by simply pressing the Ctrl, Alt, and Right Shift
keys simultaneously. The first time the program is invoked, it will create
a file named "A" on the logged disk drive with one of the following ex
tensions, depending upon the mode under which the screen was saved:

• .40T forty-column text
• .SOT eighty-column text
• .MRG medium resolution graphics
• .HRG high-resolution graphics

The next images will be saved using the filenames "B," "C," etc., with
the appropriate extensions. To view any image, simply set the correct
screen mode in BASIC and BLOAD the file. Assembly language
programmers who wish to save files without a BLOAD header should
delete the lines at DEBUG hex addresses 107-lOD and 17B-188.

Remarks: This makes it very easy to capture screen images and save them to disk
while a program is running. However, it works only with modes sup
ported by the CGA (and any later displays such as the EGA that can
emulate CGA). And for the sake of simplicity, it saves only the first page
when dealing with text screens (although the program can easily be
changed to save all the pages in one file).

Important: This will conflict with some memory-resident programs, and
programs that use interrupt 9, such as SideKick. So test it carefully
before you have any unsaved data files in memory.

You can easily combine different screen modes in one slide show by
using a BASIC program like CAMLOAD.BAS on the accompanying
disk.

First, run CAMERA.COM. Type in the sample programs below, or write
your own in each of the four modes it can handle. Capture screens in dif
ferent modes by hitting Ctrl-Alt-Right Shift when you see ones you like.
Then get back into DOS and create a batch file called CAM.BAT that
consists of the three lines:

DIR?.*> CAMERA.FIL
[d:] [path]BASICA [d:] [path]CAMLOAD
DEL CAMERA.FIL

(Substitute GWBASIC in place of BASICA if you're using a generic sys
tem.) CAM.BAT will create a file called CAMERA.FIL consisting of
the names of the screens captured by CAMERA.COM, and then run

916 PC Magazine DOS Power Tools

CAMLOAD. CAMLOAD asks how many seconds you want to view
each slide, then sets the proper mcxle and BLOADs the screens automati
cally.

If you don't have your own sample images, you can use the short
401EXT.BAS, 801EXT.BAS, MEDRES.BAS, and HIRES.BAS BASIC
programs created by the SAMPLE.BAS program on the accompanying
disk. Then use the CAMLOAD.BAS "slide show" program to display
them.

See CAMLOAD.BAS, SAMPLE.BAS.

CAPS LOCK
Command

Todd M. Lewis

Purpose: Automatically turns the CapsLock key off when you forget to.

Format: [d:] [path]CAPSLOCK

Remarks: If you've ever forgetten that your CapsLock key is on, then you've in
variably created phrases like "dEAR sIRS," DOS thinks you really need
a feature that lets you press the Shift key and get lowercase letters, but it
usually results in a lot of wasted time. You have to delete, retype, and
then recover your train of thought. This is one of those cases when your
computer really should have known what you meant.

CAPSLOCK.COM gives your CapsLock key enough common sense to
know when you 're thinking in CapsLock Off mode. Any time you use
the Shift key with a letter key, the CapsLock turns off. Shifting nonal
phabetic keys has no effect on CapsLock, so you can still get to all the
special characters and punctuation marks.

You have to run CAPSLOCK only once for it to operate. Again, test this
first with any other programs you may be running that act on the
keyboard.

CAPS OFF
Command

Purpose: Turns CapsLock Shift off.

Format: [d:] [path] CAPSOFF

Assembly Language Programs 917

Mike Cohn

Remarks: See KEYLOCK, NUMON, NUMOFF, CAPSON, SCROLLON,
SCRLLOFF, LOCK, and LOX.

CAPSON Mike Cohn
Command

Purpose: Turns CapsLock Shift on.

Format: [d:] [path] CAPSON

Remarks: You can create a version of this program called CAPSFLIP.COM that al
ternately toggles the CapsLock shift on and off every other time it ex
ecutes.

Simply type:

DEBUG CAPSON.COM
E 108 34
N CAPSFLIP.COM
w
Q

See KEYLOCK, NUMON, NUMOFF, CAPSOFF, SCROLLON,
SCRLLOFF, LOCK, and LOX.

I' I 1t I'

918 PC Magazine DOS Power Tools

CAPTURE
Command

TomKihlken

Purpose: Saves the text and attribute bytes on the screen to a 4,000-byte file that
the PC Magazine HELP.COM utility can pop up either from within an
application or at the DOS prompt. CAPTURE instantly turns the custom
help menus, tables, or anything you type on your screen into files you
can pop up.

Format: [d:] [path] CAPTURE

Remarks: CAPTURE is a memory-resident screen-saving program. Its default hot
key is Alt-C, although you can change it. The program takes no
parameters and saves to filenames with the names SCREEN.000,
SCREEN.001, etc. It will not overwrite existing filenames, but instead in
crements the number in the extension. Filenames stored by CAPTURE
can then be renamed for use by HELP.COM. CAPTURE files may also
be combined into multiple-page help screens (up to the 14-screen limit
of HELP.COM), by using the DOS COPY /B option for copying binary
files.

Examples: To combine the first three CAPTUREd help screens into the file,
HELP .HEP (which might be one of the files in a \HELP subdirectory):

COPY /B SCREEN.OOO+SCREEN.OOl+SCREEN.002 HELP.HEP

The Alt-C trigger key may be changed with DEBUG, by entering the fol
lowing commands:

DEBUG CAPTURE.COM
E 268 SS ;Your Scan code
E 27D MM ;Your Shift mask
w
Q

(Substitute the actual hex values from the following tables for the SS and
MM in the above example.)

Assembly Language Programs 919

Shift-mask Value Table

Value Alt Ctrl L-Shft R-Shft
()()

01 x
02 x
03 x x
04 x
05 x x
06 x x
07 x x x
08 x
09 x x
OA x x
OB x x x
oc x x
OD x x x
OE x x x
OF x x x x

Note: X means key is pressed

Scan-Code Value Table (in Hex)

Key Ccxle Key Code

Esc 01 z 2C
!1 02 x 20
@2 03 c 2E
#3 04 v 2F
$4 05 B 30
%5 06 N 31
"6 07 M 32
&7 08 <, 33
*8 09 >. 34
(9 OA ?/ 35
)0 OB Right-Shift 36

oc PrtSc* 37
+= OD Alt 38

f· I !.f

920 PC Magazine DOS Power Tools

Backspace
Tab
Q
w
E
R
T
y
u
I
0
p
{[
}]
Enter
Ctr I
A
s
D
F
G
H
J
K
L
.,
"'

' -
Left Shift
I\

CARD FILE
Command

OE
OF
10
11
12
13
14
15
16
17
18
19
lA
1B
lC
lD
1E
lF
20
21
22
23
24
25
26
27
28
29
2A
2B

Space 39
CapsLock 3A
Fl 3B
F2 3C
F3 3D
F4 3E
F5 3F
F6 40
F7 41
F8 42
F9 43
FlO 44
NumLock 45
ScrollLock 46
?Home 47
8Up 48
9PgUp 49

4A
4Left 4B
5 4C
6Right 4D
+ 4E
lEnd 4F
2Down 50
3PgDn 51
0 Ins 52
. Del 53
SysReq 54
Fll 57
F12 58

Jeff Prosise

Purpose: Combines a data base of names, addresses, phone numbers, and memo
IDs with a Hayes-compatible autodialer.

Format: [d:J [path]CARDFILE [d:J [filespecJ

Remarks: You normally load CARDFILE with a specific database (filespec) by list
ing it as a line in your AUTOEXEC.BAT file. You can switch to another

Assembly Language Programs 921

database by repeating the command with a different filespec at the DOS
prompt.

The Alt-Right Shift key combination pops up the CARD FILE window,
and Esc returns you to your application. Within the window, the function
keys are assigned as follows:

• Fl Begin/save a new or edited card
• F2 Edit the card currently displayed
• F3 Delete the card currently displayed
• F4 Search all cards for a text string
• F5 Save datafile to disk
• F6 Dial the phone number currently displayed

All card data entry and editing is done in overstrike mode. The back
space key deletes the previous character and the four cursor keys can
position the cursor anywhere in the record area. Enter moves the cursor
to the start of the next line.

You can page through all of the cards with the PgUp, PgDn, and Enter
keys. The Home and End keys let you jump quickly to the first or last
card, respectively.

To search the database, press F4 and enter a text string. Pressing Enter
resumes the search (which is not ca.Se-sensitive) after a match; Esc can
cels the search. An alternate way to find a name quickly is to press Alt
and a letter key. To find "Smith," for example, press Alt-S, then use
PgDn or Enter to skip past "Sagamore" and "Siddhartha."

When used with Hayes-compatible modems, F6 dials the number cur
rently displayed. At the prompt, pick up the phone and press the
spacebar to break the modem connection. The CARDFILE autodialer ig
nores all nonnumeric characters except the comma, which inserts a
pause sometimes needed to access an outside line.

Because CARDFILE is a memory-resident program, it must assume
rather than change the modem parameters. By default, CARDFILE is ini
tially configured for a 1200-baud modem connected to the COML Using
DEBUG you can change the value at 182 from 0 to 1 to change from
CO Ml to COM2, to 2 for COM3, etc. Similarly, to change to a different
baud (bps) rate, change the value at 184 from the default 83H, as follows:

• 300 baud 43H
• 1200 baud 83H
• 2400 baud A3H

f ' II ·

922 PC Magazine DOS Power Tools

• 4800 baud C3H
• 9600 baud E3H

The "ATDT' (dial) and "ATHO" (hangup) strings are at addresses 185
and 18A, respectively. While they can be changed (especially substitut
ing a "P/' ASCII 80 for the "T" in the dialing command), note that each
sequence must be four bytes long. The dial string must be delimited by a
zero byte, and the hangup string must end with ODH and 00.

To save memory, the card capacity may be lowered from the default 255
(FFH) at 169. Each record takes 192 bytes. And if the Alt-Right Shift
hotkey conflicts with other software, change the default value 09 at ad
dress 36A to a combination of the following:

• Right-Shift 1
• Left-Shift 2
• Ctrl 4
• Alt 8

Notes: While CARDFILE will operate under DOS 2.x, its critical error handler
is only fully effective with DOS 3.x.

CFPRINT Jeff Prosise
Command

Purpose: Companion program to send output of CARDFILE.COM name, address,
and phone files to your printer.

Format: [d:] [path]CFPRINT [d:] [path]filename[.ext)

where filename is the CARDFILE data file that you want printed.

Remarks: CARD FILE uses an unusual method of storing ASCII data without end
of-line markers. This thwarts conventional methods ofreading and inter
preting its files. However, its file structure is simple:

The first byte in the file holds a binary value that represents the number
ofrecords stored (where one card corresponds to one record). This is fol
lowed by the ASCII text of the cards themselves.

Each record is composed of six 32-byte lines.

Assembly Language Programs 923

There are no carriage returns; instead, each line is delimited by its
known 32-byte length. Thus a file created by CARD FILE consists of a
single-byte value followed by groups of text 192 bytes in length.

Examples: To print out a CARDFILE data file called CFDATA.FIL in the \NUM
BERS directory on drive C:, using the default LPTl printer, enter:

Notes:

CHANGE
Command

CFPRINT C:\NUMBERS\CFDATA.FIL

Output is routed by default to LPTl (with a zero at offset 103). To alter
the program for other printer ports, use DEBUG to change this byte. A
value of 0 corresponds to LPTl, 1 to LPT2, and 2 to LPT3. A DEBUG
script to modify CFPRINT to use a printer configured as LPT2 looks
something like this:

DEBUG CFPRINT.COM
E 0103 01
w
Q

Michael J. Mefford

Purpose: Performs a rapid search-and-replace operation for text strings and/or
ASCII decimal codes throughout a file of maximum 40,000-byte length.

Format: [d:] [path] CHANGE filespec findstring replacestring

Remarks: The filespec parameter may include a drive letter and a path in addition
to the designated filename.

Findstring and replacestring may consist of text characters enclosed
within (double) quote marks or ASCII decimal codes whose numbers are
separated by commas. Note that the format requires that each parameter
be separated by a single space. Text strings in quotes and ASCII values
in numerals may be combined in either string if separated by commas.

Example: To change all references to Miss Jones to Mrs. Smith in the file NOGOS
SIP.ART on the current directory, you would enter:

CHANGE NOGOSSIP.ART "Miss Jones" "Mrs. Smith"

924 PC Magazine DOS Power Tools

Notes:

To strip out all carriage return-line feeds (i.e. replace them with a null
string) in the file MCI.Bl6 in the \COMM subdirectory. enter:

CHANGE \COMM\MCI.B16 13,10 1111

In the second example you might want to use a space between the quote
marks rather than a null string to keep the words from running together.
Observe that by putting the number of the month in hexadecimal
(B=November) you can fit both month and day within the three-charac
ter DOS filename extension.

CHD
Command

Stephen Barsky

Purpose: Adds intelligence and ease-of-use to the DOS CD (CHDIR) directory
changing command.

Format: [d: J [path] CHO path

Remarks: CHD.COM is almost identical to CHDIR except that it relaxes the re
quirements for specifying paths.

If you omit the leading " \ " CHD first tries to find the specified direc
tory relative to where you are in the tree structure. just as CHOIR does.
Unlike CHDIR, however, if CHD fails to find the subdirectory im
mediately below your current position, it makes a second attempt to find
it just below the root directory.

As an added feature, you may change the current directory to the root by
entering CHD followed by at least one space and then a carriage return.

Yet another feature is that CHD generates a return code that can be used
by an IF ERRORLEVEL test in a batch file to determine whether that
directory change actually worked. A return code of 0 means the direc
tory change worked, while a return code of 1 means that the change
failed.

Most users have very few (if any) identically named subdirectories, and
are not interested in having to tell DOS exactly where to find everything.
But they are interested in making subdirectory management far easier
and less irritating. CHD.COM helps.

Assembly Language Programs 925

Example: If you are in \MAIN\DBASE and you enter:

CHD FORM

CHD will first try to change the current directory to
\MAIN\DBASE\FORM. If this fails, it will then try to set the current
directory to \FORM. If this second attempt fails, it will print the familiar
"Invalid directory" message. Entering CHD followed immediately by a
carriage return displays the current directory, just as with CHDIR.

Notes: Don't use this program unless you have a $P somewhere in your DOS
prompt so that you know at all times exactly which directory you're in,
or you'll end up very confused. In fact, every hard disk user should use
at least a $P: or a PG prompt to help navigate through the maze of sub
directories and backslashes.

CHECK Jeff Prosise
Batch file command

Purpose: Increases the usefulness of batch files by letting them report a variety of
parameters that range from free disk space to installed hardware to the
time and date. Your batch programs can make intelligent decisions based
on the results reported by CHECK through the DOS IF ERRORLEVEL
code.

Format: [d:] [path] CHECK keyword [parameterl parameter2 •.•]

The 16 keywords are divided into three classes.

1. Disk-related keywords: DISKSP ACE, FILESIZE, FILEFOUND,
and FILETEXT.

2. Hardware-related keyswords: :MEMORY, VIDEOCARD, MODEL,
8087, and 80287.

3. Miscellaneous keywords: TI:ME, DAY, MONTH, VIDEOMODE,
VERSION, KEYBOARD, KEYPRESS.

(Although they're mentioned exclusively in uppercase here, you may
enter keywords in any case or mixture of cases in a batch file - so
DAY, day, Day, and DAy are all acceptable.)

fi I l.f i •

926 PC Magazine DOS Power Tools

Function

FILESIZE filespec

FILEFOUND filespec

FILETEXT filespec 'string'

DISKSPACE [d:]

MEMORY

VIDEOCARD

MODEL

8087

80287

TIME

DAY

MONTH

VIDEO MODE

VERSION

KEYBOARD

KEYPRESS

Return Code

Length of file in K

0: File found
1: File not found

0: String found
1: String not found

Number of whole 16K blocks
free on indicated or default drive

Number of 16K RAM modules

0: Mono Display Adapter
1: Color Graphics Adapter
2: Enhanced Graphics Adapter

Machine ID byte

0: 8087 or 80287 installed
1: 8087 /80287 not installed

0: 8087 or 80287 installed
1: 8087 /80287 not installed

Current hour (0-23)

Current day (1-31)

Current month (1-12)

Current video mode (0-16)

DOS version (major number
e.g., 3 for 3.1 or 3.2)

0: Keyboard buffer empty
1: Entry awaiting processing

ASCII code of key pressed

Remarks: CHECK can come in very handy when you want to create a batch file to
run a certain program, but you have two versions of that program, one

Assembly Language Programs 927

for an EGA and one for a CGA, or one that needs a math coprocessor, or
one that requires a certain version of DOS or even a certain type of com
puter. And it can safely perform disk operations like COPY or DEL only
when the proper amount of disk space is available.

1. Disk-related keywords: DISKSPACE, FILESIZE, FILEFOUND,
and FILETEXT. DISKSPACE returns the amount of free disk space on
the specified or default drive, in terms of whole 16K blocks. If there is
70K of room, DISKSPACE returns a value of 4 to ERRORLEVEL, in
dicating there are four blocks free. FILESIZE reports the length of a
given file in kilobytes. A value of 255 means that the length is 255K or
greater. FILEFOUND is essentially a duplicate of the operating system's
IF EXIST conditional test and returns 0 if a file exists, 1 if it does not.
FILETEXT searches for a given text string inside a file and is invoked
like this:

CHECK FILETEXT C:TEXT.DOC 'Once upon a time'

In this case, the file TEXT.DOC is opened on drive C: and is searched
for any occurrence of the string "Once upon a time." If the string is
found, a 0 is returned; if it's not, or if an error is encountered (invalid
syntax or the failure to find the file, for example) a 1 is returned. When
using this function, you must enclose the string to be searched for in
single quotes or a syntax error will be reported. FILE1EXT is included
in CHECK for a couple of reasons: first, because it serves a legitimate
purpose on its own; and second, because it provides an example of how
user-written functions can make use of a third command line parameter
(in this case the text string) even though the automatic parsing routine
built into the program acts only on the first two.

2. Hardware-related keywords: MEMORY, VIDEOCARD,MODEL,
8087, and 80287. These let batch files check the amount of memory in
stalled in the system, the type of display adapter, the computer type, and
whether or not an 8087 or 80287 math coprocessor chip is installed. The
8087 and 80287 keywords can be used interchangeably; both detect the
presence or absence of a math coprocessor, regardless of whether it's an
8087 or an 80287. MODEL returns the machine's ID byte. An IBM PC
is identified by the value 255, an XT by 254, a PCjr by 253, an AT by
252, and the PC Convertible by 249. There is some uncertainty inherent
in using this function because of IBM's assignment of the same internal
ID code to systems such as the XT and the now-defunct Portable PC,
and because of the lack of standardization among the compatible
manufacturers. VIDEOCARD assumes that either an MDA, a CGA, or
an EGA is being used and returns a value from 0 to 2 correspondingly.

I I !4 1

928 PC Magazine DOS Power Tools

3. Miscellaneous keywords: TrME, DAY, MONTH, VIDEOMODE,
VERSION, KEYBOARD, KEYPRESS. TrME, DAY, and MONTH
return the current hour (0-23), day of the month (1-31), and month (1-
12), respectively. VIDEOMODE returns the current video mode (0-16)
and VERSION reports the major number of the version of DOS being
used. The major number for DOS 3.2, for example, is 3. Versions 1.00
and 1.10 cannot be reported because these earliest releases of DOS
didn't incorporate service 4CH. CHECK must be used with version 2.00
or higher. KEYBOARD checks the keyboard buffer and returns a 1 if a
keycode is awaiting retrieval or a 0 if the buffer is empty. Finally,
KEYPRESS returns the ASCII code of any key pressed. For those keys
that produce an extended code like the function keys and the cursor
keys, ERRORLEVEL will be set to 0. Together, the last two functions
single-handedly enhance a batch file's capability to query the user for
keyboard input.

Examples: TIMEODAY.BAT prints a greeting message appropriate for the time of
day:

ECHO OFF
CHECK TIME
IF ERRORLEVEL 18 GOTO EVENING
IF ERRORLEVEL 12 GOTO AFTERNOON
ECHO GOOD MORNING!
GOTO END
:AFTERNOON
ECHO GOOD AFTERNOON!
GOTO END
:EVENING
ECHO GOOD EVENING!
:END

HITSP ACE.BAT pauses and waits until the user presses the space bar,
endlessly looping while other keys are pressed:

ECHO OFF
ECHO PRESS SPACE BAR TO CONTINUE
GOTO START
:ERROR
ECHO NO, I SAID HIT THE SPACEBAR
: START
CHECK KEYPRESS
IF ERRORLEVEL 33 GOTO ERROR
IF NOT ERRORLEVEL 32 GOTO ERROR

Assembly Language Programs 929

48K-LEFf.BAT proceeds with file deletion only if free disk space is
less than 48K:

ECHO OFF
CHECK DISKSPACE B:
IF NOT ERRORLEVEL 3 DEL B:*.OBJ

32K-FILE.BAT accepts a filename and deletes that file only if its length
exceeded 32K:

ECHO OFF
CHECK FILESIZE %1
IF ERRORLEVEL 33 DEL %1

FILEDUPE.BAT decides whether or not to copy a given file based on its
presence or absence on the target disk (here you could do the same thing
with the DOS IF EXIST command):

ECHO OFF
CHECK FILEFOUND B:SAMPLE.DOC
IF ERRORLEVEL 1 COPY A:SAMPLE.DOC B:

NEED256K.BAT loads and executes a certain program (called
NEWPROG here) only if the PC being used has a minimum of 256K of
RAM:

ECHO OFF
CHECK MEMORY
IF NOT ERRORLEVEL 16 GOTO SHORT
NEWPROG
GOTO END
: SHORT
ECHO MINIMUM 256K REQUIRED TO RUN
:END

NEEDVER3.BATaborts loading a program (here calledNEWPROG) if
the user has a DOS version lower than 3.0:

CHECK VERSION
IF ERRORLEVEL 3 GOTO CONTINUE
ECHO DOS 3.00 OR HIGHER REQUIRED
GOTO END
:CONTINUE
NE WP ROG
:END

f I I• '

930 PC Magazine DOS Power Tools

MONITOR I.BAT runs one version of a program (here called PROG 1)
on a monochrome system and another version (here called PROG2) on a
color system, assuming an EGA isn't being used with a mono display:

ECHO OFF
CHECK VIDEOCARD
IF ERRORLEVEL 1 GOTO COLOR
PROGl
GOTO END
:COLOR
PROG2
:END

MONITOR2.BA T determines explicitly which video mode is currently
active, since modes 7 and 15 are the only two mono modes among the
17 (numbered 0-16) supported:

ECHO OFF
CHECK VIDEOMODE
IF ERRORLEVEL 16 GOTO COLOR
IF ERRORLEVEL 15 GOTO MONO
IF ERRORLEVEL 8 GOTO COLOR
IF ERRORLEVEL 7 GOTO MONO
:COLOR
ECHO THIS IS A COLOR SYSTEM!
GOTO END
:MONO
ECHO THIS IS A MONOCHROME SYSTEM!
:END

COPROCSR.BAT runs one version of a program (here called PROO 1)
that needs a math coprocessor only if one is installed, and another (here
called PROG2) that doesn't use a math chip:

ECHO OFF
CHECK 8087
IF ERRORLEVEL 1 GOTO NOMATH
PROGl
GOTO END
:NOMATH
PROG2
:END

NOPCJR.BAT aborts if it finds it's running on a PCjr:

ECHO OFF
CHECK MODEL

Assembly Language Programs 931

IF ERRORLEVEL 254 GOTO OK
IF NOT ERRORLEVEL 253 GOTO OK
ECHO DIFFERENT VERSION REQUIRED FOR PCJR
GOTO END
:OK
RUNIT
:END

Notes: Because DOS is limited to one eight-bit return code, in some cases it is
impossible to pass back an indication of whether or not the function it
self failed or succeeded. The FILESIZE command, for instance, can
return a value anywhere from 0 to 255 to define the length of the file in
question, but it must somehow raise a flag if the file cannot be found. In
such situations, CHECK sends an error message to the display and at
tempts to end with an exit code that is indicative of the worst case. Thus,
FILESIZE returns a 0 if DOS cannot open the file for one reason or
another. This philosophy is implemented consistently throughout the
utility, but it once again represents the need to compromise to live within
the DOS resources provided.

CLICK John P. Sohl
Command

Purpose: Lets you toggle an audible keyboard click on and off.

Format: [d:] [path] CLICK

Remarks: The PCjr had a lot of problems, but it did offer a few interesting fea
tures. One of these was the ability to tum the keyboard click on and off.

The memory-resident CLICK.COM program can add this feature to any
system. Once it's installed, alternately pressing Ctrl-Alt-Ins will tum it
on and off.

When it's active, CLICK will make a sound only when you press an al
phanumeric key. The program intercepts interrupt 9 and toggles the
speaker bit every time a key is newly pressed. It does not click on either
of the Shift keys, the Ctrl key. or the Alt key, and it passes all keys
through unaltered.

f I It

932 PC Magazine DOS Power Tools

Since the Ins key is right next to the Del key, there's an obvious risk in
pressing Ctrl-Alt-Del and rebooting your system when you just want to
turn off clicking. To change the hotkey from Ctrl-Alt-Del to Ctrl-Alt
something-else, patch the value at address 18C with the scan code for
the new hotkey you want.

To make it Ctrl-Alt-Esc, type:

DEBUG CLICK.COM
E 18C 1
w
Q

since the scan code for the Esc key is 1. However, since CLICKER starts
clicking as soon as it is installed, you may never need to use the hotkey
toggle.

CLICKER does not check to see if it is installed already, so it's possible
to invoke it more than once. Interestingly, the click timbre changes
depending on whether it's been installed an odd or even number of times.

PC Magazine receives lots of keyclick programs, but this one's different
since you can toggle it on and off. Be careful if you use it with SideKick
or any other program that's greedy about interrupt 9; test it thoroughly
before using these TSRs with unsaved data floating around in RAM.

CLSEGA
Command

Charles Petzold and Paul Somerson

Purpose: Provides a combination mode-setting, color-setting, cursor-setting, and
screen-clearing program for the EGA 43-line screen.

Format: [d:] [path] CLSEGA

Remarks: The CS.COM command sets the mode properly, but has a few snags.
CLSEGA sets the EGA screen mode to 43-lines, sets the colors (in this
case to bright yellow on red), sets the cursor properly, and clears the en
tire screen.

If you want to use colors other than high-intensity yellow on red, use
DEBUG to patch the byte at address 12A.

Assembly Language Programs 933

To pick a new color, use a two-digit hex number where the lefthand digit
is a background color number from 0 to 7 and the righthand digit is a
text color number from 0 to F. Any text value greater than 7 becomes
high-intensity. So entering IF would give you bright white text (F) on a
blue background.

If you wanted to patch CLSEGA.COM to set high-intensity white on
blue, type:

DEBUG CLSEGA.COM

E 12A lF
w
Q

CMOSGET
Command

Robert L. Hummel

Purpose: Saves the CMOS configuration settings on AT and later systems so you
can reload them instantly after changing batteries and avoid having to
reconfigure your entire system from scratch.

Format: [d:] [path] CMOSGET

Remarks: IBM keeps its configuration information for the AT and later machines
in a CMOS memory chip that's maintained by battery even when the
machine is turned off. A failing battery can cause errors at bootup and
trigger bad configuration record or failed battery messages. Typical bat
teries have a useful life of about three years. However, when you remove
the battery, you lose all the configuration information and have to run
the SETUP program to restore the configuration.

To make matters worse, many systems were configured originally by
dealers or MIS staffers who are no longer available. IBM hid the con
figuration program on the diagnostics disk, and makes users answer ques
tions they can't possibly remember, like what numerical hard disk type
they're using.

CMOSGET and CMOSPUT make this far easier. CMOSGET reads the
contents of the CMOS memory chip and writes it to standard output;
redirecting this output to a file saves 64 bytes of information.
CMOSPUT performs the complementary function. It reads from stand-

934 PC Magazine DOS Power Tools

ard input and loads the CMOS chip with the saved data. It again uses
redirection to read the data file created by CMOSGET.

You can't simply restore all the old data, however, since you'd end up
resetting the time and date that were active when you saved the 64 bytes,
and would have to use SETUP to update them. CMOSPUT avoids this
by getting the current time and date from DOS and using the BIOS to up
date the real-time clock (RTC).

Example: The complete procedure is as follows: First, create a bootable diskette by
using the FORMAT command with the /S option. Onto this diskette,
copy the SETUP program used by your machine and the
CMOSPUT.COM program you created. (Later, if the BIOS detects that
the data in the CMOS is not reliable, it will boot only from the A: drive
and refuse to access the hard disk at all. So this process will create the
proper bootable diskette.)

Notes:

Run CMOSGET to save the CMOS memory in a file on the diskette,
with the command:

CMOSGET > A:CMOS.DAT

Change the battery. Boot the computer from the floppy and ignore the
error messages. Set the date and time with the DOS TIME and DA TE
commands. Run CMOSPUT to load the CMOS memory with the com
mand:

CMOSPUT < CMOS.DAT

Now, remove the diskette and reboot the computer. If everything works,
you should get no errors and the correct time and date. (If there is a
problem, you can reboot using the diskette and run the SETUP program.)

As an added feature, if you're using a version of DOS older than 3.3,
you may run the programs to update the time and date in the real-time
clock without resorting to the SETUP program.

CMOS PUT
Command

Robert L. Hummel

Purpose: Retrieves the CMOS configuration settings on AT and later systems
saved by CMOSGET so you can reload them instantly after changing

Format:

Assembly Language Programs 935

batteries and avoid having to reconfigure your entire system from
scratch.

[d:] [path]CMOSPUT

See CMOSGET.

co
Command

Michael J. Mefford

Purpose: Copies, moves, or deletes files individually or in tagged groups from
directory listings sorted by name, extension, size, or date.

Format: [d:] [path]CO [d:] [\directory] (/E] [/SJ [/DJ [/T] [/OJ

Remarks: Entered without any of its optional parameters and switches, CO dis
plays an alphabetized listing of the current directory with a menu of func
tion key commands on the right. The file attributes (archive, hidden,
read-only, and system) are shown by the appropriate letters to the right
of each listed file.

The Up Arrow and Down Arrow keys move the file-selection high
lighted bar one line at a time. Ctrl-PgUp and Ctrl-PgDn move to the top
and bottom of the current display page (21 files), while PgUp and PgDn
allow you to scroll through the entire directory listing. The Home and
End keys go to the beginning and end of the listing, respectively. Press
ing a letter moves the highlighted bar to the first (then subsequent)
filename(s) beginning with that letter.

Multiple files are tagged for group copying, moving, or deleting by press
ing the grey plus (+) key; the grey minus (-) key unmarks a mistagged
file.

The optional /E, /S, /D, /T, and /0 command-line switches sort the initial
directory listing by Extension, Size, DaTe (jD and /T operate identical
ly), or by Original DOS order. Once CO is running, function keys F7
(Name), F8 (Extension), F9 (Size), and FlO (Date) can be used for sub
sequent sorts. Fl initiates the Copy process for the highlighted (or
marked) file(s). F6 toggles the Copy Verify option (comparable to DOS
N). F2 and F3 are used for Move and Delete. You are prompted for the
appropriate destination for Copy and Move: different drives and paths

936 PC Magazine DOS Power Tools

Notes:

are supported, as is the use of the DOS ? and * wildcards. Renaming
while copying is permitted.

When a marked (tagged) file is successfully copied, its marker arrow is
replaced by an asterisk. If a floppy disk becomes filled, CO automatical
ly attempts to find other marked files that will fit, but backup will then
halt with some files remaining to be copied. Replace the full diskette
with another, press Fl again, re-enter the correct destination drive, and
the remaining marked files will be copied.

To divide the contents of a directory into two parts, mark and copy the
first set of files, as above, so that all have the "copied" asterisk. Then
press F5 to mark the previously untagged files and repeat the copying
process for the second group.

CO functions can alternately be performed by Ctrl-letter commands: AC
(Copy), AD (Delete), AM (Move), AV (Verify), AN (sort by Name), AE
(sort by Extension), AS (sort by Size), and AT (sort by Date).

COLDBOOT
Command

Charles Petzold

Purpose: Performs a full power-on reboot, complete with initial self-test diagnos
tics.

Format: [d:) [path) COLDBOOT

Remarks: Put this in batch files to discourage unauthorized users. Include a test
that jumps to this command if the snooping user doesn't answer it
properly.

Running this makes your system act as if you had turned the main power
switch off and then on again.

For a faster reboot that skips the initial tests, see W ARMBOOT. For a
flexible utility that allows both kinds of rebooting and lets the user abort
the process, see REBOOT.

COLOR
Command

Assembly Language Programs 937

Paul Somerson

Purpose: Sets foreground and background colors from the command line and
clears the screen to those colors.

Format: [d:] [path]COLOR bf

where/is a hex foreground color and bis a hex background color.

Remarks: You must enter two different hex numbers from 0 through F, where/is
the foreground and b is the background. Enter anything else and
COLOR.COM will simply print instructions on how to use it.

You may enter alphabetical hex digits in either uppercase or lowercase.
Digits may be separated by spaces, commas, or any other characters, or
entered next to each other.

Entering a background higher than 7 will make the foreground blink. See
BROWSE for a color chart.

Example: Entering:

Notes:

COLOR 71

(or COLOR 7,1 or COLOR 7 1) will set the colors to blue text on a
white background, and clear the screen.

This will set the foreground and background colors (on a color system)
but not the border, since IBM doesn't support border colors on any sys
tems other than the CGA. However, if you're using a CGA and want to
set the border, run the companion BORDER.COM program.

See COLOR2 for a program that sets colors but doesn't clear the screen.

,, I 14, ' '

938 PC Magazine DOS Power Tools

COLOR2
Command

Jozef H. Khoe and Paul Somerson

Purpose: Sets foreground and background colors from the command line but
leaves the contents of the screen intact.

Format: [d:] [path] COLOR2 bf

where f is a hex foreground color and b is a hex background color.

Remarks: While the companion program COLOR.COM program clears the screen
when it sets the colors, this doesn't disturb the screen contents. It does so
by writing to the attribute bytes in video memory, and assumes a 25 x 80
screen at segment B800H.

As with COLOR.COM, you must enter two different hex numbers from
0 through F, where/is the foreground and bis the background. Enter
anything else and COLOR2.COM will simply print instructions on how
to use it.

You may enter alphabetical hex digits in either uppercase or lowercase.
Digits may be separated by spaces, commas, or any other characters, or
entered next to each other.

Entering a background higher than 7 will make the foreground blink. See
BROWSE for a color chart.

If you want to patch the program so it colors more than a 25 x 80 screen,
change the word at address 146. The default value there is 7DOH (for a
2,000-byte screen), and iCs stored in "backwords" order. The easiest
way to change it is to use the DEBUG:

A 145

command and plug in a whole new MOV instruction to replace the exist
ing:

MOV CX,07DO

Assembly Language Programs 939

COLORPIK
Command

Jozef H. Khoe and Paul Somerson

Purpose: Lets you change screen colors by pressing arrow keys.

Format: (d:] (path] COLORPIK

Remarks: Pressing the Left and Right Arrow keys cycles through all available
colors. Pressing the Up and Down Arrow keys cycles through the eight
available background colors - without clearing the screen.

Notes:

When you see the color combination you want, just press the Enter key
to lock it in and exit.

If you want to abort the process and restore your original colors, press
Esc. Since the program lets you use the same foreground and back
ground colors, which makes any text on the screen invisible, pressing
Esc will put everything back to normal.

This program is hard-wired for an 80 x 25 screen.

COLORSET
Command

Charlie Butrico

Purpose: Memory-resident utility that sets the foreground, background, and border
colors on color systems, and prevents attempts by applications software
to reset these colors to grey on black.

Format: [d:] [path]COLORSET FG/BG BORD

Remarks: While dozens of small programs can set your screen colors, many
popular programs (such as d.BASE II) will reset them to a drab grey on
black. The first time you execute COLORSET, it will set your colors,
remain in memory, look for such resetting instructions, and will instead
set the colors to the ones you specified. Later executions of COLORSET
will update the attributes only.

I'· l II• 1

940 PC Magazine DOS Power Tools

FG/BG is the foreground and background color (a decimal number from
0 to 255). To calculate FGIBG, multiply the number of the background
color by 16 and add the number of the foreground color to it.

BORD is the border number (a decimal number from 0 to 15).

Examples: The FG/BG number for blue text on a white background is 113, i.e.,
((7*16) + 1).

Notes:

The number for red text on a cyan background is 52, i.e., ((3*16) + 4).

Keying just one number or using COLORSET on an EGA will change
only the foreground and background colors.

After running COLORSET, the DOS CLS command will clear the
screen to the colors you chose rather than to the default DOS grey on
black.

DOS does not permit you to use bright background colors; trying a
FG/BG number higher than 127 will produce text that blinks.

COLRSHOW
Command

Paul Somerson

Purpose: Shows all possible foreground-background color combinations on color
systems.

Format: [d:] [path] COLRSHOW

Remarks: With 16 possible foreground colors and eight possible background
colors, you can mix and match 128 color combinations.
COLRSHOW.COM uses BIOS INT 10 service 9 to show them all. (Ac
tually, it shows only 120, since it skips any combinations that have the
same background and foreground colors.)

Because it needs to print something in the foreground, it fills the entire
screen with the ASCII character that happens to have the same value as
the color attribute shown.

When you first run it, COLRSHOW will fill the screen with ASCII
character 01 smiling faces. Since the color attribute that has the same

I I

Assembly Language Programs 941

value as the character shown - 01 is blue (color 1) on black (color
0), the screenful of faces will appear in blue on black.

You can press the Up Arrow repeatedly to increase the value of the
character shown (as well as the color it's shown in), or the Down Arrow
key to decrease this value. Or you can type in any letter other than a
space to fill the screen with that character in the color that matches its
ASCII value. (Typing in a space wouldn't show anything other than a
green background.)

Examples: Typing a "t" will fill the screen with red lowercase "t" characters on a
white background, since the hex value of"t" is 74, and the color at
tribute 74 is red (4) on white (7).

Pressing the Up Arrow repeatedly will fill the screen with blue ASCII 01
characters, then green ASCII 02 characters, then cyan ASCII 03 charac
ters, etc. Pressing the Down Arrow key repeatedly will display these
characters in descending order. If you reach the top or bottom of the list
of possible values, the program will let you cycle through them all again.

Pressing Esc will quit. The screen will remain set in the color you last
selected.

COMPARE Vytenis Markevicius
Batch file command

Purpose: Provides a simple technique for processing user input in batch files
without having to worry about testing lots of uppercase and lowercase
variations.

Format: [d:] [path]COMPARE stringl string2

Remarks: DOS makes it easy to control branching by passing parameters into
batch files from the command line. You can then use IF statements to
compare such parameters and branch accordingly. But DOS is case sensi
tive, so a string n characters long requires 2"n IF statements to compare
all of the possible uppercase and lowercase variations.

A string containing the three characters ABC would require eight IF
statements (testing for aBc, ABc, aBC, etc.) to exhaust every possible
combination. Anything longer than two or three characters becomes im-

,, I II '

942 PC Magazine DOS Power Tools

practical to test, and ends up frustrating users who are typing in the right
string but in the wrong case.

COMP ARE.COM speeds up the process dramatically by comparing two
strings and ignoring the case of the alphabetic characters. On return, it
sets ERRORLEVEL 255 if both strings are equal and ERRORLEVEL 0
if they are not equal or if a syntax error has occurred. After executing
COMP ARE.COM, your batch file may take appropriate action with a
statement like:

IF ERRORLEVEL 255 (do something)

Example: The following sample COMP1EST.BATshows how the program works:

ECHO OFF
IF %2!==! GOTO OOPS
COMPARE %1==%2
IF ERRORLEVEL 255 GOTO MATCH
ECHO The strings are not equal.
GOTO END
:MATCH
ECHO The strings are equal.
GOTO END
:OOPS
ECHO The format required is:
ECHO %0 stringl string2
:END

Once you create this batch file, type:

COMPTEST hello HELLO

or:

COMPTEST hello HeLlO

and it will respond with the message "The strings are equal."

Change any letter in either string to another character, or make one
string longer than the other, and the batch file will print:

The strings are not equal.

CONFIRM
Command

I I " l

Assembly Language Programs 943

Jeff Siegel

Purpose: Intercepts any Shift-PrtSc commands to send a screen dump to the
printer, asks for confirmation, and aborts the process if desired.

Format: [d:] [path] CONFIRM

Remarks: While the Shift-PrtSc instant screen dump is a terrific feature, at one
time or another just about everyone has pressed these keys by mistake,
wasting much time and paper.

If your printer is on you have to wait until it finishes grinding out the
contents of the screen, and then readjust the paper to the top of the next
page. If it's off, your system will hang until DOS realizes that the printer
is not going to respond.

CONFIRM.COM pops up a small window and lets you confirm or can
cel each print screen attempt before it has a chance to tie up your system.

Try installing CONFIRM.COM after all other memory-resident
programs (TSRs) like GRAPHICS.COM. CONFIRM takes up ap
proximately 512 bytes when resident, and modifies the print screen inter
rupt (hex 5) to point to itself. Test this program out with your other
resident programs loaded before you start using it with unsaved data files
in RAM.

If you find that this conflicts too much with other TSRs, try the smaller
DISABLE and ENABLE nonresident programs included in this package.

You may need to modify CONFIRM to work with certain IBM com
patibles that have a different keyboard layout or numbering system.
CONFIRM reads the keyboard port directly to ensure that it will work
with programs that modify the keyboard interrupt vector. If it doesn't
respond to Y and N, and if your computer uses a different keyboard for
mat, try changing the scan code for the Y and N keys.

(If you have to switch keys, use DEBUG's U Unassemble command and
hunt down lines that look like CMP AL,15. The scan code for the Y key
on a PC is hex 15; for the N key it's hex 31.)

t I 14 •

944 PC Magazine DOS Power Tools

Notes: Most other tricks for preventing unwanted Shift-PrtSc dumps work by
disabling the print screen function more or less permanently. CONFIRM
gives you total control over screen dumps.

Here are two short, but very effective alternate techniques:

1. When you press Shift-PrtSc, DOS issues an interrupt 5, which first
looks at a location in low memory called STATUS_BYTE to see
whether your system is already dumping a screen to the printer. If
STATUS_BYTE is equal to 1, DOS thinks a screen dump is taking
place, and exits the routine without dumping another screen to the
printer. If STATUS_BYTE is equal to 0, the routine sets
STA TUS_BY1E to 1 so that it cannot interrupt itself, then does the ac
tual dump, and finally resets STATUS_BYTE equal to 0 and exits the
routine.

This means you can temporarily disable the Shift-PrtSc routine with a
simple assembly language routine that sets STATUS_BYTE to 1. A
similar routine can tum the function back on by setting STA TUS_BY1E
to 0. The DISABLE and ENABLE programs in this package will do just
that.

If you rarely use the Shift-PrtSc function but have a habit of activating it
when you don't want to-and you don,t want to install yet another
memory-resident program like CONFIRM - you can put DISABLE in
your AUTOEXEC.BAT file and leave it more or less permanently off.

2. You could also deal with errant Shift-PrtSc commands by replacing
the ROM INT 5 routine with a one-instruction routine in RAM that pas
ses control back to the program that was running as if nothing had hap
pened.

Robert Hummel used this technique in his NOINT5.COM program,
(which is included in this package) by changing the vector for INT 5 so
it points to a dummy routine rather than the one in ROM.

See ENABLE, DISABLE, and NOINT5.

I i 1t I t

Assembly Language Programs 945

CONTROL
Command

Richard Kihlken

Purpose: Reads decimal values from the command line and sends them to your
printer.

Format: [d:] [path]CONTROL n [, n, n •••]

where n is a decimal value from 0 to 255

Remarks: Many users like to configure their printers automatically from within
batch files, or on the fly at the DOS prompt. While it's possible to write
lots of different COM files for each control code you want to send, it's
far easier to create one master print control program that reads codes off
the command line.

CONTROL.COM reads any decimal arguments you enter and sends
them to your printer. You can use any legal delimiters between the num
bers.

The limit on the number of codes you can send is 127, which is the maxi
mum number of arguments DOS will transfer into the Program Segment
Prefix (PSP).

CONTROL.COM is designed to send codes to LPTl. If you need to
change this, use DEBUG to alter the word at address 13B.

Example: To send a CHR$(12) form feed, for instance, you'd simply type:

CONTROL 12

Or to send the IBM Esc+G command to turn on double-strike printing,
type:

CONTROL 27 71

since 27 is the ASCII value ofEsc, and 71 the ASCII value of "G."

Littering your disk with dozens of tiny COM files can really eat up
space. But while this technique lets one utility dispatch all your printer

J· I It •

946 PC Magazine DOS Power Tools

control code chores, you have to remember the actual codes. A batch file
like PRINTER.BAT below will handle up to nine control codes, and
prompt you if you forget them and enter just the name of the batch file:

ECHO OFF
IF %1!==! GOTO OOPS
CONTROL %1 %2 %3 %4 %5 %6 %7 %8 %9
GOTO END
:OOPS
ECHO Enter decimal control codes after the
ECHO word %0 on the DOS command line:

ECHO ---------------------------------------
ECHO 10 CPI=l8 12 CPI=27 58 17 CPI=15
ECHO DP=27 73 0 DRAFT=27 73 3 NLQ=27 73 1
ECHO WIDE=27 87 1 CANCEL WIDE=27 87 0
:END

COPYSAFE
Command

Michael J. Mefford

Purpose: Prevents accidentally overwriting files when using the COPY command.

Format: [d:] [path] COPYSAFE

Remarks: COPYSAFE is a memory-resident utility that displays the filename(s),
drive, and directory of any file that will be overwritten if a COPY com
mand is executed. After being warned, you are given the opportunity
either to terminate the COPY procedure or to continue, and so overwrite
the file.

Notes:

COPYSAFE should be loaded only once per session. The best procedure
is to include it in an AUTOEXEC.BAT file. Be sure, however, to load
COPYSAFE after any commands (such as DATE or TIME) that pause
for user input.

1. Because of the way DOS processes commands in a batch file,
COPYSAFE cannot warn against accidental overwriting if you run
COPY as part of a .BAT file. Similarly, it is not designed to handle in
stances in which the COPY command is used to concatenate files.

2. COPYSAFE is highly compatible with other memory-resident
programs (TSRs), but because absolute compatibility among all possible

CPU-NDP
Command

I I I 1 !

Assembly Language Programs 947

TSR utilities cannot be guaranteed, you should check its operation on
your system thoroughly.

Baron L. Roberts

Purpose: Identifies the main CPU and any math coprocessor chips installed in any
PC or compatible.

Format: [d:] [path] CPU-NDP

Remarks: There are now eight types of CPUs and three types of NDPs (Numeric
Data Processors) in use. These CPUs and NDPs span a wide range of in
struction set capabilities and performance differences. As the capability
and performance gap widens between the low-end Intel 8088 and NEC
V20 CPUs and the state-of-the-art Intel 80386, it becomes increasingly
wasteful to write code to the low-end chips. And the same is true with
NDPs as the chip has grown from the 8087 to the 80387.

Most routines can identify only a few CPU or NDP types and usually
cannot distinguish between the eight-bit external data bus CPUs (Intel
8088, 80188 and NEC V20) and the 16-bit external data bus models
(Intel 8086, 80186, NEC V30). These differences become especially im
portant in critical timing loops.

cs
Command

CPU-NDP.COM individually identifies Intel 8088, 8086, 80188, 80186,
80286, 80386, as well as NEC V20, V30 CPUs, and Intel 8087, 80287,
80387NDPs.

Charles Petzold

Purpose: Clears the screen when using displays of more than 25 lines.

Format: [d:] [path] cs

Remarks: The DOS CLS command is hard-coded for 25-line displays, and so does
not fully clear the screen when using 43-line (or similar) EGA displays.
CS is a simple replacement for CLS in such cases.

'" I It I I

948 PC Magazine DOS Power Tools

CTRLLOCK
Command

Joe Dorner

Purpose: Temporarily disables the Ctrl key.

Format: [d:] [path] CTRLLOCK

Remarks: Once this is installed it will prevent users from breaking out of programs
by typing Ctrl-C or Ctrl-ScrollLock, and from rebooting by typing Ctrl
Alt-Delete.

Notes:

CTYPE
Command

The only way to remove it from memory is to reboot (or install it using
INST ALL/REMOVE). This means you either have to tum the main
power switch off or run a simple program like W ARMBOOT.COM or
REBOOT.COM (both of which are included in this package).

1. This program makes using WordStar, with its heavy reliance on the
Ctrl key, nearly impossible. If you accidentally happen to load WordStar
while CTRLLOCK is active, you can save and exit by simulating Ctrl
KX. To do this, hold down the Alt key, type 11 on the number pad (not
the top row number keys), and then release the Alt key. Then type X.

2. Be careful if you try using this with a memory-resident program like
SideKick that takes over the keyboard. Since this program uses INT 9, it
may end up in a battle with other memory-resident programs over the
INT 9 keyboard interrupt.

See W ARMBOOT, COLDBOOT, and REBOOT.

Jeff Prosise

Purpose: Recovers the cursor when it disappears upon leaving an application, and
lets you customize the cursor shape.

Format: [d:] [path] CTYPE [/xy]

Remarks: The optional /ry command line parameter, which can also be used in an
AUTOEXEC.BAT file, consists of two letters ranging from A to the let-

Assembly Language Programs 949

ter that represents the maximum number of scan lines in the current
video mode character box. This is N for an MGA or an EGA in 25-line
mode (14 scan lines), and H for an EGA in 43-line mode or a CGA in
text mode (eight scan lines).

Entered without the /xy parameter, CTYPE brings up a selection frame.
As you use the arrow keys to move the cursor inside the frame, the cur
sor size and shape gradually changes. Pressing the spacebar at this point
alternately shows the cursor against a sample line of text and returns to
the selector frame. Pressing Enter selects the cursor shape shown and
returns to the command line prompt.

When the cursor is temporarily lost, as when exiting from SideKick (or
some other TSR utilities) while in a 43-line EGA mode, entering
CTYPE will restore the cursor.

Notes: Many applications programs reset the cursor internally for their own pur
poses. These settings will supercede those of CTYPE. To restore the
CTYPE cursor on exit, run such programs from a batch file whose last
line resets the desired CTYPE parameters. Or, just use this in combina
tion with STICK.

CURSOR Paul Somerson
Command

Purpose: Sets cursor shape.

Format: [d: J [path] CURSOR se

where s is the cursor starting scan line and e is the cursor ending scan
line, in hex notation.

Remarks: A monochrome display uses 14 scan lines for each character, 0 - 13. A
CGA (and, for all practical purposes an EGA) uses eight scan lines, 0 - 7.

While the EGA character box has 14 lines, most programs designed to
work on color systems assume an eight-line box. Using the default color
scan lines 6 and 7 on an EGA would normally result in a cursor blinking
somewhere in the middle of the character box. The EGA BIOS's built-in
"cursor emulation" logic translates the normal cursor size into something
more appropriate for a 14 scan line character.

t I II

950 PC Magazine DOS Power Tools

The CURSOR.COM number to enter for the default monochrome cursor
is BC (starting at scan line hex OB, or decimal 11, and ending at scan
line hex OC or decimal 12). The number for the default CGA cursor is 67
(starting at scan line 6 and ending at scan line 7).

You can change the size and shape of the cursor by specifying new start
ing and ending values. A low starting line and a high ending line yields a
block cursor. You can also end up with unusual shapes by making the
starting line higher than the ending line.

Entering the default values will bring the cursor back to normal.

Example: To set a block cursor on a color system type:

Notes:

CURSOR 07

To put it back to normal, type:

CURSOR 67

To set a block cursor on a mono system, type:

CURSOR OC

The EGA has a BIOS bug that can do strange things with the cursor.
Running this program with the parameters 67 can usually put things
back to normal.

If you want to use larger numbers than single hex digits to specify the
starting and ending scan lines you can try Charles Petzold's CUR
SOR3.COM program. Type everything below to create it:

DEBUG
A
MOV AX, [OOSD] 1st Parameter
CALL 0116 Call ASC2HEX
MOV CH,AL Save in CH
MOV AX, [006D] 2nd Parameter
CALL 0116 Call CONVERT
MOV CL,AL Save in CL
MOV AH,01 Set Cursor
INT 10 through BIOS
INT 20 Terminate
CALL 0125 ASC2HEX:
XCHG AL,AH Subroutine to

CALL 0125
MOV CL,04
SHL AH,CL
ADD AL,AH
RET
OR AL,20
SUB AL,57
JNB 012D
ADD AL,27
RET

RCX
2E
N CURSOR3.COM
w
Q

Assembly Language Programs 951

convert ASCII
digits in AX
to one-byte
value in AL

ASC2HEX: Converts
one ASCII digit
to hexadecimal

Be sure to leave the blank line above RCX and to press Enter at the end
of each line. To use it, follow CURSOR3 with a two-digit hex start line
and a two-digit hex stop line. Then, if you want to try something strange
like a starting line of 99 and an ending line of F3, enter:

CURSOR3 99 F3

You can usually see the current cursor setting by typing:

DEBUG
D 40:60 L2
Q

CURSOR2
Command

Paul Somerson

Purpose: Lets you create any cursor shape you want interactively by pressing the
arrow keys.

Format: [d:] [path] CURSOR2

Remarks: CURSOR2 gives you an easy way to see what cursor shapes are pos
sible, with the option of changing your current cursor.

When you first load the program, the current cursor drops down one line.

,, I 14

952 PC Magazine DOS Power Tools

Pressing the arrow keys will change the cursor shape as follows:

• UpArrow:
• Down Arrow:
• Left Arrow:
• RightArrow:

increase starting line
decrease starting line
increase ending line
decrease ending line

Each time you press an arrow key, the value changes by 1 in the direc
tion indicated.

If you like what you see, you can press the Enter key, which will lock in
the currently displayed value and then exit.

However, since many values will either make your cursor disappear en
tirely or will produce something that you can't possibly use, you may
press Esc to abort the process and the program will usually restore your
original cursor.

If you load CURSOR2 and then press Enter without making any chan
ges, the program will display a set of instructions.

CURS READ
Command

Paul Somerson

Purpose: Reports the starting and ending cursor lines as maintained by BIOS low
memory.

Format: [d:] [path] CURSREAD

Remarks: BIOS tries to keep track of the cursor size - the starting and ending
lines - by maintaining two bytes in low memory at addresses
0040:0060 and 0040:0061. This program simply reports the values
stored there.

If any value is larger than hex F (decimal 15), the program quits.

The values maintained by BIOS aren't always the actual cursor starting
and ending line values. But if you use the accompanying CUR
SOR.COM utility to set legal values, this will tell you what they are.

Assembly Language Programs 953

You can also use service 3 of BIOS interrupt 10 to obtain the same infor
mation. To adapt CURSREAD.COM so it uses this service instead of
dredging the values out of low memory, type:

DEBUG CURSREAD.COM
E 107 84 03 CD 10
F 108 114 90
w
Q

DATECHEK
Batch file command

Patrick R. McClintock

Purpose: Lets a batch file execute a program on a specified day of the week and
optionally run it only once each month.

Format: [d:] [path]DATECHEK N
IF ERRORLEVEL 2 GOTO NO
IF ERRORLEVEL 1 GOTO YES

where N is a number from 1 to 7 (Sunday = 1, Monday = 2, ... Saturday
= 7), and where the first IF ERRORLEVEL message screens out wrong
days of the week, and the second screens out wrong weeks of the month.

Remarks: Users often want to do a certain job on a certain day of the week or the
first week of each month pay bills, do a complete hard disk backup,
test a hard disk thoroughly for errors, etc. But DOS doesn't provide a
direct way to accomplish this.

DA TECHEK.COM, when run inside a batch file such as
CHKDATE.BAT (below), makes the process simple.

The program requests the system date via function 2AH, and looks for
the day of the week. If it discovers that the current date is indeed the day
of the week specified by the user, it then checks to see if the weekday
happens to be the first one of these in the current month. This would let
you check to see if it's a Friday, and if so, whether it happens to be the
first Friday of the month. You can test for one or both events with IF
ERRORLEVEL.

The sample CHKDATE.BAT file demonstrates how this works:

. ' ,, '

954 PC Magazine DOS Power Tools

ECHO OFF
IF %1!==! GOTO OOPS
GOTO %1
:1
SET DAT=Sun
GOTO NEXT
:2
SET DAT=Mon
GOTO NEXT
:3
SET DAT=Tues
GOTO NEXT
: 4
SET DAT=Wednes
GOTO NEXT
:5
SET DAT=Thurs
GOTO NEXT
: 6
SET DAT=Fri
GOTO NEXT
:7
SET DAT=Satur
:NEXT
DATECHEK %1
IF ERRORLEVEL 2 GOTO NO
IF ERRORLEVEL 1 GOTO YES
:YESBUT
ECHO It's %DAT%day (not the
GOTO END
:NO
ECHO It's not %DAT%day
GOTO END
:YES
ECHO It's the first %DAT%day
GOTO END
:OOPS
ECHO Enter a day number:
ECHO (l=Sun, 2=Mon, 7-Sat)
:END

first one)

To run CHKDA TE.BAT make sure DA TECHEK.COM is in the same
directory. If you enter just:

CHKDATE

Notes:

Assembly Language Programs 955

the batch file will print a message reminding you to enter a number from
1 to 7 representing the weekday you want to test (where 1 = Sunday and
7 = Saturday).

If the current day is a Friday in the middle of the month, and you enter:

CHKDATE 6

the batch file will print:

It's Friday (not the first one)

However, if the current day does happen to be the first Friday of the
month, the batch file will print:

It's the first Friday

If the current day is Friday, but you enter:

CHKDATE 3

which represents Tuesday, the batch file will print:

It's not Tuesday

All of these messages are just placeholders. Put the name of the
program(s) that you want to run once a week under the : YESBUT label.
Or insert the name of the program(s) you want to run once a month
under the : YES label.

DA TECHEK returns an IF ERRORLEVEL code of 2 if the day you
specified isn't the current day of the week. It returns an IF ERROR
LEVEL code of 0 if the day you specified does match the current day
but doesn't happen to be the first one of these in the current month. And
it returns a code of 1 if the days match and it is the first one that month.

You have to specify a numeric day of the week for DATECHEK.COM
to work. If you enter anything other than a number from 1 through 7, the
program will exit and print a short set of instructions.

However, if you're running CHKDATE.BATand you enter a number
that's out of range, or something that's not a number, you'll get a "Label
not found" error message generated by DOS in this sample batch file.
This happens because the batch file uses the numeric day of the week

' I 1J •

956 PC Magazine DOS Power Tools

both as a parameter for DA TECHEK.COM and as a label to translate the
number into a word.

CHKDA TE.BAT uses % VAR% environment variables. These were first
documented under DOS 3.3, but they worked in earlier versions.
(However, DOS 3.0 had trouble with them.) You don't need them to
make DATECHEK.COM work; they're included in the sample
CHKDATE.BAT batch file only to demonstrate the process.

Environment variables consume ennvironment space. If the
CHKDATE.BAT batch file doesn't work, it could be because you
haven't specified enough enviroment space.

Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address
ECF to represent the number of 16-byte memory paragraphs that will
make up your new environment. (For DOS 2.11 the address is DF3.)

For DOS 3.0 and 3.1, put a:

SHELL [d:] [path] COMMAND.COM /E:n /P

command in your CONFIG.SYS file, where n represents the number of
16-byte paragraphs (from 10 to 62). Using ten paragraphs gives you the
standard 160 bytes; pushing it to 62 yields 992 bytes of environment
space.

For versions 3.2 and later, use the same SHELL command but use n to
specify the actual number of bytes (from 160 to 32768) rather than
paragraphs. The default in all cases is 160 bytes.

DAZZLER
Command

Purpose: Exercises color systems.

Format: [d:] [path] DAZZLER

Paul W. Carlson

Remarks: DAZZLER.COM is an example of a self-modifying program that saves
a lot of code. It will run on color systems only.

____ .__" ____ , __ _

Notes:

I I

Assembly Language Programs 951

When the program starts it creates a pattern onscreen. Pressing the
spacebar toggles an opcode from INC to DEC (or vice versa) which
reverses the direction of the pattern's movement. Pressing Esc exits the
program.

The program works by creating a pattern in the first two video pages.
Then, alternating between pages 0 and 1, it increments or decrements
every character's color on the inactive page, and makes the inactive page
the active page. The program would have been considerably shorter
without so much page swapping, but this method prevents CGA flicker.

Readers send lots of "gee whiz" color demo programs to PC Magazine,
but most of them use nonstandard techniques that refuse to work on cer
tain kinds of systems. DAZZLER should work on any color screen.

You may increase or decrease the speed by patching the value at address
1A8. Making it smaller (all the way down to 0) speeds things up. Increas
ing the value at this address slows things down.

DDIR
Command

Charles Petzold

Purpose: Displays all (or selected) directory entries in double columns, sorted in
alphabetical order.

Format: [d:] [path]DDIR [d:] [path] [filename [.ext]]

Remarks: If no parameters are specified, DDIR will list all files in the current direc
tory. Use of the global characters ? and * in the filename and extension
parameters is supported.

Notes:

If more than one screenful (48 entries) is required, the display pauses at
the bottom, showing the message, "Press any key to continue.,,

Because DD IR.COM loads a secondary command processor, it will not
operate under the Run option of WordStar and possibly with some other
programs that normally allow calling up external programs. For the same
reason, it cannot be automatically reinvoked using the F3 key when at
the DOS command level.

• I ii I

958 PC Magazine DOS Power Tools

DECIDE
Sample program

Paul Somerson

Purpose: This is included here because it's used as an example earlier in the book,
and having it on disk spares you from typing it in.

Format: [d:] [path] DECIDE

Remarks: This small program simply reads the hundredths value returned by the
DOS Get Time function (hex 2C) of interrupt 21 and prints one of three
statements in an approximate random pattern.

DELETE
Command

The clock actually ticks about 18.2 times a second (based on the output
of the system's 1.190 MHz timer/ 64 K), so the finest available clock
resolution is about .055 of a second rather than .01 of a second.
However, the numbers that end up in the DL hundredths register are ran
dom enough to use here.

R. Andrew Killinger

Purpose: Deletes any file or group of files in any legal path and, unlike DOS,
produces a tally of the files it erased.

Format: [d:] [path]DELETE filespec

where filespec is any legal filename or wildcard specification.

Remarks: DOS is sometimes too taciturn. If you want to erase just a few BAK files
and you accidently type:

DEL *.BA*

you'll take all your BAT and BAS files with it too. Since DOS doesn't
report how many files it erased, you won't know until the next time you
type DIR and see a whole lot fewer files than you expected. You could
have put things back together at the time by using a package like the Nor
ton Utilities, but once you start writing new files and changing old ones,
unerasing becomes impossible.

Assembly Language Programs 959

DELETE works just like the DOS DEL or ERASE command, except
that it provides a count of the files it deleted.

It also respects directories. If you have a subdirectory called \WORK,
and a file called WORKl and you 're in the root directory and type:

DEL WORK

DOS will think you're telling it:

DEL \WORK*.*

and prompt you with:

Are you sure (Y/N)?

If this has happened to you before, you know it's trying to tell you - in
its own terse way that it's about to erase all the files in a directory.
Type Y and everything is gone. But DELETE won't let this happen.

DELETE won't delete files with hidden, system, or read-only directory
attributes.

Examples: To erase OLDFILE.BAK, type:

DELETE OLDFILE.BAK

To erase all your BAK files in the \WORK subdirectory, type:

DELETE \WORK*.BAK

DIR COMP
Command

Charles Petzold

Purpose: Lets you compare the contents of two directories in alphabetical order,
with the options of redirecting the screen display either to a file or to a
printer.

Format: [d:] [path]DIRCOMP directory! directory2

Remarks: The directories to be compared do not need to be on the same drive. Use
the normal DOS backslash (\) character in specifying the path to a

I' I jf

960 PC Magazine DOS Power Tools

desired directory. The DOS wildcard characters (* and ?) may be used to
limit the filenames displayed.

Identically named files are shown side by side to facilitate comparison of
their size, date, and time. Other filenames are presented alphabetically in
their respective directory columns. Use Ctrl-NumLock to halt the display
scrolling temporarily; striking any key thereafter causes scrolling to
resume.

In comparing large directories it is frequently desirable to redirect the
output of DIRCOMP either to a file (which you can then call up with
your word processor) or to a printer.

Examples: To create a file called COMPARE.TMP in the root directory of your cur
rently active drive that compares the listings in your \LETTERS sub
directory with the files contained on a floppy disk in drive A: you would
enter:

Notes:

DIRCOMP \LETTERS A: > \COMPARE.TMP

To print out the same comparison without creating a file, you would
enter:

DIRCOMP \LETTERS A: > PRN

DIRCOMP does not provide forward/backward scrolling capabilities. If
these are desired as an alternative to alphabetical listings, use SCAN
DIR, which is also contained on this disk.

DIRNOTES
Command

Michael J. Mefford

Purpose: Presents an alphabetically sorted DOS-format directory listing in the left
portion of the display, together with a coordinated, 38-character field on
the right side of the screen in which you can enter descriptive comments
about the file contents, hotkeys, etc. Your notes are automatically saved
when the Esc key is pressed, in a file called DIRN-abc.DAT, where abc
represents the first three letters of the directory name.

Format: [d:] [path]DIRNOTES [d:] [path] [directory]

Assembly Language Programs 961

Remarks: Use the cursor Up Arrow and Down Arrow keys to scroll the coor
dinated directory listings and notes line by line. PgUp and PgDn scroll
by screenful, and Home and End go to the beginning and end of the list
ings. The DIRNOTES editor operates in overstrike mode and incor
porates a backspace delete. The Left Arrow and Right Arrow keys can
be used to move the cursor without deleting characters beneath it.

DISABLE
Command

A "U" immediately after the directory listing indicates that that file has
been updated since the last time the DIRNOTES data file was updated,
so the file description may need to be changed.

The DAT file created by DIRNOTES is in standard ASCII format,
which means you can examine the contents by using the DOS TYPE or
MORE commands.

Do not attempt to edit the DAT file with a word processor, however, as
the record field lengths are fixed and any changes made other than by
DIRNOTES itself may render the file unrecoverable.

Steve Dozier

Purpose: Disables Shift-PrtSc function. Running ENABLE will turn it back on.

See CONFIRM.

DISKPREP
Command

Jeff Prosise

Purpose: Lets you make a floppy disk self-booting even if the DOS "system" files
were omitted when the disk was formatted and program files have sub
sequently been added to it.

Format: [d:] [path]DISKPREP [d:]

SYS [d:]
COPY COMMAND . COM [d:]

t ' 14 l J

(followed by:)

(a DOS command)
(a DOS command)

962 PC Magazine DOS Power Tools

Remarks: In addition to having a copy of COMMAND.COM, diskettes formatted
with the /S (system) option contain the two hidden files, IBM'BIO.COM
and IBMDOS.COM, as the first two entries in the disk directory. (The
clusters for IBM'BIO.COM must be continguous.) A nonsystem disk
stores regular files in the areas where the system files must reside if the
disk is to be self-booting.

Notes:

DISKPREP relocates clusters currently used by nonsystem files to other
areas on the disk, updating the disk directory and file allocation table ac
cordingly. After running DISKPREP, the DOS SYS command can in
stall the hidden system files in their proper locations, and the DOS
COPY command can be used to put COMMAND.COM on the disk.

DISKPREP does not support high-density (1.2 megabyte) diskettes, 3-
1/2 inch disks, or hard disks. However, provided sufficient room remains
on the disk, DISKPREP can be used to upgrade the DOS version on a
self-booting disk. Attempting to replace a later DOS version with an ear
lier (lower numbered) one is not recommended.

1. DISKPREP should not be used on floppy disks that already contain
subdirectories.

2. Since copy-protected disks often employ nonstandard sectoring for
their own purposes, DISKPREP is not recommended for use on such
disks.

DISKS CAN
Command

Charles Petzold

Purpose: Locates and identifies disk errors on hard and floppy disks, Bernoulli
boxes or other similar storage devices.

Format: . [d:] [path]DISKSCAN [d:]

Remarks: The DOS "Abort, Retry, Ignore?" and the CHKDSK "x lost clusters
found" messages tend to appear after it is too late to save possibly valu
able data. Regular use of DISKSCAN will show when a hard disk is
beginning to go bad- for example, when a specific sector or two in an
as-yet unallocated cluster has become unusable since the disk was for
matted. (DOS marks and does not use bad clusters it finds while format
ting. DISKSCAN reports these "Flagged as bad.")

Assembly Language Programs 963

DISKSCAN error messages include:

CRC Error: Data checksum as recalculated during read does not agree
with checksum stored on disk when written.

Sector Not Found: Sector boundary created during formatting is no
longer readable.

File Alloc. Table and Can't Read FAT: Very serious error: Back up what
you can with COPY and then reformat disk before trying to put files
back on it.

Boot Sector: If this sector of a hard disk goes bad, put a DOS disk in
drive A: and issue SYS C: command. Then COPY COMMAND.COM
C:. This will put a fresh copy of the system files on drive C:. If this does
not work, boot up again from the external DOS floppy disk, back up all
hard disk files, and reformat the hard disk.

Root Directory: Errors here could keep you from later being able to load
a file or save updates to it. CHKDSK will probably indicate unallocated
cluster chains or cross-linked files, and you may have to use CHKDSK/F
to save what you can.

Unallocated: As yet, not serious, as the bad sector is not being used.
When it is, though, and you try to save a file with this sector, you'll get
an "Abort, Retry, Ignore" message. Select "Ignore" to save what you
can, then REName the file and save again under the new name. Use
RECOVERfilename with the original file; this will cause DOS to flag
its cluster(s) as bad. (DISKSCAN does not enter the bad cluster numbers
in the File Allocation Table; FORMAT and RECOVER do.) Then delete
the original (RECOVERed) filename and check the second version you
saved (under the new name) to see how much (if any) of it is usable.

Used by file: While DISKSCAN reports the bad sector number, it does
not do a cross-check to see which of your files is using that sector. You
may be able to identify this by issuing the command:

SWEEP COPY*·* NUL

When COPY encounters the file with the bad sector it will report
"Abort, Retry, Ignore." Note the bad file and press "I'' to continue.

Read Fa ult and General Failure: The sectors so designated are bad, but
the errors reported don't fall into any of the above categories.

,, I lt 1 •

964 PC Magazine DOS Power Tools

DOS-EDIT
Command

Charles Petzold

Purpose: Lets you move to, edit, and reenter onscreen DOS commands without
retyping.

Format: [d:] [path] DOS-EDIT

then

<Up Arrow>
<Left Arrow>
<Right Arrow>
<Up Arrow>
<Down Arrow>
<Backspace>
<Ins>

<PgDn>
<PgUp>
<Home>
<Esc>
<End>

<Enter>

(enables DOS-Edit keys)
(cursor left)

(cursor right)
(cursor up)

(cursor down)
(destructive backspace)

(insert/overwrite toggle)
(delete character)

(delete to end of line)
(cursor to column 1)

(cursor to initial column #)
(exit edit mode, no changes)

(transfer text line right of
cursor to end of original line)

(like <End>, plus execute command)

Remarks: When loaded, normally through your AUTOEXEC.BAT file, an initial
Up Arrow keypress activates the DOS-EDIT mode. (Thereafter, the Up
Arrow functions as a normal cursor arrow key.) If you move the cursor
down to the original line, you will leave the DOS-EDIT mode (e.g., the
Left Arrow key will once again delete characters).

Examples: A typical use of DOS-EDIT is to correct a long command line in which
you made a typing error. Simply move the cursor up to the mistyped
line, correct the mistake (using the appropriate keys listed under For
mat), press Home (to position the cursor to pick up the whole line), then
Enter.

A less obvious example occurs if you have just done a DIR listing and
want to run a program. Move the cursor up and just to the right of the
program name. Press PgDn to delete the extension and the rest of the
line, PgUp to position the cursor to pick up the whole command name,
then Enter.

Assembly Language Programs 965

Notes: DOS-EDIT is a memory-resident program, and so may cause conflicts
with some other memory-resident software programs. Such problems
can frequently be solved by changing the order in which the several
memory-resident programs are loaded. DOS-EDIT should be loaded
before ASSIGN.COM and before SideKick, for example.

DOSKEY Jeff Prosise
Command

Purpose: DOSKEY is multitalented memory-resident utility that

1. Lets you change foreground and background colors in DOS by press
ing function keys.

2. Includes a command stack that holds up to 15 of your most recent
commands and lets you scroll through the stack and re-execute them easi
ly.

3. Provides macro abilities for DOS function keys F3 through Fl2.

4. Gives you enhanced editing functions on the DOS command line.

5. Enhances the the CLS (Clear Screen) command by preventing it
from resetting your colors to the default DOS grey on black, and lets it
operate on displays of more than 25 lines.

Format: [d:] [path] DOSKEY

Remarks: DOSKEY is normally loaded through a line in your AUTOEXEC.BA T
file, but you may load it at any time from the command line.

After you load the program, pressing the Fl key will successively cycle
through all 16 foreground (text) colors, while pressing F2 will cycle
through the eight available background colors. Pressing the Shift key
with either Fl or F2 reverses the direction of the cycling. CLS remem
bers the last-set color scheme and will clear screens of varying sizes to
that color setting.

If you type a space between CLS and Enter, the color will revert to the
DOS defaults (grey on black).

966 PC Magazine DOS Power Tools

Function keys F3 through F12 are assigned by default to the following
command macros:

F3 dir
F4 type
FS copy
F6 delete
F7 chdir
F8 path
F9 browse
FlO els
F11 backup
F12 restore

Use the Up Arrow and Down Arrow cursor keys to bring previously is
sued commands from the command stack back to the command line so
you can re-execute them.

The new command line editor supports Left Arrow and Right Arrow cur
sor motion without deletion, lets you move to the ends of the line with
Home and End, and allows character deletion with Del and backspace.
Pressing Esc clears the command line, and pressing Ins toggles between
insert and overwrite modes.

You may change any of these assignments by using DEBUG. The
BROWSE command (F9) is another PC Magazine utility, written by
Charles Petzold, that lets you scan quickly through files. Use of the Fl 1
and F12 keys requires an enhanced keyboard and appropriate BIOS sup
port.

To change the default macro strings assigned to the function keys, note
that:

1. Each string consists of the text of the string preceded by a byte in
dicating the string length.

2. The total length of the string (including the length byte) cannot ex
ceed 32 bytes. You may end a string with ASCII 13 (carriage return) but
this isn't required.

The offset addresses corresponding to the beginning of each string,
together with the associated commnd, are as follows:

Assembly Language Programs 967

Key Address Default
F3 148 dir
F4 168 type
FS 188 copy
F6 1A8 delete
F7 1C8 chdir
F8 1E8 path
F9 208 browse
FlO 228 els
F11 248 backup
F12 268 restore

To install a new string just overwrite the text of the old one. If you want
the command string to be executed automatically when you press the
function key, terminate the string with a byte of value FFH. Do not in
clude the FFH delimiter in the string's character count. If you omit the
FFH, the string will be output but you'll have to press Enter yourself to
execute it The default settings for the function keys F3-F9 illustrate this.
When you press F4 for "type", for example, you have to enter a filename
after it. Without the file specifier, the command is meaningless.

To change the FlO macro so it executes "CHKDSK" (with an FFH
added to produce automatic execution), make sure that OOSKEY.COM
is in your current directory and that DEBUG.COM is in the current sub
directory or in one that your PATH knows about. Then, at the command
line, enter:

DEBUG DOSKEY.COM
E 0228 06 "CHKDSK" FF
w
Q

OOSKEY initially assumes you want to use the drab DOS default grey
on black. But you can have DEBUG reassign the initial color selection
to anything you want. If you prefer white text on a blue background, for
instance, DOSKEY can be modified to set that combination the first time
CLS is issued. The advantage is that you aren't forced to pound on the
Fl and F2 keys every time you boot up. A simple CLS will do.

Two bytes inside DOSKEY define the startup color selection. The byte
at offset 142 determines the text color (07, or white). And the one follow
ing it at 143 is the initial background color (00, or black). You can put
any value from 0 through hex F (decimal 15) at the first byte, and any

' I 11 , '

968 PC Magazine DOS Power Tools

value from 0 through 7 at the second. See BROWSE for a summary of
available colors.

DOS LEVEL Phillip A. Smith
Batch file command

Purpose: Lets you test for different DOS versions from inside a batch file.

Format: [d:] [path]DOSLEVEL

IF ERRORLEVEL n result

where n is the two most signficant digits of a DOS version number with
the period removed (e.g., 33 for DOS 3.30) and result is the command or
program to execute if the test is true.

Remarks: DOS behaves so differently in its many versions that you often have to
make special provisions in your batch files for users with older versions.

For instance, in more recent versions of DOS the IF EXIST command
can test whether files exist outside of the current directory. However,
DOS 2.x can't handle searches outside the default directory. If you want
to include a test for a faraway file, you have to find a way to tell what
version of DOS is being used, and then jump around the test if the ver
sion is old.

DOSLEVEL makes it easy to test for different DOS versions. It returns a
two-digit exit code equal to ten times the two leftmost digits of the DOS
version (so the code contains the same major and minor version numbers
but without a period in the middle). It will report DOS 3.3 as 33, DOS
2.1 as 21, etc.

Examples: The following VERSTEST.BAT batch file reports which version you're
using:

ECHO OFF
DOS LEVEL
IF ERRORLEVEL 40 IF NOT ERRORLEVEL 41 ECHO Version 4.0
IF ERRORLEVEL 33 IF NOT ERRORLEVEL 34 ECHO Version 3.3
IF ERRORLEVEL 32 IF NOT ERRORLEVEL 33 ECHO Version 3.2

DOWN
Command

Assembly Language Programs 969

IF ERRORLEVEL 31 IF NOT ERRORLEVEL 32 ECHO Version 3.1
IF ERRORLEVEL 30 IF NOT ERRORLEVEL 31 ECHO Version 3.0
IF ERRORLEVEL 21 IF NOT ERRORLEVEL 30 ECHO Version 2.1
IF ERRORLEVEL 20 IF NOT ERRORLEVEL 21 ECHO Version 2.0

Obviously this exact batch file is not necessary. since you can use the
DOS VER command to report the current version. You can, however,
modify it to branch around commands that older versions can't handle.

Charles Petzold

Purpose: Changes the logged directory downward, in the direction away from the
root.

Format: [d:] [path] DOWN

Remarks: If you keep a lot of deeply nested subdirectories on your hard disk you
can jump easily from a one several levels down to one closer to the root
by entering CD .. (or Charles Petzold's companion program UP)
repeatedly.

Notes:

However, DOS doesn't provide an easy way to move in the other direc
tion. DOWN.COM does. Just enter:

DOWN

and you'll be whisked to the next lower directory.

This obviously works best if your directories are "skinny" rather than
full of branches, since each time DOWN goes down a level it has to
decide which of the several branches there to traverse. But if you're
clever about the way you set up your subdirectory tree, you can have
DOWN shuttle you gracefully down any path.

DOWN is part of a trio of subdirectory navigation aids. See also UP and
NEXT.

,, ' "

970 PC Magazine DOS Power Tools

DR
Command

Michael J. Mefford

Purpose: Provides an integrated set of file management facilities for sorting, view
ing, renaming, deleting, and moving files to another directory.

Format: [d:] (path] DR [d:] [directory]

Remarks: The default filename display (21 per page, to a maximum of 721) is
sorted alphabetically. Various switches may be added to sort by other
criteria:

/E (sort by Extension)
IS (sort by Size)
ID or ff (sort by DaTe)
/0 (sort by current DOS DIR Order)

When a DR listing is onscreen, a menu is displayed showing additional
options. A highlight bar illuminates a single filename, and the Up and
Down Arrow keys move the highlight bar a line at a time. The PgUp and
PgDn keys move the bar a page at a time, and Ctrl-PgUp and Ctrl-PgDn
move it to the top and bottom of the current page. Home and End move
to the beginning and end of the directory listing. Pressing (and repress
ing) a letter moves the bar to the first (and successive) filenames begin
ning with that letter.

The highlighted file may be brought onscreen for viewing by pressing
Fl (or Enter or Ctrl-V). The Up and Down Arrows, PgUp and PgDn, and
Home and End work within the file, as well. Esc, Enter, or Fl return you
to the menu and directory listing. When pressed at the menu level, Esc
terminates the program.

Within DR, the following function keys (and alternatively. the indicated
Ctrl-letter) combinations are used:

Fl Ctrl-V (or Enter)
F2 Ctrl-D
F3 Ctrl-R
F4 Ctrl-M
F5 (none)
F6 Ctrl-W
F7 Ctrl-N

View file
Delete file

Rename file
Move file

CONFIRM Delete On/Off
WordStar hi-bit On/Off

Sort files by Name

F8 Ctrl-E
F9 Ctrl-S
FlO Ctrl-T

I • I• 1

Assembly Language Programs 971

Sort files by Extension
Sort files by Size

Sort files by daTe

Successive sorts can be used to arrange files, e.g., in order of size and
then, additionally, by extension.

Files can be renamed and may be moved from one directory to another
within DR, but they cannot be renamed and moved in a single step. Files
cannot be copied from within DR.

Examples: To sort the initial display of the C:\PROG directory of the default drive
by size:

Notes:

DR C: \PROG /S

If you were already logged into C:\PROG you could load DR simply by
typing:

DR

Once DR was loaded, you could arrange the files by size either by press
ing the F9 key or Ctrl-S.

One of the best features of DR is that you can instantly figure out which
file in a directory was created most recently. Just load DR with the tr or
ID option (or load it without any options and then press the FlO function
key or Ctrl-T), and then press End.

SeeDRNEW.

DRAW
Command

Michael J. Mefford

Purpose: Provides low-resolution (320 x 200) color or high-resolution (640 x 200)
monochrome drawing capabilities on a color, enhanced color, or (with
some MGA boards) a monochrome display, without the need to work in
BASIC.

Format: [d:] [path]DRAW[/K]
[d:] [path]DRAW string[/K]
[d:] [path]DRAW filespec/F[/K]

(Option I)
(Option Il)

(Option Ill)

972 PC Magazine DOS Power Tools

Remarks: Entered at the DOS prompt with no arguments on the command line (Op
tion I), DRAW looks in the current directory for a file named
DRAW.DAT and executes the commands in that file. A sample
DRAW.DAT file is included on this disk. The file can be examined, and
similar files created, with a regular ASCII word processor.

Alternatively, DRAW can be entered with a string of commands (Option
II, for a simple graphic) or with the name of a file consisting of com
mands (Option III). Any legal DOS filename may be used, and full path
support is provided, but a IF terminator must be appended to the
filename. An optional /K may be added to prevent a keystroke from halt
ing execution.

Example: You can get a feel for how DRAW operates by entering, at the DOS
prom pc

DRAW XO C2 BUSO M+40,70 L80 M+40,-70 BDS P2,2

This will create a red triangle in the middle of your screen. You can
trace the specific steps in this command sequence by referring to the
DRAW Command Set table, presented in the following pages.

The DRAW Command Set

Xn Change to low resolution 320 x 200 color graphics.

If X is not found, the default is 640 x 200 high resolution black and
white graphics. X must be the first character of the command line or the
first character in a file.

The palette will be changed to n, where n can be either zero or one. See
C (color) command below for the color of each palette.

K Do not poll the keyboard while drawing. If K is not found, any keystroke
terminates the program.

Sn Flood the screen color to pattern n. The n must be a decimal number in
the range 0-255, and represents an eight-bit pattern. Normally this com
mand is issued immediately after the X command (if present), to clear
the screen with a background color other than black. For example, to
clear to color red (2) in low resolution, the command is S 170 (binary
10101010).

U,D,L,R,
E,F,G,H

color
0
1
2
3

320 x200
0
85
170
255

Assembly Language Programs 973

640x200
0

255
NA
NA

Pattern colors may also be used. For example, a pattern of half green and
half black would be S68 (binary 01000100). In high resolution, each bit
represents a dot, eight dots per byte. This is why only two colors (black
or white) are available. In low resolution, there are two bits per dot, so
four combinations can be represented. In the example here the sequence
is 01 (green), 00 (black), 01 (green), 00 (black). See C (color) command
below for complete coding of the colors.

These commands, followed by a number, will move in one of the follow
ing compass directions:

u
H E

L R

F
D

Mx,y Move x,y units either relative to the current position or to the absolute
coordinates, x,y. If the x coordinate is prefaced with either a plus sign or
minus sign, the move is relative. Otherwise, the move is absolute. Note,
you do not need to include a plus sign in front of the y coordinate in a
positive y move.

Pp,b Paint the color p until the border color b is found. The paint originates
from the current position.

B Blank move. The move following a B will move the desired units
without plotting points. The next command will then continue drawing.

' ! t•

974 PC Magazine DOS Power Tools

N No update. The draw command following an N command will plot
points, but the position will not be updated. The next draw command
will start at the same position as the last.

Co Change the color to n. All draws after a C command will be in color n.

Related Commands

Then can be 0 (black) or 1 (white) in high resolution and 0 to 3 in low
resolution. In low resolution, the color is dependent on the palette.

color
0
1
2
3

320x200

palette 0
black
green
red
yellow

palette 1
black
cyan
magenta
white

640x200

black
white
NA
NA

Four commands, BSA VE, BLOAD, LOWRES, and HIGHRES, are in
cluded on this disk to speed the display of pictures created by DRAW.
(BSA VE and BLOAD may also be used with text screens for instant
presentation.) The command:

BSAVE f ilespec

saves a byte image of the screen buffer to a file (with optional drive and
path specifications).

BLOAD f ilespec

writes the saved image back to the screen buffer.

LOWRES and HIGHRES are used in batch files with BLOAD to set the
appropriate display resolution.

Examples: Create the following batch file, SA VE.BAT, using an ASCII word
processor, EDLIN, or COPY CON:

ECHO OFF
DRAW
BSAVE PICTURE

Now, similarly create a second batch file, INST ANT.BAT:

ECHO OFF
LOWRES
BLOAD PICTURE
PLAY
PAUSE > NUL
MODE COBO

Assembly Language Programs 915

If you now enter INST ANT at the DOS prompt the picture you saved
previously will appear, with a musical background. Pressing any
keystroke will clear the display.

Notes: The PAUSE> NUL line in INST ANT.BAT prevents the DOS prompt
from intruding on the picture, but will not work on DOS versions prior
to DOS 3.0.

DRIVES Gerald A. Monroe
Command

Purpose: Reports which drives are active in your system.

Format: [d:] [path]DRIVES

Remarks: Knowing out which drives are active can be very useful if you 're using
lots of DOS alias commands (SUBST, JOIN, and ASSIGN).

DRIVES.COM will scan the entire alphabet to report all valid drives.
logical and physical, while ignoring any gaps. (It's easy for gaps to
result since DOS allows drive configurations such as A:. B:, C:. W: and
Z:.)

DRIVES, like COMMAND.COM, employs DOS interrupt 21 function
call 29H to check valid drives.

DRIVSPEC
Command

John D. Haluska

Purpose: Reports the characteristics and status of the default or selected drive.

Format: [d:] [path)DRIVSPEC [d:)

976 PC Magazine DOS Power Tools

Remarks: DRIVSPEC reports the number of bytes per sector, sectors per cluster,
total clusters, total bytes capacity on drive, minimum bytes required for
each file, available clusters, and available bytes on the selected drive. It
obtains this information from DOS Current Drive service 19H and DOS
Drive Free Space service 36H.

Typing:

DRIVSPEC B:

will produce a report similar to:

Characteristics/status of drive B

512 bytes per sector
2 sectors per cluster

354 total clusters
362496 total bytes capacity on drive

1024 bytes minimum required for each file

34 available clusters
34816 available bytes on drive

FORMAT: DRIVSPEC [d:]

(The number of free clusters and available bytes will obviously vary
from disk to disk.) Typing DRIVSPEC without any parameters after it
will report on the default drive.

Users often confuse sectors, tracks, and clusters. This program should
help straighten things out It's also useful in showing how wasteful some
hard disks (such as ten meg XTs running under DOS 2.1) can be.

DRNEW
Command

Michael J. Mefford

Purpose: DRNEW provides some slight enhancements to the existing features of
the original program. However, it runs a bit more slowly than the older
version.

Assembly Language Programs 917

Remarks: See the DR text above for the list of basic features and key controls.

ECOH

DRNEW also maintains dynamic counts of the amount of free space on
the disk. When you delete files, DRNEW updates the number.

While DR does not display subdirectories (including the . and .. direc
tory entries), DRNEW does. And it lets you log into those other direc
tories by moving the highlighted bar to them and then pressing Enter.

The other significant addition is that when you run DRNEW you can ex
ecute programs by positioning the highlighted bar on the COM or EXE
file you want to run, and then pressing Ctrl-Enter.

See DR.

Tom Kihlken
Batch tile command

Purpose: ECHOes batch file messages in reverse video.

Format: [d:] [path] ECOH text

where text is the message (127 characters or fewer) you want to display.

Remarks: The DOS ECHO command provides a simple way to display messages
from within a batch file. ECOH.COM is similar, except it displays the
message in reverse video.

Notes:

ECOH.COM works by first obtaining the screen color attribute at the
current cursor position. It then performs a bit rotation on the attribute to
exchange the background and foreground colors. This creates a new at
tribute that is the true reverse of any color combination. It then displays
the message one letter at a time, using a ROM-BIOS routine that writes a
character I attribute pair. Since this routine doesn't automatically ad
vance the cursor, a second BIOS function call is required to advance it
after each character is written.

By using ECOH.COM in combination with the LOCATE.COM message
positioning utility included in this package you can make a message
flash onscreen. Since ECOH looks at the existing color and reverses it,
each subsequent time you execute it the color will reverse. So to flash a
message, just repeat several ECOH statements at the same cursor
position:

' I jt

978 PC Magazine DOS Power Tools

LOCATE 8,36
ECOH This is a test
LOCATE 8,36
ECOH This is a test
LOCATE 8,36
ECOH This is a test

EDPATHA Charles Petzold
Command

Purpose: Lets you edit the DOS PATH directly.

Format: [d:] [path] EDPATHA

When you type EDP ATHA the cursor will drop down a line, but nothing
else will happen, At this point you can use the normal DOS editing tools
to edit the path. Pressing F3 will summon the entire existing PA TH.
Using Fl or the Right Arrow key will write it to your screen character by
character. Press Enter when done to register your changes.

Remarks: COMMAND.COM maintains a section of memory called the DOS en
vironment, but doesn't give you direct access to it. The environment will
always contain a variable called COMSPEC that indicates the disk and
directory where COMMAND.COM is stored. If you've used the PATH
and PROMPT commands, the environment will contain those also. You
can examine the environment contents by entering SET without any
parameters after it at the DOS prompt, and can use the SET command to
add or delete entire new environment strings. But you can't edit existing
ones.

Whenever COMMAND.COM loads an executable program into
memory, it makes a copy of the environment table for use by that
program. The segment address of this copy is stored at offset 2CH in the
program's Program Segment Prefix (PSP). Any changes a program
makes to this environment alter this copy and not the original.

If you only need to add a new directory path to your existing path string,
you can do so very easily with a one-line batch file called
ADDPATH.BAT:

PATH=%PATH%;%1

Assembly Language Programs 919

You'd execute it like this:

ADDPATH C:\SUBDIR

where SUBDIR is a sulxlirectory on drive C: that you want to add to
your path string.

If you try this, first type:

PATH > OLDPATH.BAT

This will put the contents of your existing path into a batch file called
OLDPATH.BAT. If you make a mistake, or just want your old path
back, simply type:

OLDPATH

at the DOS prompt and everything will be restored.

The use of environment variables (like %PATH%) isn't documented
until version 3.3, although it works in many earlier editions. Batch files
now let you use an environment variable name as a replaceable
parameter by surrounding the name with percent signs. When COM
MAND.COM executes the batch file it replaces %PATH% with the ex
isting directory path from the environment In ADDPATH.BAT, this is
followed by a semicolon and the parameter on the ADDPATH command
line. When COMMAND.COM runs this batch file, it's as if a whole new
PATH command were being executed.

The only real problem is that a bug in DOS 3.0 can't handle the
%PATH% construction. ADDPATH.BATwon't work under DOS 3.0.
And while being able to add sulxlirectories to the end of an existing path
is welcome, it's far from enough.

EDPATHA.COM ("EDit PATH with Assembly program") searches the
environment for a path and saves it in an area of memory following the
characters "PATH=." The program then passes this string to DOS func
tion call OAH which lets you use the DOS editing keys to change it.

You can change COMMAND.COM's environment from within a
program by reloading a secondary copy of COMMAND.COM, but ED
P ATHA uses a much easier method involving an undocumented and lit
tle known DOS interrupt called interrupt 2EH. This interrupt passes a
command line addressed by DS:SI to COMMAND.COM. The command
line must be formatted just like the unformatted parameter area of a PSP.

f I 11 1 •

980 PC Magazine DOS Power Tools

The first byte must be a count of characters, and the second and sub
sequent bytes must be a command line with parameters. The whole thing
is terminated by a carriage return.

When this command line is passed to interrupt 2EH, COMMAND.COM
executes it If the transient part of COMMAND.COM is not present in
memory, the resident part will reload it. However, it does not load a new
copy of COMMAND.COM into memory.

Interrupt 2EH is very strange. If interrupt 2EH is called from a program
executed from within a batch file, it will abort the batch file. If it's ex
ecuted in a program run from a "Run a Program" or "Shell,, option in an
application that has itself been executed from a batch file, it aborts the
whole chain and will probably crash your system. Interrupt 2EH is also
difficult to use because it destroys the contents of all registers including
the stack pointer.

Example: If you want to add something onto the end, press F3. This recalls the
whole line on screen and lets you tack on the addition. You could also
do normal inserts and deletions. When you 're done, press Enter and ED
PA THA will send the string to interrupt 2EH. COMMAND.COM then
executes it like a regular PA TH command.

Notes:

You may use the following DOS editing keys to change the PATH string:

Key

Fl•
F2
F3
F4
F5
Esc
Ins
Del
Bksp ••

DOS Editing Function

Copies characters one by one from old template to new.
Copies up to specified character from old template.
Copies all remaining characters from old template.
Skips up to specified character from old template.
Replaces old template with existing one.
Interrupts and cancels changes in current line.
Switches DOS from overwrite mode into Insert mode.
Erases character at cursor and skips over it in template .
Erases one character to the left.

*Same as Right Arrow key . •• Same as Left Arrow key.

Heavy use of the DOS environment, particularly from within an
AUTOEXEC.BAT file, can cause it to become full. Under DOS 3.1, you

Assembly Language Programs 981

can expand the amount of memory COMMAND.COM reserves for the
environment by putting the following line in your CONFIG .SYS file:

EGA12
Command

SHELL COMMAND.COM /E:n /P

where n is a number between 10 and 62 indicating the number of
paragraphs to allocate for the environment. The default is 10 paragraphs.
Each paragraph is 16 bytes, so this allows you to set the environment to
anything between 160 bytes and 992 bytes. This feature was not docu
mented in DOS 3.1.

In DOS 3.2, the /E parameter was documented but it was also changed.
You use the same syntax:

SHELL=COMMAND.COM /E:n /P

but now x refers to the number of bytes reserved for the environment and
may range from l(iO to 32768.

Charles Petzold

Purpose: Resets number of screen rows to 12 when used with an EGA and a 350-
line Enhanced Color or monochrome monitor.

Format: [d:] [path] EGA12

Remarks: EGA12 can be used in DOS and with EGA-aware applications
programs. Applications that reset the video mode on entry will revert to
25 lines per page.

When used together with EGAMODE 1 (a 40.column mode), EGA12
produces a more normal aspect ratio with large-size characters.

When entering the 12-line mode the screen may momentarily contract or
roll once. This is normal and will cause no harm. You can return to the
normal 25-line mode by entering either of the following:

EGAMODE 3 (EGAMODE 7 for monochrome)
EGA25

f· I (4 ;

982 PC Magazine DOS Power Tools

Notes:

These commands are included on this disk. The DOS MODE C080 (or
MODE MONO) commands will also restore normal 25-line operation.

To clear the screen in 12-line mode, use the CS command contained on
this disk. (The DOS CLS command is hard-coded for 25 lines.) See also
EGAPRTSC in this manual- an EGA-aware print screen command.

The IBM EGA BIOS loses the cursor on the Enhanced Color Display
and the underscore on the monochrome display when it has to recalcu
late the number of displayable rows, and this bug is normally duplicated
by other EGA boards. The bug is fixed in EGA12.

1. ANSI.SYS should not be used with EGA12.

2. Because EGA12 uses an 8 x 14 pixel character box size, it can show
only seven lines per page when used with a regular, 200-line color
display.

EGA25
Command

Charles Petzold

Purpose: Resets the EGA default font and 25-row display after using programs
(several of which are on this disk) that change these conditions when
using an EGA and a 350-Iine Enhanced Color or monochrome monitor.

Format: [d:] [path] EGA25

Remarks: When reentering the 25-line mode the screen may momentarily contract
or roll once. This is normal and will cause no harm. Alternate ways of
returning to the normal 25-line mode include issuing the command
EGAMODE 3 (color) or EGAMODE 7 (monochrome). These com
mands are included on this disk. The DOS MODE C080 (or MODE
MONO) commands will also restore nonnal 25-line operation.

Notes: Because EGA25 uses an 8 x 14 pixel character box size, it can show
only 14 lines per page when used with a regular 200-line color display.

EGA35
Command

Assembly Language Programs 983

Charles Petzold

Purpose: Resets number of screen rows to 35 when used with a 350-line Enhanced
Color or monochrome monitor and an EGA.

Format: [d:] [path] EGA35

Remarks: EGA35 can be used in DOS and with EGA-aware applications
programs. Applications that reset the video mode will revert to 25 lines
per page; some others may write only to the top 25 of the 35 displayable
lines.

Notes:

When entering the 35-line mode the screen may momentarily contract or
roll once. This is normal and will cause no harm. You can return to the
normal 25-line mode by entering either of the following:

EGAMODE 3 (EGAMODE 7 for monochrome)
EGA25

These commands are included on this disk. The DOS MODE C080 (or
MODE MONO) commands will also restore normal 25-line operation.

To clear the screen in 35-line mode, use the CS command contained on
this disk. (The DOS CLS command is hard-coded for 25 lines.) See also
EGAPRTSC in this manual - an EGA-aware print screen command.

The IBM EGA BIOS loses the cursor on the Enhanced Color Display
and the underscore on the monochrome display when it has to recalcu
late the number of displayable rows, and this bug is normally duplicated
by other EGA boards. The bug is fixed in EGA35.

1. ANSI.SYS should not be used with EGA35.

2. Because EGA35 uses an 8 x 14 pixel character box size, it can show
only 20 lines per page when used with a regular, 200-Iine color display.

f I I(' '

984 PC Magazine DOS Power Tools

EGA43
Command

Charles Petzold

Purpose: Resets number of screen rows to 43 when used with an EGA and a 350-
line Enhanced Color or Monochrome monitor.

Format: [d:] [path] EGA43

Remarks: EGA43 can be used in DOS and with EGA-aware applications
programs. Applications that reset the video mode on entry will revert to
25 lines per page; some others may write only to the top 25 of the 43 dis
playable lines.

Notes:

When entering the 43-line mode the screen may momentarily contract or
roll once. This is normal and will cause no harm. You can return to the
normal 25-line mode by entering either of the following:

EGAMODE 3 (EGAMODE 7 for monochrome)
EGA25

These commands are included on this disk. The DOS MODE C080 (or
MODE MONO) commands will also restore normal 25-line operation.

To clear the screen in 43-line mode, use the CS command contained on
this disk. (The DOS CLS command is hard-coded for 25 lines.) See also
EGAPRTSC in this manual - an EGA-aware Print Screen command.

The IBM EGA BIOS loses the cursor on the Enhanced Color Display
and the underscore on the monochrome display when it recalculates the
number of displayable rows, and this bug is normally duplicated by other
EGA boards. The bug is fixed in EGA43.

1. This is one of the most potentially useful utilities for an EGA user,
since it puts the screen into the popular 43-line mode. But it needs a little
help.

The accompanying CLSEGA.COM utility will set the EGA screen mode
to 43-lines, set the colors (in this case to bright white on dark blue), set
the cursor properly, and clear the entire screen.

EGASO
Command

Assembly Language Programs 985

2. ANSI.SYS should not be used with EGA43. Also, because EGA43
uses an 8 x 14 pixel character box, 200-line color monitors will show
only 25 lines.

Charles Petzold

Purpose: Resets number of screen rows to 50 when used with an EGA and a 350-
line Enhanced Color or monochrome monitor.

Format: (d:] [path] EGASO

Remarks: EGA50 can be used in DOS and with EGA-aware applications
programs. Applications that reset the video mode on entry will revert to
25 lines per page; some others may write only to the top 25 of the 50 dis
playable lines.

Notes:

When entering the 50-line mode the screen may momentarily contract or
roll once. This is normal and will cause no harm. You can return to the
normal 25-line mode by entering either of the following:

EGAMODE 3 (EGAMODE 7 for monochrome)
EGA25

These commands are included on this disk. The DOS MODE C080 (or
MODE MONO) commands will also restore normal 25-line operation.

To clear the screen in 50-line mode, use the CS command contained on
this disk. (The DOS CLS command is hard-coded for 25 lines.) See also
EGAPRTSC in this manual - an EGA-aware print screen command.

The IBM EGA BIOS loses the cursor on the Enhanced Color Display
and the underscore on the monochrome display when it has to recalcu
late the number of displayable rows, and this bug is normally duplicated
by other EGA boards. The bug is fixed in EGASO.

1. ANSI.SYS should not be used with EGASO.

, ~ 14 j l

986 PC Magazine DOS Power Tools

2. Because EGA50 uses an 8 x 14 pixel character box size, it can show
only 28 lines per page when used with a regular, 200-line color display.

EGA512
Command

Charles Petzold

Purpose: Lets you switch between two loaded EGA fonts when used on a 350-line
Enhanced Color or monochrome monitor and with software that sup
ports display of bold characters.

Format: [d:] [path] EGA512 x y

Remarks: The values of x and y may range from 0 through 3, and correspond to the
EGA memory blocks into which fonts can be loaded. The x parameter
corresponds to the font that will be displayed with normal (low intensity)
characters. They parameter accesses the font that will be displayed with
high-intensity (boldface) characters.

Examples: Load the italic font into EGA memory block 1 with the command:

Notes:

EGAITAL 1

Then enter the command:

EGA512 0 1

If your word processor supports onscreen boldface and does not reset the
video mode on entry, regular characters will now appear normally and
boldface characters will appear in italics.

To restore the normal display, enter:

EGA512 0 0

The chapter on EGA contains suggestions for remapping the EGA
palette registers to use other attributes (e.g. blinking, underline) instead
of the intensity attribute.

Assembly Language Programs 987

EGABLANK
Command

Charles Petzold

Purpose: Automatically turns off screens connected to EGA cards at preset inter
vals to prevent "phosphor etching" or "burning."

Format: [d:] [path] EGABLANK

Remarks: It's possible to etch a permanent image into the green phosphor used on
IBM monochrome displays. Users who spend endless hours with one
screen element in the same place - a 1-2-3 grid or a WordStar menu,
for instance - may end up with traces of this element permanently
burned into the display.

Notes:

EGABLANK is a memory-resident utility that turns the screen off
automatically to prevent this from happening if nothing has been typed
for 7.5 minutes. Typing anything on the keyboard will bring it back to
normal.

You can alter the amount of time EGABLANK waits before blanking
the screen by changing the current hexadecimal delay value of 2000. A
value of 1 will blank the screen every 55 milliseconds. Going up to
FFFF gives you about an hour before the lights go out.

To change the value to 1000 (3.25 minutes), load the program into
DEBUG by typing:

DEBUG EGABLANK.COM

Then type:

A 137

and press the Enter key. Enter:

MOV WO [lOA],1000

and press Enter twice. Then type W and press Enter to save the changes
to disk, and then type Q and press Enter to quit DEBUG.

1. This program is for EGA and EGA compatibles only. It will not
work with other adapters, but it will not harm them either. Although it is
really for the monochrome display (since monochromes are the ones sus-

f I \f

988 PC Magazine DOS Power Tools

ceptible to phosphor bum), it will also work with a color display at
tached to an EGA. Under extremely unusual circumstances, it could in
terfere with a program engaged in setting the EGA palette registers.

2. EGABLANK will not work well with programs that entirely steal
the keyboard interrupt, since it has no way of knowing when keys have
been struck. If you have any of these programs, you probably know
about this since other resident programs won't work with them either.
Some more sophisticated commercially available screen blankers con
tinually check the contents of the screen for changes to get around this
problem.

EGACOLOR
Command

Charles Petzold

Purpose: Permits temporary remapping any of the 16 default colors displayable on
a 200-line CGA monitor to any of the 64 colors displayable on a 350-
line Enhanced Color Display connected to an Enhanced Graphics Adap-
ter.

Format: [d:] [path]EGACOLOR XX yy

Remarks: The parameters XX and YY are two-digit octal (base 8) numbers derived
from the table shown below. Values for XX may range from 00 to 17;
values for YY may range from 00 to 77.

IRGBCode Default rgbRGB Ma~
Color Binary Octal Hex Binary Octal Hex

Black 0000 00 00 000000 00 00
Blue 0001 01 00 000001 01 01
Green 0010 02 02 000010 02 02
Cyan 0011 03 03 000011 03 03
Red 0100 04 04 000100 04 04
Magenta 0101 05 05 000101 05 05
Brown 0110 06 06 010100 24 14
White 0111 07 07 000111 07 07
Dark grey 1000 10 08 111000 70 38
Light blue 1001 11 09 111001 71 39
Light green 1010 12 OA 111010 72 3A
Light cyan 1011 13 OB 111011 73 3B

Assembly Language Programs 989

Light red 1100 14 oc 111100 74 3C
Light magenta 1101 15 OD 111101 75 3D
Yellow
Bright white

lllO 16 OE 111110 76 3E
llll 17 OF llllll 77 3F

The first digit in the two-digit octal number represents the 1/3-intensity
rgb signal; the second is the 2/3-intensity RGB signal.

Example: To change black to blue and white to yellow (yellow letters on a black
screen), execute:

Notes:

EGACOLOR 00 01
EGACOLOR 07 76

Changing modes resets the default EGA colors. To create more per
manent mappings, use the EGAPRMOV and EGACOSET utilities on
this disk.

EGACOSET (and EGAPRMOV)
Commands

Charles Petzold

Purpose: Loads a customizable 16- (of 64) color palette that is reloaded each time
video mode 3 is set.

Format: [d:] [path] EGAPRMOV
[d:] [path]EGACOSET

Remarks: EGAPRMOV (parameter move) is a memory-resident program that
moves the EGA ROM BIOS parameter table and seven pointers into
RAM, where it can be accessed by EGACOSET (color set).
EGAPRMOV is run once each session, normally through your
AUTOEXEC.BAT file.

Running EGACOSET maps a color scheme of your choice to each of the
16 EGA registers. These color settings are then activated by entering the
EGAMODE 3 command (described elsewhere in this manual) or by issu
ing the DOS MODE C080 command. Thus, to bring up your color
scheme each time you boot up, you would put the following three lines
in your AUTOEXEC.BAT file:

' I If f

990 PC Magazine DOS Power Tools

EGAPRMOV
EGACOSET
EGAMODE 3

The EGACOSET.COM program on this disk contains the default EGA
settings for a 350-line monitor. These are, sequentially (in hex):

Black 00 Dark grey 38
Blue 01 Light blue 39
Green 02 Light green 3A
Cyan 03 Light cyan 3B
Red 04 Light red 3C
Magenta 05 Light magenta 3D
Brown 14 Yellow 3E
White 07 Bright white 3F

Entering:

DEBUG EGACOSET.COM

D 100 L2B

displays the offsets and hex values of the entire 43-byte program:

100 FC 29 CO BE CO 26 C4 3E-A8 04 26 C4 3D BE lB 01
110 81 C7 A3 05 B9 10 00 F3-A4 CD 20 00 01 02 03 04
120 05 14 07 38 39 3A 3B 3C-3D 3E 3F

Entering E 1 lB returns the first color value (00), followed by a period
(.). Type in the hex value of the desired color after the period and press
Enter. After changing as many values as desired, use the Wand Q com
mands, pressing Enter after each, to write the changes to disk and end
the DEBUG session.

Examples: To remap black (00) to blue (01), white (07) to bright yellow (3E), and
bright white (OF) to bright green (32), make a copy of
EGACOSET.COM and enter:

DEBUG EGACOSET.COM
E llB 01
E 122 3E
E 12A 32
w
Q

Notes:

Assembly Language Programs 991

To use EGACOSET.COM with a regular 200-line color monitor, change
the byte (A3) at offset 112 to E3 and the byte (05) at 113 to 00. In this
configuration, restrict the colors selected to the 16 values from 00
through OF.

EGAGRAF
Command

Charles Petzold

Purpose: Provides new screen-dump routine for EGA 640 x 350 graphics displays
on an IBM Graphics Printer or compatible only.

Format: [d:] [path] EGAGRAF

Remarks: It's difficult to write a universal screen dump program for EGA
graphics, since there are no real standards for implementing graphics on
printers, and since even the common IBM Graphics Printer won't do a
good job handling the 16 different possible colors. Most printers don't
have enough resolution to use different dot densities for the different
colors. The usual method - printing dots for every color except the
background sometimes works and sometimes doesn't.

EGAGRAF.COM is a remain-resident program that prints EGA 640 x
350 graphics displays on IBM Graphics Printers or compatibles only.
Load EGAGRAF.COM and it will remain resident in memory until you
reboot unless you use INST ALL/RECOVER. When you press the Shift
PrtSc combination in video mode 15 (equivalent to BASIC's mode 9-
EGA 640 x 350 graphics on a monochrome display) or 16 (BASIC's
mode 10 - EGA 640 x 350 graphics on an Enhanced Color Display),
the resident program will print the screen.

The program prints a dot for every color except the background, which
generates white-on-black graphics (or, in the case of the monochrome
display, green-on-black graphics) to be printed as black on white. This
reversal of colors is normal for printing graphics. If you want black
printed as black and all other colors not printed (which is the way it ac
tually looks onscreen), make a copy of EGAGRAF.COM called
EGAGRAF2.COM and use DEBUG to change the value of the byte at
address 168 to 90 by typing:

COPY EGAGRAF.COM EGAGRAF2.COM
DEBUG EGAGRAF2.COM
E 168 90

J I J. I 1

992 PC Magazine DOS Power Tools

w
Q

If you need to put an image onscreen, run the following BASIC
EGACIRCL.BAS program:

100 ' EGACIRCL.BAS c. Petzold
110 ' (c) 1988 Ziff Communications Co.
120 '
130 DEFINT A-Z:SCREEN 9:CLS
160 FOR I=l TO 75
170 A=INT(640*RND) :B=INT(350*RND)
180 C=INT(40*RND)+5:D=INT(16*RND)
190 CIRCLE (A,B),C,D
200 PAINT (A,B),C MOD 15+1,D
210 CIRCLE (A,B),C-5,D
220 PAINT (A,B),0,D
230 NEXT
240 WHILE INKEY$='"' :WEND
250 SCREEN 0

EGAITAL
Command

Charles Petzold

Purpose: Produces an displayable italic font from the default EGA font when used
with a 350-line Enhanced Color or monochrome monitor.

Format: [d:] [path] EGAITAL

or

[d:] [path]EGAITAL n

Remarks: EGAIT AL can be executed directly from the DOS prompt The slanting
algorithm employed is similar (but not identical) to that used by
Microsoft Word to display italics in graphics mode. The normal charac
ter display can be restored by executing one of the DOS MODE com
mands, by issuing the EGAMODE 3 (color), EGAMODE 7
(monochrome) commands on this disk, or by executing EGA25.COM
(also on this disk).

Mode

0&1

2&3

4&5
6
7

8,9,10
11&12
13

14

Assembly Language Programs 993

The n parameter shown in the second format above accepts values from
0 (the default) through 3. It specifies the EGA memory block into which
the italic font is loaded. An EGA with 256K memory can hold up to four
fonts simultaneously; a 128K EGA, up to two fonts. A 64K EGA board
is limited to one font. The EGA512 command, described elsewhere in
this manual, allows two fonts to be active simultaneously when using
software capable of showing onscreen bold characters.

EGAMODE
Command

Purpose: Reports/changes the current video mode.

Format: [d:] [path] EGAMODE [M]

Charles Petzold

Remarks: Entered without the optional M parameter, EGAMODE displays the cur
rent video mode. In text modes, the commands EGAMODE 03 and
EGAMODE 07 have the same practical effect as the DOS MODE C080
and MODE MONO commands, respectively. The chart below lists the
M (mode) parameters to which EGAMODE can be switched.

Type Display Resolution Characters Box Colors Pages

Text CD 200x320 25x40 8x8 16 8
ECD 350x320 25x40 14x8 16/64 8

Text CD 200x640 25x80 8x8 16 8
ECD 350x640 25x80 14x8 16/64 8

Graphics CD&ECD 200x320 25x40 8x8 4 1
Graphics CD&ECD 200x640 25x80 14x8 2 1
Text MONO 350x720 25x80 14x9 4 8

PCjr modes not supported by EGA
Used internally by EGA for loading fonts

Graphics CD&ECD 200x320 25x40 8x8 16 2(1)
4(2)
8(3)

Graphics CD&ECD 200x640 25x80 8x8 16 1(1)
2(2)
4(3)

' j ft I ,j

994

15

16

PC Magazine DOS Power Tools

Graphics

Graph

Notes:

MONO 350x640 25x80 14x8 4 1(1)
2(2)

ECD 350x640 25x80 14x8 4/64(1) 1(2)
16/64(2) 2(3)

Notes: (1) = 64K memory;
(2) = 128K memory;
(3) = 256K memory

1. Users of a Hercules graphics card can activate "page 1" graphics
when an EGA is installed with the command sequence:

MODE C080
EGAMODE 16
MODE MONO

Use EGAMODE 14 if your EGA is connected to a conventional color
monitor.

2. Should you switch to a mode not supported by your monitor, you
can recover by blindly entering EGAMODE 3 (color) or EGAMODE 7
(monochrome).

3. By adding 128 to the mode number desired you can change modes
without clearing the screen (though the cursor is reset to the upper left).
These high numbered modes may confuse some applications programs,
however.

EGAPAGE
Command

Charles Petzold

Purpose: Reports/changes the current video page.

Format: [d:] [path] EGAPAGE [P]

Remarks: Entered without the optionalP parameter, EGAPAGE reports which
video page is currently active. The chart presented in this manual for
EGAMODE.COM shows which video pages (P parameters, beginning
with 0) can be used by each EGA mode.

Notes:

Assembly Language Programs 995

EGAPAGE can be useful when you have material on your screen to
which you want to return later. Entering EGAPAGE 1 activates a new
screen while retaining the contents of the default EGAP AGE 0 in
memory. The previous display can subsequently be recalled by issuing
the EGAPAGE 0 command.

1. When using an alternate video page do not change video modes, or
the previous display contents will be lost.

2. ANSI.SYS cannot be used with other than video page 0.

EGAPALET
Command

Charles Petzold

Purpose: Displays all 64 EGA colors simultaneously on a 350-line color monitor.

Format: [d:) [path]EGAPALET

Remarks: If a number of the color squares look the same at first glance, adjust the
contrast and brightness controls and inspect the screen at close range to
confinn that different pixels are being lit.

Starting with the upper left square as row 0, column 0, the octal values
for each color can be detennined directly from the screen. Brown, for ex
ample, is octal 24 (row 2, column 4), a value you might enter in the
EGACOLOR.COM utility included on this disk.

Since the EGA is theoretically limited to simultaneous display of only
16 of 64 colors, EGAPALET employs the unorthodox technique of
remapping eight color registers every l/30th of a second. A certain
amount of jitter and flickering must therefore be accepted on a PC or
XT. The display is more stable on an AT, but the bottom row of squares
is elongated. If you are using an AT, this can be cured with DEBUG, as
follows:

DEBUG EGAPALET.COM
E 102

The value 22. will appear. After the period, enter 2B and press Enter.
Then write the modified EGAP ALET.COM to disk and quit DEBUG by
entering the following commands, each tenninated by a carriage return:

'" I ii ' '

996 PC Magazine DOS Power Tools

Notes:

w
Q

Only 16 colors are available on monitors displaying 200 lines.

EGAPRMOV
Command

Charles Petzold

Purpose: Moves the EGA ROM BIOS parameter table and pointers into RAM,
where the EGACOSET program also on this disk can find it.

See EGACOSET.

EGAPRTSC
Command

Charles Petzold

Purpose: Replaces the normal print screen BIOS routine to permit using the Shift
PrtSc command with EGA displays with more than 25 rows.

Format: [d:] [path] EGAPRTSC

Remarks: Although the EGA BIOS contains a new print screen routine usable for
screen dumps of displays with 43, 50, 35, or other 25-plus line displays,
this routine is not automatically loaded when you boot up with the EGA
installed.

Notes:

EGAPRTSC is a memory-resident utility that installs the updated print
screen routines. If you intend to make more than occasional use of a 43-
line display, you should load EGAPRTSC from your AUTOEXEC.BAT
file.

EGAPRTSC should be loaded early in the AUTOEXEC.BAT file,
before any printer buffers, commands such as PC-DOS GRAPIDCS, or
other programs that use interrupt 5.

EGATEST
Command

Assembly Language Programs 997

Terry P. Sanderson

Purpose: Detects presence of EGA in any system and reports which monitors are
active.

Format: [d:] [path] EGATEST

Remarks: With so many EGAs installed, programmers now have to test for them in
addition to MD As and CGAs. Unfortunately, IBM has not made it easy
to identify the presence (and more important, the activity) of an EGA.

Version 2.0 of Microsoft Word was one of the first programs to take ad
vantage of the EGA. However, the method it used to detect the presence
of an EGA was both awkward and unsupported by IBM. Embedded near
the beginning of IBM's EGA ROM BIOS, at location COOO:OOlE, are
the letters "IBM". Word 2.0 tested for the presence of these letters in the
copyright notice, and assumed that an EGA was available if it found
them.

It's curious that Microsoft chose this method, as IBM includes a warning
in the EGA Technical Reference manual about a similar misuse of its
BIOS. At location COOO:OOOO, a two byte signature appears (AA55H)
that identifies a valid adapter ROM module to the POST routine. IBM
explicitly states in the documentation that this signature is not to be used
as an EGA presence test. However, if you were to disassemble the
MODE command (which allows the user to, among other things, set the
mode of the video adapter or change monitors in a two-monitor system),
you would find the following code fragment

MOV AZ,OCOOOH ; move segment address ..
MOV ES,AX ; into es register
CMP WORD PTR ES:O,OAASSH ; is it the signature?
JNZ ; jump if true

Here, IBM disobeys its own warning and uses the BIOS signature to test
for the presence of an EGA card.

A far more conventional test for the presence of an EGA is to use the ex
tended BIOS features available in the EGA's ROM. When an EGA is
present, interrupt lOH (the video interrupt) is vectored to the EGA's
ROM, and interrupt 42H is used to revector the old planar ROM video

' I Jti '

998 PC Magazine DOS Power Tools

interrupt. The extra EGA features are then available through interrupt
lOH.

One of these extended features is called Alternate Select. Its major func
tion is to select the Alternate Print Screen routine, but another of its func
tions is to return EGA information. The following assembler code
segment can be used to request EGA information:

MOV AH,12H
MOV BL,lOH
INT lOH

function 12H
subfunction lOH
video interrupt

This function returns the following information:

Register
BH
BL
CH
CL

Description
mode in effect (color or mono)
memory on EGA (01H=64K, 02H=128K, etc.)
feature bits
EGA switch settings

Note that the BL register is used both on input and to return a value. The
standard ROM BIOS interrupt lOH does not have a function 12H, so the
BL register is returned intact if there is no EGA. Fortunately, if there is
an EGA, the BL register will return a value of OH, lH, 2H, or 3H,
depending on the memory size, but cannot return a value of 1 OH. If the
BL register has changed, an EGA is present.

This procedure can be used to identify the presence of an EGA, but does
not report whether the EGA is active. If the EGA is connected to a color
or enhanced color display, a monochrome adapter and monitor can also
be installed. And if the EGA is connected to a monochrome display, a
CGA and color monitor can also be in the system. Any hardware-depend
ent routines must take into consideration the possibility of a two-
monitor system.

IBM does not provide a video function that determines which adapter is
active if more than one is installed. However, the information in the
ROM BIOS data area can help ferret out whether the EGA is the active
adapter. At absolute location 487H, IBM defines a byte used to store
EGA information. Bit 3 of this byte (using the notation that bit 0 is the
low-order bit) is the important one here; if this bit is 0, the EGA has the
active monitor; if it is 1, another adapter card is active.

Then, by looking again at the values returned by the previous video func
tion call, EGA TEST can pinpoint which monitor is active. Register BH

Assembly Language Programs 999

returns a value of OH if the EGA is connected to a color monitor, and a
value of lH if a monochrome monitor is attached. Fortunately,
EGA TEST does all the dirty work for you and prints the appropriate mes
sage onscreen.

EGA UNDER
Command

Paul Somerson

Purpose: A demonstration program for the UNDRLIN2 EGA underlining utility.

Format: [d:] [path] EGAUNDER

Remarks: EGAUNDER will display a string of 40 Ps in blue and 40 Cs in green.
Then use UNDRLIN2 and UNDRLIN2 N to toggle the blue text under
lining on and off when using an EGA.

See UNDRLIN2.

ENABLE
Command

Steve Dozier

Purpose: Turns Shift-PrtSc function back on after you've turned it off temporarily
with DISABLE.

See CONFIRM.

ENTER Frank Tracy
Batch file command

Purpose: Lets you send an Enter character to simulate entering a command in a
batch file.

Format: [d:] [path] ENTER
DOS CMND

,, I !I • •

1000 PC Magazine DOS Power Tools

where DOS_ CMND is a DOS command that won't do anything unless
you (or the ENTER utility) send a carriage return through the keyboard.

Remarks: Users have spent much time and aggravation trying to find ways to ex
ecute DOS commands such as TI:ME and DA 1E remotely in batch files.

The usual trick is to create a small file called CR that contains nothing
but a carriage return and an end-of-file marker, and then to redirect the
contents of this tiny file into the command. So if they wanted to add the
current date to a file, they could do it with a line like:

DATE < CR >> LOGFILE

This would redirect the output of CR (which was just a carriage return)
into DOS to kick the DA 1E command into action, which would in turn
have its output redirected and appended to the LOGFILE file. Whew.

Users later discovered that the MORE.COM command, which was avail
able on every system that had a hard disk, generated a carriage return
when it was executed. The chic new way to send the TIME into a file
was to include a line in a batch file that said:

ECHO One I MORE I TIME >> LOGFILE

The "One" that the ECHO command was supposed to display somehow
disappeared into the ether, and ended up just moving the whole process
along.

The ENTER.COM utility replaces all those tricks. It places the scan
code for the Enter key into the first memory location of the keyboard
buffer.

To use it, just precede a command that needs a carriage return, such as
DA1E, with a line that says ENTER. This batch file will append the out
put of the DA 1E command to a LOGFILE file:

, ENTER
DATE >> LOGFILE

One common application for this is to do something (log, set, reset, etc.)
the DA1E and TIME commands together. You can either use the
EN1ER command twice:

ENTER
DATE

ENTER2

ENTER
TIME

I I I

Assembly Language Programs 1001

or you can use a special version of ENTER.COM called ENTER2.COM
that puts a pair of Enter characters into the keyboard buffer rather than
just a single one.

SeeENTER2.

Frank Tracy
Batch file command

Purpose: Lets you send a pair of Enter characters to simulate entering two com
mands in a batch file.

Format: [d:] [path] ENTER2
DOS CMDl
DOS_CMD2

where DOS_ CMDJ and DOS_ CMD2 are two DOS commands that
won't do anything unless you (or the ENTER utility) send two carriage
returns through the keyboard.

Remarks: The common application for this is to follow ENTER2 in a batch file
with DATE and TIME and redirect the results into a usage log:

ENTER2
DATE >> LOG
TIME >> LOG

Obviously you could do this with two individual ENTER commands as
well.

ENVCOUNT
Command

Richard Hale Shaw

Purpose: Counts the number of bytes currently used in the DOS environment.

Format: [d:] [path] ENVCOUNT

f I 11

1002 PC Magazine DOS Power Tools

Notes: DOS uses a special section of memory called the environment to do
things like store information on where your main command processor is
located, or what subdirectories to search when you try to run a program
that's not in the current directory. Some programs also use the environ
ment to store variables, and you can adapt this technique in your own
batch files.

The default environment space is a tiny 160 bytes, which can fill up
quickly if you use long PA TH and APPEND strings.

Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address
ECF to represent the number of 16-byte memory paragraphs that will
make up your new environment. (For DOS 2.11 the address is DF3.)

For DOS 3.0 and 3.1, use a:

SHELL [d:] [path]COMMAND.COM /E:n /P

command in your CONFIG.SYS file, where n represents the number of
16-byte paragraphs. For versions 3.2 and later, use the same SHELL
command but specify the actual number of bytes rather than paragraphs.
The default in all cases is 160 bytes (ten paragraphs). You can increase it
all the way up to 32K in DOS 3.2 and 3.3, but are limited to 62
paragraphs in earlier versions.

Be sure to add the IP switch or DOS won't run your AUTOEXEC.BA T
file when it boots up.

ENVCOUNT will report how many bytes in your environment space are
currently being used. To fill it, run the TESTENV.BAS program:

100 , TESTENV.BAS - creates TESTENV.BAT
110 OPEN "TESTENV.BAT" FOR OUTPUT AS :#:1
120 PRINT :#:1,"ECHO Initializing Strings"
130 FOR A=O TO 15
140 PRINT U,"SET ";HEX$(A);"=";STRING$(78,A+65)
150 NEXT
160 PRINT :#:1,"ENVCOUNT"
170 PRINT :#:1,"PAUSE"
180 FOR A=O TO 15
190 PRINT :#:1,"SET ";HEX$(A);"="
200 NEXT
210 PRINT :#:1,"ECHO Test complete"
220 CLOSE

--------------- --·-·-.. --..

• I I

Assembly Language Pro grams 1003

You can run this by entering:

BASICA TESTENV.BAS

(or GWBASIC TESTENV.BAS if you're using a generic system). This
will create a batch file called TESTENV .BAT that loads a series of tem
porary environment strings into your environment, then runs
ENVCOUNT, and finally erases the temporary strings. If you see the
"Out of Environment Space" message, you know you've filled up your
environment, which is what you want. If you don't see the message,
modify the file to add more strings.

TESTENV adds over 1,200 bytes of strings to the environment, which
will overflow it under DOS versions earlier than 3.2 since these can't
handle more than 992 bytes. To test larger environments under DOS 3.2
or later, increase the 15 at the end of lines 130 and 180 of the
TESTENV.BAS program. Each time you increase this number by 1
you'll take up an additional 80 bytes (or more) of memory. If you want
to increase it above 190, change the:

STRING$ (78,A+65)

at the end of line 140 to:

STRING$(78,65)

If you do make the batch file too large, you won't hurt anything by
trying to overflow your environment.

FASTATKB
Command

Robert Patenaude

Purpose: Dramatically speeds up programmable keyboards starting with PC-A Ts.

Format: [d:] [path] FASTATKB nn

where nn is a two digit hex number from 00 to 7F.

Remarks: One reason mice are becoming increasingly popular is that keyboards
seem so slow. Until the IBM PC-AT, they were slow. But IBM made the
AT and all subsequent keyboards programmable. You can change both
the delay (the period between the time you press the key and the time the

' 1 If

1004 PC Magazine DOS Power Tools

cursor starts to jump) and the typematic rate (how fast the cursor moves
if you hold it down).

Unfortunately, IBM didn't provide any decent mechanism for making
the changes. As a result, users with high-performance machines ended
up dragging their feet (or at least their fingers) unnecessarily.

FAST A TKB lets you enter a two-digit hex number that represents a com
bination of the typematic rate and delay. To figure out the appropriate
number, consult the table below.

The higher you go on the chart, the faster the typematic rate, from an in
credibly pokey two characters a second at the very bottom to a neck
snapping 30 at the top. You can match each typematic rate setting with
one of four delays ranging from a quarter-second to a full second.

The default for an IBM AT is 2C - 20 characters per second and a
delay of half a second. In many cases the maximum setting is so extreme
that it becomes unusable, but this isn't the case here. The very fastest set
ting, with a value of 00 (30 characters per second and a quarter-second
starting time) is perfectly acceptable. The first time you try it you won't
believe how fast it seems. Then after a few days you'll wonder if you
can find a way to make it just a tiny bit speedier

Type ma tic Dela~ {in seconds}
Rate(/sec) 0.25 0.50 0.75 1.00

30.0 ()() 20 40 60
26.7 01 21 41 61
24.0 02 22 42 62
21.8 03 23 43 63
20.0 04 24 44 64
18.5 05 25 45 65
17.1 06 26 46 66
16.0 07 27 47 67
15.0 08 28 48 68
13.3 09 29 49 69
12.0 OA 2A 4A 6A
10.9 OB 2B 4B 6B
10.0 oc 2C 4C 6C

9.2 OD 2D 4D 6D
8.6 OE 2E 4E 6E
8.0 OF 2F 4F 6F
7.5 10 30 50 70
6.7 11 31 51 71

Assembly Language Programs lOOS

6.0 12 32 S2 72
s.s 13 33 S3 73
s.o 14 34 54 74
4.6 lS 3S SS 7S
4.3 16 36 S6 76
4.0 17 37 S7 77
3.7 18 38 S8 78
3.3 19 39 S9 79
3.0 lA 3A SA 7A
2.7 1B 3B SB 7B
2.S lC 3C SC 7C
2.3 lD 3D SD 7D
2.1 1E 3E SE 7E
2.0 lF 3F SF 7F

The program works by using the OUT command to send a value of F3H
to port 60H, which tells the keyboard's processor that the next byte it
receives will establish new rate/delay values. This next byte is divided
into three parts as follows:

Bit 7, the most significant bit, is always zero. Bits 6 and S determine the
delay - which will be 1 plus the binary value of bits 6 and S times 2SO
milliseconds.

Bits 4 thru 0 determine the typematic rate. The formula is 8 plus the bi
nary value of bits 2, 1, and O; times 2 to the power of the binary value of
bits 4 and 3; times .00417 seconds; all divided into 1. Got it?

Example: Entering:

FASTATKB 00

will slam you back into your seat it's so fast. On the other hand:

FASTATKB lF

(or anything with a letter in it) will seem brain-damaged. Once you're ac
customed to the fastest speed, just for laughs reset it to the IBM default:

FASTATKB 2C

It'll be so slow you won't be able to type.

,,, I If

1006 PC Magazine DOS Power Tools

Notes: 1. This works on IBM ATs and later systems (and clones) with
programmable keyboards only. It won't work on PCs, XTs, and systems
without programmable keyboards.

2. You may change speeds on the fly as often as you want.

3. If you enter a number over hex 7F the program will subtract 80
from it.

FASTOFF
Command

Tom Kihlken

Purpose: Speeds up floppy disk use on IBM hardware by reducing the length of
time it talces for a disk to stop spinning.

Format: [d:] [path] FASTOFF

Remarks: If you use your PC's floppy disk drives frequently, you probably spend a
lot of time waiting for the disks to stop spinning so you can safely switch
them. The memory-resident FASTOFF.COM program turns off the drive
motor much more quickly than the standard IBM PC does.

Notes:

The disk motor normally turns off 37 ticks (about two seconds) after the
last disk access. FASTOFF reduces this time by decrementing the
elap~ed time counter twice as fast as normal.

A single byte located in the ROM data area is used to maintain the num
ber of ticks remaining before the motor will be turned off. Part of the sys
tem timer's job is to decrement this byte and tum off the drive motor
when the counter reaches zero. FASTOFF uses the timer tick interrupt,
which occurs 18.2 times each second, to decrement this same counter.

1. Since this program addresses the ROM-BIOS data area, it will work
on an IBM or a very close compatible only. Don't try it on a system
that's had compatibility problems. To be absolutely safe, don't try it on
anything but IBM hardware.

2. You have to run FASTOFF only once each session. And you have to
reboot to make it inactive unless you install it with INSTALL/REMOVE.

FFEED
Command

Assembly Language Programs 1007

Tom Kihlken

Purpose: Lets you send optional form feeds following Shift-PrtSc screen dumps,
and prevents systems from locking up when printers are not online.

Format: [d:] [path] FFEED

Remarks: For many users, the next step after doing a screen dump is always to take
the printer off line and press the form feed to eject the page. The
memory resident FFEED program will add a form feed character
automatically after the print screen operation is complete.

Notes:

However, since there are times when you don't want to generate a form
feed - such as when you want several screen dumps on the same
printed sheet - FFEED adds it only if you use the RIGHT Shift key
with PrtSc.

The program works by intercepting interrupt 5, which is generated by
Shift-PrtSc. It then tests the keyboard status to see which shift key is
being held down. If it was the right one, then it automatically sends a
form feed character to the printer when the screen dump finishes.

FFEED is also smart enough to check to see if the printer is online and
ready before beginning the screen print. If the printer is not ready the
screen dump is aborted to prevent the keyboard from locking up. This is
done by making a printer status call before giving control to the ROM
routine. It's odd that such a simple check was not included within the
standard ROM routine.

1. You need to install FFEED only once each session. And the only
way to remove it from memory is to reboot unless you install it with
INST ALL/REMOVE.

2. If you don't like having to remember which key activates the Shift
PrtSc and which doesn't, you might prefer using the companion
FFEED2 utility that follows. This version checks for printer time-outs,
however, which gives it an edge.

1008 PC Magazine DOS Power Tools

FFEED2
Command

Ethan Winer

Purpose: Lets you send form feeds to your printer at any time by pressing Alt
PrtSc.

Format: [d:] [path]FFEED2

Remarks: Print spoolers can knock out a batch of documents or program listings
while you're doing something else, but it's a constant struggle to get
each new document to start at the top of its own page. Once the memory
resident FFEED2.COM program is installed, you can send form feeds
into the print queue with a simple keypress.

Notes:

FFEED2 sends a decimal ASCII 12 form feed character to the printer
whenever you press Alt-PrtSc. It works by intercepting keyboard inter
rupt 9, and coexists nicely with such other memory-resident programs as
SideKick and Super Key - if you run it first.

This tiny utility is extremely useful even if you're not queueing up a
batch of printing jobs. It can line up paper properly for single jobs, kick
single sheets out of laser printers, and clear out the last page of a print
job that sometimes stays hidden inside - all from the keyboard.

1. This version is easier to use than the companion FFEED utility,
since you don't have to remember which shift key does what.

2. Just for the record, Charles Petzold published an almost identical
routine in PC Magazine before this one.

FILL
Command

DungQuocVu

Purpose: Sets the attributes of any parts of a color screen without disturbing the
text; can create small overlapping differently colored "windows" for
batch files.

Format:

Assembly Language Pro grams 1009

[d:] [path] FILL x,y,w,h,b,f

where x,y are the coordinates of the upper left comer of the area to fill, w
is the width of the area to fill, h is the height of the area to fill, b is the
background fill color and/is the foreground fill color. Be sure to enter
colors in hex. See BROWSE for a color chart.

Entering FILL without any arguments will print a syntax reminder
onscreen. You can run FILL from DOS or within any program that can
load a secondary command processor.

Examples: A sample DOS batch file might look like:

ECHO OFF
CLS
DIR/W
FILL 2,3,30,6,2,4
FILL 4,5,9,13,3,9
FILL 5,13,46,6,6,E
FILL 8,32,39,10,5,B

A sample dBASE file would look like:

SET TALK OFF
@ 5,3 SAY 'Fill 30 x 15 box with'
@ 6,3 SAY 'yellow on red.'
COMMD = 'FILL 4,6,30,15,4,E'
! &COMMD
SET TALK ON
RETURN

Users with monochrome monitors can use FILL to tum the intensity of
text on and off with the color codes F and 7 respectively. FILL can come
in handy in all sorts of situations, such as blanking out an area of the
screen where users will input passwords.

This can produce some truly eye-popping effects, especially with over
lapping blocks of color. And it can be attention-getting. For instance, if
you use a background color higher than 7 you can make any text blink in
DOS.

,, I I•

1010 PC Magazine DOS Power Tools

FREE
Command

Art Merrill

Purpose: Reports the number of unallocated bytes on a floppy or hard disk.

Format: [d:] [path] FREE [d:]

Remarks: FREE is in many respects a companion program to SIZE.COM: the lat
ter tells you how much storage space you must have to make your
copies; the former tells you how much you do have.

FREEZE
Command

The information provided by FREE.COM is, of course, available with
the DOS commands CHKDSK and DIR. Where a large group of files is
involved, however, the DOS commands are very slow in operation;
FREE is almost instantaneous.

Jeff Prosise

Purpose: Ensures confidentiality of in-memory data when it is necessary to leave
a PC running without storing the data to a removable medium or encrypt
ing it. FREEZE temporarily suspends program operation, blanks the
screen, and disables the Ctrl-Alt-Del reboot sequence until a user
entered password (up to 64 characters) is reentered.

Format: [d:] [path] FREEZE

Remarks: FREEZE is a memory-resident utility, normally loaded by an
AUTOEXEC.BAT file. After loading, the machine is "locked" by press
ing Alt-NumLock and then entering the passphrase of choice. The
passphrase may include any characters except Esc and Enter. Pressing
the Esc key aborts password entry, and pressing Enter initiates the lock
down.

The backspace key may be used to correct incidental mistakes, but care
must be exercised, as the characters are not echoed on the screen during
entry. To unlock the machine, simply reenter the same password and
press Enter. Again, the backspace and Esc keys can be used to correct or
abort password entry.

Notes:

I I I'

Assembly Language Programs 1011

1. The password is never stored and may be changed each time
FREEZE is invoked with Alt-NumLock. If an attempt is made to load
FREEZE.COM more than once an error message will result.

2. While FREEZE is believed to be compatible with most other
memory-resident programs, because of the importance of data with
which it is expected to be used, it should be thoroughly checked out in
your specific configuration. In particular, FREEZE should be loaded
before SideKick.

GETCLOCK
Command

Michael J. Vanek

Purpose: Resets the CMOS clock on systems using versions of DOS earlier than
3.3.

Format: [d:] [path] GETCLOCK

Remarks: Users frequently change the DOS time and date when doing something
like using a batch file to reset time and date stamps on directory entries.
With an aftermarket clock/calendar installed, it's simple to have the
batch file end with a command, such as PWRUPCLK or ASTCLOCK,
to reset the time.

However, starting with the AT, IBM provided a CMOS realtime clock to
initialize the DOS time and date automatically each time you boot up.
Under DOS 3.0, 3.1, and 3.2, changing the normal time-of-day clock
dido 't affect the CMOS clock. This meant that you could reset the time
of-day clock with a single command if you only had a way to transfer
the time maintained by the CMOS clock to the time-of-day clock.

GETCLOCK.COM will do this for all pre-3.3 users. It won't do any
thing in version 3.3 or later, since IBM modified the TIME command
with that DOS edition so it automatically reset the CMOS clock every
time you changed the time-of-day lock. This was a welcome fix, since
users of older versions have to drag out the diagnostics disk and plod
through it just to fix the time, and this happens at least twice a year in
most places.

If you are using version 3.0, 3.1, or 3.2, just type GETCLOCK to reset
the date and time maintained in the CMOS clock.

,, I II '

1012 PC Magazine DOS Power Tools

Notes: GETCLOCK.COM uses the AT BIOS functions to read the CMOS
clock and DOS functions to set the DOS clock. The process was compli
cated since the real time CMOS clock and the DOS clock store their
values in different formats, BCD and hexadecimal. respectively.

HELP
Command

Michael J. Mefford

Purpose: Pops up help or reference screens of the user's choice and design either
in the middle of an application or at the DOS prompt. Screens suitable
for use with HELP are saved in the required file format by the PC
Magazine CAPTURE utility.

Format: [d:] [path] HELP filespec
[... filespec] [/Nn] [/Hn] [/P] I [/U]

Remarks: Filespec is the filename, preceded if necessary by a drive name and path,
of a user-customized help or reference file that has been saved using
CAPTURE. Multiple help screens may be loaded for successive display
by entering more than one filespec on the command line, separating each
with a space, tab, comma, or semicolon.

By default, HELP will accept four screen pages, each of which is 4,000
bytes in length. The optional /Nn parameter may be entered to change
this default n (4) to values from 1through14 pages. The PgUp, PgDn,
Home, and End keys are used to display the various help screens. HELP
remembers the last help screen accessed and will return to it immediate
ly the next time the program is called up.

HELP is a memory-resident program and is normally loaded by
being listed as a line in your AUTOEXEC.BAT file. Its default hotkey is
Alt-H. Other Alt-key combinations may be substituted for the default
hotkey by entering the optional /Hn parameter. You may use any
alphanumeric key, the minus, or the equals keys for n, and the substitu
tion may be made either when the program is loaded or by entering
HELP /Hn at a subsequent DOS prompt. Pressing Esc or pressing the ·
hotkey a second time returns you to your application or to DOS.

The optional IP parameter causes the program to pop-up immediately,
and the /U parameter unloads it from memory if no other resident
program has been loaded after HELP.

Notes:

I I I·

Assembly Language Programs 1013

To change the number of screen pages reserved for pop up it is necessary
to uninstall HELP or to reboot. Up to the limit of the reserved pages,
however, you can change the help screens to be accessed simply by
entering the command, together with a new filespec, at the DOS prompt.

HEX
Command

Charles Petzold

Purpose: A demonstration of self-modifying assembly language code that doubles
as a hexadecimal calculator.

Format: [d:] [path] HEX O:NN MM

where 0 is an operation represented by one of the letters A:, B:, E:, F:,
or G: (with a colon immediately after it), as follows:

A: Add
B:OR
E:AND
F: Subtract
G:XOR

and NN and MM are each two-digit hex numbers.

Example: To add two hex numbers (such as 43 and C8) enter:

HEX A: 43 ca

and HEX will return OB. (The 1 that was carried out of the high digit is
discarded.) To do a logical AND operation on these same two hex num
bers, use the command:

HEX E:43 ca

and the program will return 40. If you use a number less than 10, tum it
into a two-digit hex number by padding it with a 0. So to subtract 1 from
hex AO. enter:

HEX F:AO 01

and HEX will print 9F.

p I II

1014 PC Magazine DOS Power Tools

Enter just HEX without anything after it, or with too few parameters,
and the program will print out a detailed series of instructions.

Remarks: The term "self-modifying code" refers to programs that change their
own instructions. Self-modifying code is most common in assembly lan
guage to do certain things that are technically referred to as "neat tricks."

-----·------------~

HEX.COM is both a demonstration of self-modifying code and a
genuinely useful program. It can add, subtract, AND, OR, or XOR (Ex
clusive Or) a pair qf two-digit hexadecimal numbers. You enter HEX
and then a letter from A through G that denotes the operation, followed
immediately by a colon, then the first two-digit hexadecimal number, a
space, and the second two-digit hexadecimal number. HEX.COM dis
plays the result also as a two-digit hex number.

HEX is a relatively tiny assembly language program that doesn't seem to
have enough code to do what it's doing. The entire program, without its
messages, looks like:

0100 MOV AL, [005C] Get "drive" (1,2 ..•)
0103 DEC AL Make it 0,1 ...
0105 MOV CL,03 Shift left 3 bits
0107 SHL AL,CL
0109 INC CL Make CL 4 for later
OlOB OR [011D] ,AL Modify an ADD
OlOF MOV AX, [006D] Get 2nd parameter
0112 CALL 0137 Call ASC2BIN
0115 MOV BL,AL Save in BL
0117 MOV AX, [005D] Get 1st parameter
OllA CALL 0137 Call ASC2BIN
OllD ADD AL,BL MODIFIED ! ! ! ! !
OllF MOV BL,AL Save result in BL
0121 SHR AL,CL Get high 4 bits
0123 CALL 012A Call BIN2ASC
0126 MOV AL,BL Get lower 4 bits
0128 AND AL,OF
012A ADD AL,90 BIN2ASC:
012C DAA (4 line routine)
012D ADC AL,40
012F DAA
0130 MOV DL,AL Write to DOS
0132 MOV AH,02
0134 INT 21
0136 RET Return or Exit
0137 CALL 0144 ASC2BIN: Call ASC2BIN2

013A XCHG AL,AH
013C CALL 0144
013F SHL AH,CL
0141 ADD AL,AH
0143 RET
0144 ADD AL,CO
0146 JB 014A
0148 ADD AL,07
014A ADD AL,09
014C AND AL,OF
014E RET

Assembly Language Programs 1015

Now lower byte
Call ASC2BIN2
Shift higher 4 bits
Stick them together

ASC2BIN2:

Numbers 0-9
0-9 and A-F
Low 4 bits only

The whole bottom half of the program is devoted to routines that convert
the ASCII values you type into binary values and then from binary back
to ASCII for the final display. But where's all the branching logic
depending on the first letter you type in? And where's the code to do sub
traction, ORs, ANDs, and XORs?

When you type in the HEX command line, DOS treats the initial letter as
a drive indicator. It converts it to a number (where 1 represents drive A:)
and stores it at address SCH. HEX.COM picks up that number, decre
ments it, and shifts it three bits left. It then adds it to the first machine
code byte of the instruction shown in the line with the comment
"MODIFIED." This changed the ADD into an OR, AND, SUB, or XOR,
depending on the letter you use.

The program changes itself. What you see in the above listing is not
what you get when you run it.

Self-modifying code is discouraged partially because it is difficult to
maintain and debug. The only real advantage of doing this program with
self-modifying code is that it's small. Back in the days when 16K was
considered a lot of memory, self-modifying code was often helpful. It
just doesn't make much sense any more.

The 8088 and 80286 microprocessors used in the PC and AT can also
get you into trouble with self-modifying code. These processors fetch
machine code instructions into the processor's "instruction queue" faster
than it can execute them. If you change a byte in an instruction that has
already been read into the microprocessor, the change will have no effect
on the code that the microprocessor executes.

The ultimate in self-modifying code is a program that generates its own
code and just keeps on going. Load DEBUG and type in the following
lines:

, I It '

1016 PC Magazine DOS Power Tools

A

CLD
MOV SI,107
MOV DI,lOB
MOVSW
MOVSW
JMP lOB

followed by a blank line.

Now start entering T to trace through the program. You'll find that the
last three instructions keep repeating over and over at ever higher addres
ses. The two MOVSW instructions copy the four bytes of machine code
that comprise these three instructions into the higher address. The JMP
flushes the instruction queue to avoid problems. Although the JMP in
struction will keep jumping to a higher address, it really uses the exact
same machine code. That's because it's jumping to a relative address in
stead of an absolute instruction.

You can keep tracing through this program but after you finish up about
16,000 repeated cycles, the generated instructions will be getting close to
the top of the 64K segment. They will run into the stack and you'll
crash. If you're using an 8088 machine and enter a G (Go command) in
DEBUG, the program will wrap around the segment and just keep on
running (although it's possible that a timer tick interrupt will interfere
with it). You '11 have to reboot to get control back. If you enter a G on an
80286 machine, one of the MOVSW instructions will eventually attempt
to write a word at the destination address FFFF. That type of segment
wrap is illegal in the 80286 chip and causes the chip to generate an inter
rupt ODH. IBM's AT will ignore that interrupt but some AT compatibles
will report the violation.

Now that OS/2 is here programmers may start abandoning the real mode
of the 80286 microprocessor and start writing programs for 80286
protected mode. In protected mode, the 80286 chip itself prohibits a
program from writing over its own code. This is part of what "protec
tion" means. Programs can only write to data segments. If a program
tries to write to a code segment, the 80286 generates an interrupt ODH.
Interrupt ODH is the "General Protection Violation Interrupt" of the
80286 chip. Almost every instruction can cause an interrupt ODH under
certain circumstances.

A protected mode operating system will not ignore this interrupt like the
AT BIOS does. A protected mode operating system will toss that

HIDE
Command

I 1 I•

Assembly Language Programs 1017

program out of memory and make it stand in a corner wearing a dunce
cap.

Actually, there is a way for the 80286 working in protected mode to
allow a program to write over its own code. The operating system would
have have to define an alias data segment at the same physical area of
memory as the code segment. It's not pretty but it works.

R. Chung and V. K. Taylor

Purpose: Hides files so they don't appear in directory searches. (You can unhide
them later with the companion UNHIDE.COM utility.)

Format: [d:] [path]HIDE [d:] [path] filename

Remarks: Various attribute-setting programs, including the DOS A TTRIB com
mand and Charles Petzold's far better A TTR.COM utility - can set and
reset a file's attributes (although the DOS version won't let you hide
files, wasn't around before version 3.0, and didn't let you do anything
other than change the read-only bit until version 3.2). But they involve
complex syntaxes with switches, minus and plus signs, etc.

HIDE.COM simply hides files. It's easy to use because you just type
HIDE and the name of the file you want to keep out of sight.

Hidden files are still on your disk, but most DOS functions will ignore
them. By hiding a file you prevent casual snoopers from seeing that it ex
ists, and you make it impossible to delete.

You can see the names of all the files on your disk, including the hidden
files, by typing:

CHKDSK /V

Unfortunately, CHKDSK N won't tell you which files are hidden and
which aren't.

A better way is to have Charles Petzold's ATTR.COM handy and type
A TTR *. * to see the status of all your files. Michael Mefford' s DR.COM
will also show you the settings of each file's attribute byte.

1018 PC Magazine DOS Power Tools

It's common these days for software to come with installation programs
that ask (or try to figure out) what kind of hardware you're using, and
then install the necessary commands in your AUTOEXEC.BAT and
CONFIG.SYS files. Well-behaved installation programs try to append
their instructions to any that you're already using. But some rude installa
tion modules just copy whole files onto your disk, obliterating your own
files.

In addition, someone who is using your system may get carried away
when he cleans up his files and take some of yours with them. If you
have a long and complex AUTOEXEC.BAT file and a CONFIG.SYS
file filled with all sorts of arcane switches and settings, and someone ac
cidentally deletes your whole root directory, you'd better hope you have
backups.

A smart way to get around this is to hide your copies of CONFIG.SYS
and AUTOEXEC.BAT, or make them read-only. If a new program tries
to write over these files it won't be able to. You can then make sure you
have backup copies handy, unhide your files, and let the new program at
them. And this will prevent other users from accidentally erasing your
key files. Most recent versions of DOS will execute CONFIG .SYS and
AUTOEXEC.BAT files that are hidden.

Another safety technique is simply to create a \ROOTBACK subdirec
tory one level down from the root and copy all your important root direc
tory files into it When something changes the files in the root directory,
or if you somehow erase them, you can log into the root directory and
type:

COPY ROOTBACK

If you do try this, make sure that if you ever change your
AUTOEXEC.BAT or CONFIG.SYS files you copy the new versions
into \ROOTBACK.

All hiding a file does is change the value of its attribute byte- a special
ly coded single byte storage flag in the disk directory.

These four files use function 43H of INT 21 to first check the existing at
tribute byte, and change only the bits that need modification. ORing the
existing value with 1 makes it read-only; ORing it with 2 makes the file
hidden. ANDing it with FE takes away the read-only attribute; ANDing
it with FD unhides the file. This way it leaves other attributes (system or
archive) as they were.

Notes:

I I I•

Assembly Language Programs 1019

Unfortunately, you can't have function 43 change the attribute byte of
subdirectories or volume labels, so this won't let you meddle with those.
Use Michael Mefford's RN.COM (included in this package) if you want
to hide or unhide subdirectories.

Be careful when hiding files en masse. If you issued a command such as:

FOR %A in (*.*) DO HIDE %A

you'd end up with a whole directory of hidden files. You won't be able
to use a similar command to unhide them, since DOS won't see any files
to unhide. You '11 have to unhide all your files individually, since
wildcards don't work with hidden files. The safest thing to do if you hide
lots of files is frrst create a master file listing all the filenames, and put
this master file in some other directory or on some other disk. If you're
on drive C: you could use a command like:

DIR > B:C-HIDDEN.LST

Making all your root directory files hidden may look interesting, but it
can confuse anyone else who tries to work with your system. Making
them read-only will prevent other programs from changing (or deleting)
them, but you'll still see them in normal DIR searches.

You can adapt HIDE.COM to create RO.COM (which will make files
read-only) and UNRO.COM (which will remove the read-only status).
To do so, have DEBUG handy and type:

DEBUG HIDE.COM
E 120 C9 01
N RO.COM
w
E 120 El FE
N UNRO.COM
w
Q

A file can have multiple attributes.

SeeUNHIDE.

,. I jf

1020 PC Magazine DOS Power Tools

HIGHRES
Command

Michael J. Mefford

Purpose: Sets video mode on color systems to 640 x 200 monochrome graphics.

See DRAW.

HIGRAF-L
Command

Charles Petzold

Purpose: Generates large, fast, compact high-resolution graphics screen dumps
that are properly right side up, not on their sides the way DOS produces
them. Because of the way this program is written, HIGRAF-L will not
work properly on a wide-carriage printer; use HIGRAF-S instead.

Format: [d:] [path] HIGRAF-L

Remarks: See HIGRAF-S.

HIGRAF-S
Command

Charles Petzold

Purpose: Generates fast, compact high-resolution graphics screen dumps that are
properly right side up, not on their sides the way DOS produces them.

Format: [d:] [path] HIGRAF-S

Remarks: The DOS GRAPHICS.COM utility lets you do Shift-PrtSc screen dumps
of high-resolution (640 x 200-dot SCREEN 2) BASIC graphics. But it
takes forever (the manual admits that you might have to wait up to three
minutes for each one) - and DOS prints the image sideways.

HIGRAF-S (S for "Small") is a memory-resident utility that you run
after loading GRAPHICS.COM. Once HIGRAF-S is loaded, it will

Assembly Language Programs 1021

make your printer sprint through SCREEN 2 graphics dumps, producing
images that are small but properly oriented on the page.

Epson graphics (as implemented in the IBM Graphics Printer) are for
practical purposes limited to 72 dots per inch (dpi) vertical resolution.
The three available printer graphics modes can print 480, 960, or 1,920
dots across an eight-inch page. These correspond respectively to 60, 120,
and 240 dots per inch horizontal resolution. The 60 dpi mode is not wide
enough for the 640 horizontal dots of the hi-res screen.

If you use the 120 dpi mode to dump a high resolution graphics screen,
you'll get an image 5-1/3 inches wide. But with the printer's 72 dpi verti
cal resolution, you're stuck with printing the 200 scan lines either 2-3/4
inches high, which will make your circles look like watermelons, or, by
doubling up the dots, 5-1/2 inches high, which will produce the opposite
effect.

The first method looks decidedly better. It yields a tiny image but one
that's very clear and attractive. The image that HIGRAF-S prints is in
dented 12 spaces so it's centered on an 8-1/2 inch page.

The 240 horizontal dpi graphics mode prints 1,920 dots across an eight
inch page. This is exactly three times the dot width of a high resolution
display. Since this graphics mode can only print every third dot, it seems
ideal. By doubling up the vertical dots, you can create an image eight in
ches wide by 5-1/2 inches high, which is fairly close to the 4:3 aspect
ratio of the screen.

You can print high-resolution graphics in this larger mode by running a
companion program, HIGRAF-L, (L for "Large"). Since each line of
graphics is exactly eight inches across, the program relies on the printer
to do a carriage return and line feed at the end of each line. Because of
this, the program will not work on a wide-carriage printer.

Neither HIGRAF-S or HIGRAF-L is optimized the way the PC-DOS
GRAPHICS program is, so they may be a bit slower for certain kinds of
starkly simple images. GRAPHICS (at least in the more recent DOS ver
sions) checks if each line has any printable graphics data and skips the
line if it doesn't. The HIGRAF programs will just keep shoveling zeroes
out to the printer on blank lines.

Both HIGRAF-S and HIGRAF-L will print a negative image, so the
white on black of the screen will be translated to black on white on the
paper. This is normal for printer screen dumps. If you'd prefer to have

' I II '

1022 PC Magazine DOS Power Tools

Notes:

the images printed as they appear on the screen, you can patch the
programs. To change IDGRAF·S.COM, type:

DEBUG HIGRAF-S.COM
E 158 F5
w
Q

To patch IDGRAF·L.COM, type:

DEBUG HIGRAF-L.COM
E 156 FS
w
Q

1. This is designed to work on IBM Graphics Printers and Epson
workalikes, and anything that claims it's compatible.

2. Be sure to load these programs after you load the DOS
GRAPIDCS.COM utility.

3. IDGRAF-L won't work on wide-carriage printers.

4. If you want to generate a BASIC SCREEN 2 image, see the short
SAMPLE.BAS program on the disk.

IBMFIX
Command

Michael J. Mefford

Purpose: Fixes the blunder IBM made with its enhanced keyboard when it
switched the Ctrl and the CapsLock keys.

Format: [d:] [path] IBMFIX

Remarks: IBM's 101-key keyboard puts the CapsLock next to the A key instead of
the Ctrl key, so WordStar users and anyone else accustomed to having a
Ctrl key beneath his or her pinkie ends up totally fingerlocked.

IBMFIX switches the Ctrl and CapsLock keys back to where they
belong. Instead of training your left little finger to grope for the new Ctrl

Notes:

I I i 1 !

Assembly Language Programs 1023

key, you can use IBMFIX.COM to relocate the two keys closer to their
old familiar positions.

IBMFIX intercepts INT 9H, the keyboard hardware interrupt. Every
time you press a key, IBMFIX examines the keystroke to see if it is
either the Ctrl or CapsLock key. If it's not, IBMFIX passes control on to
the original INT 9H to interpret the keystroke normally. Otherwise,
IBMFIX changes the keyboard flag byte at 40: 17H to reflect the toggle
of the CapsLock key or the depressing or release of the Ctrl key.

Be sure to load IBMFIX before SideKick. And you'll have to reboot if
you wish to return the meaning of keys to the new IBM assignments, un
less you install INST ALL/REMOVE.

INST ALL (and REMOVE)
Command(s)

Jeff Prosise

Purpose: This pair of utilities lets you load and unload Terminate-and-Stay-Resi
dent (TSR) programs in and out of memory to avoid potential conflicts
and excessive memory use.

Format: [d:] [path] INSTALL [namelist]

where namelist is the name of the TSR program or group of TSR utilities
that you want to load. The namelist parameter is an optional descriptor
containing up to 119 characters; it does not have to match the TSR
filenames. The descriptor is used in the list of installed utilities presented
when you ask REMOVE to perform a deinstallation.

Remarks: Normally, TSR utilities are loaded simply by entering their names at the
DOS prompt or by including them in your AUTOEXEC.BAT file.

However, running the INST ALL program before each TSR (or group of
TSRs) is loaded will store pertinent information that the REMOVE
program can use to unload them later.

The INST ALL utility is really a kind of "bookmark" used by the operat
ing system. When you invoke INST ALL, it records the current state of
the system. Each time you run REMOVE, it restores the system to the

• I II

1024 PC Magazine DOS Power Tools

state it was in just before the last INST ALL, disabling any TSRs loaded
since the last INST ALL.

You can docket up to 32 system states using this technique. If you want
the ability to delete TSRs individually, you must run INSTALL before
loading each TSR. At the other extreme, you could run INST ALL only
once, right after the system power-up, then load all the resident utilities
your system can hold. Then a single call to REMOVE would purge them
all.

INST ALL is itself a short memory-resident utility. Every time it's called
it consumes about 1,600 bytes of memory, but, more important, it inserts
a resident "wedge" in memory that contains a complete copy of the PC's
interrupt vector table. A utility not preceded somewhere in memory by
one of these wedges cannot be removed. REMOVE recovers both the
memory used by the programs it unloads and the memory dedicated to
their identifying wedge.

Examples: The following sequence (which might be included in an
AUTOEXEC.BAT file) installs four resident programs. TIMEKEY and
FREEZE, a pair of PC Magazine utilities, are each preceded by IN-
ST ALL, so they can be deleted one at a time. SuperKey and SideKick,
the venerable Borland utilities, are loaded consecutively so that they will
be erased as a group:

INSTALL TIMEKEY
TIMEKEY
INSTALL FREEZE
FREEZE
INSTALL SUPERKEY SIDEKICK
KEY
SK

To eliminate the most recently installed group of TSRs, simply run
REMOVE. REMOVE displays the list of utilities currently installed (by
echoing the descriptive names you typed in on INST ALL' s command
line), and prompts you to verify the deinstallation by pressing the Enter
key. If you had installed the four utilities as shown above, running
REMOVE would produce the following display:

Number of installations: 3

TIMEKEY

Notes:

Assembly Language Programs 1025

FREEZE
SUPERKEY SIDEKICK

Press ENTER to remove, ESC to abort

If you press the Enter key, REMOVE will release the last group, Super
Key and SideKick, from memory. However, you can abort the process by
pressing the Esc key, which terminates the deinstallation harmlessly.
Successive utilities may be deleted through successive calls to
REMOVE. Running REMOVE a second time in the example above
would show only two installations recorded, with FREEZE the topmost
TSR next in line to be deleted.

1. It's perfectly legitimate to load more TSRs than was indicated in the
namelist parameter. REMOVE will still delete everything entered since
the last INSTALL. REMOVE's list of installed utilities, however, only
reflects those designated on INSTALL's command line. If you choose,
you can even leave the command line empty. It's usually convenient,
however, to have an accurate list of TSRs presented every time you run
REMOVE.

2. It's also legal to run REMOVE immediately after INST ALL, with
no TSRs loaded in between. The wedge left by INST ALL will be erased.
In fact, although there's no obvious reason to do so, you can run IN-
ST ALL several times in succession, then reverse the action a layer at a
time. You may also run other applications, if you prefer, between the
time INST ALL is invoked and a TSR is loaded.

3. INST ALL answers the command to load additional groups beyond
the limit of 32 with the message "No room for more." Likewise, when
REMOVE is executed with no TSRs installed, it responds with the warn
ing "None installed." Resident programs can be freely INST ALLed and
REMOVEd as many times as you wish. In addition, there's no limit to
the number of TSRs you can place in a group.

4. You can delete programs (or groups of programs) only in the
reverse order in which you installed them. The removal of an inter
mediate one would create all sorts of problems, one of which would be
the tricky proposition of moving all resident routines above it down in
memory to fill the hole, rerouting all appropriate interrupt vectors to the
modified addresses, and altering any references to absolute addresses -
a task that's next to impossible. If you have to purge a set other than the
one most recently loaded, run REMOVE as many times as necessary to
regress to the one targeted, then reinstall the ones above it.

,, l 1•

1026 PC Magazine DOS Power Tools

5. In the unlikely event that you encounter a "Deinstallation failed"
warning in the course of removing a TSR, you should probably reboot
the system. It's possible that you might be able to run your system with
no adverse side effects without the reset, but it's also possible that down
the road somewhere (and at the worst possible time) execution might
skid to a halt with a critical memory allocation error.

KBORDER
Command

Charles Petzold

Purpose: Provides a memory-resident utility that can change and reset CGA bor
der colors on the fly and do interesting color tricks with BASIC graphics
screens on all color systems.

Format: [d:] [path] KBORDER

Remarks: If you want to exploit DOS 's built-in color abilities, you should try using
ANSI.SYS. A real advantage of ANSI is that it will not wipe out the bor
der on a CGA when you use CLS to clear the screen. However, most
programs seem to reset the video mode and wipe out the border when
they load. The memory-resident KBORDER program can fix this by let
ting you change the border color with a few quick keystrokes.

KBORDER.COM will remain resident in memory until you reboot, un
less you install it with a program such as INSTALL/REMOVE. It won't
work on EGA or later systems that have trouble with border, but it's one
of the few border-setting programs that will work on all older color sys
tems, including the PCjr, which used nonstandard ports on its video con
troller.

After KBORDER.COM is loaded, you can hold down Ctrl and press the
<key to step through all the 16 border colors. Ctrl >steps backwards
through these border colors. It will work within most programs, but not
those that hog the keyboard interrupt.

If a PC display is in medium-resolution graphics mode, KBORDER
changes the background color. In high-resolution mode on a PC (normal
ly white on black), KBORDER changes the foreground color. This is
handy if you 're running a program like Word that uses high-resolution
graphics.

Notes:

Assembly Language Pro grams 1027

If something does clobber your border. KBORDER makes it easy to
return the border to the color you like best. Just type Ctrl <and Ctrl >
quickly in succession.

On EGA and PS{l systems, when the color ID (BH register) is 0, KBOR
DER will set different high-resolution background colors, which can add
real sparkle to otherwise drab hi-res graphics.

KBX
Command

Jeff Prosise

Purpose: Allows entering extended-ASCII line-drawing, foreign language, math,
and science symbols from within word processing programs and editors
that would not otherwise support them.

Format: [d:] [path] KBX

Remarks: KBX is a memory-resident utility that is normally loaded by including it
in a line in your AUTOEXEC.BAT file. At any point after you've
loaded it, pressing Alt-Space pops up a window that displays the normal
PC keyboard layout. While this window is onscreen, pressing NumLock
shows the key locations for one of the two extended-ASCII sets; press
ing ScrollLock similarly displays the other extended-ASCII set. Esc
closes the display and returns to any active applications program.

To enter the extended-ASCII characters, hold down the NumLock (or
ScrollLock) key and press the key at the appropriate position. Note that
the single-line (NumLock) and double-line (ScrollLock) box-drawing
characters are arranged around the outside of the numeric keypad.

Using the NumLock and ScrollLock keys as additional "shift" keys
avoids conflicts with applications programs that normally use Alt-key
and Ctrl-key combinations. The normal Ctrl-NumLock (pause) and Ctrl
ScrollLock (break) combinations continue to work without change.
When KBX is loaded, however, Shift-NumLock and Shift-ScrollLock
are used to toggle the NumLock and ScrollLock states.

KBX is not compatible with word processors that normally make use of
the eighth ("high") bit for their own purposes (e.g., WordStar) or that
utilize their own keyboard handlers (e.g., XyWrite). Only experimenta
tion will show whether the program will work with a given editor.

f I ll ' '

1028 PC Magazine DOS Power Tools

Notes: Since different printers vary in the characters they output when
presented with extended-ASCII codes, you must determine either from
your manual or by experiment whether your printer's character set is
compatible with that PC.

KEY-FAKE
Command

Charles Petzold

Purpose: Supplies the series of keystrokes needed to initialize an application
program on boot-up.

Format: [d:] [path] KEY-FAKE ["xyz"] [nn] [0] [@F]
Programname

Characters typed within a pair of single or double quotes ("x:yz") are nor
mal ASCII-character keystrokes. Numbers (nn) not in quote marks are
ASCII decimal codes, e.g., 13 (Enter), 26 (Ctrl-Z), or 27 (Esc). Numbers
preceded by@ are the extended ASCII decimal codes (128 through 255)
generated by the Alt keys, cursor keys, Ins and Del keys, and the func
tion keys (e.g.,@61 is the F3 keystroke). The 0 is used with programs
that check the keyboard buffer (it tells such programs the buffer is clear,
so the programs will treat the succeeding keystroke separately).

Remarks: KEY-FAKE is of greatest use in batch files used to call up application
programs. For example, to enter Lotus 1-2-3 and set it for File Retrieve,
the following BAT file would be appropriate:

CD \LOTUS
KEY-FAKE 0 13 0 13 0 13 0 13 0 13 "/FR"
LOTUS

This takes you past the necessary initial carriage returns and /FR com
mand without having to type them in each time.

Similarly, if each time you enter BASICA you want to have a blue bor
der, blue background, and yellow letters, you would create a batch file,
B.BAT, containing the lines:

KEY-FAKE "COLOR 14,1,1" 13 "CLS" 13
BAS I CA

Notes:

Assembly Language Programs 1029

1. The keystroke sequence stored by KEY - FAKE is limited to 124
characters and must be on one continuous command line. Keystrokes not
supported by PC BIOS (e.g., Alt-Home) cannot be stored.

2. Programs such as XyWrite that get keyboard information directly
from the hardware keyboard interrupt may bypass KEY-FAKE. KEY
F AKE will also not work well when you are online using a communica
tions program.

3. KEY-FAKE is memory resident, but can be executed multiple times
in the same session without reloading. However, if nested batch files
cause it to be reinvoked before its initially stored keystroke sequence has
been exhausted, the remaining initial keystrokes will be lost.

KEYLOCK
Command

Kenneth C. Gibbs Jr.

Purpose: Disables the CapsLock, NumLock, and ScrollLock keys to prevent them
from being changed unintentionally.

Format: [d:] [path] KEYLOCK

Remarks: It's maddening when you try entering a column of numbers with your
eyes glued to a ledger book only to find that the NumLock key has
mysteriously switched off and all you've done is scooted the cursor
around. Or tried to move the cursor to the top of the page and gotten
nothing but a row of 8888888888s. Or ended up typing a whole
paragraph in uppercase.

KEYLOCK.COM fixes this once and for all by disabling the the Caps
Lock, NumLock, and ScrollLock keys. You can still change the shift
states, but you have to do it with software rather than hardware.

Just run KEYLOCK.COM to lock out those three shift keys, then run
your favorite shift state toggler, such as LOCK.COM.

If you don't have one handy, you can create six small COM programs to
toggle the keys you've disabled. The programs are pretty much the
same, with one line changed. This assembler code will turn CapsLock on:

MOV DX,0040
MOV DS,DX

' I j .. • l

1030 PC Magazine DOS Power Tools

Notes:

MOV AL, [0017]
OR AL,40
MOV [0017],AL
RET

By changing the fourth line you can adapt this basic program to create
the other five versions. The replacement lines are as follows:

CapsLock
NumLock
ScrollLock

ON
ORAL,40
ORAL,20
ORAL,10

OFF
ANDAL,BF
ANDAL,DF
ANDAL,EF

The six tiny NUMON.COM, NUMOFF.COM, CAPSON.COM,
CAPSOFF.COM, SCROLLON.COM, and SCRLLOFF.COM utilities in
cluded in this package, which tum individual shift states on and off, use
this code.

You may prefer using toggle programs that can flip shift states alternate
ly back and forth each time the programs execute. If so, try running the
NUMFLIP.COM, CAPSFLIP.COM, or SCRLFLIP.COM programs you
can create by using DEBUG to patch the NUMON.COM,
CAPSON.COM, and SCROLLON.COM programs.

1. Once you've loaded KEYLOCK you'll have to reboot to remove it
from memory unless you install it with INST ALL/REMOVE.

2. Disabling the ScrollLock key means you won't be able to use Ctrl
ScrollLock to break out of an operation. However, Ctrl-C is not affected
by this program and will still work.

See NUMON, NUMOFF, CAPSON, CAPSOFF, SCROLLON,
SCRLLOFF, LOCK, and LOX.

KEYPRESS Louis J. Cutrona, Jr.
Batch file command

Purpose: Provides an easy way to create flexible IF ERRORLEVEL tests in batch
files.

Format: [d:] [path] KEYPRESS A [B c D ••.]

Assembly Language Programs 1031

Remarks: Most keystroke-reporting utilities designed for IF ERRORLEVEL tests
are inflexible and report the same cooes (either 0 and FF, or the ASCII
character of the keystroke). And most utilities don't usually end up
screening out invalid characters very well.

KEYPRESS lets you tell it how many characters to accept, and what
those characters are. The program is case insensitive, so it treats upper
case and lowercase letters identically.

Examples: To allow the letters a, b, and c (in either uppercase or lowercase ver
sions):

KEYPRESS a b c

or

KEYPRESS A B C

Spaces are optional, so:

KEYPRESS ABC

will work just as well as KEYPRESS ABC. And you may mix letters,
numbers, and even legal punctuation:

KEYPRESS 12#'Q

In this example, if the user types a#, KEYPRESS will generate a return
code of 3, since the# is the third character in the list.

Remarks: KEYPRESS will wait for a key to be entered, screen out all invalid
entries, and generate an IF ERRORLEVEL cooe based on any valid
character's position on the command line. So in the KEYPRESS 12#Q
example directly above, entering a 1 will generate a return code of 1.
Entering a Q will proouce a return cooe of 4.

If the user types a character that is not in the legal list, KEYPRESS
generates a return code of 0.

A sample batch file using KEYPRESS might look like:

ECHO OFF
:TOP
ECHO SELECT ONE
ECHO 1. 123

f I II ' '

1032 PC Magazine DOS Power Tools

KEY SUB
Command

ECHO D. DBASE
ECHO Q. QUIT
ECHO YOUR CHOICE (l/D/Q)
KEYPRESS lDQ
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
ECHO INVALID
GOTO TOP
:A
123
PAUSE
GOTO TOP
:B
dBase
PAUSE
GOTO TOP
:EXIT

3 GOTO EXIT
2 GOTO B
1 GOTO A

REPLY ...

?

As with any series of IF ERRORLEVEL tests, the return codes
generated by KEYPRESS must be checked from highest to lowest (right
to left in the list of valid characters). IF ERRORLEVEL n succeeds if
the return code is greater than or equal to n.

Robert L. Hummel

Purpose: Lets you redefine your keyboard key layout.

Format: [d:] [path] KEY SUB

Remarks: Few computer topics generate as much passion as keyboard layout.
Everyone has his or her own quirky feelings about what keys should go
where. IBM is the standard setter, but it has changed the standard several
times in the brief history of the PC.

As an example, the configuration of the IBM numeric keypad makes it
difficult to enter long DAT A strings in BASIC programs, since the
comma key is so far away. KEYSUB.COM can fix this by letting you
tum the period on the Del key into a comma.

LOCATE

I 1 I•

Assembly Language Programs 1033

When you type a key, the keyboard controller generates a unique scan
code that identifies the key. Your system's BIOS translates the scan code
into the more familiar ASCII code. KEYSUB let you remap these codes.
However, a few keys (like the shift keys) have no ASCII equivalents or,
like SYS REQ, are ignored by the BIOS, and KEYSUB can't handle
these.

To have KEYSUB change the period key on the numeric pad into a
comma, first make sure that NUMLOCK is on; the same key doubles as
a period and a Del, and you have to make sure it's in the proper state.
Enter KEYSUB to start the process, then press the period/Del key on the
keypad when it prompts you with "Change which keyr (Be sure you
press the period on the Del key, not the one on the greater-than key.)
When KEYSUB asks you to "Press new value," just press the normal
comma key. From then on, each time you press the period/Del key,
BIOS will generate a comma rather than a period. You can remove key
substitutions by rebooting or by first loading them by using a TSR
manager such as Jeff Prosise's INSTALL/REMOVE.

Be careful in assigning new keys, since BIOS is very picky about key
combinations. Left Shift-A, Right Shift-A, and both Shifts-A generate
different codes, and KEYSUB follows them very literally.

Tom Kihlken
Batch file command

Purpose: Positions batch file text anywhere that you want it onscreen (just like the
BASIC LOCATE command), and lets you erase text anywhere onscreen.

Format: [d :] [path] LOCATE R, c

whereR is the screen Row and C is the screen Column expressed as
decimal numbers. (The upper lefthand corner of the screen is row 0,
column 0 - notrow 1, column 1.)

If you enter just:

LOCATE R

the text will appear on column 1 of the row specified. If you enter:

, I II '

1034 PC Magazine DOS Power Tools

LOCATE ,C

the text will appear on the following line starting in the column specified.

Remarks: One of BASIC's most useful screen controls is its LOCATE command.
LOCATE.COM does the same thing for batch programs. It lets you posi
tion the cursor anywhere on the screen for subsequent ECHO or ECOH
commands. Be sure to begin your batch file with ECHO OFF, and use a
separate LOCATE statement for each new line. Also, just as with
BASIC, don't LOCATE to row 24 (the bottom line on a normal 25 x 80
display- remember, the top row is row 0), since the screen will
automatically scroll up one line if you do.

LOCATE also lets you erase text from the screen. Just enter the LO
CATE row and column parameters for the text you want to get rid of,
then ECHO a string of spaces the length of the text you want erased, and
follow this with an ASCII character 255 or an ASCII 0. To create a
character 255, hold down the Alt key, type 255 on the number pad (not
the top row number keys), then release the Alt key.

The only real way to create a character 0 is to type the Fl key when
you're in DOS. So if you're using EDLIN or the DOS COPY CON com
mand to create a batch file, just insert as many spaces as you need after
the word ECHO, then press the Fl function key. DOS is quirky about
such characters, and different versions may behave differently.

So if you want to get rid of the first 20 characters on line 5, you'd enter:

LOCATE 4,0 xxxxxxxxxxxxxxxxxxxxy

or just:

LOCATE 4 xxxxxxxxxxxxxxxxxxxxy

(where each x represented a space and the y represented an ASCII
character 0 or 255 don't actually type Xs and Ys).

Examples: To print the words "It works" in the middle of your screen (at row 13,
column 36), enter:

ECHO OFF
LOCATE 12,35
ECHO It works

Notes:

t I

Assembly Language Programs 1035

If you want to print the word "Note - " on column 70 of the following
line, type:

ECHO OFF
LOCATE ,69
ECHO Note -

To print "Note " at the beginning of line 11, enter:

ECHO OFF
LOCATE 10
ECHO Note

By using LOCATE.COM in combination with the ECOH.COM reverse
color text printer included in this package you can make a message flash
onscreen. Since ECOH looks at the existing color and reverses it, each
subsequent time you execute it the color will reverse. So to flash a mes
sage, just repeat several ECOH statements at the same cursor position:

LOCATE 8,36
ECOH This is a test
LOCATE 8,36
ECOH This is a test
LOCATE 8,36
ECOH This is a test

If you enter something other than numbers, LOCATE will think you
wanted the text positioned at 0,0. And if you enter a row that's too high,
LOCATE may put the text on another screen page, which can make
everything onscreen disappear. If this happens, try entering CLS.

If you enter a column that's out of range, DOS may wrap it around to the
next row, but the following command may obliterate it.

LOCK
Command

Terje Mathisen

Purpose: Toggles shift states off and on from the command line.

Format: [d:] [path] LOCK N+I- C+I- S+I-

'" I 14· '

1036 PC Magazine DOS Power Tools

where N represents NumLock, C represents CapsLock, and S represents
ScroIILock; a + toggles each shift state while a - toggles it off.

Remarks: You may toggle all three shift states at the same time, or just one.
LOCK.COM accepts uppercase and lowercase input, and can tum shift
states on and off in the same command. And if you,re issuing multiple
commands on one line you may enter them in any order.

This lets you toggle shift states on and off from within batch files. Since
IBM,s 101-key keyboards have separate number and cursor pads, IBM
decided to tum NumLock on when the system boots. Users who want to
tum NumLock off at bootup so they can use the classic cursor can put a:

LOCK N-

in their AUTOEXEC.BAT file.

Example: The command:

LOOP

LOCK C+

turns CapsLock on. And the command:

LOCK C-

turns CapsLock off. Entering:

LOCK N+ C- S+

turns NumLock and ScrollLock on, and turns CapsLock off.

LOCK isn't as powerful as LOX, but many users prefer it because it lets
them enter the + or - after the letter representing the Shift key, which
somehow seems more natural than entering it before the letter.

See KEYLOCK, NUMON, NUMOFF, CAPSON, CAPSOFF,
SCROLLON, SCRLLOFF, and LOX.

Tom Kihlken
Batch file command

Purpose: Controls the number of loops inside a batch file.

I I I•

Assembly Langua.ge Programs 1037

Format: [d:] [path] LOOP /S

[d:] [path]LOOP

IF ERRORLEVEL (number) GOTO (label)

Remarks: While DOS lets you loop inside batch files by entering something like:

:TOP
REM Something happens repeatedly here
GOTO TOP

It doesn't provide a method for looping a certain number of times and
then jumping out of the loop. If you know exactly how many times you
want part of your batch file to loop, you can control the process with
LOOP.COM.

To use it, you must insert a line near the very beginning of your batch
file - before the loop actually starts - containing the command:

LOOP /S

This "initializes" the loop counter by putting a zero in a certain place in
memory, and prevents you from running into trouble if you use the
LOOP.COM utility more than once.

Then, simply put the command:

LOOP

on a line by itself somewhere inside the loop. Follow this line farther
down in the batch file with another line that says either:

IF ERRORLEVEL (number) GOTO (label)

or:

IF NOT ERRORLEVEL (number) GOTO (label)

,, I II •

1038 PC Magazine DOS Power Tools

substituting the number of times you want to loop in place of the (num
ber), and the actual LABEL you want the batch file to jump to in place
of (label).

Each time the batch file executes it, LOOP.COM will increase a value
that DOS can measure with IF ERRORLEVEL.

Example: The following LOGIT.BAT will run a program called DISKTEST.COM
(or DISKTEST.EXE) 50 times and log the results to a file called
DISKTEST .LOG:

Notes:

ECHO OFF
LOOP /S
:TOP
DISKTEST >> DISKTEST.LOG
LOOP
IF NOT ERRORLEVEL 50 GOTO TOP

Using IF NOT ERRORLEVEL to check a negative (NOT) condition
saves steps, but you could accomplish the same exact thing with a non
negative version of LOG IT.BAT that reads:

ECHO OFF
LOOP /S
:TOP
DISKTEST >> DISKTEST.LOG
LOOP
IF ERRORLEVEL 50 GOTO END
GOTO TOP
:END

The largest number of repetitions you can specify is 255. If you use a
number higher than 255, your system will perfonn a modulo operation
on it, which means it will start over again at 1. So 254 will repeat 254
times, and 255 will repeat 255 times, but 256 and 257 will repeat just
one time, 258 will repeat two times, 259 will run three times, etc.

LOOP.COM works by storing an ever-increasing value at low memory
address 0040:006B. This location is reserved for the cassette recorder
and is unused on most systems (unless you're one of the few people who
use a cassette). Each time LOOP runs it retrieves the counter, increments
it, and exits with the new value.

LOWER
Command

Assembly Language Programs 1039

Michael J. Mefford

Purpose: Converts any text file (except overly large ones) to all lowercase.

Format: [d:] [path]LOWER [d:] [path] filename

where filename is the file you want entirely lowercased.

Remarks: LOWER.COM will convert any ASCII text file, including WordStar
document files, to all lowercase. Use LOWER to change a file received
in all uppercase to conventional lowercase.

Notes:

LOWER will leave the first character of a sentence and the singular
character "I" capitalized. But it's not perfect; you'll have to edit the file
and return the initial character in any proper names and any other special
case-sensitive words to uppercase. Still, that's a lot easier than having to
edit the entire file.

Don't try LOWER.COM with files that approach 64K or more.

See UPPER.

LOWRES
Command

Michael J. Mefford

Purpose: Sets video mode on color systems to 320 x 200 color graphics.

LOX
Command

See DRAW.

Grinnell Almy

Purpose: Lets you toggle shift states from the command line and makes it easy to
set or reset all toggles at once.

, I 1,

1040 PC Magazine DOS Power Tools

Format: [d:] [path] LOX -I+ CNSI

where C represents CapsLock, N Numlock, S ScrolJLock, and I Insert.

Remarks: LOX.COM gives you software control over the CapsLock, NumLock,
ScrolJLock, and Insert status. These four status bits are located in the
high nibble of byte 417 of the BIOS data area, at segment 0. The
program can set or clear any of the four bits.

To use it, enter LOX followed by any combination of the characters+, -,
C, I, N, or S. The four letters stand for the four status bits: Caps, Insert,
Norn, and Scroll. The+ tells the program to set the bits for all following
parameters, while the - tells the program to clear the bits for all follow
ing parameters. If it finds parameters at the beginning of the command
tail, before any plus or minus signs, it treats them as set parameters.

Examples: LOX C sets CapsLock; LOX -N clears NumLock; LOX S-C sets Scroll
Lock and clears CapsLock, LOX -N+IC clears NumLock and sets Insert
and CapsLock; and LOX CNIS sets all four locks. The program can
handle shift states in any order, and in uppercase or lowercase. And it ig
nores illegal parameters.

Notes: It begins by moving the keyboard status bit to AL, and the command tail
length to CX, to control the loop. Then it reads each byte in the com
mand tail. It maintains AH as a set/clear flag; if it finds a plus sign it sets
AH to one; if it finds a minus sign it sets AH to zero.

If it finds anything else, it first converts it to uppercase if necessary, and
then checks to see if it is one of the four valid parameters. If it is, it
moves the appropriate code into DH, and then ORs DH with AL to set
the bit, or else NOTs and then ANDs it with AL to clear the bit, depend
ing on the status of AH. The program then loops back to read another
byte from the command line. When the command line is exhausted, it
moves AL back to the keyboard status byte.

LOX is more powerful than LOCK, but some users don't like putting the
- or+ signs before the letter representing the shift key. LOCK.COM lets
them add the + and - afterward.

See KEYLOCK, NUMON, NUMOFF, CAPSON, CAPSOFF,
SCROLLON, SCRLLOFF, and LOCK.

Assembly Language Programs 1041

MEM512
Command

Barry Herbert

Purpose: Adjusts the amount of available RAM downward to accommodate older
and public domain programs.

Format: [d:] [pa th] MEMS 12

Remarks: Some older or public domain programs misinterpret today's large RAM
configurations and refuse to load.

Notes:

One possible cause is the program's use of a signed compare and jump
where an unsigned compare and jump in checking memory size is ap
propriate. You can address up to 512K with 19 address bits, and need a
20th bit to go any higher. A signed comparison will interpret this as a
negative value and report insufficient memory.

Once installed, MEM512.COM looks at the memory size variable set by
the diagnostic code during bootup. If this variable says your system has
more than 512K installed, the program sets it to indicate that only 512K
is available. It then performs a special reboot (Int 19) that bypasses sys
tem diagnostics to avoid the memory-sizing routine. The system will
load normally except that it will think it has only 512K of RAM.

If you run MEM512.COM on a system with 512K or less, it will display
a message indicating the amount of RAM and then quit without reboot
ing.

As written, the program will trick your system into thinking it has only
512K of RAM. If you want to change this amount, patch the value of
200 (the hex representation of decimal 512) at addresses 112/113 and
l18/l 19. Remember, the PC stores numbers in "backwords" order, so
the hex value of 200 actually looks like 00 02 in DEBUG. An unas
sembled partial listing looks like:

0111 300002 CMP
0114 761A JBE
0116 C7070002 MOV

AX,0200
0130
WORD PTR [BX],0200

To make the system think it had only 256K (100 hex), change the single
bytes at offsets 113 and 119, so the unassembled code would look like:

1042 PC Magazine DOS Power Tools

0111 300001 CMP
0114 761A JBE
0116 C7070001 MOV

AX,0100
0130
WORD PTR [BX],0100

MEMORY
Command

Michael J. Mefford

Purpose: Instantly reports the amount of available memory in your system.

Format: [d: J [path] MEMORY

Remarks: With all the memory-resident programs and different ways that you can
configure these programs as well as your own system with buffers, it's
important to know how much available memory is left for your applica
tion programs.

Notes:

MID$

MEMORY.COM returns the current free RAM in Ks (l,024s), while the
DOS CHKDSK.COM utility reports them in 1,000s. And CHKDSK is
painfully slow, especially on a big hard disk, since it has to plod through
a long disk test just to report the amount of free memory. By running
MEMORY you can get the answer instantly.

You must have DOS 2.0 version or later for MEMORY.

Michael J. Mefford
Batch file filter

Purpose: Provides string-handling and editing abilities in batch files; imitates the
similarly named BASIC command.

Format: [d: J [path] MID$ n,m

where n and mare decimal numbers in the range 1 to 255.

Remarks: This powerful filter processes strings of characters. It takes an original
string and produces a smaller copy of it m characters long beginning at
an offset of n characters from the start of the string. If n is omitted,
MID$ defaults to the start of the string. If m is omitted, all rightmost
characters starting from n are returned.

Assembly Language Programs 1043

Be sure to leave only one space between MID$ and the first argument.
MID$ is not smart enough to scan off leading spaces, but it's short, fast,
and effective.

As with other DOS filters such as SORT and FIND, MID$ is designed to

work in combination with the other DOS commands, especially the
piping and redirection features. However, you can enter MID$ by itself
at the prompt for a quick demonstration of how it works. Enter:

MID$ 5,3

and then enter:

1234567890

The command will print:

567

because the parameters 5,3 mean "take the original 1234567890 string
and make a copy of it that is 3 characters long starting with character 5."

You can use MID$ to clean up irritating long-winded DOS messages,
and do all sorts of DOS magic.

For instance, if you've ever wanted to use the DOS clock to time an
event, you either have to set it to zero and then reset it manually, or you
have to show the starting time and ending time and ask the user to sub
tract one from the other. But not with MID$.COM.

To try this, create three files: CR, ZERO, and TIMER.BAT.

CR is simply a carriage return. Type:

COPY CON CR

and press the Enter key twice, then press the F6 key and then the Enter
key a third time.

ZERO is not much bigger than CR. Type:

COPY CON ZERO

.I I I• I l

1044 PC Magazine DOS Power Tools

Notes:

and then press the Enter key, then type:

0:0

and press the Enter key again, press hit F6, and the Enter key a third time.

TIMER.BAT is a bit longer:

ECHO OFF
TIME < CR I FIND "C" I MID$ 18 > HOLDER
ECHO The time is now
TYPE HOLDER
TYPE CR
COPY HOLDER+CR HOLDER > NUL
TIME < ZERO > NUL
ECHO Wait a few seconds then hit a key
PAUSE > NUL
ECHO You paused for
TIME < CR I FIND "C" I MID$ 18
TYPE CR
ECHO seconds ...
ECHO Now resetting the time to ...
TYPE HOLDER
TIME < HOLDER > NUL
DEL HOLDER

Most people will find MID$.COM to be a truly welcome utility. You'll
find dozens of uses for it every day.

1. The PAUSE> NUL in TIMER.BAT won't suppress the normal
PAUSE message in older DOS versions.

2. If you want to avoid using little empty text files like ZERO and CR.
you can have the ENTER.COM program included in this package trigger
the commands, and use the small RESET.COM program to reset the
clock to 0:0:0.

See ENTER and RESET.

MOUSEKEY
Command

Assembly Language Programs 1045

Jeff Prosise

Purpose: MOUSEKEY lets your system's mouse stand in for the four cursor keys,
the PgUp key, and the PgDn key, within applications that normally don't
support a mouse.

Format: [d:] [path]MOUSEKEY

Remarks: The left mouse button will emulate the PgUp key and the right button
will mimic the PgDn key. You can simulate a press of any arrow key by
moving the mouse in the corresponding direction. MOUSEKEY works
in conjunction with the BIOS keyboard driver and doesn't impede nor
mal operation of the keys it emulates. It's the perfect alternative to slug
gish keyboard typematic rates that make a lengthy cursor move seem to
last an eternity.

MOUSEKEY will work with either of the Microsoft mice (bus version
or serial version) or with any mouse that emulates these.

NEWKEYS
Command

Charles Petzold

Purpose: Gives DOS access to the new codes generated by IBM's 101-key en
hanced keyboard.

Format: [d:] [path]NEWKEYS

Remarks: When IBM designed the BIOS support for its enhanced keyboard, it
added 31 additional extended keyboard codes with values starting at
133. However, it didn't make these keyboard codes available to
programs through the normal BIOS keyboard interface. To do so would
have created incompatibilities with some existing programs. For in
stance, some keyboard macro programs define their own extended keys,
which could conflict with the new IBM codes.

,, I II

1046 PC Magazine DOS Power Tools

DOS (and most programs) get keyboard information from the BIOS
through interrupt 16H, function calls 0, 1, and 2. For the enhanced
keyboard, IBM defined new function calls numbered lOH, 1 lH, and
12H that duplicated 0, 1, and 2 except that the new calls also return the
new extended keyboard codes in addition to the old ones.

NEWKEYS.COM is a TSR program so it need only be loaded once
during your PC session. Like most TSRs, it may have some com
patibility problems with other programs. Test it carefully with your other
resident programs before you start using it regularly.

When NEWKEYS is loaded, you could use the extra codes to provide ex
tended ANSI.SYS redefinitions. For instance, the ANSI sequence for
redefining the Fl 1 key to do a DIR command is:

ESC[0;133;"DIR";13p

(where ESC represents the Esc character hex 1 B or decimal 27, and not
the letters E-S-C).

New Extended Keyboard Codes for IBM Enhanced Keyboard

Extended Code Key Extended Code Key

133 Fll 149 Ctrl-/
134 F12 150 Ctrl-*
135 Shift-Fll 151 Alt-Home
136 Shift-F12 152 Alt-Up Arrow
137 Ctrl-Fll 153 Alt-Page-Up
138 Ctrl-F12 155 Alt-Left Arrow
139 Alt-Fll 157 Alt-Right Arrow
140 Alt-F12 159 Alt-End
141 Ctrl-Up Arrow 160 Alt-Down Arrow
142 Ctrl- - 161 Alt-Page Down
143 Ctrl-5 162 Alt-Insert
144 Ctrl-+ 163 Alt-Delete
145 Ctrl-Down Arrow 164 Alt-/
146 Ctrl-Insert 165 Alt-Tab
147 Ctrl-Delete 166 Alt-Enter
148 Ctrl-Tab

Assembly Language Programs 1047

NEWPAUSE Mike Cohn
Batch tile command

Purpose: Provides an improved version of the DOS PAUSE command that dis
plays an optional message of your choice and waits for you to press a
key.

Format: [d:] [path] NEWPAUSE [message]

Remarks: Used by itself, NEWPAUSE will simply put a batch file temporarily on
hold until the user presses any non-Shift key.

NEXT
Command

By following the command with a message, you can have NEWPAUSE
display a prompt while it waits.

It's possible to put a message after the DOS PAUSE command, but this
message displays only when ECHO is off, which means that the user
also sees the DOS prompt and the word PAUSE.

Users of version 3.x can replace the normal "Strike a key when ready"
message with an ECHO command and then redirect the normal PAUSE
output to NUL:

ECHO OFF
ECHO Turn on your printer then press a key
PAUSE > NUL

However, this won't suppress the "Strike" message on older versions.
Users of DOS 2.x can prevent the word PAUSE from showing up
onscreen by using a word processor to put five backspaces directly
after it.

Charles Petzold

Purpose: Changes the logged directory to the next available one at that level or
higher in the subdirectory tree.

, I 1• I •

1048 PC Magazine DOS Power Tools

Format: [d:] [path] NEXT

Remarks: DOS lets you move upward from a directory toward the root by typing
CD .. and pressing Enter. To move in the other direction it forces you to
enter explicit subdirectory names. But it offers no method for meander
ing across your entire subdirectory structure. NEXT.COM does.

Notes: NEXT is part of a trio of subdirectory navigation aids. See also UP and
DOWN.

NO Charles Petzold
Command

Purpose: Excludes specified files in a subdirectory from the action of a command.

Format: [d:] [path]NO filespec Command [parameter]

Remarks: NO.COM is designed for situations in which you want to apply a com
mand such as DELete or COPY to all the files in a directory except one
or two (or a class of) files. For example,

Notes:

NO *.BAS COPY*·* A:

copies all the files in your current subdirectory to drive A: except for
those that have a BAS extension.

To exclude more than one file (or category) you must use a separate NO
command for each on the command line. Thus,

NO *.ASM NO *.COM DEL *·*

deletes all files in the current directory except those with ASM or COM
extensions.

1. NO.COM should not be used in conjunction with the PC-DOS
BACKUP and RESTORE commands. This is because NO operates by
temporarily setting the "hidden" file attribute bit on the files to be ex
cluded from the main command, then unhiding the files after the main
command has been executed. Since the DOS BACKUP/RESTORE
operation acts on hidden and unhidden files alike, NO.COM cannot be
used to exclude files from BACKUP/RESTORE. RESTORE, indeed,

Assembly Language Programs 1049

will restore the supposedly excluded files as hidden, overwriting the
originals.

2. While NO.COM provides full path support (and so requires the use
of DOS 2.0 or later), it is a good policy when using NO to use CHDIR to
make the directory that contains the files on which you wish to operate
the current directory.

For example, suppose you are in your root directory, one of whose sub
directories is \BASIC. If you were to enter the command:

NO *.BAS DEL \BASIC*.*

you would not delete all the files in the \BASIC subdirectory except
those with a BAS extension, as you might have intended to do. To do
this from the root directory you would have had to enter:

NO \BASIC*.BAS DEL \BASIC*.*

This complete filespec would tell NO that it had to protect files in the
\BASIC, not in the current(i.e., root) directory.

If you follow our recommendation and enter:

CD \BASIC
NO *.BAS DEL *·*

thus making \BASIC your current directory before you start deleting,
you will then clean out all but the BAS files, just as you intended.

NO BOOT
Command

3. Should a parity check error, power outage, or system crash occur
during the brief period between the times NO hides and subsequently un
hides the protected files, those files will subsequently seem to have disap
peared. They are not lost; only hidden from a DIR listing. Use A TTR
(included in this set of utilities) to change their hidden status.

Ethan Winer

Purpose: Disables ability to reboot by pressing Ctrl-Alt-Del.

• I II

1050 PC Magazine DOS Power Tools

Format: [d:] [path]NOBOOT

Remarks: Most good programs provide some type of protection against inadvertent
operator errors. For example, pressing Ctrl-Break in an accounting
program could cause it to end before important information has been
written to disk. But one action that's difficult to guard against is reboot
ing with Ctrl-Alt-Del.

NO ECHO

Trapping Ctrl-Break is easy, because the address for this routine is kept
in low memory. All a program has to do is poke a new address there,
which usually points to a return instruction located somewhere in ROM.
But Ctrl-Alt-Del is handled entirely by the PC's BIOS, so another ap
proach is needed.

NOBOOT is a memory-resident program that intercepts keyboard inter
rupt 9. Once NO BOOT has been loaded, it will receive control every
time a key is pressed. If the key is anything but Ctrl-Alt-Del, then it pas
ses on to the original interrupt 9 handler in ROM. Otherwise, it simply
ignores the request and returns.

Once you've run NOBOOT, it will normally be impossible to reboot
without turning off the power. You could however run a program like
W ARMBOOT to do it.

Some programs that take over INT 9, such as SideKick, will steal the in
terrupt back, so test it first with such other interrupt- greedy programs.

F. M. de Monasterio, M.D.
Batch file command

Purpose: Supresses display of initial ECHO OFF in batch files.

Format: [d:] [path] ECHO OFF
NO ECHO

Remarks: The DOS default setting for batch file displays is ECHO ON. Most users
don't want the individual commands of their batch files to display as
they execute, and insert an initial ECHO OFF line as the first line of
their batch file. Unfortunately, this initial ECHO OFF command, whose
purpose is to prevent screen clutter, ends up cluttering the screen itself.

• I I

Assembly Language Programs 1051

Users of DOS versions 3.3 and later can add a@ prefix to suppress the
display of any line. So they may achieve the same effect by making the
first line:

NOINTS
Command

@ECHO OFF

Similarly, ANSI.SYS users may make the first line of their batch files
ECHO OFF and then follow it with a second line:

ESC[lA ESC[K ESC[B

(where the ESC in the example represents the decimal 27, or hex lB,
Esc character, not the letters E-S-C.) This moves the cursor up a line,
blanks that line, then moves the cursor down to the line where it started.

Robert L. Hummel

Purpose: Disables Shift-PrtSc function.

Format: [d:] [path] NOINTS

Remarks: Many users want to disable the Shift-PrtSc screen dump feature so they
don't accidentally press those keys and freeze their system when the
printer is not online.

The many solutions for this problem include the ones used in CON
FIRM.COM and DISABLE.COM. But this program relies on a different
technique.

It replaces the ROM INT 5 routine with a one-instruction routine in
RAM that passes control back to the program that was running as if noth
ing had happened. Once you run it, the interrupt 5 vector will point to a
dummy routine rather than the one in ROM.

The program uses DOS interrupt 21H "Set Interrupt Vector'' subfunction
25H. NOINT5 simply points the vector to an IRET instruction - a spe
cial form of the RET (RETum) used with interrupts - that causes execu
tion to pick up exactly where it was interrupted.

,. I J4; l

1052 PC Magazine DOS Power Tools

If you use NOINT5, load it from your AUTOEXEC.BAT file, before
any other memory-resident programs and before any strings are added to
your environment.

See ENABLE, DISABLE, and NOINT5.

NO PRINT
Command

Charles Petzold

Purpose: Disables both the Shift-PrtSc screen dump and Ctrl-PrtSc printer echo
functions.

Format: [d:] [path] NOPRINT

Remarks: It's relatively easy to disable Shift-PrtSc either by fooling it into thinking
it's already in the middle of a screen dump, or by disabling interrupt 5.
Both of these techniques make it easy to turn the Shift- PrtSc off and
then of again as you need it.

But disabling Ctrl-PrtSc is more difficult, since this keystroke combina
tion is interpreted by DOS and works quite differently from Shift-PrtSc.
The only way to handle it is by intercepting the interrupt 9 keyboard
handler.

Because of this, NOPRINT program can't be turned off unless you
reboot or load it from a TSR manager such as INST ALL/REMOVE.

As it's written, NOPRINT.COM disables both the Shift-PrtSc and Ctrl
PrtSc functions. If you like the on/off feature of other Shift-PrtSc dis
ablers (such as ENABLE and DISABLE} because you usually leave
your printer turned off, you can continue to use these separate Shift
PrtSc handling utilities and patch NOPRINT.COM so the only thing it
disables is Ctrl-PrtSc.

To do so, change the value at offset 113 from 7 to 4 by typing:

DEBUG NOPRINT.COM
E 113 4
w
Q

Notes:

Assembly Language Programs 1053

If you need to echo something to your print.er, Ctrl-P will continue to
work with either version.

Under DOS 3.X, Ctrl-PrtSc is not the problem it used to be. It's relative
ly easy to recover by pressing Ctrl-PrtSc again, and then pressing other
keys until DOS comes to its senses. When it finally prints the "Abort,
Retry, Ignore?" message, just press A to continue.

NO REPEAT
Command

TomKihlken

Purpose: Disables the keyboard auto-repeat feature.

Format: [d:] [path] NO REPEAT

Remarks: For a young child or an inexperienced typist, the auto-repeat feature of
most keyboards may cause lots of unwanted duplicate keystrokes. The
memory-resident NOREPEAT.COM program eliminates the auto-repeat
no matter how long a key is held down.

Notes:

It works by using interrupt 9 to examine each keystroke. Normally this
detects when each key is depressed and when it's released. When a key
is held down long enough to repeat, the keyboard simulates the key's
being depressed again and again without being released. NOREPEA T
senses these duplicate keys and prevents them from being inserted into
the keyboard buffer. When the key is finally released, new keystrokes
are again allowed to occur normally.

You have to install NOREPEAT.COM only once each session. And the
only way to disable it is to reboot or use INSTALL/REMOVE.

NOSCROLL
Command

William G. Hood

Purpose: Lets you pause and restart scrolling displays by pressing the ScrollLock
key.

Format: [d:] [path] NOSCROLL

, I II

1054 PC Magazine DOS Power Tools

Remarks: It's awkward to have to use two keys, Ctrl and NumLock (or Ctrl and S)
to pause scrolling screen output, and then a third key to resume scrolling.
Using the MORE filter, when applicable, is not much better.

Notes:

NOSCROLL.COM is a resident program that, once installed, will alter
nately pause and restart scrolling when the ScrollLock key is pressed.

The program works by servicing keyboard interrupt 9. When it sees that
the ScrollLock has been pressed, it sets a flag, enables interrupts, then
waits until the flag is cleared after another press of the ScrollLock key.
Since the routine waits with interrupts enabled, all hardware interrupts
will continue to be serviced including the keyboard interrupt. Normal
keystrokes will continue to be placed in the keystroke buffer; however,
they will not be echoed until screen output is resumed.

Important-since this works by intercepting interrupt 9, don't use it
with other memory-resident programs like SideKick that also intercept in
terrupt 9, or your system may lock up.

The only way to deinstall NOSCROLL is to reboot your system or use
INST ALL/REMOVE.

NUMCLICK
Command

Kevin Miller

Purpose: Generates audible tones when the NumLock key is on and any key on
the cursor/number pad is typed.

Format: [d:] [path] NUMCLICK

Remarks: Some users are happy to enter numbers into spreadsheets all day long,
and keep the NumLock key toggled on. Others spend their time writing
or programming, and would be just as happy if the cursor pad had noth
ing to do with numbers.

Too often non-number-crunchers accidentally tum the NumLock key on
and end up typing a row of numbers when they wanted to move the cur
sor to the top of the screen or the middle of a line.

The memory-resident NUMCLICK.COM program guards against this.
Once you've installed it, if you type any of the number pad numbers, or

Notes:

Assembly Language Programs 1055

the grey plus or minus key, while NumLock is toggled on, the speaker
will beep.

The only way to remove it from memory is to reboot, or install it with a
program like INSTALL/REMOVE.

NUMCLICK.COM contains several smart tests to make sure it doesn't
beep at the wrong time. However, if your keyboard is too quiet for you,
and you want it to beep at every keypress - not just the ones
NUMCLICK was designed for - make a copy of NUMCLICK.COM
called simply CLICKALL.COM and then jump around all the tests by
putting CLICKALL.COM on the same directory as DEBUG.COM and
typing:

DEBUG CLICKALL.COM

E lOA EB 20

w
Q

If you install CLICKALL.COM, every single key, including shifts, func
tion keys, and toggles, will beep when you type them or hold them down.

NUMOFF
Command

Mike Cohn

Purpose: Tums NumLock shift off (sets it to cursor state rather than numeric
state).

Format: [d:] [path]NUMOFF

Remarks: See KEYLOCK, NUMON, CAPSON, CAPSOFF, SCROLLON,
SCRLLOFF, LOCK, and LOX.

NUMON Mike Cohn
Command

Purpose: Tums NumLock shift on (sets it to numeric state rather than cursor state).

Format: [d:] [path] NUMON

,, I j 4 1 ~

1056 PC Magazine DOS Power Tools

Remarks: You can create a version of this program called NUMFLIP.COM that al
ternately toggles the NumLock shift from numeric to cursor state and
back to numeric every other time it executes.

Simply type:

DEBUG NUMON.COM
E 108 34
N NUMFLIP.COM
w
Q

See KEYLOCK, NUMOFF, CAPSON, CAPSOFF, SCROLLON,
SCRLLOFF, LOCK, and LOX.

ONCL
Command

Philip J. Erdelsky

Purpose: An all-purpose file character-display and file-creation utility designed to
handle otherwise tricky characters such as those with ASCII values
below decimal 32.

Format: [d:] [path] ONCL n [n n ...]

or:

[d:] [path]ONCL n [n n ...] > newfil

or:

[d:] [path]ONCL n [n n ...] >device

where each n is a decimal value of an ASCII character, new/ii is an op
tional filename created by redirecting the ONCL output, and device is a
DOS device such as PRN.

Remarks: It's difficult to send just a few control characters to your printer on the
fly, or create a small file to use as input to another program from within
a batch file, without operator intervention. Many text editors won't hand
le control characters without a struggle, and using full-fledged word

Assembly Language Programs 1057

processors to create a file a few bytes long is like using a pile driver to
pound in a carpet tack. Using BASIC or DEBUG is not much easier.

ONCL.COM (which stands for Output Numbers from Command Line)
handles all these chores by sending any characters you specify to stand
ard output, from which they can be redirected to a file, an output device,
or another program.

ONCL makes it very easy to generate printer escape codes or ANSI es
cape sequences.

Example: To set an Epson-compatible printer to its elite (12-character per inch)
pitch, enter:

ONCL 27 77 > PRN

(since the code for this is ESC+"M"). To reset the printer to its standard
settings, (ESC+ "@") type:

ONCL 27 64 >PRN

The 27 represents the decimal ASCII value of the Escape character. The
decimal ASCII character for M is 77 and for@ is 64.

To generate ANSI escape sequences, you must have ANSI loaded (with
the line DEVICE=ANSI.SYS in your CONFIG.SYS file). Then, on a
color system, you can issue a command like:

ONCL 27 91 51 55 59 52 52 109

to set the colors to blue text on a white background, or:

ONCL 27 91 51 52 59 52 55 109

to set them to white text on a blue background, or:

ONCL 27 91 74

to clear the screen to those colors. This works because:

ONCL 27 91 51 55 59 52 52 109

l l l l l l l l
ESC [3 7 4 4 m

character

,, I 14 • l

1058 PC Magazine DOS Power Tools

Notes:

and the command to set colors to white on blue is (the ASCII 27 escape
character) plus [37;44m.

You can also use ON CL.COM to create small nontext files. If the ASCII
characters won't fit on the command line, you can split them over
several lines of a batch file. Add a single > redirection sign and a
filename to the end of the first line, and a double >> sign and a filename
to all the other lines. The single > sign creates a new file and wipes out
any existing files with the same name, and the double>> sign appends
all the rest of the lines to the file. The following batch file will create a
DECIDE.COM program that helps you make decisions:

ONCL 180 9 186 43 1 205 33 180 > DECIDE.COM
ONCL 44 205 33 180 9 246 194 64 >> DECIDE.COM
ONCL 116 7 186 66 1 205 33 235 >> DECIDE.COM
ONCL 17 246 194 1 116 7 186 75 >> DECIDE.COM
ONCL 001 205 33 235 5 186 81 1 >> DECIDE.COM
ONCL 205 33 195 13 10 84 104 101 >> DECIDE.COM
ONCL 032 97 110 115 119 101 114 >> DECIDE.COM
ONCL 32 105 115 32 46 32 46 32 >> DECIDE.COM
ONCL 46 032 36 109 97 121 98 101 >> DECIDE.COM
ONCL 46 13 10 36 110 111 46 13 10 >> DECIDE.COM
ONCL 036 121 101 115 46 13 10 36 >> DECIDE.COM

If you don't redirect the ONCL output, it will go to CON (the screen).
For example, the command:

ONCL 7

will beep. You might want to put this at the end of a long batch file so
the computer will call you when it's done.

This can come in handy when you 're trying to create a COM file and all
you have is a list of DATA statements in a BASIC program. If the list is
made up of hex numbers you can use the DEBUG E command to enter
them directly. But if the numbers in the DATA statements are decimal,
adapt the technique used to create the DECIDE.COM above.

ONCL.COM uses DOS function 40 to output each byte, when it would
have been much simpler to do it with DOS function 02 (which sends the
contents of DL to standard output). The reason is that DOS function 02
does some meddlesome things like expanding tabs.

Assembly Language Programs 1059

OPTION Edward Morris
Batch file command

Purpose: Provides very sophisticated all-purpose keyboard handling for IF ER
RORLEVEL tests.

Format: [d:] [path]OPTION Aa [BbCc ...] [-text]

where Aa, Bb etc. are character/code pairs and -text is an optional
prompt.

Remarks: Lots of short COM programs can read the keyboard and set the ERROR
LEVEL accordingly to allow batch file branching, but most look for one
or two predefined keys and set the same ERRORLEVELs each time.

OPTION lets you specify a wide range of parameters in easy-to-remem
ber pairs, as well as an optional custom prompt, directly from the com
mand line. The first character in each pair is the key pressed and the
second is the ERRORLEVEL code generated.

Examples: If you entered:

OPTION A1B2

OPTION would return an ERRORLEVEL of 1 if you hit A or 2 if you
typed B. To allow uppercase and lowercase entries, you would change it
to:

OPTION Ala1B2b2

OPTION can also display onscreen prompts. Follow the parameter pairs
with a hyphen and the message to be displayed. For example:

OPTION ylYlnONO-Enter Y or N:

with two spaces at the very end displays the prompt:

Enter Y or N:

and positions the cursor two spaces from the colon.

OPTION lets you use the Enter key by representing it as a plus sign. So
you could enter:

' • II · •

1060 PC Magazine DOS Power Tools

Notes:

OPTION +1 0-Hit Enter for 1, Space for 0

(Be careful not to insert extra spaces in the string of argument pairs un
less you actually want the spacebar to count as a valid key.)

If you include an odd number of keypress arguments, OPTION uses the
last character as the ERRORLEVEL it returns if any key other than the
one in the previous valid pair is pressed. So if you try:

OPTION +10

the program will generate an ERRORLEVEL of 1 if Enter is pressed or
0 for any other key.

If you need ERRORLEVEL values greater than 9 you can use the ASCII
characters immediately following 9.

OPTION J:L=

will return a 10 if J is pressed or a 13 if Lis pressed, since in the ASCII
sequence the : character immediately follows 9 an<J the = sign is four
characters after 9. Consult the ASCII chart in the front of this book or
the back of your BASIC manual for help.

OPTION prompts the user for a keypress by beeping. It also beeps when
it stumbles over an illegal key, discards such characters, and loops back
for another key. To get rid of these beeps, put OPTION.COM on the
same disk as DEBUG and type:

DEBUG OPTION.COM
E 12A 90 90
w
Q

When OPTION detects a legal keypress, it clears the screen and puts the
cursor in the upper lefthand comer. If you'd rather have it display the
key and move the cursor to the next line down, type in the following
DEBUG script using a pure ASCII word processor or the DOS COPY
CON command, and call the file PATCH.

ElSl B4 02 CD 21 B2 OD CD 21 B2
ElSA OA CD 21 58 B4 4C CD 21

RCX
62
w
Q

Then get into DOS and type:

DEBUG OPTION.COM< PATCH

Assembly Language Programs 1061

Most ERRORLEVEL generators are rigid and inflexible, and force you
to use slightly different COM programs for each set of tests. OP
TION.COM lets you use one all-purpose program with different argu
ments in all your batch files. And it not only lets you print a customized
prompt, but gives you choices about whether or not to beep and clear the
screen.

Be careful in using some of the ASCII characters above 9, however,
since DOS will try to execute some - such as > redirection symbols.

PAGE
Command

Paul Somerson

Purpose: Switches between text pages 0 - 3 on a color system and identifies the
current video page.

Format: [d:] [path] PAGE n I?

where n is an 80 x 25 text mode video page number, and ? is a parameter
that reports the current page. Only one of these may be used at a time.

Remarks: Entering a page number from 0 to 3 will make that video page active.
Entering a ? will display the current page. The BIOS default page (the
one most users commonly work in) is page 0. Entering a page number
out of range won't do anything.

Example: To switch to page 2, enter:

PAGE 2

To switch back to the normal default page, type:

PAGE 0

'" I II

1062 PC Magazine DOS Power Tools

Notes:

To see what page is currently active, type:

PAGE ?

Entering:

PAGE

by itself with no spaces after it will print brief instructions.

1. This will work only only color systems and only in the 80 x 25 color
text mode.

2. You can use alternate pages to store information - such as direc
tory listings - and treat these other pages almost as text windows.

3. PC Magazine's COLOR.COM color-setting program is page aware,
and can change the colors of individual 25 x 80 pages. The first time you
switch into a non-0 page you may see an odd color pattern. Running
COLOR.COM will correct this.

4. If you want to clear a page to the existing color, you need to have a
page-aware CLS program such as PAGECLS.COM handy.

See PAGECLS.

PAGECLS
Command

Paul Somerson

Purpose: Clears any 80 x 25 screen to the existing screen colors and on the current
video page.

Format: [d:] [path] PAGECLS

Remarks: Most CLS utilities assume you want to clear the screen to preset colors
and on video page 0. This looks at the existing colors and maintains
those colors when it clears the screen - and it will clear whatever page
happens to be active without disturbing any other video pages.

See PAGE.

Assembly Language Programs 1063

PAINT
Command

Jeff Prosise

Purpose: Edits or creates custom help or reference screens that can be popped up
over an application program or at the DOS prompt with the PC
Magazine HELP.COM utility. Also provides full control of character
and video attribute bytes and permits insertion of single-line, double
line, or pattern characters from the extended-ASCII PC text- graphics set.

Format: [d:] [path] PAINT [filespec]

Remarks: The optionalfilespec is the filename (plus drive and path, if needed) of a
help or screen previously saved for HELP.COM by means of the related
PC Magazine CAPI'URE program. If filespec is omitted, PAINT allows
you to create and save a new screen in the appropriate format. HELP
files are 4,000-byte screen buffer images, and as many as 14 may be
chained together for successive display. The PgUp and PgDn keys in
PAINT move through multiple-screen files.

The Ins key toggles the PAINT editor between overstrike (the default)
and insert modes. The Del key deletes the character under the cursor and
closes up the text. In overstrike mode, the backspace key moves the cur
sor left without moving any text characters to its right. In insert mode,
the backspace drags characters with it. The cursor can be moved
anywhere within the viewing area by means of the cursor keys. Home
and End move the cursor to the ends of the text line, and Enter performs
the usual carriage return/line feed.

Function key Fl lists the menus presented by each function key, and Esc
deselects any active menu. F3 toggles between text-only and text-plus
attribute modes, which are also reflected in the operation of the back
space and Del keys. Attributes are selected by number(s) after pressing
F2, which presents 16 foreground and eight background color choices
(color systems) or normal, reverse, boldface, or underline (monochrome
systems). By positioning the cursor on any displayed character and press
ing F2 twice, that video attribute can be selected without using the menu
numbers. Pressing Enter defaults to the current selection. Selected at
tributes remain in effect until changed.

You can "paint" small or irregular screen areas with the current attribute
by holding down the Ctrl key and pressing the desired cursor arrow keys.
Large screen areas may be defined by locating the cursor at one corner
and pressing F5, then moving to the diagonal corner and pressing F5

1064 PC Magazine DOS Power Tools

Notes:

again. The program then presents a menu choice either to clear the
defined block of text characters or to paint them all with the current
video attribute. Pressing F5 twice without moving the cursor defines the
entire screen and presents the same choice.

Function key F4 permits selection of single-line, double-line, patterns, or
asterisks that the program then writes to the screen when you hold down
the Alt key and press the appropriate Up, Down, Left, or Right Arrow
keys. Where lines cross, PAINT substitutes the appropriate junction sym
bols. F6 asks for a filename under which the file is to be saved (it sup
plies the original filename as a default) and saves the file. And it
automatically applies compensation to adjust for differences in display
size. Pressing F7 returns to DOS.

1. While PAINT is intended primarily for use with screens that use the
HELP program, it can be used to advantage in prototyping screens for ap
plication programs and in the design layout of other pop-up windows.

2. PAINT is compatible both with traditional PCs and with the PS/l
line.

PARSE
Command

Michael J. Mefford

Purpose: Displays the number of characters, words, and sentences in ASCII text
files.

Format: [d:] [path]PARSE [d:] [path] filename

Remarks: PARSE also calculates and reports the averages of the numbers of
characters per word, words per sentence, and "long" words (eight or
more characters). It uses these to calculate and display an approximation
of the Fog Index grade-level readability rating.

Notes:

The accuracy of the various counts may be affected, though usually not
significantly, by the presence of formatting and printing codes included
in the file by non-ASCII word processors. PARSE does ignore the high
bit codes produced by WordStar and similar programs, but "dot com
mands" and the like will be counted.

For further information on the Fog Index see Robert Gunning's The
Technique of Clear Writing (McGraw-Hill, 1952, 1968).

PCMAP
Command

Assembly Language Programs 1065

Robert L. Hummel

Purpose: Displays a list of the programs currently loaded in memory, and the
amount of RAM each program uses.

Format: [d:] [path] PCMAP

Remarks: The DOS CHKDSK command will report how much of your system's
memory is free, but it won't tell you what programs happen to be loaded
in RAM or the amount of memory allocated to each.

This is especially important if your system is crammed with TSR
programs. Whenever you load a TSR it ropes off a section of memory
that no other application can use. If you want to run a program that
needs a lot of memory, or juggle the selection of TSRs to accommodate
one more resident utility, PCMAP will tell you exactly how much RAM
each has snagged.

Most full-fledged commercial TSR programs try to behave politely.
Once you install them, they '11 leave a "signature" in memory to prevent
you from inadvertently installing them again during the same session
and eating up unnecessary RAM. However, some less sophisticated resi
dent software (like a few of the bare-bones demo utilities included in this
package) weren't designed to guard against such problems, and may let
you load additional copies into memory as many times as you like.
PCMAP will identify these for you.

The program works by tracing the chain of Memory Control Blocks
(MCBs) employed by DOS to divide up memory efficiently for different
processes. Each 16-byte MCB operates like a bookmark to keep track of
how much memory follows it, identify which process "owns" the par
ticular chunk of memory, and tell whether it happens to be the last MCB
in use.

If the block isn't the last MCB in the chain, byte 0 will contain M. If it is
the final block. byte 0 will be a Z. Bytes 1and2 form a four-digit hex
number called the Process ID (PID) that identifies the owner of the
memory following the MCB. Under current DOS versions, the PID is
simply the Program Segment Prefix (PSP) segment address of the
program that allocated the memory. Bytes 3 and 4 contain the number of
16-byte memory paragraphs that follow the MCB. (The MCB itself is
not included in the number.) The remaining 11 bytes aren't used by cur-

"' I ii

1066 PC Magazine DOS Power Tools

rent DOS versions, and may contain values left over in memory from
other programs.

PCMAP can display the names of some of the resident programs loaded
in memory. When DOS loads a program, it gives the program a copy of
the DOS environment {The segment address of the evironment copy is
stored in the two bytes beginning at offset 2CH in the program's PSP.)
Starting with version 3.0, DOS tacks the full path name of the program
onto the end of the environment. PCMAP checks to see if the environ
ment block is owned by the program, and if so, displays the name. If you
run PCMAP on an older DOS version you '11 simply see "(Unknown)" in
stead of the program's name.

PCPARK
Command

Robert L. Hummel

Purpose: Parks the heads on hard drives (for PC-A Ts and later systems only).

Format: [d:] [path] PCPARK

Remarks: The comments included here are long and detailed for two reasons:

1. Robert Hummel does a very good job of explaining a complicated
question that's one of the most frequently asked by hard disk users.

2. Most users are so terrified by the fragility of hard disks in general
and the published accounts of specific hard disk disasters that they're
nervous about running any kind of program that does more to their hard
disks than read from them and write to them. And if thef re not, they
should be.

While PCP ARK uses a very conventional technique (nothing fancy, just
two BIOS calls), manufacturers sometimes do insane, nonstandard
things. If you are at all squeamish about running a program that moves
your disks heads, don't. We tested it thoroughly, but it's impossible to
know how it will work on every system. So if you're the least bit ap
prehensive, or you 're not sure how your particular hard disk would
handle it, skip this utility.

In any event, if you 're thinking about trying it, read everything here first.
It will explain what the program does and help you decide if your system
is standard enough to be safe. And it's downright fascinating.

Background

Assembly Language Programs 1067

A floppy contains only one magnetic disk, called a platter, while a hard
disk can contain several platters that are mounted on a single central
spindle. Each platter has two surfaces, called sides, on which informa
tion can be stored. Sides are numbered consecutively beginning with
side 0.

The device that reads and writes data is called a head and is somewhat
similar to the recording head in an audio tape recorder. Each recording
surface has its own dedicated read/write head, and like disk sides, these
are also numbered consecutively beginning with side 0. The term "side"
may become confusing when there are more than two, so sides are tradi
tionally referred to by their head number. The terms "side 3" and "head
3" both refer to the fourth recording surface.

All the heads are mounted together on one single movable arm called a
servo positioner. This arm moves the heads from the outer edge of the
platter to the center, somewhat like a phonograph arm. But while a
phono arm moves smoothly, disk heads move in discrete predefined
steps, driven either by what is called (logically enough) a stepper motor
or by a magnetic coil that performs the same function. This movement
creates a series of concentric rings of data known as tracks. A 360K
diskette has 40 tracks, while a large hard disk may have over 1,000.

To a programmer, all the tracks on all the sides at any one particular
head location are collectively known as a cylinder. The terms track and
cylinder are easy to confuse, and are generally used interchangeably. Be
cause the heads are tied together, telling the disk to move head 3 to track
5 has the same effect as telling it to move all the heads to track 5 of their
respective sides.

Each track is further divided into packets of data called sectors. Typical
hard disks, using standard controllers, use 17 sectors per track. Other
controllers, such as the RLL variety, use special techniques to store up to
30 sectors per track. Unlike cylinders, tracks, heads, and sides, sectors
are numbered from 1.

To address any packet of data on a hard disk, you must know three coor
dinates: the cylinder, head, and sector. Changing cylinders is the only
process that requires physical movement across the disk, and is the most
time consuming. (When you hear a disk called a "40 millisecond drive"
this refers to the average time needed to switch among cylinders.) Be
cause the heads are selected electronically, switching among them is vir
tually instantaneous. Finding the right sector is simply a matter of

1068 PC Magazine DOS Power Tools

La.nding Zone

waiting for the platter to rotate under the head - which can also be a
major cause of delay.

In a floppy disk drive the heads actually ride on the physical surface of
the disk. This isn't dangerous, since the floppy disk surface is flexible.
The heads and the disk are subject to the same kind of wear as you might
find in a VCR. But in a hard disk, the heads ride on a cushion of air,
separated from the surface of the disk by less than the width of a human
hair. One drive manufacturer has compared the situation to that of a
jumbo jet flying at 600 mph just six inches off the ground.

Some of the popular and inexpensive hard disks on the market today
lack a critical feature called "Park and Lock." When you turn off the
main power at the end of a session, the disk heads on these just drop
onto the surface of the disk wherever they happened to be positioned. Ex
tending the analogy of the jumbo jet, the picture is horrible. The heads
plow into the relatively soft coating of the disk causing physical damage
and possible loss of data. Unfortunately, damage isn't limited only to the
crash site. Magnetic particles, sheared off by the impact, settle over the
disk causing random contamination and corruption of data. Move one of
these disks while the heads are sitting on the surface and the damage in
creases.

Hard disks that employ more advanced technology (and generally carry
a higher price tag) have special built-in "Park and Lock" hardware to
prevent this disaster. Powerful springs hold the disk heads away from the
platters. When the disk is turned on, the heads are forced down near the
surface. When power is turned off, the springs snap the heads back into a
parked position and lock them to prevent further movement.

If you have a disk that doesn't park the heads automatically, you can
protect your system by parking them manually each time you 're ready to
shut things down. PCP ARK can do this for you.

Working with BIOS

Data on a hard disk is written starting at cylinder 0, and moves toward
the higher cylinder numbers as the disk fills. The highest numbered
cylinder on the disk will be the last one to be written. Unless your disk is
nearly full, therefore, chances are that the last cylinder will be unused
and will be a good place to position the heads for parking. Parking the
heads is something like a controlled crash landing. By restricting contact
to one cylinder on the disk, the potential for loss of data is minimized.

Assembly Language Programs 1069

To park the heads on any drive you must know the number of cylinders
in the disk, and you can get this information by making a BIOS Return
Current Drive Parameters (often called Get Parameters) function call.
Despite its name, it doesn't return the parameters of the current drive.
And the description published in many popular books of the parameters
returned is incorrect. To call the function, load the registers as follows:

AH =

DL =

8

physical drive number for which information is requested
(0 = first floppy)
(80H = first hard disk)

Then execute an interrupt 13H. On return, the registers will hold the fol
lowing:

DL =

DH =

CH =

CL =

number of drives responding

maximum head number
(#heads - 1)

maximum cylinders or track number
(#cylinders - 1)
(high two bits are stored in CL)

maximum sector number
(lower 6 bits only)

The maximum cylinder number supported by the BIOS is 1023. In bi
nary notation, this would be 1111111111, or ten bits long. Since only
eight bits can be stored in the CH register, the leftmost two bits are
placed in the leftmost bits of the CL register.

Once you know the number of the last cylinder, you can tell BIOS to
move the heads to that cylinder by calling the BIOS Seek service. The
registers are assigned the same general meanings as for the Get
Parameters function. So, in the same way, load the registers with:

AH =

DL =

DH =

OCH

physical drive number on which to move heads
(0 = first floppy)
(80H = first hard disk)

head number to select

,, I II

1070 PC Magazine DOS Power Tools

CH =

CL =

cylinder number to select
(high two bits are stored in CL)

maximum sector number
(lower 6 bits only)

Then execute an interrupt 13H, as before.

Fortunately you don't have to worry about unpacking the cylinder num
ber. The Seek routine expects to see it in the same format as it is
returned by the Get Parameters function.

If you 're really curious about this, you may follow along by using the
DEBUG unassemble command. PCPARK first loads the DX register
with 80H, the drive number assigned to the first hard disk installed in the
computer. Note, that since only the DL register is checked for the drive
number, the instruction could have been MOV DL,80. This would have
resulted in a two-byte instruction instead of a three-byte instruction,
reducing program size by one byte. But there is an ulterior motive for
using this instruction, which will become clear later in the program.

The program then performs a subroutine call to offset 109H. This is
another method of reducing code size. Because the CALL places the ad
dress of the next instruction on the stack, the RET instruction at the end
of the program will cause the same code to be executed twice. The
second time, however, the RET instruction will return to DOS, terminat
ing the program.

The next step is to determine the drive parameters. This is done by load
ing AH with 8 and executing an interrupt 13H. If, on return, the carry
flag is set, it means that this function is not supported, and the PCP ARK
program will not work. A message is displayed to that effect Early ver
sions of the PC and XT BIOS do not support this function call.

The Get Parameters function returns a lot of information you don't need
for this particular operation. Since all .the heads move together, it doesn't
matter what head or sector we seek to as long as it's on the last cylinder.
The Get Parameters call returns the number of drives installed in DL,
destroying the drive number that was loaded in the first instruction. The
PUSH DX/POP DX instruction pair solves this by loading the drive num
ber (0080H on the first call, 008 IH on the second pass) back into the

Notes:

Assembly Language Programs 1071

register. Only full-size registers may be pushed and popped, so the 00
was placed in DH to provide a valid head number.

PCP ARK then calls the Seek routine. The registers contain the maxi
mum cylinder and sector number as returned by Get Parameters, and the
head has been forced to 0. If the call fails, the carry flag will be set, and
the program prints a short message onscreen. If successful, a message to
that effect is printed, indicating the number of the drive that has been
parked. The RET instruction sends the program back to the MOV
DX,0081 instruction, and the process is repeated for the second physical
drive, if one is installed.

You should always park your hard disk's heads before turning off your
computer. It also helps to park them when you leave your computer on,
but will be away from it for a while. For those who have never heard a
hard disk seek across its width, the sound can be somewhat disconcert
ing. Even though the heads are moving a large distance (relative to a
single track), the stepper motor still moves a track at a time. This rapid
on/off movement of the motor causes a "beeping" or "buzzing" sound
that you may associate more with floppy drives. Some hard disk are very
loud, and others nearly silent. This noise is natural and nothing to worry
about.

Should you decide not to shut off your computer after parking the heads,
the next disk access will cause the heads to travel just as far to get back
to the data as they did to leave it. The result will be more buzzing. And if
you hear a "clunk" as the heads find the last cylinder, relax-you're
parked safe and sound.

1. Manufacturers are correct when they warn you not to use their park
programs on other hard disks, however. Because the programs were
meant to be sold with a single drive, the last cylinder number is usually
hard-coded into the program. Using a park program designed for a drive
with 100 cylinders on a disk that has 200 cylinders will place the heads
in the middle of the disk and in a position to do some damage.

2. If you're sure your hard disk already parks its heads automatically,
you don't need to use this utility.

3. Also, because of the BIOS services the program uses, as mentioned
earlier, it won't work on older PCs and XTs.

, ' "

1072 PC Magazine DOS Power Tools

PEEK
Filter

Mike Cohn

Purpose: Lets you quickly examine the first screenful of any file.

Format: [d:] [path]PEEK < [d:] [path]filename

Remarks: You could use the DOS MORE.COM utility in place of PEEK.COM:

MORE < filename

However, MORE.COM will display the entire file one screenful at a
time rather than just showing you the beginning of the file and then quit
ting, the way PEEK does.

If you want, you can patch one byte in the DOS MORE.COM utility to
display just a single screenful and then quit. In all DOS versions from
2.0 through 3.2, this patching address is 1C4. In version 3.3 it's 1C2. To
find this address, type:

DEBUG MORE.COM

You should see the DEBUG hyphen (-) prompt. Look at the following
chart and pick the hex representation of the length:

MORE Version
2.0
2.1
3.0
3.1
3.2
3.3

HEX Length
180
180
140
llA
127
139

If you're using a version not listed, type RCX and press the Enter key
twice. The number DEBUG prints to the right of the CX is the length.

Plug the hex length into the line:

-S 100 L 139 B4 OC

f
length

Assembly Language Programs 1073

So if you're using a version like 3.2, change the line to:

-S 100 L 127 B4 OC

DEBUG should report something like:

30FA:01C3

Ignore the four hex digits to the left of the colon. Jot down the four
rightmost hex digits. This is the address of the byte directly after the one
you want to patch, so subtract 1 from the number. For DOS 3.3, 1 C3 - 1
= 1C2. For versions 2.0 through 3.2, 1C5 - 1=1C4. The number you're
left with is the patching address.

Use the DEBUG E command to examine the value at this address:

-E 1C2

When you press Enter you should see something like:

30FA: 01C2 21.

If you don't press Enter, type Q and press Enter to quit, then start again.
But if you do see a 21 with a period after it, type in a 20 and then press
Enter:

30FA:01C2 21.20

Then rename the file to something like MORENEW.COM:

-N MORENEW.COM

Write this new file to disk and quit by typing Wand pressing Enter and
then typing Q and pressing Enter.

Then when you want to view just the first screenful of any file, type:

MORENEW < filename

Unfortunately, however, both MORE.COM and its patched
MORENEW.COM cousin display files exactly as they appear. If you
happen to be using a word processor such as WordStar that meddles with
the high bit and makes the text unreadable in DOS, MORE and
MO RENEW will keep it unreadable. But PEEK will straighten it out.

1074 PC Magazine DOS Power Tools

PLAY
Command

Michael J. Mefford

Purpose: Provides many of the music-producing functions of the BASIC PLAY
statement without the need to work in BASIC.

Format: [d:] [path] PLAY [/K]
[d:] [path]PLAY string[/K]
[d:] [path]PLAY filespec/F[/K]

(Option I)
(Option II)

(Option III)

Remarks: Entered at the DOS prompt with no arguments on the command line (Op
tion I), PLAY looks in the current directory for a file named PLAY .DAT
and executes the commands in that file. The PLAY.DAT file included
on this disk is "Greensleeves." The file can be examined, and similar
files created, with a regular ASCII word processor.

Alternatively, PLAY can use either a command-line string (Option II) or
any legal DOS filename (Option III) to supply the music command argu
ments. Filenames may include a path designation, but must include the
IF terminator.

Pressing any key while PLAY is executing will terminate operation un
less the /K switch has been added.

The command set used with PLAY is shown on the following page and
is used in the PLAY.DAT file.

The PLAY Command Set

K Keyboard. K will cause PLAY not to poll the keyboard during play. If K
is not found, any keystroke will exit.

On Octave. n is a decimal number between 0 and 6. Middle C starts 03. The
default is 04.

Ln Length of time the notes will be played until the next L command is en
countered. n is a decimal number between 1 and 64. For example, L4 =
quarter-note and L8 =eighth note.

Assembly Language Programs 1015

To Tempo is the pace at which the music is played. n is a decimal number
between 32 and 255. The larger the number, the faster the pace. The
default is T120.

A-G Letter names corresponding to the notes of the scale. The letter name
may be followed by either a# or + for a sharp, or a - for a flat 03C =
middle C.

No Note to be played. n is a decimal number between 1 and 84. Each incre
ment is 1/12 of an octave. N can be used as an alternative to defining a
note by a letter and an octave. For example, N37 = middle C.

Po Pause, or rest, for a length defined by n. P works in the same way as the
L command above. For example, P2 = a half rest.

MN Music Normal. The note is played 7 /8 of its specified time, and 1/8 is a
rest between notes. This is the default.

ML Music Legato. The note is played the full length of time specified.

MS Music Staccato. The note is played 3/4 of the time specified, and 1/4 is a
rest between notes.

Dot. A dot can follow a letter note or a pause. A dotted note increases
play time by half the duration of the note or pause. More than one dot
maybe used.

POP-CAL
Command

Leo Forrest

Purpose: Pops up a calendar window for any month from January, 1583 to Decem
ber, 9999.

Format: [d:] [path]POP-CAL

Alt-C
Right-Arrow
Left-Arrow
Up-Arrow
Down-Arrow

(loads command into memory)

J I 14 ' '

Toggles calendar on/off
Advance one month

Back one month
Advance one year

Back one year

1076 PC Magazine DOS Power Tools

Remarks: POP-CAL is a memory-resident utility and should be loaded into
memory before you call up any applications programs. Nonnally, you
would simply enter POP-CAL as one line in your AUTOEXEC.BAT file.

Notes:

POP-CAL takes the current month and year as its initial value. It sub
sequently remembers your last-used calendar, facilitating repeated
references.

1. You may use DEBUG to change the hotkey from Alt-C by replacing
the Alt-key scan code value at offset 0174. To change the hotkey to Alt
Q (scan code 10), enter:

DEBUG POP-CAL.COM
E 174 10

w
Q

The hex values for the various scan codes are given in Appendix E of the
IBM BASIC manual (3.0) and also in the "Scan Code Value Table" in
connection with CAPTURE, elsewhere in this manual.

2. While POP-CAL has been tested for compatibility with a number of
other memory-resident programs, be careful when using it with other
TSR programs.

POPDIR (and PUSHDIR)
Command(s)

John Friend

Purpose: Provides a way to return automatically to your current directory after run
ning programs that require directory changing.

PR
Command

See PUSHDIR.

John Dickinson

Purpose: Prints the standard ASCII files of program listings according to a stand
ard fonnatted style.

Assembly Language Programs 1077

Format: [d:] [path]PR [d:] [path]filename[.ext]

Remarks: PR.COM formats the program listing into 80 columns, expands ASCII
tabs, adds a seven-line header and a blank footer, and prints 55 lines of
the listing on each 66-line page. The header contains the filename, page
number, and date and time the program was last saved.

Notes: The listings photoreproduced in PC Magazine's Programming/Utilities
column are often printed using PR.

PRN2FILE
Command

Tom Kihlken

Purpose: Intercepts and captures any output directed to your printer and instead
sends it to a file that you can edit or print later.

Format: [d:] [path] PRN2FILE [d:] [path] filename [/Pn] [/Bn] [/U]

Remarks: PRN2FILE is a memory-resident program that is normally loaded as part
of your AUTOEXEC.BAT file. It should be installed before other print
utilities, such as a print spooler or the DOS MODE command. Once you
install it, you may run the program multiple times to change the filename
(the drive and path default to the current directory unless specified)
designated to receive the printer output.

Unless the filename is changed, successive print operations are appended
to the created file, to prevent overwriting it. To disable the printer output
redirection, simply omit specifying a filename.

The optional /Pn parameter designates the printer number (the default is
LPTl) to be redirected. Note that output to a non-existent printer (jP2 in
a one-printer system) is supported. This is another way to permit normal
printing while PRN2FILE remains resident. Legal values for Pn range
from 1 through 3.

The optional /Bn parameter sets the buffer size. The default value is
4,096 bytes, and values up to 64K may be specified. The buffer repeated
ly empties when partially full in order to minimize the chance of buffer
overflow even when DOS may be called on for other activities than writ
ing the buffer to disk. If the buffer overflows the program will print an

,, I It

1078 PC Magazine DOS Power Tools

error message, but you may lose some data. If this happens, rewrite the
file using a larger buffer.

·The optional /U parameter is used to unload PRN2FILE from memory.
If other memory-resident utilities have been loaded after PRN2FILE and
have chained onto the same interrupts, it will not be possible to unload
the program, and a message to this effect will be displayed.

All optional parameters may be entered in any order, but must each be
separated by a single space character that acts as a delimiter.

PRNBYLIN
Command

Russell W. Powell

Purpose: Memory-resident Shift-PrtSc enhancer that lets you send sections of the
screen rather than the entire display to your printer; also lets you exit
from accidental Shift-PrtScs.

Format: [d:] [path] PRNBYLIN

Remarks: When you're debugging a program or working on a spreadsheet, you
often need to use the DOS Shift-PrtSc function to print out just a few
lines of code or some current figures. More often than not this results in
a large amount of wasted paper.

Notes:

PRNBYLIN.COM gives you control over the normal DOS print screen
function.

Once you load it, you may select the exact lines you want printed
without having to print the entire screen. When in the 80-column mode,
you can move the selection bar by using the+ and - keys on the number
pad and mark your position by pressing Enter. The program uses DOS' s
normal print screen function when not in the 80-column mode.

It also lets you escape out of an accidental Shift-PrtSc by hitting Esc.
And you can hit Esc if you realize you marked the wrong area and want
to start over.

While PRNBYLIN.COM works from inside most applications, some
programs may override it by providing their own PrtSc routines. And
since this is a memory-resident program, be careful when using it with
other TSR software. As with all the resident programs presented here,

Assembly Language Programs 1079

test it first in your current system configuration before using it with un
saved files.

PRNSWAP
Command

Charles Petzold

Purpose: Alternately swaps printer ports LPTl and LPT2.

Format: [d:] [path] PRNSWAP

Remarks: This tiny program (five assembly language instructions) flip-flops the
first two parallel printer ports.

PRSWAP
Command

Running it once will swap ports LPTl and LPT2. Running it again will
put things back the way they were.

PRNSW AP actually switches the printer I/O port address stored in the
BIOS data area. The BIOS uses these to determine where to send LPTl
and LPT2 output. PRNSW AP may not work if you've previously loaded
a software print buffer, since print buffers often grab the port address
when they first load.

John Dickinson

Purpose: Converts IBM text-graphics characters into ASCII characters that can be
printed by nongraphics printers.

Format: [d:] [path] PRSWAP

Remarks: Many printers can't handle the IBM text-graphics characters (nonstan
dard ASCII 176-223 and 254) programmers often use to make their

. screen displays look more attractive. PRSW AP.COM is a memory-resi
dent program that translates these characters into presentable-looking
ASCII substitutes.

PRSW AP should be loaded only once until you power down or hit Ctrl
Alt-Del. If you intend to use it regularly, the best place to put it is in
your AUTOEXEC.BAT file.

• I 14

1080 PC Magazine DOS Power Tools

PRT2SCR
Command

Dean Perry

Purpose: Redirects all printer output to the screen.

Format: [d:] [path] PRT2SCR

Remarks: Even the fastest printers are slow, and most are noisy and cumbersome.

Notes:

It's easy to waste a lot of paper while trying to align rows and columns
correctly, or when you issue an accidental screen dump. And some
programs insist on having a printer hooked up, which makes them dif
ficult to use on a laptop 35,000 feet above Missouri.

PRT2SCR is a memory-resident utility that solves these problems by
redirecting all normal printer output to the screen.

It works by intercepting printer services interrupt 17H. When a character
is sent to the printer via function 0, that character is teletyped to the
screen using a simulated interrupt call to video services function OEH. If
any of the other function calls is sent to printer services, the status code
is set to PRINTER OK and the calls are ignored. PRT2SCR remains ac
tive until the computer is rebooted.

This program is also great for users who do not have a printer or whose
printer is on the fritz. Now you can run those programs that require a
printer to be present and not worry about those "Printer not ready" errors.

Unless you're using an extremely rude word processor, PRT2SCR lets
you print output to the screen so you can see how things will look before
wasting a box of paper.

1. You have to run PRT2SCR only once each session, and the only
way to remove it from memory is to reboot unless you use IN-
ST ALL/REMOVE.

2. Since this is a resident program, test it first with the other applica
tions you normally run to prevent trouble.

PRTSCRFF
Command

Assembly Language Programs 1081

Gary Khachadoorian

Purpose: Adds an automatic form feed each time you do a Shift-PrtSc screen
dump.

Format: [d:] [path] PRTSCRFF

Remarks: One of the major irritations in doing a series of Shift-PrtSc screen dumps
is that every time one finishes you normally have to take the printer
offline, press the form-feed button, then put the printer back online.

Once you run the memory-resident PRTSCRFF.COM program,
however, your system will automatically add a form feed to each screen
dump. You won't have to contend with the front panel printer switches,
and you won't accidentally leave the last screen dump in the printer.

PRTSCRFF.COM simply calls the original BIOS print screen routine (in
terrupt 05H), and follows it up by sending a form feed to the printer.
This is especially useful for the Hewlett-Packard Laser Jet printer. The
LaserJet' s standard print screen is held in a buffer until you take the
printer offline and press the form-feed button. But with PRTSCRFF the
page is automatically printed and fed through the system.

You have to run this program only once, so it may be convenient to put a
PRTSCRFF line in your AUTOEXEC.BAT batch file.

PUSHDIR (and POPDm)
Command(s)

John Friend

Purpose: Provides a way to return automatically to your current directory after run
ning programs that require directory changing.

Format: [d:] [path] PUSHDIR
[CD \AltDir\ProgName]
POPDIR

1082 PC Magazine DOS Power Tools

Remarks: While PUSHDIR and POPDIR can be entered directly from the DOS
prompt, their primary application is in batch files. For example, suppose
you create a file named 12.BAT that consists of the following four lines:

PUSHDIR
CD\LOTUS
123
POPDIR

Suppose also that 12.BAT, PUS HD IR.COM, and POPDIR.COM are
either in your root directory or in a subdirectory on the path specified in
your AUTOEXEC.BAT file. Assume, finally, that you are currently in
your word processing subdirectory (\WP), but need some information
from a 1-2-3 spreadsheet. If you now enter:

12<CR>

from the DOS prompt, PUSHDIR stores the \WP (your current direc
tory) on its stack and DOS changes to the \LOTUS subdirectory and runs
1-2-3. When you exit from 1-2-3, you would normally be left in the
\LOTUS subdirectory. A DOS CD command in 12.BAT after the 123
line could return you to a specified directory every time you terminated
1-2-3, of course. But POPDIR returns you to whatever subdirectory you
were in when you invoked 1-2-3 - in this case, to your \WP subdirec
tory.

PUSHDIR can accommodate up to six levels of directories on its stack,
permitting considerable programming flexibility in constructing batch
files.

QUICKEYS
Command

Leo Forrest

Purpose: Accelerates the "typematic" repeat rate of a PC or XT keyboard. A built
in subprogram is included that instantly clears the keyboard buffer to
prevent sending excess accumulated keystrokes to the display.

Format: [d:] [path]QUICKEYS (loads memory-resident program)

<Alt-Shift> (clears keyboard buffer)

Assembly Language Programs 1083

Remarks: While the keystroke repetition rate of the AT is adjustable, that of the
XT and the PC is fixed at approximately nine keystrokes per second.
When QUICKEYS is loaded (normally through your AUTOEXEC.BAT
file), the repetition speed is approximately doubled. Successive loadings
of QUICKEYS (each requires about 672 bytes of memory) can be used
to increase the keyboard speed still further, if desired.

Notes: QUICKEYS is a memory-resident program that inserts itself both into
the timer tick and keyboard interrupt routines. It is not compatible with
some other memory-resident software and with programs that ap
propriate the keyboard interrupts.

REBOOT Paul Somerson
Command

Purpose: Let you select a warm boot or a cold boot, or abort the rebooting process.

Format: [d:] [path] REBOOT

Remarks: This is a very simple program that prints a short message onscreen and
gives you three options. You can:

1. Press C or c for a cold boot.

2. Press W or w for a warm boot.

3. Press Esc to abort and return to DOS.

The program ignores any other keypresses.

REBOOT is handy when you're there to answer the prompt interactive
ly. But you may want to put a cold/warm rebooting program into a batch
file. If so, run the REBOOTB.COM program also included in this pack
age.

While REBOOTB.COM was written for batch files, you can use it direct
ly at the DOS prompt as well. But it's better to use the main
REBOOT.COM program, since REBOOT lets you abort the process if
you want, and won't do anything if you accidentally press the Enter key
or press any key other than C or W.

f I 14

1084 PC Magazine DOS Power Tools

Notes: 1. Wann boots and cold boots are virtually identical, except that a cold
boot performs an additional power-on-self-test (POST) as if you had
turned the main power switch on and off, while a warm boot skips these
tests just as if you had pressed Ctrl-Alt-Del.

2. When a PC boots, its BIOS checks a flag word (two bytes) at loca
tion 40:72. If the value of the flag is hex 1234, BIOS does a warm boot.
If the flag is not 1234, BIOS does a cold boot. Once you boot up, it puts
a 1234 there so subsequent Ctrl-Alt-Del warm boots can skip the POST.

3. If you use DEBUG to look at addresses 40:72 and 40:73 you 'II see
34 12 rather than 12 34, since the PC stores words in "backwords., order.
The high order byte (12) goes into the higher memory address (40:73),
while the low order byte (34) goes into the lower memory address
(40:72). Despite this, the word takes the lower memory address as its
own.

See W ARMBOOT, COLD BOOT, and REBOOTB.

REBOOTB
Command

Paul Somerson

Purpose: Lets you include a line in a batch file that performs either a cold or warm
reboot.

Format: [d :] [pa th] RE BOO TB [c]

Remarks: REBOOTB.COM lets you perform a warm boot by entering just:

RE BO OTB

If you add an uppercase or lowercase C after it:

REBOOTS C

or:

REBOOTS c

Assembly Language Programs 1085

it will do a cold boot. (Actually, the program will do a wann boot if you
enter anything else on the command line other than an uppercase or
lowercase C.)

While REBOOTB.COM was written for batch files, you can use it direct
ly at the DOS prompt as well. But it's better to use the main
REBOOT.COM program, since REBOOT lets you abort the process if
you want, and won't do anything if you accidentally press the Enter key
or press any key other than C or W.

See W ARMBOOT, COLD BOOT, and REBOOT.

RED (Redirect)
Command

John Dickinson

Purpose: Transfers one or more files from one subdirectory to another without re
quiring the use of COPY and ERASE.

Format: [d:] [path] RED [d:] [path] filename [.ext] [d:] [path]

Remarks: Like the DOS COPY command, RED.COM supports the use of the
global characters ? and * in specifying the desired source files.

Unlike COPY, however, RED.COM does not permit renaming a file
during the transfer process. (This is why it is unnecessary to supply a tar
get filename.) Furthermore, RED requires that the source and target
drives be the same. You cannot, therefore, remove a set of files from
drive C: by trying to REDirect them to drive A:.

Example: Before submitting your income tax you calculated it under several dif
ferent methods, contained in files named ROUGH I .DAT through
ROUGH6.WKS. These are all in the subdirectory \IRS on drive C:, and
you want to move them all to a sub-subdirectory (which you have
created) called \1988T AX\DRAFTS. From the C> prompt enter:

RED \IRS\ROUGH?.* \1988TAX\DRAFTS

and all six files will be moved out of \IRS and into \1988\DRAFTS.

1086 PC Magazine DOS Power Tools

REMOVE (and INST ALL)
Command(s)

Jeff Prosise

Purpose: This pair of utilities lets you load and unload programs in and out of
memory to avoid potential conflicts and excessive memory use.

REND IR
Command

See INST ALL.

John Dickinson

Purpose: Permits renaming subdirectories directly, without creating a new direc
tory, moving the contents of the old one into it, and then removing the
old directory.

Format: [d:] [path] REND IR [d:] [path] oldname [.ext] newname [.ext J

Remarks: PC-DOS has always provided a REName command for filenames, but
not for directories. A bug in DOS 3.0 permits you to use the immediate
mode of BASIC to:

NAME olddir AS newdir

but this bug has been removed from subsequent DOS versions. REN
OIR.COM permits renaming directories in DOS 3.0 and later.

While RENDIR allows you to change the name of a directory on another
drive than your current one, it does not permit you to transfer a directory
to another drive by RENDIRing it. Thus, for example, if you are on
drive C: and have a directory on drive D: named \TAXES, from the C>
prompt you can:

RENOIR O:\TAXES \TAXES88

You cannot, however:

RENOIR O:\TAXES C:\TAXES88

Notes:

Assembly Language Programs 1087

Furthermore, you should not use REND IR to try to change the name of
the subdirectory you are currently in.

1. Unlike RENAME, RENDIR does not support use of the ? and *
wildcard characters.

2. Requires DOS 3.0 or higher.

REPEATS
Command

Michael J. Mefford

Purpose: Checks all directories on a drive and reports all duplicate filenames.

Format: [d:] [path] REPEATS [d:] [/P]

Remarks: While not all duplicate files on a disk are unnecessary, most are. If a
hard disk has been in use for some time it is astonishing how many out
dated versions or outright copies of the same file are currently wasting
space.

REPEATS lists all identical filenames, together with their directory,
size, date, and time information, so you can decide which files to delete.
The optional IP switch directs the program output simultaneously to the
screen and to a printer. As an alternative, you could redirect output to a
file, DUPS.FND, by using the DOS redirection command, thus:

REPEATS > DUPS.FND

Notes: During the time it operates, REPEATS requires 128K of available
memory. The program can be terminated prematurely by pressing Ctrl
Break.

RESET Paul Somerson
Command

Purpose: This tiny program resets the clock to 0:0:0.

Format: [d:] [path] RESET

, I ll , 1

1088 PC Magazine DOS Power Tools

Remarks: It's often necessary to reset the time-of-day clock to 0 so you can use it
to time the duration of an event or log an activity. While you can redirect
a text file containing "0:0" into the TIME command, this does it cleanly.

See MID$.

REVERSE
Command

JozefH. Khoe and Paul Somerson

Purpose: Lets you flip your foreground and background screen colors without
clearing the screen.

Format: [d:] [path] REVERSE

Remarks: This is handy if you're using a color system and type CLS, which nor
mally makes the screen white on black. To flip the colors to black on
white, just run this program. Running it a second time will restore things
the way they were.

Notes:

If you're using a color screen with highlighted (bright) text, running this
program will make the text blink. To fix this, just press F3 and Enter to
run it again.

This program is hard-wired for an 80 x 25 screen.

RFD
Command

J. S. Redmond

Purpose: Removes all files in a directory and the directory itself with a single com
mand either in direct or batch mode.

Format: [d: J [pathJRFD [d:]path [/YJ

where [d:]path is the subdirectory you want to erase, and the optional IY
bypasses a confirmation prompt and suppresses messages.

Remarks: DOS lacks a utility that in one step deletes all of the files in a specified
directory and then removes the directory. RFD.COM (Remove Files and
Directory) lets you do this either directly at the DOS prompt or unat-

----------··"················------

Assembly Language Programs 1089

tended inside a batch file. And it reports on the success or failure of the
process.

In interactive mode the program asks the user whether or not to proceed,
with the prompt:

** WARNING ** - All Files Will Be Deleted
Do You Wish to Proceed (Y/N) ?

Entering anything other than a Y or y at this point terminates the
program and prints a message to that effect.

Adding a /Y at the end of the command puts the program into batch
mode, which bypasses this prompt and supresses all of RFD' s normal
messages. However, RFD can tell a batch file exactly what happened by
returning an exit code that the batch file can sniff out with an IF ERROR
LEVEL test.

RFD terminates with one of five return codes for IF ERRORLEVEL:

99 - Syntax Error
98 - Program Terminated By Operator
05 - Access Denied - Found Protected File
03 - Specified Path Not Found
00 - Normal Termination - Removed

When RFD encounters a read-only, hidden, or a system file it stops,
since such files are usually marked that way for good reason. RFD will
delete all files it finds until it encounters a protected file. If the protected
file is the first directory entry, no files will be deleted and RFD will exit
with a 05 return code.

Like the RD command, RFD will not remove the directory that it is in.
But it will delete all of the files in the current directory. This is easier
than typing:

ECHO Y I DEL *·*

or:

FOR %A in (*.*) DO DEL %A

both of which will wipe out all your files.

f I I II

1090 PC Magazine DOS Power Tools

When you use the fY option be absolutely certain that you've entered the
correct directory. RFD, like the RD command, will not allow you to
remove the root directory, or delete the files in it.

Before DOS will allow the deletion of a subdirectory, it checks to see if
the subdirectory has any entries (files). If the subdirectory is empty, it
may be deleted. If not, all entries must be eliminated prior to deleting the
subdirectory. RFD does this task in one step.

Neither DOS nor RFD will let you remove a directory if it contains
another subdirectory. You'll have to use RFD to delete the lowest level
(farthest from the root) subdirectories first and then move up the tree.

RFD scans the command line for the switch indicator to see whether or
not it's in batch mode. Once the mode has been established, the re
quested path name and its length are noted and stored. Command line
parsing was kept to a minimum, and as a result RFD does not trim any
leading blanks from the requested path name. If you specify the root
directory as the path name, RFD will issue a syntax error. If you try to
place a blank before the \to bypass this feature, you'll get a "Path Not
Found" error.

Notes: RFD makes it very easy to delete a lot of work - especially when you
add a fY switch at the end. Be very careful in typing in any RFD com
mand, and be sure you want to wipe out everything in the specified direc
tory.

RHCTRL Johnny Y. Chin
Command

Purpose: Turns the 5 key on the cursor/number pad into a second Ctrl key (for the
right hand).

Format: [d:] [path] RHCTRL

Remarks: The old AT keyboards have one Ctrl key on the left. The new ones have
Ctrl keys on the left and right sides. RHCTRL.COM puts Ctrl keys at
both ends of the keyboard by turning the number pad 5 key into a second
Ctrl shift.

The number pad 5 key is a perfect choice, since it isn't affected by Num
Lock shifts the way the other number pad keys are. This additional Ctrl

Assembly Language Programs 1091

key can come in very handy for WordStar users with small handspans.
But don't try using it with SideKickor other interrupt 9 hogs, unless you
like cold restarts.

The best way to load this is to use INST ALL I REMOVE, which will let
you juggle it and SideKick amiably.

RN
Command

Michael J. Mefford

Purpose: Simplifies creating, removing, renaming, hiding, unhiding, and changing
from one subdirectory to another. It sets and resets the read-only and ar
chive bits of all files within a directory, and reports the filecount and
space allocated. It also can run the PC Magazine DR.COM program for
handling individual files.

Format: [d:] (path]RN (d:] (/I]

Remarks: You may enter RN either as an immediate command at the DOS prompt,
or can install it on a hard drive (using the II option) with a memory-resi
dent database of directory information that speeds up its subsequent
operations. If no drive (d:) is specified, the current drive is assumed.

If installed, RN should be loaded before SideKick and any other
uninstallable memory-resident programs. (RN cannot be deinstalled
without rebooting.) The program requires l 28K RAM operating room;
the database, if used, occupies approximately 14K. RN cannot be called
up from within an application with a hotkey; it can be accessed only
from the DOS prompt. Pressing Esc terminates RN' s operations.

When issued, RN .COM brings up an alphabetized directory tree with the
current directory highlighted and a menu listing the function keys used
for its various directory services. You can move the highlighted direc
tory bar one entry at a time by the Up Arrow and Down Arrow keys, and
in larger increments with the Ctrl-PgUp and Ctrl-PgDn, PgUp and PgDn,
and Home and End keys. The highlighted bar should be placed on the
directory to be affected by the subsequent function key.

When renaming (F2) and creating (F3) directories, do not enter the back
slash(\) character. However, be sure to include it in figuring the maxi
mum path length (63 characters). If you select and confirm RMDIR
(F4), RN will delete all files within the directory (unless they are marked

,. ~ I it

1092 PC Magazine DOS Power Tools

read-only) before removing the directory. Hide/Unhide (FS) affects the
directory name only, not the individual files inside it. F6 and F7
(mark/unmark as read-only and set/reset the archive bit) toggle these bits
on all files within the directory. F8 updates the directory data base if
changes are made outside RN, and F9 gives a file count together with the
space allocated to a directory's files. FlO calls DR.COM.

Note: 1. F2 (Rename Directory) requires DOS 3.x.

2. To reduce or expand the RAM requirements of an installed RN you
can change the offset directly with DEBUG. First decide how many
directories you 'II ever expect to need and add another 50 directories or
so as a buffer. (Caution: RN does not check to see if there are more direc
tories than it has room to store, so you need to be a little generous.) Mul
tiply your directory requirements by 20 (there are 20 bytes per record),
add 4541 (the length ofRN's code plus some string space) and convert
the result to hex. SideKick's calculator is handy for this type of addition
and conversion. Then enter:

DEBUG RN.COM
E 676 yz wx
w
Q

Note that wxyz is the number you calculated above (in hex), but that the
word must be stored in byte-reversed order, yz wx.

ROMINFO
Command

Paul Somerson

Purpose: Reports the date, copyright notice, and ID byte embedded in your ROM
BIOS chip.

Format: [d:] [path] ROMINFO

Remarks: IBM changes the BIOS with each new system. Some older BIOS chips
had serious problems. For instance, the BIOS in an original PC prevents
it from booting off a hard disk. And most systems have gone through
several revisions (see chart).

Fortunately, IBM socketed its ROM chips to let you upgrade them. Un
fortunately, it also stopped selling some of the upgrade ROMs. If you're

Assembly Language Programs 1093

trying to install a hot new piece of hardware on an old system and it
doesn't work, one reason could be a ROM that needs upgrading.

You can use ROMINFO.COM to detect the date (which IBM calls the
"release marker"), the copyright notice, and the machine ID byte. If it
tells you that you're using an older ROM, you might be able to have
your dealer switch ROM chips with someone who doesn't need the
newer one.

If you're using an IBM system you'll probably see some of the follow
ing information:

ROM date ID System

04/24/81 FF IBM PC (collector's item)
10119/81 FF IBM PC (bugs fixed)
08116/82 FE IBM XT (first one)
10/27/82 FF IBM PC handling hard disk and 640K
11/08/82 FE IBM Portable PC, XT
06/01/83 FD IBMPCjr
01110/84 FC IBMAT
06/10/85 FC IBM AT (revision 1)
09/13/85 F9 IBM PC Convertible
11/15/85 FC IBM AT with speed governor, 30-meg hard disk,

enhanced keyboard (submode! 1)
01/10/86 FB IBM XT (revision 1)
04/21/86 FC IBM XT-286 (submode! 2)
05109186 FB IBM XT (revision 2)
09/02/86 FA IBM PSl2 Model 30

NIA FC IBM PSl2 Model 50 (submode! 4)
NIA FC IBM PS/2 Model 60 (submode! 5)
NIA F8 IBM PS/2 Model 80

The ID byte in the center column is a single value at the very top of
memory (address FOOO:FFFE) that some software uses to determine the
kind of hardware it's dealing with.

Examples: Executing ROMINFO.COM on an early AT would report:

ROM date at address FOOO:FFF5 is 01/10/84.
(C) notice at address FOOO:E005 is COPR. IBM 1984.
ID Byte at address FOOO:FFFE is FC.

,, I I II

1094 PC Magazine DOS Power Tools

Notes:

RUN
Command

This looks at the hard addresses mentioned above. The ID byte should be
at the same place in most systems, but the copyright notice and perhaps
even the ROM release marker may not If not, the program will print
whatever characters happen to be at those addresses and you may just
see garbage.

Michael J. Mefford

Purpose: Executes COM, EXE, or BAT files from any disk directory without re
quiring changing directories or specifying a path to the file.

Format: [d:] [path] RUN [/Cl/SJ [d:] [directory] filename [args]

Remarks: Unless you specify the optional directory parameter, RUN will search
the entire default disk for the file you want to execute. You may add any
additional arguments [args] that you would normally specify on the
DOS command line after the filename. You must specify a drive letter

Notes:

[d:] if the file to be run is not on the current drive. During its search, any
keypress will abort the operation of RUN.COM.

RUN can either operate from the current directory (its default mode,
designated by the optional IS switch) or it can change to the directory
(IC) in which it finds the desired program before executing it. The IC op
tion is required by programs such as WordStar, which can find their over
lay files only when loaded from within the directory in which they are
stored. The IC option is also required to run BAT files under DOS 2.x
(see Notes below).

RUN overcomes the inability of DOS 2.x to handle COM and EXE files
that are prefixed with a path. Batch files under DOS 2.x, however, still
require RUN's IC option. If desired, the IC option can be made the RUN
default mode, with IS as its selectable alternative. To make the change,
put a copy of RUN in the same directory with DEBUG.COM, and enter
the following commands:

DEBUG RUN.COM

E 15B 1
E 1E8 "C"
w
Q

SAY
Command

Assembly Language Programs 1095

If you later upgrade your version of DOS and wish to reverse the
process, use the same procedure with the following commands:

DEBUG RUN.COM
E 15B 0
E lEB "S"
w
Q

Serge Couture

Purpose: Extends the capabilities of the DOS ECHO command by letting you dis
play any character or combination of characters.

Format: [d:] [path] SAY "text" I n [, n, n ...]

where text is any text enclosed in double quotation marks, and each n is
the ASCII value of a character from 0 to 255.

You may enter text, characters - or more commonly - combinations
of both.

Remarks: ECHO is a powerful command but stumbles over nonprintable ASCII
characters, and has other drawbacks. SAY.COM is far more flexible.

SAY will print any text characters from the command line that you
enclose inside double quotes ("). If you want to echo the quotation mark
character itself, use a pair of quotes. If the quotation mark is the first
character to be echoed, triple the quote marks.

SAY will handle nonprintable characters if you type in their decimal
ASCII code value on the command line without embedding them be
tween quotes. If you want to print the redirection or piping characters (<,
>,and I), just use their ASCII values (60, 62, and 124) since DOS will
try to redirect or pipe your command when it sees the actual symbols on
a command line.

Example: If you enter:

SAY "He: ""Compaq?""" 13 10 "She: ""PC AT."'"' 13 10

, '' ,,

1096 PC Magazine DOS Power Tools

the command will print:

He: "Compaq?"
She: "PC AT."

If you want to send an escape sequence such as ESC & 16D to your
printer, do it with:

SAY 27 "&16D" > PRN

And if you use ANSI.SYS, you can redefine FlO to do a clear screen and
a DIR /P by issuing the command:

SAY 27 "[0;68;""CLS"";13;""DIR /P"";13p"

You could even use SAY to automate your DOS chores. Entering:

SAY 13 "DISKl" 13 "N" 13 I FORMAT B: /S /V

would let you format and name a floppy disk without any user interven
tion.

SCAN
Command

Purpose: Displays the make/break scan code for any key.

Format: [d:] [path] SCAN

Robert L. Hummel

Remarks: Each time you press a key, the keyboard controller generates an eight-bit
value called a make code. When you release the key, it generates another
eight-bit value called a break code. The value of the break code is equal
to the value of the make code plus hex 80 {decimal 128). These values
are called scan codes, and memory-resident programs often monitor
these to see if you happened to type the hot key that will activate a par
ticular TSR.

SCAN.COM will display the make/break code in hexadecimal notation
for any key you type. Holding a key down will cause the make code to
auto-repeat. Pressing the spacebar will exit the program and return to
DOS. Because of this, the program cannot be used to find the
make/break codes for the spacebar {which are 39H and B9H).

Assembly Language Programs 1097

Each key on the keyboard - including keys such as Ctrl, CapsLock, and
every function key - has its own scan code. These are really just
proprietary numbers assigned by IBM to identify the physical keys being
struck. When you press the A key. you could be typing a lowercase a, or
an uppercase A, or a Ctrl-A, or an Alt-A. Your system's BIOS figures all
this out.

See Robert Hummers BIOS program in this section for more details on
how BIOS handles keys.

The SCAN.COM program was originally written to display codes con
tinuously on the same line, which saved space if you wanted to examine
a lot of keys in a row. However this version inserts carriage returns to
put each code on a line by itself, which makes them easier to examine. If
you want to remove the carriage returns and display everything con
tinuously, use DEBUG to make the following patch:

DEBUG SCAN.COM
F 146 LA 90
w
Q

SCANDIR
Command

Michael J. Mefford

Purpose: Permits side-by-side comparison of the contents of two directories using
either separately controllable or synchronized forward/backward scroll
ing.

Format: [d:] [path]SCANDIR [d:]directoryl [d:]directory2

Remarks: The directories to be compared do not have to be on the same drive. Use
the normal DOS backslash (\) character in specifying the path to a
desired directory. The DOS wildcard symbols(* and?) may be used to
limit the filenames displayed.

The two directory listings are presented in the normal DOS order and for~
mat. A status line at the bottom of the screen shows whether the right or
the lefthand column will be scrolled. Use the Left or Right Arrow keys
to set scrolling on for the alternate column, or use the ScrollLock key to
toggle synchronized movement on or off. The Up and Down Arrow keys
control forward and backward scrolling of the listing(s) one line and a

,, I I l.f 1 >

1098 PC Magazine DOS Power Tools

Notes:

SCLEAN
Command

time. The PgUp and PgDn keys move the listing(s) one full screen (20
filename lines) at a time. In the forward direction, if scrolling continues
beyond the last filename in a directory, the listing commences again at
the beginning.

I. SCANDIR is an onscreen program: its display cannot be saved to a
file or redirected to a printer. If you require these capabilities, use DIR
COMP.COM, which is also included on this disk.

2. Because SCANDIR loads a secondary command processor, a copy
of COMMAND.COM must be available on the boot-up drive (floppy or
hard disk).

Michael F. Roberts

Purpose: Searches an entire disk for specific filenames (or wildcards) and offers
you the chance to erase or retain files selectively.

Format: [d:] [path]SCLEAN [d:]filename

Remarks: It's easy to fill up a hard disk with files that may no longer be needed.
DOS doesn't let users delete files globally across subdirectories, but
SCLEAN.COM will.

SCLEAN (named for its Selective Cleaning ability) begins its search in
the root directory and then scans any subdirectories it finds. Whenever it
sees a filename that matches the one you specified, SCLEAN will print
out the filename and its path and then wait for you to enter a Y or an N.
A Y will automatically delete the match, while an N will leave it alone.
If any other key is pressed, the question will be repeated.

Example: To have SCLEAN .COM find all the extra copies of COMMAND.COM
that have somehow migrated into various subdirectories, type:

SCLEAN COMMAND.COM

Answer N when it asks if you want to delete the one in the root direc
tory. but Y to all the other prompts.

Assembly Language Programs 1099

To have SCLEAN.COM find all the files in every subdirectory on your
disk that begin with the letter Q and offer you the opportunity to delete
them one by one, type:

SCLEAN Q*.*

SCRLLOFF
Command

Purpose: Turns ScrollLock shift off.

Format: [d:] [path] SCRLLOFF

Mike Cohn

Remarks: See KEYLOCK, NUMON, NUMOFF, CAPSON, CAPSOFF,
SCROLLON, LOCK, and LOX.

SCROLL Tom Kihlken
Command

Purpose: Lets you control the portion of the screen that scrolls.

Format: [d:] [path] SCROLL n

where n is the number of lines that will be scrolled.

Remarks: It's frustrating when text scrolls off the top of the screen while it's still
needed. SCROLL.COM can limit the part of the screen that scrolls.

You could use SCROLL.COM to prevent a title message from disappear
ing from the top of the screen in a batch file. Or you could keep a direc
tory listing at the top of the screen while you clean up your files.

Example: To have only the bottom ten lines of your display scroll while the top 15
lines stay firmly in place, enter:

SCROLL 10

, l u

1100 PC Magazine DOS Power Tools

Notes:

To reset things to nonnal so all lines again scroll (on a 25-row screen},
enter:

SCROLL 25

1. Only programs that do teletype (TTY} output, such as DOS, will be
affected. Programs that write directly to video memory, such as most
word processors, continue to operate nonnally.

2. SCROLL works by intercepting the BIOS scroll function. Nonnally
during teletype output, all 25 lines are scrolled. With SCROLL installed,
the top boundary of the scroll region is changed so that only the lower
lines move upward.

SCROLL2
Command

Charles Petzold

Purpose: When used with WAIT ASEC, saves the current display and scrolls it off
the screen.

Format: [d:] [path] SCROLL2

Remarks: To use this, enter SCROLL2 before beginning W AITASEC, and every
thing on the screen will scroll off the top and be captured in the
WAIT ASEC buffer.

See W AITASEC.

SCROLLON
Command

Purpose: Tums ScrollLock shift on.

Format: [d:] [path] SCROLLON

Mike Cohn

Remarks: You can create a version of this program called SCRLFLIP.COM that al
ternately toggles the ScrollLock shift on and off every other time it ex
ecutes.

SEARCH
Command

Simply type:

DEBUG SCROLLON.COM
E 108 34
N SCRLFLIP.COM
w
Q

Assembly Language Programs 1101

See KEYLOCK, NUMON, NUMOFF, CAPSON, CAPSOFF,
SCRLLOFF, LOCK, and LOX.

Michael J. Mefford

Purpose: Searches all or specified directories on a disk for either designated
filenames or the first occurrence of character strings within files.

Format: [d:] [path] SEARCH [filespec] [string] [/P] [/C] [/B]

Remarks: SEARCH defaults to a diskwide search of all subdirectories on the cur
rent disk. You can specify a different drive and/or a pathname as part of
the optionalfilespec parameter. Filename searches support the DOS*
and ? wildcards. Character strings within files are identified by putting
them in quotation marks. (The strings may themselves include a pair of
quotation marks.) Pressing either Ctrl-Break or Ctrl-C terminates
SEARCH manually.

To redirect the output of the SEARCH command to a printer, add IP to
the command line, as shown in the first example below. Adding a similar
IC switch will make the search for a character string case-sensitive.

When searching for a character string, SEARCH normally ignores COM
and EXE files. While this saves time, there may be occasions when you
want to find copyright notices, error messages, et al. in an executable
file. To include binary files in the search, add the IB parameter on the
command line.

Examples: To print out a list all the COM files in the \PROG subdirectory of your
current drive, you would enter:

SEARCH \PROG*.COM/P

f ! I lt ' l

1102 PC Magazine DOS Power Tools

To find which of the files in your \LETTERS subdirectory contained the
salutation Dear Miss Jones, enter:

SEARCH \LETTERS "Dear Miss Jones"

Notes: SEARCH returns a line number, based on the number of previous car
riage returns in the file, when it finds a string. It reports only the first oc
currence of the string in each file.

SETUP Jeff Prosise
Command

Purpose: Permits menu-oriented selection and immediate transmission of printer
control codes from within a running application program.

Format: [d:] [path] SETUP

<Ctrl-Right Shift>
<[Shift]<Fx>
<Esc>

(loads command into memory)

(activates menu)
(selects [deselects] mode)
(activates selection(s) and

returns to application program)

Fx is a function key (Fl through FlO) that sends the required control se
quence to the printer. Shift-Fx toggles the selected printer mode off.

Remarks: After loading SETUP (normally via your AUTOEXEC.BAT file), press
the Ctrl-Right Shift key combination for a menu. This can be done from
within application programs that do not take over the keyboard inter
rupts; the application is simply suspended until you leave SETUP by
pressing the Esc key. (Application programs such as XyWrite that do
take over the keyboard interrupts can be used with SETIJP.COM if they
themselves provide the option of temporarily returning to DOS control.)

Notes:

Printer permitting, more than one mode can be selected at once by press
ing additional function keys. The default printer choices are for the
Epson RX/FX series. Option I shows how to modify the program for
other printers.

1. SETUP.COM is a memory-resident program (approximately 3K in
length), and so is subject to conflicts with other memory-resident
software. Several users have reported that it is incompatible with Pro
Key, for example. Similarly, while SETUP.COM is compatible with

Assembly Language Programs 1103

SideKick, the combination of SuperKey and SideKick has been reported
to be incompatible.

2. To modify SETUP for other printers (or to use LPT2: or LPT3: in
stead of LPTl:), use DEBUG.

The following offset addresses, not those originally published in PC
Magazine, should be used:

The menu color attributes (4F and 70) are at offsets 13F and 140.

To change the port number from LPTl: to LPT2: (or LPT3:) change the
default 00 at C7A and at C84 to 01(or02).

The start of the menu text table (532 bytes, beginning with C9) is at
offset 151. The "P" in "PRINTER SETUP :MENU" is at 0172.

The printer control strings themselves begin at 9 Al. Each function key
(and each shifted function key, with the exception ofF19 and F20) can
be assigned a string up to 16 bytes long. Each string must include a
delimiter of FF (255 decimal) that marks the end of the string. The begin
ning of the string for each successive function key starts at an address
that is a multiple of 16 bytes above the base address (9Al) of the table.
You must pad the strings with zeros for any locations that are not used
by actual control codes, so that each string begins on a 16-byte boundary.

SHOW CHAR
Command

Purpose: Displays all 255 ASCII characters.

Format: [d:] [path] SHOWCHAR

Paul Somerson

Remarks: You could use BIOS service hex OE of interrupt 10 to write characters,
since this treats the screen like a teletype, advancing the cursor automati
cally each time it prints a character, and wrapping text down to the next
line when necessary.

However, this service gives special treatment to four ASCII characters:

decimal 7 - beep
decimal 8 - backspace

,. I ll

1104 PC Magazine DOS Power Tools

decimal 10 - linefeed
decimal 13 - carriage return

If you use it to print these four characters, you won't see their character
symbols onscreen. Try to write an ASCII 7 with service OE, for instance,
and instead of displaying the small centered dot character that IBM as
signed to a character 7, all you'll get is a beep.

BIOS services 09 and OA will print the characters IBM assigned to all
256 ASCII values, including the troublesome four above. All three ser
vices, 09, OA, and OE, will display three ASCII characters as blanks:

decimal 0 - null
decimal 32 - space
decimal 255 - blank

The difference between services 09 and OA is that service 09 can change
the attribute as it writes each character, while service OA can't. But with
both of these you have to advance the cursor yourself, since BIOS won't
do it for you.

SHOWCHAR.COM will first use BIOS service 08 to read the attribute
at the current cursor position, and will then use service 06 to clear the
screen to that position. Then it will display all 256 characters in rows of
32.

Displaying the ASCII characters in rows of 32 shows that the lowercase
alphabet letters have values that are decimal 32 (hex 20) higher than
their uppercase cousins.

You can experiment with this program to change the way it displays
characters. For instance, once you've created it, you can type:

DEBUG SHOWCHAR.COM
E 115 DO 07
E 123 EB OA
N SHOWFULL.COM
w
Q

The normal SHOWCHAR.COM program displays only one of each
character at a time. SHOWFULL.COM will display 2000 (decimal 700)
characters at a time - a full 25 x 80 screenful. BIOS will flash through
all 256 full screens of characters in a few seconds.

Assembly Language Programs 1105

Or, to see the difference between services 09 and OA, first use a pure
ASCII word processor or EDLIN to create the following
ADDCOLOR.SCR script file. Be sure to press the Enter key at the end
of each line, especially the last one with the Q:

E llD 88 C3 B4 09 CD 10 FE CO 80 C2 01 80 FA
E 12A 40 75 04 FE C6 30 D2 3C FF 75 E2 C3
N SHOWCOLR.COM
RCX
36
w
Q

Then, at the DOS prompt, type:

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR

and you'll end up with a variation of SHOWCHAR.COM called SHOW
COLR.COM that displays each character using the ASCII value of the
character as the attribute. If you're using a color monitor, you'll see all
256 possible attributes.

SHOWCOLOR.COM will display four rows of characters, rather than
the eight produced by SHOWCHAR.COM. All four rows will be in
color, and because of the BIOS color numbering system, the foreground
colors in bottom two rows will be blinking. The four rows will be
divided into four chunks of background colors that are each 16 charac
ters wide. Within each of these chunks, each of the 16 characters will
have a different foreground color. The leftmost eight will appear in nor
mal colors, while the rightmost eight will appear as high intensity
(bright) colors.

It's easiest to see how this works by using the hex value of each at
tribute. All attributes can be expressed as two-digit hex numbers. The
lefthand and righthand digits can each range from 0 to F, which yields
decimal 256 possible values from 00 through FF.

The lefthand digit represents the background color, and the righthand
digit the foreground color. So on a color system a number like 71 will
produce blue (1) text on a white (7) background, while 17 will yield
white text on a blue background.

However, a value like 4E will produce bright yellow text (E) on a red (4)
background, while E4 will produce bright blinking yellow text on a red

, I "

1106 PC Magazine DOS Power Tools

background. Any value that has a lefthand digit higher than 7 will blink.
So a number like 71 won't blink, while a number like 81 will.

Any value .that has a righthand digit higher than 7 will appear as a high
intensity color. So a number like 47 will produce a normal, low-intensity
color, while 48 will display something in high intensity.

SETCLOCK
Command

Arthur Rothstein

Purpose: Sets the CMOS clock on PC-AT and later IBM systems for users who
are still using a version of DOS prior to 3.3.

Format: TIME
[d:] [path]SETCLOCK

First set the time with the DOS TIME command, then just type
SETCLOCK to make it stick.

Remarks: Prior to DOS 3.3, users of IBM systems with CMOS real-time clocks
had problems when the CMOS battery failed or weakened. (DOS 3.3
was the first version that upgraded the TIME command to set the CMOS
clock directly.)

Notes:

First, they'd have to set the time manually at every power-up. Second, if
they restarted with Ctrl-Alt-Del, BIOS would read the wrong time from
the AT clock and they'd be back where they started.

The only way to reset the clock was to drag out the original setup
program supplied with the Guide to Operations manual, but many users
don't know that, can't figure out how to use it, or can't locate it.

SETCLOCK.COM reads the current time and date from DOS and uses
these values to update the AT' s clock.

This short but very useful utility also comes in awfully handy in the fall
and spring when the time changes backward or forward an hour in most
places.

This works on PC-A Ts and subsequent hardware with CMOS real-time
clocks only.

Assembly Language Programs 1107

SIZE (and A TSIZE)
Command(s)

Art Merrill

Purpose: Calculates the storage requirements of a file or group of files, based on
the number of DOS clusters necessary to make floppy disk and hard disk
copies.

Format: [d:] [path] SIZE [d:] (all files, default directory)

or

[d:] [path]SIZE [d:] [path]filename[.ext]

Remarks: DOS stores files in fixed-length allocation units called clusters. For flop
py disks, the cluster size is 1,024 bytes (two 512-byte sectors); for the
original PC-XT lOMb hard disk the cluster size is 4,084 bytes. On such a
hard disk, whether a file is one byte or 4Kb in actual length (as reported
by DIR), it requires the same amount (one cluster) of storage space. The
PC AT's 20Mb hard disk is less wasteful in handling small files; its mini
mum set-aside (cluster size) is 2,048 bytes. AT users should use AT
SIZE.COM.

Entered without parameters, SIZE (or ATSIZE) returns the number of
bytes used by all files in the current directory, the amount of space re
quired to copy them to a standard (360K) floppy disk, and the amount of
space required for hard disk storage.

Entering SIZE B: returns the same information for a disk in drive B:.
Pathnames and wildcards are supported, so you could enter:

SIZE \PROG*.COM

to learn the number of COM files contained in your \PROO subdirec
tory, and their total size and storage requirements.

SKIP LINE
Filter

Tom Kihlken

Purpose: Lets you display or print a range of lines rather than an entire file.

,. I Ji

1108 PC Magazine DOS Power Tools

Format: TYPE filename I (d:] (path]SKIPLINE n,m

or:

(d:] (path]SKIPLINE n,m < filename

to display a section of a file, and either:

TYPE fil.1 I (d:] (path]SKIPLINE n,m > fil.2

or:

[d:] [path]SKIPLINE n,m < fil.l > fil.2

to create a file called fil.2 that contains a section of fil.1

In all cases, lines numbers in the range of n to m will not be displayed. If
either of the parameters is omitted, the program uses defaults of 0 and
65,535. Be sure to use a comma as a delimiter.

Remarks: All the traditional file functions (COPY, TYPE, etc.) operate on the en
tire file. If you want to see or print just a few lines, you can filter every
thing else out by using SKIPLINE.

Example: To see just the first ten lines and the last 5 lines of a 25-line file called
MEMO:

SKIPLINE 11,19 <MEMO

To copy just lines 1·10 and 20-25 of the MEMO file into a new file
called MEMO.LIL:

SKIPLINE 11,19 <MEMO> MEMO.LIL

To view just the first ten lines of MEMO:

SKIPLINE 11, < MEMO

To view everything in the file called MEMO except the first five lines:

SKIPLINE ,5 <MEMO

Remarks: SKIPLINE counts lines of input by watching for the carriage return
character (ASCII 13). While in the range of lines being skipped, it ceases

. '

Assembly Language Programs 1109

to write characters to the output device while continuing to read. After
the unwanted lines have passed, it resumes echoing data.

SLOWDOWN
Command

Charles Petzold

Purpose: Slows down a fast system to make it simulate a more lethargic system or
give you a fighting chance with games written for the PC.

Format: [d: J [path] SLOWDOWN value

where value is a number from 0 through 65535. This is the value SLOW
DOWN uses for the loop. The higher the number, the slower your AT
will run. A value of 20000 or 25000 will slow down an 8 MHz AT to
about the speed of a 4.77 MHz PC or XT. (ICs not possible to mimic a
PC or XT exactly because the 80286 microprocessor has different speed
advantages depending upon the instruction mix.)

Remarks: Most of the time users are looking for every possible way to speed up
their systems. But if you're producing software on a speedy computer
and you want to see how it would perform on a slower one, if you just
can'tkeep up with games designed to run on pokier systems, or if you're
an old-timer and you just feel nostalgic, it's easy to bring things to a
crawl.

SLOWDOWN.COM is a resident program that intercepts interrupt 8, the
timer interrupt The timer interrupt occurs every 55 milliseconds. Nor
mally, interrupt 8 doesn't do very much, so it doesn't significantly alter
the speed of your computer. SLOWDOWN, however, executes a small
loop every 55 milliseconds to slow down the overall speed of the
machine.

You may execute SLOWDOWN more than once, in which case the loop
values will accumulate. For instance:

SLOWDOWN 10000
SLOWDOWN 10000
SLOWDOWN 5000

is the same as:

1110 PC Magazine DOS Power Tools

Notes:

SLOWDOWN 25000

To get back to normal speed, you'll have to reboot, unless you use it
with a TSR manager like INST ALL/REMOVE.

With a high enough loop value, SLOWDOWN's loop will itself take 55
milliseconds. As soon as the loop completes, another interrupt 8 will
start it all over again. This will slow down the machine to almost a dead
crawl. (Users of TSO on IBM mainframes will experience some deja vu
when this happens.) On an 8 MHz AT, this happens with a loop value of
about 36300.

With loop values higher than this, the 8 MHz AT will start to speed up
again, but it will be jumpy and do things in rhythmic spurts. This is be
cause the loop takes longer than 55 milliseconds and the AT will start
skipping interrupt 8s. Your PC's clock will also start losing time.

1. You can't use SLOWDOWN with programs that must be booted
from diskettes. Note also that some programs may disable interrupts for
a while, grab interrupt 8 themselves, and even reprogram the 8254 timer
chip. SLOWDOWN won't work right with programs that do nasty
things like this.

2. If you write your own software and need to do game-like animation
in your programs, don't use delay loops. Poll the timer values to pace the
program, or grab interrupt lCH and make the program timer-driven.

SNIPPER
Command

Tom Kihlken

Purpose: Copies any portion of a text screen to a printer or saves it to a file, or
acts as an interapplication clipboard and inserts it as keyboard input into
an applications program.

Format: [d:] [path]SNIPPER [rows,columns]

Remarks: SNIPPER is a memory-resident program that is normally loaded as part
of your AUTOEXEC.BAT file. The rows.columns parameter is required
for EGA displays with more than the normal 25 rows and 80 columns.
The default hotkey is Alt-W. Esc returns you to your application.

Assembly Language Programs 1111

When SNIPPER is JX>pped up, it creates its own cursor, which you can
navigate around the screen with the normal arrow keys. To create the
window, first press Enter to anchor the upper lefthand comer. The cursor
keys then open and size the window, which appears in reverse video. It
is not necessary to press Enter again to anchor the lower right comer. In
fact, doing so will pop up a help menu showing the options described
below.

When the desired area is shown, pressing P dumps its contents to your
printer, adding carriage return/line feed characters at the end of each
line. SNIPPER then automatically terminates. Pressing F with the win
dow open prompts for a filename, which may include drive and path. If
no filename is entered, SCREEN.CUT is used as a default. Pressing
Enter writes the marked screen contents to the file. SNIPPER then ter
minates, but remembers the filename. Successive saves to the same
filename are appended to and do not overwrite that file.

Pressing S while a portion of the screen is marked saves the window con
tents to an internal buffer. Another application program can then be
called up, and its cursor positioned at the point where the saved window
contents should be inserted. Alt-W then activates SNIPPER, and G gets
its stored contents and dumps them into the keyboard buffer as if they
had been typed in by hand. Note that G must be the first SNIPPER com
mand used in this case (any other erases its internal, stored buffer). Note,
too, that G can be used without S to reenter marked material (e.g., a com
plex DOS command sequence) on the same screen page.

Examples: Pop up the window by pressing Alt-W. Move the SNIPPER cursor to the
position onscreen where you want the upper lefthand comer of the win
dow to appear. Then use the cursor keys to adjust the size of the window
you want (but don't hit Enter unless you want a menu of options).

At this point, pressing:

p

would dump the contents of the window to your printer, and then quit
SNIPPER when it was done. If you pressed:

F

instead, SNIPPER would ask you to name a file, and would then save
the contents of the window to this file. (Omitting a name saves the file as
SCREEN.CUT.)

1112 PC Magazine DOS Power Tools

Notes:

You may also use the window contents as a clipboard to be pasted into
another application, by typing:

s

and then loading the new application. Then summon the SNIPPER win
dow back by pressing Alt-W, and feed the window text into the applica
tion through the keyboard by typing:

G

If you use SNIPPER as a clipboard, be careful not to issue any other
SNIPPER commands while a window already contains text in the
process of being moved. Any other command will wipe out the window
contents.

The default hot.key can be changed using DEBUG by substituting the
scan code and shift mask values shown in the entry for CAPTURE. The
address of the scan code byte is 56B, and that of the shift mask is 57B.

SPECTRUM
Command

Robert L. Hummel

Purpose: Provides existing software with a selectable 16-color palette (from
among 64 displayable colors) when used with an Enhanced Graphics
Adapter and an Enhanced Graphics (or similar) monitor.

Format: [d:] [path] SPECTRUM

or

[d:] [path] SPECTRUM xx xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx

Remarks: SPECTRUM is a memory-resident utility that is normally loaded as part
of your AUTOEXEC.BAT file. Once loaded, pressing Ctrl-' (the Ctrl
key and the grave [reverse] accent key) pops up a display of 16 color
boxes, each of which may be set, onscreen, to any of the 64 displayable
values. The cursor pad keys are then used, as described in the display, to
select any of the boxes and their two-digit color codes. Pressing the End

Notes:

Assembly Language Programs 1113

key saves the current color selections and returns you to your applica
tion. Home resets the color palette to its default values, and Esc aborts
any changes made, restoring your previous color settings.

For loading or changing the SPEC1RUM palette without using the pop
up window (e.g., as part of a batch file), the second format above may be
used. The values for x may range from 0 through 7 and must be entered
in pairs on a single line (not on two lines, as shown). A single space
must separate each of the 16 pairs of digits, and a single space must also
separate the number-pairs from the command name. Use the pop-up win
dow to determine the proper number-pairs initially.

1. Software programs that write directly to the EGA registers will over
ride the SPEC1RUM color selections. The SPEC1RUM colors may be
restored, if lost, by activating the display window (Ctrl- ') and then press
ing the Esc key.

2. EGACOSET, also on this disk, is an alternative program to
SPEC1RUM.

STATLINE
Command

John Socha

Purpose: Displays 26th-line status indicators for the NumLock, CapsLock, and
ScrollLock toggle keys on IBM monochrome, CGA, and Compaq
monitors.

Format: [d:] [path] STATLINE

Remarks: ST A TLINE converts the normal 25-line text mode display into 26 lines,
using the additional line to show a# sign for NumLock, an Up Arrow for
CapsLock, and a double-pointed arrow for ScrollLock.

Notes:

On a monochrome display, where insufficient memory is available for a
full 26th line, two-thirds of that line is used by STA TLINE; the
remainder echoes the first portion of the top line of the regular display.

This utility is not compatible with the IBM EGA and is best suited for
use with the CGA and with Compaq displays.

ST A TLINE is a memory-resident utility and is known to be incom
patible with a number of keyboard macro programs.

1114 PC Magazine DOS Power Tools

STATUS
Command

Michael J. Mefford

Purpose: Reads and reports the system configuration information from a
machine's switch settings and/or low memory addresses.

Format: [d:] [path] STATUS

Remarks: ST A TUS is entered at the DOS prompt and produces a single-screen dis
play of information that includes: the configuration switch settings of an
IBM PC or XT (or the equivalent data contained in the AT equipment
byte); number of disk drives installed; presence or absence of a math
coprocessor; amount of memory installed on the system board (PC and
XT only); number of parallel, series, and game ports installed; initial
video mode; total amount of main memory and amount of currently free
memory; amount (if any) of extended and/or expanded memory; DOS
version in use; and machine BIOS version.

Notes: Readers have reported that on some models of the IBM XT the con
figuration switch settings are wired upside down with respect to the
ST A TUS graphic display. The basic information presented is correct,
however. Also, on some non-IBM "compatibles" some information may
not be presented.

STICK Jeff Prosise
Command

Purpose: Locks and unlocks the cursor size and shape set with PC Magazine's
CTYPE utility; similarly locks and unlocks a choice of EGA foreground
and background colors; and permits selective replacement of the EGA
BIOS code for CGA emulation. ·

Format: [d:J [path] STICK [/L+l-J [/E+l-J [/B+l-J [/C-1 fg bgJ

Remarks: STICK is a memory-resident (560 bytes) program that eliminates several
recurring problems connected with the EGA and display. A nonresident
utility such as CTYPE.COM can set a cursor size and shape in DOS, and
it can prevent the cursor loss frequently encountered when exiting from
utilities such as SideKickwhile using a 43-line EGA display.

STRIP
Filter

Assembly Language Programs 1115

CTYPE alone can do nothing when applications reset the cursor,
however, as they nonnally do. The STICK IL+ option locks in the cursor
shape for all but applications (such as J-2-3) that bypass the PC BIOS
cursor routines altogether. To pennit some applications (such as word
processors) to manipulate the cursor shape themselves, the STICK /L
option disables cursor locking.

The STICK IC fg bg option sets EGA foreground and background colors
respectively, using the hex digits shown below:

0 Black 8 Grey
1 Blue 9 Bright blue
2 Green A Bright green
3 Cyan B Bright cyan
4 Red c Bright red
5 Magenta D Bright magenta
6 Brown E Yellow
7 White F Bright white

The foreground color (fg) may range from 0 through F; background (bg)
values are limited to 0 through 7. A single space must separate each
parameter. The /C- option disables the color selection locking.

The STICK IE+ option substitutes STICK's own cursor emulation BIOS
code for the bug-ridden IBM emulation routines. By default, or by using
the /E- option, the IBM code is restored. Since the EGA provides an
emulation bit whose setting is stored in the BIOS data area, STICK
provides an option to set or reset this bit directly. If the /E+ option is ac
tive (emulation on), STICK IB+ sets the bit value to 1 (disabling the
EGA routines); STICK /B- reenables them.

Entered with no parameters, STICK reports the current settings of its
functions. Any or all optional parameters can be entered on a single com
mand line in either upper- or lowercase. The/Land /C options are imple
mented on all video adapters; the /E switch is limited to EGA systems;
/Bis functional on EGA and VGA-based machines.

Phillip Cheng

Purpose: Filters out high bits and turns WordStar-type files into DOS text files.

1116 PC Magazine DOS Power Tools

Format: [d:] [path]STRIP < [d:] [path]filename

Remarks: Certain programs such as WordStar adjust the ASCII value of characters
at the ends of words by turning on the characters' high bits (adding 128
to the ASCII value). DOS stumbles over these high bits, and can't
properly execute commands littered with these high-bit characters or use
TYPE to display them.

STRIP.COM is a filter that gets rid of high bits in files, and lets you send
the cleaned-up output either to the screen or to a new, clean, pure-DOS
file.

Some filters process a single byte or a few hundred bytes at a time, but
STRIP.COM can blast up to 63K in and out in a single gulp.

Examples: If you have a WordStar-type file on your disk called HIGHBIT.TXT,
and you try to use the DOS TYPE command to display it, you '11 end up
with a barely readable mess. To filter out the high bits and read the file
normally, you could type:

STRIP < HIGHBIT.TXT

If you want to give a WordStar-type file to someone who doesn't have a
word processor that can handle it, or if you want to tum a W ordStar-type
file into a batch file or program listing that needs to be cleaned up, just
redirect the output into a new file (here called CLEAN. TXT):

STRIP < HIGHBIT.TXT > CLEAN.TXT

STRIP.COM is so efficient that it can strip the high bits out of huge files
and create cleaned-up versions in a second or two.

SUGGEST
Command

Michael J. Mefford

Purpose: Flashes a message on the screen at selected rates and durations ranging
from many minutes to a brevity approaching the limit of subliminal per
ception.

Format: [d:] [path]SUGGEST message[/Fn] [/Dn]

Assembly Language Programs 1117

Remarks: The message may be up to 80 characters in length; longer messages are
truncated. The optional IF (frequency) and ID (duration) switches accept
a user-entered integer n from 1through9. (0 is their default value and
need not be entered.) These correspond to the following approximate
timings:

/F9=0:05
/F8=3:05
/F7=6:05
/F6=9:05
/F5=12:05
/F4=15:05
/F3=18:05
/F2=21:05
/Fl=24:05
/F0=27:05 (default)

/D9=0.170
/D8=0.153
/D7=0.136
/D6=0.119
/DS=0.102
/D4=0.085
/D3=0.068
/D2=0.051
/Dl=0.034
/D0=0.017

Examples: You might enter the following:

Notes:

SWEEP
Command

SUGGEST SAVE YOUR WORK/F6/D9

as a useful reminder.

1. SUGGEST is a memory-resident utility. You may load several mes
sages, but you must reboot to clear the program.

2. Even at its briefest duration the SUGGEST message is still visible,
so the program is not intended for scientific investigation of truly sub
liminal experimentation.

Charles Petzold

Purpose: Causes a command to be successively executed in every subdirectory on
a hard disk.

Format: [d:] [path] SWEEP Command [parameter{s)]

Remarks: SWEEP starts from the current directory. In order to use SWEEP to ex
tend the range of a command to all the subdirectories on a disk, use CD

1118 PC Magazine DOS Power Tools

(if necessary) to make the root directory your current directory. From the
root directory, the command:

SWEEP DIR

will display the listings, by subdirectory, of every nonhidden file on the
disk. To erase all the BAK files on a disk you need only get into the root
directory and issue the command:

SWEEP DEL *.BAK

SWEEP itself will not accept parameters other than its command. Thus,
if you are on drive C: and wish a directory of all files on drive D: to be
sent to your printer, you must first make drive D: the current drive
before you issue the command:

SWEEP DIR > LPTl

(In this case you would either need a copy of SWEEP.COM on drive D:
or else drive D: would have to be listed on your path.)

SWEEP can execute BAT file commands (and even non-DOS com
mands, such as LOCATE.COM). A useful file called CLEAN.BAT
might consist of the three lines

DEL *.BAK
DEL *.TMP
DEL *.OBJ

From the root directory, if you then enter:

SWEEP CLEAN

all BAK, TMP, and OBJ files will be erased from the disk.

TEST1980
Command

Charles Petzold

Purpose: Tests to see if the user has set the system clock to prevent files from
being dated 1-1-1980.

Assembly Language Programs 1119

Format: [d:] [path] TEST1980

Remarks: Most users have battery-powered real-time clocks in their systems that
keep the date and time current. But users of older systems and some com
patibles don't. And batteries eventually give out.

ICs important to stamp your files with the proper date (and time). If you
don't you can end up writing older files over newer ones, or erasing final
versions of files, or handing other workers versions that aren't the most
recent.

If you start your system with an AUTOEXEC.BAT file, and you don't
include the commands DATE and TIME, and you don't have a battery
powered clock, your system will give any files that you create or change
a date of 1-1-1980.

If you don't start things each day with an AUTOEXEC.BAT file, or if
your AUTOEXEC.BAT file contains the DATE and TIME commands,
you can bypass them when prompted to set the date and time by simply
pressing the Enter key. Same 1-1-1980 result.

Running the TESTl 980 program will beep and print a message onscreen
if it sees that the year is 1980. It also sets the exit code to FF, so you can
process the information with an IF ERRORLEVEL test. A batch file like
DATETEST.BATwon't let you proceed until you've made sure the date
is something other than 1980:

ECHO OFF
:TOP
TEST1980
IF NOT ERRORLEVEL FF GOTO OK
ECHO You forgot to set the date
DATE
GOTO TOP
:OK
ECHO Date is fine

You can put this at the end of your AUTOEXEC.BAT startup file if you
want (and remove the "ECHO Date is fine" line). If the year isn't set to
1980 nothing will happen. However, if the year is 1980, it will keep loop
ing back until you change it.

You could change the date to 1981 or any other noncurrent year and fool
the test, but if you go that much trouble you might as well set the date
properly.

,,, I II<

1120 PC Magazine DOS Power Tools

This is very useful in detecting dead or dying clock batteries before you
accidentally stamp a lot of files with the wrong date.

TICKER
Command

Hal Shearer

Purpose: Provides the most attention-getting variation of a PAUSE prompt that
you 'II ever see.

Format: [d:] [path] TICKER text

where text is up to 40 characters of text that you want to display.

Remarks: The DOS PAUSE command is dull and drab. In later versions of DOS
you can redirect its output to NUL and use ECHO to substitute your own
message with:

ECHO Okay, now press a key
PAUSE > NUL

but this doesn't work with DOS 2.x and it's only slightly less dull.

TICKER.COM is anything but drab. It accepts a 40-character (or less)
message at the command line and displays this message like a ticker tape
until any key is pressed.

If you don't enter a custom-made message, TICKER.COM will sub
stitute one of its own.

Examples: To put a rolling ticker-tape message in your batch file that says "Ok, so
hit a key already" just include a line in the batch file that says:

TICKER Ok, so hit a key already

If you simply want TICKER.COM's standard (but eyebrow-raising) mes
sage to serve as your prompt, just add the line:

TICKER

where you would have used PROMPT before, and TICKER.COM will
display its ticker-tape "Attention: Please press a key to continue" mes
sage.

Notes:

Assembly La.nguage Programs 1121

As delivered, the TICKER.COM prompt begins on column 19 of row
24. You can change this by patching the bytes at 22E (for the row) and
230 (for the column). You probably won't want to meddle with the
column setting since it's centered onscreen. But you may want to adjust
the row. To put the display in the middle of the screen (row hex OD),
you'd use DEBUG to make the patch:

DEBUG TICKER.COM
E 22E OC
w
Q

(Remember, rows start at 0, not 1, so you have to subtract 1 from OD.)

TIME KEY
Command

Jeff Prosise

Purpose: Inserts the date and/or time into documents being created by other ap
plications programs.

Format: [d:] [path] TIMEKEY

Remarks: TIMEKEY is a memory-resident utility and must be loaded after the sys
tem date and time have been initialized. Subject to this limitation, it may
be loaded either at the command line or as part of an AUTOEXEC.BA T
file.

Notes:

Once loaded, TIMEKEY uses the following keystrokes:

Alt-L inserts a long-form date (e.g., June 10, 1987)
Alt•S inserts a short-form date (e.g., 6-10-87)
Alt-T inserts the time (e.g., 12:21 PM)

1. Once loaded, TIMEKEY keeps track of the time automatically, but
it does not change the current date at midnight unless the system is
manually rebooted.

2. TIMEKEY is compatible with BASICA (which also uses the timer
tick) and with many memory-resident utilities (e.g., SideKick), but com
patibility with all TSR programs cannot be assured.

' ' "

1122 PC Magazine DOS Power Tools

TINY COMM
Command

Charles Petzold

Purpose: TINYCOMM is the smallest "functional" assembly language com
munications program possible.

Format: [d:] [path]MODE COMn:300,N,8,1

[d:] [path]TINYCOMM [1]

where n is the COM port you want to use, and a 1 follows TINYCOMM
if you 're using COM2. If you 're using CO Ml, after entering the MODE
command, just type:

[d:] [path]TINYCOMM

on a line by itself.

Remarks: TINYCOMM uses ROM BIOS interrupt 14H to read incoming data
from and write outgoing data to your modem. It then uses DOS interrupt
21H function calls to read what you type at the keyboard and to write to
the display.

To run TINYCOMM, first tum on your modem and execute the DOS
MODE command to set up your system for 300 baud, no parity, 8 data
bits, and 1 stop bit:

MODE COM1:300,N,8,1

If your modem is connected to COM2, substitute COM2 in place of
COMl in the MODE command above.

(You can't use TINYCOMM at 1,200 baud. See the note below for an
explanation.)

Now run TINYCOMM by entering just:

TINYCO.MM

for a modem connected to COMl, or:

TINYCO.MM 1

Assembly Langua.ge Programs 1123

for COM2. The cursor will drop down a line and sit there waiting for a
command. At this point you're not yet online, but are in direct connec
tion with your modem.

If you have a Hayes SmartModem or compatible, you can now type in
any of the AT attention codes documented in the User's Guide or
Reference Manual that came with the unit. For instance, with the Smart
Modem 1200 or 1200B, you can enter:

ATIO

to see the product's revision number:

ATil

for the modem's ROM checksum, and (with the 1200, but not the
1200B):

ATI2

to check the integrity of its internal memory. This last instruction will
return either "OK" or "ERROR."

The "Smart" in "SmartModem" refers to the modem's ability to interpret
such AT codes and send back appropriate responses. If your phone hap
pens to ring while you're experimenting like this, TINYCOMM will dis
play the word "RING." Similarly, when using yo1,1r normal
communications programs, you may have noticed the words "CON
NECT" or "NO CARRIER" displayed when you attempt to place a
telephone call. These messages are not produced by your communica
tions package; they all come straight from the modem, whose internal
programming generates them.

To call the PC Magazine Interactive Reader Service bulletin board, enter:

ATD 1-212-696-0360

on the east coast, or:

ATD 1-415-598-9100

on the west coast.

If you have touch-tone service, you can use A IDT instead of ATD.
(Even if you have pulse dialing, you might try this command anyway.)

1124 PC Magazine DOS Power Tools

Notes:

If you're using an external modem, you'll see your modem's OH (Off
Hook) light go on and you'll hear the dialing. If the PC-IRS has a free
line, you'll hear the PC-IRS carrier signal, quickly followed by your
modem answering that carrier signal with its own. The CD (Carrier
Detect) light on your modem will go on, you 'II see the word CONNECT
on the screen, and then the modem will go silent. You 're now online.

If you get a busy signal, eventually your modem will give up and you 'II
get a NO CARRIER message. You can redial by typing A/, which is the
only Hayes control sequence that does not require a preceding AT.

You can set these two timings, and many other variable aspects of the
SmartModem, with modem control sequences. ATS6, followed by the
time in seconds, controls the dial tone wait; ATS7 similarly controls the
carrier detect wait. If you want to listen continuously to the carrier sig
nals while you're online, you can enter ATM2 before making the call.

You can't enter these AT codes directly while you're online, because the
modem has no way of determining that you want to talk to it instead of
to the remote computer. To issue commands while online, first enter the
Hayes escape sequence - three plus signs (+++) in a row - typed
quickly. You must wait a second before typing in the first plus sign, and
wait a second afterwards before typing anything else. (The modem uses
these brief pauses to distinquish its escape sequence from three plus
signs that may occur in transmitted data.) If you entered the+++ code
properly, you'll get an OK from the modem, indicating that you're in the
command state instead of online. After you 're done giving commands,
ATO returns the modem online.

When you're online with a remote computer, whether it's an information
service (such as CompuServe or Dow Jones News Retrieval) or with a
bulletin board such as the PC Magazine's IRS, the host computer echoes
back most of the characters it receives. Because of this, you 'II sense a
slight delay between the time you type characters and their display on
the screen.

When you eventually want to exit TINYCOMM, just press Ctrl-Break.

1. Although TINYCOMM is written in assembler and (at least in
theory) is very fast, you can't run it at 1,200 baud. Try it by changing the
baud rate with MODE and connecting to an information service or bul
letin board. Things will go fairly well when you're at the top of the
screen, but once you get down to the bottom you'll notice that
TINYCOMM starts missing the first few letters of each line sent from
the remote computer.

Assembly Language Programs 1125

2. Communications programs do not nonnally use interrupt 14H, as
TINYCOMM does. This is because interrupt 14H is missing two very
important ingredients of nonnal communication software: buffering and
interrupt control. Instead, TINYCOMM simply polls the serial port for
data, and if it can't do its polling fast enough, it misses characters -
which is what happens when the screen scrolls at 1,200 baud. During the
time it takes the screen to scroll, several characters at the start of the line
are coming through. Real communications programs don't have this
problem because they use the serial port's interrupts and buffer all the
data.

TOUCH
Command

Michael J. Mefford

Purpose: Changes the DOS date and/or time designation of a file or group of files
either to the current date and time or to one designated by the user.

Format: TOUCH filespec [/D date] [/T time]

Remarks: If you enter TOUCH without any arguments, the program will display a
help screen showing the proper syntax. If you enter a filespec but neither
of the optional switches (JD or m, TOUCH will update the designated
file to the current system date and time. Note that the standard DOS
filename wild cards (* and ?) are supported, so TOUCH can operate on
groups of files.

Notes:

The optional ID date switch lets you enter a date in the customary DOS
mm-dd-yy format. If you want, you may replace the hyphen delimiters
with forward slashes (/), and you may enter the year either in full fonn
(e.g. 1988) or in abbreviated (88) fonn.

TOUCH checks that each of the three fields is filled with a nonzero
value, but does not check the validity of a date (e.g., 2/31/88). Legal
DOS years are from 1980 to 2099.

The optional IT time switch lets you enter a user-specified time in
hours:minutes:seconds. If the minutes and/or seconds parameters are
omitted TOUCH will set them to 0. Hours should be entered in military
(24-hour) fonnat.

The following batch file, TEST.BAT, can be used to cause a DIR listing
to leave the time field blank:

1126 PC Magazine DOS Power Tools

TYPE A
Command

TIME 0
TOUCH TEST.BAT
DIR TEST.BAT

Tom Kihlken

Purpose: Lets you look inside program files to examine all the messages, prompts,
text, etc.

Format: [d:] [path]TYPEA [d:] [path] filename

Remarks: It's often a good idea to peek inside COM or EXE files to hunt for hid
den messages and instructions. Unfortunately, the DOS TYPE and
COPY /B CON commands can't properly handle the nonprintable
characters inside such files.

TYPEA.COM displays just the ASCII characters in any file (including
hidden files). All non-ASCII data are displayoo as dots.

The program works by reading the file into an internal buffer and ex
amining each individual byte. It then replaces each non-ASCII code with
a dot, and displays the entire file onscreen without any confusing control
characters.

While PC Magazine programs such as Charles Petzold's BROWSE and
Michael Mefford's DR let you examine the contents of program files,
this short program will also do the job. It's especially handy for looking
at potentially dangerous "Trojan Horse" programs downloaded from bul
letin boards. If you run a brand new program through it and see some
thing like "Gotcha!" you can erase it before it does any damage.

Executable files invariably contain Ctrl-Z end-of-file markers that can
stop the normal DOS TYPE command in its tracks. Try using the TYPE
command to display COMMAND.COM, for instance, and the process
will stop after a beep or two. TYPEA.COM will work all the way
through any file. And it'll even let you look at the contents of hidden
files such as IBMBIO.COM and IBMOOS.COM.

You can view the contents of any file in DOS with the command:

COPY /B filename CON

t i I '

Assembly Language Programs 1127

but the COPY command is too easily confused by control characters and
ends up beeping and blinking. In addition, you can't break out by press
ing Ctrl-ScrollLock or Ctrl-C while COPY is scrolling out the contents.
You can interrupt TYPEA.COM.

TYPEA substitutes a dot for each low-order nonprintable character it
finds. If you want it to simply discard such characters, create the file, get
into DOS, and type:

DEBUG TYPEA.COM
E 148 A
E 14C 6
w
Q

Making this patch can dramatically shorten the amount of text that
TYPEA prints, but it will also jam together all of the ASCII text that it
finds, which makes the screen harder to read.

UN CRASH
Command

Neil Stahl

Purpose: Safeguards your system against ending up in an endless loop when
you're experimenting with new software or writing tricky programs.

Format: [d:] [path] UNCRASH

Remarks: If you've ever found yourself hopelessly locked inside an infinite loop,
you've probably experienced the frustration of having to reset your com
puter to get out of it. This can be especially distressing when you 're
using a volatile RAMdisk and the most recent version of the program
that caused that infinite loop evaporates with it. You might think that hit
ting Ctrl-Break will get you out of such a situation, but this works only if
a DOS function is called during the loop. UNCRASH.COM cures this
problem.

Your PC executes an interrupt about 18.2 times each second to update
DOS time of day clock. The BIOS routine that performs this service also
performs another interrupt, called the Timer Tick, that allows other ap
plications, such as a print spooler, to gain control at regular intervals.

,,, I !II l

1128 PC Magazine DOS Power Tools

Notes:

UNCRASH takes advantage of this DOS feature; it loads its own ad
dress into the location called by the Timer Tick interrupt and gets control
18 times a second. When the Ctrl-Break key is pressed, the BIOS
keyboard interrupt servicer sets the highest bit of byte 71H in data seg
ment 40H.

When UN CRASH finds this bit set, it resets the high bit at 71H to zero,
sends an end of interrupt signal to the interrupt controller at port 20H,
and causes the application to terminate by calling DOS function 4CH.
UNCRASH saves and passes control to the address that was previously
located at interrupt lCH, so it shouldn't preempt any other programs that
use this service.

1. Although UNCRASH works well with all the software we use, it
will not work in IBM BASIC, and will cause the machine to hang if it is
used while in BASIC.

2. To test how well the program breaks out of an assembler routine,
before you load UNCRASH, create a tiny endless assembler loop called
ENDLESS.COM by making sure DEBUG.COM is on your disk and .
typing:

DEBUG
N ENDLESS.COM
A 100
NOP
JMP 100

RCX
3
w
Q

Press the Enter key at the end of every line, and press it twice after
typing JMP 100. Run it by typing ENDLESS and try to break out of it by
hitting Ctrl-Break. After satisfying yourself that it can't be done, switch
your system off and on again, and run UNCRASH.COM. Then run END
LESS and you'll see that you now can indeed Ctrl-Break to safety.
However, don't leave UNCRASH in memory and later load BASIC or
you'll crash. The moral behind all this, of course, is save everything
early and often.

UNDERLN
Command

Assembly Language Programs 1129

Peter N. Howells

Purpose: Allows underlining on EGA color screens.

Format: [d:] [path]UNDERLN ONIOFF

Remarks: One of the minor annoyances of using most of today's popular word
processors on color EGA systems is that underlined characters are dis
played in a color of your choice rather than as characters with a line
under them. This forces you to remember which colors are installed as
underline, boldface, and underlined-boldface, and turns many popular
programs into somewhat less than "What-You-See-Is-What-You-Get."

UNDERLN.COM will generate an underlined character font from the
EGA BIOS resident 8 x 14 font and load it as the EGA low intensity
characters. Only the "printable" characters with ASCII values from 32
through 127 will be underlined.

Typing UNDERLN ON from the DOS prompt (or in a batch file) will un
derline all low intensity characters onscreen but leave the high intensity
characters alone. Or, if you prefer, you may use DEBUG to patch UN
DERLN.COM so it underlines the high intensity characters and uses the
normal EGA 8 x 14 font with the low intensity characters.

To make this change, type:

DEBUG UNDERLN.COM
E 181 4
w
Q

Typing UNDERLN OFF restores the normal font. Resetting the display
mode will also eliminate the underlined characters. The command line
parameters, ON and OFF, are not case sensitive.

If you use UNDERLN.COM with a product like WordPerfect that
doesn't reset the video display mode upon entry into the program, the fol
lowing batch file will tum on underlining while running WordPerfect
and tum it off upon exiting.

1130 PC Magazine DOS Power Tools

CD\WP
UNDERLN ON

WP
UNDERLN OFF

Once in WordPerfect you may define the screen colors using the Ctrl-F3,
4 key. Pick foreground and bold colors from the high intensity colors, I
(dark grey) to P (white); and underline and bold underline colors from
the low intensity colors, A (black) to H (grey). The background A
(black), foreground L (bright cyan), underline D (cyan), bold M (bright
red), and bold underline F (magenta) color scheme is pleasing.

This patch makes WordPerfect magical on EGAs; no one likes to look at
one color for bold; another for underlined, etc. But you can adapt the
program to underline the output of any other application that doesn't
completely take over the hardware and that lets you give underlined text
its own attribute.

If you want to experiment with this, you can work with the slightly more
modest EGA UNDRLIN2 program included in this package, which is
shorter and easier to adapt.

UNDRLIN2
Command

Purpose: Allows underlining on EGA screens.

Format: [d:] [path] UNDRLIN2 [N]

Brian O'Neill

Typing UNDRLIN2 Nor UNDRLIN2 n will turn underlining off; typing
just UNDRLIN2 will toggle it on.

The EGA can display fonts with more or less than 25 lines onscreen, so
the number of scan lines per character is not fixed at 14. The scan line
that displays the underline depends on how many "bytes per character"
are in the currently displayed font. UNDRLIN2.COM fetches this infor
mation from 0040:0085H of the BIOS data area.

UNDRLIN2 also looks up the port address of the video controller; this
address will vary, depending on whether the EGA card is being used
with a color or a monochrome monitor. UNDRLIN2.COM will work in
either case.

------·· -~---~

Assembly Language Programs 1131

The only attributes that UNDRLIN2 will underline are 1 and 9 (blue on
black, both normal and high intensity). However, you may use the
EGACOLOR.COM program included in this package to change colors
0, 1 and 9 to whatever colors you want. You can see the program in ac
tion by running the small EGA UNDER.COM demonstration program
also on the disk.

EGAUNDER.COM will display a string of 40 Ps in blue and 40 Cs in
green. Then use UNDRLIN2 and UNDRLIN2 N to toggle the blue text
underlining on and off.

See the companion UNDERLN underliner.

UNHIDE
Command

R. Chung and V. K. Taylor

Purpose: Unhides files that have been hidden from normal DOS directory sear
ches by programs like HIDE.COM or A TIR.COM.

Format: [d:] [path]UNHIDE [d:] [path]filename

Remarks: Various attribute-setting programs, including the DOS ATIRIB com
mand and Charles Petzold' s far better A TTR utility - can set and reset
a file's attributes (although the DOS version doesn't let you hide files,
wasn't around before version 3.0, and didn't let you do anything other
than change the read-only bit until version 3.2). But they involve com
plex syntaxes with switches, minus and plus signs, etc.

UNHIDE.COM simply unhides any files that you've hidden previously
with a utility like ATTR.COM or HIDE.COM.

You can see the names of all the files on your disk, including the hidden
files, by typing:

CHKDSK /V

Unfortunately, CHKDSK N won't tell you which files are hidden and
which aren't.

A better way is to have Charles Petzold's ATIR handy and type ATIR
*. * to see the status of all your files. Michael Mefford' s DR will also
show you the settings of each file's attribute byte.

1132 PC Magazine DOS Power Tools

Notes: Some software packages hide one or two files as crude copy protection
devices. If you get tired of the software and try to erase all the files from
a hard disk subdirectory and then remove the directory, you won't be
able to. The directory will look empty, but it will still contain a hidden
file or two, and DOS won't remove a directory unless it's truly empty.
You can use CHKDSK/V or A TTR or DR to find out if any hidden files
are still there, and then UNHIDE to take away their hidden status. Then
just erase them normally.

However, some software, in a madcap scheme to cause users grief,
scrambles disk sectors when it hides files. So before you start unhiding
and unerasing files, read the documentation carefully and see if there are
any special deinstallation procedures you have to follow.

See HIDE.

UP
Command

Charles Petzold

Purpose: Changes the logged directory to the parent subdirectory.

Format: [d:] [path] UP

Remarks: If you use lots of multilevel hard disk subdirectories, and you want to
wind your way up toward the root directory from one several levels
deep, you have two options. You could type either.

CD \

to move all the way to the root directory in one jump, or.

CD ••

and keep pressing the Enter key and then the F3 key.

Jumping directly to the root directory with CD\ is certainly efficient, un
less you want to stop along the way.

Typing CD .. repeatedly works well also, except that if you go too far
you eventually get an "Invalid directory" message. When UP.COM

Assembly La.nguage Programs 1133

reaches the root directory it just sits there silently. And it's only two
characters long, so it's easy to type.

Notes: UP is part of a trio of subdirectory navigation aids. See also DOWN and
NEXT.

UPPER Michael J. Mefford
Command

Purpose: Converts any text file, except overly large ones, to all uppercase.

Format: [d:] [path]UPPER [d:] [path] filename

where filename is the file you want entirely uppercased.

Remarks: UPPER.COM will convert any ASCII text file, including WordStar docu
ment files, to all uppercase. Use UPPER if you receive an assembly lan
guage source file, for example, that is all or partial lowercase, if you
prefer having it all uppercase.

Notes: Don't try UPPER with files that approach 64K or more.

VTREE
Command

See the companion LOWER utility.

Charles Petzold

Purpose: Provides a visual representation of the tree-structured subdirectories on a
hard or floppy disk.

Format: [d:] [path]VTREE [d:]

Remarks: VTREE can display up to the full DOS limit of 32 levels of nested sub
directories. Its output may be redirected to a printer, but it employs IBM
"text-graphics" characters that many printers cannot properly handle.
With such printers, run PRSW AP (included in these utilities) before
VTREE.

1134 PC Magazine DOS Power Tools

WAIT Tom Kihlken
Batch file command

Purpose: Delays batch file execution a specified number of seconds or until any
key is struck.

Format: [d:] [path] WAIT S

where S is a decimal number of seconds up to 59.

Remarks: WAIT.COM lets you insert a pause into your batch program. For ex
ample, WAIT 5 will pause for five seconds or until you strike any key.
This lets you keep a screen displayed long enough to read it before
proceeding.

Since WAIT uses DOS' s clock to time the delay interval, it works ac
curately on any machine. Simpler methods that use delay loops are at the
mercy of the processor speed and won't give consistent results. The
longest single wait interval you can request is 59 seconds. For longer
pauses use multiple WAIT statements.

You can easily terminate a wait interval by pressing any key.WAIT
detects this by continually checking the keyboard buffer while it loops.
If a keystroke is detected, the pause state terminates and the input key is
discarded.

Examples: To have a batch file display two opening screens (that you've put in two
files called OPENING 1.SCR and OPENING2.SCR) for ten seconds
each, type:

ECHO OFF
CLS
TYPE OPENINGl.SCR
WAIT 10
CLS
TYPE OPENING2.SCR
WAIT 10
CLS

You may want to put a message at the bottom of each of these screens
that says: "(Press any key to continue)."

Assembly Language Programs 1135

If you use an indexing program called SORTIT.EXE to sort a file called
DAT A.FIL, and you wanted it to run from a batch file and beep when
it's done, but you didn't want it to beep for two minutes to give yourself
time to discover that the job was done, you could type:

ECHO OFF
SORTIT DATA.FIL
WAIT 59
WAIT 59
ECHO "'G

(where the ECHO AG line was created by typing ECHO, then pressing
the spacebar, then holding down Ctrl and typing G).

WAITASEC
Command

Charles Petzold

Purpose: Uses the single-keystroke ScrollLock key to halt a fast-scrolling display;
then allows you to scroll backwards, recalling previous screens.

Format: [d:] [path]WAITASEC

<ScrollLock>

Remarks: WAIT ASEC is a memory-resident program that is nonnally loaded
through your AUTOEXEC.BAT file. Thereafter, alternately pressing
and releasing the ScrollLock key will halt and restart a scrolling display.
e.g., a lengthy DIR listing.

Notes:

While holding down the ScrollLock key to freeze the display, if you also
press one of the cursor movement keys (Home, Up Arrow, Pg Up, End,
Down Arrow, or PgDn), the display will not resume scrolling when you
release the ScrollLock key. Thereafter, the Up and Down Arrow keys
move the display by one line, the Pg Up and PgDown move it by 25
lines, and the Home and End keys take you to the beginning and end of
the stored screen memory. Pressing any noncursor key at this point deac
tivates the stored mode, and the original scrolling resumes.

1. WAIT ASEC will not work with an 80-column color/graphics dis
play if an unmodified PC-DOS ANSI.SYS has been loaded. (The
ANSI.SYS that comes with various versions of MS-DOS does not cause
problems with W AITASEC.) To run with IBM's ANSI.SYS, make a

1136 PC Magazine DOS Power Tools

copy (MODANSI.SYS) of the original ANSI.SYS and use DEBUG to
patch the copy as follows:

DEBUG MODANSI.SYS
E 29D 90 90
E 2Al 90 90
w
Q

Put the modified MODANSI.SYS in your CONFIG.SYS file in place of
ANSI.SYS.

2. Because of the way they handle TIY output, certain EGA cards will
not permit WAIT ASEC to scroll backwards. This problem can often be
cured by adding MODANSI.SYS, as above.

3. W AITASEC does not save your current display screen. To save
your current display, enter the complementary SCROLL2 command
before beginning a scroll, and everything on the screen will scroll off the
top and be captured in the WAITASEC buffer.

4. While W AITASEC has been found compatible with XyWrite
(XYKBD.COM loaded) on a PC AT, as with other memory-resident
programs. unforeseen hardware and software incompatibilities may be
encountered.

See SCROLL2.

WARMBOOT
Command

Charles Petzold

Purpose: Performs a fast reboot, bypassing initial power-on self tests, as if the user
had pressed Ctrl-Alt-Del.

Format: [d:] [path] WARMBOOT

Remarks: Use this if you've installed a program that disables the Ctrl key, or if you
simply have to reboot and want to skip the initial diagnostics.

For a slower reboot that slogs through the initial tests, see COLDBOOT.
For a flexible utility that allows both kinds of rebooting and lets the user
abort the process, see REBOOT.

WHERE
Command

Assembly Language Programs 1137

Kiyoshi Akima

Purpose: Searches all directories on a particular drive and lists the paths of entries
that match the specified filename.

Format: [d:] [path] WHERE [filename [.ext]]

Remarks: WHERE uses normal DOS filename specifications to locate files. Omit
ting a filename and extension after the command defaults to WHERE *. *
and will list all nonhidden files on your disk.

Examples: The command WHERE *.BATwill find all your batch files. WHERE
MO*.* would uncover MODE.COM and MORE.COM and any other
filenames that begin with MO.

Notes: Although submitted to us by Mr. Akima, this program has its roots in
one originally written by John Socha.

WINDOWS
Command

Paul Somerson

Purpose: Demonstration program that shows BIOS window-clearing abilities on
color systems.

Format: [d:] [path] WINDOWS

Remarks: Programmers usually use service 6 of BIOS interrupt 10 to clear the en
tire screen. This short demonstration program clears successively smaller
and smaller centered windows, each to a different color.

Once you've run the program (on a color monitor only), enter:

DIR /W

to produce a wide directory listing, and you '11 see that the text in the cen
ter blinks, since the background color for the few central windows is
higher than 7.

, I !I

1138 PC Magazine DOS Power Tools

If you're ambitious. you could adapt this program to produce a kaleido
scopic effect by changing the starting color and looping back to the
beginning again.

XDEL
Command

Ronald Czapala

Purpose: Successively presents each filename in your current directory for single
keystroke file deletion or retention.

Format: [d:] [path] XDEL [d:] [file. ext]

Remarks: If no parameters are specified with XDEL. the default filename *. * is
used. Both the global characters ? and * may be used in selecting the
files to be presented.

Notes:

XDIR
Command

The program produces an onscreen menu of keystroke choices, as fol
lows:

<Fl> - deletes current file displayed
<PgDn> - skips current file displayed
<Home> - restarts file display
<Esc> - returns to DOS

Although XDEL.COM requires DOS 2.0 or later, you must use CHDIR
(CD) to log into the proper directory.

Jeff Prosise

Purpose: XDIR.COM is a memory-resident utility that allows you to display the
filenames in any drive/directory even when you are running another ap
plications program.

Format: [d: J [path] XDIR

Remarks: Once loaded (normally as an entry in your AUTOEXEC.BAT file).
pressing the Alt-. (the Alt and the period key combination) causes a
blank window to pop up on the screen. Pressing Enter then displays the

Notes:

Assembly Language Programs 1139

first40 filenames of your current directory in the window. Pressing Esc
once clears the display, and pressing it a second time returns you to your
previous application.

To view other directories, simply enter their appropriate path designation
(including drive, if different) before pressing Enter when the window is
blank.

The Pg Up and PgDn keys are used to display files beyond the initial 40
shown in the window. Up to 360 files in any one directory may be dis
played.

1. You may use DEBUG to change some of the XDIR.COM defaults.
Remember always to make changes to a copy of the program, not to
your original. After entering DEBUG XDIR.COM, the following addres
ses and initial values may be of interest:

Offset Value Parameter
13C 4F Border color attribute
13D OF Text color attribute
14D 00 File type (see Note 2)
186 34 Period key scan code
18E 08 Alt-key shift code

2. By default, XDIR displays only normal filenames (00at14D). To
show hidden files, the value here should be 02. System files are 04, and
subdirectories are lOH. These values are additive. To display subdirec
tories and files marked both hidden and system (e.g. IBMBIO.COM)
you would enter the value 16H at offset 14D in place of the default 00.

3. While no TSR program can be guaranteed compatible with all other
memory residents, its special interrupt handling should make
XDIR.COM coexist even with most "difficult" TS Rs.

•·· ; 14,

Chapter 17

BASIC Programs

Ever since IBM started plunking personal computers on desktops, new users have
wondered why they received a khaki manual labeled "BASIC." Few of them bought com
puters to learn how to program, and most mistakenly thought programming was just for
wimpy math majors and overweight nerds. But a lot of them ended up typing in the ex
amples in the manual, and quickly discovered that this new language could actually help
them work better. Although it would never win any awards for speed, BASIC was easy
to learn, surprisingly powerful, and free.

Users found they could load BASIC to do quick hexadecimal math, or perform a
trigonometric calculation, or see what ASCII character 178 looked like. Then they dis
covered its file-handling and graphics abilties, and began producing some very helpful
little programs. DOS was so bad at processing strings of characters that it often became
necessary to redirect a DOS command into a file and then use BASIC to put the file into
shape.

One of the nicest things about BASIC is that if you suddenly find yourself with a
problem BASIC can tackle, you can load it, stumble your way through a program, and
emerge with a solution a few minutes later. So maybe your program wasn't the most
elegant display of programming virtuosity; who cares so long as it worked?

The implementation of BASIC usually packaged with DOS had one very important
thing going for it - you didn't need any fancy editors or compilers to get up and run
ning. You just typed away and then pressed the "RUN" key and saw right away whether
or not your program was operating properly. BASIC was very forgiving.

Over the last few years interest in programming has skyrocketed. Microsoft and Bor
land, two leading software packagers, have flooded the market with increasingly power
ful versions of several popular languages at irresistably low prices. Millions of users who
never thought they'd write a single line of code are now pounding away at updated ver
sions of Pascal, C, and even BASIC.

1141

, ' ..

1142 PC Magazine DOS Power Tools

Assembly language programs have always been the most popular of those published
in PC Magazine. They can do things in a few bytes of code that would take other lan
guages forever. They run incredibly fast, and take up a fraction of the disk space required
by many higher-level programs. All of the utilities in the first part of the accompanying
disk are written in 8088 Assembler.

However, the garden variety edition of BASICA (or GWBASIC on compatibles) can
do some tricks of its own in a few lines of code that would take an assembly language
programmer far longer. This is because BASIC has certain graphics "primitives" and file
handling abilities built in. It's a lot easier to draw a circle with a one-line BASIC com
mand than to have to start worrying about writing complex trigonometric routines from
scratch in assembly language.

Some of the following BASIC programs help produce files and screens that
demonstrate the abilities of assembly language programs presented in Chapter 16. Others
do interesting tricks on their own.

If you haven't ever tried working with BASIC, it's easier than you think. Once you
learn the few fundamentals you'll find yourself often writing little routines to help you
work. And you may become interested enough to plunge in and learn the fine points of
BASIC or one of today's other popular languages.

BATMAKRl.BAS I BA TMAKR2.BAS Paul Somerson

Purpose: Makes it incredibly easy to switch between subdirectories on a hard disk.

Format: [d:] [path]BASICA [d:] [path]BATMAKRl

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: Before you run either of these programs, get into DOS and create a file
called TEMPFILE that contains a list of every subdirectory on your disk.
A single command will do it:

CHKDSK / V I FIND "Dir" > TEMPFILE

Then run either BATMAKRl .BAS or BATMAKR2.BAS. Make sure
that you put the batch files that these programs create into a directory
that your PATH command knows about. This way you'll be able to ex
ecute them from anywhere on your disk.

BATMAKRl.BAS will create dozens of individual small files that will
switch quickly to any subdirectory, but will take up a lot ofreal estate on
your disk. BA TMAKR2.BAS creates one long file called S.BAT that
takes up a lot less room but works more slowly than the individual files
created by BA TMAKRl.BAS.

BASIC Programs 1143

If you have a fast hard disk and you' re not pressed for space, use BAT
MAKR 1. It will look at all the subdirectories on your hard disk and
create batch files with the name of the lowest level directory. So it will
take a subdirectory like:

\DOS\UTILITY\PCMAG\NUMl

and create a file called NOMI.BAT. To switch into this subdirectory, all
you have to do is type:

NUMl

DOS can handle similarly named subdirectories, but BATMAKRl and
BA TMAKR2 can't. So if you have directories like:

\DOS\UTILITY\PCMAG\NUMl

and:

\DBASE\TAXES\NUMl

both BA TMAKR files will use just one.

If you 're using a slow hard disk, or a full one, you might be better off
with BA TMAKR2.BAS, which creates one big switcher file. An XT
hard disk can waste 4 K per file even if the file is a tiny batch file. If you
have 50 subdirectories on an XT hard disk, using BATMAKRl .BAS
will take up 50 x 4K, or 200K of disk space. The single S.BAT batch file
created by BA TMAKR2.BAS will take up just 4K.

If you do use BA TMAKR2.BAS, load S.BAT onto a RAMdisk for best
performance. Then to switch into:

\DOS\UTILITY\PCMAG\NUMl

(assuming it's the only directory called NUMl),just type:

S NUMl

You could also type:

S numl

' I II

1144 PC Magazine DOS Power Tools

Notes:

since the S.BAT that BATMAKR2.BAS creates can handle all upper
case or all lowercase entries. But it can't deal with mixed uppercase and
lowercase ones.

1. Either of these programs will let you jump around from one sub
directory to another without having to type in long cumbersome path
names. But they're designed to work on one disk only. If you're logged
into a floppy disk in drive A:, and all your BATMAKR batch files are on
drive C:, log into drive C: before using any of them, since they all as
sume you want to change directories on the default hard drive.

2. If you can spare the space, the small individual files created by BAT
MAKR 1 work a lot better than the potentially huge and slow single
S .BAT file created by BATMAKR2. Batch files execute one line at a
time and DOS always starts scanning through them from the beginning
of the file. A subdirectory-switching command stuck at the end of a
string of 50 tests isn't going to work very quickly. But the tiny files
generated by BATMAKRl will change directories in an instant.

If you do create the many tiny batch files with BATMAKRl, put them
all in their own subdirectory and include the name of this directory in
your path. Keeping them all together makes it easy to erase them and
create new ones when you erase or create new subdirectories.

BOOTREC.BAS Paul Somerson

Purpose: Uses DEBUG to read the BIOS Parameter Block (BPB) from the boot
track, and then produces a report on the configuration of any disk in your
system.

Format: [d:] [path]BASICA [d:] [path]BOOTREC

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: On all but the earliest DOS versions, the DOS FORMAT.COM program
puts a small table of information at the very beginning of the first disk
sector.

After loading the program, just enter the drive letter you want to ex
amine.

BOOTREC uses DEBUG to read this information, does a few necessary
calculations, and produces a report that will look something like:

BASICPrograms 1145

======================= Drive B: ========================

OEM Name and version:
Total sectors:
Bytes per sector:
Sectors per cluster:
Bytes per cluster:
Reserved (boot record) sectors:
Sectors per track:
Number of hidden sectors:
Number of heads (sides) :
Tracks per side:
Number of File Allocation Tables:
Sectors per File Allocation Table:
Total sectors used by FATs:
Maximum root directory entries:
Sectors used by root directory:
Total bytes available on disk:
Total bytes available for data:
Media descriptor byte:

IBM 3.0
720
512
2
1024
1
9
0
2
40
2
2
4
112
7

368640 - 360K
362496
5-1/4 inch, 2 Sides,
9 Sectors/Track

Notes: See Chapter 2 for a discussion of how DOS handles disks, what all the
terms used in the B001REC.BAS report mean, and how you can use
this information productively.

BOXMAKER Paul Somerson

Purpose: Creates a batch file that displays a single- or double-line box in practical
ly any size you want.

Format: [d:] [path]BASICA [d:] [path]BOXMAKER

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: You can spruce up the appearance of your batch files dramatically by
putting things like comments, titles, and instructions inside boxes. Unfor
tunately, DOS doesn't provide any simple way to create such boxes.

BOXMAKER.BAS asks you the dimensions of the box you want to
create, the number of spaces you want it indented onscreen, and the type
of box (single-line or double-line). It then produces a batch file called

1146 PC Magazine DOS Power Tools

Notes:

BOX.BAT with the actual box you specified plus all the ECHO state
ments needed to display it properly.

Use a pure-ASCII word processor to enter text inside the box, then incor
porate the filled-in box in your batch files.

You can have batch files print menus and messages either by using the
ECHO command to display a line at a time (as is done here), or by put
ting the menu or message in a separate file and using the TYPE com
mand to display it in one gulp.

The ECHO technique works well on a fast hard disk or a RAMdisk, but
may take forever on a floppy-based system. However, it lets you put
everything you need in one place, and doesn't require any additional
files.

The TYPE method is far faster on all systems, but it forces you to have
one batch file refer to another file that contains the text you want dis
played. Even small files can take up lots of room - on an old ten
megabyte XT even a one-byte file hogged 4K of disk space. The
MAKESCRN.BAS program on the accompanying disk creates a sample
MENU file that your batch file can TYPE.

1. Earlier versions of DOS may not handle indentations properly, but
they'll still display the box.

2. If you use this program more than once, be sure to rename any older
BOX.BAT file on your disk so the newer one doesn't obliterate it.

See MAKESCRN.BAS.

CAMLOAD Paul Somerson

Purpose: Works with Philip Cheng's CAMERA.COM program to produce a
"slide show" by loading screen images in succession.

Format: Run this program by creating a three-line batch file called CAM.BAT:

DIR?.* >CAMERA.FIL
[d:] [path]BASICA [d:] [path]CAMLOAD
DEL CAMERA.FIL

BASIC Programs 1147

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: The CAMERA.COM program on the accompanying disk lets you save
four kinds of images to disk:

Notes:

• 40-column text
• 80-column text
• 320 x 200 "medium" resolution graphics
• 640 x 200 "high" resolution graphics

You can use CAMLOAD.BAS to load these images onto the screen one
after the other. CAMLOAD lets you specify how many seconds each
will appear, from 1to59. And it will automatically handle the different
screen modes required to display the different kinds of image
CAMERA.COM can store.

CAM.BAT creates a file called CAMERA.FIL that lists the single-letter
names of the image files captured by CAMERA.COM. It assumes that
any file with a single-character filename (and any extension) in the cur
rent subdirectory is one created by CAMERA.COM. If you have single
character filenames in the current directory that were not created by
CAMERA.COM, or if you want to rearrange the order of the slide show,
you can edit the CAMERA.FIL file. If you do, omit the last line in
CAM.BAT to prevent DOS from erasing the edited CAMERA.FIL file.

The SAMPLE.BAS program on the accompanying disk will create
several kinds of images.

1. If you want to modify the program so it loads each successive slide
only when you press a key, and not at a timed interval, make two chan
ges.

First, add a line 171 that says:

171 GOTO 200

Second, replace line 390 with a new one that says:

390 WHILE INKEY$="":WEND

2. This process may not be able to reproduce all background colors ex
actly as they were created.

See CAMERA, SAMPLE.BAS.

1148 PC Magazine DOS Power Tools

COLORSET.BAS Paul Somerson

Purpose: Creates small COM files that set your display colors, with or without
first clearing the screen.

Format: [d:] [path]BASICA [d:] [path]COLORSET

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: If you use a color system, you need a way to set your screen colors, and
clear the screen to those preset colors.

Notes:

COLORSET.BAS will create a program called PCCOLOR.COM that
sets the foreground and background colors (and the border on CGA
screens.) It makes it a snap to choose the colors you want. And it asks
whether you want the new PCCOLOR.COM program to clear the screen
before it sets the colors. Most users prefer to have such programs clear
the screen, but this gives you the option of keeping the image intact and
just changing the underlying colors.

COLORSET will also ask you if you're using a screen with more than
25 lines, and adjust the program automatically to reflect the proper
screen size.

If you run COLORSET.BAS more than once to create several different
versions of the PCCOLOR.COM program, be sure to rename the exist
ing version so the new one doesn't write over the old one.

COLORSET.BAS will ask you to pick a border color. If you're using a
CGA, the border color you selected will appear. If you're using any
other kind of color system, the border won't appear, but it won't hurt to
pick a border color.

1. It's best to rename the PCCOLOR.COM program once you've
created it. Obvious choices are the names of the colors themselves
(BLUEWI1E.COM, REDYELOW.COM etc.). But it's easier to keep
the name short, since this saves typing. We usually give such programs
names like C.COM or CL.COM. You can't really name a program
CLS.COM, since CLS is an internal DOS command. DOS will think
you're trying to execute the normal CLS command and give its com
mand preference over yours.

Technically you could create a program called CLS.COM. But you'd
have to run it each time by putting a drive letter or path in front of it:

BASIC Programs 1149

C:CLS

You could, of course, execute it by typing:

.\CLS

(which is shorthand for telling DOS you want to run the program in the
current directory).

FROG.BAS Paul Somerson

Purpose: Demonstrates character-animation techniques in a short but energetic
game.

Format: [d:] [path]BASICA [d:] [path]FROG

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: With a little ingenuity you can use the high-bit ASCII character set (the
foreign language, math, and box/border characters) to draw charts,
tables, graphs, and even animated pictures.

FROG.BAS is a primitive game that uses a wide variety of these ASCII
characters to draw a jumping frog, a flying bug, and a long frog tongue.
You play by hitting the FlO function key to launch the tongue so it can
catch the bug. You can launch the tongue only when the frog has landed
on the ground. If you want to alter the rules, change the numbers indi
cated in lines 160 and 170. And if the action is too slow, reduce the num
ber in line 4 70.

Obviously this isn't going to displace your kids' favorite arcade games.
It's included here to demonstrate two things-first, that the ASCII
characters can create reasonable images on your screen (for bar charts,
graphs, etc.), and second, that BASIC is a powerful tool that can pack a
wallop in just a few lines.

GRAFPRNT.BAS Paul Somerson

Purpose: Displays bit patterns for all ASCII characters with values greater than
127.

, I ' I'

1150 PC Magazine DOS Power Tools

Format: [d:] [path]BASICA [d:] [path]GRAFPRNT

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: DOS version 3.0 offered a new utility called GRAFf ABL.COM that
made it possible to display the high-bit characters (with ASCII values be
tween 128 and 255). All you had to do was type in GRAFfABL before
loading BASIC, and DOS would create a memory-resident lookup table
containing the proper values.

GRAFf ABL.COM remained the same in versions 3.1 and 3.2, but when
IBM introduced its confounding foreign language features in version 3.3
it made GRAFf ABL.COM five times larger to accommodate slight dif
ferences in foreign character sets.

GRAFPRNT.BAS looks inside GRAFf ABL.COM, reads the character
patterns into an array, and uses ROMPRINT's binary pattern printer to
display an enlarged version of any ASCII character from 128 through
255. It checks to make sure you have a proper version handy, and
automatically detects whether it's dealing with an older GRAF
TABL.COM or a fat new one, since the internal structures are different.

Examples: If you want to see the cents sign that's missing from the IBM keyboard,
just run GRAFPRINT and type in 155. If you want to see the IBM bor
der characters just type in the numbers between 179 and 218.

See ROMPRINT.BAS for a program that displays the lower 128 ASCII
character dot patterns.

HORSE.BAS Paul Somerson

Purpose: Demonstrates screen-page animation (on color systems only).

Format: [d:] [path]BASICA [d:] [path]HORSE

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: This program uses the BASIC GET and PUT commands, and a few bi
nary decoding tricks, to put four very realistic galloping horses on any
color screen. When it's running, you can press the F9 and FlO function
keys to change the colors. Pressing Esc will end the program and drop
you back into DOS.

BASIC Programs 1151

The horse images are patterned after Eadweard Muybridge's stop-action
photographs. The digitization first appeared in the Computer Animation
Primer, a terrific book on animation by David Fox and Mitchell Waite,
published by McGraw Hill.

MAKECOM.BAS Larry Zimmerman

Purpose: Tums your text files into tiny assembly language programs that pop onto
the screen.

Format: [d:] [path]BASICA [d:] [path]MAKECOM

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: You can display text in DOS several different ways. The most common
is to use the ECHO command in batch files:

ECHO ===========================
ECHO ** MENU **
ECHO 1. Run WordStar
ECHO 2. Run d.Base

A faster way is to put the text you want to display in a file of its own and
then use the DOS TYPE or MORE command. If the file were called
MENU.TXT, you could do it with:

TYPE MENU.TXT

If MENU.TXT happened to be longer than 25 lines, you could substitute:

MORE < MENU.TXT

But these methods just don't look professional. It's much speedier and
more impressive to have text flash instantaneously onto your display.
MAKECOM.BAS makes it easy to create individual COM files that will
do this for you.

Examples: To use this program, first create a text file that's no wider than 79 charac
ters, and no deeper than 24 lines. Use a pure-ASCII word processor, or
EDLIN, since you don't want any control characters or distracting word
processor formatting commands to appear.

, I ' It•

1152 PC Magazine DOS Power Tools

Notes:

Then load MAKECOM.BAS by typing BASICA MAKECOM or
GWBASIC MAKECOM. The program will ask for the name of your
text file. Type in the filename (adding a drive and path if necessary).
MAKECOM will then tell you that it will create a similarly named ver
sion of the text file, but with a COM extension.

If this is acceptable, just press the Enter key. Otherwise, enter a different
filename. If you don't include a COM extension, the program will add
one for you.

When MAKECOM is done it will tell you the new file has been created.
Type:

SYSTEM

and press the Enter key to return to DOS. Then type in the name of the
new program. The text should flash onto your screen.

The COM program created by MAKECOM.BAS will not change your
display colors when it prints the text If you do want to have the COM
program set new colors, you can do it one of two ways.

You can use DEBUG to patch just the single COM program that
MAKECOM.BAS creates. Or you can make a copy of
MAKECOM.BAS called MAKECOM2.BAS that will always create
screens that appear in one preset color combination of your choice.

Changing single COM files one at a time lets you pop up differently
colored screens. Changing the main MAKECOM.BAS program to
MAKECOM2.BAS means that every .COM file created by
MAKECOM2.BAS will be the same color. But if you want all your
screens to be blue on white, you may prefer this method.

To change just a single COM file called MENU.COM, first figure out
the two-digit hex value for the color you want to use. (See the note on
color at the end of this entry.) If you wanted to make the screen bright
yellow on a red background, you would use 4E. Type:

DEBUG MENU.COM
E 147 B7 4E
w
Q

Now run MENU.COM by typing MENU at the DOS prompt and it
should appear in yellow on red. The:

BASIC Programs 1153

E 147 B7

in the second line is always the same. But change the 4E to any other
color value you want.

To give yourself a copy of MAKECOM.BAS called MAKECOM2.BAS
that creates COM files that display screens in the preset colors you want,
use your pure-ASCII word processor (or the BASIC editor itself) and
make the following change:

In line 430 of the program, replace the two numbers:

88,E7

with:

B7,4E

Make sure you put a B7 first, and follow it with a comma. But replace
the 4E with any other color value you'd like. The 4E will produce
screens that are bright yellow on red. And make sure you don't put a
comma after the color number - only one comma should be on that line.

How to Pick a Color Number

The BIOS video attribute numbering system relies on two-digit hex num
bers to specify foreground (text) and background colors.

The lefthand digitJs the background color. The righthand digit is the
foreground color. Select these numbers from the color chart in the
BROWSE entry.

Values from 0 to 7 are normal inteitSity. Values from 8 to Fare high-in
tensity (bright) versions of the normal colors. You can use all 16 values
from 0 through F for foreground (text) colors -the righthand digit. But
background colors - the lefthand digit - are restricted to values from 0
to 7. If you use a background color higher than 7, the text will blink an
noyingly.

Example: The two-digit color number:

71

will create blue text (1) on a white (7) background. The number:

, I 11

1154 PC Magazine DOS Power Tools

17

will produce white text on a blue background. To keep the background
blue but make the white text high-intensity (bright), use a value ofF in
stead of7:

lF

For something attention-getting you could always try a combination like
bright green (A) on magenta/purple (5) = SA.

MAKE MENU.BAS · Paul Somerson

Purpose: Automatically creates a custom DOS menu system.

Format: [d:] [path]BASICA [d:] [path]MAKEMENU

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: This program really shows what you can do with a short BASIC
program.

It asks the user a few questions, and creates a complete DOS menu sys
tem that will list the precise number of menu choices specified by the
user, wrap these choices in an attractive menu screen, and produce a cus
tomized batch file that runs the whole affair.

MAKEMENU.BAS even creates a small assembly language routine
called GETLETR.COM that handles the user input when the batch file is
operating in DOS.

You can have it create a menu screen surrounded by a single-line or
double-line box, and containing from two to 26 menu choices. Each
choice is triggered by a letter of the alphabet.

MAKEMENU.BAS creates a batch file called MENU.BAT that prints
rows of XXXXXXXs for each menu choice. When you 're done, load the
MENU.BAT program into your pure-ASCII word processor or EDLIN
and replace the XXXXXXs with real choices (such as "A. Run Word
Star"). Then replace the dummy ECHO statements under each label with
the actual commands you want the letter choices to execute.

• I I '

BASIC Programs 1155

The program also generates the necessary GETLETR.COM file to inter
pret the user keystroke choices into menu selections so MENU.BAT can
branch to the proper place and execute the desired command. Once
you've run the program the first time, you don't have to keep recreating
the GETLETR.COM routine. You may remove everything in the
program from line 760 to the end, but it won't hurt anything if you leave
all those lines intact.

Examples: The smallest possible MENU.BAT file you could generate would look
something like:

ECHO OFF
:TOP

ECHO +--+
ECHO ** MENU **
ECHO
ECHO A XXXXXXXXXXXXXXXXXXXX B XXXXXXXXXXXXXXXXXXXXXX
ECHO
ECHO Enter a letter from A to B (or type Esc to quit)

ECHO +--+
:START
GETLETR
IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 3 GOTO START
IF ERRORLEVEL 2 GOTO LABELB
:LABELA
ECHO (this simulates menu choice A)
PAUSE
GOTO TOP
:LABELB
ECHO (this simulates menu choice B)
PAUSE
GOTO TOP
:END

Once you've run MAKEMENU.BAS and created this sample
MENU.BAT file, change the XXXXXXs so they read something like:

ECHO +--+
ECHO ** MENU **
ECHO

ECHO IA - Run 25-line WordStar B - Run 43-line WordStarl
ECHO I I

ECHO I Enter a letter from A to B (or type Esc to quit) I

ECHO +--+

1156 PC Magazine DOS Power Tools

Then change the lines below the appropriate labels in the lower half of
the batch file, by replacing the dummy "ECHO (this simulates menu
choice A)" lines put there by MAKEMENU.BAS to demonstrate how
the system works:

:LABELA
ws
PAUSE
GOTO TOP
:LABELS
WS43
PAUSE

This example replaced the:

ECHO (this simulates menu choice A)

line with:

ws

which runs a normal 25-line version of WordStar. Then it replaced the:

ECHO (this simulates menu choice B)

line with:

WS43

which runs a special 4 3-line version of WordStar. You could just as easi
ly have inserted another program name such as:

123

in one of these places to run 123. Or you could have placed a DOS com
mand like

DIR I SORT I MORE

and changed one of the choices in the menu to:

B - Print a sorted directory listing

You might want to get rid of the PAUSE that follows each of your com
mands. This will pause the batch file when the command or the program

t I

BASIC Programs 1157

at each label finishes executing. One tap on the spacebar or any other
key and MENU .BAT will redisplay the menu.

You may also want to insert a:

CLS

command on a line by itself directly below the :TOP label at the very
beginning of MENU.BAT. This will clear the screen each time some
thing finishes executing, so the MENU displays on a clean screen.

Once you've created the MENU.BAT file and used your word processor
or EDLIN to enter your own menu choices, run it by typing:

MENU

Be sure the GETLE1R.COM program also created by
MAKEMENU.BAS is in the same directory, or is in a directory
specified by your PA TH command.

Typing any menu letter at that point should execute that particular com
mand or program. When it's done, you should see the main menu again.
If you've left the PAUSE commands intact, you'll have to press a key to
see the menu again.

MENU.BAT screens out erroneous entries, and it's case insensitive so
you may enter an uppercase or lowercase A to pick the first menu item.
To quit, simply press the Escape key.

MAKESCRN.BAS Paul Somerson

Purpose: Produces an attractive, simulated-3D menu that you can display in your
batch files by using the TYPE command.

Format: [d:] [path]BASICA [d:] [path]MAKESCRN

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: Batch files can display menus and messages either by using the ECHO
command to print them line by line, or by using the TYPE command to
print the whole thing at once. See BOXMAKER.BAS for a discussion of
the merits of each technique.

, I j!

1158 PC Magazine DOS Power Tools

Notes:

MAKESCRN.BAS produces a file that contains a centered, reverse
video slab in just about any size you want, complete with a shadow
under it that makes it look three-dimensional. It also prints the word
"MENU" at the top of it.

You can use your pure-ASCII word processor to add menu items to it.
Then just add a line in your batch file that says:

TYPE MENU

If you use this program more than once, be sure to rename any existing
copies of the MENU file so the new one doesn't obliterate the old one.

See BOXMAKER.BAS.

ROMPRINT.BAS Paul Somerson

Purpose: Snoops inside your BASIC ROM and prints the bit patterns for the
characters there.

Format: [d:] [path]BASICA [d:] [path]ROMPRINT

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: ROMPRINT.BAS looks at absolute memory address FOOO:FA6E, reads
the values stored there and interprets them as light and dark blocks on
your screen. The main ROM maintains the patterns for each character as
a sequence of eight binary numbers, one per row. ROMPRINT retrieves
the decimal value of each number and translates it into the binary pattern
for each row.

To tell ROMPRINT which character dot patterns you want it to display,
either press keys from the keyboard, or enter ASCII values between 0
and 127. If you want to see the dot patterns for the digits 0-9, enter their
ASCII values (0 = 48, 1 = 49 ... 9 = 57). If you do type in ASCII numbers,
press the Enter key after entering any values with fewer than three digits.
When you're all done, press the FlO function key to end the program.

The program also displays the actual life-size character beneath the en
larged dot pattern. It won't display the whole character set, since the sys
tem uses some with values like 7, 10, 12, and 13 to control the position
of the cursor, clear the screen, beep, and manage other display chores.

a ' I

BASIC Programs 1159

But ROMPRINT will show you the actual patterns stored in ROM for
every single one.

Examples: To see the patterns for A or #,just press the appropriate keys. Certain
characters, such as % and@, are hard to draw in the small 8 x 8 charac
ter box your ROM uses.

See GRAFPRNT.BAS for a program that displays characters with
ASCII values between 128 and 255.

SAMPLE.BAS Paul Somerson

Purpose: Generates sample screens in 40-column text, 80-column text, 320 x 200
graphics, and 640 x 200 graphics modes that you can use to demonstrate
CAMERA.COM and CAMLOAD.BAS.

Format: [d:] [path] BASICA [d:] [path] SAMPLE

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: The images produced by SAMPLE.BAS aren't fancy, but they do use
the four modes supported by CAMERA.COM.

The program will pause after generating each screen. Assuming you've
loaded CAMERA.COM previously, activate it at that point by pressing
Ctrl-Alt-Right Shift to capture each image. Then press any key to
generate the next image. After capturing the last (high-resolution) image,
type SYSTEM and press Enter to return t9 DOS.

See CAMLOAD.BAS, CAMERA.

SECTORXL.BAS Paul Somerson

Purpose: Translates differing BIOS and DOS sector numbers back and forth.

Format: [d:] [path]BASICA [d:] [path]SECTORXL

(Substitute GWBASIC instead of BASICA on generic systems.)

, I .<

1160 PC Magazine DOS Power Tools

Remarks: BIOS uses a three-dimensional notation system (track/side/sector) for
referring to disk sectors. DOS uses a single linear system. Converting
from one to the other can be confusing.

What makes it even worse is that track and side numbers start with 0, but
sector numbers start with 1.

You might use this if you decide to customize the disk boot record. The
boot record uses BIOS calls and the BIOS sector-numbering system ex
clusively, since one of the things it does is start the process of loading
DOS. But the tools you 'II use to move files around are probably
DEBUG or something like the Norton Utilities, both of which use the
DOS numbering system.

SECTORXL takes the sting out of the translation process, and prevents
you from entering any out-of-range numbers. And it prompts you for all
the necessary entries.

SOUNDER.BAS Paul Somerson

Purpose: Demonstrates the kind of unusual sounds you can have BASIC generate
with a tiny amount of code.

Format: [d:] [path]BASICA [d:] [path]SOUNDER

(Substitute GWBASIC instead of BASICA on generic systems.)

Remarks: One thing that drives lots of users crazy is the unvarying DOS beep. If
you're writing a batch file that runs a long, slow program, and you want
to alert the user when it's done, or if you want to warn users when
they're about to do something potentially dangerous, you can insert a:

ECHO "G

line in the batch file (where the AG is generated by holding down the
Ctrl key and pressing G). When DOS executes this line it will beep.

It's possible to write assembly language programs to beep and twitter dif
ferently, but BASIC makes the process a whole lot easier. The BASIC
manual demonstrates how to do this with the SOUND and PLAY com
mands. SOUNDER mixes a hnadful of SOUND commands with some
OUT commands that manipulate the speaker directly.

BASIC Programs 1161

You could, for instance, adapt one of the small sound modules in
SOUNDER.BAS and dash off a quick program like ALARMER.BAS:

100 ' ALARMER.BAS
110 ' (c) 1987 Ziff Communications Co.
120 IF TIME$<>"17:00:00" THEN 120
130 FOR A=l TO 15
140 FOR B=l TO 450 STEP 200
150 SOUND 400+B, .3
160 NEXT:NEXT
170 FOR C=l TO 5000:NEXT
180 IF INKEY$<>"" THEN 200
190 GOTO 130
200 SYSTEM

When you run this it will sit there testing the time and do nothing until 5
PM (17:00:00 in BASIC's 24-hour syntax). Then it will produce a repeat
ing sound sort of similar to an electronic telephone ring until you press a
key to stop it.

You could adapt this simple ALARMER.BAS program, as Charles Pet
zold once mentioned in a column of his, to run a process at a certain
time. Just remove lines 170 to 190, and change the time in line 120 if
necessary.

Then put a line in your batch file that says:

BASICA ALARMER

(or GWBASIC ALARMER) and follow this line with the command or
program you want to execute at that time. The batch file will load
BASIC and run the program, then do nothing until the proper time.
When the time you entered finally rolls around, it will warble the alarm,
jump back into DOS and resume executing the batch file at the following
line, running the program you specified there.

Michael Mefford's PLAY utility on the accompanying disk can also
make lots of interesting sounds.

' I 11 I .. I I I

P A R T V

Quick Ref ere nee

• I I I 11 ,, I I jl• I

Chapter 18

The PC-DOS Commands

The chapter covers all the DOS 3.3 commands, including CONFIG.SYS and batch file
commands. Some of the following ones, such as APPEND or FASTOPEN, don't exist
in previous editions of DOS. Some, such as A TfRIB, BACKUP, RESTORE, or TIME
and DA TE, work differently in earlier versions. One, XCOPY, isn't on generic DOS disks
since it was written by IBM rather than Microsoft. And some terrific Microsoft com
mands, such as FC, aren't included here since they're not on the standard IBM DOS disk.

See Figures 1.3 and 1.4 in Chapter 1 for a list of new and modified commands in all
PC-DOS versions from 1.0 through 3.3.

For more hints and explanations on some of the most powerful DOS commands, such
as PRINT or XCOPY, see Chapter 14.

When part of a command's format is specified in brackets ([d:]) it means the part is
optional. When two choices are separated by a vertical bar (ON I OFF) it means you
should enter one or the other. An or means DOS allows multiple syntaxes.

The label [external command] means that a separate file with the name of the com
mand and ending in EXE or COM must be on the disk in the current directory or one that
your PATH command knows about. If this label does not appear after the name of the
command in the listing below, the command is "internal," which means you don't have
to have a separate file handy to execute it. The mechanisms for internal commands are
contained inside the main DOS COMMAND.COM file.

The number below the line containing the name of the command is the DOS version
in which the command was introduced. Many of the commands have gone through ex
tensive revision - for instance, DISKCOPY changed in versions 1.1, 2.0/2.l, 3.0, and
3.2- so the syntaxes and features listed are for version 3.3 only.

1165

1166 PC Magazine DOS Power Tools

Primary DOS 3.3 Commands

APPEND [external command]
3.2

Format:

Searches a specified list of drives and directories for non-executable files
and overlays needed by your programs; the PATH command does the
same thing for executable files.

APPEND d:path[; [d:]path ...]

or

APPEND [/X] (/E]

or

APPEND (;]

[d:] [path] = path to search
IX = process Search First, Find First, and EXEC calls
/E = store APPEND path in environment
; = resets the APPEND path to null when used alone

ASSIGN [external command]
2.0

Format:

Gives a drive a new name.

ASSIGN (a (=] b (...]]

a = drive to get new name
b=newname

ASSIGN without parameters clears all assignments

Notes:

The PC DOS 3.3 Commands 1167

1. Don't use colons after the drive letters. With a single assignment
you don't have to use the equals sign.

2. Never use commands like BACKUP, RESTORE, JOIN, LABEL,
SUBST, or PRINT while ASSIGN is active. FORMAT, DISKCOPY,
and DISKCOMP commands ignore ASSIGN 1/0 reroutings.

3. The best way to use ASSIGN is from inside a batch file where the
first batch file line makes the new assignment, the second line runs the
program requiring the assignment, and the third resets things the way
they originally were. In fact, if you can use SUBST instead of ASSIGN,
do it.

ATTRIB [external command]
3.0

Format:

Notes:

Modifies some but not all file attributes.

ATTRIB [+Rl-R] [+Al-A] [d:][path]filename[.ext] [/S]

+R = make read-only
-R = make not read-only
+A = set archive bit
-A = reset archive bit
[d:] [path]filename.ext = file(s) to change
/S =do all lower-level subdirectories too

When you enter just a filespec after it, A TTRIB will display the status of
the archive and read-only settings by printing an A and/or R before the
filename if appropriate.

1. Since A TTRIB lets you use wildcards, you may examine the status
of all the files in the current directory by entering A TTRIB *. *

2. By making a file read-only you can prevent it from being changed
or erased. Commands like BACKUP and XCOPY can use the archive bit
to figure out whether or not the file has changed since you last backed it
up. If you use the /M switch with these commands you can make back
ups more efficient by copying only files that have been modified in the
interim.

1168 PC Magazine DOS Power Tools

3. The A TIR program on the accompanying disk displays all at
tributes, not just a few, and lets you modify additional ones not allowed
byATIRIB.

BACKUP [external command]
2.0

Format:

Notes:

Backs up files; can split large files over several floppy disks. Use the RE
STORE command to put files back.

BACKUP s: [path] [filename[.ext]] t: [/S] [/M] [/A]

[/D:rnm-dd-yy] [/T:hh:mm:ss] [/F]

[/L [: [d:] [path] [logname. [ext]]]

s: [path] [filename[.ext]] = source drive and/or file(s) to back up
t: = target drive
/S = do files in subdirectories also
/M = back up files changed since last BACKUP
I A = add files to backup disk overwriting same files already on it
/D = back up files changed on or after date
rr = back up files changed on or after time on date
IF= format backup disk if necessary (FORMAT.COM must be handy)
/L =create a log file (default is BACKUP.COM)
[d:] [path] [logname.[ext]] = drive/path and filename for log file

1. BACKUP stores files in a special format; you must use the RE
STORE command to put them back in their original condition. Version
3.3 stores backup files in one large chunk; earlier versions maintained in
dividual backup files for each file.

2. Since early BACKUP and RESTORE versions erroneously let you
write system files from earlier versions onto disks containing newer ver
sions, be careful when using older versions to restore files.

Version 3.3 can run the DOS FORMAT command (if it's accessible)
when you're backing up files onto unformatted disks. Older versions
wouldn't, which forced you to have a tall stack of formatted disks handy
before you began. Be careful when using the IF option, since the source
and target drive sizes must be identical. And don't use BACKUP when
drive or directory mixing commands such as JOIN are in effect.

BREAK
2.0

Format:

CD
2.0

CHCP
3.3

Format:

t ' I

The PC DOS 3.3 Commands 1169

Lets you specify more or less frequent Ctrl-Break checking, or display
the current BREAK status.

BREAK [ON I OFF]

ON = break on demand (for programs with little 1/0)
OFF= check for break only during 1/0 functions (default)

BREAK without parameters displays BREAK status.

SeeCHDIR.

Selects DOS code page.

CHCP [nnn]

nnn = number of desired code page

Note: You must load NLSFUNC before using CHCP. May need to have
COUNTRY.SYS handy.

CHDIR(CD)
2.0

Changes or displays current directory.

, I · II

1170 PC Magazine DOS Power Tools

Format:

Notes:

CHDIR [d:] [path]

or

CD [d:] [path]

d: = drive with path to change
path = new path

CHDIR without parameter displays name of current directory.

1. Specifying a directory name without a backslash (\) in front of it
tells DOS to switch into a subdirectory one level lower than the current
directory. So if the current directory is \DOS, the command CD UTILS
will log into \DOS\UTILS. But if you typed CD \UTILS, DOS would
log into a subdirectory called \UTILS one level down from the root direc
tory that had no relation to the \DOS subdirectory.

2. Entering CD\ will return to the root directory. Entering CD .. will
change to the parent directory one level up toward the root from the cur
rent subdirectory. Since the double dot(..) is shorthand for the parent
directory, if you 're logged into \DOS\UTILS\PCMAG and you want to
change to \DOS\UTILS\NORTON you could type CD .. \NORTON.

CHKDSK [external command]
1.0

Format:

Checks and repairs disks, reports on memory use and file fragmentation,
and can show names and locations of all files on disk.

CHKDSK [d:][path][filename.[ext]] [/F] [/V]

[d:] = drive to check
[path] [filename.[ext]] = file(s) for fragmentation report
IF = fix errors
N = show all files and paths on disk

CHKDSK *. * will produce a file fragmentation report for all files. To fix
fragmented files (which slow DOS down), copy them to another disk,
erase the originals, then copy them back.

Notes:

CLS
2.0

Format:

Notes:

II I

The PC DOS 3.3 Commands 1171

1. Using CHKDSK N I FIND "FILE.TXT" will locate all occurrences
of a file called FILE. TXT on the specified disk.

2. When CHKDSK reports that it found hidden files, it usually means
the two hidden system files {IBMBIO.COM and IBMDOS.COM or their
generic MSDOS.SYS and IO.SYS equivalents) and the hidden volume
label. If it reports other hidden files that you don ,t know about, these are
probably sneaky copy protection devices. Don,t try using ATTR or
DEBUG to unhide such files hidden as copy-protection devices; instead
try to uninstall the program that hid them. This is necessary because
some nasty copy-protection schemes scramble the underlying disk struc
ture before hiding a file, and will put things back to normal only when
you use the authorized deinstallation program that came with software.

3. Don,t use CHKDSK on a drive involved with an active alias com
mand such as SUBST, JOIN, or ASSIGN.

Clears a 25-line screen.

CLS

1. On a color system this will always clear the screen to grey on black
(attribute 07) unless ANSI.SYS is active.

2. Yes, it's hard to believe, but CLS wasn't a part of DOS until version
2.0.

COMMAND
1.0

Format:

Loads and runs an additional copy of the COMMAND.COM command
processor.

COMMAND [d:] [path] [/P] [/C string] [/E:xxxxx]

1172 PC Magazine DOS Power Tools

Notes:

COMP
1.0

Format:

Notes:

COPY
1.0

[d:] [path]= drive/path for command processor to start
IP = make new processor permanent
IC = pass command string to new processor
string = any valid DOS command line
/E:xxxxx = number of bytes for environment (160 to 32768)

1. You can use COMMAND /C to load a second batch file when run
ning a first batch file and return to the original one when the additional
batch file EXITs. And you can use it to pass parameters to the additional
batch file. In versions 3.3 or later you can have the more efficient CALL
command use other batch files as subroutines.

2. DOS versions earlier than 3.3 used slightly different methods of in
creasing the environment size. It's a good idea to increase the size past
the trifling default of 160 bytes.

Compares files (only if both are same size; stops after ten mismatches).

COMP [a:) [path) (filename[.ext]]
[b:] [path] [filename[.ext]]

[a:][path][filename[.ext]] =primary file(s)
[b:][path][filename[.ext]] =secondary file(s)

1. The generic MS-DOS 2.0 FC command is much better than COMP;
unfortunately IBM never included FC in PC-DOS versions.

2. Fortunately, this command accepts wildcards. And, if you want to
refer to the current directory, you can use the single period(.) shorthand.

Copies, updates, and concatenates files, and can copy to devices as well
as files.

Format:

Notes:

CTTY
2.0

Format:

The PC DOS 3 .3 Commands 1173

COPY [/A] [/B] [a:][path][filename[.ext]] [/A] [/B]
[b:] [path] [filename[.ext]] [/A] [/B] [/V]

or

COPY [/A] [/B] [a:] [path] [filename[.ext]] [/A] [/B]

[+[a:][path][filename[.ext]] [/A] [/B] ...]
[b:][path][filename[.ext]] [/A] [/B] [/V]

/A= ASCII; stop at first Ctrl-Z end-of-file marker in source; add Ctrl-Z
to target

/B = binary; don't treat any Ctrl-Z as an end-of-file marker; instead use
file length specified by directory

[a:] [path] [filename[.ext]] = source file(s)
[b:] [path] [filename[.ext]] = destination
N = use primitive CRC verification
+,, /B = when used at end of line for single file updates date and time

1. You can COPY to devices as well as files, so that COPY TEXT.FIL
CON would display the contents of a file called TEXT.FIL onscreen and
COPY TEXT.FIL PRN would print it on the first parallel printer at
tached to your system.

2. It's possible to erase or truncate files if you're not careful about
using the COPY command, especially when dealing with long path
names or concatenating files.

Lets you change the way DOS handles standard 1/0.

CTTY device-name

device-name= AUX, COMl, COM2, COM3, COM4 to set new con
sole; CON to restore to screen and keyboard.

CITY NUL = disconnects keyboard and screen; use with care only in
batch files that have a subsequent CITY CON command or you won't
be able to regain control.

, I 11

1174 PC Magazine DOS Power Tools

DATE
1.0 as external command; 1.1 as internal command

Format:

Notes:

DEL
1.1

Format:

Notes:

Reports and sets the system date.

DATE [mm-dd-yy] I [dd-mm-yy] I [yy-mm-dd]

mm= month (1-12)
dd =day (1-31)
yy = ye,ar (80-99or1980-1999)

DATE without parameters displays the current date (and day of the
week). Pressing the Enter key after typing DATE by itself will leave the
date unchanged.

1. You can use a period, dash, or slash to separate elements; various or
ders of entry are based on the active COUNTRY selection.

2. DOS won't let you enter a ye,ar e,arlier than 1980 or later than 2079.
You may enter two numbers for the ye,ar from (19)80 through (19)99 but
you'll need four digits and DOS 3.0 or later to go from 2000 to 2079.

3. While DOS will display the day of the week, don't enter the name
of the day yourself.

4. Believe it or not, DA 1E and TIME were external commands in
DOS version 1.0. In version 3.3 these will permanently set the CMOS
clock in ATs and later systems.

Deletes files. [Same as ERASE]

DEL [d:] [path]filename[.ext]

[d:][path]filename[.ext] = file(s) to delete

1. Global *. * summons a confirming prompt; type N or n if you don't
want to erase everything. Be careful if you specify a directory after DEL

DIR
1.0

Format:

The PC DOS 3.3 Commands 1175

(e.g., DEL \SUBDIR) since DOS will assume you mean DEL \SUB
DIR*.*

2. Take care when using * wildcards, since DOS stops reading charac
ters on each side of the period when it sees an asterisk. It will interpret
the command:

DEL *FIL.*NM

as DEL *. * which is probably not what you had in mind. Similarly, the
command:

DEL .

tells DOS to erase all files in the current directory.

Use RD or RMDIR to remove subdirectories after deleting all files in
them.

3. Be careful when using DEL while a directory or drive alias com
mand such as SUBST, ASSIGN, or JOIN is active. DOS won't let you
erase read-only files, so use the A TTRIB command first to remove the
read-only attribute.

4. Utilities like Peter Norton's or Paul Mace's can usually recover inad
vertently erased files so long as you use these utilities immediately after
the erasure.

Lists files, sizes, and creation/modification dates and times, as well as
branching subdirectories.

DIR [d:] [path] [filename[.ext]] [/P] [/W]

[d:] [path] [filename[.ext]] = files to list
IP= pause when screen full (23 entries)
/W =wide format (lists filenames without size, time, or date)

Default is DIR *. *

, I I'

1176 PC Magazine DOS Power Tools

Notes: 1. While DOS will display all the files with names that begin with S if
you type DIR S* it won't copy or delete them all unless you use COPY
S*.* orDELS*.*

2. DOS identifies subdirectories by putting a <DIR> in the size
column. Typing DIR *. will display all such directory entries as well as
any files without extensions. These <DIR> entries, including the current
subdirectory (which is listed as a single.), are added to the total file
count report produced by DIR.

DISKCOMP [external command]
1.0

Format:

Compares two entire diskettes for content differences.

DISKCOMP [a: [b:]] [/ 1] [/ 8]

a:= source drive
b: = target drive
/1 = compare the first side only
/8 =use only eight sectors per track

Note: DOS won't let you DISKC01v1P a VDISK, and is picky about which
physical disks you can DISKC01v1P. And don't use DISKC01v1P while
drive- or directory-mixing commands such as JOIN, SUBST, or AS
SIGN are in effect.

DISKCOPY [external command]
1.0

Format:

Copies an entire diskette and formats the copy if necessary.

DISKCOPY [a: [b:]] [/1]

a: = source drive
b: = target drive
/1 = copy the first side only

Notes:

ERASE
1.0

Format:

Notes:

The PC DOS 3 .3 Commands 1177

Entering DISKCOPY without any parameters tells DOS to use the same
drive as the source and target, and prompt you when to remove and in
sert the appropriate disks into this single drive.

1. DOS won't let you DISKCOPY to a VDISK, and is picky about
which physical disks you can DISKCOPY from and to. And don't use
DISKCOMP while drive- or directory-mixing commands such as JOIN,
SUBST, or ASSIGN are in effect.

2. DISK COPY is the fastest way to copy similar-sized disks (and it for
mats on the fly if necessary), but XCOPY is almost as fast and avoids
potential fragmentation headaches.

Deletes files. [Same as DEL]

ERASE [d:] [path]filename[.ext]

[d:][path]filename[.ext] = file(s) to delete

1. Global *. * summons a confirming prompt; type N or n if you don't
want to erase everything. Be careful if you specify a directory after
ERASE (e.g., ERASE \SUBDIR) since DOS will assume you mean
ERASE\SUBDIR*.*

Take care when using * wildcards, since DOS stops reading characters
on each side of the period when it sees an asterisk. It will interpret the
command:

ERASE *FIL.*NM

as ERASE*.* which is probably not what you had in mind. Similarly,
the command:

ERASE .

tells DOS to erase all files in the current directory.

Use RD or RMDIR to remove subdirectories after deleting all files in
them.

,, I

1178 PC Magazine DOS Power Tools

2. Be careful when using ERASE while a directory or drive alias com
mand such as SUBST, ASSIGN, or JOIN is active. DOS won't let you
erase read-only files, so use the A 1TRIB command first to remove the
read-only attribute.

3. Utilities like Peter Norton's or Paul Mace's can usually recover inad
vertently erased files so long as you use these utilities immediately after
the erasure.

FASTOPEN [external command]
3.3

Format:

Remembers location on disk of recently accessed files/directories for
speedier access the next time you need them.

FASTOPEN c:[=nnn] •••

c: = fixed disk drive
nnn = #entries to remember for c: (10 to 999; default is 34)

Note: Don't use FASTOPEN while directory or drive alias commands such as
SUBST, ASSIGN, or JOIN are active. Use FASTOPEN only once each
session and be sure you've defined all your active drives before running
it. Each additional entry consumes 35 bytes of system memory. Experi
ment to find the most efficient value; don'tjustassume the largest one is
best

FDISK [external command]
2.0

Format:

Note:

Lets you set up, switch, and otherwise manipulate hard disk partitions.

FD I SK

In version 3.3 and later, FDISK lets you create "extended" partitions to
handle drives larger than 32 megabytes.

The PC DOS 3.3 Commands 1179

FIND [external command]
2.0

Format:

Notes:

Locates specific strings of characters in files; can count lines and number
them.

FIND [/V] [/C] [/N] "string"
[[d:] [path] filename [.ext] ...]

N = select lines not containing string
IC = display count of matching lines; ignores IN if both IC and IN

specified
IN = display line number of matching lines
"string" = search string enclosed in double quotation marks; DOS

interprets two quotes in a row as a single quote mark.
[[d:] [path]filename[.ext] ...] = file(s) to search

1. Wildcards are not allowed (so you have to use FOR. .. IN ... 00 for
global searches). However, you can specify several filenames at once at
the end of the command.

2. To count or number all lines, specify a string after the N option
(such as"$#@&") that doesn't occur at all in the file.

3. Searches are case-sensitive and stop at the first occurrence of a Ctrl
Z end-of-file marker.

FORMAT [external command]
1.0

Format:

Prepares a new disk and locks out defective disk areas, then reports the
total space, amount of defective space, and available space; optionally
adds system files and volume label.

FORMAT a: [/SJ [/l] [/8] [/V] [/BJ [/4] [/N:xx]
[/T:yy]

a:= drive with disk to format
IS = copy system files to new disk
ll = single-sided (5-1/4 inch floppies only)

1180 PC Magazine DOS Power Tools

Notes:

/8 = eight sectors per track (5-1/4 inch floppies only)
N = add volume label
/B = eight sectors per track, reserves space for system files later
/4 = fonnat single/double-sided 5-1/4 inch floppy in 1.2M drive
/N:xx =xx sectors per track
{f:yy = yy tracks on the disk

Default is nine or 15 sectors per track depending on the type of diskette.
Use /N:9 /f:80 for 720K disk in 1.44M drive.

1. Fonnatting can destroy the contents of your files. While later DOS
versions guard against accidental hard disk fonnatting, exercise care
when using this command, and consider renaming it if beginners use
your system. Utilities like Peter Norton's or Paul Mace's can recover
most data stored in subdirectories on an inadvertently fonnatted hard
disk.

2. FORMAT JS will put the three system files, IBMBIO.COM,
IBMDOS.COM (or their generic equivalents), and COMMAND.COM
on a disk you can boot from. The SYS command by itself will copy the
first two system files only, so you'll have to use the COPY command to
put COMMAND.COM on the disk.

3. FORMAT /B will leave room for users to add the hidden system
files later, but will fonnat diskettes with eight sectors per track only.
This means the maximum size of a 5-1/4 inch diskette fonnatted with the
/B option will be 320K (rather than 360K) minus the room allotted for
system files. Actually FORMAT will create nine or 15 sectors per track
but tell DOS to use only eight.

4. The FORMAT command technically perfonns "high-level" fonnat
ting on hard disks; a special kind of "low-level" fonnatting is perfonned
by the manufacturer.

5. FORMAT ignores ASSIGN drive and directory shufflings, but be
careful not to try it when SUBST or JOIN are active.

GRAFTABL [external command]
3.0

Loads high-bit ASCII graphics table (characters with values above
decimal 128) into memory for CGA mode only; supports code pages.

Format:

The PC DOS 3.3 Commands 1181

GRAFTABL [437 I 860 I 863 I 865 I /STATUS]

437 = United States code page (default)
860 = Portugal code page
863 = Canada (Fr.) code page
865 = Norway/Denmark code page
/STATUS = show current code page

GRAPHICS [external command]
2.0

Format:

Allows Shift-PrtSc screen "dump., of graphics image to IBM-compatible
graphics printer.

GRAPHICS [printer type] [/R] [/B] [/LCD]

[printer type] =
COLOR I - IBM Color Printer with black ribbon
COLOR4 - IBM Color Printer with red, green, blue, black
COLORS - IBM Color Printer with black, cyan, magenta, yellow
COMPACT - IBM Compact Printer
GRAPHICS - IBM Graphics Printer or Proprinter
THERMAL - IBM Convertible Printer
/R. - reverse black and white
/B - print background color (COLOR4, COLORS only)
/LCD - print from IBM Convertible LCD display

JOIN [external command]
3.1

Joins a disk drive with a directory on other drive.

Format: JO IN

or

JOIN a: c:\directory

or

1182 PC Magazine DOS Power Tools

JOIN a: /D

a: = drive to join
c:'illrectory = directory to join to (at root only and only one level deep

maximum)
ID = disconnect a JOIN

JOIN without parameters displays JOIN status.

Note: Be careful when using commands like SUBST or ASSIGN while drive
or directory alias commands like this are active. Don't use BACKUP,
RESTORE, FORMAT, DISKCOPY, or DISKCO:MP while JOIN is ac
tive.

KEYB [external command]
3.3

Format:

Notes:

Loads a non-U.S. keyboard template.

KEYB [xx[, [yyy], [[d:] [path]filename[.ext]]]]

xx =keyboard code
yyy = code page for character set
[d:] [path]filename[.ext] = location of KEYBOARD.SYS

1. This replaces individual commands such as KEYBUK and KEYBIT
introduced in DOS version 3.0.

2. DOS lets you shift back and forth between the standard keyboard
and any new one specified by KEYB by pressing Ctrl-Alt-Fl for the
U.S. version and Ctrl-Alt-F2 for the foreign version.

LABEL [external command]
3.0

Sets, changes, or deletes a disk's volume label

Format: LABEL [d:] [volume label]

Notes:

MD
2.0

The PC DOS 3 .3 Commands 1183

d: = drive to label
volume label = 1 to 11 characters

I. You can also create a volume label when you first format a disk by
using the FORMAT N option. It's important to add a label to hard disks,
since this provides an added layer of protection against accidentally for
matting the hard disk.

2. Earlier versions allowed lowercase labels, but DOS now automati
cally capitalizes them. And it lets you insert spaces in the volume name,
although in most other respects it follows the same rules (no *,>,or+
etc. characters) as with filenames.

3. Don't use LABEL when drive alias commands such as SUBST or
ASSIGN are active.

SeeMKDIR.

MKDIR(MD)
2.0

Format:

Notes:

Creates a subdirectory.

MKDIR [d:]path

or

MD [d:]path

[d:] =drive for new subdirectory
path= subdirectory to make (total 63-character limit including back
slashes)

I. Be careful when creating directories if drive alias commands such as
JOIN, ASSIGN, or SUBST are active.

, I ii

1184 PC Magazine DOS Power Tools

2. Specifying a new directory name without a backslash (\) in front of
it tells DOS to create a subdirectory one level lower than the current
directory. So if the current directory is \DOS, the command MD UTILS
will create a subdirectory called \DOS\UTILS. But if you typed MD
\UTILS, DOS would create a subdirectory called \UTILS one level
down from the root directory that had no relation to the \DOS subdirec
tory.

MODE [external command]
1.0 (with lots of upgrades)

1. Sets the printer mode.

Format: MODE LPT:f: [:] [n] [' [m] [' P]]

#=printer number (1, 2, or 3)
n = characters per line (80 or 132)
m =vertical lines per inch (6 or 8)
P = continuous retry on timeout errors

2. Sends parallel printer output to a serial port.

Format: MODE LPT:f:[:]=COMx

= printer number (1, 2, or 3)
x =COM adapter number (1, 2, 3, or 4)

Note: You must first initialize your COM port with the following version of
the MODE command, including ,Pat the end.

3. Sets the serial communication mode (protocols).

Format: MODE COM:#:[:] baud [,[parity] [, [databits]
[, [stopbits] [,P]]]]

#=COM adapter being set (1, 2, 3, or 4)
baud= baud rate (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200;

only first two digits of each rate are required)
parity = N, 0, or E (for None, Odd, Even; default is Even)
databits = 7 or 8 (default is 7)
stopbits = 1 or 2 (default is 2 if 110 baud, 1 if not)

The PC DOS 3.3 Commands 1185

P = indicates COM port is being used for printer; continuously retries on
timeout errors

Note: You must first initialize your COM port with this version of the MODE
command, including ,P at the end, before sending parallel printer output
to a serial port.

4. Sets the video mode.

Format: MODE n

or

MODE [n] ,m[, T]

n =video mode (40, 80, BW40, BW80, C040, C080, MONO)
m = R or L; shift display right or left one or two characters
T = shows test pattern for aligning display

Note: MODE doesn't support any of the newer EGA and VGA video modes.

5. Prepares code pages (foreign fonts)

Format: MODE device CODEPAGE PREPARE=((cplist)
[d:] [path]filename[.ext])

or

MODE device CODEPAGE PREPARE=((cp)
[d:] [path]filename[.ext])

device = CON, PRN, LPTl, LPT2, or LPTI
cp = a single code page number
cplist = code page number or list of numbers; a list must be surrounded

by parentheses
[d:] [path]filename[.ext] =CPI file containing code pages

Note: You may substitute CP for CODEPAGE and PREP for PREP ARE.

6. Selects code pages.

Format: MODE device CODEPAGE SELECT=cp

device = CON, PRN, LPTl, LPT2, or LPT3
cp =code page (437, 850, 8()(), 863, 865)

, I II

1186 PC Magazine DOS Power Tools

Note: You may substitute CP for CODEPAGE and SEL for SELECT.

7. Displays the active code page.

Format: MODE device CODEPAGE [/STATUS]

device= CON, PRN, LPTl, LPT2, or LPT3

Note: You may substitute CP for CODEPAGE and STA for STATUS.

8. Refreshes the code page.

Format: MODE device CODEPAGE REFRESH

device= CON, PRN, LPTl, LPT2, or LPT3

Note: You may substitute CP for CODEPAGE and REF for REFRESH.

MORE [external command]
2.0

Format:

Displays files one 25-line screenful at a time.

MORE < FILE.NAM

or

TYPE FILE.NAM I MORE

where FILE.NAM is the file you want to examine one 25-line screenful
at a time. If the entire file hasn't yet been displayed, DOS will print the
message - More- . Press any key at this point to have it display
another screenful.

NLSFUNC [external command]
3.3

Lets you use the CHCP command to pick code pages.

Format:

PATH
2.0

Format:

The PC DOS 3.3 Commands 1187

NLSFUNC [[d:] [path]filename[.ext]]

[d:] [path]filename[.ext] =COUNTRY.SYS file or equivalent
must load before using CHCP

Tells DOS to extend its normal search so that it includes a specified list
of drives and directories when trying to run an executable program
entered at the command line.

PATH [[d:] path [[; [d:] path ...]]]

or

PATH

[d:]path =drive/path for search list; separate multiple paths with semi
colons
; = resets the search path to null (so DOS will not include any additional

drives or directories in the search) when used as PA TH ;

PA TH without parameters displays the current PA TH list of drives and
directories to search for executable files.

Note: PATH works with COM, EXE, or BAT files only; the APPEND com
mand lets DOS search for nonexecutable files.

PRINT [external command]
2.0

Format:

Prints files; can handle background printing and groups (queues) of files.

PRINT [/D:device] [/B:buffsiz] [/U:busytick]
[/M:maxtick] [/S :timeslice] [/Q:quesiz] [/C] [/T]
[/P] [[d:] [path] [filename] [.ext] ...]

r ' i•

1188 PC Magazine DOS Power Tools

Notes:

PROMPT
2.0

Format:

/D:device =print device (default is PRN; must be first one specified)
/B:buffsiz =bytes for internal buffer (default is 512)
/U:busytick = ticks to wait for printer to be available (default is 1)
/M:maxtick =ticks to use for printing (1-255, default is 2)
/S:timeslice =ticks to use for system, not printer (1-255, default is 8)
/Q:quesiz =number of files in print queue (1-32, default is 10)
IC= lets you cancel file(s) in queue
rr = terminate; cancel entire print queue
IP = print preceding file and add all files to queue until a IC or Enter
[d:] [path] [filename] [.ext]= file(s) to print; wildcards are okay

PRINT without any parameters displays the list of filenames currently in
the queue. "Tick" means one .055 second clock cycle.

1. Disables Shift-PrtSc and Ctrl-PrtSc while PRINT is printing.

2. PRINT adds a fonnfeed command after each print job to start each
new file at the top of a page, and expands tabs (by inserting spaces) to
eight-column boundaries.

3. If you don't use a ID option the first time you execute the command,
PRINT will pause and ask which printer you want to use. While you can
specify PRN (or LPTl} by pressing Enter at this point, using the ID
switch saves a step.

4. See Chapter 14 for an explanation of how this works and what set
tings are best.

Sets the DOS prompt; transmits strings to ANSI.SYS.

PROMPT [prompt-text]

PROMPT without parameters resets the default DOS A> or C> prompt.
To see the active PROMPT string, type SET.

prompt-text can contain the following meta-string characters, preceded
by a$ sign:

Notes:

The PC DOS 3.3 Commands 1189

$ $ character
T time
D date
P current directory
V version number
N default drive letter
G > character
L < character
B I character
Q = character
H backspace (erases previous character)
E Escape character

CR/LF sequence (jumps to next lower line on screen)

DOS treats all other characters not on the above list as nulls.

1. Every hard disk user should use PROMPT $P: or PROMPT PG to
display the current subdirectory.

You can use the PROMPT command to send otherwise hard-to-type Es
cape sequences to ANSI.SYS for extended screen and keyboard control.
However, doing so will change any custom prompt you may have as
signed. To avoid this, first type:

SET I FIND "PROMPT" > RESET.BAT

to store your prompt, then have PROMPT issue the ANSI escape se
quence, then enter RESET to restore your original prompt, and finally
erase RESET.BAT. Or have batch file store it as environment variable,
with SET OLDP=%PROMPT% then later use SET
PROMPT=%0LDP%.

2. To use ANSI.SYS you must include a line in the CONFIG.SYS file
that was active when you booted that says DEVICE=\DOS\ANSI.SYS
(if you store ANSI.SYS in your\DOS subdirectory). See Chapter 9.

3. You may use eitherthe uppercase or lowercase versions of the
above meta-strings (so that $P works just as well as $p). However, ANSI
is picky about the case of its special commands.

,, I I'' • I

1190 PC Magazine DOS Power Tools

RECOVER [external command]
2.0

Format:

Notes:

REN
1.1

Recovers individual defective files or every file and subdirectory on a
disk. But don't use it to recover entire disk unless as last resort.

RECOVER [d:] [path]filename[.ext]

or

RECOVER d:

[d:][path]filename[.ext] = file(s) to recover
d: =recover all files on d: [Use with extreme caution!]

1. Beware - Don't use this for a whole disk! Use it on specific files
only unless there's no hope left for the disk. If you try it without specify
ing a single filename, RECOVER will turn your entire disk structure into
mush.

2. In addition, RECOVER puts its recovered files in the root directory.
Since a typical 5-1/4 inch 360K floppy disk root directory can hold a
maximum of 112 files, you may have to repeat the process several times,
delete files from the damaged disk, etc. Use only as an absolute last
resort.

See RENAME.

RENAME (REN)
1.0

Renames files.

Format:

The PC DOS 3.3 Commands 1191

RENAME [d:] [path]filename[.ext] filename[.ext]

[d:] [path]filename[.ext] = file(s) to rename
filename[.ext] =new name

Note: You can use wildcards in the filename. If by chance an application (or a
program such as BASIC) has created a filename with a space in it, you
can use a wildcard to remove the space. So if your directory contains a
file called FILE 1. TXT you can type:

REN FILE?l.TXT FILEl.TXT

REPLACE [external command]
3.2

Format:

Selectively copies or adds/updates files.

REPLACE [a:] [path]filename[.ext] [b:] [path]
[/A] [/P] [/R] [/S] [/W]

[a:] [path]filename[.ext] = source file(s)
[b:] [path]= target drive/path
IA= copy source files that don't exist on target
IP = prompt you when a similar file is found on the target
/R = replace read-only files on target
/S = search all directories on target for source matches
/W = wait for you to insert source disk

Note: You can't use/Sand/A at the same time.

RESTORE [external command]
2.0

Format:

Restores files saved by the BACKUP command.

RESTORE a: [c:][path]filename[.ext] [/SJ [/P]
[/B:mm-dd-yy] [/A:mm-dd-yy] [/M] [/N] [/L:time]
[/E: time]

l l • ,, I I'

1192 PC Magazine DOS Power Tools

Notes:

RD
2.0

a: = drive with BACKUP source
[c:] [path]filename[.ext] =destination
IS = restore all files in subdirectories too

/P =prompt before restoring files changed since last backup or marked
read-only; respond with Y or N

/B = restore if changed on or before date specified
IA= restore if changed on or after date specified
/M = restore if changed or deleted since backup
IN = restore if no longer on target
/L = restore if changed at or after time specified
/E = restore if changed at or before time specified

1. Don't use/B,IA, and/Nat the same time. And the DOS manual
warns against using RESTORE when a drive or directory alias command
such as SUBST, JOIN, or ASSIGN was active when you ran BACKUP.
So what are you supposed to do then?

2. Since early BACKUP and RESTORE versions erroneously let you
write system files from earlier versions onto disks containing newer ver
sions, be careful when using older versions to restore files.

3. BACKUP stores files in a special format; you must use the RE
STORE command to put them back in their original condition. Version
3.3 stores backup files in one large chunk; earlier versions maintained in
dividual backup files for each file.

SeeRMDIR.

RMDIR(RD)
2.0

Removes a directory.

Format: RMDIR [d:] path

or

Notes:

RD [d:]path

[d:] =drive to remove from
path = directory to remove

The PC DOS 3.3 Commands 1193

1. DOS won't let you remove a directory if it contains any files (includ
ing hidden ones) or lower-level directories.

2. If DOS tells you that the directory is not empty when you try using
RD or RMDIR to remove a subdirectory, and you've already erased all
the files in it and used RD to remove any lower-level directories, the
culprit is probably a hidden file inside the subdirectory. If the subdirec
tory contained a program that used a copy-protection scheme, try to
uninstall the program. If you 're sure that no copy protection scheme was
employed, use the A TIR program on the accompanying disk to unhide
the file, then erase it. RD or RMDIR should now work.

SELECT [external command]
3.0

Format:

Sets up DOS on a new disk.

SELECT [[A: I B:] [d:] [path]] xxx yy

A: or B: =source drive (default is A:)
[d:] [path]= target drive and path (default is B: root directory)
xxx = country code
yy =keyboard code

Note: Use this command only on brand new disks (if at all) since it runs the
DOS FORMAT command as part of its overall operation.

SET
2.0

Format:

Puts strings into the environment; displays environment strings.

SET [name=[parameter]]

1194 PC Magazine DOS Power Tools

Notes:

name = environment variable (automatically uppercased)
parameter= value for environment variable
SET with just name (and equals sign) clears name from environment
SET without name or parameters displays environment settings

1. The environment always contains COMSPEC= and probably
PATH= and PROMPT= variables. Many applications can store and read
environment variables. Batch files in later versions of DOS can read
them by sandwiching them between single % signs (e.g .• %PROMPT%).

2. DOS uses a paltry 160 bytes (or 127 bytes under certain circumstan
ces) for the environment size. See COMMAND [JE:xxxxx] for instruc
tions on increasing the default size.

SHARE [external command]
3.0

Format:

Supports file sharing.

SHARE [/F:filespace] [/L:locks]

/F: =bytes to allocate for sharing information (default is 2048); each
open file takes length of filename plus 11 more bytes

/L:locks =locks to allocate (default is 20)

SORT [external command]
2.0

Format:

Notes:

Sorts lines of text inside files starting at the column specified.

SORT [/R] (/ + n]

/R = sort in reverse order
/+ n = sort starting with column n

1. DOS treates lowercase letters the same as uppercase ones in version
3.x; but earlier versions assumed uppercase letters came before lower
case ones. And DOS 3.x can treat accented high-bit foreign-language
characters the same as their unaccented cousins.

The PC DOS 3.3 Commands 1195

2. SORT doesn't expand tabs (it treats them as single characters) and
can't handle files longer than 63K.

SUB ST [external command]
3.1

Format:

Notes:

Assigns a drive letter to a path.

SUBST e: c:path

or

SUBST e: /D

or

SUBST

e: =drive letter to refer to path
c:path = drive/path referred to (nicknamed)
/D = deletes substitution of e:

SUBST without parameters displays list of substitutions in effect.

1. Since SUBST lets you use short drive letters to refer to long paths,
you can use it to extend a PA TH or APPEND command past the normal
character limit.

2. The default number of drives is five (A: through E:). To use a
SUBST drive letter higher than E: you must first include a
LASTDRIVE= command in the CONFIG.SYS file that was active when
you booted.

3. DOS commands such as CHDIR (and CD), MK.DIR (and MD),
RMDIR (and RD), APPEND, and PA TH can work differently when
SUBST is active. And all sorts of DOS commands, such as ASSIGN,
FORMAT, BACKUP, RESTORE, LABEL, JOIN, DISKCOPY,
DISKCOMP, and FDISK have trouble with SUB ST, so don't use them
while SUBST is in effect.

' ,, I

1196 PC Magazine DOS Power Tools

SYS [external command]
1.0

Format:

Notes:

TIME

Puts the two hidden system files onto disk.

SYS d:

where d: is the disk you want to contain the IBMBIO.COM and
IBMDOS.COM system files (or their generic equivalents).

1. SYS doesn't transfer COMMAND.COM; you must use COPY
COMMAND.COM d: to do so. On the other hand, FORMAT/Swill
transfer both the pair of hidden system files and COMMAND.COM.

2. DOS is picky about where certain system files are located on the
disk. Since software vendors aren't allowed to give away the DOS sys
tem files on the diskettes they sell, many vendors leave space on the disk
for you to use SYS to copy these system files to the proper place on the
disk.

1.0 as external com1J18nd; 1.1 as internal command

Format:

Notes:

Reports and sets the system time.

TIME [hh:mm[:ss[.xx]]]

hh = hours (0-23)
mm = minutes (0-59)
ss = seconds (0-59)
xx = hundredths of a second (0-99)

TIME without parameters displays the current time. Pressing the Enter
key after typing TIME by itself will leave the time unchanged.

1. So long as you enter at least the hour after the TIME command, you
can skip all the rest of the settings. So entering TIME 8 will set the time
to 8:00:00.00.

The PC DOS 3.3 Commands 1197

2. TIME uses a 24-hour clock, so 8 p.m. is actually 20:00:00.00. Also,
while you can enter hundredths of seconds, your system's clock is actual
ly not that accurate, since it divides each second into just over 18 slices
rather than 100.

3. You may use a period or colon to separate hours, minutes, and
seconds. And you may use a period or a comma to separate seconds
from hundredths, depending on whether you're using U.S. or foreign set
tings.

4. Believe it or not, DA TE and TIME were external commands in
DOS version 1.0. In version 3.3 these will permanently set the CMOS
clock in ATs and later systems.

TREE [external command]
2.0

Format:

Notes:

TYPE
1.0

Displays all the directory paths.

TREE [c:] [/F]

[c:] =drive to display
[/F] = show file names in all directories

I. Use the MORE command (TREE I MORE) to pause the display a
screenful at a time.

2. A picture is worth a K of words, especially here. Use the VTREE or
RN utilities on the accompanying disk instead of TREE, since they'll
provide a graphical representation of your disk structure rather than just
a long list of names. And use CHKDSK N rather than TREE IF to dis
play all your files. especially if you 're redirecting the output of the
process to a file.

Displays a file by sending it to standard output (default is the screen).

, i jJ

1198 PC Magazine DOS Power Tools

Format:

Notes:

VER
2.0

Format:

Note:

VERIFY
2.0

Format:

TYPE [d:] [path]filename[.ext]

[d:][path]filename[.ext] =file to display

1. TYPE wraps long lines after 80 columns and expands tab characters
to eight-column boundaries. It stops when it reaches any Ctrl-Z end-of
file marker.

2. You can't use wildcard characters in type commands but can type
several files one after the other by using a FOR. . .IN ... DO command. Or
you could use the COPY /B filespec CON command to display several
files in succession (substituting the particular wildcard construction for
filespec in this example). COPY /B also lets you display a file past a Ctrl
Z character.

3. You can redirect the output of TYPE to another file (which is some
times handy in batch files) or to a device such as a printer.

Reports the DOS version.

VER

DOS refers to the single digit to the left of the period as the major ver
sion number, and the pair of digits to the right of the period as the minor
version number.

Verifies disk writes (in a primitive way).

VERIFY [ON I OFF]

ON = verify that data was written correctly
OFF = do not verify (default)

1 111 j

The PC DOS 3.3 Commands 1199

VERIFY without parameters displays VERIFY status.

Note: This performs a CRC check only, which indicates whether or not DOS
wrote something to the disk. It doesn't perform the byte-by-byte com
parison that COMP does. COPY N performs the same primitive check
ing process.

VOL
2.0

Format:

Display the disk's volume label (set by FORMAT Nor LABEL).

VOL [d:]

[d:] = display label of which drive

XCOPY [external command]
3.2

Format:

Copies and backs up files selectively.

XCOPY [a:] [path]filename[.ext]
[b:] [path] [filename[.ext]] [/A] [/DJ [/E] [/M]
[/P] [/SJ [/VJ [/W]

or

D XCOPY [a:]path[filename[.ext]]
[b:] [path] [filename[.ext]] [/A] [/DJ [/E] [/M]
[/P] [/SJ [/VJ [/W]

or

D XCOPY a: [path] [filename[.ext]]
[b:] [path] [filename [.ext]] [/A] [/DJ [/E] [/M]
[/P] [/SJ [/VJ [/W]

[a:] [path] [filename[.ext]] = source
[b:] [path] [filename[.ext]] = target

p I II•

1200 PC Magazine DOS Power Tools

/A= copy only if archive bit set
/D:mm-dd-yy = copy if date same or later
/E = create subdirectories on target even if they end up empty
/M = copy modified files and reset archive bit
/P =prompt before copying each; respond with Y or N
IS = copy files in current directory and all lower subdirectories and

create directories on target only if not empty
N =verify
/W = wait for source disk

Notes: 1. XCOPY is vastly better than COPY, since it avoids the repetitive
disk churning exhibited by COPY. XCOPY uses all available low
memory and reads lots of files in one gulp before writing them to disk.
Even better, it can reproduce the subdirectory structure of the source
disk onto the target disk, and can thread its way down a long line of sub
directories while it works.

2. While most DOS utilities were created by Microsoft, this one was
written by IBM, so it's not on some generic DOS disks.

3. DISKCOPY is the fastest way to copy similar-sized disks (and it for
mats on the fly if necessary), but XCOPY is nearly as fast and avoids
potential fragmentation headaches.

4. The /M option lets you use XCOPY as superior backup utility.

DOS 3.3 CONFIG.SYS Commands

The following commands are used only in the main CONFIG.SYS system configuration
file. They have to be in the file when you boot, so you can't change them after starting
up and expect DOS to know about them unless you reboot after the change.

To take advantage of these, use the form:

DEVICE[=]number

or

DEVICE[=]status

or

DEVICE[=] [d:] [path]filenarne.ext

The PC DOS 3.3 Commands 1201

You may substitute a DOS delimiter such as a space or semicolon in place of the equals
sign. The CONFIG.SYS file must be a text (pure-ASCII) file containing nothing other
than the letters, numbers, and punctuation that you can type directly from the keyboard.
And unless you really know what you're doing, your CONFIG.SYS file must be in the
root directory of your startup disk.

As with other DOS commands, the syntax and available features differ for versions
earlier than 3.3.

BREAK
2.0

Format:

Allows extended Ctrl-Break checking.

BREAK = [ON I OFF]

ON = check during any DOS function
OFF= check only during 1/0 functions

Note: Use BREAK=ON for processes with little I/O; avoid it when using ap
plications that have their own use for Ctrl-C.

BUFFERS
2.0

Format:

Notes:

Sets the number of disk buffers.

BUFFERS = x

x = number of buffers (1-99)

1. Each buffer adds 528 bytes to the size of the resident portion of
DOS. Don't use BUFFERS if you're running a commercial disk cache
program.

2. The default number of buffers is 2 to 15 depending on hardware con
figuration. You'll have to experiment to see what's best for your own
system, but you should try numbers like 20 or 30 for newer, more power
ful systems.

1202 PC Magazine DOS Power Tools

COUNTRY
3.0

Format:

Specifies country-specific data.

COUNTRY= xxx, [yyy], [d:] [path]filename[.ext]

or

COUNTRY = xxx, (yyy]

xxx = international telephone country code
yyy = code page; each country has two
[d:][path]filename[.ext] =name of COUNTRY data file

Note: The default country code is 001 for U.S. systems (and the default code
page is 437). The number of the country is the international telephone
dialing prefix (001 to 999 in recent versions).

DEVICE
3.0

Format:

Installs the five device drivers given below.

DEVICE=(d:] [path]filename[.ext]

[d:][path]filename[.ext] =file containing device driver

1. ANSI.SYS - Extended keyboard and screen device driver (2.0)

Format: DEVICE=[d:] [path]ANSI.SYS

2. DISPLAY.SYS - Display code page switching device driver (3.3)

Format: DEVICE=[d:] [path]DISPLAY.SYS
CON[:]=(type[, [hwcp] [,n]])

or

II· I t

The PC DOS 3.3 Commands 1203

DEVICE=[d:] [path]DISPLAY.SYS
CON[:]=(type[, [hwcp] [, (n,m)]])

type= MONO, CGA, LCD, EGA (use EGA for PS/2)
hwcp =hardware code page (437, 850, 860, 863, or 865)
n = number of prepared code pages (0-12) For MONO and CGA,

n must beO
m =number of subfonts per page (U.S. users don't need this (whew))

3. DRIVER.SYS - Disk device access-provider device driver (3.2)

Format: DEVICE=[d:] [path]DRIVER.SYS /D:ddd[/T:ttt] [/S:ss]
[/H:hh] [/CJ (/N] [/F:f]

/D:ddd =physical drive number of (diskette 0-127, fixed 128-255); 0 is
A:; 2 must be external; first physical hard disk must be 128

ff: ttt = tracks per side (1-999, default is 80)
/S:ss =sectors per track (1-99, default is 9)
/H:hh = number of heads/sides (1-99, default is 2)
IC = changeline support required on AT and later only
IN= nonremovable block device (hard disk)
/F:f =form factor (0=160K-360K; l=l.2M; 2=720K; 7=1.44M)
(Use SUBST rather than DRIVER.SYS for IBM hard drives.)

4. PRINTER.SYS - Printer code page switcher device driver (3.3)

Format: DEVICE=[d:] [path]PRINTER.SYS
LP T-# [:] = (type [, [h wcp] [, n]])

or

DEVICE=[d:] [path]PRINTER.SYS LPT-#[:]=
(type[, [(hwcpl,hwcp2, ...)] [,n]])

LPT# = printer 1, 2, or 3
type= 4201 (IBM Proprinter) or 5202 (IBM Quietwriter III)
hwcp =hardware code page (437, 850, 860, 863, or 865)
n =number of additional prepared code pages (0-12)

5. VDISK.SYS - Virtual disk (RAMdisk) device driver (3.0)

Format: DEVICE=VDISK.SYS [comment] [bbb] [comment] [SSS]
[comment] [ddd] [/E [:m]]

1204 PC Magazine DOS Power Tools

FCBS
3.0

Format:

FILES
2.0

Format:

comment = string of ASCII characters 32-126 except slash I
bbb = disk size in Kbytes (default is 64)
sss =sector size in bytes (128 (default), 256, 512)
ddd =maximum directory entries (2-512, default is 64)
IE = use extended memory
m =extended memory sectors transferred at once (1-8)
(You can't use DISKCOPY on this virtual disk.)

Specifies the number of concurrently open files using file control blocks
(FCBs).

FCBS = m,n

m = maximum number of files opened by FCBs at once (1-255, default
is4)
n = files protected from auto-closing if program tries to open more than

m files (0-255, default is 0)

(Used primarily with SHARE or networks.)

Specifies the maximum number of file handles open at once.

FILES = x

x = 8-255 (default is 8)

Note: DOS uses two methods for file access - file control blocks (FCBs) and
file handles. The CONFIG .SYS FCBS command deals with file control
blocks (the older system). The FILES command deals with handles (the
newer and preferable method).

The PC DOS 3.3 Commands 1205

LASTDRIVE
3.0

Specifies the largest usable drive letter.

Format: LASTDRIVE = x

x =letter A-Z (default is E)

Note: Colons aren't required after the drive letter. This command is especially
handy when used with SUBST. Each additional drive above E: talces up
81 bytes of RAM.

SHELL
2.0

Format:

STACKS
3.2

Format:

Specifies substitute for COMMAND.COM, and allows modification of
environment size.

SHELL= [d:] [path]filena~e[.ext] [parml] [parm2]

Parameters for COMMAND.COM:

/E:xxxxx =number of bytes in environment (160-32768; default is 160
different syntax in earlier versions)

IP= keeps COMMAND.COM loaded and runs AUTOEXEC.BAT

Sets stack resources, allowing multiple interrupts to keep interrupting
each other without crashing the system.

STACKS = n,s

n = stack frames (0, 8-64)
s =frame size in bytes (0, 32-512)

1206 PC Magazine DOS Power Tools

0 means no dynamic STACK support. Defaults are 0,0 for PC, XT, Port
able; 9,128 for rest.

DOS 3.3 Batch File Commands

The following commands are used primarily in batch files, although some (such as
FOR. .. IN ... DO) may also be used in slightly different format directly at the DOS prompt.

Because DOS batch file commands provide the muscle of a small, powerful, and slight
ly complex programming language, a detailed batch command help section follows this
section.

Replaceable Parameter

Format: %n

n = 0 to 9 (refers to position of parameter on command line)

%0 is always the DOS command itself; % 1 is first parameter after the
command. Use SHIFf for more than %9 parameters.

Environment Variable

Format:

@

Format:

%name%

name = environment variable

This lets batch files work with variable values stored in the DOS environ
ment. See the DOS SET command in the main command section for
details on inserting such values into the environment.

Prevents following command on that one line from displaying.

@command

batch-line= command to execute without display when ECHO is ON

CALL

Format:

ECHO

Format:

FOR

Format:

.. '

The PC DOS 3.3 Commands 1207

The most common use for this is starting a batch file with @ECHO OFF
(in version 3.3 and later) to suppress command displays without having
this command itself appear onscreen.

Runs another batch file and then returns to first batch file.

CALL [d:] [path]filename

[d:] [path] = drive/path for additional batch file

This is similar to COMMAND IC but is more efficient in that it retains
the ECHO state, is easier to break out of, and executes faster. It also
makes it easier to work with environment settings.

Controls message display.

ECHO [ON I OFF I message]

ON = show lines as they execute
OFF= do not show lines
message = message to display

ECHO without any parameters after it displays the current display state.

You can use ECHO to redirect output into a new file called FILE.NAM
by tacking on >FILE.NAM.

Lets you execute DOS commands repeatedly.

FOR %%variable IN (set) DO command [%%variable]

, ' ''

1208 PC Magazine DOS Power Tools

GOTO

Format:

IF

Format:

%%variable = variable name
(set) = list of files; wildcards will work
command= DOS command optionally using %%variable

If you use this command outside of a batch file (directly at the DOS
prompt), use single % signs rather than the double %% signs required by
the batch processor.

Transfers control of execution to an area of the batch file starting with
the label specified.

GOTO [:]LABEL

LABEL = a text string similar to a filename but starting with a colon.
You may include the colon here as well but it's not necessary.

See the "LABEL" entry.

Executes commands conditionally.

IF [NOT] EXIST [d:] [path]filename[.ext] conunand

or

IF [NOT] stringl string2 conunand

or

IF [NOT] ERRORLEVEL n command

NOT = reverses logical condition
EXIST= TRUE if the specified file exists
string I== string2 =TRUE if two strings are identical
ERRORLEVEL n = TRUE if previous program's exit code>= n
command = DOS command line, executed only if TRUE

LABEL

Format:

PAUSE

Format:

REM

Format:

• I' It II I

The PC DOS 3 .3 Commands 1209

This is one of the most powerful (and complex) batch commands, and
one requiring the most explanation and help. For instance, while IF ER
RORLEVEL allows user intervention in batch files, DOS doesn't
provide any direct method for processing user entries. See the longer
batch help section that follows for details.

Note that string comparisons require double = = signs.

Place marker for GOTO.

:STRING

STRING = 8 characters significant

Label names generally follow the same kinds of rules as DOS filenames,
except that a period(.) is not allowed. However, different DOS versions
have their own peculiarities, so be sure to read the following help section
for details.

Pauses execution and waits for a keypress.

PAUSE [remark]

remark = message to display at pause

If you don't enter a new remark, DOS will print its familiar "Strike a key
when ready ... " message. Press any key at this point to proceed.

Remark or comment.

REM [remark]

remark= text up to 123 characters

r I Ii. ' I

1210 PC Magazine DOS Power Tools

SHIFT

Format:

Lines beginning with REM don't display when ECHO is OFF.

Allows over standard ten %-parameters %0 through %9.

SHIFT

This also lets you move the value of a replaceable parameter down one
step at a time (e.g., from %4 to %3 to %2). When you do this you'll lose
the value of the lowest replaceable parameter, %0. If you need to retain a
lower value you can use the SET command to store it in the DOS en
vironment as % VAR% variable before executing SHIFT.

Batch File Help

To do the following in a batch.file: Use the following command:

Prevent commands from displaying Preface all the commands you want not to dis-
as they execute play with an initial line in your batch file: ECHO

OFF

Make sure commands display as
they execute

Display a message

In DOS 3.3 or later, you can prevent any line
from displaying by prefacing it with a@ sign. If
for some reason you want to execute a program
that has a name beginning with an @ sign, be
sure to add an extra@ in front of it when you
ref er to it in the batch file.

ECHO OFF will also suppress the DOS prompt
if you execute this command outside of a batch
file.

Preface any commands you want to display with
ECHO ON

(ECHO ON is the default state)

ECHO message

Enter ECHO, a space, and then up to 122 charac
ters including letters, numbers, punctuation, and

jl 1 I

The PC DOS 3.3 Commands 1211

any "high-bit" ASCII characters with values
over 127. These high-bit characters can dress up
your screen by adding boxes and borders. You
may enter these characters by holding down the
Alt key and then typing in the 3-digit ASCII
code for each on the number pad (not the top
row number keys), and then releasing the Alt
key. Or you can use ANSI.SYS to redefine cer
tain shifted keys to produce these box and bor
der characters.

If you want to use a character that has a special
DOS meaning, such as< or I, enclose that
character inside quotation marks. If you don't,
DOS will think you're trying to pipe or redirect
something in the middle of the batch file and be
come confused.

DOS treats certain characters as delimiters that
separate parameters and commands. So be care
ful when using ECHO to display strings of com
mas, equals signs, or semicolons, which batch
files treat as spaces. In such cases DOS will
think you're following the word ECHO with
nothing but spaces and that you want to know
whether ECHO is set to OFF or ON.

In addition, it treats percent signs as part of en
vironment variables or replaceable parameters,
and tosses every other one. So if you try running
a batch file like:

ECHO OFF
ECHO Watch out for
ECHO commas:
ECHO ,,,,,,,,,,
ECHO equals signs:
ECHO ==========
ECHO semicolons:
ECHO ,,,,,,,,,,
ECHO percent signs:
ECHO %%%%%%%%%%

you'll get

1212 PC Magazine DOS Power Tools

Display a blank line

Watch out for
commas:
ECHO is off
equals signs:
ECHO is off
semicolons:
ECHO is off
percent signs:
%%%%%

Unfortunately this varies from system to system.
And the "rules" are maddeningly haphazard:

Under later versions of DOS, you can print
blank lines in your batch files by entering any of
the characters with ASCII values 0, 1, 2, 3, 4, 5,
6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23,24,25,27,28,29,30,31,34,43,46,47,58,
91, or 93 right after the word ECHO, without
any intervening space (as is ECHO: or ECHO[).

Many of these characters are difficult to enter
from the keyboard, but under many versions of
DOS 3.x you may follow ECHO directly with
these blank-producing characters:

II+./: []I

Under DOS 3.x you can also follow ECHO with
a space and then one of the ASCII characters 0,
8,or255.

Under version 2.x you can follow ECHO direct
ly with any of the ASCII characters 0, 1, 2, 3, 4,
5,6,7,8,9, 10,ll,12,14,15,16,17, 18, 19,
20,21,22,23,24,25,27,28,29,30,31,32,34,
43, 44, 47, 58, 59, 61, 91, 92, and 93- and then
add an extra space. If you forget the extra space
at the end this technique won't work at all.

You can also generate blank lines by following
ECHO with a space, and then one of a short list
of characters: 0, 8, 9, 32, and 255. Under DOS
3.x, characters 9 and 32 won't work. In both

The PC DOS 3.3 Commands 1213

cases you don't need to .slap on an additional
space at the end of the line.

The safest way in most versions is to use ASCII
character 0 and a space, in either order. You can
generate a character 0 in DOS by pressing the F7
key.

See the current ECHO ON or OFF ECHO
state

Entering ECHO on a line by itself will produce
an "ECHO is ON" or "ECHO is OFF' message.
DOS may interpret other ECHO commands,
such as:

ECHO =======

as similar requests for the current state of
ECHO, since it interprets characters like equals
signs, spaces, commas, and semicolons as blanks
to ignore under certain circumstances.

Create a new file containing a line ECHO yourtext > newfile
of text

Append text to an existing file

Let users enter commands or
strings of c_haracters at the com
mand line that DOS translates into
variables called replaceable
parameters

where newfile is a brand new file that will con
tain the text yourtext.

ECHO yourtext >> oldfile

where oldfile is an existing file and yourtext is
the text you want to add to this file.

BTCHFILEparaml param2 param3 (etc.)
where BTCHFILE.BAT is the name of the batch
file and paraml, param2, param3, etc. are
values or strings of characters entered at the
DOS prompt directly after the name of the batch
file itself.

DOS will replace any %1 it sees in the batch file
with the first parameter entered on the command
line and any %2 it sees with the second
parameter, etc. It will replace any %0 it sees
with the name of the batch file itself exactly as it
was typed in at the DOS prompt.

,, I >'

1214 PC Magazine DOS Power Tools

It will try to replace all the single-digit
parameters % 1 through %9. If you enter fewer
than nine discrete elements after the batch file
name on the command line DOS will assign a
null value (zero characters long) to any unused
parameters. If you type more than nine elements,
DOS won't immediately assign a parameter to
anything past nine, but it will preserve any tem
porarily unused ones and let you get at them
later with the SHIFT command.

So if you had a batch file on your disk called
READBACK.BAT:

ECHO OFF
ECHO %0 is the batch file itself

ECHO %1
ECHO %2
ECHO %3
ECHO %4
ECHO %5

and you put an ASCII character 0 at the end of
each of the bottom five lines (by using EDLIN
to create READ BACK.BAT and pressing the Fl
key at the end of each line), and you entered:

READBACK This is a test

DOS would print:

READBACK is the batch file itself
This
is

a
test

Notice that the READBACK.BAT batch file
contained tests for five parameters (%I through
%5) but the user entered only four parameters.
You need something like the ASCII character 0
at the end of every line in the above batch file,
otherwise if no parameter exists for a particular
line DOS will make that replaceable parameter

Use more than nine replaceable
parameters so your batch.file can
read more than nine discrete user
entered characters or character
strings off the DOS command line.

The PC DOS 3.3 Commands 1215

equal to nothing. So DOS would have turned the
bottom ECHO %5 line into just:

ECHO

Then DOS would have interpreted this lonely
ECHO without anything after it as a command
to report the current ECHO ON or OFF state.

By adding a character 0 (which will appear
onscreen as a blank) to each line, you make sure
that DOS will ECHO something and not inter
pret a missing parameter as just an ECHO com
mand on a line by itself.

DOS can handle up to nine replaceable
parameters % 1 through %9 in one gulp, and will
always replace %0 with the name of the batch
file itself (just as it was entered at the DOS
prompt). If you want to use more than nine
replaceable parameters you have to use the
SHIFf command

You may use the %0 parameter to re-execute the
same batch file in an endless loop:

DIR
%0

will keep doing directory listings and then
reloading the same batch file and starting over
again.

SHIFT

Each time DOS executes the command SHIFT it
moves each replaceable parameter down in
value one notch. So the value that was stored as
%3 moves down and becomes %2, the value
stored at %2 becomes % 1, and % 1 becomes %0
(which originally held the name of the batch
file).

If you had a batch file called SHIFfIT.BAT:

, I I"

1216 PC Magazine DOS Power Tools

ECHO OFF
ECHO %0 %1 %2
SHIFT
ECHO %0 %1 %2
SHIFT
ECHO %0 %1 %2
SHIFT

and you typed:

SHIFTIT A B c

DOS would print

C>ECHO OFF
SHIFTIT A B C
ABC D
BCD

%3

%3

%3

D

as it shifted all the parameters down one by one.
Notice that in the first line DOS replaced %0
with the name of the batch file and printed three
of the four letters entered on the command line.
After the first shift, the name of the batch file
disappears as DOS moves everything down a
notch, but this time the batch file prints the
fourth parameter entered on the command line
(the D) even though the fourth parameter didn't
appear the first time.

If you want to preserve the name of the batch
file itself when using the SHIFT command, you
have to set an environment variable as this new
SHIFTIT2.BAT batch file does:

ECHO OFF
SET NAME=%0
ECHO %0 %1 %2 %3
SHIFT
ECHO %NAME% %0 %1 %2 %3
SHIFT
ECHO %NAME% %0 %1 %2 %3
SHIFT
SET NAME=

The PC DOS 3.3 Commands 1217

DOS will still wipe out the name of the batch
file originally stored as %0 the first time it ex
ecutes the SHIFf command, but it will still be
able to remember and display it since you stored
it as an environment variable called NAME with
the:

SET NAME=%0

command, and then dredged it back up when
you used the:

ECHO %NAME%

command. This time, using the same four
parameters after SHIFI1T2.BAT:

SHIFTIT2 A B C D

would yield:

C>ECHO OFF
SHIFTIT2 A B C
SHIFTIT2 A B C D
SHIFTIT2 B C D

retaining the name of the batch file each time
even though the SHIFf command wrote over it.

The SHIFf command can handle as many
parameters off the command line as you entered
(and you can type in only 127 characters includ
ing the name of the batch file itself. If your batch
file had a name that was just one letter long and
you entered only single-character parameters
(with spaces between them) you could have
SHIFf squeeze out 63 of them.) The MAX
SHIFf .BAT batch file below:

ECHO OFF
:TOP
IF %1!==! GOTO END
ECHO %1
SHIFT

r , I•· , .

1218 PC Magazine DOS Power Tools

GOTO TOP
:END

will keep reading all the parameters off the com
mand line and ECHOing them one by one until
they've all been processed. You could enter:

MAXSHIFT A B C D E F G

etc. all the way through the uppercase and lower
case alphabets and MAXSHIFf would display
every letter. It knows when to stop because it
runs a:

IF %1!==! GOTO END

test each time it shifts. This test will be true only
when % 1 is finally equal to nothing because all
the parameters have been used up, and the test
will become:

IF !==! GOTO END

Until then, % 1 ! will be equal to A! or B ! or z! so
something like:

IF A!==! GOTO END

will not be true, because A! is not equal to just ! .

Store and retrieve variables in the SET ENVV AR= VALUE
DOS environment ECHO %ENVV AR%

IF %ENVV AR %==PRESET GOTO LABEL

Although it wasn't documented until DOS ver
sion 3.3, and doesn't always work properly with
earlier versions, and doesn't work at all under
3.0, DOS lets you set and use batch file variables
in a special section of memory called the en
vironment.

You can see what DOS currently stores in your
environment by typing SET at the DOS prompt.
You'll always see a line beginning COMSPEC=
which tells your system where to look for the

The PC DOS 3.3 Commands 1219

COMMAND.COM command processor. And
you'll probably also see your PATH, your
PROMPT, and possibly an APPEND path and a
few variables set by some commercial software
(Word.Perfect, for instance).

Entering the word SET followed by a variable
name of your choice, then an equals sign, then a
character string:

SET SCREEN=EGA

will add:

SCREEN= EGA

to your environment. If you have two screens
and you're changing to a monochrome display,
the batch file that does the changing can also
reset the SCREEN variable:

SET SCREEN=MONO

Then any other programs and batch files can tell
which screen is active by looking at the
%SCREEN% variable.

A very handy use for this is in debugging batch
files. When you 're creating and testing them you
often want ECHO to be ON so you can see
where any potential problems are. But when you
run them you want ECHO to be off so they don't
clutter your screen with commands.

To solve this, make the first line in your batch
file:

ECHO %ECHO%

Then, at the DOS prompt, type:

SET ECHO=ON

when you want to see all the commands execute,
and:

~ I i"

1220 PC Magazine DOS Power Tools

SET ECHO=OFF

when you want to suppress them.

Be careful when setting environment variables.
Spacing matters. If you type:

SET ECHO=OFF

and then try to change it by typing:

SET ECHO =ON

instead of changing %ECHO% to ON, DOS will
establish a second environment variable with a
trailing space called %ECHO % and make it
equal to ON, and you'll end up with:

ECHO=OFF
ECHO =ON

To avoid problems, before testing the value of
an environment variable make sure the variable
has been set with a preliminary command such
as:

IF %ECHO%!==! GOTO NOTSET

Environment variables are case-sensitive, so you
should test for the obvious variations and trap
against invalid entries that fall through the tests:

IF %ECHO%!==! GOTO NOTS ET
IF %ECH0%==0N GOTO OKAY
IF %ECH0%==on GOTO OKAY
IF %ECH0%==0n GOTO OKAY
IF %ECH0%==0FF GOTO OKAY
IF %ECH0%==off GOTO OKAY
IF %ECH0%==0ff GOTO OKAY
ECHO %ECHO% is invalid
GOTO END

Note: If you insert too many strings into your en
vironment you can run out of environment

Execute one batchfilefrom within
another batchfile ("chain" batch
file execution together)

The PC DOS 3.3 Commands 1221

space~ The default is a paltry ten 16-byte
paragraphs, or 160 bytes.

Under DOS 2.0 and 2.1 you can patch COM
MAND.COM at address ECF to represent the
number of 16·byte memory paragraphs that will
make up your new environment (For DOS 2.11
the address is DF3.)

For DOS 3.0 and 3.1, there's a much better way.
Just put a:

SHELL=[d:] [path]COMMAND.COM /E:n /P

command in your CONFIG .SYS file, where n
represents the number of 16-byte paragraphs.
For versions 3.2 and later, use the same SHELL
command but specify the actual number of bytes
rather than paragraphs. The default in all cases is
160 bytes (ten paragraphs). You can jack it all
the way up to 32K in DOS 3.2 and 3.3, but are
limited to 62 paragraphs in earlier versions.

CALL [d:][path]BTCHFILE
COMMAND IC [d:][path]BTCHFILE

where BTCHFILE is the name of the additional
batch file to run. (CALL works only in DOS 3.3
or later.)

Examples: Depending on the version, including
the lines:

COMMAND /C NEXTFILE

or:

CALL NEXTFILE

in a batch file called ORIGFILE.BAT will jump
execution to NEXTFILE.BAT. When
NEXTFILE.BAT finishes running, execution
will generally return to the line after the COM·
MAND IC or the CALL command in ORIG
FILE.BAT.

1222 PC Magazine DOS Power Tools

Execute a DOS command
repeatedly

If you want to run another batch file but you
don't need to return to the first, you don't need
COMMAND JC or CALL. Just end the first
batch file with the name of the next one you
want to run next.

CALL uses less memory and executes quickly,
but COMMAND JC can do some tricks CALL
can't. (See the section below on FOR nesting,
for instance.)

FOR %%var IN (set) DO command [%%var]

inside batch files, and:

FOR %var IN (set) DO command [%var]

outside of batch files.

Note that you use double %% signs inside batch
files and single % signs outside batch files.

%%var and %var are variable names, generally
single letters such as % %a or %Z.

(set) is the filespec or collection of filespecs that
DOS will act on, and can be a wildcard such as
(*.*)or(* .BAK), or a group of files such as:

(MORE.ASM MORE.OBJ MORE.COM)

Examples: to perform a directory listing on EXE
and COM files:

FOR %%A in (*.COM *.EXE) DO DIR %%A

If you leave off the final %%A:

FOR %%A in (*.COM *.EXE) DO DIR

DOS will do the same repeated DIR listing on
the entire directory one time for each occurrence
of an EXE or COM file. So if there are two
COM files and three EXE files DOS will do a
DIR *. * command five times. You must add the

The PC DOS 3 .3 Commands 1223

%%var command onto the end for the FOR com
mand to act on what you've specified in the
(set). If you don't, DOS will simply repeat the
specified command the same number of times
that there are matching elements in the set. Also,
make sure the %%var matches in case at the
beginning and end of the line.

FOR %%A IN (*.BAK) DO DEL %%A

and:

FOR %%a IN (*.BAK) DO DEL %%a

will erase all your BAK files, but:

FOR %%a IN (*.BAK) DO DEL %%A

and:

FOR %%A IN (*.BAK) DO DEL %%a

won't.

The DOS manual claims that you can't combine
(or "nest") FOR commands on the same line.
Try this with a command on one line such as:

FOR %%A IN (1 2 3) DO FOR %%B IN (A B C) DO ECHO %%A %%B

and you'll get a "FOR cannot be nested" error
message. However, you can nest FOR com
mands if you use COMMAND JC (again, all on
one line):

FOR %%A IN (1 2 3) DO COMMAND /C FOR %%B IN (A B C) DO ECHO %%A %%B

This technique won't work with CALL. You
have to use COMMAND JC.

DOS isn't picky about COMMAND IC syntax.
All of the following constructions will work:

... COMMAND IC FOR ...

... COMMAND/C FOR ...

1224 PC Magazine DOS Power Tools

Pass parameters from one batch
file to another

... COMMAND /CFOR .. .

... COMMAND/CFOR .. .

The easiest way is simply to include a parameter
after the filename on the line with the CALL or
the COMMAND /C.

If you had a file on your disk called
TEST I.BAT:

ECHO OFF
ECHO This is TESTl
CALL TEST2 TESTPARAM
ECHO Back to TESTl

and another called TEST2.BA T that was called
by TESTI .BAT:

ECHO This is TEST2
ECHO %1

If you ran TES TI, you'd see:

This is the TESTl
This is TEST2
TESTPARAM
Back to TESTl

The first batch file passed the parameter
TESTP ARAM to the second by including after
the name of the file it called. The second batch
file picked up the parameter with % 1.

Combine CALL or COMMAND /C with FOR
%%var IN (set) DO command %%var for added
power.

Running the following FIL I .BAT batch file:

ECHO OFF
ECHO Starting out in FILl.BAT
FOR %%A in (*.BAK) DO CALL FIL2
%%A
ECHO Back to batch file #1

The PC DOS 3 .3 Commands 1225

will CALL the next FIL2.BAT batch file:

ECHO OFF
ECHO ***********************
ECHO Now you're in FIL2.BAT
ECHO The contents of %1 are:
MORE < %1
ECHO ***********************
PAUSE

and pass the parameter (*.BAK) from FILI.BAT
to FIL2.BAT using the %%A in FIL I.BAT and
the %1 in FIL2.BAT.

So FILI.BAT will hunt down all the files with
BAK extensions and FIL2.BAT will ECHO the
name of each one and then use MORE.COM to
display the contents of each one. After
FIL2.BAT has displayed the last *.BAK file, it
will stop running and DOS will return command
to FILI.BAT.

You may pass values to other batch files without
having to load these batch files directly with
COMMAND IC or CALL. Just use SET to park
these values in memory as environment vari
ables. This way one batch file can switch
monitors, or turn ECHO OFF or ON, or swap
printers, and leave status indicators in the en
vironment for other batch files to examine.

A batch file can determine the current state of an
environment variable by using string tests like:

IF %MONITOR%==MONO GOTO GREENCOL

And it can see if no environment variable hap
pens to be set yet, with a test like:

IF %MONITOR%!==! GOTO SETMON

Jump (branch) to a designated line GOTO [:]LABEL

will jump to the line beginning with :LABEL.
You don't need the colon in the line with the

r I

1226 PC Magazine DOS Power Tools

GOTO, but it won't hurt. You do need to put a
colon as the first character in the line with the
label. To be safe, make sure all labels are eight
or fewer characters long (various versions of
DOS treat longer labels differently) and stick to
letters and numbers when naming them. And
DOS can't handle periods in label names.

In the following batch file:

ECHO OFF
GOTO SKIPLINE
ECHO This line will not print
:SKIPLINE
ECHO But this one will

the batch file will do exactly what it says.

Labels are not case sensitive, so if you have a
label:

AaAaA

and your batch file contains a line that says:

GOTO aaaaa

or:

GOTO AAAAA

or:

GOTO AAAaa

the batch file will jump to the :AaAaA label
each time. That same label could have been
:AAaaA or :AAAAA or :aaaaA and the batch
file still would have jumped to it.

DOS looks for labels starting at the top of each
batch file. If the same label is in a batch file
twice, DOS will always jump to the first one and
will never reach the second one.

The PC DOS 3.3 Commands 1227

Labels work well with replaceable parameters,
since labels are not case sensitive. If you wanted
to test for JFK and jump to AIRPORT you
would have to test all combinations of uppercase
and lowercase letters.

IF %1==JFK GOTO AIRPORT
IF %1==JFk GOTO AIRPORT
IF %1==JfK GOTO AIRPORT
IF %1==jFK GOTO AIRPORT
IF %1==jFk GOTO AIRPORT
IF %1==jfK GOTO AIRPORT
IF %l==jfk GOTO AIRPORT

But you could simplify things simply by jump-
ing to the label:

GOTO %1

However, when you test all of the IF %1== pos
sibilities, you can screen out typographical er
rors and invalid entries. Jumping directly to a
label bypasses all such tests and is far faster if a
valid label exists. But if one doesn't exist, all
that will happen is that you '11 get a "Label not
found" error.

Labels have to start at the very left edge of the
screen (with the colon in column 1) in DOS 2.0
versions; later editions are more flexible.

Execute a command only if a cer- IF EXIST filename action
tain file exists

where filename is the name of the file it's look
ing for, and action is the command DOS will ex
ecute only if it finds the file first.

Example:

IF EXIST MENU TYPE MENU

will use the DOS TYPE command to display a
:MENU file only if this MENU file is in the cur
rent directory. With DOS 3.x you can specify a
path and have DOS look outside the current

, I I' '

1228 PC Magazine DOS Power Tools

directory, but DOS 2.x won't let you search out
side the current directory.

Execute a comm.and only if a cer- IF NOT EXIST filename action
tainfile does NOT exist

where filename is the name of the file it's look
ing for, and action is the command DOS will ex
ecute only if that file is not present in the current
directory. Again, DOS 3.x lets you specify a
path in front of the filename so DOS can look
outside the current directory; DOS 2.x does not.

Example:

IF NOT EXIST MORE.COM GOTO ERROR

:ERROR
ECHO You need to have MORE.COM in
ECHO this directory for the batch
ECHO file to work properly
GOTO END

Execute a comm.and only if a string IF string 1= =string2 action
of characters matches a preset
string of characters exactly where string 1 and string2 are strings of charac

ters, and action is the command the batch file
will execute if both strings are exactly equal.
Note the double equals sign. DOS insists that
both strings match exactly for the test to work,
which means that uppercase and lowercase varia
tions of the same text won't match.

So the tests:

IF testl==testl GOTO NEXTSTEP

and:

IF TESTl==TESTl GOTO NEXTSTEP

and:

IF tEsTl==tEsTl GOTO NEXTSTEP

The PC DOS 3.3 Commands 1229

will all work, and DOS will jump to the
:NEXTSTEP label in all cases. But the tests:

IF TESTl==testl GOTO NEXTSTEP

or:

IF Testl==TESTl GOTO NEXTSTEP

or:

IF TEST==TESTl GOTO NEXTSTEP

will not work because the strings don't match
precisely.

This kind of test is most often used with replace
able parameters to let a user enter a string of
characters (usually a word or someone's name)
at the DOS prompt after the filename and then
have the batch file behave a certain way depend
ing on what the user's character string was.

Example:

ECHO OFF
REM SORTDIR.BAT
IF %1==EXT GOTO EXT EN
IF %l==ext GOTO EXT EN
IF %1==Ext GOTO EXTEN
IF %1==SIZE GOTO
IF %l==Size
IF %1==size
DIR
GOTO END
:EXTEN

GOTO
GOTO

DIR I SORT /+ 10
GOTO END
:SIZE
DIR I SORT /+ 13
:END

If the user enters:

SIZE
SIZE
SIZE

1230 PC Magazine DOS Power Tools

SORTDIR EXT

The first test in the above SORTDIR batch file
will turn into:

IF EXT==EXT GOTO EXTEN

and the test will be true, so the batch file will
jump execution to the :EXTEN label. The
second and third IF %1=ext and IF %1==Ext
tests will check for uppercase and lowercase
variations of EXT. If the user enters EXt,
however, none of the top three tests will recog
nize it.

So if the user enters one of these:

SORTDIR EXT
SORTDIR Ext
SORTDIR ext

the batch file will branch to the :EXTEN label
and execute the command below it that produces
a directory listing sorted by extension.

Similarly, the bottom three tests will detect
whether the user entered SIZE or Size or size,
and if so, will jump to the :SIZE label and ex
ecute the command below it that produces a
directory listing arranged in size order.

If all six tests fail, execution will reach the nor
mal DIR command and the batch file will
produce a normal unsorted DIR listing.

String tests are very useful when performed on
environment variables. For instance, you may
have two color setting routines on your disk, one
that uses direct BIOS calls (like the programs on
the accompanying disk) and one that uses
ANSI.SYS commands. When you configured
your system to run ANSI.SYS, you could issue a
batch file command SET ANSI=ON. Then all
later batch files could include a line IF
ANSI==ON GOTO ANSISET. If ANSI was

··-------------------------

The PC DOS 3 .3 Commands 1231

loaded, the %ANSI% variable in your environ
ment would be equal to ON, and a test like this
would be able to jump to the ANSI color setter
rather than the BIOS color setter. When you
weren't using ANSI, the test would look at the
environment and see that ANSI was not equal to
ON, and branch to the BIOS setter rather than
the ANSI one. (See following entry.)

Execute a command only if a string IF NOT stringl= =string2 action
of characters does not exactly
match a preset character string This works just like the

IF stringl==string2 action

test except that the test will succeed only if the
two character strings do not match precisely.
This command is not really all that useful, since
it's generally safer to see whether a user entered
a particular string, and not whether he or she
didn't.

Still, being able to phrase tests using negative
conditions adds flexibility. The
ANSITEST.BAT batch file could be written:

ECHO OFF
IF NOT !%ANSI%==!0N GOTO BIOSSET
:ANSISET
ECHO ANSI color setter goes here
GOTO END
:BIOSSET
ECHO BIOS color setter goes here
:END

The exclamation points are needed to prevent a
syntax error if no ANSI variable exists in the en
vironment. Without something there (you could
use any two other identical symbols such as IF
NOT@%ANSI%==@0N) you would end up
with a line that translated to:

IF NOT ==ON

,, ' ' 1 •

1232 PC Magazine DOS Power Tools

Execute a command only if a spe
cial number called an "exit code"
or a "return" code matches a
preset number

which would trigger a syntax error.

IF ERRORLEVEL number action

where action is the command DOS will ex
ecute if the return code is the same as or
greater than the decimal number specified.

This is one of the most useful and worst-named
commands in the entire DOS arsenal. For best
results it requires that you use a version of a
keyboard-processing program not supplied with
DOS. And it's a bit cumbersome to use. But it's
the only way to make batch files truly interactive.

IF ERRORLEVEL was originally used by DOS
to check the performance status of commands
such as BACKUP, KEYB, REPLACE, RE
STORE, or FORMAT. These DOS utilities set
different exit codes or return codes that DOS
could use to see if the commands were able to
work completely or partially, or tell whether the
user or some system error interrupted the
process.

But few ilsers ever take advantage of this aspect
of return codes. Most power users, on the other
hand, exploit these codes to the hilt with IF ER
RORLEVEL tests in batch files.

DOS lets programmers use several different tech
niques for ending programs that are not going to
remain resident in memory. They can use an in
terrupt 20H, or a RET (return instruction) that
triggers an INT 20H, or function 0 of INT 2 lH.
These simply tell the operating system to reset
several things, make the memory used by the
program available again to DOS, and pass con
trol back to COMMAND.COM.

But if they use function 3 lH or, more common
ly, 4CH of INT 21H, they can have the program
set a code that DOS can later decipher either in
side another program (with function 4DH of INT

~ I

The PC DOS 3 .3 Commands 1233

21H), or inside a batch file with IF ERROR
LEVEL.

The easiest way to process an exit code is to
create a tiny program called GETKEY .COM. To
do so, make sure DEBUG is handy and type in
the following seven lines:

DEBUG
E 100 B4 00 CD 16 B4 4C CD 21
N GETKEY.COM
RCX
8
w
Q

Be sure to press the Enter key at the end of each
line. When you're done you'll have the eight
byte long GETKEY.COM program on your
default drive.

Running the program by itself won't do anything
other than pause and wait for you to press a key.
But when you invoke this program in a batch
file, it will pause, wait for you to press a non
Shift key, then pass along the ASCII value of
that keystroke to any IF ERRORLEVEL tests
that follow.

IF ERRORLEVEL can then act on the keystroke
accordingly, jumping to an appropriate label
based on what the user entered.

The basic test is in the format:

IF ERRORLEVEL number action

where number is the decimal value of the exit
code, and action is the command to execute.

The trickiest part of all this is that IF ERROR
LEVEL will execute the action if the exit code is
equal to - or greater than - the number after

1234 PC Magazine DOS Power Tools

the word ERRORLEVEL. DOS allows 256 pos
sible exit codes from 0 to 255, so the command:

IF ERRORLEVEL 0 ECHO True

will always work and will always print the mes
sage "True" since the code will always be equal
to or greater than 0.

At the other end of the spectrum:

IF ERRORLEVEL 255 ECHO True

will work only in one case - when the exit code
happens to be 255.

If you want to isolate a character like a space
(which has an ASCII value of 32) you have to
first screen out any higher exit codes:

IF ERRORLEVEL 33 ECHO Nonspace
IF ERRORLEVEL 32 ECHO Space

You can combine these into one long line:

IF ERRORLEVEL 32 IF NOT ERRORLEVEL 33 ECHO Space

The following sample ERRTEST.BA T batch file
uses GETKEY .COM to fetch keystrokes and
pass the ASCII value for each to a "cascade" of
IF ERRORLEVEL tests:

ECHO OFF
:ERR
ECHO Enter a lowercase or
ECHO an uppercase letter
ECHO (Or spacebar to quit)
:TOP
GETKEY
IF ERRORLEVEL 123 GOTO ERR
IF ERRORLEVEL 97 GOTO LOWER
IF ERRORLEVEL 91 GOTO ERR
IF ERRORLEVEL 65 GOTO UPPER
IF ERRORLEVEL 33 GOTO ERR
IF ERRORLEVEL 32 GOTO END

The PC DOS 3.3 Commands 1235

IF ERRORLEVEL 0 GOTO ERR
:LOWER
ECHO Lowercase
GOTO TOP
:UPPER
ECHO Uppercase
GOTO TOP
:END

All lowercase letters have ASCII values from 97
through 122. All uppercase letters have ASCII
values from 65 through 90.

ERRTEST.BAT first uses a test for 123 to
screen out anything higher than the top range of
lowercase values. The second test will detect
anything from 97 through 122 and jump to the
label that identifies this as a lowercase letter.
The next test screens out the few odd characters
with values from 91 through 96. It's followed by
a test that detects anything from 65 through 90
and jumps to a label identifying these as upper
case letters.

Finally, a test for 33 screens out any key with a
value greater than a space (remember, a space is
32) but lower than the bottom range of upper
case letters. Then a test for 32 isolates spaces,
and a last test for 0 traps any other keystrokes.

One note - most single keys on your keyboard
generate single ASCII codes. But key combina
tions like Ctrl-End or Ins or F7 generate two
character codes, where the first code is always a
0. Key-sniffing programs more sophisticated
than GETKEY .COM can detect these; GETKEY
thinks all such keys are returning codes of 0.

More sophisticated programs often print
onscreen prompts telling the user which of
several keys to press. If the program doesn't do
this, you have to insert an ECHO command such
as:

ECHO Press Y for Yes, N for No:

,. ' '

1236 PC Magazine DOS Power Tools

to provide the appropriate prompt.

Fancier customized programs also may screen
out entire ranges of unacceptable keys. If you
want the user to enter Y for Yes, or N for No,
you can write a program to screen out all other
keystrokes. If the program does this it can spare
you from having to use lots of IF ERROR
LEVEL tests to weed out such errant keys.

If you use a fancier program to detect something
like Y or N, it's important to make sure the
program is case-insensitive so Y will produce
the same result as y.

Many GETKEY.COM-type programs detect
keystrokes and return something other than the
key's ASCII code. This can also save on tests. If
you ask the user to press Y (or y) to confirm a
process that follows, and any other key to abort
it, you could have the GETKEY-type program
set a code of 255 only if the user entered a Y or
y. This would let you branch properly with just a
single test:

IF ERRORLEVEL 255 GOTO DOIT

See Chapter 10 for lots of other IF ERROR
LEVEL tips and techniques.

Execute a command only if a spe- IF NOT ERRORLEVEL number action
cial number called an exit code or
a return code does not match a This works just like the above command but
preset number only if the numbers don't match.

Halt execution temporarily PAUSE

This command is helpful if you have to change
disks, tum on a print.er, or perform some other
time-consuming task, since it puts the batch file
on hold until you press a key to continue:

ECHO Make sure your printer is
ECHO on then press Shift-PrtSC
PAUSE

The PC DOS 3.3 Commands 1237

DOS will print a "Strike a key when ready ... "
message onscreen and wait patiently for you to
press any non-Shift key. As soon as you press a
key, DOS will jump to the next command in the
batch file.

If you want to abort what you 're doing you may
press Ctrl-ScrollLock or Ctrl-C instead. DOS
will print a " Terminate batch job (Y /N)?" mes
sage onscreen. If you type Y or y DOS will abort
the batch file and return you to whatever you
were doing before. If you type N or n DOS will
continue running the batch file as if nothing had
happened. Press any other key and DOS will
stubbornly repeat the "Terminate ... " message.

PAUSE is also a clunky but effective way to
break out of an otherwise endless loop:

CD \MEMO
ws
PAUSE
DEL *.BAK
%0

This file switches into your MEMO directory
and runs WordStar. Then when you exit Word
Star it pauses temporarily. If you want to con
tinue you can press any key and the batch file
will erase any BAK backup files, then reload the
batch file and start the process all over again.
However, if you don't want to continue, you can
press Ctrl-ScrollLock or Ctrl-C and answer Y or
y to the confirming question it asks and you 're
back at the DOS prompt.

A better way is to use IF ERRORLEVEL and
ask the user to press one key to continue or
another to abort.

Under DOS versions 3.x you can suppress the
"Strike a key when ready ... " message but still
have PAUSE bring your batch file to a tem
porary halt by redirecting its output to NUL:

1238 PC Magazine DOS Power Tools

PAUSE > NUL

You may precede it with an ECHO command
supplying your own message:

ECHO (Okay, now press a key)
PAUSE

This won't work on older versions.

Add comments to your batch files REM comment

or

:comment

You may enter REM, then a space, then up to
123 characters. When ECHO is off, nothing in
the line beginning with REM will appear
onscreen. When ECHO is ON, DOS will display
the REM and the comments that follow. You
may actually make the comments longer than
123 characters, but DOS will display only that
many when you have ECHO turned ON.

Another way to add comments is to preface
them with a colon (make sure the colon is in
column 1 if you're using an older DOS version).
DOS will treat anything beginning with a colon
as a label, and won't display anything in that
line regardless of whether ECHO is ON or OFF.
Since DOS won't try displaying such comments
you can make them as long as you want. If you
do this, be sure the first word in the line isn't the
same as a real label, or you may confuse a
GOTO statement.

As with ECHO statements, if you want to use a
character in a REM statement such as I,<, or>
that DOS treats as an operator, put the character
between a pair of quotation marks. You don't
have to worry about this if you're using a label
as a comment.

Chapter 19

EDLIN, DEBUG, and
ANSI Commands

EDLIN

To do the following in EDLIN: Use thefollowing commands:

Load and begin EDLIN EDLIN filename [JB]

Start entering text I

Stop entering text Ctrl-Break or Ctrl-C

Edit an existing line [line] (See note)

Delete existing line(s) [line][,line]D

Move line(s) to another location [line], [line] ,lineM

Copy line(s) to another location [line],[line],line[,count]C

Display part of your text [line][,line]L or [line][,line]P

Search for a specified string [line] [,line][?] S [string]

Replace one string with another [line] [,line] [?]R [oldstring] [<F6> new string]

, , I I

1239

1240 PC Magazine DOS Power Tools

EDLIN, continued

Merge disk file into current one [line]T[d:] filename

Write part to disk and load more [n]W then [n]A

Quit and save any changes E

Quit without saving any changes Qthen Y

Note: Substitute the appropriate line number in place of [line] above. And note that
[line][,line] and [line],[line] really mean "enter the beginning and ending line numbers
of the range of lines you want to work on."

DEBUG

To do thefollowing in DEBUG:

Load and begin DEBUG

Name file for loading/writing

EDUN,DEBUG,andANSICommands 1241

Use the following commands:

DEBUG or DEBUG FILENAME

N [d:][path]filename[.ext]

Load disk information into memory L [address [drive sector sector]]

Display memory contents D [address][address] or D address length

Display register/flag contents R [registemame]

Enter new memory contents E address [list]

Fill block of memory

Move block of memory

Compare two blocks of memory

Perform hexadecimal arithmetic

Search for characters

Assemble ASM instructions

Unassembte instructions

Input/display 1 byte from port

Output 1 byte to port

Execute program in memory (Go)

Execute one main instruction

Execute and show registers/flags

Write data to disk

Quit (without saving)

Prange list

M range address

C range address

H value value

S range list

A [address]

U [address] or U [range]

I portaddress

0 portaddress byte

G [=address][address[address ...]]

P [=address][value]

T[=address] [value]

W [address [drive sector sector]]

Q

,, ' I I

1242 PC Magazine DOS Power Tools

ANSI.SYS

Note: In all examples, ESC represents decimal ASCII character 27 and not the letters
E-S-C.

Cursor Movers

Move the cursor to a specific posi- ESC[#1;#2H or ESC[#l;#2f
tion:

Move the cursor up:

Move the cursor down.c

Move the cursor right:

#1 =row
#2=column

Default is 1. Omitting all parameters moves the
cursor to row 1, column 1 (upper lefthand comer
of the screen). All numbers are in decimal for
mat, and the upper lefthand comer is row 1,
column 1.

Example: ESC[5;8H moves the cursor to row 5,
column 8.

ESC[#A

= number of lines to move

Default is 1. Maintains the current column posi
tion. If the cursor is already on the top line, noth
ing changes.

Example: ESC[3A moves the cursor up three
rows.

ESC[#B

= number of lines to move

Default is 1. Maintains the current column posi
tion. If the cursor is already on the bottom line,
nothing changes.

Example: ESC[6B moves the cursor down six
rows.

ESC[#C

ANSI.SYS, continued

Move the cursor left:

Device Status Report (Report
Current Cursor Position)

Save current cursor position:

Restore saved cursor position:

EDUN, DEBUG, and ANSI Commands 1243

= number of columns to move

Default is 1. Maintains the current row position.
If the cursor is already at the right edge of the
screen, nothing changes.

Example: ESC[40C moves the cursor40
columns to the right.

ESC[#D

= number of columns to move

Default is 1. Maintains the current row position.
If the cursor is already at the left edge of the
screen, nothing changes.

Example: ESC[25D moves the cursor 25
columns to the left.

ESC[6n

Issuing this command (you can't do it via
PROMPT) triggers a Cursor Position Report in
the form:

ESC[#l,#2R

where # 1 is the current row and #2 is the current
column.

Example: ESC[6n (if the cursor is at row 3,
column 7) will generate a ESC[3,7R string.

ESC[s

Stores most recent cursor position so you can
later restore it with the ESC[u sequence.

Example: ESC[s (if cursor is at row 6, column 7)
will save these coordinates to be restored later.

ESC[u

, ' I I

1244 PC Magazine DOS Power Tools

ANSI.SYS, continued

Erasing and Screen Clearing

Clear the screen:

Erase to end of line:

Color and Attribute Setting

Restores the current row and column previously
stored by the ESC(s sequence.

Example: ESC(u (ifESC(s had previously stored
the cursor position as row 6, column 7) will
reposition the cursor at those coordinates.

ESC(2J
orESC[J

This erases everything and positions the cursor
in the upper lefthand corner of the screen - row
1,column 1.

Actually, you don't need the 2 before the J. Just
about any number there will work. So will just a
J by itself:

ESC[J

Example: ESC[2J clears the screen to the exist
ing colors.

ESC[K

Erases from the current cursor position to the
end of the line - including the current column.

Examples: ESC[K (if you're using an 80-column
screen and the cursor is on column 8) will erase
from column 8 through to column 80 on that row.

ESC[5;8fESC[K will first move the cursor to
column 8 of row 5, and will then erase every
thing from column 8 through column 80 on that
line.

Set one or more screen attributes: ESC[#; ... ;#m

EDUN, DEBUG, and ANSI Commands 1245

ANSI.SYS, continued

#s are the attributes

Also called Set Graphics Rendition (SGR), the
attributes that it establishes remain in place until
reset by a subsequent SGR command.

Miscellaneous Attributes:

0
1
4
5
7
8

All attributes off (resets everything)
High intensity (bright/bold) on
Underline on (mono screens only; blue otherwise)
Blink on
Reverse video on (black on white)
"Cancelled" (invisible)

Color Attributes:

Color:

Black
Red
Green
Yellow
Blue
Magenta
Cyan
White

(IBM value)

(0)
(4)
(2)
(6)
(1)
(5)
(3)
(7)

As background:

40
41
42
43
44
45
46
47

Examples:

As foreground:

30
31
32
33
34
35
36
37

ESC[Om resets all attributes to normal (white on
black).

ESC[m also resets all attributes to white on
black.

ESC[8m blanks the screen (black on black).

ESC[Sm blinks the current text color.

ESC[lm makes the current text color bold.

1246 PC Magazine DOS Power Tools

ANSI.SYS, continued

Mode Co.ntrols

Set screen widths/modes:

Mode settings (values for#)

40x25 black and white
40x25 color
80x25 black and white
80x25 color
320x200 color graphics

ESC[5; lm blinks current text color and makes it
bold.

ESC[44m sets background to blue.

ESC[44;37m sets colors to white text on blue
background.

ESC[44;37;1m sets colors to bright white text on
blue background.

ESC[44;37;1;5m sets colors to blinking bright
white text on blue background.

ESC[=#h
orESC[=#l

When used with values from 0 to 6 ESC[=#h
(SET MODE) and ESC[=#l (RESET MODE)
work identically to change screen modes on ap
propriate displays. (Note that the 1 is a lowercase
L rather than a 1.)

(DOS MODE)

(BW40)
(C040)
(BW80)(MONO)
(C080)

0
1
2
3
4
5
6

320x200 black and white graphics
640x200 black and white graphics

Set line wrap on:

Examples: ESC[=3h and ESC[=31 will each set
the screen mode on a color system to 80x25
color.

ESC[?7h
orESC[=1h

·-----------·-·-··~·

ANSI.SYS, continued

Set line wrap off:

Keyboard Controls

Redefine one key as another:

EDUN.DEBUG. and ANSI Commands 1247

Anything typed past the rightmost column of the
screen will wrap down one line to the leftmost
column.

Example: ESC[?7h will make text wrap normal
ly around from right to left and down one line.

ESC[?71
orESC[=71

If you reach the right edge of the screen DOS
will lock the cursor there and overlap any addi
tional text you type meaninglessly on the one
rightmost column. However, it won't discard
any keystrokes, even though it has trouble dis
playing them. (Note that the 1 character is a
lowercase Land not a 1.)

Example: ESC[?71 will make text disappear
once it reaches the rightmost column of the
screen.

ESC[#l;#2p
or ESC[O;# 1 ;#2p
or ESC[#l;0;#2p
or ESC[O;#l;0;#2p

1 is the ASCII code of the key to be redefined
#2 is the ASCII value of the new definition
If using an extended key, its ASCII value is two
characters long; the first character is 0

ANSI can juggle the definitions of any non-Shift
keys. (It can't change keys without ASCII
values such as Shift or Ctrl or Alt.) To redefine
one alphanumeric key (like A or a or 1), first
specify the decimal ASCII value of the key you
want to redefine and follow it with its new
ASCII value. If you're using an "extended" key
(like Fl, Alt-U, or Ins) either as the key you

1248 PC Magazine DOS Power Tools

ANSI.SYS, continued

want redefined or as the new definition, specify
this extended key by preceding it with a 0.

To reset a key to its original value, redefine it as
itself (put its ASCII value on both sides of the
semicolon).

Examples:

ESC[65;90p turns an uppercase A (65) into an
uppercase Z (90) while leaving the lowercase a,
and both the upper- and lowercase Z alone. (You
would be able to type an uppercase Z by holding
down the shift key and typing either A or Z.)

ESC[65;90p and ESC[90;65p will switch upper
case Z and A but leave the lowercase versions of
each alone.

ESC["A";"Z"p and ESC["Z";"A"p will also
switch uppercase A and Zand leave everything
else alone.

ESC[65;65p will reset the uppercase A key so it
again prints and uppercase A.

ESC[65;65p and ESC[90;90p will put the upper
case A and the uppercase Z back they way they
were originally.

ESC[34;39p and ESC[39;34p will swap the"
and' keys.

ESC[""'; "''p and ESC["" ;"'"p will also swap
the " and ' keys.

ESC[0;46; 155p will tum Alt-C (an "extended"
key with an ASCII value two characters long -
0 46) into a cent sign (which has an ASCII value
of 155).

ESC[0;59;0;60p and ESC[0;60;0;59p will switch
function keys Fl (0 59) and F2 (0 60).

ANSI.SYS, continued

EDUN,DEBUG,andANS/Commands 1249

ESC[0;59;0;59p and ESC[0;60;0;60p will re
store function keys Fl and F2 to their original
settings.

Assign multiple characters to keys: ESC[#l;"text"p
ESC[O;# 1 ;"text"p
ESC[#l;#2; ... ;#127p
ESC[#l;#2;"text";#l00p

1 is the ASCII code of the key to be redefined.

"text" is the text you want to assign to this key.

If using an extended key, its ASCII value is two
characters long; the first character is 0.

#2 through #100 or #127 are the ASCII values of
the new definitions.

"text" is ASCII text between quotes.

ANSI lets you turn any alphanumeric (nonshift)
key on the keyboard into a "macro" key that can
enter commands, print messages, etc. You may
enter up to 127 characters as the new definition
for each key, by specifying the ASCII value(s)
of the key(s) in the new definition, or by specify
ing text (between quotation marks) for the new
definition, or by combining both decimal ASCII
values and text into the new definition.

To reset a key to its original value, redefine it as
itself (put its ASCII value on both sides of the
semicolon).

Examples:

ESC[65;66;67;68;69;70p will assign the letters
BCDEF to the capital A, so that typing an A will
print out BCDEF. This will leave the lowercase
"a" alone.

p I I

1250 PC Magazine DOS Power Tools

ANSI.SYS, continued

ESC[65;65;66;67;68;69;70p will assign the let
ters ABCDEF to capital A.

ESC[65;65p will restore the capital A back to
normal.

ESC["A";"A"p will also restore the capital A to
normal.

ESC[0;59;"DIR "p will put the letters DIR fol
lowed by a space on the command line when
ever you press the Fl key. It won ,tactually
execute the command, so you,11 be able to add a
drive letter and then press the Enter key.

ESC["-";"DIR C:";13p will assign the com
mand DIR C: to the tilde(-). Adding a 13 at the
end before the p will make DOS execute the
command instead of just printing it out, because
13 is the ASCII value of the Enter key, and this
will simulate pressing Enter. This will leave the
lowercase character on the tilde key alone.

ESC[l26;"DIR C:";13p will assign the same
DIR C: and Enter command to the tilde.

ESC[0;25;"Name: "; 13;"Rank: "; 13;"Serial
Number: ,,;13p will have AH-P trigger:

Name:
Rank:
Serial Number:

with a carriage return and a space after each. At
the DOS prompt this will produce error mes
sages since DOS will think you're trying to ex
ecute files called Name:, Rank:, and Serial. But
you can use this when creating files with EDLIN
or the DOS COPY command or certain text
editors such as IBM PE.

ESC[O; 15;"DIR I FIND ";34;"-88";34;13p will
turn the little-used Shift-Tab key combination

ANSLSYS,connnued

EDUN, DEBUG, and ANSI Commands 1251

into a command that will list all the 1988 files in
the current subdirectory (assuming the DOS
FIND.EXE utility is handy). The two 34s are
needed because 34 is the ASCII value of the
quotation marks needed for the FIND command.

Index

#.BAT,563
@symbol, 15, 58, 544-545, 562, 1051,

1206-1207, 1210
1-2-3,26,30,61,214-215,233,657,707,

806,859
101/102-key keyboard, 463, 465
6502chip,4
6845 video chip, 708, 738, 773-774, 776
8088/8086, 4
86-00S,5

A, (DEBUG command), 273, 293-294,
330-336,401

A, (EDLIN command), 237, 239, 259
A.BAT,654
"Abort, Retry, Ignore?" message, 15-16,

73,212, 783-784,805
ABORT.BAT, 563-564
absolute address, 208
access time, 10,114
ADD.BAT, 627-630
ADDNAME.BAT, 836-837
ADDPATH.BAT, 89, 667
ADDRESS.BAT,471
Adventure, 5
alias, 13
Allen, Paul, 3-5
allocation unit, 370
Altkey,147, 152,158-164,167,891,899
Alt-keypad technique, 31, 33, 45, 158-164,

235-237,548
Altair, 3

alternate select, 777
ALU, (arithmetic logic unit), 216
AMERICA.COM, 354-356
analog vs. digital, 119-120
AND operation, 133-135, 142-146,

168-170,216,387,612-613,618-619
ANSCOLOR.COM, 429
ANSI.SYS, 8, 26, 73, 76, 155, 172-173,

188,212-213,4QlJ-493,524,545,548,
575,590-591,647-649,673,676-677,
685,704, 716, 722,739,742-743, 745,
756,1051, 1057,1189, 1202,1230-1231,
1242-1243

case-sensitivity, 418
extended key values, 460-463
full-screen displays, 448-454
key-redefining, 455-469
macros, 469-4 71
management, 478-493
mode-setting commands, 454
redefmition table, 469-471
vs. IBM color differences, 432

ANSI.FIL, 426
ANSICHAR.BAT, 467-469
ANSICOLR.BAT, 446-448
ANSIPROM.BAT, 428
ANSITEST.BAT, 590
ANYLETR.COM, 514-515
ANYWHERE.BAT, 450-452
APPBK.COM, 889
APPEND command, 13, 88, 113, 653, 670,

793-795,1166

1253

, I I " j ~

1254 PC Magazine DOS Power Tools

appending to file, 510, 545, 599, 818, 1213
Apple,4
appointnlentbook,623-625
APPT.BAT, 623-625
archive files, 375
arithmetic logic unit (ALU), 216
artifact color, 697
ASC.COM, 892
ASCII, 26-27, 30-31, 124-131, 148-154,

158-160,186,273,596-597,609-610
ASCIIZ,660
ASK.COM, 620-621, 892
assembly language, 5, 273, 330-336, 764
ASSIGN command, 793, 865, 1166-1167
ATSIZE.COM, 894
ATIR.COM, 99, 894
A TIRBUTE.BAS, 378
ATIRIB command, 14, 1167-1168
attribute controller, 724
attribute, directory, 373-378, 894-896, 1131
AUTOEXEC.BAT, 62, 69-70, 74-77,

97-98, 100-101,115-116,167,391,
432-433,506,633,638-639,642-644,
652,654,660-661, 794,805,812,
848-849,1018

AUX device, 35, 186
auxiliary carry flag, 352
average access time, 10, 114, 1067

B.BAT, 654-655
BAC.COM, 896
BACK.BAT, 442-445
BACKCHEK.BAT, 568
background processing, 9, 34
backslash,7,78,83
backspace key, 165, 178, 180
BACKUP command, 14, 112, 379, 594,

794,803-804,814-815,865,1168
backups,14,24-25
backwords storage, 208, 338-339, 381, 659
"Bad command or filename" message, 432
BADNAME.BAS, 60
bandwidth, 698-699
bank switched memory, 214
BASCOMM.BAS, 861-864

base address, 217
base pointer (BP), 274, 352
BASIC, 5, 33, 83, 136-140, 149-150, 153,

156,158, 161-162,205-206,385-387,
432,680,801

BASIC Compiler, 771
BAT files, 13
batch file, 6, 26, 497-644, 1206-1238
batch file case-sensitivity, 588-592
batch files, displaying blank lines, 263-265,

540-541,548-551, 789
BATCHl.BAT, 561-562
BATCH2.BAT, 561-562
BATMAKRl.BAS, 102, 1142
BATMAKR2.BAS, 102
BCD (binary-coded decimal), 353
BOOS,4
BEATLES.COM, 357
BEEP, 153
BEEP.COM, 272-273, 288-289, 405-406
BERNIE,70,101,115-117
BINfile,28
binary,120-124, 131-135,200-201,765
binary-coded decimal (BCD), 353
binary, decimal/hex table, 377-378
BIOS, general discussion, 4

CLS, 683, 713
control area, 212
copyrightnotice,305,323
extension, 210
get current video state, 684
parameter block (BPB), 373, 379-380,

1144
read attribute, character, 683
read cursor position, 682, 71 O
scroll down window, 683
scroll up window, 683
set active page, 682
set border, 684
set color palette, 684
set cursor position, 682
set cursor type/size, 682, 710
set video mode, 682
Technical Reference Manual, 776
write attribute, character, 683

write character as ITY, 684
write character, 684

BIOS.COM, 897
bit, 120
bit mask, 133-135, 142-146, 169, 388

612-613
bit shifts, 216
blank lines in batch files, 263-265,

540-541,548-551, 789
BLANK.COM, 437-438
blanking out cursor, 713
blanking screen, 707-708, 756-758
BLANKINS.COM, 708, 898
blink attribute, 679-681
blinking cursor, 710
BLNKALTR.COM, 708
BLOAD.COM, 901
block cursor, 709-710
BLUE.COM, 303
BLUWHITE.COM, 524-525
boldface, 766
bootrecord,373,379-380,381,810-811,

901-908
B001REC.BAS, 1144
B001REC.PCM, 901
bootstrap loader, 811, 904
border,674-676,680,729,737-738,909,

1026-1027
BORDER.COM, 909
BORDRSET.COM, 675-676
box,159-161
BOX.BAT, 505
BOXDRAW.COM,909
BOXMAKER.BAS, 505, 1145
BP (base pointer), 274, 352
BPB (BIOS parameter block), 373,

379-380,1144
branching,9,90, 105-106,554-560,

576-578,615-616,686
break code, 184, 897
BREAK command, 170-171, 870, 1169,

1201
breakpoints, 267
Bricklin, Dan, 4
BROWSE.COM, 85, 97, 106, 911

BSAVE.COM, 913
buffer, 15, 74, 212
BUFFERS command, 74, 1201
BUILD.BAT, 621-622
burst, 697
bus, 10-11, 194
byte, 120, 137

Index 1255

C, (EDLIN command), 239-240
C, (DEBUG command), 361-363
C language, 27, 645, 771
cache, 14-15
CALC.COM, 914
calendar, 11-12
CALL command, 15, 58, 539-540, 544,

560-566, 570-571, 639-640, 790, 807,
822,832, 1207, 1221, 1224-1225

CAMERA.COM, 914
CAMLOAD.BAS, 1146
CapsLockkey, 167, 171-172, 181,644
CAPSLOCK.COM, 916
CAPSOFF.COM, 917
CAPSON.COM, 917
CAPTURE.COM, 918
CARDFILE.COM, 85, 920
carry flag, 352
CASESW AP.BAS, 488
CASETEST.BAT, 596-599
cassette recorder, 509
CCP,4
CD command, 78-80, 82, 85, 101-104,

107-109,379,656,924-925,969,
1047-1049,1132,1169-1170

CFPRINT.COM, 922
CGA (Color Graphics Adapter), 149,

212-213,404,677,679,693,697-700,
707,710,716, 720,722,724, 730-731,
738,750, 772-774, 776,802

CHANGE.COM, 923
changeline, 410-411
CHAR.COM, 467-469
CHAR127.BAS, 33
characterbox,213,679,699,710,717-718,

739
character separators, 213

J' I I

1256 PC Magazine DOS Power Tools

character sets, 738-742, 760-771
CHARS.BAT,470
CHCP command, 797, 1169
CHO.COM, 924
CHDIR command, 78-80, 82, 85, 101-104,

107-109,379,656,924-925,969,1132
CHECK.COM, 925
CHEKP A TH.BAT, 586-587
CHGALL.BAT, 264-265
CHKDATE.BAT, 636-637
CHKDSK command, 26, 38, 40-42, 68-69,

86,97,99,104-105,109-111 ,213,
390-391,500,782-784,804-806,
814,829,834,850,963,1017, 1170-1171

CHPATH.BAT, 92-96
churning, 25, 792
CLEANUP.BAT, 536-543
CLEAR,206
CLEARSLF.BAT, 453-454
CLICK.COM, 931
clock, 10-13, 506, 1011-1012,

1106, 1118-1119
CLRSCRN, 446
CLS command, 8, 213,446, 674-677,

695-696,701, 713-714, 729,754-756,
1171

CLSEGA.COM, 745, 932
cluster,23,370,783,812,814,962-963,

976,1066--1071,1107
CMI, 10
CMOS memory, 14, 370,401-403,

933-935,1011, 1106
CMOS.SCR, 401-403
CMOSGET.COM, 933
CMOSPUT.COM, 934
CO.COM, 85, 935
COBOL,5
code pages, 15, 416, 796-798, 1185-1186
code segment (CS), 29, 274, 351
CODEPAGE.BAT, 797
COL.COM, 446-448
cold boot, 47, 1083
COLDBOOT.COM, 849, 936
color patches, 340-349

color values, 347, 890, 913, 988-991,
995-996,1104-1105,1112-1113

Color Graphics Adapter (CGA), 149,
212-213,404,677,679,693,697-700,
707,710, 716,720,722,724, 730-731,
738,750, 772-774, 776,802

color addresses, COMMAND.COM,
347-348

color CLS, 347-348
color,128-129,673-681
color mapping, 724-725, 734-738
COLOR.COM, 713, 937
COLOR2.COM, 713, 938
COLORPIK.COM, 713, 939
COLORSET.BAS, 1148
COLORSET.COM, 713, 939
COLRSHOW.COM,697, 713,940
COM vs. EXE format, 368-370, 396-397
COM device, 35
COM format, 4, 6, 13, 26-30, 368-370
command line, 34,
command tail, 27, 34
COMMAND IC command, 58, 539-540,

544,560-566,570-571,638-640,654,
789,806-807,821,832, 1207, 1221,
1224-1225

COMMAND.COM, 6, 14-15, 34-36,
39-40,44,69-70,81-82,87,97,
115-117,275-285,301-302,343-344,
379,394,500,543-548,650-651,654,
661-664,668,674-675, 701,786-787,
793,804-810,815,848-850,865,868,
963,979,1171-1172

communications, 854-862
COMP command, 76,80, 174-175,361,

788-789,798-801, 1172
COMPARE.COM, 592, 941
COMPLE'IE.BAT, 563
composite output, 697
COMPTEST.BAT, 592
COMSPEC, 582, 645, 647, 650-651, 660,

670,807-808
CON, 8, 34-35, 186, 188, 261, 787,

789-790

concatenating filest 787
conditionalexecutiont497
CONFIG.SYSt 8t 69-70t 74-77t 96-98t

217t 391t 410-411, 413-414, 417-418,
432-436,471-472,474t477-479,485,
575t644,652, 794,797,803t813, 1018,
1200-1206

CONFIRM.COMt 943
confusing keys, 165-166
console, 8
control flags, 353
control characters, 27, 30, 124-125, 548
CONTROL.COM, 945
coprocessor, 195,404,947, 1114
COPY command, 70, 82, 98, 111, 177-178,

419,432,500,784-790,792,805,866,
871,1172-1173

COPY /B command, 27, 34, 163, 546-547,
787-788,918, 1126

COPY CON, 30-31, 33, 55, 130, 159
272,498,621-624,639

COPYEASY.BAT, 640-642
COPYFAST.BAT, 568-569
copyrightnotice,IBM,305,323
COPYSAFE.COM, 946
COPYSOME.BAT,55
COUNTIT.BAT, 509-510
COUN1RY.SYS, 797, 1202
CP/Mt 3-7, 260
CP/M-86,4
CPU", 10-11, 193-197,947
CP'U-NDP.COM, 947
Cray, 194
CRC (Cyclical Redundancy Check), 175,

791-792,871,963
cross-linked filest 783
CRT,677
CRT controller t 773
CS (code segment), 274, 351
CS.COMt 755, 947
Ctrl codes, 124-125, 155
Ctrlkey,124,153-156, 167

Ctrl-Alt-Del, 156, 184, 811,
1049-1050

Ctrl-Alt-Fl, 796
Ctrl-Alt-F2, 796
Ctrl-B, 156

Index 1257

Ctrl-Break, 8, 31, 156, 234, 268t 271,
285,342,80'J,1201

Ctrl-C, 124, 154, 156, 170-171, 177, 268,
271,285,342,399,507,525,556
558,572,690,870,1201

Ctrl-E, 156
Ctrl-End, 156
Ctrl-F, 156
Ctrl-G, 153-154, 156
Ctrl-H, 152, 154, 156
Ctrl-Home, 156
Ctrl-1, 152, 154, 156
Ctrl-K, 156
Ctrl-L, 156, 790
Ctrl-Left Arrow, 156
Ctrl-M, 152, 154, 156
Ctrl-N, 156
Ctrl-NumLock, 154, 156, 171, 184,

382
Ctrl-P, 76, 154, 156, 275, 324, 346, 383,

809
Ctrl-PrtSc, 76, 154, 156, 275, 324, 346,

383,809, 1052
Ctrl-Q, 861
Ctrl-R, 156
Ctrl-Right Arrow, 156
Ctrl-S, 154, 156t 382, 861
Ctrl-ScrollLock, 124t 156t 170-171,

177,399,507,525,556,558t572,
870

Ctrl-Z, 31t 153-155t 177, 233,
237-238,312-313t851-852,911

Ctrl-[, 156
Ctrl-\ 156
Ctrl-]t 156
Ctrl-1\ 156
Ctrl-_, 156

CTRLLOCK.COM, 156t 948
CTIY command, 186, 547-548, 568-569,

599,858-859,868, 1173
CTYPE.COM, 948

,, I I I

1258 PC Magazine DOS Power Tools

CURRENT.BAT, 638-639
Cursor Left key, 165, 179
cursor keys, 165-166
Cursor Right key, 174
cursor, screen, 710-713,749-750,773-776,

949-953
cursor emulation, 750, 775-776
CURSOR.COM, 712, 949
CURSOR2.COM, 712, 951
CURSOR3.COM, 712-713
CURSREAD.COM, 711, 952
Cyclical Redundancy Check (CRC), 175,

791-792,871,963
cylinder, 1066-1071

D, (DEBUG command), 280-285, 304-309,
313-314,356

D, (EDLIN command), 240-241
data segment (DS), 29, 274, 351,
data-integrity, 790-792
DATE command, 6, 14, 552, 638-639,

788,835, 1174
DA TECHEK.COM, 636-637, 953
DA TEMAKE.BAT, 639
DAZZLER.COM, 694, 956
d.Base,5,651, 1009
DCl,860
DC3,860
DDIR.COM, 957
DEBUG.COM, 8, 28, 32, 45, 83, 131,

136-141,205,219-229,252,261-263,
267-408,420-426,429-440,549-550,
598-599,659-671,685-691, 701-705,
716,719,743. 1243

loading and display addresses, 383
scripts, 271-272, 275
"(W)rite error" message, 302, 394
"File not found" message, 301, 364, 365
"moving" text, 295-318, 314, 317-323
A command, 273, 294, 330-335, 401
as testing environment, 405-408
assembler, 273, 294, 330-335, 401
assembling instructions, 273, 294,
browsing through memory, 280-283,

304-309,310-314,356,374

C command, 361-363
case-sensitivity. 270, 279
code vs. data, 339-341
comparing memory blocks, 361-363
converting data files, 315
copying text, 295-300, 312, 317-323,

398
D command, 280-285, 304-309,

313-314,356,374,398
data vs. code, 339-341, 690-691
display quirks, 280-281
displaying a port value, 401
displaying memory contents, 280-285,

304-309,313-314,356,374,398
dumping memory contents, 280-285,

304-309,313-316,356,373,398
E command, 290, 292, 30CJ-313,

361,365
editing values, 309-313
entering Escape characters, 419-426
entering values, 309-313
erasing file headers, 315
erasing null characters, 315-316
execute program in memory, 404-408
exiting,271,274-275,284,301,324,

400-401
F command, 290, 293, 314-317
filling blocks of memory, 290, 293,

316-319
finding value at an address, 282-283
fixing Ctrl-Z problems, 312-314
fixing end-of-file problems, 312-314
flag display, 349, 352-354
flag handling, 349, 352-354
flag manipulation, 349, 352-354
G command, 268, 397, 404-408
general rules, 267-269
go,404-408
H command, 278, 320-321, 357-361
handling EXE files, 285-286, 352, 368-370,

396-397
hex calculator, 278, 320-321, 357-361
hyphen display, 282-BJ.U 401
I command, 401
inputting from a port, 401

jump, 404-408
L command, 274, 285, 301, 317, 363-393,

399,405
loading addresses, 277, 366-368
loading from command line, 364-365
loading information, 274, 285, 301, 317,

363-393,399,405
loading sectors, 370-393, 399
M command, 295-300, 314, 317-323, 398
mini-assembler, 273, 294, 330-335,

403
modifying memory values, 309-313
N command, 273, 274, 285, 301, 302-304,

317,320,334,365,396-397,401
naming files, 272, 274, 285, 301-304, 317,

320,334,355,365,396-397,401
0 command, 401-404
outputting to a port, 401-404
P command, 399, 405-408
ports,401-404
proceed, 405-408
prompt, 270, 301
Q command, 271, 274-275, 284, 301, 324,

400-401
quitting, 271, 274-275, 284, 301, 324,

400-401
R command, 27&-277, 349-357
register display, 27&-277, 349-357
register handling, 27&-277, 349-357
register manipulation, 27&-277, 349-357
renaming a file, 303-304
S command, 277-279, 281, 313, 318-319,

323-330,344-346
scanning for values/text, 277-279, 281,

313,318--319,323-330,344-346
search strings, 277-280, 323-330
searching for values/text, 277-279, 281,

313,318-319,323-330,344-346
show registers and flags 349-357
single-step, 404-408
starting up, 301-302
syntax errors, 272, 331
T command, 397, 404-408
traceexecution,404-408

Index 1259

U command, 287-290, 293-294,
332-333,336-346,398,690-691

unassembling code, 287-290, 293-294,
332-333,336-346,398

unassembling instructions, 287-290,
293-294,332-333,336-349,398

use of period, 280, 291, 304
using spaces, 270
using the dollar sign, 296, 300,

335-336,340,355,357
using the Fl key, 326
using the F3 key, 291, 326
using the minus key, 292, 312
using the space bar, 292, 311
video tricks, 304-305, 317, 343-349
W command, 268, 274, 301, 390,

393-401
warnings, 268-269, 364, 390, 394,

398-400,403
wiping out file headers, 315
wiping out null characters, 315-316
writing information to disk, 268, 274,

301,390,393-401
DECIDE.COM, 498--510, 525, 554, 958
decimal, 120-124
decimal/hex/binary table, 377-378
default drive, 38
Del key, 178, 180
DEL command, 56, 60, 78, 95, 179, 432,
DELETE.COM, 958
delimiter, 38, 52&-527
DELNAME.BAT, 838
destination index (DI), 274, 352
DEVICE command, 1200-1204
device sharing, 12
device driver, 7, 409-416
DEVSHIFT.BAS, 826
DI(destinationindex),274,352
diagnostics disk, 13
DIAL.BAT, 625--027
digital vs. analog, 119-120
digital vs. analog video, 698--099
Digital Research, 4-5
DIM,28

,,

1260 PC Magazine DOS Power Tools

DIP switches, 212, 718
DIR command, 21-22, 31, 33, 36, 38, 43,

47-48,50-59, 75,80,95, 173-174,500,
783-784,804-805,812,863,1175-1176

DIR/W command, 75
DIR IP command, 75, 743
DIRCOMP.COM, 959
direction flag, 353
directory, 7, 14,22,373-383,782-783
directory attribute, 376, 379, 894-896, 1131
directory attribute byte, 373-379
directory internals, 373-383
directory organi?.ation, 373-383
DIRNOTES.COM, 960
DIRSIZE.BAT, 31
DIRSORT.BAT, 587-588
DISABLE.COM, 843, 961
disk management, 370-393
disk sizes, 379, 383
disk transfer area (DT A), 27
DISKCOMP command, 217, 1176
DISKCOPY command, 96, 217, 415,

792-793,870, 1176-1177
DISKPREP.COM, 961
DISKSCAN.COM, 962
DISKTEST, 113
DISPLAY.SYS,410,415-416, 797, 1202
DMA, 197
DO.BAT, 562-563
DOIT.BAT, 536-543
dollar sign, 296, 300, 335-336, 340, 355,

357,684-685,689-690
DONKEY.BAS, 83
DOS l.x, 5-7
DOS 2.x, 7-9
DOS 3.x, 10-15
DOS commands, modified, 19
DOS commands, new, 18
DOS direct console I/O, 685
DOS display output, 684
DOS display services, exotic, 685
DOS display string, 684
DOS fast TTY, 685
DOS files, 130
DOS kernel, 212

DOS open file, 685
DOS Technical Reference Manual, 28, 337,

417, 795, 811
DOS write to file or device, 685
DOS-EDIT.COM, 964
DOSKEY.COM, 714, 965
DOSLEVEL.COM, 968
dotbox,679,699,710, 717-718,739
dot clock, 730
dot-addressable graphics, 698, 771,

971-975,991-992,1020-1022
DOTI.COM, 295
DOTI.COM, 295
DOT3.COM, 295
dots, 80, 10 l
double word, 216
double dot, 80, 101
.double-density, 11, 23
DOW.COM, 630-633
DOWN.BAT, 107-108
DOWN.COM, 969
DR.COM, 85, 109, 805, 970
DRAW.COM,971
drive letters, 25, 38, 96, 371-372, 380,

398-399
DRIVE.COM, 395-396, 603
DRIVER.SYS, 410-413, 1202
drivers, 7, 409-416
drivers, block, 410
drivers, character, 410
DRIVES.COM, 975
DRIVSPEC.COM, 975
DRNEW.COM, 976
DRV file,26
DS (data segment), 274, 351
DTA (disk transfer area), 27
dual-ported memory, 213, 697
DUMMY.BAT, 549
Dvorak vs. QWERTY, 191
dynamic RAM, 202, 370
dynamic storage, 28

E, (DEBUG command), 290, 292, 309-313,
361,365

E, (EDLIN command), 238, 243

...• __ .. _____ _

EASY AS.BAT, 590
EasyWriter, 5
ECD (Enhance.d Color Display), 715-716,

723,729, 731, 734,739,742-743,
749-750,754,773, 797

ECHO command, 8, 15, 56, 58, 88, 97, 157,
263-265,419,428,501-506,525,536,
544-552,583-584,598,638,654,893,
1050-1051, 1095-1096, 1207,
1210-1215, 1219-1221

ECHO, generating blank lines, 263-265,
540-541,548-551,789, 1212-1213

ECHOANSI.BAT, 426
ECHOMAKR.BAS, 548-549
ECOH.COM, 977
EDLIN.COM, 30, 55, 128-129, 233-265,

272,531-534,668,677,719,743,
1241-1242

"Abort edit" messages, 253
"Entry error" messages, 251
"New file" messages, 237
"Not found" messages, 256
"O.K.?" prompt, 253, 256, 258
$$$ files, 243
43-line display, 251-252
A command, 237, 239, 259
abandoningtext,235,238,253
aborting a line, 235, 244
appending lines, 237, 239, 259
backup copies, 238, 243
BAK files, 238, 243
blocks of text, 239-240, 248-249
C command, 234, 239-240
cancelling a change, 235, 238, 253
case-sensitivity, 234, 253, 256
combining commands, 236, 257
command mode, 233-234
copying text, 234, 239-240
Ctrl-Z problems, 237-238, 260-262
current line, 234
D command, 234, 240-241
deleting text, 234, 240-241, 254
displaying text, 234-236, 246-248, 257, 261
E command, 238, 243

,.

Index 1261

e.dit/insert mode, 233, 241-243
e.diting a line, 241-242
end-of-file problems, 237-238, 260-262
ending,235,237,243,253
entering Escape characters, 235,

419-425
exiting prematurely, 235, 237, 253
general rules, 233-236
I command, 242, 244-245
importing files, 258-259
L and P command differences, 250-251
L command, 234, 246-248, 250-251,

261
line length limits, 233, 254
line numbers, 234, 239-240, 246-248,

248-249,250-251
listing text, 234-235, 246-248, 257, 261
loading additional lines, 237, 239
M command, 248-249
memory problems, 237, 239, 259
merging files, 258-259
moving text, 234, 239, 248-249
P command, 234-235, 238, 250-252,

257
patching for43-line screen, 251-252
prompt,233
Q command, 237, 243, 253
quitting without saving, 235, 237, 253
quitting, 235, 237, 243, 253
R command, 234, 238, 253-256, 261
reading in files, 258-259
registering changes, 235
renumbering lines, 240
replacing text, 234, 238, 253-256, 261
rules with strings, 234, 253-254
S command, 234, 238, 253, 256-258
saving and quitting, 235, 243
saving files, 243
searching for text, 234, 238, 256-258
starting up, 233, 237-238
string buffer, 254
switching modes, 233-234
transferring lines, 258-259
using /B to start, 238, 260

1262 PC Magazine DOS Power Tools

using commas, 234, 246, 248
using control characters, 233, 235, 238, 242,

244-245,261
using Ctrl-Break, 233-235, 242,

244-245
using Ctrl-C, 234-235, 242, 244-245
using Ctrl-Z as separator, 236, 238,

254-255,257
using high-bit characters, 235-236
using minus signs, 242, 244
using periods, 242, 244
using plus signs, 242, 244
using pound signs, 242, 244, 246
using question marks, 242, 253-254, 255,

256,258
using semicolons, 242, 244
using spaces, 234, 253-254
using the backspace key, 242
using the Enter key, 241-243
using the Fl key, 242
using the F2 key, 242
using the F3 key, 242
using the F6 key, 254
using the Left Arrow key, 242
using with large files, 233, 237, 239, 259
version differences, 238
W command, 237, 239, 259
working with binary files, 238, 260-261
working with nulls, 236
writing to disk, 237, 239, 259

EDPA IBA.BAT, 668--{)70
EDPATIIA.COM, 978
EDPATHB.BAT,668
EEMS,215
EGA (Enhanced Graphics Adapter), 16,

120,149,213-214,404,675,677,680,
698-700,707,710, 714, 715-779,797,
802

EGA graphics, 771-772
EGA Technical Reference Manual, 734,

772,777,997
EGA12.COM, 748-749, 981
EGA25.COM, 749, 982
EGA35.COM, 745-746, 749, 983

EGA43.COM, 742-743, 749, 984
EGA50.COM, 746-749, 985
EGA512.COM, 761-763, 986
EGA8X14.COM, 741-742
EGABLANK.COM, 756-758, 987
EGABLINK.COM, 723-724
EGABORD.COM, 729-731
EGABORDR.COM, 732-734
EGABOSET.COM, 737-738
EGACIRCL.BAS, 754
EGACOLOR.COM, 725-726, 736, 988
EGACOSET.COM, 735-738, 989
EGAGRAF.COM, 751-754, 991
EGAGRAF2.COM, 754
EGAITAL.COM, 740-742, 761, 992
EGAMODE.COM, 718-720, 741,993
EGAMORE.COM, 743-744
EGAPAGE.COM, 721-722, 994
EGAP ALET.COM, 726-728, 995
EGAPRMOV.COM, 735-737, 996
EGAPRTSC.COM, 750-751, 802, 996
EGATEST.COM, 778-779, 997
EGATIME.COM, 731-732, 737-738
EGAUNDER.COM, 770-771, 999
EINSTEIN.BAT,470
EMM,215
EMS,214
ENABLE.COM, 843, 999
encryption,848,852--853
end-of-file marker, 31, 34, 130, 177,

237-238,260-262,312-313,851-852,
911

ENDLESS.BAT, 574
Enhanced Color Display (ECO), 715-716,

723,729, 731, 734, 739,742-743,
749-750,754, 773, 797

Enhanced Graphics Adapter (EGA), 16,
120,149,213-214,404,675,677,680,
698-700,707, 710, 714,715-779,797,
802

enhanced expanded memory, 215
enhanced keyboard, 463, 465, 898
ENIAC, 194
Enter key, 166, 1000-1001

ENTER.COM, 999
ENTER2.COM, 1001
ENVCOUNT.COM, 665-667, 1001
environment,40, 88-90, 212,417, 543,

582-588,645-671,794,978-981,
1001-1003

environment variable, 88, 542, 582-585,
642,653,825-826, 1206,1218-1220,
1224-1226

equipment byte, 403-404
ERASE command, 13, 62, 80, 85, 111, 805,

1177
ERROR.BAT, 547-548
ERRORLEVEL command, 29, 39, 43, 409,

508-522,536-537,559,562,573,
585-621,686,779,782,850,893,
925-931,953-956, 1030-1032,
1059-1061, 1232-1236

ERRTEST.BAT, 596, 1235
ERRTEST2.BAT, 600
ERRTEST3.BAT, 601-602
ERRTEST4.BAT, 602
ERRTESTn.COM, 617-618
ES (extra segment), 274, 351
Esc character, 155, 418, 426, 548, 575,

676-677
Esc key, 172-173, 177, 180, 399
escape character, 155, 172, 418,
escape sequence, 155, 172, 418
ESCAPE.COM, 439-441
EXE file header, 368-369
EXE vs. COM format, 368-370, 396-397
EXE format, 6, 13, 26-30, 368-370
EXE2BIN.COM, 28, 795
EXEC,807
EXIST command, 39, 43, 112, 544,

585-586,1227-1228
exit code, 29, 594-595, 600-605, 609,

685-686
EXIT command, 807, 809
exiting programs, 28-30
expanded memory, 214-216
extended ASCII key values, 460-463, 598,

605,708-709

Index 1263

extended memory, 27, 216-218,414
EXTENKEY.BAT, 605
extension, 38, 61-62, 374
external command, 39, 276
external drives, 412
extra segment (ES), 274, 351

F, (DEBUG command), 290, 293, 314-317
F.BAT, 829-830
Flkey,173-174,180,242,326,644,796
F2 key, 175-176, 180, 242, 532-533, 796
F3key,58, 79,102,107,174-175, 180,

241-242,291,326,400,532,670,
788-789

F4 key, 176, 180
F6 key, 31, 177, 180
F7 key, 157, 176, 180, 236, 541, 548, 551,

579,789
FACEl.COM, 295
FACE2.COM, 295
Fansi-Console, 743
FAST.COM, 182-183
FASTATKB.COM, 1003
FASTOFF.COM, 1006
FASTOPEN command, 14, 1178
FAT (file allocation table), 5, 14, 23-25,

113,209,268,371-375,379-381,383,
393,398-399,783-784, 793,812-813,
963

FC,175,361, 798,871
FCB (file control block), 6, 8, 13, 212, 1204
FCBS command, 1204
FDISK command, 14, 66, 78, 811-815,

1178-1179
FF.COM,334
FFEED.COM, 1007
FFEED2.COM, 1008
file allocation table (FAn, 5, 14, 23-25,

113,209,268,371-375,379-381,
383,393,398-399, 783-784, 793,
812-813,963

File Allocation Table Error, 793
file control block (FCB), 6, 8, 13, 212, 1204
File Facility, 13, 88, 653

1264 PC Magazine DOS Power Tools

file handle, 8. 13. 786-787
file security, 162-164
file size, 37 5
ftlename,32,37-40,374
FilePath, 13, 88, 653
FILES command, 1204
filespec, 37, 48
FILL.COM, 1008
FILLFAST.COM, 287
filter, 8, 30,47, 56, 816-841, 1039,

1107-1108, 1116,1133
FINDcommand,31,47,56-57, 76, 105,

329-330,358-359,436,471,509,
537,541,623-625,782,801,816,
828-841,1179

PINDALL.BAT, 830
FINDFILE.BAT, 109-111, 829
finding files, 109-111
firmware, 202
first FAT cluster, 375
FIX.BAT, 670
fixed disk, 7, 69, 811
flag,194,349,352-354
flags register, 274, 352
flicker, 698
floating point, 195
floppy disks, 3-11, 21-23, 404, 1006-1007,

410-413
font editor, 763-766
FONT2DB.COM, 764-766
FONTLOAD.ASM, 765-766
fonts,738-742, 760-771,796-798,992
FOOTBALL.COM, 314-315
FOR command, 8, 56, 98-99, 536, 542,
566-571,654,788,1207-1208,1222-1223
FORE.BAT,442-445
FORMAT command, 14, 44-4'6, 68, 70, 78,

113,391,434-436,500,505,588,594,
603,781, 792,811,814,865,906,908,
961-962,1179

formatting, 24
formatting, low-level, 24, 66-67
formatting, high-level, 24, 66
formfeeds, 334, 790, 1007-1008, 1081
FORNESTl.BAT, 570-571

FORNEST2.BAT, 570-571
FORTEST.BAT. 590
FORTR.AN,5, 771
fragmenting,24,370-371,792,812
Frankston, Bob, 4
FREE.COM, 1010
FREEZE.COM, 1010
FROG.BAS, 1149
full-screen displays, 448-454
function keys, 14 7, 173-177, 899
functions, BIOS and DOS, see services
Fylstra, Dan, 4

G (gigabyte), 121
G, (DEBUG command), 268, 397, 404-408
garbage collection, 28
Gates, Bill, 3-6
"General Failure Error Reading" message,

783,864
general-purpose register, 273, 349
GET.ANS.COM, 536-543
GETCLOCK.COM, 1011
GETDA TE.COM, 630-633
GETFKEY.COM, 604-605
GETKEY.COM, 595-599, 608-610, 614,

618,1233-1236
GETKEY2.COM, 600-601
GETKEY3.COM, 601-602
GETKEY 4.COM, 602-603
GETLETR.COM, 614
GETMONTH.COM, 630-633
GETNEWl.COM, 618
GETNEW2.COM, 618-{)19
GE1NO.COM, 606-607
GE1NUM.COM, 608-609
GETYES.COM, 605-607
gigabyte, 121
global file name characters, 49
GOTO command, 8, 554-564, 1208,

1226-1227
GRAFPRNT.BAS, 151, 161, 1149
GRAFTABLcommand, 150, 801-802, 1180
graphics character table, 734
GRAPHICS command,498, 751, 801-802,

1181

GWBASIC, 5, 33, 83, 136-140, 385-387,
432,680,801

H, (DEBUG command), 278, 320-321,
357-361

HALFfEST.BAT, 611--012
handle,8, 13,786-787
Hangeul, 9
hard disk, 7, 10-14, 21-25, 69, 811,

1066-1071
hard copy, 157
hardware configuration chart, 12
HARDWARE.BAT, 634--035
Hayes SmartModem, 855
head, read-write, 22, 1066-1071
header,file,27-28,368
heap,28
HEART.COM, 286-291
HELP.COM, 1012
Hercules Graphics Card (HGC), 698-700,

707,721
hex,119-124, 135-141,269-270,278,

357-361,687,867, 1013-1017
hex calculator, 278, 320-321, 357-361,

386-387,687, 1013-1017
HEX.BAT, 358-361
HEX.COM, 1013
hex/decimal/binary table, 377-378
HGC (Hercules Graphics Card), 698-700,

707,721
hidden files, 14, 69, 98-100, 375-376,

389-393,805
HIDE.COM, 99, 850, 1017
hiding cursor, 713
hierarchial directories, 7
high bit, 26, 30-31, 125, 150, 909-912

1027-1028, 1149-1150
high memory, 215
high order, 125
high resolution, 676, 693
high-capacity drives, 11, 23
high-intensity colors, 678
HIGHRES.COM, 1020
HIGRAF-L.COM, 1020
HIGRAF-S.COM, 1020

Index 1265

HIRES.BAS, 706
HOME.BAT, 108-109,656
horizontal retrace, 698-700, 728
horizontal scan rate, 699, 731
HORSE.BAS, 694, 1150
HOWTRUE.COM, 335-336

I, (DEBUG command), 401
I, (EDLIN command), 242, 244-245
IBM,4-16
IBMBIO.COM, 4, 14, 68--69, 212,

374-375,379,391-393,410,472-477,
478,805,810,815,1171, 1180,1196

IBMDOS.COM, 4, 14, 68--09, 212, 375,
379,391-393,805,810,815,1180, 1196

IBMFIX.COM, 147, 1022
IBM color values, 347, 890, 913, 988-991,

995-996,1104-1105,1112-1113
IBMcopyrightnotice,305,323
IBM printers,416
IBM Technical Reference Manual, 28, 185,

190,404,860
IBM vs. ANSI color differences, 432
ID byte, 927, 1092-1093
ID.COM, 633--035
identifying adapters, 776-779
IF command, 8, 585-621, 656-657,

1208-12()<),1227-1229
ill-behaved program, 13
IMSAI,3
IN DO command, 43
InColor Card, 698
"Incorrect DOS Version" message, 795
indentation, batch file, 504
index registers, 274, 351-352
initial FAT cluster, 375
Inskey,165,167,178, 180,644
"Insert disk with batch file" message, 808
"Insert disk with COMMAND.COM"

message, 808
INST ALL.COM, 1023
INST ALL/REMOVE, 101
instruction pointer (IP), 274, 351
Insufficient disk space message, 784
Interrupts

"' '

12()6 PC Magazinl! DOS Power Tools

INT05H, 157, 184, 843, 943-944, 1051
INT 09H, 184-191, 897
INT lOH, 343-348,446,681-685, 906,

940,997-998
INT 13H, 1069-1070
INT 14H, 855-859
INT 16H, 186-187,463
INT 17H, 1080
INT lFH,802
INT 20H, 28-29, 408
INT21H, 29, 684
INT27H,29
INT28H,847
INT29H,685
INT 2EH, 668, 979-980

Intel, 3-4, 10, 195, 218
intensity, video, 723
intensity bit, 678
internal command, 38-39, 276
Internal Stack Error, 802
interrupt controller, 197
interrupt flag, 353
interrupt vector table, 210, 212
interrupt-driven, 195
INVIS.COM, 430
IO.SYS, 410, 472, 478
IP (instruction pointer), 274, 351
IRGB (intensity-red-green-blue), 678,

723-726,730, 763
italics, 740-742, 762-763

Jobs, Steve, 4
JOIN command, 113, 865, 1181-1182
jumper, 213, 802

K (kilobyte), 121
Kanji, 9
KBFLAG.COM, 643-644
KBORDER.COM, 676, 1026
KBX.COM, 1027
KEY-FAKE.COM, 1028
KEYB command, 1182
KEYBFR command, 83, 190
KEYBGR command, 190
KEYBIT command, 83, 190,

keyboard,147-148,180-183, 184-191,
456-468,463, 1003-1006,1029-1036,
1039-1040, 1045-1046, 1053-1055,
1082-1083

keyboard BIOS addresses, 192
keyboard buffer, 185
keyboard interrupt, 184
keyboard port, 187
KEYBOX.COM, 796
KEYBSP command, 190
KEYBUK command, 190, 795
KEYBxx command, 15, 190-191, 594,

795-798
KEYCODE.BAS, 466
KEYLOCK.COM, 1029
KEYPRESS.COM, 1030
KEYRATE.BAS, 182
KEYSTROK.COM, 511-516
KEYSUB.COM, 1032
KeyWorks, 470
Kildall, Gary, 4-5
kilobyte, 121

L, (DEBUG command), 274, 285, 301, 317,
363-393,399,405

L, (EDLIN command), 234, 246-248,
250-251,261

label, 9, 90, 105-106, 379, 553-562,
576-578,616-617,686, 1226-1227

LABEL command, 68, 1182-1183, 1209
laptop drives,412
large data problem, 215
large program problem, 215
large screens, 739, 742-751, 773
LASTDRIVE command, 794, 1205
least significant byte, 208, 338-339
LEDCYCLE.BAS, 181
Left Arrow key, 165, 179, 244
LETTERl.BAT, 515
LETTER2.BAT, 515-516
LEVEL.BAT,615-617
LIFO, 195-196
lightpen,681
LIM,215
line wrap, 31

linear addressing, 205
LOCATE, 710
LOCATE.COM, 1033
LOCK.COM, 1035
LOG.BAT, 569-570
LOGFILE, 809
logical drive, 14, 25
logical drives, 410-413
logical operator, 131-135, 142-146,

385-389, 612-613
LOGIT.BAT, 640
LONG.BAT, 556
long word, 216
long-persistence phosphor, 698, 707
LOOKUP.BAT, 627-630, 837
LOOP.COM, 507-510, 1036
lost clusters, 783
lost files, 219-227
low order, 125
low bit, 26, 30-31, 125
low resolution, 693
LOWER.COM, 1039
LOWERIT.COM, 610-611
LOWRES.COM, 1039
LOX.COM, 1039
LPT device, 35
LPTl, 790
LSB, 208, 338-339

M (megabyte), 121
M, (DEBUG command), 295-300, 314,

317-323,398
M, (EDLIN command), 248-249
Mace Utilities, 65, 399
machine code, 202
Macintosh, 859
macro keys, 469-471
makecode,184,897
MAKECOM.BAS, 523, 1151
MAKEMENU.BAS,621, 1154
MAKESCRN.BAS, 522-523, 1157
MAN.COM, 295
mapping, 215
MASM,274,330
master environment block, 645

math chip, 195, 404, 947, 1114
MAXSHIFf .BAT, 581-582

Index 1267

MCB (memory control block), 657-658
MCGA (Multi-Color Graphics Array),

699-700, 710
MD command, 78-79, 83-84, 163,

1183-1184
MDA (monochrome display adapter), 697,

707,716,720, 738,773-774,776
medium resolution, 676, 692
megabyte, 121
megahertz, 194
MEM512.COM, 1041
memo maker, 621-623
memory control block (MCB), 657-658
memory, dual-ported, 213, 697
memory, loading, 1065-1066
MEMORY.COM, 1042
memory-mapped display, 210, 697
memory-resident programs, 212, 214, 464,

660-661,753-775
MENU.BAT, 517-524
MENUl.BAT, 607-608
MENU2.BAT, 614-615
meta-string, 418, 427, 647
microcode, 202
Microsoft Word, 271, 418, 741, 743,

776-777,992
Microsoft, 3-16
MID$.COM, 1042
MITS,3
MKDIRcommand, 78-79,83-84, 163,

1183-1184
MODE command, 6, 13, 16, 212, 409,

625-627,660, 705, 719,720-721,797,
855,993-994, 1184-1186

mode control port register, 707
mode-setting commands, 454-455
modem, 627, 854-862, 920-922
MODEREAD.COM, 633-635
modulo operation, 509
monochrome display, 212-213, 679, 707,

716,720, 742, 754,763
monochrome display adapter (MDA), 697,

707,716, 720, 738,773-774,776

' '

1268 PC Magazine DOS Power Tools

MORE command, 31, 47-48, 74, 76-77,
324,419,470-471,538,552,638-639,
743-744,816-820, 1072-1073,1186

MORENEW.COM, 538-539
MOS,4, 193
most significant byte, 208, 338-339
MOTOR, 158
Motorola, 193
MOUSE.SYS, 76, 212
MOUSEKEY.COM, 1045
MOVEIT.BAT, 111-112
MOVETEST.COM, 296
moving files, 111-112
MSB,208,338-339
Multi-Color Graphics Array (MCGA),

699-700, 710
multisynching monitor, 699
multitasking, 26, 216
MUSIC.COM, 291
MUSICA.BAS, 83

N, (DEBUG command), 273, 274, 285,
301-304,317,320,334,365,
396-397,,401

NEST.BAT, 589
nesting, 72
networks, 12-13
NEVER.BAT, 555-558
NEWDIR.BAT, 471
NEWENT.COM, 188-190
NEWKEYS.COM, 463, 1045
NEWPAUSE.COM, 572-573, 1047
NEXT.BAT, 107-108
NEXT.COM, 1047
nibble, 137, 403, 678-680
NLSFUNC command, 797, 1186-1187

. NO.COM, 1048
NOBOOT.COM, 1049
NOECHO.COM, 548, 1050
NOINT5.COM,

0

1051
Non-system disk or disk error, 808
NONSTOP.BAT, 507, 511-514, 554
NOPRINT.COM, 1052

NOREPEAT.COM, 1053
Norton Utilities, 45, 65, 113, 162, 399, 638,

784,792,848,850,865,869-870,958
NOSCROLL.COM, 1053
NOTcommand,43, 133-135, 142-146
NUL device, 34-36, 62, 97
null,155,158-159,236,315-316,660
null length files, 394-395
null strings, 574
NUMCLICK.COM, 1054
numeric coprocessor, 195,404,947, 1114
NumLock key, 166-170, 172, 181, 644
NUMOFF.COM, 1055
NUMON.COM, 1055

0, (DEBUG command), 401-404
octal,120,724-728,736
odd-even graphics storage, 706
offline, 157
offset register, 274, 351
offset, 204, 270
OLDPATH.BAT, 91, 671
ONCEMORE.BAT, 526-530
ONCEONLY.BAT,638
ONCL.COM, 1056
online, 157
opcode,798-799
OPTION.COM, 620-621, 1049
OR operation, 133-135, 142-146, 168-170,

216,385-389,613
orphaned cluster, 783
OS/2, 16,27,215,217
overflow flag, 353
overlay, 42
overscan, 699-700, 729

P, (DEBUG command), 397, 405-408
P, (EDLIN command), 234-235, 238,

250-252,257
p-System, 5
page,692,694-696,704-706,712,

721-722,771,957,994-995,1061-1062,
1151

PAGE.COM, 695, 705, 1061
PAGEi.COM, 705
PAGECLS.COM, 695, 1062
PAGEDEMO.BAS, 694-695
PAINT.COM, 1063
palette, 692-693, 723-729
palette register, 724-728, 736, 758, 763
P ALSHOW.BAS, 692-693
PALTEST.BAS, 728-729
paragraph, memory, 28, 207, 304
parallel processing, 194
parameter, batch file, 56, 89-92, 562-566,

1205
parameter, replaceable, 104, 326-329,

359-360,526-536,559-570,573-582,
588-589,616,638,641-642,1205,
1213-1218

parent directory, 80
parity. 200-202
parity flag, 353
parking heads, 1066-1071
PARSE.COM, 1064
parsing, 38
partition,14,25,811,815
partition loader, 811
partition, extended, 14
partition, primary, 14
Pascal, 5, 771, 801
PATH command, 13, 39-43, 69, 78, 87-96,

101,112,645,651-653,794,805,
978-981,1187

path extender, 13
PATHDIR.BAT, 570
PATHOLD.BAT, 92
PATTERNl.COM, 294
PATTERN2.COM,294
PATTERN3.COM, 294
Patterson, Tim, 4-6
PAUSE, 523, 544, 571-573, 642, 789,

1043-1044, 1120-1121, 1209,1237-1238
PC-AT,10-12,15,23,65-66,69,74,104,

107, 114, 120, 181-184, 197,213,216,
217,218,401-404,681,726,728,813

Index 1269

PC-XT, 7, 10-11, 15, 23, 25, 65--06, 69, 74,
104,107, 114, 197,209,212,506,593,
656, 728, 771, 813

PCjr.9,83,197,676,719-720,734
PCMAG.BAT, 450
PCMAP.COM, 1065
PCPARK.COM, 1066
PEEK.COM, 537, 1072
Personal System /2, 65--06, 69, 216, 681,

699,711, 776, 797
Personal Editor, 457
PIC, 185
PIF file, 26, 912
piping, 8, 47, 816-818
PLAY.COM, 1074
pointer registers, 274, 351
points, 741, 775
polling, 184, 195
POP-CAL.COM, 1075
POPDIR.COM, 1076
popping, 195-196
ports,401-404
POST (power-on self-test), 198, 213, 777,

853,1083
power-on self-test (POST), 198, 213, 777,

853, 1083
PR.COM, 1076
PRCODER.BAT, 843-845
Presentation Manager, 16
printscreen, 155-158,184,498,750-754,

801-802,842,943-944,996,1020-1022,
1051-1052, 1078

PRINT command, 9, 212, 845-848,
1187-1188

printer echo, 76, 154, 156, 275, 324, 346,
383,809, 1052

printer formfeeds, 334, 790
printer spooler, 9, 852
PRINTER.SYS,410,415-416, 1202
printers, IBM, 416, 751, 797, 801-802
printers, serial, 1184-1185
PRN device, 35-37, 622, 785-787, 790
PRN2FILE.COM, 1077

1270 PC Magazine DOS Power Tools

PRNBYLIN.COM, 1078
PRNSW AP.COM, 1079
PRNSW AP.COM, 842
PROGMAKR.BAT, 598-600
program exits, 28-30
program segment prefix (PSP), 6, 27-29,

366,657-659,786,807
Programmer's Guide to the IBM PC. 337,

346
Pro[(ey,31, 173,470-471
PROMPTcommand, 70-74, 79, 88, 101,

379,396,419,427,428,645,647-649,
653,807,849, 1088-1089

promp~ 6, 34, 70-74, 212, 647-649
protected mode, 27, 216, 1016
PRSW AP.COM, 1079
PRT2SCR.COM, 1080
PrtSc, 76,155-156,184,275,324,

346,383,498, 750-754
PRTSCRFF.COM, 1081
PS/2,65-66,69,216,681,699,711,776,

797
PSP (program segment prefix), 6, 27-29,

366,657-659, 786,807
PURPLE.COM, 303-304, 745
PUSHDIR.COM, 1081
pushing, 195-196

Q, (DEBUG command), 271, 274-275, 284,
301,324,400-401

Q, (EDLIN command), 237, 243, 253
QOOS,5
quad-density, 11, 23
QUESTION.BAT, 554-558
QUICKEYS.COM, 1082
QUIKNOTE.BAT, 622-623
quotation marks, 690
QWERTY vs. Dvorak, 191

R, (DEBUG command), 276-277, 349-357
R, (EDLIN command), 234, 238, 253-256,

261
RAM, 197-202, 1041-1042

RAMdisk, 26, 75, 96-97, 217-218, 410,
413-415,505,50'J,543,650,652,812,
867,1127, 1203-1204

RAMDRIVE.SYS, 410
random-access memory, 197, 1041-1042
RD command, 78, 99, 379, 1192
READ.BAT, 789
read-only files, 99, 375
read-only memory, 197
read-write head, 22, 1066-1071
read/write memory, 197
READI.BAT, 821
READ2.BAT, 821
READBACK.BAT, 578-579
READDA TE.BAT, 638-639
real mode, 216, 1016
reboot, 46, 1083
REBOOT.COM, 1083
REBOOTB.COM, 1084
RECOVER command, 65, 113, 781-782,

865,963, 1189
RED.COM, 303, 1085
REDATE.BAT, 788
REDBORDR.COM, 675
redefining keys, 455-469
redirection, 8, 47, 129, 510, 599, 785,

816-818,866-867
REDYEL.COM, 431-432
register, 206-208, 273-274, 349-352
release code, 152
RELOAD.BAS, 706-707
REM,503-505,552-553, 1209-1210,

1238-1239
REMINDER.COM, 310-312
REMLESS.BAS, 553
REMOVE.BAT, 624-625, 627-630
REMOVE.COM, 1086
REN command,44, 58, 70, 1190
RENAME command, 44, 58, 70, 1190
RENOIR.COM, 1086
REPEAT.BAT, 525-526
REPEATS.COM, 75, 1087
REPLACE command, 594, 815, 1191
replaceable parameter, 104, 326-329,

359-360,526-536,559-570,573-582,

588-589,616,638,641-642, 1205,
1213-1218

rescuing lost data, 219-229
reserved names, 33-37
RESERVED.BAT, 555
RESET.BAT, 670
RESET.COM, 1087
resetting ANSI, 483-493
resident part of COMMAND.COM, 805
resident programs, 212, 214, 464, 6ro-661,

773-775
RESTORE command, 14-15, 112, 594,

794,803-804,814-815,865,1191-1192
resurrecting lost files, 219-229
RET,29
retractable heads, 113, 1066-1071
return code, 29, 594-595, 600-605, 609,

685-686
REVERSE.COM, 714, 1088
RF modulator, 697
RFD.COM, 1088
RGB (red-green-blue), 677, 697, 723-726,

730,738, 763
RHCTRL.COM, 1090
Right Arrow key, 174
RMDIRcommand, 78, 99, 379, 1192
RN.COM, 85, 109, 1091
ROM, 10, 136, 148-149, 197-203

copyrightnotice,305,323
signature, 777

ROMINFO.COM, 1092
ROMPRINT.BAS, 149-150, 154, 1158
rootdirectory,68-72, 77,100,373,381-382
ROOT.BAT, 107-108
RUN.COM, 1094

S, (DEBUG command), 277-279, 281, 313,
318-319,323-330,344-346

S, (EDLIN command), 234, 238, 253,
256-258

SAMPLE.BAS, 1159
SAMPLE.BAT, 640
SAY.COM, 1095
scan code, 152, 186, 891, 897-898,

919-920,1096-1097

scan lines, 716
scan rate, 699, 731
SCAN.BAT, 326-330
SCAN.COM, 1096
SCANBATl.BAT, 821
SCANBAT2.BAT, 821
SCANBATS.BAT, 789
SCANDIR.COM, 1097
SCLEAN.COM, 1098
SCP-OOS,5
scratch-pad register, 273, 349
SCREEN, 697, 729

Index 1271

screen blanking, 707-708, 756-758
screen dump, 157-156, 184, 498, 750-754,

801-802,842,943-944,996,1020-1022,
1051-1052, 1078

screen page, 692, 694-696, 704-706, 712,
721-722,771,957,994-995

screen refresh, 699
SCRIPT.CLR, 483-493
SCRIPT.SEE, 483-493
SCRLLOFF.COM, 1099
SCRNTEST.BAT, 318
SCROLL.COM, 1099
SCROLL2.COM, 1100
ScrollLockkey, 167, 170-171, 181,644
SCROLLON.COM, 1100
SD.BAT, 822-824
SEALL.BAT, 574-575
SEARCH.COM, 109, 1101
Seattle Computer Products, 4
secondary command processor, 348
sector, 9, 14, 23, 370, 379-383, 399-400,

810,869,905,963,976, 1066-1071,1107
sector, bad, 792
SECTORXL.BAS, 1159
segment, memory, 198, 203-214, 269-270
segment register, 274, 351
segmented address, 27, 269-270
SELECT command, 1193
selectors, 217
self-modifying code, 1013-1015
serial port, 13
services (functions)

service OOH, 29, 682

', '

1272 PC Magazine DOS Power Tools

service OlH, 619, 682, 710
service 02H, 286, 289, 682, 684, 1058
service 03H, 682, 710
service 05H, 682
service 06H, 343, 347, 683, 685, 696,

697,713
service 07H, 343, 683, 697
service 08H, 683, 855
service 09H, 126, 296, 337, 355,

683-684,940, 1104
service OAR, 126, 670, 684
service OBH, 684
service OEH, 684, 906, 1104
service OFH, 684, 696, 739
service 29H, 975
service 2AH, 637, 953
service 2CH, 506, 958
service 3 lH, 29-30
service 3DH, 685
service 40H, 685, 1058
service 43H, 1tH 8
service 47H, 72
service 4 BH, 29. 807
service 4CH, 29-30, 685, 779, 928
service 4DH, 29

SERVICE2.COM, 686-689
SERVICE6.COM, 688-691
SERVICE9.COM, 690-691
SERVICEE.COM, 691-692
SET command, 88-92, 582-585, 633, 638,

642,645-647,651,653-657,660,670,
794,807, 1194,1218-1220

SETCLOCK.COM, 1106
SETENV,661
SETMODEM.COM, 433
SETPATH.BAT, 100,653
setting bits, 134-135, 142-146, 375-393,

612-613, 618
SETUP,66
SETUP.COM, 85, 1102
SHARE command, 1194
SHELL command, 89, 428, 657, 661, 794,

956,981, 1205,1221
SHIFf command, 8, 580-582, 641-642,

1210, 1215-1218

Shift keys, 157-158, 166, 186, 644
shift-mask table, 919
Shift-PrtSc,157-156,184,498,750-754,

801-802,842,943-944,996,1020-1022,
1051-1052, 1078

shifting bits, 216
SHIFfIT.BAT, 580
SHIFfIT2.BAT, 580-581
SHIFfKEY.SCR, 168-169
SHOWCHAR.COM, 126-131, 1103
SHOWCOLR.COM, 128
SHOWDATE.BAT, 631-633
SHOWFONT.COM, 797
SHOWFULL.COM, 128
SHOWMODE.BAT, 635
SHOWMON.BAT, 630-631
SHOWP ARM.BAT, 530-536
SI(sourceindex),274,352
SideKick, 70, 76-77, 107, 138, 212, 214,

236,271,275,385,660,775
sign flag, 353
similar keys, 165-166
single dot, 80
size, 375
SIZE.COM, 1107
SIZEMIX.BAS, 693-694
SKIPLINE.COM, 1107
slash, 7
slave drives, 412
SLOW.COM, 182-183
SLOWDOWN.COM, 1109
SmartKey, 470
SMITH.BAT, 656
SNIPPER.COM, 1110
snow, 213, 697, 720
SORTcommand,31,47, 70, 76,470-471,

500,587-588,816-828,1194
SOUNDER.BAS, 1160
source index (SI), 274, 352
SP (stack pointer), 274, 352
space problems, 60
SPECIAL.BAT, 443-445
SPECTRUM.COM, 714, 1112
~pooler, 9, 852
SS (stack segment), 274, 351,

stack,27-29,195-196,212,802-803,847
stack pointer (SP), 274, 352
stack segment (SS), 274, 351
STACKS command. 802-803, 1205
STARTUP.BAT, 100
static RAM, 202, 370
STATLINE.COM, 1113
status bytes, 153
status control byte, 167-170
status flags, 352
STATUS.COM, 1114
stepping motor, 22
STICK.COM, 714, 1114
STPROMPT.BAT, 648-649
string,208,559-560,585,588-591,

941-942,1043-1044,1213, 1231
STRING$,28
STRIP.COM, 30, 1115
subdirectory, 7, 14, 22, 36, 68-72, 379, 381,

782-783,803-804
SUBST command, 13, 75, 95-96, 113, 794,

865,1195
SUGGEST.COM, 1116
SUPERDRV, 96
Superf(ey,113,410
suppressing batch file displays, 15, 58,

544-545,562, 1050-1051,1210
SWEEP.COM, 176, 1117
switch, 7, 34, 38
switch settings, 212
SWP A TH.BAT, 652-653
SWPROMPT.BAT, 648-649
SYS command, 26, 68, 391, 792, 805, 810,

815,962, 1196
system files, 4, 14-15, 17, 68, 375, 804

T, (DEBUG command), 397, 404-408
Tab key, 165
Tandy,4
telephone directory, 627-630
telephone dialer, 625-627
television set, 693, 697
terminate and stay resident (TSR), 212, 214,

464,660-661,773-775
TEST.BAT, 640

TEST1980.COM, 1118
TEST4A.COM, 513-516
TEST4ESC.COM, 512-516
TEST512.COM, 762-763
TESTENV .BAS, 664
TESTENV .BAT, 661, 664-667
TESTTHEM.BAT, 55
text files, 130
TEXT.BAT, 575-578
thrashing, 25, 792
TICKER.COM, 572-573, 1120

Index 1273

TIME command, 6, 14, 374, 552, 788, 835,
1196-1197

time out, 157, 842
time-slicing, 9, 845-847
TIMEKEY.COM, 1121
TINYCOMM.COM, 854-862, 1122
TOGGLE.BAS, 181-182
tone frequencies, 891
TopView, 26, 912
TOUCH.COM, 788, 11251"
track,976,1066-1071
transient part of COMMAND.COM, 805,

808
trapping instructions, 353
TREE command, 8, 85-87, 783, 1197
tree-structured directories, 7
TRS-80,4
TSR (terminate and stay resident), 212, 214,

464,660-661, 773-775
TYPE command, 26, 38, 48, 70, 76-77,

129-131,162, 171,260-261,313,368,
419,432-433,500,505-506,537,593,
785-786,835,852,911,1126,1197-1198

TYPEA.COM, 1126
typewriter keys, 148-149

U, (DEBUG command), 287-290, 293-294,
332-333,336-346,398

UART,860
UCSD p-System, 5
UNBLANK.COM, 437-438
UNCRASH.COM, 1127
UNDERLIN.COM, 1129

' ' ! •

1274 PC Magazine DOS Power Tools

underline, 681, 766-771
UNDERLN.COM, 766-769
UNDERLN2.COM, 769-770, 1130
unfragrnenting,24,371,792
UNlllDE.COM, 99, 850, 1131
UNIQ.BAT, 569
UNIX, 7
Unrecognized command message, 432
onsetting bits, 134-135, 142-146, 375-393,

612-613,618
UP.BAT, 107-108
UP.COM, 1132
UPDATE.BAT, 788
UPDATE.BAT, 546-547
UPPER.COM, 1133
UPPERIT.COM, 611-612

VDISK.LST,83
VDISK.SYS, 26tl._6:_ 96-97, 217-218, 410,

413-415,505,'Jf.19,543,650,652,812,
867,1127, 1203-1204

vector, 210
VER command, 968-969, 1198
VERIFY command, 175, 790, 792, 871,

1198-1199
vertical scan rate, 699, 731
vertical retrace interval, 698-699
VGA (Video Graphics Array), 16, 675, 677.

680,699-700, 710-711, 715,773,
775-776

video address, 700
video display, 212, 404
Video Graphics Array (VGA), 16, 675, 677,

680,699-700. 710-711,715,773,
775-776

video modes, 717, 729
video parameters table, 734
video port, 700, 707-708, 723, 773, 776
video segment, 700, 772
virtual device interface, 771
virtualdisk,26,75,96-97,217-218,410,

413-415,505,509,543,650,652,812,
867,1127, 1203-1204

VisiCalc, 4-5
VOL command, 1199
volume label, 9, 68, 376, 379
Von Neumann, 194
VT-100,859
VTREE.COM, 85, 106, 1133

W, (DEBUG command), 268, 274, 301,
390,393-401

W, (EDLIN command), 237, 239, 259
WAIT.COM, 1134
WAIT41-9.COM,518
W AIT4A-Z.COM, 516-521
WAITASEC.COM, 1135
warm boot, 46, 1083, 1136
W ARMBOOT.COM, 156, 849, 1136
WARN.COM, 339
wedge servo, 10
WEEK2.BAT, 632
WEEKDAY.BAT, 632-633
WEEKDA Y2.BAT, 633
well-behaved, 13
WHERE.COM, 109, 1137
WHITEBLU.COM, 524-525
wildcard, 48-54, 62, 863-864
Windows,16,26, 771,912
windows, 215
WINDOWS.COM, 696, 1137
WOMAN.COM, 295
word, 194, 273
WordPerfect, 43, 48, 271, 418, 582,

766-769
WordStar, 5, 26, 30,40, 73, 96, 138, 171,

237,271,323,418-419,432,456,539,
553,572-573,653,707,743,756,
759-760,794,859,870,912,957, 1039,
1064, 1116

Wozniak, Steve, 4
wrapping, 31
WRDCOUNT.COM, 433
Write Protect, 783
WRITEOOT.COM, 771-772
WS43.COM, 759-760

XCOPY command, 13, 34, 54, 82-83, 112,
379,789, 792-793,803-804,864,
870-871,1199-1200

XDEL.COM, 1138
XDIR.COM, 1138
XENIX,7
XOFF,861
XON,861
XOR, 133-135, 142-146
XyWrite, 743

YELRED.COM, 524-525
YESNO.COM, 006

Z-80,4,216
zero length files, 394-395
zero flag, 353
Zilog,4
ZOMP, 799-801

Index 1275

,

•

•

Bantam Electronic Publishing
666 Fifth Avenue
New York, New York 10103

PLACE
STAMP

HERE

:iQ
BA N'TA°M
SOFTWARE LIMITED WARRANTY
Bantam Electronic Publishing warrants the software diskette(s) to be free from defects in materials and faulty
~orkmanship under normal use and service for a period of 90 days from the date of purchase.

If a defect in the diskette(s) should occur within 90 days, Bantam will replace the diskette(s) without charge
to you. Simply return the diskette(s) with dated proof of purchase directly to us. Please complete the
warranty registration card below and mail it to us today so that we may have a record of your purchase.

THIS WARRANTY IS IN LIEU OF ALL OTHER EXPRESS WARRANTIES OR REPRESENTATIONS. ANY APPLICABLE
IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS, ARE LIMITED TO A PERIOD
OF 90 DAYS FROM THE DATE OF PURCHASE. BANTAM IS NOT LIABLE FOR ANY SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM BREACH OF ANY EXPRESS OR IMPLIED WARRANTIES ON
THE DISKETIE(S).

REPLACEMENT POLICY
If a Bantam Software diskette is damaged through accident by you and unrelated to defects in
manufacturing and workmanship, Bantam Electronic Publishing will gladly replace the diskette(s). Simply
return the damaged diskette and a check or money order for $5.00 (per diskette) to:

Bantam Electronic Publishing, 666 Fifth Avenue, New York, New York 10103.
DO NOT SEND CASH. You will receive your new disk in four to six weeks.

Should you require technical support, call (800) 223-6834 X 832 (in NY State
call (212) 492-9832), between 9AM and 4PM, EST.

WARRANTY REGISTRATION CARD

Software Title:-------------------------------
Computer Model:-------------------------------
Date Purchased: ______________________________ _

Method of Purchase: D Dealer D Bookstore 0 Mail Order Other ___ _
If dealer/bookstore/mail order, please specify name and address:

Primary Application: o Home o School D Business Other ___ _

Where have you seen or heard about this product?
D Magazine Ad D Magazine Article 0 Recommended
D Saw in store Other ________________________ _

My primary interest is:
0 Entertainment 0 Education D Business D Utility

Age of user(s) ____ _
Do you own any other Bantam Software products? ____ _

If yes, please specify titles:---------------------------
What is your favorite software package?-----------------------

Owner's Name:-------------------------------

Address: _________________________________ _

City: ________________ State: ________ Zip: _______ _

Please fold and seal before moiling.

WE'D LIKE TO HEAR FROM YOU ...

We take pride in our work. With each new product you purchase from
Bantam Electronic Publishing, we share that pride with you. Please help us
continue to bring you quality software. Let us know what you think of your
new purchase and any other Bantam products you own. Thank you.

Bantam is interested in quoting our users in future software promotional materials. If your comments are
used, your name will appear with your quote. Please check the box that follows if you DO NOT want us to
print your comments. D

The Very Best Programs From PC Magazine!
Over 200 Powerful Ready-to-Run Utilities, written by the nation's leading
assembJy-language programmers-including:
• Pop-up appointment book and alarm clock
• Pop-up ASCII character chart
• File and disk security systems
• Sophisticated file backup utility
• The best file and directory handlers available anywhere
• DOS presentation graphics system
• Pop-up autodialer and namdaddrcss database
• Intelligent directory changer
• Batch file enhancers
• Keyboard sound generators
• Do:zens of EGA screen control utilities
• Automated file copylmovc/deleter/rcnamclcxaminc programs
• C.Olor and. cursor reset protectors
• Easy printer controllers
• Hex/decimal/binary/ASCII number converter
• File overwrite protector
• Keyboard macro utilities and controllers
• Disk trouble-shooter
• Full-screen DOS editor
• DOS command stacker and recaller
• DOS color graphics drawing program
• Powerful system analy7.ers
• Keyboard and disk speedup utilities
• Pop-up help and reference screen utility ·
• Memory-resident program mapper and managers
• Box-drawing and border-creation program
• Full series of file coIM:l'Sion and fiher utilities
• Mo~cing program
• Word and character counter
• DOS music-generating program
• Pop-up 10,000-year calendar
• Sophisticated file finders and duplicate file locators
• System clock utilities
• Text search program
• Subliminal message generator
• System crash-protector

Plus dozens of programs to streamline your system, organiz.e your files and
directories, and give you absolute control over every aspect of operation from disks
to keyboard to screens to printers. Full details of their features and operation are
provided in Part IV of the book. ..

pect ru.nnin and

• m~ronm nt and mcm · ' izardr .

wcr out of che way the xper d

An Executive Editor of FC Magazine Paul ome on edited tbc industry's longest
running DO advice c Jumn, nd · responsible for all oftbc magazine' technical
olwn.n program • nd rticle . He h written half a dozen books on programmir:i
o.d other P topic including tarFixer. a WordStar utility aod guide.

9 JJl!ljj~l!I
0 - 553- 3 4 701 - 2>4~ 9 5

