
The Minicomputer
in On-Line Systems

WINTHROP COMPUTER SYSTEMS SERIES

Gerald M. Weinberg, editor

MOSTELLER
Systems Programmer's Problem Solver

HEALEY AND HEBDITCH
The Minicomputer in On-Line Systems

CONWAY, GRIES, AND ZIMMERMAN
A Primer on PASCAL, 2nd ed.

BASSO AND SCHWARTZ
Programming with FORTRAN!WATFOR!WATFIV

SHNEIDERMAN
Software Psychology: Human Factors in Computer and Information Systems

GRAYBEAL AND POOCH
Simulation: Principles and Methods

WALKER
Problems for Computer Solutions Using FORTRAN

WALKER
Problems for Computer Solutions Using BASIC

CHATTERGY AND POOCH
Top-down, Modular Programming in FORTRAN with WATFIV

LINES AND BOEING
Minicomputer Systems

GREENFIELD
Architecture of Microcomputers

NAmGIAN AND HODGES
Computer Games for Businesses, Schools, and Homes

MONRO
Basic BASIC

CONWAY AND GRIES
An Introduction to Programming:
A Structured Approach Using PL!/ and PL!C, 3rd ed.

CONSTABLE AND O'DONNELL
A Programming Logic

CRIPPS
An Introduction to Computer Hardware

COATS AND PARKIN
Computer Models in the Social Sciences

EASLEY
Primer for Small Systems Management

CONWAY
A Primer on Disciplined Programming Using PL//, PL/CS and PL/CT

FINKENAUR
COBOL/or Students: A Programming Primer

WEINBERG, WRIGHT, KAUFFMAN, AND GOETZ
High Level Cobol Programming

CONWAY AND GRIES
Primer on Structured Programming Using PL//, PLIC, and PL/CT

GILB AND WEINBERG
Humanized Input: Techniques for Reliable Keyed Input

The Minicomputer
in On-Line Systems

Small Computers in Terminal-Based Systems
and Distributed Processing Networks

Martin Healey
David Hebditch

Winthrop Publishers, Inc., Cambridge, Massachusetts

Library of Congress Cataloging in Publication Data

Healey, Martin.
The minicomputer in on-line systems.

Includes index.
I. Minicomputers. 2. On-line data processing.

3. Electronic data processing-Distributed processing.
I. Hebditch, David Leroy. II. Title.
QA76.5.H444 001.64 81-589
IBSN 0-87626-579-4 AACR2

© 1981 by Winthrop Publishers, Inc.
17 Dunster Street
Cambridge, Massachusetts 02138

All rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher.

Printed in the United States of America.

ill 9 8 7 6 5 4 3 2 1

To Jill

Contents

Foreword xi

Preface xvii

1. The Role of the Minicomputer in Data Communication
and Distributed Processing Systems

Some Typical Systems 1
Why Use a Mini? JO
Problem Areas 13
References 13

2. The Minicomputer: Technology and Architecture

What Is a Minicomputer? 15
Architecture 19
Bus Structures 22
Instruction Sets 25
Memory Addressing 30
Input/Output 32
Memory Management and Protection 38
Hardware Enhancements 44
Microprogramming 52
Microelectronics in the Computer Industry 54
Peripherals and Interfaces 69

vii

1

15

viii Contents

3. Data Transmission and Terminals

Data Transmission and Distance 71
Telecommunications Services 73
Suppliers of Telecommunications Services 74
Circuit Arrangements 77
Circuit Characteristics 81
Noise, Distortion and Error Rates 87
Transmission Timing and Synchronism 89
Communications Interfaces 93
Data Link Controls 96
High-Level Protocols and Network Architectures 115
Terminals 117

4. Transaction Processing and a Review of
Minicomputer Software

Modes of Operation 127
Teleprocessing Systems 130
Transaction Processing 131
Transaction Processing and Terminal Handling Functions 136
Overview of System Software 143
Tasks, Programs, and Procedures 149
Operating Systems 150
Assemblers and Loaders 158
High-Level Languages 158
Program Development Aids 164
File Management Systems 164
Communications Software 171

5. Data Communications Handling on Minicomputers

Digital Equipment Corporation PDP-11 Series 173
Modular Computer Systems MODCOMP II CP2 183

6. Data Communications Software

Task Management 193
Program Management 204
Storage and Queue Management 206
Design of Teleprocessing Programs 214

71

127

173

193

Contents ix

7. Minicomputer Operating Systems: Some Examples 217

A Review of General Features 217
The Operating Systems Reviewed 220
Data General ROOS 221
Digital Equipment Corporation RSX-UM 227
MODCOMP MAXCOM Communications Executive 237
The Texas Instruments DXlO 244
Microcomputer Operating Systems-Digital Research CP/M 252
DECNET 259

8. High-Level Packages 269

Minicomputer On-Line Terminal Handling Packages 270
Key-to-Disc Systems 270
Digital Equipment Corporation COMTEX 271
Digital Equipment Corporation COS 350 271
Digital Equipment Corporation RSTS/E 272
Data General IDEA 276
Computer Automation SyFA 277
BUS/COBOL 279
Computer Technology TAD 279
Digital Equipment Corporation TRAX 280

9. Acquisition and Implementation

Acquisition 285
Implementation 287

10. Case Studies

1. Digital Equipment RSTS/E System 290
2. Data General ECLIPSE System 293
3. A Distributed System 304
4. Use of Microprocessors in

Special Purpose Data Communications Devices 315

Index 323

285

289

Foreword

Computing, like any high technology business, is burdened with unanswered
questions, some serious, others comparatively trivial. A splendid example of the
latter category has been the endless debate over who invented the first stored
program computer. A more critical inquiry is posed in discussions about just what
a minicomputer is, or for that matter what a terminal, a small business system, or
a terminal computer is.

Debate questions are always fun. Engaging in deep dialog is a lovely way of
spending time. It is at least as good as attending conferences, writing papers, and
otherwise avoiding the need for work. Discussing matters whose resolution is
largely a semantic issue clearly permits the practitioner the luxury of avoiding
technical decisions due last week or last month. Since it is not considered cricket
to terminate the conversation of people who debate these lofty and near
impenetrable matters, the clever gamesman can survive by avoiding decisions,
with their consequent risk of error.

It has long been known that certain MIS professionals have very bad attitudes
on these matters. They attempt to solve problems by creating workable solutions.
This evil practice should be stopped, because it might force the debating societies
to stop debating and go to work-the last thing the talkers desire. If one is forced
to bet one's reputation on a path or a fork in the road, the chances for error are
high. Better to debate than to do!

Books about minicomputers invariably seem to fall into the trap of spending
several hundred pages attempting to define minicomputers. The matter used to be
very simple for pragmatic types who didn't worry about elegance. The parameters
were fairly simple: (1) physical size, and (2) manufacturer's name. Consequently,
a computer that could be picked up by an average-size individual, one manufac
tured by anybody other than a traditional mainframer, was by definition a
minicomputer. Unfortunately, some recent developments have destroyed this easy
definition. There aren't many people who can get their arms safely wrapped

xi

xii Foreword

around an H-P 3000 or a DEC PDP-11/44. Anyone who can is a candidate for
several Olympic awards. The other side of the equation has also come apart: IBM
entered the minicomputer business directly, Univac joined by acquisition, and
Honeywell reenergized its long dormant minicomputer operation. End of one pass
at decision-making criteria!

So what is a minicomputer? Can a machine with a 32-bit-wide data bus, a 300
ns cache memory, and a million bytes of main store be called a mini-anything? Of
course it can't. The truth is that yesterday's definitions are now nearly meaning
less. There is a tidy, smooth curve of machine power beginning with micro
procesi;ors and running exponentially up to a Cray-1. Somewhere along this curve
the traditional independent observer can decide that these are micros, these are
minis, these are maxis, and everything else is a mainframe. You pays your money
and takes your choice; who cares what it is called?

Having thus neatly solved the question of defining the minicomputer, it is
necessary to find the separation between one of them, whatever they are, and a
terminal. This should be a good deal easier because the parameters are better
known.

A terminal is a box. That box is remote from a computer. So far, so good.
Does a terminal have: (1) intelligence, to process information, (2) private store,
(3) mass storage even in limited quantities, (4) human intervention devices such
as keyboards, and/or (5) connections to the computer? These questions define the
various classes of terminals. If there are enough yes answers, perhaps the box in
question is not a terminal at all but a computer. Can the answer be determined
numerically? Does a single yes mean terminal and three or more mean computer?

As with the case of the minicomputer definition, I am now involved in a
semantic snarl-up at least partially of my own making. Indeed, does it really
matter? Isn't it more than enough to say that a terminal is a remote electronic
device that has the power to somehow communicate something to somewhere in
one of a variety of forms? Enough!

None of this semantic footwork really matters very much to the dirty-handed
workers in the trade. People take a machine, grab some devices that work
remotely and go to work building systems that provide intelligence to the end user
community residing at the periphery. That is what it is all about. How the goal is
reached and what it is called should be relegated to the Oxford Union.

Having placed definitions in the category of a problem that has been solved (a
longtime ploy of politicians who believe that if the problem is said to be solved it
is), we must tum to the real snags in computing during the next few years.

The data communications explosion begun so promisingly a few years ago
continues to run into roadblocks. Most of the obstacles are erected by longtime
communications carriers whose general approach is to try to bar all the new
freedoms the FCC carefully nursed into life. The common carriers are not stupid.
They see major revenue sources flying away as their aging, analog-based plant
rapidly falls into disuse before its natural accounting life is ended. There is little

Foreword xiii

quarrel with the notion that a forty year write-off on technological equipment is an
invitation to disaster. However, the fiscal policies and practices of the carriers
were established and firmly set long before computers were invented. The
repeated, public predictions by Howard Anderson of the Yankee Group that the
common carriers will be an easy target when the computer people really start after
them seem to be coming true. But this is another of those debating-society issues.

The carriers are digging in for a long fight. It isn't merely a matter of
matching their services to those the independents are making available. To quote
myself from a near-forgotten Datamation article, "If MCI and Datran didn't exist,
we would have had to invent them to keep AT&T honest." What has happened is
that the carriers have reacted savagely enough to make the future bleak for all but
the best financed independents. Datran is gone, even though it cost AT&T $50
million in settlements. By its own admission MCI is only marginally profitable.
The regional carriers are gone. Telenet was acquired by GT&E.

The traditional carriers are defending on many levels. First, they take every
legal action possible to delay the implementation of new services by indepen
dents. Second, they are providing their own competitive services. Third, they are
attempting to remove from service functional capabilities already in general use
for example, distance pricing and private line networks. Finally, they are always
just a little slow in connecting local loops and repairing outages.

All of this means that the natural, normal, and highly proper convergence of
data processing and data communications is a good deal more difficult than it
should be. The problems are political and economic, not technical. This book
describes systems in being and how they are built. Neither it, nor any other book
on the market, can forecast the political climate that may well undercut a sound
technical performance.

The clash between a slow-moving, regulated industry and a very rapidly
changing, thoroughly unregulated business is of increasing concern to the user
community. Knowing how to build a system is of little value if a very large traffic
cop keeps saying, "You can\ do that" at regular intervals. The cop wears many
disguises. He may appear as a British labor leader who has instructed his men not
to install non-GPO modems, or as a Nigerian minister who refuses to allow any
encoded data on public transmission facilities, or as a Canadian telecommunica
tions minister who believes that all necessary transmission can be accomplished
on public networks.

Who suffers from these actions? Not the mythical general public whose
interests are allegedly being protected. The loser is the end user at whose behest
remote, terminal-based systems are being constructed. The solution is political.
Corporations don't have the influence when it comes to a clash between the need
for more effective business communications and an impact on the plain old
telephone service.

A sense of outrage continues to exist in the computer community over the
restrictions, real and apparent, arbitrary and legislated, that grow ever more

xiv Foreword

widespread: The game is at a high level because the revenues involved are very
large, billions of dollars. Even the most astute technical people are likely to be
blind to these affairs; their interest is in getting the job done.

Before 1976, the direction and pace of the data processing and data
communications convergence were fairly clear. The technical job to be accom
plished was, and still is, becoming ever clearer. Books like this describe what has
to be done. But the whole effort will fall apart if the industry's technical experts
do not take the time and energy to come to grips with political and legislative
forces. Things are happening that may undermine even the best planned efforts. It
was previously considered reasonable· to assume that telecommunications regula
tions would be eased. In actuality, matters have gone quite the other way. The
French PTT still wants to pull cable in an era when satellite transmission is
completely routine. Fiber~optical transmission is regarded with suspicion by those
who grew up with twisted pairs of copper wires. Digitally based communications
equipment cannot approach peak effectiveness when inhibited by operating
parameters in a thirty-year-old analog carrier. Voice, data, and image transmis
sions are still seen as separate entities when all three have become little more than
the movement of digital bit streams.

The technology of communications-based systems is expanding ·at a rapid
pace. Each new development, however, is delayed by the defenders of the past.
The excuses vary but the most commonly heard are: "unproven technology," "too
great an impact on existing services," and "no tariff has yet been filed."

The common carrier attack on remote systems has been sustained, but at worst
their efforts can only slow down implementations. But there is another emerging
threat that has the possibility of totally destroying effective remote computing
the concept that data should be held within national boundaries as a national
resource.

Remote computing systems by their very nature weaken the idea that all data
should be maintained locally. In fact, while much of day-to-day operational data
should properly and for good technical reasons remain local, there is a valid set of
aggregate data that make little sense locally. How is a modern corporation to
optimize its use of scarce resources if arbitrary, often capricious, regulations are
placed on its ability to move the data to the location where it is needed?

The issue of transborder data flow is rapidly growing in its impact upon
remote computing systems. It is beyond the scope of this book to discuss whether
it is a real issue or one dreamed up by a tiny minority of social activists as another
means for controlling large corporations. However, it is an issue with a major
potential for mischief.

Of still more recent generation is the issue of national vulnerability to
computer/communication outages. The thesis as evolved by a Swedish govern
mental committee revolves around the notion that each national society must have
all of its own facilities for keeping the computer/communications complex going.
Why? Because the big, bad wolf, presumably an American-made wolf, will come
along and reduce a nation to third-rate status by failing to provide spare parts or

Foreword xv

the technical know-how to keep the complex functioning. It is hard to take such
scare tactics seriously. Yet it would be foolish to assume that the threat will simply
disappear.

The point in both of these cases is the same. It is no longer sufficient for a
technician to stay purely technical. The construction of computer-based systems is
full of social, cultural, economic, and political questions that can no longer be
cheerfully disregarded. Enough good systems have been built for the alarm-raisers
to have had their interest awakened. A cynic might suggest that we ought to have
failed more often because if that were the case, the politicians would leave us
alone. So perhaps some of the energy and effort devoted to trying to decide what a
minicomputer is, or what a terminal is, should be applied to the process of
maintaining freedom to implement. The definitions are only of importance to
lexicographers, but the politics are critical. The deeper people delve into remote
computing systems, the more the impact will be if the system proves "culturally
unacceptable."

We used to think that technology was hard. It isn't. It's still not easy or off
the-shelf. The multiple forces that pull and tug within a system are not that easy to
see, and it is still hard to find all the trade-offs. But Healey and Hebditch have
pulled out most of the issues into plain sight and tried to dispel the mystery. It's
not a black art, nor does it require implementers capable of leaping tall buildings.

Minicomputer systems can be thoroughly constructive for the corporation in
which they are based. They can also be major traps for the unwary. There are rules
of the game that must be obeyed even as with large-scale mainframes. Healey and
Hebditch detail the structure for minicomputers in the distributed environment.
Their game plan is sound. Now it is up to all you implementers to follow their
precepts.

PHILIP H. DORN

Preface

This book is the culmination of a discussion that has been going on for some four
years between the authors. During the mid-1970s we have seen the steady
convergence of computer and telecommunications technologies. In particular, the
data processing industry has continued to move away from batch processing to
transaction processing, and networks of terminals have improved user access to
computer systems.

Conspicuous in these trends has been the emergence of the minicomputer.
These compact and powerful processors, which originated in control systems,
have found a new role in the commercial field as data concentrators, message
switchers, front-end processors, terminal controllers, and special-purpose trans
action processors. A common characteristic in these systems is the use of
interactive and telecommunications facilities for data transport.

Although the cost/performance ratio and general modularity of minis make
them very difficult to ignore for many applications, the problems of system
design, development, and implementation can be numerous.

The authors are consultants, one majoring in minicomputers, the other in
communications systems, both having a reasonable knowledge of the other's
specialization. During many discussions (in just as many watering holes), we
managed to convince ourselves that if we had an average understanding of these
problems, then at least half the data processing profession was really struggling!

Minis are ideally structured for handling data communications and terminals,
but that does not mean that they always do it well. This book is intended as a
review of minis, communications, and how the two work together. Many products
are described by the way of illustration; where a specific device or software
package is mentioned, we do not intend to imply that it is any better or worse than
comparable components, merely that it is representative of a certain approach.

If this book is for anyone in particular it is for the COBOL programmer whose
boss is planning to buy a six-pack of minicomputers on which to base a network of

xvii

xviii Preface

interactive terminals. But we hope that technical managers, designers, systems
programmers, and application programmers in user companies, manufacturers,
and software houses will find it helpful in the development of effective systems as
well as in the development of their personal expertise.

MARTIN HEALEY

DAVID HEBDITCH

1
The Role of the Minicomputer

in Data Communications
and Distributed Processing Systems

This chapter reviews the various roles minicomputers play in terminal-based data
processing and communications systems to provide a background against which
we can consider the technical problems involved in implementing minis in such
roles. for the time being we shall define the mini as a small-scale, general
purpose computer such as the Digital Equipment Corporation's PDP- I I or Data
General's NOVA series. Small business computers (such as the IBM System/3
and ICL 2903) and special-purpose distributed processing products (like the
Burroughs B776 and IBM 8100) are excluded. A more complete definition of the
minicomputer will be discussed in chapter 2.

Some Typical Systems

When minicomputers were first developed, they tended to be used in industrial
process-control and data-acquisition systems. In the former case, the nature of the
application demanded a processor capable of acting in "real time," in the original
sense of the expression, a processor that could economically and efficiently
interface to a number of local and/or remote telemetry and control devices. Most
minicomputers were designed, therefore, to operate in a highly responsive on-line
environment. Their development engineers had probably never heard of batch
processing (or data processing, for that matter). Universities and research bodies
also quickly saw the potential of the mini, which typically is used for one-off jobs
generally developed in batch or (more often) interactively, using high-level
languages such as FORTRAN or BASIC. One of the earliest uses of minis outside
the industrial and research fields was in message switching. Clear-text messages
received over telegraph circuits are transmitted to destination teletypewriters/
teleprinters according to routing information held in standard or nonstandard
headers. Disc or drum storage may be used to implement a delayed-delivery
facility.

l

2 The Minicomputer in On-Line Systems

,, ,, ,, ,, ,, ,, , ___ __ -,
-i M' . I = =--, m1processor i
L--,,---.J

//
//

//
//

//

Communications adapter

Terminals

Figure 1.1
The minicomputer as the central site processor (in single or
multiple configurations)

All the above systems are typical of the mini used in a stand-alone situation
(as shown in figure 1.1). Until recently, the application of the mini as the main
computer in commercial data-processing systems was somewhat limited mainly as
a result of the lack of suitable software. Today the problem is no longer a lack of
software but the choice of a package/language from the plethora of programs now
available for business applications. Most such packages assume application as
terminal-based transaction processing systems (the structure and relevance of this
approach will be considered in chapters 7 and 8). The two earliest and most
widespread uses of minis in commercial teleprocessing were as front-end
processors (figure 1.2) and as remote batch terminals (figure 1.3).

The first generation of communications control units (CCUs) typified by the
IBM 2701, 2702, and 2703 were hardwired devices, inflexible and expensive. In
order to achieve a more adaptable, cost-effective solution that would relieve the
mainframe of some of its steadily increasing control-program load, many software
houses (and some users) developed their own software to work in one of three
ways: to emulate the CCU (for example, the IBM 2703); to emulate another
peripheral controller (for example, the IBM 3803 magnetic tape controller); or
simply to support the mainframe input/output (110) channel.

Because of its market size IBM was inevitably subject to attack by this
approach: its response was that because central processors and storage were
becoming so cheap, there was no point in shifting control program functions into

1/0 channel Communications facilities Terminals

! j
~

Central-site
computer

Figure 1.2

Package
or

custom
software

l
Minicomputer front-end
processor

The minicomputer used in a communications control unit (front
end processor)

Remote minicomputer

Central-site
mainframe

Figure 1.3

Medium-speed
synchronous communications
link (dialed or leased)

0
0
0
0
0

Card
reader

Remote
batch

emulation
software
package

Line
printer

The minicomputer used to emulate a special-purpose remote batch
terminal (potential distributed processing system)

3

0
0
0
0
0
0
0

4 The Minicomputer in On-Line Systems

the communications control unit. Soon after that, IBM announced the 3704 and
3705 programmable control units-not necessarily because the company had
changed its mind about front-ending, but because it was becoming impossible to
fulfill users' increasingly heterogeneous teleprocessing needs in a hardwired
controller. In fact, since the 370X was introduced, the control software in the
central processing unit (CPU) has become larger, not smaller. In spite of the
370X, companies still find it cost-beneficial to front-end their mainframes with a
"foreign" mini. Other suppliers who have been front-ended include Control Data
Corporation, Univac, and Burroughs. (Honeywell is front-ending with its own
minis.)

The minisuppliers and systems houses have also focused their attention on
another communications product: the remote batch (or remote job entry) terminal.
Originally the RBT was also a hardwired device, typically providing communica
tion with remote input/output peripherals such as card readers and line printers.
Independent suppliers soon found that they could put up an alternative package
that included similar peripherals but used a mini-based controller and a program
that emulated operations used by the mainframe manufacturers' products. Such
emulators have been produced for the IBM 2780/3780, ICL 7020, CDC UT-200,
Univac DCT-2000, and others.

One advantage of the mini solution is that merely by changing the emulator
program one can work to a Univac data center for part of a day and to an IBM
center for the rest. Moreover, once the mini is installed other peripherals
(including interactive terminals) can be connected for applications. Even in its
remote batch configuration, the system can be used for local vetting of the input.
This is the beginning of distributed processing, which will be discussed later.

Figure 1.4 illustrates the use of minis in another type of terminal; the
interactive visual display unit (VDU) or keyboard printer. In such devices the
miniprocessor was closely integrated into the product. In practice many commer
cially available units (Datapoint, for instance) employ specially made, processors,
often micro-based. The processor and storage are used to refresh the cathode ray
tube (CRT) and to implem~nt various facilities (variable and protected fields,
selective transmission) as well as to control the communications function to the
CPU. The minis still are relatively low in power because of the limited demands
made upon them. As with RBTs, such programmable terminals (especially the
VDUs) were provided with emulators so they could be sold in competition with
the equivalent units from the mainframe company. Such units included the IBM
2265, IBM 3275, and ICL 7181 stand-alone displays. Peripherals were generally
limited to compact media such as cassette tapes and discettes (floppy discs).

Many remote terminal products use the cluster concept in which a number of
terminals located in one office block or plant site can share the logic of a single
local controller (see figure 1.5). Rather than using expensive modems, the
terminals are connected locally via coaxial or multi-core cable (V24 or current
loop). Such cheaper circuits generally give a maximum terminal-to-controller
distance of less than 1000 meters without amplification or regeneration. The

The Role of the Minicomputer in Data Communications Systems 5

Central-site
computer

Programmable visual
display

Discette 9
Figure 1.4
The minicomputer and small special-purpose computer in
programmable (intelligent) terminals (distributed processing
system)

cluster approach is often used for general-purpose VDUs but can also be
encountered in more special-purpose configurations such as controlling point-of
sale terminals in a department store or shop-floor terminals in a production plant.
If the VDUs are attached through video cables, the screen may be refreshed from
a buffer that is an area of mini main storage rather than a component of the display
itself. This reduces the cost of the terminals but increases the overhead on the
controller. If, for example, each CRT needs refreshing 50 (or 60) times per
second, then an interrupt needs to be raised once every 20 milliseconds for each
terminal so that the data can be "rewritten" to the screen. This usually imposes
such an overhead that many such cluster controllers rely on a hardware component
for refreshing the screen, a solution that steals memory cycles rather than
processor cycles. These problems do not, of course, exist with the special-purpose
terminals (unless they have unbuffered CRTs incorporated in them). Hardware
implementation of clustered VDUs are typified by the IBM 3270 range. With
some terminal systems, the companies developing the mini-based cluster control
lers often provide software that enables them to emulate the 3270, thereby making
it possible to compete with IBM. Such suppliers include Harris and Raytheon.
The use of an emulation package sometimes precludes the development of

6 The Minicomputer in On-Line Systems

Minicomputer-based terminal cluster controller

Central-site
computer

Optional data
storage

Medium-speed link

Emulation
package or

special
software

Lo~l wl" oooooc<lo"' ~
General-purpose or special-purpose display terminals

Figure 1.5
The minicomputer as a remote terminal cluster controller
(potential distributed processing system)

applications routines for the cluster controller. On the other hand, many suppliers
now positively encourage the insertion at least of data vetting routines by
providing a high-level programming language (Mohawk Data Science's MPL, for
example).

Also falling loosely into the category of cluster controller are the key-to-tape
(key-to-disc) systems featuring a medium- to high-speed communications adapter
which can be used for the onward transmission of data to a central site. Most such
key-to-disc systems are based on minicomputers packaged in by the supplier.
These systems are marketed by companies like MDS, CMC, and Entrex (Redifon/
Nixdorf). In addition to providing local power to terminals, programmable cluster
controllers also reduce the cost of communications facilities to the central site.
Minis are sometimes used to perform this function exclusively, as shown in figure
1.6. In this case two minis are being used as transparent time-division multiplex
ors (TDMs). This technique avoids the need for separate dialed or leased lines
(telephone or telegraph) from each terminal to the CPU. Instead, a terminal
(usually a low-speed interactive device such as a Teletype or IBM 2741) is
connected to the nearest available remote multiplexor. Each port at the multiplexor
is allocated one or more character positions in blocks of data which are exchanged
between the remote multiplexor (MUX) and one of almost identical configuration
at the CPU. The in-house MUX receives the transmission blocks and distributes

Remote
multiplexor

Figure 1.6

The Role of the Minicomputer in Data Communications Systems 7

Central-site
computer

Mini A (package
software)

V-series interfaces

In-house
multiplexor

Medium- to high-speed
circuit

Mini B
(package
software)

Leased or dialed
low- to medium-speed lines

The minicomputer as a transparent time-division multiplexor
(TDM)

each character to its relevant port (the one through which the CPU expects to
communicate with that terminal). Similarly, the ports between the MUX and the
CPU are scanned for outgoing characters and these are blocked together for
transmission to the remote unit which will similarly distribute them onward to the

8 The Minicomputer in On-Line Systems

terminals. Normally, each terminal has positions in a block permanently allocated
to it. The faster the speed of the terminal (or line, if it is buffered) the more
positions will be allocated. This approach can be wasteful, because even if a
terminal is inactive (albeit momentarily) a null character still needs to be sent in
order to maintain the positional identification of the subsequent characters. To
overcome this, the software packages written for some mini-based multiplexors
avoid positional significance by sending two characters, the line number and the
data character itself. Although this would appear to double the occupancy of the
medium- to high-speed circuit linking the multiplexors, the net effect is often
beneficial, since interactive terminals usually transmit and receive very few
characters while they are switched on. This is generally known as "statistical
multiplexing." At the central-site computer, the multiplexor may be a separate
device interfacing to a communications control unit or it may be a front-end
processor in its own right. In the latter case, the connection to the CPU will be via
the 1/0 channel rather than CCITT V-series (EIA RS-232) interfaces.

It is most unusual for application functions, even very low-level ones, to be
programmed into a TOM. These are essentially transparent devices (neither the
terminal nor the CPU needs be aware of their existence in the network) and the
timing cm.straints tend to prohibit the meaningful intervention of processing
activity. Concentrators are nontransparent devices that also serve to reduce line
costs but at the same time enable application processing and control functions
(such as those possible in mini-based cluster controllers) to be implemented (see
figure 1. 7). Unlike terminal controllers, concentrators are used when the terminals
are remote from the concentrator and connected over telegraph or telephone lines
(which may be dialed, leased point-to-point, or even leased multipoint circuits).

Whereas time-division multiplexors are character-interleaved systems, con
centrators work on a message-interleaved basis. To each incoming message, the
concentrator software adds a prefix containing the source-line address and/or
terminal address. Messages can then be formed into larger blocks for onward
transmission to the central site. The same arrangement in the opposite sense is
used for data going from the computer to the terminals. Note in figure l. 7 that the
concentrator does not require an equivalent device at the center and is treated by
the CPU as though it were a terminal itself. Reducing the number of physical
terminals (as against logical terminals) directly connected to the CCU has the
effect of reducing processor overheads.

Emulation techniques are sometimes used with concentrators but not nearly as
often as with cluster controllers. Whether emulation is a factor or not, the use of
minicomputers as concentrators provides substantial opportunities for applications
programming. The peripherals available-including disc (especially low-cost
cartridge), tape, and line printers-serve even further to facilitate the development
of relatively sophisticated application functions. Minis also provide greater
flexibility in the type and variety of terminals that can be attached and the method
of communicating to the central site. For example, the main link may be
duplicated or the concentrators themselves may be interlinked to provide an
alternative path to the CPU in case of line failure.

The Role of the Minicomputer in Data Communications Systems 9

,,,,...----
Optional f , ____ ,j
peripherals 1 1- -
and direct- I ;-
access storage .._, ___ ,,

Central-site
computer

Medium- to high-speed
communications circuits

Low- to medium
speed circuits

Package or
custom
software

Minicomputer-based
message concentrator

Figure 1.7
The minicomputer as a communications concentrator (potential
distributed processing system)

Remote terminals

The use of minis in some of the communications networks described (in
terminals, cluster controllers, and concentrators) clearly opens up possibilities of
developing distributed processing systems. Such systems are characterized by the
implementation of application functions (in addition to control functions) in two
or more system components that are linked together in some way. These systems
are often confused with distributed switching networks such as the packet-

10 The Minicomputer in On-Line Systems

Computer Mainframe

Nodes comprise one
or more minis and
packet-routing
software

Figure 1.8

Nodes may have disc storage
for delayed delivery of packets

The minicomputer as a packet-switching node (distributed
switching system)

Terminals access
network via special
protocol or existing
standard

I

Computer

switching network shown in figure 1.8. All packet-switching networds do (or
should do) is improve the performance and reduce the cost of data transmission.
Of course, a distributed processing system may use a packet-switching network
for communications between terminals and CPU, but no applications-related code
can exist in the switching nodes. ln almost all packet networks installed to date,
minicomputers have been used for the switching nodes. Packet-switching will be
discussed further in chapter 3.

Why Use a Mini?

When confronted with the problem of selecting the most appropriate hardware for
a particular communications function the system designer can choose from four
main classes of equipment:

The Role of the Minicomputer in Data Communications Systems 11

General
purpose
mainframes

Small
business
computers

Special-
purpose
communications
products

Minicomputers

*Debatable point

Figure 1.9

STRONG
FEATURES

Power*

Expandability*

Supplier stability

Resilience

Supplier stability*

Resilience*

Adaptability*

Supplier stability*

Architecture

Resilience

Price*

Power*

Flexibility

Expandability

Adaptability

Architecture

Modularity

WEAK
FEATURES

Price

Flexibility*

Adaptabi I ity *

Architecture*

Modularity*

Price

Power*

Flexibility

Expandability*

Adaptabi I ity

Architecture*

Modularity

Price*

Power*

Flexibility*

Expandability*

Modularity*

Supplier stability*

Resilience*

Advantages and disadvantages of four main classes of equipment
used in communications systems

-general-purpose mainframes such as the IBM 4341 or ICL 2960;
-small business computers such as the IBM System/34 or ICL 2903;
-special-purpose communications products like the IBM 8100, Univac
UTS-700, or Burroughs B776; and
-minicomputers such as the DEC PDP-ll/34, Prime 100, or DG NOVA.

Figure 1. 9 summarizes the major benefits and disadvantages of each approach in
general terms. Although this represents the authors' subjective assessment, it is
based upon practical experience with all four categories. For specific systems it

12 The Minicomputer in On-Line Systems

may be necessary to give certain criteria much heavier weighting (for instance,
need for a single supplier), which may in turn downgrade the importance of some
deficiencies.

The general criteria used should be interpreted as follows:

-Price: The price the customer has to pay for a typical configuration of the
right scale for the job.
-Power: The processor power (not just speed), storage capacity, and
throughput capability (not the same as processor power) provided for the
price.
-Flexibility: How rigidly structured the system is in both hardware and
software terms. Can alternative supplier terminals be attached easily?
-Expandability: How easily the capacity of the system can be increased and
how small the increments are.
-Adaptability: How easily the system can be adapted to meet precise
application needs. Conversely, does the application need to be changed to fit
the system component?
-Supplier-stability: Whether the supplier (manufacturer or agent) is going to
be around to support the system through the whole of the project life.
-Architecture: Whether the architecture (particularly the 1/0 and interrupt
structure) is relevant to a data communications environment. How about the
software? '
-Resilience: How proven and stable are the hardware and software being
used?
-Modularity: How modular is the system? (The modularity of a system
contributes to its failsafety as well as its flexibility, expandability, and
adaptability.)

General-purpose mainframes are included in figure 1. 9 as a reference point
(usually only in the largest networks are they considered possible concentrators
and so on). Most small business computers (SBCs) are made by the same
companies that make the medium to large mainframes. Perhaps for this reason
SB Cs tend to be structured like scaled-down mainframes. This is not true of
minis, which although _ostensibly smaller than mainframes often have greater
throughput, particularly in communications-related jobs. In other words, the
architectural differences can be much more important than those of processor
power. Today, "mini" is used to describe the type of computer, not its power or
size. Most special-purpose communications products were developed by the
mainframe companies in response to the threat of minis in the teleprocessing field.
Although these products boast architectures more relevant to communications
tasks, they tend to lack both flexibility and adaptability.

The Role of the Minicomputer in Data Communications Systems 13

Problem Areas

Our aim is not necessarily to promulgate the virtues of minicomputers in data
communications. On the contrary, there seems to be something of a bandwagon
effect stimulated by the all-too-clear advantages that minis sometimes have over
alternative solutions. This enthusiasm ignores many of the pitfalls that can
threaten the success of a project, and it is on these problem areas that much of our
text will concentrate. This will be done in a positive way; not only will the danger
areas be identified, but possible alternative solutions (where they exist) will be
expounded.

Problem areas may be summarized as follows:

-processor overheads associated with communications l/O
-peripheral switching and sharing
-support for nonstandard terminal types (e.g., polled terminals)
-suitability of instruction sets for commercial applications
-disc storage access times
-file access methods and shared file support
-hardware and software failsafety features
-operating system structures
-interrupt structures
-multitasking
-storage management
-programming languages
-macrocode or microcode?
-addressing problems and the
-use of specialized packages

Although our review of the way m1mcomputers are being used in data
communication systems has been comprehensive, it is clear that many new roles
will be found for minis as the capabilities of these compact but flexible processors
increasingly become understood by systems designers.

References

Davis, D. W. and Barber, D. L.A. Communications Networks for Computers. London:
John Wiley, 1973.

Healey, M. Minicomputers & Microprocessors. London: Hodder & Stoughton, 1976.

14 The Minicomputer in On-Line Systems

Hebditch, D. L. Data Communications: An Introductory Guide. London: Paul Elek,
1975.

Martin, J. T. Telecommunications and the Computer, 2nd ed. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

United Kingdom Post Office. Handbook of Data Communications. Manchester: NCC
Publications, 1975.

2
The Minicomputer:

Technology and Architecture

What Is a Minicomputer?

Before 1976 a minicomputer was simply a small computer made by a specialized
company (see figure 2.1). These mad1ines were marketed to "other equipment
manufacturers" (OEMs) for inclusion in larger products, such as the controllers in
petrochemical plants. Essentially they were merely sophisticated components.
Technological advances were largely limited to hardware, with software lagging
far behind. The cost-effectiveness of the mini also appealed to universities and
other research institutes, which helped to widen the range of available software
and-more importantly-served to spread the word. Commercial data processing
users were still relatively unimpressed: the software was barely adequate for
specialist researchers and engineers, let alone the "end-user" oriented DP men
who required an easy to use, easy to understand system that would not distract
them from the real problems of processing business data. The mini was, however,
a most useful component in a data communications system and as such was first
brought to the attention of the DP fraternity.

By 1976 the scene had changed. Healthy sales in the OEM area had sponsored
continuing development of software systems and rapidly advancing hardware
technology was being incorporated into the product. The OEM discount system
developed for engineering and instrumentation users was available to companies
building small business computer systems and to software houses. With a
mainframe computer the end user is serviced by the manufacturer, with the
software house doing add-on work. With a mini, the software house can expand its
image into a turnkey systems house, dealing directly with the end user, selecting a
specific mini on behalf of its client, and getting a discount on the hardware.
Suddenly minis were a success in commercial data processing.

While the marketing aspects show a clear differentiation between minis and
mainframes, there are also technological differences. An overriding feature is

15

16 The Minicomputer in On-Line Systems

1957 Digital Equipment Corporation (DEC) manufactures cir.:uit boards/
modules for testing and laboratory automation.

1959 DEC PDP- I: first programmed processor-$120,000. For graphics
displays, message switching, instrument control, process control.

1960-1962 Special 'aerospace' small computers (Burroughs D2 l0, Hughes
HCH 20L, Univac Add-1000)

1965 DEC PDP-8, first true mini-$20,000.
1966 PDP-SS; first 4K word computer under $10,000. Interdata and

Varian enter market.
1968-1969 LSI becomes available. 16-bit minis introduced (PDP-II). Hewlett

Packard, General Automation, Computer Automation, Data
General enter market.

1970 40-50 vendors active.
1971 Memory management extends physical address space.
1972 Serious use of minis in data processing; full range of peripherals

supported.
1973 Intel 8080 microprocessor introduced. 32-bit Interdata and SEL

machines.
1975 Altair introduces SI 00 bus microcomputers.
1976 Prime virtual operating system introduced.

Honeywell back with Level 6.
1977 IBM Series I. Tandem multi-processor system.
1978 DEC VAX 111780
1979 16-bit microprocessors available (8086)

Figure 2.1
Evolution of minicomputers

versatility. The mini is designed to be used in a wide variety of applications-not
only commercial data processing-with OEM customers adding their own
external equipment. Further, bearing in mind its historical development as a
process control computer, the mini is designed for "real-time" applications. In
process control external events must be serviced on a priority basis, as they occur,
not when the computer can schedule service. Other events must be time initiated,
for example, read an analog-to-digital converter every 100 milliseconds. Thus the
concept of an interrupt, used in mainframe computers only for major events such
as errors or completion of block data transfers, has been refined to accept
interrupts from such trivial events as single keystrokes on a terminal keyboard.
Interrupt servicing overheads have been brought down to as low as IO to 30
microseconds. This feature adds a whole new dimension to the techniques of
terminal-based data processing systems which we will examine in detail.

The Minicomputer: Technology and Architecture 17

Five years ago a mainframe computer produced a relatively high level of
performance by using sophisticated architectural techniques. Nowadays an
equivalent performance can be achieved using a comparatively simple (and cheap)
minicomputer architecture, merely by employing the faster electronic components
readily available, aided by microprocessor controlled input/output channels. Thus
the "small" constraint of the mini has largely disappeared with machines like the
PDP-11170 and MODCOMP IV, matching small mainframes like the 370/125 and
yet retaining their superior terminal handling characteristics and cost
effectiveness.

The leading mini maker is Digital Equipment Corporation (DEC), which in
1977 became the second largest computer manufacturer (after IBM) in terms of
annual revenue, topping Honeywell and the rest. The other major mini specialists
are Data General and Hewlett-Packard, with Texas Instruments in a very powerful
position as the leading component manufacturer. Figure 2.2(a) is a list of the
leading companies in the United States and Europe. Note that with its Series 1
IBM joined the list in 1977 and that Honeywell, long established in the mini field,
has renewed flagging interest with its Level 6. Univac has bought in via Varian
Data Machines. The other traditional DP computer suppliers, Burroughs and
NCR, have simply called their latest small business computers (the B80/90 and
8200) minis, but in no way do these machines possess the general-purpose,
versatile 1/0 and software necessary for the range of interactive applications
considered here. They are nevertheless good terminal-oriented small business
computers in competition with many other suppliers, some of which are listed in
figure 2.2(b). Note that some dedicated SBCs incorporate OEM minis (the older
Nixdorf 8870 with a Data General NOVA). The mini manufacturers also package
their own machines into small business systems such as Computer Automation
Inc.'s SyFA and DEC's COS 300 and 500 range. Some new mini products are
aimed directly at the growing commercial systems market. These include the Data
General ECLIPSE and Hewlett-Packard 3000.

The bottom end of the business computer systems market has been serviced
by glorified accounting machines with data stored on magnetic stripes on a ledger
card. These visible record computers (VRCs) are now being superseded by
terminal-based systems using floppy discs as random-access bulk data stores.
Minis can be used in such systems, but here the microprocessor is the dominant
device. The microprocessor is simply a small CPU fabricated on a single silicon
chip, which is used to build a dedicated processor. Micros are already being used
in intelligent terminals and as 1/0 channel controllers on bigger computer
systems. As micros become more powerful, they will form the heart of the next
generation of "minis"; our comments are thus equally relevant to today's minis
and tomorrow's micros. Possibly new names will be added to the lists in figures
2.1 and 2.2-such as Zilog and Intel-and many of those listed will be absorbed
or amalgamated as the vibrations caused by the drastic cost reductions in
computer hardware impinge on the fortunes of computer systems suppliers.
Large-scale integration and microprocessors are discussed later in this chapter.

18 The Minicomputer in On-Line Systems

(a)

American

Computer Automation (CAI)
Data General (and DCC)
Digital Equipment (DEC)
General Automation
Hewlett-Packard
Honeywell
IBM
Microdata
Modular Computers (MODCOMP)
Perkin-Elmer Data Systems (Interdata)
Prime
Systems Engineering
Texas Instruments
Univac (Varian)

(b)

Alpha Micro
Burroughs
Computer Technology (CTL)
Datapoint (Ventek)
Diab lo
Harris (Sanders)
Hewlett-Packard
Honeywell
IBM
ICL (Singer)
Inforex
Jacquard

Figure 2.2

European

Digico
Ferranti
GEC (UK)
Nord
Philips
SEMS (Telemechanique/CII)
Siemens

Kienzle
Lockheed
Mohawak Data Services (MDS)
NCR
Nixdorf
Olivetti
On tel
Philips
Raytheon
Reality (CMC)
Triumph-Adler
Univac
Wang

Leading manufacturers. (a) Minicomputer manufacturers (b) Small
commercial data processing systems

To illustrate the size of the minicomputer market it should be noted that by
1978 Digital Equipment had supplied over 40,000 each of its PDP-8 and PDP-II
models. These machines are sold rather than rented, which means that with strong
competition, each supplier must continually strive to improve his product,
absorbing any new technology as soon as possible. Contrast this with the

The Minicomputer: Technology and Architecture 19

constraints imposed on the traditional computer suppliers by the existence of
rented systems. If IBM makes significant improvements to the System/34, it will
obsolete the System/3 too soon; rented System/3s would then be returned, since
the new IBM product is competing with the old IBM product as well as those of
other manufacturers. Inside IBM this situation is complicated by the Series 1
minicomputer. It is now possible to buy an IBM 3780 from IBM's Data Processing
Division, or a Series 1 with 3780 emulator from its General Products Division!

This chapter is a review of typical minicomputer hardware.

Architecture

The Processor

The processor of a "typical" minicomputer is shown in schematic form in figure
2.3. All operations and data transfers occur in bit-parallel sequence. Figure 2.4 is
the same machine rearranged to stress the internal bus structure. The standard
word length is 16 bits, although 8, 12, 18, 24, or 32 may be encountered. Typical
memory cycle times lie between 500 nanoseconds and 2 microseconds, although
it must be stressed that this is only one factor affecting the overall speed of a
machine. The number of program-usable registers varies from 1 to 16, excluding
the essential program counter, instruction, memory address, and memory buffer
registers. Seldom are all registers generally available to the programmer because
of constraints placed on the instruction set by the limited word length.

In the simplest machine the single register functions as an accumulator, all
other data being retained in memory. Most machines have at least a second
register which is used as an index or base in memory addressing. Further registers
are used as multiple indexes and extensions of active word length, for instance,
two registers to store the 32-bit product of two 16-bit numbers. If registers
primarily used as index registers are generally accessible they may be used as
scratch-pad registers. The control and status flags (carry, overflow, zero, negative,
and so on) are commonly grouped into one effective register which may be stored
and restored in multitasking applications. The instruction length is often effec
tively increased by special flags such as a single- or double-length data indicator.

Byte operations use the same registers, with specific treatment of the other
half word dependent upon the operation (sign extended, zeroed, and so forth). All
arithmetic and logic operations are performed by the arithmetic and logic unit
(ALU), which incorporates shifting operations. The ALU may also be used during
an instruction execution to calculate effective memory addresses. The condition
flags are set as a result of the last operation performed by the ALU (except address
calculations) so that conditional branching is executed by testing the appropriate
combination of flags. Thus a compare instruction is a subtract in which the result
is ignored, but the condition flags are set.

Input/
output

Arithmetic and
logic unit

Peripheral address bus
and control signals

~ = 16-bit parallel data

----+- = Control signals

Input bus

PC: Program counter register

IR: Instruction register

MAR: Memory address register

MBR: Memory buffer register

RO, R1, R2: General register (typically
4 to 16 on current minis)

Figure 2.3
A typical minicomputer central processor

20

Control
unit

Memory

l~------.--Start/stop

Address
bus

Bidirectional I/0 bus

Figure 2.4

A B
SR

MAR

PC

IR

MBR

Minicomputer CPU rearranged to stress internal bus structure

21

c

22 The Minicomputer in On-Line Systems

Bus Structures

Data is communicated between units of the computer along a bus or data highway.
The usual arrangement, shown in figure 2.5, employs a number of buses for
specific interconnections. Two buses are normally required to connect CPU with
memory and CPU with peripherals. Each bus must comprise sufficient wires to
transmit data-addresses, control, and test information-in both directions. Often
the logic is organized to use the same wires for sending and receiving data
(bidirectional), taking advantage of the fact that both will never be required
simultaneously. A typical 1/0 bus will use up to 64 wires.

A technique pioneered in the PD P-11 is the single bus shown in figure 2. 6. In
this case the peripherals are treated as specific "memory" locations (virtual 1/0),
avoiding specialized 1/0 operations. Data can be passed direct from one peripheral
to another as simply as from one memory location to another. Direct memory
access is similarly performed. The apparent simplicity of this technique is offset
by the extra logic and time required to give appropriate allocation of the bus. The
single data highway is also an obvious bottleneck, setting a top limit on

Memory

r-------1 r-------,
-- ---I DMA t---1 High-speed I

""' {D Cycle steal! 11 I 1 block transfer 11
;v. - --.l contro er I d .

I 1 I ev1ces I
r-----r~~--~-. L_T_T--.---' L _______ _J

I Address Data I I 1
1 I Extended

I processor CPU I I I Set-up
I I I I status, etc
L-----<-~-~~C-o_,ntrol/status I I I I/0 bus

Data

Address

Figure 2.5

Bus
I/F

Etc.

Peripheral Single data item
device or low-speed block

A typical minicomputer with separate memory and 1/0 buses

The Minicomputer: Technology and Architecture 23

Control/status

Data

Address -- --- --- ---I l I 1--1- - ---1- 1-- 1---1

Logic Logic Logic I Logic Cycle
I steal t-------- ------- 1----------1 I ------

logic
I
I r---------1

CPU Memory 1/F I I/F
I DMA
I
I
I

J I
I
I I L ____________ ____ J

Low-speed DMA controller
peripheral

High-speed
peripheral

Figure 2.6
Single bus system

performance. Many microcomputer systems use a simple version of a common
memory and 1/0 bus, called the SIOO (Altair, North Star Horizon, Cromemco).

Some machines, such as the GEC 4000, feature as options a more complex
architecture involving a number of multiplexors to route data between CPU,
memory, and peripherals. The bottleneck in the single bus system is reduced by
allowing more than one multiplexor and employing multiport memory (figure
2. 7). This it should be noted is a multibus mini when only the basic multiplexor is
used, but resembles a mainframe when l/O processors (channels) are configured.

Inside the CPU, instructions may be of differing lengths, for example, for the
PDP-11, move register to register is 16 bits, move memory contents to register 32
bits, and move memory contents to memory 48 bits; the latter two instructions
incorporate 16-bit addresses. The memory however is addressed by the 16-bit
word, with a 16-bit data highway, so that the effective 48-bit instruction requires
three memory accesses (to consecutive locations). Some machines feature 8-bit
highways, with most instructions requiring multiple memory accesses (8080/
Z80/6800/6502 microprocessor based machines), while some of the more recent
machines feature 32-bit highways (Interdata 8/32). Thus a machine may feature a
double-precision floating point (64-bit) multiply instruction, which will multiply
the number stored in four consecutive memory locations by a number stored in a
64-bit internal register (usually four standard internal registers treated as one for
this instruction). The 16-bit machine requires four-memory accesses for the one
data word.

24 The Minicomputer in On-Line Systems

Memory

Memory
access

controller

CPU

Figure 2.7

Data
channel

Medium
speed 1/0

Low-speed I/O

Peripherals

Advanced system with active 1/0

Device

High-speed
1/0

In most minicomputers the memory is organized in 16-bit words numbered
evenly. Odd-numbered addresses then refer to the 8-bit byte, as shown in figure
218. Without this feature byte manipulation can only be performed by fetching the
full word and masking and/or swapping half words inside the processor. Thus
most minis have a virtual address space of 64 KB, but a few with word addressing
have a 128 KB (64 KW) space.

15 8 7 0

Word Q I Byte 1 I ByteO I
Word 1 Byte3 Byte 2

Word 2 Byte 5 Byte 4

Fig"1re 2.8
Word/byte addressing

L/ ·-;;,
r (/ , I t ... ,.-"
~ ("'

The Minicomputer: Technology aniA.Jchitecture 25

Memory

Magnetic core and semiconductor (MOS) memory were both common in
minicomputers, although MOS now dominates. Most processors take advantage
of the read/write nature of core to execute some instructions, as when increment
ing is performed in a read/modify/write mode. Thus mixing core and semiconduc
tor memories raises problems. The solution is to use a different bus interface for
the semiconductor memory with additional logic to emulate the read/modify/write
mode for the appropriate instructions. Most machines use asynchronous transfers
between CPU and memory so that alternative speed memories are offered for the
same basic processor.

Memory was traditionally supplied in units of 4K 16-bit words, but 32 and
64KB blocks are now common. Read-only memory (ROM) is available on some
machines but is used only in rare cases. The common exceptions are bootstrap
loaders and microprograms discussed later. Multiport memory (figure 2. 7),
sometimes available as an option, allows simultaneous block transfer through one
port and normal program access through another. Otherwise cycle stealing is
employed, as is discussed below.

Instruction Sets

In most machines the instruction set can be broken into three categories: memory
reference, nonmemory reference, and input/output. A simple instruction arrange
ment, using a 4-bit operation code (or order), is shown in figure 2.9. This setup
allows 14 memory reference instructions. The logical allocation of the bit
significance is seldom so straightforward in practice.

Memory Reference Instructions

Most machines use single-operand instructions, as in figure 2. 9 (a), the second
operand (when needed) being a CPU register. Often only the accumulator may be
used, but if a choice of register is allowed the operation code must specify which.
The combination of the mode bits and the "displacement" Dare used to locate the
specified memory cell, as discussed below. The location following the instruction
is occasionally used to store a 16-bit literal or an indirect address, effectively
extending D.

The PDP-11 is a notable exception to the above rule, since it allows some
double-operand instructions such as move contents of one memory location to
another, as shown in figure 2 .10. Three bits are used to specify one of 8 modes,
and another 3 bits one of 8 registers, one of which is the program counter (PC).
For each operand the selected register is either the actual operand location or a
pointer to a memory location, depending on the mode. Offsets and literals are
stored in locations following the instruction. Thus MOY RI, R2 occupies one
word, MOY Rl, A two, and MOY A, B three words. This multiword technique

26 The Minicomputer in On-Line Systems

15 11 0

Mode Displacement D
I I

Op code Operand

(a)

15 0

0

Non-memory reference instruction

(b)

15 0

I/0 instruction

(c)

Figure 2.9
Simplified single-word instruction set organization

has now been adopted by Texas Instruments and IBM. Interdata and others use
multiwords to achieve an effective 32-bit machine. Single-word-instruction
machines are simple and ideally suited to earlier minis, but are limiting on newer
machines. Thus, for instance, Data General have employed the NOVA instruction

Op code

(a)

Op code Mode Register

Mode

Mode

Register
I

Register

Source operand Designation operand

(b)

Figure 2.10
Single- and double-operand instructions in a multiword instruction
set

The Minicomputer: Technology and Architecture 27

set on the ECLIPSE but have used one specific bit pattern to cause the processor to
read the next word and treat it as an extended instruction set.

Byte or word data is handled directly. Some machines feature instructions that
test or modify specific bits of a word, although this is usually handled with a
program employing masking operations. Character-string manipulation instruc
tions are also encountered, for instance, scan a string starting at a pointer set in
one register, through a number of characters set in another register, but stop when
the data matches the content of a third register. Such instructions have obvious
advantages over a programmed loop since only one instruction fetch cycle is
required; there are some problems with interrupts, however, since such an
instruction may take numerous memory cycles to complete. Other instructions
such as byte-string-move and translate do occur but all too infrequently. The IBM
Series I and Data General ECLIPSE are new machines that support character
string instructions and this will hasten market-leading Digital Equipment Corpo
ration into producing new versions of the PDP-11 to compete, VAX-11/780 being
the first of these machines. In general mini instruction sets are good at binary
arithmetic and logic but weak on character handling. Program control operations
such as jump and jump-to-subroutine also come under the memory reference
category. With a JSR, current PC contents are automatically saved for return;
dedicated register or memory locat10ns may be used, or the first word of the
subroutine, but stacking offers advantages discussed below.

Nonmemory Reference Instructions

This group of instructions contains operations on data stored in the internal
registers. Arithmetical and logical operations are grouped with branch and shift
instructions. A wide variety of conditional branch instructions are encountered;
the brnnch point may be indicated by a PC-relative displacement in the instruction,
but many machines use the skip-type operation. With a skip instruction the PC is
incremented by one (two with byte-addressed memory) if the logical condition is
met. Otherwise the next instruction in sequence is executed, normally an
unconditional Jump. Increment (or decrement)-and-skip-if-zero instructions are
used for loop counting. This may also be a memory reference instruction, with the
counter stored in memory rather than in a register. Signed integer multiply and
divide are always available but often as part of an optional extended instruction
set.

Both arithmetic and rotational shift operations are employed, with and without
the carry bit. In many machines only a one-place shift can be executed by one
instruction; other machines allow shifting by a specified number of places.

With single-word instruction machines it is usually possible to create some
combinations of shift, skip, set, clear, increment, and other operations into one
instruction. This assumes that no conflict can arise and the order of execution
must be clearly determined to ensure the correct operation of the combined
instruction. This technique was referred to as microprogramming in an earlier
machine, a word that now has broader connotations, as we will discuss.

28 The Minicomputer in On-Line Systems

Input/Output Instructions

All input/output instructions must identify the peripheral device by number. Four
types of instructions are needed:

1. Read data (peripheral-to-CPU)
2. Write data (CPU-to-peripheral)
3. Test
4. Control

The test and control instructions are required to activate and deactivate
devices and to check the current status of a peripheral. The data transfer
instruction must also reference a data location in the processor. ln the simpler
machines a specific register· is used, a further register-memory transfer being
required to save the data. Alternatively a register can be used as an index to an
array in memory.

Single-bus systems do not use special instructions, since peripheral buffers
and status/control registers are treated as memory locations and conventional
memory reference instructions are used for input/output. This is called virtual 1/0.

Numeric Data

Numeric data can be used in the computer in a number of forms. The basic
instructions assume 16-bit integer numbers in 2's complement form. Software
routines for double-length (32-bit) integer arithmetic are common, one word
forming the most significant half and a second the least significant.

Floating-point representation uses 32 bits, typically a sign, 24-bit unsigned,
normalized mantissa (approximately 7 decimal places), and an 8-bit excess 200
exponent. A binary exponent is common (x = ± m.2"), so that the normalized m
always has a 1 in the left-hand bit; hexadecimal (x = ± m. 16") is also used when
up to three leading zeros are allowed in m. Double-precision floating point (64-
bit) increases the mantissa to 56 bits, equivalent to about 15 decimal places.
Software routines are normally used, but optional floating-point processors are
available.

Decimal (BCD) arithmetic is rare in minicomputers although software
packages are available for machines used in commercial applications. It is quite
common for high-level languages, COBOL for example, to employ ASCII
character strings. Most direct arithmetic operations can be used with byte or word
data, a flag being set to indicate the specific type. On some machines, bits of the
code are used for this purpose while other machines use a separate flag. The latter
effectively extends the instruction length and allows more scope, although the flag
must be set by a previous instruction. On such machines the same instruction
performs differently, depending on the data word-length flag setting. Software
routines are always provided to convert ASCII character strings to internal binary
representation and vice versa.

Input Store Input
Convert H User

H Manip-ASCII string buffer
to data

ulate 1--1 Binary
string I binary space r I I I I I I t I

I
First-level I N L----'.e

___ __,
error check

Output
Output Output Convert

ASCII to
string string buffer

ASCII

Figure 2.11
Human/machine interface to numeric data

30 The Minicomputer in On-Line Systems

Figure 2. 11 indicates that all data processing requires human input, for
example character strings, conversion to binary, manipulation, and conversion
back to character strings. The simpler the internal representation, the simpler the
conversion routine. ASCII strings, for instance, only pack the ± sign into the
least significant character. The simple internal representation is, however, more
wasteful of space and takes longer to manipulate. Commercial DP is mostly input
and output, while scientific work is nearly all processing. Hence the preference
for ASCH (or better, BCD) for the former and floating point for the latter. Double
precision integer with implied decimal point is also suited to commercial work.
Simply because of availability, double-precision floating point (8-byte) is com
monly used in commercial work on minis; single precision does not have enough
significance.

Memory Addressing

As has been explained, most machines, even though they employ 16-bit data
highways, are capable of addressing individual bytes in memory. With a 16-bit
word this sets a limit of 64K bytes. Any bit operations must be executed by
fetching the appropriate byte and and decoding this under program control in the
CPU. The addressing modes encountered are here discussed with reference to
figure 2. 9(a). One bit of the mode is used as a direct/indirect flag, others for
various modes. Not all the following modes will be found in one machine, but
they cover the range. They are summarized in figure 2.12.

Direct/Indirect

For direct addressing the information is stored at the indicated location; for
indirect addressing the indicated location contains the address of the location of
the required information. An extra memory access is involved for indirect
addressing, which is typically used for array processing, the content of the
addressed location being incremented each time.

Absolute or Page Zero

The displacement, D, is treated as the actual address. Since Dis typically about 8
bits long, only 256 locations can be addressed. On most machines this is the first
256 bytes, but on others it is the first 256 data items, particularly in machines with
a separate data type flag; thus for byte data D refers to the first 256 bytes, while
for double-precision floating point data the first 256 x 8 bytes are referenced.

Immediate

The actual data is in the location following the instruction.

The Minicomputer: Technology and Architecture 31

M INS D M INS l I D=O I

N=D Data

N Data (Final value of
PC= M + 2)

(a) (b)

MI INS I ! D 4-i M INS
PC

N=M+1+D ~ NI Data
I NI

(d) (e)

M I INS I ! D

N Data

(f)

Figure 2.12
Some common addressing modes

Literal

D

N=X+D

Data

N

M I INS I J Data

(c)

Processor
registers

D =Data

Index
register

x

D is the actual data. Note that the use of "immediate" and "literal" terminology
on minis conflicts with such usage on some mainframe computers.

Program Counter Relative

D is treated as an offset, and is added to the PC contents to give the memory
address. Sometimes Dis treated as a positive integer and at other times as a signed
integer, allowing back-referencing. This mode is the most common since it creates
relocatable code.

Indexed or Base Relative

Dis added to the contents of a specified register to give the memory address. This
is used for working with arrays. If D is kept constant and the register contents

32 The Minicomputer in On-Line Systems

incremented, it is termed indexed mode, while if D is varied and the register
contents kept constant it is termed base relative mode. There is no difference in
general except where indirect access is used, in which case the register points to a
memory location, the contents of which are added to D to give the required
address, and the register is clearly being used as a base pointer and Das an index.
One General Automation machine allows both a base and an index register, so that
D is added to the base register contents to find the base pointer to which the
contents of the index register are added to give the desired address, a two
dimensional array technique.

Auto-Increment, Auto-Decrement

With these modes the index register contents are incremented or decremented
after each operation. They must be a true pair in the sense that they must
increment after the address has been used (postincrement) and decrement before
the address is used (predecrement), or vice versa. These modes are used in
creating stacks and for working through lists. All registers in the PDP- I I can be
used for auto-increment/auto-decrement but most machines only use a specific
register. In all machines certain operations (JSR) use one register by default, often
called the stack pointer.

Stacking is probably the best way of entering a subroutine. On excuting a JSR
instruction, the PC contents and any other critical register contents can be placed
on the stack (pushed) by successive auto-increment mode move instructions; on
return, the auto-decrement mode move instructions in reverse order reinstate (Pop)
the CPU conditions. Subroutine calls can now be nested, since this creates a "last
in, first-out" stack. Stacking can also be used to create reentrant code by ensuring
that all data is separated from the code and that pointers to the data are stacked
with the JSR routine.

Pointer or Register Indirect

The contents of a selected register form the address required. This technique is
used extensively with machines like the PDP-11 and TI 990 when D becomes the
register pointer. This is combined with such techniques as indirect addressing and
indexing to produce a very versatile addressing system. It is very common in
microprocessors.

Input/Output

Programmed I!O

The normal 1/0 instructions have been mentioned. Each peripheral device
requires an interface to communicate between the 1/0 bus and the device itself. A
simple system is shown in figure 2.13. Since a peripheral is essentially slower

The Minicomputer: Technology and Architecture 33

Input
peripheral

Figure 2.13

Code 1
comparator

Peripheral address and control bus

Bidirectional common 1/0 data bus

Output
peripheral

Code 2
comparator

A simple party-line 1/0 bus system

Computer

than a processor, some means of checking the status of the device must be
provided. At the simplest level a busy flag is required, set to I while the peripheral
is active. The processor repeatedly tests this flag until it clears, when a new data
transfer can be initiated.

Interrupts

The approach described above means that the processor is continually waiting for
the peripheral to complete. To overcome this problem it is common to use an
interrupt system. The peripheral action is initiated by the processor, which then
proceeds with another task. When the peripheral has completed, its busy flag is
cleared and a done flag is set; no further action can be initiated until the done flag
is cleared, usually automatically by the next data transfer. The setting of the done
flag causes a request for an interrupt to the processor. The processor checks the
priority of the interrupt and if it is higher than the current task (and any other
peripherals which have requested interrupts), the current task is shelved and the
device serviced. The task of shelving a program is similar to a JSR, except that it
may occur anywhere in a program. Stacking is thus an advantageous technique in
handling interrupts.

The interrupt system must handle two problems. lt must determine which
peripheral requested the interrupt, and then establish a priority for the interrupts
(for example, a Teletype must not be allowed to interrupt a high-speed analog-to
digital converter).

Two techniques dominate the servicing of interrupts.

34 The Minicomputer in On-Line Systems

Software Polling. When an interrupt request is accepted, a routine is entered
causing each peripheral in tum to be tested until the one awaiting service is
detected. The order in which the devices are polled forms a priority system. When
the interrupting device has been identified, the interrupt service routine references
a table which it uses to pass control to the appropriate device service routine.

Vectored interrupts. A specific memory location is physically associated with
each possible interrupt requesting device as shown in figure 2.14. When an
interrupt is requested, if it is of high enough priority (it may wait in a queue), the
program currently executing will be interrupted. As with a JSR, the PC and active
register contents must be saved for return from the interrupt service, and the
service routine entered. If the start address of the routine is previously stored in
the memory location dedicated to the peripheral, then this can be copied
automatically into the PC. As with subroutine calls, stacking allows simple
nesting of interrupts. This technique is much faster than polling. The stack is
simply popped back into the PC and status register to complete the return from the
service routine. Alternative vectoring techniques relate a vector location to each
priority level rather than to each device. Another technique forces the vector
location contents into the instruction register, allowing a single instruction
execution with no overheads (for example, increment a counter; a JSR instruction
effectively vectors to a normal service subroutine).

Program counter

Status register

Stack pointer

Figure 2.14
Vectored interrupt structure

}
Peripheral

1-----------i n-vector
New status

~--------4

Address of service routine

Stack

The Minicomputer: Technology and Architecture 35

Priority

Figure 2.15 shows a generalized priority system. Each peripheral has its own
interrupt request mechanism, which can be blocked by an interrupt enable (one
per device), which can be independently software controlled. There are a number
of hardware priority levels, usually from 4 to 16; an interrupt on a higher level will
preempt a lower-level service routine. The interrupt enable flags are provided to
dynamically stop a normally high-level interrupt from suspending a lower-level
routine. The mask serves a purpose similar to the individual enable flags, except
that it controls interrupt levels rather than devices and can be set in one
instruction. Multiple devices can be "daisy chained" to one level, in which case
the device physically nearest the processor has the higher priority. The interrupt
on flag on the CPU turns the whole interrupt system on or off dynamically. On the
more sophisticated systems the CPU has a set of priority levels, matching the
hardware levels, which are software controllable. In this case the priority of an
incoming request is compared with the CPU priority, rather than the level at which
the interrupt being serviced was attached. Thus if a service routine has a high
priority initial part, but once having collected volatile information can proceed at a
lower priority, this can be achieved by initially setting the CPU priority high and
then lowering it in the service routine itself.

Internal interrupts such as power fail detection have the highest priority. Many
computers support executable instructions that behave as interrupts (software
interrupts). These are used for fast context switching, as when a user program
executes a supervisor call for executive services, as detailed in chapter 7.

Internal interrupts

Peripheral Done

Peripheral Done

Peripheral Done

Figure 2.15
Priority interrupt structure

Interrupt
enable

Interrupt
enable

Interrupt
enable

(J
·;:;,
.S!
> ·;;:
.Q
c':

Address
logic

CPU
interrupt

on

36 The Minicomputer in On-Line Systems

Autonomous data transfer

With program-controlled 1/0, an instruction is required for every data transfer.
Physical devices, however, regularly need to transfer a block of data, as a line of
characters on a line printer. Thus many machines allow block data transfer to or
from contiguous locations in memory. The start address and word count are set in
registers and the transfer initiated. The address is loaded into the memory address
register (MAR) and the data is transferred. The address pointer is then incre
mented and the word count decremented and tested for zero. The process
continues until the word count reaches zero, when an interrupt is requested to
signal completion of the block transfer. If the pointer and counter are stored
independently from the normal registers, the block data transfer can continue
while another program executes, simply pausing that program at the end of an
instruction to transfer the data, the program continuing until the next piece of data
is ready. Thus apart from the repetitive pauses in the program, it and the data
transfer are independent of each other, hence the term autonomous data transfer.
The pointer and counter may be stored in memory, in which case they must be
accessed for each data transfer. Better, they may be located in special registers in
the peripheral interface, in which case the address is entered with each data
transfer.

Direct memory access

With high-speed data transfer it will be impractical to request an interrupt and to
use programmed 110 operations. Even the necessity to await the completion of an
instruction, as in block data 1/0, will be intolerable. Special channels are therefore
provided to permit direct access to the memory, as shown in figure 2.16. Direct
memory access (DMA) can now use the memory whenever it is not required by
the processor, which may be partway through the execution of an instruction.

The DMA is said to "cycle steal". If the processor requires memory access
while the DMA is active it must hesitate until that transfer is complete. Note,
however, that if the DMA transfers at full memory speed it will steal all the cycles,
holding the processor up. Since each peripheral connected to the DMA will have
its own address and counter registers, multiple devices can be connected to the
same channel. Thus a priority structure may be needed and DMA controllers can
become quite complex. All autonomous data transfers must be set up by normal
programmed 1/0 instructions such as initialize address-pointer and word-counter
registers, and an interrupt raised on completion. The IBM Series 1 has a
sophisticated set of instructions that reference device control blocks in memory to
set up and control DMA transfers; multiple transfers can be chained. With
multiport memory, if the software can organize the DMA to use one port while the
processor uses another, then cycle stealing is avoided. While DMA was
essentially used for disc and tape block transfers we find increasing use of
intelligent controllers employing DMA for supporting multiple terminals. With
the 8089, Intel have introduced a single chip LSI channel controller.

~
-..J

-"'
"' E

..0

~

Data out

a I in

Address

Programmed
I/0

Figure 2.16

Prime controller

.-----
1

Autonomous and DMA access to memory

"Block transfer
complete" interrupt
to CPU

High-speed
peripheral

Device
controller

Control
signals

OMA
controller

Data buffer

Memory

Address buffer

38 The Minicomputer in On-Line Systems

Memory Management and Protection

A memory management unit is a hardware device containing a set of address
relocation registers. A memory address issued by an executing program is
modified by the contents of one of the registers to create a new address. The first
address, issued by the active program, is called a virtual address, the latter a
physical address. It is the latter which is actually used. Thus the memory
management unit "maps" virtual addresses to physical addresses. Note that this is
not dissimilar to base-relative addressing, but it is external and transparent to the
user program. The mapping registers and any associated arithmetic unit must be
very fast; typically the mapping adds an overhead of 50 to 250 nanoseconds to
each memory access. On most minis the virtual address space is confined to 64
KB (16 bits), but the physical address space has no such bounds. Between 18 bits
(256 KB) and 24 bits (16 MB) are encountered. A typical system is shown in
figure 2.17.

The immediate impact of memory mapping (figure 2.18) is that while any one
program still has a 64 KB address space, multiple programs of any size up to 64
KB can coexist in memory, up to the limit of physically available memory. Each
program internally has a virtual address starting at zero. The switch from
execution of one program to another is achieved simply by changing the mapping

Virtual
address
(n = 16)

User
program
(CPU)

Programmed
I/0

Figure 2.17

Relocated
(n-bit

address)

DMA

Direct to memory
(m-bit address)

Relocation
mapping

hardware

DMA
data

A typical minicomputer memory management system

Memory

The Minicomputer: Technology and Architecture 39

registers. Most machines support multiple sets of mapping registers to increase
the switching efficiency, but some special instructions must be available to the
executive (not the user) to set up and modify these registers at run time. A
technique commonly employed is to use one set of mapping registers exclusively
for the executive and other sets for user programs. Certain instructions (typically
software interrupts), when executed, cause an automatic context switch from the
user map to the executive map and as such are used to make supervisor service
calls.

It is a relatively obvious expansion of memory mapping to incorporate a check
that physical addresses generated by an executing program are within the allocated
space for that program. With an unmapped system memory protection traps can
be instituted when a program is loaded, but there can be no protection from run
time addressing errors. With mapping hardware every memory access is checked
for validity at run time, with no software overheads other than error servicing
routines. A simple protection scheme is also shown in figure 2.18.

By using multiple mapping registers rather than a single unit as in figure 2.18,
the one contiguous virtual address space can relocate into a number of noncon
tiguous physical blocks. Further different programs can now map part of their
virtual address spaces to the same physical space, thus sharing code or data.
Physical memory utilization is also better with the system shown in figure 2.19,
since smaller contiguous blocks are required. As programs are swapped in and
out, loaded programs may have to be shuffled in physical memory to regroup
fragmented free memory into a contiguous block; if the basic segment is small,
this will be unnecessary. On the other hand the smaller the segment the greater the

A

B

Virtual (VA)

Physical (PA)

Figure 2.18
A simple mapping and protection scheme

Program A

Base reg (BR) I

Program B

Etc.

Leads to shuffling

Size reg (SR)

40 The Minicomputer in On-Line Systems

Instruction space

Data space

Work space

Global space

Segment
0

Segment
1

Segment
2

Segment
3

(Nominal utilization)

Figure 2.19
Mapping by segmentation

Program A

Program segment table

Base 0

Size 0

Base 1

Size 1

Base 2

Size 2

Base 3

Size 3

Program B

Etc.

Reduces shuffling, supports
shared code and data

number of mapping registers required, and therefore the executive mapping
register maintenance overhead is higher.

With few execptions (Prime 400/500, VAX-111780) minicomputers adopt the
segmentation approach, rather than paging in the classical mainframe sense. With
segmentation the virtual address is broken into logical blocks, each of which is
mapped to a specific physical block of memory. While a segment has a maximum
length, the actual amount of physical memory used is variable, depending on the
running program. To ease physical memory allocation it is handled in units called
pages, as shown in figure 2.17, rather than individual words. Thus for instance if
physical memory is treated as 256-byte pages then the 8 least significant bits of
the virtual address are not translated, since they simply define the byte within the
page. Thus to accommodate a segment of 8 KB with a 256-byte page, 32
contiguous physical pages are required; to accomodate 8.1 KB segment, 33 pages
are needed. The smaller the page the less physical memory is wasted, but more
bits are then needed in the address translation hardware.

For reference, a paging system (as opposed to segmentation) retains mapping
hardware pointers to each physical page of memory, storing the identification and
virtual address of the user allocated to that page. A virtual page address is then
compared to the contents of the page address registers (a content addressable
memory), a match-in which identifies the required physical page. A large physical
memory would need too many page address registers, so real systems maintain

The Minicomputer: Technology and Architecture 41

only a most-recently-used subset of pointers (a look-aside buffer). On modern
machines one set of hardware supports segmentation of the virtual address space
and another set controls the physical paging of the memory. Note however that
while the 16-bit virtual address of the mini constrains the maximum individual
program to 64K, this is a blessing in disguise, since the number of possible pages
involved is low enough to permit a physical relocation register per page if needed.

The concept of memory mapping is critical to the efficiency and security of a
multitasking system of the type we are considering. The diagrams described here
indicate the techniques commonly used by minis. Figure 2.20 shows the
segmented approach used by the GEC 4000 range. The two most significant bits
identify the segment so that the virtual space is broken into four equal 16 KB
segments. The relocation hardware contains a segment size entry to indicate how
much of the available 16 KB has actually been allocated. Any upper part of the
segment not used need not be allocated physical memory. Each segment can be
located independently in physical memory starting on 64-byte page boundaries
(only the twelve most significant bits are stored by the relocation or segment base
register). The PDP-11 uses a somewhat similar technique (figure 2.21), breaking

2 8 8

Segment l Virtual Page 1 Word in Page

8 12 (4080)

Segment size Segment base

Access mode

Protection
logic

Protection
violation

Range
comparator

Address
violation

- Segments start on 16 K virtual boundaries
- Segment size from 64-16 K
- Physical segments located on 64-byte boundaries

Figure 2.20
The GEC 4000 memory management system

1 B·bit physical
address (4080)

42 The Minicomputer in On-Line Systems

3 7 6

I Byte in block

13 12 (16 on 11/70)

Page descriptor Physical block no.

8 page registers

Physical address
- 18 bits (22 on 11/70 model)
- Variable page size from 1 to 128

64-byte blocks on 64-byte boundaries
- 8 page registers
- 2 sets 11/32, 11/40
- 6 sets 11/45, 11/70
- (Kernel, user, supervisor) X (Data and instruction)

PAGE DESCRIPTOR

Abort }
- 3 bits access control - Read only With or without trap

Read/write
- 7 bits page field length (number of 64 bytes). Error if BN > PLF
- 1 bit "written into"
- 1 bit trap indicator
- 1 bit expansion up (program) or down (stacks)

Figure 2.21
The DEC PDP-11 memory management system

the virtual space down into eight equal-sized segments of 8 KB. Digital
Equipment Corporation defines what others call a segment as an active page, and
what others call a page as a block.

Note in figures 2.20 and 2.21 that the mapping hardware contains further data
per segment to control access rights and so on. The "written-into" bit is set
whenever a segment is modified; if not set this segment need not be rolled out to
disc when swapping.

The Interdata 8/32 has a 20-bit implemented virtual address broken in sixteen
equal-sized segments, each 64 KB. An intriguing variant is the Intel 8086. This
single-chip microprocessor uses a full 16-bit segment size, with four possible
segment spaces, one each for code, data, stack, and common. Each segment has
an associated base relocation register which form the 16 most significant bits of a
20-bit address, to which the 16-bit virtual address is added. Thus any program can
comprise 4 x 64 KB segments, relocated independently anywhere in a 1 MByte
address space on 16-byte page boundaries.

The Minicomputer: Technology and Architecture 43

The Texas Instruments 990/ l 0 breaks the 64 KB virtual space into three
segments called zones. Unlike most systems the segments are not fixed length and
comprise any number of 32 byte pages which, however, must be contiguous
there can be no "holes" not allocated physical memory at the top of each segment.
It has three sets of mapping and limit registers, one reserved for executive use and
one for moving data between virtual spaces. It relocates to a 21-bit (2 MB)
physical space in 32 byte pages.

Both the TI 990/10 and the DEC PDP-11 use virtual I/O, which is allocated to
the top of the physical address space. By mapping only the executive virtual
address to this physical space, user programs can be forced to execute I/O via
supervisor calls (see chapter 4).

Most of the other minis use a slightly different technique commonly called
"paging,'' but not to be confused with virtual memory paging. One way of
looking at the technique is to consider something similar to the system shown in
figure 2.20 with many more segments, each one page long. To constrain the
number of segments and therefore relocation registers to manageable proportions,
the page is bigger than the 16 to 64 bytes previously discussed. Some typical
values are shown in figure 2.22. With the page technique the larger page size
means that the relocation boundaries are coarser but contiguous physical pages are
never necessary and shuffling is completely eliminated.

The IBM Series 1 has one further feature, in that with double-operand
instructions, each operand can use a different set of mapping registers, a great aid
to context switching and parameter passing in supervisor calls. The Intel 8086
also uses separate relocation registers for code and data.

Of the systems discussed, only the 32-bit Interdata 8/32 with its 20-bit virtual
address and the Intel 8086 with 4 x 64 KB segments can handle programs over
64K (64 KByte on, say, a TI 990/10, but 64 KWord or 128 KByte on a word
oriented machine like the MODCOMP IV). This concept has been developed
further on the DEC VAX 111780 and Prime 400/500 to full virtual memory
concepts on a par with mainframe computers (see figure 2.23). The scheme is too
complex to discuss here in detail, since it requires memory and disc resident look
up tables for mapping data. Briefly, however, the Prime uses 16-bit segment
addresses (128 KB, since it is word oriented) and a 12-bit "segment-number"
extension to the address. Further, it generates another 12-bit "process number"
for multiprogramming user identification. With 212 = 4K possible segments and
process numbers and each segment mapped into 64 pages each of 2 KB, it is
impossible to maintain one relocation register per segment and page. The machine
instead keeps a dynamic reference to 64 pages in a "look-aside buffer". The
virtual page address is hashed and compared with the entry in the buffer: if it
matches, the relocation address is immediately available; if not, a fault is recorded
and the hardware uses a double memory access (a segment table that points to a
page table) to update the buffer from memory resident tables. A 97 percent hit rate
is claimed in practice. The hashing algorithm is an interesting variant on the
content-addressable technique often used on mainframes.

44 The Minicomputer in On-Line Systems

8

---10bits-

Physical page no.

8

--1a bits-----

Physical memory address (256K)
One map per program (figure for
MODCOMP; for others see list
below)

MODCOMP IV: 4 sets of 256 pages, each 256 words (64 KW)
10-bit page register = 256 KW physical address

Varian V77: 16 sets of64 pages, each 512words (32 KW)
11-bit page register= 1 MW physical address

Data General: 4 sets of 32 pages, each 1 KW (32 KW)
7-bit page register= 128 KW physical address

Hewlett-Packard: 4 sets of 32 pages, each 1 KW (32 KW)
10-bit page register= 1 MW physical address

IBM SERIES 1: 8 sets of 32 pages, each 2 KB (64 KB)
13-bit page register = 8 MW physical address

Figure 2.22
Mapping by pages

One final point concerning memory mapping relates to OMA transfers, which
are, of course, to physical addresses. Two alternatives are shown in figure 2.17.
The first is to use the mapping unit to set up physical addresses in the disc
controller; the second is to allocate a map set to the OMA transfer. The latter ties
up a set of mapping registers, but the former can only transfer to a contiguous
block of memory. Note in either case that roll-out cannot be allowed if the
program concerned has initiated a OMA transfer.

Hardware Enhancements

More and more of the features of systems previously implemented in software are,
for efficiency reasons, being introduced into hardware. Some of these are outlined
below.

~

PCB

Process
exchange

Figure 2.23

Segment table
look-aside buffer
(STLB) STLB entry

[] Process no. Segment no. Control Physical page addr.

9 12

I
((

Process no. Segment no. Page no.

~-~No Y • r-
1 : :

~-~-- ----"----~ Word no.

I 12 1121 10 I s I 12 1:~~~~~~ I r------
1 I

Y'---v
~ ' ,,,,,,,,..... : L __ ~

Physical address

,/ I
/~ I

I
I
I

L---------,
' I

I
I
I
I

Word no.

--~---- 4 x 1024
I
I
I

I
I
I

I 12 1 10 1

----L

-----+ -------L
Descriptor table I
address registers :
(O and 1 are common L
to all processes)

i: 4X1024X64

-~---------z2.f~ ·' :~
'j-------,1;(~

---:..__ (~

---L -----a~
i''/2~~~~1

~
{

I
I
I
I
I
I
I
I
I
I
I
I

Descriptor tables
of segment
descriptor words
(SDW)

Segment fault

If segment has not been
assigned, Primos IV will
do the allocation

L-{~
Page maps

Page map \
entry \

------r-~12 l
Control I Physical page

§Page resident
Page referenced
Page unmodified
(Reserved)

The Prime 400/500 paged and segmented memory management
system

46 The Minicomputer in On-Line Systems

Executive Functions

The heart of any operating system is the executive, a set of routines that effectively
control the processor functions and resource allocation. It is normal to write the
executive as a software program to be loaded as a memory resident unit. This
program could be written into ROM rather like a glorified bootstrap, still taking up
some of the normal memory address allocation. An alternative is to implement the
nucleus of the executive as an extension of the normal instruction set. Once this
concept is accepted, as in the GEC 4000, it affects the more normal considera
tions. The more conventional machine has standard 1/0 features that are utilized
by the executive. With an integral executive, 1/0 is one of its functions, negating
the need for conventional instructions. This is meaningless for a single program
operation but is extremely efficient in a multiprogramming environment. The
executive can also handle mapping and protection, particularly interprogram
corruption. One problem that arises is that executive calls are made from the
program as though they were normal instructions. Thus specific bit orders are
required, reducing the number available for other instructions. This is a real
problem in 16-bit instruction sets, since there are never enough combinations.

Arithmetic units

The simpler machines do not support multiply or divide instructions. However
since most machines are micro programmed (see later) these operations are
offered as part of an optional extended instruction set, implemented by a new
microcode ROM. 16-bit integer operations are common but the range can extend
in some machines to full floating-point; BCD arithmetic is now a common
extension. Microcoding an extensive operation such as floating-point multiply
results in a relatively slow execution time. Thus some machines offer an expanded
high speed hardware arithmetic unit which is nevertheless controlled by micro
code and thus acts as a part of the CPU. New LSI parts such as the Intel 8087 are
designed to be paralleled up with the 8086 CPU. An alternative scheme is to
provide the arithmetic unit as a high speed peripheral device; input data is loaded
and results extracted by 1/0 instructions. In some cases it is possible to overlap the
execution of the longer arithmetic operations with other instructions.

Multiple Register Sets

The content of the program accessible processor registers must be stored
whenever the program flow is altered. This can be avoided by using multiple
register sets, switching a pointer to the active set when necessary. This could be
used at JSR level, but would then put a constraint on the number of nested calls.
The technique becomes much more powerful in a multiprogramming system,
when one mode is used by the executive and another by user programs.

The Minicomputer: Technology and Architecture 47

Cache Memory

A cache memory is a block of high-speed bipolar memory located between the
processor and main memory. When memory is read initially, data is transferred as
usual, but it is also written into the cache together with a marker that indicates
which memory location it is copying. The next time memory is read the cache is
first checked and main memory is accessed only if the required data cannot be
found. If a "hit" occurs data is available at, say, 300 nanoseconds; for a "miss,"
normal memory speed of, say, 1 microsecond is required. All writes must update
main memory, usually checking the cache at the same time and marking a hit as
invalid cache data. Thus, if-and the figures quoted are reasonable-80 percent
of memory accesses are reads and 80 percent of cache hits are achieved, the
average memory speed for the above system is 550 nanoseconds. All OMA writes
must also check the cache and mark any hits as invalid.

Different organizations and techniques for checking cache are employed. If
multiple cache blocks are employed then the hit rate is improved, since
instructions and data tend to be in contiguous but separate blocks. A further
improvement results with incorporation of "instruction look-ahead" when two or
more words are copied into cache locations for each actual read from main
memory.

Figure 2.24 shows the cache employed by the PDP-11170, which uses a 22-bit
physical address. Four bytes are read at a time from memory to cache and there
are two independent groups of cache registers, each of 256 locations. Each
location stores the two words plus a "valid" bit and 12-bit "tag" field and 6 parity
bits. Eight bits of a memory address (the index) are used to point to one of the 256
cache locations. The most significant 12 bits (the tag) of the address are compared
with the two stored tags, provided the valid bit is clear, to determine whether to
read group 0, group 1, or memory. If a hit is achieved the least two significant bits
define which word to transfer. For a miss, memory is accessed for the required
word, but at the same time the 2 bytes transferred plus the next 2 are written into
cache together with a copy of the tag. When writing the same check is made, the
valid bit being set if a hit occurs. The PDP-11/60 uses a similar cache but with
only one group of 1024 locations. Two bytes only are transferred and stored (no
instruction look-ahead); the machine uses an 18-bit physical address with a byte
bit, a 10-bit index, and a 7-bit tag.

The Data General ECLIPSE cache, figure 2.25, uses a more conventional
content-addressable technique. There is one 16-word cache per 8K word block
that is split into an 11-bit address and a 2-bit one-of-four word indicator. For each
of the four cache locations there is an associated 11-bit address register, a valid bit,
and a 2-bit least-recently-used (LRU) marker. The content-addressable (associa
tive) logic determines which of the four locations, if any, has the desired data. If a
hit is achieved the appropriate word is transferred on read or the valid bit is set on
write. If on read a miss occurs, four words are transferred to the cache location
which has the "oldest" LRU rating. For all accesses the LRU bits are updated.

Floating
CPU point

processor

16(16)'

Memory
18(16) Unibus

management Jl 18(16) li
Unibus map Normal

22(16)

lr
for virtual I/0 peripherals

22(16) e.g. Memory/Unibus

Cache I] Updat.,•Ud ""

22(32) High-speed bus

t
256

j

22(32)·

Main
memory

Key: No. of address bits
(no. of data bits)

First 218 addresses reference
the Unibus, remaining 2222

the main memory

(a) Processor layout

(Group 0)

ll
High-speed

I/0

~

1-13

Miss

r----.-HitO

(b) Cache

Figure 2.24
The DEC PDP-W70

Tag

Hit 1

48

(Group 1)

Valid
bit

• , .. 16-J-16-j

.. 1 .. 2..J
Index Word

The Minicomputer: Technology and Architecture 49

Write data

SK word
(13-bit address)

- MOS only
- Interleaving
- 16-word cache

per 8 KW module

Tag (11-bit)
Valid LRU ~---------

0

Write hit

n Read hit

Associative
logic

Block

11

All reads via cache: Hit direct
Miss from memory } Update LRU during next cycle

All writes to memory: Hit update LRU and set invalid

Figure 2.25
The Data General ECLIPSE cache

Memory Interleaving

2

Miss

Pass
address
to
memory

-" I
1 Address

~
Block with
interleave

Core memory requires a read and write operation for every access. If even
addresses are physically arranged to lie in one block and odd in another, then the
read cycle of the next access can commence while the write cycle of the current
access is completing. Since many accesses are sequential, the effective memory
transfer speed can be increased. Interleaving to more than two levels is available,
increasing the probability of nonconsecutive access to the same physical block.

50 The Minicomputer in On-Line Systems

Interleaving of semiconductor memory is still useful but not as effective as with
core.

Multiport Memory

As already discussed, multiport memory can minimize cycle stealing in DMA
transfers.

Parity and Error-Correcting Memory

While most memory uses either 8 or 16 bits per unit of data, memory is readily
available with extra parity bits, typically 1 per byte. The 9-bit word is checked for
parity whenever it is accessed, a detected error causing a flag to be set and raising
an interrupt. For more specialized applications memory units are available with
21-bit words, 16 data and 5 for an error correcting code (ECC). With 5 redundant
bits in 21 an error in any one bit can be detected and corrected. Since 4 extra bits
are required to error-correct an 8-bit data unit, ECC is normally applied to the 16-
bit word.

Tightly Interconnected Machines and Shared Peripherals

Much of this text is devoted to intermachine communication as a means for
moving applications-oriented information from one point to another. For purposes
of system reliability and "up-time," however, it is occasionally necessary to
employ redundant processors and peripherals. In such cases standby components
must be switched into the system either automatically or manually. Such machines
require tight interconnection, being capable of sharing resources at high speed bus
data rates without any appreciable time overheads. The most common solution is
to use multiport memory systems with two processors sharing the same memory,
the porting hardware on the memory system acting as a multiplexor. Machines
like the PDP-11 which does not support multiport memory must use special bus
interconnection hardware systems, in DEC's case by linking two Unibuses. A
special hardware box is also provided, effectively a Unibus extension, into which
peripherals are connected. This box can be switched into one or other of two
Unibuses, and hence peripherals can be shared between two processors. A much
more sophisticated MODCOMP system is described in chapter 5.

Diagnostic and Monitor ROM

Most minis use a small bootstrap or initial program load (IPL) program stored
permanently in a read-only memory. Initialization of the bootstrap causes the
operating system to be copied down from the disc into memory and started. Most
often this ROM uses a fixed part of the user's address space but is also quite often
built into the microprogram ROM. The facilities of a program provided by such a
ROM can be quite advanced. Two such applications are diagnostics and monitors.
Typically on start-up the processor executes a diagnostic routine that checks all

The Minicomputer: Technology and Architecture 51

registers and memory ports, and flags any errors it finds. A monitor routine can
allow the operator to use the console terminal to communicate direct machine
control functions such as changing and displaying the contents of specific memory
locations in near English text rather than using switches and lights on a front
panel. Numbers can be printed in hexadecimal rather than binary. Because even
the simple microcomputers use good ROM-based monitors, IBM's complicated
panel console on the Series 1 comes as a distinct surprise on a modem machine.

Error Logging Systems

All processors report detected errors by setting bits in status registers. At the
simplest level only l~mited errors such as arithmetic overflow are detected, and it
is the sole responsibility of the applications program to check these flags. As
machine sophistication increases more and more system functions are checked by
hardware. Detected errors can be coupled to the interrupt system to activate an
operating system support program to check whether a program must be retried,
aborted, or allowed to continue. Error and status reporting from intelligent 1/0
controllers can also be incorporated in the system. Logging of errors can be an
operating system software function, but the bigger minis are using micro
processors (the Amdahl 470 uses a Data General NOVA minicomputer for the
same purpose) to log errors to a floppy disc, which can be used by a centralized
maintenance department. Remote access to the microprocessor system via a
communication line is also possible.

Power fail

A device is commonly used to monitor the power supply. When the supply is
broken the power-pack capacitors allow the machine to function for a further
fraction of a second; the power fail protection unit then generates an interrupt
which overrides all others. This initiates a program to save the contents of all CPU
registers in nonvolatile memory locations. When power is resumed another
interrupt is generated to activate a program restoring the processor to its original
state. To be effective with MOS memory, backup battery power supplies must be
provided to overcome the volatility.

Clocks

Many routines require timed event indicators varying from time-of-day printout,
through operating system time sharing of resources, to program control of a
sophisticated data logging subsystem. These markers are generated by a binary
counter driven by a fixed-frequency oscillator that can generate an interrupt after a
specified number of ticks. The clock is commonly locked to power supply
frequency but faster and more accurate units use crystal-controlled oscillators.
The more sophisticated clocks can be program controlled to set rate and mode of
operation. Multiple clocks may be used by a bigger system.

52 The Minicomputer in On-Line Systems

Microprogramming

Microprogramming is a technique for implementing the instruction set. The
processor so far described is itself treated as a programmed computer, a processor
within a processor as shown in figure 2.26. At the inner level the instruction set is
of low sophistication with, for instance, direct control of gates. Each machine
level instruction calls an inner machine program, a microprogram, to execute that
instruction. To be effective this micromachine must be very fast. Thus long word
lengths (they need have no relation to the full machine word length) of 30 to 100
bits are used so that the maximum number of concurrent, rather than sequential,
operations can be executed. The microprograms are written into high-speed ROM
with cycle times of a few nanoseconds. Executing a machine instruction by
running a microprogram is essentially slower than with a dedicated, hardwired
logic system. The advantage of microprogramming is simply versatility. By
changing the microprogram the main machine instruction set can be changed, and
thus the machine can be tailored to suit the application. Actual tailoring is seldom
used, since appropriate operating systems will have to be generated. However,
machines can now be marketed with a standard instruction set that can be

Instruction
register

---------------------,
I

r-------

Clock

1
I

Figure 2.26

,
I
I

t
I
I
I
I
L

Microprogram
counter

Microinstruction
register

Normal instruction
set ROM

I
I
I
I
I

Microcode 1
_ _ _ _ _ _ _ _ _ } subroutine I
- - - - - - - - - to execute I

Extended instruction
set ROM

Writable
control store RAM

requested I
instruction I

I
I
I
I

I
From main memory 1

I
I

--------------------~

Control to
enable and
inhibit gates

Microprogrammed machine instruction decoder

The Minicomputer: Technology and Architecture 53

extended (within the constraint of available bit patterns) by extending the
microprogram. Indeed, if a section of high-speed RAM is included in the
micromachine memory, this could be loaded by the operating system to change
the extended part of the instruction set at run time.

Microprogramming also helps the machine manufacturer to develop new
products, since a unit can initially be microprogrammed to emulate the model
being replaced, using the software already available.

32-bit Machines

Most minicomputers are internally 16-bit orientated. This is somewhat confused
by features such as multiword instructions (MOY A,B on a PDP-11 is a 48-bit
instruction) and memory management systems generating 18 to 24-bit physical
addresses with 4-byte wide cache. Nevertheless all registers internal to the
PDP-11 are 16 bits long and the sub-division of the 48-bit move instruction is on
16-bit boundaries; a virtual address still cannot exceed 16-bits. Thus there are a
number of new machines appearing with longer internal words. These are often
called 32-bit minis but they are direct competitors to mainframes, retaining
nevertheless much of the mini's 1/0 flexibility.

The leaders with this trend were System Engineering Laboratories with the
SEL 32 and Interdata with the 7/32 and 8/32 machines. Interdata still used a 16-bit
memory system but defined an architecture and instruction set similar to an IBM
S/360. In particular although instructions are fetched from memory in 16-bit
words, limiting offsets and displacements to 16-bits, internal program counter and
index registers are 24-bits long giving a virtual address space of 24-bits (16 MB).
The memory management was very simple, merely providing sets of 24-bit base
relocation registers. Since the instruction set is defined as multiples of 16-bits,
downwards compatibility with the earlier 16-bit machines was retained. Opera
tions on 32-bit long data items are included in the instruction set, but this is a
feature of 16-bit machines such as the GEC 4000 and machines with added
floating-point processors.

With the introduction of VAX 111780 DEC moved firmly into 32-bit
machines. VAX 111780 has two complete instruction sets, the 16-bit unprivileged
PDP-11 set and its own 32-bit native mode set. The machine uses a common
internal bus as did the PDP-11, but with a maximum transfer rate of 13.3 MB/
second (synchronous) with support for up to 4 Unibus and 4 high-speed (2 MB/
second) 1/0 subsystems. The machine has a 32-bit virtual and a 30-bit physical
address space. Memory management hardware is organized to support the
extensive virtual operating system, a feature more typical of a mainframe than a
minicomputer. The VAX 111780 instruction set is one of the richest on any
computer, making a number of features available to programmers which are part
of executive functions on mainframes (Que and deque, procedure call, polynomial
evaluation). This is one of the few machines to support triple operand addressing
(A = B + C for example) and features extensive string handling instructions

54 The Minicomputer in On-Line Systems

(move a byte string from one location in memory to another, translating in the
process via a memory resident table as one instruction).

Microelectronics in the Computer Industry

Integrated Circuit Technology

The concept of producing large numbers of transistors and resistors on a single
chip of silicon to form a functional unit is now well established. Starting with
small-scale integration (SSI), as in a quad two-input AND gate, the process
moved through medium-scale integration (MSI), as in a shift register and adder, to
large-scale integration (LSI) such as 4K-bit memory chips, simple CPUs, and so
on. The near future offers us very large scale integration (VLSI) with some
remarkable products that promise to have a spectacular impact on the structure of
the computer industry and, one hopes, a marked improvement in cost-effective
ness and access for the end user.

Figure 2.27 illustrates the trend in packaging components into single chips.
One can readily see by comparing the requirements of, say, a PDP-11/34 CPU that
a device of such complexity was available by 1979 as a single VLSI chip (8086,
68000, or Z8000). Equally important, the 64 K bit memory chip was introduced
by 1980 and predictions are being made of a megabyte of read/write memory on a
single board for only a few thousand dollars by the early 1980s. Figure 2.27 does
not tell the whole story; other dimensions such as speed, power consumption, and
cost must also be considered. In general the faster devices consume more power
and are available at lower packaging densities. In practice a number of manufac
turing techniques are used. Sometimes one technique improves so as to obsolete
another; more often, as this year's slow technique becomes as fast as last year's
fast technique, then this year's fast technique is an order faster still. Figure 2.28
shows a rough assessment of the different technologies. Metal-oxide semiconduc
tor (MOS) devices effectively use field-effect transistors (FETs), the others
Bipolar transistors.

Transistor-transistor logic (TTL) is still the common technique for most
computers, emitter-coupled logic (ECL) for bigger, faster processors, and MOS
for LSI components such as memory chips and microprocessors. Some TTL LSI
components are available now (the Ferranti FIOO microprocessor, for one).
Silicon-on-sapphire (SOS) MOS technology offers potential for VLSI and speed
in the near future, but has suffered badly in attempts to put it into production (the
General Automation processor manufactured by Rockwell and since withdrawn).
Hewlett-Packard claims to have achieved a breakthrough for immediate use in its
desk-top computers. Other MOS technologies (VMOS, HMOS) are giving
dramatic speed increases.

Some wonderful technology has gone into reducing the size of individual
components in LSI circuitry. VLSI makes even greater demands, down to
electron-beam techniques for the finest control of element size and position.

The Minicomputer: Technology and Architecture 55

64K bit
256Kt-~~~,--~~~~~~----,~~~R_A~M~~-.--.

"' +-' c .,
c
0
Q.

E
0
u

"O .,
+-'

E
Cl .,
+-' c

~ .,
~ 64
:;i

z

Figure 2.27

64 69

Year

64K bit
CCD

74

The progress of integrated circuit technology

Memories and Bulk Data Storage

79 84

Random access memory chips are the largest-volume requirement for LSI
components. While there is still some life in the magnetic core market,
semiconductor memory systems made from MOS LSI chips are now the standard.
Typical speeds range from 50- to 500-nanosecond cycle time with 50- to 400-
nanosecond access time. MOS memory is volatile and must have battery backup if
the system cannot tolerate reload from a disc. There are new developments in
nonvolatile MOS memory, but these are more expensive than the bulk-produced
n-channel (NMOS) chips. A now more common technique is the use of a small
high speed TTL memory as a cache to a main MOS memory.

MOS memory chips are available as static or dynamic parts. The dynamic
chips offer higher densities (in 1980 4K-bit static versus l 6K-bit dynamic RAMs

56 The Minicomputer in On-Line Systems

Technique

MOS

PMOS
NMOS
CMOS
SOS, VMOS, HMOS

TTL
Low power
Medium speed
High-speed Schottky
PL

ECL

Figure 2.28
Types of LSI technology

Speed
(nanoseconds)

200-1000
50-300
50-500

1-100

25
8
2
1

0.2

Comment

Most LSI and VLSI
components
Oldest and slowest; obsolete
Most common variant
Very low power version
Latest and fastest

Conventional computer systems

Normal MSI, some LSI

Very fast MSI processors

were standard) but require external refresh logic circuitry to rewrite the stored data
every two milliseconds. Most chips are bit oriented so that eight 64K RAM chips
are required, plus refresh logic, for a 64KB memory system. Note however that
address decode logic is internal to the chip.

Read-only memory (ROM) chips are readily available, from production
masked versions through fusible-link and electrically programmable (PROM) to
ultraviolet erasable EPROM (this last reuseable) types. The latest EPROMs run at
about 250 to 500 nanoseconds; microprogram ROMs must use much faster
devices. Note also that fast Schottky TTL RAM (random-access memory) is
needed here for writable control store, not MOS.

Two other integrated circuit devices, the charge-coupled capacitor (CCD) and
the magnetic bubble memory, are currently creating a stir. These are effectively
shift registers, not RAM, and are intended as bulk stores. In effect they can be
considered as a sector on a disc with near-zero access latency. They are now slow
and expensive, but their potential is high. Probably the same arguments of bubble
vs. CCD will rage as did MOS vs. Core: as users we do not care who wins as long
as the technology offers advantages. The most obvious use for CCD or bubble
stores is as multiple 512-byte shift registers to replace fixed-head discs or drums;
ironically there is a ready availability of commercial solid state systems using
slightly modified MOS or core RAM! Much more work is needed in system and
architectural design to see how best to take advantage of these new devices.

While the fali in the cost ,of memory has an obvious impact on system cost,
the overall effect must be much more clramatic. With the new generation of
microprocessors (let alone conventional machines) being able to address mega-

The Minicomputer: Technology and Architecture 51

bytes of memory, then the concept of sophisticated memory/disc management
schemes such as paging will simply be unrealistic. Thus the low cost of memory
will impact on software development in the future.

Microprocessors

While memory chips were the obvious target, and still are, for development of
commercial LSI, the intriguing follow-up was the pocket calculator. For once the
demands of millions of schoolboys (as opposed to spacecraft and missiles)
determined a push forward in technology. The calculator chip, while no higher in
gate requirements tlian a memory chip, is a complex random logic device
compared to the repetitive pattern of a RAM. The techniques acquired in
supplying the vast market for calculator chips provided the technological
springboard for the initially more circumspect market for general purpose CPU
chips, which are now as commonplace as calculators. These CPUs on a chip are
known as microprocessors.

Pins on the chip are obviously required for power supplies, system clock,
data, and addresses. Since the internal components of the CPU are not externally
accessible, some pins are required to indicate the current internal status so that
external components can be synchronized. Typical signals indicate memory or 1/0
operation, Read or Write, and timing information (which sub cycle). This
becomes more important since due to the limited number of pins, their function is
time multiplexed (a common example is eight pins carry the least significant eight
bits of the address for one sub cycle, followed by eight bits of data in the next sub
cycle); demultiplexing is provided externally, controlled by decoding the status
data. Finally, some pins are required to feed external control signals into the CPU,
the common ones being reset, hold (for OMA), wait (slow down the processor to
slower memory speeds), and interrupt. Hold and interrupt acknowledge status
signals are also required. From this it should be realized that pin-out is a major
limitation on microprocessor design and that multiplexing of pins is always used.

Figure 2.29 shows the internal architecture of a typical microprocessor, the
Intel 8080. This shows that the processor uses an 8-bit data word but by use of
double internal registers can generate I 6-bit addresses. This (and the other 8-bit
microprocessors) uses multi-byte instructions. The first byte is fetched and
decoded, reading subsequent bytes if needed to complete the instruction fetch.
Thus increment a register is a one-byte instruction while jump requires three
bytes, one for the op code and two for the address. The instruction set as a result is
surprisingly rich, far more powerful for instance than the old PDP-8, which
although a 12-bit machine, codes every instruction into one word. The range of
addressing modes is limited, extensive use being made of pointer-mode; thus on
the 8080, to add the contents of a memory byte to the accumulator requires the
address to be set into register pair H and L followed by a single byte add-to
accumulator instruction. Auto-increment/decrement modes allow common use of

~

{
-+12v

Power --+- +5 V
supplies - -5 V

-Gnd

Figure 2.29

07-Do
Bidirectional

data bus

Arithmetic
logic
unit

(ALU)

machine
cycle

encoding n
Decimal
adjust

{7
Timing

and
control

Data busllnterrupt\ Hold Wait
Write control control 1control control Sync Clocks

WR OBIN INTE l HOLD WAIT 1 SYNCJ, efi2
ACK

INT HOLD READY

I

Reset

8080A CPU functional block diagram

il
Ii

I!

I

(8 bit)
Internal data bus

Multiplexer

w 181 z 181

Temp reg. Temp reg.

B 181 c 181

reg. reg.

D 181 E 181

reg. reg.

H 181 L 181

reg. reg.

Stack pointer
1161

Program counter
1161

I ncrementer/decrementer
address latch

Address buffer

A,s-Ao
Address bus

1161

1161

r Register
array

The Minicomputer: Technology and Architecture 59

stacks. The Zilog Z80 is a superset of the 8080 featuring an additional relative
addressing mode and byte string operations.

Since MOS is the only technology available for mass-produced LSI parts
(originally PMOS, commonly NMOS, and lately variants such as SOS, VMOS,
and HMOS) computers built around microprocessors are relatively slow compared
to 16-bit minis. Clock rates of two to four MHz result in typical instruction
execution times of one to ten microseconds (remember that the 3-byte jump
instruction requires three sequential memory access just to fetch the full
instruction). Further, the data unit manipulated by the instruction is only 8 bits;
thus software routines for a 16-bit integer multiply can take 150 microseconds and
a 32-bit floating-point multiply 10 milliseconds.

While the low cost and ease of interfacing of the 8-bit micros has made them
ideal devices for terminals and simple computers, there are requirements for more
processing power. Technological advances saw the introduction in 1979 of the new
generation of 16-bit microprocessors, featuring as many as 30,000 elements on
the single chip. The earlier 16-bit micros like the National Semiconductor IMP 16
and DEC LSI- I I are in fact built on chip sets, typically a register set, an
arithmetic and logic unit, a microcode decoder/controller, and a microcode ROM.
The LSI- I I uses the Western Digital MCP-1600, as does the Alpha Micro and the
Pascal Micro Engine.

Data General and Texas Instruments both produced single-chip micros with
instruction sets compatible with their minis. The Data General chip is used in the
Micro Nova, while the Texas Instruments 9900, although used in the 990/4 and
99015 computers is a general purpose CPU. In fact the more powerful 16-bit 9900
was available about the same time as the 8080 and 6800 but failed to appeal to
system builders because the other supporting LSI components, discussed below,
were not forthcoming. A somewhat more intriguing variant is Fairchild's 16-bit
micro, which emulates the Nova instruction set. This was clearly aimed at helping
system builders to use existing Data General software without buying processors
from Data General and as a result led to a lawsuit. In any case this concept has
been negated by the new 16-bit general purpose micros since they all have far
more powerful features than the old and simple Nova. Three 16-bit processors are
competing to dominate the single-chip general purpose market, the lNTEL 8086,
the Motorola 68000, and the Zilog Z8000. As with the 8-bit processors, lntel are
well ahead with the overall system concept and more advanced development
system support. Zilog with the Z8000 are basically producing a single-chip
implementation of a typical minicomputer CPU with privileged instructions and
vectored interrupts. The 8086 is much more a component in a new systems
concept along with the 8087 arithmetic processor and the 8089 1/0 processor. The
multibus bus system specified by lntel for their development systems and single
board computers features multi processor support; there is in fact a single-chip bus
arbitration logic component.

The 8086 architecture is shown in Figure 2.30. In fact it is not just a CPU but
a CPU and a simple memory access controller combined in a single chip.

Execution unit
register file

AX AH AL

BX BH BL

ex CH CL

DX DH DL

SP Stack pointer

BP Base pointer

SI Source index

DI Destination index

16-bit
ALU

PSW Status flag

{

Test

External Int.
control NMI
request Hold

HLDA

2

PC

cs
OS

SS

ES

Control and
timing

Bus interface unit
relocation register
file

Instruction pointer

Code segment

Data segment

Stack segment

Extra segment

Bus
interface

unit

6-byte
instruction

queue

5

3

Handshake Clock Reset Ready Min/max Ground
mode

Figure 2.30
INTEL 8086 architecture

60

Lock

Status

S1
A16-A19 or

S3-S1
A0 -A15 or

Do-D15

Bus timing
signals

The Minicomputer: Technology and Architecture 61

Instructions are loaded into the buffer direct from memory while the CPU fetches
instructions a byte at a time from the buffer to decode and execute them. Thus
apart from initial instruction fetches and breaks in program sequence Uumps),
instruction fetch and decode/execute overlap. Memory is byte addressable
accessing 8 or 16 bits as required. The internal registers are 16 bits long; however,
addresses are generated 20 bits long by adding normal 16-bit addresses to a 20-bit
base relocation register. In fact there are four base registers, only the most
significant 16 bits of which can be set, the lower four being zero. Thus a 64 KB
segment (16-bit) can be created anywhere in a l MB physical memory space (20-
bit) on a 16-byte boundary. One base register is used for the instruction fetch
(code), one for data items, one for stack, and one for a further data area
(common). This extremely flexible architecture does not however provide mem
ory protection features or paging. The Zilog Z8000 supports a separate memory
management chip, providing multiple register sets, paging and protection. Both
the 8086 and Z8000 have maximum segment sizes of 64 KB while the M68000
uses direct 24-bit addressing. These 16-bit processors feature multi-byte instruc
tions, multiply/divide, byte string move, and translate operations. As a result,
they are more powerful than many minicomputer CPUs.

Microcomputers

To build a computer around a microprocessor a bus is normally used to
synchronize the external chips to the CPU. All the timing and internal status data
from the CPU must be latched and decoded to enable the other components at the
correct instants in time. A simplified bus structure is shown in Figure 2.31. In
practice, in order to provide drivers and decoders for a full system, as many as
forty SSl/MSI chips are required. Thus the manufacturers developed special
support components to replace commonly used combinations; the 8224 and 8228
shown in Figure 2.31 are typical. It is this concept of a family of components that
is all-important to a system builder, lack of which hampered the acceptance of the
TI 9900. Intel now offer the 8085 microprocessor which is effectively the 8080,
8224, and 8228 combined, an example of technological advances simplifying
system design rather than the more obvious performance enhancements.

The semiconductor manufacturers have developed a most impressive range of
special-function LSI chips, usually part of a family for ease of interconnection, all
of which make for easier design of computer systems. Some typical parts are
described briefly later.

There are a number of levels on which microprocessors can be packaged with
other chips into microcomputers. Obviously in building a small business machine,
a VDU, or a printer controller, a special printed circuit board is required.
However, by constructing a physical bus on a motherboard, distinct functional
units can be constructed on single plug-in cards. Typical cards would be a CPU,
RAM (SK, 16K, 32K, or 64K), EPROM, serial l/O, printer controller, disc
controller and so on. Each card has all the necessary logic to decode and drive the

62 The Minicomputer in On-Line Systems

Clock gen.
8224

SYN c/>1 c/>2 RESET

Hold

ROY' 8080 INT
D0-07 HLDA

WR DIBN

System
controller

8228

8251
USART

Figure 2.31
An Intel 8080 System

Interrupt

ROM
2708
2716

8255
Programmable

parallel 1/0

24 lines

Address
decode
logic

8212
Latch

8 lines
out

fo;n~;i~l
1 refresh 1

l circuitry l
I for2116 I
L-- __ .J

RAM
2116
2114

Data (8)

Control

Address (16)

8212
Latch

8 lines in

bus, interconnecting with other cards. Of course, this construction technique is
used in all computers, but the general purpose availability of microprocessors to
new computer manufacturers has led to the adoption of standard buses, in sharp
contrast with the rest of the computer industry. Multibus (defined by Intel) is the
more sophisticated example, but the most common is the S 100 bus defined by
MITS for the Altair, but now with an official IEEE specification. Intel first
introduced the multibus for a range of off-the-shelf prototyping cards. With recent
advances in LSI technology far more components can be packed onto the one

The Minicomputer: Technology and Architecture 63

board; in particular some RAM, ROM, and simple 1/0 can be built onto the CPU
card leading to the concept of a single-board computer (SBC), albeit still retaining
the bus interface logic for expansion. Personal computers such as the Commodore
PET, or Intertec Superbrain achieve their low cost by eliminating the overhead of a
general purpose bus with a loss of flexibility.

While in general microcomputers are not made by the component manufac
turers, they do in fact make single-terminal discette-based systems intended as
engineers' design tools. These are called Microprocessor Development Systems
(MOS). An MOS supports program development software and special debugging
aids. They could be used as general purpose microcomputers but are far too
expensive. The specific features of an MOS are support for real-time program
ming (system) languages such as PL/M, PL/Z and MPL (all manufacturer
specific), and modular run-time executives (Intel's RMX80). More important,
however, is an in-circuit emulator (ICE) which allows a target hardware system to
be temporarily linked into the MOS. (The target machine microprocessor is
removed and an umbilical cord plugged into the socket to link to the MOS.) The
ICE allows all the facilities of the MOS to be used on the target machine. Thus the
MOS RAM can substitute for the target machine ROM allowing breakpoint
debugging via the MOS VDU. The ICE also maintains a running trace of the last
hundred or so bus operations which can be examined after a trap to detect program
logic errors. Finally, the MOS allows debugging by symbolic reference to the
labels used in the original source program by referencing the symbol table on
discette.

With the exception of an MOS, a computer built around a microprocessor
must be evaluated as a small business computer, low-end mini, or whatever, based
on performance, software, facilities, peripherals, etc. Single-chip CPU versus
MSI multi-chip CPU is of secondary importance. Note, however, that with
microprocessors numerous computers are being built which will support basically
the same software. (Microsoft BASIC in one form or another is used on Tandy,
Altair, National Panasonic, Horizon, Cromemco, PET, and many others.) This is
an important trend in reducing software development costs by sharing across
multiple computer manufacturers.

Other special purpose devices are more commonly using microprocessors.
Some use multiple microprocessors to achieve high performance with modularity.
An early example of this was the Codex 6000, an intelligent network controller,
which allows a network of terminals to be connected to various lines with various
protocols. By using multiple processors sharing a common high-speed bus, one
group can be reconfigured while the others continue to function normally. A
schematic diagram is shown in figure 2.32.

LSI Components for Serial 110

The basic operations of converting a parallel byte of data into a bit serial stream
for output (transmission) and collating an incoming (received) bit serial stream

64 The Minicomputer in On-Line Systems

Operator
Options panel

MASTER CONTROL

1/0 to master bus,
task dispatcher,
interrupt handler

Figure 2.32

1/0
bus

INTEL
3000

Master
control

Nest
I/F card

Up to 8 500-ns RAM
6800 200-ns PROM

Processor

1 MHz

6-MHz bus
(interleaved)

Nest

Up to 8 nests l/F card

Network
port

Terminal
port

Synch
port TOM

Up to 32 ports
per nest

Bit protocol

The Codex 6000 intelligent network processor

into a parallel byte are now implemented in LSI parts. Earlier computers actually
involved the computer in bit at a time 1/0, so-called bit-banging. The LSI 1/0 chip
provides serial 1/0 to the line drivers and a parallel port to the computer bus. On
the computer side these chips are provided with chip select and other timing and
status pins to ease the interface design; often they are specifically designed to be
easy to interface to a given micro, the family concept mentioned previously (8251
USART with 8080 or Zilog Sl/O with Z80). The chip will contain a register to
accept an output byte and another to store the received byte; most often double
buffering is supported so that the computer can handle one byte while another is
being serialized/deserialized. The buffering means that the computer is only
involved for the specific 1/0 instruction and can easily be interrupt-driven, since
data received or transmitted status bits may be provided. These devices are usually
MOS parts but with the usual TTL pin compatibility at low power levels. They
must thus be clocked to synchronize the bit timing. For asynchronous transmis
sion (see discussion in next chapter) the clock is provided independently at each

The Minicomputer: Technology and Architecture 65

end of the line. Each character has a unique start bit which restarts the timing, and
therefore the two ends need to stay in step only over a period of, say, ten bits. A
local crystal oscillator is more than adequate except that one end could
coincidentally clock on the bit transition boundary. To avoid this all asynchronous
parts are clocked at 16 (or 32 or 64) times baud rate; inside the chip this is divided
and the first bit synchronized to the middle of the bit interval. With synchronous
transmission the modem uses a self-clocking technique, thus providing syn
chronized timing signals to each end of the line, which are used directly by the 1/0
chip. Some of the available chips are now discussed.

UART (Universal asynchronous receiver transmitter). A UART provides
double buffering of both transmit and receive characters, both channels being
independent for full. duplex operation. They handle independent receive and
transmit clocks at 16 times baud rate. The actual logic inside the chip provides for
a choice of 1, 1 Y2, or 2 stop bits, 5, 6, 7, or 8 data bits and odd, even, orno parity.
The particular requirements of a given application are selected by wiring specific
pins either to ground or + 5 volts. Pins are also provided to report status
information for data received and transmitted and also to report receive errors such
as overrun, parity, or framing. A schematic diagram of an interface using a UART
is shown later in figure 5.4.

USRT (Universal synchronous receiver transmitter). A device similar to a
UART except that no start or stop bits are involved and the clocks run at baud rate.

USART (Universal synchronous/asynchronous receiver transmitter). A
USART combines the features of a UART and a USRT. In general they also
provide further logic for direct support of modem control functions (request to
send) and status functions (data set ready); with a UART these features are
provided by additional TTL logic. However, with an increase in the number of
logical lines to be supported and in the range of options provided, there would be
too many pins required. Thus a more powerful technique of a programmable chip
is adopted on USARTs. They are not programmable in the sense that a sequence
of instructions can be executed by a processor, but that the current configuration
from within the range of options is defined by internal control register settings.
Further, as well as the data buffers, the status information is returned in an internal
register. The control and status registers can be accessed through the data port as
can the data buffers, a single pin on the chip set to 0 or 5 volt by the processor
differentiating between data or control/status. A schematic diagram of a USART is
shown in figure 2.33.

Line protocol chips. A number of programmable USRTs have also been
developed which handle extra functions of synchronous line protocols such as
SYN character detection for Bisynch and bit stuffing and stripping for HDLC/
SDLC. Some of these parts will work at bit rates over a MHz. Other chips have
been developed to support the USRT for such operations as calculating cyclic
redundancy check (CRC) characters. The most sophisticated parts incorporate all
these features in the one chip. The most complex interface component in the 1970s
was the Zilog Sl/O chip which could be programmed for asynch, bisynch, HDLC,

66 The Minicomputer in On-Line Systems

RESET

CLK

CID-

cs

DTR

CTS
RTS

Figure 2.33

Data
bus

buffer

Read/write
control

logic

Modem
control

Internal
data bus

8251 programmable USART

Transmit
buffer
(P•S)

Transmit
control

Receive
buffer
(S•P)

Receive
control

TXD

TX ROY

TX EMPTY

TXC

RXD

RX ROY

-Rxc
- SYNDET/

BRKDET

or SDLC (including CRC calculations) and supported two independent channels
plus modem control.

Baud rate generators. Various baud rates are used in communications, with
multiples of the baud rates used on asynchronous UARTs. These are generated by
dividing down a high-frequency crystal-controlled clock. Chips were produced
whereby the division ratio could be selected by strapping pins to 0 or 5 volt.
Nowadays programmable clock chips are available, the division ratio of which can
be set by loading a control register in the chip. These chips usually support
multiple dividers so that other timing markers can be independently generated
from one crystal.

Drivers. The LSI parts work at TTL low power levels. To drive lines over any
distance amplifiers are required. Often the voltage levels must also be changed,
requiring additional power supply rails. Driver chips have now been developed

The Minicomputer: Technology and Architecture 67

which both amplify and convert signals from 0 to 5 volt to ± 9 volt for V24
interfacing. Four lines per chip are common.

Other LSI Components

Other functional, regularly used circuits have been built onto LSI chips, some
MOS but many in bipolar form. Typical parts are:

Parallel IIO. These range from simple 8-bit latches to programmable devices.
The 8255, for example, has three sets of 8-bits which can be set by control
registers to act as three ports. Two of the ports can be either input or output, while
the third can be set to two 4-bit groups, either in or out.

Direct memory access. OMA requires independent maintenance of an
autoincremented address register and an autodecremented word count register.
The 8257 is an example of a support chip which provides four pairs of registers,
set by 1/0 instructions via a data port, with four sets of OMA request and accept
signals for peripheral control, plus logic for generating the CPU hold and hold
acknowledge handshake. Other OMA chips allow two channels to be set up for
memory-to-memory string moves (most microprocessors feature only single
memory-resident operand addressing). Far more powerful is the Intel 8089,
designed for use with the 8086. This chip is an 1/0 channel in the IBM S/370 vein.
It is in fact an 1/0 processor, with dual channel OMA, with its own dedicated
instruction set. It can be configured such that its program shares 8086 memory or
executes from its own local memory. Unlike a simple OMA controller which
allows the peripheral to place data onto the memory bus, the 8089 actually
handles the data, hence providing the ability to process as well as route data
streams.

Interrupt Controller. Microprocessor interrupt mechanisms are quite simple.
These can be enhanced by external logic to provide priority and vector address
generation, now available as a single chip.

Memory refresh. Dynamic RAM is cheaper than static, but must be
periodically refreshed. To avoid putting the CPU into a hold state for the refresh
period, logic is provided to refresh the memory during sub-cycles of the basic
CPU cycle which are not used for normal memory access (the memory refresh is
then transparent, even to OMA). The refresh control logic is available as a single
chip. It is expected that self-refresh logic will be built into future generations of
dynamic RAM (psuedo-static RAM).

Disc Controller. Most of the digital logic for a discette controller can be
obtained on single chips. These devices are dedicated processors. They feature a
number of internal registers for control and status, as usual accessible by the CPU
via normal 1/0 operations. Serial/parallel data handling, header and tailer
generation, CRC calculations, and other features are program-selectable to allow
any format to be used. Timers and counters are maintained for mechanical control
features such as stepper motor drive for head positioning and loading and sector
identification. Control of multiple drives, some with overlapped seek on one disc

68 The Minicomputer in On-Line Systems

with read/write on another, are available. Some parts provide some of the analog
signal handling too, in particular data-separator logic for reliable separation of the
data stream into binary form for various recording formats. Similar chips are
appearing for control of bigger, faster hard discs.

CRT Controller. Much of the logic for repeatedly converting an array of
ASCII characters into a corresponding set of dots, with all timing logic, has been
built into an LSI part. The translation from a row of eighty ASCII characters into a
set of, say, ten rows of dots for a raster scan, is done by a ROM-based translation
table, which defines the character set displayed. The more complex chips also
provide extra features for generating attributes such as cursor, underline, blink,
various intensities, etc. The new parts are programmable so that the number of
characters per line and other features can be varied.

Bit-slice microprocessors. Sets of high-speed bipolar LSI components are
available to construct full-scale computer CPUs. Typical components are register
sets and arithmetic units. These are typically 4-bit units; four are connected in
parallel to construct a I 6-bit mini. The control unit of these systems is
microprogrammable so that the instruction set can be tailored and implemented in
a specific ROM. The Intel 3000 used in the Codex 6000 is one of the originals, but
the AMO 2900 series is the leader and is used in many modern minis (Honeywell
Level 6). It will be interesting to see whether the cost-effectiveness of generations
of single-chip micros with 16- and even 32-bit word lengths will make these
devices obsolete. Some of the simpler MOS micros are implemented on three or
four chips, one of which is the control ROM, which can be microprogrammed to
suit. National Semiconductor's IMP 1600 is an early example but the 4-chip set
Western Digital MCP-1600 used by DEC in the LSI-I I must be the best-known
current implementation.

The fast LSI components can also be used in applications other than
processors, modems being a good example, disc controllers another.

Special-purpose LSI chips. The cost of the micro is kept down by manufactur
ing volume. If a production run is sufficient a special-purpose chip may be
possible, whereas three or four chips may have been needed using a micro. A
typical example is the special chips used in modem multiplexing modems. As new
techniques like uncommitted-logic-arrays progress, this approach will become
more popular. Electrical instruments such as digital voltmeters are another area
where special-purpose LSI dominates, rather than microprocessors. One-bit word
length Boolean processors and field-programmable logic arrays (PLA) can also be
used for applications that do not use arithmetic or character data such as process
control with relay closure input data and solenoid activation output. PLAs are also
used to replace groups of TTL logic in many computers.

Microcomputers. Devices incorporating the processor, a small RAM and
ROM memory and a simple I/O port on one chip are already in use. These are
intended for simple, bulk, dedicated applications such as washing machine
controllers, but with a little advance will incorporate enough memory to be useful
in terminal controllers and the like.

The Minicomputer: Technology and Architecture 69

Peripherals and Interfaces

The very essence of a minicomputer is flexibility. There is a wide range of system
software and hardware to choose from. The S 100 bus microcomputers are even
more flexible than minis in terms of hardware flexibility but are far more
constrained in software features beyond single-user systems. Virtually any
peripheral device can be interfaced to any mini or micro. There is no difference
between the CDC disc drive used by, say, ICL or by Texas Instruments. However,
the low cost and high volume of the mini, but more significantly of the micro, has
led to the development of cheaper, simpler products such as floppy discettes,
matrix printers, and eight-inch Winchester discs. There was a time when
minicomputers were synonymous with small discs (the DEC RK05 at 21/2 MB);
now 10 MB discs are common on simple microcomputers.

To attach a peripheral device to a computer an interface is required. This will
plug into the computer bus, communicating with the CPU and memory either by
programmed 1/0 or by OMA as required. The interface must then pass data,
control, and status information to the device controller, which in turn couples to
the physical peripheral device. The interface and controller may be simple enough
to be constructed on the one card; others require multiple cards. Often the non
computer-specific part of the controller will be housed in a separate case with a
relatively simple interface card for a specific computer. In the simple category are
serial communication interfaces, the UARTs or USARTs being mounted directly
on the interface card with edge connected cables to sockets mounted on the rear of
the computer case. Multiple V24 lines on single cards are common. A disc
controller, on the other hand, is a common example of a multicard unit; many disc
suppliers make universal controllers which link directly to a relatively simple
interface card designed for a given range of computers.

The interface itself actually passes parallel words to and from the computer,
translated to actions by the logic of the controller. Thus most mini and
microcomputer manufacturers supply general-purpose parallel 1/0 cards. Each
card supports multiple 1/0 ports which allow a general-purpose controller to be
attached. Note, however, that software drivers in a specific operating system are
designed to relate to detailed bit patterns in dedicated registers (two or three in a
simple serial 1/0 card, but ten to twenty in a complex disc controller). Thus it is
common practice for plug-compatible peripherals to be sold with controllers
which are compatible with manufacturers' controllers for software commonality.
A nonstandard controller and disc for a given mini may be cheap hardware but
could require expensive software modification.

The trend for plug-in interfaces and interface/controllers has been taken up
with microcomputers with particular emphasis on the S 100 bus. The leading
operating system (CP/M, described in chapter 7) is designed to be user tailored to
any controller.

The range of peripheral devices available is all the standard industry
peripherals. Terminals are of great importance, particularly VDUs, which are
usually the asynchronous non-buffered type, relying on the mini 's exceptional

70 The Minicomputer in On-Line Systems

interrupt handling capability for direct support. It is the ability of the mini to
provide cheap attachment of cheap terminals that is a major attraction. Terminals
are so important to this text that they are covered in a broader context in chapter 3.

Matrix printers and line printers up to about 400 !pm are common on minis.
Printers from any manufacturer are easy to support, the simpler ones using V24
serial interfaces, the faster ones a dedicated parallel interface/controller.

Floppy discs are more common on micros than minis, ranging from the cheap
five and a quarter-inch 90KB drives to high density eight-inch double-sided drives
of over a Meggabyte. IBM compatibility is most useful. Cartridge discs, often the
one fixed, one exchangeable (FED) type of around 10 MB capacity were the norm
in the 1970s, but eight-inch Winchester disc technology and storage module
drives (SMD) provide discs from I 0 to 300 MB. The bigger drives use multi
surface disc packs. Fixed-head discs are still used in some cases for fast swapping
(no head movement latency) but these are being replaced by bigger RAM
memories, either in the main address space or by fixed-head disc emulators. CCD
and magnetic bubble stores will affect this area.

Industry standard (half-inch) magnetic tape is common for back-up, but not
for processing. A large capacity disc and a tape is a common mini-based business
computer configuration. The fixed nature of many of the eight-inch Winchester
drives has led to the development of high capacity cartridge tape (quarter-inch)
drives for back-up systems.

Any card or paper tape equipment or specials like facsimile (FAX) scanner/
printers, or computer-output-microfilm (COM) can be easily attached, possibly
using a general-purpose parallel interface card.

Devices required for connecting the computer to the physical world fall into
two categories, digital and analog. Both input and output devices are needed.
Digital 1/0 subsystems are either single-digit (lighting lamps, closing switches) or
multibit (coded data such as direct input from a keyboard). Analog signals are
converted to an equivalent binary representation by sampling and using an analog
to-digital converter (ADC). A digital-to-analog converter (DAC) is used to set a
hold circuit to produce a proportional analog voltage output. Multichannel signals
are multiplexed, with the more sophisticated devices under program control from
the computer (channel select, repetition rate, and amplifier gain). Signal process
ing is a highly specialized topic beyond the scope of this book.

3
Data Transmission

and Terminals

The design of teleprocessing systems is primarily concerned with providing a
more effective interface between computers and their end users. The main vehicle
for achieving this is the interactive terminal, which may be installed at the user's
place of work and connected on a permanent or occasional basis to the computer.
The computer itself may be in the same building as the user or on another
continent. Clearly, some facility for enabling the two devices to transmit data from
one to the other is essential, but the data communications aspect of teleprocessing
systems needs to be kept in context. For many organizations the ability to move
data rapidly and conveniently over long distances is beneficial in its own right but
it is in the ability of the user to interact directly with the computer that so much
potential lies. This chapter, then, is concerned with reviewing the basic concepts
and techniques of data transmission. It also describes the main types of terminal
available. For a more detailed treatment of this subject, the reader should turn to
the books listed as references. If you are already familiar with the subject it still
may advisable to skim the chapter to be sure that our terminology agrees with
yours.

Data Transmission and Distance

All computer systems involve some element of data transmission. Traditional
batch systems involve the movement of data between various system components
over multiwire cables. Such techniques are highly efficient. However, the cost of
such cables usually bodes against their use over distances of more than a few
hundred meters at best. A further complication arises when it is necessary to move
data from one building to another. If this requires transmission over land not
owned by the company concerned, then in most countries, there may be a legal

71

72 The Minicomputer in On-Line Systems

requirement to make use of transmission facilities provided by a govemment
licensed supplier of telecommunications services.

Once distance is a factor in data transmission, the characteristics of the
facilities available become markedly different. Figure 3 .1 compares the main
features of transmission over short-distance cable connections and over telecom
munications links. Transmission over local cables usually involves sending data
character by character (or word by word) in a bit-parallel fashion with separate
leads for addressing and control functions. The speed of transmission on such
cables can be very high and with extremely low error rates (usually caused by
hardware malfunction in the channel-driver logic).

In contrast, data on telecommunications circuits is transmitted in bit-serial
form and addresses and control characters need to be embedded in the data
stream. Transmission speeds are low in computer terms, with data rates in excess
of 9600 bits per second being relatively expensive, and sometimes difficult to
obtain. Furthermore, telecommunications circuits are engineered to lower stan-

Digital
device A

Bit-parallel (character- or word-serial)
Separate addressing lines
Separate control I ines

Digital
device B

Very high speeds possible (up to and over 1 Mbyte/s)
Short distances only (hundreds of meters)

(a) Data transmission over local cable connections (e.g., CPU to peripheral)

Digital
device A

Bit-serial
Addressing characters embedded in data stream
Control characters embedded in data stream

Digital
device B

Only low speeds readily available (up to 9600 bits/s)
Relatively high error rates
Transmission over long distances possible

(thousands of kilometers)

(b) Data transmission over telecommunications links

Figure 3.1
Data transmission characteristics

Data Transmission and Terminals 73

<lards than most computer equipment and error rates are high enough to require
the use of special techniques to detect and correct errors through intermittent data
loss. This problem of error rates and error handling is discussed later in the
chapter.

Telecommunications Services

With a few exceptions, companies wishing to employ data transmission tech
niques have to obtain the circuits required from the government-approved supplier
of telecommunications services to the community at large. In most countries the
only services available for data use are the telephone and telegraph networks. As
these systems were not designed for the job of data transmission, their use by
computers tends to pose many problems to both the user and the supplier. Figure
3.2 shows the main classes of service available. Each of these-telegraph,
telephone and, where available, data--can be subdivided into dedicated and
switched facilities. There are few people left in the technologically advanced parts
of the world who are not familiar with the dial-up telephone system. Similarly, in
the business community the dial-up (or switched) telegraph system, usually called
Telex, has become a feature of everyday life, especially in the face of a general
deterioration in postal services.

Both telephone and telegraph circuits can be obtained in the form of
permanent connections between two locations. Such links use the same circuits as
dial-up links, but all the switching exchanges are bypassed. Such dedicated lines

Switched

Figure 3.2

Telegraph

Private,
leased

TELEX and
TWX (USA)

Data transmission services

Telephone

Private,
leased

Public
switched
telephone

network (PSTN)

Data

Private, leased
(Dataphone

digital services)

Circuit
switched

(EDS)

Packet
switched

74 The Minicomputer in On-Line Systems

are leased from the supplier in return for an annual charge based on circuit length
and quality rather than usage.

In the 1980s it is expected that there will be extensive developments in the area
of public data networks. It may seem fatuous to observe that the telephone and
telegraph networks were not designed for use by computers, but it is important for
the system designer to keep this in mind-it is the major constraint on the
performance and availability of such circuits. In order to overcome such
constraints (including the time to establish calls on switched circuits) authorities
are actively pursuing the installation of services offering the wider range of
transmission rates, faster connect times, and higher reliability demanded by
computer-based systems. New data networks sometimes involve the exploitation
of new technology (for example, digital transmission) but more often, as a
contingency, use new techniques (notably packet switching) based on existing
analog communications facilities. The characteristics of these three types of
telecommunications services (telegraph, telephone, and data) will be described
later in this chapter.

Suppliers of Telecommunications Services

Any discussion of the organizations involved in the supply of telecommunications
services tends to require separate consideration of the United States and the rest of
the world. In the United States, suppliers of telecommunications facilities are
generally known as common carriers. These are privately owned and operated
companies licensed by the government through the agency of the Federal
Communications Commission. Although there are nearly 2000 such common
carriers the market is dominated by the massive American Telephone and
Telegraph Company (AT&T), which operates over 80 percent of all installed
telephones. The next largest telephone company, General Telephone and Electric,
holds a mere 7. 8 percent of the marketplace.

The telephone network controlled by AT&T is known as the Bell System and
is operated by twenty-three wholly or partially-owned regional subsidiaries. In
general, the services supplied by non-AT&T companies (known generically as the
Independents) are fully compatible with the Bell System, thereby making it
practical to make intercarrier calls. Switched telegraph services comprise the
internationally-standard TELEX service and the Teletypewriter Exchange (TWX)
network. Both of these are operated by the Western Union Telegraph Company.

In the 1970s the United States has experienced the growth of specialized
common carriers of which there are two types. The earliest, typified by
Microwave Communications Inc., developed and installed their own networks.
These were designed primarily to provide wide bandwidth channels in direct
competition with existing Bell intercity trunk services. The other type of
specialized common carrier made use of existing telecommunications circuits
(usually leased from Bell) and configured them into networks suitable for data

Data Transmission and Terminals 75

transmission by adding computer-controlled switches. These are known as value
added carriers, and the most well established in the late 1970s were TELENET
and TYMNET.

In response to this competition for such a potentially lucrative sector of the
marketplace, AT&T developed the Dataphone Digital Service (DDS). Dataphone
is the brand name under which Bell provides data communications services based
on the existing telephone system. DDS, however, employs digital transmission
technology to provide leased circuits between most major American cities.

It now seems that the monoply position of AT&T in the United States will be
somewhat weakened (at least for data transmission users) over the next decade.
With the exception of Canada, which has a telecommunications supply industry
similar in structure to that of the United States, the rest of the world is likely to
have to continue to live under a monopoly system, because in most countries such
monopolies are both exclusive and government controlled. Such telecommunica
tions authorities usually embrace postal services as well as telephone and
telegraph systems. Post, telegraph, and telephone administrations (PTTs) are
either government departments (as in France) or public corporations (as in the
United Kingdom). Strictly speaking if the administration is not a government
department it should be referred to as a Recognized Private Operating Agency
(RPOA), but as this would embrace both AT&T and the British Post Office most
telecommunications specialists tend to use PTT to refer to all government-owned
administrations.

Before embarking on the development of a communications-based system it is
important to contact the relevant administrations of the countries in which the
system will be based and obtain details of the services offered, the prevailing
tariff, and the regulations controlling the use of the facilities provided. The
regulations in particular vary from country to country, especially with respect to
the devices that can be attached to circuits. Some PTTs insist that certain
attachments be supplied only by themselves, others provide nothing beyond the
circuit terminations, and still others labor under a confusion of policies between
these extremes.

In the case of international connections, it is necessary to deal with the PTT
that will be responsible for one end of each circuit. For example, either the
Deutsche Bundespost or the Italian PTT will undertake to provide a circuit
between Frankfurt and Rome. Life gets complicated, however, when the user
company is headquartered in Frankfurt but also wishes to install a circuit between
London and Paris. In this case the Bundespost will not be able to help and it will
be necessary to contact the French PTT or the United Kingdom Post Office. As
such multinational networks expand in scope, the problems of development and
management become more complex, often requiring the appointment of a full
time communications manager. International communications is, if anything,
even more fraught with regulatory and political issues than domestic systems. For
example, it is not currently permitted to transmit data on dialed calls between
Europe and the United States. All data traffic into and out of the United States has

76 The Minicomputer in On-Line Systems

to be handled through one of three approved record carriers: ITT, RCA Global, or
Western Union International. In some parts of the world where there is political
friction between neighboring countries it may be necessary to route lines through
a neutral country. Considering the scope and complexity of telecommunications
systems worldwide there is a surprising level of standardization, a situation mainly
attributable to the work of the International Telecommunications Union (ITU), an
agency of the United Nations.

The ITU was established as long ago as 1863 and currently has 124 nation
members and a secretariat and conference center based in Geneva. The agency
comprises the International Frequency Registration Board (IFRB), which allo
cates and records radio frequencies; the International Consultative Committee on
Radio (CCIR), which approves standards relating to the use of radio communica
tions; and the International Consultative Committee on Telegraphy and Telephony
(CCITT), which develops standards for use in telecommunications systems.
CCITT has no power over members, and standards are therefore formulated as
recommendations, some of which will be referred to later in this chapter. The
recommendations are developed on an ongoing basis by various study groups,
working parties, and rapporteurs and submitted for approval to plenary sessions
held every four years.

Until the 1960s international telecommunications was carried out via cables
(some of them submarine) and limited-capacity radio links. This changed with the
launching of Early Bird and the advent of satellite communications. The
International Telecommunications Satellite Organization (INTELSAT) was estab
lished in 1964 with a membership of eleven countries, which by 1974 had grown to
eighty-five. Although new countries can join the organization, INTELSAT tends
to be dominated by an American company, Communications Satellite Corporation
(COMSAT), which must own not less than 50.6 percent of the international body.
INTELSAT's main objective is to develop satellite communications, and COM
SAT's main role in this is the development, launching, and operation of new
satellites. Currently in use are INTELSAT I (Early Bird), II, III, and IV. Another
recently established (1959) body is the European Conference of Postal and
Telecommunications Administrations (CEPT). CEPT is a club of some twenty-six
European PTTs and, although much of its work in the area of policy and tariff
structures affect the data communications user, it is not an open body like the
CCITT. CEPT does not in any way displace CCITT, but contributes to it and
works in parallel with it to implement recommendations in Europe.

A further group that develops standards relating to data communications is the
International Standards Organization (ISO). The ISO (and its various national
members such as the American National Standards Institute and the British
Standards Institute) has been particularly concerned with the development of link
protocols (procedures for using telecommunications facilities) and codes. Another
international body with a significant impact on the way in which we transmit data
is IBM. The size of IBM's share of the world computer market is so large that this
corporation tends to impose de facto standards in this field.

Data Transmission and Terminals 77

Circuit Arrangements

The circuits provided for the transmission of data may be characterized in a
number of ways:

-in-house/in-company, or
-common-carrier/PTT supplied
-switched/dialed or
-leased/dedicated/private
-simplex
-half duplex or
-full duplex
-two-wire circuits or
-four-wire circuits
-point-to-point/two-point or
-multipoint/multidrop

It is necessary to obtain circuits from a common carrier or a PTT only when
data is going to be transported over land not owned by the user. (The restriction
may also apply to the transmission of data between two companies, even if their
land is adjacent.) Within the confines of a single building or site an organization
may install its own telecommunications lines. (In some cases the common carrier
might be prepared to undertake the design, commissioning, and servicing of such
in-house facilities.) Traditionally the characteristics of in-company circuits are
essentially the same as those provided by PTTs, but new techniques based on
loops, rings, or busses are being introduced, as explained later.

Each of the three main classes of service-telegraph, telephone, and data
are obtainable on a switched or leased basis. Leased lines are sometimes called
dedicated or private circuits and are nonswitchable connections between fixed
customer locations. The user pays an annual rental charge (usually related to the
length and quality of the line) regardless of how much or how little the connection
is used. Dedicated lines bypass switching centers (but use the same local and
trunk circuits), thereby providing a higher level of quality. A further advantage of
leased lines is that the circuit is instantly available for use. In the case of switched
lines, it may take up to 60 seconds for the connection to be established (either by
dialing or automatically). Telegraph and telephone systems are switched through a
series of local and regional exchanges. Figure 3.3 illustrates the general structure
of a switched telephone network. British and (in parentheses) American terminol
ogy is employed. Equipment installed on customer premises (which may vary
from a single telephone instrument up to a private branch exchange) is connected
via one or more two-wire local ends (local loops) to a local exchange (central
office). Calls between nearby subscribers are switched in the local exchange. If
the number of calls justifies it, neighboring local exchanges may be intercon-

78 The Minicomputer in On-Line Systems

To

Equipment at subscriber's premises

,...,_..,~~~~Local end (local loop)

Local ends to other subscribers

-+-Local exchange (central office)

Group switching centers
(toll offices) neighboring

local exchanges ~~~/ ~.--~~~

Figure 3.3

To other group
switching centers

Equipment at
subscriber's premises

t
Trunk circuits

Local exchange

General schematic of a public switched telephone network

To neighboring
local exchanges

To other
group
switching
centers

nected so that calls between customers attached to each exchange can be
established without going up to the next level of the network.

If a long distance call needs to be made, the subscriber precedes the number
with the appropriate area code (STD code in the United Kingdom). This causes
the local exchange to route the call on to the next level of the system, a group
switching center (toll office). The call set-up may then route down to the relevant
local exchange or onward to other exchanges until it reaches the called subscriber.
When the caller replaces his handset, the call will clear down through each
exchange, releasing the intermediate circuits for other calls. There is almost
always a degree of alternate routing between exchanges so that secondary paths
are available in case of circuit failure or congestion. Switched telegraph networks
operate in a similar fashion, sometimes using special plant, in other cases sharing
plant with the telephone system. TELEX, for example, tends to be a physically
separate network, but TWX in the United States relies on telephone switches and
circuits. Although some data networks have been conceived to operate separately
from the telephone system, it is more likely in the long term that circuit-switched
data services will be integrated with new digital speech networks employing
computer-controlled exchanges.

Data Transmission and Terminals 19

Another technique for providing switched data services is packet switching.
This is so radically different from traditional circuit switching that it caused
considerable consternation among the PTTs when it was first proposed. However,
the private networks that pioneered the technique have been so successful that
many administrations in Europe have announced plans for packet-switched public
data networks, and the United States already has the first such service from a
common carrier in TELENET. The CCITT has produced a recommendation,
X25, which sets out standards for user access to packet-switched networks.
Circuits are provided with differing arrangements for the direction of transmis
sion. These arrangements can have a significant influence on the performance of
the circuit. Three schemes are possible, as illustrated in figure 3.4. Simplex
transmission (one direction only) is rarely used in teleprocessing systems. This is
because of the need for the receiving device to be able to acknowledge the arrival
of a message to the transmitting device. Half duplex working is a very common
arrangement that enables data to be transmitted in either direction but not
simultaneously. On the other hand, full duplex circuits enable data to be
transmitted simultaneously in both directions. (It should be noted that CCITT
definitions of these terms are different, but because the definitions used here are
the ones most universally accepted they will be used throughout the book.)

The local ends in telephone systems consist of two-wire loops. Speech circuits
at the next level of the network (interexchange) tend to be four-wire links, one pair
for each direction of transmission. On modem systems employing high-capacity
coaxial cable and microwave links this four-wire arrangement tends to be
functional only. The PTT or common carrier will, however, provide a four-wire
arrangement end-to-end, thereby giving a full duplex capability. Full duplex
working can also be achieved on two-wire links by multiplexing, a technique
described later in this chapter. Switched circuits are always two-wire, but leased
lines can be two or four, at the customer's option.

..

Figure 3.4
Directions of transmission

Simplex
(one direction
only)

Half duplex
(sequential
bothway
transmission)

Full-duplex
(simultaneous
bothway
transmission)

80 The Minicomputer in On-Line Systems

A dialed call establishes a simple point-to-point connection (a two-party
circuit). Although computer-based (or stored program controlled) exchanges make
it possible to set up a conference call with three or more users sharing a line, it is
not clear whether data transmission systems are likely to use such techniques. The
simplest form of leased line is point to point (or two point), but most PTTs and
common carriers are able to provice multipoint (or multidrop) private circuits
whereby a number of subscriber locations (usually up to twelve) may share a
single facility in order to reduce costs. This is illustrated in figure 3. 5.

Point-to-point circuit

- Telegraph, telephone or data networks
- Switched or leased
- Two-wire or four-wire (not telegraph)
- Half duplex or full duplex (up to certain speeds)

Multipoint circuit

1
l

- Telephone or data networks
- Leased only
- Four-wire only
- Half duplex or limited full duplex

capability

Figure 3.5
Two-point and multipoint circuits

Data Transmission and Terminals 81

Circuit Characteristics

This section deals with the characteristics of public telegraph, telephone, and data
networks and discusses some of the problems associated with attaching digital
devices for data transmission.

Electrical Interfaces

Electronic circuits used in computers work on TTL voltage levels; nominally
logical 0 is represented by 0 volts and logical 1 by 5 volts. TTL circuits do not
provide sufficient power for other than short distance transmission of signals, and
in any case 0 volts could be a broken wire rather than logic 0. Power amplifiers are
used to drive TTL-compatible signals over lines of up to ten meters or so, typically
for, say, a parallel printer interface. Thus the TTL voltage levels are nearly always
converted to a more suitable signal just before the plug on the equipment. The
most common signals used are those specified for RS232/V24 interfaces, namely
between + 6 and + 15 volts for logic 1 and between - 6 and - 15 volts for logic O;
0 volts is now an idle period, not logic 0. An earlier standard use.d to connect
Teletypes, which used mechanical relay contacts, not electronics, was the current
loop principle; logic 1 forced a current of 20 (or 60) milliamp down the wire loop
and logic 0 a null current. The voltage across the line for, say, 20 mA was small so
that lines longer than those possible with V24 could be used, and so they are still
occasionally in use for electronic asynchronous terminals. Telegraph signals for
transmission over long-distance public wires use ± 80 volts at slow speeds. For
longer distances than a computer to a local terminal, some form of modulation
must be used to retain undistorted data at the receiving end. For public
transmission (adopted for many long in-house runs), a modem is used as
described next. Less common methods adopted in-house use coaxial (or video)
cables with special modulation techniques such as the pulse-width modulation at
1 M bps used by IBM to interconnect 3277 VDUs and the 3271 controller of the
3270 cluster system. Manchester encoding is another technique occasionally
encountered and others will be introduced with the new in-house networks such as
Ethernet. It must be stressed that pre-defined standard modulation techniques
must be used on public networks for commonality, although unfortunately
American and European modulation techniques are sometimes incompatible.

Telegraph Circuits

At first sight it would seem that telegraph networks are eminently suited to the
transmission of data. Within computer components data is both recorded and
manipulated in digital form and bits are transmitted in the same fashion on
telegraph circuits. The only significant difference is in the signaling levels
employed. Interfacing to a simple leased circuit can, therefore, be achieved with

82 The Minicomputer in On-Line Systems

the aid of a simple level changer that converts o/s volt TTL internal signals to ± 80-
volt signals for the line and vice versa (see figure 3.6). Current loop or RS-232 are
often used in-house.

The disadvantage of using DC signaling on the communications link is that
distortion can impose limitations on transmission rates. The nice, square shape of
the pulse that leaves the adapter is subject to distortion caused by the capacitance
of the line. The greater the distance transmitted, the more severe is the distortion
until finally the signal cannot be reliably interpreted as 'O' or '1 '. This problem is
dealt with in telegraph systems through the use of regenerative repeaters. These
repeaters interpret a signal on the line and create a fresh, clean version of it for
onward transmission.

In essence the problem is this: the higher the transmission rate required, the
more repeaters are needed and the higher the cost of the network. As teleprinters
(teletypewriters) need operate only at very low speeds, most telegraph networks
operate in the range of 50 to 200 bits per second. TELEX, for example, is a 50-
bps service and TWX 150 bps. Now for telegraph systems to become a practical
medium for general-purpose data communications, a much higher range of speeds
will be required. But for common carriers to achieve this would require heavy
additional costs (for the extra repeaters) which would have to be passed on, in
part, to the majority of users, who are not going to benefit from the enhancement.

In spite of the speed restriction, switched and leased telegraph services are
occasionally used in computer systems as a low-cost method of data transmission.
DC signaling techniques are also used fairly extensively on an in-house basis. In

Telegraph

Digital device

Level changer _j

- Point-to-point
- Half duplex
- Asynchronous timing

Digital transmission
(regenerated)

- Public network speeds to 110/200 bits/s
- In-house limited distance speeds to 9600 bits/s

(20 or 60 mA current loop)

Figure 3.6
Data transmission on telegraph circuits

Digital device

L Level changer

Data Transmission and Terminals 83

this case, using RS232 ± 12 volt signals, transmission rates of up to 9600 bps are
possible so long as the cable length is kept below about 200 meters. For longer
distances, repeaters may have to be used or, alternatively, slower speeds accepted.

Telephone Circuits

The major difference between telegraph and telephone circuits is that the latter
employ analog (AC) signaling techniques. In other words, human speech is
transmitted as an electrical analogy of the sound waves made by the voice.
Clearly, this method is markedly different from DC digital signaling used in
computer components and, as you would expect, the cost and complexity of
interfacing increases accordingly. The key to transmitting data on analog
telephone lines is a device called a modem. In the United States, modems are
sometimes called data sets (to distinguish them from speech sets), but as this
expression is also used for computer data files, we shall stick to modem. Modems
work on the principle of transmitting an AC signal having a certain reference
frequency and amplitude (within the frequency range of 300 to 3400 hertz or
cycles per second usually carried by speech channels).

Seen graphically (perhaps on an oscilloscope) the signal would be represented
as a sine wave. The convention in data communications is that at a given moment
in time this carrier signal will represent a bit value of 1. A continuous, unchanging
carrier will therefore represent a whole string of 1-bits. The bits are passed to the
modem from the transmitting device (perhaps a computer or a terminal) over an
interface (figure 3. 7). If the transmitter wishes to send a 0-bit, then clearly the
modem needs to change the signal in some way so that the receiving modem
(which is passing the incoming stream of ones to the sink device) can generate a
digital 0 condition at the interface.

This process of changing the carrier signal is known as modulation, and the
reverse process demodulation. As most systems require transmission in both
directions, one box is designed to perform both functions-modulate/demodulate,
hence modem. Three characteristics of the signal can be changed to indicate the
occurrence of a 0-bit: amplitude (loudness), frequency (pitch), and phase (timing).
A simple modem may send a carrier of 1650 Hz to indicate 1 and increase this to
1850 Hz for a 0. (Clearly, a timing discipline needs to be imposed on this
arrangement so that both the transmitting and receiving ends are in step. This will
be considered later.) There are about half a dozen modulation techniques in
common use and some of them modulate to multiple levels so that 2 or 4 bits can
be sent in a single time interval; for the interested reader these techniques are
described in more detail in the references.

For most practical purposes, modems come in two types. The precise
meaning of the terms asynchronous and synchronous will be explained in due
course. Asynchronous modems are relatively low-cost devices suitable for low
speed transmission. The modem may be connected directly to the telephone local
end or operate acoustically through a telephone handset. Acoustic couplers work

84 The Minicomputer in On-Line Systems

Telephone

A A A Analogue transmission
· V V - (amplified)

Digital device Modem Modem

- Point-to-point/multipoint
- Half duplex/full duplex
- Asynchronous/synchronous timing
- Speeds to 9600 bits/son 4-wire circuits
- Speeds to 240 Kbits/s on wideband circuits

Figure 3.7
Data transmission on telephone circuits

Digital device

because the operating frequencies of the modem must be in the 300-3400 Hz
range mentioned previously. This means that the signals must be able to go
through the microphone and earpiece of a regular handset, thereby giving the
terminal a high degree of portability. The coupler could be a freestanding unit or
be built into the terminal itself. The modem at the computer end of the (dialed)
circuit would normally be directly connected. On analog telephone networks it is
unusual to find an acoustic coupler that will work reliably at speeds greater than
300 bps. Directly connected asynchronous modems can operate on the public
network at speeds up to 1800 bps, but in most countries the maximum is 1200 bps
(see figure 3.8).

Synchronous modems must be hardwired to the line, but for a much higher
cost are able to operate at speeds of up to 9600 bps on a single four-wire circuit.
The best speed possible on a dialed (two-wire) line is 4800 bps, half duplex. To
improve on this it is necessary to dial two lines, which the modem then uses as a
four-wire full duplex link. Synchronous modems vary mainly in the way in which
they handle line distortion. This can be done automatically, semiautomatically, or
not at alL In the latter case, the circuit will need to be preconditioned by the
common carrier to a standard suitable for the proposed speed of transmission.
These modems can also incorporate test features. The best way of learning about
them is to obtain literature from a few suppliers.

I
Asynchronous

Direct-connect

Up to
1800 bits/s

I

Figure 3.8
Types of modem

Acoustically
coupled

Up to
300 oits/s
(1200 sometimes
claimed)

Data Transmission and Terminals 85

Modems

I
I

Synchronous

I
Nonequalizing Manual

equalizing
Auto-equalizing

600-9600 bits/s (on a single
4-wire circuit)

Before leaving the subject of data transmission on telephone lines, it should be
noted that most PTTs and common carriers in the more developed nations of the
world have plans to develop new speech networks using digital transmission
technology. In some places this development has already started and entails the
use of both the transmission of digitized speech and the use of computer-controlled
telephone exchanges. This will ease the problems of data communications,
improving the performance of circuits and providing more services and facilities.
Indeed, PTTs have generally been careful to allow for the needs of the data user in
the design of such new systems.

Data Networks

Few countries have been prepared to wait for the enormous task of changing their
complete telephone systems to a new technology before attempting to provide
commerce and industry with improved facilities for transporting data. In the
United States, AT&T already offers leased lines under the Dataphone Digital
Service, in the Federal Republic of Germany the Bundespost provides fast circuit
switched services called EDS, and yet other countries have packet-switched
system. In spite of attempts by the CCITT to standardize the services and facilities
to be offered by telecommunications administrations it does seem likely that,
although the interface to data networks will be widely accepted, the features of
data networks will vary considerably. The reader is advised to keep abreast of
plans and progress in his own country.

Of the services currently being considered, the least likely to succeed as an
independent data network in the medium term is circuit switching. This will
probably be done (as it is now) on the telephone system. Packet switching seems
to be a much more cost-effective approach to data transmission for both the user

86 The Minicomputer in On-Line Systems

and the common carrier. There will, however, be a significant body of users,
especially those who have developed their own private packet-switched networks,
who will resist the move to public service and perpetuate a requirement for leased
lines.

At present (early 1980) it is difficult to generalize on the characteristics of data
links. With the exception of services such as Bell's DDS most data networks make
use of existing speech circuits and internal network links. This means that users
interface through orthodox modems. As such networks gradually move over to
digital circuits the modem will be replaced by much simple and cheaper network
terminating units (NTU-see figure 3.9). The best example of these currently
installed is the service unit needed for the DDS. The interface between the
terminal equipment and the NTU will be much simpler than the one required for
modems. These interfaces will be described and compared later in the chapter.

In-House Networks

The distances involved with in-house interconnections are relatively short so that
they have far more scope than public services. Traditionally networks have been
very hierarchically structured, with terminals sited around a building linked in a

Data

Digital device NTU

1
Network terminating
unit (or service unit)

- Switched point-to-point
- Leased point-to-point (possibly multipoint)
- Packet-switched
- Full duplex (half duplex optional)
- Synchronous timing (possible asynchronous option)
- Speeds: 600, 2400, 4800, 9600, 48 Kbits/s, 50 Kbits/s

Figure 3.9
Data transmission on digital data networks

Digital transmission
(sometimes uses existing
analog speech circuts)

Digital device

Data Transmission and Terminals 87

star topology by individual cables to a central computer, with occasional use of
multiplexors or cluster controllers. Occasionally, as with IBM, coaxial cables are
used, but usually direct V24 signalling will cope with the distances involved using
multi-core cable. However, with the increasing desire to integrate computer
terminals with word processors, facsimile transmission, photo copiers, and the
like, a more flexible general-purpose structure is desired. Preferably a general
purpose network should allow terminals and processors of any mix to plug directly
into the network without upsetting other devices already on the network.

Three techniques are evolving: loops, rings, and buses. All form data into
packets and transmit the data to all possible recipients with an address header. The
target device detects its own address and accepts the data packet. The loop (e.g.
the IBM 8100 system) requires one device to be the controller. The ring (Prime
NET, Cambridge ring) is a variant where all devices can be master. Each node
must store at least one bit before retransmitting on the ring to enable the address
match to commence and if needed to strip the message off the ring. Since
transmission between adjacent nodes is effectively point-to-point, efficient high
speed transmission can be used with standard protocols (SDLC, for instance, on
the IBM 8100). On the other hand a bus is a common coaxial cable to which all
devices are directly attached. Any one can become master and place an addressed
packet on the bus. All devices are normally in a listen mode so that the addressed
devices accept the packet. This is termed a broadcast. For a device to determine
whether it can become master, it listens to see that the bus is quiet. If the bus is not
quiet, it will not transmit. However, contention can occur when two devices wish
to transmit simultaneously. To resolve this a sending device reads its own
transmitted message off the line and compares it with the original, retrying when
it mismatches. Only one packet can be on a bus at once, while multiple packets
can be on a ring at the same time, giving an effectively higher bandwidth.
However, bit rates on buses are over 4 MHz on coax cable and will go to hundreds
of MHz in future with fiber optics.

Noise, Distortion and Error Rates

In our comparison of parallel cable connection with bit-serial telecommunications
circuits, one of the major differences was that of error rate. Telephone lines are
engineered to a lower level than the cables used to connect (for example) a CPU to
a disc drive. This situation is largely acceptable on voice links because of the
redundancy of human speech. However, the system designer must consider the
communications components to be inherently unreliable. In other words, the
system has to be designed on the assumption that failures will occur; data will be
lost and circuits will fail for short or long periods of time. The handling of errors
on communications lines is a function of the error detection and correction (EDC)
features of the link control (protocol) procedures described later. In this section we
shall concern ourselves with the source and magnitude of such errors.

88 The Minicomputer in On-Line Systems

Noise is a completely different phenomenon from distortion. Distortion is a
predictable property of any communications channel. For a detailed description of
the main types of distortion, the interested reader is referred to the books listed at
the end of this book. Distortion can be dealt with in one of two ways. The
common carrier can "condition" the circuit by inserting components that
compensate for the effect of distortion. Conditioning also involves the minimiza
tion of noise levels. A switched circuit is always unconditioned. A leased line may
be supplied unconditioned or, for a higher rental, conditioned to one of a number
of specified levels. AT&T, for example, offers two types of conditioning for
speech lines. C conditioning reduces the distortion according to five standards
Cl to C5-on a variety of two-point and multipoint circuit configurations. D
conditioning is used to reduce signal-to-noise ratios on circuits to be used for 9600
bps transmission. Lines can have both C and D conditioning as required. As
mentioned earlier, the more sophisticated synchronous modems are available with
built-in facilities for automatically (or semiautomatically) compensating for the
effects of distortion. These can, to an extent, supersede the benefits of C
conditioning, and one aspect of network design is to explore the payoffs between
lower line rentals and more expensive modems.

Noise, on the other hand, is a less predictable characteristic of the circuit
being used and the network of which it is a part. Unlike distortion, noise can only
be measured in statistical terms. The three main categories of noise are thermal
noise, impulse noise, and induction and crosstalk. Thermal noise is a continuous
background hiss that can be minimized but never eliminated. Induced currents are
generally picked up from power supply cables, usually in electrically noisy
environments (near elevator shafts). Crosstalk is spillage from adjacent circuits in
the communications network. But the major problem, particularly on dialed
circuits, is impulse noise. Short, random bursts of noise cause corruption of any
data blocks being transmitted at the time.

The CCITT has published a rec.ommendation (V53) for the maximum error
rates that should be experienced on leased and switched circuits at a variety of
signaling rates. In the table below the modulation rate refers to the number of

Maximum
Bit

Modulation Rate Circuit Error Rate

200 Leased 5-10-5

200 Switched lQ-4

600 Leased 5-10-s

600 Switched 10-3

1200 Leased 5-104

1200 Switched 10-3

Data Transmission and Terminals 89

signaling intervals per second. If multilevel modulation techniques are being
used, the data rate (bits per second) will be two or four times greater.

Note that this recommendation specifies maximum error rates. If these are the
rates being experienced in practice, then the user will be having a difficult time!
Take, for example, transmission on switched lines at 600 bps and above. An error
rate of W-3 represents a loss of one bit per 1000 transmitted. A thousand bits could
be a single message of over 100 characters, and an attempt to transmit that
message is unlikely to succeed. A bit loss will cause a parity failure and, when the
message is retransmitted, it is likely to fail again, causing a further retransmission
and so on ad infinitum. In practice, therefore, the quality of lines should be at least
an order of magnitude better than the CCITT recommendation. When speech
networks have moved completely to digital technology the error rates should be as
good as 10-6 or even 10-1 • The use of packet-switching techniques involving
automatic retransmission of bad packets within the network can enhance the
reliability of transmission even when analog circuits are being used. On the
British Experimental Packet Switched Service, for example, a design objective
was to achieve an error rate of one in 10-6 packets lost (a packet may be up to 2000
bits in length). But even errors as infrequent as this cannot be ignored.

Transmission Timing and Synchronism

In a transmission system using a parallel channel, the transmitting and receiving
ends are kept in synchronism by special timing leads that indicate when a
character (or word) is available on the data leads. On serial telecommunications
circuits the problem is more complex than this. Techniques need to be employed
to achieve synchronism first at a bit level and then at a character level.

Transmission Timing

The timing of data transmission (and reception) is accomplished through the use
of oscillators or clocks located in either the terminal equipment (data transmission
equipment, DTE) or in the modem (data circuit-terminating equipment, DCE) as
shown in figure 3 .10. Some simple (asynchronous) modems do not need timing
information and merely copy the bit presented to the line (or vice versa). In this
case it is the responsibility of the DTE to ensure that the correct signaling intervals
are adhered to. In the case of higher speed (synchronous) modems both the DTE
and the DCE need timing information. This is always achieved by having a single
clock in either the terminal or the modem and then copying the timing pulses to
the other device over the interface. A clock then determines the rate of
transmission and

-at the transmission end it tells the modem when to take a bit from the DTE
and modulate it onto the line;

90 The Minicomputer in On-Line Systems

DTE

DTE

Figure 3.10
Transmission timing

Location of clocks (oscillators)

Modem (DCE)

Modem (DCE)

Clock in DTE and
copied to modem

Clock in modem (DCE)
--- copied to DTE (terminal

or CCU)

-at the receiving end it tells the modem when to sample the line for an
incoming bit;
-at both ends it facilitates the orderly passing of bits over the interfaces.

Although it is possible to obtain oscillators that will provide any timing rate,
certain conventional speeds have been adopted. These are, in bits per second;

50
75

100
110
134.5
150
200
300
600

1200
1800
2000

2,400
3,600
4,800
7,200
9,600

19,200
48,000
50,000
50,200

240,000

Not all of these will be available on all systems and there may be some devices
using unconventional speeds.

The clocks usually provide a pulse for every signaling interval. This is known
as the baud rate. If there are 2400 signaling intervals in each second, the system is
said to have a speed of 2400 baud. This information is not, however, much use to

Data Transmission and Terminals 91

the system designer because he needs to know the bit rate. If a four-level
modulation technique is being used, then the same link can be better described as
4800 bits per second.

Our next problem is the question of how to ensure that the receiving end is
looking for incoming bits at the same time that they are being transmitted. Two
techniques are used for this: asynchronous (start/stop) and synchronous
transmission.

Asynchronous Transmission

The synchronism problem exists at two levels, the bit and the character. The
clocks used in data transmission are on the whole highly accurate, but they do
differ fractionally from one another. For example, if one clock varies from another
by 1 percent, it will only be necessary to run them for a relatively short period
before they become completely out of step. The concept of asynchronous
transmission is based on the idea of restarting the clocks at the beginning of each
character. The likelihood of their getting out of step during such a short period of
transmission is slight. When the line is not carrying data it will transmit a
continuous carrier. (In the case of half duplex lines, the carrier will have to be
specially started by the transmitting modem prior to a period of transmission and
then shut off on completion so that the other end may transmit if required.) The
start of a character is indicated by the transmission of a start bit, which causes the
receiver to activate its clocks. A start bit must be a zero, the opposite condition
from the carrier.

Immediately following the start will be the data bits (usually five, six, or
seven of them), a parity bit and one or more stop bits (see figure 3.11). The stop
bits are needed to give· the receiving device time to get rid of the incoming
character (perhaps by printing it). This enables the next sequential character to
follow contiguously. If that next character is not ready for transmission (perhaps it
is coming from a keyboard), then the carrier will be sent to hold the line in an idle

Direction of transmission

0 0 0 0 0

I I

L_.,-Jl 1"--t-GCarrier idle t l____ Start bit

~-----~-~ Data bits

Parity bit

Stop bits
(1, 1.5,or2)

Figure 3.11
Asynchronous (start/stop) transmission

92 The Minicomputer in On-Line Systems

condition. If all the characters have been sent then the carrier will be turned off
(on half duplex lines).

This asynchronous method of working (sometimes called start/stop, for
obvious reasons) achieves bit timing and character synchronism at the same time.
The technique is inexpensive to implement but is relatively inefficient because of
the number of redundant bits that must be transmitted with each character. Start/
stop transmission is best suited to low-speed, interactive terminals such as
keyboard printers. For higher volume, higher speed transmission the overhead of
30 percent or more is generally considered unacceptable. In these cases,
synchronous transmission needs to be considered.

Synchronous Transmission

In the case of synchronous transmission systems, bit timing is a separate function
from character timing. The periodic transmission of a stream of bits enables the
receiving device to ensure that its clock is in step with that of the other device
prior to the sending of a block of data. In practice the idle sequence may be an
alternating pattern of zeros and ones (instead of an unchanging carrier) and the
timing is obtained from the average time between transitions from one state to the
other.

Even when the clocks have been synchronized, they are unlikely to stay in
step for too long. To avoid the danger of this happening during the transmission of
a long block of data, the hardware line adapters may inject a short stream of
synchronizing bits. This might happen automatically after a predetermined period
(say, one second) without synchronism. Bit timing is almost always handled
automatically by hardware. Character synchronism and the identification of the
beginning of a transmission block is achieved in one operation. This operation
introduces the concept of the SYN (synchronizing) character. A SYN character
has a prespecified pattern of bits according to the line code being used. The ASCII
SYN character, for example, has a bit pattern of 0010110, plus a parity bit. In the
line adapter the incoming bit stream is fed bit by bit into an 8-bit shift register.
Each consecutive pattern of 8 bits is compared with the SYN pattern. If a SYN
character is found, the 8 bits are discarded (because they are not needed in the
terminal device).

Because a random occurrence of a SYN character could be caused by noise on
the communications channel, it is conventional for a minimum of two and a
maximum of six SYNs to be transmitted contiguously at the beginning of each
block. The first SYN, therefore, is only accepted as genuine if it is followed by
one or more additional SYNs. Subsequent blocks may follow contiguously but
must be preceded by further SYNs. Figure 3.12 shows the general format of a data
block transmitted using synchronous timing techniques. Problems can occur when
random SYNs occur in the data, but this problem will be considered in the section
on line protocols.

Synchronous transmission is usually employed for transmission of blocks of
data rather than individual characters. Such blocks are usually sent between
processors or between a processor and a buffered terminal. Once the block is over

Data Transmission and Terminals 93

Direction of transmission -----

Idle BCC Data I SYN I SYN I Idle

1 t Synchronizing

L_ D<t• oh"""" (o::::~NS)
control characters)

~------- Block check character

Figure 3.12
Synchronous transmission

a certain size the efficiency of this technique becomes better than that of a
synchronous transmission because it is unnecessary to carry start and stop bits on
each character. Faster speeds are also facilitated and data rates are normally in the
range of 2400 to 9600 bps. The price of this extra performance and efficiency,
however, lies in the higher cost of both modems and line adapters.

Communications Interfaces

The interfaces between the data terminal equipment and the modem or network
terminating unit (figure 3.13) are the subject of CCITT recommendations. Two
sets of recommendations are currently of interest. The V-series relates to modems
and other terminating equipment for telephone and telegraph lines. The more
recently published X-series is concerned with data networks. The standard
interface circuits most commonly used are listed below. They are taken from
CCITT recommendation V24 (the American equivalent is EIA RS-232B):

Data Transmitted
Received

-Control { Request to send
1 Clear to send

Data set ready
2

3

4

-Timing

{ Data terminal ready
Ring indicator

{ Data carrier detector
Data modulation detector
Speed selector

Transmitter signal element timing
Receiver signal element timing

-Grounds Protective ground
Signal ground

To modem
From modem

To modem
From modem
From modem
To modem
From modem
From modem
From modem
To/from modem

To/from modem
To/from modem

94 The Minicomputer in On-Line Systems

DTE ~ Modem

or data
service
unit

Figure 3.13
Communications interfaces

7

Interface implemented on
ISO standard 25-wire cables

Modem

or data
~ DTE

service
unit

This fairly comprehensive list of circuits is rarely used in its entirety. For example,
asynchronous links do not require timing leads. If a modem is attached to a leased
line the control circuits for connecting to calls on the PSTN (public-switched
telephone network) are not needed. These subsets of the V24 recommendations
are specified by further CCITT standards listed in figure 3 .14.

Before proceeding, a more detailed review of the interface would be useful.
Most interfaces are implemented on an ISO-standard 25-wire plug/socket and
cable, but the full 25 circuits are never used. Although multiple leads are used, it
is important to remember that the interface is a serial one, that is, data is passed in
a serial-by-bit fashion over the transmitted data lead (to the modem) or the

V24 List of all interchange circuits likely to be used to implement a specific
interface. Circuits are numbered-100-series for data transmission and
modem control, 200-series for auto dialing

V23 Subset of V24 required for 600/1200 bps transmission on PSTN and/or
leased lines. (United Kingdom Post Office Datel 600)

V21 Subset of V24 required for 200 bps transmission on PSTN and/or leased
lines (300 bps possible in practice) (United Kingdom Post Office Datel
200)

V26 2400 bps modem for use on leased circuits
V26b Suitable for 2400-bps transmission on leased lines with fallback to 1200

bps on the PSTN (United Kingdom Post Office Datel 2400)
V27 4800-bps/modem
V35 Recommendation for a 48-Kbps modem
V41 Specification of a polynomial for cyclic redundancy checking
V 10 Telegraph transmission at 50 bps on TELEX service or 50/ l 10 bps on

leased lines

Figure 3.14
Major CCITT V-series recommendations (existing services)

Data Transmission and Terminals 95

received data lead (from the modem). Various control circuits are available. Those
in the above list marked (1) are obligatory and those marked (2), (3), and (4) are
optional. Before a terminal transmits data, it raises a signal on the request to send
lead. This tells the modem to start transmitting the carrier, but as the carrier will
take some time to stabilize (up to 100 milliseconds) the terminal must wait until
the modem signals on the clear to send lead before presenting data. The data set
ready circuit indicates to the terminal that the modem is switched on and ready to
operate. This lead should be checked prior to issuing request to send/clear to sen.d
sequences and is sometimes copied to a display lamp on the terminal.

The next two control leads, those marked (2), enable the terminal to
automatically connect to an incoming dialed call. The modem is attached to a
local exchange line. When an incoming call is received it puts a signal to the
terminal on the ring indicator circuit (if the caller is dialing manually, he will
actually hear a ringing tone). The signal on the ring indicator usually raises an
interrupt within the processor (or terminal control logic), whereupon it decides
whether or not it is able to accept the call. If it can, it signals back to the modem
on the data terminal ready lead, which causes the modem to connect to the line
(equivalent to picking up the receiver). The circuits shown above are known as the
100-series. An additional set known as the 200-series (V25) can be used for the
automatic dialing of calls on the PSTN from the terminal.

The leads marked (3) are used to tell the terminal that a carrier is being
received and that the quality of the modulation is acceptable. Two optional speed
selector circuits enable multispeed modems and adapters to be implemented.

The timing leads are needed to pass clock pulses between the adapter and the
modem (according to the location of the clock). Separate circuits are employed for
transmission and reception because different data rates could be used in each
direction. The protective ground is an electrical safety feature. The signal ground
provides a common reference potential for the other circuits. With the advent of
public data networks, the CCITT has published a new set of recommendations
known as the X-series. The more important of these are listed in figure 3.15.

As the cost difference between synchronous and asynchronous terminal
devices is shrinking, it seems likely that the most popular method of interfacing to
public data network terminating units (NTUs) will be through the X21 syn
chronous recommendation. This is very much simpler than the equivalent V26
arrangement, and the only interchange circuits required are as follows:

Data Transmitted ToNTU
Received From NTU

Control Control ToNTU
Indication From NTU

Timing Signal element From NTU
Byte (optional) From NTU

The data circuits are used in the same manner as on the V-series interfaces. The
control lead is used by the terminal device to indicate to the NTU that a call-

96 The Minicomputer in On-Line Systems

Xl User classes of service:
Class 1: Asynchronous up to 300 bps
Class 2: Synchronous at 600 bps
Class 3: Synchronous at 2400 bps }
Class 4: Synchronous at 4800 bps
Class 5: Synchronous at 9600 bps
Class 6 Synchronous at 48000 bps
*Also packet-switched classes

X2 User facilities in public data networks. For example:
Closed user groups
Incoming calls barred
Auto-calling and auto-answer
Abbreviated calling
Remote line identification
Call transfer/redirection
Multiple address calls
Packet delivery confirmation

X20 Asynchronous transmission on public data networks

X21 Synchronous transmission on public data networks

X2lb Access for devices using V-series interfaces

X24 Definition of interchange circuits

X25 Interface for packet-mode terminals

Figure 3.15
Major CCITT X-series recommendations (public data networks)

establishment sequence or data is being sent. It will be off at all other times. The
indication circuit is used by the NTU to tell the terminal that an incoming call is
being set up or data is being received. On digital data networks bit timing is
obtained from the incoming bit stream. The derived timing pulses are passed to
the terminal over the signal element timing circuit. Some digital networks will
operate on a byte-synchronous basis. In these cases, the byte timing lead will
indicate to the terminal the first bit on any received bytes (and when the first bit is
transmitted on any outgoing bytes). The other important CCITT recommendation
relating to public data networks is X25, which defines an interface for a packet
mode terminal (to be considered later).

Data Link Controls

So far we have considered the means by which we can transmit bits of data from
one digital device to another over a telecommunications channel. The practical use

Data Transmission and Terminals 97

of such links, however, requires additional, higher-level procedures known as data
link controls (DLCs), sometimes called line protocols. DLCs are implemented in
a combination of hardware, software and, increasingly, programmable hardware
interfaces. The objectives of a line protocol are to control the orderly flow of data
from one DTE to another at maximum efficiency (i.e., minimum overhead), and
with the minimum number of undetected errors.

The obstacles to achieving those objectives may be summarized as follows:

Serial-by-bit transmission requires that control and addressing functions be
sent in-stream with data;
Inherently unreliable circuits cause a relatively high frequency of bit-loss and
circuit failure;
Nonpermanent connects often require the frequent establishment of actual or
conceptual circuits between the DTEs; and
Shared (multipoint) circuits complicate the management of data flow on the
links.

Four main types of data are used in data link controls. These are:

The information the user wishes to transmit
Addressing data used to select the device to receive the information (or the
device that may transmit next)
Control information consisting of commands and responses (get ready to
send, ready to receive)
Checking information such as longitudinal and cyclic redundancy check bits
used to detect bit loss or inversion

The organization and use of these fields is best considered in the context of
specific link controls. As we see it, there have been three generations of line
protocol: Telegraphy, Basic Mode, and High-level Data Link Controls. Each of
these will be considered separately.

Telegraph Message-Switching Protocols

Perhaps the earliest form of protocol is one still in extensive (and expanding) use.
Telegraph message-switching systems have been installed mostly by large
organizations for internal use or by groups of organizations such as airlines,
banks, and stockbrokers. Telegraph systems are, technically, relatively un
sophisticated. Larger networks may appear complex, but the basic principles of
telegraph communications are very simple. (The references at the end of this book
provide detailed explanations of telegraph systems and equipment.) This very lack
of sophistication (for example, there is no hardware error detection) transfers
complexity to the operator, who has to use his teletypewriter to enter control
information as well as the message. The Teletype (or teleprinter) may be

98 The Minicomputer in On-Line Systems

connected to the switch by dialed or, more usually, switched lines. The switch
itself may be completely manual in operation, the receiving station punching
paper tape which is then transmitted onward to the destination according to the
address in a header.

A number of semiautomatic systems are available, but most message switches
currently being installed are computer-based. However, because of the basic
nature of telegraph equipment (still used for reasons of cost) the protocols used
have developed little since the "torn tape" days. The implementation of message
formats varies enormously; some systems manage with a header of only a few
characters, others have headers greater than the average size of the message text.
On simple Teletypes everything has to be keyed by the operator. On some systems
where more sophisticated terminals can be attached, some control sequences may
be entered automatically.

Figure 3.16 shows a typical message format. The start pattern is used to
"wake up" the switch. The start-of-header sequence is not found on all systems

+:+:

~
Start pattern

zczc
"--r--'

Start of
header

>>>>
L-v-1
Start of
message

zzzz
~

End of message

LDS

~
Source

ID

LOD

~

Destination
ID

PR2
L....y-J

Priority

Text of message

----- Further messages or headers may start here

,,,,
L--y--)

End of transmission

Figure 3.16
Typical format of input message in automatic/semiautomatic
switching system

CPY BRM GLW

Copy destinations
(and other service
options)

Data Transmission and Terminals 99

but may be needed if multiple messages have to be sent in one transm1ss1on
session. The header usually comprises identifying codes for the source and
destination. Most message-switching systems are subject to congestion, and
therefore a message priority code is useful. The priorities normally used are "life
and death," "urgent," "normal," and "deferred." The header will also include a
number of service options according to the sophistication of the switch. Our
example in figure 3 .16 shows the message being copied to two other destinations.

As the header can be of variable length, a start of message sequence is needed
before the beginning of the message text. Similarly, an end of message sequence is
needed at the end. More messages to the same location may be entered, but it is
more usual for the header to be reentered. The end-of-transmission sequences
closes down the transmitting station and makes it available to receive incoming
messages. A priority incoming message may interrupt the keying of a message.

What are the major problems of a protocol of this kind? First of all, it is
inefficient; there is a very high ratio of control characters to text characters. There
is no automatic error detection and correction. Transmission errors affecting the
header could cause misrouting and errors in the text could cause the message to be
misunderstood unless the Teletype operator takes care to respect crucial figures
and words. Misrouting or partial loss of the message could occur because of the
lack of transparency in the text. Because the switch needs to scan all incoming
characters for control sequences, if the message contains ZZZZ, then the switch
will assume that the message has ended. The protocol has very limited functions;
it is not possible, for example, to poll shared lines. The code used in telegraphy
systems is usually the 5-bit International Alphabet no. 2, which has no lowercase
and few special characters. Clearly, message-switching protocols are not really
suitable for data applications-they were not designed for the job. But they do
give us a reference point against which we can compare the more sophisticated
link controls.

Basic Mode Link Controls

If the DTE-DCE interface is an area where an agreeable level of standardization
has been achieved, only the opposite can be said of data link controls. The second
generation of protocols were developed at a time when the cost of "intelligence"
was high and simple control procedures were needed for links between relatively
powerful mainframe systems and "idiot" terminals. In spite of work by
standardization bodies on international norms for such link controls (ISO 2628
and BS 4505), variations have proliferated. Some suppliers managed to standard
ize on one protocol, but others sometimes developed protocols for specific
terminals. The result has been that it is difficult to attach one supplier's terminal to
another's processor unless the former was developed to emulate an acceptable link
control.

Although basic mode control procedures is the expression used by the ISO to
describe its standard link control, we shall use basic mode to describe all second-

100 The Minicomputer in On-Line Systems

generation protocols. These fall readily into two categories with some extensions:
(a) contention (+conversational), and (b) polling/selecting (+extended basic
modes). The two most widely used codes in basic mode protocols are CCITT
International Alphabet no. 5 (and its American equivalent, ASCII, the American
Standard Code for Information Interchange, 7 bits) and IBM's 8-bit Extended

b, 0 0 0 0 1 1 1 1

b2 0 0 1 1 0 0 1 1

b3 0 1 0 1 0 1 0 1

b4 b3 b2 b, 0 1 2 3 4 5 6 7

TC7 ' 0 0 0 0 0 NUL (OLE) SP 0 p p

0 0 0 1 1
TC1

(SOH)
DC1 ! 1 A Q a q

TC2 DC2 " R 0 0 1 0 2 2 B b r
(STX)

0 0 1 1 3
TC3 DC3 £(#) 3 c s c s (ETX)

0 1 0 0 4 TC4 DC4 $(ll) 4 D T d t (EOT)

0 1 0 1 5 TC5 TC8 % 5 E u e LI
(ENO) (NAK)

0 1 1 0 6 TC6 TC9 & 6 F v f v
(ACK) (SYN)

0 1 1 1 7
TC10 BEL
(ETB)

I
7 G w g w

1 0 0 0 8
FE0

CAN (8 H x h x (BS)

1 0 0 1 9
FE1

EM) 9 I y i y
(HT)

1 0 1 0 10
FE2

SUB * : J z j (LF) z

1 0 1 1 11
FE3

ESC + K k (VT)

1 1 0 0 12
FE4 IS4 < L I (FF) (FS)

1 1 0 1 13
FE5 IS3 - = M (CR) (GS) m

1 1 1 0 14 so IS2 > N n (RSI

1 1 1 1 15 SI
IS1

I ? 0 - 0 DEL (US)

Figure 3.17
CCITT International Alphabet 5 (recommendation V3)-ASCII

Data Transmission and Terminals 101

Binary Coded Decimal Interchange Code. The CCITT code known as IA5, is
shown in figure 3.17. EBCDIC, the IBM standard, is shown in figure 3.18. Each
code comprises the following groups of characters: alphabetic (upper- and
lowercase), numeric (0 through 9), special characters (punctuation, etc.), and
control characters.

The implementation of basic mode protocols involves the use of special
control characters at certain points in the data flow. These control characters and
the functions they perform are described in detail in the references. For the
purposes of this chapter they will be described in the context of their use in
specific link controls.

The simplest of link controls is known as the contention protocol. This can
only be used on point-to-point lines and is widely used for Teletype dial-up to
time-sharing services. The code used is almost always IA5 (ASCil-7). A simple

00 01

Hex 1 00 01 10 11 00 01 10 11 00 01
Bits i 4567 0 1 2 3 4 5 6 7 8 9

0000 0 NUL OLE SP &

0001 1 SOH SBA I a j

0010 2 STX EUA SYN b k

0011 3 ETX IC c I

0100 4 d m

0101 5 PT NL e n

0110 6 ETB f 0

0111 7 ESC EOT g p

1000 8 h q

1001 9 EM i r

1010 A c ! I
I :

1011 B $ #

1100 c DUP RA < * % @

1101 D SF ENO NAK () - '
1110 E FM + > =

1111 F ITB SUB I I ? "

Figure 3.18
IBM Extended Binary Coded Decimal Interchange Code
(EBCDIC), version used for IBM 3270 display system

10

10 11 00 01

A B c D

A J

s B K

t c L

u D M

v E N

w F 0

x G p

y H Q

z I R

11

10

E

s
T

u

v

w
x
y

z

11

F

0

1

2

3

4

5

6

7

8

9

~

1--

f.--

Bit
0.1

2,3

Hex 0

102 The Minicomputer in On-Line Systems

representation of the protocol is shown in figure 3 .19. The two devices on the line
act as equal partners. If one wishes to transmit to the other it must first send an
ENQ control character. This character is generally used to solicit a response from
a device. It may be generated by pressing a key (usually marked attention) on the
terminal keyboard or may be transmitted by the computer software. After sending
an ENQ, the device must wait for a response. If the other unit cannot accept a
message, it will reply with a NAK character (negative acknowledge) and the
would-be sender will have to try again later. If the reply is an ACK (positive
acknowledgement) then the message can be transmitted. If the terminal is
unbuffered, the keyboard will unlock and the user will have to start retyping.

In our example in figure 3 .19 the data is prefixed with STX (start of text). This
may not always be necessary. ETX tells the receiver that the message has finished

Computer

t= Q

Timer delay

Send message

STX/(data)/ETX/BCC

Another message No more messages

KEY

ENO Enquire
ACK Positive acknowledgement
NAK Negative acknowledgement
STX Start of text
ETX End of text
BCC Block checking character(s)
EOT End of transmission

EOT

Note: Same sequence may be started by the terminal

Figure 3.19
A typical contention protocol

Terminal

Terminal ready
Terminal not ready to receive

NAK -.:=J
ACK

Error detected Good m essage

NAK_J

ACK ~

Data Transmission and Terminals 103

and, in this case, that a block check character (LRC or CRC) follows. In this type
of basic mode protocol block parity checking is optional, as indeed is character
parity. If, however, some form of checking is being carried out, then the receiver
must tell the transmitter that the message arrived with good parity or not, as the
case may be. If the parity was bad, then the receiver responds with the NAK
character and this will cause retransmission. An ACK will enable the sending
device to transmit another message or, if it has finished, an EOT (end-of
transmission) which will free the line. Either device will then be able to transmit
ENQs in order to seize the line.

This type of link control is sometimes streamlined by replacing the ACKs with
a data block that needs to go in that direction anyway (if one is available). This is
particularly relevant in interactive systems where a terminal operator receives data
from the computer for each input message (or vice versa, where the computer is
soliciting data from the user). Such protocols are called conversational, and a
typical example is included in figure 3.20.

The other main type of basic mode link control is known loosely as polling!
selecting protocols. This kind of protocol is obligatory where multipoint circuits
are used but may optionally be employed on point-to-point lines. The use of
polling protocols implies a master/slave relationship between the computer and the
terminal. This is caused by the additional logic required. Polling requires that
each terminal device attached to a circuit has a unique address, enabling the
computer to poll each device in turn to give it an opportunity to transmit data to

Computer

Com puter ready to receive Computer not ready

T
....-

NAK

ACK
Goo d message Bad message

l NAK
Computer replies with message or (ACK/EOT)

STX/(data)/ETX

Computer resends message

Note: Computer or terminal may start a sequence.

Figure 3.20
A typical conversational protocol

Terminal
Start here

ENO

......

Operator keys message
STX/(data)/ETX(or EOT)-

~

Bad message
~

J Good message (ope

NAK keys another messa
or ends with EQT)

rat or
ge

104 The Minicomputer in On-Line Systems

the central site. Clearly, only one device may transmit at any one time and the
computer acts like a (good) chairman of a meeting who organizes a coherent flow
of data. Polling enables terminals to send messages to the computer. The opposite
arrangement, used by the computer to send a message to a specific terminal (or
group of terminals), is called selecting.

Let us consider some examples. Figure 3.21 shows the protocol used by

Computer Terminal

Start here

Terminal Terminal

+ not ready ready to send
EOT/AD1/AD2/POL/l;NQ

t
Update ADl, AD2 and repoll

EQT ~

Good Error
message found

SOH/ AD 1 I AD2/TR#/STX/(text)/ETX/BCC ~

~NAK

ACK

Update ADl, AD2
and repoll

EQT ~

EQT End of transmission

~g~} Two-character terminal address

POL ASCII lowercase 'p': indicates poll operation
ENO Used to indicate that a response is required
SOH Start of heading
TR# Optional transmission number, up to three

ASCII numerals
STX Start of text
ETX End of text
BCC Block check character (longitudinal parity)
ACK Acknowledgement
NAK Negative acknowledgement

Figure 3.21
Asynchronous polling example, Burroughs TC500

Retransmit

(Control count
included in
program. If
exceeded then
error message
displayed to
network controller)

Data Transmission and Terminals 105

Burroughs for its TC500 programmable terminal (and other devices). The
computer starts by sending a polling sequence. The EOT clears the line, two
address characters indicate which terminal is to respond, the poll character
indicates the operation being carried out, and ENQ solicits a response. Note that
POL is not included as a control character in the IA5/ ASCII-7 code and,
therefore, Burroughs has elected to use lowercase "p" for this purpose. If the
terminal has no data to transmit it sends EOT and the computer initiates a poll
sequence for another terminal on the line. Otherwise it sends the message
currently awaiting transmission. As a checking mechanism, the terminal repeats
its address in the header of the message and also includes a sequential
transmission number. The ACK/NAK procedure is used to confirm (or otherwise)
the receipt of a good message.

The IBM 3270 display system uses a standard IBM link control called binary
synchronous communications (BSC). In principle it is very similar to our TC500
example but varies in detail. Figure 3.22 shows a general schematic of BSC. The
first difference to note is the use of SYN characters (the TC500 protocol was
asynchronous). Ignore the PAD characters-these are needed because of the
timing requirements of the control units. The polling sequence is also made longer
by the use of separate addresses for the cluster controller and the attached devices
(displays or printers). This arrangement enables a general poll to be carried out;
instead of sending a special poll sequence to each operator station, the controller is
asked whether any of its attached devices has data ready for transmission. This
reduces the overhead on the circuit associated with the polling function. The
polling function, then, is a technique used to solicit data from a specific terminal
or from any terminal that happens to be ready to transmit. When the computer has
to send data in the opposite direction to a terminal, a technique usually known as
selecting is used. Figure 3.23 shows the selecting procedures used by the
Burroughs TC500. This starts with the computer sending a selecting sequence
identical in format with the polling sequence (figure 3.21), but SEL (lowercase
"q") is used at the command. If the terminal is busy it can reply with NAK. If
ACK is sent, then the computer will go ahead and transmit the message.

In summary, basic mode link controls operate on the system that terminals can
only transmit when invited to do so (polling) and the computer can only transmit
when it has asked the terminal if it is ready to receive (selecting). Error checking
is based upon the use of character parity plus a longitudinal redundancy check or
on a cyclic redundancy check for the whole block. ACKs and NAKs are used to
indicate good or bad transmissions. Although this simple mechanism enables
error blocks to be retransmitted, it does impose a significant overhead on data
transmission (especially on half duplex circuits where it could take up to 100
milliseconds merely to switch a modem from reception to transmission). Even
when a full duplex channel is used, the nature of the protocol is such that
transmission only takes place in one direction at any one time.

A further problem is caused by the fact that control characters are transmitted
in sequence with data and are only recognizable by their value. Unfortunately it is

Computer Terminal

Start L No Data
data ready

PAD/EOT/PAD/SYN/SYN/CUA/CUA/DVA/DVA/ENQ ---e------.

t Update
"-----------~~-~~----EOT-~>--~

(Note 1)

Addresses and
repoll

(Note 3)

Retransmit t
~---.-NAK-----------------'

No more
data

Next text
block (if ETB)

~--~ ACKO------e-------~11>--------.

or

PAD
EOT
SYN
CUA
OVA
ENO
STX
ETX
ETB
BCC
NAK
ACKO
ACK1

ACK1

Hardware-generated one-character time delay
End of transmission
Synchronous idle
Control unit address
Device address
Response required
Start of text
End of text
End of transmission block
Block checking character (3)
Negative acknowledgement
Acknowledgement of even-numbered text blocks
Acknowledgement of odd-numbered text blocks

Note 1: See relevant I BM manuals for detai Is of alternative responses
Note 2: ETB is used instead of ETX when more blocks follow
Note 3: Address need not be inserted after the first block

Figure 3.22
Synchronous polling example, IBM 3270 display system

106

Continue
general
poll

Data Transmission and Terminals 107

Computer Terminal

Start here

L Terminal Terminal ready
not ready to receive

EDT I AD 1 I AD2/SE L/ENQ-------------.....----------e

Continue
------------------~NAK---~

selecting or
polling

Error
found

Good
message

SOH/AD1/AD2/TR#/STX/(text)/ETX/BCC ----e------~

Retransmit
~------------ NAK ----~

Continue
~--------------~ACK-----------~

selecting
(or polling)

Select character (ASCII lowercase 'q')
Other characters as in figure 3.21

Figure 3.23
Asynchronous selecting example, Burroughs TC500

not always possible to guarantee that the information being transmitted does not
contain spurious control characters. This problem is most acute when program
object code is being sent from one computer to another. For example, ETX is used
to indicate the end of data and that the next one (or two) characters are block
checking bits. If ETX occurred in the data, the end of the block would be detected
prematurely and the block parity would almost certainly fail. The basic mode
technique used to prevent this is known as escape logic. The objective of escape
logic is to achieve transparency of the data being transmitted, and two approaches
are employed. The first requires the insertion by the transmitting device of an
escape (ESC) character in front of each spurious control character (including other
ESCs) in the data. This tells the receiver to ignore the following character. The
second option (used by IBM) entails putting ESCs before each real control
character. The method does work, but it is cumbersome to implement and
increases overheads.

It was to resolve these and other problems that a new generation of protocols
(known usually as high-level data link controls) were developed. These will be

108 The Minicomputer in On-Line Systems

considered in the next section. It should be noted that some equipment suppliers
have attempted to improve the performance of basic mode protocols, especially
when used for interprocessor communication. These developments usually
improved error handling procedures, facilitated full duplex working, and added
other features such as data compression. Examples of these protocols are Univac's
Remote 9000 Interface and ICL's Extended Basic Mode. Another "intermediate"
protocol is DEC's DDCMP, but because this relates more in structure to high-level
data link controls we will consider it separately.

High-Level Data Link Controls (HDLC)

The inefficiencies and constraints of basic mode protocols have long been
recognized. As far back as 1968 the British Standards Institute (the United
Kingdom equivalent of ANSI) proposed a new link control architecture based on a
unit of transmission now known as the frame. Since that time both standardization
bodies and the data processing industry have made significant (albeit slow)
progress toward a flexible and open-ended link control that can be used in a wide
variety of systems. The new protocol has emerged in a number of slightly varying
guises, some of which are listed below:

Source
International Standards Organization
British Standards Institute
American National Standards Institute

IBM Corporation
Burroughs Corporation

Name
High-level data link Control (ISO 3309)
HDLC (BS 5397)
Advanced Data Communications Control
Procedure(ADCCP)
Synchronous Data Link Control(SDLC)
Burroughs Data Link Control(BDLC)

It is not possible within the scope of this chapter to attempt a full description
of HDLC, nor would such an attempt be wise in view of the ongoing development
of the standard. We shall, therefore, restrict ourselves to consideration of the basic
concepts of HDLC, the format of HDLC frames, and the way in which the
protocol might work in a simple point-to-point link. The major features of HDLC
are:

Support for HDX and FDX circuits
Support for two-point and multipoint lines
Complete code transparency
Bit-synchronous transmission
Positionally significant control bits
Flexible error handling
Open-ended structure
Suitability for all types of message traffic

Data Transmission and Terminals 109

-+-------- Direction of transmission

~F~-A~-c~----~(?~--~-F_c_s_~F__,

I t
Frame check sequence (16-bit CRC)

) Information field (any number of bits)

Control field (8 bits)

Address field (8 bits, extendable)

Flag 8 fits 01111110 (used to achieve frame synchronism)

Figure 3.24
Format of the HDLC frame

The concept of the frame is fundamental to HDLC and is illustrated in figure
3.24. A frame is delimited by unique.flag sequences of eight bits-01111110. The
flag that ends a frame may he the first flag of the next consecutive frame. By
examining each incoming sequence of 8 bits the receiving device can get into
synchronism with the frame when it finds a flag. What happens, you may ask, if
there is a spurious flag sequence in the middle of the data field? This problem of
transparency is solved through a simple hardware mechanism called bit stuffing
and bit stripping. As the address, control, information, and FCS (frame check
sequence) fields are being transmitted, the line adapter counts the number of I-bits
following any 0-bits. If the count reaches 5, the adapter automatically inserts a O
bit. Similarly, at the receiving end, whenever 5 contiguous I-bits are encountered,
the following bit is removed. This simple arrangement solves the problem of
transparency and enables any combination of bits to be sent in a frame.

Within a frame there are four fields. The address field is always the first 8 bits
after the starting flag and the control field is always the first 8 bits after the
address. The FCS field is always the 16 bits preceding the terminating flag. The
information field may be any number of bits (including none) between the control
and PCS fields. The FCS is generated using the CCITT V41 standard 16-bit
polynomial and includes address and control fields but not flags. Figure 3. 25
shows that each HDLC link comprises a primary (controlling) station and one or
more secondary stations. In some cases, a secondary station may also be primary.

The address field in a frame is used for addressing secondary stations. The
control field is used for sending commands from the primary to the secondary and
responses from the secondary to the primary. The format of the control field varies
according to the type of frame being transmitted. There are three types of frames:

I-frame: Information transfer
S-frame: Supervisory
U-frame: Unnumbered

110 The Minicomputer in On-Line Systems

Commands and information

Primary Secondary
......

Responses and information

Commands and information

Primary Responses and information

Secondary Secondary Secondary

information T information
Commands and Commands and

Primary Sec I P. I rim Secondary
I

Responses and l Responses and information information

Figure 3.25
Primary and secondary stations in HDLC links

The control field format for each frame is shown in figure 3.26. I-frames are
used to transfer information between stations and are the only frames that can
contain information fields. Each frame transmitted is numbered on a cyclic basis 0
through 7 (N(S)). In addition, the control field contains the number (N(R)) of the
next frame it expects to receive at that station, thus implying that all frames up to
and including N(R) -1 have been received successfully. This technique obviates
the needs for separate ACKing of each transmission block and thus improves
circuit utilization. Bit 5 of the control field is used in one of two ways. If a primary
station sets it in any frame, it polls the receiving secondary (invites it to transmit).
If it is set to 1 by a secondary it indicates to the receiving primary that the frame
being transmitted is the last and no more will be sent until the next poll is
received.

S-frames are used to perform supervisory functions and do not contain an
information field. An S-frame can be used to poll a secondary, stop transmission
ofl-frames, request retransmission ofl-frames, and acknowledge I-frames if there
have been no other transmissions in the opposite direction for seven received

Data Transmission and Terminals 111

Control field bits
Frame type

1 2 3 4 5

Information transfer 0 N(S) P/F

Supervisory 1 0 s P/F

Unnumbered 1 1 M P/F

N(S) Transmitting send sequence count (3 bits)
N(R) Transmitting receive sequence count (3 bits)
S Supervisory function bits
M Modifier function bits
P/F "Poll" bit on primary transmission

"Final" bit on secondary transmission

Figure 3.26
Formats of control field in HDLC frames

6 7 8

N(R)

N(R)

M

frames. The two S-bits in the control field indicate the supervisory function being
carried out.

U-frames are used to provide additional link control functions (up to 32
commands and 32 responses).

The draft international HDLC standard specifies two operational modes:
normal response mode (NRM) and asynchronous response mode (ARM). In the
simplest of terms, NRM is a polled mode whereby the secondary must receive
permission to start transmitting (one or more I-frames). In the case of ARM, the
secondary may transmit at any time.

Figure 3.27 illustrates simple exchanges of data over a point-to-point FDX
link using normal response mode. In the first example only the secondary is
transmitting; in the second example both stations are transmitting. If a transmis
sion error occurs on a line, two commands can be used to cause retransmission:
REJ (retransmit from the numbered frame onward) and SREJ (retransmit the error
frame only). Examples are shown in figure 3.28.

HDLC represents a significant breakthrough in the technology of data link
controls. The protocol is highly efficient and enables good use to be made of full
duplex circuits. It seems likely that HDLC will be widely accepted by equipment
manufacturers as a good general-purpose, open-ended standard. HDLC does, of
course, require the development of special line adapters to perform functions such
as bit stuffing and stripping. One company (Digital Equipment Corporation)

112 The Minicomputer in On-Line Systems

SECONDARY ONLY TRANSFER

SNRM, P RR, 0, P RR, 3 RR, 5, P

Primary D D D D transmits

UA, F RR, 0, F

Secondary D I IO,O I I1,0 I I2,0 I I3,0 I I4,0 IF D transmits

PRIMARY AND SECONDARY TRANSFER

SNRM, P

D
IO,O,P I1,0 I2, 1 I3, 2 I4,3 I5,4 I6,5 I7,5

Primary
transmits I I I

UA, F

D
IO, 1 I 1, 1 I2, 2 I3, 2 I4, 3 I5, 4

Secondary
transmits

KEY

D S-frame and U-frame transmissions

f----1 I-frame transmissions

COMMANDS USED

SNRM Set normal response mode
P Poll
UA Unnumbered acknowledge
RR Receive ready
F Final
x, y N(S), N(R)
I I-frame

Figure 3.27
Examples of NRM FDX transmission

I I I I
16, 5

decided to develop a link control that would employ many of the concepts of
HDLC but that could be implemented on existing asynchronous and character
synchronous line adapters. The DDCMP (Digital Data Communications Message
Protocol) frame format is shown in figure 3.29. SYN characters are used to
achieve block synchronism. The header includes a count of the information field

Data Transmission and Terminals 113

NRM REJ Command

Primary
transmits

Secondary
transmits

Transmission error Retransmitted frames

IO,O,P I1,0 I2,0

I IO, 1 I I 1, 2 I I2, 2 I

/ t ~
I3, 1 I4, 2 I2, 3 I3, 4 I4, 5

REJ,2 I3 2 I4 2 I5 3 I6 4
t=n 'I 'I 'I' t

Reject S-frame

NRM SREJ Command

Primary
transmits

Secondary
transmits

Figure 3.28

Transmission error Retransmitted frame

t
IO, 0, P I1, 0 I2,0 I3, 1 I4, 2 I2, 3 I5, 4 I6, 5

I ro. 1 I 11. 2 1 12. 2 ~ 13. 2 I 1•. 2 I 1s. s 1 rn.,

Reject S-frame

Examples of HDLC error handling (NRM FDX)

and this is used to implement transparency, because the receiving station does not
need to look for control characters to locate the end of the block. Separate CRC
checks are carried out on the header and the information field (if any). DDCMP
can transmit on HDX or FDX, two-point or multipoint circuits. It can also be used
on parallel transmission links for interprocessor communication. DDCMP was
originally released as part of DECNET, which provides application programmers
with a high-level protocol for interprocessor communication. High-level protocols
will be discussed in a later section.

CC/TT Recommendation X25

We have postulated that there is likely to be a significant expansion in the
United States and Europe throughout the 1980s of public packet-switched
networks. In anticipation of these developments, the CCITT has published a
recommendation that defines an interface between a packet-mode terminal (or
computer) and a public packet-switched network. Some equipment suppliers have

~

s s s Count
y y 0 14
N N H bits

SYN <h•ra_ T 1
Start of header ~
Number of information -----~
characters

Flag

Header

Flag Response
2 8 bits

bits

Acknowledgement of ---------------~
received messages

Sequence
8 bits

Sequence number of transmitted ---------------~
message (0 through 256)

Address
8 bits

Address---------------------------__J

Header CRC

Information field (variable
number of 8-bit characters)

Information

CRC1 Information CRC2
16 bits (variable by 16 bits

character)

Information CRC --~

Figure 3.29
Format of DEC DDCMP messages

Data Transmission and Terminals 115

already announced plans to produce terminals with X25 interfaces, and many
prototypes have already been installed. Networks that will operate to this standard
include TELENET (United States), TRANSPAC (France), DATAPAC (Canada),
and EURONET (European Economic Community), as well as a number of private
networks. The X25 recommendation is specified as three independent levels of
operation:

Level 1: Bit level (based on CCITT Recommendation X21)
Level 2: Frame level (based on HDLC IS03309 and IS04335)
Level 3: Packet level (defined in X25)

Level 1 provides an interface for passing bits of data between the network and
the terminal. Level 2 uses HDLC procedures for the exchange of data (control,
addressing, and information) between terminal and network. Level 3 specifies a
packet format for the transmission of data end-to-end (see figure 3.30). The X25
recommendation is likely to be subject to further development, and the reader is
advised to monitor the progress of this combined interface and data link control.

High-Level Protocols
and Network Architectures

Terminal-based computer systems are developing in such a manner that more and
more networks, both large and small, are incorporating more than one processor.
The need to improve the means whereby application programs resident in different

Terminal

Figure 3.30

Level 2 (HDLC)

l
Level 1

Level 3 (packet switched)

Packet-switched
network

(electrical interface,
etc., as per CCITT X21)

Level 1

Three levels of the CCITT X25 specification of interface to packet
switched network

Terminal

116 The Minicomputer in On-Line Systems

computers can "talk" to one another has given rise to the development of high
level protocols (HLPs). HLPs allow the programmer, among other things, to

Send data to a program in another processor
Interrogate or update a file in another processor
Cause a program in another processor to be initiated
Transmit some data to be printed at a remote site

The British Standards Institute has again undertaken a pioneering role in
developing proposals for an international standard HLP. This work is now being
developed further by ISO.

The role of the HLP is best seen in the context of an overall network
architecture, as shown in figure 3.31. The lowest two levels of DTE/DCE interface
and network protocols we have already examined. The network management level
includes such functions as end-to-end path establishment and message routing.

Application
program/terminal

Functional
level

Network
management

level

Link control
level

High-level protocols --------

End-to-end protocols

(X25)

Network protocols

(basic mode, HDLC)

Application
program/terminal

Functional
level

Network
management

level

Link control
level

___ • DTE/DCE interface ___ _
(V26, X21)

Communications network

Figure 3.31
Typical network architecture

Data Transmission and Terminals 117

The functional level is the one at which high-level protocols operate. Commands
are available to enable application-level components (such as programs or
terminals) to establish links with other such components in remote processors
connected by telecommunications facilities. Network architectures of this type are
commonly implemented using a hierarchy of headers in the messages being
transmitted (see figure 3.32). Three main classes of communication may take
place:

Interactive (program-to-program or program-to-file exchange of data)
Remote job entry (remote task/program activation)
File (or program) transfer

It will clearly take some time before the ISO achieves an internationally
accepted standard for HLPs, if ever. Even if it does succeed, the new standard will
need to compete with network architectures that have already been implemented
either by manufacturers or on private packet-switched networks. IBM's System
Network Architecture (SNA) and DEC's Digital Network Architecture (DNA) are
examples of this structured approach to data communications.

Terminals

The terminal is arguably the most important single component of a teleprocessing
system. It is true, of course, that teleprocessing would not be possible without the
computer. However, the system exists to serve the needs of the user department

Application level

Functional level Command/
response

Network management level Path Command/
control response

Data link level
DLC Path Command/

header control response

Figure 3.32
Use of headers in network architectures

Information

Information

Information

Information DLC
trailer

118 The Minicomputer in On-Line Systems

and the only part of it the user sees is the terminal. This device could play a more
important role in his working life than his telephone, his adding machine, his
typewriter, or the photocopier. Choosing a terminal, and using it properly, is all
important. In this section we will look at the main types of terminals currently
available.

In the early days of teleprocessing (not long ago), the only device that was
readily available and could easily be used as a terminal was the teleprinter, or at
least tQe American version known as the teletypewriter or Teletype. Throughout
the 1970s, the Teletype was the most popular single terminal device in use,
probably because few suppliers have ever been able to match its extremely low
price. The standard Teletype is basically a keyboard with a character printer which
will work at a maximum speed of 10 characters per second. Print quality is poor
and there is no lowercase alpha. The next generation of keyboard printers (figure
3.33) was based on electric typewriters, usually IBM's Selectric, which uses the
"golfball" printing mechanism. Print quality was much improved, but maximum
speed was only 15 cps.

The current generation of keyboard printers mostly use a dot matrix print
mechanism. This has not improved print quality (in our opinion the quality has
deteriorated). However, this technique has greatly improved the speed of hardcopy
terminals with rates in excess of 120 cps easily attainable. Recently a new printing
device (using a plastic or metal wheel, with the characters at the end of the
spokes) has been developed which gives print quality very comparable with IBM's
golfball but speeds (at present up to 55 cps) unlikely to match the matrix
mechanism. Other techniques (such as the use of ink jets) have been developed,
but these have had only moderate success, especially if they will not produce
copies.

Serial printer

0

Telephone line

Figure 3.33
Keyboard printer terminal

Data Transmission and Terminals 119

The keyboard printer is classed as an interactive terminal because of the direct
nature of the conversation between the user and the computer. As the user types,
each character goes down the telephone line to the computer. When the message is
finished (this is indicated by the user pressing a control key), the computer can
process it, perhaps transmitting a response of some kind back to the terminal. The
other main type of interactive terminal is the visual display unit or VDU. In North
America this is usually called a CRT (cathode-ray tube) or a video terminal, but
we are all talking about the same thing (figure 3.34). Instead of a printer the VDU
uses a television-type display screen on which the characters being entered on the
keyboard or received from the computer will appear. There are usually between 16
and 25 lines of 80 positions in which a character or a blank space may appear.

After each operation, all or part of the screen may be cleared by the operator
or the computer to make way for the next. A good VDU is usually quiet and
pleasant to operate. It can have a number of features that make it particularly
suitable for commercial use. These include the forms mode method of operation,
which enables the computer to display screen layouts that look like original input
documents. The operator then fills the blanks in the layout with the details on the
source document currently being entered. He cannot overwrite the screen form
(which is protected), and when he has finished, the "variable" items just entered
are transmitted to the computer. These are then cleared to blanks, leaving the
original form so that the next document can be typed in.

This type of operation is the main reason why VDUs have overtaken the
keyboard printer in popularity, certainly for commercial applications. The fact that
the visual display unit does not use paper is both an advantage and a disadvantage

Display
screen

1111111111
111111111111

1111111
1111 11111111

rf 111111111 l)

Figure 3.34

Keyboard

Telephone
line

Visual display terminal

120 The Minicomputer in On-Line Systems

at the same time. Although the benefits of the speedy and silent method of
working may be clear for one area of a company's operations, we have not yet
reached the stage where the rest of the world can manage without paper. Invoices
need to be sent to customers, checks and remittance notices to creditors, reports to
senior management, and so on. An on-line system may facilitate the use of an
efficient high-speed line printer at the central site, but it is still often the case that
documents must be produced at the terminal location. Many firms do this by
attaching serial printers directly to the display unit (figure 3.35). This enables the
contents of the screen to be copied onto paper (which may, of course, be
preprinted) or, in some cases, for the print details to be sent directly to the printer
from the computer.

Most minicomputers use Teletype-compatible VDUs as their standard termi
nal. As their name implies, these displays were originally developed as plug
compatible replacements for the teletypewriter. These were originally very simple
devices, but with the recent introduction of microprocessors as control mecha
nisms in terminals, many of the characteristics of commercial VDUs (as supplied
by computer manufacturers) have been incorporated. Three main transmission
modes are usually available on glass teletypes, each employing special (and
confusing) meanings of the terminology full duplex and half duplex. These are
illustrated in figure 3.36. Note that with this type of block mode, the block is
transmitted as a contiguous string of asynchronous characters.

If you need a number of VDUs at one location, it is possible to obtain a cluster
system (figure 3.37). Under this scheme the displays are attached as peripherals to
a controller which converses with the computer on their behalf over the telephone

1l!FlilliFll1

Figure 3.35
VDU with attached serial printer

Data Transmission and Terminals 121

Processor Terminal

le .1
7 ~----0 I~

Full duplex (or character echoplexing):
Each character goes from keyboard to processor and then echoes
back to the terminal for display on the screen

.____J
Half duplex:
Each character is displayed on the screen and transmitted to the
processor

Block mode:
Message is buffered at display and then transmitted as a block
(part or whole of screen)

Figure 3.36
Teletype VDU transmission modes

line. A proportion of the electronics previously in each display is now part of the
controller and shared between them. This means that once you have more than a
certain number of displays in one place, it is cheaper to have a cluster than the
individual freestanding units. With the cluster approach it is usually possible to
attach up to 32 displays. One or more printers (up to 300 lines per minute each)
may also be connected to the controller, but this might reduce the number of
VDUs that could be attached. The controller is usually polled.

It is possible to attach peripherals to interactive terminals (both keyboard
printers and VDUs). These may be paper-tape readers, cassette tape recorders,
discette units, and so on (figures 3.38 and 3.39). These are generally used when
the connection to the central computer is via a dialed telephone line. Data can be
keyed onto the storage medium and, if necessary, corrections made off-line

Figure 3.37
VDU cluster

(Paper-tape
reader/punch

Figure 3.38

Cluster
controller

Keyboard printer

~

Telephone
line __

Paper-tape reader/punch on keyboard printer

122

r I! I FFl I l 11 l,

Telephone
line

Modem

Figure 3.39
Cassette tape drive attached to VDU

Small display

Figure 3.40

1111

/711111\\\\ rr r r 11 J s '

Keyboard

Dialed telephone line
-----------..._

Data entry station (key-to-discette)

Cassette
tape

123

124 The Minicomputer in On-Line Systems

without incurring telephone charges. When the input is ready the user can call the
computer and transmit the data in one continuous stream. Some terminals are
designed to work in this fashion alone (figure 3 .40). They generally consist of a
keyboard, a small display for visually checking the input, and the device for
recording the data on the magnetic medium. After off-line entry, the information
stored on the cassettes, discettes, or whatever can be sent to the computer over a
dialed telephone line. We prefer to call these units Interactive batch terminals
because the input is interactive but the transmission is in batches.

Another category of terminal is the remote batch entry (or remote job entry)
terminal (figure 3.41). This typically consists of a small controller to which are
attached a card reader, a line printer, and sometimes other devices such as card
punches and paper-tape readers. Remote batch terminals (RBTs) are generally
used for the input of fairly lengthy reports, documents, and so forth. On a typical
RBT the card reader might work at 300 cpm and the printer at 350 lpm. Faster
speeds are available, but these are constrained by the speed of the communications
link being used (2400, 4800, 7200, or 9600 bps are fairly common). The thing to
watch about RB Ts is that someone somewhere has to punch the cards (or whatever
medium is being used), and keypunches can be as expensive as interactive
terminals-in which case why bother with the RBT at all? These terminals are
certainly declining in popularity in favor of the interactive and interactive batch

Card reader

Printer

Remote 7
batch

controller

I ine ---------..
Telephone 11

Figure 3.41
Remote batch terminal

~

Central site Network Remote site

r--------------------------1
I I
I MUX I
I (FDM/TDM) I
I x-x-x-xl I

Communications
control unit

rt-x---x---x---x---x---x x I
x Terminal I I Idiot

I controller I terminals
r----------- 7 -----------------1 x I

8 x: : 11

I j Pro~~':n:~able . . L __________________ x4_1--------------
1x---x---x x 1 concentrator D1stnb~ted x--x--x--x
I 1 1 processing
x i components I

I Pr~~~~~:8J11e L _____________________ 1 Prot~:~~a~ble I
processor : controller I

x I I

Programmable
terminals

I : I Packet- y:-----;x--x--x x--x--x---, x--x--x--x
Reduce central- switching I L------ - - - ------------- ---- ----------- --

xi site cost nodes I
x Reduce network I

x J cost and improve I
L__x--x--x xr---x--x--x--x network efficiency I

L _________________________ ~

Figure 3.42
Data communications systems components

126 The Minicomputer in On-Line Systems

devices described above. However, the IBM 2780/3780 class of terminal remains
important because the datalink control and device protocol for this has become a
de facto standard for device interconnection.

The final category of terminals that need concern us here is the range of
special-purpose systems designed to meet the needs of particular application
areas. We will not describe them in detail, but terminals are available with special
features for use in areas such as

Banking (cash dispensers)
Retail trade (point-of-sale terminals)
Production control (shop-floor data collection)
Credit control (credit card readers)
Stock exchange (market price displays)
Mobile radio terminals (for police cars, ships, etc.)

One increasingly important fact relating to all the terminals described in this
section is that they can be either hardwired "unintelligent" devices or program
mable. Some of them incorporate specially developed programmable units, but
others make use of minicomputers and/or microcomputers. Intelligent terminals
can be programmed to perform some low-level data processing functions such as
input verification, display screen formatting, editing, and so on. This takes much
of the workload off the central computer and provides faster response times,
especially reaction to operator errors. Figure 3.42 is a schematic of the systems
components described so far.

4
Transaction Processing

and a Review
of Minicomputer Software

The material in this chapter covers two areas; an introduction to the specific
requirements of terminal-based systems and a general review of minicomputer
software. In the first half of the chapter the software needed for terminal handling
is discussed with passing references to minicomputer-specific solutions. The
second part assumes that none of the general-system software requirements are
new to the reader and reviews the state of the art with respect to minis, serving as
a comparison with more traditional mainframe techniques. While we attempt to
establish definitions of the more commonly used terms, we must state at the outset
that there are almost as many different meanings of standard phrases as there are
computer manufacturers!

Modes of Operation

With our interest in the characteristics of a computer system using terminals, we
imply a particular mode of operation that contrasts with the long-established batch
concepts. Before continuing with this theme, then, we shall review the various
modes of operation of a computer system. In essence we are considering the
characteristics presented by the combined hardware/operating system from the
user's point of view.

Off-Line

Quite simply, we mean the use of devices not directly connected to the computer.
Examples are off-line printers or computer-output microfilm to which data is
transferred via a magnetic tape. Data preparation equipment such as card punches
and key-to-discette stations are off-line input devices; an interactive key-to-tape
system is off-line to the central computer but is in itself a simple on-line system.

127

128 The Minicomputer in On-Line Systems

On-Line

Equally simply, the use of directly connected devices. These may be simply
"dumb" devices like a card reader or printer, or may be quite "smart" devices
like VDUs. There is a common tendency to use the phrase "on-line" to mean
interactive or transaction processing, which more strictly are subsets of all
possible on-line systems.

Batch Processing

All input data is made available in sequential batches before processing com
mences. When the program is eventually started it continues until all data has
been processed or an error has been detected. Production of output does not
usually commence until processing has been completed. Once the program has
been initiated there is no useful communication with the user until it has finished.
Thus erroneous input data will not be detected until the batch has been completed,
often requiring that the complete program be rerun after correction of the data.
Often the batch job consists of a number of stages (transfer a copy of a deck of
cards to sequential disc file, process the data and write to another sequential
output file, and finally queue the output file for printing).

Transaction Processing

Data is presented (and accepted by the computer) as discrete data items, usually
via a terminal, as requested by the user. In effect the terminal is the master device
and the computer the slave, in contrast to batch processing, where the computer is
master and the peripherals slaves. Processing of the input message must thus be
initiated immediately, independent of any previous or subsequent activity on this
or any other terminal. There is wide variety in the facilities available to implement
transaction processing, ranging from simple asynchronous Teletype support to
dedicated transaction processing monitors, as discussed in a later section. The
term transaction processing is most commonly employed to suggest an environ
ment in which operations are business transactions, (order processing or stock
movement), where a special monitor is used to add to existing batch processing
facilities of a computer.

Interactive or Conversational

Almost all transaction processing systems are interactive in nature. This also
covers the broader class of sceintific systems used for computer-aided design,
where each "transaction" can require a lot of processing compared to a
commercial transaction. Nevertheless minicomputer systems are successfully
using BASIC, designed for scientific work, for commercial transaction process
ing. There are other dedicated applications of interactive computing, such as
program development using editors, debuggers, and so on, and information
retrieval systems. In essence these latter systems are specially developed
transaction processing application programs.

Transaction Processing and a Review of Minicomputer Software 129

Direct Data Entry

The use of terminals to enter and validate data, but not to process it, is referred to
as direct data entry (DOE). This is a very constrained use of transaction
processing, common on the foreground/background types of operating system to
be discussed later. Data is entered, validated (often assisted by a read-only
reference file), and stored on a sequential file. When this data file is closed it can
be used by a batch program for processing. There are some excellent examples of
dedicated key-to-disc systems using this technique, but many small commercial
systems have such poor transaction processing facilities, with inefficient single
threading, that DOE is the total extent of their terminal handling ability. Given
proper transaction processing facilities the choice of DOE or full processing of an
input item is in the hands of the system analyst, not a limitation of the computer
facilities.

Real-Time Processing

Strictly speaking, real-time processing is the realm of the process control
engineer. It involves completely integrated support for event-driven (peripheral
initiated) inputs and time-related events (for instance, starting at 10.00 hours read
an analog-to-digital converter every 20 milliseconds). In many ways the handling
of an interactive terminal with fast response to input data is a simplified real-time
job, so that the phrases real-time, on-line, and transaction processing are
variously being used synonymously. In fact it is largely because of the interrupt
driven real-time operating systems used on minis that they have proved so
effective in terminal handling.

Time-Sharing Systems

Time-slicing (discussed later) is a common method of achieving multiprogram
ming while preventing any one program from hogging the processor. It has been
very successfully employed in a number of large-scale commercial and scientific
installations where remote users attach their terminals via telephone lines, each
user appearing to have exclusive use of the computer and its resources.

Teleprocessing

Teleprocessing implies the use of remote devices coupled to the computer via
telecommunications facilities. On many machines there are quite distinct dif
ferences between the handling of local and remote terminals, as discussed below.
IBM tends to use the expression to describe any system that involves the use of
terminals.

Operator Communications

In the foregoing we have considered computer operation from the viewpoint of
input data transactions. However, all computers need certain commands to define

130 The Minicomputer in On-Line Systems

the required workload and the immediately required resources. In many systems a
master console is used to supply the first line of command, while the individual
users' requirements are communicated by a set of job control instructions that
develop their data and/or programs. With a terminal-oriented system it is possible
to enter job control information as well as data if the necessary command analyzer
is provided with the system software. Thus a system may support terminals to
allow multiple interactive access to the job control system to enter source
programs, batches of data, and job commands even though actual processing
occurs in batches. Alternatively, a system-typically a DOE system-will allow
interactive data entry but the program must be initiated at a central console. The
former would support interactive program development, the latter would not.
Good operator control functions from multiple user terminals are major factors in
the increased efficiency of a modem transaction processing system.

Teleprocessing Systems

Electronic devices can be interconnected in a number of ways, as described in
chapter 3. The major components of the system (the CPU, memory, discs, and so
on) are, for reasons of speed, interconnected by parallel wires and are all in close
proximity. Slower-speed devices can be coupled more cheaply by using a single
serial line, which can also employ special techniques to enable them to be situated
a greater distance from the processor. Devices within about 1000 metres of the
processor can be directly coupled; modulation techniques are used for longer
distances. In general longer distances imply leaving the site containing the CPU
so that PTT-supplied services are employed. With a variety of methods of
connecting devices to a computer system, there is obviously a need for various
software products to enable the user, through his application program, to access
the device. Ideally the device-handling software should be so designed that the
user programs have a common interface. This device independence is achieved by
the user addressing a logical device. The system uses a set of tables to allocate this
to the required handler for the specific physical device; these tables are updated as
a user program is allocated to a physical terminal.

Strictly speaking, teleprocessing is concerned with support for remote
devices, which are connected via telecommunications or data communications
facilities. Since local terminals use serial techniques, however, their support
requires a large subset of the remote terminal support system, so it is common to
include both local and remote terminals under the heading of teleprocessing. The
essential part of the teleprocessing software is that part of the system that handles
the terminals and associated communications control to provide an interface to the
transaction processing system.

On mainframe computers it is fundamentally difficult to handle character-at
a-time input so that VDUs are buffered. Data is stored and edited at the terminal
and transmitted synchronously in blocks. Control of which terminal is currently
transmitting or receiving data is determined by a polling routine maintained by the

Transaction Processing and a Review of Minicomputer Software 131

terminal handlers. The potential economies of relieving the CPU of the respon
sibility of checking and storing each character are offset by the polling overheads
and high buffer requirements in processor memory. In many cases this is
unnecessarily compounded by poor data packing techniques (the message FRED
is transmitted as F,R,E,D,End of text, and 1915 nulls!).

The fast-interrupt handling of minis makes it possible to use asynchronous
Teletype-compatible VDUs on a character-at-a-time basis, which is significantly
cheaper. However, the use of minis with a large number of terminals and the desire
for alternative screen formatting are leading to increasing use of buffered VDUs
and OMA controllers, as will be discussed in chapter 5. Thus while the terminal
handling software on a mini is essentially simple, there is little inherent support
for polled and multidrop terminals at present.

On a mainframe computer the data from terminals is routed through a data
channel. To multiplex multiple terminals and to handle the communications
functions a terminal controller connected to the data channel is required. This can
be a local terminal controller or a communications control unit (CCU) which can
support mixed local and remote terminals. These devices perform a number of
functions described later, but their logical ability is predefined-that is, they are
hardwired devices. The same facilities can be provided with much improved
flexibility by using a front-end processor (FEP). Device commands from the
channel control are interpreted by a program in the FEP, in the same way as a
CCU, but they can be tailored to suit. It is also possible that the control programs
in the FEP could be downloaded from the main processor on start-up. There are
some very sophisticated single-line programmable controllers available now on
single LSI chips.

On a mini the 1/0 bus effectively acts as a multiplexor so that simple terminals
need only a cheap interface card as the equivalent of a CCU. A 16-channel device
can cost as low as $2,000.

Mainframe or mini, any supported physical terminal interface requires a
software driver to match its specific characteristics and to present a device
independent interface to the user programs. For want of a better phrase we have
called this combination of terminal drivers, communications line controllers, and
other components the terminal subsystem (TSS), as shown in figure 4.1.

Transaction Processing

Transaction processing implies an ability to support terminals. It also implies an
ability to accept an input message, to process that message, and to return an
answer in the minimum possible time. In chapter 6 the specific requirements of a
software system for handling transactions in an efficient manner are explained. It
must be stressed that with transaction processing the objective must be to pass the
transaction through the system as quickly as possible. Minimum residency is the
design objective. Contrast this with a batch system, which must be designed for
optimum system efficiency in terms of total throughput. To achieve this, a specific

132 The Minicomputer in On-Line Systems

job may be held back for quite long periods. It must also be remembered that there
will be multiple transactions in the system at any one time, possibly of differing
lengths. One transaction should not be held up while another is awaiting resources
but should be able to overtake a slower one. This leads to the concepts of
multitasking or multithreading mentioned later in this chapter and expanded in
chapter 6. Note that multitasking is common in minis but is equally uncommon on
small mainframes, for which reason transaction processing is constrained to
simple direct data entry, a most unsatisfactory situation.

Figure 4.1 shows a schematic diagram of the software structure for a system
with both batch and transaction processing facilities. The transaction processing
modules may be written in COBOL or a similar language, and are controlled by
the transaction processing monitor (TPM). The TPM ideally provides a device
independent interface to the physical terminal via the TSS. Essentially the TPM
and all transaction processing programs share one partition, the batch programs
another. The TPM provides the multitasking facilities unavailable in the basic
batch operating system (OS). The TPM further provides multithreaded access to
the disc file system, queueing requests to be handled by standard-access software.
Note that terminal handlers and user programs could be run in a batch partition,
but the response would be governed by the normal system priorities and queueing,
so that one transaction awaiting response to a file request, say, will hold up all
other transactions. For reference, readers with IBM experience can recognize
CICS as a TPM and VTAM as a TSS. Figure 4.2 stresses the transaction
processing software structure.

Operating system

Transaction
processing
programs

Transaction
processing

monitor (TPM)

Terminal drivers,
communication line

Terminal subsystem (TSS)

Communications
devices, VDUs

Figure 4.1

Batch programs
(possibly multiple

partitions)

Disc drivers, print spoolers,
file access routines

Disc, magnetic tape

Device
handlers

Generalized software system for a combined batch and transaction
processing system

...
(M
(M

Supervisor

User Run-time
command support
analyzer system

I I

{~ Local
Terminals terminal

controller

~ T"m;"'' H Tra""";o" H . . H F;1, . subsystem processing Applications handling H ~isc H Disc drive and
Modems, (TSS) monitor (TPM) program system drivers controller
telephone

{::j lines CCU or

Local {
FEP

terminals

CCU Communications control unit
FE P Front-end processor

Figure 4.2
Structure of transaction processing software. With a standard
minicomputer the TSS and TPM, with limited facilities, will be
integral parts of the operating system

134 The Minicomputer in On-Line Systems

With the process control history of the minicomputer, support for multiple
character-at-a-time asynchronous terminals is a standard operating system feature.
They are interrupt driven and can take advantage of the inherent multitasking
features of such operating systems. The CPU undertakes the execution of routines
for character checking, buffering, and routing as well as the processing work.
User programs interface directly with the terminal handlers via supervisor calls to
the standard operating system, without the controlling intermediary of a TPM.
This concept is shown schematically in figure 4.3(a).

In figure 4.3(a) the whole application program, which includes both process
ing and 1/0 commands, is loaded. An 110 command is serviced by the operating
system, which deschedules the user program until the request is completed, at
which time the continuation of the user program is rescheduled. The user program
is effectively master of the 1/0 system; data will only be accepted from a keyboard
when it has been requested. BASIC, Interactive-COBOL and its variants are the
common language processors used to generate such applications programs.

By contrast, in figure 4.3(b) processing activity is initiated by the terminal.
The TPM interrogates the message arriving from the terminal and associates it
with a specific processing module. The modules themselves process specific units
of data and create output messages; the TPM routes messages from queues to and
from the appropriate terminals. Since there is no direct 1/0 the processing
modules can be written in a batch language, typically COBOL, with specialized
languages for defining TPM functions, formatting screens, and so on. In figure
4.3(a) the operating system provides the essential multitasking, while the TPM is
required to meet these requirements in figure 4.3(b).

With the Interactive-COBOL/BASIC technique the complete user program
must be loaded, including infrequently accessed modules. With a TPM only the
module immediately required need be in memory; code sharing is much easier in
principle. A TPM should therefore reduce memory requirements. Further, the
high modularity of the TPM concept allows easier modification (say, a screen
layout can be changed by modifying the screen formatting module only, whereas
an interactive program needs modifying and the whole recompiling). Thus the
interactive program technique is commonly encountered only on minis, while
TPMs are found commonly on mainframes but increasingly on minis. Indeed, a
standard mini operating system is a good vehicle for supporting a more specific
TPM.

A number of specialized "on-line" systems do not support the batch partition.
Pseudo batch programs can be run by treating them as on-line programs with no
1/0 and relying on a time-slicing control to stop hogging of the processor. This
technique locks up a VDU not needed by the batch program. Improved systems
allow the batch program, once initiated, to be transferred to a pseudo terminal (a
disc file for reporting errors, completion, and so on), freeing the VDU. Multiple
batch programs can thus be active simultaneously although there are limited batch
job-control stream facilities. The problem with these systems, examples of which
are given in chapter 8, is that the file access system is designed for on-line work,
with extremely inefficient batch processing as a result (no sort/merge, for
instance).

Transaction Processing and a Review of Minicomputer Software 135

Request input
Input 11

Data, when complete
Process

Request output
Output 0 1

Continue

Input 12

Process

Output 0 2

(a) Interactive program

Process l 1

Output 0 1

Link

Process 12

Output 0 2

Further
processing

Error
handler

(b) Transaction processing monitor

Figure 4.3
Alternative techniques for terminal handling

Device
1/0

Poller

Message
router,
buffer

control, etc.

Buffers
(message
queues)

Device
I!O

Device

Device

Device l

Device

Two fundamentally different approaches to terminal dialogs appear. With the
standard mini systems with asynchronous VDUs the question-and-answer tech
nique is used. The one-user program handles multiple transactions, normally one
per line on the screen, which are initiated and hence controlled and routed by the
calling program; the program clearly identifies an incoming message as a
response to a sepcific request for input. With a TPM and buffered VDUs, the

136 The Minicomputer in On-Line Systems

polling system controls input of messages after they have been prepared and
edited at the terminal. Thus a received message is associated with a particular
screen format to help the TPM isolate the fields and route the data to the
appropriate processing subprogram.

The advantages of the standard mini system are low cost, simplicity, and the
need for one programming language with integrated screen handling and
processing. It offers a minimum of message-passing overheads. The advantages of
the TPM are that separation of the screen handling and the processing into sections
improves portability in the sense of modifying screen layouts for different
languages. With buffered VDUs programming aids are available for generating
the screen dialog interactively and rapidly. As mentioned, only the immediate
subset of the program required need be in memory; the potential for reducing
memory requirements by designing shareable code segments should also be
easier. Many mini systems load separate copies of programs for each terminal,
even if they are the same job, a factor offset, however, by vastly cheaper memory.
With the increasing use of microprocessors intelligent VDUs can be devised to
take advantage of the simple asynchronous mini interfaces and handling software
for the best of both worlds. Buffered (block mode) asynchronous VDU s can cause
overload problems in the handlers, however, since with no polling to control
transmissions, multiple blocks could arrive simultaneously.

Transaction Processing and Terminal Handling Functions

The introduction of transaction and teleprocessing techniques in a computer
system requires a number of facilities not normally found in a batch processing
environment. The software requirements identified in the previous sections are
summarized in figure 4.2; the facilities required are listed in figure 4.4. Because
any function can in fact be implemented in a combination of hardwired logic,
software, or firmware (microprogramming), there is no clear definition regarding
which part of the system handles which function; figure 4.4 therefore includes an
indication of how each function should be implemented. Each item is explained
below.

Data Communications Input/Output

Compared with I/O between a central processor and computer peripherals such as
disc and tape, the transmission and reception of data over telecommunications
facilities is relatively crude. The operations to be performed include:

-Conversion of outgoing data from parallel form to serial form and the
reverse for data being received
-Handling of the interface with the data communications facilities (CCITT
V-series, RS-232), including auto-calling and auto-connection

Transaction Processing and a Review of Minicomputer Software 137

Function

Data communications 1/0
Terminal drivers
Code conversion
Error handling
Message buffering
Message queueing
Network management
Message preprocessing
Message postprocessing
Message routing
Task management
Program management
Storage management
Timer control
Start-up/shut-down
Terminal user command monitor
Terminal 1/0 control
File management
Transaction logging
Fail safety /recovery
Debugging aids
Statistics

TPM: Transaction processing monitor
TSS: Terminal subsystem

Desirably
performed by

CCU
TSS
CCU
CCU/TSS
CCU/TSS/TPM
TSS
TSS
TPM
TPM
TSS/TPM
TPM
TPM
TPM
TPM
TSS/TPM
TPM
TPM/AP
TPM
TPM
TPM
TPM
TPM

CCU: Communication control unit (or front-end processor)
AP: Applications program
OS: Operating system

Figure 4.4
Transaction processing and communications functions

Less desirably
performed by

TSS
OS
TSS
TPM/AP
TPM/AP
AP
AP
AP
AP
AP
AP/OS
OS
OS
OS
AP/OS
AP/OS
AP
AP
AP
AP
AP/OS
AP

-Framing of characters with start bits and stop bits in asynchronous
communications
-Insertion and recognition/deletion of SYN characters in synchronous
communications
-Identification of (and acting upon) control characters in incoming data
streams (ETX, EOT)

138 The Minicomputer in On-Line Systems

Traditionally these functions have been performed in a combination of hardware
and software. There is now increasing use of microprocessors and special LSI
chips in this interface area.

Terminal Drivers

These reentrant routines, one per type of terminal supported, act as an interface
between the communications I/O and the TPM. They are table-driven to allow a
user program to be attached to any terminal at run time, with a common interface
to support device independence wherever possible.

Code Conversion

This is the conversion between the code used for data transmission and that used
within the computer. It may be a complete conversion (ASCII-7 to EBCDIC) or a
partial one (transposing lowercase characters). Conversion is usually done in
software although some processors have special instructions to speed up the
operation (a translate instruction on the GEC 4000 and move byte and translate on
some MODCOMP minicomputers).

Error Handling

This involves a combination of low-level and high-level functions. At a low level,
hardware is used to detect errors through parity (redundancy) checking tech
niques. At a higher level, software is generally used to determine and initiate the
action to be taken when an error is detected. Software may also be used for more
sophisticated error handling techniques such as transmission block numbering.
Error service routines can sometimes be hardware interrupt initiated.

Message Buffering

One of the major characteristics of on-line systems is the discrepancy between the
speed of the lines and the speed of the CPU. One implication of this is that
terminal operations must be overlapped with processing (and, indeed, with the
other terminals). Furthermore, the input of messages to a transaction processing
system is unpredictable. This means that the system needs· to have some
mechanism that makes available main storage buffers for the output (or input) of
messages as and when required.

Message Queueing

Situations can often occur where messages are arriving at the CPU faster than the
application programs are able to process them. Similarly, a number of messages
may need to be sent to a terminal that is already busy. These situations cause
queues to form in the system and a facility needs to be provided to manage these
queues, either in main storage or a disc, according to predetermined procedures
and priorities.

Transaction Processing and a Review of Minicomputer Software 139

Network Management

A teleprocessing network is rarely a static system. Terminal users join and leave
the service, lines fail, and bugs can be discovered in the software. In order that
these occurrences have the minimum effect on the total system, the computer
operator (or network manager) needs facilities to shut down lines, suspend
applications tasks, send messages to operators, and so on.

Message Preprocessing

Messages received from terminals are often in a format difficult for the application
programs to handle. They may contain embedded control characters, have
variable-length fields, and even variable occurrence of fields within the message.
Although programs written in assembler-level code can be developed to work at
this level, the problem is much more acute for high-level languages such as
COBOL and PL/l. For these reasons some systems incorporate a message
preprocessor, which converts incoming messages into a fixed format prior to
handing them over to the application program. The most obvious example is
conversion from an ASCII character string to an internal binary number
representation.

Message Postprocessing

The problem that dictates a need for message preprocessing also dictates a need
for a postprocessor to convert from an easy-to-program internal format into a
character string suitable for transmission to a terminal.

Message Routing

When a message arrives in the system, it is necessary to determine which
application program will process it. This can be done in a number of ways, some
of which are described in chapter 6.

Task Management

In simple, low-volume transaction processing systems, it is possible to use single
thread programming. Single threading occurs when processing for a particular
message dominates the CPU from the beginning to the end of the processing cycle
for that message (even when 1/0 activity causes the CPU to idle). A more efficient
arrangement employs multithreading (or multitasking) techniques whereby, if the
processing of a particular message has to be suspended, another task can be
activated. In this way the CPU is used more efficiently and the average turn
around time for each message can be reduced. The job of scheduling tasks
according to 1/0 activity, task priority, and so on, is known as task management,
also discussed in chapter 6.

140 The Minicomputer in On-Line Systems

Program Management

A program (or subprogram) may be initiated by any of a number of events. These
include a message arriving from a terminal, a request from another program, a
command from the system console, an error condition, and a time-related event.
The program management routine will determine which program needs to be
initiated. If the program is already resident in main storage, then the request will
be queued or a task initiated (see Task Management above). If the required
program is not memory-resident, then the management routine will locate the
program in the relevant program library and when adequate main store is
available, load it and start execution.

Storage Management

In spite of claims by some computer suppliers that main storage limitations have
become nonexistent and prices so low as to be neglible, in most real-world
situations applications programmers have to work within some storage restric
tions, if only for reasons of efficiency and economy (reason enough). The random
nature of transaction processing message traffic can often lead to the inefficient
use of storage. For example, let us take the case of a system which has connected
to it twenty terminals, each of which requires a 1 KB 1/0 area when active. If,
however, the mean terminal occupancy is only 50 percent, then the actual storage
requirement is 10 KB rather than 20 KB. (The optimum space can be estimated
using the analytical techniques based on a queuing theory.) In order to share
storage in this fashion, the programmer must be able to obtain working storage as
it is needed and then return it to the common pool when no longer required.
Teletype-compatible VDUs are less demanding (100 character buffers), so fixed
buffers are common on minis. Pooling of disc buffers is rare; they are often
included in the application program. Storage management techniques will be
referred to again in chapter 6.

Time Control

As a generalization, it could be said that the only timing problem in batch systems
is getting the job completed in the smallest possible elapsed time. The timing
problem in on-line environments is much more varied. The fact that the processor
operates at speeds so much in excess of the human terminal operators means that it
is necessary to be able to initiate tasks (for example) after a specified elapsed time
or at a particular time of day. Time slicing is also used in task control.

Start-Up/Shut-Down

The start-up of a transaction processing system is a relatively simple affair, usually
including such operations as loading system programs and broadcasting "good
morning" messages to the terminals. Shut-down is somewhat more complex
because terminal operators may be in the middle of interactive operations. In

Transaction Processing and a Review of Minicomputer Software 141

order, therefore, to make the shut-down as orderly as possible and without loss of
data, the control program may transmit warning messages at predetermined
intervals and then, when close-down is inevitable, stop accepting input messages
but allow output messages through until the system is clear of traffic. Start-up and
shut-down operations are normally initiated via commands from the system
console, but they may be time-of-day activated.

Terminal-User Command Monitor

It is desirable that the terminal user should be able to issue commands to the
system as well as to interact with a user program. Thus a terminal is initially
attached to a command analyzer which enables a monitor to respond to what is
effectively a terminal-oriented job control language (JCL). Commands can be
issued to sign on, sign off, check passwords, and run user programs. More
sophisticated systems also allow access to systems utilities, such as the editor and
compiler, to enable interactive program development.

Terminal //0 Control

Low-level data communications functions (as described earlier in this section)
should be of no concern to the application programmer. The programmer does,
however, need to be able to initiate terminal 1/0 operations at a logical level (for
example, write a message to a terminal, read a message, and so on). These
requests for system services are usually implemented as macros and/or subpro
gram calls. Many of the operations will be carried out by the relevant control
program, and this will include such operations as the handling of queues,
automatically polling terminals for new input messages, undertaking broadcast
functions, and initiating pre- and postprocessing. It should also enable user
reference to channel numbers to be associated with specific physical terminals at
run time.

File Management

The reader might ask why file management need be considered in a discussion on
communications functions. The importance of multitasking concepts in achieving
efficient utilization of the processor in a transaction processing system will
become increasingly clear. If a task is suspended for the duration of a disc file
read, then control must be transferred to another task. But if a number of tasks are
accessing the same file, then the file management routine itself needs to be
shared. In the case of some control programs (for instance IBM's CICS) task
rescheduling is only carried out when a macro is used to return to the TPM for
some service. For this reason file 1/0 operations may be requested by issuing
TPM calls rather than a direct invocation of the file manager itself, a complication
avoided by the more integrated mini executives. The file handling routines, part of
the OS, map user-generated logical requests into physical disc sectors. The

142 The Minicomputer in On-Line Systems

routines include buffers and tables to aid the mapping and to check access
attributes, and to queue and schedule requests. The interrupt-driven drivers handle
the disc controllers.

Transaction Logging

To aid failure recovery a file is maintained to sequentially log each transaction.
This can be used by automatic recovery programs to rebuild files from archive
copies after a crash.

Failsafety/Recovery

Failsafety is concerned primarily with protection against the failure of system
components, including programs, data, and lines. Should a failure occur some
action must be taken to minimize its effect and to facilitate subsequent recovery
with minimum loss. Fail safety and recovery are very difficult to generalize
without incurring large overheads, and although some control programs such as
IBM's IMS do offer such facilities, more often they have to be designed into the
system and implemented by the application programmer. This is particularly true
with minis.

Debugging and Program Development Aids

Many control programs incorporate special facilities to assist in the development
and debugging of application programs. Tl,ese include the familiar trace and
dump services but also routines for feeding input messages to individual programs
from disc files or unit record equipment as though they had come from a terminal.
Output messages are routed to a spool file or a printer. This enables the
programmer to test his programs prior to delivery of the terminal and also enables
him to test more efficiently by getting through higher volumes of test data without
having to key it at a terminal. Other facilities enable the programs to run without
multitasking and in some cases to checkpoint tasks during execution so that
intermediate data may be examined.

Statistics

The regular production of meaningful statistics is fundamental to the performance
monitoring and quality control of transaction processing systems. It is necessary
to record for subsequent analysis (perhaps not continually) the time and source of
both good and bad transmission blocks, the frequency of access to various files,
and the rate of initiation of subprograms. For tuning purposes it may be useful to
be able to obtain the average execution time of each software component of the
system (if this can be done without distorting the results). Depending on the
degree of sophistication of the TPM many of these functions may be provided as
standard, but this is relatively unusual in minis.

Transaction Processing and a Review of Minicomputer Software 143

Overview of System Software

It is stating the obvious, but a glance at figure 4.5 shows that there are no
superficial differences between minicomputer and mainframe software. We will
assume that the reader has a general knowledge of all the items mentioned on the
figure and will concentrate on current and future mini technology.

Binary Code

All software is simply an ordered sequence of binary machine instructions and
data. A specific piece of code may be classified as:

Absolute. Must be loaded into specific memory locations
Relocatable. Can be loaded anywhere into virtual memory. It is created with
an assumed base address of zero and embedded addresses are corrected by the
loader at the time of loading. Not to be confused with dynamic relocation of
virtual addresses into physical addresses using mapping registers.
Position-independent (PIC). All address references are program counter
relative so that it can be loaded anywhere without address modification.

Linking

A complete program may consist of a combination of a number of object code
modules created independently. These must be precombined into a loadable
image, with all "global" addresses resolved when the program is installed or bid.
It can then be loaded into memory and executed by a request to run the program
without linking delays-most important if the program may be swapped during its
execution. More sophisticated linkers, known as program builders or task
builders, are required to generate overlays.

Reentrancy

In a multiterminal system there will always be some degree of commonality
between programs. Memory requirements can therefore be materially reduced if
the instruction code can be shared by common routines. This can be implemented
at a number of levels, as shown in figure 4.6. Figure 4.6(a) shows a typical
software layout as previously illustrated in figure 4.1. The user program is shown
separated into three nominal parts, the user screen formats (including field
specification and data validation), the data processing, and the user file require
ments. Figure 4.6(b) shows a nonreentrant system where two complete software
sets are employed. It is unacceptable that the general-purpose system part of the
software should not be reentrant; figure 4.6(c) shows the more typical arrange
ment. The actual user-specific code is not reentrant.

Figure 4.6(d) shows a fully reentrant system; of course if the two programs
are dissimilar, then system (c) must be used. Here only the data areas are user-

~
~

,--

Operating system

I
Monitor, executive,
or supervisor

I ,-- --,-- - -,
Command
analyzer

Resource
scheduler

Priority
control

I I I

Support routines Program development and maintenance utilities

I -r - I
Terminal Math packages, Interpreters File
handlers code conversion handlers

(binary to
ASCII, etc. l

Figure 4.5
System software modules

r--------
1
I
I
I

(Terminals)
I
I
I
I
I

Sequential Random

File
maintenance

Loaders,
linkers,
task
builders

Spooler

Indexed Data base

Assemblers Editor

Compilers

Sort/merge

System utilities
(accounting,
disc formatting,
etc.)

Debugger

Transaction Processing and a Review of Minicomputer Software 145

specific. Buffers for both terminal and disc 1/0 can be allocated as shown in figure
4.6(d), loaded directly by the handling routines. Alternatively, the system may use
separate buffers in the terminal and file handling routines, copying to the user data
areas when they are ready for processing. To avoid excessive storage the buffers in
the handlers can form a pool, dynamically allocated as requested.

Minicomputer architecture should readily lend itself to full reentrancy. This is
readily achieved using macro assemblers for user programming, but seldom when
high-level language compilers are employed; there is distinct room for improve
ment in this area. A halfway solution is achieved by using an interpreter as shown
in figure 4.6(e). Multiple copies of the user code are still carried but these are
relatively small, as they are in the high-level intermediate code that calls the
interpreter. The interpreter itself is reentrant. Other basic support software such as
mathematical routines should also be reentrant.

Some nonreentrant code modules can be shared by multiple users provided
they are not interrupted. Typically they have embedded data work areas. Such
modules, once initiated, must be run to completion before other users can gain
control; they are commonly called serially reuseable.

Interpreters and Microcode

Let us now consider figure 4. 7. All programs start off with some form of
mnemonic coding. In general the source code is compiled (or assembled) into a
machine-executable object code, which is then independently executed. Some
run-time debugging aids are available to allow the executing code to pause and
display the current values of variables; the debugging traps are then purged from
the checked code.

The alternative is to precompile the source code into an intermediate code,
usually using push-pop code, and then to execute that code with the aid of an
interpreter. Since it is far easier to relate the variable back to the source code, this
technique was pioneered for interactive languages, particularly BASIC. It also has
advantages in time-sharing systems when one copy of the interpreter is shared
among multiple users.

With the advent of microprogramming the definition of "machine code"
becomes less rigid, and thus the boundaries A and B shown in figure 4. 7 can vary
widely. The earlier BASIC interpreters worked on the source code direct; modem
ones are far more efficient. Interpreters for COBOL and other high-level language
precompilers are now in use. If more of the interpreter can be shifted into
microcode then run-time execution time will be reduced and memory otherwise
occupied by the interpreter will be freed. A more diverse application of
interpreter/microcode is to emulate the instruction set of another machine.

One possible future application of the interpreter concept is shown in figure
4.8. Ideally, all source languages compile to one target code. This target code is
fully implemented in microcode on a large machine but by an interpreter and
microcode on a smaller machine. Thus all application programs could run on all
machines in the family.

i

Terminal
routines

and drivers

(a) Single user

Terminal
drivers

(b) Non-reentrant

TD

r

User
screen

formats

TR

Data
processing

User
file

commands

Useriprogr):lm 1

I
\

\

)
I

User:progrt<lm 1

\

I
\ I

User: prog~am 2

FHR

(c) Reentrant system, separate user programs

File handling
routines

and drivers

1 Disc
driver

DD

TD TR

(d) Fully reentrant

ti

(e) Interpretive system

Figure 4.6
Sharing of software modules.

User 1 data.

User 1
interpretive code

Reentrant
interpreter

User 2
interpretive code

User 2 data'

FHR DD

Pre-run-time 1-Run-time

t'.
QC

I' I
· I\ I

High-level 1 (Compile) 1 , I

source code 1 I I Machine-level J Inhibit and
1 ·- ---·-·-·-·-·+ instructions 1 enable
I I 1 d" t I (object code) 1 gates
1 · I nterme 1a e- I 1
1 \ 1 level code I I
1 (Precompile) , I I I

1
1 I
1 (Interpret) (Microprogram) I

, I

Al Bl

Figure 4.7
Compilers versus interpreters

Source
language

A

Source
language

B

Figure 4.8

Transaction Processing and a Review of Minicomputer Software 149

Target
code

Big
machine

Small
machine

Use of common intermediate code on various machines

Tasks, Programs, and Procedures

Before continuing with our discussion of system software, we should define some
of the terms used, particularly since there are distinct differences between
manufacturers. The actual words don't matter, as long as we establish a consistent
base for this text.

A task is a complete asynchronous logical path used during the execution of a
program. Two tasks may in fact share the same piece of code, each with its own
priority. Thus a task is a dynamic entity, allowing allocation of resources during
execution, avoiding preassignment as in a batch system. A task is a complete
logical routine in itself, which normally terminates with a request for supervisor
services. There are various definitions of a task, some others of which are
discussed in chapter 6.

A program is a piece of code that performs a given function. It has a distinct
start and end. A program can be written as a self-contained entity; however, such
routine operations as reading data from terminals are part of the operating system,
so that a program normally consists of a set of tasks with the implied use of OS
services. The program defines the logic with which the OS can keep the
individual tasks in synchronism.

Note from the above definitions that a program must be initiated by an
operator, while tasks are initiated by significant run-time events, controlled by the
OS. A program is a static entity, a task a dynamic one.

A procedure is a piece of code that defines a sequence of operations to be
performed on specified data (cf. a procedure division in a COBOL program).
Working data is separated from the procedure. If local variables are also separate
so that the procedure contains only instructions and constants, then it is reentrant

·and can be shared by multiple programs. Note that on some mainframes the word
procedure is used to define a prespecified sequence of job control statements.

150 The Minicomputer in On-Line Systems

An interrelated sequence of programs, together with identification of files,
requests for use of compilers, and so on, is loosely termed a job. A job control
language is provided to communicate related information to the operating system
monitor. In a batch system sequences of JCL statements are stored and accessed
by the monitor to control the machine workload; in an interactive system JCL
commands (although seldom so called) can be entered through the same terminal
to be used for data entry. The best systems will support batch streams and
interactive JCL. Note, however, that support for terminal 1/0 devices does not
necessarily imply interactive JCL (for example the Burroughs B700 and Data
General ROOS). Such systems still need a dedicated console. Further, many minis
support excellent interactive JCL but limited batch facilities; often a terminal is
tied up by a batch job.

Operating Systems

In general we will here consider the operating system to include basic transaction
processing features. Operating systems are discussed in detail in chapters 6, 7,
and 8; in this section we will simply establish a few definitions. Figure 4. 9 shows

Job scheduling
Priority control
Task management
Job control language interpretation, command analysis, operator interface
Error detection and handling
1/0 handling
Interrupt handling
Resource control

peripherals
memory

Protection
access and file ownership control
memory mapping

Message routing, interprocess communication
Buffer allocation

fixed
dynamic

Accounting of resources
error logging and device utilization
transaction logs and recovery utilities

Figure 4.9
Functions of an operating system

Transaction Processing and a Review of Minicomputer Software 151

a summary of the functions of the OS required to implement the communications
concepts discussed in the Transaction Processing section, as well as batch
processing. Note that the primary objective is to remove direct control of the
system resources, both peripherals and memory, away from the user's program. In
this way the chore of writing drivers is avoided and the standard ones can be
shared by multiple users. Equally important is the fact that conflicting require
ments for resources can be resolved. The use of an operating system has
unavoidable overheads in looking up tables, switching to supervisor space, and so
on, but the control and logical independence are essential in practice.

Access to the supervisor services provided by the operating system is of two
kinds, that initiated by the operator from the console and that called by the user
program at run-time. The command string analyzer interprets console requests;
regular sequences of commands can be stored and executed from disc files which
can extend to more conventional batch control streams. On many minis in a
multiuser environment any terminal can initiate a background batch job and then
detach from it to run a foreground job giving multiple concurrent streams of batch
programs along with on-line jobs. Tasks with interactive terminal work should be
given a high priority. Run-time access to the OS services is achieved by supervisor
calls (SVC). These are usually macros in the user code which expand to jumps to
the OS with appropriate parameter tables defining the service required and any
data such as buffer addresses and word counts. The supervisor responds to the
SVC by initiating the appropriate service routine and updating the task status
tables; there is always an overhead on a supervisor call compared to a procedure or
subroutine call. SVCs are commonly implemented on minis by interrupt
emulating instructions.

In general we are interested only in disc operating systems, that is for
computer systems that use a fast-access bulk store to store programs and data not
currently required for processing. For readers with a mainframe computer
background this may seem a statement of the obvious, but simple minicomputer
and microcomputer systems still use paper tape and cassettes as bulk storage.
While these are really low-cost laboratory systems we have a definite interest in
memory~only operating systems for dedicated applications. Thus in developing,
say, a data concentrator, a disc-based system will be used for program develop
ment and testing but the final system only requires a subset of the full OS to act as
a run-time monitor, the program being "burnt" into a ROM or loaded from a
cassette or tape. Returning to disc-based systems, a variety of characteristics serve
to differentiate one system from another and in many senses make a system more
suitable for one type of work than another. The more common characteristics,
listed in figure 4.10, can now be reviewed.

Single user versus multiuser. A single-user system can run one program at a
time from a single console terminal. A multiuser system (or multiaccess) allows
multiple terminals to initiate jobs concurrently. A multiuser system must have far
more secure file access and security features such as passwords and user
identification codes (UIC). One terminal is always required as a console, which is
the prime means of communication with the command analyzer and monitor; with

152 The Minicomputer in On-Line Systems

Single user versus multiuser (multiaccess)
Foreground/background
Multitasking

single threading versus multithreading
Multiprogramming

Job mix: core resident versus swapping
Swapping by program, overlaying, paging and segmentation
Shared code and data
Virtual systems
Multi partitions
Multilanguage
Concurrent program development

Time sharing and/or event driven
Resource sharing

Figure 4.10
Operating system terminology

a multiuser or multiaccess system, selected (possibly all) terminals can be initially
attached to the command analysis program, although a few commands will be
defined for exclusive use of the console or master terminal. Striking a control
character to terminate execution of a program reattaches the terminal to the
command analyzer.

Foreground/background. Still basically a single-user system, but with the
ability to initiate two jobs concurrently. Typically the command analyzer runs in
the background; the foreground job will use peripherals other than the console and
has a higher priority than the background job. Most often the foreground job is an
on-line program, say, controlling direct data entry stations, while the background
job is batch oriented (compilation, file update, sorting, and so on), usually-but
not essentially-not requiring any terminal interaction until the job has been
completed.

Multitasking. The ability of the system to maintain multiple tasks in an active
state at the same time. Each task is given a priority that is dynamically altered
depending upon its relation to the rest of the system. The highest-priority task is
given control of the processor. When a task terminates, say, by initiating a disc
read request, then its priority is marked down and the next highest priority task
started. When the disc read is complete the task required to process the data is
raised in priority so that it will be activated when possible. The actual priority
system contains information about importance as well as current status (to be
discussed in more detail in chapter 6). Multitasking (or multithreading) should be
contrasted with single threading, whereby a routine once started retains control of
the processor even when it is awaiting completion of a requested 110 transfer.

Transaction Processing and a Review of Minicomputer Seftware 153

Single threading is common in pseudominis but unusual in minis, since the
interrupt-driven hardware concepts make multitasking a natural method of
operation.

Multiprogramming. The ability to maintain concurrently multiple indepen
dent programs in the system. Given a multitasking system the OS must maintain
schedules of which tasks are part of which program and maintain the correct
logical linkage; this in effect is a high-level control of the task priority system.
Program control can be achieved by one of two methods, event-driven or time
s/iced. In time slicing the processor is allocated to each program in tum for a fixed
interval of time on a round-robin basis. Most mini data processing systems are
basically event-driven, a natural concept with multitasking, but with an overriding
clock control to time-out processor-bound routines. The effect is a time-shared
system in which any program can terminate.its slice whenever it cannot continue,
with all the supervisor functions such as 1/0 handlers being interrupt-driven. Thus
a program requesting input of a binary number is descheduled immediately; the
terminal handler independently collects the key-driven characters, converts to
binary, and only when ready reschedules the program. Note that multiprogram
ming can be achieved on a batch system and with single threading by using time
slicing; multithreading is essential for communications or interactive work.

Mapping. The 16-bit word length constrains any one program to an address
space of, say, 64 KB. With no mapping hardware the OS and user programs must
share this space. If two or more programs are active then errors in one (writing
more elements to an array than were allocated) can corrupt the other. Some checks
can be made when the programs are loaded, but not at run-time. With mapping
hardware multiple programs can be allocated addresses in the range 0 to 64 KB
and lo.aded into differing physical locations; the program address is termed the
virtual address. Thus the OS can use one virtual space and each program its own
virtual space, mapped into separate physical memory locations. Protection of one
program from another is provided by the mapping hardware. All 1/0 is performed
in the OS so that user programs can use the full 64-KB range. The user program
communicates with the OS by issuing SVCs. The processor must provide facilities
for rapid context switching, for example, when a user program executes a SVC,
the maps must be changed from the user set to the OS set (kernel or supervisor
mode) and register sets changed or their contents stored. A further problem area is
that the supervisor function initiated will need data (parameters) from the calling
program, which means that instructions must be provided to move data from A to
B, where A uses the kernel map and B uses the user map. A common alternative is
to set the mapping up so that, say, virtual addresses 1 to 2 KB of the OS are the
same physical locations as 1 to 2 KB of the current user program. With mapping
hardware it is also common to inhibit the execution of certain privileged
instructions, when not in the kernel mode, such as Halt. With virtual 1/0 systems
(DEC PDP-11, TI 990/10), only in the kernel mode are the top addresses mapped
to physical 1/0; in the user mode they can be used for normal program space,
effectively constraining 1/0 to the OS.

154 The Minicomputer in On-Line Systems

Multipartitioning and code sharing. With memory mapping the concept of
foreground/background operation can be drastically enhanced. Multiple partitions
can be provided, each with full facilities (access to the command interpreter and
all peripherals through the OS). Partitions can be of any size and in some cases
can be dynamically located. A high degree of security can be achieved by
allowing programs to run only in the partition in which they are installed. With a
partitioned system there are distinct limits on the ability to share memory or data
between programs; this is usually overcome by defining a block of memory as a
global or common area mapped into multiple partitions.

The alternative approach for concurrently loading multiple programs is to
ignore any partition constraints and to allocate any available memory to a
requesting task. This requires rather more activity in maintaining the current
mapping registers and possibly provides less security than the partitioned concept,
which stems from the need to run fully protected real-time process control
programs concurrent with program development. This mapping concept allows
easy use of shared code, as shown in figure 4.11 with the user program divided
into logical segments.

In practice each segment (procedure or data) may be mapped into smaller
noncontiguous subunits, depending on the mapping hardware-the more pages
the more efficient the memory utilization but the higher the map bookkeeping
overhead. Given three mapping registers, say, the OS could be designed to keep
each segment contiguous but allow multiple levels of sharing as shown in figure
4.12. Thus, for example, Procedure A could be an interpreter and Procedure B
and Procedure C user code. Procedure B however, say, a stock inquiry program, is
being used by two terminals, each of which have their own local areas, Data Bl
and Data B2. Note that because mapping is used, addressing between, say, PROC
A, PROC B, and DATA Bl is within the program's virtual address space (provided
the map is correctly set up). Contrast this with communication between the user
program and the OS (SVCs), which are using alternative mapped spaces. Thus a
mapped system implies far more procedure-level calls than supervisor calls, with
a resultant minimization of run-time overheads. If shared code is to be employed,
references inside the procedures to peripherals and files must be to logical channel
numbers and so forth. The actual phy~cal devices allocated must be defined in
tables shown as attributes in figure 4 .11, although the OS must also maintain some
tables to avoid double allocation of unshareable resources.

Swapping. Memory utilization can be greatly increased if segments of code of
an activated program not currently in use are rolled out to a disc file and rolled
back in again when they are actually needed. Typical situations occur when a user
program issues a request, via a SVC, to read an input data item from a keyboard.
The OS collects the input characters in a local buffer, checks for special
characters, converts to the desired internal form, at which point the user program
can be rescheduled to accept the data and to continue processing. Thus all the time
the OS was active on behalf of the user program, it could have been rolled out to
disc and rolled back in when rescheduled. Obviously, some code cannot be rolled

Transaction Processing and a Review of Minicomputer Software 155

24K 24K 24K

Data A Data B Data C

12K 12K 12K

Proc X Proc X Proc X

0
Common

0 Common 0 Common

Virtual progams

Lower Size

1---0---+--0--+--1-6_K___,, OS m'P

-vA~ PA---

0 20K 12K

12K 48K 12K

- - -

Mapping hardware

Figure 4.11
Mapped operating system

User map
(currently running A,
separate table maintained
for each user program)

-Spare

Data C

60K

Data A

48K

44K

Data'B

32K

Proc X

20K
Common

16K

OS

0

Physical memory

out, such as the monitor or a shared procedure. A task that is to be allowed to
swap is declared at task-build time as "checkpointable''. Less frequently used
modules of the OS are often checkpointable. If a checkpointable task is awaiting
completion of a disc transfer, swapping must be inhibited; OMA transfers data to
physical memory locations and there is no guarantee that the task will be swapped
back into the same physical location.

Overlays and chaining. The concept of breaking a program into segments has
been discussed under mapping, above, where segments were combined into a
program by setting up mapping registers (possibly also involving swapping). The

156 The Minicomputer in On-Line Systems

Data
B1

Figure 4.12
Shared code

Procedure B

Procedure A

Data
B2 Data C

OS was in charge so that the segmentation was asynchronous as far as the user
program was concerned. However, a programmer in developing his program has
distinct control over the logic and can break his program down into sequentially
executable segments. Thus he can request that only specific segments be in
memory, replacing one segment with another when required. This is termed
overlaying, the point being that swapping is synchronous and under user control,
with reduced overheads compared to OS-controlled swapping. Overlays must also
be defined at task-build time to ensure that maximum required space is allocated
and the overlays are valid. A typical system is shown in figure 4 .13.

Chaining is a simple variant whereby one program, on completion, initiates
another program. Unlike overlaying, however, special facilities must be made to
transfer data from the first program to the next, usually through a disc file. There
is significant overhead in closing files at the end of one program just to reopen

Main
program

!-------

Subprogram
A

f---------

Subprogram
B

_______ __,

Spare

Figure 4.13
Overlaying

Main
program

f--------

A

c

Main
program

f---------

D

Spare

Transaction Processing and a Review of Minicomputer Software 157

them in the chained program, but the technique is very simple to use and avoids
the overlay build process.

Virtual systems. A virtual system attempts to provide more memory space for
the user programs than is physically available. This is achieved by keeping only
parts of the active programs in memory, the rest being on a special area of disc.
Each user program is broken down into a number of fixed-size pages, within the
virtual address space. Pages are loaded into memory until memory is full. During
execution the program will access a virtual address which is not in physical
memory and a page fault occurs. At this stage the operating system identifies the
least recently used page, which is rolled out to disc and the new required page
rolled in in its place. This is called demand paging or simply paging. If the old
page has not been modified it need not be rolled out since a true copy already
exists on disc. Note that the active copy on disc must be in loadable form, not the
basic program filed in the normal storage system. With this technique it is not
only possible to run programs which in total exceed the available memory, but any
one program may have a virtual address space in excess of physical memory. The
use of such a technique for handling big data arrays is inherent in the concepts of
APL and to an extent in an ideal PASCAL.

Virtual systems imply a large virtual address space so that an excessive
number of· relocation pomters on a one per virtual page basis would be
impractical. Thus some form of content-addressable mapping is required, one
pointer per physical page, which can say whether the desired page is in memory
or not with no time overhead. With a few exceptions (Prime 500, VAXll/780)
minicomputers support neither virtual addresses in excess of 64K, nor page fault
detection hardware, both features of modern mainframe machines. In fact, with a
64K virtual address, minicomputer memory mapping is totally differently
organized, translating from virtual to physical address by retaining pointers for
each virtual page, since the required translation hardware is not excessive. Thus,
with the exceptions mentioned, virtual operating systems (with their high
overheads) are not used on minis. Note that in all cases, too small a physical
memory, implying a limited number of resident pages, can cause "thrashing,"
whereby the system spends too much time in swapping rather than in useful
processing.

A most interesting variant of paging was introduced by Datapoint and adapted
by Computer Automation's SyFA (see chapter 8) and BUS/COBOL for Data
General machines, which do not rely on memory management hardware at all. In
these systems the compiler generates reentrant position-independent code in
modules which do not exceed a fixed page size, say 512 bytes (related to a disc
sector). Address references are created as a page number + in-page offset. Thus
the size of program is governed by the number of pages, not the machine's virtual
address, and in the systems mentioned can be as big as a megabyte. At run time
part of the memory is allocated to code, in fixed page increments. The first page
of a program is loaded into the first available page of physical memory and
executed. Data is allocated in separate memory areas. The operating system

158 The Minicomputer in On-Line Systems

maintains a table of physical page allocation, so that address references outside
one page to another can be translated to the physical page in which that virtual
page is stored. When physical memory is full the OS overlays least recently used
pages with new ones.

The most common technique used on minicomputers is to swap whole
programs. This allows the total active programs to exceed physical memory size,
but does not allow virtual addresses to exceed the normal 64K limit. The
technique is best illustrated in systems like DEC's RSTS/E and Tl's DXlO, which
use a reentrant interpreter for the BASIC or COBOL programs. In this case only
the user code need be swapped. Page maintenance overheads at run-time are
avoided, but swapping overheads are high since segments around 32KB will have
to be rolled out and in. Note, of course, that the system software, including all
communications routines, must not be swapped. We have coined the phrase semi
virtual to describe these systems since they meet many of the requirements of a
virtual system with the notable exception of support for programs bigger than the
physical memory or bigger than the 64K virtual limit.

Assemblers and Loaders

Because of the process control and the data communications history of the mini,
where fast, compact code is important, assembly language has been the major tool
for developing applications programs. As a result the available assemblers are
very good, with extensive labeling and macro facilities. They are capable of
producing absolute or relocatable code, defining tables or global variables for use
when linking modules into complete tasks. Linkers and loaders are equally
sophisticated, as already implied in the abilities to create overlays, define
swapping attributes, define as reentrant, and so on. Usually the assembler (and
compiler, for that matter) creates an individual object file for each source
program. The linker is then used to build a loadable binary code file, resolving
global addresses and adding a header with attributes needed by the operating
system when loading the program. Any library routines are also built into this file,
unless the OS supports mapping into a shareable library permanently loaded in
memory. It should be pointed out that there is a wide variety as to which functions
are included as part of the OS, which are in a shareable library, and which are
linked in with each user program. Embedded into the user program, the functions
execute faster but there are likely to be multiple copies in memory at any one time.

High-Level Languages

It is important in all computer systems, but particularly so with minis and micros,
to differentiate between languages designed for user-oriented applications pro
gramming and the more specialized system programming languages. For the

Transaction Processing and a Review of Minicomputer Software 159

former class, user friendliness and ease of use is important, while for the latter
class flexibility and efficiency are vital. A very simplistic viewpoint is to consider
an application-oriented language as one which presents the programmer with a
logical input/output interface, the actual physical requirements being transparent.
On the other hand a systems programming language allows the programmer direct
access to the operating system, allowing control of flags and SVCs; this should
include all the facilities of an assembler but with high-level code. A system
programming language cannot be truly machine independent since the operating
system services available will differ. Such a language must generate relocatable
code modules, which can be linked by the programmer, hopefully compatible with
code generated by assemblers and other languages.

Obviously there are overlaps in languages such as the modifications providing
wait, direct input/output, read and write data to specific memory locations, in
BASIC or FORTRAN. The better compilers for languages such as FORTRAN
automatically invoke the linking process, but others require the link-edit to be
performed after compilation, as with a system program development. Most
application languages either need an interpreter or invoke linking to a run-time
support library of basic routines. System programming languages may also use a
run-time library, but the programmer would need direct control and understanding
of what is involved, a concept of no interest to the applicatwn programmer.

Usually the syntaxes of application and system programming languages are
quite different. However, an interesting trend is the adoption of PASCAL for both,
different implementations favoring one or the other use.

On both minicomputers and microcomputers the languages available are
rather a mixed bag. Implementation of most languages in general use, plus some
more specialized ones, are available, but the quality is varied. The problem is
compounded on minicomputers by the wide range of operating systems sup
ported, so that even for a given machine a compiler available on one operating
system is either not available or runs very inefficiently under emulation on another
operating system. Support for reentrant code is weak, although improving.
Historically speaking, BASIC interpreters were the first high-level systems to
become available, and were aimed at allowing research labs to use their machines
when these were not tied up for the process control work for which they were
installed. FORTRAN followed, and other languages have limped into considera
tion as we shall describe below.

BASIC. Designed as an easy-to-learn, easy-to-use interactive language for
scientific work, it is well suited to time sharing with a "semi-virtual machine"
concept. Most systems use an interpreter, although BASIC compilers are
available. Often multiuser BASIC systems run under a single-user OS; the BASIC
monitor, once loaded, providing the multiterminal support, which does not
encompass all the facilities one would normally associate with a multiuser OS. In
the attempt to make the system easy to use the monitor commands (run a program,
list a file directory, and so on) are integrated with the actual user program
commands. This provides a superb "friendly" user interface, a standard that other

160 The Minicomputer in On-Line Systems

language processors must try to achieve. It also provides interactive program
debugging, since the values of current variables can be displayed or changed on
request at the terminal. BASIC is common on microcomputers.

Extended BASIC. BASIC has been extended by adding both integer and
floating-point arithmetic, string manipulation, and file handling. While there is an
ANSI standard for BASIC, each manufacturer's extended version is different;
some are significantly more powerful than others. DEC's BASIC-PLUS was
probably the first BASIC system to be accepted in commercial data processing.
The language is more powerful than, say, COBOL, particularly for on-line
applications. This, combined with the superb user and program interface, high
level of file security, and availability on a standard mini, more than compensated
for the relative slowness of the execution (compared to compiled code) and the
limited structure and syntax of the BASIC language. BASIC-PLUS was also
unique in that it was supported by its own dedicated swapping time-sharing
operating system called RSTS, whereas most BASIC interpreters run as a job
under standard operating systems. There are now a number of commercial BASIC
systems, Microsoft's microprocessor-based MBASIC being one, but others are
trying to use "extended BASIC" systems that are just not powerful enough (single
precision arithmetic, poor file handling).

FORTRAN. Well supported on minis; some systems are interpreted, most
compiled. A few manufacturers offer alternative compilers; development systems
that compile quickly, with extensive diagnostics, but run inefficiently and a
"racetrack" compiler with limited diagnostics that is slower to compile but
produces optimized code. Essentially a batch language for scientific work,
FORTRAN has been extended for real-time work by supporting call statements to
timers and peripheral drivers. It has also been applied to commercial data
processing by improving string handling and file systems, notably by General
Automation. Other commercial FORTRANs are essentially a suite of subroutines
available with the standard FORTRAN and are not very good.

ALGOL. Rather poorly supported: it is difficult to see any demand that will
change this situation, although the language is good.

COBOL. Every computer manufacturer with an interest in commercial
systems must consider a COBOL compiler, since like it or not it is the industry
standard language and there are numerous COBOL programs and trained
programmers in existence. However COBOL is a batch processing language
which is not particularly appealing to minicomputer uses. Data entry languages
are used to create files for later processing by COBOL programs, the appeal of
which is compatibility with IBM System 3 machines, with access to existing
application programs. (In practice, compatibility of one COBOL with another
creates very serious problems.) To use COBOL in a transaction processing system
requires major differences, largely to the operating system environment. Transac
tion Processing Monitors are used to support terminal 1/0, linking to user
processing modules which, since they do not handle the I/O themselves, can be
written in COBOL (the compiler should generate reentrant code); a typical system

Transaction Processing and a Review of Minicomputer Software 161

is described in chapter 10. However, the more common technique introduced on·
minis and micros is to enhance the language to take direct advantage of the
operating system's interrupt-driven I/O services, a concept which would be
difficult on a mainframe OS. Thus file-like READ and WRITE statements are
introduced to handle blocks of terminal data, with ACCEPT and DISPLAY
statements for single-character I/O. Since many such interactive COBOL systems
use interpreters, the similarity with BASIC (the concept, not the syntax) is
obvious. Debug modules are also included in some with standard ANSI 74 level 1
specification and some level 2 features. The Texas Instruments system described
in chapter 7 is a good example, while with Microsoft's COBOL-80 and
MicroFocus's CIS-COBOL, interactive COBOL has become a microcomputer
standard. However, it must be noted that the concept of using COBOL to achieve a
means of adopting existing application programs fails with interactive COBOL
since the existing programs are batch-oriented and require complete reanalysis for
on-line processing.

PL/l. An attempt to blend the arithmetic processing power of FORTRAN
with the data handling of COBOL, it is generally felt that PL/1 compilers are large
and would therefore not interest mini suppliers. Now that memory has fallen in
price and large memories are common on minis, the situation may change; indeed
Digital Research have introduced a version for micros. It is interesting to note that
IBM's initial offering on Series 1 was PL/l and not COBOL-that could be,
however, because IBM is sure independent software houses will develop COBOL
compilers.

PASCAL. PASCAL is a structured programming language which was
initially of interest to language specialists in an academic sense. Implementations
were developed on minis in universities with relatively little vested interest, and as
such were adopted by, rather than thrust upon, the users. The interest in PASCAL
coincided with the growth of microcomputers so that the language became widely
available at low cost. Ideally the language allows data structures to be defined
which would encompass large data arrays; such an implementation would need
virtual operating system support and so conventional file-handling characteristics
are (grudgingly, by the purists) being added. With widespread availability and low
commercial pressure, minicomputer and microcomputer enthusiasts are using
PASCAL in a wide range of applications. Most are experimental and many
scientific or mathematical, but there is also a strong interest in commercial
applications. The other aspect of PASCAL, with its wide scope for handling
various data structures, is its use as a system programming or real-time language.
Variants, heavily integrated with real-time operating systems, support concurrent
execution of modules (Concurrent-PASCAL) for process control, multi-tasking
applications; Texas Instruments supports this approach. For microcomputers the
University of California at San Diego (UCSD) PASCAL is commercially available
on many machines. A pre-compiler generates an intermediate P-code which is
interpreted at run-time, an implementation aimed at retaining the friendly user
interface of BASIC. On the other hand the Microsoft PASCAL compiler generates

162 The Minicomputer in On-Line Systems

code modules compatible with their linker, an implementation aimed at system
and real-time programming. The concept of a common language being used as the
basis of totally different programming requirements by differing implementations
is most appealing.

RPG II. This is another batch processing language, possibly simpler to
program than COBOL but much less powerful, introduced by IBM for use on the
System 3 with memories too small to support COBOL. As terminals have been
introduced on these machines and their replacements the language has been
enhanced to suit. Since the IBM System 3 replacement market is very attractive to
mini makers, RPG II compilers abound. Frankly an RPG II system is inferior to,
say, commercial BASIC unless one is forced to use a small memory.

COBOL-like languages. A number of languages have been developed
specifically for on-line data processing. Structurally they are similar to COBOL
but greatly simplified. It is a shame that with the mini's positive impact on data
processing the opportunity to establish a new internationally standard language
along these lines was missed. Probably Datapoint's DATASHARE was the first,
followed by DIBOL, SyBOL, and one or two others. CAP's MicroCOBOL is the
common micro example.

Data-entry languages. Special-purpose languages have been developed for
key-to-disc systems, a well established use of minis. The essential characteristic
of these languages is that they are designed for screen formatting, data validating,
and so on, rather than data processing. These are superb examples of software
systems being developed to perform a dedicated job very efficiently at the
justifiable expense of versatility. While BASIC, Interactive-COBOL and the like
have facilities for reading and writing on VDUs, all screen formats and so forth
have to be programmed from scratch. Thus the example set by the key-to-disc
systems is being adapted to standard minis with special data-entry packages. Data
once collected can be batch processed using COBOL programs since the files are
compatible. An example is Data General's IDEA, a software package that runs as
a job under standard operating systems.

An alternative approach, a few examples of which exist, is the program
generator. Here a simple-to-use screen formatting and validating procedure is used
to generate a module of code for a standard language such as BASIC or COBOL;
further processing operations can then be added and the whole compiled as a
normal program. DEC's DECFORM generates DIBOL program and FILETAB
Services in the United Kingdom has developed a FILETAB (RPL) precompiler
that generates BASIC-PLUS programs. CIS-COBOL provides the FORMS utility
on micros. Program generators are an enigma; they undoubtedly speed up
program writing, but the code they generate is difficult to follow and debug and
can be inefficient at run-time. They are extremely difficult to evaluate, the good
points being immediately obvious, the bad only materializing when a few
production programs have been developed. The transaction processing monitors
developed by software houses for pseudominis often include first-class facilities
for developing data-entry programs, including transaction log files. Transaction
logs are nearly always left as an application program function on minis.

Transaction Processing and a Review of Minicomputer Software 163

APL. At the moment there are only a few APL systems available. This will
change over the next few years as the general interest in APL increases, an interest
stimulated by universities, which are now rather firmly mini oriented. It will be
interesting to see whether future enhancements to the language will lead to its
adoption in commercial data processing, but it is very inefficient. Terminals with
APL character sets are readily available at little extra cost.

CORAL and RTL/2. The (loosely phrased) real-time languages; essentially
these languages have a syntax similar to ALGOL but with 1/0 designed to mate
directly with specific real-time operating systems supervisor functions. The
objective is to produce a high-level language that retains the efficiency and
versatility of an assembler, generating linkable object code modules. As such they
are not specifically applications oriented and it would be very difficult to write,
say, commercial data processing programs with them. These languages were
originally designed for process control applications, but there is a good deal of
interest in their use for writing special-purpose communications programs. All
compilers, must, of course, be designed to run with a specific operating system,
since they use the SVCs. In languages such as COBOL this is transparent to the
user; with CORAL and RTL/2 the programmer trying to take full advantage
should be fully aware of the specific operating system in use.

As previously mentioned, various implementations of PASCAL are growing
competitors to CORAL and RTL/2. The concept of integrating the real-time
operating system and compiler to create concurrent applications modules without
the programmer having to control the SVCs and flags is most important.
Concurrent PASCAL is one such language but MODULA and others exist in
experimental form. The so called real-time extensions to BASIC and FORTRAN
are a much lower-level concept. In general they provide facilities for direct control
of 1/0 and timing, but only for sequential programs; concurrency (which implies
multi-tasking) is difficult with these languages. Nevertheless they are simple to
use and are therefore very important for less complex applications. Real-time
BASIC is an important teaching tool since it stresses the broader applications of
computers rather than mere calculating.

System programming languages. Most system programming on minis and
micros is done in assembly language. There is, however, a growing use of special
purpose compilers aimed at improving programmer productivity, documentation,
etc. Often these languages are very much machine dependent (Hewlett-Packard's
SPL) but there are some common ones variously but not widely supported such as
LISP and BCPL. Real-time languages such as CORAL and PASCAL are also
used. A most interesting variant is C, a language developed for the Bell Labs'
UNIX operating system for PDP-11 machines, and now available for 8080/Z80
microprocessors. The microprocessor manufacturers have produced their own
languages for system programming and for generating modules for real-time
programs. These are ALGOL/PASCAL-like but in fact are not common. It is most
unfortunate that PASCAL was not advanced far enough at the time to have become
a standard, thus avoiding the unnecessary spread of languages. The leading micro
languages are PL/M and PL/M 86 (Intel), PUZ (Zilog), and MPL (Motorola).

164 The Minicomputer in On-Line Systems

ADA. The latest in the attempt to produce an all-purpose language is ADA.
The specification of ADA has been built up by a series of trial projects by U.S.
agencies, and as such must have the most comprehensive features of any
language. Implementations are not yet common so that little further can be said at
this point.

Conclusion

High-level language support on minis still has a long way to go. An operating
system as well established as DEC's RSX 11-M for a long time supported only an
assembler, FORTRAN, and CORAL. By 1980 this list should be extended to
include COBOL, RPG II, DIBOL, and BASIC-PLUS-2, which is a fair reflection
on the current state of development across the industry. By far the weakest area,
particularly important in multi terminal installations, is a lack of compilers which
generate reentrant code.

Program Development Aids

In batch systems, programs are traditionally keyed on cards, read into the
machine, compiled as a batch job with all listings, and diagnostics printed out
only on completion. With a terminal-based system, programs can be keyed into
the machine and stored on disc files with the aid of an editor. The same editor can
be used to correct source code. Editors still vary in quality, but in general the
products offered on minis are good and some are first class. With interpretive
systems, particularly BASIC, the first level of syntax checking can be performed
as the code is keyed in; this is desirable for all languages, but it does mean that
language-specific source entry editors are needed, which are rare. There are
endless arguments (nothing to do with minis) as to whether a programmer should
be allowed to sit at a terminal, request a compilation, wait for the diagnostic
listing, edit the program, and so on, or whether the older batch approach enforces
more constructive thought as opposed to impulsive action.

When it comes to testing a program, there is no doubt that on-line debugging
is a powerful technique. Breakpoints defined in the program cause halts in the
natural execution sequence, returning control to the terminal. The programmer
can then display the current values of program variables with the assistance of a
source listing. The breakpoint traps are eventually removed before the program is
released for use. An extremely powerful feature in favor of BASIC is the
integrated editing and on-line debugging in such a system.

File Management Systems

Minicomputer file management systems were very slow to develop. Originally
introduced for disc-based program development systems, they were designed to

Transaction Processing and a Review of Minicomputer Seftware 165

load and save contiguous sequential files. Run-time access to user data files was
poorly supported. Further, since they were largely single-user systems, there was
little file security and and no ability to extend files. The advent of multiprogram
ming systems with commercial applications has changed all that, and the latest
breed of minis support some very good file systems. Nevertheless this can be an
area of weakness in older systems. Industry-standard sequential magnetic tape
files, usually IBM-compatible, are standard features; there is little else to say.
Here we will concentrate exclusively on disc systems, which we will consider
from the physical, logical, and user-access points of view.

Physical file allocation. A disc can be considered as a number of blocks
(sectors), usually 512 bytes each, numbered sequentially from 0 to the maximum.
Multiple drives are identified by unique codes (0, 01, and so on). A file of user
information is stored in a number of sectors and some method of allocation and
identification is required. Needless to say each disc can store multiple files;
further, multiple users should be provided for, each with multiple files. Each file
must have a unique identifier, a user-allocated name, not merely a system
allocated number. Finally, files of differing lengths must be allowed for. Thus each
physical disc must maintain a special system-controlled file (or files) called a
directory. Some large files are organized as volumes and may reside on different
discs. Therefore, while the directory usually applies only to the disc on which it
resides, it may have to contain a cross-reference to another disc. Since a
removable disc may contain secure information each cartridge is initialized with a
code name. This is checked in a "mount" operation and must tally before the
directory can be accessed. The directory consists logically of two levels, the
master file directory (MFO) and the user file directories (UFOs). Figure 4.14 is a
schematic of physical file allocation.

The MFD is accessed when a user logs on to gain access to a specific UFO.
Whenever a particular file is opened, details are read from the UFO of the file at
run-time. The UFOs are merely ill-ordered sequential files which can spread over
a number of blocks; there can, therefore, be a high overhead in opening a file. On
better systems, UFOs may be hierarchically subdivided, say by group codes;
directory clean-up utilities, eliminating entries for deleted files, are most
valuable. Note that deletion of a file means marking the directory entry only; the
data blocks can be freed for other use, but are not actually affected by the deletion
and for this reason erroneous deletions can sometimes be corrected. The MFO
must maintain a table of all unallocated blocks as files are added, deleted, or
extended.

There are three basic methods of allocating physical blocks to a file: linked,
contiguous, and clustered (see figure 4.15). The last word of a block in a linked
file points to the next physical block address (not the logical sequence number)
except for the last block, which contains an end-of-file character. Contiguous files
are allocated a fixed number of blocks in physical sequence. A clustered file is
allocated a number of groups of blocks. Each group, called a cluster, has a fixed
number of contiguous blocks, but consecutive clusters can be allocated in any
available space 1large enough. Relative characteristics are shown in figure 4.15.

166 The Minicomputer in On-Line Systems

u u
Disc F F
ID D D

1 2

Spare
block MFO
map

UFO 1 UFO 2
(1 block) (2 blocks)

Spare

Figure 4.14
Physical file allocation. Note that if contiguous spare blocks are
smaller than the cluster size, the disc will be declared full even though
there is unused space.

Clustered files are clearly the best, but a word of warning. Taking DEC's
RSTS system as an example, the core resident tables maintain pointers to seven
clusters; access to data in another cluster causes an additional directory read. A
file of lMB with a cluster size of four blocks would have 500 clusters and virtually
every access would require a directory read through a multiblock UFO as well as
the data access, possibly tripling the access time compared to the same file created
with a cluster size of 256 blocks. Some systems use allocation algorithms which
add larger clusters each time the file extends.

Linked

One directory entry
Extendable
Sequential access only
All freed space reuseable

Figure 4.15
Physical file block allocation methods

Contiguous

One directory entry
Not extendable
Any access method
Inefficient reuse

Clustered

One entry per cluster
Extendable
Any access method
Good reuse

Transaction Processing and a Review of Minicomputer Software 167

Logical file access. From a user viewpoint a file is accessed by name. As
described above a channel in the user's program is associated with a named file
when the open function is performed. As well as reading the data from the
directories for the logical to physical mapping the file control attributes must be
read. These cover read only, read/write, shareable or nonshareable, read by some
users, read/write by others, and so on. On most batch processors once a file is
opened by one user it cannot be opened by another until it has been closed. For on
line processing this is unacceptable; lock-out must be applied only at record level,
and even then it must induce a wait and try-again response and not an error. Note
that file lock-out can be achieved by markers in the directory, but record level
lock-out requires run-time control in the executive file control services.

Once the file has been opened the user program must subdivide it into records
and gain run-time access at the record level. Each record is transferred to a buffer
in the user's program; from there it can be split into fields as required. Records
can be either fixed length or variable length. In the latter case part of the record is
used as a delimiter or record length counter; in the former, the record length is part
of the file attributes. "Blank compression," replacing strings of nulls with a null
counter, is supported for some variable-length record systems.

Sequential files. Both fixed- and variable-length records are supported. A
reasonably common facility is support for files of ASCII data so that the file can
be accessed by terminal or printer oriented instructions, thus providing a spooling
feature, since either a printer or a disc file can be assigned to the channel at run
time.

Direct random access files. For fixed-length records only. There are two
variants, relative block and relative record. With relative block, data is accessed
by the complete physical block. On read, this can be transferred directly to a
buffer in the user's program; from there it can be directly processed into records
and fields. Similarly data can be assembled in a buffer before writing to disc. This
is very efficient but requires processing in applications programs. With relative
record files the nth record can be directly passed to the user program. Knowing
the record length and physical block size, an algorithm can be established to read
the appropriate block into a buffer and then to pass the appropriate record into a
defined data space in the user program. Records can be packed, using every byte
by crossing block boundaries, or best-fill, with an integer number of fixed records
in each block, may be used. The former is more efficient for space utilization, the
latter for accessing. Note that whenever consecutive records are accessed a disc
access may be avoided, but writing one record enforces read/modify/write of a
block. Both block- and record-relative files can be accessed sequentially or
randomly. Note that disc-to-buffer transfers are via DMA, whereas moving data
between buffers and user data areas implies a processor overhead.

Key access files. In practical user files, the records are usually identified by
alphanumeric keys that differ from direct access in that the keys do not start from
0 and advance in fixed increments. Thus some unique method must be provided to
identify each key with a record. If there are a large number of keys, then some

168 The Minicomputer in On-Line Systems

"tree-structured" arrangement is necessary, givmg a multilevel key system.
Further, the data may well be accessed by alternative keys, in a multikey system.
Some of the methods employed in minis for providing keyed access will now be
briefly considered.

Hashing. The key is processed by a numeric (hashing) algorithm to produce a
block number. The algorithm is chosen so that all keys map into a number within
the range of blocks needed to store the data. Two consecutive keys will not map
into consecutive block numbers, and if multiple records can be stored in one
block, multiple keys will hash to the same block number. The data is then written
into the relative block in sequence after the last entered record. The actual key
must be written with the data, since on read the block is read into memory and
scanned to match the key. When a block becomes full a linkage pointer to an
overflow block is recorded, as shown in figure 4.16. Each record is terminated
with an end of record (EOR) character.

The problem with hashing is the problem of choosing weighting in the
algorithm to spread the records evenly over the physical block range, when the
keys in practice will be unevenly spread. Further, if the block number range is

ABC 123
Data, data
data, EOR
XYZ 789
data, data
EOR, PQR

..--- 201
/1--------1

Overflow link pointer

EOR-end of record

ABC 124
data EOR

t
Relative
block
I

191

t
t
200

t
+ 331 Data

data EOR (Overflow block 1)

t 201
t

Figure 4.16

Key hashes into numbers
in range 0 to 200

KEY
ABC 123--'-H=a=sh'--'~ 191
ABC 124 Hash 200

Hash
XYZ 789 191
PQR 331 Hash 191

Hashed file structure

Transaction Processing and a Review of Minicomputer Software 169

spread, a lot of disc space is allocated and never used, while if the block number
range is tight some blocks will overflow many times; any record accessed from
that block will have to work through the links, initiating multiple disc accesses.
Variable-length records can be used, but then all additions must be at the end of a
block and deletions are simply tagged. The whole data base thus needs regular,
extensive reorganization, which carries a heavy overhead. Note also that the key
itself must be recorded in the data file.

Indexing. The data is stored in a main file and an index file is built to note
where in the file the data for each specific key is stored. The key is then used to
access the index file, followed by a second access to the data proper. For complex
structures there may be multiple levels of index file. If access to the main data is
required by alternative keys, then by maintaining separate index files the same
main data file can be used. This is fine for reading and updating records-fixed
length records, anyway-but additions and deletions mean updating all index
files. Usually the system is designed most efficiently around one key, called the
primary key, with the other, secondary keys carrying higher overheads.

There are many ways of organizing indexed files. The superior methods
maintain either the data or the index file in sequence. This nearly always means
some loss of efficiency for random on-line access, but enormously improves batch
processing, sorting, and merging of files. The sequential file can be maintained
by linking every block to the next in sequence. When an insert is made that
overflows the block, the linkage pointer is changed to one in a pool of spares, the
old link now being written into the new block. The keys are still required in the
data, and since each block must be accessed the records need not be in strict
sequence inside the block. An index can now be maintained to store only the key
of the highest record in each block or group of blocks. A similar index can be
maintained for the index file, which in most cases will be small enough to be
memory resident. This and variants on the theme is referred to as an indexed
sequential access method (ISAM). A variant on the ISAM theme stores only the
keys in the sequential file with a simple pointer to a record in another file which
holds the data added in time sequence. A further access is thus required to reach
the data after locating the key; however, more keys can be stored in one block, so
that subindices are most unlikely to be needed and the file is directly amenable to
a tag sort. Alternative key index files can easily be maintained and variable-length
records can be supported. A representative system is outlined in figure 4.17.

Data bases. Full general-purpose data bases in the CODASYL or Relational
sense carry extremely high disc access overheads. Since most data processing
systems are disc bound rather than processor bound, full data bases only make
sense if full facilities are genuinely needed; all too often they are used just because
they are easy to program. It is probably true to say that with the relatively
infrequent use on minis of multiport memory and multiple data channel control
lers, a full data base would hit at the machine's weakest point.

There is a far better trend, well established now, in the development of highly
versatile multikey, multilevel ISAM packages that support features such as generic

170 The Minicomputer in On-Line Systems

Subindex
(high entries in Index file
index file) (sequential)

ABC 136
DEF 578 ABC 123 1.3

ABC 136 1.1

2 spare

ABC 200 3.4

DEF 578 2.2

10-character key + 2-byte pointer

Figure 4.17

Data file 100 bytes data
.--------,_.,--- excluding key

Block 1
(512 bytes)

Block 2

Block 3

EOF _____ _ Last entry

Block 4

An indexed access system with sequential index file

and approximate keys with powerful utilities for file creation, maintenance, and
enquiry. The TOTAL data base (initially installed on Varian), Hewlett-Packard's
IMAGE 3000, Data General's INFOS, and Digital Equipment's RMS-11 are the
prime examples. Nevertheless, note that the versatility of these systems must be
paid for in run-time overheads and memory requirements. The simpler hashed
routines on Reality and Texas Instruments or the proprietary ISAM packages on
DEC's RSTS are most suited to smaller systems. In dedicated applications there is
still room for specially tailored file access systems taking advantage of specific
characteristics of the job and using the basic relative block access techniques
provided with the OS. Finally, remember that a file management system is only as
good as the utilities that support it.

File handling routines. All file systems supported by the operating system
require suites of routines accessed from the user program. Figure 4.18 shows the
overall picture. The file primitives such as read directory, write the nth physical
block, and so on, are the basic functions and are required by all file organization
techniques. The file control services (FSC) interpret the user request, mapping
from logical to physical disc addresses, manipulating index files, and so forth.
The primitives must be reentrant and the FCS at least serially reusable. Tables
must be maintained to define the various logical channels and the actual physical
devices currently associated with them and their attributes. Buffers must also be
allocated and queues for services maintained. As shown, file access calls,
implemented as predefined macros that set up an array of parameters and load the

Transaction Processing and a Review of Minicomputer Software 171

User 1

Call 1

Call 2

Call 3

FCS

Figure 4.18
File system software

Executive
file

primitives

User 2

Call 1

Call 2

FCS

Disc
driver

Fi le control service
- Buffers
-Tables
- Logical to physical mapping routines

appropriate pointer registers, execute subroutine jumps into the FCS, which in
turn make and synchronize SVC calls to the executive Depending on just what is
included in the FCS and what in the executive, simple calls such as sequential or
random block access could be direct SVCs, bypassing the FCS. Multiple copies of
the FCS are required, possibly minimized by a virtual OS, but the smaller they are
the better, since they occupy part of the user address space. In some cases,
particularly the more sophisticated multikey ISAM packages, the whole FCS is
implemented in the executive. This topic will be discussed in far more detail in
chapter 6.

Communications Software

Every peripheral device requires a basic module of software to handle interrupts,
load data, test status, report errors, and so on. These we have called device
drivers. Terminal-handling software is then required that uses the device drivers to
move data from specific terminals to specific buffers and to tie them to specific
applications programs. The drivers vary in sophistication depending on the
hardware characteristics of the interface; in general, the less sophisticated the
hardware the simpler the driver but the more involved the total software.

Thus, say a mini is to be used to communicate with a remote machine using
bisynch protocols. A standard synchronous interface can be employed to form all
incoming bits into 8-bit characters and pass them to a special program that checks
the incoming characters for the defined protocol, causes a response to be
transmitted, and then extracts the data characters, passing them to a buffer. Error
checks are computed and any appropriate actions taken. In effect the standard
interface with the special line-driver software form an emulator for the bisynch

172 The Minicomputer in On-Line Systems

line protocol. If, however, programmable 1/0 chips are used then a further special
routine is required to initialize the interface. Software emulators can be taken to
much higher levels. The most common, employing the bisynch protocol, is an
IBM 2780 terminal emulator. At a higher level, HASP remote work station
emulators are available. Often these can run as a job in a multiprogramming
system, providing full on-line processing with batch communication with a
mainframe. Be warned, however; the software overhead in the emulator can
consume significant portions of the processor time-up to 30 percent!

The basic 2780 style of communication is aimed at linking two specific
devices together. If multiple machines are to be connected, in a network, then far
more sophisticated network-control software is required in each machine. Further,
if data stored in one machine is to be accessed by another, then a task on the
requesting machine must be capable of initializing a file access task on the second
machine and communicating data between the two tasks. IBM's SNA is such a
concept, as is the more successful DEC DECNET described in chapter 7. It has
been suggested that the on-line task-to-task communication is in many applica
tions an overkill and that lower-level network systems will be developed, using
minis as nodes, which allow data file transfer from any machine to any other in
batch mode, utilizing features such as full duplex protocols and packet switching.

5
Data Communications

Handling
on Minicomputers

We have reviewed the nature of data communications and discussed in general
terms a typical arrangement of the hardware and software components of a
teleprocessing system's central site. Inevitably, individual manufacturers will have
varying approaches to such configurations. In this chapter we will examine in
some detail the techniques used by two minicomputer suppliers, Digital Equip
ment Corporation and Modular Computer Systems. The selection of these two
companies is in no way an endorsement or criticism of the products described.

Digital Equipment Corporation PDP-11 Series

System Architecture

The Digital Equipment Corporation (DEC) of Maynard, Massachusetts, is
currently the largest supplier of minicomputers. In general terms DEC has three
main series of processors. The smallest is the long-established PDP-8 8-bit word
machine which is gradually being replaced by the microprocessor-based low
power machines at the bottom of the PDP-11 (16-bit word) range. The top-end
range comprises the closely related DECSYSTEM-IO and DECSYSTEM-20
series of mainframes. The medium-scale general-purpose processors in the
PDP-11 range are fairly typical of minicomputers on the market in the late 1970s
and are probably the most widely installed. For these reasons we will look at the
way communications interfaces are implemented on the PDP-11 and related
VAX-111780.

Fundamental to PDP-11 architecture is the generalized high-speed 1/0 channel
known as the Unibus* (see figure 5.1). Each PDP-11 system includes a single

*Registered trademark of Digital Equipment Corporation. See figure 2.22 for variations on the
larger processors.

173

174 The Minicomputer in On-Line Systems

Unibus

CPU Memory I/0 I/0

Figure 5.1
DEC PDP-11 system architecture

Unibus to which are attached the CPU, main memory (bipolar MOS, or Core),
and peripherals such as paper-tape readers, discs, magnetic tapes, and communi
cations controllers. The Unibus comprises 56 lines for the exchange of addresses,
data, and control information between the various devices. Each device (including
single-word memory locations) has a unique address on the bus. This arrangement
enables peripheral device registers to be examined and manipulated as easily as
memory locations, using the same instruction set. There are two common types of
peripheral I/O operation. The first involves the transfer of characters on a byte-by
byte basis via data registers associated with the peripheral. Some instruction code
must be executed for each character. The technique, usually called character 110
or bus request (BR) working, is only suitable for low-speed peripherals such as
card readers and Teletypes.* Faster devices such as discs and magnetic tapes
operate too quickly for this arrangement; the CPU would be swamped by the
processor overhead needed to handle the characters being transferred into or out of
the system.

In order to overcome this, a different arrangement is used on the Unibus
whereby the peripheral controller itself increments main storage addresses as it is
transferring the data, thus eliminating completely the need for processor interven
tion except at I/O initiation and completion. This arrangement is known as direct
memory access (DMA) or no processor request (NPR) interfacing. The character
I/O interface requires a command and status register (CSR) and a data buffer
register (DBR). DMA units use three additional registers: word count (WCR),
data address (DAR), and memory address (MAR). Communications adapters that
use both methods of 1/0 are described later in this chapter.

One of the drawbacks of the Unibus approach (compared with the multiport
memory technique used in the MODCOMP II described below) is that it offers
relatively poor peripheral switching and sharing capabilities. The DT03 Unibus
switch (see J.T. Martin Telecommunications and the Computer, and figure 5.2) is
available in two versions: DT03-FP, programmable and manual control (1
microsecond switching time), and DT03-FM, manual control only. One major
limitation is that the switch allocates all 110 devices on the shared bus to one
processor or the other. In the configuration shown in figure 5 .2, if processor A
wishes to access 1/0 device C2 it gets Cl as well, even if it does not require it.

*Registered trademark of AT&T.

Data Communications Handling on Minicomputers 175

Processor
A

Unibus

Unibus

I/0
A1

Unibus
switch

Processor I/0
B 81

Figure 5.2

I/0
C1

Shared unibus

I/0
C2

Peripheral switching on the DEC PDP-11 Unibus

This will preclude processor B from accessing Cl while processor A is accessing
C2 The program-controlled version of the switch helps to ensure that the shared
Unibus is held for the minimum period of time, but the systems designer must
clearly make sure that it is not overloaded.

The PDP-11 uses a hardware multilevel priority interrupt system. Any number
of devices may be attached to each of the eight levels. (This compares well with
some minis-the fewer automatic interrupt levels there are, the greater the
software overhead in analysing the interrupt and the lower the throughput capacity
of the system.) Each device attached to the Unibus features a pointer to the
device's interrupt service routine (ISR) and another to the new processor status
information. An interrupt thus causes control to be passed automatically (at che
end of the current instruction to be executed) to the relevant routine for processing
devices on that level. After servicing the interrupt control is passed back to the
next sequential instruction in the interrupted program.

DEC PDP-11 DLJJ single asynchronous
serial line interfaces

The DEC DLll is one of the simplest of all line interfaces and, for that reason, is a
useful point of comparison for other communications adapters on both DEC and
other suppliers' systems. The adapter is available in a number of submodels, three
of which are shown in figure 5.3. The DLllA is the simplest version, providing 8
data bits, 2 stop bits, no parity checking, and a fixed speed of 110 bits per second.
It communicates using a 20-mA current loop technique. The DLllE is much more
flexible and offers strappable options for character configuration, parity, and
speed. A CCITT V-series (EIA RS-232) interface is provided for communications
via modems over telephone lines, and full modem control (through status

176 The Minicomputer in On-Line Systems

PDP-11

Unibus

DL 11 E

Remote
terminal

CHARACTERISTICS

Number of data bits: 5, 6, 7, or 8
Number of stop bits: 1, 1.5, or 2
Parity: None, odd, or even
Speed: 50 to 9600 bits/s
Data set (modem) control: yes

D L 11 D has same characteristics,
but no data set control.

Figure 5.3

Unibus

PDP-11 DL11D

Local
terminal

ASR TELETYPE INTERFACE

Number of data bits: 8
Number of stop bits: 2
Parity: None
Speed: 110 bits/s
Paper-tape reader control

Unibus

PDP-11

20ma~
circuit

DEC DLll single asynchronous serial-line interfaces (for models
E, D, and A)

registers) is possible. The DLllD is similar to the DLllE in all respects but does
not have modem control facilities. This makes it particularly suitable for use with
a "null modem" (a simple black-box arrangement with standard 25-pin sockets
on each side and leads such as transmit data and receive data cross-wired). This is
an inexpensive way of attaching local terminals and other PDP-lls.

The heart of a DLll is a device known as the universal asynchronous receiver
transmitter (UART). The UART (figure 5.4) is a double-buffered MOS/LSI
circuit which serializes and deserializes data, handles character formats according
to the options set (by on-board switches in the older types of UART) and provides
the processor with status information on the line. Each direction of transmission
has two registers associated with it; a status register and a data buffer register. The
UART inserts an incoming character into the receiver data buffer register
(RBUF-see figure 5.5) and raises an interrupt on the processor. This automat
ically causes the initiation of an interrupt service routine, which checks first of all
to see ifbit 15 is set. If this bit is 0, then the character (in bits 7-0) is good and can
be checked to see if it is a control character, translated, passed to a message
buffer, and so on. If bit 15 is set to 1 then one or more of bits 12, 13, and 14 are set.

Data Communications Handling on Minicomputers 177

,--·---
1
I
I
I
I
I
I
I

I
I
I
I
I

Unibus

---1
I
I
I
I
I
I
I

I
I
I
I
I

16 x L_
baud rate

_ ______ _,_._,_ . .,._ _____ _J

Figure 5.4

Switch
selectable

divider

Oscillator c

Crystal

'--r-'
Select number of
data and stop bits,
odd, even, or no parity

V24 i
driver L__

Schematic of a DEC asynchronous interface incorporating a
single-chip UART

To modem

These will need to be examined to determine the cause of the error. The receiver
status register (RCSR-see figure 5.6) is used for monitoring and control of DLll
input activity. For example, bit 11 (receiver active) is set on when the UART
detects a start bit and off when the stop bit is detected (at which time bit 7-
receiver done-is set on). Similarly, the RCSR can be used for modem control
(responding to ring indicator, for example).

The transmission side of the DLll features a transmitter status register
(XCSR-see figure 5. 7) and a transmitted data buffer register (XB UF-see figure
5.8). For further details of DLll operation, the reader is referred to Telecom
munications and the Computer.

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

N N N N
Error

Overrun

Framing error

Receive data parity

Unassigned---------

Received data-------------------

Figure 5.5
DEC DLll receiver data buffer register (RBUF)

Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O

[0 I -I -I -I 0 I -IN
hange~ Data status c

Ring indicat or

Clear to sen d

Carrier dete ct or

Receiver act

Secondary r

Unassigned

ive

ece ived data

Receiver do ne

Receiver int errupt enable

Data set (m odem) interrupt enable

Unassigned

Secondary t ransmitted data

send Request to

Data termin al ready

Reader ena ble

Figure 5.6
DEC DLll receiver status register (RCSR)

178

NioJoioINioioI-IoJ

Data Communications Handling on Minicomputers 179

Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O

N N N N N N N N 0 N N N 0 N 0

Unassigned-------

Transmitter ready ___________ _.

Transmitter interrupt enable ---------...J
Unassigned-------------------'

Maintenance---------------------'

Unassigned----------------------_,

Break-------------------------_.

Figure 5.7
DEC DLll transmitter status register (XCSR)

In summary, the DLll performs the minimum functions required to interface a
processor to a communications channel at a character level. (Some obsolete
devices performed this task at a bit level, but we can safely ignore this technique
for all practical purposes.) Although this approach is inexpensive in hardware
terms it carries a heavy penalty in processor overhead. The CPU time to service
each character can be as much as 300 microseconds. This is of no consequence
when the system is supporting only a few low-speed lines, but as the number of
interfaced circuits and their speed of operation increases, the processor can be in
danger of being saturated.

Let us look at two examples, assuming that our processor overhead is only 100
microseconds per character. If we have a single 110-bit-per-second line attached,
then the overhead is

10 x 100
-----=0.001
1000 x 1000
However, if we have ten lines each operating at 4800 bps (half duplex) we get an
overhead of about
480 x 10 x 100
-------=0.48

1000 x 1000

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

NINJNINININJNl-l-l-l-1-1-1-l-I

Unassigned-------_, I
Transmitted data-----------------

Figure 5.8
DEC DLll transmitter data buffer register (XBUF)

180 The Minicomputer in On-Line Systems

Clearly, this level is going to be embarrassing because we have not yet included
operating system and file handling overheads. Incoming characters could plausi
bly be lost.

DEC PDP-11 DHJJ 16-line programmable asynchronous
serial line multiplexor

The DEC DHll is a programmable multiplexor designed to overcome the
processor utilization problems associated with the DLll single-line interface and
also to reduce the cost of interfacing to a PDP-11 when about eight or more lines
are to be attached. This is achieved by buffering data on input (thereby reducing
the CPU time to as little as 30 microseconds per character) and by using a OMA
(note: existing program) arrangement for output data streams. Up to sixteen
DHlls may be attached to a single PDP-11, giving a total line capacity of 256. In
addition, the DHll provides program-selectable options such as speed, character
format, transmission mode, and parity checking controlled by a Unibus-address
able control register (see figure 5. 9).

PDP-11

XX= DH11 model number
YY = DM11 model number

PROGRAMMABLE OPTIONS

Memory

Unibus

DM11
(YY)

Data rates (may be different for input and output): 0, 50, 75,
110, 134.5, 150,200,300,600, 1200, 1800,2400,4800,9600
(plus two external)
Character length: 5, 6, 7, or 8 bits
Number of stop bits: 1, 1.5, or 2
Parity: Odd, even, or none
Mode: Half duplex, full duplex, echoplex
Interfaces: CCITT V-series (EIA RS-232), 20-BO mA telegraph

Figure 5.9

DH11
(XX)

DM11 DM11
(YY) (YY)

DEC DHll 16-line programmable asynchronous serial-line
multiplexor

DM11
(YY)

Data Communications Handling on Minicomputers 181

The method of operation on the receiver side of the DHll is illustrated in
figure 5 .10. The objective of the silo is to enable the processor to obtain more than
one received data character (up to 64, in fact) each time it is interrupted, thereby
minimizing the overhead per character. Each UART performs in its usual fashion.
When activated by a start bit it deserializes the incoming character using a shift
register. Completed characters have their parity checked and are then passed in
parallel to a holding register, thus freeing the shift register for the next character.
An automatic scanner looks at each UART in turn for a completed character; on
finding one it transfers it along with the relative line number and some control
information to the lowest unoccupied word in the silo.

The bottom word in the silo is addressable from the processor and is called the
next received character register. This is similar to the DLll receiver data buffer
register in figure 5.5. Each time a received character is placed in the silo, an
interrupt can be raised so that the program can read it. This is not a very efficient
way of using the silo and the programmer may set in a silo status register a "silo
alarm level" of 0 to 63 which will cause his program to be interrupted when the
specified level (say, 32) is reached. The program can then empty the silo. As each

DH11 can be set to
raise interrupt
when fi lied to a
specified level

Processor reads line
number/character from
bottom of silo and
other data drops down
one word

Line no.

t

UARTs are scanned and completed
characters and line numbers are
dropped into the silo

Character 16 UART r
UARTs deserialize characters,
strip start/stop bits, and

Processor can also check level of
silo at preset time intervals (using
the real-time clock)

64-word silo check parity

Figure 5.10
DEC DHll receiver operation using the silo

182 The Minicomputer in On-Line Systems

data character is read the whole silo drops down one word, providing an additional
free word at the top (see figure 5.11).

Some care should be taken with this method of operation because if only a few
low-speed lines are active there could be some delay before the alarm level is
reached. In order to overcome this it is usual for the programmer to set a timer
interrupt (using the real-time clock) so that there is a minimum delay between
servicings of the DHll. The program can read the status register at any time to
determine the number of characters in the silo. Other interrupts that can be raised
include one for a "silo full" condition. The transmission side of the DHll works
on a DMA basis. All the programmer need do is select the line via a system
control register and set up a current address register with the location of the
message to be sent and a byte count register with its length. Setting a register bit
associated with the relevant line initiates transmission. The same bit is automat
ically cleared on completion (see figure 5.12).

The DHll architecture is highly relevant to interactive working, where
characters typically arrive in the system at spasmodic intervals as they are keyed at
terminals but outgoing messages are usually complete at the time transmission
starts. The DHll is particularly useful for interfacing low-cost VDUs (perhaps
using 20-mA loop circuits) where the PDP-11 is being used as a remote
programmable controller in distributed processing systems.

Summary of DEC interface units

In this section we have discussed in some detail where the borderline exists
between hardware/firmware and software functions on two of DEC's PDP-11 line
interface units. (The reader will find other such devices in the DEC PDP-11
Peripherals Handbook.) The way in which DEC software supports these compo
nents and fulfills the other communications functions has been examined in
chapter 4. The hardware/software borderline, however, differs on other systems;
we next consider the approach adopted by another supplier.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lolo!olol oiol oi oiol olol ol ol ol ol ol

Data present __j r t
Overrun ~
Framing error

Parity error --------'

Line number ---------~

Received data character --------------~

Figure 5.11
DEC DHll next received character register (bottom word of silo)

Data Communications Handling on Minicomputers 183

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lolol ol ol olol olol olol ol ololol ol ol

A"<o~~ho '"'"'' _j 1 1 ~1
HDX/FDX

Transmitter speed

Receiver speed -------------'

Even parity ----------------~

Parity enabled -------------------'

Not used -------------------~

Two stop bits-------------------~

Character length-----------------------'

Figure 5.12
DEC DHll line parameter register

Modular Computer Systems MODCOMP II CP2

System Architecture

Modular Computer Systems (MODCOMP) of Fort Lauderdale, Florida, is a
smaller and more recently established minicomputer supplier than is DEC. It has a
good track record in the communications field and, in some respects, the way in
which it interfaces to data lines is more advanced than the PDP-11 approach. This
alternative style is facilitated by a different system architecture and by the
incorporation in the processor of specialist communications functions.

At the time of writing, the MODCOMP range comprised three basic models.
The small MODCOMP 1 is intended for dedicated acquisition and control
applications. At the top end of the range is the 32-bit word MODCOMP IV, which
has a memory cycle time of 160 nanoseconds. The mid-range machine is the
MODCOMP II, and it is this system which we shall examine here, particularly a
special version known as the MODCOMP II CP (communications processor).
One essential difference between the MODCOMP II and the PDP-11 is that the
former has a multiport memory arrangement in addition to the usual bus facility
for 1/0. This permits parallel access to different main storage modules. The
processor has a 16-bit word and is available with up to 128 Kbytes of 800 to 850
nanosecond cycle-time storage (all of which is addressable) and 15 general
purpose registers. Like the PDP-11 a vectored interrupt system is used, but with 16
priority levels and 128 sublevels. A general schematic of the MODCOMP II
Model 45 is shown in figure 5 .13.

184 The Minicomputer in On-Line Systems

Direct
memory
processor

(DMP)

External
DMP

Figure 5.13

Other CPUs or
external DMP

128K bytes
Main memory

Port Port

M
0
d
u
I
a

I/0
subsystem b

u
s

I I/0

I
0

b
u

I/0 s

Processor
components

and
interrupt
system

Up to 64 peripheral devices

MODCOMP II/45 architecture

The simplest form of input/output on the MODCOMP II is the transfer of a
byte or word between a register and peripheral via the 1/0 subsystem. Because of
the high level of processor support required for such operations, it is only suitable
for low-speed devices such as paper-tape readers, printers, and slow communica
tions. The instructions used are input status, input data, output command, and
output data. Each instruction contains the following information:

-The device number on the 1/0 bus (1 to 64)
-The address of the general register

Data Communications Handling on Minicomputers 185

-The direction of transfer
-The type of information (data, command, or status)

1/0 instructions of this type may be executed in any sequence. The 110 subsystem
can be supplied with a direct memory processor (DMP) for higher-speed
peripherals such as magnetic tape, disc and communications multiplexors. Data is
transferred along the same bus but at a higher priority, the DMP stealing cycles
from the currently executing program as required. Up to eight devices can be
supported in this fashion. An alternative DMP arrangement makes use of the
multiport memory facilities. An external DMP can be attached to a memory port
and effect 1/0 operations without cycle stealing. Such external DMPs are also
connected to the standard 1/0 bus for program compatibility.

The MODCOMP II can have between 3 and 16 interrupt levels. Two of these
levels can have 64 priority sublevels. Each level is assigned two fixed locations in
main storage, the first for the return address in the interrupted program (stored
automatically) and the second for the address of the routine to service the
interrupt. A program can enable and disable interrupt levels as required. The two
levels capable of supporting up to 64 sublevels are used by interrupts from the 64
1/0 devices which can connect via the 1/0 bus. Each device is connected to two
levels, one for character or word transfer and the other to indicate 1/0 completion.
Figure 5 .14 illustrates how peripheral switching can be implemented on the

Manual
control
panel

MODCOMP II MODCOMP II
CPU A CPU B

Command decode, busy logic,
and switch

2 3 4 5 6

Figure 5.14
MODCOMP Model 4906 peripheral switch

_Up to 6 peripheral
controllers

--- Peripherals

186 The Minicomputer in On-Line Systems

MODCOMP II. This is somewhat more powerful than the PDP-11 system in that
up to six peripheral controllers may be switched in any combination between two
1/0 buses under program or manual control.

Features of the MODCOMP II CP2

The MODCOMP II minicomputer is available in a special version particularly
suitable for data communications systems. The CP2 differs from the basic
MODCOMP II in that it supports the Universal Communication Subsystem
(described below) and has a powerful set of firmware-implemented byte-string
manipulation instructions. When miniprocessors are given the roles of remote
terminal controllers, concentrators, and front-end processors, much of their
workload involves data handling and manipulation rather than computing.
However, most minicomputers do not have storage-to-storage instructions (strings
being moved by load-register/store-register loops) and those that do usually
transfer single bytes or words only. Inevitably, then, any processor that provides
fast storage-to-storage movement of strings will have significant performance
benefits.

But the communications-oriented instructions provided in the MODCOMP II
CP2 can do more than simply move data strings. The complete list is:

-CRC or LRC generation and checking
-Storage-to-storage byte-string moves with compare, edit, and/or translate
options
-Pack and unpack byte strings, also with compare, edit, and/or translate
options

Although the operation is quite fast (1. 867 microseconds per byte for a simple
move to 2.66 microseconds for a move, translate, and pack) its use on large
messages (say, 500-1000 characters) will inevitably "hold" the processor for a
long time compared with a normal instruction. To prevent this from adversely
affecting the performance of the system, the move instruction is interruptable after
each character cycle. When the interrupt has been serviced, the move operation is
automatically reinitiated by hardware at the next character.

The other main feature of the communications processor version of the
MODCOMP II is the direct memory interface (DMI) which supports the
Universal Communications Subsystem (UCS). The UCS (described later)
provides the means to interface up to 256 full duplex channels. Each channel (both
in and out) has a DMA path to main storage. The DMI controls the transfer of data
over these DMA paths using a microprocessor with parameters held in 2368 words
of random access memory (RAM). As well as being connected to the DMI bus,
each UCS is also connected to the standard 1/0 bus for control purposes.

Figure 5 .15 shows how each FDX channel has allocated to it nine words of
RAM. Three are used for input control, three for output control, and three for

Data Communications Handling on Minicomputers 187

Channel N
control
parameters

Channel 256
control
parameters

Figure 5.15

Communications microprocessor
random access memory

t Outpu
contro I

Transfer count A ~r1
Transfer address A

Input
contro I

I Specia
contro I

Detect

I
I
I

I
I
I

I
I
I

List address

Transfer count X

Transfer address X

List address

Special

Character

Algorithm

Special
character

arrays

I---

~.

}-
I
I
I

I
I
I

I
I
I

MODCOMP II CP2 direct memory interface arrangement

Central processor
main memory

Data
buffer

A

Data
buffer

B

Transfer count A

Transfer address A

Transfer count B

Transfer address B

, __

--

1----1

f-----1

character detection purposes. Of the three words used for 1/0 control the first two
are used for the transfer count and transfer address (in main storage), as would be
expected. For most purposes, the use of a single buffer for each message will be
satisfactory. However, there are circumstances where a multiple buffer arrange-

188 The Minicomputer in On-Line Systems

ment may be preferable-for example, when a very large message needs to be
read or when an adequately sized buffer is not available as a contiguous area of
storage. The MODCOMP II Communications Processor supports chained multi
ple buffers in the following way. When the transfer count for the first buffer has
been exhausted, the CP checks the third word of the 1/0 control parameters in the
RAM. If this contains an address it will point to further transfer count and transfer
addresses in main storage and will continue to the 1/0 operation uninterrupted.
The buffers used need not be contiguous nor in any particular sequence. The
chained buffer technique can be used for both input and output. The final three
words in the channel control parameters are used for the detection of single or
multiple character sequences in incoming data streams. The characters to be
detected are held in two 4 x 16 byte arrays in the RAM (See D.W. Davis and
D.L.A. Barber Communications Networks for Computers for details). This
arrangement assists in the implementation of a variety of line protocols. The
control parameters and the special character arrays can be loaded into the RAM or
read back into main storage using a set of special DMI instructions.

The MODCOMP II Universal Communications Subsystem

The DMI is designed specifically to support the MODCOMP Universal Com
munications Subsystem Model 2 which is shown schematically in figure 5 .16. The
essential features of the UCS may be summarized as follows:

-DMA-type block transfers in both directions
-Multi-buffered transfers possible
-Up to 256 full duplex channels in any mix of synchronous and
asynchronous
-Up to 8 communications chassis per controller
-Dual-port chassis available for duplex configurations
-32 FDX channels per chassis
-Programmable character-sequence recognition
-Maintenance commands and wraparound functions for monitoring control-
ler operation

The synchronous channels have the following features:

-Bit rates to 250 Kbits per second
-CCITT V-series (RS-232C) or wideband interfaces
-Program access to and control of modem interface signals
-Software-selectable synchronizing character
-Software-selectable character size and parity

Data Communications Handling on Minicomputers 189

The model 4906
peripheral switch
may be used here

193X dual-line
interface modules

1907
ucc

L--.----"1 1930 Dual-port

MODCOMP II
CP 2

I/0 bus

4903 PCI 1-------1

DMibus.__ __ ~---~

MODCOMP II
CP 2

1907
ucc

4903 PCI 1-------i

I/0 bus

DMibus.__ __ ~---~

*Full duplex, synchronous or
asynchronous

Figure 5.16

communications
~~__, chassis

1930

1930

Up to 8
chassis

MODCOMP II CP2 Universal Communications Subsystem

The asynchronous channels have the following features:

Up to
32
lines*

Up to
32
lines*

-Software-selectable bit rate (any 1 of 16) to 19.2 Kbits per second
-Modem interface or current loop
-Program access to and control of interface signals
-Software-selectable character size, parity, and number of stop bits
-Break detect and break transmit (for Teletype operation)
-Software-controlled echoing (for Teletype operation)
-Split-speed operation (different bit rates for input and output)

/

190 The Minicomputer in On-Line Systems

Communications circuits are connected via modems (or directly if the current
loop type) to 193X dual-line interface modules. In addition to providing the
interface and control functions these modules:

-Assemble and disassemble characters
-Strip/insert starUstop bits
-Strip/insert synchronous characters
-Implement timing (from the chassis source)
-Check and generate character parity
-Echo characters to Teletype-compatible terminals
-Wraparound characters for diagnostic purposes

Each channel has a status register and can raise an interrupt on the CPU when a
status change occurs so that the program can obtain the register. This status
register for an input channel is shown in figure 5 .17.

The 1930 communications chassis can support up to 16 dual-line interfaces (32
FDX channels). Its main function is to provide timing to the channels. The 16
asynchronous rates are program selectable; the synchronous rates are also, by
means of hardware jumpers. Any mixture of asynchronous or synchronous rates
may be selected.

Up to eight 1930 communications chassis may be connected to a 1907
Universal Communications controller, which performs the following tasks:

-Command decode
-Scanning and control of channels
-Interrupt and status control
-Support for the DMI

The controller operates under microprocessor control, permitting a high degree of
flexibility in operation. For example, higher-speed lines can be scanned more
frequently than the lower-speed ones to ensure the maintenance of throughput.

Summary of MODCOMP Interface Units

The MODCOMP II CP2 is an excellent example of how microprocessors can
be applied in both the multiplexor and the CPU in order to provide communica
tions-related functions in an optimum fashion (in terms of processor and main
storage utilization). The multiport architecture of the MODCOMP range also
makes it particularly suitable for high-throughput teleprocessing applications,
either as a remote controller or as the central-site machine itself.

Data Communications Handling on Minicomputers 191

Input channel status word

la J 1 l 2 J 314J 51611lsl9l10l11l12l131,4115J

Error con dition-

Break det ected-

Parity err

Not used

or

Input dat a overrun

Malfunct ion (carrier of data set lost)-

Terminat e pending

Channel busy

Data read y

Framing

Special c

error

haracter detected

End of bl ock

Receiver synchronized

Synchron ous character received

Carrier de tected

Data set r eady present

Figure 5.17
MODCOMP II CP2 UCS input channel status

6
Data Communications

Software

This chapter examines some of the fundamental problems of control software and
applications programming for teleprocessing systems. Practical solutions to these
and other functional requirements will be discussed in the context of some
operational control programs.

Task Management

Writing programs for teleprocessing applications is very different from writing
programs for batch systems. Any software package that is being sold on the basis
that it makes teleprocessing programming "easy" needs to be examined with
great care. Why is this? Let us start by looking at the components and logical
structure of a typical batch program (figure 6.1). Most-if not all-modem
operating systems (or executives) provide multiprogramming support; in our
example we have six programs running concurrently in six partitions (or regions).
If we look at one of those programs in more detail it will probably comprise four
main components: the application code, constants, work areas, and 1/0 buffers.

The application code will be the machine representation of the instructions to
be executed by the processor. These instructions may modify themselves (for
example, by changing the address in a branch operation), but currently recom
mended programming practices advise against such techniques. By definition,
constants are fields that are not modified during the execution of a program and
may include look-up tables, headers for print routines, and edit masks. Constants
(especially those generated by compiler "literal" features) are often interspersed
with code.

Work areas contain values that do change during the execution of a program,
such as register storage areas, loop counts, and accumulators. These are also
found interspersed with object code, but sometimes the structure of the program-

193

194 The Minicomputer in On-Line Systems

Program C

I
11

Application programs
/

/
/

/ Application code

0
A

p B
c

s D
y

E s
F

/
/

II

I'
' ' ' ' ' ' ' '

Constants

Work areas

1/0 buffers
\ '

Figure 6.1
Structure of a typical batch program

ming language (say, COBOL) prevents this. Although the practice is generally not
recommended, addressing limitations on some computers give the programmer no
choice. The fourth part of a program is the buffer, which contains data records
obtained from external media or storage or records generated by the program for
subsequent output to a file, printer, and so on.

Figure 6.2 shows a simplified flow chart for our specimen program, which is
a master file update. This is what the program does:

-A preedited (error-free) transaction is read from a magnetic tape file
-The transaction contains a customer number which is used by the program
as the key in a read from the direct-access master file
-',-The transaction is used to update the master file record
-The record is written back to the master file;
-If the end of the transaction file has been read the program ends, otherwise
it loops back to read the next transaction and continue

The basic average timing of the program loop is made up as follows:

READ A TRANS
READ A RECORD
PROCESS
WRITE THE RECORD

CHECK END OF TRANS FILE
TOTAL

5 ms (records are blocked)
45 ms
5 ms
45 ms (assuming the disc read head has
moved)
Not significant
= JOO ms

Data Communications Software 195

READ
Fl LE RECORD;-.---~

WRITE
Fl LE RECORD >-----H

NO

Figure 6.2
A simple batch update program

Because we are working in a multiprogramming environment, control will be
passed via the operating system (OS) to another program during the three 1/0
operations and be returned when they have completed (assuming that our program
has highest priority).

Now let us assume that we have to modify the program for a situation where
the transactions, instead of being on a sequential tape file, are going to be keyed in
at a number of local and remote visual display terminals. From the terminal
operator's viewpoint what happens is this:

-Key in a transaction (into the terminal buffer); this takes about 5 seconds
-Press the send key
-Wait for the computer to read the message, process it, and send an
acknowledgement when the update has taken place
-Check the acknowledgement and if OK, enter the next transaction

196 The Minicomputer in On-Line Systems

The transaction cycle has been kept abnormally short for the sake of simplicity. A
response time of one second or less is considered desirable.

Our update program has now been modified in the following way. Included in
the partition is a simple terminal handler which responds to read/write macros.
When a read is issued it polls the terminals looking for one with a message ready
to send. This is read and placed in a buffer for processing. When a write is issued,
the specified terminal is selected and, if ready to receive, the message is
transmitted. The revised program logic is shown in figure 6.3:

-The program requests any available message
-The message is then verified (we ignore the procedures for dealing with bad
ones)
-The relevant master file record is read
- The transaction and file record are processed
-The master file is updated
-The program sends the acknowledgement to the terminal
-The program reads the next available message and continues

We stated previously that the above sequence takes about 100 milliseconds to
execute. Since we require a response time of less than I second, our system should
work magnificently-and it would, if we had only one terminal attached, but in
fact we have over 100 and they are generating messages at a peak rate of over 20
per second. What are the implications of this?

Let us assume that it takes the terminal handler an average of half a second
(500 ms) to accept a read, poll, and receive a message. The program will then
begin executing for about 100 ms and the terminal handler might take a further 100
ms to send the reply. This gives a total of about 700 ms per message. Even that
might be satisfactory if there were only one terminal, but because the program is
processing only one message at a time and the messages are arriving at up to 20
per second, our brand-new on-line system is not going to work. This is
particularly galling when one considers that 1(}..-20 ms per message is actual
processing time. The rest is taken up by terminal and disc 1/0 operations (with
processor control being transferred by the operating system to other partitions).

One way out of the problem might be to make use of the multiprogramming
facilities provided by the operating system. This would mean setting up a separate
partition (or region) for each terminal so that a different copy of the same program
is provided for each possible source of input (see figure 6.4). When program 1
starts an 1/0, control will be transferred to the next highest priority program
requiring the processor in order to continue. This approach has two major
deficiencies, one of which is glaringly obvious, the other less so. First of all, to
have a separate copy of the program for each terminal is extremely inefficient and
expensive in terms of storage utilization. Second, the time taken by the OS to
reschedule programs when a wait occurs is finite. Furthermore, the rescheduling

Terminal handler

Terminal buffer area

Update program

(a) Revised configuration (1)

YES

READ A
------~TERMINAL

MESSAGE

VET
MESSAGE

PROCESS

SEND ACK
TO

TERMINAL

(b) Revised program logic (1)

Figure 6.3
A simple on-line update program

197

Master
file

Master
file

198 The Minicomputer in On-Line Systems

Terminal 1 Terminal N

Terminal handler 1

Terminal buffer :

Update
program
(copy 1)

Revised configuration (2)

Figure 6.4
Use of multiple program copies

1 Terminal handler

I Terminal buffer

Update
program
(copy N) Master

file

(or context-switching time) generally has an exponential relationship to the
number of active partitions in the system. The use of sep~ate partitions for each
terminal will clearly cause a large increase in the OS overhead.

What other alternative is there? The first problem we can deal with is that of
the terminal 1/0 operations. Clearly, these should be overlapped with the message
processing. The amount of CPU time required to service the lines (start I/Os,
route characters to buffers, and so on) should be relatively small. Furthermore,
the interrupt structure of the computer serves to tell the terminal handler when
some action must be taken. Let us assume that each time a line requires processor
intervention, all other operations are interrupted and the terminal handler is
activated. The interrupt hardware places the relative .line number (RLN) of the
terminal causing the interrupt in a register. Because each line will be at a different
stage in an 1/0 operation (negatively acknowledging a poll, sending a message,
acknowledging receipt of a message), then the handler will need to access
information specific to that line. Such information can be kept in a line control
table (LCT) as shown in figure 6.5 and the RLC can be used to find the right table.
The LCT might contain information such as:

-Relative line number
-Last operation on this line
-Address of message buffer
-Message character count
-Address of line status word

Data Communications Software 199

Terminal 1 Terminal N

LB1 LBN Line buffers

LCT1 LCTN Line control tables

Communications
control

Figure 6.5

Terminal handler

Polling list

Update program

Revised handler logic

Master
file

Use of an interrupt-driven terminal handler and line control tables

-Other status bits
-Other counts (e.g., bad message rereads)

A typical sequence followed by the drive might be as below (assuming that return
addresses and the like are saved by hardware):

-Inhibit further interrupts from the lines
-What was the last operation on the line? (poll sequence sent, say)
-What is status of line? (message received)
-Was parity good? (yes)
-Change status to indicate ACK sent and message ready for application
program
-Send ACK
-Deinhibit interrupts and finish

The logic of the routine will obviously vary depending on the last action
indicated and the status of the line. In addition to being activated by interrupts
from the line adapters (or CCU) the terminal handler may also be activated from
the application program and by the CPU's interval timer. In the former case the

200 The Minicomputer in On-Line Systems

program may issue a "get-me-a-message" macro and this would cause the
handler to scan the LCTs looking for a message ready status. When one is found,
control can be returned to the program with the address of the relevant LCT as a
parameter. The program can find the message because the LCT contains its
address and length in main storage. If the program wishes to send a message it
will be to a specific terminal (ignoring the specialized problem of broadcasting)
and will need to pass to the handler the RLN, address, and length of the message
to be transmitted. If the status of the line is all right, the handler can then go
through a select/transmit sequence (but not, of course, waiting for a response from
the terminal-the interrupt facility will reactivate the handler when required).

The other source of interrupts to the handler will be the interval timer. We
mentioned before that the terminals are being polled and, at the design stage, it
may have been decided that a terminal will be polled at least every three seconds.
This can be achieved by setting the interval timer to three seconds (or perhaps a
little less) and having the resultant timer interrupt activate the polling routine
which, working from a polling list, will send polling characters to the inactive
terminals and set bits showing the action taken in the LCTs. An alternative method
of working would be to use contention mode on the lines and have the incoming
ENQ cause the interrupt. In a situation where a line might connect to multidrop
ped or clustered terminals, we may have separate control tables for the line and the
terminal (the latter containing a pointer to its LCT.) Our rather stupid line driver
now has the makings of a full communications control program (CCP) or, as it is
sometimes called, a teleprocessing access method. We shall elaborate on the
function it may perform as we continue with this section and the next.

By improving our line handler we now have a CCP which gives us (thanks to
the hardware interrupt structure) completely overlapped communications. The
terminal operator no longer has to worry about waiting for the other terminals to
send and receive. However, even when his input transaction has arrived at the CPU
he still has to wait in line for the actual update program to work its way around to
him. We have what is known as a single-threading system whereby incoming
messages are processed serially; one must be completed before the next one starts.
In systems where the number of terminals and/or the amount of traffic is low,
single threading is a simple and satisfactory approach. But this is not the case in
our example, where the message rate is peaking at 20 per second but we are only
processing at a rate of 10 per second. If we refer back to our timing of the update
program, we can see that most of the transaction time is taken up with the disc
read and write. If we can overlap these in some way it may be possible to process
messages in parallel. This is known as multithreading.

In order to achieve multithreading within a program partition we need to
extend our use of the interrupt structure. But first we have to break our program
down into tasks or subprograms that will be activated and deactivated at the right
times. An ideal task is a small block of code that ends in an 1/0 operation. Figure
6.6 shows this technique applied to the simplified update program:

Data Communications Software 201

Terminal 1 Terminal N

Line buffer

Terminal handler and line control

Task A Task B Task C Task D

Read a Vet a Process and Send
message message and write the confirmation

read the master to terminal
master file file

Task I Control I Blocks I

Task manager

Figure 6.6
The simple update program converted to a multitasking structure

TASK A Merely reads an input message
TASK B Vets an imput message (again ignoring the problem of what is done

with the bad ones) and ends by issuing a read for a master file
record

TASK C Processes a transaction and corresponding record and ends by
issuing a write to return the updated record to the master file

TASK D Sends a confirmation message back to the originating terminal

In order to control the parallel flow of messages through our restructured program
we need a task manager (or task dispatcher) of some kind. The task manager
(TM):

-Provides a task with the message to be processed (or a pointer to the
message)
-Initiates the task by transferring control to it
-Accepts control back from a completed task
-Initiates disc 1/0 operations on behalf of the task (the task branches to the
handler, passing over parameters indicating the 1/0 required along with the
key, and so on)
-Accepts interrupts from the disc indicating the completion of an 1/0
-Determines the next task to be initiated

202 The Minicomputer in On-Line Systems

The status of each task is maintained in a task control block (TCB). Once
activated, a task can only be interrupted by the task manager's receipt of an 1/0
interrupt or, in more sophisticated systems, by a higher-priority task (usually those
later in sequence so that messages can be cleared from the program).

Let us follow a few transactions through the new program. To keep things
simple we will assume that when a read is issued for a message, there is always
one available. At the start of the day, the program might go through the following
sequence:

-Activate Task A, which issues a "read message" macro
-Control is transferred back to the TM which in tum calls the terminal
handler (TH)
-Control comes back from the TH to the TM which now has the address of a
TCB
-The TCB address is passed to Task B, which is activated
-Task B vets the message found via the TCB and returns the TM when it
issues the macro for reading a master file record
-The TM issues the master file read but, as Task C cannot start until the read
has completed, the processor is inactive. However, Tasks A and B have
nothing to do, and so
-The TM initiates Task A to get another message and passes it to
-Task B for vetting and the reading of another master file record
-At this stage the TM will, if possible, issue another master file read and
initiate Tasks A and B again. It will continue to accept new messages into the
system until it runs out of available message buffers. But presumably, before
that happens, the first disc read will be completed
-The TM will activate Task C to process the first message/record combina
tion. At the end of Task C control is returned to the TM with a request to write
the record. This will cause a further wait and, by examining the TCBs the TM
will determine which task is to be activated next (it could be Task C again on
the second message)
-The current task will eventually be interrupted by the completion of the disc
write and this will enable the TM to activate Task D to cause the sending of a
reply
-Task D will probably not execute immediately (the TM merely indicates in
its TCB that it may execute) because control will need to be returned to the
interrupted task so that it can finish. The TM only initiates new tasks when it
knows that they have all completed their current execution (when control is
returned via an I/O macro). At that time, the TM will examine all TCBs to
determine the best task to initiate next. We have now achieved a situation
where processing is overlapped with disc I/O (as well as communications 1/0)
and the disc I/O operations may overlap themselves (if the master file goes
over more than one spindle).

Data Communications Software 203

This technique of rescheduling tasks each time the application program
returns control to the TM is used by IBM's CICS. This control routine
multithreads messages through a program as long as the code between the macros
that call CICS is serially reuseable, that is, it may modify itself during execution
as long as it reinitializes itself prior to completion. Although IBM's approach to
task management is to include it in a high-level communications control program,
some systems (especially minicomputers) provide the multitasking resource from
the operating system itself. It used to be necessary, in some cases, for the
customer to have to write his own task manager, but that was not necessary on the
computer systems being produced in the late 1970s. One of the deficiencies of the
multitasking system described above is that a task cannot be suspended in favor of
a higher-priority task. A task can only be suspended to service an 1/0 interrupt and
then control must be returned to it so that it can finish.

An alternative approach to the problem is the use of reentrant code. This is
code that does not modify itself during execution and can, therefore, be suspended
at any time in favor of another task and even enables itself to be reinitiated for
another message. Such a technique requires a slightly less sophisticated task
manager but even greater throughput is often (but not invariably) achieved.
Fundamental to this style of programming is the isolation of variable fields into
tables (usually extensions of the LCTs) and the indirect addressing of these
through the use of registers. Figure 6.7 shows our update program further
modified to use this technique.

Terminal 1 Terminal N

Message buffers

Terminal handler

3 I I I N LCTs

LCT
extension
pointer
to disc/
1/0 buffer

Figure 6.7

---+---t----t---
1 I I

Reentrant
update

program

Constants

I Disc 1/0 buffers

Task
manager

Multitasking using reentrant application code

LCT extensions

Task control
tables

204 The Minicomputer in On-Line Systems

No longer is it necessary to break our program down into tasks. What we are
effectively doing is redefining a task as a transient relationship between our
porgram and the message it is processing. When the message enters the system,
the TM creates a task control table specifically for it. When the program begins
execution, it is provided with a register pointing to an LCT which has been
extended to include those fields that are going to vary during the processing of the
message and pointers to 1/0 buffer areas (for messages, disc records, and so on).
Although constants can still be addressed directly these variable fields must be
addressed via registers (perhaps with the help of logical overlays like IBM
DSECTs). The 1/0 SVC macros are in-line with the code, and when executed
cause control to be transferred back to the TM for initiation and task rescheduling.
Unlike the system using serially reuseable code, a task can be suspended so that
another task using the same code but processing a different message can be
reactivated after a wait for 1/0. On suspension, all the TM has to do is store the
current registers in the task's control table and load those of the task to be
received. Return to the original task is effected in the same way. When the
program has finished processing a particular message, the task that that temporary
relationship represents is terminated by the TM.

One of the benefits of multitasking using reentrant code is that the efficiency
of the multithreading is less dependent upon the cleverness of the task manager.
The most efficient method of processing the available message traffic tends to be
adopted automatically. Side benefits include the fact that neither the program nor
the TM requires modification if the system is expanded. All that is needed are
additional line control tables (and/or terminal control tables in a line-sharing
situation). Reentrant code can be written by experienced assembler programmers
with little difficulty. A few ground rules and a little experience is all that is
required. Producing reentrant code from high-level languages is a different
proposition, and here the programmer is in the hands of the compiler provided by
his computer supplier. For example, IBM's PL/I compilers produce reentrant code
but the COBOL compilers do not (even through the structure of COBOL would
seem to lend itself to reentrancy just as much as PL/l).

Program Management

Our discussion of the programs of task management have been based on the
assumption that every terminal will be requiring access to a single program (or
subprogram). In some systems (say, message switching) this may be the case, but
in many-if not most--commercial teleprocessing systems, a number of pro
grams will be required to support a variety of message types arriving from
terminals. Figure 6.8 shows a possible software structure for program manage
ment in a teleprocessing environment. Task management considerations have been
omitted for reasons of clarity. Fundamental to program management is the
program manager or message router, which has a number of functions to perform.

Terminal 1

Message
router

Program
control tables

Figure 6.8

Data Communications Software 205

Communications functions

- Program
A

Program
B

Terminal N

Program
c

A possible program management structure

It must:

-Receive any incoming message for an as-yet undetermined destination
-Decide which program is required to process the message
-Find out whether the program is already in main storage
-If not, determine whether there is space for the program to be loaded into
main storage
-If or when the program is ready, pass control to the task manager

Although programs are usually initiated only by incoming messages (in the
manner described below), once execution has commenced it is normally possible
for them to deal directly with the TM (via the LCT) for all subsequent messages.
The simplest form of program management operates at a sign-on level. When the
terminal operator first connects to the system, he indicates the program he wishes
to use and remains signed-on to that until the end of his session, when he may
wish to start a new session with a different program; this is common on minis.
The approach that allies itself to the transaction processing concept used by TP
monitors permits switching between programs on a transaction-by-transaction

206 The Minicomputer in On-Line Systems

level. This requires the allocation of the first four (or six, eight, and so on)
characters of a message to an alphanumeric transaction code which must be keyed
in by the operator (or automatically inserted by the terminal). Some terminals,
such as the IBM 3270, have function keys which, when pressed, cause the
transmission of a message from a terminal preceded by a code unique to that key.
This character can then be used to route the message to the relevant program.

Figure 6.9 illustrates a typical sequence of events. The line control table
contains an indicator that shows whether the next incoming message has been
specifically read from that terminal by an already active program. If the TH sees
that the indicator is off it will pass the message (via a pointer in the LCT) to the
message router (MR). The router then examines the first four characters of the
message and tries to find an entry for them in a transaction table (TT). If no entry
exists, the MR will send an error message back to the terminal operator.

If an entry is found it will contain the name of the program that will receive
the message. The MR will then examine the PCTs to determine whether the
program is available. In the example shown in figure 6.9, the program required
(PROG A) is currently in the disc-resident program library. ls there room for it to
be loaded into main storage? The PCTs show that, although PROG B is resident
and running, PROG C is inactive and can be overwritten. If the space occupied by
PROG C is large enough for PROG A, the message router will read in PROG A
and pass control to the task manager.

Storage and Queue Management

Another major programming problem not normally encountered in batch systems
is that of storage management. Let us approach our discussion of this by
concentrating initially on the problem as it relates to input/output buffers. Figure
6.10 illustrates the queues normally encountered in a fairly typical batch
processing program. The program reads transactions from a tape file using a
queued sequential access method. This allows the file to be read in advance of the
program's requirements, the intermediate records being stored in a prespecified
number of buffers. A similar queued technique is used for the output of a print
spool file.

Queued access methods cannot be used for the indexed-sequential master file
because records are retrieved on a random basis and then rewritten in situ.
Therefore, single buffers are allocated for input and output to this file. Referring
to the schematic of a typical teleprocessing system shown in figure 6.11 we can see
that the major difference is the number of buffers required for handling the
communications lines. There will also be an increase in the number of buffers
required for file handling on direct-access storage devices. This is caused by the
fact that a number of parallel tasks could all be issuing reads and writes on a single
file.

Data Communications Software 207

Trans
action
code

Incoming message

Data fields
1. Terminal handler determines ---~----------~

that the message router is 4000
required '--~--'--------------'

2. Message router uses
transaction code to
determine name of
program required

Name

Location
status
core
address
disc
address

Transaction table

Trans-
action Program
code name

1000 PROG A

2000 PROG C

3000 PROG C

4000 PROG A

5000 PROG B

6000 PROG C

Program control tables

PROG A PROG B PROG C

On disc In core In core

Inactive Active

4. Message router reads
program A from disc
library into location
occupied by program C.

Figure 6.9
A generalized program management function

3. Message router locates
PCT for program A

5. Control is passed from
message router to task
manager

It may be useful at this point to clarify the difference between buffering and
queuing. Buffering is concerned with the provision of an area in main storage for
the assembly or disassembly of a message (or record) that is in the process of
being read into or written out of the central processor. The problem of queues

208 The Minicomputer in On-Line Systems

Figure 6.10

Master file

Input
buffer

Queued sequential
input buffers

Program

Output
buffer

Queued sequential
output buffers

Input/output buffers found in a typical batch system

tends not to occur in batch systems because the queues tend to reside outside the
system on peripherals, a new record being read in only when the program is able
to process it. This is not the case with a terminal-based system, where to refuse to
read a message until it can be processed immediately would leave terminals and
their operators inactive. This produces a situation where messages for a particular
program may be arriving simultaneously and need to be organized in some
efficient manner for processing. Let us now examine some of the arrangements
used to manage the buffering and queuing problems associated with
teleprocessing.

At the very lowest level we often find the use of a rotating character buffer
known as a tumble table (figure 6.12). This technique is particularly suitable for
use in minicomputers when lines are being handled on a character-interrupt basis
as with the DEC DLll described earlier. In order to minimize the time spent in the
interrupt service routine, the routine merely places the character and the relative
line number in the 11ext free slot in the tumble table. A low-priority task then takes
the characters out of the table (in the sequence in which they were entered) and
assembles them into complete messages. The tumble table reduces the risk of
overrun on the line buffers by getting rid of the incoming characters as quickly as
possible. Care must be taken, however, to ensure that the table is large enough to
accommodate short bursts of high line activity.

0 e

(
Queued Output
buffers -----

Figure 6.11

Data Communications Software 209

Reference
file

Input buffer

Programs

Communications facilities

Transaction
file

\
I

Output 1
Queued
buffers

Line and/or
terminal buffers

Input/output buffers found in a typical teleprocessing system

Where OMA channels are being used for the line 1/0, then messages can be
assembled directly into line buffers. Once a message has arrived it can be passed
to the program that will process it. If the program is busy, a queue will form.
Figure 6.13 shows a simple arrangement whereby completed messages are placed
in first-in/first-out queues for the processing programs. The movement of the
message to the queue may be physical, thereby freeing the line buffer for a
subsequent message, or logical, the program being provided with a pointer to the
message buffer. A similar arrangement can be used for output, with the control
program scanning the output queues and moving the messages to the relevant
output buffer for the destination terminal.

Depending upon the nature of the application and the level of message traffic,
this approach can be very expensive in its use of main memory. An alternative
approach makes use of direct-access storage for the temporary queuing of input
and output messages. As messages arrive in the system, the queue manager
automatically writes them to disc- (or drum-) resident queue files, one for each
process. The application programs then work rather like batch programs, reading
each message in turn from the input queue file and writing appropriate responses
to the output queue file (figure 6.14). This technique eases the main storage
problem at the expense of performance and response times. Some systems get the
best of both worlds by using a combination of the two techniques. Each program is

"' +"

"' Cl
Line buffers

z
...J

I~ I
l~I ~ 'l \,~

LN Data Tumble
table 1(I I

I I I
LN = Line number

Figure 6.U
"Tumble table" rotating buffer used as an interface between
interrupt service routines and buffer handler

LN

Line
buffers

QA OB QC

Program A Program B Program C

Output data

Figure 6.13

Queue
handler

A possible main memory queue management system for incoming
messages

210

t

Data
From line
adapter via
interrupt
service
routine

T
E
R
M
I
N
A
L
s

Queue
file
A

Buffer A

Progam A

J_

Queue
file
B

Program B Program C

l

loutput dataT t

Figure 6.14

Data Communications Software 211

Queue
file
c

Queue

manager

t
Line buffers

T
E
R
M
I
N
A
L
s

A disc-based queue management system for incoming messages

allocated a limited core-resident message queue of (say) five messages. If the
queue length exceeds this, the queue manager automatically writes the additional
messages to disc and reads them back in when space is available. This
arrangement serves to ensure that the system is always able to accept messages
regardless of the level of traffic.

Let us return to our basic buffering requirements in order to assess a problem
related to-but different from-that of queuing. Figure 6.15 shows again the
buffer arrangement in a fairly common data communications system. In this
system the line buffer size is determined by the platen width of the remote
keyboard printer terminals used. This is, say, 132 but we make a small allowance
for additional nonprinting control characters and round the buffer size up to 140.
Messages are processed in their input buffers and this prevents the use of the same
buffer for the reply. So there are two buffers per line and, since there are 100 line
appearances, we have 200 buffers each of 140 bytes, giving a total storage
requirement of 28,000 bytes. If the terminals were visual displays that might have

212 The Minicomputer in On-Line Systems

In A

Out A

Task A

Update
file

In B

Out B

Task B

FILE HANDLING

Block size: 512 bytes
Number of buffers: 6
Area required: 3K

Figure 6.15

In C
Input

Output

Out C Input

Output

Task C

Input

Output

TERMINAL HANDLING

Maximum message size: 140 bytes
Number of lines: 100
Number of buffers: 200
Area required: 28,000 bytes

A static storage management scheme for buffer handling

L
Line 1

z
Line 2

z
Linen

T
E
R
M
I
N
A
L
s

local buffers of up to 2000 characters, then the space to be allocated in main
storage could be very much worse.

The point that has to be made, however, is that the utilization of these buffers
is probably very low. At any given time the majority of the space allocated is
probably unused. In order to overcome this problem it is common to use a
dynamic storage management facility (figure 6.16). This requires an application
program (or, indeed, a control program) to request a specified amount of storage
from a common storage pool. When the program no longer requires the area, it is
returned to the pool for use by other programs. Dynamic storage management
may be part of the operating system (executive) or, failing that, the installation
may have to develop its own routines.

The use of queuing theory will help the designer determine the length of the
queues that will form in the system. In any case, once a dynamic storage facility

Update file

Storage pool

Input file record Output message

I Output file record

Process message

Task A Task B

Figure 6.16
A dynamic storage management scheme

Data Communications Software 213

I Process record I

I Input message I

Process message

Task C

Line 1

Line 2

Linen

T
E
R
M
I
N
A
L
s

has been implemented, the size of the common pool can be adjusted as part of the
system tuning.

A variety of techniques can be used to achieve dynamic storage allocation.
The segmerits requested may be fixed length or variable length. Although the
latter approach can be more efficient (the variable pool size is smaller) it can give
rise to the problem of fragmentation. This occurs when, although there is plenty
of space available in the pool, there is not a single contiguous area large enough to
satisfy the outstanding request. This problem can be overcome by chaining areas
together (see figure 6.17). Note that the chaining may be implemented using tables
and/or buffer headers/trailers and the programs need to be written to allow for the
arrangement used. Although the use of variable-length buffers can be more
efficient in terms of memory utilization, it is generally less efficient in terms of
processor overhead than the use of fixed-length segments.

214 The Minicomputer in On-Line Systems

2000

5210

2800

4200

5210 [~
Address Length

2000 100

Figure 6.17

Available
storage
table

Dynamic storage management: chained variable-length buffers

2800

Choosing the length of the segments at the software design stage is clearly
crucial. If they are too small it will not be possible to satisfy all requests for
storage; if they are too large, the benefits to be gained from the dynamic facility
will be reduced. A compromise can be made by enabling the requesting program
to indicate the number of segments needed and supplying these in either a
contiguous or chained fashion. But as before, such extensions do increase the
processor overhead associated with managing the pool.

Design of Teleprocessing Programs

A Checklist of Considerations

-How powerful should the multitasking facilities be? Single thread, multi
threading? Reentrant code?

Data Communications Software 215

-Should the system be written in macro or a high-level language?
-Should all tasks be core resident? Can some overlaying or swapping be
used? Are virtual storage techniques relevant? What about a virtual machine
environment?
-What demands will be made on main storage? Will static buffering be
possible/economical? Can disc-based queues be used? Will dynamic storage
management techniques be required? Will the executive provide such facili
ties? Or will they need to be user written?
-Should a general-purpose control program be used or would a special
purpose package be appropriate? In other words, what is more important, ease
of implementation/maintainability or performance?

7
Minicomputer

Operating Systems:
Some Examples

Having established an overall picture of minicomputer hardware and software
against a background of the requirements of a terminal-oriented system, we will
now look at some specific products. We are not trying to do a consumer report;
our examples have been cho~en lo give an idea of the range of products available.
Thus, while it will become obvious from the following that DEC's RSX 11-M is
more powerful than Data General's ROOS, Data General does have a more
powerful OS (AOS) and DEC offers the relatively trivial RT-11. It is very much a
case of paying your money and taking your choice.

We have broken our review of operating systems into two chapters. In this one
we review five operating systems from the viewpoint of their total capacity. In the
next chapter we review other OSs more specifically tied to high-level languages
and easy user interface. The former are more general purpose and directly suited
to support of specifically tailored applications such as front-end processors or
concentrators. The latter are more special purpose commercial data processing
systems. Examples are given, however, of packaged data processing systems that
use standard operating systems. Also included in this chapter is a look at more
specialized networking software, represented here by DECNET.

A Review of General Features

Program Management

Once a program has been compiled and the units correctly linked, the executable
code is stored on a disc file. Any program which the system must run can then be
installed, the OS maintaining a table of all installed programs with appropriate
attributes. An installed program can be loaded on command, since all housekeep
ing chores have already been performed. Most installed programs are physically

217

218 The Minicomputer in On-Line Systems

stored on disc, but there are facilities for keeping special programs that may need
rapid activation memory-resident, such as emergency shut-down programs in a
process control system.

An installed program can be in one of two states, dormant or active. A
dormant program is placed in the active state by a run or execute command, at
which point control is passed from the program manager to the task manager.
Note that a run command does not give a program CPU control, it adds it to the
list of active tasks under direct control of the task manager. A program cannot be
run unless it has previously been installed. Program control commands can be
issued in two ways: as an operator command from a terminal or batch job control
stream, or as a supervisor call from another active task. The operator command
facilities can be activated by a supervisor call so that an executing program can
request further program control from the operator's console. The operator
command routines may be accessed only by the system console in a single-user
system. A multiuser system allows other terminals to be declared as either slave or
console-mode, when commands can be entered concurrently from multiple
terminals. The command routines may be shared or further copies may be
attached to console-mode terminals.

Task Management

The allocation of CPU time among activated tasks is governed by a set of system
programs called the task manager. These functions are:

Call processing-a means of interpreting a specific request for supervisor
services and initiating the appropriate action
Interrupt handling-routines to service interrupt requests, usually occurring
in response to completion of events initiated by supervisor calls; they are
typically integral parts of the device handlers
Clock control-setting of time intervals for time of day or user-requested
delays and the like
Task monitoring-the current status of any task must be dynamically
maintained. The task monitor is activated by the call processor and interrupt
handlers
Task scheduler-determines which task is to be given control of the CPU.
Task scheduling is fundamentally ordered by one of three functions (or a
combination)-priority, time scheduling, and from "events" (as in current
task status)

Task Scheduling

Once active a task can be in one of four states:

Minicomputer Operating Systems: Some Examples 219

Executing
Ready-waiting to execute but preempted by a higher-priority task
Suspended-waiting the occurrence of some other event, such as a clock
interval, completion of an 110 call, or disc transfer
Interrupted-transiently suspended while a supervisor interrupt service rou
tine executes

In addition, the code for a task in a suspended state (and a low-priority ready task,
for that matter) may be swapped out to disc. Certain suspended tasks, however,
may not be swapped; this mostly relates to situations where data is being moved
into memory areas in the task body or awaiting completion of a disc transfer.
Supervisor calls are also available for one task to suspend and reactivate another,
including timed actions.

Queue Management

Calls for supervisor services that cannot be honored immediately must be queued.
The issuing task may need to be informed of a delayed state and asked to take
alternative action if queues are full. In some cases queuing of data messages is
also maintained; see section below.

Storage Management

A certain amount of memory (the resident executive, vector addresses and so on),
has a fixed allocation. Allocation of the rest is under control of the OS. With an
unmapped system physical control is largely related to supervising the relocatable
loader, while with a mapped system the OS must maintain the mapping registers.
The OS is also responsible for error handling. The rest of memory is allocated
between dynamic requirements of the operating system itself and the user
program. The physical memory may be divided into independent partitions with
either fixed or adjustable limits. Active programs may be constrained to memory
or may be swappable (checkpointed).

A particular feature of storage management specific to on-line systems is 1/0
buffer allocation. In the simplest systems each device handler has a fixed size
buffer per terminal; data is then passed to the user program. Certain systems allow
some data transfers direct to the user space. Such modules as relative-record file
handling require a buffer to hold a complete disc block of data so that multiple
records in the user space can possibly come from the same buffer. Similarly write
a-record implies reading a complete block, modifying the block in its buffer, and
rewriting.

The support of dynamic 1/0 buffers, allocated from a pool merely by updating
pointers, can greatly reduce the total memory requirements for buffers. This is

220 The Minicomputer in On-Line Systems

less applicable to disc transfers than terminals, since buffers are allocated per
operi file (not physical disc) and records can be updated in buffers rather than
reading disc for each read or write.

Device-Independent 110

The OS maintains a peripheral device table (the extended line control table
mentioned earlier) for each physical terminal. It defines the status, points to the
device service routine, and provides transient data work areas. At the same time
OS maintains a set of user logical device tables so that the user task refers to I/O
devices as logical unit or channel numbers that are mapped to the requested
terminals. A different physical terminal can thus be allocated to a program by
modifying the logical device tables without modifying the user's code.

If the interface between logical and physical devices is standard, device
differences being catered for in the device handler, then device independence is
further enhanced. Occasionally the device handler is sophisticated enough to
perform protocol functions to a level that, say, a 2780 type terminal or a Teletype
compatible VDU can be directly driven by the same program. Such a complete
handler is sometimes called a symbiont. More often such a degree of device
independence is not supported.

A further variant is to allow the file handling routines access to certain device
handlers. Thus print data can be transferred to a logical sequential file channel that
can be allocated when the file is opened to a printer or to a disc file for spooling.

The Operating Systems Reviewed

The salient characteristics of the following operating systems will be considered in
the following sections:

Data General RDOS
DEC RSX-llM
MODCOMP MAX COM
Texas Instruments DXlO
Digital Research CP/M (for 8080/Z80 microcomputers)

In no way dare we imply that these are the best systems. They are merely
representative of the wide variety of systems available. Nor can the following
notes be taken as a specification for an operating system. First, because it is
impossible for us to describe all the features, and second, because the manufac
turers continuously upgrade their systems. For our purposes this is irrelevant
because we are trying to stress the scope of current minicomputer software and to
point to future improvements.

Minicomputer Operating Systems: Some Examples 221

Why have these particular operating systems been singled out? RDOS is a
longstanding product typical of the process control type of OS found on earlier
minis and still used on the simpler processors. It is a single-user, foreground/
background system with limited file and mapping support. RSX-UM is a
multiuser, partitioned system with good mapping and reasonable file support,
aimed for medium-sized minis. MAXCOM is a very specialized OS devised for
run-time support of dedicated communications systems developed under another
MODCOMP operating system. DXlO is similar to RSX-llM, except that it
doesn't use partitioning and has more advanced support for sectioned programs,
including shared code: it also includes a far more versatile file handling system
and multiuser program development. CP/M is the de facto standard used on a
multitude of microcomputers; it is a simple single-user batch system, primarily
written for discettes.

Data General RDOS

RDOS is a single-user system that can support two partitions, a foreground for an
on-line program and a background, usually for a batch program. On simpler
NOVA processors the partitions are software controlled as shown in figure 7 .1.
With mapped NOVAs and ECLIPSEs the system is enhanced as shown in figure

System buffers

Resident R DOS
executive

Free

Task processing modules

Overlay area(s)

User program

User status table

User page zero

RDOS communication area

Figure 7.1
A simple unmapped single-ground RDOS system

222 The Minicomputer in On-Line Systems

b6

b2

,------ b1

b6 Free
12 KB I----- -- 30 KB ----

b5 b4
I-------- ----

Background b4 b3
t------- ----

program b3 f2
I------- ----

b2 Free
I------- ----

b1 bO
1------- 20 KB ----

bO f3
0 ---

b5

f1
8 KB

f3 fO
----- ----
Foreground f2 Free
----- 10 KB

program f1
----- ----

fO ROOS
0 ----

Fixed

Virtual addresses

0

Physical address

Figure 7.2
A mapped RDOS system

7 .2; the operating system and both the foreground and background partitions can
be up to 62 KB, with a 2-KB global space. In supervisor mode the processor
executes OS functions in physical address space 0 to 62 KB, while in user mode
the two separate programs can be mapped into any available noncontiguous
memory.

An actual partition is dynamically maintained by the hardware mapping so
that code in excess of 64 KB can be stored in physical memory and "swapped" by
updating the mapping registers. This is referred to as window mapping and virtual
overlaying, using a hyperspace-who could ask for more? In practice the user
program is manipulating the mapping registers rather than the OS, which needs
great care in its use. The OS effectively maintains two task schedulers, one for
each partition. The task scheduler gives CPU control to the higher-priority task

Minicomputer Operating Systems: Some Examples 223

ready to execute, which retains control until it executes a system call. The
background job is at the lowest priority and executes only when no foreground job
is in the ready state; the background job is interrupted by any foreground task
becoming ready. There are 256 priority levels generally assigned when the task is
installed but alterable by other tasks issuing system calls.

Each active task is allocated a task control block as shown in figure 7. 3, taken
from a pool, that is released when the task completes. TCBs for all active tasks are
linked in order of priority. The task scheduler scans the linked TCBs, testing the
status word until it finds the next job to run. Changes of priority or completion
merely require update of the link pointers. Programs can be overlaid and chained
to other disc-resident programs, but there is no system-controlled swapping. Thus
there must be sufficient memory to hold all active tasks. The OS itself swaps
some less frequently used modules, however. A foreground task can checkpoint a
background task by issuing a supervisor call.

Supervisor calls occur at two levels. The normal calls to shared operating
system services are implemented by a subroutine jump via a specific memory
location in executive space that activates the system call processor after storing the
calling task environment in the TCB. Before executing the call, parameters are set
up in the accumulators to establish pointers to data areas. The second set of

WordO

1

2

3

4

5
6

7

8

9

10

PC and carry

ACO

AC 1

AC2

AC3

Status and priority

System call word

Link address

User stack pointer

FORTRAN stack segment

Task ID number

Priority 1
link

Priority 5
link

Figure 7.3
Task control block

,...,

Store
;.- values

for task
execution

J

System call being executed

Priority 64
link

Priority 30
link

Priority 100
link

224 The Minicomputer in On-Line Systems

supervisor calls are used to allow one task to control both its own and other task
executions. Unlike a system call, the task control calls use code included in the
user program from a library (the task processing modules in figure 7 .1). Thus
while system calls will invoke the task manager, task control calls are direct
commands to it. One task control call provides direct communication to the
console operator, who can issue any available control function command.

System command calls are:

Clock/calendar
User-defined interrupt servicing
Disc directory maintenance
File maintenance
File I/O
Console I/O
Overlay, chain, and memory control
System and spooling
Foreground/background communication

Task control calls are:

Task initiation
Task execution control
Intertask communication and synchronization
Task control by identification number
User clock and interrupt task control

The operator communicates with ROOS from a console terminal that runs a
system program called the command line interpreter (CLI), usually as the
background program. Whenever the system is idle ROOS restores CLI to
memory. The CLI commands initiate the system utilities (the editor, compiler,
BASIC interpreter, and so on) to support program development. They also
support similar file and directory functions as accessed from the user program by
supervisor calls. Further functions are required to set time and date, boot the
system and the like.

A simple batch facility exists whereby a string of CLI commands can be
issued from a sequential file rather than directly from the terminal keyboard.

Each terminal is allocated a fixed-length buffer in the OS space, its length
dependent upon the speed and type of device. A device control table with
reentrant drivers is maintained for each device. ROOS also maintains a set of 512-
byte system buffers for intermediate storage of blocks of data in file transfers
(except direct block transfer, which takes place to a buffer in user space) to allow
records shorter than a full block. The pool size is specified to support the
maximum number of files open at any one time.

Minicomputer Operating Systems: Some Examples 225

RDOS supports a simple spooling of output messages to a printer via a disc
file to enable messages to be output faster than on the printer. There is no
automatic multiuser print spool utility, however. The RDOS disc system is rather
simple. A disc is subdivided into partitions, each with a directory, which serve as
user file directories. Independent files within the fixed bound of the partition can
vary in length. Sequential files are allocated disc blocks on a conventional linked
scheme. Random access files can be allocated contiguous (nonexpandable) blocks
or via a directory, with one entry per block allocated; there is no facility for
multiple block clustering.

The user file access routines support supervisor calls, which can be queued,
for the following:

ASCII single character
ASCII line, terminated by CR, LF, or NUL
Sequential (length determined by byte count)
Relative block-512-byte blocks
Relative record-128-byte record only
Free format 1/0 for magnetic tape records from 4 bytes to 8 KB

Relative-block transfers are direct to the user space; all others are via system
controlled buffers. Once a file has been opened by a program, multiple tasks
within the program can access the same file. There is no record level lock-out
supported by the system.

On the ECLIPSE range file handing is significantly enhanced by an executive
module known as INFOS. INFOS is accessed by system calls from a user
program and this in turn makes calls to the conventional file system. INFOS is a
multikey, multilevel ISAM package with an excellent specification and a good
range of support utilities. It is readily accessible from high-level programs, but it
is not reentrant and therefore has limitations in multiterminal on-line applications.

In the standard RDOS system all terminal 1/0 is handled by the file handling
system, a physical device being tied by executing an open supervisor call. While
it usually executes batch jobs in the lower-priority background, a terminal can be
used by a program in that partition.

Communications Access Manager

The simple and direct terminal handling inherent in RDOS can be enhanced by a
separate communications control package called CAM. CAM is not part of the OS
but is linked with a user program and run as either a foreground or background
program. A simple interactive program allows CAM to be generated to suit a
given hardware configuration and to define the quantity and size of buffers and so
on. CAM will support Data General's programmable front-end processor, the
DC-50, the program for which is downloaded when CAM initializes. User
interfaces to CAM are device independent; thus, if a 16-channel multiplexer is

226 The Minicomputer in On-Line Systems

replaced by a DC-50, CAM is regenerated and linked to the user program, which
need not itself be modified.

Both synchronous and asynchronous lines are supported. Asynchronous data
can be transmitted as a direct sequential file with byte count control or in a line
mode, controlled by terminating characters such as CR, LF, and others. In line
mode received characters are echoed, and rub-out and I characters delete the
previous character or whole line respectively. Control can be immediately
returned to the user task either on acceptance or on completion. If an immediate
return is used, then I/O completion updates a queue which can be tested by a
further CAM call. Following an immediate return a second output command can
be queued to a correctly executing command on the same line; a third call returns
line busy. A time-out can be used to create an error return condition. In the
sequential transmission mode, EBCDIC to ASCII translation can be provided by
CAM as well as a choice of cyclic redundancy check (CRC) character.

Synchronous transmission does not allow immediate return to the calling task,
so one task per line is required. There is full support under CAM for the bisynch
protocol, including multidrop terminals. All polling, handshaking, and similar
operations are transparent to the user program. The number of retries is specified
to CAM at generation. CAM maintains pools of stacks and buffers as well as
control tables and queues. One stack is allocated to each active CAM call. Buffers
of fixed size set at CAM generation are allocated on demand, one for HDX and
two for FDX to each currently active line. Except on the immediate return mode,
the call is completed by transferring the data: from the CAM buffer to the user
program. Calls transferring data from the user program to partially full CAM
buffers can accumulate the new data. CAM calls are implemented by a JSR to an
indirect page-0 address. A complementary set of calls are supported in
FORTRAN.

High-Level Languages and Other Modules

All Data General's compilers are nonreentrant, in keeping with the single-user
philosophy of RDOS. One of the FORTRAN compilers can, however, generate
reentrant code. A multiterminal editor can be run as one job, allowing multiple
users to create source programs simultaneously. Languages supported are:

Assembler and macro assembler
FORTRAN IV with real-time extensions and commercial subroutine package
FORTRAN 5 (optimizing)
ALGOL
BASIC
Extended BASIC (multiuser)
Business BASIC

Minicomputer Operating Systems: Some Examples 221

and for the ECLIPSE only

COBOL
RPG II
IDEA data entry package

A COBOL compiler is available for the NOVA as part of a packaged system
called CS40, which is in fact based on RDOS. While BASIC is one job to RDOS
it includes its own executive to give multiuser access. Packages are available for
2780/3780 and HASP emulation. The HASP work station is available only on the
ECLIPSE. Both run as a program under RDOS. A memory-resident subset of
RDOS, called RTOS i"s available. The 2780/3780 emulators will run under RTOS
for a nondisc-based RJE station. CAM is used as an integral part of the emulator.

General Comment on RDOS

RDOS highlights the dilemma facing the older minicomputer suppliers. The large
number of users means that the OS is well tried and tested and therefore reliable.
User demand has led to the development of a wide selection of utilities, ranging
from dedicated programs like the 2780 emulator to the file management system,
INFOS. However, use of the superior instruction set of the ECLIPSE has led to the
development of utilities like the COBOL compiler, which will not run on the
NOVA. The overall impression left by RDOS is that its minimal storage
management is strangling the versatile use of the powerful utilities available.
Hence Data General has introduced the multiprogramming AOS system, currently
only for the ECLIPSE, since it is appreciably larger (of course) than RDOS. The
dilemma continues, however, because it will take time for the new system to
support the range of utilities available to RDOS and to build up an equally stable
user base. The simple partitioned disc management system of RDOS leaves a lot
to be desired, particularly in commercial applications, a fact recognized by Data
General and overcome in the more sophisticated AOS.

Digital Equipment Corporation RSX-UM

RSX-UM is a multiuser, multiprogramming system for PDP-U minicomputers.
The physical main storage space can be divided into mutually exclusive partitions
will full multitasking control within each. In DEC's terminology a task is a
complete user program; multiprogramming implies multi partitions. User tasks are
installed into specific partitions and must be linked by the task builder
beforehand.

RSX-UM is a member of a family of operating systems, the others being
RSX-US and RSX-UD. While a simple RSX-UM system can be used on an

228 The Minicomputer in On-Line Systems

unmapped PDP-11 (except the 11/03) it will be considered here with hardware
mapping support, as in the 11/34, 11/60, 11170 and other models.

There are two types of partition, user- and system-controlled. User partitions
will accept only one program and are intended for dedicated memory-resident
tasks. System-controlled partitions will hold as many user programs as there is
space for, with the proviso that they are contiguous within the partition. A
supervisor function allows shuffling to regroup noncontiguous blocks. Tasks in
the system-controlled partitions may be swapped by the OS but overlaying only is
allowed in the highly controlled user partitions. Global areas are defined for
communication between partitions and code sharing.

The OS operates in a hardware supervisor mode that is mapped to include the
lower physical memory locations (vectors and so forth) and the top physical 8-KB
page, which contains the peripheral registers and the like. All user programs can
be a full 64 KB, but must then use supervisor calls for all 1/0. SVCs are
implemented as software interrupts (EMT) which vector to service routines and
automatically switch to supervisor mode. A typical memory layout for an
RSX-HM mapped system is shown in figure 7 .4.

The partition sizes and physical location are fixed at system generation. User
controlled partitions, since they contain only one program at a time, are usually
less than 64 KB; system-controlled partitions can be any size, up to the available
limit. Thus a system configured with just the one system-controlled partition is a
conventional multiuser, multitasking system with swapping. Alternatively and
unnecessarily restrictive, a system configured with just two user-controlled
partitions is a foreground/background system similar to ROOS or DEC's own
RT-llF/B. With multiple system-controlled partitions, specific tasks will be
installed in particular partitions; thus while all are executed under the umbrella of
the task manager, some hierarchical management of the workload can be
maintained.

In principle any one program is constrained to a maximum of 64 KB by the
16-bit word length. However, memory management directives available to the user
program manipulate the mapping hardware to reallocate a different physical page
to the same virtual address space. This technique is referred to as window
mapping and effectively allows single programs to exceed 64 KB. This feature,
along with other attributes such as overlays, checkpointability, ownership,
partition control and priority, is specified when modules of code are linked by the
task builder. Libraries of routines can be maintained, some comprising reentrant
code linked with the task code. Alternatively, appropriate routines are loaded in a
shared global area, the physical address of which is mapped to the virtual space of
the user-specific code by the OS, using the references supplied when the task was
built.

There is relatively little inherent support for shared code at present. If two
users ask to use a compiler, two copies are loaded. Similarly, some DEC
processors include dual hardware mapping for I (instruction) or D (data) space
which is not employed.

256 KB
I/0, registers, etc.

248 KB
> ~

~
Approximately
48 KB (between
20 and 64 KB
depending on
number of
drivers, optional
executive services,
etc.)

Figure 7.4

0

Dedicated tasks
f------ -----------

User tasks, checkpointable

r-------------------
File control services, buffers

r----- ------ - - - --
Shared global area

Print spooler

Basic file system
Directory control, access, physical/logical control

Monitor console routine (MCR)
and task termination routine

Task loader for swapping

Terminal drivers
f----------------

Disc driver
f----------------

Other drivers as configured
~---------------

Other drivers as configured

Supervisor cal I processor

BASIC EXECUTIVE
Partition manager
Task manager
Memory and resource manager
Power fail/auto restart
System primitives
Clock
Interrupt services

Dynamic storage area
f-----------------

System tables
1----------------

System common data

System stack space

Trap vectors

RSX-UM memory allocation

229

} User-co~~rolled
part1t1on

}
System-~o.ntrolled

part1t1on

-'

Executive
(organized as
multiple partitions,
transparent to
the user)

230 The Minicomputer in On-Line Systems

Allocation of memory to multiple programs within a system-controlled
partition is dynamic, although each program must be contiguous. A shuffling
routine allows released memory to be grouped as a contiguous space. Relocation
of programs is performed by setting up the mapping registers, tables of current
allocations being maintained by the OS, but only for programs installed to run in a
particular partition.

Let us now refer to figure 7.4 in more detail. System parameters for a specific
generation are held in a common data area. The basic tables (data descriptors)
used by the executive are also initialized at generation but are maintained by the
system. A number of data descriptors are allocated on an as-required basis from a
dynamic storage area, the size of which is set at generation time. Extensive use is
made of linked blocks for task control, partition windows, and attachment
descriptors (peripheral control).

Areas for intermediate buffering of terminal 1/0 can also be taken from the
dynamic storage area. Examples of control blocks are shown in figure 7.5,
although far greater knowledge of RSX-UM is required to appreciate the
significance of the details. RSX-UM maintains a number of other tables, such as:

Physical unit directory-used to point logical requests to physical devices
Task partition directory-mapping data
Global common directory--enables virtual addresses in programs using
shared code or data to map to the same physical locations
System task directory-a list of all installed tasks; an installed task can
respond immediately to a run command without needing linking
Active task list-priority-ordered list of all active tasks; linked TCBs
dynamically maintained to give CPU control to the next task to be executed
Fixed task list-list of inactive but memory-resident tasks; linked to ATL
when activated and back to FTL when task exits
Checkpointable task list-priority-ordered list of checkpointable tasks for
each system-controlled partition
Memory required list-priority-ordered list of swapped-out tasks waiting for
memory, one for each partition. The executive maintains a table of blocks of
memory in use and released
Asynchronous system trap queue-list of ASTs waiting to be serviced;
identifies which task is waiting for return after completion of a supervisor call
Clock queue-stores data defining events to be initiated at some specified
time; the scheduler periodically runs a program to service this queue
MCR command buffer-temporarily stores commands to be serviced by
monitor console routine requests
Batch command buffer-stores batch commands to be serviced

RSX-UM is essentially an event-driven system. The highest-priority task
capable of running (independent of partition) is given control of the CPU, which it

Minicomputer Operating Systems: Some Examples 231

Utility link word Link to next partition PCB

I/0 count Priority I/0 and I/0 status block coun~ Priority of partiti~;;-
Pointer to checkpoint PCB Partition name

Task name (RAD-50)

In Pointer to next subpartition PC3

Radix 50 Pointer to next main PCB

Receive Starting physical address of partition

Listhead Size of partition(bytes)

AST Partition

Listhead Wait queue

Task Local Partition busy flags

Event flags (1-32) TCB address of owner task

UCB address of request terminal Partition status flags

Task list thread word Pointer to header control block

1st status word (blocking BTTS) Protection word (DENR, DEWR, DEWR, DEWR)

2nd status word (state BTT) Attachment descriptor

3rd status word (attribute BTTS) Listhead

LBN Task default
I--- -

(b) Partition control block

of Priority

task load PCB attachment queue thread word

UCB address of load device I/0 countj Priority of attached task

PCB address of task partition TCB address of attached task

Maximum size of task image (mapped only) TCB attachment queue thread word

Pointer to next task in active list Mapping count Status byte

Attachment descriptor PCB address of attached task

Listhead (c) Attachment descriptor

Offset to task image in partition

SREF with EFN Unused

Received by reference

Listhead

(a) Task control block

Figure 7.5
Typical RSX-llM control blocks. (a) Task control block (b) Partition
control block (c) Attachment descriptor

maintains until it executes a system directive (SVC) or an external event creates an
interrupt, the servicing of which modifies the priority of the active task. Such an
occurrence is termed a significant event. A set of event flags, 32 common to all
tasks and a further 32 per task, are affected by significant events. These can be
tested by the executive or the user task, either individually or in logical
combinations, thus providing extremely versatile control of task scheduling.

232 The Minicomputer in On-Line Systems

Task execution can also be controlled by system traps, which are effectively
software interrupts local to the task rather than system-wide. A synchronous
system trap (SST) occurs at fixed points in the program (for example, illegal
instruction execution), while asynchronous system traps (AST) occur when some
external event, usually a significant event, is declared. The task must provide
service routines for system traps. The executive maintains a first-in/first-out list of
ASTs pending execution.

While the task manager is essentially event driven, a facility is available for
time-slicing control of checkpointable tasks. In effect, the time slicer manipulates
the priority of tasks on the memory required list. The algorithm is effective but not
to be compared with the sophistication of dedicated time-sharing systems such as
DECs RSTS/E. Tasks on the RSX-llM are allocated default priorities (not to be
confused with hardware interrupt priority levels) in the range 1 (low) to 250 (high)
when the task is built. Priorities for an installed task can be changed from a system
console.

Since RSX-UM is a multiuser system, multiple terminals can attach to the
monitor console routines (MCR). These provide the usual range of interface
facilities to the executive services, including a password log-on system. Any
terminal not in use by an executing task can gain access to MCR by typing the
appropriate control character; such an unsolicited AST is routed to the MCR.
MCR includes commands for:

Initialization-log on/off, password, install task, time, mount, dismount, set
parameters
Information-print active task list, system characteristics and statistics,
terminal usage, log comments
Task control-all-0cate logical references to physical devices, check and alter
priority, run programs, abort, cancel, remote, and continue; QUEUE passes
parameters and files to a print spooler
System maintenance-break to an executive debugging tool, examine words
of memory, save memory images.

A sequence of MCR commands can be saved in a file. Execution of these
commands constitutes a batch stream. An extension allows command sequences
to be given to specific tasks such as the assembler. Extensions to the direct MCR
commands are allowed in the file to logically control the stream.

The user communicates with the executive through a comprehensive set of
system directives (SVCs). Excellent macros are provided to define the associated
machine code. The system directives include:

Task execution control-run (with time control), suspend, abort, cancel, exit
Task status control--enable and disable checkpointing, fix a task in memory

Minicomputer Operating Systems: Some Examples 233

Informational-get task, partition, logical unit, common, time- and console
switch parameters
Event-associated-declare significant event, control, test, and act on event
flags
Trap-associated-set and cancel time delays, control AST and SST vectors
/JO-related-queue I/O with various modes of return to issuing task, intertask
data send and receive, get MCR commands

1/0 is performed by the queue 1/0 directive (higher-level file control will be
discussed below). Queueing of all 1/0 requests is a powerful feature of RSX-11M;
they are taken off the list and executed in a priority sequence. Drivers for common
peripherals are reentrant and are, of course, interrupt driven. Buffers are normally
allocated in the user space, accessed by special instructions that allow moves from
a location in one mapped space to another. Intermediate buffers can, however, be
taken from dynamic memory space, when the buffer transfer to the issuing task is
performed by window-mapping the user's physical space temporarily to the
executive space and executing normal move instructions. DMA transfers are to
direct 18-bit addresses in the user space, initiated by the current map setting but
autonomous from then on. (RSX-11M loads all programs into contiguous
locations, thus avoiding problems of noncontiguous pages for the DMA transfer;
in contrast Data General's RDOS uses noncontiguous pages but maintains a
completely separate DMA hardware map.)

Multiple priority-ordered 1/0 request queues are maintained, one for each
logical unit. Control can be returned to the issuing task immediately after the
directive is queued or the task can be suspended to await rescheduling on
completion of the request. An event flag, an AST, or an in-task status block may
be optionally specified as an 1/0 completion indication. If intermediate buffering
is used, a descheduled task can be swapped to disc while it awaits 1/0 completion.

File handling utilizes the basic executive services but extends these with a set
of file control primitives, which manage the file directory data required for the
more complex logical to physical mapping of a disc system. These primitives are
accessed by a set of routines called the file control services (FCS). FCS services
are invoked by macro calls in the user program. The calls to FCS and FCS itself
are part of the user program linked at task-build time; FCS issues supervisor-level
calls and provides buffer space. The overall system is shown in figure 7. 6.

Before discussing FCS, the user interface level, it must be pointed out that the
physical file structure of RSX-UM, called Files-11, is very good. It is a
hierarchical volume/MFD/UFD system. A volume is a collection of files which,
together with MFD and UFD attributes, provides a high degree of security.
Physical block allocation is completely dynamic, single files building up with
noncontiguous groups of blocks. The FCS routines are reentrant and could
possibly be included in a shared library. It is common, however, to include one

234 The Minicomputer in On-Line Systems

User-issued macro call t
User program

File control services t
_______ _______ Interface to

Fl LES - 11

File control primitives

Executive

Drivers, hardware t
(a) FCS concept

Block
buffer

Block
buffer

Block
buffer

Block
buffer

(b) Data flow

Figure 7.6

User
~---record

buffer

File control system in RSX-UM

copy with each program. A pool of block buffers is maintained in each user
program, dynamically allocated as a file is opened; thus only sufficient buffers are
needed to meet the maximum number of files open at any instant. Tables required
by FCS to maintain the logical channel relationship with the physical files are also
maintained with the buffers.

FCS supports sequential, block, and record I/O. Sequential access is
applicable to record-structured devices (printers, card readers, as well as disc and
tape). Data is transferred to the buffers in blocks. For block I/O, the data is passed
direct to the user buffers. For record I/O, data is stored in the block buffer pool
and the appropriate subblock transferred to the user record by FCS; records are not
physically read or written if they can be manipulated in the block buffer (reading
two or three consecutive records may require only one disc block read).
Sequential files may carry fixed- or variable-length records; direct access files
support fixed-length records only. A user program has an option for processing
records directly in the block buffer.

With record I/O, control is only returned to the user program after the
operation is completed; with block I/O, a return immediately after the operation is

Minicomputer Operating Systems: Some Examples 235

initiated is possible by means of an event flag to coordinate interdependent
operations. Block 1/0 is aimed at maximum efficiency, record 1/0 at ease of user
interface. A special form of the open macro allows shared access to files.

FCS macros fall into four classes:

Initialization-establish a file data block of execution-time characteristics
(record length, type, access privileges); a data set descriptor to define file
name, type, location, plus a default information block. Some data is provided
at assembly, other data at run-time
File processing-OPEN-normal, shared, and temporary; CLOSE; GET
read logical, fix~d-length random and sequential records; PUT; READ and
WRITE for block access; DELETE; WAIT-suspend until completion of
block 1/0; PRINT-queues a file for printing
Command line processing-allows access to special routines available in the
system object library as though issuing requests from a terminal
Call-gives access to file control routines to interrogate update and add to file
directories

RSX-IlD. RSX-JJS, and /AS

RSX-llM is a member of a family of operating systems. RSX-llS is a run-only
subset of RSX-llM. Programs are developed on an RSX-UM system, linked, and
the complete RSX-US plus user-program system is transported. A peripheral
device (discette or tape) must be included for program transportation. Even if a
disc is included for program loading it is not used by RSX-llS; the special subset
of FCS incorporated does not include support for file-structured devices. A front
end processor is an obvious application for RSX-llS.

RSX-HD was introduced as the top of the RSX family. It included a few extra
directives and a single-stream batch processor. The major difference is that
terminal handlers, drivers, and so on are supervised as conventional tasks in
cooperation with user tasks, rather than as functions of the executive. This adds
some run-time overheads but greatly enhances flexibility, since the drivers can be
changed without system regeneration. As RSX-llM has been enhanced and
relatively few systems actually need response to a changing environment, the
benefits of RSX-llD have been less in demand. Digital Equipment has now
released IAS, which in simple terms is RSX-llM running the sophisticated RSTS/
E time-sharing executive as one RSX-UM task. This gives full batch, time-shared
and real-time support on the one, albeit rather large, executive. (RSX-HD as such
will probably be squeezed out.) A full data base system, DBMS-ll, is also offered
under IAS.

Communications Software

RSX-llM supports a 2780 emulator package and an IBM HASP work-station
emulator. Only point-to-point communication is possible. There is no standard

236 The Minicomputer in On-Line Systems

support for multidrop terminals. DEC, of course, presses the use of DECNET for
computer-to-computer communications. DECNET is supported by RSX-UM and
is described later in this chapter. DECNET is a promising product but is only
applicable to interconnect DEC machines, not general networks of other suppliers'
machines.

High-Level Lanugages

The situation with RSX-1 lM compilers was very disappointing both in variety and
restrictiveness. One hesitates to say quality, because with the notable exception of
the early COBOL, the compilers actually perform well what they are claimed to
do. The languages available are:

-MACRO, an excellent macro assembler
-FORTRAN IV
-FORTRAN IV-PLUS, an optimizing compiler
-CORAL
-COBOL
-BASIC-PLUS II
-DIBOL

None of the compilers generates reentrant code, except by creating library
modules for linking through shared global areas. CORAL, of course, allows a
much more direct control of system directives and as such could possibly be used
for communications program developments; otherwise MACRO must be used.
The compilers themselves are not reentrant, although MCR is intelligent enough
to control multiple copies simultaneously.

The COBOL compiler uses an interpreter at run-time and with a relatively
small area available for user code employs a virtual file system. Pages of object
code are rolled in as execution proceeds, with buffers and data divisions fixed in
core. With this technique large programs can be run, but with high overhead
because of disc accessing. (This technique has been extended to multiprogram
ming using the simple SyBOL interactive language by CAI, as described in the
next chapter.) Although sound this compiler has a bad reputation for slow
compilation and inefficient execution and has now been replaced with an
improved ANSI COBOL.

General Comments on RSX-JJM

Digital Equipment clearly intends RSX-llM as their prime OS. It is highly
versatile, with excellent 1/0 and a good basic file system. It is rather surprising to
find programs in a mapped system constrained to contiguous physical memory
locations; this involves a program shuffling overhe~d that could be high in an
installation with a lot of swapping and large partitions.

Minicomputer Operating Systems: Some Examples 237

The partition concept is intriguing. It really seems like a hangover from the
early days of multiprogramming on minis, where a real-time process control
program and a program development system were run concurrently and there was
great concern about possible corruption of the real-time program. Hardware
memory mapping and protection schemes with well debugged system software
have somewhat removed the constraint, and one is left wondering whether a
system like Texas Instruments' DXlO or Prime's PRIMOS IV isn't more user
oriented. While RSX-llM provides many facilities for development of special
purpose programs such as communication systems, it does not have a simple user
interface (limited high-level language support for writing, say, a multiterminal
stock enquiry system). It is still a specialist programmer's system, in which
environment it has few rivals.

DEC intends to upgrade support for RSX-llM, particularly to meet the above
·criticism of poor user/programmer interface. The powerful multikey, multilevel,
ISAM system RMS-11 will be supported, accessed by high-level calls as well as
macros.

MODCOMP MAXCOM Communications Executive

Modular Computer Systems produces disc-based real-time OSs with program
development facilities. A networking system called MAXNET is also available.
As previously discussed MODCOMP makes a very sophisticated multiplexing 110
hardware subsystem (DMP) which is ideally suited to a multiterminal on-line
system. Here we will discuss MAXCOM and not the full OS (MAX II), which is a
special-purpose communications executive. MAXCOM is the essential parts of a
CCP, but unlike IBM's CICS, is self-supporting. It is similar in a way to ROOS
with CAM but with limited file support. RSX- llS also is similar, but several
integrated facilities of MAXCOM would need to be written as application
programs for RSX-1 lS.

Programs to run under MAXCOM are developed on another MODCOMP
system. A run-time memory image is then created by linking the user program
code to the required MAXCOM modules, extracted from a disc file. The memory
image is then dumped to some medium for transportation to the run-time hardware
system, which supports a simple loader to boot the new system up. Run-time
access to disc is supported, but at a very low level. Figure 7. 7 shows a memory
layout of a system running under MAXCOM.

MAXCOM is an event-driven real-time operating system controlled by a task
manager called Taskmaster. This is a no-frills system; nonessential functions such
as sign-on/off, failsafety, and accounting must be implemented by the user (as
indeed is the case with most minicomputer operating systems). Taskmaster uses a
set of conventional TCBs to manage tasks, linked on a priority basis. A typical
TCB is shown in figure 7.8. Unlike ROOS, which uses the TCB, or RSX-llM,
which uses stacks, a save area is provided for context switching at the beginning of

238 The Minicomputer in On-Line Systems

Block memory pool

Linked buffer pool

User application
tasks

Operator communications

1/0 handlers

User level system services

System services
>--------------

Taskmaster
f---------------

Interrupt handlers
!---------------

Dedicated memory locations

Figure 7.7
The MAXCOM system

1.4KB

Up to 6KB

1KB

Basic executive
4KB

each task, as shown in figure 7. 9. Taskmaster's scheduler runs the highest-priority
task in the queue. When an interrupt occurs it is immediately serviced; return to a
task issuing a request for service is made by the interrupt routine updating the task
status word in the TCB so that it can be scheduled again.

MAXCOM uses an unusual method of activating tasks. All work for a specific
task is placed on a work queue for that task by the issuing task or service routine.
Thus parameters or messages are attached to the work queue of a task rather than

0

2

3

4

5

6

7

8

9

CPU active queue link

Task priority level

Task status

Head high-priority queue

Tail high-priority queue

Head low-priority queue

Tail low-priority queue

Starting address of task body

Ending address of task body

Task transfer address

Figure 7.8
MAXCOM task control block

Points to TCB
of next active
task, if any

0

2

13

14

15

16

17

18

19

20

Minicomputer Operating Systems: Some Examples 239

Save register 1

Save register 2

Save register 3

Save register 14

Save register 15

Save block check register

Save extended control register

Save program counter

Save overflow indicator

Save slow REX return

Task ID

User task

~

User-provided
21-word save
area

Figure 7.9
MAXCOM task body

in-line parameters. Each task maintains two queues, a high-priority and a low
priority, each serviced sequentially. Thus multithreading is achieved by causing
events to queue onto the user tasks needed to process them, rather than
conventional reentrant coding. The actual work queues are allocated from a block
memory pool when requested by an issuing task and can be of any length. Unused
space from the memory pool should be freed by the user task. Again a linked
scheme is used, as shown in figure 7.10. Thus the queuing vehicle is serially
reuseable; a packet placed on a queue cannot be reused until it has been acted
upon.

A linked fixed-size buffer pool scheme is also maintained that is compatible
with the MODCOMP DMP, so that multibuffer 110 is provided for with minimum
software intervention (see chapter 5). MAXCOM employs the following hardware
interrupt levels, in order of descending priority:

-Power fail/auto restart
-Unimplemented instruction trap, used fol'. supervisor calls
-Real-time clock
-1/0 data terminals can have selective priorities at this level
-1/0 service; when an 1/0 operation completes, the device handler dequeues
the associated 1/0 parameter list and links it to the task scheduler for further
processing

240 The Minicomputer in On-Line Systems

~CPU
active

TCB

queue---~ Link

0

Work queues in
block memory pool

Figure 7.10
TCB linked to work queues

-Console interrupt

t--------i
Priority

Status

High priority

Low priority

0

Work
queue
pointers

TCB
Link

Priority

Status

0

0

Low priority

-Task scheduler; when all other high-level interrupts and services have been
cleared, Taskmaster can run to check for and initiate further work, if any

Bearing in mind MAXCOM's dedicated role, operator communications are
minimal. Assuming that a console terminal is included, operator communication
is initiated by using the console interrupt switch on the processor. Commands
include:

ACTIVATE
HOLD

initiate a task
suspend a task

Minicomputer Operating Systems: Some Examples 241

RESUME
DATE or TIME
CHANGE
DISPLAY or TYPE
MODIFY

reactivate after suspension
enter or display
priority
memory dumps to printer or console
memory locations

Calls to the system services provided by MAXCOM are implemented by software
interrupts called REX (Request Executive Service). A REX call emulates an
unimplemented instruction, causing a high-level hardware interrupt. The REX
call specifies the name of the service function and an optional "quick" return to
the calling task (a return when the call is initiated rather than the normal
reschedule on completion). A set of macros are defined for REX calls that
encompass the following functions:

Task Handling

ACTIVATE

QUEUE HIGH

QUEUE LOW

DISABLE LOW

ENABLE LOW

WAIT
CHANGE

schedule the execution of a user task

assign a piece of work to the high-priority queue of a
user task
assign a piece of work to the low-priority queue of a
user task
prohibit a task from being activated due to the presence
of work in its low-priority queue
permit work on the low-priority queue to cause task
activation
release control to Taskmaster
alter the priority of the requesting task

An example of task activation is:

LDI, Rl, *TSKID (load Reg. 1 with task ID)
REX,ACTIVATE

242 The Minicomputer in On-Line Systems

Return occurs to the instruction following the REX, as though for a "quick"
return, with no options, for this particular call.

Timer Management

MAXCOM provides timer services based upon the use of the hardware real-time
clock. The three services are:

DELAY
ELAPSE
STRIKE

schedule an event to occur at a specific time of day
schedule an event to occur after a specified period of time
cancel a time-dependent event initiated by a DELAY or
ELAPSE operation

An example of the use of DELAY is shown below. In time-based operations,
register 1 must be set with the address of a timer parameter list which contains:

-The task to be activated at the expiration of the delay
-The entry address of the task to be activated
-The time of day in hours, minutes, and seconds

LDI,Rl, *PARLIST
REX,DELAY(+QUICK)

The quick return option specified above returns control to the next instruction
immediately the delay has been queued.

110 Management

MAXCOM 1/0 control routines enable the user task to submit multiple 1/0
operations on single devices. Such operations are then executed concurrently with
ongoing user task processing. Two REX calls are used in relation to I/O handling:

1/0 CALL Read from or write to a peripheral device or communications
line

TERMINATE Cancel an 1/0 call previously issued but not completed

When an I/O CALL REX is issued, register 1 points to an 1/0 paramete~ list, the
format of which is shown in figure 7.11. The IOPL contains:

0

2

3

4

5

6

7

n

0
p

T

0

0 0
p p

T T

1 2

Minicomputer Operating Systems: Some Examples 243

Link

Task ID

Return address

Status

0

p
Function Logical device ID

T

3

Reserved for system use

Buffer address

Buffer length

Device dependent

Figure 7.ll
General 1/0 parameter list (IOPL)

-The task to be initiated on completion and the address at which the task is to
be entered
-A status word which should be all zeros on entry (and is analyzed on
completion by the user task)
-Various options, most of which are device dependent
-The function to be performed (say, read or write)
-The logical device ID
- The address and length of the buffer

The list may be extended to include device-dependent information.

Storage Management

MAXCOM storage services provide dynamic facilities for handling main storage
as single contiguous strings of words and as chained buffers (see earlier
description of MODCOMP II DMP). The REX calls are:

ALLOCATE request a block of contiguous memory for a specified
number of words

DEALLOCATE return storage to the pool
GETBUF get one or more linked buffers
RELBUF return linked buffers to the pool

244 The Minicomputer in On-Line Systems

User Support

These services are executed at the priority of the user task; all other calls are
executed as Taskmaster priority.

DUMP
ASCII TIME
CAN-ASCII

BINARY-ASCII

110 Handlers

print portions of memory during execution

convert from ASCII to Compressed Alphanumeric format
(CAN), a radix 40-decimal form that allows 3 characters
per 16-bit word

MODCOM's 1/0 handlers range from simple Teletype-compatible asynchronous
devices to full bisynch protocol. Handlers for magnetic tape, floppy disc, and
cartridge disc are also supported but only at direct physical block level, not
through a file handler. The more complex handlers, such as the bisynch
emulators, are implemented slightly differently with a package referred to as a
symbiont.

General comments on MAXCOM

This is a very specialized executive that complements the excellent hardware
communications features of the MODCOMP processors. The designers have
concentrated on the most important areas of multitasking, queued 1/0 handling
and dynamic storage management, as the framework on which a dedicated
communications system can be built. For more general-purpose teleprocessing
applications (for instance with batch background work, program development,
and so on), the other MODCOMP operating systems can be used.

The Texas Instruments DXlO

DXlO is the operating system for the Texas Instruments 990/10 computer. The
990/10 instruction set is somewhat similar to the DEC PDP-11 rather than the more
conventional mini. It also uses vectored interrupts and virtual 1/0 through the top
2 KB of memory space; 1 KB for a ROM loader and IKB for peripherals, referred
to as a TI LINE.

The processor has two distinctive features.First, the 16 general purpose
registers, referred to as a work space, are in fact in main memory, pointed to by a
CPU register. Thus registers can be changed in a context switch simply by
updating the work space pointer register; against this all register accesses are
performed at memory speed rather than CPU speed. Second, in addition to the
virtual I/O system the processor supports a high-speed (4 MHz) bit-serial 1/0 port

Minicomputer Operating Systems: Some Examples 245

(CRU). A single instruction can transfer from 1 to 16 bits from or to a memory
location starting at any of the possible 4K CRU addresses. Tl's own video display
terminals (VDTs) utilize this line so that further 110 support is required in the
software. The memory refresh buffer and controller for each VDT is implemented
on a board that plugs directly into the CRU chassis on the processor; the screen
and keyboard are linked as a video monitor. Thus memory to VDT transfers take
place at full CRU speed, taking only around 20 milliseconds to completely fill a
screen. Remote VDU and other terminals use the TI LINE with conventional
software support, providing device independence.

DXlO is a multiuser, multiprogramming OS designed for both commercial and
industrial applications. It supports a completely free mix of application programs
and program development. Extensive use is made of mapping to run reentrant
programs. The mapping hardware allows a program to be divided into three
sections, each contiguous but of any length. When loaded, any section can be
placed in any physical block of memory that is large enough. Since a section may
be quite large this does not permit such efficient use of memory as RDOS's 2-KB
pages, but it is more versatile than RSX-llM's contiguous programs. DXlO makes
extensive use of mapping concepts to implement reentrancy. The three sections
can be established as pure code (procedures), local data, and global data. Thus
when the first user of a compiler logs on, he gets the whole lot. The next user to
request the compiler gets his own data space but is mapped to the procedure
section automatically by DXlO. Procedures and data spaces (most confusingly
referred to as "tasks") are installed separately if the user wishes to take advantage
of shared code. The technique used by DXlO was explained earlier.

Memory management is further enhanced by overlaying and swapping.
DXlO's scheduling algorithm will roll programs in and out of memory on a
priority basis. However, a task requesting an 1/0 transfer cannot be swapped,
since terminal buffers are in user space. Overlays can be called by supervisor
functions or the overlay mechanism can be embedded in the user program when it
is linked. DXlO maintains a dynamic pool of buffers for intermediate storage in
line communication and disc file transfers. The pool is also used for intertask
message passing.

DXlO executive requires between 40 and 64 KB, depending on the number of
drivers and buffers configured. The task scheduler uses a priority scheme with
four levels, defined when the program is installed. A separate linked queue is
maintained for each level. Tasks are serviced on each queue on a round-robin
basis, under control of a time slicer. A task is added to the end of a queue when it
is first bid and at the completion of a time slice. An actual time slice allocated to a
task ends when one of the following occurs:

-Expiration of the maximum period
-The task issues an SVC that suspends itself
-The system suspends the task to await completion of an 1/0 operation

246 The Minicomputer in On-Line Systems

Essentially the low-priority queues are not serviced until no task requires service
at a higher level. There is, however, a counting algorithm to avoid complete lock
out of low-priority tasks. The upper levels 0, 1, and 2 are conventional but the
fourth is dynamic. The task with level 4 priority is initialized at level 1 and
lowered after a number of time slices; when requesting terminal 110 the level is
raised to 1. This gives fast response to actual terminal 1/0 but deemphasizes the
task during heavy processing loads.

Supervisor calls (SVCs) are implemented as XOP instructions, which are
software interrupts. The XOP causes an automatic switch to supervisor mode and
then uses special move instructions to fetch parameters from a supervisor call
block (SCB) defined in the XOP. A typical SCB is shown in figure 7.12. An
example of an 110 SVC SCB is shown in figure 7.13. "00" in byte 0 defines an
1/0 SVC; the specific function in byte 2 (such as OPEN or READ). Byte 1 is used
by the system to return a status code (satisfactory completion, time out, device not
available, illegal LUNO, and so on). The logical unit number (LUNO) defined by
the user program is attached to a physical device at run-time. Byte 4 contains
system flags, initially cleared by the user-busy, error, EOF. Byte 5 contains user
defined flags-immediate or deferred return mode flag, reply flag for a read
operation following a write, and a blank-adjust flag. If a reply flag is used the
reply block address must be supplied in addition to the buffer address, record
length, and character count. Each SCB is coded as a byte string in hex; there are
no macros.

Extensive supervisor calls are supported as outlined below:

Task control functions
Bid and terminate a task
Suspend a task pending 1/0 or time period completion
Extend a task time slice
Activate another task
Change priority
Load an overlay
Set condition bit
Get parameters

SVC code I Status

Figure 7.12

}
Physical record block (PRB)
- device and function
dependent parameters

DX 10 supervisor call block format

Minicomputer Operating Systems: Some Examples 247

00 Status code

I/0 Op code LUNO

System flags User flags

Data buffer address

Record length

Character count

Reply block address

Figure 7.13
DX 10 1/0 supervisor call block and physical record block

Service functions
Date and time
Binary to decimal or hex in ASCII
ASCII to binary
Log a message

Memory management functions
Access system common memory
Release system common memory
Get a block of memory
Release a block of memory

110 functions to devices and files
Open
Close
Forward or backward space
Rewind
Unload
Write EOF
Read device status
Read (ASCII or direct)
Write (ASCII or direct)
Key-indexed file operations

File utility functions
Create a file
Delete a file
Assign and release LUNO to a file or device
Compress a file
Modify access privileges

The normal facilities apply, through use of logical unit numbers to write
device-independent I/O for compatible devices, (printers or serial files). More

248 The Minicomputer in On-Line Systems

extensive file functions will be discussed below, but special mention must be made
first of the VDU. These terminals can be accessed as any other record-structured
device; however, they have a number of special features that are supported by
alternative device-dependent 1/0 functions. These features are:

-Intensity control
-Beep control; optionally issued on read or write
-Field definition for protected fields
-Default data and fill character
-Scrolling
-Editing within input field
-Special event keys
-Buffered keystrokes; sysgen defined, default 6.

Special keys are used with an editor package which allows a file to be
displayed one page at a time. On depressing a key to command the next page, the
full screen will be filled within the second, 20 milliseconds for the screen plus a
disc access. Since the VDT electronics are directly attached to the CRU line, full
status control of Jhe terminal can be applied, rather than to only the interface,
giving greater versatility in avoiding peak loading with multiple VDTs in the
character mode. The TI microcomputer, the 990/4, is being configured to act as a
cluster controller for VDTs.

The DXlO file system is probably the most comprehensive to be built as a
standard feature into a minicomputer operating system. It is part of the executive
accessed by 1/0 SVCs, and occupies minimal user virtual space. A multilevel
directory structure with full attribute control (read only, write only, shared,
exclusive) is used. Files can be contiguous or clustered; they can expand without
predefined limits. All file structures are common to all high-level languages.
Lock-out at record level is supported. File types are:

Sequential-variable-length records, but they cannot be shared when being
written to
Relative record-fixed-length records, buffered by the executive so that with
multirecords per block some disc accesses are avoided. There is, however, an
option to force a write per record so that buffers can be freed
Multikey indexed-keys can be in any fixed position in the record up to 100
alphanumeric characters long. Multikeys can overlap. Variable-length records
are supported. There can be up to 14 keys, one declared as the primary, which
must appear in the record. When updating any given record the user may add,
delete, or change a secondary key value.

Key values for both primary and secoudary keys are stored in indexes within
the file. These are hierarchically structured for rapid random access by pointers,

Minicomputer Operating Systems: Some Examples 249

and so that they can also be sequentially accessed. The main data is stored in a file
in a "bucket" located by a hashing algorithm based on the primary key. DXIO
maintains a copy of the initial value of a record during an update to a multikey
indexed file, to assist backup in the event of failure. Variable-length records can
be compressed by replacing blank character strings with a marker and a blank
count.

DXIO supports a sort/merge package that can be run as a system utility or
invoked from a high-level language program. The package features record
selection, reformatting of input, and summarizing of output. Sort sequences can
be ascending, descending, or other specified collating sequence. Any number of
keys can be specified up to a total of 256 characters. Merge supports up to five
input files. Sort supports either key sort, summary sort, or address-only sort.
There is no automatic line printer spooler under DXIO at present, although one is
promised.

The DXIO is a multiuser system. Any terminal not directly attached to a
running program can initiate the operator communications program called the
command string interpreter (CSI). CSI is invoked by pressing a specific function
key on the VDT to bring a copy of the program into memory. There is a separate
copy of CSI for each terminal currently using it which is dropped as soon as the
services are released.

The range of CSI commands is most impressive, including direct control of
program development facilities. The user can define synonyms for regularly used
sequences of commands to design simple end-user initiation procedures which can
also include access control to specific programs. Each user of CSI can run one
background and one foreground job. The background job may be a copy of CSI
itself, in which case a sequence of commands can be read from any sequential file
or device and evaluated. Thus multiple-stream batch jobs can be supported by
DXIO, although each must be initiated at a different terminal.

CSI commands are:
-Log in and out, with passwords
-Time and date
-Disc volume control
-Directory control-listing, changing name, protection
-CSI synonym
-File alias name
-Copying files
-Logical unit assignment
-Display task and 110 status
-Program activation and control
-Program installation and deletion
-System log activation
-Program debugging aids-breakpoints, interactive program trace, mem-
ory/disc display, decimal/hex arithmetic aids

250 The Minicomputer in On-Line Systems

-Program development support-run text editor, link edit, assembler,
COBOL, FORTRAN, or BASIC, and sort/merge

Current support under DXlO for communications packages is limited. There
is a Teletype routine and a specific TI machine-to-machine synchronous com
munications link control package. A 2780/3780 emulator is undergoing field trials
which will be directly accessible by SVC I/O calls with limited HASP facilities.

High-Level Languages

As much as any minicomputer OS, DXlO is designed as a high-level-language
machine. Languages supported are:

-Assembler, with macro facilities
-FORTRAN
-COBOL
-BASIC
-Business BASIC
-PASCAL

COBOL and BASIC run-time systems are interpretive. All the compilers are
reentrant and all generate reentrant code. The COBOL compiler is to ANSI 74
standard, level 1 with nucleus, relative 1/0 and indexed I/O from level 2. Far more
important, however, are the debug and terminal 1/0 (accept/display) modules
implemented for ease of VDT use. TI COBOL, with its multikey-indexed file
support, is designed for on-line as well as batch work.

General Comments on DXJO

DXlO is a very user-oriented OS. The segmented code concept is very well
implemented. Thus when a user wishes to run a specific COBOL program, the
COBOL run-time system is loaded as one section of the program, the user's
application code as another, and the terminal-specific data as another. Both the
run-time and user code are reentrant. Thus when a second user requests the same
COBOL program, only a new user data section is loaded and the terminal linked
to the already existent code. Thus any terminal can be doing any type of work
one running one COBOL program, two using another COBOL program, one
running a BASIC program, another editing and compiling a FORTRAN program,
and so on.

Obviously if different terminals are using programs developed in different
languages, different run-time support systems are required and memory require
ments go up. Also, since there is no dynamic executive-controlled intermediate
buffering of terminal data, tasks initiated on 1/0 SVC cannot be swapped out,
reducing the efficiency of the swapping system. Thus memory requirements can

Minicomputer Operating Systems: Some Examples 251

be high, although practical experience indicates that the COBOL compiler
generates very compact user code. TI, being a manufacturer of semiconductor
components, supplies very cost-effective memory. For control of a high number of
terminals it would still be necessary to write specific assembly language programs
to reduce OS overheads.

A final point regarding the DXlO is the potential of the rather remarkable
VDT terminal with its processor 1/0 port data transfer speeds, rather than a serial
line.

Microcomputer Operating Systems-Digital Research CP/M

In general, minicomputers have followed the conventional trend in computing
whereby the major software systems are developed by the hardware vendors
exclusively for their own products. Alternative software products such as
compilers and T.P. monitors are offered by software houses for the leading
machines but usually utilizing a standard operating system. Examples of total
"foreign" system software packages such as the Bell labs' UNIX operating
system for PDP-11 's and the BUS-COBOL system for Data General machines
come to mind, but they are rare exceptions.

Now with microcomputers, while there are a variety of microprocessors
available, the earlier dominant systems all featured the INTEL 8080 and later the
ZILOG Z80, which will execute 8080 code. The PET and APPLE feature the
6502, but these are later products. Thus there exists a large number of suppliers of
hardware systems incorporating a similar processor, e.g., ALTAIR, IMSAI,
North Star, Cromenco, RAIR, Tandy. To this list can be added a number of bigger
names, e.g., INTEL, EXTEL, ADDS, who are also using similar micro
processors in specific products.

With all these systems now supporting floppy discs, the requirements for disc
operating systems is paramount, and with the commonality of CPU one software
house, Digital Research, Inc., won the race hands down with its CP/M (Control
Program/Monitor) operating system. Probably the cleverest feature of Digital
Research's system was the implementation flexibility. If one software system was
to be adopted by many hardware vendors, it was important to realize that while the
CPUs were similar, the 1/0 and disc controllers weren't. Thus, as explained later,
the 1/0 routines are supplied as a separate module in source code form! Thus the
basic CP/M system can be tailored to any hardware system.

The Structure of CP/M

CP/M (Version 1) is a single-user, single-tasking disc operating system. Essen
tially it provides a user interface to a discette file system and simple 1/0 routines.
It does not provide any form of real-time executive, e.g., no scheduler or task
manager, and is thus very different from the minicomputer operating systems
previously discussed.

252 The Minicomputer in On-Line Systems

CP/M itself consists of four "sections" plus the user's program as shown in
figure 7.14. The 110 and discette handlers (primatives) are called Basic 110
System (BIOS) and a sample is supplied in source code form to any user if
required, although, say, PERTEC provides a specific version for their ALTAIR
machines. The file handler is included in the Basic Disc Operating System
(BDOS). This supports up to four IBM-compatible floppies in the normal form
although expanded versions for double-density discettes, etc., are available.

The console commands are processed by the Console Command Processor
(CCP), which utilizes the BIOS routines and principally creates calls to BDOS to
load programs, etc. User programs are loaded into the Transient Program Area
(TPA). Using standard CP/M utilities all programs are loaded and saved only from
tbase and not from any user-specified locations within TPA. CCP is itself a
transient program and can be overlaid, as could BDOS if the user program
specifically accessed 110 directly via BIOS.

Most microcomputer systems use a "power-on" reset circuit to cause a jump
to a specific memory location. This contains the start of a ROM-based routine
which loads the first sector of the CP/M disc into memory. This contains a routine
to load the rest of CCP, BDOS and BIOS from the first few sectors of the system
disc. A routine in BIOS then sets up certain system parameters in page zero; these

48K
Basic I/0 system

BIOS
!-------------

Jump vector
i base

Basic disc operating system
BOOS

!------------
Function call analyzer

43K f base
Console command processor

CCP
cbase

7 Transient program ,7
area TPA

System parameters
buffers

5 !-------------
Jump to fbase (system call)
Jump to ibase (warm start)

0

Figure 7.14

tbase

Page 0

Memory map for 48K CP/M system

Minicomputer Operating Systems: Some Examples 253

include a jump instruction for the "warm-start" procedure (typing control C,
which is trapped by the BIOS) and the jump to BOOS for entering the call
processor. Also included are the remaining 8080 interrupt vectors, some used by
CP/M utilities but not CP/M. Buffers are also provided for default disc transfers
plus a default file control block. Since CCP and BOOS (if the user program
doesn't use files) can be overlaid, the warm-start routine reloads CCP and BOOS
from disc before returning control to CCP.

Facilities of CPIM

The functions provided by CP/M are split into two groups, input/output and the
file operations. Figure 7 .15 lists the functions provided in version 1.4

All functions are accessed by first writing the function number into register C
and any input address in register pair 0, E. Single byte results are returned in
register A and for two byte results (addresses) the high order byte in register B. A
jump to subroutine is then executed via absolute location 5 which stores a jump to
the location (jbase + 6) in BOOS where the function is analyzed and executed.

The BOOS system functions are supported by the 1/0 primative routines in
BIOS. A list of these functions is shown in figure 7.16.
In addition BIOS includes two routines to handle the cold and warm boot
procedures.

It must be noted that BOOS is hardware-independent. To tailor CP/M to any
hardware environment, only BIOS must be modified. By convention the BIOS
routines are accessed by a jump vector at the beginning of the BIOS. Since these
are at known memory locations, the BIOS routines can be directly accessed by
user programs rather than the preferred access via BOOS.

File Handler

CP/M files are maintained by name in .a directory on each discette. A file can be
any size from no sectors to a full discette, organized as a logically contiguous
sequence of 128-byte records. Physical sectors are not necessarily contiguous and
can be dynamically allocated to expand or reduce a file. A 33-byte file control
block is maintained for each 16 KB of each file, which is brought into the TPA by
an OPEN function. The FCB is updated in memory and written back to disc when
the CLOSE function is executed. The form of the FCB is shown in figure 7 .17.

The NR field is initialized to zero and sequential access is maintained by
incrementing. For a file exceeding 128 records (16 KB) the EX field is
incremented and the data for that extent loaded into the FCB. Random access to
sectors is simply achieved by precomputing and overwriting NR. A maximum of
16 extents (256 KB) is imposed in version 1.4.

254 The Minicomputer in On-Line Systems

Function Number Information Result

0 System reset
1 Read console ASCII character
2 Write console ASCII character
3 Read reader ASCII character
4 Write Punch ASCII character
5 Write list ASCII character
6 (not used)
7 Interrogate 1/0 status 1/0 status byte
8 Alter 1/0 status 1/0 status byte
9 Print console buffer Buffer address

10 Read console buffer Buffer address
11 Check console status True if character ready
12 List disc head
13 Reset disc system
14 Select disc Disc number
15 Open file FCB address Completion code
16 Close file FCB address Completion code
17 Search first FCB address Completion code
18 Search next FCB address Completion code
19 Delete file FCB address Completion code
20 Read record FCB address Completion code
21 Write record FCB address Completion code
22 Create file FCB address Completion code
23 Rename file FCB address Completion code
24 Interrogate login Login vector
25 Interrogate disc Selected disc number
26 Set DMA address DMA address
27 Interrogate allocation Address of allocation vector

Figure 7.15
BOOS functions in CP/M, version 1-4

CP/M Utilities

The user accesses CP/M via the console terminal, communicating with CCP. CCP
itself contains five built-in functions:

ERA Erase named file from discette

DIR Display directory of specified discette

Minicomputer Operating Systems: Some Examples 255

CONST
CON IN
CON OUT
LIST
PUNCH
READER
HOME
SELDSK
SETTRK
SETS EC
SETDMA
READ
WRITE

Figure 7.16

Return console status in register A
Return console character in register A
Output character in register C to console port
Output character in register C to printer port
Output character in register C to punch port
Return reader character in register A
Move to track 00
Select disc given in register C
Set track given in register C (0-76 for IBM-compatible)
Set sector given in register C (1-26 for IBM-compatible)
Set memory address for buffer; initialized to 128
Read defined sector to memory buffer
Write to defined sector from memory buffer

BIOS primative 1/0 routines in CP/M

Rename file REN
SAVE
TYPE

Save n 256-byte blocks of memory starting at location 256 onto disc
Display the contents of an ASCII file on the console

I
'---y------'

ET FN FT EX RC OM NR

FIELD FCB POSITIONS PURPOSE

ET 0 Entry type (currently not used,
but assumed zero)

FN 1-8 File name, padded with ASCII
blanks

FT 9-11 File type, padded with ASCII
blanks

EX 12 File extent, normally set to
zero

13-14 Not used, but assumed zero
RC 15 Record count is current extent

size (0 to 128 records)
OM 16-31 Disc allocation map, filled in

and used by CP /M
NR 32 Next record number to read or

write

Figure 7.17
File control block format

256 The Minicomputer in On-Line Systems

Any other command issued to CCP is assumed to be the name of a disc file, which
is loaded from 256 upwards and executed. The user can thus define any "transient
command"; CP/M is supplied as standard with nine utilities initiated by the
following commands:

STAT List statistical details of files on disc; alter and display device
assignments.

ASM Load 8080 assembler and assemble a specified file; produce
object file in INTEL hex format.

LOAD Create disc file in executable code from INTEL hex format file.
The file created can then be loaded and run by a CCP transient
command of the same name.

DDT Load and execute CP/M Dynamic Debugging Tool.
PIP Load the Peripheral Interchange Program for control of disc file

and peripheral interchanges.
ED Load and execute· the Text Editor. Used to create new source

programs and modify existing source files.
SYSGEN Create new CP/M system discette.
SUBMIT Submit a file of commands for sequential batch processing.
DUMP Dump the contents of a file in hex format.
MOVCPM Regenerate CP/M system for a given memory size.

Further Software Under CP!M

Because of the acceptance of CP/M on a wide variety of hardware, a standard 0. S.
interface is in existence on many thousands of systems. The attraction is very
obvious, therefore, for any other system software house to produce utilities which
utilize the CP/M functions. Leading among such utilities are the language
processors developed by Microsoft Corp.

Digital Research produce their own optional utilities, namely:

MAC-an 8080 macro assembler
SID-a symbolic debugger
TEX-a text formatter
DESPOOL-a simple non-interrupt driven routine for simultaneous support
of console and printer

They also offer a PL/l compiler.
Microsoft produce the following language processors and software develop

ment aids:

EDIT-80-a text editor

Minicomputer Operating Systems: Some Examples 251

MACR0-80--a 8080 and Z80 macro assembler which generates relocateable
code modules. Linkers, loader, library manager and cross-reference list
utilities are included
BASIC-a simple 4K, an extended-memory-resident, and a full disc
extended BASIC interpreter (MBASIC) are all available. MBASIC ap
proaches DEC's BASIC-PLUS in standard
BASIC compiler-language compatible with version 5 MBASIC
FORTRAN-80--ANSI '66 compiler, except for COMPLEX
COBOL-80--ANSI '74 compiler with ISAM, COPY and EXTEND. Interac
tive with ACCEPT/DISPLAY
PASCAL-80--compiler

All compilers generate relocateable code compatible with the MACR0-80 code
and linker, etc. PASCAL is not the common UCSD interpreter, and since it can be
used to generate code modules it could well become a standard system software
development language, competing with INTEL's PL/M, ZILOG's PL/Z, etc. An
alternative COBOL compiler, known as CIS-COBOL, produced by Microfocus,
includes a screen formatting utility.

A most surprising omission is the ready availability of data communications
products. Some good ones are available, however, including a special-purpose
CP/M machine-to-machine file transfer package and packages for IBM protocol
emulation based on Bisync, that is, 2780/3780 and 3270.

Enhancements to CP!M

With the increasing availability of higher performance microprocessors and cheap
discs, particularly eight-inch Winchester drives, there is a need to enhance CP/M.
CP/M version 2, released in the last quarter of 1979, is the first step forward. The
major enhancements are support for large capacity discs and improved file
attributes. This has been achieved by moving all disc-dependent parameters into a
"disc-parameter block" (DPB) in BIOS. Thus features such as number of tracks,
number of sectors per track, maximum number of sectors, etc., can be defined. A
DPB is used for each different disc-drive type supported. An optional sector
"stagger" translation vector is also included.

With version 1.4 the maximum file size is 16 x 16KB extents (256KB); with
version 2 physical sectors can be grouped (clustered) by parameter selection into
multiples of 1 to 8, which, coupled with an increase to 64 extents, gives a
maximum file size of 64 x 16 x 8 = 8MB. Using a grouping factor of 1 creates a
version 1.4-compatible file. At the same time a new random-access facility has
been introduced into BOOS which allows physical disc blocks to be allocated
dynamically when written.

The directory system has been enhanced so that read, write, and user-number
attributes can be appended by file; most discette systems are protected only by a
physical tag on the discette itself, so that this is a major advancement.

258 The Minicomputer in On-Line Systems

In addition to version 2 of CP/M, a new system, MP/M, has been released.
MP/M is compatible with CP/M but supports a multi-programming nucleus with
support for "bank-switched" memory (e.g., two or more memory boards with the
same 64KB address space, one of which is selected as active by an I/O
instruction). A real-time clock is required and interrupt-driven l/O is preferred.
Since the hardware dependency is now becoming severe, MP/M cannot have the
universal appeal of CP/M. Since sharing of a cheap 8-bit micro is also somewhat
restricting, this system is obviously a precursor for a system based on 16-bit
micros. CP/NET has also been introduced to link multiple microcomputers
running CP/M and MP/M in a hierarchy. 8086 versions of CP/M and MP/M are
now available.

Summary of CP/M

CP/M presents an excellent single-user operating system for program develop
ment and single program execution. With FORTRAN, BASIC, and COBOL a
CP/M system forms an excellent scientific or small business computer. With the
excellent editors, debuggers, assemblers, and probably PASCAL such a system
also forms a cost-effective Microprocessor Development System (MDS), but as
yet there are no equivalents to the In-Circuit-Emulators (ICE) available on the
micro-processor manufacturers' own MDS products. INTEL, on their own MDS,
also provide a real-time executive, RMX-80. There are few equivalents commonly
supported under CP/M, although STOIC is in the CP/M user's group library.

DECNET

While we are essentially considering the connection of terminals to a computer,
we have also given consideration to computer-to-computer communication. The
general technique with minis is to interconnect two machines by a direct
synchronous line and to run 2780 emulators at each end. This technique has much
to offer, not the least because it enables communication between different
manufacturers' machines. Some manufacturers offer their own point-to-point
communication software, but while this is likely to be more efficient than a
software emulator the lack of a standard is undesirable. Communication between a
number of interconnected machines presents far more problems, and hence there
is a demand for network-control software. At the same time such a network of
machines offers the potential for one machine to access data stored on another
machine, so that software is required not only for machine-to-machine but also
task-to-task communication, where each task may be one of many running on
separate machines. New developments in networking have also provided the
opportunity to implement new data communication protocols.

Attempts are being made to produce international standards, particularly the
HDLC full duplex protocol and the X25 network control. Nevertheless, two
specific systems, totally incompatible, have appeared as the frontrunners-IBM's

Minicomputer Operating Systems: Some Examples 259

SNA (System Network Architecture) with the SDLC protocol and DEC's DNA
(DEC Network Architecture) with the DDCMP protocol. There are also strong
claims for Hewlett-Packard, MODCOMP, and most other large manufacturers.
DNA is not an operating system; it uses a software package called DECNET that
runs under a standard operating system and can be loosely considered as a
glorified 1/0 system, accessible by macro calls from any user program. Subsets of
DECNET are available under most of DEC's operating systems. DECNET cannot
readily communicate with other manufacturers' machines, although an interface to
SNA has been announced.

The ideal network software will allow a user task to open a file and access data
on one of a number of remote machines using the same commands as are used for
local files. Data could then be accessed by the same programs used for local data
processing. Logical to physical mapping is then transparent to the user in a global
sense. Such ideology doesn't currently exist, and special user programs have to be
written. Equally ideally, any machine should be capable of accessing any other,
whereas in current practice physical constraints are placed by implemented
interconnection. Thus if there are n machines in a network, there should be n-1
input lines into each machine; if there are fewer, some machines cannot talk to
some others. It is becoming possible, however, for messages to be passed from
one machine to another via an intermediate machine (the network software
includes store and forward-message routing). The use of one output line
multidropped to a number of receiving stations is also a possibility, but is not
currently used in minis. Public switching services such as X25 will allow each
machine a single port connection, the network providing the multiplexing and
routing.

Objectives of DECNET

The primary objective of DECNET is to pass messages from a task on one
machine to a task on another machine and to synchronize communication between
them. Thus user programs are written for each node without the user having to
check responses and so on. The user programmer can thus code an OPEN
statement, DECNET (and operating systems) being responsible for ensuring that
processing continues only when the OPEN request is correctly executed. Actual
messages will be either control information or data, determined by the executing
instructions (for instance, OPEN is all control, GET expects data).

However, various utility-level functions should also be provided in addition to
program run-time functions, such as:

-Intersystems file transfer
-Down-line program commands-one program can run or halt a program on
another machine
-Down-line system loading-executive software for a machine can be
loaded initially from another machine

260 The Minicomputer in On-Line Systems

-Down-line program loading-programs can be stored on one machine and
loaded into another
-Software development-the above facilities allow one large machine to be
used for program development for all other machines

Another objective of DECNET is to allow user interface via various high-level
languages.

The Structure of DECNET

DECNET is modular, comprising a number of layers, each with a specific
function. This is in fact an essential concept in network software, since as
technology improves certain software functions will be implemented in hardware,
which will only affect one module. This may also eventually help in implementing
international standards, if such an ideal situation ever can take place. In fact DEC
already is taking advantage of the modular approach by implementing subsets on
their less common operating systems. The same applies in reverse to enhance
ments that will be implemented initially on the more common operating systems.

The structure employed by DECNET essentially comprises one hardware and
three software layers. These are shown schematically in figure 7 .18. The four
layers are:

Hardware layer-responsible for the line characteristics (serial or parallel,
synchronous or asynchronous, data transmission speed, modem control,
character synchronization)
Physical link layer-responsible for handling messages to and from the
hardware layer. Concerned with error detection and recovery, also handles
identification of messages for sequencing and synchronization. Uses the
DDCMP protocol
Logical link layer-multiplexes and demultiplexes error-free messages
provided by DDCMP into individual message streams to independent users.
The Network Services Protocol (NSP) adds identification to the user message,
the combination of which is treated as one unit by DDCMP
Dialogue layer-NSP ensures that each message is correctly routed to the
appropriate user program. Whether the message is actual data, a request to
access a specific file or device, or whatever, is determined by the data access
protocol (DAP).

The user programs can be considered another layer on this onion. The user
interface layer allows supervisor-type calls to the services of DAP and NSP to, for
example, access a file via DAP or establish connection with a remote task via
NSP. These services are available as calls in Assembler and FORTRAN programs
under DECNET. Figure 7 .19 shows how the various protocols effect the routing of
a message from a source program to a destination program.

User I I
'

Files ~/ !)(

N 'Device~ v Cl'\ handlers I lo""

User ~
I

I
I pro~am
I

Operating I User I
system I I

Figure 7.18
Digital network architecture (DNA)

~ ""-
Network

Data access m services
protocol protocol (OAP) (NSP)

y-
/ I

I
I
I

Dialogue I Logical I
layer I link

layer

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DECNET

Communication
protocol
(DDCMP)

Physical
link
layer

~ ---
~---------

Hardware
layer

Other
DECNET
systems

262 The Minicomputer in On-Line Systems

User issues
request for service

OAP creates
messages

NSP adds
routing information

and handles handshaking

DDCMP adds block
check and physical
link header, checks

errors

DDCMP verifies
correct reception

NSP checks correct
routing and

demultiplexes

Destination OAP
program decodes

and activates
user program

Destination
user program

Figure 7.19

Used by NSP to
select line and
by receiving demux

Routing
header

Link Routing
header · header

Link Routing
header header

Routing
header

Data

Data flow between programs in DECNET

Hardware Layer

Data Control
information

Block
check

Block
check

Action

The hardware layer includes a full range of line interfaces with associated line
drivers and any interrupt service routines. The objective is to present a line-type
independent interface to the physical link layer, thereby enabling DDCMP to be

Minicomputer Operating Systems: Some Examples 263

line-type independent. In essence all messages are received and transmitted as
though direct to memory viewed by the physical link layer. This implies handling
of modem control and synchronization of bit patterns into character strings. In this
way the physical link can be a slow-speed asynchronous interrupt-driven line, a
high-speed synchronous line, or a parallel line, all similarly handled by the
physical link layer.

Physical Link Layer

The physical link layer is essentially required to ensure that any messages
transmitted are received error-free and to inform the sender of correct reception.
This implies methods of error checking and of acknowledging or requesting
retransmission if needed. The physical link layer must also select a specific line
for transmission based on a logical routing request.

DECNET uses a full duplex protocol called DDCMP, which is shown in
figure 7 .20. Recall from chapter 3 that this is a byte-oriented protocol compared
to the bit-oriented HDLC and SDLC. This is achieved by using the count to define
the beginning and end of the data field. Note also the high number (256) of
messages that can be transmitted before an acknowledgement is required. In
addition to the protocol shown in figure 7 .20, another set exists beginning with

SOH Count

Figure 7.20

8 bytes

Header

I

2 bytes

Routing Message CRC-16
header

Any length up
to 214 bytes

: S/F
Receive
number

Transmit
number

Station
address

l LMessage
number

Number of message
being acknowledged

Select and final bits for control
ownership of link (2 bits)

DDCMP protocol message format

CRC-16

Header block check

264 The Minicomputer in On-Line Systems

ENQ rather than SOH and using the count field as types and subtype fields. These
are transmitted without data for channel control information as defined by the type
and subtype fields, for example, Acknowledge when there is no message to
transmit, Boot, Reset, Start, and so on.

DDCMP includes cyclic redundancy check (CRC) characters for error
checking on both the header and the data block. Users report this protocol to be
very efficient in handling lines that have some probability of error. The 8-bit
station address intended to identify multidrop stations is used for route through by
DECNET. As technology advances more and more of the functions of DDCMP
will be implemented in hardware.

Logical Link Layer (Network Control Services)

The logical link layer effectively creates a line (a "virtual pipe") between one user
and another node. The network control software module handles the network
services protocol (NSP) designed to control the routing of messages over the
network. NSP has two major functions to perform: (a) as the user interface to
DECNET for all intercommunications, (b) to generally supervise the network.
Intertask communications are to:

-Create the logical link; later releases will allow links to extend through
defined intermediate nodes
-Multiplex and demultiplex multiple logical links into physical links
-Control traffic through the logical link, including possible process
interruption
-Perform message segmentation and collation
-Ensure end-to-end delivery with correct synchronization and sequencing
-Destroy the logical link

Network supervision functions are to:

-Maintain tables of the network configuration, inform all nodes of new
nodes and other changes
-Route messages through the network (automatic store and forward
facilities)
-Trace messages through the network

The NSP appends the routing header field indicated in figure 7. 20. NSP uses
the routing data to instruct the physical link layer which physical line to use, but
the information is also transmitted for use in demultiplexing at the receiving
station. The header is typically 8 bytes long and contains flags, destination and
source link addresses, heading and optional message number (12 bits), and
optional mode routing heading. NSP control messages include fields to define the

Minicomputer Operating Systems: Some Examples 265

control function and the data required by that function. The control functions
include connect and disconnect, set and check link status, (with an allowance for
short messages to interrupt long sequences of messages), topology and configura
tion set and check, and a number of maintenance functions. NSP allows intranode
connection between two tasks on the same machine. This of course is less
efficient than the conventional intertask communication provided by the operating
systems and is provided for development and test purposes.

Data Access Layer

The data access protocol gives meaning at the user level to the messages handled
on behalf of the user program by NSP. OAP includes a special module called file
access listener (FAL). FAL acts only as a receiving node utility to gain access to
any file or device being accessed from the master node. Referring back to figure
7.18, OAP is shown as a reentrant module. In effect each user program can
request independent data access via its own effective copy of OAP; NSP
multiplexes multiple requests. User programs can of course be responsible for
their own files and device access using OAP to pass buffers of data. Any data
incompatability between operating systems can be handled by OAP. Ideally OAP
would provide all the facilities of a local file control system, but DECNET is
much more constrained, being limited to simple GET and PUT record statements.
As such, however, OAP allows access to remote devices such as line printers; only
on later releases does it allow a terminal on one machine to act as a virtual
terminal on another machine.

The user program can also gain direct access to NSP, instead of using OAP,
for such functions as establishing links and simple message transmission. NSP
also allows user program access to the remote operating systems monitor, in
particular to RUN and ABORT tasks on remote nodes. CALL statements are
available in FORTRAN and equivalent in Assembly language to gain access to the
three basic services described above, message exchange, file access, and task
control.

Sequencing

It is most important to realize that DECNET controls the sequencing of events
between two communicating tasks. Each program can be written in isolation.
Figure 7.21 indicates a simple pair of programs, one to send a message and
another to receive it. Each is written independently of the other. When executed,
however, DECNET evokes far more functions transparent to the users. Having
requested the link, the source task cannot proceed until NSP signals correct
completion of the link. To do this the target task must be activated, which will
then obtain logical link information and decide whether it accepts or rejects the
link. The NSP on the target then informs NSP on the source that it has accepted
the link.

266 The Minicomputer in On-Line Systems

Request a logical
link connection

Transmit a
message

Disconnect the link

Figure 7.21
A simple pair of related programs

Get logical link
connection information

l
Decide to accept

or reject I ink

l
Complete the

link

l
Request to
receive data

Send
rejection

information

The target machine can now execute a request to receive a message which will
allow NSP on the source machine to execute the send message from the source
program. In effect the transmit command in the source program will remain
dormant until the target program has issued a request message command. Any
transmission errors and recovery will be handled by DDCMP, again transparent to
the user. If one considers that multiple tasks using NSP and multiple physical lines
must be controlled, it is clear that the network control service program is a
complex multitasking software module in itself; it is orders more. complex than a
direct point-to-point emulator.

Summary of DECNET

In practice DECNET has been quite successful in comparison with other
manufacturers' offerings. It can by no means be considered fully developed.
There is certainly no attempt yet to allow automatic, or alternative, routing or
packet switching. The user interface is reasonable and easy enough to use but has
not reached a level of logical compatibility with local programs.

Probably the most successful part of DECNET is DDCMP, although this will
probably eventually give way to a bit-oriented protocol such as HDLC when

Minicomputer Operating Systems: Some Examples 261

interfaces are suitably developed. The power of DDCMP lies in the fact that it uses
standard, readily available interface hardware. This, coupled with the fact that
DECNET software occupies roughly 24 KB compared to up to 100 KB for SNA,
accounts for the greater acceptance of DECNET over IBM's product.

The availability of a variety of operating systems on DEC equipment is an
obvious disadvantage when it comes to networking software, particularly since
file structures are incompatible. One cannot help but feel that Hewlett-Packard,
with RTE on the 3000, and Data General, with AOS may be in stronger positions
to use the now-available SDLC interface components and develop much easier-to
enhance software.

8
High-Level
Packages

Minicomputer operating systems are rather more advanced than high-level
language compilers. This is particularly pronounced in the area of on-line
terminal handling. For dedicated multiterminal systems the powerful macro
assembler facilities available can be employed to produce extremely efficient and
reliable software. Such a system is also relatively easy to tune, but is inflexible
and expensive to program.

At the other end of the spectrum from dedicated terminal handling, the
minicomputer can be used as a conventional small business system (SBS). Thus
systems using simple on-line data entry and batch processing will abound, based
on the existing operation systems, to give some degree of multiprogramming.
Such systems, for the benefit of the end user as much as the programmer, must be
programmed in a high-level language. Thus COBOL and RPG II compilers (Data
General, Texas Instruments, Hewlett-Packard 3000, Varian) are becoming com
mon. Terminal handling is achieved typically by using BASIC or an Interactive
COBOL. Minis are designed as interrupt-driven machines so that the single
threading accepted in small mainframes can be totally avoided.

The pseudominis are supported essentially by batch processing operating
systems. To improve these rather limited systems a number of independent
software houses have produced transaction processing monitors, which improve
not only the terminal handling but also command processing and error handling.
Since the technique is well understood in DP circles, it is used on minis as well.
One other area in which minicomputers are commonly employed is key-to-disc
systems. Conceptually a key-to-disc system is similar to a SBS, but the accent is
on dedicated terminal handling routines and simplified file structures. Versatility
and processing power are sacrificed for maximum terminal capacity.

269

270 The Minicomputer in On-Line Systems

Minicomputer On-Line
Terminal Handling Packages

While relatively conventional COBOL-based systems with TP monitors will
continue to appear, there exist a variety of packaged systems with some interesting
features. A few of these will be described in outline in the following sections. The
systems described have been chosen because they display original concepts. We
make no claim here that they are the "best" in any sense. In most cases the desire
to produce an alternative to a batch-COBOL-based system can be summarized as
the need for:

-Improved terminal handling statements, including trapping of errors back to
the user program
-Simplification of the programming of terminal dialogs
-On-line and interactive program development and debugging
-Direct control of program execution by the terminal operator, with minimal
recourse to supervisor control
-Simplification of the syntax of high-level language afforded by the new
minicomputer technology
-Password and file attribute security codes
-Accounting of system resources
-Logging of transactions with error recovery routines

No package system will give the total flexibility and efficiency achievable
with a multiprogramming operating system with macro assembler. The price paid
for the latter system is the difficulty in understanding and making full use of the
available facilities; this is not acceptable for a general-purpose, user-oriented data
processing system, which should be easy to use even at the expense of efficiency.

Key-to-Disc Systems

A key-to-disc system is used to create machine-readable images of source data
documents. Such systems support only simple file structures and allow a minimun
of data processing. Multiple terminals linking to one reentrant application
program are supported. A simple basic disc-operating system rather than a
general-purpose OS is used to minimize overheads both of memory and processor
time. By designing the system to handle its own specialized job with no
pretensions to full data processing, a simple minicomputer can handle up to 20
terminals. Program swapping is used to support different workloads for each
terminal if required.

Apart from demonstrating the importance of designing a system to suit the
job, these systems have led to the development of some very good screen

High-Level Packages 271

formatting and processing languages. These enable easy design of terminal
dialogs and simple processing of data fields. The processing is limited compared
to a full data processing system, but includes efficient routines for data validation
and error checking. A simple file retrieval system is also supported so that, for
instance, a name can be returned and displayed against a code number. Once a
batch of data has been validated and stored it can be transferred to another
machine for processing. A limited version of this technique is used as a
foreground program on machines like the ICL 2903 and Burroughs B700, so that
the files, once completed, can be batch processed as a background job.

Digital Equipment Corporation COMTEX

COMTEX is an example of a do-it-yourself communications executive. It
comprises a system control and interface program to link user-supplied program to
the terminal and line-control tasks, including interrupt service routines for
specified terminal handling. COMTEX can be configured by the user to include
routines to suit his own configuration. 1/0 handlers are available for most DEC
interfaces. More comprehensive control modules are also available to handle line
protocols such as Teletype, IBM 2741, bisynchronous, and so on. Applications
programs supplied include emulators for 2780 and HASP work stations. In
general routines are supplied in source form so that the user can tailor any routine
to meet specific circumstances.

COMTEX is supported as a user program under the obsolete DEC batch
operating system, DOS, the combination resulting in an on-line disc-based
operating system. DOS/COMTEX has now been superseded by RSX-UM, which
includes all the above features in a multitasking, multiprogramming environment.
It is rather frightening to contemplate an on-line system based on such an
elementary and unreliable operating system as DEC's DOS.

Most minis support terminal-oriented routines similar to COMTEX, but they
are usually integrated with a real-time OS.

Digital Equipment Corporation COS 350

The COS 350 system is a PDP-11-based member of a range of packaged systems
using the language DIBOL. COS 350 supports multiple terminals. DIBOL is one
of a new breed of languages structured like COBOL but greatly simplified. Accept
and display statements provide single-character handling, but terminals are
generally treated as files and accessed with record read or write statements, as are
the disc files. A program can support only one terminal, so that even if two
terminals are performing the same work, down to sharing common files, two
copies of the program must be loaded. DIBOL is a wholly character-oriented

272 The Minicomputer in On-Line Systems

language so that numbers are represented and stored as ASCII character strings.
BCD support is clearly needed.

The COS 350 executive runs as a task under the single-user RT-11 OS. As
such it uses the RT-11 file system (and all other utilities such as edit, and so forth),
which allows sequential or random access. Files must occupy contiguous disc
blocks, so meaning that maximum sizes must be prespecified. The file handling
utility (PIP) can be used to clean up the disc, and they-by copying and
deleting-to extend a file. Records can be any length but must be fixed. Thus
buffer space for both disc and terminals is allocated in the user program as defined
by the data division program statements. The executive is a time slicer, switching
between resident programs. With a maximum memory of 56 KB, approximately
36 KB are left for user programs. Programs cannot be swapped but there is an
overlay facility, and programs already loaded are shuffled when one exits to leave
all available memory as a contiguous block. RT-11 maintains a free memory table
to control the shuffling.

The DIBOL compiler is too large to run as a time-shared program, so
program development is off-line, the compiler replacing the time sharer. With the
mapped PDP-lls a release is available so that the foreground/background version
of RT-11 can be employed with, say 128 KB to allow concurrent program
development. Since RT-11 is a single-user system and no memory mapping is
supported on the COS 350, there is no protection between programs. It is,
however, a multitasking system, so that program 2 will execute while program 1 is
awaiting, say, a disc access completion (multithreading).

There is a facility for initiating a program at the terminal and then detaching
the terminal from that program and using it with another program. Thus two user
programs could run concurrently with a one-terminal system, giving a batch
facility without tying up a terminal as a console. The number of terminals
supported depends upon how large the programs are. With 36 KB of user space
about two terminals doing on-line processing or four doing data entry would
appear reasonable.

The general-purpose utilities, stemming from the well-established RT-11 OS,
are above average. The more specific data processing utilities are average. An
indexed sequential package has been introduced, which takes up another 4K of
space (see figure 8.1). The file structure is simple and file sizes must be
prespecified. The protection facilities are poor. The lack of virtual programs is a
serious disadvantage and there is no support for buffered VDUs.

A utility called DECFORM that generates DIBOL programs to create
specified screen formats and file structures is available. This is a good example of
the trend to introduce improved program development aids.

Digital Equipment Corporation RSTS/E

RSTS/E is a resource-sharing, time-sharing system specifically designed for
multi-user terminal-oriented interactive processing using BASIC. It has grown

High-Level Packages 273

56KB
Spare

User program 2

User program 1
20KB

cos 350
time-sharer

Command string interpreter

r------------------
Terminal handlers Swappable

r----------------~

File system

r---------------~

RT-11 monitor

0

Figure 8.1
The DEC COS 350

through many versions, the early release, Version 4 (RSTS), using an unmapped
PDP-11 (no longer supported by DEC) while the extended (/E) versions make
extensive use of memory management hardware. Version 5 is the standard system
which holds a special place of honor in data processing since more than any other
system this accounted for the now common use of minicomputers in commercial
applications. Indeed the simple user interface of RSTS/E has set a standard which
others must hope to emulate, particularly for first-time user installations. Version
6 can be treated here as an enhancement to Version 5 introducing some compiler
support. Version 7, however, is a major restructuring of the executive, providing
much wider support for compilers and languages other than BASIC. With the
release of RSTS/E Version 7, DEC appears at last to have realized that a
sophisticated and complex real-time operating system like RSX-llM is not an
ideal user environment for commercial programs which are much more simply
served by a time-sharing type of scheduler. Straightforward application programs
not using RSX-llM's real-time features developed under RSX-HM using BASIC
PLUS-2, COBOL or FORTRAN will run under RSTS/E Version 7.

Versions 5 and 6. A simple memory map is shown in Figure 8.2(a). The
executive controls all 110 and time-slicing; it occupies about 32 KB of memory.
The BASIC interpreter resides in a separate virtual space and is also around 32
KB. The interpreter issues service requests to the executive but contains an
integrated command analyzer (as in all BASIC interpreters) so that under time
sharing control, each terminal has independent access to all facilities. All I/O is
logical, physical terminal addresses being associated with users at log-on. The
log-on module has good password and user control features; the monitor also
supports terminal status reporting and user statistic logging. User programs,
written in BASIC, are entered and edited under control of the interpreter. The

274 The Minicomputer in On-Line Systems

Approx.
32K.--------.

Time-sharing
executive

1/0
controller

etc.
0 ~----'

(a) RSTS/E version 5

RSX-11-like
command
analyzer

32K ,__ ___,

Time-sharing
executive

I/O controller
etc.

0__ ___ _,

(b) RSTS/E version 7

Figure 8.2

64K~------.

BASIC
program

1
(maximum

size)

32K 1------i

Basic
interpreter

and
command
analyzer

0 ~----'

RMS-11K
multi-key

ISAM

"RSX"
program

1

RSX-11
subset

run time
support

DEC RSTS/E memory map

BASIC
program

2

(Virtual address
shown)

"RSX"
program

m

BASIC
program

n
32K ,__ __ _,

BASIC
program

1

BASIC
interpreter

and
command
analyzer

BASIC
program

n

source program is semi-compiled (for run-time efficiency) as it is entered and the
syntax checked at each line. Both the ASCII source program and the interpreter
level code are filed, the former for listing and editing, the latter for run-time only.
The ASCII source program is pre-compiled whenever it is used and therefore
takes far longer to load. Each BASIC program has its own space in memory with
virtual address 32 to 64 KB; the executive maps the appropriate physical pages
into the interpreter space when that program (and terminal) is allocated a time
slice. The time-slicing algorithm is very efficient, taking full advantage of time
available from other programs awaiting resources. Thus all keyboard 1/0 is
performed under interrupt by the executive. For example, when a user program
executes the statement INPUT A, that program is de-scheduled and takes no
further time-slices. The executive collects the keyed-in characters requested,
buffers them (from a dynamic buffer pool in the executive address space), checks
for validity, code converts to binary, and transfers the binary number to the data
area allocated to the variable A in the user program. When this is complete, the
user program is rescheduled and processing continued.

High-Level Packages 275

Each terminal has its own program. Thus if two terminals run the same
program, two copies of the program are physically loaded into memory. To
minimize physical memory requirements, RSTS swaps user programs out to disc,
largely while they are awaiting keyboard input and are inactive in any case.
Swapping is transparent to the user. Insufficient memory causes excessive
swapping, and while any number of terminals can be logged on, the response will
be poor. For a normal commercial system about one in three programs should be
in memory. A minimum of 128 KB is required in practice. Programs which do not
need interactive 1/0 can be run from any terminal (usually the console) and the
terminal "detached" for running another job. This provides a good batch facility.
A line printer spooler is also supported.

The system language is a greatly enhanced version of BASIC called BASIC
PLUS. The language extensions allow floating-point and integer arithmetic and
very powerful character string handling. Double-precision floating-point arithme
tic (8 bytes) with a user-defined scale factor is used for commercial work (17
digits). True/False logic and AND/OR on bit patterns are both supported so that,
for instance, code conversions can be handled in high-level language. Alpha
numeric data is normally stored one character per byte, but it can be packed three
characters in a 16-bit word, upper case only. BASIC-PLUS suffers from the
constraint of variable names being limited to one alpha character or one alpha and
one number such as A or Z7; BASIC-PLUS 2 allows multiple-character names.
Integer, floating-point and string variables and arrays are allowed.

A feature of an interpretive system like RSTS is its ability to develop and
debug programs onJine, concurrent with other program execution. Similarly, run
time errors can be trapped and handled by the user program rather than the OS;
thus erroneous input data can be detected and the user asked to re-enter.

The file handling is good, but access techniques are limited. Physical files are
located by directories as noncontiguous "clusters" of blocks, INPUT and PRINT
statements can be used to store ASCII formatted data or GET and PUT statements
to access logically numbered blocks, either randomly or sequentially. The system
also supports virtual arrays so that an array can be dimensioned up to 32,000 x
32,000, which is accessed from disc via a 512-byte buffer. Lock-out is at block
level. With BASIC-PLUS, keyed access routines are included as functions in the
user code limiting the virtual space available to user programs.

There is a technique for allocating multiple terminals, effectively single
threaded in one program, but the usual technique is to use one program copy per
terminal. The interpreter is reentrant. Strings can be of any length, determined at
execution time. They are all saved in a pool with name and length headers. Thus
to execute the command A$ = B$ + C$, strings B$ and C$ are concatenated by
creating a new string A$ and copying first B$ and then C$ inside the pool.
Executing A$ = "NEW" will create a new array and mark the old A$ as dead.
Thus the character string pool must be periodically cleaned up by the OS.

Version 7. Version 5 was wholly interpretive. Version 6 introduced support
for an alternative compiler system using the enhanced BASIC-PLUS-2. The
fundamental idea is to develop and test programs interactively under the

276 The Minicomputer in On-Line Systems

interpreter and then to compile them for more efficient run-time execution.
Version 7, shown in figure 8.2(b) takes this concept to its logical conclusion. Now
there is a separate command analyzer, similar to that of RSX-llM, which provides
the initial user interface. Each user can then attach to the log-on routines of either
the normal interpreter or the RSX-UM-type run time support system. Only a
subset of RSX-UM SVCs are supported, sufficient for the time-sharing environ
ment provided by the scheduler in RSTS. Thus program editors, FORTRAN,
BASIC-PLUS-2, and COBOL compilers are all available. Earlier attempts to
mount alternative languages were by a run-time emulator of say RT-11, which was
grossly inefficient. With the compiled programs it is also possible to support the
extended keyed index file package, RMS-UK, moving such code out of the user
space into a shared executive space. Version 7 also allows files to be allocated as
fixed length contiguous blocks for increased run-time efficiency. Clustered files
could still be used during development phases with contiguous files in production
once detailed requirements have been established. Probably the most significant
feature of Version 7, however, is that DEC appears to have at last produced an
efficient COBOL system.

Data General IDEA

Data General's commercial computer, the ECLIPSE C uses the longstanding
partitioned real-time OS, RDOS, with the multikey ISAM file system, INFOS.
The main processing language is COBOL and without virtual memory support the
system is clearly aimed at the largely batch processing domain of the IBM/System
3. As such it has no significant on-line ability. Thus Data General has produced a
software package called IDEA based on key-to-disc system techniques. The OS
supports three grounds, one of 64 KB for the RDOS/INFOS systems software,
another 64 KB ground holds the IDEA monitor, IMON, plus user programs, while
the third ground can be used for independent batch processing. The batch
processing, given 64 KB, can include IDEA program generation concurrent with
execution of other programs. The actual handling of terminal data is performed by
the monitor, each IDEA program consisting of a series of high-level calls. Up to
16 terminals can run concurrently.

The programming system consists of two parts, a Format Generator (IFMT)
and a processing language (IFPL). IFMT allows screen formats to be generated
interactively, defining and naming data fields. Each complete screen definition is
stored on disc for future use. The processing system is modular in nature, being
driven by input transactions. Using the COBOL-like IFPL, a program module is
written to service each named input field in the screen format. Conditional
statements are included in IFPL to alter the natural sequence if needed. File
handling statements are high level, taking advantage of the powerful INFOS
package.

High-Level Packages 277

Unusual for a mini, the Data General VDUs use special function keys to
notify the monitor of edit, duplicate, erase, and back-tab fields, to end and to log
off functions. The monitor displays the format, controls cursor positioning, and
collects data input from the terminal; the operator strikes the enter key when a
field is full. The monitor checks for errors and then executes the IFPL module.
Control is returned to the monitor to collect the next data item, and so on. When a
format is filled the screen is flushed and a new format displayed. A totally
different format can be selected under program control, giving program chaining.
The monitor supports an automatic transaction file. Data for any field given an
output attribute (one of seven possible) is stored on a disc file, together with
identification data, before processing by the user IFPL module.

Each IFPL module is small, since most of the features (formats, data
conversion and the like) are embedded in the monitor. Each program can be
allocated 2, 4, or 6 KB plus 0. 5 KB for a screen buffer and 0. 7 5 KB per open file.
Since the monitor occupies approximately 50 KB, about three active IFPL
programs can share the monitor ground. Further IFPL programs reside in the
background space and the currently active modules are mapped into the IDEA
ground as required; a program can be mapped out while data is being keyed-in.
The system does not support disc swapping, although inactive formats are disc
resident. Print control utilizes the same techniques. Data fields are stored on a
disc file, which is eventually printed via an IFMT module to format the report.
Automatic spooling is not supported.

Data General has recently announced a virtual multiprogramming operating
system for the ECLIPSE computers, which could greatly enhance the power of
IDEA, since the current system requires a lot of memory. The ECLIPSE processor
is one of the few minis with a commercial instruction set.

Computer Automation SyFA

All the systems described except RSTS employ special monitors appended to
general-purpose real-time operating systems. RSTS is more specialized but still
has a general-purpose applications area. SyFA, however, is an example of a
system specifically designed for multiterminal transaction processing, developed
by an independent software house and later adopted as a standard CAI product.

SyFA is programmed in a simplified COBOL-like language called SyBOL.
The system runs on a 64-KB unmapped CAI LSI-2/60 mini and can support up to
24 terminals. The OS, CyCLOPS, selects any one terminal as the console to
control initialization, running of batch jobs, and so on. A RJE program can be
supported (2780 or DCT 200) concurrent with the terminal programs; terminal
programs can communicate with the RJE system. A 3790 emulator is also
available. In addition, one of the utilities can be executed (compiler, sort, ISAM
index-build, for example). The editor is a SyBOL program and can be run from

278 The Minicomputer in On-Line Systems

any terminal. An automatic line-printer spooler is embodied which can handle one
or two printers; direct printer allocation is, however, possible.

Terminals work in Teletype mode, interrupting by character. The monitor
collates data into fields, checking for obvious errors; thus if n + 1 characters are
keyed into a field of maximum length n, the last character is not accepted and a
bleep is sounded at the terminal. Numeric data may contain a decimal point,
automatically padded to fill the specified field. The system is wholly character
oriented so that numbers are internally stored as ASCII strings of length specified
in the SyBOL program.

The disc system supports sequential (automatically compressed), random or
direct and indexed-sequential files. Lock-out is at file or record level. Disc
accesses are optimized on a minimum head movement basis. Disc space is
allocated as contiguous blocks of nominal length. Further blocks are automatically
allocated (updating directories) as required and blocks unused when a file is
closed are returned to the available pool. Utilities are available to reorganize the
files and list directories. The system only supports 4 x lOmB or 4 x 80mB disc
drives, with no magnetic tapes.

SyFA is an interpretive system. The SyBOL compiler generates reentrant
code which is loaded in 256 byte pages. Some 16 KB of the memory is dedicated
to holding pages of user code and 1/0 buffers. Code pages can be overlaid and
buffers rolled-out and overlaid when no memory remains. The OS maintains a
priority system linked to the time-slicing executive. In general the least recently
used page is overlaid, but shared code and at least one page/program remain in
memory. Data areas are not paged and are held in memory. Memory is allocated
sequentially as a program is first run and released on completion; the data area is
shuffled whenever a program terminates to keep the available data area con
tiguous. The latest release uses the simple LSI 2/60 memory mapping to swap the
32-48-KB address space between multiple physical memory blocks, reducing
problems of limited data space (see figure 8.3). An interesting feature of the Sy FA

64K
64 X 256 byte pages

for user code and 1/0 buffers
48K

* Utility program (1-5.5KB)

r--------------~

Program data

32K
* RJE module and line buffers

28K
OS, interpreter, and file

handler
0

*Usable as program data area when
utility or RJE are not being used

Figure 8.3
The CAI SyFA

High-Level Packages 219

system is that the terminal log-on routines are themselves written in SyBOL so
that they may be tailored to include any password and user code validation and to
give access only to selected programs.

The CAI Alpha LSI-2/60 mini is one of the few machines offering a
commercial instruction set with character string handling, decimal arithmetic, and
multiple stacks. This machine, however, has no hardware memory management to
help the paging controller and too few CPU registers. The most unusual feature of
this system is its dedicated nature. While it will run multiple terminal-bound jobs,
there is no support for other languages, no attempt to provide partitioning to
protect foreground from background users, or to support a great variety of
peripheral devices. This represents a deliberate trade-off of versatility for
efficiency. It is aimed specifically for use as a subsystem, with a mainframe
computer for batch programming. The SyFA system is the first to support 3790
emulation to allow attachment to IBM's SNA.

BLIS/COBOL

The BLIS operating system is written for a Data General NOVA by an
independent software house (IPI). As in the SyFA system, the use of a general
purpose OS has been abandoned and a system tailored specifically for business
data processing has been developed; in this case the high-level language adopted
is ANSI COBOL with accept and display statements for on-line processing. A
brief specification is:

-32-64 KB NOVA processor, unmapped
-Concurrent multiprogramming of up to 30 terminal or batch jobs
-Maximum program size 200 KB without sectioning
-Concurrent program development, with on-line debugging
-Indexed files with alternate keys
-Operating system occupies 16 KB, the user area being paged, with
swapping controlled by an antithrashing algorithm. Page addressing is
generated by the compiler, not virtual hardware.

While few details have been given here, the BUS/COBOL system is mentioned to
indicate the existence of specialized system software packages developed to cover
holes in manufacturers' software. It uses no Data General software.

Computer Technology TAD

CTL has in the past specialized in the scientific and university market. The well
established MOD 1 processor has been repackaged as the 8000 with an eye on the
commercial market. To support the 8000 in the new area further software was

280 The Minicomputer in On-Line Systems

required. A reentrant COBOL compiler using the existing MODOS OS gave batch
facilities using the standard disc filing system. An indexed-sequential package
(IFS) was added and a module called AOF introduced to give JCL control via
terminals. To provide run-time support for terminal activities TAD (transaction
application driver) has now been released. TAD, AOF, and IFS effectively
constitute a transaction processing monitor. The monitor interacts with the
processing system through reserved disc files.

Referring to figure 8.4, the system is structured as two autonomous parts, the
foreground and the middle ground. Each terminal has its own transaction control
program (TCP) which defines screen formats, fields, and so on. A dialog program
generator (DPG) is available to create TCPs. Each TCP collects data which is
validated with the aid of a library of routines; multiple screens of data can be disc
filed to give scrolling. Each TCP has access to a read-only file to give terminal
responses. All completed transactions are appended to a sequential transaction log
file. As such the foreground routines form a conventional direct data entry
system.

In the middle ground, each entry in the log file is processed in sequence; the
appropriate transaction processing program (TPP) is identified by the source of
the entry. Normally, as soon as the transaction log is entered the TCP can recycle
to collect the next input. The TCP can be marked, however, to hesitate until the
appropriate TPP has completed, possibly returning information for display via an
acknowledgement file. In this way on-line processing can be achieved, although
response could be slow, since the TPPs can execute only serially, effectively
causing single threading for processing programs, although not for data entry. The
transaction log file provides a facility for an error recovery procedure.

Digital Equipment Corporation TRAX

Although its computers have been used with transaction processing monitors for
many years, Digital Equipment Corporation only announced its own software for
this style of terminal-based processing in 1978. TRAX is a complete package (not
a monitor to work with a host operating system as with CICS) aimed at providing
the advanced screen-handling facilities, file support, and restart/recovery func
tions essential to this style of processing. Although designed to run on any
memory-mapped PDP-11 (Model 34 and above), TRAX does require the use of a
special display terminal (the VT-62) which, by employing a microprocessor, is
able to perform most of the detailed screen-handling and low-level data vetting
functions. The executive of TRAX is based upon the kernel of Digital's RSX-llM
multiuser, multitasking operating system. The RMS-11 data management system
is also used. The main features of the system are:

-Up to 64 terminals, but obviously constrained by performance
considerations

~

Figure 8.4
The CTL TAD

Virtual

Virtual
picture
system

VDU
handler

Validation

TCP

Interpreter
and

operator

~---·---

• I
I

.J

File
display

Sender

Receiver

Acknow
ledgement

file

Trans
action
log file --
Data
files

TPP
controller

TPP Line printer

282 The Minicomputer in On-Line Systems

-Screen handling and data vetting performed in intelligent terminals and
specified using a high-level language (ATL)
-ANSI COBOL and BASIC-PLUS-2 language processors
-Programs are written in small modules that are sequenced with terminal 1/0
according to user-specified transaction description tables
-File support for sequential, relative, and indexed file organizations (with
record-level locking)
-Automatic print spooling
-Terminals can be locally or remotely connected, point-to-point or multi-
point, using the DDCMP line protocol
-TRAX-to-TRAX communications using a subset of DECNET
-Communications to IBM hosts using a 3271 emulation package
-Sophisticated restart/recovery including journaling and file-update staging

Processing
modules
(compiled
from COBOL)

Screen
maps

D--D

Figure 8.5

VT62 intelligent
terminals

DEC TRAX 11 system

Program
development

system

D--- D
VT100 terminals

High-Level Packages 283

-User sign-on with password and identity codes
-Interactive development and testing mode
-Batch processing support
TRAX programs are developed under a totally separate partition of the

executive and utilize standard VTlOO terminals, not the intelligent VT62s. This
offers a high degree of protection for the user environment but makes program
testing difficult. The system is shown schematically in figure 8.5.

TRAX is a most interesting development in that it diverges from the
interactive COBOL or BASIC systems common on minis. While it employs
message processing and queuing techniques common on mainframe TP monitors,
it is an integrated package. It has many desirable features not built in to systems
like RSTS/E (recovery procedure, shared code) and by using small shared
processing modules should be more efficient, particularly with multiple users of
the same program, thus aiming for support of more terminals. However it loses
the simplicity of using and programming a system like RSTS/E, which was a
major factor behind the break through of minis into commercial applications.
Early Trax systems have suffered severe performance problems and one is left
feeling that the whole concept is too late in any case and will now be overtaken by
multi-microprocessor based systems.

9
Acquisition

and Implementation

It is all too easy to get excited by the prospect of using minicomputers in terminal
based commercial systems. There is many a slip 'twixt the design cup and the
working system lip. Our experience has shown that selecting the most appropriate
hardware for an on-line system and then making it do the job to the predefined
targets of cost, performance, and quality can be fraught with difficulties.
Although we do not have space to do justice to system development, this short
chapter might help.

Acquisition

It is unusual for professional buyers to be directly involved in the evaluation of
computer-related products (probably because of the seemingly complex nature of
these products). It is equally unusual for computer people to get any training in
good purchasing practices. The key to effective buying is control of the situation.
Salesmen are taught that the key to effective selling is also control of the situation.
Control in this case means who determines the criteria on which the selection
decision will be made. Clearly, any salesman worth his salt will stress those
criteria best fulfilled by his own product; other parameters will quickly diminish
in proportion.

From the customer's point of view the selection parameters need to be worked
out well before the salesmen get into his office, and he should stick to them. This
can only be done if the buyer has a high level of confidence in his technical
capabilities and knows that the specification being issued is reasonable. We find
that the best approach is to design a "notional" system that meets the ideal
specification in every respect but does not refer to any specific product on the
market. Performance and reliability objectives should also be included.

285

286 The Minicomputer in On-Line Systems

The list of selection criteria can become very large. The problem then
becomes one of accounting for the variations in the relative importance of the
criteria. For example, one supplier can support 9600 bits per second line speeds
but not COBOL; another has the COBOL compiler but can only provide 4800 bp_s
transmission. What is the overall significance of this? A useful and practical
technique is to apply a weight to each criteria. This could be in the range 1 to 5,
where 1 means "useful feature if available" and 5 means "pretty essential." The
weightings should be included in the request-for-proposal (RFP) document.
During the evaluation of the bids it should be possible to draw up a large matrix
and score each proposed system against the original target system. A method we
use involves multiplying the weightings by the following: 0 if the requirement is
not met; 1 if the requirement is fully met; and 1.5 if the requirement is usefully
exceeded. The achieved weighting scores for each proposal can then be accumu
lated. Although this is a useful technique, your final selection might be made on
the basis of criteria that are difficult to score in this manner (say supplier
credibility). But it is certainly effective in getting all the criteria in perspective.

Some other factors that might be included in your acquisition procedures are
these:

-Some minicomputer suppliers will not sell you anything; you have to drag
the products out of them. However, do insist that they submit their proposals
in the required format. To accept anything else is unfair to the other
participants, who are at least trying to give you the information you need.
-To avoid being swamped with boilerplate proposals, format the main body
of your RFP as a series of specific questionnaires that require specific
answers-can you do it or can't you? Boring or evasive answers will be taken
as an admission that the respondent cannot. This approach works wonders.
-Make it clear in the RFP that statements made in the proposal will be taken
as contractual. In some countries this is the law anyway.
--Get the supplier to state exactly what he will do if his system does not come
up to specification in practice.
-Do not accept proposals for anything that is not installed and working at an
existing customer site. If it has not been delivered, assume that it does not
exist.
-If you are importing a system and your currency is generally on an upward
trend, make sure that the price you pay corresponds to fairly current exchange
rates. (If your national currency is declining, do not raise the subject!) In
either case, make sure that you benefit from any price changes effective
between the date of order and the date of delivery (assuming that prices will
continue to be reduced).
-It is not at all difficult to find you have over ten companies bidding for your
contract and twenty or more is possible-there are a lot of mini suppliers

Acquisition and Implementation 287

around. The use of independent consultants and product surveys can be a great
help in keeping the contenders to a minimum.
-Get all parts of the data processing department involved in the evaluation
process. At decision time, the users should also be advised and consulted.
-If you are placing a large order, push your finalist manufacturers hard. Send
programmers to their courses, get them to program small, representative
applications, and so on.

Implementation

Implementing mimcomputer systems successfully is really no different from
implementing any other type of system (in the sense that it all comes back to good
management of the project). Some factors, however, singly or in combination,
may cause problems. These may include:

-Lower levels of minicomputer supplier support than you may be used to
with your mainframe company
-Management pressures for early implementation can easily erode time
allowed for familiarization with the new technology
-Inadequate time allowances made for all-new system features; minis,
transaction processing, data communications, and distributed systems
-In a move from batch (or no computer at all) to on-line working, little or no
attention is paid to user needs and no opportunities are presented to the user
for participation in the project
-Insufficient staff training directed at providing the new skills needed to
develop complex multicomputer, multiuser systems
-Inadequate planning for the introduction of on-line program development
-Not enough input from operators concerning their requirements for
facilities to aid the running of multiple computer systems remotely sited from
the mainframe center
-Too much wheel inventing and not enough use made of existing software
and outside contractors with specialized skills.

These will not be the only problems you encounter. In the belief that problem
avoidance is preferable to problem solving we offer the following advice:

1. Do not underestimate the time needed for development. Systems have a
natural gestation period and overambiously cutting time on design and
programming merely causes the lengthening of the debugging time.

288 The Minicomputer in On-Line Systems

2. Do not cut comers on training costs; your most effective dollar is spent on
people rather than hardware. Aim at becoming as independent of your
supplier as possible in the area of software support; assume that you will get
no help-then when you do, treat it as a bonus.
3. Use outside skills where available to avoid inflating internal staff levels,
but maintain strict control of external projects and ensure that you can
maintain the resultant software yourselves.
4. Ensure that users get an opportunity to participate in the development
project.
5. The operation of on-line systems (particularly where the minicomputers
are sited remotely) present particular problems for the operations group;
involve them in consultation and ensure the system includes hardware and
software mechanisms to aid the day-to-day running of the network.
6. Before the project starts, carefully reassess your data processing depart
ment structure and use the introduction of new technology and systems as an
excuse to review areas of responsibility, programming team structures, and so
on. Finally:
7. Try not to be too ambitious; take things in nice, easy stages and allow time
for each stage to settle in before reviewing it and, if appropriate, moving on to
the next level of sophistication.

We wish you lots of luck in your new minicomputer-based project, but please
don't depend on it.

10
Case Studies

From the wide range of systems with which we are acquainted, we have chosen
four case studies intended to demonstrate quite different aspects of terminal-based
systems.

Case study 1 is an example of a stand-alone commercial data processing
system based on a minicomputer. The operating system used is as supplied by the
manufacturer; there are no special-purpose transaction processing monitors
employed-indeed, no system programmers are involved at all.

Cast study 2 is based on a system somewhat similar in requirements to the
first, although with more remote access facilities. It is also based on a standard
mini operating system, but one with limited terminal-handling facilities. Thus the
systems house involved has written the transaction processing monitor described
as well as the applications programs.

Case study 3 describes a mix of mini and mainframe computers. The system
is significantly larger than the other two and involves a number of special software
and communications facilities based on a standard real-time operating system.
The implications of both mini and host mainframe hardware and software are
considered.

Case study 4 addresses the problem of interfacing nonstandard components in
small-computer systems using microprocessor-based technology. The available
techniques are illustrated by four operational examples.

289

290 The Minicomputer in On-Line Systems

CASE STUDY 1
Digital Equipment RSTS!E System

Overview

The system described here is installed in a factory complex in Birmingham,
England. The company produces a wide range of cooling fans, valves for the
petrochemical industry, and aerospace components. The computer system was
required mainly for accounting functions in the first phase, replacing Olivetti
accounting machines. The engineering department was using an IBM time
sharing terminal for computing data relating to the experimental testing of fans.
This terminal was also used to plot results graphically. Similar facilities are now
provided on the in-house machine. Since the company had no previous experience
with computers, a London-based systems house was employed to provide a
detailed specification of system requirements and to select the best hardware
available. This system house has since written the applications programs; in fact
supplying a full turnkey solution.

Configuration

The system outline was circulated to ten potential suppliers; from the resulting
proposals a minicomputer system was selected. The system uses a DEC
PDP-11/34 processor, running the RSTS/E operating system with the BASIC
PLUS language described in chapter 8. As such the system was suitable for both
accounting and engineering work without alternative language processors. RSTS/
E was preferred to the offerings of IBM, ICL, and other mainframe suppliers
largely on the grounds of the superiority of the user interface to the time-sharing
operating system. The system is so easy to run that it is justifiably classed as a
"first-time-user" system. In fact, the superiority of the operating system control
language is probably more important than its transaction-processing facilities.

Being a time-sharing BASIC system, RSTS/E offers transaction processing as
a standard feature without the necessity for a separate TP monitor. User programs
are written to include all screen handling via BASIC INPUT and PRINT
statements, and each terminal requires loading of a complete copy of the
application program, which can be up to 32 KB in size. Consequently memory
and swapping overheads are high, a factor offset by the system's competitive
memory prices. While the system uses a DEC processor and software, the
hardware, shown in figure 10.1, includes products from other suppliers. The
VDUs are asynchronous CDC units with cursor control. The discs are Memorex
with the system house's own controller; the printer is also from CDC. The local
VDUs are linked via a special eight-channel multiplexor, the modem via a DEC

Case Study 1 291

D
30-ch/s
console terminal

4 X VDU

D
400-lpm printer

Diablo Hyterm terminal

Figure 10.1
Configuration of minicomputer system used in case study 1

DLllE interface. The DEC RSTS/E system has an optional commercial
extensions suite of routines that includes a sort package and an indexed access
method routine for file management.

The Applications System

The system currently performs the following functions:

-Sales ledger
-Purchase ledger
-Payroll
-Sales order book evaluation
-Invoicing
-Sales analysis and other management statistics
-Job costing from time sheets

The first phase of a production and stock control system is now underway,
essentially the bill of materials breakdown with a check against existing stocks at
each level. The computation and graph plotting of fan performance data is also
carried out from a remote site, using telephone lines and modems, on a Diablo
Hyterm terminal. This is being integrated to develop a library of fan performance

292 The Minicomputer in On-Line Systems

characteristics that could be used as a sales aid. It has already been used to help
produce catalogs.

The Plotting Terminal

The Diablo Hyterm terminal links to the processor via a dialed line at 300 bits per
second, asynchronous. As such it is a conventional ASCII 30-cps KSR printing
terminal, although the daisy wheel print head allows the character set and format
to be changed. The mechanical movement is effected by stepper motors, which
move a fixed number of increments for normal line feed and character spacing.
However a set of escape sequences have been defined to switch the system into a
mode where direct control of the stepper motors can be achieved. Thus the head
position can be accurately controlled so that by printing dots or crosses graphs can
be plotted. Both the paper and head can be moved in both directions, which
improves the graph plotting facility. Since this terminal is running under the
RSTS/E operating system, a BASIC-PLUS program has been written to plot
graphs with labels, axis, scales, and so on. User programs write data and
commands into a virtual array which is opened when plot is run.

Comments

The remarkable feature of this system is the ease with which programs are written
and interactively debugged. Provided a modem is attached, there is no difference
between running or developing a program on a local or remote terminal. As a
result some programming, particularly maintenance work, can be conducted on
the user's machine from a remote office. The software house involved has been
required to write very few system software modules beyond those supplied.
Modules have been developed to support fill-in-the-blanks screen formatting for
specific VDUs with cursor control features. Most programs are, however, written
to display a screen background into which the operator keys data which is
processed in a question-and-answer style, one field at a time.

In the end the outstanding question to be answered is, How can a minicompu
ter manufacturer develop such a system, which is competently managed by one
person (who also doubles as terminal operator), when similar-sized installations
from mainframe manufacturers invariably acquire a data processing staff of three
or four people in addition to the terminal operators?

CASE STUDY 2
Data General EC LIP SE System

Overview

Minfo Konsultgrupp is a Swedish software house based in Gothenburg. Minicom
puter manufacturers are not generally well established in Sweden, so the choice of
system is somewhat more restricted than in the United States or England. One of
the companies that is established and offers suitable support is Data General. The
immediate requirement facing Minfo Konsultgrupp was for an integrated informa
tion system for a container shipping company. This involved a dual processor
system with on-line terminals and communications links to an IBM 370/148 for
batch processing, an IBM/System 7 used by the stevedores (longshoremen) in
Gothenburg, and a Burroughs B3700 situated in Southampton (England) that acts
as a central data collection system and a common site to the computer systems
used by the company at other European and American ports. The terminals, sited
in agents' offices, are the locally produced Alfaskop, which uses a 3270-
compatible synchronous polled communication system, an unusual terminal for a
minicomputer. Printing terminals use the same protocol. Communication to the
three remote computers, including the B3700, is by IBM 2780 emulation. It was
estimated that the system took fifteen man-years to complete, with initial
installation by the end of 1978 and installation in agents' offices by the end of
1979.

Operational Functions

The applications programs that make up the user system provide four major
operational modules, as follows:

Freight Documentation

The documentation requirements in shipping are quite extensive and include
documentation to agents, shippers, forwarders, consignees, customers, port
authorities, and stevedores, as well as in-house communication. The main
functions in the on-line system are:

-Bill of lading registration
-Freight calculation and control
-Printing of documents: (manifest, cargo declaration, unit packing lists,
invoices, arrival notices, freight statements)
-Documentation status inquiries

293

294 The Minicomputer in On-Line Systems

-Correction procedures for bills of lading
-Creation of statistics

Booking

Two months prior to the booking of the cargo, the scheduled voyage of the ship
has to be defined for the computer system, giving vessel name, arrival date,
deadlines, allotment on ship, and so forth. The booking system consists mainly of
the following functions:

-Booking registration
-Automatic check of allotment on vessel
-Automatic check of available containers
-Printing of documents (booking advice, lists, summary)
-Booking forecast
-Booking status inquiries

Equipment C ontrol!Tracking

This module will probably provide greatest financial benefit. The company
operates a container fleet of more than 20,000 units, each representing a high
capital investment. If the container utilization can be improved by decreasing the
tum-around time of the container, much money can be saved. A control and
tracking system requires that the status of the container is carefully registered in
the computer system. The different functions in this module are:

-Registration of container status changes
-Inquiries as to the container situation at the container pools (depots)
-Trace data on each container or other types of equipment
-Work order; instructions to stevedores
-Transport order; instructions to truck drivers

Marine Operations

Marine operations consist in the main of the creation of a container load plan for
the ship, in order to get the right trim and stability. The production of this plan
involves a lot of information exchange between ocean ports. Because the system
must be available at any time (including outside normal working hours) marine
operation information will be Telexed.

Case Study 2 295

Nonoperational Modules

The following data processing functions are also provided:

-Container statistics
-Statistics per commodity, customer, country
-MIS, revenues, costs
-Registration/claims statistics
-Registration/container report and maintenance statistics
-Accounting
-Route code, through transports
-Inquiries

The system modules are shown in figure 10.2.

Hardware

The system is shown in outline in figure 10.3. The required up-time for the system
has resulted in a dual processor system. One processor effectively handles the
terminal-oriented on-line interactive system, while the other supports the batch
facilities, including communication to the remote computers. Each computer has
its own 96-MB disc drive with a third drive shared by both processors. This uses a
very interesting Data General product that provides high-speed interprocessor
coupling with the shared disc controller. The processors used are ECLIPSE C330.
The ECLIPSE, while upward-compatible with the NOVAs, is a far more powerful
processor. The C version has an instruction set tailored to commercial applications
(it includes byte string instructions, for example).

Software

The ECLIPSE uses the standard Data General RDOS operating system, which is a
batch foreground/background system not dissimilar in operating characteristics
from, say, an IBM System 3. It supports a COBOL compiler with a good
reputation and a data management system, INFOS, of some sophistication.
However, the transaction processing facilities are rather low-key and certainly not
up to the requirements of this system. The IDEA data entry system is interesting,
but Minfo Konsultgrupp required a transaction processing monitor to allow the
bulk of applications programs to be coded in COBOL. It was also necessary to
manipulate files outside the INFOS structure. Thus a transaction processing
monitor called TASS (terminal access and scheduling system) was written,
employing the Data General communications software modules. (RDOS is
described in some detail in chapter 7.)

N
\C
~

System

Opera~
Operational

Nonoperational support

Documentation Voyage handling Statistics

Booking Customer register Management

Equipment Tables Claims register

Marine operation Vessels Repair register
inquiries Country, currency

Accounting Freight tariff rate base
Port code; pool code Route code
Etc. Inquiries

Figure 10.2
Overview of the container shipping information system,
case study 2

System
I I Communication support

Password, log on/off Burroughs B3700 (Southampton)
Maintenance/deleting old data IBM 370/148
Security IBM SYSTEM/7
Backup/recovery

System programs
TP monitor
Database interface
Precompiler

Magnetic
tape

Batch processing

96 Mb

Maintenance

ECLIPSE
256-KB
C/330

96 Mb

Applications
program system

Program logging
temporary
files

Interprocessor
Backup link

Case Study 2 297

96 Mb

Data bases

ECLIPSE
256-KB
C/330

communication On-line

4800 baud
----1(2780 protocol)

(IBM 370/148)

2400 baud

Gothenburg Southampton
(IBM SYSTEM/7) (Burroughs B3700)

Figure 10.3
The minicomputer configuration, case study 2

Agents, on-line
(3270 compatible
terminals)

TASS (Terminal Access and Scheduling System)

TASS is designed to give concurrent access for a large number of video terminal
operators to a Data General commercial ECLIPSE computer. TASS allows
messages to be sent from terminals and starts COBOL programs to process these
messages. The COBOL programs running under TASS can send messages to
video display terminals as well as print on remote printers. TASS uses a simple
technique to provide concurrency. To guarantee that all terminals are serviced
there is also a time-slicing facility which will, if necessary, swap an overrunning
program. Screen layouts are stored in a format library used by the format handler
in TASS. This relieves the application programmer of much of the screen handling
and gives him the opportunity to concentrate on the data received from or sent to
the screen.

TASS appears as a normal program for the Data General RDOS operating
system. TASS uses the facilities of Data General software as much as possible,
and there is compatibility between TASS temporary files and standard RDOS
files, making it possible to use Data General utilities to handle these files. Calls
for data base accesses are routed through an interface module called DIPS. DIPS
uses Data General INFOS files and adds a number of features not available with

298 The Minicomputer in On-Line Systems

INFOS alone. The structure of TASS is such that it can be transferred to operate
under the Advanced Operating System from Data General, when this system is
available with support for COBOL programs.

A special feature that will help the programmer develop COBOL programs to
run under TASS is a test bed, which makes it possible to test program modules
using the Data General debugger to examine and change the values of variables
and to insert break points in the program. The application programs request
services from TASS by using COBOL-like macros. The macro statements are
expanded by a precompiler. TASS itself runs in one partition of RDOS and uses
Data General's CAM (communications access manager) package for line support.
In particular the SLM (synchronous line modules) are used in this system. In
theory 99 terminals, VDUs, or printers working to 3270 specifications can be
supported. The computer should be equipped with sufficient main memory to give
TASS a 64-KB partition and at least 40 MB in extended memory.

Extended memory is used to hold TASS overlay code and buffers. The more
memory available, the less overhead for buffer swaps to disc (see figure 10.4).
There is one process for every display in the system, and one for every printer in
the system. There are x virtual processes in the system (x is a system start-up
parameter); each virtual process can be either active or free. Each process has its
own save area and standard file. If it is a display process it communicates with its
own display; if it is a printer process it writes on its own printer (see figure 10.5)

A program can store data for future use by another transaction. This is
necessary because each program is terminated once it has produced all messages,
and thus no data can be left in the programs' data division. The save area and the
standard file are always available, as shown in figure 10.6.

Macro Statements

TASS functions are accessed by calls from the application program. To simplify
programming a precompiler is included with TASS. The precompiler will accept
macro statements and transform these to the appropriate calls. The macro
statements start with the$ sign and are ended by an ! (exclamation).

Display ~

...-----L-----.M"'" D I

6
Display process Printer process Virtual process

Figure 10.4
TASS processes, case study 2

PROGRAM
RECEIVE

Figure 10.5

A message is sent from
a terminal to the computer.
This causes a program
(module) to be started.

The program receives
the message.

After processing, the program
may send one or more
messages to the terminal.
These will compose a screen
on a display terminal. Only
the last may contain input
fields.

The program will only receive
one message. When it has
performed its tasks, the
program is stopped.

Case Study 2 299

Transaction processing in TASS, case study 2

The Process Save Area (PSA)

Each process has its own PSA, which in turn has two parts; the system part and
the user part. The system part is filled by TASS, the user part being available to
the user. The PSA contains:

~-->-<1 37 \
\. _____ .. /BEGIN

Write
standard

file

Next immediate = 42

END

I 42 \
\., _/BEGIN

Figure 10.6

Accept var
from previous

Read standard
file

END

Interprocess communication, case study 2

The
standard

file

Var will contain 37

300 The Minicomputer in On-Line Systems

COMA: Communication area, filled by TASS after certain calls
PNUM: Process number: VDU number for display processes (1-99), printer
number for processes (101-199), virtual process number for virtual processes
(201-299)
USCL: User class-authority classes
USIN: User initials. USCL and USIN m printer/virtual processes are
inherited from the display process
TERA: Terminal area code, gives the location of a display or printer.
Initialized at system start-up.
PMOD: Previous program module number
PFOR: Format used last in previous modules
KEYU: The key used to end the message from the terminal
AMOD: Currently active program module number
RESERVED: Reserved for future use by TASS
USER: The user part of PSA, 170 bytes
BEGIN and END: $ BEGIN datl !

$END!

BEGIN copies the complete PSA to the user area datl; END saves the user part of
the PSA for future retrieval by another BEGIN.

Program Flow Control

$ NEXT IS datl !
$DELAYED PROGRAM IS datl AFTER TIME dat2!
With these macros, a program can fix the programs that are to be started next
for the same process, under different conditions. User's data field for datl
should contain five program numbers vl-v5 indicating the programs to be
started under corresponding conditions. The five program numbers to be
given are:

vl for ENTER key
v2 for RETURN key
v3 for ATTENTION key
v4 for SPECIAL key
v5 for IMMEDIATE start

Communication with VDUs

$SEND FROM datl FORMAT IS dat2
STARTING LINE dat3!

$ERROR IN ITEM datl TEXT IS dat2!
$ RECEIVE INTO datl !

Case Study 2 301

The RECEIVE macro is used to let TASS store the input record in datl. The size
and layout of this is as given in the previously executed format. The RECEIVE
macro may be executed only once in a program. The ERROR macro is used to
display a text of 78 characters given in dat2 on line 24 and to move the cursor to
item datl. The keyboard is unlocked and new input may be expected from the
terminal. The text is displayed with high intensity. All normal output to the screen
will clear line 24. With the SEND macro the variable data given in user's data
field for datl is sent to a terminal in the format defined by the format number in
user's field for dat2. Only a format can be transmitted to the screen.

File Storage Outside the INFOS Data System

The standard file:

$WRITE STANDARD FILE FROM datl KEY IS dat2!
$READ STANDARD FILE INTO datl KEY IS dat2!

The standard file is an extension to the process save area. There are as many
standard files in the system as there are processes.

Temporary files. The temporary files are used to store data for retrieval by
the same process, another process or the background.

$ ALLOCATE TEMPORARY FILE [SIZE IS datl] ON ERROR statl !
$ FREE TEMPORARY FILE datl ON ERROR statl !
$READ TEMPORARY FILE dat2 INTO datl

KEY IS dat3 INVALID KEY statl !
$WRITE TEMPORARY FILE dat2 FROM datl

KEY IS dat3 INVALID KEY statl !

Data base macros.

$OPEN DATABASE!
$CLOSE DATABASE!

The data base cannot be accessed logically before the OPEN or after the CLOSE.
Note that these macros may appear in different modules as long as they are
executed in this sequence. At execution of the OPEN and CLOSE macro, an
indicator is written in the log file. In this way data-base updates are grouped and
the presence of a close indicator means that a logical set of updates is complete.
This is used to create a "success unit," which is necessary for the recovery
process. The other database macros are:

$UNLOCK segl KEY IS keyl [INVALID KEY statl] !
$OBTAIN [AND LOCK] segl [APPROXIMATE] KEY IS keyl

GENERIC
[INTO datl] [PARTIAL INTO dat2] [KEY INTO key2]

302 The Minicomputer in On-Line Systems

[INVALID KEY statl][LOCKED ALREADY stat2] !
$ OBTAIN [AND LOCK] segl NEXT

[INTO datl][PARTIAL INTO dat2][KEY INTO keyl]
[AT END statl] [LOCKED ALREADY stat2] !

$ INSERT segl KEY IS keyl
[FROM datl] [PARTIAL FROM dat2]
[COPY seg2] [KEY IS key2]
[INVALID KEY statl] !

$ REPLACE [AND UNLOCK] segl KEY IS keyl
[FROM datl] [PARTIAL FROM dat2]
[INVALID KEY statl] !

$DELETE Segl KEY IS keyl [INVALID KEY statl] !
$ COPY segl KEY IS keyl ON seg2 KEY IS key2

[INVALID KEY statl] !

Other macros.
$ ALERT TERMINAL datl !
$POST datl TERMINAL dat2!
$FETCH AND DELETE datl TERMINAL dat2!
$ POST datl ON CONSOLE!

These are used to send and receive messages between processes and to send to the
console.

$START PRINTER datl PROGRAM IS dat2 IF BUSY statl!
$STOP PRINTER datl!

The START macro is used to start the printer process datl with dat2 as the first
program.

$START VIRTUAL PROCESS PROGRAM
IS datl ON ERROR statl!
$STOP VIRTUAL datl!

It is possible to start a virtual process with the START macro.

$SWAP!
$ NOSWAP!

The intention is that most programs will be of such short duration that it is
advantageous to let them run to the end without swapping. If, however, a program
exceeds a system generation time parameter, it will be swapped under certain
conditions. The programmer may stop a program from being swapped by issuing
the macro NOSWAP. SWAP will again permit TASS to swap.

Case Study 2 303

$PRIORITY IS datl!

This is used to set the priority.

Other Features of Tass

Format Handler

TASS isolates the application program from the actual layout of the terminal
screens. The application programs only send and receive records consisting of the
variable data items that are to be displayed on the screen or that have been entered
on the screen by the terminal operator. The cursor position may be controlled from
the application program.

The formats normally contain all editing information. There is also a numeric
de-edit feature. The format handler and the way formats are described are based
on the use of 3270-compatible terminals in the network. With this concept the
terminal screen can be seen as consisting of various fields. A field can contain
either fixed information (from the format) or variable information (from the
program). Fields can also be used for entering information from the terminal
keyboard.

Error Handling

TASS simplifies error handling in the application programs with a special error
statement that causes the cursor to be moved to any erroneous input field and an
error text to be displayed. The error text will always be displayed on line 24,
which is reserved for use by the system. This line is always cleared by the system
each time a message is sent to the terminal unless the error statement is used.

The error text is given with the ERROR statement and should be 78 bytes
long, including blanks. If no error text is given in the error statement TASS will
simply display the text "ERROR" on the 24th line. After executing the error
statement the application programmer should restart the input-handling program
from the application program.

Start Up and Close Down

All parameters for starting TASS are stored in the file START UP. The parameters
concern the network configuration and TASS options. The installation may have
several copies of the START UP file with different information under different
names. Before starting the system any of these files may be renamed.

Start TASS by typing "TASS" at the console. During the execution it is
possible for the computer operator to intervene with the normal running of TASS
in several ways. Using the background console it is possible for the operator to

304 The Minicomputer in On-Line Systems

insert and remove program module overlays. By this technique it is possible to
remove an erroneous program module and replace it with a copy of the
"nonexistent module" program. Using the foreground console it is possible to
interrupt any process, whatever state it is in. The process will return to the state it
had at start-up.

It is also possible for the operator to immediately stop TASS. A "soft
touchdown" closing procedure is provided whereby the processes are stopped
when they return to system level. After this command has been given TASS will
indicate which processes are still on the air.

Comment

TASS is an example of how an enterprising software house has taken full
advantage of the price/performance benefits of a conventional minicomputer
system and enhanced the system software to meet its own specific requirements.
As a result the system is ideally suited to developing applications programs,
mainly in COBOL. The various communications problems involved and the desire
to use a relatively large number of 3270-compatible terminals means that a
straightforward system like the DEC RSTS/E system previously described was
unsuitable.

(The authors would like to thank Jan Jagerstrom of Minfo Konsultgrupp for his
permission to use the material in case study 2.)

CASE STUDY 3
A Distributed System

Overview

This case study reports on the feasibility study, system design, and acquisition and
implementation phases of a commercial terminal-based system. In the early
phases of the project no commitment was made to any style of networking. The
development team did not set out to design a distributed network; a systematic
evaluation of the alternatives led to the conclusion that such an approach would
provide a most beneficial combination of cost/performance, flexibility, and
failsafety. However, the conceptual end product of the design exercise is not
without its problems when it comes to translating it to a real-life, operational

Case Study 3 305

system. Such problems are likely to be encountered by other data processing
systems designers when they get involved in the distributed processing approach.
We do not believe we have all the answers, but we can certainly indicate where the
pitfalls lie.

Background

The company concerned is a large retailing organization that needed to service
some 600,000 customer accounts by the time the new system was fully
operational. The accounts were previously handled by clerical staff working in
four regional administration centers. For various reasons, it was desirable for the
regionalized structure to continue. The offices were organized on a work-group
basis, each group looking after some 7500 accounts.

The functions that required a computer system (regardless of its configura
tion) were:

-High-volume data input (about 60,000 transactions per day)
-Inquiries
-Input exception handling
-Account exception handling

Each of the 80 work groups required three terminals for the last three functions.
An initial objective was for the data input function to be carried out by the work
group staff. However, since the input documents arrive singly, by mail, the cost of
sorting them into groups and the time it would have taken dictated that a
specialized team of terminal operators would be required. This would add 30
terminals to each site, giving a total of 360 for the whole system.

The dialog design work suggested that the terminals should be visual units
with:

-1600-2000-character screens
-Forms mode capability
-Alpha keyboards with a numeric keypad
-A price of about $1500 per unit (1979)

The dialogs are highly interactive. In the case of the input transactions, much of
the data to be entered will already be held within the system and displayed on the
VDU screen for the operator's confirmation. This dictates that response times
need to be fast (1-2 seconds in most cases) and the displays must have a minimum
screen-fill rate of 480 characters per second. When an error occurs in the input, all
relevant details are passed across to the appropriate work group for correction.
The posting of the account file (600,000 x 900 byte records) takes place

306 The Minicomputer in On-Line Systems

overnight and includes input from both the terminal system and an associated
batch processing system (already operational). After posting, each account is
examined for irregularities. Reports on these irregularities must be sent to the
controlling work groups, who will then use terminals to make adjustments and
initiate remedial action (automatic production of a letter to the customer, for
instance). Printers installed at the remote sites must have the following
characteristics:

-1000 lines per minute (total net rate for each office)
-Upper and lowercase printing
-High print quality (for letters)

For failsafety reasons at least two printers are needed in each location.

System Design Alternatives

The system schematics shown in figure 10. 7 are examples of the many alternatives
considered (only one regional office is included for reasons of clarity). Option 1
was designed and costed to provide a base system to which the other (more
serious) options could be compared. The system required substantial duplexed
mainframes if the target throughput and response times were to be achieved.
Option 2 was designed to minimize costs by using proprietary clustered VDUs
and key-to-tape systems. Although the approach was the cheapest evaluated, there
were still performance problems and the key-to-tape arrangement was not an
attractive way of getting data into the system (because it failed to make use of the
data already in there).

Option 3 involved the use of either general-purpose or special-purpose
programmable remote controllers in the regional offices. It was a requirement of
this configuration that the local system should have direct-access storage facilities
and should be able to perform a substantial amount of the processing (if necessary
on a freestanding basis). This made it possible to reduce the central site to one
less-powerful mainframe system.

Option 4 was the ultimate in decentralization; a separate medium-scale
computer installation in each regional office. The road transport of magnetic tapes
would be used for interchange of data with the present system. This was by far the
most expensive system and was ruled out for reasons of cost, flexibility, and
failsafety.

Although option 3 was not as cheap as option 2, it did offer significant overall
operational and performance benefits. It was decided, therefore, to develop the
system along those lines.

Case Study 3 307

The Regional-Office Configuration

Once the overall approach had been agreed upon, the team then looked at the ways
in which the remote-site systems could be configured. A set of design objectives
were specified:

1. The processors needed to have the right capacity. Too little capacity and
the number of processors required gives configuring problems and additional
expense on the overheads; too much capacity means an excess of unused
power in the minimum duplexed configuration
2. High degree of failsafety. The hardware and software must be intrinsically
reliable, but it should be possible to configure a duplexed system
3. Each terminal must have access to all file records held locally
4. The 9600 bits-per-second link to the CPU should be functionally full
duplex (FDX). Otherwise two such links would be needed from each location,
thus doubling communications costs at a rate of over $30,000 per link
5. The display terminal specifications should be met
6. The printer specifications should be met

Although at first sight these requirements may not seem too unreasonable,
difficulties were encountered. In figures 10.8 and 10.9 you will see two
alternative ways in which a duplexed configuration may be organized. System A
(figure 10.8) involves the connection of half the displays to each processor. The
processors are both programmed to handle all transaction types. Should one of
them fail, the other could handle all the messages but at a somewhat reduced rate.
The major problem with this configuration is that the processors must share files.
Sharing disc storage is not possible on most of the special-purpose controllers
currently available, and although this can be done on most minicomputers, it is a
function not normally supported by the software.

One way around this problem is illustrated as system B (figure 10.9). In this
case the split is not by volume but by function; one processor looks after file
handling and the other handles the terminals. Some form of processor-to
processor connector is needed to implement this. If one processor should fail, the
other will have to undertake its functions at a reduced rate of throughput. Once
more, interprocessor links are unusual on special-purpose remote processors but
fairly common on minicomputers.

On the problem of capacity, it was found that many of the special-purpose
controllers were designed to handle far fewer terminals (16-32) than would need
to be attached in this case. Once you get above two processors at each site the
problems of interconnection get significantly worse. At the moment we are in the
ridiculous situation where full duplex communications facilities (lines, modems,
and adapters) are easy to obtain, but there is hardly any software/protocol to

Regional office

Computer center

(al

Regional office

Computer center

Controller

Controller

(bl

Figure 10.7
System configuration options, case study 3. (a) option l (b) option
2 (c) option 3 (d) option 4

308

Computer center

D

(c)

Computer center

D
(d)

309

Regional office

Programmable
controller

Programmable
controller

Regional office

Medium
scale

business

s

Disc
store

Approx. 20M bytes

Figure 10.8

Disc
controller

Regional office configuration A, case study 3

Processor A

Processor B

Backup
to CPU

~-----1 Communications
MUX

Communications
MUX

To CPU

Teletype
compatible
display
with
commercial
features

c.
::i
-" u
1l
::::>
c...
u

~f { LL .C

-

<I:
0
"' "' "' u e

c...

311

::::>
c...
u

~

....
'g -"' ~
"' = "'

==i

= 0
<= = ""' = Oil = = 0

"' ~
"' s

~o =-..... =
~ = ""'0 =·-Oil~
rz~

312 The Minicomputer in On-Line Systems

support it. The few suppliers that have developed HDLC/SDLC support have
tended to envelop it in a "network product" such as SNA. It seemed, at the time,
that the client would need to develop special software to support FOX working
either at the remote site or the central site (or, heaven forbid, both sites).

It is still difficult to obtain good commercial VDUs at less than $3000 (the
rapid descent of terminal prices in recent years seems to have been blocked by
inflation or something). However, Teletype-compatible displays are becoming
increasingly sophisticated. It is possible to obtain 2000 character-screen units with
forms mode capability and maximum 9600 bps transmission rate for one-off
prices of between $2000 and $2500. Quantity discounts should get this signifi
cantly lower, by up to 30 percent or more. The terminals can be connected to
minis using V24 or 20-mA current loop circuits. It is generally not possible to
connect them to the special-purpose devices that come with their own terminals.

Summary

Figure 10.10 illustrates the operational configuration of this system. The major
suppliers chosen were IBM for the central mainframe; DEC for the remote
minicomputers; Newbury Laboratories for the visual displays; and Racal-Milgo
for the 9600-bps synchronous modems. The following comments will illustrate
some of the difficulties encountered in translating the system from the drawing
board to the operational set-up shown.

Interprocessor Communications

It was originally intended to link the PDP-lls to the 370 using DEC's 2780
emulation package and a 3705 communications controller at the center. Two major
factors turned the development team against this approach. First, the 2780/BSC
protocol is half duplex only, and second, when running, the 2780 emulation
package absorbed some 30 percent of the PDP-11 's processor capacity, a loss that
could not be afforded.

The problem was solved by moving the interfacing problem somewhere else.
An additional front-end processor was installed at the computer center so that
intersite transmission could take place using DEC's standard (and much more
efficient) DDCMP link control. This created the requirement to connect the FEP
directly to the IBM 370 block multiplexor channel. Fortunately, DEC already had
the hardware needed for this (the DX-11), and the company bought a package
from a software house that made the FEP look (more or less) like two magnetic
tape units, one for the incoming data stream and another for the output. A custom
monitor (written by one of the authors) provided a multitasking environment and
support for networking via the FEP.

DDCMP is also employed on the 1 M-bps link between the remote PDP-lls.
A specialist software house was commissioned to write the software needed to

~

Central site system

Central accounts data base
(600,000 records @ 900 bytes)

IBM 370/138
0.5 Mb

DEC PDP-11/34
front-end
processor

DX

11

Console

Figure 10.10
Operational configuration, case study 3

Remote site system
(only one shown)

Interprocessor
link 1 Mb/s

Printer

~Display terminals

314 The Minicomputer in On-Line Systems

control the flow of data among the various systems. (DECNET was not used
because it provided much more than was needed and, at the time, lacked
maturity.) It has been in this area of networking, however, that most software
problems have occurred.

Transaction Processing Software

A package was bought to provide a full transaction-processing environment on the
remote PDP-11s. This was based upon the RSX-11M multiuser operating system
and provided screen formatting facilities, file handling, and restart/recovery
support. The package included a high-level structured programming language.

Distributed Files

A particularly interesting feature of the system is the successful application of
some innovative file-handling techniques. For example, in order to take advantage
of the fast response times possible on the remote-site systems, copies of the master
records for which there are transactions that day are retrieved from the central site
and held on the PDP-11 disc. This facilitates a very high level of verification of
input data, which is then added to a transmission queue file for sending to the
mainframe. The local files are for reference only and are scratched at the end of
each day. In the meantime, the central master file is updated in batch mode
overnight.

The performance of the system is really put to the test when inquiries are
made across the network to the central file. This can take 5 to 20 seconds,
depending on the time of day. Since the inquiry responses can fill many screens,
they are stored locally on disc and flipped through quickly by the terminal user.

Comments

This system combines the best capabilities of mainframe and m1mcomputer
architectures. Because of the pioneering nature of many of the techniques used, its
development has been far from trouble-free. However, a steady program of tuning
and enhancement sees the system moving toward impressive levels of perform
ance and reliability.

CASE STUDY 4
Use of Microprocessors

in Special-Purpose Data Communications Devices

Overview

The problem with communicating between two independent computers is nearly
always compounded by the fact that each was developed seperately and seldom are
the 1/0 interfaces truly compatible. Similar problems can occur with connecting
nonstandard terminals to an existing system.

The advent of the microprocessor has provided a flexible means of adapting
interfaces and line protocols in low-volume situations, avoiding the problem of
redesign in the computer. The line adapter is essentially a simple front-end
processor. A box is built with two 1/0 ports, one obeying the protocols of device A
and the other of device B. The actual data from A is buffered in the adapter and
retransmitted to B using the appropriate protocol. The adapter will normally
contain its own power supplies and a printed circuit board (PCB) for the two 1/0
systems, the microprocessor and its support circuitry, some RAM for the data
buffers, and sockets for EPROMs. The amount of RAM depends upon the size of
the buffers and the amount of EPROM on the complexity of the control program
and the size of any translation tables. The adapter is in fact a programmable
device, but only in special cases is it possible to down-line load the program into
RAM. The program is normally developed in a laboratory using a microprocessor
development system (MDS), which provides software development aids supported
by VDUs, discettes, and printers. The MDS also supports a "prom blaster" for
transferring a program developed in the MDS RAM to an EPROM which can be
physically transferred to the adapter hardware.

The adapter hardware can take a variety of forms. There are boxes on the
market with 1/0 systems that can be partially programmed by switch selection,
specially made for the job and with type approval from the PTT. Others use
programmable USARTs and clocks set to a specific baud rate, number of bits, and
so on, by executing an initialization routine from the EPROM on power-up or
reset. Alternatively use can be made of the standard cards supplied by micro
processor maunufacturers; typically a single-board computer has sufficient RAM
and EPROM, which is then coupled to an 1/0 card. Often the 1/0 card may need to
be specially designed and will not have PTT approval. Another approach is to use
one of the manufacturer's single-board-computer kits, which have an area on the
board reserved for wire-wrapped circuits that is used for the 1/0.

Debugging of special communications devices is a major problem. Seldom is
the programmer's interpretation of the two-line protocol specifications exactly
correct, and detailed modifications are usually needed. The real communications
system can never be taken into a laboratory; the installation must take place on-

315

316 The Minicomputer in On-Line Systems

site with minimal engineering facilities. The adapter is only reprogrammable via
EPROMs and a laboratory MOS, there being no surplus memory or other facilities
to enable program development on the installed hardware. The programs can be
laboratory tested to a degree by the use of simulators, but a device known as an in
circuit emulator (ICE) provides a real-time debugging tool. The microprocessor is
unplugged from its socket on the communications device and an umbilical cord
that links into a full MOS is substituted. Now, temporarily, the full facilities of the
MOS, including VDU, spare RAM, trace facilities, symbolic debugging,
program development software, and so on, are available. ICE, however, only
debugs the microprocessor itself; it does not debug errors on the data communica
tions lines or inside the new complex interface chips (for example the Zilog Z80/
SIO, which can be initialized to support asynchronous, synchronous, or HDLC
data link controls). It consequently is not the complete answer, and additional
tools such as the Hewlett-Packard logic and serial data analyzers can be used.

Once debugged the program can be committed to EPROM and plugged with
the microprocessor into the final system. One further feature required is automatic
start on power-up for the adapter, since it has no console.

The following sections briefly describe some typical applications, all of which
were developed and commissioned by Hoshi Kalami, a research fellow at
University College, Cardiff.

TELEX to V24 Line Adapter

An international company needed to link its message-switching system in Hong
Kong into its European system. The European system is built on a PDP-8 based
Business Master sited in London, the Hong Kong system on a Cable and Wireless
unit. The Business Master uses 7-bit ASCII codes (plus parity), at 1200 bps with a
CCITT V-series interface. The Cable and Wireless system uses TELEX at 50
baud, quarter-rate (to use lower tariffs), 5-bit Baudot code with no error checking.
Both systems have a defined header and trailer message, including one source and
multiple destination l/D codes and a sequence number. Both systems use different
headers and trailers. The TELEX is full duplex by virtue of a four-wire system;
the Business Master could be constrained to half duplex mode by hold and free
messages forming a simple handshake protocol (see figure 10.11).

The line adapter employed was a general-purpose data communications
device known as a DATAMAX. This 19-inch rack-mounted unit fits into the
Business Master cabinet along with the Post Office's TELEX data communica
tions equipment. The DATAMAX has a Post Office-approved interface. The
DATAMAX uses a Motorola 6800 microprocessor with two 1-KB EPROMs and
three programmable USARTs. The processor runs a subprogram on power-up that
initializes the USARTs, one to 5 bits, the other to 7 bits plus parity. The 5-bit
USART is run at 50 baud, the 8-bit one at 1200 baud, and the third one as a
dummy at a quarter of 50 baud for control of the one-in-four-character TELEX

4 lines .
50 baud ·

Figure 10.ll

8080

UART

UART

On-line TELEX system, case study 4

2KB

I EPROM I

Case Study 4 317

~-~ 75 baud PDP-11/34
UART ,__.. __ ._

UART f--+-1-

4XDL11C
equivalent

transmission. On TELEX transmission both USARTs are loaded, but only the 50-
baud one is transmitted; the status for transmission complete, however, is read
from the quarter-speed USART. Incoming characters are checked for header codes
and the data messages are translated by software using table look-up for code
translation, remembering the 1etter-shifUfigure-shift characters in the Baudot
code. Further tables define the header identifying codes used to reform the
ongoing headers.

Since the TELEX line has no error-checking capability, a corrupted character
in a header could cause extreme confusion. To improve this the header was
checked by a block rather than individual characters and recognized if most-but
not essentially all--characters were matching. The DATAMAX program was
developed on a SWTP 6800 discette-based D-1-Y computer using the resident
DOS operating system and Assembler with a simulator to aid debugging.

On-line TELEX System

A wholesaler in London uses a systems-house-developed minicomputer similar to
the one described in case study 1. The firm has fourteen sales outlets spread
around the United Kingdom which need to make occasional on-line references to
the stock file. Since the traffic rate is unlikely to exceed 5 to 20 inquiries per
locality per day, the cost of fourteen VD Us and modems was considered too high.
Each remote site already uses the normal Post-Office-switched telegraph system
and each has its own TELEX terminal. With the low-volume rate it therefore
makes sense to put up with the poor quality of the TELEX keyboard and its low
speed and to use it for both normal messages and as an on-line terminal. At the
central computer site a rack was installed mounted with four Post-Office-supplied
TELEX data terminal equipment units, type DCE3A. This type accepts incoming
calls but cannot originate calls. The signals from the DCE3As are V24-compatible

318 The Minicomputer in On-Line Systems

voltage levels, but in Baudot code format. The Baudot code has fewer printable
characters than the ASCII set, but the applications programs are written to avoid
using non-Baudot characters. It would have been possible to write either a
BASIC-PLUS program to translate ASCII to Baudot or to modify the line handlers
in the RSTS/E operating system. Both are undesirable because of maintenance,
compatability with further upgrades, and possible bugs affecting the smooth day
to-day running of the other systems. The same inquiry programs may also be run
from local VDUs as well as the remote terminal.

The solution used was to build a microprocessor-controlled box (see figure
10.12) that accepted the 1/0 from the four DCE3As and buffered, code-converted,
and retransmitted the data so that it looked like four Teletypes coupled to a
standard low-speed asynchronous 1/0 multiplexor in the PDP-11. The micro
processor was programmed to trap and ignore echo-back of characters fed to the
PDP-11, since the TELEX system is half duplex and will double-print the
character if it is echoed. The TELEX runs at 7 cps (50 baud); the minimum speed
on the PDP-11 was 7 .5 cps (75 baud). This could cause overrun, particularly if the
PDP-11 transmitted a continuous message of alpha, numeric, alpha, and so on,
since the Baudot code would have to send double the number of characters due to
figure and letter shifts. Thus the PD P-11 was set to send 5 nulls at the end of each
line which were trapped out by the micro.

The system was built using an Intel 8080 SKD development package and a
special board for the four input and four output UARTs. A zener diode barrier unit
was included to meet the Post Office requirements, and the box was granted one
off rather than full-type approval. The 8080 proved fast enough to handle the four

HDX

Telex line
50 baud,
irate
Baudot code

Figure 10.12

6800 H PROM

Clock generator

Dummy for i rate

FOX

1200-baud
ASCII

TELEX to V24 adapter, case study 4 (courtesy of ICSC, London)

Case Study 4 319

DCE3As, using input character polling, with ease. It was programmed on an
INTELEC 8 MOD 80 MOS in Assembly language.

Synchronous Line Protocol Controller

It was necessary to connect a Texas Instruments 990/ 10 minicomputer running
under the DXlO operating system to an ICL 1902 for batch mode data
communication. The 1902 scanner supported only ICL 7020 protocols; the Texas
Instruments system supports only an IBM 2780/3780 emulator package. The user
did not like the 3780 emulator because of its lack of an operator console, and the
ICL scanner was therefore upgraded to a Digico FEP, emulating the ICL 7902.
While this machine still supports 7020 protocol the supplier, unlike ICL, was
prepared to modify line protocols to suit. This could possibly have been 3780-
compatible to allow use of the Texas Instruments software package, but this was
not considered progressive enough. Further, software emulation on minicomputers
consumes a large percentage of processing time.

The solution was to provide micro-based dedicated front-ends to the Texas
Instruments and Digico minis, connected through 9600-baud asynchronous
interfaces as local terminals. The Digico, serving as an FEP to the 1902, was
specially programmed. The Texas Instruments 990 used a modified Teletype
driver (largely eliminating the trapping of special characters) with a simple
COBOL program to dedicate a VDU as a console and to spool incoming data to
disc and transfer outgoing data from disc. No communications software was
needed, only an application program. A simple mini-to-micro handshake was
implemented to stop overflow of buffers, particularly if the micro is involved in
transmission problems. An end-to-end protocol was defined to allow the Texas
Instruments and Digico programs to request actions and send and receive error
condition reports in addition to direct data transfer. The line protocol was
completely controlled in the microprocessor systems (see figure 10.13).

The microprocessor systems use a Zilog Z80 processor, 3-KB RAM (double
buffered, 512-byte, full duplex), 2-KB EPROM for the control program, a
USART for the asynchronous link to the minis, and a Zilog SIO chip for the line
1/0. Full modem control, switch-selectable speeds, indicator LEDS, timers, and
some special test aids are all included in a self-powered box, together with barrier
diodes for modem protection. The SIO chip is a programmable super-USART
which provides the synchronous HDLC full duplex line protocol employed. It
checks CRC codes, controls bit stripping and stuffing, checks parity and the like,
reporting errors through status bits to enable the Z80 program to control its
buffers, initiate retransmission, encode error messages for the minis, and control
the handshake and transmission between mini and micro. By using this system the
minicomputer is able to use remote communication while running standard
applications programs suited to local terminals. While the system has been
implemented as a local Teletype emulator, a paper-tape reader would have been

320 The Minicomputer in On-Line Systems

D
Asynchronous

Figure 10.13

zao
RAM

EPROM
Sl/0

HDLC line controller, case study 4

Synchronous
(HDLC)

Asynchronous
~--~ ~-~

zao
RAM

EPROM
Sl/O

DIG I CO
FEP

ICL
1902

better if available. This is because the standard device driver would have a
handshake inbuilt to control the mechanics of the paper tape handlers.

The Z80 has been programmed using a Zilog MDS in Assembler language.
An ICE has been used to aid debugging. Serious problems were encountered with
the SIO chips which fell far short of its specification. Only by extensive trial and
error have tricks been devised to overcome the chip errors; an upgraded version of
the device is now available.

Paper-Tape Punch for IBM 3790

The IBM 3790 does not normally support a paper-tape punch, but one user wished
to send confirmation messages to dockside by TELEX. The solution provided was
to build a microprocessor-controlled box that emulated an IBM 3284/86 matrix
printer at line level. This captured "printed" data in a RAM buffer, code
converted from EBCDIC to Baudot, and punched it on 5-track paper tape. When
the buffer was emptied, the ready status was returned, as with the printer. The
3791 controller to 3277 VDU and 3284 printer uses the same 1 Mbit-per-second,
pulse-width modulated, 13-bit character, polled half duplex protocol as in the
3270 system.

The microprocessor was built on an Intel SKD kit using the wirewrap area as
a mounting point for the rather complex interface circuitry to the 3790. It was
extremely difficult to get the system to work properly due to the differences
between the 3790 and the IBM's supporting literature. In the end the literature was
abandoned and the protocols determined by logging the data on the coax link
connecting a working 3284 printer. The programs were developed on the Intel
MDS in Assembler language, with specific hardware aids to emulate the 3790. An
ICE would have been of little help in this case, since the problems encountered all
lay in the 3790 protocol, not inside the microprocessor.

Case Study 4 321

Conclusion

The foregoing examples show how microprocessors can be employed to link
together systems with noncompatible 1/0. It is also interesting to see how a
relatively cheap microprocessor system can be employed to reduce the heavy
loading of communications software on a standard business computer system.
Since there is freedom at each end of the line, the most effective protocol available
can be used. The technique is being adapted to enable the mini to communicate
via the micro using standard emulations such as the 3780, so that they can be
coupled into existing systems. A parallel, preferably DMA, interface between the
micro and mini would be more efficient than a V24 interface, since there is direct
control of status bits. However, this would then be minicomputer-specific and
would lose the advantage of a standard interface.

Index

Absolute addressing, 30
Absolute binary code, 143
ADA, 164
ALGOL, 160
American Telephone and Telegraph

Co., as supplier of telecom
munications services, 74-75

Analog (AC) signalling techniques, 83
Analog-to-digital converters (ADCs),

70
APL, 163
Arithmetic and logic unit, 19, 46
Arithmetic operations, in nonmemory

reference instructions, 27
ASCII character strings, 28, 30
Assemblers, 158
Asynchronous terminal devices, 94, 96
Asynchronous transmission, 91-92
Auto-decrement addressing, 32
Auto-increment addressing, 32
Autonomous data transfer, 36

Base relative addressing, 31, 32
Basic mode protocol codes, 100-101
BASIC, 1, 159-160

and interpreters, 145
BASIC-PLUS, 160

Batch processing, 128
Batch programs

queues in, 206-207
structure and components, 193-204

Batch systems, movement of data in, 71
Baud rate, 90
Baud rate generators, 66
Binary code, classifications, 143
Bit rate, 91
Bit-slice microprocessors, 68
Bit stripping, 109
Bit stuffing, 109
Bit timing, 92
BUS/COBOL, 279
Blocks, allocating to file, 165-166
Boolean processors, 68
Broadcast, and bus transmission, 97
Buffering, 207
Buffers, and storage, 219-220
Buses

and in-house networks, 87
structures, 22-25

Bus request (BR) working, in PDP-11,
174

Busy flag, 33
Byte data, how handled in minicompu

ters, 27
Byte operations, 19

323

324 The Minicomputer in On-Line Systems

Cache memory, 46
Calculator chip, 57
Call processing, and task management,

218
Canada, telecommunications industry

in, 75
Cartridge discs, interfacing, 70
Cathode ray tube (CRT), 4. See also

Visual display units
controller, 68
refreshing, 4, 5
in VDUs, 4, 5

CCITT, 76
error rate recommendations, 88-89
interface circuit standards, 93-96

V-series, 93, 94
X-series, 94, 95

and packet switching, 79
Central processing unit (CPU), 4

bus structures of, 22
and microprocessors, 57
in minicomputer systems, 6-8
and task management, 139

Chaining, 155-156
and dynamic storage allocation, 213

Character 1/0 working, in PDP-11, 174
Character interleaved systems, 8
Character string manipulation instruc-

tions, 27
Character synchronism, 92
Charged-coupled capacitor (CCD)

memory, 56
Checkpointable task, 155
Circuit switching, 85
Clock control, and task management,

218
Clocks, 51

and transmission timing, 89-93
Cluster controller, 4-6
Clustered files, 165-166
COBOL, 160-161

interpreters, 145
and message preprocessing, 139
and transaction processing, 132

COBOL-like languages, 162
Code conversion, and transaction proc

essing, 138
Code sharing systems, 154
Common carriers. See Telecommunica

tions services, suppliers of
Communication control unit (CCU), 2,

4, 8
as main frame terminal controller,

131
Communications functions, and trans

action processing, 136-142
Communications Satellite Corporation

(COMSAT), 76
Communications software, 171-172
Computer-output microfilm (COM),

70
COMTEX (Digital Equipment Corpo-

ration), 271
Concentrators, uses, 8
Condition flags, 19
Contention protocol, 101-103
Contiguous files, 165-166
Control flag, 19
Control instructions, 28
Conversational mode, 128
Conversational protocols, 103
CORAL, 163
COS 350 (Digital Equipment Corpo

ration), 271-276
and RSTS/E, 272-276

CP/M (Digital Research), 251-258
BDOS functions, 253, 256
enhancements to, 255
facilities, 253
file handler, 253-254
language processors, 254-255
optional utilities, 256-258
structure, 251-253
utilities, 256-258

Crosstalk, 88

Cycle stealing, 25
and multiport memory, 50

Data bases, 169-170
Data circuit-terminating equipment

(DCE), and transmission tim
ing, 89-91

Data communications
input/output, 136-138
international regulatory agencies

for, 75-76
software, 193-215
systems, role of minicomputer in,

1-13
Data entry languages, 162
Data link controls, 96-115

basic mode, 99-108
high-level, 108-113
obstacles to, 97
telegraph message-switching pro

tocols, 97-99
types of data used, 97

Data networks
CCITT interface standards for,

85-86
circuit characteristics of, 85-86

Dataphone Digital Service (DDS), 75.
See also American Telephone
and Telegraph Co.

Data services
for data transmission, 73-74
switching network of, 78

Data transfer instruction, 28
Data transmission, 71-126

characteristics of, 72
circuit arrangements of, 77-80
circuit characteristics of, 81-87
and distance, 71-73
error rates, 72-73
forming international connections

for, 75-76
over short-distance cables, 72
services, 73-74
via telecommunications, 72-73
timing, 89-91

Data transmission equipment (DTE),
and transmission timing, 89-91

Index 325

DC signalling, advantages in tele
graph systems, 82

Debugging, 142
and interpreters, 145

Decimal (BCD) arithmetic, in mini
computers, 28

DECNET, 236, 258-267
data access layer, 265
dialogue layer, 260
hardware layer, 260, 262-263
logical link layers, 260, 264-265
NSP functions, 264-265
objectives, 259-260
physical link layer, 260, 263-264
run-time functions, 259-260
sequencing, 265-266
structure, 260

Dedicated services, for data transmis-
sion, 73

Demand paging. See Paging
Detach, 151
Device Independent 1/0, 220
DH11 programmable multiplexor,

180-182
Diagnostic ROM, 50-51
DIBOL, 271-272
Digital data communications message

protocol, 112-113
Digital-to-analog converters, 70
Direct data entry (ODE), 129
Direct/indirect addressing, 30
Direct memory access (OMA), 36

components, 67
cycle stealing, 36
interfacing in PDP-11, 174
transfers, and mapping, 44

Direct random access files, 167
Disc controller, 67-68
Disc operating systems. See Operating

systems
Displacement, 25

in memory addressing, 30-32
Distance, and data transmission,

71-73

326 The Minicomputer in On-Line Systems

Distortion, and data transmission, 88
Distributed processing systems, role

of minicomputer in develop
ing, 9

Distributed switching networks, 9, 10
Distributed systems, case study of,

304-314
DLll line interfaces, 175-180
Done flag, 33
Dot matrix print mechanism, 118
Drivers, 66-67
DXlO (Texas Instruments), 244-251

CSI commands, 249-250
executive functions, 245
file functions, 247, 248
file types, 248
high-level languages, 250
1/0 functions, 247
memory management in, 245, 247
processor features, 244-245
service functions, 247
supervisor calls, 246-247
task handling, 245-246
VDU features in, 248

Dynamic storage, achieving, 213

ECLIPSE (Data General)
cache memory in, 4 7
case study of, 293-304
memory reference instructions in,

27
in RDOS, 221, 225, 227

Editors, 164
Electrical interfaces, circuit charac

teristics of, 81
Emulation package, and cluster con

trollers, 5-6
Emulation techniques, used with con

centrators, 8
Emulator programs, 171
Error-correcting memory, 50

Error detection and correction (EDC),
and telephone transmission, 87

Error handling, and transaction proc
essing, 138

Error-logging systems, 51
Error rates, CCITT recommendations

for, 88-89
Escape logic, 107
European Conference of Postal and

Telecommunications Admin
istrations (CEPT), 76

Executive functions, 46
in DXlO, 245
in GEC 4000, 46
in RSX-llM, 233

Extended BASIC, 160

Facsimile (FAX) scanners, 70
Failsafety/recovery, 142
Field-programmable logic arrays

(PLA), 68
File control services (FCS), 170-171
File handling routines, 170-171
File management

systems, 164-171
and transaction processing, 141-142

Fixed-head discs, 70
Floppy discs, interfacing, 70
Foreground/background systems, 152
FORTRAN, 1, 159, 160
Fragmentation, 213
Frame

fields in, 109
and HDLC, 108-113
types of, 109

Front-end processors (FEP), 2, 3, 131
in mainframe computers, 131

Full duplex transmission, 79

GEC 4000, executive functions in, 46

General purpose mainframe, advan
tages and disadvantages of, 11,
12

Half duplex transmission, 79
Hashing, 168-169

algorithm, 93
High-level data link controls (HDLC),

108-113
fields in, 109-111
frame, 108-113

High-level packages, 269-283
High-level protocols (HLPs), 115-117

IAS (Digital Equipment Corporation),
235

IBM, effect on data transmission stan
dards, 76

IBM Series 1, memory management
in, 43

IBM 3270, polling/selecting protocol
in, 105, 107

IDEA (Data General), 276-277
I-frame, use in HDLCs, 110
Immediate addressing, 30
Impulse noise, 88
In-circuit emulator (ICE), 63
Indexed addressing, 31, 32
Indexed sequential access method

(ISAM), 169-171
Indexing, 169
Induction, 88
In-house networks, 86-87
Input/output

autonomous data transfer of, 36
direct memory access to, 36
interrupts, 33-34
priority, 35
programmed, 32-33
serial, LSI components for, 63-67

Index 327

Input/output commands, and transac-
tion processing, 134

Input/output devices, 70
Input/output instructions, 70
Installed programs, states of, 218
Instruction look-ahead feature, 47
Instruction sets, 25-30

strengths of in minicomputers, 27
Integrated circuits, history of use in

minicomputers, 54
Intel 8080, 57, 59
Intel 8086, 59, 60
Interactive COBOL/BASIC technique,

and transaction processing, 134
Interactive mode, 128
Interconnected machines, 50
Interdata 8/32, memory management

in, 42, 43
Interface circuits, 93-96

CCITT recommendations for,
93-96

of peripherals and computers,
69-70

serial communication, 69
Internal interrupts, 35
International Consultative Committee

on Telegraphy and Telephony
(CCITT): See CCITT

International Standards Organization
(ISO), and data communica
tions, 76

International Telecommunications
Satellite Organization
(INTELSAT), 76

International Telecommunications Un
ion (ITU), 76

Interpreter programs, 145
Interrupts, 33-34

internal, 35
software polling, 34
vectored, 34

Interrupt controller, 67
Interrupt handling, and task manage

ment, 218

328 The Minicomputer in On-Line Systems

Job, defined, 150
Job control language (JCL), 150
JSR instructions, 32

Key access files, 167-168
Keyboard printer, 118-119
Key-to-disc systems, 6, 270-271
Key-to-tape systems, 6

Languages, in minicomputers,
158-164. See also specific
languages.

Line printers, interfacing, 70
Line protocols. See Data link controls
Li~e protocol chips, 65-66
Linked files, 165-166
Linkers, 158
Linking programs, 143
Literal addressing, 31
Loaders, 158
Local terminal controller, in main-

frame computers, 131
Logical file access, 167
Loops, and in-house networks, 87
LSI chips, special purpose, 68
LSI components

bit-slice microprocessors, 68
CRT controller, 68
direct memory access, 67
disc controller, 67
interrupt controller, 67
memory refresh, 67
microcomputers, 68
parallel 1/0, 67
for serial 1/0, 63-67

baud rate generators, 66
drivers, 66-67
line protocol chips, 65-66
UART, 65
USART, 65
USRT, 65

Magnetic bubble memory, 56
Magnetic core memroy, 25
Mainframe computers

advantages and disadvantages of,
11, 12

and teleprocessing, 130-131
Mapping systems, 153
Master file directory, 165
Matrix printers, interfacing, 70
MBASIC, 160
Memory. See also specific types

cost of, 56-57
management in 32-bit machines, 52
and microelectronics, 55-57
and swapping, 154-155

Memory address register (MAR), 36
Memory addressing, 30-32

absolute, 30
auto-decrement, 32
auto-increment, 32
base relative, 31, 32
direct/indirect, 30
immediate, 30
indexed, 30
literal, 31
page zero, 30
paging, 40
physical, 38
pointer, 32
program counter relative, 31
register indirect, 32
segmentation approach to, 40
virtual, 38

Memory chip, 57
Memory interleaving, 49-50
Memory management, 38-44
Memory mapping, 38-39

and system efficiency and security,
41-42

Memory protection, 38-44
in unmapped systems, 39

Memory reference instructions, 25-27
Memory refresh components, 67
Message buffering, and transaction

processing, 138

Message-interleaved systems, 8
Message postprocessing, and charac

ter string conversion, 139
Message preprocessing, and character

string conversion, 139
Message queueing, and transaction

processing, 138
Message router, functions, 205
Message routing, 139
Metal oxide semiconductors (MOS),

54
Microcodes, 145
Microcomputers, 61-63, 68
Microelectronics

and computers, 54-68
and memory, 55-57

Microprocessors, 57-61
use in minicomputers, 17
use in special purpose data com

munications devices, case
study of, 315-321

Microprocessor Development Systems
(MDS), 63

Microprogramming, 27, 52-54
Microwave Communications Inc., 7 4
Minicomputers

acquisition of, 285-287
advantages and disadvantages of,

11-13
architecture of, 19

and reentrancy, 145
assemblers and loaders, 158
communications software, 171-172
as concentrators, 8
data communications handling on,

173-191
defined, 1, 15-19
file management systems, 164-171
high-level languages, 158-164
implementation, 287-288
memory organization in, 24, 25
modes of operation, 127-130
operating systems of, 150-158

examples of, 217-267
problem areas with, 13

Index 329

processor, 19
"real-time" applications, 16
program development aids, 164
program usable registers in, 19
software, 143, 145
teleprocessing systems in, 131
transaction processing in, 131, 132,

134-136
uses, 1-13

Minis. See Minicomputers
MODCOMP II CP2, 183-190

architecture, 183-186
features, 186-188
Universal Communications Sub

system, 188-190
MODCOMP MAXCOM Communica-

tions Executive, 239-234
hardware interrupt levels, 239-240
1/0 handlers, 244
1/0 management, 242-243
operating systems, 237-244
storage management, 243
task control block, 237-239
task handling, 241-242
timer management, 242
user support, 244

Modems
CCITT standards for, 93, 94
and telephone transmission, 83-84
and transmission timing, 89-90

Monitor ROM, 50-51
MOS memory, 55

and power fail protection units, 51
Multibus, 62-63
Multinational data transmission net-

works, problems with, 75-76
Multipartitioning system, 154
Multiple register sets, 46
Multipoint circuits, 80
Multi port memory, 25, 50
Multiprogramming systems, 153
Multitasking, 132

and task management, 139
Multitasking system, 152-153

330 The Minicomputer in On-Line Systems

Multithreading, 132, 200
and task management, 139

Network architecture, and HLPs, 116,
117

Network management, and transaction
processing, 139

Network terminating units (NTUs),
95, 96

990/10 (Texas Instruments), memory
management in, 43

Noise, 88
characteristics of, 88

Nonmemory reference instructions, 27
arithmetic operations in, 27

No processor request (NPR) interfac
ing, in PDP-11, 174

NOVA (Data General), in ROOS,
221, 227

Numeric data, 28, 30

Off-line operation, 127
On-line operation, 128
On-line terminal handling packages,

270
Operating systems

code sharing, 154
CP/M, 251-258
disc-based, 151
DXlO, 244-251
examples, 217-267
foreground/background, 152
functions of, 150
mapping, 153
MAXCOM, 237-244
multipartitioning, 154
multiprogramming, 153
multitasking, 152-153
overlays and chaining, 155-156
ROOS, 221-227
RSX-llM, 227-237

single user vs. multiuser, 151-152
swapping, 154-155
virtual, 157-158

Operator communications, 129-130
Other equipment manufacturers

(OEMs), and minicomputer
marketing, 15-17

Overlays, 155-156

Packet switching, 10, 79, 85-86
and error correction and detection,

89
Packet-switched networks, and

CCITT recommendation, 25,
113, 115

Page zero addressing, 30
Paging, 40-41, 43, 157-158
Parallel 1/0 components, 67
Parity memory, 50
PASCAL, 159, 161-162
PDP-11 (Digital Equipment

Corporation)
architecture of, 173-175
bus structure of, 22, 23
cache memory in, 47
DHll programmable multiplexor,

180-182
DLll line interfacers, 175-180
instruction lengths in, 23
memory management in, 43
memory reference instructions in,

25, 26
move instructions in, 52
multiport memory in, 50
single asynchronous serial line in

terfaces, 175-180
Peripheral devices, attaching to com-

puters, 69
Physical address, 38
Physical file allocation, 165
PL/I, 161
Point-to-point circuits, 80

Pointer addressing, 32
Polling/selecting protocols, 103-105

in Burroughs TC 500, 104-105
in IBM 3270, 105, 107

Position-independent binary code
(PIC), 143

Post, telegraph, and telephone admin
istrations (PTTs), 75-76

circuit characteristics, 77
Power fail protection unit, 51
Prime 400/500, memory mapping in,

43
Priority 110, 35
Procedure, defined, 149
Processor, 19

memory cycle times of, 19
Program, defined, 149
Program control

event driven, 153
operations, 27
time-sliced, 153

Program counter relative addressing,
31

Program development aids, 164
Program management, 140, 204-206,

217-218
Program manager, functions, 205
Programmed 1/0, 32-33
Program-usable register, 19

Queue management, 206-214, 219
Queue manager, 208, 211

Random access memory (RAM), 56
static vs. dynamic, 67

RDOS (Data General)
communications access manager,

225-226
high-level languages, 226-227
operating systems, 221-227

Index 331

task control block, 223
task control calls, 224
supervisor calls, 223
system command calls, 224

Read-only memory (ROM), 25, 56
diagnostic, 50-51
monitor, 50-51

Real-time processing, 129
Reentrancy systems, 143, 145
Register indirect addressing, 32
Registers, function in minicomputers,

19
Relocatable binary code, 143
Remote batch processors, 2, 3
Remote batch terminal (RBT), 4
R~ote multiplexor (MUX), 6-7
Rings, and in-house networks, 87
RPGII, 162
RSTS/E (Digital Equipment Corpora

tion), 272-276
case study of, 290-292

RSX-llD (Digital Equipment Corpora
tion), 235

RSX-llM (Digital Equipment
Corporation)

communications software, 235-236
file handling in, 233-237
high-level languages, 236
memory allocation in, 228-230
monitor console routine commands,

232
operating systems, 227-237
system directives, 232-233
tables in, 230
task execution, 232

RSX-US (Digital Equipment Corpora
tion), 235

RTL/2, 163

Satellite communications, 76
Segmentation approach to memory

addressing, 40
and virtual address, 40

332 The Minicomputer in On-Line Systems

Semiconductor memory, 25
Sequential files, 167
S-frames, use in HDLCs, 110-111
Shared peripherals, 50
Simplex transmission, 79
Single-bus technique, 22, 23
Single-threading system, 200
Single user vs. multiuser systems,

151-152
Single-word instruction machines, 26,

27
Small business systems (SBS), 269

advantages and disadvantages, 11,
12

Software, and minicomputer use, 2
Software packages

BUS/COBOL, 271
COMTEX, 271
cos 350, 271
IDEA, 276-277
SyFA, 277-279
TAD, 279-280
TRAX, 280, 282-283

Special purpose communications
products, advantages and dis
advantages of, 11, 12

Stacking, 32
and interrupts, 33, 34

Stack pointer, 32
Start/stop transmission. See

Asynchronous transmission
Start-up/shut-down, and transaction

processing, 140-141
Statistical multiplexing, 8
Statistics, and transaction processing,

142
Status flag, 19
Storage management, 40, 206-214,

219-220
and I/O buffer allocation, 219-220

Storage module discs (SMDs), 70
Subroutine calls, nesting, 32
Supervisor calls (SVCs), 151, 219

in RDOS, 223

Swapping, 154-155
Switched services, for data transmis

sion, 73
SyFA (Computer Automation),

277-279
SYN character, use in synchronous

transmission, 92
Synchronism, 91-93
Synchronous terminal devices, 94, 95
Synchronous transmission, 92-93
System command calls, in RDOS,

224
System programming languages, 163

TAD (Computer Technology),
279-280

Task
active states of, 219
defined, 149

Task control blocks, in ROOS, 223
Task control calls, in RDOS, 224
Task management, 193-204, 218

functions of, 218
and transaction processing, 139

Task manager, 201
and program management, 205

Task monitoring, 218
Task scheduler, 218
Task scheduling, 218-219
TASS (Data General), 297-304
TC500 (Burroughs), polling/selecting

protocol in, 104-105
Telecommunications, 72
Telecommunications services, 73-74
Telecommunications suppliers, 74-76
Telegraph, and data transmission,

73-74
Telegraph circuits, characteristics of,

81-83
Telegraph networks

CCITT interface standards for, 93,
94

switching networks of, 78

TELENET, 75
Telephone, and data transmission,

73-74
Telephone circuits, characteristics of,

83-85
Telephone services

switching circuits in, 79-80
switching networks of, 77-78

Telephone transmission, error rates
with, 88-89

Telephone networks, CCITT interface
standards for, 93, 94

Teleprinter, 118
Teleprocessing, 129

buffering problems, 208-214
program writing in, 193-204
queuing problems, 208-214

Teleprocessing programs, design of,
214-215

Teleprocessing systems, 130-131
Teletypewriter Exchange (TWX), 74
TELEX, 74

as data transmission device, 73
switching networks of, 78

Terminal drivers, and transaction
processing, 138

Terminal 1/0 control, and transaction
processing, 141

Terminals, 117-121, 124, 126
keyboard printers, 118-119

dot matrix printing, 118
teleprinter, 118
VDU, 119-121

Terminal-user command monitor, and
transaction processing, 141

Test instructions, 28
Thermal noise, 88
32-bit machines, 53-54
Time control, and transaction process

ing, 140
Time division multiplexors (TDMs),

6, 8
Time-sharing systems, 129
Transaction logging, 142

Index 333

Transaction processing, 128, 131-136
and communications functions,

136-142
and terminal handling functions,

136-142
Transaction processing monitor

(TPM), 132, 134-136
and file management, 141-142

Transmission timing, 89-91
Transparency, 107
TRAX (Digital Equipment Corpora

tion), 280, 282-283
Tumble table, 208
TYMNET, 75

U-frames, in HDLCs, 111
Unibus (Digital Equipment Corpora

tion), 173-175
United States, suppliers of telecom

munications services in, 74-76
Universal asynchronous receiver trans

mitter (UART), 65
Universal synchronous/asynchronous

receiver transmitter (USART),
65

Universal synchronous receiver trans
mitter (USRT), 65

User file directory (UFD), 165

VAX 111780 (Digital Equipment Cor-
poration), 53-54

instruction set of, 53
memory management in, 53-54
memory mapping in, 43

Vectoring techniques, for 1/0, 34
Virtual address, 38
Virtual 1/0, 28
Virtual system, 157-158
Visible record computers (VRCs), 17

334 The Minicomputer in On-Line Systems

Visual display units (VDUs), 4, 5,
69, 119-121

cluster system, 120-121
interactive batch terminals, 124
interfacing, 69
remote batch entry terminals, 124
special purpose terminals, 126
and storage management, 140
teletype compatible, 120
and transaction processing, 134-136

Winchester disc technology, 69, 70
Write data instructions, 28

Zilog Z8000, 61

